MSc thesis

Computer Science

Reversing Entropy in a Software
Development Project: Technical Debt and
AntiPatterns

Jacinto Ramirez Lahti

November 24, 2020

FACULTY OF SCIENCE

UNIVERSITY OF HELSINKI

Supervisor(s)
Dr. A-P Tuovinen, Prof. T. Mikkonen
Examiner(s)

Dr. A-P Tuovinen, Prof. T. Mikkonen

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Faculty of Science Computer Science

Tekija — Forfattare — Author

Jacinto Ramirez Lahti

Ty6n nimi — Arbetets titel — Title

Reversing Entropy in a Software Development Project: Technical Debt and AntiPatterns

Ohjaajat — Handledare — Supervisors

Dr. A-P Tuovinen, Prof. T. Mikkonen

Tyoén laji Arbetets art Level Aika Datum Month and year Sivumaara Sidoantal Number of pages

MSc thesis November 24, 2020 51 pages

Tiivistelméa Referat Abstract

Modern software development is faster than ever before with products needing to hit the markets
in record time to be tested and modified to find a place in the market and start generating
profit. This process often leads to an excessive amount of technical debt accrued even specially
in the early experimental stages of the development of a new software product.

This accumulated technical debt must then be amortized or otherwise it will hinder the future
development of the product. This can in many cases be difficult not only by the time pressure
for new requirements but by the nature of the problems behind the technical debt. These
problems might not be apparent and appear just as symptoms that might not directly indicate
the real source.

In this thesis, an AntiPattern centric approach to the identification and fixing of the root
causes of the technical debt was implemented in the context of a case study of the five-year-old
codebase of a startup company. AntiPatterns were not only found and fixed from the codebase
but from the Scrum methodologies used in the project and thus these were also analyzed and
improved through AntiPattern analysis.

The case study showed promise in this approach, generating concrete plans and actions towards
decreasing the technical debt in the project. Being limited to the context of this one company
and project, more research should be done on a larger scale to be able to generalize the results.

ACM Computing Classification System (CCS)
Software and its engineering — Software creation and management —
Software post-development issues — Maintaining software

Avainsanat — Nyckelord — Keywords

Software Development, Technical Debt, Legacy Code, Code Smells, AntiPatterns

Sailytyspaikka — Foérvaringsstalle — Where deposited

Helsinki University Library

Muita tietoja — Ovriga uppgifter — Additional information

Software Systems specialisation line

Contents

1 Introduction

2 Modern Software Development

2.1 Agile Software Development oL
211 Serum ... e
2.1.2 Lean Startup

2.2 Constant Need for Change

2.3 Factors That Inhibit Change,
2.3.1 Technical Debt
2.3.2 Legacy Code

24 CodeSmells

2.5 AntiPatterns.

3 Methodology

3.1 Research Setup
3.2 Research Questions
3.3 Performing the Research

4 Case Study

4.1 Case Company ot
4.2 Case Product
4.3 From Code Smells to AntiPatterns
4.3.1 Static Code Analysis
4.3.2 Identified Code Smells
4.3.3 Underlying AntiPatterns
4.4 ScrumBut AntiPatterns

5 Conclusions

© O

10
11
11
13
13
14

17
17
17
18

19
19
21
22
22
32
37
41

46

Bibliography

49

1 Introduction

The “Manifesto for Agile Software Development” [5] sprung lots of different interpretations
and implementations that fit different programmers, managers and projects. It is very
rare for any project or organization to use purely any of these methods, but a tailored set
that fits best, with different degrees of success. Sometimes the approach chosen leads to
forgetting some of the 12 principles behind the Agile Manifesto focusing singularly on just a
few of them, which will likely lead to problems if not careful. For instance the first principle
which talks about continuous delivery (CD) and delivering value to the customer as early as
possible combined with the second principle which talks about the changing requirements
during development, can be very dangerous if principles like the ninth principle which
talks about the need to keep technical excellence and the good design of the product in
mind, is forgotten. This could lead to thousands upon thousands of lines of code being
delivered regularly but without any kind of structure, with abandoned features looming
around. This will inevitably lead to the codebase being completely ungovernable which

will in turn make future development that much more difficult.

The need for change is the main driver of software development, be it a bug that needs
to be fixed with a change in the code or a new feature that needs to be implemented
through a change in the code. Developing a software product can be roughly reduced
to these two types of changes that will lead to a more reliable and feature rich product
delivering value to the customer. Therefore, any time that the development process leads
to a codebase that is not easy to change everything will slow down and in the worst of
case grind the development process to a halt if something grave enough happens. The
third and sometimes forgotten reason for change is just fixing this degenerative process
by refactoring. And we would say forgotten, because refactoring should not be a thing
that is done as a last measure to fix a problem that has been avoided for long but as
preventive measure that will allow keeping the software in a state of technical excellence
and good design, as the Agile Manifesto’s ninth principle says, regardless of the volume
of features and bugs that have been implemented and fixed. As Martin Fowler puts it in
his book “... first refactor the program to make it easy to add the feature, then add the
feature.”[14]. Otherwise you will just make your life harder and delay the inevitable. The
later the problem is dealt with the costlier it will be and the longer it will take.

2

In the current job market, where programmers change companies every couple of years
[26], an added complexity arises, particularly in smaller projects that might have just a few
or maybe a single programmer. If the programmers leave a project in the state previously
described, the next person tasked to make a change will have a very hard time to make
any needed change, be it urgent bug fix or some other supposedly mundane task [18]. In
this case we are talking about legacy code within a legacy system, which traditionally
denoted a codebase that was difficult to work with but was of vital importance and thus
needed to be maintained [6]. In its literal definition legacy code is just a codebase that
a programmer has inherited from another programmer that most likely is not available
anymore for consulting on it. With the increased pace of development and job changing
this phenomenon does not happen just when a gray bearded programmer retires and leaves
behind his lifelong COBOL or Fortran projects which are the backbone of a humongous
system, it happens in the smallest startups and projects when the initial push is made
and as mentioned before, the essential care for good design and technical excellence is
forgotten. This is the reason why the definition given by Michael Feathers fits better the
new paradigm: “Code without tests”. [13] This definition not only shows the main flaw
that most inherited projects that are immediately labelled as legacy code due to their
complexity and difficulty to change without risking breaking something, is simply the lack
of tests. Tests are a fundamental tool that do much more that “test”, but they document
the code and the intentions of the original programmer and serve as a failsafe for changes
that should not change any external behavior. Refactoring is also a near impossible task
without having test that will make sure that the changes made don’t affect the functionality

of the software, making them indispensable but sadly disregarded.

During the process of developing software easy and fast solutions are preferred over more
arduous and time-consuming implementations that might be better on the long run. This
process generates what is called as technical debt [33]. If this technical debt grows un-
controllably, what were just small shortcuts might become big obstacles for the further
development of the software. The longer it is left unchecked the more difficult it is to get

a handle of it and be able to amortize the accrued debt.

One concept that can help identify cases like what has been presented is the concept
of AntiPatterns, as presented by the “Gang of Five”, which are common solutions to
problems with negative consequences.[7] AntiPatterns are thus the opposite to Design
Patterns which describe solutions with known positive consequences in the structure of

software. AntiPatterns are usually the result of haste, apathy, narrow-mindedness, sloth,

3

ignorance or pride, which sadly are often present in software development. A pertinent
AntiPattern to the previous discussion is the Lava Flow AntiPattern, which comes out as
code that no longer has any function in the program but it is not clear enough to be simply
removed and usually due to it being an inherited codebase, the original programmer can’t
be asked about it. Thus, this dead code (the alternative name of this AntiPattern) just
increases the complexity and becomes a piece of code that everybody just avoids, working
around it, generating even more unnecessary complexity. This AntiPattern is solved by
making sure that the architecture of the software enables identifying clearly dead code,
which in turn enables its prompt removal. Other AntiPatterns that every programmer has
probably seen but maybe not thought of them at that moment are: Spaghetti Code, Cut-
and-Paste Programming, Vendor Lock-In and Reinventing the Wheel. All of them have
their own solutions that should be known to enable moving towards a better architecture

and design.

In this thesis we will be looking into how to reverse the complexity of a codebase, Robert
C. Martin puts it very well in the preface of Working Effectively with Legacy Code “It’s
about reversing entropy”.[13] The thermodynamic concept of entropy is a great analogy of
how a codebase increases in complexity if not regulated from the outside. How can a case
of ramping entropy like this be identified? How can it be controlled? And finally, how can
it be reversed? The thesis also will be aided by a concrete case study of a software project
in need of extensive refactoring, due to fast development focused on finding the right
market niche, neglect of design patterns and testing. It is in this project that the Lava
Flow and Spaghetti Code AntiPatterns can be clearly seen. The main tools used to solve
this problem will be the previously mentioned refactoring and testing but additionally
implementing proved effective design patterns and processes and finally thinking about
the permanent cultural changes needed to avoid the repetition of the same mistake before

too long.

The rest of this thesis is structured as follows. Chapter 2 goes through the background of
the thesis covering what software development looks like today, how software can become
hard to change and what tools we could use to help us get rid of problems that inhibit
change. Chapter 3 sets up the research questions and methodologies used in this thesis.
Chapter 4 contains the case study at the center of this thesis that analysis the problems in
the codebase of a software startup with the use of code smells and AntiPatterns. Chapter

5 serves as the concluding remarks of this thesis.

2 Modern Software Development

This chapter introduces the main concepts and ideas that are the foundation of this thesis.
Section 2.1 goes through the agile software development model with a couple of concrete
agile frameworks as examples. This is followed by section 2.2 which explains the need for
change that is a constant in software development. Then section 2.3 covers factors that
can inhibit the change of software. After that, section 2.4 introduces the concept of code
smells and static code analysis that can be used to find the code smells in a codebase.
Finally, section 2.5 explains the concept of AntiPatterns which will be in the center of the

methodology used for the analysis of the case study at the end of this thesis.

2.1 Agile Software Development

The way software has been developed since the 1970s has clearly evolved from the more
heavyweight processes to more lightweight development methods that prioritize iteration
and prototyping over heavy up-front planning. This change become very apparent during
the 1990s when many software developers started publishing their own ”lightweight de-
velopment” frameworks and methods in contrast to the heavyweightness of the processes
they had seen in the industry until then. Scrum [29] and eXtreme programming (XP) [4]
are examples of these software development methods created in the 1990s that still live
strong. It was a group of these developers and thinkers that decided to gather and ended
up writing the Agile Manifesto [5] which is contains the core values and principles that

these new methodologies had in common.

The Agile Manifesto promoted a new approach to software development that focused
on collaborative development where processes are secondary to the people and their in-
teractions. At the same time, it promoted the minimization of unnecessary work like
documentation for documentations sake and instead limit it to what is absolutely neces-
sary, leaving more time to producing working software that can increase the value received
by customers and stakeholders. The active participation of customers and stakeholders in
an ever-ongoing collaborative effort through the development process is also on the core
of all agile methodologies, avoiding too detailed planning upfront that will inevitably be

obsolete as the product takes its form during development. All this means that the inher-

5

ent uncertainty of software development projects is accepted and following agile principles

and methodologies it is much easier to adapt and respond to the inevitable changes to

the initial plan over time. In summary, agile methodologies focus on the ability to create

value, responding to change and enabling strong collaboration with the customers and in

the development team itself.

Agile has now grown immensely in its 20 years of life. The number of frameworks, method-

ologies and practices is staggering. This can be seen in Figure 2.1, which is Christopher
Webb’s (Deloitte) depiction of what the world of Agile looked like in 2016. From it we

can discern that agile is not only used for software development teams but has been scaled

up to the whole organization level or business model with frameworks like Scaled Agile
Framework (SAFe) [11] and the Lean Startup methodology [27].

Scaled Agile Framework (SAFe)

Management 3.0

oo laes P Uil dge Achiedin ciedc AT S Doy 4versions Fxed Software Hybrid Product Achtectre RskVaue Coocinsted {Marshall 4Mindsets Tum Delegation Kudos Meddlers 10 Movin
Agile Portfolio, Backlog portfolio runway Theme Budget Patterns Planning of lifecycle Delivery Development waterfall -~ Mgmt Team Driven cycle Activities ' up the Poker Cards (change intrinsic Motivators
Mgmt Program, Date” Context practices Team good game) desires
e Communities Eraeto
| SDCH r
of pracice o) Qe QO Boyond Budgefing
Organise Top down Feature Scrum Improvement Feature Overal e o Gahal
b +Bottom team | Product _ of Service Teams Retrospective 3 e O ot e o e)
customer Up adoption [Owner ~ Scrums Scaling i g 4 Leadership 7Tests Schneider TheoryXvs. Collaboration,
Potentiall el 9 levelopment
value map i g ly Business EPIC (GoD) ofanew Culture ory Y Cultivation, and
3 levels coaching (org, team, tech) Shippable Product i Model Competonce
Large Enterprise H
Architectura)
Scaled Scrum (LeSS) \O—O—O— O "Ehic
Multiteam Vision Contract iCause Casual 5 Dysfunctions of tear
desgn Page Game iefect Loo o O O O Q) 9, O O
workshop diagrams Diagrams Viable Minimum ¢ A3 ADKAR Survey TOC! Poisson PlantTypes ~ Team ImprovementExploratory, o1 1o 6
Product | Viable Change thinking| Cumulative eNPS KATA Days " ome) Sigma
nefin g%i;p vp) i) J— process. Distrioution
B (d)'_() smemry‘sx Qi ® () O O O QO isss
Mderstancy, Senesimeking age Object UML Domain | Buffer 5 Why 8Wastes Kaizen Kaizen DCA
Design Thinking vty Ouapedes (g o P O Retondl gncples \ |Digram Object | Mgt i bust bitz (Deming cyci)
Focal precedes data) Caffee Area Mapping 4 Modelling Q Theoryof Paroar
Question i O FestursTETNg Constraints © O ® Q==
iger Team
" Vo of 9 template LmitwiP () Visual waste 3bin Make Muda; Lead | Cycle time
yp e e, huHaRi Muri, Y
Idea~, Statement L IRSIESuE Product Development (FLO\ [&waiting system Pth‘cxei Viita time.
wplic
Do e on O "0 "0 O ® 0 Fiow cortra DevOps
Low Decision Product Personas; Rules of Parking _ Story 0 O O Qcortinuous
Fiedelity ' Affinity () Tree \‘/wswotvo Simplicity Lot Mapping / Kanban board Implement Evolve Production Testing
Prototypes Clustering (elevator
Dnersent/ (N aistorming picy S
Convergent O O Feature Set (combinec(™ = Definition of Ready
Thinking vertical, horizontal O Auto-scale & Heal
T ey Daly Task
Persjecive | Confoxt Relationdl o eF Meeting Board
Top 5 (ideas) Mapping () Mappin: apping WS e ns . O
=T . \ =g Refinement Optimal Opreature Togaing
6Levelsof JT Model Simple CRC Cards Sustaifable Metaphor Spikes | TeanTPeR e Meeting W\ Batch
hy- Change gmpathy(() Planning Storming De§ign Pace N\, INVEST StOry Fast Feedback
oy G o Product split SIZE 12 Cardinal §
corenoee() Lacdering anvas aps Toduct £y pliting o ardinal Sins
Mapping ot (Trelease =t (e —— —
@) Ocard sort Planning iterati rogrammin: F K Td\%] Q) ' (2 () mall
Map 9 2 9 onsire Feedback Definition Dreyius Usability g oma
O O ration Onste ™ aops” Ad-Hoc ofDone Model Tastng J releases
Deign etrospectiv Q) Agile Release
Principles (O Hackathon | Product sprint ® i
¢ stoybards () - gEEEYTT——T— sarmai | B20K109. Planning D O . O 0 Trains (ART)
e (182) Shift
index Acceptance nt
Five £'s ks O e el) s O) ppoker Relatve ESLmato) - acceptance 7 gns of Context L= T ol (e, ™ T
Ti lanning Crit context Driven
2@ Matrix Joul®Y Guided Define Faciltated Doblin's 10 Development 0 ik 2 Refactoring e T) e Mgt Engineer
P Tour Success workshops _types of approach Velocit
o i Gefinition Marick's Test Driven Continuous O
tellin SPICE innovation b o
5 = Test ~ Development Deployment!
Delivery: Document umcown. C Release on
Control Pack ReVert Refacoring | prereauistes o Pe e Chat Y Cateoeries Test Demand
o | Dynamic System Development Method (DSDM) i Spint oy Automation | Automated
Model Vision C INiko-Niko (showcase) Carlo Build;
Canvas A —)._—_ O ~ Calendar Automated visual
(remibilty Proect Busiess Risklog Devery Boselned Solution) MdSCOW O QO Reflective O ek) S0ty O Odashboard
approach Case Requirements Architecture Independent 5 Mikado mprovement ot g
Assessment b3 i Independent Version - Artefact Standardisedntegrated yngmic
eV questionnaire e) ® O Goal Naively Focusing awerdeww (Rreflection Cumulative (OFontrol “Vigmt Promotion Testing Environments
K ade off g ¥ Siepst AP Workshops - Flow S onenised Path
e | 4+1View Emerging Update when User Diagram e Qranching
g e architecture Design ifhurts Case . O Strategy
- & (code ‘Automated Test
craftsmanship) O & 8 O O O O O O O Code Coverage Virtualisation
motic Incremental | Focu Scale Waking Delphi Information Exploratory Incremental Team Safety ~ CDEL
Communication ~Re-architecture | Period method by Skeleton estimation Radiators 360degree Architecture Safe (user method O
@ colour sl reviews space solution) ~selection Mock Objects
Initiate Discover Deliver Release

Figure 2.1: Christopher Webb’s depiction of the Agile Landscape [34].

Another prevalent phenomenon today is the use of just certain practices that are part of

the different frameworks and methodologies without adhering in full to any of them. Some

examples of these kinds of practices are the ones derived from XP like pair programming,

test driven development (TDD) or continuous integration (CI). You will rarely a develop-

6

ment team using these practices talking about how they use XP, but rather talking just
about agile instead. It is good to keep in mind that this tendency does not always lead
to the desired results when decision is made through improvisation and without thinking
how the changes and modifications might affect the bigger picture. In these cases, it is
important to notice what is not working and be able to adapt and change in the spirit of
the Agile Manifesto.

To understand how agile can is used in practice and how it has influenced other facets of
software development the next two subsections will focus on the Scrum framework, the
most prevalent agile framework, and the Lean Startup, a business development method-

ology with clear influence from agile principles and widely used in software startups.

2.1.1 Scrum

The Scrum Framework is the most popular Agile Frameworks used in software development
projects with at least the 75% of the respondents of the 14th Annual State of Agile report
using it or some kind of hybrid variation of it [32]. This prevalence is why some people

even use interchangeably scrum and agile as synonyms which they are not.

Scrum heavily focuses in the iterative and incremental nature of the software development
process with a cyclical workflow that repeats in each iteration, which is called a sprint. In
its very core Scrum has the idea of a self-organizing development team that through tight
collaboration develop the product itself. Scrum benefits of a development team that is
small enough to be agile but not too small that progress would be slowed down by its small
size. The coordination needed to manage a team larger than 9 members is too complex

which becomes detrimental to the ability to follow the principles of scrum.

A scrum team includes two other important roles in addition to the development team.
These roles are that of the scrum master and the product owner (PO). The scrum master
is the person responsible for the team following the Scrum Framework and help resolve
impediments which may appear. This impediment solving is probably one of the most
difficult tasks of a scrum master, as in some cases the impediments might be very hard or
even completely out of the hands of the scrum master to solve but it is an essential task
for the team and PO to work efficiently. The PO is the person representing the client,
knowing what the client wants from the product being developed. In many cases the PO
is the client or from the client organization itself, which is preferable but it not absolutely

necessary. The functionalities to be implemented are managed in the so-called product

7

backlog, which is maintained by the PO. In essence, the product backlog is just a list of

prioritized work to be done by the development team.

Figure 2.2 shows the development cycle presented by the Scrum Framework. The product
backlog, which was previously mentioned, on the left is implemented in 2-4 weeklong
periods called sprints that result in a working increment of the product. On the beginning
of each sprint the scrum team plans the sprint in an event called sprint planning, where
the whole scrum team decides what work will be done in that sprint. The result of sprint
planning is the sprint backlog that is a set of tasks that have been taken from the bigger
product backlog. The sprint backlog sets the goal for that sprint, but as work is done
during the sprint the development team and PO will negotiate if for any reason something

is not going as expected and the scope needs to be adjusted.

Sprint
Retrospective

Planning Team

Sprint 1 Scrum ‘.‘}

Product Increment

Backlog Product

Backlog

Figure 2.2: Graphical depiction of the Scrum Framework’s development cycle.

During the sprint itself the development team implements the requirements in the sprint
backlog as they see fit. Every day there should be a short meeting, the daily scrum, where
the team inspects the progress toward the sprint goal and plans the work for the next 24
hours. It is structured around three questions that each team member answers keeping

the sprint goal in mind:

o What did I do yesterday?
o What will I do today?

o Is there something that impedes my or our progress?

8

After the sprint is over the sprint review is held to check if the goals for the sprint have
been met. It is here that the new increment is presented (thus sometimes receiving the
name of "demo”) to the scrum team and key stakeholders to elicit discussion and feedback
that can then be used in the future through new requirements that would be added to the

product backlog.

Finally, the scrum team convenes in the sprint retrospective to think about what went well
and what would require improvements for the next sprint. The things that are inspected
in this meeting include everything from people and relationships to process and tools. The
result of the retrospective should be a list of action points to be able to implement the

identified needed improvements.

It is good to notice that all these different events follow the idea of time-boxing, with a
set amount of time not to be exceeded, for each of them. This is to keep the meetings
on the given topic and avoid wasting the time of the whole team in things that should be
discussed in smaller groups or not at all. The scrum master is in charge of guiding the
team to keep into the intended time-box. A summary of the different scrum events with

their recommended time-boxing [30] can be seen in table 2.1 bellow.

Event Name Main purpose Time-box
Sprint Planning Creating the backlog and setting the goal for the 8h
new sprint
Daily Scrum Daily check of the progress towards the sprint goal 15min

and solve impediments

Sprint Review Demonstration and feedback of the achievements 4h

of the sprint

Sprint Retrospective | Recognizing what went well and what went wrong 3h

to improve in the next sprint

Table 2.1: Scrum events with the maximum recommended time-box for sprints of 1 month

given by the Scrum Guide [30]. These should be shorter in shorter sprints.

After all this, the scrum team starts a new sprint with a new sprint planning event to
restart the cycle. Scrum, in the spirit of the agile manifesto, clearly guides towards col-
laboration within the team and with the client, continuous improvement and continuously

delivering working software.

As stated at the beginning of this section, scrum is very widely utilized, but not always

9

in its pure form. There are variations like ScrumBan that fuses concepts of Scrum and
Kanban (a lean methodology) or something like a Scrum/XP hybrid. These in particular
are more well-defined variants with their own sets of guidelines but then there are the
millions of variants that appear in each individual team due to experiencing some part of
the framework as bothersome or just not useful in that particular case. These variants
contain modifications to the basic Scrum Framework that are called ScrumButs [35]. They
usually take the form of the following sentence: "We use Scrum, but for reason X, we
take workaround Y”. Some of these workarounds are temporary for a good reason, but
sometimes the workaround or the reason might be completely misguided and end up
harming the processes. This concept will be further discussed in section 2.5, where some

of these variants will be considered as AntiPatterns as they have a similar structure.

2.1.2 Lean Startup

Lean Manufacturing is a production method that focuses on minimizing waste derived from
the way of working of Toyota. Lean as a widely known concept was popularized by Womack
and Jones in the early 1990s [36]. What made this way of approaching manufacturing so
different was the focus on flexibility and continuous improvement. Instead of having a
production line being able to produce just a specific product an effort should be made to
be able to change what a given production line is producing. Another famous element of
lean is the ability to use the "stop” button, stopping the whole production line, whenever
an issue is encountered, for it to be immediately fixed instead of potentially wasting much

more time later.

Lean Startup [27] fuses Lean and Agile to build a business level methodology directed
towards technology startups where the ability to move fast and change directions is es-
sential. Startups do not have the luxury of spending lots of time developing a product
behind closed doors and then releasing it when it is ready, as it just might not have a
fit in the market. Unlike Agile which focuses on delivering working software often, Lean
Startup’s approach is to deliver features or feature prototypes as fast as possible to the end
users to learn from their reactions directly. The main loop of the Lean Startup process is
Build-Measure-Learn where the process starts in reverse from setting a hypothesis of what
feature or product that the markets/end users would be interested on that we would want
to learn about, then setting a set of measurable parameters that would indicate that the
hypothesis was correct and then build it. Once built the product/feature is delivered to

the end users to measure and thus learn if the hypothesis was correct. The results of this

10

process are then used to decide how the future of the feature, product or whole company
should be molded.

The changes in direction that are derived from what is learned on the Build-Measure-Learn
cycle are called pivots. Pivoting, a core principle of Lean Startup, is a course correction
done to find a new hypothesis or strategy for the startup to be successful, there are many
examples of startups that flourished after making even radical pivots [31, 3]. There are
many types of pivots, some related to simple feature sets and their scope, others regarding
the higher level business model and those that directly require changes to the underlying

technologies used.

The other big principle of Lean Startup that has been adopted very widely is the concept
of Minimum Viable Product (MVP). A MVP is a version of a product that requires the
least amount of effort to create but maximizes the amount of learning from customers to
decide whether it is a good path to follow further or not. In the case of a software product
it does not even need to be a program itself, but for instance a video that depicts the
functionality and can be presented to customers as if it was something already built. A
famous example of this is how the creators of the file-sharing tool DropBox first tested
their idea for the product, with a video exemplifying what DropBox would later become

without writing a single line of code [21].

2.2 Constant Need for Change

Software development is in essence just a chain of changes that modify the code of the
software to provide more value or make it better. There really are only 4 main reasons for
software to change: new features, bug fixing, improvement of the design and performance
optimization.[13] The speed at which the world moves and changes makes the need for
making these changes as fast and efficiently as possible even that more important. This is
why the Agile methodologies are a great fit for today’s software development environment.
Conboy really encapsulates this in his definition of agility as “the continual readiness to
rapidly or inherently, create change, proactively or reactively embrace change, and learn

from change, through its internal components and relationships with its environment” [9].

Implementing features and bug fixes is the daily work of any software developer. Most
of the tasks in the backlogs of projects will feature this kind of changes. They should be
straight forward, delivering the expected behavior to the clients. But for it to be efficient

the codebase must be malleable and not present friction whenever a change needs to be

11

made.

On the other hand, design improvements and performance optimizations do not change the
behavior itself but either makes the codebase itself better or makes the software work more
efficiently. In particular design improvements are rather important but sadly inexplicably

bl

relegated to the status of work that will be done later when there is nothing else "more

important” to do.

2.3 Factors That Inhibit Change

There is no question that being able to make changes to a codebase without encountering
obstacles that make it slower and cumbersome is of the uttermost importance for a software
development project to be able to progress, as stated in section 2.2. There are many reasons
and attitudes that will lead to a codebase losing its malleability and ending up being very
difficult to change. It is also a vicious cycle that keeps getting worse over time if there is
no intervention to try to fix it, making it ever more difficult to ever be solved. In the next
two subsections sections we will cover the concepts of technical debt in subsection 2.3.1

and legacy code in subsection 2.3.2 as factors that inhibit change.

2.3.1 Technical Debt

Technical debt (TD) is a metaphor, coined by Cunningham [10], that illustrates how
software development teams can at times make suboptimal solutions seeking a fast initial
payoff that will inevitable be counterproductive on the long term. The typical example
of this would be risking the internal quality of the codebase in favor of delivering features
faster. Over time these deficiencies in code quality build up in a similar way as financial
debt does, if nothing is done to pay it off. A codebase with a large amount of TD will

require more time to implement any given new change.

There are innumerable causes that can lead software development teams to incur in TD.
Although time pressure is the overwhelmingly most common cause of TD but not the
only one. Other causes can be the inherent complexity of the underlying design or the
already accumulated TD, no adherence to good standards or techniques, lack of skills of the
developer itself and insufficient testing. A big consequence of accruing TD in addition to a
low-quality codebase is the delay in subsequent deliveries as the TD is on the way. Other

consequences range from more people related ones through increased stress, demotivation

12

and fall in productivity to even the financial losses that the increasingly larger delays
entail. [28]

Not all TD taken is the same and has the same reasoning or even consciousness behind
it. The classification of TD into a quadrant [16], as proposed by Fowler, is a good way
to visualize this. In table 2.2, you can see the Technical Debt Quadrant with its two
axes reckless/prudent and deliberate/inadvertent. The horizontal axes reckless/prudent
represents the understanding of the consequences of the TD that the team will be incurring
in while the vertical axis deliberate/inadvertent represents the realization of the actions

incurring in TD.

Reckless Prudent

Deliberate | "We do not have time for | "We must ship now and

design” deal with consequences”

Inadvertent | "What is Layering?” "Now we know how we

should have done it”

Table 2.2: Technical Debt Quadrant as presented by Fowler [16].

Recklessness is the biggest problem in both deliberate and inadvertent cases. Taking
some TD is reasonable in many cases, but it should always be done in a conscious and
deliberate manner. That way we can have a reasonable expectation that it can also be paid
back. Lack of anticipated knowledge but good form, like what the bottom-right quadrant
depicts, is also better than pure recklessness, as we can expect that an implementation
made following good quality standards otherwise will be easier to change to the more

appropriate design.

Another way to categorize TD is through the use of a type categorization, where TD is
categorized by the area that it originates from or what it affects. Some of the most notable
types of TD are: Testing debt (missing tests, no test strategy or not executed tests),
design debt (problems in the design or architecture itself that affect maintainability),
defect debt (known and unknown defects that have not been fixed) and documentation
debt (deficiencies in the documentation, be it being outdated, incomplete or completely
missing) [38]. This categorization is good to understand what kind of approach to take to

combat the particular type of TD in the project in question.

The biggest enemy of accumulated TD is the same as what usually initially accrued it,

time pressure. A software development team and also management must understand that

13

however urgent new features and changes are, if TD is not dealt with in a timely manner it
will ever increase. You have to start paying your debt back at some point or risk complete
failure, when a simple new feature ends up needing weeks, instead of just merely days if

the codebase had been maintained better.

2.3.2 Legacy Code

The concept of legacy code is traditionally understood as old code that was built with
outdated technologies and techniques but still runs some fundamental part of a business
and thus needs to be maintained as is although difficult, as it would be too expensive and
time consuming to completely rewrite with modern technologies [6]. It usually generates
a sense of disgust and dread, with a sense that the codebase will probably be difficult to

understand and work with, making changing anything in it very arduous.

A more modern interpretation is that legacy code is just code inherited from someone else
[24]. In particular when that person is not available anymore to help you understand and
guide you through it. This kind of legacy code is everywhere as software development
projects flow faster than ever and the developers themselves change workplaces every

couple of years, leaving their work as legacy for others to continue developing or maintain.

But these definitions do not really guide us to a clear solution when dealing with any kind
of legacy code. This is where Feathers’ definition of legacy code as code without tests is
much more helpful [13]. A codebase without tests is very difficult to work with, as you
cannot be certain if any changes you are making to this unfamiliar codebase will break
something or not. Tests also work as great documentation, elucidating what the intentions

of the original functionality has been.

Focusing in this last definition we can see that to get control of legacy code we need to get
it under test. This is no easy task and need to be done systematically and incrementally

as needed.

2.4 Code Smells

A popular concept in software engineering is that of bad code smells, usually code smells or
just smells for short. Kent and Fowler popularized this concept with a list of 22 code smells
that they had identified and were able to concisely describe [14]. Most of them are now

common knowledge amongst developers like for example the following ones: Duplicate

14

code, long function, long parameter list, global data and mutable data. As defined by
Fowler "a code smell is a surface indication that usually corresponds to a deeper problem
in the system” [15]. What this means is that code smells are quickly identifiable indications
of possible problems in the codebase. Not all smells end up being bad as for example some
long methods have a reason to exist, but it is usually thought of as a smell and should
be investigated to corroborate that it is not one. Fowler’s definition also indicates that
usually the smelly parts might not be the problem itself but might be a signal of deeper

problems.

One important aspect of code smells is that they usually have one or many associated
simple refactorings that can help getting rid of the smell. For example in the case of long
functions the extraction of function refactoring will make it easy to divide the logic of the

function into smaller ones.

One way to detect possible code smells automatically is the use of static source code
analysis tools [37]. Static source code analysis tools analyze the source code without the
need to compile and run it, with different tools discerning different properties found in the
code [25]. Some of the tools like for example linters are usually run continuously in the
Integrated Development Environments (IDE) or editors used to write the code. This way
the tool can immediately warn the developer of suspicious code as it is being created. Other
tools provide visualized representations of the code and the relation between different files,

classes and functions.

2.5 AntiPatterns

Code smells might be a sign of underlying and more encompassing patterns which can
be represented as AntiPatterns. AntiPatterns are applied not only to code but to the
associated software architecture, design and project management of software development
projects too. The biggest difference comes in the formal representation used for AntiPat-
terns that describes not only the AntiPattern itself but also its causes and a possible
generalized refactored solution to get rid of it. AntiPatterns were popularized by Brown
et al. in their book ”AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis”[7].

Usually most AntiPatterns are implemented in a disguise or context that might initially
seem beneficial but end up having harmful consequences on the long run. A good example

of this is the golden hammer AntiPattern which in its most concise definition would be

15

the use of the same solution everywhere without thinking if it is a good fit for the given
problem because it worked well in another context. Although the intention is to use
something that has been proven to be beneficial it ends up working against itself in the

wrong context.

The main root causes for AntiPatterns to emerge in a software development project are
the same as the ones that will make the success of a project very difficult: Haste, apathy,
narrow-mindedness, sloth, avarice, ignorance and pride [7]. The list clearly shows that to
be able to avoid AntiPatterns some kind of conscientious decision needs to be made to

keep the project under control.

To be able to work efficiently with AntiPatterns a template is to be used for their repre-
sentation. The full AntiPattern template used by Brown et al. [7] can be seen in table
2.3. This is a way to formally describe an AntiPattern in detail. Using these template,
we are able to catalogue harmful behavior that we find regularly in software development

projects and link them to a generic solution that can be used to get rid of it.

Brown et al. [7] divide their identified AntiPatterns into three types: Software Develop-
ment, Software Architecture and Software Project Management AntiPatterns. An example
of a Software Development AntiPattern would be the previously mentioned Golden Ham-
mer AntiPattern. Reinventing the Wheel is an example of an architectural AntiPattern
where every problem is approached as it were completely new, and a new solution would
be devised for it although a similar or exactly equal problem might have already been
solved before. Finally, an example of Software Management AntiPattern would be the
Analysis Paralysis AntiPattern when instead of trying to implement a solution and iterate
over it the perfect solution is sought for too long, making the development process grind

into a halt.

One other area of software development that has been analyzed through AntiPatterns is
Scrum. The previously explained ScrumButs, deviations from what the Scrum Framework
advises, show clear signs of AntiPatterny behavior. Eloranta et al. [12] found 14 anti-
patterns in their research of the different ScrumButs in 11 different companies and 18
different teams. Some examples of the AntiPatterns they found where called: Too long
Sprint, testing in next Sprint, invisible progress, business as usual and long or non-existent

feedback loops.

16

AntiPattern Name

Unique noun or phrase that is used to refer to it.
Usually it has a pejorative undertone to denote it

is not desired behavior or design

Also Known As

Any other names that it might have received

Most Frequent Scale

Whether it affects the application, system or enter-

prise level

Refactored Solution Name

Identifying name of the refactored solution

Refactored Solution Type

Whether the refactored solution involves software,

technology, process or role changes

Root Causes

List of the root causes pertinent to this AntiPattern

Unbalanced Forces

The areas that collide to force this AntiPattern for
example the management of functionality, perfor-

mance and complexity

Anecdotal Evidence

Optional. Often heard phrases related to the An-
tiPattern

Background

Optional. General background that might help un-

derstanding

General Form of this AntiPattern

The generic representation of what the AntiPattern
looks like

Symptoms and Consequences

Bullet list of symptoms and consequences associ-

ated to the AntiPattern

Typical Causes

Bullet list of identified deeper causes

Known Exceptions

What are the specific occasions that this AntiPat-
tern might not be bad

Refactored Solutions

A refactored solution for the general form of the

AntiPattern presented as a list of steps to take

Variations

Optional. List of any known mayor variations

Example

The description of a concrete example showing the
AntiPattern and how the refactored solution is ap-
plied to it

Related Solutions

Any relations to other AntiPatterns that might be

similar and how they differ from each other

Table 2.3: Full AntiPattern template as utilized by Brown et al. [7].

3 Methodology

In this chapter we will go through the methodology used for the research done in this
thesis. Section 3.1 will contain a brief explanation on the research setup, followed by
section 3.2 presenting the central research questions and finally section 3.3 will contain a

brief overview of how the research was performed.

3.1 Research Setup

This research was carried out in the context of a software startup. The startup operated
in the field of customer satisfaction survey sending and the data analysis of the responses
of the surveys. The startup had developed their own dashboard web application for the

responses of the surveys and data analysis to be presented to the customers.

The codebase of the small startup presented clear signs of accumulated technical debt
after over five years of development. This accrued technical debt had clearly affected the
ability to make changes to the codebase smoothly. Also, inexplicable bugs that require
lots of time to identify and fix were found quite frequently. In addition to the technical
debt in the codebase itself there were also signs of problems and deficiencies in the project
management and agile methods used. All this had clearly affected the throughput of the
development team and was restraining the quick progress that the software of a startup

would require to keep the initial success ongoing.

Thus the startup wanted to amortize its technical debt and make the needed changes into

its processes to be able to grow without being hindered by itself.

3.2 Research Questions

The research questions of this thesis is:

« RQ1: How can code smells be used to find underlying AntiPatterns?

« RQ2: How to use AntiPatterns to identify and fix problems in a software development

project with technical debt and project management issues?

18

The main idea is to find out how the underlying AntiPatterns that can be first sensed
through code smells can be identified and how the knowledge of these AntiPatterns’ exis-
tence could be used to deal with the technical debt of a codebase. AntiPatterns not being
limited to just code, can possibly have a wider reach encompassing the whole software

development project.

3.3 Performing the Research

The research was done through the analysis of the codebase and processes of the afore-
mentioned startup in the form of a case study in chapter 4. The case study analyzed
and identified the potential code smells found. These code smells were then analysed to
find the underlying AntiPatterns that they represent, giving a potential solution for the
problems and thus having a guide to reverting the technical debt accrued. If there were

potential AntiPatterns not currently found in literature, new AntiPatterns were proposed.

4 Case Study

This chapter features the case study of the technical debt of the backend codebase of the
software of a startup company through the use of AntiPatterns. Section 4.1 includes a
overview of how the startup, its product and the development team have evolved in its
five years of life. This is followed by the depiction of the features and state of the software
product itself with a focus in the backend was the core of the case study in section 4.2.
After that, section 4.3 features the study of the backend codebase through the code smells
and AntiPatterns found in it. Finally, section 4.4 features the study of the analysis of the
Scrum process used by the project through the lens of ScrumBut AntiPatterns.

4.1 Case Company

The software startup under study has been developing their current product, a customer
satisfaction survey sending and survey response analysis tool for companies, for five years.
Their main product is the dashboard in which the survey responses and data analysis is

visualized for the customers.

The company has followed the lean startup principles to be able to develop a product that
would have a good fit in the market. The product’s focus pivoted several times through
the years of development and particularly during the first year of development as would
be expected for a technology startup. The growth of the development team and the main

events of the five years of development can be seen at a glance in table 4.1.

The initial version of the software product was developed as an outsourced project by a
consultancy company using purely Clojure [19] during the first 6 months of development.
Clojure is a programming language that runs on the Java Virtual Machine (JVM) and
thus has interoperability with Java [23]. Clojure is a very popular language among Finnish
consultancy companies. Of course, this first few months saw the initial idea go through
different forms, taking feedback from the first acquired and potential customers, until it

somewhat arrived into what is the core of today’s product.

After this, due to the niche nature of Clojure and difficulty to find a developer that would

comfortably work with it, the development was continued by a lone Java developer for the

20

Year | Development team | Notable events

0.5 Consultancy Initial software version developed in Clojure

1 1 developer Transition to of business logic to Java with Clojure still

serving as the endpoint layer

2 developers Rapid growth of the company

3 2 developers Lead developer hired. Beginning of growth induced
problems
4 4 developers Development team grows and growth induced problems

are patched. It is decided that Clojure must be get rid

of on the long term

> 6 developers Achieved some kind of stability and there is more time

for introspection, although new features continue to

have a high priority

Table 4.1: Development team growth and notable events of the case company over the

years.

up until the beginning of year three of development. During this time, the main backend
of the product was shifted into a Clojure endpoint layer that immediately redirected to
Java code where the vast majority of the logic would reside from then onward, with some
original background tasks still running in Clojure. This would later become clearly a
source of problems to the smoothness of change making to the codebase. This period of
time was the start of the fast growth of the revenue of the company with the number of

customers increasing dramatically from just a few to the tens.

This increase in customers saw an exponentially greater change in the data volumes being
handled by the application. On the latter half of the third year of development a new Java
developer was hired as lead developer, with the intention to build a real development team
for the software product. At this point, the initial implementation started to show signs
of not being able to support the load of the organic growth of the customer base. Some
of the problems were solvable by upgrading the machines running the software, but some
were problems caused by the not scaling design that worked well with small amounts of
data but was growing increasingly slow with the new vastly greater data loads. This are

the first clear signs of technical debt in the project.

During the last two years of development the software team grew little by little to have

between five and six developers. Some focused more on backend development while others

21

had more of a focus in frontend development. These years saw the use of some of the Scrum
Framework principles but with several ScrumButs, like no sprints or no clear time boxing
of Scrum events. These two years featured ironing out the most significant obstacles and
hindrances, but the startup needed to keep moving. A couple of pivots happened again
during this time frame that changed a bit the market segment that the product aimed to
captivate. It was also perceived that the original codebase done with Clojure was one of
the mayor obstacles in making changes, as now most of the code was written in Java, but
the project was still being built through the Clojure building tool Leiningen [17]. Also due
to some complex dependency conflicts the project’s dependencies could not be updated
easily. Another consequence from the dependencies being unupdatable, was being stuck on
Java’s version 8. This is why it was decided that the main backend would be transformed
into a very industry standard Spring MVC project, removing the Clojure endpoint layer

and using the available business logic that was already nearly completely written in Java.

4.2 Case Product

The software product was composed of the main backend and frontend (customer dash-
board). In addition, there were six other services that dealt with sending the surveys,
giving the responses to the main backend and performing some analysis on the responses.
All of the services were hosted in Amazon Web Services (AWS) [2], Amazon’s cloud com-

puting service. In this case study we will focus on the main backend.

The main backend was built with Clojure during the first year of development. It was a
simple web application with a database. It not only contained the API for the frontend to
use the data in its database, but some background tasks like an importer that brought the
responses of the surveys from a third-party tool used to send the surveys. Although being
in the same Leiningen project, the importer was run in its own AWS Elastic Beanstalk
instance through an environment variable. In addition to these two independent appli-
cations the same project contained an admin dashboard done with ClojureScript [20] (a
compiler that compiles Clojure code into JavaScript). This admin dashboard and the

importer code hadn’t been changed after the second year of development.

As previously mentioned, most of the code written from the second year of development
onward was written in Java. To achieve this the only developer at that point built a
interoperation helper to be used between Clojure and Java. This helper file hadn’t been

changed since the second year of development too. This helper helped with the translation

22

of objects between that that Clojure and Java understood. What this meant in practice
is that every single object passed to the Clojure side was of the Java Map type. The
MapHelper class was created in Java to make it easier to make the transformations of

objects into Maps.

Another special characteristic of the Java code that was a consequence of the need to
interoperate with Clojure was the use of classes with only static methods. This was due
to Clojure being a functional programming language and thus not understanding classes
and objects. This made the Java code very unidiomatic and in consequence more difficult

to write and read with an idiomatic Java mindset.

The testing was clearly lackluster. The Clojure side had 23 tests in 5 files, all written
during the first few months of development. These tests were run on every build, but
as their coverage was very low and nothing was really modified in the Clojure code but
adding and modifying endpoints of the web application, these tests would always pass.
On the Java side there were 505 tests in 55 files of which 120 were marked as ignored and
thus would not be run, unless the annotation used for ignoring them was removed. The
Java tests were not automated tests as they could only be run manually on the IDE and

were never a part of the official verification of new releases.

4.3 From Code Smells to AntiPatterns

To get a good grip on what were all the things that needed changes in the project under
study an analysis of the codebase and the practices used was performed. The intention
was to find the underlying AntiPatterns that could be hiding behind the very apparent
code smells that had been noticed. This section starts with the static analysis of the
code that surfaced many of the smells in the project in subsection 4.3.1. This is followed
by a presentation of the identified code smells in subsection 4.3.2. Finally, the underly-
ing AntiPatterns found are presented with some concrete solutions that were planned or

performed in subsection 4.3.3.

4.3.1 Static Code Analysis

In many cases when working on a codebase that developers are very familiar with, devel-
oper might lose their sense of smell and thus be unable to notice the most obvious code

smells. Another typical reason is, as per usual, haste and time pressure that blinds the

23

sense of the problems to be more localized than they really are, as the attention of devel-
opers is focused on the tasks at hand and not the codebase as a whole. This is exactly
what was going on the project of this case study. The need to build new features and fix
critical bugs impeded developers from using some time and distance to find the underlying

problems.

In this case, the use of static code analysis tools was found to be a useful way to find the
most obvious and repeated problems in the codebase and through that get an idea of what
areas and how things were not going optimally. The two static code analysis tools used in
this case study were CodeMR [8] and IntelliJ IDEA’s code inspection tool [22].

These tools have complimentary feature sets as they have very different approaches on what
and how they analyze in the code. CodeMR has a more visualization centric approach
that measures that quality of the code on different metrics on the Java class level while
IntelliJ IDEA’s code inspection tool shows concrete potential problems on the code itself
line by line. Due to limitations in the tools not understanding the interoperation between
Clojure and Java only the Java code was analyzed as the Clojure code was going to be
removed in the short term anyways. The tools, their reports and results got from these

tools are presented detail in the following sections:

CodeMR

CodeMR is a software quality tool that supports multiple languages and has integrations
for multiple IDEs. It provides insight into the quality of a codebase through a very wide
array of quality attributes with coupling, complexity, cohesion and size being the most
notable ones. All this metrics bind together within them many related aspects of code
quality. Table 4.2 shows a brief explanation of what these metrics mean and what they

entail in the context of CodeMR’s reports.

The Java code of the backend of the application under study was analyzed with the help of
the CodeMR IntelliJ IDEA plugin version 2020.4.1-release-2020.2. Test files were ignored
for this analysis. Figure 4.1 shows the general information of the code provided by the
CodeMR report. From the list we can see that the amount of code is closing 20000 lines
of code, which is nearing a point where the size itself will start hiding details and the
easiness to find something a developer might be looking for. This is not alarming though,
as programs will inevitably grow as time goes on, but this also requires focusing more on

a good structure and design to counterweight the problems that come from the increased

24

Coupling | Denotes how the class in question depends of others.
When coupling is high, the possibility of changes in one

place might require changes elsewhere too.

Complexity | Implies that the code is difficult to understand. With
high complexity the possibility of inadvertently adding

bugs is increased.

Cohesion | Measures how closely the methods of a class are related
to each other. Low cohesion might be a sign of a class
having more than one responsibility. A lack of cohesion

might make the code more difficult to maintain and test.

Size Size one of the most repeated code smells. Be it a pack-
age, class, method or variable name, increased size de-
creases the readability and thus maintainability of the

code.

Table 4.2: Explanation of CodeMR metrics.

size. The number of classes and packages seems reasonable, with just under 19 classes per
package. From this numbers we can also derive that the average number of lines per class
is just over 43, which is a very good size. The number of external packages and classes is
a bit more concerning, as the number of external classes is nearly the same as the native
ones. The use of external libraries is normal in today’s software development to avoid
reinventing the wheel when somebody has done the work already and made it available
for others to use. In any case, a review of the external dependencies would be advisable
based on this numbers. Finally, CodeMR had identified that 34 classes were problematic
and 1 was highly problematic.

Regarding to the four main metrics, CodeMR provided the pie chart view in figure 4.2,
where each chart visualizes the amount of classes with high or low values of the metric.
From them we can immediately see that complexity and coupling seem to be the biggest
possible problems in the codebase. According to CodeMR 35.5% of the code has the
highest level of complexity and only just over a third of the code was categorized as haven
medium to low complexity. This corroborates the feeling of developers that the code
is quite difficult to reason about in many places. With what regards to coupling, just
under half of the code was deemed to have medium to very high coupling. This was also

corroborated by the experience of the developers that had found out that making changes

25

Analysis of backend

Number of problematic classes: 34

Number of highly problematic classes: 1

Figure 4.1: General information of the backend CodeMR analysis.

usually cascaded to a sea of changes all over the codebase. Lack of cohesion and size
seemed to fair a bit better. In both cases clearly over half of the code was identified to
have medium to low levels of both metrics and no instances of very high levels were found.
The experience and feelings of the developers seemed to match with what CodeMR’s

metrics indicated.

For a more detailed inspection of the codebase CodeMR also provided a variety of graphs
and detailed metrics for each class. The graph in figure 4.3 shows all the classes analyzed
in their respective packages. The graph shows the four metrics with the colors indicating
complexity, the shapes indicating coupling, the size of the symbols indicating size and
the cohesion visualized by the net of dependencies between the symbols. With this more
detailed view it was easier to understand and pinpoint which classes would be the po-
tential problem makers. Some of the packages have been marked with letters for further

referencing.

The first thing that became clear looking at the graph was that there were a few classes
that seemed to be used all over the codebase. One great example of this is the class in the
package (b) which was used to do every single database query and thus needed to be used
in the service classes of the codebase. Most classes in package (a) and its subpackages
(a.1-7) had lots of dependencies, which might be reasonable as these packages contained

all the main service classes which usually deal with the business logic of the software.

Another thing that was apparent from the graph was that although the average size of

classes was just over 43 lines of code, the way the real lines of code were distributed was

26

Distribution of Quality Attributes

Complexity, Coupling, Cohesion, and Size

| Complexity V| | Coupling A4

@ Very High
@ High
Medium-high

® Low-medium

[Lack of Cohesion v [Size ~| @® Low

Figure 4.2: CodeMR metrics from the backend analysis.

very heterogeneous. There were a considerable number of classes that clearly were either
too big or were nearing that limit. Looking into the detailed data provided by CodeMR
there were 11 classes with more than 300 lines of code with the biggest class that can be

seen as a big red star on package (c¢) having 950 lines of code.

With the exception of package (a), which had many more complex and coupled classes,
most packages seemed to have one particularly complex and coupled class. This seemed

to suggest that there was always a main class with too few helping classes around it.

CodeMR’s analysis provided corroborating evidence that there were areas of the codebase

27

4 NODE REPRE SENTATION

@ A N X
@ ANXX

COMPLEXITY

@ A NX X
@ AN X

COUPLING

SIZE

Figure 4.3: CodeMR graphic showcasing the relationship between classes in their respec-

tive Java packages.

that might have or cause problems. The classes that caused the greatest concern are listed

in table 4.3 which matched the expectations of the developers.

Based on the metrics of CodeMR at least the following bad code smells from Martin
Fowler’s and Kent Beck’s list [14] would be expected to be present: Divergent change,
shotgun surgery, feature envy, insider trading, large class and data class. These would
need to be verified first with the help of IntelliJ IDEA’s code inspection and then further

28

Class Name | Coupling | Complexity | Lack of Cohesion Size
Class A very-high | very-high high high
Class B very-high high medium-high medium-high
Class C very-high | medium-high medium-high medium-high
Class D very-high | medium-high medium-high high
Class E very-high | medium-high medium-high medium-high
Class F very-high | medium-high medium-high medium-high
Class G very-high | medium-high medium-high medium-high
Class H very-high | medium-high medium-high low-medium
Class I very-high | medium-high low-medium low-medium
Class J very-high | medium-high low low-medium
Class K high medium-high low low-medium
Class L high medium-high low-medium medium-high

Table 4.3: Classes with high complexity, coupling, lack of cohesion or size identified by
CodeMR.

by manually looking through the problematic classes themselves.

IntelliJ IDEA code inspection

IntelliJ IDEA offers static analysis of the code in real time as the developer writes it. This
feature is called code inspection and can be run for a given part of the project or the
whole codebase at once. In comparison to the static code analysis made with CodeMR,
IntelliJ IDEA’s code inspections try to warn of concrete problems in the code line by line
in the form of warnings. The tooling even offers suggested fixes that can be automatically
applied by the push of a button. These are basically automated refactorings for commonly

encountered code smells.

Running the inspection tools for the whole Java codebase of the backend under study on
version 2020.2.2 of IntelliJ IDEA resulted in the report in figures 4.4 and 4.5. Most of
the problems found were directly related to the coding style of Java which gave the most
insight into the code smells present. The rest of categories were just redundant deprecation
suppression instances under the general category and the use of the StopWatch class by
google that has been marked as an unstable API by themselves under the JVM languages

category.

29

lava

* (Class structure
Field can be local
Code maturity
A

Deprecated AP| usage

Code style issues
b

pararmeter explicith ds 'java.lang.
Unnecessary conversion to String
Unnecessary enum modifier
Unnecessary interface modifier
Unnecessary semicolon
Compiler issues
Unchecked warning
Control flow issues
"if' staternent with common parts
Pointless
Redundant
Simplifiable conditional e
Unnecessary 'null' check before method call
Data flow
* Boolean method is always inverted
Redundant local variable
Declaration redundancy
» Actual method parameter is the same constant
Declaration can have final modifier
Duplicate thr
Ermnp
Method can be
I

Redundant 'thro clause

Strearmn API call chain can be simplified

Unused declaration

Figure 4.4: Detailed view of the Java warnings by the IntelliJ IDEA Code Inspection.

30

* Error handling
Catch blo

Ermpty
finally' ch can not con
‘return’ inside ‘finally' block
Imports
Unused import
Java language level migration aids
Logging
MNumber of place rs does not match number of arguments in lo
Memory
b ic'
Performance
reration can be used instead of iteration
jith too few arguments
I} call
String concatenation as argument to 'StringBuilder.append()’ call
String concatenation in loop

Wrapper type may be primitive

Frobable bugs

_onstant conditions &

call ignored
Statement with empty

String comparison usir

Unused assignment
Verbose or redundant code constructs
ition is co d by further condition
Multiple cccurrences of the same
Redundant Collection operation
Redundant 5tring operation
Redundant type cast

Unnecessary 'return’ statement

Figure 4.5: Detailed view of the Java warnings by the IntelliJ] IDEA Code Inspection.

31

The 533 typos found by the tool under the proofreading category were for the most part
caused by the use of some sort of acronyms and a few words that the dictionary just didn’t
recognize. Not using proper casing strategies like camelCasing also were marked as typos,
due to the words fusing together in the eyes of the tool. Also, some of the warnings real
typos in the names of variable and method names that just hadn’t been noticed. All three

types of typos found could be the source of potential problems in readability of the code.

The Java category contained understandably most of all the warnings the tool reported.
The first thing that was noticed was the huge amount of declaration redundancy warnings
exposed. Over half of all the warnings were of this kind. Looking closer into the sub-
categories, 1489 of those warnings were unused declaration warnings. This was a direct
consequence of the Clojure base code being the entry point of the codebase, and thus the

one calling the Java code, which the tool was unable to take into account.

In general, there were lots of different kinds of warnings but some of them were more
common and seemed to be more of a repeated code smells rather than sporadic or isolated
mistakes. These were the use of pointless boolean expressions, redundant local variables,
string concatenations in loops, constant conditions & expressions and unused assignments.
Except the use of string concatenations in loops which might negatively affect performance,
the rest mostly affect the readability and intentions of the code. In the case of the constant
conditions and expressions, most of them were clearly potential bugs that could end up

triggering null pointer exceptions.

Based on the warning categories and a cursory look through the highlighted lines of code
by the IntelliJ IDEA code inspection tool the at least the following bad code smells from
Martin Fowler’s and Kent Beck’s list [14] would be expected to be present: Mysterious

Name, mutable data and temporary field.

To compare the results of both static code analysis tools table 4.4 shows the amounts of
found warnings and typos for the same classes that CodeMR found to be more problematic
and which were listed in table 4.3. There was some kind of correlation between both results,
as the amount of warnings was higher on the classes that CodeMR had on the top of its
metrics. Bigger size in particular seemed to be the best indicator for classes with more
warnings. Classes A and D were the only two classes with a high rating for size and
have clearly the most warnings too. This could simply be due to the increased amount of
lines of code being directly proportional with the possibility of incurring in those warning

triggering behaviors.

32

Class Name | Warnings | Weak-warnings | Typos
Class A 61 3 27
Class B 23 0 6
Class C 16 0 17
Class D 39 4 4
Class E 25 1 34
Class F 20 1 13
Class G 22 0 1
Class H 16 0 10
Class I 20 1 15
Class J 16 0
Class K 10 0
Class L 15 0 19

Table 4.4: The amount of IntelliJ IDEA code inspection warnings and typos for the same

classes as in table 4.3.

4.3.2 Identified Code Smells

The static code analysis tools gave some good insight on the possible location of the most
obvious problems in the codebase under study. It also opened the veil on what kind of
code smells would be expected upon further inspection. The likely code smells that could
be inferred from the results of both tools were: Mysterious Name, mutable data, divergent
change, shotgun surgery, feature envy, temporary field, large class, large class and data
class. These findings needed to be verified with a manual look through the code to see
how pervasive they might be. The manual inspection would also uncover other problems

and code smells that the static code analysis tools might not have been able to identify.

The manual analysis was done to prioritize the classes presented in the previous subsection,
in the order of severity and amount of warnings. The problems found in these particularly
big classes would expose patterns that would be present in the rest of the codebase too.
The rest of this subsection will go through some of the most interesting and representative
classes on the list in a deeper manner, explaining the findings in each and finally having

a look at the codebase as a whole in what respects to the code smells identified.

33

Code smells in Class A

Class A was the class that both static code analysis found to be the most problematic.
Its purpose is to process a configuration and send an image version of the application’s
dashboard to the email of the designated users in the configuration. This task has four
clear parts: Process the configuration, retrieving the needed dashboard, creating an image

of the dashboard and sending the email with the image attached to it.

The size of the class was directly explained by it doing everything required for this func-
tionality to work in this single class. The main function used to trigger the process was
also quite big with 91 lines of code and a very complex conditional flow that went up
to five levels deep. Several other functions also were clearly over 50 lines of code long.
Another thing that affected the size of the file, was the usage of another class inside the
main class instead of having it on its own file. This internal class was potentially even
more problematic as some of its functionality wasn’t coded as its own functions but that

of the parent class e.g. setters for some fields of the class were outside the class itself.

One aspect of the code that was also curious was the passing of the same parameters
through the whole flow of the code from one method to another. This was a clear conse-
quence to having all the functions be static and thus void of a common context for the
whole flow. The DataSource used to connect with the database was passed from the very
first entry point to wherever database connections were needed. This and other not mu-
tating parameters made the parameter lists unnecessarily long. Also, the inconsistency of
the location of the DataSource parameter in the parameter lists hampered the readability

of the code, being mostly the last parameter but not always.

This class is definitively smelly and it is clear that it should be divided into a few different
classes with their own responsibilities. In definitive the class presented the following code
smells: Long function, long parameter list, mutable data, divergent change, data clumps

and large class.

Code smells in Class D

Class D is used to express the filtering of the data requested on a query. It contains a
set of parameters that can then be transformed directly into SQL query parameters. It
basically performs the three following tasks: Parse itself from JSON, transform into an
SQL query and serialize itself into JSON.

34

The first thing that immediately smells in the class is the extensive use of just primitive
classes to represent all the data that the class contains, although some of it would prob-
ably be better suited to some subclasses that would represent part of the contents of the
class. What explains the size of this class is the use of a custom serializer and deserializer
for JSON. The JSON serializer was built using just the using the Java StringBuilder over
323 lines of code while the deserialization was done with the help of the JSON in Java’s
(org.json maven package) JSONObject picking each key one at a time over 143 lines of
code and nearly completely in just one function. For some reason the class had also anno-
tations used to serialize and deserialize objects into JSON through the FasterXML Jackson
library, which seemed redundant due to the extensive use of the custom implementation

throughout the codebase.

The smells in this class were more fully encompassing giving the feeling that the whole class
should be heavily refactored and take advantage of available tools that make working with
JSON much simpler. The main identifiable code smells in the class were: Long function,

divergent change, primitive obsession and large class.

Code smells in Class E

Class E is responsible of handling all the different possible configurations used for the
dashboards. There are tens of different configurations and more are added when new
features require them. The main tasks of the class are to be able to create, read, update

and delete the different kinds of configurations in the database.

The class immediately starts with a list of 18 different SQL string constants written all in
various different styles. Most are one-liners with varied casing but two of them are divided
into several lines to improve readability. Some of these SQL statements have capitalized
SQL keywords, others not and some even have a mix of styles in the same statement. The
class needs specific queries for some of the different kinds of configurations that it needs
to be able to handle. In addition to this the class contains 10 additional internal classes,
which makes its code even more convoluted. Excepting one of the many functions in the
class, most of them seem to have a reasonable size. The use of temporary variables just

before returning them from functions is present in many functions.

All these signs seem to indicate that this class should potentially be divided into a generic
Configuration class that would handle the base case and specific classes for those that

would require additional logic, improving the readability and the size of each of those

35

classes compared to the current implementation. The smells that his class showed signs

of where: Long function, divergent change and large class.

Code smells in the whole codebase

The three examples above showed some of the particularities of the codebase under study
that repeat throughout the entire codebase. Although there were just a moderate number
of large classes that clearly tried to do too much by themselves there was a repeated
tendency for large functions all over the codebase. Another smell that was particularly
pervasive was the appearance of long parameter lists due to the architectural design that

requires passing some parameters deep through the stack of function calls.

Both change related smells divergent change and shotgun surgery were present. As would
be obvious there were more instances of divergent change on larger classes, as they clearly
could change for a quite varied set of reasons. The previously mentioned passing of param-
eters through all the function calls also caused the code to be prone to shotgun surgery,
needing to change all many classes and files if one parameter was needed in a deep function

but could only be taken at an early stage of the function stack.

Another pattern used very often was the use of public fields, which is an instance of both
the global data and mutable data smells. This design decision stemmed from how the
interoperation between Java and Clojure had been designed. For it to work all fields that

Clojure needed to be able to access needed to be public.

There were some utility and helper classes that held that kind of general functionality
available for other classes to use, but there was also a surprisingly large amount of utility
kind of functionality embedded into service classes that were then used by other service
classes, presenting a clear case of feature envy. In some cases, this even created circular
dependencies that were only hidden by the fact that the code is mostly composed of static
functions. This would become a real problem once the classes would be transformed into

a more idiomatic object-oriented pattern.

In general, the codebase gave a continuous sense of inconsistency, with things done in a
variety of ways depending on the day, developer or part of the code in question. Even the
code that was modified more often did not seem to be in better shape, suggesting that
getting the features done was being prioritized to such extent that refactoring was not

being performed in conjunction with daily development.

The code smells that the static code analysis tools had suggested that were present in

36

Table 4.5: Comparison between the code smells identified with the help of the static code

Code Smell CodeMR | IntelliJ Idea | Manual analysis
Mysterious Name Present Low
Duplicated Code Low

Long Function High
Long Parameter List High
Global Data High
Mutable Data Present High
Divergent Change Present Moderate
Shotgun Surgery Present Moderate
Feature Envy Present Moderate
Data Clumps Moderate
Primitive Obsession Moderate
Repeated Switches Low
Loops Low
Lazy Element Low
Temporary Field Present Low
Message Chains Low
Insider Trading Present Low

Large Class Present Moderate

Data Class Present Moderate

Comments Low

analysis tools and the manual analysis.

the code were corroborated in the manual analysis of the code. In addition to those code
smells, the manual analysis also surfaced some smells that could not be inferred from the
reports of the automated tools. There is a vast number of other tools available that might
have helped top find them. Table 4.5 shows the differences between what code smells were
identified through the two different static analysis tools and the final manual analysis of
the codebase. This table clearly indicates that the tools can help find some problems, but

a manual review is able to find more subjective smells that the tools just were not capable

to guess with the feature set they were equipped with.

37

4.3.3 Underlying AntiPatterns

Although many problems in the codebase were able to be identified through the search of
code smells, the codebase seemed to have deeper problems than the surface level smells
suggested. Most code smells are usually centered on one small section of the code and
can appear repeatedly, but they are usually easily fixable with the use of simple code
refactorings. What if code smells could be also a sign or consequence of more encompassing
problems in the development and architecture of the project and thus be an indicator of

certain AntiPatterns?

In search of deeper problematic patterns, the codebase was further analyzed to try to find
if any known AntiPatterns or clearly specific AntiPattern to this project were present.
For the shake of brevity and conciseness the custom AntiPattern template in table 4.6
was developed. This template contains the essence of the AntiPatterns needed for this
discussion and a reference to the original full definition of the AntiPatterns. In addition
to these, a new field was added to indicate what code smells might be associated to the

given AntiPattern.

AntiPattern Name The AntiPatterns name and variant names when neces-

sary with the added reference to its original source

Refactored Solution Name | Identifying name of the refactored solution

Root Causes List of the root causes pertinent to the AntiPattern
Related Code Smells Code smells that might be symptomatic of the AntiPat-
tern
General Description A summarized description of the generic representation

of what the AntiPattern looks like

Table 4.6: Custom AntiPattern template for the representation of the AntiPatterns in
this case study.

The AntiPatterns identified are presented in the following sections starting with the An-
tiPattern template describing it and continued by some concrete examples of how they
were present and plans and actions that were taken to start getting rid of them were ap-
plicable. Also, the association with the code smells that might signal their existence are

also presented.

38

Lava Flow AntiPattern

AntiPattern Name: Lava Flow or Dead Code [7]

Refactored Solution Name: Architectural Configuration Management

Root Causes: Avarice, Greed, Sloth

Related Code Smells: Temporary Field

General Description: This AntiPattern is characteristic of software that go through
lots of changes in direction in its beginning. Each change in direction generates new
code that is then never removed when the idea behind it is abandoned. This results
in sections of code that might not clearly be no longer used and that never are
removed. This adds to the complexity of the code. Parts of the code might even end
up being reused elsewhere, making the dependency structure and the elimination of

this dead code even harder.

As already mentioned before, the codebase had undergone many changes in direction
leaving code that was no longer used behind without removing it. This AntiPattern is
elusive, as developers need to look for it with intention and is rarely found by coincidence.
Things like unused variable and temporary fields might be an indication of its existence,
but in most cases the code will look just normal, but it just implements functionality that

is no longer used.

In the case of a web application like the one under study knowing if the endpoints of the
application are actively being used can’t really be verified from its code alone. To be able
to find out if some endpoints are not being used, and subsequently the code that supports
that endpoint, an external analysis must be done. This is exactly what was done to the
backend under study. The code of all the client services that used its endpoints were
searched for the usage of the endpoints. In addition to this the AWS CloudWatch Logs
Insights [1] tool was used to count the amount of http requests done to the endpoints from
the http logs of the production servers. The result of this analysis was that 77 endpoints
from over 350 were no longer used at all and were thus removed, which resulted in the
deletion of 2690 lines of dead code.

Another symptom that might indicate of the presence of this AntiPattern is the existence
of columns and tables in the database that are either completely empty or always have
the exact same value. Some instances of this were also found and were either immediately

removed if no refactoring was needed or were added to the backlog for later removal.

39

Functional Decomposition AntiPattern

AntiPattern Name: Functional Decomposition or No Object-Oriented Pattern [7]

Refactored Solution Name: Object-Oriented Reengineering

Root Causes: Avarice, Greed, Sloth

Related Code Smells: Long Parameter List, Global Data, Mutable Data, Data Clumps,
Data Class

General Description: This AntiPattern is in its simplest term the misuse of an object-
oriented language as it were a functional or structural language. This can make
the code very convoluted. object-oriented programming has lots of beneficial design
patterns which this kind of code does not take advantage of. Depending on how
widespread this AntiPattern is the reengineering work needed to fix it might be

overwhelming and must be done in increments.

Due to the Clojure roots of the project, the Java code didn’t follow the usual object-
oriented structure of classes that are instantiated into objects. The Java code relied on the
use of static methods that could be run without creating a new instance of most classes.
In addition of the fact that most methods were static, smells like long parameter lists,

global data and mutable data were clear indicators of the presence of this AntiPattern.

As this was a very overarching AntiPattern in the codebase it would be no easy task
to convert the whole codebase into beautiful object-oriented code. As it had already
been decided that the original Clojure code would be eliminated, the Java code would be
refactored to follow the Java Spring inversion of control patterns as it was migrated to a
new Java Spring MVC based repository. When migrating part of the code it was noticed
that the current paradigm had made circular dependencies in the code possible that would
appear when instantiating the classes instead of using their methods statically. Another
thing that this refactoring would alleviate would be the passing of parameters through the
functions, as services containing the utility and information needed would be injectable to
the objects that would need them.

Spaghetti Code AntiPattern

AntiPattern Name: Spaghetti Code [7]
Refactored Solution Name: Software Refactoring, Code Cleanup

Root Causes: Ignorance, Sloth

40

Related Code Smells: Long Function, Divergent Change, Shotgun Surgery, Loops, Mes-
sage Chains, Insider Trading, Large Class

General Description: Spaghetti code needs no introduction, being the most famous of
all AntiPatterns and known even to developers that aren’t aware of the concept of
AntiPatterns itself. This AntiPattern depicts code without a logical structure. This
kind of code will be difficult to understand even to the original developer if it has not
been in its focus even for a few weeks. The code might contain large classes, with
convoluted flows in a single function. Some classes might also contain clearly out
of place functionality that then other classes might use, making the dependencies

between classes very difficult to understand.

The long classes and functions found through the static code analysis were clear examples
of spaghetti code. These classes had one main entry point function that would then go
through a very convoluted flow of conditionals and function jumps that made the code not
very pleasant to read and thus difficult to understand. Although these classes were clearly
in need of refactoring, rarely did the developers have the time to be able to refactor them

as they made changes to them.

Another instance of this AntiPattern was the mislocation of functionality in classes were
they clearly did not belong. The cause for this kind of pattern was on the minimization of
the use of classes, having all the functionality needed for the original class in that singular
class, although parts of it would fit better in another service or helper class that could then
be used by other classes too. This would have been fine in theory if once the functionality
that had been embedded into the class was needed in other classes would then have been
refactored out of it. This was not the case creating very weird dependency graphs between

classes that made no sense.

To be able to get rid of all the spaghetti code a change in the mentality of when refactoring
should be done was needed. The only way to deal with it was to understand that refac-
toring should just be part of normal development workflow. Instead of just forcing new
changes to code that clearly is in need of refactoring, the code should be refactored first
to make the change easier to implement and clearer to understand for those that would
follow. This incremental approach could then be complemented with bigger refactoring
sessions when time was available, or the class would have reached such a good state that

just some finalizing touches would be needed.

41

Reinvent the Wheel AntiPattern

AntiPattern Name: Reinvent the Wheel, Design in a Vacuum or Greenfield System [7]

Refactored Solution Name: Architecture Mining

Root Causes: Pride, Ignorance

Related Code Smells: Duplicated Code

General Description: This AntiPattern refers to the lack of reuse of code from the
codebase itself or of external available libraries. It usually stems from the lack of
knowledge of what has previously been done or the believe of some developers that

think that they could do it better themselves.

This is the only AntiPattern that really did not have any code smells that would even
slightly indicate of its presence. The duplicate code would probably be a good indicator
of this, but it was not present in the codebase under study. To be able to notice this
AntiPattern a logical understanding of what was readily available either in the codebase

itself or in open external libraries.

The first example of wheel reinvention in the codebase was the multiple implementations of
csv file parsing and writing. Although an external library had been added for this purpose,
only some of the instances where handling csv files was required used this external library.
Others created their own non-trivial specific implementations that were not reusable by
other classes. This was so widespread and low risk that it would be harmonized as a low

priority task sometime later.

Another instance of wheel reinvention was a coincidentally similar case where JSON seri-
alization and deserialization was done by hand, instead of relying on the available libraries
that could handle this. JSON is a much more complex format than that of a csv file
and thus its manual implementation is much riskier. In addition to this the use of the
FasterXML/jackson library was used widely enough that it would have been easier to har-
monize than that of the csv file handling. The updates would be done in an incremental
manner, once the manual JSON handlers would need updates, as it would be much easier

and concise to handle through the use of the external library.

4.4 ScrumBut AntiPatterns

Software development is not isolated to the act of writing code. There are processes that

control what, when, how and by whom some feature or requirement is developed. Analyz-

42

ing the code in a vacuum might thus be insufficient, having the same problems resurface
in code once fixed the first time, as their source is really elsewhere. The development team
of the codebase under study followed a custom variant of the Scrum Framework as many

software development teams do.

In an attempt to find if the changes made to the Scrum Framework might be the source
of any problems, the team’s processes were analyzed through the lens of the ScrumBut
AntiPatterns identified by Veli-Pekka Eloranta et al. [12]. For conciseness the AntiPattern
template used in the paper will follow the structure in table 4.7. The most notable differ-
ence from a normal AntiPattern template is that What is usually the refactored solution

of the AntiPattern is in the case of ScrumBut AntiPatterns the Scrum recommendation.

AntiPattern Name The AntiPatterns name with the added reference to its

original source

Scrum Recommendation | The Scrum recommendation related to it

General Description A summarized description of the generic representation
of what the AntiPattern looks like

Table 4.7: Custom AntiPattern template for the representation of the ScrumBut An-

tiPatterns in this case study.

The ScrumBut AntiPatterns identified are presented in the following sections starting with
the ScrumBut AntiPattern template describing it, followed by the concrete example of the
behavior in the development team. This is followed by possible corrections that were done
or why the AntiPatterny behavior was tolerable in the context of the project. A couple of

possible novel ScrumBut AntiPatterns were identified among the practices of the team.

No Sprints ScrumBut AntiPattern

AntiPattern Name: No Sprints (novel)

Scrum Recommendation: 2 weeks sprints

General Description: The development team does not follow the Scrum Sprint struc-
ture, making it more difficult for developers to focus the work to be done in any
given moment. This can also lead to tasks not being split into smaller pieces as they
do not need to fit into a given sprint, making some work more difficult to share the

workload of the given task.

Not having Sprints at all is probably not unique to this project but rarer than for example

43

the too long Sprint AntiPattern [12] from which this AntiPattern would be considered
to be a variant. The project under study didn’t use the concept of sprints at all. A
backlog grooming and week (instead of sprint) planning session was held every Monday
morning with a demo on Friday evenings. Daily meetings were held every morning and a

retrospective session was held once a month.

The lack of sprints clearly had an effect on the quality of the user stories in the backlog,
that were in many cases too big to fit in a week but weren’t divided into smaller pieces
as it was not strictly necessary. This affected the shareability of tasks that would have

otherwise been able to develop in parallel.

This was slightly improved with the introduction of a backlog management software that
replaced the old spreadsheet-based backlog. The visual aspect and the tools provided by
it made it easier to communicate about the tasks at hand and their splitting into smaller
tasks. Two-week sprints should probably be at least tested to see if the time restriction

would improve the completion of tasks in a more predictable time frame.

Invisible Progress ScrumBut AntiPattern

AntiPattern Name: Invisible Progress [12]

Scrum Recommendation: Progress should be continuously be visualized with burn-
down charts

General Description: Either the progress is hidden from the development team or no
representation of the progress is produced or in some cases where there is a burn-
down chart, unfinished tasks are marked as done. This hinders the awareness of the
team on their capabilities and if they should need to make some kind of correction

to be able to deliver results faster.

The team originally used a rudimentary spreadsheet backlog which listed the tasks and
requirements in order of priority. This however was not a very good tool as it was very
difficult to read, search and reason about. The only measure of progress was the amount
of lines that had been done as there were very few tasks that were really estimated. It
was also difficult to ascertain which tasks to count at any given moment, as the input of
the date a task was started and done had to be inputted manually and was not always

remembered to be inputted.

This was somewhat alleviated by the previously mentioned backlog management software

that replaced the old spreadsheet-based backlog. It made it easier to mark when a task

44

was started, when it was done and even when it was finally in production. Also, the
introduction of the use of epics, which in the context of the tool was a group of tasks,
brought the first burn-down charts in their context. The estimation of work of the tasks
is still very low outside of the tasks that are part of epics and should be improved so that

a possible time framed burn-down chart of all the tasks would be generatable.

Testing is Not Required ScrumBut AntiPattern

AntiPattern Name: Testing is Not Required Sprint (novel)

Scrum Recommendation: Testing should be done in conjunction with the implement-
ing code

General Description: Testing is a fundamental part of software development in general
but agile software development in particular. Sadly, sometimes it is ignored and
seen as a nuisance. Not having tests will make the code more brittle and prone to
future failure. Writing tests later is always more difficult and thus makes it even

more important for the tests to be written in tandem with the code they test.

This AntiPattern is a variant of the testing in next sprint AntiPattern [12] that considers
the case when tests are not really required at all. This is the case of this project where
testing was never a priority on its early development and lead to it becoming the permanent
state of affairs. Little by little the project grew to such an extent that going back and
creating tests for everything would not be feasible. The addition of Java added another
layer of complication to it that would have required modifying the Leiningen compilation
script to run Java tests too and was never done. Thus, most of the codebase has no tests

at all or has tests but that can only be run manually.

Everybody in the team understands their importance but have not had the resources to
fix the situation. Testing the code with its current structure and architecture is innately
difficult but a known benefit of testing is that when testing code becomes more testable.
Now with the removal of the Clojure code in sight, it is important to remember the

importance of testing and not repeating the mistakes from before.

Flexible Time-boxing of Scrum Events ScrumBut AntiPattern

AntiPattern Name: Flexible Time-boxing of Scrum Events (novel)

Scrum Recommendation: All Scrum events are time-boxed to maximize efficiency

45

General Description: Scrum events do not adhere to a fixed time-box. The daily is
probably the most affected event due to its intended short duration, but it might
affect other events too. Every daily lasts more than the agreed time, as the topics of
the meeting are not kept on what it is for. This usually ends up wasting the time of
most of the team, as two people start for instance going into the details of a given

task’s implementation.

The project’s daily meeting was time-boxed to 15 minutes but was rarely kept under this
constraint. Most times the meeting would contain one or several sections of concrete

implementation talk of a given task of a singular developer.

Daily meetings are supposed to be a fast checkup of everyone’s ongoing work, to briefly
check where at which stage each one is and so that possible blockers can be removed. Any
possible further talk needed should be set aside of the meeting and dealt with in smaller
groups after the daily is over so that the rest of the team can keep working on their own
tasks.

5 Conclusions

Understanding AntiPatterns has the potential to help projects alleviate the technical debt
that they have accrued. Sadly, the concept of AntiPatterns is not as widely known or
used as that of design patterns. This thesis presented a case study were the codebase of
a startup that had clear signs of technical debt was analyzed and improved through the

identification and use of the underlying AntiPatterns it presented.

The results addressing the research questions of this thesis showed that in the context of

the case study:

o Areas of code with code smells did often have underlying AntiPatterns. Each An-
tiPattern usually had its own set of code smells that were related to it but there was
no direct causation the other way around, rather code smells served as indicators of

the need for deeper inspection of the underlying behavior.

o The use of AntiPatterns to analyze and fix the problems in the codebase was very
helpful. Looking for AntiPatterns instead of individual problems made it easy to find
more overarching patterns and thus using the refactored solution of the AntiPattern
enabled planning and making fixes that would improve the codebase’s structure and
readability as a whole. Using AntiPatterns to analysis the Scrum methodologies used
in the project proved to be also a good fit, as it become clear why certain behavior
was not desirable and what was the Scrum recommendation towards which to work

to, improving the overall performance of the Scrum team.

Another observation and confirmation made was the added difficulty that not having tests
adds to the possibility to deal with technical debt in a codebase. Refactoring, the main
tool used to improve code without changing its behavior, relies heavily on having tests
that can confirm that regressions are not introduced while trying to fix other problems.

Adding tests is thus always the first step towards getting rid of the accrued technical debt.

In some instances, some AntiPatterns were continuously reintroduced even after having
realized their existence and its active removal in other areas of the code. It is thus of the
utmost importance to understand AntiPatterns, particularly those that have already been

previously identified, and have good peer review practices that make it possible to catch

47

them before they end up in the production code and before not too long the project is

back on square one.

One line of further inquiry that could be beneficial would be a more comprehensive study
of static code analysis tools that could aid in the identification of AntiPatterns. Better

tooling becomes even more important as the size of the codebase being analyzed increases.

Further corroboration of the central findings in this thesis should also be sought in the
context of different kinds of software development projects and types of companies. Is
the use of AntiPatterns in technical debt management feasible on projects of all sizes and
types? Would it be beneficial to have some kind of AntiPattern repository from previous
projects with concrete examples of the refactored solutions implemented? These questions

need answering before the results of this thesis could be widely generalized.

Bibliography

[1] Analyzing Log Data with CloudWatch Logs Insights. 2020. URL: https://docs.aus.
amazon . com/AmazonCloudWatch/latest/logs/AnalyzinglogData.html (visited
on 11/22/2020).

[2] AWS, Amazon Web Services. URL: https://aws.amazon.com/ (visited on 11/24,/2020).
[3] S.S.Bajwa, X. Wang, A. N. Duc, and P. Abrahamsson. ““Failures” to be celebrated:

an analysis of major pivots of software startups”. In: Empirical Software Engineering
22.5 (2017), pp. 2373-2408.

[4] K. Beck. Eztreme programming explained: embrace change. addison-wesley profes-
sional, 2000.

[5] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherl, and D. Thomas. Manifesto for Agile Software
Development. 2001. URL: https://agilemanifesto.org/ (visited on 03/10,/2020).

[6] K. Bennett. “Legacy systems: Coping with success”. In: IEEE Software 12.1 (1995),
pp. 19-23.

[7] W. J. Brown. AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis. Wiley, 1998. 1SBN: 9780471197133.

[8] CodeMR. URL: https://www.codenr.co.uk/ (visited on 11/17/2020).

[9] K. Conboy. “Agility from first principles: Reconstructing the concept of agility in
information systems development”. In: Information systems research 20.3 (2009),
pp. 329-354.

[10] W. Cunningham. “The WyCash portfolio management system”. In: ACM SIGPLAN
OOPS Messenger 4.2 (1992), pp. 29-30.

[11] C. Ebert and M. Paasivaara. “Scaling agile”. In: IEEE Software 34.6 (2017), pp. 98—
103.

[12] V.-P. Eloranta, K. Koskimies, and T. Mikkonen. “Exploring ScrumBut—An em-
pirical study of Scrum anti-patterns”. In: Information and Software Technology T4
(2016), pp. 194-203.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://aws.amazon.com/
https://agilemanifesto.org/
https://www.codemr.co.uk/

20

[13]

[14]

[15]

[16]

[27]

M. Feathers. Working Effectively with Legacy Code. Pearson Education, 2004. I1SBN:
9780132931755.

M. Fowler. Refactoring: Improving the Design of Ewisting Code. Addison-Wesley,
2019. 1SBN: 9780134757599.

M. Fowler. C'odeSmell. 2006. URL: https://martinfowler.com/bliki/CodeSmell.
html (visited on 11/11/2020).

M. Fowler. Technical Debt Quadrant. 2009. URL: https://martinfowler . com/
bliki/TechnicalDebtQuadrant.html (visited on 10/24,/2020).

P. Hagelberg. Leiningen. URL: https://leiningen.org/ (visited on 11/17/2020).

T. Hall, S. Beecham, J. Verner, and D. Wilson. “The impact of staff turnover on
software projects: the importance of understanding what makes software practition-

ers tick”. In: Proceedings of the 2008 ACM SIGMIS CPR conference on Computer

personnel doctoral consortium and research. 2008, pp. 30-39.
R. Hickey. Clojure. URL: https://clojure.org/ (visited on 11/17/2020).
R. Hickey. ClojureScript. URL: https://clojurescript.org/ (visited on 11/17/2020).

How DropBozx Started As A Minimal Viable Product. 2011. URL: https://techcrunch.
com/2011/10/19/dropbox-minimal - viable-product/?guccounter=1&guce _

referrer =aHROcCHM6Ly93d3cuzZ29vZ2x1LmNvbS8 & guce _referrer sig=AQAAAL -
SHMztWEM40gORR698Z81KQtP-ArGFOkm2d--aWhdGOLERH47a-UH2Ks2qvDXGj0o8YS1r0-

450EzuvY jKqYjOuaKDqRCRsUf0SBwy2VFz2hOmCOfrpGO4viN1L1znYc-xW8McBFzfpYFxYsGxP1ZVJIn7kyv
NiRyateWJtPX (visited on 10/24/2020).

IntelliJ IDEA Code Inspections. 2020. URL: https://www. jetbrains.com/help/
idea/code-inspection.html (visited on 11/17/2020).

Java. URL: https://www.java.com/en/ (visited on 11/24/2020).

E. Lopian. Defining Legacy Code. 2018. URL: https ://dzone . com/articles/
defining-legacy-code (visited on 10/24,/2020).

P. Louridas. “Static code analysis”. In: IEEE Software 23.4 (2006), pp. 58-61.

S. Ramlall. “A review of employee motivation theories and their implications for em-

ployee retention within organizations”. In: Journal of American academy of business
5.1/2 (2004), pp. 52-63.

E. Ries. The lean startup: How today’s entrepreneurs use continuous innovation to

create radically successful businesses. Currency, 2011.

https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://leiningen.org/
https://clojure.org/
https://clojurescript.org/
https://techcrunch.com/2011/10/19/dropbox-minimal-viable-product/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAL-SHMztWEM4og0RR698Z8iKQtP-ArGF9km2d--aWhdGOLERH47a-UH2Ks2qvDXGj0o8YSlrO-45oEzuvYjKqYj0uaKDqRCRsUfOSBwy2VFz2h9mCOfrpG04viN1L1znYc-xW8McBFzfpYFxYsGxPlZVJn7kv7t_NiRyateWJtPX
https://techcrunch.com/2011/10/19/dropbox-minimal-viable-product/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAL-SHMztWEM4og0RR698Z8iKQtP-ArGF9km2d--aWhdGOLERH47a-UH2Ks2qvDXGj0o8YSlrO-45oEzuvYjKqYj0uaKDqRCRsUfOSBwy2VFz2h9mCOfrpG04viN1L1znYc-xW8McBFzfpYFxYsGxPlZVJn7kv7t_NiRyateWJtPX
https://techcrunch.com/2011/10/19/dropbox-minimal-viable-product/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAL-SHMztWEM4og0RR698Z8iKQtP-ArGF9km2d--aWhdGOLERH47a-UH2Ks2qvDXGj0o8YSlrO-45oEzuvYjKqYj0uaKDqRCRsUfOSBwy2VFz2h9mCOfrpG04viN1L1znYc-xW8McBFzfpYFxYsGxPlZVJn7kv7t_NiRyateWJtPX
https://techcrunch.com/2011/10/19/dropbox-minimal-viable-product/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAL-SHMztWEM4og0RR698Z8iKQtP-ArGF9km2d--aWhdGOLERH47a-UH2Ks2qvDXGj0o8YSlrO-45oEzuvYjKqYj0uaKDqRCRsUfOSBwy2VFz2h9mCOfrpG04viN1L1znYc-xW8McBFzfpYFxYsGxPlZVJn7kv7t_NiRyateWJtPX
https://techcrunch.com/2011/10/19/dropbox-minimal-viable-product/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAL-SHMztWEM4og0RR698Z8iKQtP-ArGF9km2d--aWhdGOLERH47a-UH2Ks2qvDXGj0o8YSlrO-45oEzuvYjKqYj0uaKDqRCRsUfOSBwy2VFz2h9mCOfrpG04viN1L1znYc-xW8McBFzfpYFxYsGxPlZVJn7kv7t_NiRyateWJtPX
https://techcrunch.com/2011/10/19/dropbox-minimal-viable-product/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAL-SHMztWEM4og0RR698Z8iKQtP-ArGF9km2d--aWhdGOLERH47a-UH2Ks2qvDXGj0o8YSlrO-45oEzuvYjKqYj0uaKDqRCRsUfOSBwy2VFz2h9mCOfrpG04viN1L1znYc-xW8McBFzfpYFxYsGxPlZVJn7kv7t_NiRyateWJtPX
https://www.jetbrains.com/help/idea/code-inspection.html
https://www.jetbrains.com/help/idea/code-inspection.html
https://www.java.com/en/
https://dzone.com/articles/defining-legacy-code
https://dzone.com/articles/defining-legacy-code

28]

[29]

[30]

[32]

[38]

51

N. Rios, R. O. Spinola, M. Mendonca, and C. Seaman. “Supporting analysis of tech-
nical debt causes and effects with cross-company probabilistic cause-effect diagrams”.
In: 2019 IEEE/ACM International Conference on Technical Debt (TechDebt). IEEE,
2019, pp. 3-12.

K. Schwaber. “Scrum development process”. In: Business object design and imple-

mentation. Springer, 1997, pp. 117-134.

K. Schwaber and J. Sutherland. The Scrum Guide. 2017. URL: https : //www .
scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US. pdf (visited
on 10/23/2020).

H. Terho, S. Suonsyrja, A. Karisalo, and T. Mikkonen. “Ways to cross the rubi-
con: pivoting in software startups”. In: International Conference on Product-Focused

Software Process Improvement. Springer, 2015, pp. 555-568.

The 14th Annual State of Agile Report. 2020. URL: https://stateofagile.com/
#ufh-1-615706098-14th-annual-state-of-agile-report/7027494 (visited on
10/23/2020).

E. Tom, A. Aurum, and R. Vidgen. “An exploration of technical debt”. In: Journal
of Systems and Software 86.6 (2013), pp. 1498-1516.

C. Webb. Agile Landscape. 2016. URL: https://wuw.slideshare.net/Chrisiebb6/

last-conference-2016-agile-landscape-presentation-v1 (visited on 10/21/2020).

What is ScrumBut. URL: https://www.scrum.org/resources/what-scrumbut
(visited on 10/23/2020).

J. P. Womack, D. T. Jones, and D. Roos. The machine that changed the world: The
story of lean production—Toyota’s secret weapon in the global car wars that is now

revolutionizing world industry. Simon and Schuster, 2007.

F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta. “How open
source projects use static code analysis tools in continuous integration pipelines”.
In: 2017 IEEE/ACM 1/th International Conference on Mining Software Repositories
(MSR). IEEE, 2017, pp. 334-344.

N. Zazworka, R. O. Spinola, A. Vetro’, F. Shull, and C. Seaman. “A case study
on effectively identifying technical debt”. In: Proceedings of the 17th International

Conference on FEvaluation and Assessment in Software Engineering. 2013, pp. 42—-47.

https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-presentation-v1
https://www.slideshare.net/ChrisWebb6/last-conference-2016-agile-landscape-presentation-v1
https://www.scrum.org/resources/what-scrumbut

	Introduction
	Modern Software Development
	Agile Software Development
	Scrum
	Lean Startup

	Constant Need for Change
	Factors That Inhibit Change
	Technical Debt
	Legacy Code

	Code Smells
	AntiPatterns

	Methodology
	Research Setup
	Research Questions
	Performing the Research

	Case Study
	Case Company
	Case Product
	From Code Smells to AntiPatterns
	Static Code Analysis
	Identified Code Smells
	Underlying AntiPatterns

	ScrumBut AntiPatterns

	Conclusions
	Bibliography

