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Abstract 

High-throughput drug sensitivity testing provides a powerful phenotypic profiling approach to 

identify effective drug candidates for individual cell lines or patient-derived samples. Here, we 

describe an experimental-computational pipeline, named target addiction scoring (TAS), which 

mathematically transforms the drug response profiles into target addiction signatures, and thereby 

provides a ranking of potential therapeutic targets according to their functional importance in a 

particular cancer sample. The TAS pipeline makes use of drug polypharmacology to integrate the 

drug sensitivity and selectivity profiles through systems-wide interconnection networks between 

drugs and their targets, including both primary protein targets as well as secondary off-targets. We 

show how the TAS pipeline enables one to identify not only single-target addictions, but also 

combinatorial co-addictions among targets that often underlie synergistic drug combinations.  
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1. Introduction 

 

Recent advances in high-throughput genetic and molecular profiling techniques have enabled an 

extensive exploration of the genomic landscapes of human tumors, leading to an in-depth 

understanding of the plethora of genetic alterations present in various cancer types [1-4]. However, 

these genetic profiling studies have also revealed the massive complexity and heterogeneity across 

tissue types and even within the same tumor [5]. Furthermore, our limited understanding of the 

functional consequences of these genetic alterations has posed significant challenges for translating 

this knowledge into clinically actionable targeted treatment strategies [6]. Cancer cells often exhibit 

a selective dependence on a few genes or pathways, a phenomenon referred to as ‘oncogenic’ 

addiction, which opens up the possibility of exploiting these dependencies for therapeutic 

developments [7]. However, the extensive genetic heterogeneity results in alterations of multiple 

molecular pathways, and therefore makes it difficult to pinpoint the specific addictions in particular 

cancer cells. Complementary strategies are thus needed to identify selective vulnerabilities and 

cellular addictions of cancer cells toward developing targeted drug combinations that can inhibit the 

multiple cancer-survival or resistance-driving pathways.  

 

High-throughput compound sensitivity screens that make use of cell-based viability assays to 

profile the activity of a library of small bioactive molecules (referred hereafter as to ‘drugs’) have 

facilitated the identification of promising drug candidates for individual cancer patients (so-called 

functional precision oncology) [8-12]. The direct advantage of functional drug sensitivity screening 

assays, compared to genomic and transcriptomic-based profiling, is that they provide a 

complementary phenotypic information of cancer cells, which is often more clinically actionable. 

Furthermore, such drug response phenotypic profiles can be used to identify molecular targets or 

pathway-level addictions based on the knowledge of primary or ‘on-targets’ of the drugs combined 



with their functional response profiles [13-18], a process called ‘target deconvolution’. However, 

most drugs are promiscuous and lead to a polypharmacological or ‘off-target’ effects [19], which in 

turn complicate the identification of target addictions directly from the measured drug response 

phenotypes. Since it is experimentally and economically infeasible to exhaustively explore the full 

space of all drug-target combinations, there is a need for systematic computational approaches that 

enable the identification of target addiction patterns from drug sensitivity data.  

 

Here, we describe our experimental-computational target deconvolution pipeline, named target 

addiction scoring (TAS) [20,21], which makes use of drug polypharmacology to model the complex 

interconnections between drug responses and target interaction profiles that consider both primary 

protein targets as well as secondary off-targets. The TAS approach is individualized in the sense 

that it uses the drug sensitivity profile from a given sample (e.g., cancer cell line or patient-derived 

sample), screened against a library of bioactive compounds, and then transforms the observed 

phenotypic profile into a sample-specific target addiction profile, through the information encoded 

in system-wide drug-target interactions that connects the compounds to their complete spectrum of 

protein targets (i.e., target selectivity profiles). Systematic mapping of such target addiction 

signatures provides a ranking of the therapeutic targets according to their functional importance in a 

given cancer sample. In addition to demonstrating how the TAS approach enables the identification 

of single-target addictions, we also show here how it can be used to infer combinatorial co-

addictions among therapeutic targets, such as kinase pairs, by means of combinatorial TAS 

approach.  

 

We have previously demonstrated the applicability of TAS by profiling a panel of triple negative 

breast cancer (TNBC) cell line responses to 239 kinase inhibitors [20,22], in which case the 

approach was called kinase inhibition sensitivity scoring (KISS). We observed that the KISS 



profiles of TNBC cells closely resembled the patient-derived TNBC subtypes, but also revealed 

novel druggable addictions [20]. However, our approach is not only applicable to cancer cell lines 

but also to patient-derived cancer samples amenable to high-throughput drug screening [8-10,12]. 

Moreover, the TAS approach extends naturally to other target classes beyond kinase targets, 

although the accuracy and coverage of the addiction profiles is critically dependent on the 

availability of drug-target bioactivity profiles. Drug-target bioactivity data are generally sparse and 

notoriously heterogeneous due to various experimental assays, and often biased towards specific 

target classes, such as kinases, and the use of different bioactivity end-points make the 

implementation of target deconvolution approaches difficult, despite the curated and standardized 

drug/target databases such as ChEMBL [23]. Therefore, we additionally demonstrate how to use the 

bioactivity profiles for the purposes of target deconvolution and prediction of drug-target 

combinations. 

 

2. Materials 

The approach makes use of two input data sources, drug sensitivity (Subheading 2.1) and target 

selectivity (Subheading 2.2) profiles. Drug sensitivity profiling data makes the TAS signatures 

context-specific for a given cancer cell line or patient sample, whereas the underlying drug-target 

bioactivity profiles provide the system-wide interactions between drugs and targets that map the 

potential activity space, independent of the cellular-context.  

 

2.1. Drug sensitivity profiling data 

1. A library of targeted compounds is screened against cancer cell lines or patient-derived samples 

using a high-throughput drug sensitivity profiling assay (see Note 1). At FIMM, our oncology 

collection contains both FDA/EMA-approved drugs as well as investigational compounds. Each 

compound is tested in five increasing concentrations, across a 10,000-fold range, allowing for 



the establishment of dose-response curves. 

a. We previously tested 21 breast cancer cell lines against 239 anticancer compounds [20,22], 

using the FIMM drug sensitivity and resistance testing (DSRT) platform [8,12].  

b. We have also screened patient-derived cells from acute myeloid leukemia (AML) patients, 

and used healthy bone marrow samples as controls in the DSRT platform [8,24]. 

 

2. One can also use publicly available cancer cell line profiling datasets, such as those from the 

Sanger institute’s Genomics of Drug Sensitivity in Cancer (GDSC) project [14,15], using which 

we applied the TAS pipeline on a subset of 107 pan-cancer cell lines tested against 138 targeted 

compounds that included also other drugs than kinase inhibitors. The Broad Institute’s Cancer 

Cell Line Encyclopedia (CCLE)[13] and Cancer Therapeutic Research Portal (CTRP)[16,18] 

are also useful resources of drug sensitivity data across cancer cell lines, along with their 

comprehensive genomic and molecular profiles.  

 

2.2. Drug-target bioactivity profiles 

1. List of primary ‘on-targets’ for each compound can be obtained from various resources, 

such as the targets listed Sanger GDSC (http://www.cancerrxgene.org/); Broad CTRP 

(http://portals.broadinstitute.org/ctrp/?page=#ctd2BodyHome); DrugBank 

(https://www.drugbank.ca/) or Drug Gene Interaction Database (DGIdb, 

http://dgidb.genome.wustl.edu/).     

 

2. For more extensive and quantitative information of drug-target bioactivity profiles for 

primary, secondary and downstream ‘off-target’ effects, which are required for the systems-

level application of TAS, one can use data from large-scale target selectivity profiling 

assays, including those for kinase inhibitors [25-27].  



 

3. Comprehensive bioactivity data for many target classes can be retrieved from our publicly 

available Drug Target Commons (DTC) database (https://drugtargetcommons.fimm.fi/), a 

crowdsourced platform for bioactivity data annotation, integration, standardization and 

curation, which also includes assay and bioactivity data from ChEMBL [28,29]. 

 

2.3. Software tools/R-packages 

1. DSS R-package is available as open-source R implementation 

at https://bitbucket.org/BhagwanYadav/drug-sensitivity-score-dss-calculation 

2. TAS R-package is available as open-source R implementation 

at https://bitbucket.org/BhagwanYadav/target-addiction-score-tas-calculation. 

3. SynergyFinder is available both as web implementation (https://synergyfinder.fimm.fi) and 

R-package (http://bioconductor.org/packages/release/bioc/html/synergyfinder.html). 

 

3. Methods 

The following steps detail the computational methodologies for the TAS approach, both for single-

target addiction scoring (Subheading 3.3) and combinatorial TAS (Subheading 3.4). 

 

3.1. Drug Sensitivity Scoring (DSS) 

1. Calculate quantitative DSS values by fitting the dose–response curves using four-parameter 

logistic model [24]. DSS is a closed-form integration of the area under the dose-response 

curve (AUC), which effectively summarizes the complex dose-response relationship into a 

single metric (see Note 2). An open-source R implementation of DSS package is made 

available for this purpose (see Section 2.3). 

2. Calculate differential DSS (dDSS) by comparing the DSS of cancer sample to that of the 



controls (see Note 3). Differential DSS allows one to estimate the selective response of a 

given cancer sample to the particular drug, compared to the control background response 

distribution, which is eventually useful when quantifying the selective target addictions of 

the particular cancer samples. 

 

3.2. Drug-target Interactions 

1. Extract the quantitative drug-target interaction bioactivity profiles of compounds from the 

DTC web portal (https://drugtargetcommons.fimm.fi/).  

2. Define the potent targets of a particular compound by using all the available bioactivity data 

for the compound and a suitable activity threshold: 

a) If there are enough dose-response bioactivity end-points (Kd, Ki or IC50) for the 

compound (say, for more than 20 distinct proteins), define the potent targets as those 

with less than 50-fold bioactivity compared to the smallest bioactivity value over all the 

proteins (this typically corresponds to the ‘on target’). In case of limited number of data 

points, define potent targets as those with Kd, Ki or IC50 ≤100 nM (see Note 4). 

b) For the activity measurements (activity%, residual activity%, %inhibition or potency), 

often resulting from assays with only single or a few concentration points, define a more 

stringent threshold: ≤10% residual activity (≥90% inhibition) for the test concentration 

of ≤1000 nM and ≤20% for a test concentration of ≤500 nM in biochemical assays. For 

cell-based assays, set the threshold to ≤50% residual activity for the test concentration of 

≤1000 nM and ≤10% for the test concentration ≤10000 nM. 

 

3.3. Target Addiction Scoring (TAS)  

The TAS value provides an estimate of the sensitivity of a cell to the inhibition of a particular 

target. More specifically, for a given target t, TASt is calculated by averaging the observed drug 



response (e.g., DSSi) (see Note 2) over all those nt inhibitors (i) that target the protein t (Figure 1A).  

Mathematically, TAS defines a transformation between the spaces spanned by the compounds and 

their targets, which maps observed drug responses to the underlying target addictions:   
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1. Calculate the single-target TAS for each sample separately and sort the targets based on the 

increasing TAS values, which enables one to prioritize the pharmacologically actionable target 

addictions in individual cancer samples for further pre-clinical validation (see Note 6). An 

open-source R implementation of TAS package is made available for this purpose (see Section 

2.3). 

2. Determine the statistical significance of a TAS value empirically using permutation testing; 

based on a vector of inhibitors per target, randomly select a given number of inhibitors, and then 

average their DSS values in a given sample. The permutation procedure is repeated, simulating 

at least 10,000 random TAS values in the given sample. The empirical p-value is defined by the 

percentage of the permuted TAS values above or equal to the observed one. 

 

3.4. Prediction of synergistic target pairs 

1. For all those target pairs (t1, t2) that are inhibited by the same compound, calculate a 

combinatorial TAS score by averaging the drug response (e.g., DSS) over the set of 

common inhibitors that target both t1 and t2. Target pairs that have no common inhibitors in 

the library are excluded from the combinatorial TAS analysis. 

2. Calculate complement scores for each target in a target pair. The complement score (CS) of 

t1 or t2 is defined as the average response (e.g., DSS) over the inhibitors that inhibit only t1 or 



t2, respectively, but not both of the targets (see Figure 1B for a schematic illustration of the 

complement score concept).  

3. Exclude those target pairs for which the difference between the combinatorial TAS and the 

complement scores is below a selected cut-off value (e.g, T = 4). Rank the remaining target 

pairs by the magnitude of their combinatorial TAS, and map back to drug pairs by selecting 

the strongest inhibitors of targets t1 and t2 alone, excluding their common inhibitors, using 

the lowest bioactivity values.  

4. Experimentally validate the top co-addicted target pairs predicted by the combinatorial TAS, 

e.g, by testing the inhibitors in an 8 × 8 dose-matrix format covering seven increasing 

concentrations of each drug, along with all their pairwise combinations [20,30] (see Figure 

2). Evaluate the degree of synergy between the pairwise combination effects using the 

synergy scoring models implemented in the SynergyFinder package [31] (see Note 7).  

 

4. Notes 

1. The DSRT platform uses of a library of compounds dissolved in 100% dimethyl sulfoxide 

(DMSO) and dispensed on tissue culture treated 384-well plates using an acoustic liquid 

handling device. The compounds are plated at 5 different concentrations in 10-fold dilutions 

covering a 10,000-fold concentration range, centered around a compound-specific relevant 

cellular activity concentration (e.g. 1–10,000 nM for a compound with an on-target cellular 

half-maximal effect of about 100 nM). The pre-drugged plates are stored in pressurized 

Storage Pods filled with inert nitrogen gas. For the assay, the compounds are first dissolved 

with 5 µl of culture medium while shaking for 30 min, 20 µl of single cell suspension 

(10,000 cells) is then seeded to each well using a MultiDrop Combi peristaltic 

dispenser. The plates are incubated in a humidified environment at 37°C and 5% CO2 and 

after 72 h cell viability was measured using CellTiter-Glo luminescent assay (Promega), 



according to manufacturer’s instructions. The data are normalized to negative control 

(DMSO only) and positive control wells (100 μM benzethonium chloride).  

2. In addition to the drug sensitivity score (DSS), a number of other metrics, such as the area 

under the drug response (AUC) and half-maximal inhibitory concentration (IC50), are also 

frequently used for summarizing dose-response curves and quantifying drug sensitivities. In 

our studies, we have mainly used DSS as the response metric, as it has been shown to 

provide robust and reproducible drug response profiles [24,32]. 

3. High-throughput drug sensitivity screening is amenable to profiling of a compendium of 

patient-derived cells or cancer cell lines, making it possible also to study the variability of 

drug response across different samples to the same drug. Whenever possible, we calculate 

the differential DSS (dDSS) values in each patient sample by subtracting the mean DSS for 

a drug across all healthy controls from the observed DSS of a given cancer sample. 

However, sometimes it is difficult to define the control responses for cancer cell lines; in our 

previous work on breast cancer cell lines [20], we used the DSS of MCF10A cells as a 

control to calculate the differential DSS. Alternatively, we have also used the average DSS 

across all the samples screened against a given drug for calculating dDSS [21,22].  

4. Defining potent on- and off-targets for a compound may not be straightforward, especially 

in cases where only a few bioactivity values are available from target selectivity profiling 

studies. Further challenges originate from differences in the bioactivity assays. For instance, 

biochemical assays typically generate higher potency levels than cell-based assays, and 

therefore require more stringent cut-off values. Dose-response bioactivity end-points are 

often more reliable than those based on single or a few concentration points, and therefore 

Kd, Ki and IC50 end-points are preferred [33]. In cases where there are multiple bioactivity 

values for the same compound-target pair, originating from different studies or other data 

resources, one can take median bioactivity value that is more robust to outliers than the 



mean value. 

5. We manually filter out targets involved in cellular metabolism, such as cytochrome (CYP) 

and ATP-binding cassette (ABC) genes, from the set of potential drug targets when 

analyzing in vitro drug responses, since those are unlikely to contribute to the drug’s mode 

of action in cell line drug testing. 

6. It is also possible to incorporate information from biological pathways and signaling 

networks for identifying target addictions of proteins that are upstream or downstream of a 

given drug target. Often, one will find drugs that show selective drug response in a cancer 

sample, even if their direct targets might not show selective addiction. Therefore, additional 

molecular profiling datasets such as transcriptomic, proteomic and genome-wide loss-of-

function RNAi or CRISPR screens, that provide complementary target validation 

information, can be used to identify targets that mechanistically explain the observed drug 

responses and also serves as a pre-clinical validation of the hits from the TAS approach.  

7. For drug combination synergy scoring, we have previously made available the 

SynergyFinder web implementation (https://synergyfinder.fimm.fi) and R-package  

(http://bioconductor.org/packages/release/bioc/html/synergyfinder.html) to calculate the 

drug synergy scores using different reference models, including Zero Interaction Potency 

(ZIP), Bliss and Loewe models, as well as the Highest Single Agent (HSA) [31]. Sometimes 

it may be convenient to calculate the synergy scores using various models to come up with 

the most reliable determination of the degree of synergy for a given drug pair [34]. 
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Figure Legends: 

 

Figure 1: Schematic illustration of the single and combinatorial target addiction scoring (TAS). 

(A) Left: Single TAS approach ranks each target (t) in the context of a given drug-target network 

based on the average drug sensitivity score (DSS) over the subset of its potent inhibitors (n). Single 

TAS enables one to prioritize pharmacologically actionable kinase signal addictions in individual 

cancer cell samples for experimental validation. Right: The TAS concept was extended to ranking 

target pairs (ta, tb) based on their average combinatorial effect over the subset of inhibitors targeting 

both of the kinases (m). Combinatorial TAS enables one to identify synthetic lethal type of target 

pairs, which may correspond to synergistic drug combinations between their inhibitors. 

Experimental validation of the combinatorial TAS predictions can be carried out by testing the most 

potent inhibitors of ta and tb in combination assays. 

 

(B) Relationships between the single and combinatorial TAS defined using set-theoretic operations 

among the set of inhibitors. Using this notation, the cardinality of the set A is n and the cardinality 

of the intersection between A and B is m. The complement score (CS) of ta or tb is defined as the 

average drug response over the inhibitors that belong to the difference between sets A and B or B 

and A, respectively (the shaded portions) (modified from ref. 20 with permission from Elsevier). 

 

Figure 2: Combinatorial TAS predicts synergistic drug combinations and co-addicted target pairs. 

(A) Dose-response curves for the predicted synergistic effect between axitinib and dasatinib on cell 

viability in HCC1937 human breast cancer cells. The red dose-response curve shows the observed 

combination effect between axitinib (at multiple concentrations, y-axis) and dasatinib (at fixed 100 

nM concentration; see Figure 2B, highlighted column). The black curve represents the dose-

response to axitinib only. The blue curve represents the expected dose-response of axitinib (at 



multiple concentrations) combined with dasatinib (at fixed 100 nM concentration). The expected 

combinatorial effects were calculated based on the Bliss independence model [35]. Each 

combination was tested in two to four replicates. Points and error bars represent the mean and its 

standard error (SEM), respectively, and the solid curve is the logistic function fit.  

(B) An example of the Bliss excess scores matrix for the synergistic combination effects between 

axitinib and dasatinib (see Figure 2A). The values in the matrix are synergy scores calculated using 

the Bliss independence model at each tested combinatorial concentration of the two drugs (the first 

row and column of the matrix show the single-drug dose-response curves, where the other drug is at 

zero concentration). The highlighted column (dasatinib 100nM) corresponds to the red curve in 

Figure 2A (reproduced from ref. 20 with permission from Elsevier). 
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