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Abstract

Personal mobility data can nowadays be easily collected by personal mobile phones and used
for analytical modelling. To assist in such an analysis, a variety of computational approaches
have been developed. The goal is to extract mobility patterns in order to provide traveling
assistance, information, recommendations or on-demand services, for instance. While var-
ious computational techniques are being developed, research literature on destination and
route prediction lacks consistency in evaluation methods for such approaches. This study
presents a review and categorisation of evaluation criteria and terminology used in assessing
the performance of such methods. The review is complemented by experimental analysis of
selected evaluation criteria, to highlight the nuances between the evaluation measures. The
experimental study is using previously unpublished mobility data of 15 users collected over
a period of six months in Helsinki metropolitan area in Finland. The paper is primarily
intended for researchers developing approaches for personalised mobility analysis, as well as
a guideline for practitioners to select criteria when assessing and selecting between computa-
tional approaches. Our main recommendation is to consider user-specific accuracy measures
in addition to averaged aggregates, as well as to take into consideration that for many users
accuracy does not saturate fast and the performance keeps evolving over time. Therefore,
we recommend using time-weighted measures.
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1 Introduction

Data on personal mobility is increasingly easy to collect, as location recording devices are
widely available. Nowadays every (smart) mobile device incorporates a GPS rceiver, able to
track location accurately. Along with advancing technology, research interest in analysing
mobility data has been rapidly increasing, as illustrated, for instance, by the fact that Google
Scholar has four times more papers mentioning ” GPS traces” in 2014-2015 compared to 2000-
2001.

One major line of data science research focused on location data aims to predict the
destination (where the user is going) and route (how the user is going there). Destination
prediction and route prediction are the focus areas of this survey paper. Here the primary
target is to predict geographical locations in spatial domain as accurately as possible, with
travel times as a secondary target. These prediction tasks are motivated by at least four
types of application needs. Firstly, there is a demand to provide personalised services.
Many phone applications already provide their users with information about, for instance,
the travel time to home at the end of a working day, route conditions, or traffic jams, for
instance. Secondly, predictions may help to save energy on the societal level, for instance,
by fuel savings via carpooling or real time route optimisation [24, 18, 67, 21]. Thirdly,
predictions may be used for providing personalized content, for instance, via location-based
social networks [15]. Finally, aggregated predictions can be used for traffic management and
long-term strategic planning, for instance, optimising night bus routes by taxi traces [11],
predicting taxi demand [52], or validating bus schedules [50].

This survey has two objectives: on the one hand, to present a systematic overview of
research task settings for predictive modelling of personal mobility patterns, and on the other
hand, to define performance evaluation measures for different prediction scenarios that can
be used by researchers in the field. At the moment, consistency is lacking which makes it
difficult to compare different methods and systems—and thus to show relative improvements
of novel, proposed solutions. By providing a systematic evaluation methodology and a unified
terminology, we hope to provide a frame of reference for researchers and practitioners in this
rapidly growing research area.

2 Characteristics of mobility data

We start with a discussion on the basic characteristics of data used in mobility analysis, route
and destination prediction, and the terminology used in this research domain, to provide a
unified frame of reference for researchers.

2.1 Scenarios for predictive modeling

Consider two scenarios as examples to establish a notation for the location data and the
parameters used in the paper. In scenario one, a person is moving with his personal smart-
phone, which collects location traces. Several applications tap into the destination and route
prediction build on top. When he opens the travel planner app, it suggests the four most
likely next destinations for quick access. A car sharing app uses route prediction to enable
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Figure 1: The thick green connected dots in the centre are the recent trace, with the last
(and current) location as the left-most green point. Destination identification is identifying
the locations (blue squares). Destination prediction is predicting the next-up destination
(large red square). Location prediction is predicting a location a certain time ahead (orange
triangle). Route prediction is predicting the route given the next destination (red connected

dots).

others to ask for a hypothetical ride; only if someone is interested in the predicted route,
they confirm whether the user is actually travelling it. In scenario two, taxis constantly
report their location to the control room. In order to allocate taxis efficiently, we do not
only need to know where taxis are and where taxis with a ride are going; but also want to
predict where empty taxis (given their location now) will be in e.g. thirty minutes—location
prediction. See [52] for an example of the latter scenario.

Figure 1 illustrates different scenarios for predictive modeling in personal mobility anal-
ysis. Destination prediction is predicting the next-up destination. Location prediction is
predicting a location a certain time ahead. Route prediction is predicting the route given
the next destination.

2.2 Concepts and notation

In both of the scenarios mentioned earlier, a GPS device e tracks its own location [ over
time [°(t) in coordinates [¢ = (lon, lat) in the spatial domain. Such a device is generally
associated to a vehicle v or a user u. Any mapping which is not one-to-one such as multiple
users of one device or multiple devices for one user needs to be pre-processed carefully and
will complicate the research. In this paper, we assume the data is mapped to a single user,
and use the notation u throughout. The superscript is sometimes dropped when it is clear
from the context.

The unique location for a user u over time {%() is only available at the times ¢ it has been
sampled. All these times ¢ are denoted by the (ordered) set T', which spans a certain time
interval. Of course, we will work with the assumption of sampled data with a corresponding,



Figure 2: Illustration of network (left) and grid (right) structure. Note that several points
might snap to one grid, and that this specific grid drawing allows for diagonal transitions.

finite sampled period. Generally the points in 7" have regular intervals At = A(t; —t5). The
work presented in [45] illustrates how predictability of location is still possible, despite of the
very large sampling intervals. If not, the data is often pre-processed to obtain regular interval
samples and make it more suitable for machine learning techniques—earlier work of the
authors focused on the challenges of this pre-processing [73, 60]. While data-preprocessing
and filtering are out of the focus of this study, an interested reader is referred to [14] for a
comprehensive overview.
A GPS location trace T of length N is a sequence of (GPS) locations from

We will assume this data is put in a vector and simplify the notation to
Tr" = (qu,lg,...,l}(,). (2)

Of course, other representations than (lon, lat)-coordinates can be used for the location.
A ot of research use waypoint representation [77, 64], where every location is a waypoint w,
a member of pre-defined locations. One approach is using road intersections as waypoints,
creating a directed graph representation of the road network. Each GPS point is then
snapped (or quantized) to the nearest waypoint. Another approach is to impose a grid over
the traces [14, 76] and snap the points to its containing cell—a grid is not necessarily square
but could also be hexagonical [3]. This creates a grid structure, which can be considered
a network in which each cell is connected to its direct neighbours. See Figure 2 for an
illustration of these two structures. The grid structure requires a higher sampling frequency,
but no predefined road network which in turn the waypoint representation requires. Related
work considers constructing such a road network from traces themselves [10, 46].

Humans typically generate rather regular travel patterns, with destinations that are
visited periodically, such as home, university, work, and a limited set of shops, events,
and meeting places, for instance. An overview of activities and travel duration and their
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Table 1: Summary of notation user in the paper

Symbol Definition

1¢(t) location over time ¢ on device e

Tre = (I},...,1%) A trace (of user u, length N)

u, v, e user, vehicle, device

teT ‘set’ of times

(d) d (predicted) destination

D" = {d} LZ;' Set of destinations of user u

k = rankpu(d*) k-th most important destination

T range (meters) within which a user stays
b minimum time (seconds) within range r to be a destination
dist(+, ) distance function

X set of (mapped) traces

R*=(l1,...,ly) aroute where l; € D" and Iy € D"
S ={Ri,...,Ry} set of routes

(la) 1y (predicted) location at time ¢ (x time from now)
(0:) vi (predicted) i-th destination/location/route

Y)Y set of (predicted) locations or destinations, |Y| = N
w waypoint

motivations, for a group of users is given in [42, 39]. For a person or user u these can be
several destinations d" or points of interest, sometimes called target or goal, but these are
rather unspecific terms. Any d* is a location and could be said to be associated with a certain
rank k = rankpu(d") among all other destinations D" of the user. Typically, destinations
are identified in the data by defining a threshold b (break) for the time that the user stays
within range r—respectively in seconds and in meters throughout this work. The system
then keeps a count for how often a user is in each destination. Clustering methods are
also used to identify often visited locations, for instance via DBSCAN clustering algorithm
33, 34].

It helps to use the word trace (as in, GPS trace) for raw data, trajectory for trace data
mapped to a grid or graph representation, and route or trip for a trajectory from a start
point to an end point. A route R of length N is a sequence of locations [ where one generally
assumes that the first and last are also a destination d*:

R* = (I1,ls,....1y). (3)

For clarity, we present a summary of the notation used throughout this paper in Table 1.

2.3 From raw location data to features describing mobility

Sampling interval or granularity of the data plays an important role in mobility data analysis,
because traces with regular intervals are much easier to use than with irregular intervals. If
presented with a choice, one would generally aim for smaller intervals for research purposes,



because they allow more precise treatment. The clear trade-off is with battery power and
network load, which is especially important when the data is collected on personal mobile
devices and trasferred to a remote server.

From the raw loctaion data, higher-level features can be constructed that often aid the
prediction. The most obvious and common features are speed, direction, and acceleration,
which can be calculated easily from a set of time-indexed points. The main idea is to describe
mobility patterns in a way that is invariant to data collection granularity, phase or length of
the trip. Challenges of data pre-processing and feature construction are covered in [73, 60] in
more detail. Visual analysis of mobility patterns is essential for identifying potential features
and patterns. A detailed overview of visual analysis techniques in relation to mobility data
can be found in [4].

Often, in addition to features describing mobility traces, contextual data describing the
environment is also considered. Several papers investigate how contextual information im-
proves the performance of predictive models [40, 49, 3]. The most common examples are
time-context such as the day of the week, or part of the day (morning/evening) [28]. Weather
information is sometimes also incorporated [66]. These are all contextual information as a
function of time. Functions of the spatial location and domain could also be derived, such as
the distance to the nearest bus-stop. Activity recognition can also be considered contextual
information, where the activity is recognised by the use of for example GPS and often addi-
tional sensors such as the accelerometer. Even user emotion is sometimes added as context
[19]. A good overview of contextual information is provided in [1] and more specific for
mobile-computing in [12].

2.4 Privacy considerations

Gathering and analysing such mobility data undoubtedly raises privacy concerns. The ability
to predict movements of individuals [65] makes it possible to identify individuals in combined
GPS location data [17]. A good starting point of techniques and considerations can be found
in [36].

The first issue to consider is whether the data can be linked to individuals. Tracking
public transport routes, for instance, have little privacy issues because many individuals
may be present at the same bus. If data can be linked to individuals, at least two types of
methods can be used to guarantee privacy: data separation or density based methods. Data
separation requires models to be made for each user individually using only their data. The
disadvantage of this approach is that the performance of a model for a new user is likely to
be worse since no data is yet available, and similarly for irregular travel patterns which have
not yet shown in the data and thus are difficult to predict. For example, a user might not
have yet been to the airport so it will be impossible to predict this location.

The second approach is density based, upon which only destinations and routes shared
by several individuals will be used to strengthen the models of other users—see for example
[70].  Although this has clear performance potential, its parameters need to be carefully
chosen and tested to guarantee the privacy of users. As such, it can only work on rather
large user bases. Alternatively, constraints may be imposed on data collection, for instance,
by imposing a minimum number of locations a user has to have visited before his or her data
can be shared into a common pool of other users [76]. For examples of techniques used to



guarantee individuals’ privacy see [30, 63].

3 Machine learning techniques for mobility prediction

Next we present an overview machine learning techniques that are commonly used in mo-
bility analysis. It is not within the scope of this paper to provide an extensive technical
review of machine learning techniques used, but to provide an overview of what types of
techniques are commonly used. Table 2 presents a summary of scenarios, techniques and
data characteristics reported in research literature. Studies included are typically focused
on one or a few cities where traffic tracking data is accessible - e.g. a lot of studies con-
sider Beijing. The road network mapping explained before is used more often than the grid
mapping, probably because it preserves the intuitive graph structure of the data. Various
computational algorithms are used, to be overviewed next. Accuracy measures vary across
the papers, organising and interpreting these measures is the main subject of our survey.

3.1 Hidden Markov models

A Hidden Markov Model (HMM) is a probabilistic model that can be visually presented as a
graph in the framework of graphical models [6]. The building blocks of HMMSs are the first-
order Markov chain to govern the temporal development of the hidden state information. The
temporal dynamics of the discrete state information is modeled by the transition parameters
between unobserved (hidden) states in time. The probability parameters between the current
state and the next state form a transition matrix. In each state, there is a probability
distribution of generating an observation.

The Markov models find their uses in for example Google PageRank and audio-to-text
recognition. For a general review of HMMs, see [80] or, for modified architectures, see [7].

In our case, the nodes would be the waypoints (in the network representation) or cells
(grid representation) and the transitions probabilities specify the likelihood of that next
turn. The main advantage of HMMs is their simplicity and intuitive implementation in this
situation. They work also with discrete output spaces, in contrast to some related Bayesian
filtering methods (e.g. Kalman filters) which are suited to predict into real-valued space [61].

3.2 String matching

Generally speaking, strings are often used as a lower dimensional representation of sequences
(e.g. Symbolic Aggregate Approximation (SAX) [44]). This representation has as an addi-
tional advantage that one can use many efficient string-matching algorithms that have been
developed. As an illustration, a route might be a sequence of turn information LSSSRLSSSS
(L: left, S: straight, R: Right). The main disadvantage is the high dependency on the initial
starting point. This can be solved by assigning symbols to each waypoint - this allows for
partial string matching algorithms to match routes which at least partially overlap. For an
example using cellular data, see [40].



3.3 Temporally-augmented predictive models

A temporally-augmented predictive model stacks data instances across time, i.e., creates a
window of examples as input, to predict a destination. Thus, it is straightforward to cast
many mobility problems as a standard dataset suitable for the application of off-the-shelf
supervised machine learning methods. methods, and in particular Random Forest (RF)
have been shown to deliver very good results across several areas, and as such have also
been implemented to this area. An advantage is that it allows for an easy integration of the
aforementioned contextual information and features, and are relatively quick to train. This
kind of approach was taken in [72] with, among other methods, ensembles of incremental
decision trees.

3.4 Autoregressive time series models

Autoregressive time series models like autoregressive integrated moving average (ARIMA)
models [8] are well-suited to time dependent signals, especially when seasonality and long
term trends are present. However, this approach is thus principally suitable for continuous
data, such as taxi demand prediction [53], rather than mobility (location and destination)
prediction as considered by this work, which involve less pronounced trends and largely
discrete-value prediction.

3.5 Recurrent neural networks

A recurrent neural network (RNN) is a neural network that incorporates the temporal struc-
ture of the data in internal, recurrent, connections (rather than a sliding window over past
instances, as in the temporally-augmented models). The networks are notoriously difficult
to train, but have drawn a lot of attention recently with the uptake of Long Short Term
Memory (LSTM) networks [29], deep learning and graphic processing unit (GPU) boosted
neural nets. For a review of RNNs and their variations, see [20].

3.6 Instance-based prediction

The main principle behind all the above described techniques (Markov models, temporally-
augmented predictive models, string matching, and and recurrent neural networks) is to
decompose possible route network into modules (e.g. based on crossings) and predict the
next module from the most recently observed modules, with or without taking into account
contextual information, such as time of the day or day of the week. Instance-based prediction
[49] is conceptually different, as it does not explicitly construct a model, but rather picks
the most likely route from the routes travelled in the past. While the main limitations are
that instance-based cannot generalize to new routes, and may be computationally expensive
to operate prototype search online, the main advantage is that it does not require extensive
history for training, and can start predicting immediately after one route is completed by
the user. Though it can than also only predict this one route as the second travel, over time
this should converge to more sensible predictions.
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4 Evaluation criteria for mobility prediction

Setting up evaluation criteria for predictive systems of personal mobility may be challenging,
since many different prediction scenarios and task settings are possible in different application
scenarios.

When defining evaluation criteria, it is essential to select a criterion to capture the most
relevant aspects of predictive performance for the application at hand, rather than selecting
the most commonly used evaluation criteria for assessment. As a guideline, we identify the
following six main prediction tasks.

1. Destination identification, identifying the regular destinations for a user (Section 4.1)

2. Location prediction (or estimation), predicting the location of the user a certain time
ahead (Section 4.2)

3. Destination prediction, predicting the next destination of the user (Section 4.3)

4. Route prediction, predicting the route of the user to the next destination or location
(Section 4.4)

5. Start-time prediction, although not mentioned specifically in the literature, would be
to predict the next time the user is expected to leave his current location.

6. Travel-time prediction, to predict the time a travel will take, possibly dependent on
route prediction.

We will focus on the first four tasks, which are concerned with location prediction. The
last two tasks primarily focus on time prediction and are further from the main scope of our
survey. Evaluation criteria for the latter two can be quite generic and therefore straightfor-
ward. One can opt, for instance, for the (Root) Mean Square Error (MSE) [74], the Mean
Absolute Error or the Mean Absolute Percentage Error [23]. For a recent review on travel-
time prediction see [54]. In general, the respective evaluation criteria need to capture the
aspects that are relevant given the concrete purpose of the model. We will first identify the
evaluation measures per task and then discuss the different trade-offs. Hat notation ¢ is used
for the prediction of predictor P(e), and thus the ground truth is simply y. The prediction g
can be either a destination, location or a route depending on the task. Similarly, the input
data X for the predictor can be one trace Tr or a set of traces

§=P(X)=P((lig, ..., 1)) (4)

4.1 Destination identification

Destination identification is the task of identifying destinations from the traces of users.
Such a setting can be used, for instance, in carpooling or recommending multi-modal trans-
portation arrangements.

For each user u a list of destinations D%, as a list with implicit order of importance.
Then we denote d} as the k-th entry of D* with rank rankp(d*) = k, and connected the
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k-th most important destination, where importance is be defined either by total time spend
or in number of visits. The latter is the most intuitive interpretation from a prediction
perspective.

Identifying what is the destination from a given trace is not a trivial computational
task. One may consider, for instance, whether bus stops count as destinations, or not, even
though a person may be spending an extended time there. Alternatively, home may be a
destination, even if very little time is spent there, which may be the case, for instance, when
picking something or someone up and continuing to another destination. We believe that
no technical solution without attaching semantics to the destinations would resolve this in
a generic way applicable to all. Researchers are encouraged to explicitly indicate how their
system handles such cases.

4.1.1 Subjective relevance

One can evaluate the destinations identified by asking the users of the application whether
they consider them relevant. This leaves to the classic notions of false positives i.e. identified
destinations which the user does not consider destinations and false negatives i.e. destinations
the user considers relevant which were not identified in the data. A significant challenge with
such a measure is to define in a universal way when a destination should be considered as
important and when a place should be considered a destination in order to avoid such an
evaluation being excessively user-dependent.

4.1.2 Predictive relevance

One can also evaluate the destinations identified (possibly as a function of b and r) by
evaluating how it influences the error of the destination prediction (as discussed in 4.3). In
other words, one can optimise the destination identification considering how it influences
the error obtained in the prediction. Such optimisation of parameters should be done with
careful separation of training data for parameter selection, another training data for model
optimisation and hold out validation data for testing of the developed system.

We generally advice to handle destination definition and identification separately from
predictive modelling, since the results here will influence the performance on the further
dependent performance. Yet, as mentioned in the data section, it may be helpful to relate
the performance of the system to the parameters r,b since these parameters determine what
is identified as a set of destinations in a given dataset.

4.2 Location prediction

In location prediction, the task is to estimate the location [}, , where the user u will be x
minutes in the future, e.g. 30-minute-ahead prediction [}, 5. Note that this task does not
depend on the identification of destinations, even though the terms location and destination
sometimes are used interchangeably in the literature. Location prediction can be used, for
example, for providing anticipated traffic jam information.

This task of location prediction has a stronger emphasis on time stamps of the mobility
traces, since the goal is not only to know where the user is going, but also when he or she will
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be there. This is typically a shorter-horizon prediction/forecasting task than predicting a
destination. This task may in fact be set up as a multi-target prediction task [71], where each
location is predicted not stand alone, but as a part of a route sequence as in, for example,

[59)].

4.2.1 Distance to location in space

We can evaluate the discrepancy between the true location at time ¢ and the predicted
location with any distance measure. This can incorporate the square or exponential operator
to punish larger errors more heavily

dist(Y,f/):% S dist(l, ). (5)

ey ey

4.2.2 Time-independent distance

The main disadvantage of the distance measure is that it relies on travel time. Often it may
be more informative to predict how close a user has been to a particular location, no matter
when that happened. That is a valid scenario, among many, for instance if the objective of a
predictions is to determine whether a user will see something (e.g. a fixed billboard). Then,
at which time the user sees it comes secondary of the question whether it will be seen at all.
In such a scenario for the location [, at time ¢t we take the closest location at time n where
t—w<n<t+wfor atime-window size w

o 5 1 :
mmdst(Y,Y)-N Z min

leY ,Trey

dist(l,,, ;)

. (6)

Naturally, the time and space distance can also be combined in any fashion into a single
criteria.

4.3 Destination prediction

A trace may include multiple destinations. The task of predicting a destination is to predict
the next location given the location now, and possibly some contextual information. It is
important to specify whether the predicted destination is a point in space or a point in
time-space.

4.3.1 (Binary) Accuracy

For a trace of length N, predict the destination d: How often is the predicted destination
indeed correct? This gives an accuracy of the prediction. As any classification problem,
other criteria like sensitivity and fall-out can also be used.

~ 1
accuracy(Y,Y):N Z 1, g (7)

deYy ., dey
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We note that this case bears similarity to the task of multi-label classification. In this
scenario (see [71] for a review), binary accuracy is known as Hamming loss. A variety of
evaluation metrics are used for multi-label evaluation (including ranking metrics, which we
discuss next) though Hamming loss remains one of the most popular, especially if outputs
(destinations, in this case) are presumed to be predicted independently.

4.3.2 Weighted accuracy

It could also be the case that the prediction mechanism outputs a probability for each
prediction. Then the error could be weighted on this probability, giving for example log loss.

logloss(Y, V) —% Z yilog (pi) + (1 — y;) log (1 — py)). (8)

Often in implementations of log loss the predictions are bounded away from the extremes
by a small value.

4.3.3 Rank or top-k

Often the predictive systems are designed to output a ranked list of destinations D (with
the rank based on e.g. probability values). One way to assess the quality of the prediction
is to check how often the correct destination is among the top-k predictions

~ 1
top-k(Y,Y) = N Z Lrank p, (d)<k- (9)
DeY dey
Note that accuracy above can be considered a special case of top-k with £ = 1. In

scenario from 2.1, the user was presented four options in the route planning application;
top-4 then is an intuitive evaluation measure to use.

Another metric is the average rank of the prediction. This has as disadvantage that it
depends on the scale of the prediction (the error is expected to increase for longer D)

~ 1
avgrank(Y,Y):N Z rank p (d). (10)

DeY ,dey

4.3.4 Accuracy in space

When destination prediction in space (coordinates) is output, one may assess the accuracy by
asking how far the predicted destination is from the true destination. This can be measured
by a distance measure, such as the MSE, in coordinate space. The major challenge is
sensitivity of this approach to large deviations or outliers. This may happen due to, for
instance, occasional trips to other cities for example. See (5). Therefore, one needs to
consider how to ensure robustness of such measures. One way to do that is to put a cap on
large deviations, essentially removing the outliers of the individual errors before taking the
mean.
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4.3.5 Baseline accuracy

No matter which accuracy measure is used, it is critical to consider what would be the
naive baseline performance, as otherwise measured accuracy may be non-informative or even
misleading. In many cases baseline accuracy can be derived from so called Origin-Destination
(OD) transition matrix, which describes in probabilities how often the user transfers from
one destination to another. This directly relates to the first order Hidden Markov Models.
To be clear what the added value of a system recording GPS traces is, one is strongly
recommended to asses the performance relative to such a baseline, since measured absolute
accuracy depends on how easy the patterns in the data are to discover.

4.4 Route prediction

The task of predicting a route is to, given the recent trace, predict a sequence of locations
that will be the future trace. Route prediction is typically done using discrete waypoint
sequences rather than raw GPS traces [16, 49].

4.4.1 Next-up or one-step accuracy

Next-up or one-step accuracy is often used in waypoint prediction. It describes, how often is
the next waypoint predicted correctly. Since each waypoint — generally a road intersection
— is only connected to a few other waypoints, this leads to very high accuracy numbers.
However, it is more one-step-ahead destination prediction than actual route prediction. To
consider: if the accuracy is 90 percent, then the chance of predicting a route of 30 waypoints
correct is merely 0.9%° = 0.04. The formula is analog to (11):

~ 1
1-step(Y,Y) = N Z L= (11)
WweREY weEREY

4.4.2 Ranking methods

Just as with destination prediction, route prediction is sometimes ranked. Again the same
method applies as with (9) and (10). For convenience we denote a collection of routes as

S:{Rl,...,RN}. !

avgrank(Y,Y):N Z rankg(r). (12)

SeY rey

4.4.3 Matching methods

Another method is to match either traces or waypoints. There are many common methods
that could be used here (common subsequence, string matching, DTW). We will focus on two
common methods, the Hausdorff distance for grid structures (or curves) and the Levenshtein
distance for waypoint sequences.

The asymmetric Hausdorff distance disty(x,y) is often used for either a curve or grid
representation of the data. Due to its asymmetry, this returns precision accuracy for the
distance distH(]:Z, R) of the predicted route to the real route and prediction completeness
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disty (R, R) for the distance of the real route to the predicted route. The asymmetry can
be solved by taking the max of the two values—as in the formula below. A variant of this
metric is used in [47].

disty (Y, f/) = max {sup inf dist(y, 9), sup inf dist(y, y)}. (13)
yeY jey gev VEY
Levenshtein distance is also known as the edit-distance from string matching. It indicates
how many changes need to be made between two sequences in order to become fully equal.
It works well with routes that are represented as a sequence of waypoints.

dist, (Y, Y) = levy ¢ (Y]], [[¥1) (14)
max (i, 7) if min (¢,7) =0
| ( ) |eVa,b(i_ 17j)+1
EVa b\, - . .. .
A7 min q levy,(i,5 — 1) + 1 otherwise

Ieva7b(z’ — 1,] — 1) + ]‘(ai7ébj)

4.4.4 Baseline accuracy

Baseline prediction of routes could be the most common route given the destination (and
time). Methods of accuracy could be compared to this baseline. For example when using
top-k rank accuracy, it might be interesting to mention the naive accuracy of predicting the
k most common routes.

4.4.5 Fraction-of-trip

Another dimension that can be taken into account is the destination prediction as a fraction
of the trip completed—this is done in e.g. [22, 2]. The idea is that when one gets closer to his
or her destination, it will be increasingly easy to predict. This measure can be incorporated
for each of the above criteria, and is indeed sensible to compute. However, since it is
computed as a fraction of the entire trip, it can only be computed in retrospect and is very
sensitive to e.g. extremely long (very difficult for a long time) or extremely short (very easy
all the time) trips. Although graphs of fraction-of-trip errors are illustrating, they are hard
to compare between different papers. It would be valuable if the authors mentioned the area
under the ROC curve (AUROC) [9], because it translates the plot to a number that enables
comparison with other methods. Another method to allow for cross-study comparison is to
specify top-k accuracy for prediction on e.g. 30% and 70% of the trip—see e.g. [75].

4.4.6 On-the-fly evaluation

As mentioned, the fraction-of-trip error cannot be provided before the length of the trip is
known—i.e. before the trip is completed. For on-the-fly evaluation, one will have to rely
on other evaluation criteria. For example, matching or one-step accuracy, can be applied to
partial routes.

15



Table 3: Descriptive table for the GPS trace data of the TrafficSense project used in the
experiments of this paper.

Users 15
Users affiliation  Research group
Day per users 194 days between 10-11-2015 & 23-05-2016
Sensor Phone sensors
Method of collection Custom client for Android
Location Helsinki region
Data GPS traces (lon, lat, acc)
Data interval Irregular intervals; depending on movement and activity
Contextual data Time. Activity recognition.

4.4.7 Multi-user situations

Evaluating a system that has multiple users requires aggregation and averaging, the choice
of which is not trivial. Individual errors can be aggregated over all the users, or over all
the trips. In the first case, users with more irregular patterns will cause the error to move
up; as in the second case, users with more data will both be easier to predict and have a
larger share of the total amount of trips. One interesting statistic for analysis of the system
performance could be to show the per user error as a function of data, which would indicate
necessary and sufficient training time for an accurate system, as performed, for example, in

[55).

5 Experimental analysis

The goals of this experimental analysis are to complement the survey of measures by em-
pirical evidence, provide illustration of selected concepts, highlight practical challenges, and
provide recommendations. We do not perform separate experiments on location prediction,
as the evaluation measures are relatively straightforward compared to destination and route
prediction. The experimental study uses original and previously unpublished mobility data
collected from 15 users over the period of half a year in the Helsinki metropolitan area,
as summarised in Table 3. The code was written in Python with the plots provided by
matplotlib [31]. All the experiments are performed separately for the data of each user,
mimicking privacy situations for possible implementations.

5.1 Destination identification

Our first experiment focuses on destination identification, as it underlies the later prediction
problems. This method should find the places in which the users spends b seconds in a
(circular) range of r meters. In line with the general method, we use a sliding maximal
window of at most r distance end-to-end, where a stop is marked on the range if the time
end-to-end reaches or exceeds b. Overlapping stop ranges are combined into a single stop.
It results in a list of destinations D, including how often it was visited, the respective trace
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Figure 3: Destination count as a function of thresholds.

of this visit, and how much time was spent there. This extra information enables us to rank
the destinations, first by amount of visits and then by time.

The plots in Figure 3 illustrate the difference in the number of destinations given the
parameters for minimum time spend b, the minimum range r and the minimum amount of
visits required. One can observe that the amount of destinations identified falls for each
parameter as destinations that are close together get combined into one single destination.
The only irregularity is found for a small range. Below a certain range less destinations are
identified since the user has too few points to still make it count as a destination.

In some sense we are enforcing a minimal speed by setting these parameters together -
below this speed, the user is considered to be at a place rather than moving past it. The
3D plot illustrates the connection of the range and break parameter. Clearly, the number
of destinations falls much more quickly with respect to range r than it does for time b.
As discussed, the parameter setting depends on one’s definition for destination, which in
turn depends on the requirements of the system. It seems most stable to take a parameter
combination somewhere in the plane of the 3D plot, which is indeed done by r = 200, b = 300
2] or r = 320,b = 600 [5].

An important criteria for system operation is how much data is required in order to learn
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Figure 4: Destination count over days.

to predict the behaviour of its users reasonably well. We analyse this by plotting the number
of destinations as a function of the amount of days in Figure 4. The left panel in Figure 4
has no requirement on how often a user needs to return, whereas the right panel in Figure
4 enforces such a pattern. Human patterns are likely to be regular and predictable [26].
Yet in both plots the number of destinations steadily continues increasing. Thus, it looks
like the amount of regular destinations is much larger than we might initially suspect and
was not saturated in the current data collection period, or travel patterns keep changing
over time such that there is no clear saturation. Our analysis identifies destinations in a
purely data-driven way and autonomously from any semantics of the destination. Even
with the most inclusive parameter settings we get less than 40 destinations on average per
user over two-three months. Intuitively, the destination counts look plausible and prudent
(keeping in mind that this should cover work, home, various shops, meeting, public event
places and such). Most likely, destination counts do not explicitly saturate in our plots,
because the data collection period is not long enough to make it notable. This has an
important implication to rigorous performance evaluation. Performance measures need to
have a forgetting mechanisms in order to be able to accommodate and distinguish between
initial data collection phase and mature system operation.

As mentioned, subjective evaluation has several drawbacks due to the semantics discus-
sion about importance and destinations. One could also see r and b as hyper parameters of
the prediction model. In Figure 5 we show the accuracy of a simple tree predictor over the
parameter grid. will discuss more about the actual prediction. The results shown are on the
last 40% of each users days, thus an independent test set. The plot accurately captures the
main draw back: for high range parameters some destinations will be merged—as they are
close together—and thus prediction accuracy will increase.

5.2 Destination prediction

To illustrate the measures of destination prediction in more detail, we implement a naive
baseline and a more sophisticated predictor. As a baseline, we take the intuitive method of
predicting the most likely destination given someone’s current position. This is done by the
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Figure 5: Prediction accuracy with different parameter selection.

most simple incarnation of a Markov Chain which simply counts the transitions from node
to node. For the classifier, we use a classification tree as it is merely an illustration of the
trends in evaluation measures. We use the implementation of sci-learn [57].

We plot the accuracy of this baseline for each user—see Figure 6. Observe that the accu-
racy is higher for a subset gof three users; probably they have a more regular travel pattern.
We use this baseline to compare the performance of a (only slightly more sophisticated)
classification tree that receives contextual information about day of the week and time of
the day. Here the performance increase slows down significantly, after around 10 days for
the simple predictor and 20 days for the classification tree. Still the performance does not
fully saturate.

We also illustrate how k-accuracy increases for higher values of k. The increase, as
expected, slowly saturates because a part of the error results from transfers from or to
destinations not observed within the training data. To show their performance, authors
could provide a similar plot [22] or use the recently common k = 1,3 [75, 77].

We have discussed that the error in systems can be averaged either per user or per trip.
In Figure 7 we illustrate the difference between these two different approaches. One can see
that the trip average (blue) shows a higher number, depending of course on the amount of
users present. This should be taken into account when judging the performance of a system:
providing trip averages will likely show a higher performance, but not congruent with the
goal of most applications which will want to offer a good performance to each of their users.
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5.3 Route prediction

As final illustration we show the effect of different error measurements on route prediction.
For that purpose we generate instance-based route predictions in the following controlled
manner, which allows us for analysis purpose to control the percentage of routes that are
predicted incorrectly, and investigate, how well the evaluation measures capture this.

The routes are deducted from the traces, where each route is simply the part between
two visits of a destination, filtering out trips that last for more than 3 hours as someone
might have had his phone switched off. The waypoint representation traces are snapped
to the closest road intersection provided by OpenStreetMap, in which waypoint is a unique
integer.

First we take all the routes and permute a fixed percentage of the routes over time (e.g.
swap Monday and Wednesday). We take the mean over different random seeds in order to
balance the impact of the seed. In Figure 8 we show how different measures of accuracy differ
over the percentage of permuted routes. As expected, one-step accuracy is much higher than
normal accuracy that closely follows the diagonal. Note that in this system entire routes are
permuted; a real-time one-step prediction will likely have even higher accuracy as from each
waypoint only a few transitions are possible.

6 Conclusions

Our analysis and experiments have demonstrated that the observed accuracy is very depen-
dent on the users and averaging over the users. This has implications for designing and
interpreting evaluation systems — we recommend the base for averaging to be closely re-
lated to the expected user base. We have shown top-k accuracy analysis, and in research
recommend to report at least k = 1,3. In practice, of course, the choice depends on the
implementation, where an application might be able to show several recommendations to the
user; in that case k£ should match the number of recommendations. Furthermore, our exper-
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Figure 8: Accuracy of route prediction.

iments have shown that varying interpretations may be obtained depending on whether the
accuracy is averaged over users or over trips. We have argued that trip-average will bias the
results towards more predictable and more active users, therefore, one should consider the
underlying purpose of the predictive system when making this choice. Finally, we have em-
phasised and experimentally illustrated that whichever measures are selected, in both route
and destination prediction it is critical to report and compare to a naive baseline. Especially
because travel patterns tend to be highly imbalanced, in which case accuracy would tend to
show promising figures, which are likely to be due to easiness or difficulty of the prediction
task for a specific user rather than merits of a chosen computational approach.

Our main recommendation for researchers and practitioners developing approaches for
personalised mobility analysis is to consider user-specific accuracy measures in addition to
averaged aggregates, as well as to take into consideration that for many users accuracy does
not saturate fast and the performance keeps evolving over time, therefore, we recommend
using time-sensitive measures.
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