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Abstract. High-throughput sequencing (HTS) technologies have en-
abled rapid sequencing of genomes and large-scale genome analytics with
massive data sets. Traditionally, genetic variation analyses have been
based on the human reference genome assembled from a relatively small
human population. However, genetic variation could be discovered more
comprehensively by using a collection of genomes i.e., pan-genome as
a reference. The pan-genomic references can be assembled from larger
populations or a specific population under study. Moreover, exploiting
the pan-genomic references with current bioinformatics tools requires ef-
ficient compression and indexing methods. To be able to leverage the
accumulating genomic data, the power of distributed and parallel com-
puting has to be harnessed for the new genome analysis pipelines. We
propose a scalable distributed pipeline, PanGenSpark, for compressing
and indexing pan-genomes and assembling a reference genome from the
pan-genomic index. We experimentally show the scalability of the Pan-
GenSpark with human pan-genomes in a distributed Spark cluster com-
prising 448 cores distributed to 26 computing nodes. Assembling a con-
sensus genome of a pan-genome including 50 human individuals was per-
formed in 215 minutes and with 500 human individuals in 1468 minutes.
The index of 1.41 TB pan-genome was compressed into a size of 164.5
GB in our experiments.

Keywords: Computational genomics - Genome assembly - Compression
- Indexing - Big data - Distributed computing.

1 Introduction

High-throughput sequencing (HTS) technologies have enabled rapid DNA se-

quencing of multiple samples collected from any organism and environment in-

cluding human tissues, bacteria, fungi, plants, soil, water, and air. Next-generation
sequencing (NGS) technology provides relatively cheap and rapid whole-genome

sequencing enabling large-scale and profound genome analytics. As a result of

advanced HTS technology, the sequencing data volumes are growing quickly and

the number of assembled genomes is increasing rapidly as well.
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Computational pan-genomics [1] is one of the efforts to exploit the huge
amount of information from multiple genomes in comparative analysis bringing
new opportunities for population genetics. Marcshall et. al pointed out that a
pan-genome can present: (i) the genome of a single selected individual, (ii) a
consensus drawn from an entire population, (iii) a functional genome (without
disabling mutations in any gene), or (iv) a maximal genome that captures all
sequences ever detected and generalized where the pan-genome can refer to any
collection of genomic sequences that are analyzed jointly or is used as a refer-
ence [1].

The first human reference genome draft was published in 2004 by the Human
Genome Project and it has been complemented from time to time [4]. Nowadays
it is used as a comparative reference in the majority of scientific contributions
in human genetic studies. Pan-genomes can represent more diverse populations
without disabling any population- or individual-specific genomic regions, and
thus, improve the genetic variation analysis by considering the genetic recombi-
nation and emphasizing the diversity of individuals [8,3,18-21]. Sherman and
Salzberg [2] underline the importance and advantages of using pan-genomes in
genetic variation studies instead of just a single reference genome. Yet, con-
structing a reusable reference genome from a human pan-genome requires as-
sembling, indexing, and aligning of multiple genomes in a population, which
is computationally demanding and time-consuming. Computational limits are
hit in many of the processing steps: construction of pan-genome from multiple
genomes, compressing and indexing the pan-genome, alignment of donor se-
quences to pan-genomic index, and finally assembling a pan-genomic consensus
reference.

Our goal is to enable the assembling of compressed and reusable pan-genomic
reference indexes that can be used directly for sequence alignment in genetic
variation analyses efficiently. We focus on the scalable assembling of a reference
genome from a human pan-genome as well as indexing and compressing large
pan-genomes to reduce the computation time and to improve space-efficiency.
PanGenSpark is a continuation for PanVC, a sequential pan-genomic variation
calling pipeline with hybrid indexing presented by Valenzuela et al. in [17,33].
Here, we proceed with parallelizing the most compute-intensive phases in PanVC
such as compressing and indexing of large pan-genomes and assembling the con-
sensus genome from a pan-genome with distributed methods.

Analyzing a huge amount of genomic data is computationally intensive, and
extremely so in the pan-genomic context. We propose a scalable distributed pan-
genome analysis pipeline, PanGenSpark, to assemble a new consensus reference
genome from a pan-genome for downstream analysis such as sequence alignment
and variant calling. The pipeline implements distributed compressed indexing of
the pan-genome, the read alignment, the consensus genome assembly method,
and the support for legacy variant calling tools. The prototype pan-genome anal-
ysis pipeline is designed for the Apache Spark [25] framework. We demonstrate
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the pipeline with 500 human genomes in the Apache Spark cluster. The source
code of PanGenSpark is publicly available in GitHub?.

1.1 Related work

The pan-genome as a concept was first presented by Tettelin et al. in [9] where a
pan-genome was used for studying genetic variation in bacteria. Since then, pan-
genomes have been used successfully in various studies for identifying microbial
pathogens [5-7]. Sherman et al.[11] assembled a human pan-genome from NGS
data of 910 African descendants and revealed 10% novel genetic material that was
not found from the standard human reference genome. Mallick et al. [12] studied
300 human individuals from 142 diverse populations and found 5.8 million base
pairs not presented in the human reference genome. Duan et al. analyzed 275
Chinese individuals with HUPAN [13] pipeline from NGS data where they found
29.5 million base pairs of novel sequences and 188 novel genes. Zhigiang et al.
demonstrated EUPAN [14] toolkit by analyzing the pan-genome consisting of
453 rice genomes [15]. In [16] we developed ViraPipe, a scalable pipeline for
mining viral sequences from a large amount of human metagenomic samples on
distributed Apache Spark cluster. ViraPipe has been used in an experiment with
768 whole-genome sequenced human samples. Most of these studies are based
on the De-novo method that assemblies longer sequences, contigs, from short
reads sequenced from donor DNA that does not map to reference genome. The
contigs are used to form the pan-genome which is eventually used for analyzing
novel sequences. This work instead is based on the whole-genome re-sequencing
which differs from the De-novo based approaches in that individual genomes are
assembled using a reference genome. We construct a complete pan-genome from
previously assembled whole-genomes where a new consensus reference genome
is assembled considering all variation between the individual genomes in the
pan-genome. The assembled consensus genome enables then read alignment and
variant calling with a complete pan-genome.

Hadoop-BAM [29] library has been originally developed for processing ge-
nomic data formats in parallel with Apache Hadoop® and Spark [25], and de-
veloped further under the Disq® project for even better Spark integration. It in-
cludes Input/Output interface for distributing genomics file formats into HDFS
and tools e.g., sorting, merging, and filtering of read alignments. Currently, sup-
ported genomics file formats are BAM, SAM, CRAM, FASTQ, FASTA, QSEQ),
BCF, and VCF. Hadoop-BAM is already used in genome analytics frameworks
and libraries such as GATK4", Adam®, Halvade [30], Seal® and SeqPig!’. GATK

* https://github.com/NGSeq/PanGenSpark
® https://hadoop.apache.org
5 https://github.com/disq-bio/disq
" https://gatk.broadinstitute.org
8 https://github.com/bigdatagenomics/adam
9 http://biodoop-seal.sourceforge.net
10 https://github.com/HadoopGenomics/SeqPig
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is a software package for HTS data analysis developed by Broad Institute offer-
ing best practices variant discovering pipeline for human genomes. The cur-
rent GATK4 version has been developed partly on Apache Spark for enabling
distributed parallelization for rapid exploratory genomic studies. They have
also established an open-source FireCloud platform for managing, sharing, and
analyzing genomics data. ADAM is an Apache Spark-based genome analysis
toolkit developed at UC Berkeley. ADAM includes basic tools for genomics file
transformations, k-mer counting, and allele frequency computation on Apache
Spark cluster. Halvade is a distributed read alignment pipeline based on the
Hadoop MapReduce framework [24] for enabling more efficient variant calling
with GATK. Halvade uses MapReduce for distributing BWA read alignment on
read chunks against the reference genome. Seal is a software suite developed in
CRS4 for processing sequencing data based on the Hadoop framework and it
is written in Python. It provides basic tools for parallel and distributed read
demultiplexing, read alignment, identifying duplicate reads, sorting the reads,
and read quality control.

2 Methods

2.1 Distributed and parallel data processing in genomics

Traditional computational genome analysis algorithms and pipelines have been
developed for sequential data processing in centralized computers, whereas the
current evolution of high performance computing moves towards parallel al-
gorithms and distributed data stores for efficient computation and analysis of
massive data volumes. Moreover, current genome analysis tools and pipelines are
typically developed on demand by the researchers relying on existing sequential
algorithms. This has led to that pipelines are utilizing a mixture of command-
line tools making them often poorly scalable, computationally inefficient, inflex-
ible, and not easily parallelizable, especially in distributed computing clusters.
Distributed and parallel computing frameworks enable scalable, reliable, effi-
cient, and relatively low-cost computing in computing clusters. Cloud services
provide infrastructures for deploying computing clusters easily and cheaper. Par-
allel data analysis with multiple distributed computing nodes brings huge per-
formance advantages compared to a single computer. Computing takes place in
the distributed working memory over distributed data sets by minimizing the
intercommunication between nodes with optimal algorithms. This is achieved
by dividing each computing task to the local parts, in which each node executes
computing with local data. Apache Spark [25] is an open-source framework de-
veloped for efficient in-memory distributed large-scale computing in computing
clusters. Spark accelerates data analysis with in-memory processing where work-
ing sets of data can be reused and pipelined from one pipeline stage to another
in-memory instead of using temporary files. Computing in Spark is based on
Resilient distributed datasets (RDDs) [26], which are distributed and cached to
the working memory of multiple computing nodes in a cluster. Each node assigns
an executor for local tasks that are run in parallel on the multiple cores inside
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Fig. 1. Data reduction process.

a node. Spark itself does not provide a data store, but it can retrieve and write
data to Hadoop Distributed File System (HDFS). In addition, HDFS provides
fault tolerance through data replication. Spark supports Scala, Java, Python,
and R programming languages. Figure 1 shows a typical data reduction process
of a genomics data analysis pipeline on Spark.

2.2 Distributed and parallel characteristics of genomic data

Distributed and parallel computing has not been in major focus when widely
used algorithms and data models for genomics were originally designed. Data
parallelism is one promising choice for parallelizing genomics pipelines without
fully rewriting all of the existing algorithms. Data locality can be achieved in
the nodes of the computing cluster and data processing can be done in parallel
without reloading or moving any data. Raw sequencing read data can be dis-
tributed for read alignment when reference assembly methods such as BWA [27]
and Bowtie [28] are used. Assembled genomes and variant data are usually par-
allelizable by the chromosomes and chromosomal regions, giving an opportunity
to distribute input data for parallel processing stages. Existing general genomics
file formats are not designed for distributed file systems and especially binary
formats BAM, BCF, BED are not distributable without external tools. However,
Hadoop-BAM [29] can already handle distributed BAM and BCF files on HDFS
in parallel and also in-memory with Spark.

2.3 Reference genome assembly

Reference genome-based assembly is preceded by a read alignment process where
billions of Next-generation sequencing (NGS) reads are sequenced from a donor
DNA sample and aligned to a reference genome. That is, the human genome
can not be sequenced as a whole with current technology. Instead, the genome
is reconstructed from short fragments, called reads, which are sequenced from
a donor DNA sample and aligned to a reference genome. In the pan-genomic
context, the reference is a multiple sequence alignment of N sequences. The
uncompressed size of a human pan-genomic reference is approximately N x 3
billion bases where N is the number of haploid genomes included (human genome
is diploid, having two haploids of length 3 billion bases approximately). The
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amount of NGS data coming from a sequencing machine depends on the size of
the donor genome, the used sequencing method, and the parameters given to a
sequencer. Typically the size of whole-genome sequencing read data varies from
10 to 100 GB per human genome. NGS reads have to be aligned to a reference
genome for assembling consensus genome of a donor which is then used to call
the variants against. The assembly process requires that every short read (tens
to hundreds of base pairs long) is aligned to every position in the reference
genome. This work focuses on whole-genome data where pan-genomic reference
is assembled from N whole-genomes.

2.4 Compressed indexing of pan-genomes

The pan-genome has to be indexed in order to perform read alignment and
eventually reference genome assembly. In a pan-genomic context, the index can
contain thousands of individual genome sequences. The size of the pan-genome
index can be reduced hugely with compression methods such as Lempel-Ziv [31]
by utilizing the characteristics of identical genome sequences between the in-
dividuals, that is, a human genome includes a large proportion of repetitive
sequences which can be found from every individual. There are a few relatively
fast legacy read alignment tools such as Burrows-Wheeler transformation [32]
based BWA [27] and Bowtie [28]. However, the BWT based aligners use suffix
array-based indexes where BWT has to permute over the whole index search
space for scoring the alignment. Valenzuela et al. [33] propose a CHICO indexer
based on hybrid index implementation of LZ77 variant of Lempel-Ziv algorithms
for compressing the pan-genome. Hereinafter, LZ77 shall be referred to as LZ.
The hybrid index separates the compression part from the indexing, where the
identical parts are compressed with the LZ and the LZ compressed sequence
is then indexed with the legacy Bowtie2 or BWA indexer. CHIC [34] provides
also read aligner tool for aligning reads against hybrid index!'! with BWA and
Bowtie2 support. The CHIC indexing with Bowtie2 was evaluated [34] on a sin-
gle high-performance machine with 48 cores and 1.5 TB of main memory where
they reported 35 hours indexing time for 200 human genomes compressed to 180
GB index from 540 GB input data (compression ratio 3:1). Sequential PanVC1!2
pipeline integrates CHIC aligner, CHICO index, and external variant calling
tools such as GATK'3.

2.5 Variant calling

Variant calling is a routine process for identifying genetic variations e.g., Sin-
gle Nucleotide Variations (SNVs) between a donor and some reference genome.
Variant calling begins by aligning the NGS read sequences to a reference genome
and filtering out the unaligned reads. Next, alignments are typically filtered by

Y https://gitlab.com/dvalenzu/CHIC
!2 https://gitlab.com/dvalenzu/PanVC
'3 https://github.com/broadinstitute/gatk
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quality. Finally, reads are piled up over aligned reference genome base positions,
and reference aligned bases are counted. This way the most probable bases in a
donor genome covering a genomic position can be detected. Instead of using one
reference genome, variant calling against a pan-genomic reference can provide
more accurate information about genetic variation by aligning donor sequences
to genomic positions in multiple genomes. Variant calling with a pan-genomic
reference assembly can be done directly with legacy variant calling tools such as
GATK’s best practice pipeline.

2.6 Designing the distributed pipeline

Reusability of existing genomics tools is a natural starting point for designing
the workflow for the pipeline as those are widely used and well known within
the bioinformatics and genomics communities, and quite efficient sequential al-
gorithms have been already developed for the most general processing phases
such as read alignment. Distributed genomic data can be processed in paral-
lel partitions at different levels (separated chromosomes, chromosomal regions,
NGS read partitions) in the pipeline. We have selected to use Spark with the
Hadoop Distributed File System (HDFS) in our solution as it provides a flex-
ible framework for scalable and efficient distributed data processing, and data
management. Key challenges for implementing a distributed genome analysis
pipeline are; decomposing the tasks and data to partitions for parallel execution
with existing genomic data formats, processing the distributed tasks in parallel
with existing tools and algorithms, and piping of multiple tools and algorithms
together with minimal I/O operations while maintaining load balance. More-
over, latencies for reading data from HDFS to in-memory RDDs and writing it
back to HDF'S have to be taken into account as bioinformatics pipelines typically
process thousands of separate files as well as big files together. This sets high re-
quirements for computing cluster’s disk I/O, memory access, data warehousing,
and networking performance. Figure 2 describes the architecture of the parallel
pan-genomics pipeline at a high level.

2.7 Overall pipeline description

The pipeline depicted in Figure 2 consists of the following stages:

a) Preparing the pan-genome The pan-genome itself is composed of multiple
genomes that are aligned to a standard reference genome. Each genome in a
pan-genome is assembled by applying variants from VCF files to a standard
reference genome with vef2multialign'* tool and loading assemblies into HDFS
under the same folder. When diploid genomes (e.g., humans) are used, this step
generates two sequences, both haploids, per genome. The standard genome itself
is applied on top of the pan-genome. If genome assemblies are already provided,
the pan-genome can be constructed by simply loading all the individual genomes
into HDF'S under the same folder.

4 https://github.com /tsnorri/vef2multialign
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Fig. 2. The pipeline stages denoted with letters a to g are explained in the Section
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(with Spark). The blue stages are distributed to multiple nodes and run in parallel per
chromosome (multiple cores utilized in CHIC and Bowtie). The yellow stages are run
on a single node in parallel on multiple cores.
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b) Indexing the pan-genome Typically, the reference index data remains a
magnitudes smaller than the read data sequenced from a donor genome. In pan-
genomic context, the index data grows in proportion to the number of underlying
individual sequences in a pan-genome where each individual sequence has to be
indexed.

For reducing the compression and indexing time, we modify the CHICO in-
dexer [33] to exploit distributed computing. CHICO supports BWA and Bowtie2
legacy indexes with the Relative Lempel-Ziv (RLZ) algorithm [36]. CHICO com-
presses the original pan-genome with RLZ that is eventually indexed for the read
alignment purposes. The reference pan-genome is compressed to the kernel rep-
resentation which reduces the repetition of similar sequences in the pan-genome.
The repetitive sequences are compressed using a dictionary that is constructed
from a partial pan-genome. Building the dictionary of the whole pan-genome
would be too time-consuming and is not necessary due to repetitiveness, al-
though, it can improve the compression ratio slightly. The size of the compressed
kernel index depends on the number of individual genomes in the pan-genome
and the similarity between the genomes.

We implement Distributed Relative Lempel-Ziv (DRLZ) compression (Fig-
ure 3) with Spark for reducing the compression time through parallelization. The
pan-genome is partitioned by chromosomes of individual reference genomes and
distributed to HDFS. The chromosomal chunks are RLZ compressed in parallel
with Spark. RLZ uses a suffix array which is calculated from the dictionary and
broadcast to Spark for distributed RLZ compression. RadixSA library is used
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to construct the suffix array [37]. The RLZ compressed chromosomal partitions
are eventually downloaded from the HDFS to different nodes where the kernel
representation is composed and indexed with CHICO in parallel per chromo-
some. RAM disks can be configured here for storing and accessing data in local
filesystem more rapidly.

c) Read alignment against the compressed pan-genome index As each
chromosome is indexed in parallel, read alignment is also done in parallel per
chromosome. NGS reads are loaded from the HDFS to the local filesystem of
the corresponding node and aligned with CHIC aligner using Bowtie2 against a
compressed index of a chromosome. Multiple sequence alignment generated gaps
are stored in this step into gap position files for fixing the mapping score in the
next step. Then, the mapped reads are grouped by the reference sequence where
they are mapped to. After the alignment process, grouped SAM files are put to
HDEFS for the next step. Eventually, duplicate mapped reads are removed.

d) Adhoc reference genome assembly After the read alignment phase, the
mapped reads of each individual are scored based on the alignment information
provided in the SAM and the gap position files. That is, the pan-genome index
does not include gaps, and now the read mapping is fixed to correspond the
gapped positions in the pan-genome [17]. The pan-genome with gaps is read
from HDFS into the scoring matrix with Spark Mllib BlockMatrix class which
distributes the score matrix of size M x N into S blocks, where M is the length of
the individual sequence, N is the number of the individuals in the pan-genome,
S is the number of partitions configured. The adhoc consensus genome is then
assembled from the score matrix blocks by extracting the heaviest path (Figure 2,
e), that is simply, taking index of maximum scoring alignment per each column,
mapping the index to the corresponding nucleotide in the reference genome and
merging the blocks at the end.

e) Heaviest path The score matrix for calculating the heaviest path is sparse;
the first sequence contains most of the matches and the following genomes add
only little extra information. Therefore, Apache Spark’s sparse vector represen-
tation is used to achieve the best possible performance. The score matrix is
transposed to find the maximum number of matches across different genomes.
After this operation, we obtain the heaviest path sequence telling the row num-
ber corresponding to individual genome which has the most matches in that
position. Next, the nucleotides in the corresponding positions pointed by the
heaviest path are extracted from the pan-genome. To change from this number
representation to corresponding DNA reference sequence, a simple logic OR, op-
eration is applied between each individual sequence in the pan-genome and the
calculated heaviest path blocks (Figure 4). After this operation has been done
for each individual, a tree-reduce RDD transformation is used to combine the
sequence branches into a single adhoc reference sequence in parallel.
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Fig. 4. Transformation from calculated heaviest path to the adhoc reference with three
individuals.

f) Legacy variant calling from adhoc reference genome After the adhoc
reference genome assembly, variant calling is performed with the donor genome
reads. The adhoc genome is first indexed with legacy tools such as BWA or
Bowtie and donor reads are aligned to that index. Any legacy variant calling
pipeline that outputs VCF format can be used to call variants from the as-
sembled adhoc reference genome. GATK4 best practices variant calling pipeline
is provided with our implementation. As an alternative, basic Samtools and
Beftools variant calling'® method is included in our pipeline.

g) Variant normalization If a standard reference genome is used to con-
struct the pan-genome, the variants called from an adhoc reference are normal-
ized against the standard reference genome. That is, normalization generates
a consensus genome from the standard reference genome by applying variants
called from the adhoc read alignment. In practice, normalization applies SNPs,
insertions, and deletions to the reference genome positions assigned in VCF
files and gap files (produced already in the indexing phase). Finally, the pro-
jection between the normalized consensus and adhoc reference consensus is con-
structed. The projection does sequence alignment between those two consensus
genomes showing indels and mismatches for comparison and further analysis.
The normalization and projection are done with the tools provided in the origi-
nal PanVC [17].

3 Experiments

3.1 Data preparation

We generate a pan-genome based on the human reference genome by applying
heterozygous SNPs from phased haploid VCF data to GRCh37 reference thus
generating two consensus genomes per individual into pan-genome. Pan-genomes
are generated from the autosomes of 1000 Genomes phase 3 VCF data including
2506 individuals totaling the pan-genome size of 13.1355 TB. Read alignment

15 http://samtools.sourceforge.net /mpileup.shtml
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and variant calling is performed with NGS read data set sequenced from donor
HGO01198 genome published by 1000 genomes project. Read data contains 9.4
million paired-end reads totalling 2 GB.

3.2 Computing environment

The experiments are run on the Apache Spark cluster in a cloud computing
environment. The cluster consists of 25 Spark worker nodes having 40 GB of
RAM and 16 cores (Intel(R) Xeon(R) CPU E5-2680 v3) in each and one Spark
master node having 256 GB of RAM and 48 cores. The whole cluster comprises
448 CPU cores, 1.256 TB of RAM, Infiniband 40 GB/s network, 30 TB of HDD
storage space in total. The Spark cluster is deployed with Apache Spark 2.3.2 and
Hadoop 3.1.0 versions on virtual machines running CentOS 7 operating system.
We utilize the computing resources of the Finnish IT Center for Science (CSC)
in our experiments.

3.3 Results

mRLZ Indexing H Assembly
PanVC I | ‘
(%]
g PanGenSpark
2
oo
Y
o
@
fe)
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o
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Minutes

Fig. 5. Scalability of PanGenSpark with increasing pan-genome size compared to single

node PanVC execution.

The scalability in terms of pan-genome size is in the main focus of our ex-
periments. Figure 5 shows the execution time in different pipeline phases from
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N ‘Uncompressed‘Compressed‘ CR
1 2.82 GB 0.8 GB [3.53:1
50 141 GB 24.7 GB |5.71:1
100| 282 GB 36.4 GB |7.74:1
500| 1410 GB 164.5 GB |8.57:1
Table 1. Index compression ratio (CR) with N genomes in a pan-genome.

Relative Lempel-Ziv (RLZ) compression to reference genome assembly with ac-
cumulating pan-genome size. For a baseline, a pan-genome of size 50 haploid
genomes is assembled with the original PanVC on a single node. The total run-
time with 50 genomes is 1624 minutes consisting of following execution times:
150 minutes for RLZ, 555 minutes for Bowtie2 indexing, and 919 minutes for
adhoc reference genome assembly. Multithreaded Bowtie2 indexer is executed
using 16 threads. The same multithreading configurations have been used in the
distributed pipeline as well. Variant calling is not included in the results as it is
not part of the distributed implementation. To note, the variant calling takes the
equal amount of time with all pan-genome sizes as the adhoc reference genome
is always the same size.

With the distributed pipeline and 50 haploid genomes (141 GB input data),
the RLZ compression time is 68 minutes with a compression ratio of 5.71:1
shown in Table 1. Indexing time with Bowtie2 indexer is 58 minutes while the
largest indexed kernel is 3.2 GB for chromosome 2 (chromosomes are indexed
on distributed nodes in parallel using 16 threads per node). Adhoc reference
assembly from 50 genomes takes 89 minutes.

With 100 haploid genomes (282 GB input data) the distributed RLZ compres-
sion time is 95 minutes with a compression ratio of 7.74:1. Distributed indexing
time with Bowtie2 is 84 minutes while the largest indexed kernel is 3.8 GB for
chromosome 2. Assembling the adhoc reference genome with 100 genomes takes
125 minutes. With 500 genomes (1.41 TB GB input data) the distributed RLZ
compression time is 165 minutes with a compression ratio of 8.57:1. Bowtie2
indexing becomes a bottleneck with 500 genomes kernel (largest chromosomal
kernel 16 GB) and indexing time increases to 1140 minutes. Adhoc reference
genome assembly from 500 genomes takes only 163 minutes.

4 Discussion

Preliminary results are promising, but also show some limitations of the pipeline.
Figure 5 shows how the different parts of the pipeline perform. When the pan-
genome size increases, the distributed Relative Lempel-Ziv (DRLZ) compression
scales well. DRLZ execution takes relatively long with small pan-genomes as suf-
fix array files are the same size (30 GB) for all pan-genome sizes and broadcasting
the data took almost 40 minutes. The speedup with 50 genomes compared to
PanVC is 7.6x with 25 worker nodes. Indexing step with Bowtie2, that is dis-
tributed by chromosomes and executed with 16 cores in parallel per node, scales
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the worst and takes most of the computation when the pan-genome size grows
up to 500. The adhoc genome assembly scales the best from all of the distributed
parts. We were able to compress the index of 500 haploid genomes to the size of
58 genomes with a compression ratio of 8.57:1. For one genome the compression
ratio is 3.53:1 (Table 1). The index compression ratio with sequential PanVC is
equal to the distributed version as is expected. RLZ dictionary size affects the
compression ratio the most (the longer it is the better the compression), and
secondly the chosen maximum read sequence length parameter (the shorter it is
the better the compression). We used the whole chromosomes as a dictionary for
DRLZ and the maximum read length of 80 bases. Compression ratio increases
in proportion to the number of genomes which is obvious due to sequence repe-
tition.

Apache Spark is extremely good at scaling up to an unlimited number of rows,
but the limiting issue here is that whole genome sequences can not be processed
as one piece as the length of the string is restricted by Java Integer. MAX_VALUE
constant which is roughly 2 billion. To improve the compression ratio we would
need to use the whole genome as a dictionary part for the RLZ compression
which is currently not possible due to Integer. MAX VALUE issue with Spark
and Hadoop frameworks. Therefore, we read the pan-genome by chromosome,
compress by chromosome, and index the chromosomal kernels. BWA indexer
could not handle longer than 4 GB kernel text, thus we chose to use Bowtie2.
However, Bowtie2 does not scale linearly and as it can be seen from the Figure
5: with 50 haploid genomes indexing time is 58 minutes whereas with 500 hap-
loid genomes indexing time increases 20 times (the longest kernel text with 50
genomes is 3.2 GB and with 500 genomes 16 GB). However, the whole pipeline
runtime increases only 6.8 times with 10 times larger pangenome showing still
good scalability. Bowtie2 uses a "large” index method with 64-bit numbers when
the input data size grows larger than 4 GB which seems to slow down the in-
dexing. Bowtie2 legacy indexing time can be still decreased by harnessing more
cores and memory for the indexing nodes. Tuning the cluster with all Hadoop
and Spark configuration parameters turns out to be a complex task as there
are plenty of those and optimal configurations vary in different processing steps.
Minimizing the I/O operations is crucial when processing large data sets in the
complex pipeline. Moreover, this poses challenges to the pipeline development
as input data structure varies in different steps making data partitioning for
parallel processing more complex. In the near future, we focus on improving the
DRLZ compression as the better compression would also reduce the Bowtie2
indexing time due to shortened kernel text.

5 Conclusions

To exploit massive amounts of genomic data, it is essential to compress and store
genomic data sets in an efficient and reusable form for supporting bioinformatics
tools. Pan-genomic indexes and reference genomes are urgent for efficient large-
scale read alignment, variant calling, and sequence matching purposes. In this
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work, we design a prototype pipeline, PanGenSpark, for scalable compressed in-
dexing of pan-genomes and assembling of reference genomes from pan-genomes.
The PanGenSpark assembled a reference genome from a pan-genome of 50 hu-
man haploid genomes in 215 minutes and 500 haploid genomes in 1468 minutes.
The index of 1.41 TB pan-genome was compressed into a size of 164.5 GB. The
experiments have been run on a distributed Spark cluster consisting of 448 cores
on 26 computing nodes. Altogether, our distributed pipeline allows now assem-
bling the pan-genomic consensus reference in a tolerable time from hundreds of
human genomes in practice. Moreover, the compressed pan-genomic index can
be reused for efficient NGS read alignment and sequence matching purposes as
well.
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