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ABSTRACT

We use various multimedia applications on smart devices to con-
sume multimedia content, to communicate with our peers, and to
broadcast our events live. This paper investigates the utilization of
different media input/output devices, e.g., camera, microphone, and
speaker, by different types of multimedia applications, and intro-
duces the notion of multimedia context. Our measurements lead to
a sensing algorithm called MediaSense, which senses the states of
multiple I/O devices and identifies eleven multimedia contexts of a
mobile device in real time. The algorithm distinguishes stored con-
tent playback from streaming, live broadcasting from local record-
ing, and conversational multimedia sessions from GSM/VoLTE calls
on mobile devices.
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systems; « Hardware — Sensor applications and deployments;
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1 INTRODUCTION

Mobile devices have been generating 60% of all Internet traffic,
and the Cisco Visual Network index predicted that traffic from
various services such as video broadcast, live streaming, AR/VR
applications would grow by a five-to-seven fold by 2022 [17]. With
the recent pandemic [11], perhaps we have already reached such
growth. The obvious reason is that millions of peoples are engaged
in remote work, interactive online education, and entertainment,
which are mostly video over IP, voice over IP (VoIP), live broadcast,
and streaming traffic. YouTube/Netflix are already downgrading
QoS by throttling the streaming bitrates to accommodate essential
services [13].

The network service providers have to verify the QoS require-
ments before applying any policies. In most cases, they employ their
traffic identification methods. Traffic identification also helps to
manage their networks [30]. Along with the content from popular
content providers, user-generated content is also on the rise due
to online lectures from the academic institutions and additional
remote collaborations worldwide [12]. At the same time, with nu-
merous privacy leakage incidents [5], mobile operating systems
have been enforcing strict on-device data access policies [31] and

the use of secure protocols to keep the application traffic secure in
transit [15]. Therefore, verifying QoS requirements and providing
better QoS while abiding users’ privacy continues to be non-trivial
for the network operators and Internet service providers. At the
same time, they are struggling to manage their networks.

In these circumstances, mobile devices can assist the networks.
Since the users interact with various types of multimedia content
using different multimedia applications on their smart devices, it
is essential to understand the ongoing multimedia activity on a
device. We call this multimedia context. A multimedia context de-
fines whether a user is producing or consuming content or engaged
in a conversation on a mobile device. In this article, we present a
unique sensing algorithm, MediaSense, to accurately detect the
multimedia contexts of a device. MediaSense can be used to iden-
tify various multimedia traffic real time on mobile devices. Thus
multimedia traffic classification by the service providers or mobile
operators can be offloaded to mobile devices. Besides, different
energy-aware optimization techniques for mobile devices, e.g., traf-
fic aggregation [25], computation offloading [18], and background
traffic scheduling [32], can take advantage of MediaSense.

MediaSense relies on the answers to the following questions. (i)
What are the content types various multimedia applications offer to
the users? (ii) How do the users interact with each of the contents?
(iii) Which I/O devices are utilized during such interactions on smart
devices. (iv) What are the states of these I/O devices when users interact
with the multimedia applications?

We first classify the multimedia application according to their
purposes and define three multimedia contexts; (i) multimedia pro-
duction, (ii) multimedia consumption, and (iii) conversational mul-
timedia. Next, we explore their utilization of several media I/O
hardware components and present a multimedia context sensing
algorithm, called MediaSense. The algorithm initially identifies
the above media contexts by inferring the state of microphone and
speaker. With the help of camera and display, it further separates the
video contexts from audio. Finally, network flow information, such
as bitrate and bytes exchanged, assists in classifying them as local
or IP-based contexts, as presented in Figure 1. MediaSense distin-
guishes stored content playback from streaming, live broadcasting
from local recording, and conversational multimedia from GSM or
voice over LTE (VoLTE) calls.

2 MULTIMEDIA APPS AND CONTEXTS

Multimedia streaming applications received significant attention
for their diverse streaming techniques [21], optimizing content



Conference’17, July 2017, Washington, DC, USA

Hoque et al.

multimedia

OFX

conversational

O,

multimedia

Y \

video
J\
Cérﬁéra

Recot;drerl; App MixIr Periscope Phone

© 7=
N,

Skype BIaéRF;iayer

Tuneln

ccym;ti&
Y N

Fipé}i’iéyer YouTube

Figure 1: Multimedia Applications and their types according to their purposes. ‘local’ implies media production and consump-
tion on mobile devices without any IP communication. The example applications are at the bottom.

delivery [28], QoE prediction and optimization [14, 22], and traf-
fic classification [24]. modern multimedia services communicate
over HTTPS [26]. Several approaches decrypt VoIP traffic from
Skype [16], WhatsApp [23], and IMO [29] to investigate their codec.

In contrast, we define multimedia context, and MediaSense ad-
dresses the multimedia context identification problem by sensing
the status of multiple I/O devices. A classification of multimedia
contexts and the corresponding application types, and example
applications are illustrated in Figure 1. In this section, we study
those multimedia applications on two Android devices; Nexus 6
(Android 7.1.1) and LG G5 (Android 8.0). We explore how different
I/O devices are utilized by such multimedia applications and their
corresponding multimedia contexts. We capture traffic on Nexus
6 with tcpdump. The smartphones were fully charged during the
measurements to avoid the consequence of any system optimization
due to the lower battery level [20].

2.1 Mobile Multimedia Contexts

The various combinations of different I/O devices can reveal the
multimedia contexts of a device while using multiple different appli-
cations. A multimedia context hints whether a device is (i) produc-
ing media content, (ii) consuming media content, or (iii) engaged
in a conversation, (iv) the content type, i.e., audio or video, and (v)
whether the media context requires IP to exchange the content.
Depending on the characteristics of the application, all the re-
quired I/Os are initialized at the same time. Since a user needs to
launch an app with a screen touch, it is intuitive that the display
is busy. Therefore, the initial states of the I/Os for all the multi-
media applications are the same. We represent the status of the
I/0O devices with ‘1’ and ‘0’, where the bits represent the busy and
free status of the corresponding I/O devices. However, the network
I/O status does not represent the network interface status. It rather
depends on network activities, such as bitrates of the corresponding
applications for the sending, receiving, and exchanging media.

2.2 Multimedia Production Contexts

A mobile device is in a production context when an application
records audio/video on local storage or broadcasts live to some
remote consumers.

Both the microphone and camera are two necessary input devices
and initiated together when recording a video. Figure 2 (Left) shows
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Figure 2: States of the I/O devices while broadcasting live
with Periscope (Left). The media production contexts and
the corresponding I/O states (Right).

the states of the I/O devices during a live video broadcasting session
of Periscope. The live broadcast beings at T0, and the application
initializes camera and microphones. The output device, display,
is also used, and the data transmission begins. The broadcasting
terminates at T1. Periscope initiates 2-8 TCP connections as shown
in Table 1. We observed the uplink bitrate of 459 kbps and 128 kbps
bitrates for broadcasting live video and audio respectively.

Figure 2 (Right) illustrates the meaningful media production con-
texts emerge from the initial state. Since video recording requires
users’ attention, the application must be at the foreground while
recording. If the user switches to another app or turns off the dis-
play, the camera and microphone become free. In contrast, audio
recording and audio live broadcast can continue in the background
once the required I/O devices are initialized. The states of I/O de-
vices for the recording applications differ from those of the live
broadcasting applications only by the network.

2.3 Conversational Multimedia Contexts

Conferencing applications have two media contexts, i.e., audio or
video conversations. Figure 3 (Left) demonstrates that a WhatsApp
VoIP call begins at T0, and all the I/O devices become busy, except
the camera. The display turns off at T1 and turns on again at T2.
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Application | Media Context Protocol uplink downlink
Periscope [7] | Media Production (LiveVideoCast) TCP 459 kbps 421 kbps
Mixlr [6] Media Production (LiveAudioCast) TCP 21-128 kbps
Tuneln [8] Media Consumption (Streaming) TCP 32-320 kbps
YouTube [10] | Media Consumption (Streaming) UDP (QUIC) 120-3455 kbps
WhatsApp [9] | Conversational Media (AudioConf) TCP, UDP 22 kbps 17 kbps
WhatsApp Conversational Media (VideoConf) TCP, UDP 378 kbps 411 kbps

Table 1: Basic traffic properties of the network dependent, i.e., IP-based media contexts and the applications.

Finally, the call terminates at T3. WhatsApp initiates both TCP and
UDP flows, as soon as the call begins, as shown in Table 1. The
TCP flows are mostly used for signaling, and UDP flows carry the
media. The bitrate of the audio flow in each direction ranges from
17-22 kbps, and the bitrate increases to a few hundred kbps during
video conversations. GSM/VoLTE calls also require a microphone
and speaker together.

Figure 3 (Right) shows that the states of the I/O devices change
according to the conversation type. An audio conference requires
the microphone and speaker; however, it does not require the dis-
play to be active once the call is initiated. In contrast, a video call
initializes all the media I/Os. .
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Figure 3: States of the I/O devices during a WhatsApp call
(Left). The conversation contexts and the states of the corre-
sponding I/0O devices (Right).

The video conferencing calls have similar bitrates to a live video
broadcasting application. Table 1 shows that Periscope’s bitrate
is very close to the bitrates of a WhatsApp video call. However,
they differ on the transport protocol. A video conversation also can
proceed even without a camera is active either on the caller’s or
on the collee device. For example, when the caller initiates a video
call, all the media sensors are activated on callee’s device as well.
Then if the caller turns off the camera after the call is established,
the user still needs to keep the display active, as the caller device
receives video from the other end. The media state changes to an
audio call when both users turn off their cameras (Figure 3).

2.4 Multimedia Consumption Contexts

When an end-user plays multimedia content from local storage or
streams from a remote service provider, the device is in a media
consumption context.

Figure 4 (Left) shows that only speaker and network activities
begin when a Tuneln audio streaming session starts at T0. The dis-
play is turned off at T1 and turned on again T2. The user terminates
the streaming session at T3. Tuneln initiates multiple TCP flows as
soon as the playback begins. The bitrates of the Shoutcast/Tuneln
audio streams vary 24-320 kbps, as shown in Table 1. Similar to the
live broadcast, Periscope live streaming (from Periscope users) uses
multiple TCP connections and similar bitrates. Some streaming
applications can have ON/OFF pattern in network traffic [21].
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Figure 4: States of the I/0 devices while streaming audio mu-
sic with Tuneln (Left). The media consumption contexts and
the states of the I/0 devices (Right).

There are four media consumption contexts, as shown in Figure 4.
For watching videos from local storage or video streaming, the
use of display and speaker are mandatory. If the user switches
to another application, the playback stops. On the contrary, the
audio applications can be in the background once the playback
starts, and the corresponding state change is depicted in the figure.
The streaming applications download content from the remote
server for playback and thus depend on IP activities. Both audio and
video playbacks exhibit the same I/O states. Given the diverse set
of multimedia streaming applications, on-demand streaming, and
live/pseudo live streaming. Some application starts playing content
with negligible initial playback delay, whereas some apps continue
to cache and depend on input from the user for the playback. In
the latter scenario, the initial playback delay can be significant.

2.5 Mixed Multimedia Contexts

In principle, the states of some I/O devices are important for an
application, as it is necessary to check whether another application
is already using a particular I/O device or not.
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Media Media Conversation | Media
context Production Consumption
Media No No No
Production

Conversation | No No Yes

Media No Yes Yes
Consumption

Table 2: Mixed media contexts on Nexus 6.

Algorithm 1: MediaSense

> Comment 1: Pre-computed features;
mediaFeatures = Map(mediaContext, bitrate);
while true do
trafficstat = get TXRXbytes();
mic = sampleMicrophone() € {1,0};
speaker = sampleSpeaker() € {1,0};
camera = sampleCamera() € {1,0};
display = sampleDisplay() € {1,0};
> Comment 2: Audio/Video media contexts
mediaContext = camera|mic|speaker|display;
media = camera|mic|speaker;
Tmedia = gettimeoftheday();
> Comment 3: IP-based media contexts
if (mediaContext(!network)) then
mediaVec = computeFeatures(trafficstat, mediaContext);
mediaFet = getFeatures(mediaContext, mediaFeatures);
if (mediaVec ~ mediaFet) then
‘ mediaContext = mediaContext|network;
end
end
> Comment 4: Updating Video to Audio consumption.
if ((mediaContext == VideoStream)&&(!display)) then
| mediaContext = mediaContext|(!display);
end
> Comment 5: Conference call state changes.
if ((mediaContext == VideoConf)&&(!camera)) then
| mediaContext = mediaContext|(!camera);
end
if (media==0) then
> Comment 6: MediaContext duration.
Mediasession = gettimeoftheday() — Tnedia
end

end

Table 2 demonstrates our findings when using applications of
two media contexts together on a single screen device, Nexus 6.
The table shows that two media production applications cannot be
played together on a single screen device. Audio and video content
cannot be recorded at the same time by two separate applications.
We also tried to record audio via the default voice recording applica-
tion, and the recorder stops as soon as Periscope starts broadcasting.

Figures 2 & 4 show that media production and consumption
applications do not share camera, microphone or speaker. However,
Nexus 6 does not allow to record or broadcast media when another
streaming application is running. For example, it is not possible to
run an audio recording application in the background and streaming
via YouTube or Tuneln in the foreground. In this case, the audio
recording terminates as soon as the player initializes the required
sensors. Similarly, recording applications cannot be played during a
VoIP call. Nevertheless, we were able to stream audio in the presence
of a VoIP call in a single screen.

Hoque et al.
Android API 1/0 device User
Permission

AudioManger.getMode() Micrphone, No

Speaker
AudioManager.getMode(), Camera, No
CameraManager. Microphone,
registerAvailabilityCallBack() Speaker
AudioManager.isMusicActive() Speaker No
CameraManager. Camera, No
registerAvailabilityCallBack() Microphone
MediaRecorder.record() Microphone Yes

Table 3: Android APIs for detecting media contexts, utiliza-
tion of Media I/Os, and their permission requirements.

We could not play two multimedia applications requiring an
input media I/O device, i.e., a camera or microphone, at the same
time. The applications can share only the speaker concurrently. For
example, we played a streaming application during an audio confer-
ence on an Android device. Two media consumption applications
also can continue playing together, such as Tuneln and YouTube.

2.6 Summary

The media context tree in Figure 1 also summarizes the dependency
of the applications and the corresponding contexts on I/O devices.
For example, at the first level, the use of only a microphone sepa-
rates the production context from the others. The conversational
contexts use both the microphone and speaker together. The use of
only the speaker separates the consumption context. At the second
level, the camera separates the video from audio contexts for both
production and conversational media, whereas the display sepa-
rates the video from audio for media consumption. At the third level,
all the contexts are separated according to the required network
activities, i.e., transmit, receive, or exchange traffic.

3 MEDIASENSE

MediaSense (Algorithm 1) scans the states of five I/O devices and
fuses them to infer a media context. We implement MediaSense al-
gorithm as a user-level service for Android devices. It runs as a
background service and looks for multimedia contexts periodically
at 2Hz. Whenever one or more of media I/O devices change states,
MediaSense initiates a new multimedia context. It first checks
whether the media context is audio or video-related with the help
of the camera and display (Comment 2 in Algorithm 1). Then, it
finds a particular feature from the traffic stat in uplink/downlink or
both directions to separate IP-based contexts from the local media
context (Comment 3 in Algorithm 1).

3.1 Separating Audio/Video Contexts

The algorithm periodically infers the states of the I/O devices and
fuse them together to determine the media context.

(1) Conversational Context. Fortunately, Android provides APIs
for the applications to indicate their modes of operation to the
AudioManager [2], which allow other applications to know the
status of AudioManager via getMode() API. AudioManager oper-
ates in one of the three modes; IN_CALL, IN. COMMUNICATION,
and RINGTONE. These modes indirectly indicate that an ongoing
context is conversational, and both the microphone and speaker
are busy. TelephonyManager has getCallState() to characterize a
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Media context uplink | downlink Features
LiveAudioBroadCast or AudioRecord v X bitrate (>8 kbps), microphone
LiveVideoBroadCast or VideoRecord v X bitrate (>8 kbps), microphone, camera

AudioConference or GSM/VoLTE v v bitrate (>8 kbps), microphone, speaker
VideoConference v v bitrate (>8 kbps), microphone, speaker, camera
VideoStreaming or LocalVideoPlayback X v faststartbytes (>100 KB), speaker, display

Table 4: Features considered for the identifying the media contexts. “faststartbyte” denotes the amount of data downloaded

during the first 15 seconds of streaming,.

GSM/VOLTE call [3] and thus expresses the states of microphone
and speaker.

Table 3 summarizes the mapping between Android APIs and
the corresponding media I/O devices. MediaSense characterizes
a context as a video conference, if the AudioManager is in one
of the modes and one of the cameras is initialized at the same
time. MediaSense implements registerAvailabilityCallback() from
CameraManager [4] to poll camera status exactly when the audio
mode changes.

(2) Media Consumption Contexts. The isMusicActive() API from
AudioManager helps to differentiate music playback contexts from
VoIP/GSM calls or other media production contexts on the device.
This API provides the speaker information. It does not differentiate
whether the playback is audio or video. We also could not find
APIs hinting about streaming. In Figure 4, we notice that it is not
straightforward to distinguish between audio and video consump-
tion contexts, given the status of the I/O devices. The reason is that
audio applications require only speakers and can be played by keep-
ing the display either active or inactive. Therefore, the algorithm
first decides a media consumption context as the video. When the
display is off, the media context is changed to audio type, as the
media session continues.

(3) Media Production Contexts. MediaSense uses the APIs which
do not require user permission to detect the earlier described media
contexts. Similarly, the algorithm uses registerAvailabilityCallback()
from CameraManager to detect the video production contexts from
the Camera or Periscope like applications. This API initializes the
camera and microphone together. However, detecting the state of
the mic is not possible without user permission. MediaSense im-
plements MediaRecorder APIs with user permission to detect the
audio production contexts due to the Voice Recorder or MixIr like
applications.

3.2 Separating Local/IP-based Contexts

In order to distinguish IP-based and local media contexts, Medi-
aSense tracks very high-level traffic stats of the devices, e.g., total in-
coming and outgoing bytes, periodically. In this case MediaSense re-
lies on TrafficStats() APIs. From these stats collected over a period
of time, MediaSense determines whether there is a change in traffic
patterns due to a particular media context or not. It considers the
bitrates and other derived features, as presented in Table 4. Note
that MediaSense does not compute all the features in the table for
a media context. It rather computes media context-specific features.
These features are derived from our observations in Section 2, and
the reasonings are the following.

(1) Conversational Multimedia Contexts. Unlike the other appli-
cations, conversational traffic carry voice or video data in both
directions. In Table 1, we notice that the voice traffic has a min-
imum bit rate of 14 kbps. However, the applications may have
bitrates even lower to 8 kbps in one direction [1]. A GSM/VoLTE
call be identified using the getMode() API and given that there is
no traffic associated with the context.

(2) Multimedia Consumption Contexts. On-demand streaming
applications, e.g., YouTube, Spotify, begin with a fast start. In this
phase, these applications download 10-40 seconds equivalent play-
back content. Spotify streams audio via persistent HTTP connec-
tions over TCP, regardless of the device type [27]. The audio streams
are encoded at 96-360 kbps, and the selection depends on the sub-
scription type. The size of the first segment is 139.53 KB [27].
YouTube downloads more than one Megabytes during the fast start
phase. Periscope downloads content at a constant bit rate after
the fast start. The encoding rates of the audio/video streams are
presented in Table 1. Therefore, MediaSense relies on isMusic() API
and the traffic feature presented in Table 4 to separate streaming
contexts from the local music playback.

(3) Multimedia Production Contexts. In Table 1, we notice that the
Periscope’s outgoing rate is 459 kbps. A 64 kbps outgoing bitrate is
very common for live audio broadcasting. Mixlr supports 32-128
kbps. We consider the minimum bound of 8 kbps as the context
feature. MediaSense uses bitrate feature along along with the Cam-
eraManager & MediaRecorder APIs to separate the IP-based based
media contexts from the local recording contexts.

3.3 Performance Evaluation

We installed MediaSense on LG G5 (Android 8). We evaluated the
performance of the algorithm in separating the media contexts in
real time of various multimedia applications presented in Figure 5.
For all 12 applications in the figure, there were 280 media sessions;
80 media consumption sessions, 120 conversation contexts, and
80 media consumption contexts. The duration of each session was
60-90 seconds. The media sessions for the same application and
media type were executed after every 1 minute.

Figure 5 shows that MediaSense separates the top level three
media contexts accurately and so the second level media contexts.

At third-level, MediaSense also identifies the media productions
and conversation contexts very accurately. It classified the VoLTE
calls as GSM, as VoLTE traffic do not follow the standard TCP/IP
stack. Note that the MediaSense first detects the media consump-
tion contexts as video, since the display is active initially in either
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Periscope, Audio/Video Skype, Viber, Perscope, Tuneln, or
Recording, MixIr GSM/VOLTE calls local audio/video playback
multimedia conversational multimedia
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Figure 5: Performance of MediaSense in separating differ-
ent multimedia contexts. MediaSense separates three high-
level media contexts at the first level. It separates five second
level media contexts and 11 media contexts at the bottom.

scenario. Therefore, the audio consumption contexts are initially de-
tected as video contexts. After 15 seconds of playback, we turned off
the display, and MediaSense accurately detected the audio contexts.

MediaSense suffered from error in the presence of local media
consumption applications. Among 20 sessions, the algorithm clas-
sified three sessions as audio streaming. Similarly, two local video
playback sessions were also classified as video streaming, as the
smartphone updated some applications in the background during
playback, which satisfied the streaming condition presented in Ta-
ble 4. MediaSense also measured the duration of 280 media sessions
accurately (Comment 6 in Algorithm 1).

4 DISCUSSIONS

MediaSense effectively identifies the media contexts on mobile
devices. These contexts can assist in various optimizations and net-
work management. The accurate usage time of these contexts can
be helpful for users to understand their engagement with different
types of multimedia applications. In this section, we discuss the
implication of using media I/O devices on mobile devices towards
privacy and different applications. We also discuss our future work.

Media Context and Privacy. On mobile devices, it is common to
have multimedia notifications, which are a particular kind of local
music playback. The prime examples are alarms or notifications
for other calendar applications. The duration of alarm playback
depends on the configured alarm tones and user response. Our
many trials with the Android AudioManager APIs were failed to
track such notifications.

Nevertheless, on the latest Android devices (>8.0), it is possible
to run media production and consumption applications at the same
time. Although such actions do not produce any sensible user ex-
perience, this raises privacy concerns as we were able to record
streaming content on Mi8. Therefore, media recording should not
be allowed in the presence of media consumption or conversational
contexts due to privacy reasons and possible violation of rules for
DRM protected contents.

Media Context and Extended Reality Applications. Recent ad-
vances in sensor technologies have enabled a new breed of applica-
tions that operate in three-dimensional space: augmented reality

Hoque et al.

(AR), virtual reality (VR), mixed reality (MR), and 360-degree video.
MediaSense can aid in optimized resource allocation for these ap-
plications. For example, in a VR-based collaborative gaming appli-
cation, players communicate over VolIP, thereby making the use of
speaker and microphone consumes network bandwidth. Besides,
the player’s hand and foot gestures change frequently. Thus the
camera and depth sensors consume more battery power [33].

In the future, meetings are likely to be done with holographic
techniques, where the participants are present through their holo-
graphs, which gives the impression that everyone is present in the
room. In such applications, people take their turn to speak, which
implies frequent changes in contexts. Only the active speaker needs
the most of resources, while others can free their resources. Con-
sequently, MediaSense can also assist in resource allocation for
holographic applications that are associated with MR [19].

Media Context and Network Management. A mobile device
can perform multimedia context-aware communication. With flow
level access, it would be possible to find the exact flows for particular
IP-based media contexts. This implies that MediaSense enables flow
classification and marking the flows according to the media context.
This would also intuitively mean that the end devices are classifying
multimedia traffic and alleviating the limitations of the service
providers in classifying encrypted traffic. The service providers can
use the marked flows to manage the networks.

We have presented how different multimedia contexts can be
detected with reasonable accuracy. However, the algorithm suffers
from error (false negative) in the presence of competitive downlink
traffic. Although downlink traffic is dominant on user devices, sim-
ilar scenarios are also susceptible to happen with the local media
production contexts in the presence of other uplink traffic. Nev-
ertheless, it would be possible to remove such false negatives by
extending the features to the flow level.

As of our future work, we aim to implement the MediaSense as
part of the mobile system and use media context-specific traffic
classification and traffic termination from mobile devices. In this
case, a user device receives media context-specific traffic profiles
from the network and re-connects to the corresponding network
for a particular media context. This mechanism also enables multi-
media context-specific network slice allocation where each profile
logically may represent a slice.
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