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TIIVISTELMÄ 

RNA-virukset, Arenaviridae-heimo mukaan lukien, muodostavat laajan ja 

monimuotoisen mikrobijoukon. Mammarenavirus- suvun virukset ovat pääosin 

jyrsijöiden viruksia, joista eräät ihmiseen tarttuessaan voivat aiheuttaa 

verenvuotokuumeita, toiset keskushermostotulehduksia. Vaikka 

mammarenaviruksia on tutkittu yli 90 vuoden ajan, diagnostiikkaa, rokotteita ja 

viruslääkkeitä on kehitetty vain joitain mammarenaviruslajeja vastaan. Toinen 

suku, Reptarenavirus, koostuu kuristajakäärmeiden viruksista, jotka on 

yhdistetty tautiin nimeltä Boid Inclusion Body Disease (eng.), BIBD. BIBD:tä 

esiintyy vankeudessa elävillä kuristajakäärmeillä ja sitä on havaittu 1970-luvulta 

lähtien, mutta taudinaiheuttajat tunnistettiin vasta vuonna 2012. BIBD on 

vaarallinen sairaus käärmeille ja se voi johtaa koko käärmekokoelman 

hävittämiseen. Reptarenavirusten isäntälajikirjo ja immuunivasteen 

kehittymisen mekanismeja tartunnan saaneilla eläimillä ei toistaiseksi tunneta 

yksityiskotaisesti. Tämän työn tavoitteisiin kuului reptarenaviruksen 

isäntäsoluspektrin tunnistaminen sekä käärmeidein immuunivasteen tutkimus.  

Reptarenavirukset aiheuttavat infekoituneissa soluissa inkluusiokappaleiden (IB, 

inclusion body, eng.) muodostumista. Aiempien raporttien mukaan IB:eiden 

muodostus on tyypillinen löydös tutkittaessa infektoituneita käärmeitä. 

Nisäkässoluille luonnollisessa 37°C:een lämpötilassa 

reptarenavirusinfektoituneissa soluissa ei havaittu selkeää IB:ien muodostusta, 

vastaavasti käärmesolujen viljelylämpötilassa (30°C) havaittiin voimakasta 

IB:ien muodostusta eri niveljalkais- ja nisäkässolulinjoissa. Virusten kykyä 

replikoitua testattiin niveljalkais-, nisäkäs- ja matelijasolulinjoilla kahdessa 

lämpötilassa, 30°C ja 37°C. Virukset replikoituivat tehokkaasti 30°C:een 

lämpötilassa, mutta heikosti 37°C:een lämpötilassa.  

Monet vaipalliset virukset hyödyntävät glykoproteiineja (GP) isäntäsolupinnan 

reseptoreihin sitoutumiseen sekä isäntäsolun ja viruskalvon välisen fuusion. 

Reptarenaviruksien GP:ien kykyä kuljettaa virus erilaisiin solutyyppeihin 

käytettiin geneettisesti muokattua vesikulaarista stomatiitti-virusta (rVSV, 

recombinant vesicular stomatitis virus, eng.), jonka pintarakenne korvattiin eri 

arenaviruksien GP:eilla. Kokeissa havaittiin eri arenaviruksien GP:ien kykenevän 

kuljettamaan reportterigeenillä varustetun pseudoviruksen useisiin eri 

kudoksista peräisin oleviin matelija- että nisäkässoluihin vaihtelevalla 

tehokkuudella.  

Kokeellista reptarenavirusinfektiota kuristajakäärmeillä (Boa constrictor ja 

Python regius) käytettiin työkaluna BIBD:n ja reptarenavirusinfektion välisen 

yhteyden todistamiseksi.  Reptarenavirusinfektoiduilla eläimillä havaittiin 
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ohimeneviä keskushermosto-oireita, mutta BIBD:een liittyvää IB:ien 

muodostumista ei havaittu koe-eläimillä.  Käärmeet tapettiin ja kerätyistä 

seeruminäytteistä tutkittiin reptarenaviruksia vastaan kehittynyttä humoraalista 

immuunivastetta. Reptarenavirusten immuunivasteen arvioimiseksi oli 

välttämätöntä kehittää reagensseja, jotka kykenevät havaitsemaan 

immunoglobuliinit käärmeseerumista.  Kehitettyjen reagenssien toimivuutta 

arvioitiin ensin BIBD:iä sairastavien käärmeiden seerumeilla. Seeruminäytteissä 

havaittiin reptarenavirusta tunnistavia IgY- ja IgM-luokan vasta-aineita, ja tämän 

avulla kyettiin osoittamaan luotujen reagenssien toimivan halutulla tavalla.  

Seuraavassa tutkimuksessa käärmeiltä löydettiin reptarenaviruksia tunnistavia 

IgY- ja IgM-luokan vasta-aineita sekä kokeellisen että luonnollisen 

reptarenavirusinfektion seurauksena.  Reptarenaviruksien GP:eilla koristeltuja 

rVSV pseudoviruksia hyödynnettiin reptarenavirusinfektiota neutraloivien vasta-

aineiden etsimiseen käärmeiden seerumista. Sekä kokeellisen että luonnollisen 

reptarenavirusinfektion seurauksena käärmeille oli kehittynyt 

reptarenavirusinfektiota neutraloivia vasta-aineita.   

Tämän väitöskirjan töiden ansiosta tunnemme paremmin reptarenaviruksen 

kykyä hyppiä lajirajojen yli. Työssä kehitettyjen uusien reagenssien avulla 

voidaan jatkossa kehittää testejä reptarenavirusinfektion havaitsemiseen eläviltä 

käärmeiltä. Tulevaisuuden tavoitteisiin reptarenavirologian alalla kuuluu muun 

muassa eri reptarenaviruslajien ja BIBD:n yhteyden tutkiminen, joka puolestaan 

voi auttaa kehittämään tehokkaita hoitoja tai menetelmiä infektioiden 

ennaltaehkäisyyn. 
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ABSTRACT  

The family Arenaviridae is a well-represented clade of RNA viruses. The genus 

Mammarenavirus is dominated by rodent-borne arenaviruses, several of which 

have been identified as the causative agents behind hemorrhagic fevers and 

neurological infections in humans. Despite having been studied for more than 90 

years, mammarenavirus diagnostics, vaccines and antiviral compounds are only 

available for some mammarenaviruses. Another genus, Reptarenavirus, includes 

viruses linked to boid inclusion body disease (BIBD) in constrictor snakes. BIBD 

has been reported in captive constrictor snake species since the 1970s, but the 

etiological agents were only identified in 2012. BIBD can lead to the eradication 

of the entire affected snake populations. The range of possible host spectrum and 

the immune response against reptarenaviruses are not well characterized. This 

thesis aims to define the potential reptarenavirus host cell spectrum as well as 

expand understanding of the boid immune response.  

One of the hallmark signs of reptarenavirus infection in snakes is the formation 

of inclusion bodies (IB) in host cells.  Snakes are poikilotherm  and the replication 

of viruses is often susceptible to temperature variation. Reptarenavirus infection 

in mammalian, boid, and arthropod cells, incubated at 37 °C  did not induce IB 

formation, whereas prominent IB formation occurred in all three phyla when 

incubated at 30°C. Reptarenaviruses replicated efficiently at 30°C, whereas at 

37°C the replication efficiency reduced significantly. Many animal viruses take 

advantage of glycoproteins (GPs) to mediate binding and entry via attachment to 

host cell surface receptors. To study the ability of reptarenavirus GPs to mediate 

cell entry, a pseudovirus system based on reporter gene-bearing recombinant 

vesicular stomatitis virus (rVSV) was introduced. The pseudoviruses with 

reptarenavirus GPs served to demonstrate that the majority of arenavirus GPs 

could mediate entry to both mammalian and reptilian cells but at varying 

efficiencies.  

In order to validate the link between BIBD and reptarenavirus infection, 

constrictor snakes (Boa constrictor and Python regius) were experimentally 

infected. Despite transient central nervous system signs, IB were not detected in 

the infected snakes. The snakes were sacrificed and sera was collected to 

determine the magnitude of the humoral immune response. In order to assess the 

antibody response against reptarenaviruses it was necessary to develop reagents 

capable of detecting immunoglobulins in snake sera. The generated reagents were 

initially tested using sera from BIBD-positive snakes. IgY and IgM class 

antibodies binding reptarenaviruses were detected in serum samples, validating 

the functionality of the reagents. In the next study, these antibodies were used to 



8 
 

detect IgM and IgY antibodies in experimentally and naturally infected snake 

populations. Extracted sera was further assayed using the rVSV-based 

pseudoviruses decorated with reptarenavirus GPs to show a neutralizing antibody 

response following reptarenavirus infection. 

This thesis adds to understanding of reptarenavirus infectivity across species 

barriers. The generation of novel diagnostic reagents will allow generation of 

serodiagnostic tools for reptarenavirus infection. Future studies of 

reptarenaviruses should aim to establish a virus-specific link between 

reptarenaviruses and BIBD that could serve in the development of effective and 

preventive treatment strategies.  
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1 INTRODUCTION 

1.1 Origin of arenaviruses  

Arenaviruses are characterized as enveloped, negative-sense RNA viruses with 
either a bi- or tri-segmented genome. The first arenavirus was isolated in 1933 
from a patient with suspected St. Louis encephalitis (1). The isolated virus was 
identified as Lymphocytic choriomeningitis virus (LCMV)(1). After the 
identification of LCMV, isolation of Junin (JUNV) arenavirus took place in the 
city of Junin (Argentina), thus giving a name to the etiological agent of Argentine 
hemorrhagic fever (AHF) (2). Tacaribe (TACV) was identified later in bats and 
insect species, which suggested the presence of arenaviruses in other than rodent 
species (3). Machupo virus (MACHV) was identified in Bolivia and also isolated 
from rodent species in 1965, the causative agent of Bolivian hemorrhagic fever 
(BHF) (4). Arenavirus prevalence on the African continent was firstly analyzed by 
studying Lassa virus (LASV), which causes infections in humans that have come 
into contact with the virus-carrying reservoir rodent species (5). With the increase 
in the number of newly identified arenaviruses, the Arenaviridae family was 
established in 1976 (6). The following years have witnessed the discovery of other 
virus members within Arenaviridae (7, 8). Since the identification of the first 
arenavirus infection in humans by LCMV, arenaviruses have also been isolated 
from rodent, fish, insect, bat and snake species (3, 5, 9-14). However, the disease 
associations have not always been evident. In captive constrictor snakes, 
arenaviruses are associated with Boid Inclusion Body Disease (BIBD), often with 
progressive and fatal outcomes (11-13, 15). Hence, the discovery of new 
arenaviruses in different animal species has led to the diversification of the 
taxonomy of the Arenaviridae family into several genera (8).  

1.2 Taxonomy and reservoir hosts of arenaviruses 

The virus order of Bunyavirales includes RNA viruses with segmented, linear, 

single-stranded, negative-sense or ambisense genome classifications (8). Overall, 

Bunyavirales is composed of nine families (8). The Arenaviridae family belongs 

to the order of Bunyavirales (16). According to the International Committee on 

the Taxonomy of Viruses (ICTV) the family of Arenaviridae currently consists of 

four genera: Mammarenavirus, Reptarenavirus, Hartmanivirus, and 

Antennavirus (16) (Table 1-4). The genus Mammarenavirus is composed of two 

lineages, the Old World (OW) and New World (NW) mammarenaviruses (17).  
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1.2.1 Mammarenavirus reservoir hosts  

The least geographically restricted mammarenavirus is LCMV, which circulates 

on many continents, but is phylogenetically related to the OW 

mammarenaviruses (16). NW mammarenaviruses are predominantly restricted 

to South American regions due to the presence of virus-carrying rodent species, 

while most of the OW mammarenaviruses are present in African regions as a 

result of the presence of specific virus-carrying rodent reservoir species (18, 19). 

The geographical distribution of OW mammarenavirus extends outside the 

African regions, since Wēnzhōu (WENV) and Dandenong (DANV) viruses have 

been detected in China and Australia, respectively (20, 21) (Figure 1). The 

reservoir hosts of OW mammarenaviruses are found in the genera Mastomys, 

Praomys, and Arvicanthis of the family of Muridae (18).  

NW mammarenaviruses are carried by rodent reservoir species from the family 

of Cricetidae, genera Oryzomys, Sigmodon, Neotoma, Nephelomys, Oecomys, 

Calomys, Zygodontomys, Neacomys, or Akodon (18). Tacaribe (TACV) is the 

only known exception of mammarenaviruses that has been found in bats and lone 

star tick species (3) although it is limited to Central American regions. The NW 

mammarenavirus lineage is further subdivided into three clades: A, B, and C (22). 

Clade A includes South American mammarenaviruses, including non-pathogenic 

and pathogenic to humans rodent-borne viruses (23). Clade B includes all 

hemorrhagic fever (HF) causing viruses; however, clade B also includes 

mammarenaviruses that are non-pathogenic to humans (24). Clade C 

mammarenaviruses have been isolated from Central American regions, and their 

pathogenicity to humans remains unknown (25). In addition to clades A-C, clade 

D has been represented as a recombinant clade of A/B, and includes 

mammarenaviruses isolated from North American regions (26-29).  

 

Table 1. Table of the Mammarenavirus genus, indicating viruses classified within genus according to 

the ICTV. Abbreviation used in the table: NW- New World, OW- Old World.  

Virus  Reservoir Lineage 
(clade) 

Geographic 
distribution 

Other  
known  
hosts 

Reference 
and 
year of 
identification 

AALV- 
Allpahuayo 
virus 

Oecomys bicolor NW (A) Peru unknown (30) 2001 

BCNV- Bear 
Canyon virus 

Peromyscus 
californicus 

NW (D) USA Peromyscus 
californicus 

(28) 2002 

JUNV- Junin 
virus 

Calomys 
musculinus 

NW (B) Argentina Human (2, 31) 
1958 

SBAV- Sabiá 
virus 

unknown NW (B) Brazil Human (32) 1994 

PICHV- 
Pichindé virus 

Oryzomys 
albigularis 

NW (A) Colombia  (33) 1971 
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CHAPV- 
Chapare virus 

unknown NW (B) Bolivia Human (34) 2008 

CUPXV- Cupixi 
virus 

Oryzomys sp. NW (B) Brazil unknown (35) 2002 

FLEV- Flexal 
virus 

Oryzomys spp. NW (A) Brazil unknown (36) 1977 

GAIV- Gairo 
virus 

Mastomys 
natalensis 

OW Central 
African 
Republic 
(CAR), 
Ethiopia, 
Tanzania 

unknown (37)2015 

GTOV- 
Guanarito virus 

Zygodontomys 
brevicauda 

NW (B) Venezuela Human (38) 1994 

IPPYV- Ippy 
virus 

Arvicanthis sp. OW CAR Arvicanthus 
sp. 

(39) 1985 

LASV- Lassa 
virus 

Mastomys sp. OW West African 
regions 

Human (5, 40) 1970 

LATV- Latino 
virus 

Calomys 
callosus 

NW (C) Bolivia Calomys 
callosus 

(41) 1975 

LORV- Loei 
River virus 

Rattus exulans OW Southeastern 
Asia 

unknown (42) 2016 

LUJV- Lujo 
virus 

unknown OW Southern 
Africa 

Human (43) 2009 

LUAV- Luna 
virus 

Mastomys 
natalensis 

OW Zambia unknown (44) 2012 

LULV- Luli virus Grammomys sp. OW Zambia unknown (8) 2018 
LNKV- Lunk 
virus 

unknown OW Eastern Africa unknown  (44) 2012 

LCMV- 
Lymphocytic 
choriomeningiti
s virus 

Mus musculus, 
Apodemus 
sylvaticus, 
Microtus 
arvalis,  
Apodemus  
flavicollis, 
Myodes glareol
us 
 

OW Globally 
spread 

Human (1, 45, 46) 
1934 

MACV- 
Machupo virus 

Calomys 
callosus 

NW (B) Bolivia Human (4, 47) 1965 

MRLV- 
Mariental virus 

Micaelamys  
[Aethomys]  
namaquensis 

OW Namibia unknown (48) 2015 

MRWV- Merino 
Walk virus 

unknown OW South Africa Myotomis 
unisulcatus 

(49) 2010 

MOBV- Mobala 
virus 

Mastomys 
awashensis, 
Stenocephalemy
s  albipes 

OW Ethiopia, 
CAR 

Praomys sp (50) 1983 

MOPV- Mopeia 
virus 

Mastomys 
natalensis 

OW East Africa Mastomys 
natalensis 

(51) 1977 

MORV- 
Morogoro virus 

Mastomys 
natalensis 

OW Tanzania Mastomys 
natalensis 

(52) 2009 

OKAV- 
Okahandja virus 

Micaelamys [Ae
thomys]  
namaquensis 

OW Namibia unknown (48) 2015 

OLVV- Oliveros 
virus 

Necromys 
lasiurus 

NW (C) Argentina Bolomys sp. (22, 53) 1996 
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PRAV- Paraná 
virus 

Oryzomys 
angouya 

NW (A) Paraguay unknown (54) 1970 

PIRV- Pirital 
virus 

Sigmodon 
alstoni 

NW (A) Venezuela Sigmodon 
alstoni 

(55) 1997 

PINV- Pinhal 
virus- 

Calomys tener NW (C) Brazil Calomys tener (56) 2015 

RYKV- Ryukyu 
virus 

Unknown OW unknown unknown (8) 2018 

AMAV- Amaparí 
virus 

Neacomys 
guianae 

NW (B) Brazil Oryzomys 
gaeldi (rice 
rat); 
Neacomys 
guianae 
(bristly 
mouse) 

(36) 1977 (57) 
1966 

SOLV- Solwezi 
virus 

Unknown OW unknown unknown (8) 2018 

SOUV- Souris 
virus 

Unknown OW Unknown unknown (8) 2018 

TCRV- Tacaribe 
virus 

Artibeus 
jamaicensis 
trinitatis 

NW (B) Caribbean 
regions 

unknown (3) 1963 

TMMV- 
Tamiami virus 

Sigmodon 
alstoni 

NW (D) USA Sigmodon 
hispidus 

(26) 1970 

WENV- 
Wēnzhōu virus 
 

Rattus  
norvegicus,  
R. rattus,  
R. flavipectus, 
R. Losea, 
Niviventer  
rats, 
Suncus murinus 
 

OW China unknown (20) 2015 

WWAV- 
Whitewater 
Arroyo virus 

Neotoma 
albigula 

NW (D) USA Neotoma 
albigula 

(27) 1996 

BBRTV- Big 
Brushy Tank 
virus 

Neotoma 
albigula 

NW (D) USA unknown (58) 
2008 

CTNV- Catarina 
virus 

Neotoma 
micropus 

NW (D) USA Neotoma 
micropus 

(59) 
2007 

SKTV- Skinner 
Tank virus 

Neotoma 
mexicana 

NW (D) USA Neotoma 
mexicana 

(60) 2008 

TTCV- Tonto 
Creek virus 

Neotoma 
albigula 

NW (B) North America unknown (58) 2008 

DANV-
Dandenong 
virus- 

unknown OW Australia human (21) 2008 

Gbargoube virus Mus setulosus OW Ivory Coast unknown (61) 2011 
Jirandogo virus Mus baoulei OW Ghana unknown (62) 2013 
Kodoko virus- 
KDKV 

Mus minutoides OW Guinea unknown (63) 2007 

Menekre virus Hylomuscus sp. OW Ivory Coast unknown (61) 2011 
RCTV-Real de 
Catorce virus 

Neotoma 
leucodon 

NW (B) Mexico unknown (64) 2010 

OCEV-
Ocozocoautla de 
Espinosa- 

Peromyscus 
mexicanus 

NW (B) Mexico unknown (65) 2012 

APOV- 
Aporé virus 

Oligoryzomys 
mattogrossae 

NW (B) Brazil unknown (66) 2019 
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Figure 1. Geographical distribution of NW and OW mammarenaviruses, with the exclusion of LCMV. 

Mapping based on outbreaks and presence of mammarenavirus reservoir rodent species. NW 

mammarenaviruses in North, Central, and South Americas. OW mammarenaviruses in African regions, 

Oceania and Asian regions Abbreviations for the viruses: BCNV- Bear Canyon virus, TMMV- Tamiami 

virus, BBRTV- Big Brushy Tank virus, CTNV- Catarina virus, TTCV- Tonto Creek virus, WWAV- 

Whitewater Arroyo virus, OCEV- Ocozocoautla de Espinosa virus, RCTV- Real de Catorce virus, 

PICHV- Pichindé virus, CHAPV- Chapare virus, TCRV- Tacaribe virus, PIRV- Pirital virus, GTOV- 

Guanarito virus, FLEV- Flexal virus, AMAV- Amaparí virus, CUPXV- Cupixi virus, SABV- Sabiá virus, 

AALV- Allpahuayo virus, LATV- Latino virus, MACV- Machupo virus, PRAV- Paraná virus, JUNV- Junin 

virus, OLVV- Oliveros virus, KDKV- Kodoko virus, LASV- Lassa virus, MOBV- Mobala virus, MORV- 

Morogoro virus, LUJV- Lujo virus, LUNV- Luna virus, MOPV- Mopeia virus, IPPY-Ippy virus, MRWV- 

Merino Walk virus, WENV- Wēnzhōu virus, DANV- Dandenong virus 

1.2.2 Reptarenaviruses, hartmaniviruses, and antennaviruses reservoir 

hosts 

Reptarenaviruses have been detected in constrictor snake species from various 

continents (11-13, 67-72) (Table 2 and 3). Unlike OW and NW 

mammarenaviruses, the geographical origin of reptarenavirus infection has not 

been established. Isolation of reptarenaviruses from infected snakes, the presence 

of multiple RNA segments of different reptarenavirus species and co-infections 

with hartmaniviruses have provided evidence that these viruses are common in 

snakes (73, 74). Identification and characterization of hartmaniviruses was 

conducted from constrictor snakes species, and they were included into the family 

of Arenaviridae, although the establishment of the Hartmanivirus genus is based 
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on the genetically high divergence from mammarenaviruses and reptarenaviruses 

(74). The latest addition to the family Arenaviridae is the detection of novel 

arenaviruses in Wengling frogfish, which have been assigned to the fourth genus, 

Antennavirus, within the Arenaviridae family (Table 4) (14, 16). It is of note that 

Antennavirus genus representatives have been studied the least out of all 

arenaviruses.  

Table 2. Table of the Reptarenavirus genus, indicating viruses classified within genus according to the 

ICTV. Reptarenaviruses unclassified by the ICTV were also included in the study. 

Virus and 
abbreviation 

Reservoir Geographical 
distribution 

Other known 
hosts 

Reference and 
year of 
identification 

CAS virus -CASV Ringed tree boa 
(Corallus 
annulatus) 

USA Ringed tree boa 
(Corallus 
annulatus) 

(11, 75) 2012 

University of 
Helsinki virus 1 to 
4- UHV-1,2, 3, 4 

Ringed tree boa 
(Corallus 
annulatus), 
Garden tree boa 
(Corallus 
hortulanus) 
Red tail boa (Boa 
Constrictor 
Constrictor) 

Germany, UK, 
Costa Rica 

Ringed tree boa 
(Corallus 
annulatus), 
Garden tree boa 
(Corallus 
hortulanus), 
Red tail boa (Boa 
Constrictor 
Constrictor) 

(13, 67, 74, 75) 
2013, 2015 

University of 
Giessen virus 1 to 
3- UGV-1, 2, 3 

Red tail boa (Boa 
Constrictor 
Constrictor) 

Unknown Red tail boa (Boa 
Constrictor 
Constrictor) 

(74) 2015 

Golden Gate virus- 
GGV 

Red tail boa (Boa 
Constrictor 
Constrictor) 

USA Red tail boa (Boa 
Constrictor 
Constrictor) 

(11) 2012 

Tavallinen 
suomalainen mies 
virus 2- TSMV-2 

Red tail boa (Boa 
Constrictor 
Constrictor) 

Unknown Red tail boa (Boa 
Constrictor 
Constrictor) 

(74) 2015 

ROUT virus- 
ROUTV 

Red tail boa (Boa 
Constrictor 
Constrictor), 
Ringed tree boa 
(Corallus 
annulatus) 

Netherlands Red tail boa (Boa 
Constrictor 
Constrictor) 
Ringed tree boa 
(Corallus 
annulatus) 

(12, 75) 2013 

Aurora borealis 
viruses 1 to 3- 
ABV-1, 2, 3 

Red tail boa (Boa 
Constrictor 
Constrictor), 
 

Unknown Red tail boa (Boa 
Constrictor 
Constrictor), 
 

(74) 2015 

Boa Av BL B3 Red tail boa (Boa 
Constrictor 
Constrictor), 
Emerald tree boa 
(Corallus 
caininus) 

Netherlands Red tail boa (Boa 
Constrictor 
Constrictor), 
Emerald tree boa 
(Corallus 
caininus) 

(12, 75) 2013 
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Table 3. Table of the Hartmanivirus genus. According to the ICTV, one virus has been assigned to the 

Hartmanivirus genus.  

Virus  Reservoir Geographical 
distribution 

Other known 
hosts 

Reference and 
year of 
identification 

Haartman 
Institute Snake 
Virus 1- HISV-1 

Boa Constrictor Unknown Boa Constrictor (74, 76) 2015 

Old School Virus 
1- OScV 

Boa Constrictor Unknown Boa Constrictor (76) 2018 

Veterinary 
Pathology Zurich 
Virus- VPZV 

Boa Constrictor Unknown Boa Constrictor (76) 2018 

Dante Muikkunen 
Virus- DAMV 

Boa Constrictor Unknown Boa Constrictor (76) 2018 

SetVetPat virus- 
SPVV-1 
 

Boa Constrictor Unknown Boa Constrictor (72) 2020 

Andre Heimat 
virus-1- AHeV-1 

Boa Constrictor Unknown Boa Constrictor (72) 2020  

 

Table 4. Table of the Antennavirus genus, indicating two identified viruses in fish species.  

Virus  Reservoir Geographical 
distribution 

Other known 
hosts 

Reference and 
year of 
identification 

Wēnlǐng frogfish 
arenavirus 1- 
WlFV-1 

Antenaarius sp. N/A Antenaarius sp. (14) 2018 

Wēnlǐngfrogfish 
arenavirus 2-
WlFV-2 

Antenaarius sp. N/A Antenaarius sp. (14) 2018 

 

1.3 Structural characteristics  

1.3.1 Virion structure 

Arenaviruses have enveloped, pleomorphic virion structures with diameter 

ranging between 110-130 nm (77, 78). The viral envelope contains spikes formed 

of glycoproteins (GPs) (79, 80). Inside the virion, the nucleoprotein (NP) 

encapsidates two, small (S) and large (L), RNA genome segments (27, 53, 81, 82) 

(Figure 2). Antennavirus virions contain three distinguishable segments of viral 

RNA that are assigned as L, M, and S accordingly to their relative size (14). Grainy 

particles found within the virion have been identified as trapped ribosomes 

acquired from host cells, and their morphological appearance originated the 

name for the arenaviruses, as arena means sand in Latin (82). 
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Virions are sensitive to acidic conditions and elevated temperatures, both of 

which lead to rapid inactivation (83, 84). Virions are heat-inactivated after 30 

minutes by temperatures above 56 °C (85). Inactivation of the virion is rapid 

below pH 5.5 and above 8.5 (85). Ultraviolet (UV) irradiation is also effective in 

the inactivation of arenaviruses, however survival rates of up to 10% for UV 

irradiated LASV have been reported (86). Gamma irradiation has been 

demonstrated to be more effective for inactivation than UV irradiation (87). 

Thiuram and aromatic disulfides also have virucidal and antiviral effects on the 

virion (88).  

 

 

 

Figure 2. Schematic presentation of the virion structure. Abbreviations: RdRp- RNA-dependent RNA-

polymerase, GPC- Glycoprotein complex, GP 1 and 2- glycoprotein 1 and 2, SSP- Stable signal 

peptide, ZP- Z-RING finger protein, NP- Nucleoprotein. Mammarenaviruses, reptarenaviruses, and 

hartmaniviruses are represented by bi-segmented RNAs, while antennaviruses are represented by tri-

segmented RNAs, where the third segment is marked with an asterisk (*). SSP is absent in the 

reptarenavirus spike structure. ZP is absent in the hartmanivirus structure. Adopted from Li et al 2016 

(89).  



21 
 

1.3.2 Genome structure 

The genome of arenaviruses is composed of two or three single-stranded 

negative-sense RNA segments, using ambisense coding strategy for protein 

synthesis (14, 90, 91) (Figure 3). The bi-segmented genomes are represented by S 

and L segments, while viruses with a tri-segmented genome harbor L, M, and S 

segments (14). The S segment size range is approximately between 2 and 3.4kb 

and it encodes the glycoprotein precursor (GPC) and the NP (14, 90, 92, 93) 

(Figure 3). The L segment size range is approximately between 6 and 7.2Kb and 

it encodes the small zinc-binding protein (ZP) and viral RNA-dependent RNA-

polymerase (RdRp) (94). Apart from other arenaviruses, the antennaviral 

genome structure is composed of three segments, which is the only 

distinguishable genome structure within the family of Arenaviridae (14). In 

antennaviruses NP, unidentified protein with GPC, and RdRp are encoded by S-, 

M-, and L segments respectively (14). Notably, the L segment of hartmaniviruses 

lacks the open reading frame (ORF) for ZP, while reptarenaviruses appear to lack 

a stable signal peptide (SSP) region in their GPC (62). ZP has not been identified 

in the antennavirus genome (14, 76). Thus, significantly different genome 

structures have been identified amongst different arenavirus genera (Figure 3).  
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Figure 3. Organization of arenavirus RNA segments. Abbreviations used in the figure: UTR- 

untranslated region, IGR- intergenomic region, HP*- hypothetical protein, ZP- RING finger Z protein, 

NP- Nucleoprotein, RdRp- RNA-dependent-RNA-polymerase, GPC- Glycoprotein precursor 

Non-coding regions of 5´and 3´ of the S segment play a role in virus replication 

and virulence (95). The 5´ and 3´ ends are conserved and complementary to each 

other from a region of approximately 19-30 nucleotides (nt) (96, 97). Each 

segment contains a non-coding intergenomic region (IGR), which separates the 

ORFs within each segment (92, 98). The predicted hairpin loop of IGR, 

represented by the stable secondary structure, provides the signal for 

transcription termination (99). Depending on the virus species, the IGR can range 

from 59 to 217 nt in size, and can form a structure with one to three stem loops in 

both genomic and antigenomic RNA (99). To date, no confirmed reassortant 

mammarenaviruses have been isolated in nature, and recombination appears to 

be a rare case only within phylogenetically close virus species (100-102). On the 

contrary, reptarenaviruses are suggested to cause widespread recombination, 

reassortment in infected snakes, with frequent detection of multiple L and S 

segments of different reptarenavirus species (73, 74). Co-infection of 

hartmaniviruses with reptarenaviruses lead to their identification and further 

assignment to a new genus within Arenaviridae family (74, 76). 
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1.4 Structural proteins  

The Arenaviridae family have four structural proteins (Table 5). Structural 

proteins interact with both cellular and viral proteins during entry into the host 

cell, replication, and the host organism’s immune response evasion (94). All 

proteins are synthesized in the cytoplasm of the host cell (94).  This process 

depends on the host’s intracellular factors that are described for each structural 

protein in later sections. Antennaviruses possess hypothetical protein, however it 

has not been identified not the function has been established (14). Antennaviruses 

may also lack ZP protein, just like hartmaniviruses (76), if the hypothetical 

protein’s identification will confirm the absence of ZP properties.   The arenavirus 

genome can vary from two to three RNA segments and encoding viral proteins, 

yet the final number of structural proteins has been conserved to a total of four 

(16). Many arenavirus proteins possess multiple functions, described in detail in 

sections 1.4.1 to 1.4.4.  

Table 5. Summary of mammarenaviral protein interactions and functions in the host cell. 

Protein Size and 
Segments 
location 

Function Known host (mammalian) cell 
interaction partners 

RdRp 200-250 kDa 
L segment 

Transcription and translation of viral 
mRNA, viral genome replication 

Not established 

NP 63-70 kDa 
S segment 

Encapsidation of viral RNA, immune 
response suppression, role in 
assembly 

Inhibition of IRF3 

ZP 11-15 kDa 
L segment 

RNA synthesis regulation, viral 
assembly and budding, interaction 
with the proteins of host cell, and 
immune response suppression 

Alix/AiP1, eIF-4E, Nedd4, (P0, 
PML, PRH, RIG-I, Tsg101) 

GPC 75 kDa 
S segment 

Attachment to the host cell surface 
receptors 

Subtilisin Kexin Isozyme-1 (SKI-
1)/Site-1 Protease (S1P) 

1.4.1 Nucleoprotein (NP) 

The NP of arenaviruses is encoded by the S segment, and its size ranges between 

64 and 68 kDa (103, 104). NP serves multiple functions and is the most abundant 

protein in the virions and in infected cells (105). The identified functions of NP 

include encapsidation of viral genome segments, interaction with RdRp in the 



25 
 

formation of ribonucleoprotein complex (RNP) for the transcription and 

replication of RNA, and suppression of innate immune responses of the host cell 

(106-109). Encapsidation of the viral genome by the NP generates the recognition 

platform template, which allows RdRp to initiate the transcription and replication 

(110). Structural analysis has revealed that the N-terminal domain of NP is 

involved in the binding and shielding of the m7GpppN cap structure, which is 

essential in the viral RNA transcription process (104). The C-terminal domain of 

NP contains 3’-5’ exoribonuclease activity, which plays a role in the suppression 

of interferon induction (104). NP’s inhibition of innate immunity is based on 

counteraction with the host type I interferon (IFN) response pathways through 

the impediment of retinoic acid-inducible gene I (RIG-I) (106, 111-113). RIG-I 

becomes activated upon binding to double-stranded RNA (dsRNA) during virus 

replication (114). The activation of RIG-I initiates the activation of molecular 

pathways that eventually lead to the expression of type 1 interferons (IFN) such 

as IFN- α and IFN- β (114). The NPs of OW and NW mammarenaviruses contain 

elements which inhibit the translocation and transcriptional activity of nuclear 

factor kappa B (NF-κB), leading to inhibition of IFN (115). In contrast, the NP of 

some mammarenaviruses, such as TCRV, does not inhibit NF-κB fully as those of 

other mammarenaviruses do (115). The NP of reptarenaviruses has been shown 

to induce the formation of inclusion bodies (IB) within infected cells (13).  

1.4.2 RING finger Z protein (ZP) 

RING finger Z protein (ZP) is the smallest arenavirus protein (90). The size varies 

between 11 and 15 kDa, and the ZP appears in monomeric and oligomeric forms 

(116-118). ZP is considered to be a multifunctional protein, and is involved in 

crucial steps of the viral life cycle including viral RNA synthesis regulation, viral 

assembly and budding, interaction with host cell proteins, and immune response 

suppression (119). The protein’s structure contains several functional domains. 

The N-terminal myristoylation site of the protein serves in anchoring into the cell 

membrane, while the zinc-binding RING motif is a central core of the ZP (90, 

120). C-terminal late-domain motifs play an important role in the budding 

process in the viral cycle (121, 122). 

Amongst the studied mammarenaviruses, ZP has been found to be highly 

conserved (123). The ZPs of reptarenaviruses have 16% similarity at amino acid 

level to mammarenavirus counterparts (11). Regardless of this, the ZPs of 

reptarenaviruses are suggested to play a similar functional role to 

mammarenavirus ZPs (13). In contrast, ZP has not been identified in 

antennaviruses and hartmaniviruses (14, 76). Low abundance of ZP permits RNA 

synthesis, while high concentrations lead to the inhibition of the synthesis of the 

ZP-RdRp-RNA complex (124).  
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The interaction of ZP with the SSP of GPC and RNP presumably enhances the 

incorporation of the GPs into nascent virions (119). The C-terminal late-domain 

in ZP is responsible for interaction with the host cell proteins Tsg101 and Nedd4 

that are suggested to serve a role in the cellular endosomal sorting complexes 

required for transport (ESCRT) machinery (119). Other known cellular factors 

that are known to interact with ZP are the promyelocytic leukemia protein (PML), 

the nuclear fraction of the ribosomal protein P0, eukaryotic translation initiation 

factor 4E (eIF4E), and proline-rich homeodomain protein (PRH) (119). 

Interaction with PML is suggested to play a role in the suppression of apoptosis, 

allowing arenaviruses to replicate in high yields (125, 126). ZP’s interaction with 

host P0 indicates ribosome inclusion in the virion structure (127). Interaction 

with eIF4E downregulates the host cell translation machinery and suppresses 

interferon’s regulatory factor (IRF-7), demonstrating another approach to the 

suppression of immune response (119). LCMV infections have revealed the role of 

ZP in the downregulation of proline-rich homeodomain protein (PRH) in the 

liver, abolishing the antiproliferative properties of the liver tissue and promoting 

cell division (128). The ability of ZP to bind to RIG-I, the cellular sensor of viral 

RNA responsible for the activation of the cellular beta interferon response, allows 

arenaviruses to evade cell immune responses (129). 

1.4.3 RNA-dependent RNA polymerase (RdRp) 

Arenavirus RdRp is essential for genome replication and mRNA transcription 

(98, 110). The size of RdRp varies between 200 and 250 kDa depending on the 

virus species, and represents the largest of all known arenavirus proteins (98). 

RdRp contains domains involved in the cap-snatching mechanism that have been 

identified in the N-terminus (130). Crystal structure analysis has identified N-

terminus domain binding of nucleotides, with a preference for UTP, and RNA 

(130). The presence of type II endonuclease activity in the N-terminus is 

associated with the cap-snatching step (130). Endonuclease activity is essential 

for arenavirus RNA transcription, yet replication is not dependent on 

endonuclease activity (130). RdRp activity is also strongly dependent on the 

correct 5’ RNA sequence, which directs the optimal synthesis of viral proteins 

(131). Furthermore, RNA ligands in the 5’ termini of viral genomic RNA (vRNA) 

activate the polymerase in a promoter-specific manner, where the 5’ vRNA 

ligands activate polymerase only for 3’ vRNA and do not allow activation for the 

3’ complementary antigenomic RNA (cRNA) (131).  

The sequences of arenaviral RdRps have high divergence, although conserved 

motifs have been identified within the structure of RdRp (132-134). Arenaviral 

RdRp domains show similarities to other negative-stranded RNA polymerases, 

which are characterized by the presence of conserved regions (135-138). 

Conserved domains have been identified and linked with active sites of RNA 
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synthesis, template recognition, and polymerizing activity (133, 134). RdRp is 

directly involved in the synthesis of antigenomic complementary RNA (cRNA), 

capping viral mRNA via the cap-snatching mechanism, and the generation of 

genomic viral RNA (vRNA) (132). 

1.4.4 Glycoproteins (GPs) 

Arenaviral GPs are responsible for attachment to the cell surface receptors, 

leading to the initiation of infection in the target cells (139-144). The GPs are 

synthesized from the S segment as glycoprotein precursors (GPC), and they 

undergo a critical maturation process into fully functional subunits (93, 145, 146) 

(Figure 4). Prior to reaching full functionality, the GPC precursor is synthesized 

as a premature polypeptide with size ranging from 70 to 75 kDa. Signal peptidase 

and protease processing enzyme Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 

Protease (S1P) are required in the maturation process of GPC (147-149). In 

contrast, hartmaniviruses appear to contain a furin processing site that appears 

as a divergent processing site from other known arenavirus GPC maturation 

processes (76). Proteolytic processing of GPC yields GP1, GP2 and SSP (93, 145, 

146). Notably, reptarenaviruses appear to produce GP1 and GP2 without the SSP 

(76) (Figure 4). The molecular weight (MW) of GP1 is approximately 40-44 kDa, 

and the MW of GP2 is approximately 35-36 kDa (93, 145, 146, 150). SSP is 58 

amino acids in length with an MW of approximately 5-6 kDa (151, 152). 

Computational analysis of antennavirus GPC demonstrates structural similarities 

with mammarenavirus and hartmanivirus GPCs, where the presence of SSP has 

been detected (153). Computational analysis has identified the presence of SSP, 

class I viral fusion protein, and an internal Zinc-binding domain in 

antennaviruses (153). 

GP1 includes the receptor-binding domain, which mediates the binding of GP1 to 

a cell surface receptor (24, 154-156) (Figure 5). GP2 directs the fusion process 

(157) between cell and virus membranes where the process is activated by acidic 

pH in the endosome (158-160). SSP, when present in the native arenavirus 

structure, is involved in transport, maturation of GPC, and viral membrane fusion 

processes (161-164) (Figure 5). Table 6 gives a summary of structural 

characteristics of the arenavirus GP.  
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Figure 4. GPC processing of mammarenaviruses, reptarenaviruses, and hartmaniviruses. 

Abbreviations: TM- transmembrane region of GP2, SP- Signal peptide, SSP-Stable signal peptide. 
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Figure 5. Schematic illustration of GPC structure after processing by cellular protease and signal 

peptides, and after trafficking to the cell membrane surface. Absence of SSP and myristoylation are 

indicated in reptarenaviruses. Structural illustration adopted from Hepojoki et al 2018 (76) ; Kranzusch 

PJ and Whelan SP 2011 (124). 

Table 6. Structural properties of GPC within the family of Arenaviridae 

Virus 
 
 

Quantity of glycans Cellular 
protease 
involved 
in the 
cleavage 
of GP1 and 
GP2 

Myristoylation SSP 
cleavage 
by signal 
peptidase 

Reptarenavirus Up to 9 glycans (76) SKI-1/S1P 
(76) 
 

Absent (76) 
 

Absent 
(76) 

Mammarenavirus Up to 15 glycans (165) SKI-1/S1P 
(93) 
 

Present (166) Present 
(167) 

Hartmanivirus Up to 7 glycans (76) Furin (76) Present (76) Present 
(76) 

Antennavirus Up to 7 glycans (153) Furin (153) 
 

Not identified Present 
(153) 
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1.5 Infection cycle 

1.5.1 Entry 

In vitro and in vivo infection studies using OW and NW mammarenaviruses have 

identified major cellular receptors involved in the attachment of the virus to the 

target cell and endocytosis pathways for internalization (155, 168, 169). Three 

types of receptors have been identified for mammarenaviruses. The cell surface 

receptor for NW mammarenaviruses is transferrin receptor 1 (TfR1) (155). For all 

known OW mammarenaviruses, the cell surface receptor is alpha-dystroglycan 

(A-DG) (168, 170), while neuropilin 2 (NRP-2) acts as a cell surface receptor for 

LUJV (169). There have been no studies related to the tropism of reptarena- and 

hartmaniviruses, and their cell surface receptors have not been identified.  

The initial attachment of the arenavirus is initiated through the binding by GP1 

to primary cell surface receptors. The virions are then internalized either through 

clathrin-independent or clathrin-dependent endocytotic pathways for OW and 

NW mammarenaviruses, respectively (171, 172). The entry of arenaviruses is 

dependent on cholesterol (150, 171). The cellular entry OW viruses such as LASV 

and LCMV with subsequent transport to late endosomes requires microtubular 

transport (172). Fusion process of the cellular and viral membranes is activated 

by low pH in the maturing endosome (159, 160).  Upon the acidification of the 

endosome, GP2, enables fusion of cell and virus membranes and the release of the 

replication complexes with viral genome into the cell cytoplasm (173). The 

application of recombinant LCMV-expressing LASV GP and LCMV has also 

revealed dependency on phosphatidyl inositol 3-kinase (PI3K) as well as 

lysobisphosphatidic acid (LBPA) in the formation of intraluminal vesicles (ILV) 

of the multivesicular body (MVB) of the late endosome (172). The ESCRT pathway 

is one of the key mediators in MVB biogenesis (174). OW mammarenaviruses 

depend on ESCRT components, such as Hrs, Tsg101, Vps22, Vps24, and Alix 

(172). Cell line-generated lacking clathirin heavy chain (CHC), allowed the entry 

of LCMV and LASV, indicating the use of clathirin-independent cell entry by OW 

mammarenaviruses (172). OW mammarenaviruses, represented by LASV and 

LCMV, have also demonstrated independent cell entry from Rab5, a key regulator 

for endosomes for fusion and trafficking (143, 175). LUJV, as another 

representative of OW mammarenaviruses, distinguishably enables viral entry 

through attachment to NRP-2, with the stimulation of CD63 for the fusion process 

(169). NW mammarenaviruses are restricted to specific cell surface receptor 

domains, where entry is efficient through human, cat, Calomys callosus, Calomys 

musculinus, and Zygodontomys brevicauda TfR1, however rat and house mouse 

TfR1 orthologs  do not permit viral entry from NW mammarenaviruses  (156).   
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The reptarenaviral, hartmaniviral, and antennaviral GP proteins have remained 

poorly characterized. The target cell surface receptors for the GP of non-

mammarenaviral species remain unknown, and the internalization and 

endocytotic pathways are also not identified. Upon the final stages of entry, viral 

ribonucleoprotein complex (vRNP) is released into the cytoplasm where the 

replication is taking place (176) (Figure 6).  

1.5.2 Replication 

Shortly after the release of vRNP into the cytoplasm, viral RdRp initiates the 

replication of viral RNA and the transcription of viral genes (110, 177). For the 

RNA template to be recognized by the RdRp, the RNA template needs to be 

encapsidated by viral NP (110). Prior to translation, NP and RdRp mRNAs are 

transcribed directly from the virion RNA segments (110). During the infection, 

the newly synthesized RdRp and NP are involved in the synthesis of 

complementary RNA. The newly synthesized RNA serves for the transcription of 

GPC and ZP mRNA or serves as a template for the synthesis of additional full-

length virion-sense RNA (110). Full-length antigenomic- and genomic-sense RNA 

are generated via a “prime and align” strategy, through the initiation transcription 

of viral mRNA by short m7G-capped oligonucleotides deriving from cellular 

mRNAs (178). The termination of viral mRNA synthesis is regulated by IGR, 

which separates the opposite-sense ORF of the viral genomic RNAs (179). 

Synthesis of viral proteins is performed through translation from subgenomic 

mRNAs, which do not possess 3’-terminal poly (A), and the 5’-cap is trailed by few 

non-templated bases (180-183). This feature is caused most likely by the cap-

snatching mechanism, which is a known replication mechanism for other viruses 

(180-183). 

1.5.3 Assembly and Budding 

The assembly of the virion is mediated by viral proteins, additionally involving 

host cell protein interactions (176). The ZPs of arenaviruses play a central role in 

the assembly process, enabling the trafficking of the viral components to the cell 

membrane by interacting with host cell proteins (121). ZP’s interactions with 

RdRp (124, 184), NP (185) and GPC (186, 187) have been demonstrated and 

implicated in playing a role in the assembly of mammarenaviruses. ZP 

additionally plays a role in the transportation of vRNP to the budding site (121, 

188). Studies suggest that prior to the encapsidation of viral RNA, ZP initially 

interacts with viral NP and RdRp in order to establish a vRNP complex (176). 

Upon generation of a vRNP complex, ZP interaction is involved with the plasma 

membrane (PM), which occurs via its myristoylation followed by binding to the 

cellular Tsg-101 ESCRT pathway proteins (121, 176). ZP myristoylation is also 
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involved in interaction with the SSP of GPC, where the incorporation of processed 

GPC subunits into the virion structure is suggested to take place (119). Prior to 

becoming fully functional and incorporated into the virion, GPC is transported 

through the endoplasmic reticulum (ER) and Golgi compartments (189). 

Activation of the ESCRT-III and Vps4 cellular components leads to the progeny 

virus particles pinching off from the cells (190) (Figure 6). Due to the apparent 

absence of ZP in hartmaniviruses, an alternative model of the assembly and 

budding without ZP should be established. 

 

 

 

Figure 6. Schematic illustration of arenavirus infection cycle steps. Stages indicate entry, replication, 

and budding of the progeny virions from the infected cell.   

1.6 Epidemiology and Diseases 

1.6.1 Mammarenavirus infections and pathogenesis in rodents 

Rodent reservoir species infected with mammarenaviruses do not express severe 

symptoms, and only immunodeficient rodent species can develop severe 

symptoms (17, 72, 89). LCMV infection in a mouse results in the presence of the 



34 
 

virus in virtually all tissues; however, efficient replication appears to be restricted 

to neurons (191). In murine models, LCMV can cause either an acute infection 

followed by the clearance of the virus, or establish a persistent infection (192, 

193). The disease outcome is determined by the IFN response at the early stage of 

the infection (192-194). Additional evidence suggests that mammarenaviruses 

such as LASV, MORV, and GAIV have adapted to rodent species in order to 

optimize the success of transmission, thus resulting in non-pathogenic outcomes 

in rodent reservoirs (72).  

1.6.2 Mammarenavirus disease symptoms in humans 

In humans, LCMV infection is most often asymptomatic; however, in some cases 

infection leads to aseptic meningitis, meningoencephalitis or encephalitis (195, 

196) (Table 7). LCMV infections have been characterized as bi-phasic (197, 198). 

The initial symptoms include fever, headache, malaise, myalgia, anorexia, nausea, 

and vomiting. The second phase of symptoms is accompanied by temporal 

recovery and followed by central nervous system (CNS) deviations (199). The 

second-phase symptoms can be expressed by aseptic meningitis with raised 

sensitivity to light, headache, fever, and vomiting (199-201). Symptoms may 

persist for up to several months from the initial infection (202-204). The majority 

of adults and children infected with LCMV proceed to full recovery from the 

infection. Distinguishably, transplacental human fetal infections are often 

accompanied by severe consequences (205). Vertically transmitted infections 

frequently have severe consequences such as impairment and abnormal 

development of the brain functions (206, 207). In many embryonic infection 

cases, LCMV has been reported to induce the development of microcephaly (21, 

198, 204, 208-210). 

The most commonly proposed entry scenario for human infection is entry into 

the lungs through the inhalation of the aerosolized form of the virus (211). From 

the lungs, the virus travels through the blood stream, and ultimately reaches the 

meninges, choroid plexus and ventricular ependymal linings (212). LCMV 

infection may lead to secondary complications, such as myocarditis, pneumonitis 

parotitis, pharyngitis, orchitis, and dermatitis (213). CNS complications can also 

cause encephalitis, hydrocephalus, transverse myelitis, Guillain-Barre syndrome, 

and severe cases can lead to fatal outcomes (202). 

Similarly to LCMV infections, the majority of cases of VHF are asymptomatic, 

although the percentage of severe symptoms is much higher in VHF 

mammarenavirus infections. LASV infections can induce severe symptoms in as 

many as 20% of infected cases (214) (Table 7). Symptoms expressed from VHF 

mammarenaviruses include fever, dry cough, chest and abdominal pain, 

headache, and myalgia (214). Complications are commonly supported with the 
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following symptoms: hemorrhage in multiple organs, respiratory difficulties, face 

and neck edema, pleural and pericardial effusion, and encephalopathy (214). 

Similarly to LCMV infection during pregnancy, complications for the fetus are far 

more severe and with higher mortality rates (215). In early stages of the infection, 

LASV targets human macrophages and dendritic cells (DC), which play a role in 

the immune response (216, 217). By infecting immune defense cells, LASV 

suppresses the human host’s ability to stimulate T-cells to fight the infection 

(217). The impairment of the immune response leads to increased production of 

infectious LASV particles (217). Infection of the liver leads to elevated levels of 

transaminases and to hepatocellular necrosis (218). Progressive infection of 

hepatocytes and exacerbation of liver tissue has been a characteristic occurrence 

in infected patients, being the most contributing pathology in approximately 80% 

of mortality cases (219). As a result of VHF infection, death results from 

hypotensive, hypovolemic, and hypoxic shock in patients with severe 

complications (218). Surviving patients’ symptoms start to disappear 10 to 15 days 

after the initiation of the disease (218). 

 

Table 7. Summary of mammarenaviruses pathogenic to humans and officially registered cases. 

Adapted from Ly H 2017 (220) 

Virus Lineage 
(clade) 

Reservoir Geographical 
presence 

Disease Incidence 
rate and 
mortality 

LCMV OW Mus Musculus Globally Aseptic 
meningitis, 
encepaha-
litis 

Over 5% of 
people show 
evidence of 
prior 
exposure, 
mortality less 
than 1% 

LASV OW Mastomys spp West Africa Hemorrh-
agic fever 

Up to 
500 000 
infections 
annually, 
mortality of 
approx. 5000 
annually 

LUJV OW N/A South Africa Hemorrh-
agic fever 

5 identified 
cases, 4/5 
were fatal 

JUNV NW (B) Akodon azare, 
Calomys laucha, 
Calomys 
musculinus 

Argentina Hemorrh-
agic fever 

300-1000 
cases 
annually 
before the 
Candid#1 
vaccination 
program. 
Post 
vaccination 
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program 
cases: 30-50. 
Mortality rate 
15-30% 

MACV NW (B) Calomys callosus Bolivia Hemorrh-
agic fever 

1962-1964: 
approx. 1000 
cases 
reported; 
1990s: 19 
cases 
reported; 
2007-2008: 
approx. 200 
cases 
reported, 
Average 
mortality rate 
20% 

SBAV NW (B) N/A Brazil Hemorrh-
agic fever 

1 reported 
case, fatal 

GTOV NW (B) Zygodontomys 
brevicauda 

Venezuela Hemorrh-
agic fever 

618 cases, 
23% mortality 
rate 

CHAPV NW (B) N/A Bolivia Hemorrh-
agic fever 

1 reported 
case, fatal 

WWAV (29) NW (A) Neotoma  
albigula 

USA Hemorrh-
agic fever 

3 reported 
cases, all fatal 

 

1.7 Mammarenavirus global infections  

Mammarenaviruses have caused epidemics in South America and West Africa, 

where the infections originated from contacting with specific reptarenavirus 

reservoir rodent species (10, 221). While mammarenaviruses often cause 

asymptomatic and persistent infections in rodents (9, 222, 223), some cause 

infections leading to severe and fatal outcomes in humans (224, 225). The impact 

on human health of mammarenaviruses can be significant in endemic regions, 

where mammarenavirus infections have reached a mortality rate of 50%, as 

recorded, for example, during West African epidemics (226) (Table 7). Human 

infections occur through contact with rodent excreta (urine, feces, saliva); 

through direct contact with infectious material if the skin is abraded, or through 

mucosal exposure to aerosols (9, 195, 222, 227). Since the reservoir host of LCMV 

is the common house mouse, Mus musculus, which is present in almost all 

geographical regions, sporadic infections are caused globally at very low 

frequencies in humans (228, 229). Within the rodent reservoir species, 

mammarenaviruses can be transmitted vertically and horizontally (230) (Figure 

7). In humans, primary infection can occur after contact with the rodent that 

possesses the virus, allowing later possibility for vertical and horizontal virus 

transmission (197).  
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Due to the threat to human health from highly pathogenic mammarenaviruses 
such as LASV, JUNV, Guanarito virus (GTOV), Chapare virus (CHAPV), and Lujo 
virus (LUJV), the listed mammarenaviruses are classified as Class A pathogens, 
capable of causing fatal VHF, and are regarded as potential bioterrorism threat 
(231, 232). According to the Centers for Disease Control and Prevention (CDC), 
Class A pathogens are high-priority agents capable of posing a risk to public 
health, and have serious effects on national security. Highly pathogenic agents 
that can be easily transmitted and cause fatal disease are handled in high-level 
bio-safety level (BSL-3 and BSL-4) laboratories facilities (231, 232). With 
advances in research on mammarenaviruses, vaccines such as Candid#1 (233, 
234) and antiviral compounds such as ribavirin (235) have been developed and 
successfully applied to control certain mammarenavirus diseases in endemic 
regions (235, 236). Notably ribavirin has been applied successfully in the 
treatment of LASV infections (235), while Candid#1 vaccination has decreased 
the incidence rate of infections caused by JUNV (236). 

1.8 Reptarenavirus and hartmanivirus hosts and infections 

In constrictor snakes, reptarenaviruses have been linked to BIBD, which has a 

direct impact on the health of captive constrictor snake populations. BIBD may 

lead to the eradication of entire snake collections possessed by a snake breeder or 

zoo. Moreover, BIBD has not been characterized in the literature in snakes from 

the wild. BIBD has been characterized in captive constrictor snakes since the 

1970s, however identification of reptarenaviruses as the potential etiological 

disease agent was established only in 2012 (11, 13, 237). The work involving 

experimental infections of constrictor snakes with reptarenaviruses presented in 

this thesis was conducted to provide evidence for a virus-disease relationship. The 

research carried out in the snake reservoir suggests potential horizontal 

transmission of the virus within a captive population of constrictor snakes (238). 

In addition to horizontal transmission, reptarenaviruses can also be transmitted 

vertically (239) (Figure 7). Hartmaniviruses appear to circulate as co-infections 

with reptarenaviruses in constrictor snakes, and can also be vertically transmitted 

(74, 76). Horizontal transmission of hartmaniviruses within infected snake 

population has not been studied.  
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Figure 7. Illustration of arenavirus transmission in mammalian and reptilian species. Mammarenavirus 

infections are acquired from specific rodent species reservoirs, where the infection can be transmitted 

within rodent species or to a dead-end human host (9, 195, 222, 227). Human-to-human transmission 

has also been recorded for mammarenaviruses (9, 195, 222, 227). Reptarenaviruses and 

hartmaniviruses can be transmitted within constrictor snake species, although the original reservoir has 

not been established (76, 239). 

1.8.1 Boid Inclusion Body Disease (BIBD) 

Clinical signs of BIBD are generally associated with central nervous system 

complications, such as head tremor, opisthotonus, intermittent regurgitation, 

and eventual anorexia (237). “Stargazing’” is one of the signs occasionally present 

in affected snakes, characterized by the snake lifting its head along with the first 

third of its body and leaning backward for an extended amount of time (237). 

Snakes affected by BIBD can acquire secondary infections by bacteria, fungi, or 

protozoa, which may lead to severe complications with fatal outcomes. Secondary 

complications after infection have been characterized as lymphomas, 

encephalitis, pneumonia, hepatitis, enteritis, or osteomyelitis (240). BIBD’s 

characteristic feature is the presence of IB within various tissues of the affected 

snake, where IB are characterized as eosinophilic to amphophilic, amorphous, 

intracytoplasmic inclusions (11, 13, 238, 241, 242). 

Inoculation of reptarenaviruses varies in affected species. In boas, disease can 

vary from the asymptomatic and have persistent viremia for an extended amount 

of time (242). In pythons, viral infection may lead to rapid progression of BIBD 

signs, which are followed by secondary infections leading to death or inevitable 
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euthanasia of the affected snakes (11, 13). Similarly to mammarenaviruses, 

reptarenaviruses can be transmitted vertically and can cause BIBD in offspring 

populations (239). BIBD’s geographical distribution has not been restricted, since 

confirmed BIBD cases have been documented in Europe, America, Australia, and 

Asia (11-13, 67, 69-71, 73, 75, 237, 243). 

1.9 Immune response in humans 

T-cell-mediated responses play a vital role in recovery from LASV infection (244). 

For example, survival of infected macaques shows considerable activated levels of 

T-cells, whereas infections with fatal outcomes have delayed T-cell activation 

(244) (Figure 8). Studies of LCMV have revealed the role of 

major histocompatibility complex (MHC) in cytotoxic T lymphocyte (CTL) 

responses against LCMV (245-247). In parallel analyses, human infections appear 

not to be dependent on the level of antibody titers (such as IgG and IgM), allowing 

the exacerbation of LASV infection (248). In addition, analysis of human serum 

samples from LASV-infected individuals indicate a correlation between survival 

and low levels of interleukins (IL) (IL-6, IL-8, and IL-10), blood urea nitrogen 

(BUN), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and liver 

enzyme aspartate aminotransferase (AST) (249). 

MOPV is genetically closely related to LASV. Although it is not pathogenic to 

humans, it can provide protection against LASV infection in nonhuman primates 

(250). Infections mediated by MOPV also fail to activate DC, but macrophages 

become activated and produce IFN in response to the infection (251). NW 

infections caused by JUNV have demonstrated elevated levels of IL-6, IL-10, 

tumor necrosis factor alpha (TNFα), and IFNα (252-254). Although the exact role 

of cytokines in the pathogenesis of VHF by NW mammarenaviruses is not fully 

understood, the proposed theory links the delayed high level of cytokine 

production to the severity of the disease caused by VHF mammarenaviruses (255, 

256) (Figure 8). 
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Figure 8. Schematic diagrams of immune response in LASV and JUNV infections in fatal and non-fatal 

outcomes. Adapted from (257) Mantlo E et al 2019. 

1.10 Immune response in snakes  

In vertebrates, immunoglobulins (Igs) that target viral antigens play the major 

role in the functionality of humoral immune response. In mammals, there are five 

Ig classes with different heavy chain classes, defined as α, δ, ε, γ and μ, and these 

classes give rise to IgG, IgA, IgE, IgD, and IgM, respectively (258). Heavy chain 

classes are paired with κ or λ light chains (258). In contrast, in snakes only four 

heavy chain Ig classes (IgD, IgM, IgYa and IgYb) have been described (259). 

Notably, snake Igs genes differ from Igs in mammalian species, due to 

diversification approximately 300 million years ago from ancestral animal 

species such as Rhynchocephalia (260, 261). Reptiles, such as snakes, are 

characterized as ectothermic animals, where the temperature directly affects the 

immune response (262), thus the humoral response is slower than in mammalian 

species (261). Antibody production in mammalian species usually reaches the 

maximum level at two weeks post-antigen encounter from the primary infection, 

while in reptiles it can take up to several months (263-266). In addition, the 

decline in post-production antibody levels in mammals usually occurs within 

weeks after the peak levels, while in reptiles peak titers can persist for up to 34 
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weeks (267). Another significant difference between mammalian and reptilian 

humoral immunity is the lack of increase in antibody titers upon a second 

encounter with the antigen in reptiles (261). The effects of reptarenavirus NP 

suppression of the innate immune responses have not been studied in infected 

snakes (261). A negative correlation between BIBD and the presence of antibodies 

against reptarenaviral NP has been detected in snakes infected with 

reptarenaviruses (268). In the same study, levels of reptarenavirus antibodies 

were lower in BIBD-positive snakes (268).  

1.11 Diagnostics and treatment of arenavirus infections 

1.11.1 Diagnosis, treatment and prevention of human infection 

Several diagnostic methods have been used to identify mammarenavirus infection 

in humans. For serological assay, virus-specific IgM and IgG antibodies have been 

used in enzyme-linked immunosorbent (ELISA) and immunofluorescence assays 

(IFA) (269, 270). The application of serological assay is focused primarily on 

identifying VHF viruses. Rodent species are also tested in suspected cases of 

mammarenavirus transmission or for preventive measures by reverse 

transcription polymerase chain reaction (RT-PCR) and serologically, allowing the 

public to be informed of the presence of mammarenavirus infection in the area 

(271). Viral RNA in human samples is used to detect viral genetic material by RT-

PCR in suspected human cases that have come into contact with the rodent and 

are experiencing mammarenavirus infection-associated symptoms (272-274). A 

neutralization assay can be applied to detect neutralizing antibodies, which 

typically have a higher detection rate for several years, although their generation 

upon infection is not immediate (275). Application of neutralization assay is 

performed to determine the efficiency of deployed vaccination of selected 

population, to ensure the presence of neutralizing antibodies against the virus.  

Due to neurotropism of LCMV, isolation of the LCMV for an RT-PCR test from 

the cerebrospinal fluid is performed during suspected acute human infection 

(198). LASV infections have been successfully treated with ribavirin, which acts 

as a nucleoside analog interfering with RNA synthesis (235). In addition, vaccine 

candidates have been developed to combat LASV infection in endemic regions 

(276-279). In South America, application of the Candid #1 vaccine against JUNV 

has sharply reduced the number of mammarenavirus infections (233, 234). 
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1.11.2 BIBD diagnosis, treatment and prevention 

Diagnosis of BIBD is based on observation of the characteristic signs of the 

disease, RT-PCR, and post-mortem histological analysis (68). Observational 

analysis of the suspected BIBD cases could initiate necessary quarantine actions. 

However, the progression of the disease can also be conducted asymptomatically, 

and not present clear BIBD-associated signs (70, 242). BIBD-associated signs can 

vary amongst constrictor snake species, and the presence with the effect of BIBD 

on non-constrictor snake species has not been established. Due to the large 

genetic diversity of reptarenaviruses (73, 74), the development of an RT-PCR with 

broad utility remains a challenge. Detection of numerous IB in the blood smear 

of snakes has been used as an ante-mortem standard for the diagnosis of BIBD 

for several decades since the identification of the disease in constrictor snakes 

(68). Currently, there are no treatments against BIBD. Preventive practice is 

based on the euthanasia of suspected or confirmed BIBD cases, with action 

preventing the spread of the disease to other snakes in captivity/an animal 

reservoir.  
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2 AIMS OF THE THESIS 

- To identify the spectrum of reptarenavirus tissue tropism and to determine 
the replication potential of viruses in different cell lines 
 

- To induce BIBD in snakes by experimental infection of reptarenaviruses 
 

- To develop reagents for the detection of reptarenavirus-specific antibodies 
 

- To compare the antibody repertoire in the sera of the snakes naturally and 
experimentally against reptarenavirus and to identify neutralizing 
antibodies in the sera 
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3 MATERIALS AND METHODS 

Detailed protocols are provided in the respective articles/manuscripts.  

3.1 Cell lines (I, II, III, IV) 

Mammalian, reptilian and insect cell lines were used for the expression of virus 

proteins, virus propagation and infections.  

African green monkey kidney (Vero E6, ATCC), human lung carcinoma (A549, 

ATCC), human embryonic kidney (HEK293FT, Thermo Fisher Scientific), human 

neuroblastoma (SK-N-SH, ATCC), Chinese hamster ovary (CHO wt, ATCC), and 

baby hamster kidney (BHK-21, ATCC) were maintained at standard growth and 

incubation conditions (5% CO2, 37 °C) in a medium supplemented with 10% fetal 

bovine serum (FBS), 2 mM L-glutamine, 100 IU/ml penicillin, and 100 μg/ml 

streptomycin, minimal essential medium (MEM) for Vero E6 and A549, and 

Dulbecco's Modified Eagle Medium (DMEM) for the other mammalian cell lines. 

Boa constrictor kidney (I/1Ki) was cultured and maintained in MEM with 10% 

FBS, 2 mM L-glutamine, 100 IU/ml penicillin, and 100 μg/ml streptomycin. B. 

constrictor lung (V/5Lu), B. constrictor heart (V/2Hz), B. constrictor brain 

(V/2Br), and Morelia viridis liver (VII/2Liv) cells were maintained in DMEM 

using the same supplements as for I/1Ki (13, 280, 281). All reptile cell lines were 

maintained at 5% CO2 and 30 °C, with the only exception of the incubation 

conditions for I/1Ki in for the study (I) where the medium was supplemented with 

25 mM HEPES and the incubator had 0% CO2 Collagen-coated bottles were used 

as described prior to plating the VII/2Liv and V/1Liv (281). 

Tick embryo-derived cell lines, Ixodes ricinus IRE/CTVM19 (282, 283), 

Rhipicephalus (Boophilus) microplus BME/CTVM2 (284), and Rhipicephalus 

appendiculatus cell lines RAE/CTVM1 (284) were maintained in 2 ml L-15 

(Leibovitz) medium (Sigma-Aldrich) supplemented with 20% FBS, 10% TPB, 2 

mM L-glutamine, 100 IU/ml penicillin, and 100 μg/ml streptomycin in sealed 

flat-sided culture tubes (Nunc) at 30 °C. 

3.2 Cloning, expression of glycoproteins (III, IV) 

Mammalian expression plasmids, pCAGGS-HA and pCAGGS-FLAG (Figure 9), 

were used for the expression of viral GPC. The GPC sequences of UHV-1, UHV-2, 

UGV-1, HISV, ABV-1, ABV-2, TSMV-2, and S-5 arenaviruses were obtained 
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initially via sequencing at the University of Helsinki (74). The GPC sequences of 

GGV-1, CASV-1, LCMV and JUNV were obtained based on the sequence accession 

number provided in the table (Table 8). Sequences of reptarenaviruses and 

hartmaniviruses were cloned into pCAGGS plasmids, and mammarenavirus 

sequences were obtained from the Dr Luis Martinez-Sobrido (University of 

Rochester School of Medicine and Dentistry. Department of Microbiology and 

Immunology) and Dr Juan Carlos de la Torre (Scripps Institute, USA). 

Verification of cloning was performed by restriction digestion and Sanger 

sequencing (DNA Sequencing and Genomics Laboratory, Institute of 

Biotechnology, University of Helsinki). 

 

Table 8. Arenavirus GPC sequences used in the experiments. 

Virus GPC Source of sequence (accession number) 
UHV-1 KR870011.1 
UHV-2 KR870016.1 
UGV-1 NC_039005.1 
HISV-1 NC_043444.1 
GGV-1 NC_018483.1 
CASV-1 JQ717262.1 
ABV-1 KR870010.1 
ABV-2 KR870018.1 
TSMV-2 KX527575 
S-5 KX527579.1 
LCMV AY847350.1 
JUNV NC_005081.1 
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Figure 9. Schematic representation of cloning of arenavirus GPC sequence into pCAGGS vector. 

 

HEK293FT cell line was used for the expression of arenavirus GP. HEK293FT was 
performed using FuGENE HD (Promega) transfections in a 6-well plate format. 
Prior to the transfection, cells were allowed to reach ~80% confluency, followed 
by the replacement of the medium containing 5% FBS and without antibiotics on 
the day of transfection. The reagent to DNA ratio for the transfection was 4:1 per 
well. The final DNA amount for the transfection of I/1Ki cells was at 2 500 ng per 
well, in a 6-well plate format. At 6-8 h post-transfection, the medium was 
changed. Cells were incubated for 48 h, followed by collection for either protein 
expression analysis or further pseudotyping infection. 

3.3 Pseudotyping of recombinant vesicular stomatitis virus 
(III, IV) 

A recombinant vesicular stomatitis virus (rVSVΔG-eGFP) was used to bear 
arenaviral GP. rVSVΔG-eGFP is constituted from all of its native proteins, but 
lacked its own glycoprotein G which was replaced with the eGFP signal sequence. 
The assembled rVSVΔG-eGFP virus was kindly provided by colleagues from the 
University of Helsinki, Dr Lev Levanov and Rommel Paneth Iheozor-Ejiofor 
(University of Helsinki, Medicum, Department of Virology). rVSVΔG-eGFP was 
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initially pseudotyped with its own G protein, conducted through the transfection 
of HEK293FT cells. Cells were transfected initially with pVSV-G plasmid and 
infected with rVSVΔG-eGFP to generate rVSV-G-eGFP stock (285). The 
generated virus was used to infect transfected HEK293FT cells that were 
expressing arenavirus GP, generating rVSV—GeGFP pseudotyped by arenaviral 
GP.  

3.4 Reptarenavirus purification 

Reptarenavirus supernatants propagated in the I/1Ki cells were collected and 
purified by density gradient ultracentrifugation using a 30% sucrose cushion in 
TEN buffer (50 mM Tris, 1 mM EDTA, 150 mM NaCl), loaded under the 
supernatant with a sterile needle, followed by ultracentrifugation for 2 h at 27,000 
rpm and 5 °C, with a SW41 rotor and stored at −70 °C (supplemented with bovine 
serum albumin [BSA]) until further application. Reptarenaviruses adapted for the 
Vero E6 were additionally passaged three times through Vero E6 infection prior 
to the application of the adapted virus in infection experiments. 

3.5 Pseudotyped virus purification 

Rescued pseudotyped virus supernatants were filtered through 0.45 µm filter 
(Millipore), and pelleted by ultracentrifugation (Beckman coulter SW-55 rotor, 
50,000 x g, 4 °C, 1 h) using a 0.5 ml 20% (w/v) sucrose cushion. The pelleted 
viruses were resuspended in phosphate-buffered saline (PBS) by pipetting, and 
the aliquots were stored at 4 °C or at -80 °C for further application. 

3.6 Cloning, expression, and purification of recombinant 
UHV-1 NP protein (temperature paper and serological tools, 
I, II) 

To clone UHV-NP recombinant variants, a template constructed from the pGEM-

T vector (Promega) with a previously partial cloned S segment of UHV-1 (13). 

Three variants of UHV-NP were used in PCR cloning: NP (1 to 582 amino acids 

long, full length; rNP), N-terminal (1 to 339 amino acids long; rNP-N), and C-

terminal (346 to 582 amino acids long; rNP-C). 

PCR amplification of the fragments was achieved using Phusion high-fidelity 
DNA polymerase (Thermo Scientific) with the following primers: for NP, 5′-
GGTACCATGGCTGCACTACAAAGAGC-3′ and 5′-
CTCGAGGACCTCCACAGGCC-3′; for N-terminal NP, 5′-
GGTACCATGGCTGCACTACAAAGAGC-3′ and 5′-
CTCGAGCCTTCTCAAACGGAATACCG-3′; and for C-terminal NP, 5′-
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CATATGAGGTTATACCCGGACTTGATGGA-3′ and 5′-
CTCGAGGACCTCCACAGGCC-3′. 

Recombinant proteins were produced using the baculovirus system (I). The 

recombinant proteins were obtained via purification procedures from the cells 

infected with recombinant baculoviruses.  

3.7 RNA extraction, RT-PCR and qPCR (I, IV) 

Viral RNAs were isolated from the corresponding reptarenavirus (UHV-1 and 

UGV-1) infected cells (I).Isolation was conducted using an RNeasy minikit 

(Qiagen) following manufacturer’s guidelines. Viral RNAs from the 

experimentally infected snakes were collected in TriPure isolation reagents 

(Roche), and processed according to the manufacturer’s protocol. 

The isolated RNA was transcribed to cDNA using RevertAid premium reverse 

transcriptase (Thermo Scientific) following the manufacturer's protocol with the 

use of random hexamers. Stratagene MX3500P was used for the run of qPCR with 

the use of the Maxima SYBR green quantitative PCR (qPCR) master mix (Thermo 

Scientific). The target for the qPCR amplification was the UHV ZP region in the L 

segment with the use of 5′-CATATGAGCGAATCAACCGCAATAGGTC-3′ for the 

forward direction and 5′-CTCGAGTGGTTCGGGGAGG-3′ for the reverse 

direction.  

Isolated RNAs from experimentally and naturally infected snakes (IV) were 

analyzed using one step TaqMan assay (Thermo Scientific) with the following 

primers and probes targeting the S segment, with sequence details indicated in 

table 9, and as was performed by  K Windbichler et al in 2019 (239).  PCR 

reactions for infected cell samples (I) were conducted using the Phusion Flash 

High-Fidelity PCR Master Mix (Thermo Scientific) with the primers indicated in 

Table 10.  

Table 9. Primers and probes used for the amplification of extracted and reversely transcribed viral RNA 

from the snake tissue samples. 

Virus Probe Forward primer Reverse primer 
UGV-1 
(IV) 

6-Fam- 
CTCGACAAGCGTGGGCG
GAGG-BHQ-1 

CAAGAAAAACCACACTG
CACA 

AACCTGTTGTGTTCAGTAGT 

UHV-1 
(IV) 

6-Fam-
TCCTCTGCCGCAAAAGA
CTATGTCACAG-BHQ-1 

ACAAACTGAATAAGACT
GCTGCATT 

AGGGCTATACACACATAGTTGGA
TG 

ABV-1 
(IV) 

6-Fam- 
CATGAATTCTTCATCGAC
ATCAGAAACCG-BHQ-1 

CCGTACTGCACAACTGA
TGATG 

AGCAACACAGGAGTAACCTGTCA
C 
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Table 10. Primers used for the amplification of extracted and reversely transcribed viral RNA from the 

snake tissue samples. 

Virus 
Abbreviati
on 

Forward primer Reverse primer 

University 
of Helsinki 
virus-1 

UHV-1 
TTTGTCGTCTGCCTTCAC  
 

GCTTTGTTGACTATACAGAAGG  

Aurora 
borealis 
virus-1 

ABV-1 TCAAGTCCGGGTATAACCTAG 
GAATTCAAGATAAAGATTGTCATA
GATG 

University 
of Giessen 
virus-1 

UGV-1 ATAAGGTCAGGGTATAACTTGG 
GAACTTGGCATAAAAATACAAATA
AATG 

S5-like 
virus (IV) 

S5-like 
GTCAGGATAGAGTCTGGGAGCA
T 

TGAACATTCAGAGGGAATTTGGCA
TC 

Tavallinen 
suomalain
en mies 
virus-2 
(IV) 

TSMV-2 
CAAGTCTGGATAAAGTCTTGGT
GCAT 

GTAATTGATGACGACAATAGGGTC
GA 

 

3.8 Sequencing and DNA analysis (I, III, IV) 

The PCR products were analyzed using standard agarose gel electrophoresis 
visualized by GelRed Nucleic Acid Stain (Biotium). Nucleic acid bands were gel-
purified using the QIAquick gel extraction kit (Qiagen) following the 
manufacturer’s instructions, eluted in Milli-Q water, and Sanger sequenced at the 
Sequencing Core Facility at Haartman Institute, University of Helsinki, Finland. 

3.9 Protein works 

The viral proteins were separated by SDS-PAGE under reducing or non-reducing 
conditions. For immunoblotting, the proteins were separated in SDS-PAGE and 
transferred onto nitrocellulose (Whatman) by wet blotting. Antigens, as indicated 
in the Table 4, rNP, NP-N and rNP-C were applied in SDS-PAGE, followed by 
immunoblotting with primary antibodies, then the application of secondary 
antibodies (Table 10). Visual results were obtained using the Odyssey Infrared 
Imaging System (LI-COR Biosciences). 
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Table 11. Western Blot analysis of viral proteins and correspondingly applied antibodies. 

Sample (antigen) Primary antibody Secondary 
antibody 

Study 

UHV-1 rNP, NP-N and 
rNP-C 

       Snake sera 
Anti-snake anti-IgM or -IgY (applied to 
bind with snake sera IgM and IgY) 

IR Dye 800 
CW- labeled 
donkey-anti 
rabbit 

II 

Cell lysates Rabbit anti-UHV rNP polyclonal  IR Dye 800 
CW- labeled 
donkey-anti 
rabbit 

I 

Cell lysate and 
pseudotyped viruses 

Mouse anti-HA-tag [clone 16B12, BioSite] 
and mouse anti-VSV-M [clone 23H12, 
KeraFast] 

donkey anti-
mouse 
AlexaFluor800 

III 

 

3.10 Indirect Immunofluorescence Assay (I, II)  

Pre-grown and infected cells with reptarenavirus on diagnostic 10-well slides or 

in culture vessels were detached by pipetting (for tick cells) or trypsinized (for 

mammalian and reptilian cells), washed and diluted with PBS, and placed on 

slides for drying. Cells were fixed in 100% acetone followed by incubation with 

primary anti-ZP (II), anti-NP and anti-NP-C antibodies and staining with Alexa 

Fluor 488-labeled or Alexa Fluor 555-labeled goat anti-rabbit secondary 

antibodies (Invitrogen) for visual detection via fluorescence microscopy (I and 

II). Snake serum was applied as a primary antibody to bind with viral antigen in 

infected cells, followed by binding with anti-IgM and anti-IgY, with final binding 

with AF488 goat anti-rabbit (Molecular Probes) (II).  

3.11 Histology and immunohistochemistry (IHC) (I, IV) 

Cultured cells for immunohistochemistry (IHC) and histology were detached via 
trypsinization and centrifugation pelleting, followed by fixation in 2.5% 
paraformaldehyde (PFA) prepared in 0.2 M PBS for 24 h at 5 °C routinely 
embedded in paraffin wax. Sections in the size range of 3-5 μm were stained with 
hematoxylin-eosin (HE) generating samples for the examination for the presence 
of IB. For IHC, after the rescue of antigen with citrate buffer (pH 6.0) in a 
microwave oven, sections were incubated with affinity-purified rabbit anti-UHV-
NP primary antibody (0.25 μg/ml in PBS), and stained with HRP-labeled goat 
anti-rabbit secondary antibodies (UltraVision anti-rabbit HRP detection system; 
Thermo Scientific). HRP was visualized using diaminobenzidine 
tetrahydrochloride (DAB) and hematoxylin counterstaining (13). 
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IHC and histological analyses were performed on cell pellets obtained from two 

culture flasks. The proportion of cells with one or multiple intracytoplasmic IB 

was subjected to grading of the diameter of IB in micrometers. Based on the 

staining intensity of NP, which is associated with the formation of IB, the IHC 

reaction was graded on a scale of 0.5 to 3. Scaling corresponded to the intensity 

of IB within positive cells, where faint intensity corresponded to (0.5), weak (1), 

weak moderate (1.5), moderate (2), moderate to strong (2.5), or strong (3).  

Samples of extracted B. constrictor and P. regious brain, lung, liver, kidney, 
pancreas, spleen, small intestine, and heart tissues were fixed in 
paraformaldehyde (4% in PBS), prepared for hematoxylin-eosin (HE) and 
immunohistochemical staining, and stained as described (13). 

3.12 Phylogeny (III) 

Arenavirus GPC amino acid sequences were obtained from GenBank. Amino acid 
sequences were aligned by the INS-i algorithm embedded in MAFFT version 7 
(286). To infer the phylogenetic tree, the Bayesian method with the Blosum model 
of amino acid substitution implemented in MrBayes v3.1.2 (287) was used. 
MrBayes was run for a million generations and sampled every 5000 generations, 
with a final standard deviation of 0.005 between 2 runs. 

3.13 Infection of animals (IV) 

A total of 16 Python regius (P. regius) and 16 Boa constrictor (B. constrictor) 
were used in the experimental infections. Housing was conducted under stable 
temperature conditions (27-30 °C) with application of daylight of fixed 12 h of 
light timing at 60-80% humidity. Three different experimental infections were 
conducted throughout the study on the selected group of snakes. 

The first experimental infection involved eight P. regius. Three snakes from the 
set were infected with UHV preparation (containing UHV-1 and ABV-1), three 
with UGV-1, and two were used as non-infected controls. The inoculation of the 
virus amount and the route of infection was performed as follows: One received 
5000 fluorescent focus forming units (fffus) intracoelamically, the second 
received 50 000 fffus intracoelamically, and the third received 50 000 fffus 
tracheally (the volume of inoculum was 500 ml in PBS). 

The second experimental infection included 8 P. regius. Infection with the 
following viruses and quantity of snakes was performed in the following design: 
2 snakes received UGV-1, and 4 received UHV preparation, and 2 received an 
equivalent amount of PBS. At 6 weeks post-inoculation, 2 B. constrictors were 
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added to the experiment. One B. constrictor was co-housed with UHV 
preparation-infected P. regius, and the other with UGV-1-infected P. regius. 

The third experimental infection involved 14 B. constrictor. Three of the snakes 
were immunized with purified and inactivated UHV by the addition of Triton X-
100 (with a final concentration of 0.2% final v/v). One B. constrictor was 
administered recombinant UHV-NP (described above). On day 0, the snakes were 
administered subcutaneously (multiple locations) 50 000 fffus of inactivated 
UHV or recombinant UHV-NP emulsified in Freund’s incomplete adjuvant 
(Sigma Aldrich). Immunization boosters were administered on days 14 and 28 
after the initial challenge. Post-immunization 8 B. constrictors, also including the 
vaccinated snakes, received via trachea 250 000 fffus of UHV, 2 B. constrictors 
received 250 000 fffus of UGV-1, and 2 B. constrictors received 125,000 fffus of 
both UHV and UGV-1. On day 30 post-inoculation, 2 of the vaccinated snakes 
were administered 250 000 fffus of UGV-1, and the snakes initially inoculated 
with UGV-1 were placed into boxes with UHV-inoculated snakes for co-housing. 

All infected animals were monitored daily for the presence of signs associated 
with BIBD, and fed at one- to three-week intervals. The post-mortem procedure 
was conducted using sedation of the snake with CO2, followed by decapitation and 
extraction of organs with Trizol (Life Technologies, for RT-PCR) or 
paraformaldehyde (4% solution in PBS, for histology and immunohistology). 
Fresh tissue was stored unfixed at -70 °C for virus isolation and further analyses. 

3.14 Infection of cells (I) 

Prior to the infection of I/1ki, Vero E6, A549, and BHK-21 were cultured in 
minimal essential medium (MEM) (Sigma-Aldrich) supplemented with 10% fetal 
bovine serum (FBS), 25 mM HEPES, 2 mM l-glutamine, 100 IU/ml penicillin, 
and 100 μg/ml streptomycin at 7.2-7.3 pH. For infection with UHV-1 and UGV-1, 
the medium was changed to minimal essential medium (MEM) (Sigma-Aldrich) 
supplemented with 10% fetal bovine serum (FBS), 25 mM HEPES, 2 mM l-
glutamine, 100 IU/ml penicillin, and 100 μg/ml streptomycin. Infection of tick 
cells was performed by the addition of UHV-1 to the culture medium, allowing 
incubation for 14 days at 30 °C. The effect of the temperature switch was assayed 
in the following manner: infected and non-infected cells kept at either 30 °C or 37 
°C for 4 to 5 days after virus inoculation were divided into two groups; half of the 
cells were transferred to the opposite temperature while the other half remained 
in the same temperature, i.e., cells grown at 30 °C were maintained at 37 °C and 
vice versa, or remained at a constant temperature. Cell samples were collected at 
1- and 2-day intervals for western blot analysis and qPCR, Samples for histology 
and IHC were collected 4 days after the temperature swap. 
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3.15 Infection with pseudotyped viruses (III, IV) 

Mammalian and reptilian cells grown in a 96-well plate were inoculated with 

pseudotyped viruses at a dilution yielding 50-100 fffus per well (based on the 

initial titration results) for 24 h. After the incubation period, virus-containing 

media was removed and cells were washed with PBS and fixed with 4% PFA. The 

fixed cells were stained for nuclei using Hoechst 33342 (Thermo Fischer 

Scientific), followed by washing with PBS and addition of PBS to cover the layer 

of the cells. The analysis of fluorescence for the detection of a GFP signal was 

conducted using PerkinElmer Opera Phenix High Content Screening System 

(Institute for Molecular Medicine Finland, University of Helsinki). 

3.16 Neutralization assay (IV) 

The extracted sera from the experimentally infected snakes were mixed with 
pseudotyped viruses in MEM without supplements at 37 °C for 1 h. I/1ki cells were 
grown to 80% confluence, the medium was removed and the virus-serum 
complex (dilution range of serum 1:50 to 1:6400) was inoculated with cells for at 
30 °C for 1-2 h. After incubation, the medium containing the virus-serum complex 
was replaced with a fresh virus-free medium with all supplements as described 
previously, allowing cells to be incubated for 22-24 h. Neutralization was 
determined using fluorescence microscopy for the detection of a GFP signal. 
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4. RESULTS AND DISCUSSION 

4.1 Replication of UHV-1 and UGV-1 is dependent on lower 
than mammalian body temperatures (I) 

BIBD is characterized by the presence of cytoplasmic intracytoplasmic IB in 

infected snake tissue (11, 13, 237, 238). Reptarenaviruses induce IB formation, 

which mainly comprises reptarenaviral NP (13, 241), and thus the presence of IB 

within cells would indicate viral replication. The body temperature of snakes, in 

contrast to mammals, alternates between lower and higher temperature 

variations on daily and seasonal bases (288). Isolation of reptarenaviruses from 

the boid species and the ability of reptarenaviruses to infect boid cells had been 

previously established (13). Infection experiments were conducted in non-boid 

cell species, including mammalian and arthropod cells. The goal was to determine 

whether reptarenaviruses can infect and replicate in non-boid species. 

Infection experiments on boid and non-boid cell types using two different 

incubation temperature conditions were performed to determine the role of 

temperature on the replication of reptarenaviruses. Snakes have alternating body 

temperatures and range from 25 to 30, and maintain body temperature closer to 

the surrounding enviroment °C  (289). The 30 °C temperature was selected to 

mimic equator B. constrictor natural habitant area body temperature conditions. 

Thus, two 30 °C and 37 °C temperature conditions were compared for the 

infectivity and replication of reptarenaviruses in the tested cells. The infection 

experiments on Vero E6 was conducted using Vero E6-adapted UHV described in 

an earlier study (13). Viral growth was monitored by immunoblotting with anti-

NP antiserum. Cells infected and incubated at 30 °C already showed 

accumulation of viral NP at two days post-infection (d.p.i.). Furthermore, NP 

expression was detected in I/1Ki and Vero E6 cells at 4, 6, and 8 d.p.i. In contrast, 

NP expression was not seen in either of the cell lines at 37 °C (Figure 10), 

suggesting inhibition or severely impaired replication.  

Reptarenavirus infection leads to the formation of IB within infected I/1Ki cells 

(13). IB formation was evaluated in infected boid (I/1ki), arthropod 

(IRE/CTVM19, BME/CTVM2, and RAE/CTVM1), and mammalian (Vero E6, 

A549, and BHK-21) cells using IHC and transmission electron microscopy (TEM). 

The intensity of the formed IB was graded on the intensity within positive cells 

and the proportion of positive cells, where the scale from 0.5 (faint) to 3 (strong) 

corresponded to the overall staining intensity. UHV and Vero E6-adapted UHV 

I/1Ki infected with UHV and incubated at 30 °C demonstrated the presence of IB, 

with up to 40% of cells presenting moderate NP expression. In parallel, in I/1Ki 
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infected with Vero E6-adapted UHV, the formation of IB was as high as 80% of 

positive cells with moderate NP expression intensity. However, the rise from 30 

°C to 37 °C, while keeping the infection conditions unaltered, reduced IB 

formation in I/1Ki cells, where IB was barely detectable and faint expression of 

NP was detected. The infection of Vero E6 with UHV (non-Vero E6-adapted) and 

incubation at 30 °C, resulted in lower IB formation, reaching only 20% of IB-

positive cells and with weak expression of NP. Infection and incubation 

experiments on Vero E6 performed at 37 °C resulted in even lower IB formation. 

Thus, Vero E6 was permissive for reptarenavirus, however it allowed lower 

replication efficiency as indicated by the IB within the cells. Cells were further 

investigated initially grown and infected under 30 °C conditions, and the follow-

up effect of temperature elevation to 37 °C. UHV-infected cells were passaged at 

15 and 12 d.p.i. for I/1Ki and Vero E6, respectively, followed by incubation in 6-

well plates at 30 °C or 37 °C. Western blot analysis was conducted at 1, 3, 5, and 7 

days post incubation. Analysis of the time points showed a decrease of NP in cells. 

Thus, the temperature rise had a direct negative impact on the replication process 

of reptarenavirus (Figure 10).  

The amount of viral RNA was compared after incubation at both 30 °C and 37 °C, 
to assess whether the decreased NP expression was due to diminished viral 
replication. The transfer of infected cells from 30 °C to 37 °C resulted in the 
reduction of viral replication, as demonstrated by qPCR. In contrast, when cells 
were transferred from 37 °C to 30 °C, viral replication was re-initiated. Transfer 
of cells from 30 °C to 37 °C caused a decrease in the amount of viral RNA, 
surprisingly; however, the amount of viral RNA started to increase after 4 days at 
37 °C. An increase of viral RNA after 4 days at 37 °C is suggestive of an adaptation 
to higher temperature by the reptarenavirus, however more detailed studies on 
the adaptation of reptarenaviruses to higher temperatures is required to establish 
adaptation. However, the amount of viral RNA remained at significantly lower 
levels when compared to control cells incubated constantly at 30 °C. Evidently, 
the transfer from 30 °C to 37 °C, with a modest increase in the viral RNA levels, 
does not produce the expression of NP in cells grown at 37 °C. Lack of viral NP at 
37 °C could be linked to the inability of viral RdRp to operate efficiently at 37 °C. 
Similar characteristics, dependent equally on the same temperature conditions as 
UHV, were demonstrated in the experiments involving UGV-1 (referred to in the 
original publication as T10404).  
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Figure 10. SDS-PAGE analysis of viral NP in reptilian and mammalian cells. Expression of NP in 

reptilian (I/1Ki) and mammalian (Vero E6) cells using comparative culturing and incubating 

temperatures. Infected cell suspension was collected at different time points post-infection (2, 4, 6, and 

8 days post-infection). Cell incubation temperatures were set at 30 °C and 37 °C for both cell lines.  

 

Figure 11. Immunoblot of tick (BME/CTVM2, RAE/CTVM1, IRE/CTVM19), rodent (BHK-21), and 

human (A549) cell lines infected with UHV. Arrow indicating target protein, NP, in the immunoblot using 

anti-rNP polyclonal antibodies.  

Arthropod cell lines were tested as possible vectors for reptarenavirus 

transmission. Snakes with BIBD have been accompanied with mite infestations 

(68), which could be involved as carriers for reptarenavirus. To determine 

whether reptarenaviruses can replicate in arthropod cells, tick cell lines were 

employed, since mite cell lines were unavailable. Reptarenaviruses were able to 

infect the selected tick cell lines, and also depending on 30 °C, allowing viral 

propagation. Arenaviruses such as TCRV and LCMV have been shown to have the 

ability to infect tick cell lines (290, 291), indicating that tick cell lines can be 

permissive for arenaviruses. Ticks can in theory act solely as a preservative 
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transmitter of reptarenavirus from an infected snake to an uninfected, thus 

causing efficient virus transmission. This theory would suggest that snake blood 

would contain reptarenaviruses, which have been detected in snake blood smears 

in BIBD-positive snakes (13, 237). However, an experimental infection of ticks 

following by the housing of infected ticks with snakes is necessary to test this 

theory. Arthropod species may have played a role in the evolution of arenaviruses, 

leading to the adaptation to replicating at lower than mammalian body 

temperatures. Since arthropod cell lines are generally cultured at a 27-30 °C 

temperature range, snake cell lines are also cultured at the same temperature 

range.  

A model human cell line A549 was used for infection experiments with 

reptarenaviruses. The A549 cell line was selected for its known IFN-generation 

competency. Mammarenaviruses possess suppressive properties against IFN 

responses (111, 129, 192); however, it is not known whether reptarenaviruses 

possess similar IFN-suppressing properties. Detection of NP and viral RNA after 

infection in this experiment suggests that reptarenaviruses are able to infect and 

replicate in A549. Infectivity of A549 by reptarenaviruses can also in theory be 

caused via TfR1 pathway, since A549 express TfR1 (292). However, Vero E6-

adapted UHV caused a considerably lower level of infection than the infection 

mediated by the original UHV isolate in A549. The decreased infection efficiency 

is possibly linked to Vero E6 ability to secrete IFN-λ, which has been 

demonstrated with NW infection by hantaviruses (293). BHK-21 cells were used 

to test whether reptarenaviruses can infect rodent cells. Summarizing the cell line 

infection studies through the IFA and immunoblot analysis, the generated results 

have indicated that UHV is permeable in all tested cell lines: Mammalian (Vero, 

Vero E6, A549, and BHK-21) and arthropod [tick cell lines RAE/CTVM1 from R. 

appendiculatus, IRE/CTVM19 from I. ricinus, and BME/CTVM2 from R. (B.) 

microplus]. Notably, the original UHV isolate contained two viruses, UHV-1 and 

ABV-1. Thus, it is possible that only one of the viruses was able to infect the cell 

line. 

Based on the results, reptarenaviruses infect and replicate in non-boid cells, 

although requiring lower temperature conditions for successful viral replication 

(Figure 11). Based on the infection of non-boid cell types, parasite arthropods may 

theoretically serve as a vector for the transmission of the virus, although testing 

of this hypothesis requires in vivo studies. Isolation of reptarenaviruses from 

many wild arthropod species provides strong evidence for such species serving as 

vectors for reptarenaviruses. Strict dependency on temperature for efficient viral 

replication is possibly linked to the properties of viral polymerase. Further 

experiments using recombinant viruses, for instance LCMV-containing 

reptarenaviruses RdRp, could test the adaptability of viral polymerase under 

different temperature conditions.  
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4.2 Reptarenavirus glycoprotein expression in mammalian 
cells (II) 

After determining the ability of reptarenaviruses to infect non-boid cell types, the 

expression of viral GPC in mammalian cells was tested. Viral GPC expression was 

conducted in HEK293FT cells. A panel of 9 reptarenavirus GPCs was selected, 

while the GPCs of a hartmanivirus and two mammarenaviruses served as 

controls. The results showed that the GPCs of all arenaviruses tested can be 

expressed in mammalian cells. Expression of GPC was determined via the 

immunoblotting method, with the HA and FLAG to the C-terminus of GPC. Due 

to a lack of specific anti-GPC antibodies for each species, all GPC species were 

universally blotted against HA and FLAG tags.  

The migration pattern of biotinylated cell surface proteins and whole cell lysates 

of cells expressing GPCs were compared to determine the trafficking of viral 

proteins to the plasma membrane. According to the immunoblot analysis of the 

biotinylated proteins, whole cell lysates and biotinylated proteins had highly 

similar migration patterns, which suggests efficient transport of viral proteins to 

the plasma membrane. The expression dynamics were the same for all arenaviral 

GPCs used in the experiments in HEK293FT cells. The processing of all arenaviral 

GPCs in HEK293FT occurred with considerably low efficiency. According to the 

migration patterns of the proteins, reptarenaviruses displayed in immunoblot 

bands in the size range of 10-37 kDa, with varying intensity. Bands migrating in 

the range 25-37 kDa most likely represent GP2, and additionally lower molecular 

weight bands in the range 10-15 kDa most likely represented degraded fragments 

of GP2 or products from alternative translation. Based on the evidence of GPC 

processing in mammalian cells, the ability to produce processed GPC subunits 

and allow trafficking of proteins to the plasma membrane would suggest 

homologue cellular protease activity in mammalian and reptilian cells. In parallel, 

expression of GPC was conducted in I/1Ki cells, where all GPC were expressed, 

including the control mammarenaviruses and hartmanivirus. A study describing 

the expression of reptarenavirus GPC indicated that GP alone may be preserved 

separately independent of other arenavirus proteins’ properties of expression at 

37 °C, since mammalian cells were cultured constantly at 37 °C. However, lower 

expression efficiency would indicate a dependency on a lower temperature which 

would be closer to the range of cell snake culturing conditions. Arenavirus GPC 

expression in boid and mammalian cell types also suggested the same 

intracellular conditions and presence of necessary factors for expression along 

with polyprotein processing and trafficking to the cell membrane surface. Based 

on the obtained results, transfected cells expressing arenavirus GPC were further 

applied to generate pseudotyping of rVSV. 
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4.3 Tissue and reptarenavirus species tropism using 
pseudotyped recombinant vesicular stomatitis virus (II) 

Recombinant replication deficient vesicular stomatitis virus system (rVSVΔG-

eGFP), has been used as an efficient and safe tool in studies of other non-VSV 

species’ protein interactions (294). In this system, the structure of the virus lacks 

native GP, which is replaced by the GP of alternative virus species, thus making it 

a single cycle infection virus. Visualization of eGFP within cells allows 

determination of the efficiency of infectivity of a particular GP, whereupon a 

successful infection GFP signal is generated within the target cell. In this study, 

rVSVΔG-eGFP system was used for pseudotyping with a selection of 

reptarenavirus, hartmanivirus, and mammarenavirus GPs. The system was 

further used in infection experiments on mammalian and reptilian cell types. The 

aim of the experiment was to establish or block of entry of different 

reptarenaviruses GPs into reptilian and mammalian cell types. Mammarenavirus 

and hartmanivirus pseudotypes were used as controls.  

Reptarenavirus species differ genetically, and may have differences in GP 

interactions with target cell surface receptors. Reptarenaviruses have 

demonstrated the ability to infect and replicate in mammalian, arthropod, and 

boid cell types, as was demonstrated earlier in the study. However, only UHV-1, 

ABV-1, and UGV-1 were used in the study and a limited selection of cell species. 

Here the infection efficiency was determined by the ability of virus to enter target 

cell via the attachment of arenaviral GP to the target receptor with the 

internalization eGFP signal into the cell.  The efficiency was determined on the 

intensity and the quantity of generated GFP signal within infected cell by the 

Opera Phenix High Content Screening System (as described in Methods) 

detecting eGFP-generated fluorescence. The spectrum of the reptilian and 

mammalian cell type diversity was expanded, as indicated in Methods. Nine 

reptarenaviral GPC species were included in the experiments. In addition, two 

mammarenavirus controls for known cell tropism in mammalian hosts, were 

included: and one hartmanivirus as a distant arenavirus control representative. 

The selected control mammarenaviruses were LCMV and JUNV, for which A-DG 

and TfR1 serve as the respective cell surface receptors, where known GP1 and GP2 

characteristics have been identified (155, 168). 

Immunoblots of transfected HEK293FT cells, followed up by pseudotyping by 

rVSVΔG-eGFP, contained the incorporation of reptarenavirus and hartmanivirus 

GPC into the rVSV vector platform. Infectivity of the pseudotyped viruses was 

supported by the titration of viruses. Negative and positive control pseudotyped 

viruses were applied in titration, with rVSV-G and r-VSV-G0, pseudotyped with 

own GP insert and no incorporation of GP, respectively. In rVSV-G, the virus is 

pseudotyped with its own G protein where the infection caused by its pseudotyped 

virus yields the highest infectivity and rVSV-G0 yielding the lowest or no 
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infectivity due to absence of the incorporated GP. According to the results, 

reptarenavirus GPs enabled entry into the cultured mammalian and reptilian 

cells. The highest entry efficiency in mammalian cells was recorded in BHK-21, 

HEK293FT, and CHO wt for all arenaviruses used in the study. Relatively lower 

entry efficiency was recorded in Vero E6 and A549, when the results were 

analyzed based on the infectivity of mammalian cell lines. Entry of the viruses was 

present for most of the viruses, with similar efficiency in mammalian and 

reptilian cell lines, CASV-1 being the only distinguishing and the least permissive 

virus. Nevertheless, CASV-1 did demonstrate entry into HEK293FT, and lower 

entry efficiency for A549, I/1ki, and V/2Hz. 

Distinguishable entry amongst reptarenaviruses was present for GGV-1, relatively 

higher for SK-N-SH than in CHO wt, while in all other reptarenaviruses, 

excluding CASV-1, entry into SK-N-SH was lower than in CHO wt. GGV-1 was 

isolated previously from brain tissue (11, 242), which may resemble higher 

neurotropism in mammalian species. Amongst the closely related 

reptarenaviruses ABV-1 and ABV-2, ABV-2 had almost twofold higher entry 

efficiency into BHK-21. The demonstration of entry efficiency between 

reptarenavirus species shows that GPs have considerable differences in structure 

that impact entry efficiency. Interestingly, equally high entry efficiency was 

demonstrated for all viruses in the V/2Hz constrictor snake heart cell line (13, 

240). In the conducted experiments, the lung and brain cell lines of B. constrictor 

showed surprisingly low permeability for reptarenaviruses. IB has been identified 

along with reptarenaviruses in lung and brain tissue in analyzed snakes with 

BIBD (13, 237, 242); however the entry of reptarenaviruses remained at very low 

levels in the conducted experiments. 

Mammarenaviruses showed the ability to infect cells with low permeability where 

an alternative entry route with the use of unidentified receptors or co-receptors 

has been suggested (295). In the conducted study, natural entry occurred with a 

possibility to use TfR1 or A-DG and unknown endocytic pathways. 

Mammarenaviruses have demonstrated even higher entry efficiency into V/2Hz 

than the vast majority of reptarenaviruses. The ability of mammarenaviruses to 

infect reptilian cell types could indicate an evolutionary relation to reptarenavirus 

GP. However, viral entry efficiency only indicated the potential of viral entry into 

particular target cells and does not indicate an ability to replicate or to produce 

progeny virions from the infected cells. Python liver, VII/1Liv, was not permissive 

for any arenavirus used in the study, where the infectivity levels were as low as 

rVSV-G0 levels, thus indicating a lack of permissiveness for arenaviruses. The 

python liver cell line, based on its apparent naturally non-permissive properties 

for arenaviruses, could be utilized as a platform for research on specific cell 

surface receptor and virus-specific GP interactions. Knowing that non-permissive 

cell lines would not naturally allow the entry of arenaviruses, the expression of 

known mammarenavirus cell surface receptors, such as TfR1, NRP-2, and A-DG, 
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would in theory allow testing on whether reptarenaviral entry depends on the 

same or orthologs of such receptors.  

The arenaviruses used in the study showed wide tropism amongst mammalian 

and reptilian cell types. The ability of arenaviruses to infect different cell type 

could maximize the likelihood of recombinations to occur in the wild. However, 

the use of pseudotyped viruses does not demonstrate a natural infection process, 

due to the artificial expression of GP on the surface of non-native carrying virus. 

Pseudotyped viruses used in the study have demonstrated only the ability of 

selected arenaviral GP to attach and allow the entry into the target cell. 

Replication processes, with essential maturation and budding stages of progeny 

virions should involve in the future studies the use of wild type viruses, possessing 

all viral proteins and unmodified genome. The role of other than GP arenaviral 

protein should also be taken into consideration in future studies. In addition, 

purification of pseudotyped viruses could lead to the decrease of viral titers. 

Reptarenaviruses did demonstrate the ability to infect mammalian cell lines at 

different efficiencies and mammarenaviruses were able to enter reptilian cells. 

The ability to replicate in corresponding arenavirus-permeable cell lines and 

identification of receptor usage would constitute the infection potential of viruses 

in specific tissues and animals possessing such cell types. 

4.4 Generation of anti-boa IgM and IgY and their 
application/use in serodiagnostics (III) 

Four classes of immunoglobulins (IgM, IgD, and two classes of IgY) play a role in 

the humoral immunity of snakes (259). Previous reports characterizing UHV-1 

have provided information about anti-reptarenavirus antibodies in snakes with 

BIBD (13). However, a lack of specific reagents recognizing reptarenavirus-

specific antibodies hampers the classification of antibody response. Notably, due 

to a lack of reptarenavirus-specific reagents, serodiagnostics also remain less 

specific for the detection of BIBD etiological agents. Snakes possess  IgY, IgD and 

IgM class antibodies, that are generated upon encounter with an antigen (259). 

To identify the presence and diversity of antibodies in snakes infected with 

reptarenaviruses, reagents were generated to detect snake-specific IgM and IgY 

antibodies. The generation of anti-boa antibodies would allow the detection of the 

presence of reptarenavirus-specific antibodies. A serum from a reptarenavirus-

infected snake would be incubated with a reptarenavirus antigen. Thus, the 

introduction of the reptarenavirus antigen to the serum from a reptarenavirus-

infected snake would create an antibody-antigen-specific complex. The complex 

was further incubated with anti-IgM and anti-IgY antibodies that were generated 

and purified from rabbit. Upon generation of anti-IgY and anti-IgM antibodies 
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bound to the complex, the final addition of IRDye 800CW-labeled donkey anti-

rabbit antibodies would allow visual detection of an infrared signal.  

The generation of anti-IgM and anti-IgY reagents was performed from sera 

initially isolated from a pool of two boa constrictor snakes and concentrated via 

PEG precipitation. The separation of IgY and IgM was performed by gel filtration 

and size-exclusion chromatography, resulting in two fractions representing IgM 

and IgY. The resulting fractions were submitted further to mass spectrometry, 

yielding three peptides that matched Python bivitattus IgY, and a single peptide 

matching Orthriophis taeniurus IgD for IgM. Notably, mass spectrometry 

analysis could not confirm the exact relation of the results to boa constrictor, since 

the database on boa constrictor Ig was absent at the point when the analyses were 

conducted. Nevertheless, the closest indication of peptide matchings suggested 

that the IgY fraction was related to boa constrictor. Evidence from the protein 

analysis via SDS-PAGE would suggest that IgD matchings are actually IgM-based. 

Since the source of Ig was the serum, the presence of IgD would not be expected 

since it has been shown to be mostly membrane-bound in mammals (296, 297), 

although there is no evidence for IgD being bound to the membrane in reptiles, 

particularly in snakes.  

The IgM and IgY fractions were used to immunize rabbits to obtain boa-specific 

secondary antisera, thus generating antibodies able to recognize boa IgM and IgY 

antibodies. The antisera were tested by immunoblotting with the protein pellets 

containing both IgY and IgM. Immunoblot analysis of antisera showed almost 

identical protein bands, suggesting cross-reactivity between the two Igs. To 

separate the IgY and IgM, an affinity chromatography purification process was 

enabled. IgY and IgM fractions were coupled separately to CnBr-activated 

Sepharose (GE Healthcare) to generate affinity columns. The initial passing of 

anti-IgY antiserum through the IgM-coupled column resulted in the removal of 

cross-reactive antibodies. The final IgY fraction purification from the bound 

protein was used with a protein G column. Similarly, an anti-IgM antiserum 

purification process was conducted. The resulting purification products of IgM 

and IgM were used as antigens against immunized sera, and showed only minimal 

cross-reactivity. To use the generated secondary antibodies with enhanced effect, 

the Igs fractions were coupled with horseradish peroxidase (HRP), also analyzing 

IgM and IgY as test antigens. Thus, both reagents resulted in considerably good 

performance in chemiluminescence (ECL) detection (268). The validity of the 

reagents was later subjected to testing with reptarenavirus antigens, with the aim 

to detect reptarenavirus-specific IgM and IgY antibodies in the serum.  

The application of anti-snake IgY and IgM in western blot has shown to be 

functional, when they were used to detect reptarenavirus-specific antibodies from 

infected snake serum (Figure 12). Viral NP was selected as an antigen to test the 

generated reagents. Nine different snake sera were incubated with rNP antigen, 



63 
 

resulting in the detection of IgM and IgY in one snake serum, and another IgY 

solely in another snake. Overall, out of nine tested snake sera, only two possessed 

reptarenavirus NP-specific antibodies. Infection of the Vero E6 with UHV-

adapted virus confirmed the presence of viral proteins via immunofluorescence 

analysis. Serum lacking antibodies against NP was additionally confirmed in the 

IFA analysis of infected cells by UHV-1, and followed up by staining with IgM and 

IgY negative serum from snake #6. Positive serum for IgY and IgM deriving from 

snakes #7 and #9 showed positive fluorescence, confirming the presence of rNP-

recognizing antibodies. Experimentally infected snake sera were screened for the 

presence of anti-reptarenavirus antibodies, similarly using rNP as an antigen in 

the blotting. As a result of experimental infection, the majority of sera had IgY 

present, yet most of the snakes lacked IgM (Figure 12). A pool of experimentally 

infected snakes after serum screening showed that only two out of thirteen 

possessed both IgM and IgY antibodies, and eleven possessed only IgY class 

antibodies against rNP (Figure 12).  

 

Figure 12. Screening of sera from experimentally infected Boa constrictor snakes with 

reptarenaviruses, by immunoblotting. Screening was conducted using rNP reptarenavirus as an 

antigen, indicated by an arrow. Multiple arrows indicate NP fractions.  
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According to the conducted experiments, the generated reagents have been tested 

and validated using immunoblotting and immunofluorescence staining. 

Application of the developed reagent has allowed detection of the immune 

response in reptarenavirus-infected snakes and can be utilized in the future for 

serological diagnostic purposes.  

4.5 Experimentally and naturally infected snakes with 
reptarenavirus generate neutralizing antibodies (IV) 

Previous reports have suggested the presence of anti-reptarenavirus antibodies in 

the serum from BIBD-positive snakes, conducted via indirect ELISA assay (13). 

In another report, serum analysis of reptarenavirus-infected snakes living in the 

wild indicated the presence of anti-NP antibodies (268). Experimental infection 

with reptarenaviruses was conducted in order to induce BIBD and detect immune 

response against reptarenaviruses. Notably, snakes experimentally infected with 

reptarenaviruses were monitored for the presence of virus-induced disease signs. 

UHV-1, ABV-1, and UGV-1 reptarenaviruses were used in the experimental 

infections. However, clear and progressive BIBD-associated signs were not 

observed, particularly absence of IB was evident in post mortem tissue analysis. 

Neurological signs were detected in some snakes, which could be linked to virus 

infection. Experimental infection of python and boa constrictor snake species was 

conducted, with the goal to determine the presence of neutralizing antibodies 

against reptarenaviruses. Serum extracted from experimentally infected snakes 

was subjected to ELISA analysis to verify the presence or absence of IgY and IgM 

antibodies. Python sera presented low values in the ELISA analysis for both IgM 

and IgY antibodies against NP, that was used an antigen. Absence of antibodies 

would indicate a lack of cross-reactivity of antibodies in the sera. In contrast, both 

experimentally and naturally infected B. constrictor snakes showed consistent 

and much higher values for IgY class antibodies in the ELISA analysis; however, 

IgM class antibodies were considerably lower. Detection of IgY with higher values 

would also be associated with the later generation and longer half-life of the 

antibodies in contrast to IgM antibodies. Post-mortem extracted sera from 

experimentally infected snakes were subjected to testing with pseudotyped rVSV 

with respective reptarenavirus GP species that were used in the infection 

experiments with the whole viruses. Serial serum dilution was tested with 

constant viral load, where the neutralization titer was determined. Neutralizing 

antibodies against all reptarenaviruses with various degrees of neutralization 

were detected (Figure 13). Cross-reactivity of antibodies against other 

reptarenaviruses was detected in most cases, suggesting similarities between 

reptarenavirus GP confirmation and the target epitopes.  

 



65 
 

 

Figure 13. Neutralization assay of sera from experimentally infected constrictor snakes with 

reptarenaviruses. The pseudotyped viruses represented GP UHV-1, UGV-1, and ABV-1. Y axis 

represents the percentage of neutralization, X axis represents the dilution of the serum. 
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Figure 14. Neutralization assay of sera from natural infections with reptarenaviruses. The pseudotyped 

viruses represented a GP of S-5 like, TSMV-2 and UGV-1. Y axis represents the percentage of 

neutralization, X axis represents the dilution of the serum. 

Neutralization assay was set up to further determine the presence or absence of 

neutralizing antibodies in naturally infected snakes with reptarenavirus. A total 

of 25 sera from naturally infected constrictor snakes were screened for 

reptarenaviruses. Based on the RT-PCR results of infected snakes, the following 

viruses were present: TSMV-2, UGV-1, and S-5 (268). Based on the viruses 

identified in the snakes, the rVSV pseudotyped with the corresponding 

reptarenavirus GP was applied in the neutralization assay. According to the 

neutralization assay results, the majority of naturally infected snakes were able to 

generate neutralizing antibodies against viral GP with relatively high titers of 

neutralization (Figure 14). The experiments demonstrated that reptarenaviruses 

can induce the production of neutralizing antibodies in boa constrictor snakes, 

although progressive disease signs were absent. The application of a wider 

selection of reptarenaviruses in experimental infection would help to identify the 

causative agents of BIBD. While it is evident that reptarenaviruses infect snakes, 

the identification of a BIBD-inducing virus or virus combination still requires 

establishment. In addition, the role of other reptarenavirus proteins and co-

infections by reptarenaviruses would be required in future testing to better 

understand the pathogenesis of reptarenaviruses in snakes.  
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5. CONCLUDING REMARKS 

BIBD has been strongly linked to reptarenavirus infection in captive constrictor 

snakes (11-13). Here, studies were conducted to examine the temperature 

dependency of reptarenavirus infection and the ability of reptarenaviruses to 

replicate in various host cells, including non-boid cells. The results from the 

conducted studies showed that reptarenaviruses can infect the cells of different 

species including rodent, human, arthropod, and snake cells. In addition to 

inducing IB in reptilian cells, reptarenaviruses have demonstrated the ability to 

induce the formation of IB within mammalian cells. However, viral replication is 

restricted to lower temperatures characteristic of reptilian species, which can be 

associated with the adaptation of reptarenavirus RdRp to operate optimally at 

reptilian body temperature.  

Experimental infections were conducted in constrictor snakes using 

reptarenaviruses. The experimental infections of captive snakes did not yield a 

consistent presence of IB, even though the RT-PCR results were positive for the 

virus. In contrast, in naturally infected snake tissue samples, histological analysis 

allowed the detection of IB in some of the infected snakes. Lack of IB formation 

in experimentally infected snakes could be linked to a strong immune response 

against NP, main component associated with the formation of IB. However, 

snakes may still experience BIBD signs, such as neurological signs and yet not 

develop IB as was discovered in earlier studies (237, 238, 242). Experimental 

infection in conducted study of snakes with one or multiple reptarenaviruses did 

not induce clear and progressive BIBD signs in infected snakes, such as 

progressive head tremors, so-called ‘’stargazing’’ or also known as opisthotonus, 

regurgitation, lack of appetite, and eventual anorexia (240).  While the conditions 

that were used in the experiments for snake housing ranged from 27-29 °C, the 

snake owners use heat lamps to regulate temperature in snake terrariums. This 

creates heat gradients, allowing snakes to naturally regulate their body 

temperature. The unregulated heat conditions in the experimental setting may 

have affected the progression of the infection and have had a negative impact on 

the progression of BIBD. Interestingly, it was noted that snakes naturally infected 

with reptarenaviruses have weak anti-NP antibody levels with high neutralizing 

titers. In contrast, experimentally infected snakes had inverse values for anti-NP 

antibodies. A similar study by Stenglein et al in 2017 (242) successfully 

established the formation of IB by the reptarenavirus. However, they used 

reptarenavirus GGV-1, which was not used in this study. Previous studies have 

also established the formation of IB in snakes (68, 237, 238), but at the time those 

studies were conducted, reptarenaviruses’ existence was not known. Thus, viral 
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diversity amongst reptarenaviruses can vary in pathogenicity and causing of 

BIBD.  

Pseudotyped viruses were used in the tissue tropism experiments, where the 

panel of diverse mammalian and reptilian cells were tested. Reptarenavirus GPs 

were able to enter not only reptilian cell lines, but also mammalian cell lines, 

regardless of the incubation temperatures during infection. Viral entry was 

recorded with various efficiencies, and even for some reptilian cell lines, such as 

python liver cells, cells seemed to be impermeable to all arenaviruses used in the 

experiments. Mammarenavirus entry was not restricted to mammalian cell lines, 

and was also evident in reptilian cell lines. The dependency of viral entry on the 

known mammarenavirus receptors A-DG, TfR1, or NRP-2 requires further 

investigations for reptarenaviruses. However, the ability of LCMV and JUNV to 

infect reptilian cell lines would suggest a role of A-DG and/or TfR1 in reptilian 

cell line infections. Temperature dependency plays a crucial role in the replication 

of reptarenaviruses in mammalian cells; however, wild-type viruses with 

expanded diversity reptilian cell line panel require future testing.  

Mammarenavirus infections in humans induce strong humoral immune 

response, resulting in the generation of IgM and IgG class antibodies (257, 298-

301). Here, reagents were developed to recognize anti-boa IgM and IgY, and 

applied as serological tools to detect boa IgM and IgY bound to reptarenavirus 

antigen. The developed reagents were tested in immunoblotting with viral 

antigens, allowing the detection of the presence or absence of the immune 

response in reptarenavirus-infected snakes. Experimentally infected snakes 

showed for the most part an absence of IgM antibodies against reptarenavirus 

NP, although IgY class antibodies were detected. With available serum from 

experimentally infected snakes and with the pseudotyped rVSV system, the 

presence of neutralizing antibodies in snakes infected with reptarenaviruses was 

tested. Reptarenavirus infection appear to stimulate the consistent generation of 

neutralizing antibodies in experimentally infected snakes. However, detailed 

analysis of viral antibody epitopes requires further investigation.  

To summarize, it is quite possible that extended reptarenavirus infection leads to 

BIBD. The conducted studies were able to show that the spectrum of selected 

mammalian and reptilian target cells was tested with reptarenaviruses. The 

association of viral replication dependency on restricted temperature conditions 

could further determine the role of viral polymerase properties under various 

temperatures. Identification of antibodies against reptarenaviruses can be used 

to determine the level of protection in animals that have been priorly infected with 

reptarenavirus. While there are currently no licensed treatments against 

reptarenavirus infection, this study has provided novel information on 

reptarenavirus infections in mammalian and reptilian cells. Future research is 

aimed at identifying specific antiviral targets.  
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