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ABSTRACT  

This paper presents a hybrid navigation algorithm based on loose coupling of the on-board speedometer and inertial sensors of a land 

vehicle with a GNSS receiver. An Extended Kalman Filter estimating ten error states is used as the hybridization framework. The 

algorithm is developed to serve as a baseline for the evaluation of the navigation infrastructure of the Aurora ecosystem which is an 

Arctic test bed for autonomous vehicles and intelligent transport systems. In the experimental tests we focus on the performance of 

the navigation algorithm during GNSS outages. First, the tests indicate that the quality of GNSS updates has an immediate effect on 

how fast the position errors accumulate when GNSS becomes unavailable. Second, using low-cost sensors together with the current 

navigation infrastructure available at the Aurora test site, GNSS position fixes need to be obtained at intervals no longer than 4 sec-

onds in order to maintain a 95 % horizontal positioning accuracy better than 0.2 meters. The results serve as a basis for recommen-

dations for further development of the Aurora ecosystem, suggesting that further positioning infrastructure could be deployed for 

guaranteeing a navigation performance adequate for autonomous vehicles. 

INTRODUCTION  

Traditionally, sub-meter positioning accuracies have mostly been required by professional users such as surveyors and precision 

farmers. However, with the growing interest in intelligent transport system (ITS) technology and autonomous vehicles, such needs 

are going to become more common. It is evident that autonomous driving requires a high positioning performance, but no standard 

specifications have been established. A set of requirements is proposed in [1] as a synthesis of interviews and existing literature. 

In [2], a horizontal positioning accuracy requirement of 0.5 m (95 %) is postulated; an accuracy specification in the order of 0.1–

0.3 m is foreseen in [3]. 

It is well known that global navigation satellite systems (GNSS) cannot meet these accuracy requirements alone, but together with 

correction data they can be achieved by means of real-time kinematic (RTK) or precise point positioning (PPP) methods. Unfortu-

nately, accuracy is not the only key performance indicator: in particular, GNSS cannot guarantee a 100 % position solution availa-

bility because of its sensitivity to environmental factors such as signal blockage and radio frequency interference. Furthermore, 

GNSS receivers typically provide an update rate in the order of 1 or 10 Hz, which can be insufficient for tracking vehicle dynamics 

at high velocities. 

The problem of position availability and update rate can be solved using on-board motion sensors together with GNSS. Given the 

nonholonomic motion constraint, the trajectory of a land vehicle is straightforward to estimate based on measurements from a speed-

ometer, inertial sensors, magnetometer, etc. [4]. This approach has been shown feasible for the mitigation of GNSS interference and 

spoofing [5, 6], and commercial hybrid navigation solutions targeting autonomous vehicles have been released on the market [7]. In 

addition, imaging sensors such as cameras and laser scanners can provide motion information. The incorporation of motion sensors 

to navigation introduces two challenges: First, the sensors need to be calibrated for biases, scale factors, etc. Second, they do not 

produce absolute position information but only relative increments to previous locations, implying that the accuracy degrades over 

time in the absence of GNSS updates. Consequently, given the vulnerabilities of GNSS, additional infrastructure may be needed to 

meet the performance requirements. 

With the increased interest in autonomous driving, various test beds have been built around the world to be used by developers of 

autonomous vehicles, ITS, and related technology, e.g., [8–10]. Typically, such test beds offer infrastructure for, at least, telecom-

munications and precise navigation as well as other information such as accurate maps. These test beds are ideal ecosystems for the 

development and evaluation of additional navigation infrastructure that can address the availability concerns of GNSS. Obviously, 

there is a need to validate that the test bed infrastructure can meet the performance needs of autonomous vehicles. 

In this paper, we present a fusion algorithm for GNSS, inertial sensors, and a vehicle speedometer, and analyze the resulting perfor-

mance in light of the proposed accuracy requirements for autonomous vehicles The algorithm is based on nonholonomic constraints, 

using the gyroscopes to estimate the three-dimensional attitude of the vehicle and propagating the position based on the measured 

speed. GNSS updates are incorporated in a loosely coupled architecture, and the initial attitude is determined based on accelerometers 

and GNSS-derived heading. The goal is to assess the quality of the sensor-based position estimate under degraded GNSS availability: 

we investigate both temporary GNSS outages and lower GNSS update frequencies. The navigation algorithm will serve as a baseline 

to provide recommendations for future development of the Aurora ecosystem [8] located in Northern Finland, complementing pre-

vious performance studies [11]. 



 

 

This paper is organized as follows. First, we outline the objectives of the Aurora Ecosystem in the field of autonomous driving 

research. Then, the hybrid navigation algorithm used for the performance validation is described. Finally, experimental results are 

presented to quantify the obtained performance during degraded GNSS availability. 

AURORA ECOSYSTEM 

The Aurora Borealis Corridor [8] is a cross-border test bed for autonomous driving, located at the E8 road in Finland and Norway 

(Figure 1). There are two test sections with specialized instrumentation: one on the Finnish side, called Aurora, and another on the 

Norwegian side of the border, called Borealis. While different test beds for autonomous driving are being deployed around the world, 

e.g., [9, 10], the purpose of the Aurora Borealis Corridor is to enable testing of autonomous vehicles in challenging Arctic winter 

conditions where roads are slippery, lane markings are covered by snow, the ionosphere is highly active, and it is dark for most of 

the day. From a positioning, navigation, and timing (PNT) point of view, it is noteworthy that the Aurora Borealis Corridor is located 

within the EGNOS coverage area; however, because of the high-latitude location (above 67° N), the visibility of geostationary sat-

ellites in the test bed area is limited. Where necessary, the EGNOS augmentation data can be downloaded online from the EGNOS 

Data Access Service [12] instead of the signal-in-space. 

 

Figure 1 Map of the Aurora Borealis corridor. Image © Finnish Transport Infrastructure Agency. 

The experiments reported in this paper were conducted in the Aurora test section in Finland. For accurate PNT, the Aurora ecosystem 

provides various infrastructures. First, four new permanent GNSS reference stations, part of the Finnish national GNSS network 

FinnRef [13], have been deployed in addition to three existing FinnRef stations close to the E8 road. Using these reference stations, 

the FinnRef network is capable of providing precise GNSS corrections in the form of raw base station measurements or virtual 

reference station observations for RTK as well as state-space representation corrections for PPP. In addition, high-definition maps 

of the road boundaries, markings, etc. are available. The Aurora ecosystem also makes it possible for researchers and companies to 

deploy their proprietary technology, such as ultra-wide band radio beacons or radar reflectors, for testing in a real environment. The 

Aurora test bed has a good coverage of commercial cellular networks, including a dedicated 4G+ broadband network. Moreover, the 

Aurora ecosystem includes non-PNT related infrastructure such as roadside cameras and traffic sensors embedded in the road. 

HYBRIDIZATION ALGORITHM 

In this paper, we investigate sensor fusion in a loosely coupled architecture, i.e., the position solution obtained from GNSS is com-

bined with the position estimated based on the motion sensors. The architecture is illustrated in Figure 2, with measurement inputs 

indicated by red color. This choice of architecture favors a low complexity of implementation over more efficient GNSS updates: 

whenever not enough GNSS measurements are available for position computation, an update cannot be conducted; in contrast, a 



 

 

tightly coupled system could still make use of raw measurements from less than four satellites. However, since the goal of this paper 

is to investigate the performance in the absence of GNSS updates, this is not a critical drawback. Furthermore, the simplicity of the 

architecture makes it straightforward to incorporate other sources of PNT information that can be made available at autonomous 

vehicle test beds, such as short-range radio ranging. 

 

Figure 2 Architecture of the sensor fusion algorithm 

In the following sections, we describe the sensor-based position equations and the Kalman Filter (KF) used for the data fusion. It is 

noteworthy that a two-dimensional navigation solution could be computed by only keeping track of the heading instead of the full 

three-dimensional attitude. However, the test site is not located on flat ground but has altitude differences up to 30 m, rendering the 

validity of a two-dimensional algorithm questionable. In conjunction with map matching, a two-dimensional solution could be suit-

able and more robust than a solution with six degrees of freedom. However, maps are beyond the scope of this paper; they are to be 

investigated as future work. 

Position Computation 

Since motion sensors only provide relative position and attitude information, initial position and attitude estimates 𝒑𝑡−1 and Ψ𝑡−1, 

respectively, are assumed available; they can be determined using GNSS and accelerometer measurements. First, the attitude Ψ𝑡−1 

is updated using the gyroscope measurements 𝜔𝑡 following the relation 

Ψ̇ = Ψ(𝜔 ×) 

where (𝜔 ×) denotes the 3×3 skew-symmetric cross product matrix constructed from the vector 𝜔. We use direction cosine matrices 

to represent the three-dimensional attitude as the rotation from the vehicle’s coordinate frame to the navigation frame (Earth-centered 

Earth-fixed coordinate system).  

Next, the position 𝒑𝑡−1 is updated. Assuming the 𝑥-axis to be pointing forward in the vehicle’s coordinate frame, the position is 

propagated as 

𝒑𝑡 = 𝒑𝑡−1 +
1

2
(Ψ𝑡−1 + Ψ𝑡) [

𝑣𝑡

0
0

] ∆𝑇 

where 𝑣𝑡 denotes the speed measurement and Δ𝑇 is the time step. Note that in this study, we use speed measurements from a wheel 

encoder instead of accelerometers in order to avoid error accumulation due to the integration of gravity compensation residuals. 



 

 

 

The speedometer determines the ground speed by measuring wheel rotations and applying an estimate of the tire circumference. This 

speed measurement is affected by two auxiliary factors. First, the instantaneous tire circumference depends on several factors such 

as the tread wear, tire pressure, and vehicle load, resulting in a scaling uncertainty of several percent. This scale factor 𝑠 is estimated 

on the fly by the KF and applied on the raw speedometer measurement 𝑣𝑟𝑎𝑤 as follows to obtain the scale factor compensated 

speed 𝑣𝑆𝐹: 

𝑣𝑆𝐹 = 
𝑣𝑟𝑎𝑤

1 + 𝑠
. 

Second, contrary to the angular rate, the measured speed depends on the point of reference on the vehicle body. In general, the GNSS 

antenna and the speedometer point of reference do not coincide, resulting in a lever arm effect on the speed measurement whenever 

the vehicle is turning. The lever arm effect is a function of the three-dimensional vector 𝑳, pointing from the speedometer reference 

point to the GNSS antenna, and the angular rate 𝜔, compensated for as 

𝑣𝐺𝑁𝑆𝑆 = ‖[
𝑣𝑆𝐹

0
0

] − 𝜔 × 𝑳‖ 

to obtain the GNSS antenna speed 𝑣𝐺𝑁𝑆𝑆. The lever arm vector 𝑳 has to be measured when the sensors are installed on the vehicle. 

As a result of the lever arm compensation, the resulting position estimates are referred to the location of the GNSS antenna. 

Error-State Kalman Filter 

The position and attitude propagation algorithm described above is subject to error accumulation over time. In order to mitigate the 

errors, an error-state KF is run. GNSS position fixes are used to estimate the contributions of the underlying uncertainty factors, after 

which they can be compensated for. However, GNSS updates are not available at every navigation epoch, which is why the KF block 

in Figure 2 is drawn with a dashed boundary.  

The state vector 𝒙 consists of ten components: position errors 𝛿𝒑, attitude errors 𝛿Ψ, gyroscope bias errors 𝛿𝒃, and the speedometer 

scale factor error 𝛿𝑠. The state transition model can be expressed in continuous time as 

�̇� = [

𝟎 (Ψ𝒗) ×
𝟎 −Ψ

𝟎

Ψ𝒗𝑟𝑎𝑤/(1 + 𝑠)2

0

] [

𝛿𝒑
𝛿Ψ
𝛿𝒃
𝛿𝑠

] = 𝑭𝒙 , 

where 𝒗 = [𝑣 0 0]𝑇 and empty matrix cells correspond to zeros. It can be seen that the position errors are driven by the attitude 

and scale factor errors, and the attitude errors are propagated by gyro biases. The discrete-time solution of the above continuous-time 

system of differential equations is 

𝒙𝑡 = exp(𝑭Δ𝑇) 𝒙𝑡−1 ≈ (𝑰 + 𝑭Δ𝑇)𝒙𝑡−1 

where 𝑰 denotes the identity matrix. The discrete-time state transition noise covariance matrix 𝑸 is expressed as a function of the 

gyroscope measurement noise variance 𝜎𝑔
2, speedometer measurement noise variance 𝜎𝑜

2, gyroscope bias random walk noise vari-

ance 𝜎𝑏
2, and speedometer scale factor random walk noise variance 𝜎𝑠

2 as follows: 
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2
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where 

𝑸11 = 𝜎𝑜
2Ψ[

1 0 0
0 0 0
0 0 0

]Ψ𝑇Δ𝑇 +
𝜎𝑔

2

3
(Ψ𝒗) × ((Ψ𝒗) ×)

𝑇
Δ𝑇3 +

𝜎𝑠
2

3(1+𝑠)2
Ψ𝒗𝒗𝑇Ψ𝑇Δ𝑇3

𝑸22 = 𝜎𝑔
2𝑰Δ𝑇 +

𝜎𝑏
2

3
ΨΨ𝑇Δ𝑇2

. 

This model allows for evaluating the KF state transition equations. Whenever a GNSS position fix is available, a filter update is 

carried out. The update takes the difference of the position estimated by the navigation algorithm and the GNSS-based position as 

the measurement, with the Jacobian matrix 𝑯 expressed simply as 

𝑯 = [𝑰 𝟎 𝟎 𝟎], 

and the measurement noise covariance matrix defined based on precision of the GNSS fix. It is straightforward to include GNSS 

velocity estimates into the updates if desired; however, they were not applied in this paper. 

After the KF update, the estimated error states are fed back to the navigation variables as 

𝒑𝑡 = 𝒑𝑡 − 𝛿𝒑

Ψ𝑡 = (𝑰 + 𝛿Ψ ×)Ψ𝑡

𝒃𝑡

𝑠𝑡

=
=

𝒃𝑡 + 𝛿𝒃
𝑠𝑡 + 𝛿𝑠

, 

and finally, the KF state vector is reset to zero (while the covariance matrix remains intact). 

EXPERIMENTS 

We analyze the behavior of the implemented hybrid navigation algorithm using three different GNSS data sets: one using EGNOS 

corrections, another one which is an un-assisted multi-GNSS (GPS–Galileo–GLONASS–BeiDou) solution, and an RTK solution. 

The trajectory in each data set is a round-trip drive in the Aurora test area starting from the South. The purpose of the analysis is to 

characterize the position error accumulation between GNSS position updates. First, we investigate how the behavior of the errors 

under prolonged GNSS outages, under two different receiver processing configurations: un-assisted multi-GNSS and EGNOS. Then, 

we use the RTK data to find out the maximum GNSS update period where the horizontal positioning accuracy can be maintained 

below 20 cm. 



 

 

 

Figure 3 Example vehicle speed profile during a round-trip drive in Aurora. The horizontal dashed lines correspond to different 

speed limits. 

It is noteworthy that during the data collection, the vehicle was driven at the same speed as other traffic on the public road. The speed 

limits within the Aurora test environment range from 50 km/h (Muonio population centre) to 100 km/h, and an example speed profile 

is plotted in Figure 3. The higher the speed, the faster the position error accumulation; this, as well as possible differences in the 

choice of sensors, should be kept in mind when comparing the results with other studies. 

Test Setup 

The experiments were conducted using the experimental autonomous vehicle developed by the RobotCar Crew of VTT Technical 

Centre of Finland (Figure 4). Although the vehicle is capable of driving autonomously, this feature was not enabled in these experi-

ments but the car was steered manually by a human driver. 

     

Figure 4 Test vehicle. Left: side view; right: instruments mounted in the cargo area. 

A GNSS antenna was mounted on the roof of the test vehicle, and the incoming signal was split for several receivers. One of the 

receivers was a NovAtel Propak6 coupled with a Honeywell HG1700–AG58 IMU whose purpose was to provide an uninterrupted 

position and attitude reference at 100 Hz update rate. The other receivers were Javad Delta units configured to output position solu-

tions at 1 Hz update rate using different GNSS correction data: one running in stand-alone mode, another one using EGNOS, and a 

third receiver using RTK corrections. Furthermore, an Xsens MTi-G-700 MEMS IMU was used to obtain the inertial data for the 

hybridization algorithm, and the measurements of the on-board speedometer were logged. With all the necessary data collected, the 

hybridization filter was run post-mission. 



 

 

The lever arm vector between the IMU and the GNSS antenna reference point was surveyed beforehand using a total station. In 

addition, the coordinates of each wheel were measured in the same coordinate frame such that the speedometer lever arm effect can 

be compensated for: the lever arm vector 𝑳 was determined from these candidates by finding the best match between the GNSS and 

odometer-based speeds. 

Performance During GNSS Outages 

To investigate the error accumulation during GNSS outages, artificial gaps were injected into the GNSS position fix time series. The 

test trajectory, i.e., a round-trip drive in Aurora, and the start/end points of the four artificial data gaps are plotted in Figure 5. Two 

of the gaps were 38 s in duration whereas the other two spanned 85 s. The gap durations and occurrence times were chosen arbitrarily. 

We examine two data sets: one where receiver was configured to use all four GNSS constellations but no correction data, and another 

one where the GNSS receiver was using GPS only with EGNOS corrections. Note that neither of these two GNSS processing con-

figurations gives a 95 % horizontal positioning accuracy better than 0.2 m; however, the purpose of this test is to see the effect of the 

accuracy of the GNSS data on the error accumulation of sensor-based navigation. 

 

Figure 5 Test trajectory and the start/end points of the simulated GNSS outages (blue markers) 

The position error accumulation in the multi-GNSS test is plotted in Figure 6. No GNSS correction data were used in this configu-

ration, and the average position error is a couple of meters in total; clear spikes are observed during GNSS unavailability. In order to 

assess the effect of filter tuning on the results, we compare two solution variants: one obtained with nominal GNSS update weights, 

and another one where the GNSS measurements are given a lower weight (error standard deviation increased by a factor of 10) to 

increase the reliance on the error state evolution model. The different weightings produce somewhat different results, but the differ-

ence is not very remarkable. Thus, we conclude that the results are not severely affected by the choice of filter tuning within this 

scale. 

                       

        

 

    

    

    

    

    

    

    

    

         



 

 

      

Figure 6 Position errors in the multi-GNSS test. Left: default weight on GNSS updates; right: reduced weight on GNSS updates 

The accumulation of positioning errors in the case where the GNSS receiver is set to use EGNOS corrections is plotted in Figure 7. 

It can be seen that the accuracy of the EGNOS-based GNSS solution is better than in the multi-GNSS test, i.e., approximately 1 m, 

but visible error accumulation is observed during the longer outages. Figure 7 also shows close-ups of the GNSS outage periods. The 

accumulated error spikes are lower than those in the multi-GNSS test, suggesting that the accuracy of GNSS updates is significant 

for the performance of the hybrid navigation algorithm. 

  



 

 

 

 

 

Figure 7 Position errors in the EGNOS test with artificial data gaps. Top: Entire time series; bottom: zoom to each GNSS outage 

period. 

An important driver of position errors during GNSS outages are attitude estimation errors. The IMU of the reference system and the 

low-cost Xsens IMU were rigidly mounted but not mutually aligned. Consequently, one should expect to see constant offsets between 

the Euler angles estimated by the reference system and the proposed navigation algorithm. The Euler angle estimates with the two 



 

 

different weightings are compared in Figure 8. We observe a long-term variation in the roll angle estimates during the first half of 

the test data, but the coordinate differences converge to the same values for the latter half of the time. The solution with less weight 

on GNSS updates exhibits more noise on the Euler angles, but the long-term variations look similar. However, the choice of GNSS 

weighting makes no significant difference in the accumulation of attitude errors during the data gaps; this can be expected because 

both solutions were computed using the same gyroscope data. 

 

               

Figure 8 Difference of attitude estimates between the proposed algorithm and the reference system in the multi-GNSS test.  

Left: default weight on GNSS updates; right: reduced weight on GNSS updates. 

In contrast, the attitude estimates obtained in the EGNOS test (Figure 9) follow the reference solution with no distinctive long-term 

variations, excluding the initial convergence period. The average values of the Euler angle offsets are similar to those obtained in the 

latter half of the multi-GNSS test, indicating that the attitude estimation works consistently. 

 

 

Figure 9 Difference of attitude estimates (in units of degrees) between the proposed algorithm and the reference system in the 

EGNOS test 

 



 

 

Performance with Reduced GNSS Update Rate 

In this experiment, the GNSS updates were decreased from 1 Hz intervals to a slower rate in order to investigate the minimum GNSS 

sampling rate where a horizontal positioning accuracy better than 0.2 m could be maintained for 95 % of the time. The GNSS position 

fixes utilized in this test were computed by means of RTK processing which can be expected to yield much more precise results than 

the stand-alone and EGNOS configurations employed in the two above experiments. As opposed to the experiments presented in the 

previous section, no prolonged GNSS outages were created but the sampling rate was decreased uniformly. The 0.2 m horizontal 

accuracy benchmark is chosen as a compromise between the requirements postulated in [2] and [3]. 

     
 

     

Figure 10 Position errors with different GNSS update rates. Top left: GNSS position only without sensors; top right: hybridization 

with 1 s update interval; bottom left: hybridization with 4 s update interval; bottom right: hybridization with 10 s update interval 

The degradation of positioning accuracy as a function of GNSS update interval is depicted in Figure 10. It can be seen that the 1 Hz 

GNSS-only solution is very precise when compared with the high-rate hybrid solutions. The error accumulation between GNSS 

updates shows as spikes as the update rate gets sparser.  

  



 

 

Table 1 Horizontal positioning accuracy with different GNSS update intervals 

Update interval [s] 95 % position error [m] 

 Along-track  Cross-track Horizontal 

1 0.090 0.091 0.117 

2 0.102 0.116 0.140 

4 0.131 0.168 0.195 

5 0.146 0.202 0.230 

10 0.213 0.457 0.522 

 

The corresponding accuracy figures are shown in Table 1. It can be seen that four seconds was the maximum GNSS update interval 

where the 0.2 m horizontal accuracy goal could be met for 95 % of the time. Furthermore, the table indicates that the cross-track 

error component increases faster than the along-track error, which is most probably caused by problems maintaining accurate attitude 

estimates with low-cost gyroscopes. Note that the 95 % quantiles of along- and cross-track errors were computed separately, which 

is why their Euclidian norm is greater than the total horizontal 95 % error quantile. 

The maximum GNSS update interval of 4 seconds can be seen as short concerning the likelihood of GNSS outages due to environ-

mental constructions (buildings or tunnels) or communications outages in the RTK correction data stream. Keeping in mind that 

different experiments cannot be directly compared because of differences in trajectory shape, speed, and sensor quality, the result 

seems to be at least in line with the study reported in [6] where meter-level errors were accumulated over 5 s GNSS update intervals 

when using a cell phone grade IMU and [7] where a position error smaller than 0.2 % of the traveled distance was reported, implying 

a speed of 90 km/h to accumulate 0.2 m of position error over 4 seconds. 

CONCLUSIONS 

This paper presented a hybrid navigation algorithm for validating the navigation infrastructure of the Aurora ecosystem. Based on 

low-cost inertial sensors and the on-board speedometer loosely coupled with a GNSS receiver, the algorithm can easily accommodate 

other sources of PNT for performance validation. 

The performance of the algorithm during GNSS outages was analyzed. Using more accurate GNSS updates was observed to enable 

the system to keep the error accumulation slower after GNSS becomes unavailable. The test results indicated that with the current 

GNSS infrastructure available at the Aurora test bed, the maximum GNSS update period where the 95 % horizontal positioning error 

could be maintained below 0.2 m was 4 seconds. While four seconds may not seem like a very long unavailability in the light of the 

well-known shortcomings of GNSS, the outcome was considered to be in line with results reported in existing studies. Nevertheless, 

it is evident that either higher quality sensors or further infrastructure is necessary to guarantee the navigation performance necessary 

for autonomous vehicles. 

As future work, the added value of high-definition map information on the navigation performance during GNSS outages is to be 

investigated. Incorporating the map constraints into the hybridization algorithm is expected to require a more flexible filtering frame-

work as the basis, such as a particle filter. However, as maps are available in the Aurora ecosystem, they should definitely be included 

in the validation of the benefits of Aurora for future autonomous vehicle experiments. 
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