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ABSTRACT
Deployments of battery-powered IoT devices have become ubiq-
uitous, monitoring everything from environmental conditions in
smart cities to wildlife movements in remote areas. How to man-
age the life-cycle of sensors in such large-scale deployments is
currently an open issue. Indeed, most deployments let sensors op-
erate until they fail and fix or replace the sensors post-hoc. In this
paper, we contribute by developing a new approach for facilitat-
ing the life-cycle management of large-scale sensor deployments
through online estimation of battery health. Our approach relies
on so-called V-edge dynamics which capture and characterize in-
stantaneous voltage drops. Experiments carried out on a dataset of
battery discharge measurements demonstrate that our approach
is capable of estimating battery health with up to 80% accuracy,
depending on the characteristics of the devices and the process-
ing load they undergo. Our method is particularly well-suited for
the sensor devices, operating dedicated tasks, that have constant
discharge during their operation.
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1 INTRODUCTION
Every year millions of battery-powered IoT devices are being de-
ployed, monitoring everything from environmental conditions [12]
to occupant health conditions in smart homes [5], animal behavior
in the wild [2], and beyond. Battery life-cycle management is criti-
cal for long-term operation of these deployments as many of the
devices are rarely – or never charged [5] – or rely on intermittent
charging, e.g., through energy harvesting [11]. At the same time,
they operate in highly dynamic environments, ranging from stable
room temperature to extreme weather conditions in the wild.
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Figure 1: Battery discharge voltage Dynamics for different
discharge sequences. In every sequence, a discharge current
of 1A is applied for 10minutes after every 20minutes of rest
until the battery is completely discharged.

The diverse operating conditions of these devices make it diffi-
cult to model how and when the batteries are degrading, and when
they need replacement. Indeed, most deployments operate devices
continuously until they fail, and replace batteries or the entire de-
vice post-hoc. Having an effective mechanism for acquiring reliable
information about the battery health state, i.e., battery capacity,
would significantly facilitate the life-cycle management of these
devices and ensure their operations with minimal disruptions.

Battery capacity is the most critical factor for long-term life-cycle
management. Indeed, reduction in battery capacity causes problems
such as, faster discharging of the batteries, frequent battery level
corrections [8], and sudden shutdown of the devices [21]. Currently,
reliably estimating battery capacity on IoT devices is unfortunately
difficult as most IoT devices have limited means of acquiring such
information. For example, higher-end smart devices can integrate a
Coulomb counter-based fuel gauge [16] that can be used to estimate
battery health upon a complete charge or discharge of the battery.
Another option is to rely on a voltage-based fuel gauge, which
can estimate capacity by modeling battery discharge curves [10].
However, these methods are unsuitable for most IoT devices due to
their complexity and high cost.

The most common approach for IoT devices is to use power
models that estimate both power drain and remaining capacity.
For example, a simple linear model can count the energy spent
per hour by emulating device characteristics with a simple battery
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model [3]. Another example is to use a model that accounts for
energy consumption for the various operating steps of a device [15].
Such models do not consider changes in the internal resistance
characteristics of the battery over time, which affect the discharge
rate of different operating loads. In fact, even two completely new
batteries of the same model may have different internal resistance.
Therefore, these models are either too simple, having poor accuracy
(60%), or require re-calibration with instrumentation of the sensing
device [5]. Neither property is suitable for managing life-cycle of
IoT devices deployed in the wild.

In this paper, we contribute by developing a novel method for
estimating and predicting battery health through so-called V-edge
dynamics. Our approach exploits the discharge load of IoT devices
and identifies characteristics of discharge patterns to predict battery
health. V-edges form in the battery’s discharge curve as a result
of a discharge load; see Figure 1 for an illustration. These edges
result from the internal resistance characteristics of the battery,
which increases through active usage as the battery ages. Hence,
the characteristics of V-edges also change for a particular load.

We demonstrate the feasibility of our approach through a pub-
licly available Lithium battery dataset [1]. Our evaluation results
show that it is possible to estimate active battery usage time with
the instantaneous voltage drop due to a discharge load with reason-
able accuracy (over 80%). This finding is very promising for the IoT
devices having constant discharge load and short discharge period
while operating in different weather conditions. We demonstrate
that V-edge captures the internal resistance dynamics of a battery
due to age, discharge load, and working conditions. Unlike other
battery health estimationmodels for IoT devices [3, 4], our approach
has better accuracy, and the sensor device only reads the battery
voltage during a discharge load and computes V-edge once in a day,
for example. With sufficient V-edge samples, the device can predict
battery health. Alternatively, a sensor network management entity
collects those and estimates the battery health of the IoT devices.

2 BATTERY DATASET AND DEFINITIONS
2.1 Battery Dataset
We consider a publicly available lithium battery dataset from NASA.
The dataset primarily assisted in adapting the parameters of com-
plex electrochemical battery models [1]. We use a subset of the
measurements, which contains the cycling information of 8 lithium-
ion 18650 batteries with 2.2 Ah initial capacity. The batteries were
operated repeatedly, charging them with constant current and con-
stant voltage (CC/CV) charging to 4.2V. The constant charging
current was 2A. The batteries were then discharged to 3.2V using a
randomized sequence of discharging currents between 0.5-5A.

A complete discharge of a battery, i.e., 4.2-to-3.2V, is a sequence of
randomdischarge current loads and resting events, D = {d1, r1,d2, r2,
d3, r3, ...,dn, rn }, where di & ri represent a discharge and a rest
event, respectively. The duration of each discharge event is one
minute, and the average rest period is less than a second. Battery
voltage, temperature, and discharge current are sampled after 1
second in an event along with a timestamp.

The discharge loads in a sequence follow the distributions pre-
sented in Table 1. Four batteries were discharged according to
low-skew discharge distributions (LS), and the other four were

Low Skew (LS) High Skew (HS)
0.5A 7.2% 0.5A 2.0%
1.0A 14.8% 1.0A 2.4%
1.5A 19.3% 1.5A 3.6%
2.0A 21.6% 2.0A 6.0%
2.5A 14.6% 2.5A 9.2%
3.0A 10.0% 3.0A 11.8%
3.5A 6.5% 3.5A 17.2%
4.0A 4.0% 4.0A 23.4%
4.5A 1.5% 4.5A 19.4%
5.0A 0.5% 5.0A 5.0%

Table 1: Distribution of discharge events with different dis-
charge load currents on the batteries.

Discharge Profile Room Temperature 40◦C
Low Skew
(battery-id)
(discharge sequences)
(discharge events)

LS-RT
(bat-14,15)
(1119,1124)
(21510,22426)

LS-40◦C
(bat-23,24)
(511,531)
(20170,19468)

High Skew
(battery-id)
(discharge sequences)
(discharge events)

HS-RT
(bat-19,20)
(1307,1384)
(15245,12739)

HS-40◦C
(bat-27,28)
(605,611)
(11022,9755)

Table 2: Four discharge profiles, corresponding batteries,
and their cycling information, i.e., total discharge sequences
and discharge events.

discharged according to the high-skew distribution (HS). The ex-
periments were conducted in two temperatures: room temperature
and 40◦C. Subsequently, there are four usage profiles, and we de-
note them, as shown in Table 2. Each profile can be mapped to the
load characteristics of two kinds of IoT devices operating at two
different environmental conditions, i.e., temperatures.

2.2 Discharge events and V-edge
Figure 2 characterizes the battery voltage drops across the internal
resistance for a so-called pulsed discharge load of 1A for an equiva-
lent battery model (Thevenin). Pulsed discharge loads correspond
to profiles resulting from battery consuming operations that are
performed repeatedly for a short duration of time with some time in
between the repetitions, making themwell suited for characterizing
discharge profiles of typical IoT devices. For a particular discharge
current, we notice that there is a sharp drop in the battery voltage
as soon as the load begins. After that, the battery voltage reduces
slowly during the load period. This is because the internal resistance
R is sensitive to this current. This sharp change in voltage is called
the V-edge value, Vedдe , which is Vedдe = R × △I = R × I − R × I0,
where I0 is the baseline current load, for example, a device is in the
sleeping mode and draws current from the battery.

3 V-EDGE AND BATTERY HEALTH
The idea in our approach for battery health estimation is to con-
struct models that relate V-edge values and their characteristics
with battery health through battery usage profiles. In this section,
we first model V-edge values as a linear function of battery usage
time according to discharge profiles. These models have median
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Figure 2: A Lithiumbatterymodel, voltage drops for a discharge load, and voltage drop across the internal resistanceR (V-edge).
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Figure 3: The Linear Regression fit of the V-edge values from
Battery-15 according to various discharge currents.

errors of less than 20%. We next associate the predicted battery
usage time with battery capacity (Ah).

3.1 Extracting V-edges
The discharge voltage sampling frequency is 1 Hz, and thus, the
voltage sequence during a discharge event is Vdi :{V1,V2, ...,V60}
ordered in increasing time. Similarly, a rest event is set of two
voltages Vri : {V1,V2}. We compute a V-edge by subtracting the
first discharge voltage from the last voltage of previous resting
event in a discharge sequence, i.e,Viedдe = Vri−1(2) −Vdi (1). The
time delta between these two voltage updates is less than a second.
This ensures that we compute the instantaneous voltage drop. In
this dataset, there were no baseline loads during the discharge
experiments, and thus, Vedдe = R × △I = R × I .

In the dataset, the discharge load period is one minute. In prac-
tice, an embedded or IoT device may have shorter discharge periods.
The advantage of using V-edge is that it can be characterized within
a short period of time. Xu et al. used lithium-ion batteries of smart-
phones and showed that the relation between the discharge load
current and V-edge is linear [23]. The authors applied such a rela-
tion to model the runtime power consumption of mobile devices.
On the contrary, we explore the relation between V-edge and battery
health for specific discharge current loads. As we are investigating
cylindrical lithium-ion batteries, we first verify the behavior of
V-edges. Figure 3 shows that such linear relation also holds for the
18650 lithium batteries considered in our experiments.
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Figure 4: The Linear Regression fits of the V-edge values for
different discharge profiles at room temperature.

3.2 Predicting Active Battery Usage Time
We next demonstrate how the discharge profiles in Table 2 affect
V-edge over time. We take the first two V-edge values from two
consecutive discharge events from each sequence and classify those
according to the discharging loads for all discharge sequences. We
then construct linear regression models for the discharge loads
presented in Table 1.

Figures 4 and 5 show the fitted linear regression models of V-
edge values against the age of the battery for both user profiles
at room temperature and at 40◦C temperature, respectively. The
coefficient, a, of the regression model, is the inclination of the
regression line, and b is the intercept. The presented coefficients
are with 95% confidence bounds.

We observe that the coefficients vary according to the discharge
load among similar profiles, and higher discharge currents exhibit
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Figure 5: The Linear Regression fits of the V-edge values for
different discharge profiles at 40◦C.

steeper slopes and higher intercepts. Comparing the models in
Figure 4 and Figure 5 on the basis of ambient temperature, we see
that the baseline V-edge value (intercept) is higher at 40◦C than at
room temperature for similar discharge loads. In all profiles, the
slope also increases as the discharge load increases.

In the plots, we determine goodness of linear fit using R2 values.
For the LS profiles in Figures 4 and 5, the R2 values are above
0.9, indicating that variance in V-edge values is almost around its
mean irrespective of the ambient temperature. The R2 values for
the HS profiles at 40◦C are slightly lower at 0.85. The results thus
imply that the performance of the model is somewhat sensitive to
temperature, with higher operating temperatures decreasing model
fit. Nevertheless, the results are encouraging as the model fit is
excellent in all cases, ranging between 85 − 96%.

3.3 Performance Evaluation
The previous section considered V-edge values from the first two
consecutive discharge events for constructing models. We next
find the V-edge values from longer-term behavior by assessing the
next three successive discharge events for the same battery. We
randomly select 100 from all such V-edges, predict battery age, and
evaluate the performance of the models of four profiles. Figure 6
demonstrates that the models can predict the active usage time
of the batteries with more than 80% accuracy. The batteries of HS
profiles have median errors of less than 20%.

0.22 0.24 0.26
0

1

2

3

4

5

6

7

8

9 106 LS-40°C 
(bat 24 - 2A)

0.4 0.42 0.44 0.46 0.48
v-edge (V)

0

2

4

6

8

10

12

14 106 HS-40°C 
(bat 27 - 4A)

0.16 0.18 0.2 0.22 0.24 0.26
0

2

4

6

8

10

12

14

16

18

ac
tiv

e 
ba

tte
ry

 u
sa

ge
 ti

m
e 

(s
)

106 LS-RT
(bat 15 - 2A)

0.35 0.4 0.45
v-edge (V)

0

2

4

6

8

10

12

14

16

18

ac
tiv

e 
ba

tte
ry

 u
sa

ge
 ti

m
e 

(s
)

106 HS - RT
(bat 19 - 4A)

median
error 10%

median
error 10%

median
error 14%

median
error 17%

Figure 6: Performance of profile specific regression models.
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Figure 7: Performance of the regression models in Figure 4
and Figure 5 for the remaining four batteries.

We next analyze the performance of the same profile-specific
models on the other four batteries, i.e., bat 14, 20, 23, and 28. Note
that the V-edge values of these batteries were not used in construct-
ing the earlier models. In other words, we want to predict the active
battery usage time of another set of IoT devices having similar
operating conditions before deployment. We randomly take 100
V-edge values and use the corresponding models to predict active
usage time. Figure 7 demonstrates the actual values and prediction.
It further shows that such models perform better with the batteries
operating at room temperature. The errors increase for LS-40◦C



and HS-40◦C batteries compared to the batteries of the same profile.
Such performance is expected, as the internal resistance across the
battery samples of having the same capacity can vary. We addition-
ally constructed similar models for the lower discharge loads, e.g.,
0.5 and 1.0A. These models have had less than 20% errors.

To summarize, our models are capable of accurately explaining
different types of discharge loads, with the best results coming
under normal operating temperatures. As the temperature or bat-
tery discharge profile changes, the performance degrades slightly,
but the accuracy of our models remain consistently high, reaching
over 80%. Overall, this is a very encouraging result, suggesting that
V-edges are accurate at estimating parameters, which in turn can
be used to estimate battery capacity.

3.4 Discharge Profiles and Battery Health
Battery capacity decreases with usage, and the pace of changes
depends on the operating conditions. After every fifty charging
and discharging, a reference discharging was performed with 1A
load on the batteries. A reference discharge is a series of pulsed
discharge events at 1A for 10 minutes, followed by 20 minutes of
resting period, as shown in Figure 1. We compute the health of
the batteries by integrating the currents over time for a reference
discharge sequence, which gives the battery capacity in Ah. Since
there are only a few data points for such estimates, we construct the
regression models for four batteries from four profiles and present
the fits in Figure 8.

The models have R2 values higher than 95%, and we can utilize
the predicted active battery usage time values in Figure 6 as inputs
to these models to get the health estimates in Ah. The remaining
four batteries have had very good linear fits.

4 DISCUSSIONS
Our results indicate that the dynamics of V-edge correlate well with
the usage profiles of the batteries. Consequently, the prediction
models also generalize. It is even possible to use the profile-specific
models to predict the active usage time of another new battery, hav-
ing a similar capacity and discharge load, with reasonable accuracy
at room temperature. In this section, we highlight future research
directions using V-edge dynamics.
Dynamic Discharge Profiles. In practice, the internal resistance
of a battery also should vary with the state of charge. Therefore,
complexmodels are required to capture the combined effect of usage
and the state of charge on V-Edge. Furthermore, the present models
apply to the devices with fixed discharge loads. Smartphones, smart-
watches, and other similar devices may have dynamic discharge
loads, and their usage may correspond to the whole distribution
of the discharge loads presented in Table 1. Subsequently, the dis-
charge load distributions as a whole and predicting the battery
health of smart devices is our future research direction.
Predicting Device Performance. The complex usage profiles
come with additional challenges related to automated battery man-
agement functionality. For example, smart devices have been re-
ported to shut down even when they claim to have around 15-20%
of battery remaining. The culprit for this behavior relates to sudden
voltage drops, which take the battery voltage below a cut-off thresh-
old that is used to determine when the shut down the device [21].
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Figure 8: Linear regression models for battery active usage
time and capacity degradation in mAh.

V-edges and other related voltage information make it possible to
predict such events and develop intelligent power management
schemes that can avoid this type of sudden shutdowns.
Calibrating PowerModels. In Figure 3, we notice that the relation
between V-edge and discharge current is linear. This relation has
been previously used to develop fast power consumption models
for smartphones [23]. Nevertheless, in previous research, it was
assumed that such a relation is static. Our work demonstrates that
V-edge increases as the battery health degrades, which implies
that there is a concept drift. Thus power models need continuous
calibration. V-edges provide a possible way to detect and assess the
drift, and can potentially be used to re-calibrate the power models.

5 RELATEDWORK
Model-based health estimation is the traditional approach for
battery capacity modeling. These can be summarized as electro-
chemical models [18], equivalent circuit-based models [6], and
analytical models [20] depending on the nature of measurements.
These models tend to be highly sensitive to the modeling environ-
ment, measurement technology, and battery design and materials.
Hence these approaches are unsuited for most IoT devices.
Charging voltage curves can be used to assess battery health [22,
24]. For example, Lu et al. proposed an approach that models bat-
tery degradation as a function of four geometrical features of the
charging voltage curves [14]. The performance of these approaches



heavily relies on the charging algorithm, which varies from one
device to another [9]. Hoque et al. used the duration of charging to
reach the maximum voltage to estimate the battery health [7].
Data-driven methods estimate battery life using machine learn-
ing, e.g., support vector machines [17], Gaussian process regres-
sion [13], or multiple linear regression [19]. These models tend to
suffer from limited generality and require several input parameters
that are difficult to capture on heterogeneous IoT deployments.

6 CONCLUSIONS
We demonstrated that the instance voltage drops due to discharge
load can be utilized to construct battery life prediction models for
various IoT devices. These models are simple and can be used for
devices with limited battery instrumentation to predict their usage
time. Our approach works best when the models are constructed
under similar discharge loads and operating temperatures, but even
when different profiles and temperatures are used for modeling, we
reach around 80% accuracy. We further discussed how to improve
the power consumption models and predict the device performance
with old batteries. For the practical deployment, our method only
requires knowing the capacity of a fresh battery and the discharge
current of the device, which can be acquired from datasheets or
measured during the design phase of the IoT networks.When highly
accurate measurements are required, our approach benefits from
temperature measurements. These can be the battery temperature
measurements which are available from most fuel gauges or use
an environmental temperature sensor as a proxy. At present, we
are integrating our models for the battery health management of
battery-powered air quality monitoring sensors.
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