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ABSTRACT
There is fine-scale spatial heterogeneity in key vegetation properties including leaf-area index (LAI) 
and biomass in treeless northern peatlands, and hyperspectral drone data with high spatial and 
spectral resolution could detect the spatial patterns with high accuracy. However, the advantage of 
hyperspectral drone data has not been tested in a multi-source remote sensing approach (i.e. 
inclusion of multiple different remote sensing datatypes); and overall, sub-meter-level leaf-area 
index (LAI) and biomass maps have largely been absent. We evaluated the detectability of LAI and 
biomass patterns at a northern boreal fen (Halssiaapa) in northern Finland with multi-temporal and 
multi-source remote sensing data and assessed the benefit of hyperspectral drone data. We 
measured vascular plant percentage cover and height as well as moss cover in 140 field plots 
and connected the structural information to measured aboveground vascular LAI and biomass and 
moss biomass with linear regressions. We predicted both total and plant functional type (PFT) 
specific LAI and biomass patterns with random forests regressions with predictors including RGB 
and hyperspectral drone (28 bands in a spectral range of 500–900 nm), aerial and satellite imagery 
as well as topography and vegetation height information derived from structure-from-motion 
drone photogrammetry and aerial lidar data. The modeling performance was between moderate 
and good for total LAI and biomass (mean explained variance between 49.8 and 66.5%) and 
variable for PFTs (0.3–61.6%). Hyperspectral data increased model performance in most of the 
regressions, usually relatively little, but in some of the regressions, the inclusion of hyperspectral 
data even decreased model performance (change in mean explained variance between −14.5 and 
9.1%-points). The most important features in regressions included drone topography, vegetation 
height, hyperspectral and RGB features. The spatial patterns and landscape estimates of LAI and 
biomass were quite similar in regressions with or without hyperspectral data, in particular for moss 
and total biomass. The results suggest that the fine-scale spatial patterns of peatland LAI and 
biomass can be detected with multi-source remote sensing data, vegetation mapping should 
include both spectral and topographic predictors at sub-meter-level spatial resolution and that 
hyperspectral imagery gives only slight benefits.
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Introduction

Leaf-area index (LAI) and biomass are among the most 
important vegetation properties linked to biogeochem-
ical processes (Wilson et al. 2007; van der Wal and Stien 
2014). Green LAI quantifies the photosynthesizing leaf 
area per unit ground area and thus characterizes the 
interface between vegetation and atmosphere. It is a key 
parameter when the eddy covariance or chamber-based 
measurements of CO2 and CH4 are upscaled or modeled 
(Tuovinen et al. 2019; Wilson et al. 2007; Metzger et al. 
2015). Plant biomass, in turn, refers to total mass of 

plants; thus, it quantifies carbon stock in the vegetation 
and is closely linked to ecosystem productivity (Epstein 
et al. 2012; van der Wal and Stien 2014).

One way to characterize qualitative differences in 
vegetation is to assess LAI and biomass of different 
plant functional types (PFTs) (Juutinen et al. 2017; Yu 
et al. 2017). PFTs form a way to divide plant species into 
groups based on their growth forms and environmen-
tal responses (Duckworth, Kent, and Ramsay 2000; 
Ustin and Gamon 2010; Chapin et al. 1996). Users and 
their needs define the PFT grouping, but a common 
approach is to use groups such as evergreen and 
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deciduous shrubs, forbs, graminoids, and different 
types of mosses (Hugelius et al. 2011; Chapin et al. 
1996; Räsänen et al. 2019). These PFTs differ in terms 
of how LAI and biomass are connected to plant per-
centage cover and height (Räsänen et al. 2019).

To capture the spatial patterns of LAI and biomass, 
remote sensing-based maps have been used for dec-
ades (Laidler and Treitz 2003; Walker et al. 2003). These 
maps can be PFT-specific (Greaves et al. 2016; Myers- 
Smith et al. 2015) or summed estimates of total LAI or 
biomass (Räsänen et al. 2019; Berner et al. 2018). Within 
treeless northern boreal or arctic environments, such as 
peatlands and tundra, the landscape is characterized 
by fine-scale spatial heterogeneity, controlled by varia-
tion in soil and bedrock characteristics, topography, 
and moisture. In particular, northern peatlands are 
usually flat but have notable heterogeneity in micro- 
topography and vegetation evidenced by contrasting 
microforms, which often include wet and low-lying 
flarks, intermediate lawns and dry strings located 
higher than the other microforms (Laitinen et al. 
2007). In these landscapes, ultra-high to very-high spa-
tial resolution remote sensing datasets should be used 
(Virtanen and Ek 2014; Palace et al. 2018; Räsänen and 
Virtanen 2019), as the use of coarser-resolution maps 
can lead to erroneous landscape-level estimates of 
vegetation properties and associated biogeochemical 
processes (Räsänen and Virtanen 2019; Treat et al. 
2018). Nevertheless, sub-meter-level LAI and biomass 
maps have rarely been developed for peatland land-
scapes, though such maps have been constructed in 
other environments such as temperate dryland 
(Cunliffe, Brazier, and Anderson 2016), shrub- 
dominated tundra (Cunliffe et al. 2020) and in particu-
lar in agricultural areas (Li et al. 2020; Yue et al. 2017; 
Poley and McDermid 2020).

In practice, ultra-high-resolution data can be gath-
ered with unmanned aerial vehicles (i.e. drones). It also 
has been shown that there are multiple benefits when 
multi-source data is used, i.e. inclusion of multiple 
different datatypes collected from multiple different 
platforms, such as the combination of optical imagery 
and lidar data. In particular, with multi-source data, 
different aspects of the landscape, such as spectral, 
topographic, and vegetation height properties at mul-
tiple spatial resolutions can be captured. Thereby, the 
explanatory capacities are typically higher than when 
using a single data source (Räsänen and Virtanen 2019; 
Chen, Huang, and Xu 2017; Arroyo-Mora et al. 2017; 

Luo et al. 2016; Sankey et al. 2018; Poley and 
McDermid 2020), and further boosts in model perfor-
mance can be obtained with multi-temporal data 
(Halabisky, Babcock, and Moskal 2018; Gholizadeh 
et al. 2020; Poley and McDermid 2020).

Although there are multiple different potential data 
sources, it has been discussed that some data such as 
hyperspectral imaging have multiple benefits as it can 
capture finer spectral signatures of vegetation than 
multispectral sensors (Chen, Chen, et al. 2017; Cole, 
McMorrow, and Evans 2013; Harris, Charnock, and 
Lucas 2015; Kalacska, Lalonde, and Moore 2015). In 
peatland landscapes, it has been shown that multiple 
vegetation properties can be tracked with hyperspec-
tral data, for instance, floristic gradients (Harris, 
Charnock, and Lucas 2015), biotopes (Middleton et al. 
2012), PFTs (Cole, McMorrow, and Evans 2013), and 
plant strategy types or plant traits (Kattenborn et al. 
2017; Schmidtlein et al. 2012), including nitrogen and 
chlorophyll content (Kalacska, Lalonde, and Moore 
2015). In spatially heterogeneous landscapes, the ben-
efits of hyperspectral imaging are in particular evident 
with drone-based data, which can quantify the spectral 
properties of vegetation in high spatial and spectral 
resolutions (Aasen and Bolten 2018; Arroyo-Mora et al. 
2019; Sankey et al. 2018; Aasen et al. 2015). However, 
relatively few studies have analyzed the advantages of 
hyperspectral drone data relative to other datasets in 
analyzing vegetation patterns in peatlands.

We address two major gaps in scientific knowledge, 
i.e. the lack of ultra-high-resolution LAI and biomass 
maps and the lack of testing the relative importance of 
hyperspectral drone data to map vegetation patterns 
in northern peatlands. We use multi-source and multi- 
temporal ultra-high-resolution remote sensing data to 
predict LAI and aboveground biomass patterns in 
a northern boreal fen landscape located in northern 
Finland. We ask the following two research questions. 
(1) How well can LAI and biomass patterns be detected 
with multi-source and multi-temporal ultra-high spa-
tial resolution remote sensing data? (2) What is the 
benefit of hyperspectral drone data?

Materials and methods

Study area

Our study area is located in Halssiaapa fen in 
Sodankylä, northern Finland Figure 1. The fen has 
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fine-scale variation in vegetation, topography, wet-
ness, and trophic status patterns (Dinsmore et al. 
2017; Räsänen et al. 2019). The spatial heterogeneity 
can be characterized by three microforms: relatively 
low and dry strings (<0.5 m height) dominated by 
Sphagnum and evergreen and deciduous shrubs 
(e.g. Andromeda polifolia and Betula nana) and scat-
tered birches (Betula pubescens) and pines (Pinus syl-
vestris); wetter flarks dominated by wet brown mosses 
(e.g. Scorpidium spp, Warnstorfia exannulata) and 
some graminoids (e.g. Carex limosa and Eriophorum 
rufescens); and intermediate lawns with continuous 
Sphagnum cover, forbs (e.g. Menyanthes trifoliata, 
Comarum palustre), graminoids (e.g. Scheuchzeria 
palustris) and some shrubs (e.g. Vaccinium oxycoccos). 
Trophic status varies from oligotrophic to eutrophic, 
and the transitions between different vegetation 
types and microforms are relatively gradual.

Vegetation inventories

To collect ground and field layer LAI and aboveground 
biomass vegetation inventory data, we harvested sam-
ples from 48 square plots with 50 cm side length on 
July 17–19, 2014 Figure 1. Species were classified into 
the following PFTs: evergreen dwarf shrubs, deciduous 
dwarf shrubs, forbs, graminoids, Sphagnum and other 
mosses. The PFT classification we used was a slight 

modification of the one presented by Chapin et al. 
(1996). The plots were located along 250 m long trans-
ects to the cardinal, intercardinal, and secondary inter-
cardinal directions from an eddy covariance flux tower 
located in the fen. We selected the plots so that all 
major land cover and vegetation types within the fen 
were included. We estimated the percentage cover of 
each PFT visually and measured the mean height of 
vascular plant PFTs using a ruler. We harvested above-
ground parts of the plant species to measure LAI for 
vascular plants and biomass for vascular plants and 
mosses. We collected all the aboveground vascular 
plant material. For mosses, we collected a 5 cm 
x 5 cm sample of living green photosynthesizing part 
of the mosses. For measuring vascular LAI, we scanned 
the species or PFT-specific harvested samples with an 
A4 scanner and processed the scans with GIMP 2.8. 
software (The GIMP team, www.gimp.org). From each 
scanned image, we calculated the proportion of green 
pixels. For determining biomass, we oven dried the 
samples at 60°C for 24 hours (Klein and Bay 1994) and 
weighed them.

To collect training data for remote sensing-based 
regressions of LAI and biomass, we sampled 140 
square plots with 50 cm side length using stratified 
random sampling on July 17–21, 2018 Figure 1. Strata 
were four different land cover types from a multi- 
source remote sensing-based land cover map 

Figure 1. A) The location of study area in northern Finland, B) a photo from the study area, C) true-color drone image taken on 
12 July 2016 with field inventory plots marked with dots.
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(Mikola et al. manuscript in preparation). The plots 
were located at least 3 m apart from each other and 
the exact positions of the plots were collected with 
a Trimble R10 GPS device with ±5 cm accuracy. At 
each plot, we evaluated the cover of vascular plant 
and moss species with visual interpretation and mea-
sured the mean height of vascular plant species with 
a ruler. To ensure the consistency in visual estimation 
of percentage cover, the last author inventoried part 
of the vegetation plots and trained the other sur-
veyors during both field campaigns. Although there 
were some trees in the landscape, no trees were 
located in our field inventory plots; thus, we excluded 
trees (height >1.5 m) in our analysis.

Remote sensing datasets

The use of multi-source and multi-temporal remote 
sensing data has been documented to increase model 
performance in vegetation mapping, including bio-
mass and LAI estimation (Halabisky, Babcock, and 
Moskal 2018; Chen, Huang, and Xu 2017; Sankey 
et al. 2018; Poley and McDermid 2020; Michez et al. 
2018). Furthermore, it has been shown that optimal 
timing of remote sensing data depends on the stu-
died ecosystem and target variable (Cole, McMorrow, 
and Evans 2014; Basnyat et al. 2004; Wang et al. 2019). 
Therefore, we used remote sensing data depicting the 
spectral, topography, and vegetation height proper-
ties captured from drone, aerial, and satellite plat-
forms with 0.02-m to 3-m spatial resolution from 
multiple years and phenological stages (Table 1). In 
total, we calculated 359 features for each of the 140 
field inventory plots. We calculated the mean value of 
each of the layers we used; in addition, we calculated 
the coefficient of variation for each hyperspectral 
band as well as a mean coefficient of variation over 
all bands (Wang et al. 2018).

We used hyperspectral drone images from two 
time points, one from the peak growing season 
(July 2019) and one from the beginning of senescence 
(late August 2019) Table 1, Figure 2. We acquired the 
imagery with the Senop Rikola (Senop Oy, Oulu, 
Finland) frame-based snapshot camera (1010 × 1010 
pixels with 36.5° field of view) mounted on a DJI 
Matrice 600 hexacopter. We covered a 20 ha area 
with a 35–40 min flight time (11:10–11:45 AM on 
Jul 24, and 12:00–12:40 PM on Aug 28) at an altitude 
of 100 m and speed of 15 km h−1 (4.2 m s−1) resulting 

in ca. 1700 frames at 7 cm spatial resolution. The 
imagery was composed of 28 bands spanning the 
spectral range of 500–900 nm with an average band-
width (full-width at half-maximum) of 8.9 nm (Table 
S1, Figure 2). We first converted the raw image data 
into radiance and applied a lens correction with the 
Rikola preprocessing software (Senop Oy, Oulu, 
Finland). As all the hyperspectral bands were acquired 
separately, the bands were not perfectly aligned and 
needed to be co-registered (Honkavaara et al. 2017; 
Jakob, Zimmermann, and Gloaguen 2017). We used 
the scale-invariant feature transform algorithm imple-
mented in the MEPHySTo software for a practically 
perfect co-registration of the bands (Jakob, 
Zimmermann, and Gloaguen 2017). Then, we con-
verted the images into reflectance and constructed 
mosaics with structure-from-motion (SfM) photo-
grammetry (Aasen et al. 2015) in Agisoft Metashape 
(Agisoft LLC, St. Petersburg, Russia). We conducted 
the reflectance conversion with empirical line calibra-
tion by utilizing three squared MosaicMill reflectance 
plates (MosaicMill Oy, Vantaa, Finland) with 0.5 m side 
length in 9%, 44%, and 75% reflectance. The plates 
were photographed during the flights. We georefer-
enced the image mosaics with 15 ground control 
points geolocated with a Trimble R10 GPS device 
with ±5 cm accuracy. In addition to spectral bands, 
we calculated 80 different vegetation indices Table 2 
with the hsdar package in R (Lehnert et al. 2019).

In addition to the hyperspectral imagery, we 
used true-color drone images from two time points, 
from a wetter (2016) and a drier year (2018) Table 1, 
Fig. S1. We acquired the images with a DJI Phantom 
4 Pro (4000 × 3000 pixels with 70°/50° field of view) 
and processed the data using SfM photogrammetry 
(Kalacska et al. 2017) in Pix4D (Pix4D S.A., Lausanne, 
Switzerland). On one hand, it has been shown that 
vegetation structure information is important in pre-
dicting biomass and LAI patterns (Poley and 
McDermid 2020; Cunliffe, Brazier, and Anderson 
2016); on the other hand, peatland vegetation is 
largely controlled by micro-topographical variation 
(Räsänen and Virtanen 2019; Lehmann et al. 2016). 
Therefore, we produced 2-cm spatial resolution 
orthomosaics as well as a 9-cm spatial resolution 
digital terrain model (DTM) and vegetation height 
model (DTM subtracted from a digital surface 
model) Table 1. We georeferenced the 2018 image 
with 15 ground control points and co-registered the 
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2016 image with the 2018 image using 20 control 
points.

In previous studies, it has been discussed that 
some of the LAI, biomass, and other vegetation pat-
terns can be best detected with coarser resolution 
data (Poley and McDermid 2020; Räsänen et al. 
2020). To detect coarser spatial resolution patterns 
of vegetation and topography, we included aerial 
lidar data and orthophotos. From the lidar data, we 
used a 2-m resolution DTM preprocessed by the 
National Land Survey and computed a vegetation 
height model by subtracting the DTM from a digital 
surface model in which we used all returns of the lidar 
point cloud. As vegetation spectral responses vary 
throughout the phenological cycle in peatlands 
(Cole, McMorrow, and Evans 2014), we used the sur-
face reflectance product of 12 PlanetScope satellite 
images (Planet Team) taken between mid-May and 
early October 2018 Table 1.

Textural features have been shown to boost the 
accuracy in remote sensing-based mapping tasks 
(Mishra et al. 2018; Hall-Beyer 2017). Thus, for each 
spectral band of the 2016 drone image, we calcu-
lated eight gray-level co-occurrence matrix (GLCM) 
textural features (energy, entropy, correlation, 
inverse difference moment, inertia, cluster shade, 
cluster prominence and Haralick correlation) 
(Haralick, Dinstein, and Shanmugam 1973) with 
a moving window technique, eight quantization 
levels and neighborhood distance set to five in 
Orfeo Toolbox (Grizonnet et al. 2017). We computed 
the following topographical features from the drone 

and lidar-based DTM: elevation, slope in degree, 
position index with different neighborhood radiuses 
(Guisan, Weiss, and Weiss 1999), and wetness index 
(Böhner and Selige 2006) in the SAGA GIS (Conrad 
et al. 2015). Instead of using the spectral bands as 
such for the PlanetScope images, we calculated the 
following band indices for each image: normalized 
difference vegetation index (NDVI) (Rouse et al. 
1974), normalized difference water index (NDWI) 
(McFeeters 1996), and red-green index (RGI) (Coops 
et al. 2006) for each image Table 1.

Data analysis

First, we established empirical relationships between 
(1) field-measured plant species cover and height, and 
(2) LAI and biomass for different PFTs using the har-
vested samples from 2014. We tested linear regres-
sions with the following explanatory variable options: 
cover only and plant volume (cover × height), com-
pared the performance of the two models and chose 
the final model based on root mean squared error 
(RMSE) value. We evaluated the final model perfor-
mance with RMSE, normalized RMSE (nRMSE: i.e., 
RMSE divided by the difference between maximum 
observed value and minimum observed value), and 
adjusted coefficient of determination. We used the 
equations from linear regressions to predict PFT- 
specific LAI and biomass values for vegetation plots 
inventoried in 2018.

Second, for predicting LAI and biomass with 
remote sensing datasets, we conducted random 

Table 1. Remote sensing features used in leaf-area index and biomass regressions. Hyperspectral drone features are listed in Tables 2 
and S1.

Dataset Date Producer Spatial resolution Number and list of layers

Hyperspectral drone 
images

24 July 2019; 28 August 2019 Authors 0.07 m 274: 28 bands, 80 indices, 29 coefficient 
of variation measures for both images

Drone image 1 12 July 2016 Authors 0.02 m 27: B, G, R, and 8 GLCM layers from all 
spectral bands

Drone image 2 11 July 2018 Authors 0.02 m 3: B, G, R
Drone digital 

elevation and 
terrain model

11 July 2018 Authors 0.09 m 6: Elevation, slope, TPIs (2 m and 5 m 
distance), TWI, VHM

Aerial image 19 August 2015 National Land 
Survey of 
Finland

0.5 m 4: B, G, R, NIR

Lidar data 19 August 2015 National Land 
Survey of 
Finland

0.5 points m−2 (point 
cloud); 2 m 

(layers)

9: Elevation, slope, TPIs (5 m, 10 m, 
20 m, 50 m, 100 m distances), TWI, 

VHM
PlanetScope images May 16, Jun 2, Jun 17, Jul 3, Jul 10, Jul 19, Jul 27, 

Aug 8, Aug 26, Sep 9, Sep 18, 4 October 2018
Planet Labs Inc. 3 m 36: NDVI, NDWI, RGI from all images

Abbreviations: B, blue; G, green; GLCM, gray-level co-occurrence matrix; NDVI, normalized difference vegetation index; NDWI, normalized difference water 
index; NIR, near-infrared; R, red; RGI, red-green index; TPI, topographical position index; TWI, topographical wetness index; VHM, vegetation height model.
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Table 2. Details of the high spectral resolution vegetation indices calculated for the hyperspectral data. In the equations, R refers to 
reflectance at a specific wavelength and D to first derivation of reflectance values at the wavelength.

Index Equation Reference

Boochs D703 Boochs et al. (1990)
Boochs2 D720 Boochs et al. (1990)
CARI* R700×|a × 670+ R670 + b|/R670×(a2 + 1)0.5 Kim et al. (1994)
Carter2 R695/R760 Carter (1994)
Carter3 R605/R760 Carter (1994)
Carter4 R710/R760 Carter (1994)
Carter5 R695/R670 Carter (1994)
Carter6 R550 Carter (1994)
CI R675× R690/R683

2 Zarco-Tejada et al. (2003)
CI2 R760/R700–1 Gitelson, Gritz, and Merzlyak (2003)
ClAInt

ò

R735

R600

Ri

Oppelt and Mauser (2004)

CRI1 R515
−1-R550

−1 Gitelson, Gritz, and Merzlyak (2003)
CRI2 R515

−1-R770
−1 Gitelson, Gritz, and Merzlyak (2003)

CRI3 R515
−1-R550

−1× R770 Gitelson, Gritz, and Merzlyak (2003)
CRI4 R515

−1-R700
−1× R770 Gitelson, Gritz, and Merzlyak (2003)

D1 D730/D706 Zarco-Tejada et al. (2003)
D2 D705/D722 Zarco-Tejada et al. (2003)
Datt (R850-R710)/(R850-R680) Datt (1999)
Datt2 R850/R710 Datt (1999)
Datt3 D754/D704 Datt (1999)
Datt4 R672/(R550× R708) Datt (1998)
Datt5 R672/R550 Datt (1998)
Datt6 R860/(R550× R708) Datt (1998)
DD (R749-R720)-(R701-R672) le Maire, François, and Dufrêne (2004)
DDn 2×(R710-R660-R760) le Maire et al. (2008)
DPI (D688× D710)/D697

2 Zarco-Tejada et al. (2003)
DWSI4 R550/R680 Apan et al. (2004)
GDVI 2 (R800

2-R680
2)/(R800

2+ R680
2) Wu (2014)

GDVI 3 (R800
3-R680

3)/(R800
3+ R680

3) Wu (2014)
GDVI 4 (R800

4-R680
4)/(R800

4+ R680
4) Wu (2014)

GI R554/R677 Smith et al. (1995)
Gitelson R700

−1 Gitelson, Buschmann, and Lichtenthaler (1999)
Gitelson2 (R750-R800/R695-R740)-1 Gitelson, Gritz, and Merzlyak (2003)
GMI1 R750/R550 Gitelson, Gritz, and Merzlyak (2003)
GMI2 R750/R700 Gitelson, Gritz, and Merzlyak (2003)
Green NDVI (R800-R550)/(R800+ R550) Gitelson, Kaufman, and Merzlyak (1996)
Maccioni (R780-R710)/(R780-R680) Maccioni, Agati, and Mazzinghi (2001)
MCARI ((R700-R670)-0.2×(R700-R550))×(R700/R670) Daughtry et al. (2000)
MCARI/OSAVI MCARI/OSAVI Daughtry et al. (2000)
MCARI2 ((R750-R705)-0.2×(R750-R550))×(R750/R705) Wu et al. (2008)
MCARI2/OSAVI2 MCARI2/OSAVI2 Wu et al. (2008)
MPRI (R515-R530)/(R515+ R530) Hernández-Clemente, Navarro-Cerrillo, and Zarco-Tejada (2012)
MSAVI 0.5×(2× R800 + 1-((2× R800 + 1)2–8×(R800-R670))0.5 Qi et al. (1994)
mSR2 (R750/R705)-1/(R750/R705 + 1)0.5 Chen (1996)
MTCI (R754-R709)/(R709-R681) Dash and Curran (2004)
MTVI 1.2×(1.2×(R800-R550)-2.5×(R670-R550)) Haboudane et al. (2002)
NDVI (R800-R680)/(R800+ R680) Rouse et al. (1974)
NDVI2 (R750-R705)/(R750+ R705) Gitelson and Merzlyak (1994)
NDVI3 (R682-R553)/(R682+ R553) Gandia et al. (2004)
OSAVI (1 + 0.16)×(R800-R670)/(R800+ R670 + 0.16) Rondeaux, Steven, and Baret (1996)
OSAVI2 (1 + 0.16)×(R750-R705)/(R750+ R705 + 0.16) Wu et al. (2008)
PARS R746/R513 Chappelle, Kim, and McMurtrey (1992)
PRI (R531-R570)/(R531+ R570) Gamon, Peñuelas, and Field (1992)
PRI norm PRI/(RDVI×R700/R670) Zarco-Tejada et al. (2013)
PRI*CI2 PRI×CI2 Garrity, Jan, and Vierling (2011)
PSSR R800/R635 Blackburn (1998)
RDVI (R800-R670)/√(R800+ R670) Roujean and Breon (1995)
REP LE Red-edge position through linear extrapolation Cho and Skidmore (2006)
REP Li 700 + 40×(((R670+ R780)/2-R700)/(R740-R700)) Guyot and Baret (1988)
SAVI 1.5×(R800-R670)/(R800+ R670 + 0.5) Huete (1988)
SPVI 0.4 × 3.7×(R800-R670)-1.2×((R530-R670)2)0.5 Vincini, Frazzi, and D’Alessio (2006)
SR R800/R680 Jordan (1969)
SR1 R750/R700 Gitelson and Merzlyak (1997)
SR2 R752/R690 Gitelson and Merzlyak (1997)
SR3 R750/R550 Gitelson and Merzlyak (1997)
SR4 R700/R670 McMurtrey et al. (1994)
SR5 R675/R700 Chappelle, Kim, and McMurtrey (1992)
SR6 R750/R710 Zarco-Tejada and Miller (1999)
SR8 R515/R550 Hernández-Clemente et al. (2011)

(Continued)
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forests (RF, Breiman 2001) regressions for the plots 
inventoried in 2018. RF has been used widely in bio-
mass studies and it has often had the best goodness- 
of-fit (Poley and McDermid 2020); furthermore, it is 
insensitive to overfitting and can deal with a high 

number of cross-correlated features typical to hyper-
spectral data (Belgiu and Dragut 2016). We conducted 
regressions for each PFT and separately for the follow-
ing summed up estimates: LAI for vascular plants in 
total, and biomass for vascular plants in total, mosses 

Table 2. (Continued).
Index Equation Reference

Sum Dr1 PR795

R626

DRij j
Elvidge and Chen (1995)

Sum Dr2 PR780

R680

DRi

Filella and Penuelas (1994)

TCARI 3×((R700-R670)-0.2×(R700-R550)×(R700/R670)) Haboudane et al. (2002)
TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002)
TCARI2 3×((R750-R705)-0.2×(R750-R550)×(R750/R705)) Wu (2014)
TCARI2/OSAVI2 TCARI2/OSAVI2 Wu (2014)
TVI 0.5×(120×(R750-R550)-200×(R670-R550)) Broge and Leblanc (2001)
Vogelmann R740/R720 Vogelmann, Rock, and Moss (1993)
Vogelmann2 (R734-R747)/(R715+ R726) Vogelmann, Rock, and Moss (1993)
Vogelmann3 D715/D705 Vogelmann, Rock, and Moss (1993)
Vogelmann4 (R734-R747)/(R715+ R720) Vogelmann, Rock, and Moss (1993)
*a = (R700-R550)/150; b = R550-(a*R550)

Figure 2. Reflectance curves for the vegetation plots inventoried in 2018, based on the hyperspectral drone images taken on A) July 24 
and B) 28 August 2019. The vegetation plots were classified into three different microforms. Lines indicate mean values and shaded 
region mean ± standard error for the microforms.
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in total and all plant species in total. To test the added 
value of hyperspectral drone data in mapping LAI and 
biomass, we tested regressions with three different 
feature sets for each plant species grouping: (1) all 
features, (2) hyperspectral features only, and (3) all 
other features than hyperspectral features.

To remove redundant and non-important features 
from the models, we reduced the number of features 
with an RF wrapper feature selection algorithm called 
Boruta (Kursa and Rudnicki 2010) before the final RF 
regressions. We used the mean decrease accuracy 
feature importance measure and chose those features 
that were not rejected during 999 RF runs (i.e. their 
importance was not significantly lower than those of 
randomly shuffled shadow features). We evaluated 
the relative importance of different features with the 
feature importance scores from Boruta.

We conducted 100 RF regressions for each plant 
species grouping and feature set option. In each 
regression, we used 500 trees and set the number of 
tested features at each node to one-third of features in 
the model. For each set of 100 regressions, we calcu-
lated minimum, maximum, and mean values of (1) the 
amount of variance explained (pseudo R2 = 1 – (mean 
squared error)/variance(response)), (2) RMSE, and (3) 
nRMSE, with an out-of-bag evaluation in which 
approximately two-thirds of the data in each tree is 
used for training and the rest for evaluation (Breiman 
2001). Earlier studies have shown that out-of-bag 
assessment gives an unbiased or even slightly conser-
vative estimate of the model accuracy (Clark et al. 
2010). Analyses were conducted in R (R Core Team 
2018) using the packages randomForest (Liaw and 
Wiener 2002) and Boruta (Kursa and Rudnicki 2010).

We produced maps of LAI and biomass using 
a geographic object-based image analysis approach, 

since such an approach eases the integration of differ-
ent datasets and delineates the landscape into mean-
ingful vegetation patches (Blaschke et al. 2014). We 
segmented the 2016 drone image with the multireso-
lution segmentation algorithm by Baatz and Schäpe 
(2000) implemented in TerraView (Câmara et al. 2008). 
Before the segmentation, we generalized the drone 
image to 5 cm spatial resolution using bilinear inter-
polation. We gave equal weight to color and shape 
information as well as to compactness and smoothness 
and set the similarity threshold to 0.12 resulting in 
segments with an average size of 6 m2 (minimum size 
3.3 m2). We then assigned LAI and biomass predictions 
of each RF model to each segment, estimated land-
scape-level LAI and biomass and compared the spatial 
pattern of LAI and biomass maps.

Results and discussion

Estimation of LAI and biomass from harvested 
samples

We could predict the PFT-specific LAI and biomass 
from samples harvested in 2014 with cover and 
height information with reasonably high accuracy 
(adjusted coefficient of determination between 0.50 
and 0.98) Table 3. We applied these relationships to 
the plots inventoried in 2018 that were used as train-
ing data in remote sensing regressions. For the 2018 
plots, mean LAI was 0.15 with the PFT-specific LAI 
estimate being the highest for graminoids Figure 3. 
Predicted biomass values were notably higher for 
mosses than for vascular plants, and the average 
value for total biomass was 260 g m−2 Figure 3.

There was a four-year lag between our field inven-
tories; hence, yearly variation might provide some 

Table 3. Equations for calculating leaf-area index and biomass based on harvested samples (n = 48), average and standard deviation 
values in the harvested data, and root mean squared error and adjusted coefficient of determination values.

Plant func-
tional type

Leaf area index Biomass

Equation
Mean ± sd 
(m2 m−2)

RMSE 
(m2 m−2) nRMSE R2

adj Equation
Mean ± sd 

(g m−2)
RMSE 

(g m−2) nRMSE R2
adj

Evergreen 
shrub

LAI = 0.0138 + 0.0069*c 0.131 ± 0.148 0.052 0.09 0.87 BM = 3.51 + 1.35*c 26.4 ± 30.2 13.2 0.11 0.80

Deciduous 
shrub

LAI = −0.0012 + 0.0003*c*h 0.041 ± 0.127 0.018 0.02 0.98 BM = −0.63 + 0.12*c*h 17.1 ± 52.9 7.8 0.03 0.98

Forb LAI = −0.0077 + 0.0010*c*h 0.078 ± 0.129 0.04 0.08 0.9 BM = −0.51 + 0.07*c*h 5.3 ± 8.9 3.2 0.07 0.86
Graminoid LAI = 0.0420 + 0.0054*c 0.214 ± 0.099 0.064 0.15 0.56 BM = 15.40 + 0.45*c 30.0 ± 11.7 9.6 0.16 0.28
Sphagnum n.a. n.a. n.a. n.a. n.a. BM = −7.96 + 4.02*c 124.0 ± 182.8 83.0 0.11 0.79
Other moss n.a. n.a. n.a. n.a. n.a. BM = 4.36 + 1.89*c 88.7 ± 110.9 77.0 0.18 0.50
Total n.a. 0.465 ± 0.325 n.a. n.a. n.a. n.a. 291.5 ± 209.4 n.a. n.a. n.a.
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uncertainties in our analysis. Nevertheless, during both 
field work years the relative abundance of different 
PFTs was similar (Table 3 and Figure 3) suggesting 
that yearly variation affects mostly the absolute bio-
mass and LAI values and not their spatial patterns. 
Conversely, phenological stage may have a larger 
impact on the relative abundance of different PFTs 
(Juutinen et al. 2017; Cole, McMorrow, and Evans 
2014) but in our case both field inventories were con-
ducted during peak growing season. Furthermore, field 
work data from 2014 were used only to link PFT cover 
and height to biomass and LAI. Such relationships do 

not change rapidly in one study area and are also 
transferable and generalizable between study areas 
(Räsänen et al. 2019).

Remote sensing of total and PFT-specific LAI and 
biomass

In regressions between LAI and biomass and remote 
sensing data, the performance of the models varied 
markedly among different response variables (mean 
explained variance between −0.5% and 66.5%, Table 
4). Remote sensing regressions functioned well for 

Figure 3. Box and whisker plots for A) measured percentage cover, B) estimated leaf-area index, and C) estimated biomass values for 
each plant functional type and total in vegetation plots inventoried in 2018 (n = 140).
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total vascular LAI and biomass and relatively well for 
total biomass but there was more variation in PFT- 
specific regressions Tables 4 and 5.

Some PFTs could be predicted with relatively high 
accuracy (forbs, deciduous shrubs), and some with 
intermediate accuracy (evergreen shrubs). For grami-
noids, a low amount of variance was explained but 
RMSE was also low, while mosses had relatively high 
amount of explained variance and relatively high 
RMSE (Tables 4 and 5). On one hand, graminoids 
had low variance in LAI and biomass; i.e. there was 
a nearly contiguous graminoid cover in the landscape. 
On the other hand, mosses were abundant, could be 
observed from remote sensing data due to low vas-
cular plant cover and had relatively high spatial varia-
tion of LAI and biomass Figure 3.

Many studies have concentrated on mapping cover 
and biomass of shrubs, which are abundant in many 
northern treeless environments (Greaves et al. 2016; 
Myers-Smith et al. 2015). In general, when 
a vegetation component is abundant and has rela-
tively high variation in spatial patterns as well as 
distinct habitat and spectral and structural properties, 
it can be detected with remote sensing data more 
easily. There are notable differences between differ-
ent northern treeless landscapes, including peatlands. 
In particular, when compared to our study area, some 
northern peatland landscapes have more (and some 
less) evident micro-topographical structure and 
higher (or lower) spatial variation vascular plant spe-
cies abundance which is reflected in the ability to 
track the abundance and volume of different PFTs 
(Räsänen et al. 2020). Therefore, one limitation of 

our study was to concentrate only on one study 
area, and results could have been different in other 
sites.

The importance of hyperspectral and other remote 
sensing features

There was clear PFT-specific variation how much 
model performance improved when hyperspectral 
data were included in (Tables 4 and 5). The benefit 
of using hyperspectral data was the most evident for 
evergreen shrubs; models with hyperspectral features 
only had slightly better performance than models 
with all features (0.2–0.4%-point higher mean 
explained variance), whereas the performance was 
lower for the models omitting hyperspectral features 
(5.6–9.1%-point decrease in mean explained var-
iance). Also for vascular LAI (5.3%-point increase in 
mean explained variance) and biomass (2.8%-point 
increase), total biomass (2.1%-point increase), forbs, 
graminoids, other mosses, and mosses in total the 
inclusion of hyperspectral data increased model per-
formance, but the models with hyperspectral features 
only had 6.1–23.6%-point lower mean explained var-
iance. For Sphagnum, the models omitting hyperspec-
tral features and with all features had approximately 
equal performance, but models with hyperspectral 
features only had 5.1%-point lower mean explained 
variance. For deciduous shrubs, models with hyper-
spectral data had a very low performance (mean 
explained variance 0.0% and 0.1% for LAI and bio-
mass, respectively), but models with all features had 
a moderate performance (mean explained variance 

Table 4. Explained variance (%) in random forests regressions for leaf-area index and biomass for different plant functional types and 
total. For each plant species grouping and feature set options, minimum, maximum and mean (in parentheses) explained variance 
over 100 random forests regressions are given.

Trait Plant functional type

Feature set

All features Hyperspectral only Hyperspectral omitted

Leaf–area index Evergreen shrub 31.9–36.9 (34.3) 32.1–37.4 (34.7) 25.3–31.6 (28.7)
Deciduous shrub 42.2–49.7 (46.1) −3.1–3.0 (0.0) 56.7–64.1 (60.6)
Forb 49.9–54.0 (51.8) 26.7–32.1 (29.3) 47.7–52.4 (49.9)
Graminoid 12.4–18.1 (15.3) 1.0–8.3 (4.7) 9.0–17.1 (14.2)
Vascular total 65.1–68.4 (66.5) 57.7–61.2 (59.2) 59.5–62.7 (61.2)

Biomass Evergreen shrub 34.7–39.7 (36.9) 35.2–39.5 (37.1) 24.7–31.2 (27.8)
Deciduous shrub 45.0–52.7 (49.3) −5.7–4.2 (0.1) 54.1–63.1 (58.2)
Forb 50.7–55.1 (53.1) 32.6–38.8 (35.3) 46.6–51.1 (48.8)
Graminoid −0.1–0.6 (0.3) −0.3–0.4 (0.1) −1.0–-0.2 (−0.5)
Vascular total 60.8–65.9 (62.8) 35.9–42.2 (39.2) 57.5–62.3 (60.0)
Sphagnum 60.4–62.9 (61.6) 55.3–58.2 (56.5) 59.7–62.9 (61.6)
Other moss 55.3–58.1 (56.8) 46.1–48.8 (47.1) 54.5–57.5 (55.9)
Moss total 47.3–51.4 (49.4) 40.2–43.4 (41.9) 44.8–48.5 (46.9)
Total 47.2–51.1 (49.8) 41.3–45.6 (43.7) 47.3–50.7 (48.7)
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46.1% and 49.3% for LAI and biomass, respectively), 
and models omitting hyperspectral features even bet-
ter performance (58.2% and 60.6% for LAI and bio-
mass, respectively) Table 4.

In the models with all features, peak growing season 
vegetation indices calculated from hyperspectral data, 
drone topography, wetter year drone green and red 
band, GLCM Haralick correlation and drone vegetation 
height were among the most important ones Figure 4a. 
In the models with hyperspectral features only, peak 
growing season features were typically more important 
than late summer features but also late summer fea-
tures were deemed important in many regressions 
Figure 4b. When we omitted hyperspectral data from 
the regressions, drone spectral, textural, topographic, 
and vegetation height features were among the most 
important but also aerial imagery features, in particular 
the near-infrared band, and early and midsummer 
PlanetScope features were among the most important 
ones Figure 4c. Hyperspectral coefficient of variation, 
lidar, and late summer PlanetScope features had low 
importance and were often rejected by Boruta.

Our hyperspectral data included only 28 spectral 
bands in a relatively narrow spectral range (500–-
900 nm). If the data would have included more 
bands with narrower bandwidth and wider spectral 
range in total, the results could have been different 
and the importance of hyperspectral data more evi-
dent. Nonetheless, in a previous study by Harris, 
Charnock, and Lucas (2015) which utilized airborne 
hyperspectral data for mapping peatland vegetation 
gradients, it was found that relatively few bands (12 or 
16) were selected for final regression models. In 
another study, Turner et al. (2019) assessed optimal 
spatial and spectral resolution for mapping health of 
Antarctic moss vegetation with different drone-based 
multispectral and hyperspectral sensors and con-
cluded that 25 VNIR bands at 8 cm spatial resolution 
was an ideal band constellation. These findings sug-
gest that hundreds of bands are not necessarily 
needed when mapping vegetation patterns in peat-
lands and similar landscapes. However, if the goal is to 
identify individual plant species instead of PFTs, bet-
ter spectral resolution might aid more as some 

Table 5. Root mean squared error (RMSE) and normalized RMSE (nRMSE) in random forests regressions for leaf-area index and biomass 
for different plant functional types and total. For each plant species grouping and feature set options, minimum, maximum and mean 
(in parentheses) RMSE and nRMSE over 100 random forests regressions are given.

Trait Plant functional type

Feature set

All features Hyperspectral only Excluding hyperspectral

RMSE nRMSE RMSE nRMSE RMSE nRMSE

Leaf–area 
index

Evergreen shrub 0.035–0.037 
(0.036)

0.15–0.16 
(0.16)

0.035–0.036 
(0.036)

0.15–0.16 
(0.16)

0.037–0.038 
(0.037)

0.16–0.17 
(0.16)

Deciduous shrub 0.034–0.035 
(0.035)

0.10–0.10 
(0.10)

0.047–0.049 
(0.048)

0.13–0.14 
(0.14)

0.029–0.031 
(0.030)

0.08–0.09 
(0.09)

Forb 0.031–0.033 
(0.032)

0.12–0.13 
(0.13)

0.038–0.040 
(0.039)

0.15–0.16 
(0.16)

0.032–0.033 
(0.033)

0.13–0.13 
(0.13)

Graminoid 0.022–0.023 
(0.023)

0.11–0.11 
(0.11)

0.023–0.024 
(0.024)

0.11–0.12 
(0.12)

0.022–0.023 
(0.023)

0.11–0.11 
(0.11)

Vascular total 0.055–0.058 
(0.056)

0.10–0.11 
(0.10)

0.061–0.063 
(0.062)

0.11–0.11 
(0.11)

0.060–0.062 
(0.061)

0.11–0.11 
(0.11)

Biomass Evergreen shrub 6.9–7.2 (7.1) 0.15–0.16 
(0.16)

6.9–7.2 (7.1) 0.15–0.16 
(0.16)

7.4–7.7 (7.6) 0.16–0.17 
(0.17)

Deciduous shrub 13.7–14.7 (14.1) 0.09–0.10 
(0.10)

19.4–20.4 (20.0) 0.13–0.14 
(0.14)

12.1–13.4 (12.8) 0.08–0.09 
(0.09)

Forb 2.1–2.2 (2.1) 0.13–0.13 
(0.13)

2.4–2.6 (2.5) 0.14–0.15 
(0.15)

2.2–2.3 (2.2) 0.13–0.14 
(0.13)

Graminoid 2.4–2.5 (2.5) 0.08–0.09 
(0.09)

2.5–2.5 (2.5) 0.09–0.09 
(0.09)

2.5–2.6 (2.6) 0.09–0.09 
(0.09)

Vascular total 13.8–14.8 (14.4) 0.08–0.09 
(0.09)

17.9–18.9 (18.4) 0.11–0.12 
(0.11)

14.5–15.4 (14.9) 0.09–0.09 
(0.09)

Sphagnum 95.7–98.9 (97.3) 0.24–0.25 
(0.25)

101.6–105.0 
(103.6)

0.26–0.27 
(0.26)

95.7–99.8 (97.3) 0.24–0.25 
(0.25)

Other moss 49.9–51.5 (50.6) 0.25–0.26 
(0.26)

55.1–56.6 (56.0) 0.28–0.29 
(0.29)

50.2–52.0 (51.1) 0.26–0.27 
(0.26)

Moss total 75.5–78.6 (77.0) 0.19–0.20 
(0.20)

81.5–83.7 (82.5) 0.21–0.21 
(0.21)

77.7–80.4 (78.9) 0.20–0.20 
(0.20)

Total 78.8–81.9 (79.9) 0.17–0.18 
(0.18)

83.1–86.3 (84.6) 0.18–0.19 
(0.19)

79.2–81.7 (80.7) 0.17–0.18 
(0.18)
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species have their own specific spectral signatures 
(Falcioni et al. 2020).

Our results suggest that some of the differences in 
vegetation cannot be delineated with spectral data; 
instead, also structural and topographic features are 
needed to obtain the highest accuracies Tables 4 and 
5. Similar results have been obtained also previously 
in studies utilizing hyperspectral data (Arroyo-Mora 
et al. 2017; Luo et al. 2016; Sankey et al. 2018; Yue 
et al. 2017; Li et al. 2020). This is evident in particular 
with deciduous shrubs, which could not be mapped 
with hyperspectral data only; i.e. the models had very 
low explanatory capacities Table 4 and predicted 
values relatively high variance Table 6. Instead, for 
this PFT, the most important remote sensing features 
included topographic and vegetation height features 
derived from SfM drone data. This suggests that 
deciduous shrub abundance follows micro- 
topographic variation within the fen landscape, with 
the deciduous shrubs being most abundant in strings. 

Therefore, our results highlight that both topographic 
and spectral features should be used when mapping 
vegetation in patterned fen landscapes. Nevertheless, 
not all vegetation follows the micro-topography and 
there is also a notable variation of vegetation (and 
thus spectral signatures) within the different micro-
forms; part of which can be tracked with high- 
resolution spectral data. This is evident in particular 
with evergreen shrubs, for which the highest expla-
natory capacities were obtained with hyperspectral 
features only Table 4.

According to our results, a majority of the most 
important features were calculated from ultra-high 
resolution datasets (spatial resolution <10 cm), and 
the less fine-resolution data with a spatial resolution 
of 0.5–3.0 m were not as important Figure 4. Similar 
patterns could be observed both for spectral and 
structural/topographic features: data from aerial and 
satellite platforms were of less importance than drone 
data. Therefore, our results support previous findings 

Figure 4. Sum of Boruta feature importance scores for the 50 most important features over all regressions with A) all features, B) 
hyperspectral features only, and C) hyperspectral features omitted. In the figure, HS refers to hyperspectral, other abbreviations are 
listed in Tables 1, 2 and S1.
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that drone-derived DTMs can reveal fine-scale varia-
tion in micro-topography which controls vegetation 
patterns and ecosystem functioning in flat peatland 
landscapes (Harris and Baird 2019; Moore et al. 2019), 
and drone imagery can be used to track peatland 
vegetation (Palace et al. 2018; Beyer et al. 2019). Yet, 
the importance of ultra-high-resolution data is contra-
dicted by our earlier results indicating that as high 
land cover mapping accuracies can be achieved with 
50 cm spatial resolution data than with <10 cm spatial 
resolution data in a relatively similar type of peatland 
landscape (Räsänen and Virtanen 2019). However, in 
that study, only RGB drone imagery instead of hyper-
spectral data were used and land cover instead of 
biomass and leaf-area index was mapped. Although 
our study highlighted the importance of ultra-high- 
resolution datasets, also coarser-resolution features 
were among the most important in some regressions 
Figure 4, in particular in regressions omitting hyper-
spectral data. In these regressions, aerial imagery and 
PlanetScope provided spectral information with an 
infrared band that could not be obtained with RGB 
drone data.

We utilized only one ultra-high resolution vegeta-
tion structural feature (mean vegetation height based 
on SfM photogrammetry), which was important in 
particular for deciduous shrub LAI and biomass pre-
diction. However, its value was more limited for other 
regressions. In the visual interpretation of the vegeta-
tion height model, it could be seen that the height of 
forbs and graminoids was not accurately predicted, 
and higher values for vegetation height were located 
in strings with higher shrub cover; moreover, the 
location of trees in strings was quite well predicted. 

In earlier studies, SfM-based vegetation height mod-
els have been used, for example, in predicting bio-
mass patterns in temperate arid environments with 
some trees, tall shrubs and grass tussocks (Cunliffe, 
Brazier, and Anderson 2016), biomass patterns in 
shrub-dominated tundra (Cunliffe et al. 2020), and in 
estimating vegetation height of shrubs in low-arctic 
tundra (Fraser, Ian Olthof, and Schmitt 2016). In all of 
these studies, the spatial resolution has been ≤1 cm 
compared to 9 cm in our study. A finer spatial resolu-
tion could thus help in achieving a more accurate 
prediction of height and volume of different PFTs, 
and from a finer resolution data, more features than 
only mean height could have been quantified. Even 
better results could be achieved with terrestrial or 
ultra-high resolution aerial/drone-based lidar 
(Greaves et al. 2016, 2017; Sankey et al. 2018), which 
has outperformed SfM in prediction accuracy in 
forested areas due to the capability to map terrain 
elevation below dense canopies (Wallace et al. 2016). 
Therefore, future research avenues could include 
mapping of ultra-high resolution of vegetation struc-
ture for different PFTs, and comparison of different 
methods such as SfM and lidar in open treeless envir-
onments. However, in peatlands where a majority of 
total biomass is composed of mosses, structural fea-
tures should be coupled with spectral features.

Only a part of the remote sensing data was from 
the same year when the field inventory training data 
for remote sensing was collected (i.e. 2018, Table 1), 
which could potentially lead to errors in LAI and 
biomass prediction. Despite this fact, RGB drone fea-
tures from the field work year of 2018 had lower 
importance in the regressions than RGB drone features 

Table 6. Landscape-level mean (± standard deviation) leaf-area index and biomass for plant functional type-specific and total 
estimates based on maps produced with different feature sets.

Trait Plant functional type

Feature set

All features Hyperspectral only Hyperspectral omitted

Leaf-area index Deciduous shrub 0.012 ± 0.013 0.014 ± 0.025 0.012 ± 0.013
Evergreen shrub 0.038 ± 0.018 0.048 ± 0.024 0.036 ± 0.02
Forb 0.034 ± 0.031 0.033 ± 0.024 0.026 ± 0.032
Graminoid 0.069 ± 0.007 0.070 ± 0.012 0.070 ± 0.008
Vascular total 0.166 ± 0.062 0.187 ± 0.071 0.149 ± 0.053

Biomass (g m−2) Deciduous shrub 5.3 ± 5.9 5.7 ± 9.5 4.7 ± 5.8
Evergreen shrub 8.2 ± 4.1 8.1 ± 4.1 8.1 ± 4.2
Forb 2.4 ± 2.2 2.4 ± 1.8 1.8 ± 2.2
Graminoid 17.7 ± 0.6 17.7 ± 0.7 17.1 ± 0.6
Vascular total 35.1 ± 11.6 39.5 ± 16.4 33.1 ± 10
Sphagnum 104.5 ± 109.4 100.2 ± 104.4 112.9 ± 112.1
Other moss 99.2 ± 55.3 100.9 ± 53.4 97.1 ± 52.8
Moss total 198.9 ± 74.8 200.4 ± 69.6 211.8 ± 64.7
Total 236.3 ± 78.6 235.5 ± 76.9 247.9 ± 71.3
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from the wetter year of 2016 Figure 4, when vegetation 
was more abundant and there was higher contrast in 
the image. As both images were taken during the peak 
growing season, it can be reasoned that remote sen-
sing data may not need to be from the same year if it is 
taken during similar phenological stage. In previous 
research in peatland landscapes, it has been shown 
that during peak growing season, vegetation volume 
is at its highest and plant functional types are spectrally 
separable from each other (Cole, McMorrow, and Evans 
2014) and that spatial patterns of biomass and LAI vary 
throughout the phenological cycle (Juutinen et al. 
2017). According to our feature importance results in 
Figure 4, peak growing season hyperspectral and 
PlanetScope features were more important than non- 
peak season features. However, also non-peak season 
features and RGB drone features from two different 
years (2016 and 2018) were important in the different 
regressions Figure 4. This indicates that multitemporal 
data can alleviate problems related to temporal mis-
matches and increase model performance (Räsänen 
et al. 2020; Halabisky, Babcock, and Moskal 2018; 
Gholizadeh et al. 2020; Poley and McDermid 2020). 
Nevertheless, there is some uncertainty when compar-
ing the relative benefit of datasets with divergent spec-
tral and spatial resolutions as the data were acquired at 
different times; in an ideal situation, all datasets would 
have been collected simultaneously. Multi-temporal 
datasets could also be integrated with temporal mod-
els utilizing environmental parameters such as maxi-
mum ecosystem photosynthesis or climatic data but 
the use of such models would require also multi- 
temporal vegetation inventories (Juutinen et al. 2017).

When looking at the reflectance spectra of the 
hyperspectral images Figure 2, reflectance at all wave-
lengths was higher in the late growing season than 
during peak season which might indicate that con-
version to absolute reflectance values was imperfect 
with the reflectance plates, which might affect results 
of the benefit of hyperspectral data. However, the 
reflectance differences between the images were 
higher in the visible spectrum, and therefore, consis-
tent with earlier literature, spectral indices such as 
NDVI, MERIS terrestrial chlorophyll index (MTCI, Dash 
and Curran 2004) and red-edge position (Cho and 
Skidmore 2006) dropped between peak season and 
late season showing the start of senescence (Cole, 
McMorrow, and Evans 2014; Harris and Dash 2011). 
The drop was more evident in strings that have higher 

vascular plant cover than moss-dominated lawns and 
flarks indicating that leaf senescence of deciduous 
vegetation and decrease in chlorophyll affected vas-
cular plants more than mosses. This finding is backed 
by previous research in which it has been found that 
phenology derived changes in reflectance are higher 
in shrubs and other vascular plants than in mosses 
(Cole, McMorrow, and Evans 2014).

Landscape-level estimates of LAI and biomass

Overall, LAI and biomass estimates with remote sen-
sing regressions with three different feature sets were 
typically quite close to each other, yet there was some 
variation between patches and landscape in total 
Table 6, Figures 5 and 6. The differences in estimates 
were relatively small between the three different fea-
ture set options (all data, hyperspectral only, hyper-
spectral omitted) when we predicted total or moss 
biomass Table 6, Figure 5(d–f), Figures 6(f–h). There 
was only some overestimation in regressions omitting 
hyperspectral data. In Sphagnum biomass regressions, 
hyperspectral regressions had slight underestimation 
and regressions without hyperspectral features over-
estimation Table 6. As also the explanatory capacities 
were relatively high in moss and total biomass regres-
sions, it can be suggested that all three feature set 
options can be used for operational purposes. For 
vascular plants, the differences in plot and landscape- 
level estimates were higher Table 6, Figures 5(a–c), 
Figures 6(a–c). When compared to models with all 
features, regressions with hyperspectral data only 
overestimated in particular deciduous shrub and 
total LAI and biomass as well as evergreen shrub 
LAI, whereas regressions omitting hyperspectral data 
underestimated forb and total LAI and biomass as 
well as deciduous shrub biomass Table 6.

Vascular LAI patterns followed the micro- 
topographical variation in the fen landscape with 
the highest values being in the strings Figures 6(a–c, 
e), whereas for total biomass, the highest values were 
found in those lawn and string patches that had con-
tinuous moss cover Figures 6(f–h). When our ultra- 
high resolution biomass maps were compared with 
biomass maps produced with 2 m spatial resolution 
satellite imagery in the same site (Räsänen et al. 2019), 
the string-flark pattern was better distinguished on 
the finer-resolution maps, further suggesting the ben-
efits of using ultra-high spatial resolution data.
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Our overall estimates of vascular LAI and biomass 
Figures 3, 5 and 6 were lower compared to previous 
coarser resolution estimates in the study area (Räsänen 
et al. 2019) and other estimates in similar peatland 
landscapes (Wilson et al. 2007; Laine et al. 2019). This 
is related to the dry and warm year in 2018 (Fig. S1) 
during which the cover and volume of vascular plants 
were low and the training data for remote sensing 
analyses were collected. However, as already discussed 
in Section “Estimation of LAI and biomass from har-
vested samples” the yearly variation affected the total 
abundance and volume of different PFTs but not their 
relative abundance nor spatial patterns. Thus, we judge 
that the absolute LAI and biomass values could have 
been better predicted remote sensing data concurrent 
with field work but the spatial patterns can be well 
predicted with asynchronous data.

Our analysis excluded trees as we did not have 
suitable training data for predicting tree LAI and bio-
mass. Few trees found in the study area are growing 
only in strings and are a minor component of vegeta-
tion; moreover, as there were no trees in our field plots, 
they had no impact on our model parameters. If the 
goal would be the prediction of tree LAI and biomass, it 
should be pursued separately from other PFTs in parti-
cular in these kinds of landscapes with few trees, and in 

the prediction, ultra-high-resolution vegetation height 
model should be utilized (Cunliffe, Brazier, and 
Anderson 2016; Cunliffe et al. 2020; Wallace et al. 2016).

Conclusions

We evaluated how well-peatland LAI and biomass 
patterns can be detected with multi-source and multi- 
temporal ultra-high-resolution remote sensing data 
and examined the benefit of hyperspectral drone 
data. The remote sensing-based regression models 
for total vascular LAI and biomass had a relatively 
high explanatory capacity, and also the model for 
total biomass functioned moderately well, suggesting 
good detectability of LAI and biomass patterns with 
ultra-high resolution remote sensing in spatially het-
erogeneous landscapes such as northern peatlands. 
There was more variation in PFT-specific models. As 
explanatory capacities were higher for total LAI and 
biomass than for PFT-specific estimates, our results 
suggest that maps of total LAI and biomass should 
not be summed maps of PFT-specific estimates but 
the response variable in the regressions and maps 
should be the total LAI or biomass. These maps 
could then be complemented with maps for such 

Figure 5. Pairwise map comparisons for vascular leaf-area index (A–C) and total biomass (D–F) for regressions with different feature 
sets. Each dot in the plots represents LAI or biomass prediction for one segment. Dot density is showed with heat map colors so that 
red indicates higher density and blue lower density. In the figure, r refers to Pearson correlation coefficient and MAE to mean absolute 
error between the maps.

GISCIENCE & REMOTE SENSING 15



PFTs that can be mapped with relatively high 
accuracy.

Our results showed mixed results on whether 
hyperspectral drone data are important in tracking 
LAI and biomass patterns. According to feature 
importance scores, hyperspectral data were extre-
mely important; yet, when looking at explanatory 
capacities of different models, the inclusion of hyper-
spectral data boosted performance in most models 
but usually rather modestly. Additionally, landscape- 
level LAI and biomass estimates regressions with 
three different feature sets (all features, hyperspectral 
features, hyperspectral omitted) were typically quite 
close to each other. These results suggest that hyper-
spectral data give only slight benefits when included 

in a multi-source remote sensing analysis of LAI and 
aboveground biomass patterns. In future studies, the 
relative benefit of different multispectral and hyper-
spectral sensors with various band constellations and 
spectral ranges could be tested in different 
landscapes.

Our results showed that multiple different remote 
sensing datasets are important in LAI and biomass 
estimation; hence, we suggest that (hyper)spectral 
datasets should be combined with topographic and 
structural data at sub-meter-level spatial resolution 
when mapping vegetation patterns in spatially het-
erogeneous landscapes such as northern peatlands. 
We also found that peak growing season features 
were more important than non-peak season features 

Figure 6. Maps of vascular leaf-area index (A–C) and total biomass (F–H) with different feature sets used as the input data. 
Additionally, a true-color drone image from 2016 (D) and elevation based on drone data (E) are included.
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but more research should be conducted for evaluat-
ing the optimal timing for remote sensing data 
acquisition.
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