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Abstract

Satellite DNA (satDNA) is one of the major fractions of the eukaryotic nuclear genome.

Highly variable satDNA is involved in various genome functions, and a clear link between

satellites and phenotypes exists in a wide range of organisms. However, little is known

about the origin and temporal dynamics of satDNA. The “library hypothesis” indicates that

the rapid evolutionary changes experienced by satDNAs are mostly quantitative. Although

this hypothesis has received some confirmation, a number of its aspects are still controver-

sial. A recently developed next-generation sequencing (NGS) method allows the determina-

tion of the satDNA landscape and could shed light on unresolved issues. Here, we explore

low-coverage NGS data to infer satDNA evolution in the phylogenetic context of the diploid

species of the Chenopodium album aggregate. The application of the Illumina read assem-

bly algorithm in combination with Oxford Nanopore sequencing and fluorescent in situ

hybridization allowed the estimation of eight satDNA families within the studied group, six of

which were newly described. The obtained set of satDNA families of different origins can be

divided into several categories, namely group-specific, lineage-specific and species-spe-

cific. In the process of evolution, satDNA families can be transmitted vertically and can be

eliminated over time. Moreover, transposable element-derived satDNA families may appear

repeatedly in the satellitome, creating an illusion of family conservation. Thus, the obtained

data refute the “library hypothesis”, rather than confirming it, and in our opinion, it is more

appropriate to speak about “the library of the mechanisms of origin”.

Introduction

Satellite DNA (satDNA) was discovered at the junction of the 1950s and 1960s via ultracentri-

fugation in a density gradient [1] and attracted increasing attention from researchers in recent
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years. Highly variable satDNA [2] that consists of long, late-replicating, non-coding arrays of

tandemly arranged monomers is involved in various functions, ranging from chromosome

organization and pairing to cell metabolism and modulation of gene functions [3–7]. There-

fore, to better understand eukaryotic genome evolution and functioning, it is important to

determine how and why satDNA varies among individuals and species, as there are clear links

between satellites and phenotypes in a wide range of organisms [8].

The rapid quantitative and qualitative evolution of satellitome elements leads to the forma-

tion of complicated, difficult to decrypt species-specific profiles, and the best way to define

satDNA formation patterns is to project satellitome dynamics on the evolution of a known

biological system. Thus, in 1976 Salser et al. [9] suggested the “library hypothesis” based on

rodent taxa, proposing that: “To explain the conservation of satellite sequences over long evo-

lutionary periods during which they seem to appear and disappear many times, we have sug-

gested a new model in which it is proposed that the rodents (and perhaps other mammalia)

share a common library of satellite sequences. In each species, certain members of this library

may be amplified and appear as major satellite peaks, while other satellite sequences are pres-

ent at low levels undetectable in the analytical ultracentrifuge. According to this model, the

rapid evolutionary changes undergone by satellite DNAs would be for the most part quantita-

tive. Appearances of new satellites would usually represent amplification of one of the satellites

already present at low level in the “library” rather than appearance de novo as in the original

Southern (1970) model” [10]. According to this model, the rapid evolutionary changes experi-

enced by satDNAs would be mostly quantitative. Although the library hypothesis has been

confirmed by data from other living systems [11–14], this hypothesis does not address several

important questions, such as (i) how novel satellites emerge and (ii) how libraries form and

survive speciation-related repeatome purification [15] and subsequent concerted evolution, in

addition to ignoring the phenomenon of the recurrent appearance of satellitome components

from, for example, transposable elements (TEs) [7, 16].

To shed light on at least some of these problems, a recently developed method of next-gen-

eration sequencing (NGS) data assembly is useful. In this method, short DNA fragments are

aligned and merged to reconstruct the original sequence [17], thus allowing the determination

of the satDNA landscape. Here, we intended to analyze NGS Illumina data to reconstruct satel-

lite evolution in the well-developed phylogenetic context of the Eurasian representatives of the

Chenopodium album aggregate. The evolutionary history of this species complex has been

shaped by extensive hybridization and polyploidization and was described in detail recently

[18]. Eight basic evolutionary lineages represented by five extant and three extinct/unknown

diploid taxa have been identified within this group. The diversification of the group started at

the Miocene; however, most of the lineages formed later, close to the beginning of the Quater-

nary period [18]. Superimposed on this sequence of evolutionary events, parameters of the

satellitome will reflect the proliferation of the complex over time and, consequently, the line-

age-specific trends and patterns in the satDNA family’s evolution and amplification.

Given the long evolutionary history and wide distribution of C. album aggregate in various

climatic regions, we hypothesized that differential satellitome dynamics may occur in diverse

lineages. The “library hypothesis” would be supported by cases of long-term conservation of

satellitome elements during evolution, while cases of elimination and/or the emergence of new

elements would oppose it. Thus, we aimed to evaluate the satDNA landscape of the distinct

evolutionary lineages recognized within the C. album aggregate that are represented by extant

related diploid species. However, considered the limitations regarding the assembly of satellite

repeats based on short read sequence data [16, 19]. Thus, an alternative assembly-free

approach involving the use of ultralong Oxford Nanopore reads (ONs) was used to (i) confirm

the results based on Illumina data and (ii) determine the length of different satellite repeat
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arrays and their association in the genome. The combination of these two types of data may

indicate the vectors of species divergence at the molecular level with higher accuracy.

Materials and methods

Statement of permit requirements

No permits were required for this study.

Plant material, DNA extraction, library preparation, and Illumina sequencing. For

both the preparation of the DNA libraries and cytogenetic experiments, plants of the following

diploid species were used: C. acuminatum Willd., C. bryoniifolium Bunge, C. ficifolium Sm., C.

iljinii Golosk., C. pamiricum Iljin, C. suecicum J. Murr, and C. vulvaria L., which represent the

main Chenopodium album aggregate lineages (Table 1). For our research, we sampled geno-

types that present average parameters for the lineage according to our previous work [18]. All

plants were cultivated in the experimental garden of the Institute of Botany, Czech Academy

of Sciences, Průhonice, Czech Republic (49.9917˚N, 14.5667˚E, ca. 320 m above sea level).

Leaves were collected, and DNA was extracted using the DNeasy Plant Mini Kit (Qiagen, Hil-

den, Germany) according to the manufacturer’s instructions. For in situ hybridization experi-

ments, the root tips of young roots were collected and fixed as described by Mandák et al. [20],

then stored until use.

One individual per species was used for library preparation and NGS. One microgram of

extracted DNA was sheared into fragments of approximately 500–600 bp using a Bioruptor

Pico sonication device (Diagenode, Liège, Belgium). NEBNext adaptors for Illumina were

ligated to the resulting fragments using the NEBNext Ultra DNA Library Prep Kit for Illumina

(New England BioLabs, Ipswich, MA, USA) following the manufacturer’s instructions. The

QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) was used to clean unbound adapt-

ers from the samples and to concentrate the samples to a total volume of 30 μl. Thereafter, the

samples were loaded into a 1% agarose gel in low-EDTA/TAE buffer. Fragments with sizes

ranging from 500 to 750 bp were excised and purified using the Zymoclean Gel DNA Recovery

Kit (Zymo Research, Irvine, CA, USA) and eluted into 20 μl of ddH2O, after which their con-

centration was estimated with a Qubit fluorometer using the Qubit HS Assay kit (Thermo Sci-

entific, Waltham, MA, USA). The individual libraries (corresponding to individual species)

were enriched and indexed with unique barcodes using PCR with NEBNext Q5 HotStart HiFi

PCR Master Mix and NEBNext Multiplex Oligos for Illumina (New England BioLabs) accord-

ing to the manufacturer’s instructions. The enriched libraries were purified twice using

AMPure magnetic beads (Beckmann Coulter, Pasadena, CA, USA), with a bead:library ratio of

0.7:1 in the first purification and 1:1 in the second purification. The libraries were checked on

1% agarose gels after each purification step and concentration was measured using the Qubit

HS Assay kit (Thermo Scientific) after the final purification step. The libraries of all seven

Table 1. The accessions and geographic origins of diploid Chenopodium species (2n = 2x = 18).

Species (accession number) Genome Locality Genome Size Mbp

C. acuminatum (429–3) D China, Xinjiang, Altaj, Burqin 960

C. bryoniifolium (742–4) A Russian Federation, Primorski Krai, Nakhodka City District 2608

C. ficifolium (330–2) B Czech Republic, Slatina 1785

C. iljinii (433–9) E China, Xinjiang, Altaj, Hoboksar 1144

C. pamiricum (830–3) E Tajikistan, Gorno-Badakhshan autonomous region, Murghob District 1154

C. suecicum (328–10) B Czech Republic, Švermov 1775

C. vulvaria (771–1) H Iran, Ardabil, Meshgin Shahr 924

https://doi.org/10.1371/journal.pone.0241206.t001
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species were pooled and sequenced in an Illumina MiSeq system at Macrogen Inc. to obtain

300 bp paired-end reads (genome coverage 0.4–0.9x, which is sufficient for the identification

of major satDNA families). The Illumina data have been deposited in the NCBI Sequence

Read Archive as BioProject PRJNA634444.

Assembly and contig screening for tandem repeats. For the processing of the Illumina

NGS data and the identification of the colocalization of TEs and CficCl-61-40 satDNA family

arrays in the genomes of all investigated species, Geneious Prime software version 2019.2.1

(https://www.geneious.com) was used [21]. The advantage of this assembler is that it produces

large contigs. De novo assembly was performed with medium-low sensitivity, which is the best

option for large numbers (e.g., 100,000 or more) of Illumina sequencing reads. The 1,000 lon-

gest contigs, excluding those from mitochondria, chloroplasts and rDNA, were analyzed using

the following two publicly available online tools: tandem repeat finder (TRF) (https://tandem.

bu.edu/trf/trf.html) [22] and the YASS genomic similarity tool (http://bioinfo.lifl.fr/yass/yass.

php) [23], which enables searches for potential tandem organization. Contigs containing long

satDNA arrays (> 30 monomers for minisatellites and> 5 monomers for tandem repeats)

were selected manually. In parallel, the most common microsatellites for each species were

determined. The selected contigs were checked for similarities with BLAST. For newly discov-

ered satDNA families that did not show any similarities in the database, a consensus monomer

was determined (S1 Table). Conservative motifs of 9–12 bp were distinguished within the con-

sensus monomer for further in silico genome scanning to quantitatively determine the approx-

imate content (Table 2). The genomes of the remaining species were also scanned with the

determined conserved motifs to identify the presence of the newly discovered satDNA fami-

lies. Scanning was performed with the “search for motifs” command of the GP program, with

a maximum of zero nucleotide mismatches. There could be a multitude of dispersed repeats in

the genome [24], but they are of low copy numbers and can be considered genetic noise in

most cases. Therefore, the existence of arrays for a specific satDNA was crucial for the confor-

mation of the presence of that satDNA family in the genome of a single species. The percentage

of microsatellites in the genome was approximately estimated by the number of hits of (TTA)6

motif per 50,000 longest contigs in each species.

SatDNA family characterization. Based on the consensus sequences of contigs that con-

tain newly determined satDNA families, primers were designed using FastPCR (https://

primerdigital.com/fastpcr.html) [25]. The primer sequences are provided in Table 2. PCR was

performed in a 25 μL reaction containing TopBio Plain PP Master Mix (TopBio, Vestec, Czech

Republic), each primer at 0.2 mM and 10 to 50 ng of genomic DNA. The cycling conditions

Table 2. Primers and conserved motifs for satDNA families.

DNA of species satDNA family Conserved motif Forward primer Reverse primer

C. ficifolium f1� TTTCATTTGA TCAAACAAAGCTTTTTGAATC TTGTTTGAATGTGTTTGACTTT

C. acuminatum f2 GCATGTAGA GCATGTAGAAAATGGGAATGC AATCAAGCAAATTCGGCAAA

C. vulvaria f3 AGCCATATA AGCCATATATGCTCGTTTTCAA TCATTGAAATGAATGAACTAACAATTC

C. suecicum f4 AATGGAATC CAAACAAAGCAAATGGAATCAA TTGCTTTGGGAATTCGTTTC

C. pamiricum f5 AAGGGGCTC ACATCATCGCCCATCTAAGG TGGTACCCCTTCGGGTTAAT

C. acuminatum f6 TATGTTCTAAA CCGGTAAGAACCCCACCT AGAACATAAACAACCAAAAA

C. pamiricum f7 GGAGCGGGC CTTTCTGACCCAGCAAGGAG GCGCTCCATCTCTCTGCAC

C. pamiricum f8 CCCGTCTGT TTACACAGATGGTGAAATAAAAATTAC TGTAATACACAGACGGGCAAA

C. acuminatum MS (TTA)6 Synthetic probe

� The primers and conserved motif for Family 1 (f1) were described previously by Belyayev et al. [19].

https://doi.org/10.1371/journal.pone.0241206.t002
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were as follows: 4 min at 95˚C, followed by 35 cycles of 95˚C for 30 s, a sequence-specific

annealing temperature for 30 s and 72˚C for 2.5 min, with a final extension at 72˚C for 10 min.

The PCR results were verified in 1% agarose gels. The PCR products of clusters were excised

from the gels, cloned and sequenced at GATC Biotech (Konstanz, Germany) according to

standard protocols.

For the reconstruction of the phylogenetic relationships among the analyzed monomers,

multiple alignments were performed with ClustalW [26]. The phylogenetic relationships

among the sequences were then reconstructed from the pairwise distance matrix [27]. The

obtained distance matrix could be used to construct a phylogenetic tree via the minimum evo-

lution method. The construction of the phylogenetic tree was performed with the MEGA pro-

gram (Fig 1) [28].

Oxford nanopore sequencing. For Oxford nanopore sequencing, DNA of C. acumina-
tum, C. pamiricum and C. suecicum was used. DNA was fragmented by pipetting. The

sequencing libraries were prepared from 1 μg of the partially fragmented DNA using Ligation

Sequencing Kit SQK- LSK109 (Oxford Nanopore Technologies) following the manufacturer’s

protocol. The DNA was treated with 2 μl of NEBNext FFPE DNA Repair Mix and 3 μl of NEB-

Next Ultra II End-prep enzyme mix in a 60 μl volume that also included 3.5 μl of both the

FFPE and End-prep reaction buffers (New England Biolabs). The reaction was performed at

20˚C for 5 min and 65˚C for 5 min, followed by purification using a 1x volume of AMPure XP

beads (Beckman Coulter). Subsequent steps, including adapter ligation using NEBNext Quick

T4 DNA Ligase and library preparation for sequencing, were performed according to the pro-

vided protocols. Each library was loaded separately onto the FLO-MIN106 R9.4 flow cell and

Fig 1. Relationships tree of the satDNA families identified in the genomes of diploid C. album aggregate species. The size of the circle is proportional to the number

of species in whose genomes the satDNA family occurs.

https://doi.org/10.1371/journal.pone.0241206.g001

PLOS ONE Satellite DNA families of the diploid Chenopodium album aggregate species

PLOS ONE | https://doi.org/10.1371/journal.pone.0241206 October 27, 2020 5 / 14

https://doi.org/10.1371/journal.pone.0241206.g001
https://doi.org/10.1371/journal.pone.0241206


sequenced for 20 h. SatDNA family array searches were performed with the same algorithm

employed for the assembled reads.

In situ probe preparation and FISH procedure. For the characterization of the chromo-

somal distribution of satDNA families, fluorescent in situ hybridization (FISH) experiments

were performed. The root fixation, slide preparation, probe labeling and FISH procedures

were performed as described by Mandák et al. [18]. The slides were examined and photo-

graphed with a Zeiss Axio Imager Z2 microscope system.

Results

The major satDNA families in the genomes of diploid C. album aggregate

species

In silico TRF scanning results were applied for the identification of eight satDNA families and

the most common microsatellites in the genomes of diploid C. album aggregate species (Tables

2 and 3). The consensus monomer sequences of the determined satDNA families are presented

in S1 Table. In Fig 1, the phylogenetic relationships of the satDNA families determined in

genomes of the diploid C. album aggregate species are presented. The characteristics of each of

the identified satDNA families are also shown below.

Family 1 (f1, same as the CficCl-61-40 satDNA family in Belyayev et al. [16, 19]) is the most

common satDNA family that is present in the genomes of all studied species [19]. Its monomer

length is approximately 40 bp (S1 Table). Each monomer contains a conserved

TTTCATTTGA motif, which corresponds to the beginning of the parental CACTA-like trans-

posable element fragment [16]. According to the ON data, f1 monomers form long arrays,

reaching lengths of more than 40 kb, and have thousands of copies (Figs 2, 3A and 3B).

According to the FISH data, f1 is distributed along all chromosomes, with an increased con-

centration in pericentromeric heterochromatin (Fig 4A).

Family 2 (f2) was identified in the genome of C. acuminatum (D-genome). Its monomer

length is approximately 170 bp (S1 Table) and contains a conserved GCATGTAGA motif. f2 is

associated with f1 (Fig 1) and is often located nearby. Read 422 from the ON sequencing

(length 31 152 bp) of the C. acuminatum genome provides an example of f1 and f2 colocation

(Fig 3B). FISH experiments revealed the distribution of f2 on four chromosome pairs of the C.

acuminatum chromosome set (Fig 4B). The cloning of PCR-amplified DNA fragments showed

86.5–89.6% similarity with the assembled reference sequence. Sequences containing part of the

f2 satDNA array were submitted to GenBank under accession number MT722943.

Family 3 (f3) was identified in B- and H-genome species, specifically in C. ficifolium, C. sue-
cicum and C. vulvaria. f3 is similar to ChenSat-2d (GenBank: LR215738.1) detected in the

genome of C. quinoa by Heitkam et al. [29], with monomer similarity of 92.35%. Its monomer

length is approximately 170 bp (S1 Table) and contains a conserved AGCCATATA motif. The

Table 3. Occurrence of specific satDNA families in the genomes of diploid C. album aggregate species.

Spec. (genome)/satDNA fam. f1 f2 f3 f4 f5 f6 f7 f8

C. ficifolium (B) + – + – + – + –

C. suecicum (B) + – + + + – + –

C. iljinii (E) + – – – – + + +

C. pamiricum (E) + – – – – + + +

C. acuminatum (D) + + – – – + + –

C. bryoniifolium (A) + – – – – + + –

C. vulvaria (H) + – + – – + + –

https://doi.org/10.1371/journal.pone.0241206.t003
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ON data showed the formation of arrays of up to 20 copies long (Figs 2 and 3C). FISH experi-

ments revealed the distribution of f3 on one chromosome pair of the C. suecicum chromosome

set (Fig 4C). Cloning of PCR-amplified DNA fragments from the genome of C. vulvaria
showed 92.4% to 94.2% similarity with the assembled reference sequence. Sequences contain-

ing part of the f3 satDNA array were submitted to GenBank under accession number

MT722944.

Family 4 (f4) is a species-specific satDNA family that is present in the genome of C. sueci-
cum. Its monomer length is approximately 40 bp (S1 Table) and contains a conserved AATG-
GAATC motif. According to the ON data, f4 forms arrays of approximately 2500 bp in length

(Figs 2 and 3D). FISH experiments revealed the distribution of f4 predominantly in pericen-

tromeric heterochromatin of the C. suecicum chromosome set (Fig 4D). Cloning of PCR-

amplified DNA fragments showed 90.0–95.0% similarity with the assembled reference

Fig 2. Arrays of satDNA families determined in genomes of three diploid Chenopodium species from ON reads. Screening was conducted on the basis of

conserved motifs of satDNA family monomers (Table 2, S1 Table). satDNA family designation is the same as in the text, MS–microsatellites.

https://doi.org/10.1371/journal.pone.0241206.g002
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Fig 3. Self-to-self comparison of the ON reads displayed as dot plots (YASS program output), where parallel lines indicate tandem repeats (the distance

between the diagonals is equal to the lengths of the motifs). (A) Array of the f1 satDNA family and long tandem repeats determined from read 17 of the ON

reads for the C. acuminatum genome. (B) Colocalization of f1 and f2 satDNA family arrays in read 422 from the ON sequencing of the C. acuminatum genome.

(C) Array of the f3 satDNA family in read 169 from the ON sequencing of the C. suecicum genome. (D) Array of the f4 satDNA family in read 210 from the ON

sequencing of the C. suecicum genome. (E) Array of the f5 satDNA family in read 137 from the ON sequencing of the C. suecicum genome. (F) Array of the f6

satDNA family in read 2727 from the ON sequencing of the C. pamiricum genome. (G) Array of the f7 satDNA family in read 2621 from the ON sequencing of

the C. pamiricum genome. (H) Array of the f8 satDNA family in read 5857 from the ON sequencing of the C. pamiricum genome.

https://doi.org/10.1371/journal.pone.0241206.g003

Fig 4. Chromosomal distribution of eight satDNA families. (A) FISH with the f1 probe on chromosomes of C. acuminatum. (B) FISH with the f2 probe on

chromosomes of C. acuminatum. (C) FISH with the f3 probe on chromosomes of C. suecicum. (D) FISH with the f4 probe on chromosomes of C. suecicum. (E)

FISH with the f5 probe on chromosomes of C. suecicum. (F) FISH with the f6 probe on chromosomes of C. acuminatum. (G) FISH with the f7 probe on

chromosomes of C. acuminatum. An enlarged chromosome with a clear centromeric signal is shown in a separate box. (H) FISH with the f8 probe on

chromosomes of C. iljinii. A metaphase plate with a red signal from the f8 satDNA family is shown on the left, and DAPI staining of the same metaphase plate

is shown on the right. The smallest pair of chromosomes with major blocks is indicated by arrows. (I) FISH with an MS probe on chromosomes of C.

acuminatum. All chromosomes were counterstained with DAPI. Bars represent 5 μm.

https://doi.org/10.1371/journal.pone.0241206.g004
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sequence. The sequence containing part of the f4 satDNA array was submitted to GenBank

under accession number MT722945.

Family 5 (f5) is a B-genome-specific satDNA family that is present in the C. ficifolium and

C. suecicum genomes. It shows a partial match with clone ENA|LR215739|LR215739.1, with

95.83% similarity of corresponding fragments. Its monomer length is approximately 48 bp (S1

Table) and contains a conserved AAGGGGCTC motif. ON read 137 from the C. suecicum
genome provides an example of an f5 array structure in which short arrays interspersed with

short intervals form a combined major array of approximately 8000 bp in length (Figs 2 and

3E). FISH experiments revealed an evenly dispersed chromosomal distribution of f5 in the C.

suecicum chromosome set (Fig 4E). Cloning of PCR-amplified DNA fragments showed 87.0–

87.5% similarity with the assembled reference sequence. The sequence containing part of the

f5 satDNA array was submitted to GenBank under accession number MT722946.

Family 6 (f6) is present in all explored diploids except for the B-genome species of C. ficifo-
lium and C. suecicum. Its monomer length is approximately 21 bp (S1 Table) and contains the

conserved TATGTTCTAAA motif. The YAAS output of ON read 2727 from the genome of C.

pamiricum demonstrates a special structure of the f6 repeat arrays in which a conserved mono-

mer of 21 bp is followed by highly variable fragments of different lengths (Fig 2). Thus, con-

served repeats are distributed at different distances from each other, and the dot plot for this

type of satDNA looks like a dotted square (Fig 3F). FISH experiments revealed an evenly dis-

persed chromosomal distribution of f6 in the C. acuminatum chromosome set (Fig 4F). Clon-

ing of PCR-amplified DNA fragments from the C. acuminatum genome showed 80.0% -

95.5% similarity with the assembled reference sequence. The sequence containing part of the

f6 satDNA array was submitted to GenBank under accession number MT722947.

Family 7 (f7) is the second widespread satDNA family that is present in the genomes of all

studied species. Its monomer length is approximately 21 bp (S1 Table) and contains a con-

served GGAGCGGGC motif. Positions from the first to thirteenth nucleotides are highly con-

served in all explored species, but the rest of the monomer is variable even within a single

genotype. ON read 2621 from the genome of C. pamiricum demonstrated that this satDNA

family forms relatively short arrays (Figs 2 and 3G). Another finding from ON sequencing was

that fragments of conserved retrotransposon domains (reverse transcriptase Cdd: cd01647)

are very often in close proximity to f7 arrays. According to FISH data, f7 is distributed in cen-

tromeric regions and pericentromeric heterochromatin (Fig 4G). The cloning of PCR-ampli-

fied DNA fragments from the genome of C. acuminatum showed ~70.0% similarity with the

assembled reference sequence. The sequence containing part of the f7 satDNA array was sub-

mitted to GenBank under accession number MT722948.

Family 8 (f8) is E-genome specific and is present in the genomes of C. iljinii and C. pamiri-
cum. Its monomer length is approximately 60 bp (S1 Table) and contains a conserved

CCCGTCTGT motif. ON reads 4586 and 5857 from the genome of C. pamiricum demonstrated

that this satDNA family forms relatively short arrays (Figs 2 and 3H). FISH experiments

revealed a clustered chromosomal distribution of f8 in the C. iljinii chromosome set (Fig 4H).

There are four major clusters and two minor clusters on three pairs of chromosomes. The

major clusters completely cover the two smallest chromosomes and are terminally located on

one of the largest chromosome pairs. The minor clusters are located in the pericentromeric

region of one chromosome pair. Cloning of PCR-amplified DNA fragments from the genome

of C. pamiricum showed 85.0–93.3% similarity with the assembled reference sequence. The

sequence containing part of the f8 satDNA array was submitted to GenBank under accession

number MT722949.

Within the diverse microsatellites in the genomes of diploid C. album aggregate species, the

TTA microsatellite is the most abundant. Species differ significantly in the in silico-determined
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density of TTA per genome unit. If TTA density in the genome of C. acuminatum is taken as

100%, the density in the genomes of the remaining species is as follows: C. bryoniifolium—
144%, C. ficifolium– 141%, C. iljinii– 54%, C. pamiricum– 252%, C. suecicum– 156%, and C.

vulvaria– 132%. ON sequencing shows that TTA microsatellites may form arrays of up to 1500

bp in length (Fig 2). According to FISH data, TTA microsatellites are distributed along all

chromosomes of the investigated species, with an increased concentration in pericentromeric

heterochromatin (Fig 4I).

One of the outcomes of ON sequencing was the discovery of ultralong tandem repeats in

the genomes of the investigated species. Thus, together with the f1 tandem array, an ultralong

tandem array with a monomer of approximately 13 kb is presented in Fig 3A. It should be

emphasized that within this array, no TE-related conserved domains (even incomplete or non-

functional domains) were found.

Discussion

Application of the short read genome assembly algorithm in combination with ON sequencing

allowed the estimation of the satDNA landscape of the genomes of the diploid C. album aggre-

gate species. The obtained diverse set of satDNA families can be divided into several categories:

group-specific, lineage-specific and species-specific. The group-specific families include two

families, f1 and f7, both of which are connected with different TEs. The first is the highest

copy-number satDNA family in the Chenopodium genome, which constitutes up to 3.8% of

the total genomic DNA of the explored species [19]. According to our previous work [16], f1

appears to be a mixture of long-formed and diverged monomers of different lengths transmit-

ted vertically during the process of evolution, plus novel uniform monomers of ~40 bp that

were formed from the deletion derivatives of the parental CACTA-like element Jozin. At least

a portion of the ancient monomers are far-diverged spin-offs and could be a source of the new,

f1-related satDNA families (see below). In contrast, the newly formed f1 satDNA family mono-

mers present a similar nucleotide composition in different species since they originated from

the same fragment of the conserved CACTA-like element tnp2 domain. This similarity may

create an illusion of conservation; however, as noted previously, monomers arise repeatedly

and independently in different lineages [16]. Perhaps this continuous replenishment of species

genomes with new identical satDNA monomers could be a possible explanation for the phe-

nomenon of the long-existing satellite families described in species such as mollusks [30].

Another group-specific satDNA family is f7, which is most likely also connected with TEs.

Several arguments can be made in favor of this assumption. First, ON sequencing followed by

the analysis of conserved domains showed the presence of retrotransposon fragments, particu-

larly fragments or RT domains, in close proximity to f7 arrays. Second, a self-to-self compari-

son of the ON reads displayed as a dot plot revealed the presence of f7 short arrays at the ends

of long tandem repeats that are most likely decayed TEs according to their lengths (Fig 3G). In

this case, f7 satDNA monomers could be components of the LTRs of retrotransposons,

although we did not find proper similarities with a specific TE. However, on the basis of FISH

experiments with fragments of the f7 satDNA family as probes (Fig 4F), we propose that it

could be a centromere-associated TE (a CRM retrotransposon, for example) as the FISH sig-

nals were strong (although the arrays were rather short) and were attributed predominantly to

centromeric regions.

The lineage-specific satDNA families were f3, f5, f6 and f8. When these families were exam-

ined in a phylogenetic context, it became apparent that their origin does not fit a single model.

For example, the f3 satDNA family was detected in the genomes of species that are separated

by 11 Mya (clades B and H) [13]. Thus, it is logical to assume that (i) this tandem repeat is an
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ancient component that was present in the progenitors of all present-day lineages and that (ii)

the plant genomes of clades A, D and E lost this repeat during the evolutionary process [11].

Heitkam et al. [29] reported a further decrease in the copy number of this satDNA family in

the B-genome containing tetraploid C. quinoa due to polyploidization. The f3 family is related

to the f1 family (Fig 1) and could be a HOR derivative of f1 that was formed long ago at the

time of the initial genesis of the C. album aggregate. In contrast, f5, f6 and f8 satDNA families

are much younger and arose during the process of the divergence of several clades, but the

exact pathway of the formation of these families is questionable, especially considering the

unusual structure of the f6 satDNA family arrays.

The species-specific satDNA families are f2 and f4 (note that lineage D is present only by a

single diploid species of C. acuminatum). Species-specific repeats may present fluctuating copy

numbers even within the species range and are often completely or almost completely elimi-

nated during speciation [15]. Species-specific satDNAs most likely form as a result of a single

event. Given the proximity of satDNA family f2 to f1 (Fig 1), it can be proposed with a high

probability that the 170 bp f2 monomer is also an HOR derivative of a 40 bp minisatellite of f1

that was formed later than the monomer of the f3 satDNA family, no earlier than ~ 5 Mya

[18], at a specific stage of C. acuminatum genome evolution, especially considering that this

genome possesses a tendency for HOR unit formation [19].

Two other satDNA families that were discovered in the genomes of the investigated species

were microsatellites and ultralong tandem repeats. The predominant microsatellite motif in

the explored genomes was TTA. Although microsatellites are known to be highly variable in

terms of copy number in the genomes of the analyzed diploid species of the C. album aggre-

gate, the genomes could be divided into high-microsatellite-copy-number genomes, such as

that of C. pamiricum, and low-copy-number genomes, such as that of as C. iljinii, with the

other species presenting intermediate values. The large difference in the numbers of microsat-

ellites in the genomes of closely related C. pamiricum and C. iljinii are of special interest

because of the ecological separation of these species. These species are not in contact at present:

Pamiricum-Himalayan-endemic C. pamiricum grows at 3000 m asl and higher but was proba-

bly much more widely distributed during the Glacial period, while C. iljinii is a steppe-semi-

desert species growing at lower altitudes with a wider distribution [18]. It is clear that different

environments have driven the relatively rapid divergence of the genome composition (particu-

larly microsatellite copy numbers) of these two species. Concerning the observed ultralong

tandem repeats, they are most likely decayed TEs (Fig 3A). Conserved domains are no longer

detectable in the array, but based on monomer lengths, it can be concluded that they are TE

residues that have retained their tandem organization.

If all of the obtained data are considered from the “library hypothesis” perspective, these

data more often refute rather than confirm this hypothesis. The “library hypothesis” indicates

that related species share a common satDNA library; certain members of this library may be

amplified and appear as major members in each species while other satellite sequences are

present at low levels; and the rapid evolutionary changes experienced by satellite DNAs will be

mostly quantitative [9]. However, the present-day satellitome of diploid C. album aggregate

species contains eight major satDNA families that arose at different times and by different

mechanisms. Thus, the group-specific satDNA families f1 and f7 are TE derivatives that may

have originated repeatedly during the evolution of the group. Families f2 and f3 are most likely

HOR units originating based on f1 monomers, but at different times and in different lineages.

Moreover, the ancient family f3 is no longer found in the majority of diploid species, which

indicates its complete elimination during the evolutionary process. Thus, once a satDNA ele-

ment originates, it could be transmitted vertically and be stable over time, in agreement with

the “library hypothesis” which presupposes the long-term existence of satellitome elements in
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the genome within a specific set of satDNAs, but it could also be eliminated, which contradicts

the “library hypothesis”. The appearance of unique, novel species-specific satDNA families

such as f2 and f4 in a certain stage of genome evolution also opposes the “library hypothesis”.

Therefore, in our opinion, it is more appropriate to speak about “the library of the mechanisms

of origin” than about “the common satDNA library”. The study of the genomes of polyploid

species will provide more information on satDNA family stability over time and dynamics in

the process of evolution.
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