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"We reveal ourselves in the metaphors we choose for depicting the cosmos in
miniature."

- Stephen Jay Gould

To Antonio,





Abstract

Cancer is a collection of diseases that combined are one of the leading causes
of deaths worldwide. Although great strides have been made in finding cures
for certain cancers, the heterogeneity caused by both the tissue in which cancer
originates and the mutations acquired in the cell’s DNA results in unsuccessful
treatments for some patients. The genetic alterations caused by carcinogenics or by
random mutations acquired during normal cell division promotes changes in the
cell’s metabolism. These changes are usually reflected in abnormal gene expression
that can be studied to understand the underlying mechanisms giving rise to cancer
as well as suggest treatments that can exploit each tumor’s specific vulnerabilities.

RNA-Seq is a technology that allows the identification and quantification of the
genes that are being expressed inside the cell in a given moment. RNA-Seq has
several characteristics and advantages that allow a diversity of applications to exist.
For example, apart from quantifying gene expression, it can be used to detect
different variants of the same gene, has base pair resolution which is informative of
the gene sequence, and can also be used to quantify other RNA molecules besides
messenger RNA (mRNA), such as microRNAs.

The two main aims of this work are to provide computational methods for data
analysis of RNA-Seq and to show specific applications of RNA-Seq that can shed
light into cancer mechanisms. In Publications I and IV we developed the Sequence
Processesing Integration and Analysis (SePIA) and the Fusion Gene Integration
(FUNGI) toolsets that facilitate the creation of reproducible pipelines for investi-
gating different aspects of the cancer transcriptome. SePIA’s utility is showcased
with the analysis of datasets from two public data repositories. One of the analysis
shows a standard RNA-Seq analysis, while the second one produced a pipeline for
mRNA-microRNA integration. The second toolset, FUNGI, is aimed specifically at
finding reliable gene fusions with oncogenic potential. To demonstrate FUNGI’s
features, we analyzed 107 in-house samples and processed over 400 public samples
from a public data repository. FUNGI allowed us to detect fusions in ovarian cancer
with a higher prevalence than previously recognized. Additionally, we identified
a fusion gene that has not been reported before in ovarian cancer, but that can be
targeted with a drug currently in clinical trials. In Publication II we investigated
the role of alternative splicing in diffuse large B-cell lymphoma and were able to
show that isoform-level instead of gene-level is better at discriminating between
subtypes. Additionally, specific isoforms, such as APH1A, KCNH6, and ABCB1,
were correlated with survival. In Publication III, we used RNA-Seq to complement
the phasing of genetic variants with somatic mutations in tumor suppressor genes.
In this study we found enrichment of haplotype combinations that suggest that



haploinsufficiency of tumor suppressor genes is enriched in cancer patients.

SePIA and FUNGI are tools that can be used by the community to explore their
datasets and contribute to the acquisition of knowledge in the field of cancer genetics
with next generation sequencing. The applications of RNA-Seq studies included
in this dissertation showed that RNA-Seq can be effectively used to aid in the
classification of cancer subtypes, and that RNA-Seq can be used in combination
with DNA sequencing to explore gene expression mediated by genetic variation in
cancer.
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1 Introduction

Cancer is collection of diseases that combined are responsible for ∼10 million
deaths per year in the world [1]. One of the main characteristics of cancer is
the abnormal growth of cells that lead to death when vital organs’ functions are
compromised by the tumors. The standard hystopathological classification of
cancer into different subtypes is based on the tissue of origin. Cancer is a highly
heterogenous disease caused by both the difference in type of cell of origin and the
array of distinct processes occurring inside cells within the same tumor.

The work presented in this thesis comprises the study of a variety of cancer datasets,
but focused studies to better understand disease mechanisms were performed
in two cancer types: diffuse large B-cell lymphoma (DLBCL) and high-grade
serous ovarian cancer (HGSOC). The difference between these two cancers is
considerable since DLBCL arises from blood cells and it can be considered a liquid
tumor together with leukemias. In lymphomas the outgrowth of cells frequently
concentrates at lymph nodes forming abnormal masses, which makes lymphoma
also a particular case of solid tumors. On the other hand, HGSOC is a classical
example of solid cancer called carcinoma, which means that the cell of origin is in
the epithelial tissue. Despite the differences in cell of origin, the mechanisms behind
the transformation of healthy cells into cancerous ones are often shared among
cancers [2]. This allows us to study different cancers using similar techniques such
as the identification of germline predispositions, somatic mutations, or abnormal
gene expression.

The inherent heterogeneity of different cancers types augmented by the diversity
of genetic abnormalities that accumulate in individual tumors have given rise
to the field of personalized medicine in cancer. The hope of personalized or
precision medicine is to tailor cancer treatments to specific genetic abnormalities
of each individual’s tumors. To be able to identify these possible drug targets,
cancer research requires the study of increasingly larger datasets. Over the past
two decades, advancements in high-throughput technologies have facilitated the
creation of repositories of genetic data of both cancer samples and normal tissues.
Examples of these repositories are The Cancer Genome Atlas (TCGA) [3] which
houses over 20,000 datasets, Genotype-Tissue Expression (GTEx) [4] that provides
expression quantification of 54 non-cancer tissues from 1000 individuals, Cancer
Genome Characterization Initiative [5] focused on rare cancers, the Encyclpedia
of DNA Elements (ENCODE) [6], the Human Cell Atlas [7], among many others.
The amount of information that has been made accessible to cancer researchers
is enormous and has required the development of computational methods that are
efficient and reproducible to analyze these vast information resources.
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Bioinformatics is the field of research that produces the infrastructure and algo-
rithms that allow cancer genetic studies. The studies included in this dissertation are
focused on the analysis of a particular technology developed for exploring sequences
of expressed genes: RNA sequencing. Its main application is quantifying gene
expression, but apart from allowing the measurement of other RNA species such as
microRNAs, and not circumscribing the measurements to our current knowledge of
the transcriptome, RNA-Seq has the enormous advantage of providing base pair
resolution of long stretches of DNA. The multiple applications of RNA-Seq has
spurred a development of algorithms and tools for the processing, interpretation and
exploitation of this resource. In that sense, with Publication I, we contribute to the
development of a set of workflows that facilitate the standard analysis of RNA-Seq
datasets, such as differential gene expression, but also analysis of microRNAs
and integration with their possible mRNA targets. In Publication II we used
two different technologies, microarrays and next-generation sequencing, to study
alternative splicing in DLBCL. In Publication III, we leveraged the advantages
of RNA sequencing reads to complement phasing of germline genetic variation
and somatic mutations and test if these haplotype combinations are enriched in
cancer. In Publication IV we developed a workflow for studying a specific type of
structural variation known as gene fusions and applied it to both an in-house and a
large public ovarian cancer datasets.
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2 Cancer

Every function taking place inside our cells is carefully regulated by a series of
signals that tell the cell when to divide, what processes to initiate, what proteins
to produce, and when to die [8][9]. The information the cell requires to synthetize
the proteins that undertake all of the cells functions is encoded in the DNA. Cancer
occurs when this master blueprint gets corrupted and the signals become scrambled.

Given that cells have many mechanisms in place to protect their genetic code, it is
usually precisely a mutation in genes involved in safe guarding the DNAs integrity
the first step in cancer development. Once the gate has been opened for a cell
to start accumulating mutations, carcinogenesis can take place, and a normal cell
evolves into a cancerous one. The main abilities that cells need to gain to give rise
to tumors have been grouped into well defined categories, or hallmarks.

2.1 Hallmarks of cancer

In 2000, Hanahan and Weinberg published their landmark paper, The Hallmarks of
Cancer [2], where they included six characteristics essential for cancer development.
A decade later, four more hallmarks that are also considered fundamental aspects
from cancer initiation to metastasis [10] were added to the list. A short description
of each hallmark is included below.

Genome instability and mutation Alterations in the DNA damage response path-
ways permit mutations, caused by carcinogenics or by random errors during
replication, to evade detection and prevail. The accelerated mutation rate
that can happen when DNA repair is not operating allows the cells to evolve
rapidly and start acquiring other tumor promoting characteristics.

Sustaining proliferation signal Normally cells receive cues to begin cell division
from outside through transmembrane receptors. When a cell acquires the
capacity of producing its own growth factors then a cell can start dividing
without the need of external stimuli, which is a necessary step for tumor
formation.

Evading growth suppressors To maintain tissue homeostasis, mechanisms exist
to stop cells from proliferating without control. In cancer, cells acquire
mutations that allow them to evade the growth suppressor signals and continue
replicating.

Enabling replicative immortality Cell’s telomeres1 get shortened with every cell
division. When telomeres become too short replicative senescence is induced

1A telomere is a region of repetitive nucleotide sequences at each end of a chromosome, which
protects the end of the chromosome from deterioration
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in the cell. Telomerase has been found to be upregulated in 85-90% of tumors
[11] allowing the cell to extend telomeres and evade senescence. Cells that
manage to evade senescence without increasing telomere lengths further
induce genomic instability since chromosome ends become unprotected and
fusions between genomic regions can occur.

Resisting cell death Apoptosis can be triggered in response to DNA damage,
elevated levels of oncogenes, or cancer therapy. Cancerous cells accumulate
mutations in pro-apoptotic pathways early in their development to be able to
escape apoptosis which also renders them resistant to several cancer therapies.

Inducing angiogenesis Tumors require a steady nutrient supply to keep growing
therefore creation of blood vessels to feed the tumor is necessary. Angiogen-
esis can be triggered by hypoxia inside the tumor or by alterations in genes
controlling production of angiogenic regulators.

Activating invasion and metastasis Metastasis is a multistep process in which
first cells need to be able to detach from their local environment, get into
blood vessels (intravasation), travel and survive the pressure intact, exit the
vessels at a different site (extravasation), and start forming new tumors by
adapting to the new environment and sustaining proliferation again.

Avoiding immune destruction The immune system is capable of detecting tumors
and eliminate them. Cancer cells can evade immune destruction by disabling
components of the immune system that have been dispatched to neutralize
them by secreting immunosuppressive factors.

Tumor promoting inflammation Tumors benefit from immune cells drawn to the
tumor microenvironment. Inflammation can contribute by supplying the
tumors with bioactive molecules such as growth factors, survival factors,
proangiogenic factors, extracellular matrix-modifying enzymes that facilitate
angiogenesis, invasion, and metastasis.

Deregulating cellular energetics Cancer cells rewire their metabolism to sustain
proliferation. It has been observed that tumors preferentially over-utilize
glucose to obtain energy, a pathway preferred by normal cells under anaerobic
conditions (Warburg effect). The benefits to the tumor are still not completely
understood but the rationale has shifted from thinking it was due to defective
mitochondria or hypoxia to believe subproducts of glycolysis benefit the
tumor in other ways [12].

A reference to each cancer hallmark with the main cellular process that are as-
sociated to them can be seen in Figure 1. The cancer enabling characteristics
summed up by the so-called hallmarks are not exclusive of cancer. Many benign
tumors share some of these abilities. Even metastasis is not unique to cancer,
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since endometriosis2, for example, also colonizes other organs [13]. Nevertheless,
all of the functions described by the hallmarks are a necessary aspect of cancer
development and their study help us better understand the cellular transformations
that lead to cancer.

Figure 1: The Hallmarks of Cancer taxonomy [14]. The inner circle represents the
main ten cancer hallmarks and the outer circles indicate the cellular processes associated
with each cancer hallmark.

2.2 Tumor suppressor genes

Cancers are polygenic disorders; each of the hallmarks described above are regu-
lated by different groups of genes. These genes can be broadly divided in two types
based on their role being passive or active in cancer development: tumor suppressor

2Endometriosis is a condition in which cells similar to those in the endometrium, the layer of tissue
that normally covers the inside of the uterus, grow outside it.
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genes (TSGs) and oncogenes. TSGs are involved in DNA damage repair, inhibition
of cell division, induction of apoptosis, and suppression of metastasis. Inactivation
of TSGs is necessary for cancer progression. On the other hand, oncogenes belong
to pathways that promote cellular growth. Oncogenes are genes that normally
regulate cell cycle and proliferation, but when mutated or overexpressed lead to
tumor formation.

Prototypic tumor suppressor genes are recessive, requiring “two-hit” inactivation of
both alleles [15] for the cell to bypass the protection against cancer transformation
conferred by TSGs. Studies have shown that haploinsufficiency, when not enough
copies of a gene are produced to permit the cell to achieve the standard phenotype,
also contributes to the development and progression of many cancers [16]. In
Publication III we observed that cancer patients show enrichment of haplotype
combinations—germline genetic variants that regulate expression in the same allele
as somatic mutations—that can lead to haploinsufficiency of TSGs.

The main functions of tumor suppressor genes are 1) suppressing proliferation, 2)
repair DNA damage, 3) induction of apoptosis and 4) inhibition of metastasis. An
overview of canonical TSGs and their role in cancer is given below.

Suppression of cell division Both retinoblastoma (Rb), the first discovered TSG,
and p53, the most mutated TSG in cancer, act as regulators of the cell cycle
[17]. During replication, transcription factor E2F binds to the DNA to activate
DNA replication enzymes and allow the cell to progress from G1 to S phase.
Rb suppresses DNA replication by binding directly to E2F. Mutations can
deactivate Rb by impeding its binding to E2F [18]. On the other hand, p53
activates a gene that halts the cell cycle, if p53 is non-functional due to
mutations the cell cycle is not arrested.

DNA damage repair Most of the genes involved in detecting and correcting
mistakes or copying errors in the DNA are considered TSGs. MutS (MSH2,
MSH3, MSH6) and MutL (MLH1, MLH3, PMS1, PMS2) proteins recognize
and repair point mutations or small indels in the genome. ATM is a sensor
of break damage and its function is to phosphorilate p53 to impede the
MDM2 binding to it [19]. Breast cancer protein (BRCA) with NBS1 play key
functions in homologous recombination and nonhomologous end joining [20].
Homologous recombination is the mechanism used by the cell to repair dou-
ble strand breaks in which the sequence from the other chromosome is used
as template to repair the damaged one. Nonhomologous end joining is also
used to repair double strand breaks, but in this case an homologous sequence
is not used; in nonhomologous end joining the overhanging sequences from
each side of the break are simply joined back together. Inherited BRCA1 and
BRCA2 mutations are associated with familial breast and ovarian cancers
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[21]. Lynch syndrome is the most common genetic colorectal carcinoma
syndrome in which 70-85% of cases are caused by mutations in MLH1 or
MSH2 [22].

Induction of apoptosis Programmed cell death, or apoptosis, is regulated by many
pathways, two of which are mediated by p53 [23]. Apoptosis triggered by
stress conditions, such as cytokine deprivation, ER stress or DNA damage is
called the intrinsic pathway and it depends on p53 promoting upregulation
of pro-apoptotic members of the BCL-2 protein family. The extrinsic
pathway, or death receptor, activates the caspase cascade by ligation of
members of the tumor necrosis factor receptor (TNFR) family bearing an
intracellular death domain. PTEN utilizes an alternative mechanism to
promote apoptosis. PTEN is involved in cell cycle arrest and apoptosis
through negatively regulating the survival signaling mediated by PIP3 kinase
(PI3K) and its down-stream target, a serine/threonine kinase AKT (also
called protein kinase B) [24]. Activation of AKT regulates the function,
by phosphorylation activation or suppression, of a broad array of proteins
involved in cell growth, proliferation, motility, adhesion, neovascularization,
and cell death. Inhibition of the PI3K-AKT signalling pathway is an active
area of clinical development [25]. In Publication IV we identified several
fusion genes in ovarian cancer samples where one of the genes involved in
the fusion belongs to the PI3K-AKT pathway.

Metastasis Two important TSGs that prevent metastasis are metastin and breast
cancer metastasis suppressor 1 (BRMS1). Metastatin inhibits metastasis by
increasing the activity of focal adheshion kinase (FAK/PTK2) which prevents
cells from migrating and is usually overexpressed in ovarian cancer. In
Publication IV we identified two patients with a fusion gene involving PTK2.
BRMS1 suppresses metastasis in multiple tumor types including ovarian,
bladder, melanoma and non-small cell lung carcinoma.

2.3 Oncogenes

Proto-oncogenes are genes involved cell growth and proliferation pathways in
normal cells, but when mutated become oncogenes. Usually the mutations are
dominant in nature; a mutation in one of the alleles is enough to disregulate their
functions and promote cancer [26]. The mutant proteins often retain some of their
capabilities but are no longer sensitive to the controls that regulate the wild-type
protein form. One of the most notorious examples of oncogenes is B-cell lymphoma
gene-2 (BCL-2) which is a regulator of cell death and acts both as inhibitor or
promotor of apoptosis. When overexpressed, BCL-2, allows continued division of
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cancerous cells [27].

2.4 Diffuse large B-cell lymphoma

Lymphoma is a form of cancer that affects the lymphocytes. Lymphocytes are
small white cells called leukocytes of which two main types exist: B cells and T
cells. Both types originate from stem cells in the bone marrow, but B cells stay
in the bone marrow while T cells travel to the thymus. Lymphocytes are a main
component of the immune system, and the job of B cells is to produce antibodies,
while T cells directly destroy bacteria or cells infected by viruses. Both B and T
cells can become cancerous, but B cells account for 90% of all lymphoma cases
[28].

Lymphoma is classified in two major groups based on the presence or lack of
Reed-Sternberg cells into Hodgkin or non Hodgkin lymphoma. Diffuse large B-cell
lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma and
the most common lymphoid neoplasm in adults, with an average age of diagnosis
around 70 [28]. DLBCL can develop in the lymph nodes or in “extranodal sites”
(areas outside the lymph nodes) being most common in the gastrointestinal tract,
testes, thyroid, skin, breast, bone, and brain. It may present localized (in one
spot) or generalized (spread throughout the body). DLBCL is an aggressive (fast-
growing) disease, where ∼60% of patients respond favorably to a rituximab and
anthracycline-based CHOP or CHOP-like chemoimmunotherapy3 [29], which is
the standard therapy.

DLBCL can be further classified into two molecular subtypes: germinal center
B-cell-like (GCB) and activated B-cell-like (ABC). These subtypes were identified
after a systematic characterization of DLBCL tumors on a panel of genes involved
in lymphocyte development and activation showed that gene expression patterns
were indicative of different stages of B-cell differentiation [30]. Gene-expression
profiling can define ABC and GCB subgroups of DLBCL, leaving approximately
10 to 20% of cases unclassified or unknown subtype [30]. Main differences between
the subtypes include translocations in BCL-2 which are more frequent in GCB,
while ABC tumors show activation of B-cell receptor-dependent nuclear factor κB
(NF-κB). The identification of the subtype is relevant since it has been observed
that the ABC subtype has far worse survival prognosis than GCB subtype.

3Rituximab is a type of targeted cancer drug called a monoclonal antibody that targets CD20 protein,
which is found on B cells. The immune system can recognise the marked cells and kill them.The other
drugs in CHOP are cyclophosphamide, doxorubicin, vincristine, and prednisone which stop cells from
dividing.
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2.5 High-grade serous ovarian cancer

Ovarian cancer is a generic term used to classify cancers involving the ovaries
though they can arise from many different cells. Ovarian cancers of epithelial cell
origin account for more than 85% of all ovarian tumors [31]. Epithelial ovarian
carcinoma (EOC) has the highest mortality rate among gynecologic malignancies.
Typically, EOC is classified into five different histological subtypes: high-grade
serous, low-grade serous, endometrioid, clear cell and mucinous.

High-grade serous ovarian carcinoma (HGSOC) is the most common ovarian cancer
subtype (more than 70%) which presents at an advanced stage with a 5-year survival
below 50%. HGSOC therefore accounts for the majority of both ovarian cancer
cases and deaths [31]. HGSOC is usually diagnosed at late stages, less than 5%
are found at Stage I when the tumor is confined to the ovaries. The first line of
treatment for HGSOC is debulking surgery, but complete resection of the tumor is
difficult once the cancer has progressed from Stage I and has invaded the abdominal
cavity. Neoadjuvant therapy4, usually consisting of carboplatin plus paclitaxel, is
given to patients not eligible for debulking surgery.

HGSOC tumors are associated with genomic instability since almost all (>95%)
have somatic p53 mutations and over half have homologous DNA repair pathway
deficiencies predominantly in BRCA1, BRCA2, or related proteins. Germline
mutations in BRCA1 or BRCA2 confer a lifetime risk of up to 44% by 80 years of
age [21]. Genomic instability can lead to the inactivation of other TSGs through
gene breakage, for example, loss of PTEN has been associated to poor patient
survival. On the other hand, genomic instability can also cause amplifications,
for example amplification of cyclin E1 (CCNE1) is associated again with poor
prognosis and platinum resistance. Given that about 50% of all high-grade serous
patients have mutations in DNA repair pathways, including BRCA1/2, PARP
inhibitors appear to improve progression-free survival in women with recurrent
platinum-sensitive ovarian cancer. PARP1 is a protein involved in DNA repair, in
tumours with mutations in other DNA repair pathways, PARP inhibitors can be used
to cause synthetic lethality5 in the cell when used in combination with radiation to
induce cell damage [32].

4Neoadjuvant therapy refers to treatment given before surgery with the aim of shrinking the tumor.
5Synthetic lethality arises when a combination of deficiencies in the expression of two or more genes

leads to cell death, whereas a deficiency in only one of these genes does not. In the case of tumors with
BRCA mutations, PARP inhibitors would leave the cells with no mechanism to repair DNA double
strand breaks and die if the damage is induced by radiation, for example.
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2.6 Survival analysis in cancer

Survival analysis is a branch of statistics used to estimate the expected duration of
time until an event happens. In medicine, and in particular in oncology, the event of
interest is usually either death or disease recurrence; respectively known as overall
survival or progression free survival.

The time to relapse or death is not normally distributed. For example, in high risk
patients, the majority of relapses will occur early with very few occurring towards
the end of the follow-up time. In the case of a cancer with excellent prognosis,
most deaths will happen at the end of the follow-up time, or will be censored—the
precise time is not known, but it exceeds the time of last follow-up. Therefore,
statistical methods that assume normality of distributions cannot be used in survival
analysis.

Kaplan-Meier is a non-parametric method to estimate the survival function, a
function that gives the probability that an individual will survive beyond any
specified time [33]. The Kaplan-Meier survival curve is defined as the probability
of surviving in a given length of time where time is split in small intervals; each
of these time intervals starts with the date of occurrence of at least one event. The
Kaplan-Meier estimator uses the following formula to calculate the total probability
of survival considering all the probabilities of survival at all time intervals preceding
that time:

Ŝ(t) = ∏
i=ti≤t

(1− di

ni
),

where ti is a time where at least one event happened, di is the number of events that
happened at time ti and ni is the number of individuals that have survived until time
ti. The plot of the survival function is a step wise curve in which the probability of
surviving is constant between adjacent death or recurrence times and only decrease
at each event. An example of the Kaplan-Meier curves of two groups of individuals
is shown in Figure 2.

There are several tests for comparing two survival curves, but the most often used
is the log rank test [34]. The formula for the log rank test is given by

Log rank test statistic =
(O1−E1)

2

E1
+

(O2−E2)
2

E2
,

where E is the expected number of events and O is the number of observed events.
The expected number of events for each group is the risk of death or recurrence
considering that there is no difference between the groups, in other words, E1 is
the risk of event of the total number of individuals multiplied by the size of group
1. The statistic obtained is revised against a χ2 table to determine significance.
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Figure 2: A plot of the Kaplan-Meier curve of two groups of patients showing different
survival probabilities. Examples of different groups of patients that can produce
different survival curves are type of treatment, presence or absence of a genetic variant,
or stage of diagnosis.

The log rank test is used to decide if the survival estimates between two groups
is significant, but does not allow us to test if other independent variables have an
effect in survival.

The Cox proportional hazards model is commonly used in medicine to determine
the association between patients survival times and one or more predictors. The Cox
model works well with both quantitative and categorical data, and allows testing of
several risk factors, or covariates, which is not possible to do with Kaplan-Meier. A
hazard function, which can be interpreted as the risk of dying at time t, is calculated
in the Cox model with the following formula:

h(t) = h0(t) · exp(b1xi +b2x2 + ...+bpxp),

where t is the survival time, h(t) is the hazard function determined by a set of p
covariates, h0 is the baseline hazard which is the value of the hazard when all the
covariates equal zero. Each of the exp(bi) terms are called hazard ratios. When bi

is greater than zero, the value of the ith covariate increases. A hazard ratio above
1 means that the covariate is positively associated with the event, and therefore
negatively associated with survival. When the hazard function evaluates to 1, there
is no effect in survival, below 1 is interpreted as reduction in hazard, and higher
than 1 as increase in hazard. The Cox model allows to test if the covariates have
an effect in survival and therefore it is widely used to test if there are significant
differences between sample groups based on different covariates.

Kaplan-Meier and log rank test were used in Publication II to compare survival
curves between groups with different gene expression, while Cox proportional
hazards model was utilized to test if significant differences exist between the
covariates of the different cohorts from the same publication.
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3 Transcriptomics

The set of all RNA molecules produced by cells comprise the transcriptome. This
set of molecules includes not only the messenger RNA which is the link between
DNA and proteins, but also smaller RNA species that participate in gene regulation.
In the next section the basics of transcription are covered followed by a description
of some aspects of gene regulation that are part of the studies included in this
dissertation. Namely, how different isoforms of a protein can be produced from the
same gene sequence through alternative splicing, how messenger RNA (mRNA)
expression can be affected by other RNA molecules, such as microRNAs or by
other sequences in the genome called expression quantitative trait loci (eQTL),
and how cancer-specific processes can affect the genes through genomic instability
resulting in gene fusions.

3.1 Transcription

Most of the signals that govern cell functions are transmitted through the expression
of genes. Genes are stretches of nucleotide sequences in the DNA that define each
one of the proteins that cells need to operate. Genes consists of both regions that
code for the protein, exons, and interleaving regions called introns that will not be
part of the protein and are involved in regulation [35]. Transcription is the process
of making gene copies from the DNA that can be later translated into amino acid
chains and folded into proteins. The main components of the transcription process
are shown in Figure 3.

The process of transcribing a gene begins when the RNA polymerase binds to the
promotor region of the gene. The promotor is a short sequence of 100 to 1000
base pairs (bp) upstream of genes that have sequences that are binding sites for
RNA polymerase and other proteins such as transcription factors6. This stage
of the processes is called initiation. The RNA polymerase binds to the 3’ to 5’
strand of the DNA and starts traversing the template forming a complementary
sequence in the same fashion that DNA polymerase does during DNA replication,
with the exception that uracil is added instead of thymine to match adenine [37].
The nascent pre-mRNA sequence is synthesized in the 5’ to 3’ direction, in a step
called elongation. Termination of pre-mRNA transcription occurs when the RNA
polymerase reaches a terminator region and the pre-mRNA is released. A cap is
added at the 5′ end of the pre-mRNA and a polyA-tail at the 3′ end to protect the

6Transcription factors work alone or with other proteins in a complex, by promoting (as an activator),
or blocking (as a repressor) the recruitment of RNA polymerase (the enzyme that performs the
transcription of genetic information from DNA to RNA) to specific genes
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Figure 3: Transcription is the process of copying the information contained in genes
into mRNA molecules that can be translated into proteins. Once recruited to the
promotor region of a gene, the RNA polymerase opens the double-stranded DNA and
traverses the template strand synthesizing an RNA molecule, until a terminator signal
is reached and transcription ends. Modified from [36].

transcript from enzymes. The pre-mRNA is transformed into a mature mRNA
when the introns are removed or spliced out and at that point the mRNA can be
transported outside the nucleus to the ribosome for translation [37].

3.2 Alternative splicing

Splicing is a post transcriptional process in which introns are removed and exons
are joined together to produce a mature mRNA. Some introns can self splice, while
others require a spliceosome complex formed by small nuclear RNAs attached to
small nuclear ribo nuclear proteins (snRNP) that attach to introns’ splicing sites
and cleave them out from the transcript. Alternative splicing (AS) is a common
regulatory mechanism generating multiple RNA transcripts from a single gene, an
example is depicted in Figure 4. AS is a highly regulated process, modulated by
activator and repressor proteins, that increases the diversity of protein products
from the genome; it has been estimated that about 95% of multiexonic genes are
alternatively spliced [38]. The most common way in which AS is achieved is
through exon skipping. In eukaryotes, five mechanism have been observed [39]:
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Exon Skipping An exon can be either spliced out or retained in different isoforms
of the same gene.

Mutually Exclusive Exons In this case two exons cannot co-exist in the same
isoform, so when one is retained the other one is spliced out.

Alternative Donor Site Different 5′ junction sites (donor sites) are used for differ-
ent isoforms, which changes the 3′ boundary of the upstream exon.

Alternative Receptor Site Different 3′ junction sites (acceptor sites) are used for
different isoforms, which changes the 5′ boundary of the downstream exon.

Intron Retention Introns are by definition not coding parts, so what makes intron
retention different from exon skipping, is that a retained intron is not flanked
by other introns. Retained introns encode amino acids in frame with the
neighboring exons. This is the least common type of alternative splicing.

Figure 4: Alternative Splicing [40]. Three different protein isoforms are produced
from the same mRNA transcript by keeping or splicing out different exons.

Disruptions in the regulation of AS are not uncommon in cancer. Genes from all of
the hallmarks of cancer are known to be affected by aberrant alternative splicing
[41]. For example, the active form of p53 is a tetramer of four identical units. A
fully spliced mRNA from p53 consists of eleven canonical exons that encode a
functional p53 protein. Alternative isoforms of p53 that retain intron 9 cause the
loss of the oligomerization domain which precludes the formation of tetramers and
in turn results in inactivation of the isoform [42]. For BCL-2 inclusion of intron
2 produces a BCL-2 isoform that is anti-apoptotic, while its exclusion results in
BCL-2 missing an important domain and becoming pro-apoptotic.
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3.3 MicroRNAs

RNA molecules can be classified in two major types: coding and non-coding. The
messenger RNA, which codes for proteins, accounts for about 20% of all the RNA
molecules in the cell. The remaining 80% is composed of 1) ribosomal RNA,
which together with ribosomal proteins forms the ribosomes, 2) transfer RNA
which transports amino acids to the ribosome, and 3) regulatory non-coding RNA.
MicroRNAs (miRNAs) belong to the latter class along with many other molecules
of which the most well known ones are silencing RNAs (siRNAs), small nuclear
RNAs (snRNAs), and long non-coding RNA.

A miRNA is transcribed in the same way as mRNA from sequences that can be
up to several hundreds bases long. The ensuing transcript (pri-miRNA) is made
from single stranded RNA that twists on itself to make a hairpin structure. Drosha,
an enzyme, cleaves the bases outside the hairpin structure to form the pre-miRNA.
Exportin-5 then escorts the pre-miRNA outside the nucleus and releases it into the
cytoplasm. The Dicer complex (Dicer and TRBP2) removes the stem loop from
the pre-miRNA to transform it into a mature miRNA [43]. This new structure is
an asymmetrical double stranded RNA molecule of 20 to 25 nucleotides in length.
One strand of the miRNA is incorporated into the RNA-induced silencing complex
(RISC) and together locate the conserved sites in the target mRNA. RISC uses
the miRNA as a template for recognizing complementary mRNA. Once found,
one of the proteins in RISC, Argonaute, activates and cleaves the mRNA [43].
Members of the Argonaute (Ago) protein family are central to RISC function.
They bind the mature miRNA and orient it for interaction with a target mRNA.
AGO2 belongs to the argonaute family of genes and it is capable of cleaving target
transcripts directly; other argonautes may also recruit additional proteins to achieve
translational repression.

MiRNAs main function is to prevent transcribed mRNAs from being translated into
proteins. Many miRNAs are evolutionary conserved and it is estimated that around
60% of genes are targets for miRNAs. A single gene can be regulated by more than
one miRNA and a given miRNA may have hundreds of different mRNA targets
[44][45]. Considering the breadth of genes that can be regulated by miRNAs, it is
not surprising to find that miRNAs play a role in cancer as well. For example, in
28% of glioblastoma multiforme (GBM), an aggressive brain cancer, it has been
observed that the level of microRNA miR-181d is inversely correlated with the
expression of its direct target, MGMT, a DNA repair enzyme [46].
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3.4 Expression quantitative trait loci

Gene expression is constantly influenced by the dynamics inside and outside the
cell, but it can also be regulated by genetic variation. Genome Wide Association
studies (GWAS), which assay genetic variants in large number of samples, have
identified over 70,000 variants associated to an array of phenotypes [47]. The effect
size of most of these variants, due to the nature of complex diseases in which many
genes contribute to the phenotype in different measure, has been found to be very
small. Furthermore, over 80% of the variants identified through GWAS are located
outside coding regions of the genome, which has complicated the understanding on
how the variants influence the phenotype. A plausible mechanism that can explain
the effect of non-coding variants is genetic regulation of an intermediate phenotype
such as gene expression, splicing or methylation.

Expression quantitative trait loci (eQTLs) are genomic regions that correlate with
the mRNA levels of genes. When these loci are single nucleotide polymorphisms
each locus is called an eSNP. The eSNP can be located in the same allele as the
gene it acts upon, in which case it receives the name of cis-eQTL. On the other
hand, trans-eQTL refer to eSNPs located at a considerable distance of the target,
including a different chromosome altogether, in which case their influence on the
expression is usually through a transcription factor.

Cis-eQTLs are easier to identify since the effect is usually larger than with trans-
eQTLs, and therefore less amount of samples is needed to detect the correlation.
The effects are usually additive, the eSNPs are located near transcription start sites
(TSS), and it has been observed that the shorter the distance between TSS and the
eSNP the effect tends to be more pronounced [48]. Furthermore, eQTLs also are
affected by cell type and tissue specificity. A comparison of B-cells and monocytes
showed an overlap of 21.8% of the detected cis-eQTLs and 7% of the detected
trans-eQTLs between both cell types, finding that suggests that genetic regulation
in trans is more cell-type-specific than cis regulation [49]. Figure 5 shows how the
mechanism of expression regulation mediated by eQTLs would impact the amount
of a protein carrying a mutation.

Examples of inherited germline variation that increase cancer risk abound. Recent
estimates suggest that 20-25% of ovarian cancers are due to a germline loss-of-
function variant in one of several genes that confer moderate-to-high risk [51][52].
Expression quantitative trait loci (eQTLs) have been mapped in many tumor types,
including glioma [53], colon [54], breast [55], ovarian [56], and prostate cancer
[57]. Additionally, studies on cancer eQTLs in the context of pharmacogenomics
have found associations between miR-30d and ABCD2 expression that correlated
with both carboplatin- and cisplatin- specific sensitivity in lymphoblastoid cell lines
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Figure 5: Regulatory variants as modifiers of coding variance penetrance. In this
example an heterozygous individual for both a regulatory variant and a pathogenic
coding variant is shown. The two possible haplotype configurations would result in
either decreased penetrance of the coding variant, if it was on the lower expressed
haplotype, or increased penetrance of the coding variant, if it was on the higher-
expressed haplotype [50].

[58], a model system commonly used in studies of genetics of drug response. In
the same study, it was observed that reduction of ABCD2 expression was correlated
with increase in apoptotic activity after treatment with cisplatin in an ovarian cancer
cell line, while the microRNA miR-30d is associated with poor clinical outcomes
in ovarian cancer patients [59].

3.5 Gene fusions

Genomic instability often results in translocations, deletions, or chromosomal
inversions that can merge two distinct genes into a chimeric one. Each type of
chromosomal rearrangement can produce fusion genes in a different manner. Figure
6 shows some examples of how fusion genes are formed.

The most well known example is the Philadelphia translocation which forms the
BCR–ABL1, which juxtaposes the ABL1 tyrosine kinase from chromosome 9
into the region of BCR gene in chromosome 22. BCR–ABL1 was the first fusion
gene to be identified, discovered in 1960, and it is present in more than 96% of
patients with chronic myelogenous leukemia (CML) [61]. PML–RARα is another
example of translocation that produces a fusion occurring in 90% of acute myeloid
leukemia (APL) which is correlated with relapse after therapy [62]. Deletions can
join together nearby genes that transcribe in the same direction. Examples of this
type of fusion genes are ATG7–RAF1 in pancreatic cancer and EIF3E–RSPO2
in colon cancer. Fusions involving RET or NTRK1, both tyrosine kinases, are
common in papillary thyroid carcinomas. Some of these fusions are generated by
chromosome translocations, but the three most prevalent, including CCDC6/H4–

17



Figure 6: A schematic showing the ways a fusion gene can occur at a chromosomal
level [60]. Three main mechanisms are depicted.

RET, are generated by inversion of a large section of chromosome 10. Another
fusion found in papillary carcinomas, AKAP9–BRAF which is known to activate
BRAF, a proto-oncogene, is the product of an inversion [63].

Fusion genes can be either inter- or intra-chromosomal depending if the genes
involved reside in the same chromosome or different one. They can also be balanced,
if the amount of genetic information exchanged between to chromosomes is the
same, or unbalanced if losses or gains occur. The junction point where the DNA
breaks in each gene segment is called the breakpoint and it can be located in intronic
regions leaving whole exons intact, within exons with the possibility of causing
frameshifts, or in promotor or intergenic regions.

Most of the gene fusions are likely passenger events caused by genomic instability,
but they can also lead to 1) amplification of expression of an oncogene, 2) disruption
of a TSG, or 3) creation of a new protein. Examples of each one of these cases
include TMPRSS2–ERG fusion in prostate cancer, in which androgen regulatory
elements of TMPRSS2 drive ERG overexpression. ERG activation present in 50-
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70% of prostate tumors, represents one of the most common oncogenic alteration
in prostate cancer [64]. PPP2R2A-CHEK2 fusion is found in several solid tumors
where CHEK2 is a TSG that regulates cell division by preventing cells from entering
mitosis or arresting cell cycle in G1 phase, in response to DNA damage [65]. The
translocation of chromosome 9 at ABL1 gene to a part of BCR gene on chromosome
22 results in an unusually short chromosome that encodes an hybrid protein with
abnormal tyrosine kinase activity [66]. It is also possible that fusions occur due
to RNA polymerase missing a termination signal and continuing transcribing to
make a readthrough of two genes. This type of event is not very common, out of
4,344 fusions recently identified in a pan-cancer study, only 351 were read-throughs.
About 44% of the read-through events were concentrated in only three out of 33
cancers analyzed: ovarian, esophageal, and acute myeloid leukemia [67].

Fusion genes are not only strong driver mutations in cancer, providing insight
in disease mechanisms, but also serve as specific targets for treatment. Table 1
includes a list of recurrent fusions with drugs that are either already approved and
in use in the clinic or in different stages of clinical trials. The most shared fusion
among cancers from the table is FGFR3–TACC3 which has been identified in
lung squamous cell carcinoma (LUSC), esopharingeal carcinoma (ESCA), cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC), head and
neck squamous cell carcinoma (HNSC), bladder urothelial carcinoma (BCLA),
liver hepatocellular carcinoma (LIHC), and in GBM, and it serves as biomarker of
sensitivity to Erdafitnib [68].

Karyotyping techniques allowed the discovery of the BCR–ABL1, fusion and
of the first fusions to be detected in solid tumors, CTNNB1–PLAG1 in salivary
gland adenoma in 1980. This discovery was soon followed by the identification
of PAX3–FOXO1 and EWSR1–FLI1 in sarcomas in 1982 and 1983, respectively.
The first fusions to be identified in carcinomas were PRCC–TFE3 and MYB–NF-
IB in 1986. The development of fluorescence in situ hybridization (FISH) has
substantially facilitated localization of chromosomal breakpoints, but the explosion
of the field arrived with the development of sequencing techniques. Over 90% of
the 10,000 fusions that have been identified in solid tumors, although very few of
them recurrent, were detected by either whole genome sequencing (WGS) or RNA
sequencing (RNA-Seq).
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Target Partners Drug
ALK EML4, STRN Alectinib, Brigatinib, Crizotinib,

Ceritinib, Entricitinib, Lorlatinib,
MEK inhibitors, novel ALK in-
hibitors, PF2341066, TAE684

BCR ABL1 Imatinib, Dasatinib, Nilotinib, Bosu-
tinib, Ponatinib, Venetoclax

BRAF MRPS33, SND1 Cobimetinib, MEK inhibitors,
Selumetinib, Sorafenib, Trametinib

EGFR SEPT14 Afatinib, EGFR TKIs, Elotinib, first
generation and irreversible TK1s,
Geftinib, HSP90 inhibitors, ZD6474

ESR1 CCDC170,
TMEM212

Anti-estrogens

FGFR2/3 ATE1, BICC1,
SHTN1; TACC3

AZD4547, BGI398, Debio1347,
Erdafitinib, FGFR inhibitors

MET CAV1, ST7 Criozitinib
NOTCH2 SEC22B Gamma secretase inhibitors
NTRK1 IRF2BP2, TPM3 Crizotinib, Entrectinib, IGF1R in-

hibitors, Larotrectinib, pan-TRK
inhibitor

NTRK1 ETV6 Entrectinib, Larotrectinib,
Midostaurin

PDGFRA/B COL1A1; FIP1L1 Imatinib
PML RARA Arsenichtrioxide, Tretinoin, Bo-

lasertib
RET CCDC6, ERC1,

NCOA4
BLU-667, Crizotinib, LOXO-292,
Nintedanib, Sunitinib, Vandetanib

TMPRSS2 ERG, ETV4 DNA-PKc inhibitors

Table 1: List of fusion genes for which drugs have been already approved or are
in clinical trials. A slash (/) is used to indicate two genes from the same family for
which the same drugs are being tested and a semicolon (;) for separating the respective
partners for each gene. This table has been modified from [67].
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4 High-throughput technologies

High-throughput technologies, namely microarrays and next generation sequencing,
are methods that allow the study of whole genomes or transcriptomes in a single
experiment. Before the development of microarrays and later of next-generation
sequencing it was practically impossible to quantify several thousand genes si-
multaneously or compare large number of samples in a rapid and cost efficient
manner. This section gives a short overview of microarray technology for gene
expression profiling and next-generation sequencing of both whole genomes and
RNA molecules, followed by a description on common data analysis steps.

4.1 Microarrays

A microarray is a chip usually made of glass, silicon or plastic, depending on the
manufacturer, which has fluorescently labeled target DNA probes attached to it.
The probes are 25 bp sequences that can be mapped to specific gene regions. To
quantify expression, the RNA of interest is first converted into cDNA and then
washed on the plate causing complimentary sequences to hybridize. A second wash
is needed to remove residual non-hybridized DNA. A fluorescent image of the array
is acquired by a laser scanning confocal microscope. The array thus obtained can
be matched to the probe information to determine the presence or absence of the
sequence or to quantify expression by measuring the intensity of the probe signal
[69].

Several types of microarrays exist to quantify expression: gene, exon, tiling, 3′,
and human transcriptome. The main difference among the models is the number of
probes and the location in the gene region that map to each gene. Figure 7 shows
the principal types of microarrays that are used for gene expression profiling. The
basic advantage of exon arrays over gene arrays is that exon arrays have at least
four probes for each exon, while gene arrays do not necessarily cover all exons.
Tiling arrays have better coverage of all exons than exon arrays, but are not able to
cover mammalian genomes completely, and at least six different arrays are needed
to cover the human genome [70]. Exon arrays initially were the only microarrays
that allow quantification at both gene and exon level of the human genome with a
single kit [71], but further developments in microarray technology resulted in the
Human Transcriptome Array which includes coverage of exon junctions as well
[72].

The main limitation of expression profiling with microarrays that can be circum-
vented with sequencing are 1) limitations in detection range, 2) lack of base pair
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Figure 7: Different types of microarrays. The top panel shows an example of a
gene with different isoforms and in the bottom panel the arrangement of the probes
depending on the microarray type. Human Transcriptome (HT) Array is the only one
to include exon junction probes.

resolution, and 3) reliance on reference sequences [73]. Microarrays can fail to de-
tect very lowly expressed genes and can also reach saturation with highly expressed
genes. Since hybridization depends on the sequence being complementary to the
probe, is not possible to detect mutations or post transcriptional modifications with
microarrays for which a probe does not exist. Even with Human Transcriptome
Arrays, alternative splicing is difficult to detect if the right exon junction does not
have a probe. Quantification with microarrays is always limited to the sequences
in the probes. Initially, an important advantage of microarrays over sequencing
was its lower cost, but continuous improvements in sequencing technology have
permitted the prices to drop enough for RNA-Seq to overtake microarrays for gene
expression profiling.

4.2 Next-generation sequencing

Sequencing is the process of determining the nucleotide order of a given DNA
fragment. Next-generation sequencing is the term used for the technology capable
of massively sequence thousands of DNA fragments in parallel. Illumina, currently
the most popular maker of next-generation sequencers for short read sequencing
(150-300 bp long), uses a methodology known as sequencing by synthesis. The
basic process of sequencing by synthesis entails the following steps [74]:

Library preparation First DNA is extracted from the sample followed by frag-
mentation, size selection of the fragments and addition of adapters at both
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ends of the fragments.
Cluster generation The first stage of sequencing is cluster generation by bridge

amplification. In this process the adapters hybridize to oligosequences in the
flow cell of the sequencer. A polymerase adds nucleotides to the template
forming a double strand. The DNA is denatured and the original strand is
washed away leaving the complementary strand tethered to the oligo. This
single strand folds and attaches to another oligo in the flow cell, forming a
bridge structure. Here, a polymerase replicates the template, beginning a new
cycle of DNA denaturation, washing away, and a new template folding again
on a new oligo in the flow cell. In this manner, the original DNA is clonally
amplified in clusters. Finally, reverse strands are cleaved and washed off
leaving forwards strands only.

Sequencing Fluorescently tagged nucleotides are added to the template strand.
After the addition of each nucleotide the clusters are excited by a light source
and a characteristic fluorescent signal is emitted. The number of cycles of
nucleotide additions determines the length of the read, the wavelength and
the intensity of the fluorescent signal determines the base call. After the
completion of the first read the sequence is washed away and the sequence
is allowed to form a bridge again. A polymerase replicates the template,
forward strands are discarded and now the sequencing steps will be repeated
on the reverse strand. When the protocol includes sequencing both ends of
the fragment the process is called paired-end sequencing (depicted in Figure
8).

Figure 8: Paired-end sequencing. During library preparation adapters are added to
both ends of the DNA insert. Both the read and the mate are sequenced, and although
the inner distance is not sequenced, paired-end sequencing provides information on the
whole fragment.
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Variations of the protocol described above allow different applications to exist. For
example, with the aim of reducing costs in sequencing it is possible to only sequence
exonic regions instead of whole genomes. Exome sequencing is achieved by an
additional step of target, in this case exons, selection during library preparation.
For quantifying gene expression, instead of extracting DNA from the sample, RNA
is extracted either selecting molecules with polyA tails or by depleting ribosomal
RNA. Size selection is used to separate mRNA from small RNA in case of ribosomal
depletion. The RNA is then reverse transcribed into cDNA. The cDNA can then be
sequenced following the same protocol as whole genome sequencing [75].

4.3 Data analysis

Regardless of the protocol, next-generation sequencing produces millions of short
reads that require computational methods to reconstruct the reads into genomes
or expression profiles. The files produced by both, RNA-Seq and whole genome
sequencing (WGS), contain the read fragments of up to 300 bp with no other
information than the base call and score that represents the estimated likelihood of
the base call being correct. This format is called fastq (or fasta when the quality
score is missing) and the size of the file depends on the sequencing depth, which
is given by the number of cycles during sequencing. Tailored methods have been
developed to assess the quality of the reads and implement the different analysis
steps required to make sense of the sequencing reads. The initial data analysis
steps for next-generation sequencing datasets are the same for whole genome or
RNA-Seq and are described below.

Preprocessing The reads obtained by the sequencer may still include adaptors
incorporated in library preparation that need to be trimmed to improve the
mapping of the reads to the reference genome. Also, it is advisable to remove
low quality bases that are slightly common at the end of a sequencing run.
FastQC [76], multiQC [77] and AfterQC [78] are tools widely used for
assessing the quality of sequencing reads. For trimming or clipping low
quality bases or adapters Trimmomatic [79] and CutAdapt [80] are popular
tools still in use, FastX-Toolkit (http://hannonlab.cshl.edu/fastx_
toolkit/) used in Publication I is not longer maintained.

Assembly/Mapping When a reference genome is available for the organism of
study, the mapping can be done either directly to the genome or transcriptome.
If the reference genome is unknown or incomplete then de novo assembly
needs to be done. For WGS or exome-sequencing the most popular tools
and that have been widely used for several years are Bowtie [81] and BWA
[82]. For RNA-Seq, in the case of mRNA, splice-aware aligners capable
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of mapping sequences to non-continuous genomic regions such as exons
separated by introns are needed. TopHat [83] was for many years the
preferred aligner for RNA-seq, and although it remains popular, it has largely
been replaced by STAR [84]. One of the main advantages of STAR over
TopHat is the speed, STAR is much faster than TopHat but has a bigger
memory requirement, although as an offset STAR allows parallel runs
to access the same loaded genome in memory. Additionally, TopHat (or
HISAT2 which is the successor of both TopHat and HISAT) are less robust
to mismatches in the sequences which results in less read mappings [85]. For
de novo assembly, Velvet [86] and Trinity [87] can be used for WGS and
RNA-Seq respectively. Mapping and assembly produce files in the Sequence
Alignment/Map (SAM) format which is text format that encodes the position
in the genome the read aligns to, information on the mate in case of paired
end sequencing, an alignment score and presence of mismatches. The binary
counterpart of a SAM file is called BAM.

Typical data analysis workflow steps after mapping are highly dependent on the type
of study yielding different pipelines for whole genome and RNA-Seq. Downstream
analyses for each dataset are explained below.

4.3.1 Whole genome sequencing data analysis

In the case of WGS common downstream analyses in cancer studies are variant call-
ing and structural variation identification. Variant calling refers to the identification
of somatic mutations which usually require a comparison of normal samples against
tumor samples [88]. Some of the most popular algorithms are the four used in the
TCGA somatic variant calling pipeline: Mutect/2 [89], Muse [90], Varscan2 [91]
and SomaticSniper [92]. Strelka is also widely used and well evaluated in recent
benchmarks [93][94] along with EBCall [95] and Virmid [96]. Variant calling is
also possible to do with RNA-Seq data but it is not commonly performed. For WGS,
structural or copy number variation analysis is also part of a standard workflow. The
aims of this analysis is to identify regions in the genome that have been amplified,
deleted, or translocated, for which again many methods exist, each with their own
sensitivities to different types of rearrangements that can be consulted in a very
recent and comprehensive review of 69 methods [97], which includes Pindel [98]
the method used in the TCGA pipeline.

Fusion genes can be detected through structural variation analysis, but information
on expression cannot be obtained through genome analysis alone. Methods that
combine WGS and RNA-Seq for fusion calling exist such as INTEGRATE [99]
and Comrad [100]. Efficiently identifying fusion genes from WGS data is difficult
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due to tumor heterogeneity that can result in low coverage of fusion breakpoints.
Furthermore, WGS information do not inform on actual transcription of the fu-
sion gene, and integration with RNA-Seq leads to false negatives since junction
coordinates cannot be matched when located outside exonic regions.

4.3.2 RNA-Seq data analysis

Next-generation sequencing for RNA can be applied to both mRNA and smaller
RNA molecules such as miRNAs. The initial analysis steps are the same for mRNA
and miRNA, both require pre-processing and mapping, although for miRNAs splice-
aware aligners are not necessary. Common RNA-Seq processing and downstream
analysis steps are described below.

Quantification The number of reads mapping to each gene feature are counted.
The counts can be reported at exon, transcript or gene level. Several metrics
are used to report the expression values: raw counts (used in downstream
differential expression analysis), fragments per kilobase of million reads
(FPKM) and TPM (transcript per million reads). Both, FPKM and TPM,
account for the library size (how many reads were sequenced) and the gene
length. HTSeq [101] and RSEM [102] are quantifiers that rely on alignment
files. Newer algorithms for quantification such as Kallisto [103] and Salmon
[104] do not require pre-aligned reads and can perform pseudo alignment on
the fly.

Differential expression A classical RNA-Seq analysis usually compares the gene
expression of samples under different conditions. The most popular tools
for differential expression are DESeq2 [105], EdgeR [106] and limma+voom
[107][108] due to favorable reviews and their extensive documentation which
facilitates user adoption [109] [110]. The basic workflow of differential
expression analysis of RNA-Seq data is to first account for library size, then
perform statistical tests and finally correct for over dispersion observed in the
data. EdgeR and DESeq both assume a binomial distribution, while limma
uses a non parametric approach. For differential exon usage or alternative
splicing existing tools are DEXSeq [111], IsoformSwitchAnalyzeR [112],
DreamSeq [113] and LeafCutter [114]. Our SePIA workflow presented in
Publication I, allows differential expression analysis using several methods
including DESeq2 and EdgeR for gene-level analysis and DEXSeq for exon-
level. Both DESeq2 and DEXSeq were utilized in Publication II in our study
of alternative splicing in DLBCL.

Many other applications of RNA-Seq that deviate from this standard pipeline exist.
A brief overview of some of this applications is included below:
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Fusion genes For example the identification of gene fusions usually uses tailored
algorithms that work with the raw reads directly. Tens of methods for fusion
calling exist and no clear gold standard is available yet. A recent, non-
comprehensive benchmark, tested 25 methods for fusion calling [115]. The
main idea behind detection for all of them is the identification of discordant
read pairs. Two type of discordant reads exist, junction or split reads which
cover the fusion breakpoint in a single read, and spanning reads in which
the read aligns to one gene while the mate aligns to a different gene. Each
method uses different heuristics to report fusions which can result in more
or less sensitivity to different types of fusion events. Depending on the
cancer type and stage, and the algorithm utilized, the number of fusions
detected in each sample can range from zero to even a few thousands. False
positives are common due to sequence similarity among genes from the
same family. Furthermore, in cancers with high genomic instability is
very likely that most of the fusions detected are passenger events that have
no role in cancer progression. Prioritizing fusions for further analysis or
functional experiments is a necessary downstream step. Two main strategies
exist for discarding fusion genes: mining databases for known artifacts
and scoring the oncogenic potential of fusions based on prior knowledge
of relevant cancer fusions. For the former strategy, many databases exist,
of which the Mitelman database of Chromosome Aberrations and Gene
Fusions in Cancer (https://mitelmandatabase.isb-cgc.org) since its creation
in 1983 continues to be a key resource. Many more databases, usually
specific to certain projects exist, as well as webservices such as FusionHub
(https://fusionhub.persistent.co.in) which queries at least 23 databases for
reporting fusion matches. In the second strategy for fusion prioritization,
oncogenic scoring methods such as Pegasus [116], Oncofuse [117], and
more recently DeepPrior [118] utilize either protein domains or amino acid
sequences to train algorithms to identify oncogenic fusions. In Publication
IV, we developed a pipeline for integrating gene fusions from any of the
available method and standardized the post-processing steps of the analysis.
Two of the three top methods from the latest review have been included in
our fusion gene analysis pipeline, as well as two scoring methods.

Phasing One of the main advantages of RNA-Seq over microarrays is that the
reads provide much more information than just expression quantification.
RNA-Seq in particular, also provide an advantage over WGS in terms of
coverage over longer stretches of DNA. Since RNA-Seq reads contain only
exons, and although their read length is about 300 bp long, the region of DNA
that is covered by reads that span exon junctions can be of several kilobases
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long. In Publication III we exploit this characteristic of RNA-Seq reads to
complement haplotype phasing of germline variants and mutations utilizing
phASER [119] which combines WGS and RNA-Seq reads.

MiRNA analysis A variety of tools to analyze miRNAs exist, for example https:
//tools4mirs.org/ a platform that does target prediction for miRNAs,
but also curates a list of miRNA methods currently has 203 listed methods.
Several of the tools are capable of performing all of the steps in the miRNA
analysis pipeline. The first step in miRNA analysis from sequencing reads
is mapping to known miRNAs. For this step, the miRNA annotations are
retrieved from databases such as miRBase [120] which contains information
on sequences for both mature miRNA and hairpin structures. The alignment
can be done with sequence aligners such as Bowtie or BWA. Novel miRNA
identification is usually performed with sRNAbench [121] (formerly miR-
Analyzer [122]) and miRDeep [123]. Both tools also provide quantification
which previously was obtained by read counting methods such as HTSEq.
Interesting miRNAs are usually selected from differential expression tests
which can be performed with DESeq or EdgeR. For predicting targets for
the selected miRNAs TargetScan [124], miRanda [125], and miRDb [126]
are commonly used [127]. One of the main challenges for miRNAs studies
is that one sequence can map to multiple sites in the genome. Furthermore,
isoforms of miRNAS exist and modern pipelines have to account for it [128].

eQTL Mapping eQTLs requires finding associations between genetic variants
and gene expression levels. Considering that the effects on expression of
the variants is usually small, large amount of data is usually required to
reliably catalog these associations. Millions of associations tests are required
to identify eSNP and eGene combinations that result in gene expression
regulation. Software packages that can be used to search for eQTLs are
Matrix EQTL [129] used initially by the GTEx, now replaced by FastQTL
[130]. The GTEx consortium also provides calculator in their webportal
https://gtexportal.org/home/ where candidate eQTLs can be tested
for association in different human tissues. For Publication III, we utilized
GTEx own list of pre-identified eQTLs and matched heterozygous combi-
nations of eSNPs and somatic mutations of tumor suppressor genes from
TCGA data genomic data.

The analysis steps described in this section apply only to RNA extracted from tissue
samples that contain thousands of cells, known as bulk RNA-Seq. Advancements
in sequencing techniques allow today to disaggregate cells prior to sequencing
and produce read-outs from several hundreds to a few thousands of single cells.
Although bulk RNA-Seq is very much still in use and will continue to be, the
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possibility of studying individual cells has opened the doors for a diverse array of
studies and has become a very active field of research and method development.
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5 Aims of the study

The general aim of this work is to study different aspects of cancer using RNA-Seq.

The specific goals of each publication are:

1. Facilitate the integration of multiple tools for processing and analysis of
RNA-Seq datasets with a focus on cancer research (Publication I).

2. Study alternative splicing in DLBCL (Publication II).

3. Study the effect of eQTLs on variant penetrance using cancer as a case study
(Publication III).

4. Facilitate the integration of multiple tools for fusion gene detection and
standardize the analysis of the combined results to help prioritize fusions for
further analysis (Publication IV).
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6 Materials and methods

A summary of the datasets and the methods utilized in the four publications is
included in this section. Detailed description on the sample material and each
specific analysis can be found in each corresponding publication.

6.1 Biological sample material (Pub I-IV)

In Publications I and III we make use of the invaluable resource which are public
repositories of sequencing data from TCGA, the Cancer Genome Characterization
Initiative (CGCI) and Gene Expression Omnibus (GEO). Both Publication II and
IV combine the use of in-house patient samples with public datasets to validate or
strengthen the results obtained in the study of our own cohorts. Publications I, II and
III combine the use of different technologies to study cancer more comprehensively
with miRNA and mRNA integration (Pub I), to validate results from exon array with
RNA-seq (Pub II), and to improve whole-genome sequencing (WGS) haplotype
phasing with RNA-seq reads (Pub III). Table 2 briefly describes the cancer samples
processed and analyzed in the completion of this work.

Pub Tumor Normal Cancer Technology Source

I 17 3 BRCA RNA-Seq GEO
I 120 15 BRCA RNA-Seq TCGA
I 133 16 BRCA small RNA-seq TCGA

II 38 0 DLBCL Exon array In-house
II 92 0 DLBCL RNA-seq CGCI

III 925 925 15 types WGS TCGA
III 925 0 15 types RNA-Seq TCGA

IV 107 0 HGSOC RNA-Seq In-house
IV 424 0 HGSOC RNA-Seq TCGA

Table 2: Cancer sample datasets used in Publications I-IV.

Complete information on sample material can be found in each publication, but
a short description of each sample set follows. In Publication I the data was
analyzed in two separate case studies. For Case I, we downloaded from GEO
(GSE52194) fastq reads from total RNA extracted, and sequenced with Illumina
HiSeq 2000, from 17 breast primary tumor samples and 3 normal human breast
organoids. For Case II, we used TCGA level 1 data from poly(A)-extracted mRNA
and small RNA sequenced with Illumina Genome Analyzer II. For Publication II,
for the in-house DLBCL samples, we extrated total RNA from primary tumors,
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the prepared libraries were then hybridized to Affymetrix Human Exon 1.0 ST
arrays. The RNA-seq reads from CGCI used as validation cohort in Publication II
are from poly-A extracted mRNA sequenced with Illumina-GAIIx (study accession:
phs000532.v3.p1). In Publication III, TCGA level 1 WGS and RNA-seq aligned
sequences (reference genome b37) from 925 patients of 15 different cancers7

were obtained by the New York Genome Center (NYGC) through dbGap (study
accession phs000178.v9.p8). For Publication IV in-house samples, total RNA was
extracted from 68 primary (before chemotherapy), 32 interval (after neoadjuvant
platinum-taxane chemotherapy) and seven relapsed tumors (after being diagnosed
as recurring) from 36 HGSOC patients and sequenced at BGI. In Publication IV,
in addition to the in house samples, 424 RNA-Seq TCGA level 1 fastq reads from
ovarian cancer samples were analyzed.

6.2 RNA-seq processing (Pub I & II)

Sequence quality was assesed with FastQC [76] and low quality bases and adaptors
were removed with Trimmomatic [79] (Pub I & II). Reads were aligned with STAR
[84] (Pub I) and Tophat [83] (Pub II). STAR continues to be state-of-the-art in
RNA-Seq alignment and processing. Although that is not the case with Tophat,
which has been disrecommended by its own authors in deference of better methods,
at the time when the data for Pub II was analyzed, TopHat was still considered a top
method in RNA-Seq alignment. Variants were called with Bambino [131] (Pub I)
and pre- and post-processing was done using the Genome Analysis Toolkit (GATK).
Read counts and normalized expression values were obtained from HTSeq (Pub
I & II) and Cufflinks [132] (Pub I). For gene-level differential expression several
methods were used: Cuffdiff [133] (Pub I), DESeq2 [105](Pub I & II), edgeR
[106] (Pub I), and upper quartile normalized t-test (Pub I). Differential exon usage
analysis was performed with DEXSeq [111] (Pub I & II).

6.3 MiRNA-seq processing (Pub I)

RNA-seq from small RNA were first trimmed with FASTX-Toolkit to remove
adaptors and low quality bases and then aligned with Bowtie. MiRNA sequences
were then annotated to known human miRNAs from miRBase [134]. Target
prediction was done with miRanalyzer [122].

7Bladder Urothelial Carcinoma (BLCA), breast ductal carcinoma (BRCA), colon adenocarcinoma
(COAD), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck (oral)
squamous cell carcinoma (HNSC), kidney chromophobe (KICH), liver hepatocellular carcinoma (LIHC),
lung adenocarcinoma (LUAD), lung squamos cell carcinoma (LUSC), prostate adenocarcinoma (PRAD),
skin cutaneous melanoma (SKCM), thyroid carcinoma (THCA), uterine corpus endometrial carcinoma
(UCEC), uveal melanoma (UVM).
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6.4 Exon array processing (Pub II)

Quantification of both gene- and exon-level expression from the 38 exon arrays
of our DLBCL samples was performed with MEAP [135] using MEAP probe
annotation version 70. Differentially expressed exons (DEEs) were annotated by
their genomic locations (5′ untranslated region (UTR), 3′ UTR, coding, noncoding
and unknown). Domain analysis was done for all coding DEEs by translating
coding exonic regions into peptide sequences using Ensembl API [136] (version
70) and fetching domain information (Pfam, SMART, SignalP and TMHMM)8

for all peptide sequences with InterProScan [137] (version 5). The phosphoryla-
tion sites identified within peptide sequences were compared against all known
phosphorylation motifs downloaded from PhosphoSitePlus [138].

6.5 Survival analysis (Pub II)

For survival analysis we used Cox proportional hazards model and Kaplan-Meier
method, the Kaplan-Meier curves were compared using log rank test. For overall
survival (OS) the time interval considered was from the date of study entry or
diagnosis to the date of the last follow-up or death from any cause; for progression-
free survival (PFS) the time interval began with date of registration or diagnosis
and ended with date of progression or death of any cause, and for disease-specific
survival the date of registration to the date of death due to lymphoma were used.
The analysis was done using IBM SPSS Statistics 22.0 (IBM, Armonk, NY, USA).

6.6 Phasing (Pub III)

Variants were called with Bambino v1.06 on matched tumor and normal WGS
TCGA alignments from 925 patients. The resulting germline genotypes were
population phased with EAGLE2 [139] v2.3 using the 1000 Genomes Phase 3
panel. Both WGS and RNA-seq bam files were used for read-back phasing with
phASER [119] v1.0.0 with default parameters except for reads mapping quality set
to (MAPQ) ≥30 and with a base quality ≥10. Only overlapping heterozygous sites
were used. The resulting phased genotypes were imputed into 1000 Genomes Phase
3 with Minimac3 [140] v2.0.1. The bottom 30% of samples by number of variants

8Pfam is a database of protein families that includes their annotations and multiple sequence
alignments generated using hidden Markov models. SMART (Simple Modular Architecture Research
Tool) is a web resource (http://smart.embl.de) for the identification and annotation of protein domains and
the analysis of protein domain architectures. SignalP annotates signal peptides, which are short peptide
(usually 16-30 amino acids long) present at the N-terminus of the majority of newly synthesized proteins
that are destined toward the secretory pathway. TMHMM is a method for prediction transmembrane
helices based on a hidden Markov model.
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called and median EAGLE phase confidence across autosomes were discarded,
resulting in 615 individuals left for downstream analysis.

6.7 Test for variant penetrance (Pub III)

Our hypothesis is that a regulatory variant, or eQTL, can affect the penetrance of a
pathogenic coding variant by increasing the dosage of the mutant protein in cancer
patients. Therefore, the null hypothesis is that eQTL mediated expression has no
effect in the penetrance of a mutation. In this study, as a proxy for variant penetrance,
since penetrance itself is difficult to measure, we quantify the frequency at which the
major allele is observed in the same haplotype as the lower expression causing eQTL.
If the null hypothesis holds, a random mutation would occur on random haplotypes
irrespective of eQTL genotype. The opposite, that the combination of mutation
and higher expression causing eQTL, are observed more frequently together than
expected by chance, would signify that eQTL mediated expression is playing
a role in variant penetrance in cancer. To test our hypothesis we selected only
heterozygous variants on tumor suppressor genes (compiled from Tumor Suppressor
Gene Database, https://bioinfo.uth.edu/TSGene/ on August 2017). Only
variants with a Combined Annotation Dependent Depletion (CADD)[141] score
>15 were considered. For each gene, when more than one eQTL was reported,
we selected the most significant one from GTEx v6p [142] across all tissues. For
each heterozygous somatic variant we counted the combination of wild type, or
functional variant, and the lower-expressed allele as success for each sample. We
applied a binomial test for each haplotype combination separately.

6.8 Fusion genes detection & prioritization (Pub IV)

FUNGI (v.1.0) was used for calling fusion genes with five different fusion callers
and selecting the candidates for validation. FUNGI is a toolset for identifying,
annotating, filtering, and scoring fusions which is described in detail in Results
section 6.2. Using FUNGI’s FusionCaller module, the five methods used for
detecting fusions were 1) SoapFuse [143] (v1.27), 2) FusionCatcher [144] (v1.00),
3) EricScript [145] (v0.5.5), 4) ChimeraScan [146] (v.0.4.6) and 5) STAR-Fusion
[115](v1.1.0). Fusions were filtered depending on the caller as follows: score
> 0.5 (EricScript), Counts of common mapping reads < 30 (FusionCatcher),
Overlapping Same = true (ChimeraScan), and LargeAnchorSupport = YES_LDAS
(STAR-Fusion). Using FUNGI’s FusionAnalyzer module, fusions were post-
processed. First, fusions were combined into a standardized format and matched
against Ensembl’s database [147] for removing false positives (fusions between
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paralog/homolog genes, not matching Ensembl gene coordinates or neither gene
having a known function). For removing fusions reported previously as known
artifacts or present in non-cancerous tissue, FusionCatcher’s database annotation
was used on the combined list of fusions called from all methods. As the last step
of FusionAnalyzer, Pegasus [116] and Oncofuse [117] were used for estimating
the probability of the fusions being oncogenic; and a respective score of 0.5 and
0.25 was used to select fusions for further analysis. Furthermore, fusions detected
by only EricScript were discarded. The fusions that were reported in more than
10% of the patients were excluded after confirmation of previous reports of the
fusions in healthy individuals, although they are still missing from databases. The
remaining fusions were used as input for FUNGI’s FusionVisualizer module that
runs FusionInspector [115]. Confirmed fusions with a junction read count ≥ 3 and
FFPM > 0.1 were manually inspected in IGV [148]. To compare frequency of fu-
sion genes detected in our HGSOC sample set and other previously reported fusions
we utilized FUNGI’s FusionVisualizer module with FusionInspector (included in
STAR-Fusion v2.7.0f_0328) for supervised fusion calling on 424 TCGA ovarian
cancer samples.

6.9 Additional resources (Pub I-IV)

Pipelines for Publications I, II and IV were constructed in Anduril [149][150].
In addition to the software already included in this section, the following, non-
exhaustive, list of resources were extensively used in the completion of the work
presented in this dissertation: awk, annovar [151], bash, bcftools [152], GeneCards
[153], KEGG [154], python, R, samtools [155], vcftools [156], and UCSC [157]
and Ensembl websites and tools.
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7 Results

The main results presented in this dissertation are two workflows for processing and
analyzing RNA-seq data and three applications of transcriptomics for studying al-
ternative splicing, fusion genes and possible effects of eQTLs in variant penetrance,
all of them in the context of cancer studies.

7.1 SePIA a workflow for RNA-seq analysis (Pub I)

SePIA (Sequence Processing Integration and Analysis) is an open-source processing
workflow for RNA-seq data implemented in Anduril. Anduril is an analysis
and integration framework that facilitates the design, use, parallelization and
reproducibility of bioinformatics pipelines. The first aim of SePIA is to make
available a selection of state-of-the-art RNA-seq tools and methods with minimal
effort to run. For this purpose, SePIA includes a standard RNA-seq analysis
pipeline that performs alignment, quantification and differential expression analysis.
More complex pipelines can be constructed using any of the close to 400 available
Anduril components9. The second aim of SePIA is to automatically organize
computational results in reproducible, presentable, and easy-to-use formats for
downstream analysis. Figure 9(a-c) illustrates some of the web-reports created
by SePIA on quality control of the raw reads (fastq), alignment and expression
quantification. Finally, the third main aim of SePIA is to facilitate the integration of
miRNA-mRNA analysis for which several components and an example pipeline are
included with SePIA. To showcase the potential of SePIA for conducting standard
RNA-Seq analysis and for integration of mRNA and miRNA data, we analyzed two
cancer datasets from TCGA using SePIA. The first case study consists of tumor
and normal RNA-seq, while the second one combines both mRNA and small RNA
datasets. A summary of the analysis steps performed in each case study is shown in
Table 3. SePIA’s documentation is available at https://anduril.org/sepia/.
A snapshot of the report created for our case study of top miRNA-mRNA anti-
correlated pairs is shown in Figure 9(d).

9Reusable code units that encapsulate common pre-processing and analysis steps. Anduril’s, and
therefore SePIA’s, pipelines are constructed by linking components together through their inputs and
outputs.
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Figure 9: A snapshot of the reports created by SePIA for the case studies. a Small RNA
preprocessing report for Case II, including FastQC results organized by patient sample.
b, c Alignment and expression statistics for Case I with some standard visualization. d
The searchable miRNA-target mRNA report for Case II.

Analysis Software Case Study

Quality Control FastQC I & II

Trimming Trimmomatic I & II
FASTX Toolkit II

Alignment STAR I & II
Bowtie II

Expression Cufflinks I & II
HTSeq II

Differential expression DESeq2, Cuffdiff, DEXSeq I
DESeq, edgeR II

Variant Calling Bambino, GATK I

Prediction (miRNA) mirAnalyzer II

Table 3: Analysis and tools used in the two cancer case studies. Each of the tools
used in the analysis has a corresponding component implemented in Anduril for use in
SePIA. Component documentation is available in www.anduril.org.
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7.2 FUNGI a toolset for identifying, integrating, and prioritizing
fusion genes (Pub IV)

FUNGI (FUsioN Genes Integration toolset) consists of three modules that have
been designed to undertake the following main tasks of a fusion gene analysis
pipeline: 1) fusion calling, 2) prioritization of fusions and 3) supervised fusion
calling and visualization.

The first of these modules, FusionCaller, facilitates the execution of seven different
fusion calling algorithms: Arriba (https://github.com/suhrig/arriba/), STAR-Fusion,
FusionCatcher, SoapFuse, Chimerascan, deFuse [158] and EricScript. FusionCaller
takes raw RNA-Seq reads in compressed fastq format and outputs a list of detected
fusions. This list of fusions can be used directly as input for the next module,
FusionAnalyzer, or after filtering using tool-specific criteria first.

FusionAnalyzer takes as input fusions with minimum information: gene names,
breakpoint coordinates, and number of junction and spanning reads. In this manner,
FusionAnalyzer can process not only fusions called by any of the seven supported
methods by FusionCaller, but also from fusions identified by other tools, given
that breakpoints are provided. FusionAnalyzer verifies that the fusion reported
coordinates match current Ensembl annotation and (optionally) filters fusions
whose genes are homologous, belong to the same family or that neither of them
have a reported function in Gene Ontology (GO). The valid fusions, annotated
by FusionAnalyzer with Ensembl ids, are queried against over 20 databases of
fusion-gene detection projects, provided by FusionCatcher, to identify fusions
previously reported in both cancer and non-cancerous tissues. Users can discard
fusions based on these database annotations and score the remaining fusions with
Pegasus and Oncofuse. FusionAnalyzer’s final output is an integrated list of scored
and annotated fusions from all analyzed, methods and samples, which allows for
the swift identification of recurrent fusions if present.

Finally, FusionVisualizer, the third of FUNGI’s modules, takes a list of fusions
as input together with RNA-seq reads. FusionVisualizer can either recreate the
exact fusion (if breakpoints are provided) and then map the reads to the newly
created virtual reference for the fusion, or it can be used to search for fusions,
independent of breakpoint, in the provided samples. The latter is achieved using
FusionInspector which allowed us to investigate if fusions from our discovery
cohort were also found in TCGA ovarian cancer patients. An overview of FUNGI
toolset is shown in Figure 10. FUNGI’s modules are available as part of the
Anduril framework (https://anduril.org) or as a standalone version at https:
//bitbucket.org/alejandra_cervera/fungi.
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Figure 10: FUNGI is divided into three main modules for 1) calling, 2) filtering,
annotation, and scoring, and 3) supervised detection and visualization of fusions.
FusionCaller currently supports six fusion calling algorithms, takes RNA-seq reads
as input, and outputs the detected fusions by the selected algorithm. FusionAnalyzer
aids in filtering fusions that are likely false positives or that have been previously
reported in databases, and also scores the oncogenic potential of the genes. The input
for FusionAnalyzer is fusion calls taken directly from FusionCaller output or fusions
detected by any other algorithm provided in a standard format. The output is a filtered
table of annotated fusions scored with Pegasus and Oncofuse. FusionVisualizer can be
used for inspecting a fusion by recreating the exact fusion and mapping the reads to the
virtual reference for visualization in a genome browser, or by using FusionInspector
to search for fusions between the same gene partners in the same or different samples.
One of the inputs of FusionVisualizer, in the first case, is a list of fusions with the
breakpoint coordinates for each gene, while for the second case only the gene names
are needed. In both cases, FusionVisualizer requires also as input the RNA-seq reads
to inspect. The output is a virtual reference and the alignments that can be loaded to a
genome browser for inspection if the fusion was found.

7.3 Association of alternative spliced genes with survival in DL-
BCL (Pub II)

We compared good prognosis (n=29) versus bad prognosis (n=9) exon array data
from 38 tumor samples of DLBCL patients. Good prognosis patients have been
in remission over 24 months while poor prognosis relapsed after chemotherapy.
Differential expression analysis revealed 220 genes of which 59% were down
regulated in poor prognosis and 41% were overexpressed. Analysis of alternative
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splicing yielded 3,888 genes that had at least one exon differentially expressed,
but that the gene itself was not. We performed the same analysis using 92 tumor
RNA-Seq samples from DLBCL patients from CGCI where we found 547 (from
the 3,888) genes also alternatively spliced, of which 33 genes matched exactly
(same exons and same direction) the results from the discovery cohort. In Table
11 we show the 29 out of the 37 DEEs that we found associated with PFS (P ≤
0.05) according to Cox univariate analysis and 20 DEEs associated with OS in the
CGCI cohort. From the validated genes, APH1A (anterior pharynx defective−1α)
a component of the γ−secretase complex that cleaves integral membrane proteins
such as Notch receptors and β−amyloid precursor protein) was one of the top
genes both in OS and PFS in the CGCI cohort. Exon domains and Kaplan-Meier
curves for APH1A are showin in Figure 12.

Table 11: Cox univariate analysis of the DEEs common in the discovery and validation
cohorts (significant P<0.05 are in bold). Abbreviations: DEE, differentially expressed
exon; OS, overall survival; PFS, progression-free survival.

7.4 Regulatory modifiers of coding variants contribute to cancer
risk (Pub III)

When loss of function mutations occur in tumor suppressor genes, for cells to turn
from normal to cancerous ones, usually the mutation needs to occur in both alleles
(the two-hit hypothesis in cancer). We wanted to investigate if haploinsufficiency,
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Figure 12: Differentially expressed exons may affect the functional properties of
the protein and are associated with survival. The upper panel shows the domain
information, the middle panel shows the exon and gene expression in the discovery and
validation cohorts and the lower panel shows Kaplan–Meier survival plots of the exons
in DLBCL patients (validation cohort).

as opposed to full gene inactivation, could have a role in cancer risk. In this case
haploinsufficiency of a tumor suppressor gene can be caused by a pathogenic
mutation occurring on a major expressed allele, whilst the wild type variant would
lie on a minor expressed allele mediated by eQTLs. While in cancer we would
expect to see an enrichment of deleterious mutations on higher expressed alleles, in
the general population, purifying selection should deplete haplotype combinations
that give higher penetrance to pathogenic variants. We first tested this hypothesis
using the GTEx dataset, which does not include individuals with severe diseases.
For each of the 44 tissues from the GTEx project we calculated the expression of
coding variant minor alleles using allelic fold change and compared the expression
of missense variants with allele frequency matched synonymous controls. Rare
missense pathogenic variants (CADD > 15) showed a significant difference in allele
expression in comparison to synonymous controls, while rare but deemed benign
(CADD < 15) did not. Next, to study the role of regulatory modifiers in germline
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risk of cancer, we compared the frequency of haplotype combinations between 615
TCGA cancer patients and 620 GTEx individuals. The analysis was stratified by
considering first all rare pathogenic variants from both cases and controls, then the
variants unique to each group, and finally variants shared between them, Figure 13.
We found that the major allele was significantly more often found in combination
with the lower-expression causing eQTL (P=0.00953), while the control specific
variants showed no difference.

Figure 13: eQTL haplotype configurations that are predicted to increase pathogenic
coding variant penetrance are enriched in individuals with cancer and autism spectrum
disorder. Analysis of eQTL and coding variant haplotype configurations in cases and
controls for autism spectrum disorder (ASD) and cancer, using the top GTEx v6p eQTL
per gene by P-value across all tissues. For cancer analysis, haplotype configurations
generated from population and read-back phased germline whole genomes of 615
TCGA individuals (cases) and 620 whole genomes of v7 GTEx individuals (controls)
were used, and haplotypes were analyzed at tumor suppressor genes. To enrich for
putatively disease-causing variants, results were stratified based on whether variants
were restricted to cases or controls or shared between both. Median estimates and 95
confidence intervals were generated using 100,000 bootstraps, and two-sided empirical
P-values were generated from these confidence intervals and combined between cohorts
using Fisher′s method to produce meta p-values.

7.5 Fusion genes in HGSOC (Pub IV)

With the aim of identifying recurring fusion genes in HGSOC we applied FUNGI to
107 RNA-Seq samples from 36 patients. After selecting the most reliable candidates
in terms of low probability of being false positive and high probability of oncogenic
potential, we tested if the fusions can also be detected in a sample set of 423 TCGA
ovarian samples. We were able to identify a previously reported recurrent fusion in
HGSOC, CCDC6–ANK3, which was reported at 1% frequency in both Earp and
TCGA. We identified the fusion in two of our patients, but we were able to also
detect it in 11 TCGA samples, which yields a frequency of 5% and 2%, respectively.
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We also found an enrichment on fusions involving a gene from the PI3K-Akt
pathway. The PI3K-Akt pathway is an intracellular signal transduction pathway
involved in metabolism, proliferation, cell survival, growth and angiogenesis in
response to extracellular signals. A list containing the fusions identified with one
gene from the pathway in our dataset is included in Table 4 with information of
fusions involving the same genes in TCGA. From the PI3K-Akt pathway genes,
we validated with Sanger sequencing AKT2–PBK4 and AKT2–ZNF546, PIK3R1–
CCDC178, and PTK2–AGO2 fusions. Both PTK2 and AGO2 are on chromosome 8
only 22,000 bases apart in a region commonly amplified in ovarian cancer (reported
amplified in 25 and 27% of samples, respectively). We also detected FGFR–TACC3,
which is one of the most common fusion genes in TCGA, reported in cervical cancer,
bladder carcinoma, GBM, squamous lung carcinoma, and HNSC, but not in ovarian
cancer. Several FGFR inhibitors are currently in clinical trials.
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FusionGenes N TCGA Partner NT OV
AKT2–ZNF546,
AKT2–PBX4

6 SRRM5, UPF1, ELK3, NFYA,
Y1BF1

5 NO

ATF4–MIEF1 1

CHD9–CCND3 1 TRERF1, GUCA1B,
TBC1D22B, C6orf89, VPS52,
EXOC4, GMDS, EHMT2,
SRPK1, LUZP1, MED20

14 NO

TRIP12–CREB1 1 FASTKD2, SUCNR1 2 NO

FGFR3–TACC3 1 TACC3 36 NO

GSK3B–ASTE1 3 C3orf15, FSTL1, GPR156,
LSAMP, COL8A1, WNK2,
ATP11B, PLA1A, SEMA5B,
TSC22D2, BEST3, RASSF2

13 NO

HRAS–ANO9 1 RNH1 1 NO

UBE2E3–ITGA4 1 UBE2E2 1 NO

MED24–ITGB3 1

PCSK5–JAK2 2 CDK12, KDM4C, SIK2,
TTC13, C9orf46, RCL1,
GLDC, DOCK8, CSTF3,
C6orf204, PKNOX2, CTD-
2021H9.3

13 NO

KRAS–SSPN 1 RERGL, IFLTD1 2 YES

LAMC1–NPL 3 C1orf21 ,UTRN, EIF4G3 3 NO

MAGI1–LRIG1 1 GAK, DPH3, LRIG1, SU-
CLG2, TBC1D30, MITF

6 NO

PIGU–MAGI2 2 PILRB, VWC2, SLC25A13 3 NO

PIK3R1–CCDC178 2 NDUFB7, RP11-404L6.2,
MRPL42, MARVELD2

5 NO

PIK3R3–NFIA 1 LRRC41, ZSWIM5, NASP,
MYO18A, SPATA6

6 NO

PPP2CB–ACLY 4 PURG, DLC1, PTPRJ 4 YES

PPP2R3A–PCCB 1 EIF4G3, MSL2, EEFSEC,
HKR1,FRMD4B, OPA1,
SPSB4

7 NO

PTK2–AGO2 2 UG2T2A3, VPS13B, EIF2C2,
AC016722.1, AC016722.2,
NCR3, PPP2R5E, TRAPPC9,
PTDSS1, ANKRD11,
CACNG8, RNF139,
SLC45A4, UBE2H, CCDC91,
DENND3, MKLN1

24 YES

FTO–RBL2 1 FTO 1 NO

Table 4: Fusion genes with a gene from the PI3K pathway (shown in bold). N =
number of samples with the fusion, NT = number of TCGA samples with the fusion. If
the PI3K gene has been identified in TCGA with a different partner, the partners are
listed in column 3, and if in TCGA ovarian cancer it is marked in column 5.
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8 Discussion

Next-generation sequencing has transformed cancer research into a data-rich field.
Individual laboratories nowadays are capable of producing considerable amounts
of data which can be deposited in public repositories for other scientists to explore.
Furthermore, multi-institutional collaborations, at both national and international
levels, have arisen with the specific aim of systematically sequence and analyze
whole genomes and transcriptomes of both cancer and healthy tissues, as well as
explore a variety of other functional components of the genome. This explosion
of data resources requires constant development of computational frameworks and
methods to help scientists integrate, analyze, and draw conclusions from this vast
amount of data.

The work presented in this thesis in Publications I and IV, aims at aiding in the labor
of analyzing large datasets. Both SePIA and FUNGI are toolsets that facilitate the
creation of reproducible pipelines for investigating different aspects of the cancer
transcriptome. SePIA allows differential expression analysis and mRNA-miRNA
integration. Its utility is showcased with the analysis of datasets from GEO and
TCGA. On the other hand, FUNGI is aimed specifically at finding reliable gene
fusions with oncogenic potential. To demonstrate FUNGI’s features, we analyzed
107 in-house samples and processed over 400 public samples from TCGA. We also
integrated a variety of published methods for fusion calling, developed our own
strategy for fusion visualizing, and combined everything in a workflow of our own
design, that includes the use of over 20 databases for annotating fusions.

SePIA and FUNGI are tools that can be used by the community to explore their
datasets and contribute to the acquisition of knowledge in the field of cancer genetics
with next generation sequencing. A limitation of workflows such as SePIA and
FUNGI is that although the aim is to automate to the maximum the process of data
analysis, expertise is needed to interpret results and suggest follow up experiments.
Furthermore, both FUNGI and SePIA rely on knowledge deposited in databases
and the quality of the results is directly affected by the quality of the information
deposited in those databases. For example, recently it has been observed that
proven oncogenic fusions can sometimes be computationally detected in healthy
tissue samples, which complicates the matter of automating filtering based on
database annotations [159]. For miRNAs or pathway analysis of differentially
expressed genes, the reliance is on the databases that identify the functions of the
genes. It has been observed that results are affected by how often this databases
are updated. Additionally, working pipelines are hard to replace even when more
reliable methods are published. For this reason, it is important to create software
that is modular and well documented to allow rapid integration and substitution of
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tools.

The biological results presented in this work aim to help in the understanding
of cancer mechanisms. In Publication II we identified that alternative splicing is
better at discriminating between cancer subtypes of DLBCL than more traditional
approaches of differential expression at gene-level. The classification of patients
with a similar diagnosis into different subgroups can help physicians into deciding
treatments and can improve outcomes of clinical trials. Additionally, we identified
isoforms positively associated to survival, which can promote studies into specific
gene variants or into the role of alternative splicing in DLBCL. A reason why
differential exon usage is not as often explored as differential gene expression is
that pathway enrichment analysis at isoform level is still lacking. Even if different
isoforms are identified, not many databases have documented functional differences
between splice variants. In Publication III, we investigated if haploinsufficiency of
tumor suppressor genes could be caused by genetic variation. This study was more
a proof of concept than a dedicated analysis to shed light on a specific cancer type.
We found enrichment of haplotype combinations that up-regulate the expression
of mutation-carrying tumor suppressor alleles. Hopefully, this work will motivate
allele specific expression and eQTL analysis in cancer, which although several such
studies exist, is not part of the standard analysis. Finally, in Publication IV, the
combination of different methodologies for fusion gene calling showed a higher
prevalence than previously reported of some fusion genes identified in other cancer
datasets. Furthermore, we identified a fusion not previously reported in HGSOC
for which targeted drug trials are currently on-going and can result in an increase
of treatment options for carriers of the mutation irrespective of cancer type.

Transcriptomics is a very active field of research both for developments on tech-
nology and computational methods. Long read sequencing for transcriptomics will
facilitate alternative splicing analysis and detection of fusion genes, but currently
the low accuracy remains an important challenge that needs to be overcome before it
can be effectively used. Another technological development, single cell sequencing,
allows the identification of individual cell types and the characterization of cell
states within tumors or tissues. An important limitation of single cell RNA-Seq is
the reliance on poly-A selection for library preparation and the amount of genes
that can be quantified at a time. Both long read sequencing and single cell have
spurred the development of tailored computational algorithms to exploit these new
technologies. Nevertheless, methods that combine the use of short and long reads
or bulk and single cell RNA-Seq are still currently needed. The study of long
non coding RNAs has been somewhat neglected due to lack of proper tools to
understand their functions, but developments in both wet and dry lab methodology
such as CRISPR/CAS9 and deep learning algorithms are already proving useful in
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characterizing these transcripts and understanding their role in gene regulation in
cancer.
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