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SUMMARY

Owing to the intrinsic polypharmacological nature of
most small-molecule kinase inhibitors, there is a
need for computational models that enable system-
atic exploration of the chemogenomic landscape
underlying druggable kinome toward more efficient
kinome-profiling strategies. We implemented Virtual-
KinomeProfiler, an efficient computational platform
that captures distinct representations of chemical
similarity space of the druggable kinome for various
drug discovery endeavors. By using the computa-
tional platform, we profiled approximately 37 million
compound-kinase pairs and made predictions for
151,708 compounds in terms of their repositioning
and lead molecule potential, against 248 kinases
simultaneously. Experimental testing with biochem-
ical assays validated 51 of the predicted interactions,
identifying 19 small-molecule inhibitors of EGFR,
HCK, FLT1, and MSK1 protein kinases. The predic-
tion model led to a 1.5-fold increase in precision
and 2.8-fold decrease in false-discovery rate, when
compared with traditional single-dose biochemical
screening, which demonstrates its potential to dras-
tically expedite the kinome-specific drug discovery
process.

INTRODUCTION

The human kinome encompasses a diverse array of molecular

kinases with crucial regulatory and cellular functions (Manning

et al., 2002), deregulation of which contributes to many complex

diseases, especially cancers (Zhang et al., 2009). Protein kinases

currently form the largest group of therapeutic targets for molec-

ularly targeted anticancer drug treatment (Sun et al., 2017). A

recent collective analysis of the target spectrum of various

kinase inhibitors (KIs) detailed the proportion of clinically viable

kinases in the kinomic landscape that is druggable, hereinafter

referred to as the ‘‘druggable’’ kinome (Klaeger et al., 2017). A

substantial fraction of KIs targeting the druggable kinome are
Cell Che
ATP-competitive inhibitors (type I and type II KIs) that are known

to display a higher degree of promiscuity compared with allo-

steric binders (type III and type IV KIs) (Munoz, 2017). This poly-

pharmacological disposition among KIs is predominantly attrib-

uted to the residue conservation among the ATP-binding

pockets ofmolecular kinases (Chen et al., 2007). Such promiscu-

ity contributes to both therapeutic and adverse effects, making it

imperative to maintain a stringent efficacy/safety ratio in anti-

cancer drug development strategies (Ravikumar and Aittokallio,

2018). Comprehensive knowledge of the chemogenomic space

underlying the druggable kinome is therefore critical for

improving the success rates in clinical drug development phases

(Fedorov et al., 2010).

Numerous kinome-wide target profiling studies have been

carried out to explore both the cross-reactive potency of KIs

and to elucidate their mechanism of action (Davis et al., 2011; El-

kins et al., 2016; Fabian et al., 2005; Georgi et al., 2018; Metz

et al., 2011). Such high-throughput kinome screening studies

can also be outsourced, without expensive instrumentation re-

quirements, through the commercially ventured kinase-profiling

services, such as SelectScreen and KINOMEscan (Miduturu

et al., 2011). Apart from profiling techniques, the emphasis on

the identification of selective KIs has led to the development of

dedicated kinome-specific chemogenomic screening libraries

(Drewry et al., 2017; Elkins et al., 2016; Jones and Bunnage,

2017). Despite these developments, many of the new drug

indications are identified through exhaustive screening experi-

ments, rather than rational approaches, and such discoveries

are largely dependent on the compound libraries subjected to

biochemical profiling studies (Pemovska et al., 2015). Scaling

up of compound libraries, although feasible, incurs additional

time and cost constraints intrinsic to the phenotypic screening

process. Furthermore, the inherent diversity of screening proto-

cols and libraries has led to heterogeneous bioactivity profiles,

which pose significant challenges for data integration proced-

ures, hindering the data reuse in lead identification and drug re-

positioning studies (Arrowsmith et al., 2015; Orchard et al., 2011;

Tang et al., 2018).

Computational models have been proposed and used as a

cost-effective alternative to accelerate the drug discovery pro-

cess (Lavecchia and Cerchia, 2016; Ravikumar and Aittokallio,

2018). A seminal work was the development of the compound-

centric similarity ensemble approach (SEA). SEA underpins a
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statistical framework that describes the chemoinformatic space

of molecular targets by evaluating the similarity among active

ligand sets of individual targets, thereby aiding in identification

of novel drug indications and in deconvoluting the target land-

scape of compounds (Keiser et al., 2007, 2009). However, the

wide generalizability of such model may impair their sensitivity,

especially when focusing on kinase space, which sequentially

has given rise to various kinome-specific prediction models

(Christmann-Franck et al., 2016; Cichonska et al., 2017; Lo

et al., 2018; Merget et al., 2017). More recently, various neural

network and deep-learning models have been proposed for

bioactivity prediction, some of which have outperformed the

conventional prediction models (Koutsoukas et al., 2017; Ozturk

et al., 2018). However, accurate predictions from such models

often rely on computationally intensive algorithms, which may

hinder their accessibility and wide usability by chemical biolo-

gists, unless implemented as stand-alone or web applications.

Another fundamental limitation of most prediction models is

their requirement of specific bioactivity data and structural

information for model development. Although the integration of

diverse datasets can enhance the performance of the prediction

models (Iorio et al., 2010), it also significantly limits their applica-

bility, especially when the aim is to systematically profile the full

kinome space.

To address these limitations, we developed a model-guided

kinome-profiling platform as an efficient means to analyze the

chemogenomic landscape of the druggable kinome space. The

aim was to systematically prioritize potent compound-kinase

interactions for further biochemical and pre-clinical evaluation.

The KI sets collected and used in this study form the most

comprehensive kinome-specific compound resource used in a

predictive analysis framework to date. The computational

analysis platform integrates an enhanced statistical model with

an efficient classifier developed using an ensemble support

vector machine (eSVM) algorithm. We applied the platform to

systematically explore the chemogenomic similarities among

molecular kinases and to provide useful insights into potent

compound-kinase associations. In addition to comparing the

chemogenomic approach with the conventional sequence-

based approach, we also performed a comparative analysis

against similar statistical approaches (Keiser et al., 2007; Lin

et al., 2013; Wang et al., 2016a). We computationally validated

the performance of the platform by predicting the bioactivity

classes in the published kinase chemogenomic sets (KCGS)

(Drewry et al., 2017; Elkins et al., 2016). Finally, we demonstrate

the wide applicability of our analysis platform in various kinome-

specific lead identification and compound repositioning studies

by experimentally validating the model predictions using

biochemical assays. The compiled data resource and the

accompanying computational model are deployed as a virtual

kinome profiler web-application (https://virtualkinomeprofiler.

fimm.fi/), to expedite the kinome-specific drug discovery

process.

RESULTS

Chemogenomic Landscape of the Druggable Kinome
To develop and test the efficacy of our platform, we first curated

a wide bioactivity spectrum of pharmacologically diverse KIs.
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The bioactivity profiles of these KIs includes information of their

on- and off-target interactions, compound structural description,

and target annotations, which were compiled and standardized

from various public data resources (Bento et al., 2014; Tym

et al., 2016). The resulting bioactivity dataset consisted of 248

kinases that cover 48% of the human kinome, and 74,033 KIs,

which together form the current space of the druggable kinome

in our study (see also Table S1). The affinity and potency mea-

sures of the �250,000 compound-target interactions from the

curated dataset were classified based on the activity threshold

of 1 mM. The categorized active and inactive compound sets

for each kinase in our panel cover all the key kinase sub-families

(Figure 1A). To enumerate the chemogenomic association

among various kinase targets, we calculated the active com-

pound set similarities and inactive compound set dissimilarities

using the Tanimoto and Dice coefficients (Fligner et al., 2002)

(Equations 2, 3, 4, and 5; see the STAR Methods). To enhance

the established SEA framework (Lin et al., 2013; Wang et al.,

2016a), which uses merely ECFP4 fingerprints (FPs), we calcu-

lated the similarity and dissimilarity scores among ligand sets

using eight different topological representations of compound

FPs (Daylight, MACCS, ECFP4/6, Torsion, Atompairs, and

FCFP4/6) (Figure 1B). Eachmolecular FP captures distinct facets

of chemogenomic associations that exist among the analyzed

kinome. The statistical significance (E values) of the similarity

and dissimilarity scores among kinase targets were computed

by comparing the observed score against a reference null distri-

bution generated by randomly sampling a range of ligand set

sizes (ranging from 100 to 13106) from the curated dataset

(Figure 2; Table S2). The E value statistic estimates the balanced

likelihood of observing the score by random chance by account-

ing for the disproportionate compound set sizes related to each

kinase targets (Equations 9, 10, 11, 12, and 13; see the STAR

Methods). The statistical model therefore describes the chemo-

genomic landscape of kinases by accounting for the set size

biases.

To systematically portray the chemogenomic links among

the 248 kinase targets, we performed a comparative analysis

of our chemical similarity-based approach against the traditional

sequence similarity-based analysis of kinases (Figures 3A; see

also S2). The sequence information and the associated kinase

sub-family annotationswere retrieved from the UniProt database

(UniProt ConsortiumT, 2018) (Table S1). The sequence similarity

of the kinases was estimated by querying a custom database of

retrieved kinome sequences using the BLASTp alignment algo-

rithm (Altschul et al., 1990). The E values estimated with the

sequence-based BLASTp algorithm and from our chemoge-

nomic statistical model using ECFP4 FPs were transformed to

a distance matrix and subjected to unsupervised hierarchical

clustering (see the STAR Methods). To distinguish the strength

of target-target associations highlighted by these two orthogonal

approaches, we performed a differential analysis of the obtained

E value metrics (Figure 3B). This analysis identified certain

kinome associations, such as FLT4 with RPS6KB1 and RIPK1,

which were strongly related in their chemical space although

being distant in their sequence similarities (Figure 3C, inset).

Such associations highlight the added value of the chemoge-

nomic approach when exploring the druggability of kinases

that are dissimilar on a sequence level. Furthermore, we
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Figure 1. A Schematic Illustration of the Computational Framework Implemented for Chemogenomic Analysis and Virtual Profiling for the

Druggable Kinome

(A) An overview of the kinase targets that form the druggable kinome panel in the study: the enumeration of active (A) and inactive (IA) compounds associatedwith

each of the 248 kinase targets and their distribution across key kinase sub-families is represented in the kinome tree (see also Table S1).

(B) Statistical model implementation for each kinase target: eight compound fingerprints (FPs) were used in the study to calculate similarities and dissimilarities for

the active and inactive compound sets (e.g., kinase-1 and kinase-2 in the heatmap), respectively, followed by fitting a generalized extreme value Gumbel dis-

tribution to find the optimal Tanimoto threshold (Tc*) for each FP (see also Figures 2C and 2D). These thresholds were used to calculate the Z score and E value

statistical estimates for compound activity class predictions. The Z scores for the similarity and dissimilarity calculations from the statistical model were used as

input features in the SVM classification model.

(C) Machine-learning classification model implementation and testing in KCGS compound sets: PKIS datasets were used to train, test, and validate the ensemble

of support vector machine (eSVM) classification model, which integrates the multiple FP feature vectors to ascertain the activity classes of compounds.

(D) The prediction platform was implemented as a web-application to facilitate kinome-profiling studies.
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explored various similarity maps using an array of compound FP

types, each revealing a distinct representation of the chemical

landscape that exists in the kinome (see Figure S1). To elucidate

the extent of diversity between sub-clusters of these similarity

maps, we used the predetermined sub-family classification of

protein kinases as a reference (Table S1), based on which we

computed the adjusted Rand index and cophenetic correlation

measures to quantify how accurately different FPs enable one

to reconstruct the sub-family classes of kinases (Figure 3D).

Although the statistical scores from FPs of active sets were
correlated, as expected, each statistical model based on the

unique FP features encodes complementary information of the

chemogenomic spectrum underlying the druggable kinome.

Elucidating Binding Classes of KCGS Compound Sets
Based on the above results, we hypothesized that the statistical

estimates (Z scores) obtained from the compound set similarity

and dissimilarity scores based on the eight FPs could be used

as a multifaceted feature panel for kinases. Such a panel cap-

tures essential information for predicting the binding classes
Cell Chemical Biology 26, 1–15, November 21, 2019 3



Figure 2. Statistical Model Parameter Estimation and Optimal Threshold Fits across Fingerprints

(A and B) Themean (A) and standard deviation (B) plot of original scores as a function of sampled set sizes for the reference null distribution when estimating active

ligand set similarities using the MACSS FPs at the Tanimoto threshold of 0.87, their respective fits are indicated in red.

(C) The Akaike Information Criterion values obtained when fitting the Z score distributions for active ligand set similarities to a generalized Gumbel EVD across the

99 Tanimoto thresholds for the MACSS FPs, wherein the optimal threshold (Tc*) was found to be 0.87 (see the STAR Methods).

(D) The optimal thresholds for various FPs used in the statistical model in enumerating both actives (similarities) and inactives (dissimilarities) feature vectors (see

also Table S2).
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(active versus inactive) of a compound for a given kinase target.

To effectively integrate the non-redundant information from such

16-dimensional (8 actives and 8 inactives) feature vectors, we

implemented a classification algorithm based on our statistical

chemogenomic model (Figures 1C and 3D). To exclude any

inadvertent impacts from heterogeneous screening methodolo-

gies when developing and validating our classification algorithm,

we used the bioactivity profiles from published kinase chemoge-

nomic studies (Drewry et al., 2017; Elkins et al., 2016) that use the

Nanosyn technology and DiscoverX KINOMEscan protocols,

respectively. The published kinase inhibitor sets (PKIS1 and

PKIS2) and their interaction measures were used as the training

and independent held-out validation datasets, that is, they were

blinded when developing the statistical model (Figure 1C). The

compound-kinase interaction profiles from the KCGS screening

studies were assigned to binary reference classes (positives or

negatives) using a threshold of 1 mM (see also Figures S3A and

S3B). Before implementing the classification algorithm, we

evaluated the predictive power of the individual statistical attri-
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butes (E value estimates from the various FPs) in distinguishing

the binding classes in the PKIS1 dataset, where the predicted

classes were defined by applying an E value threshold of

1310�10 (Figure S4A). Based on the Fb performance metric

across selected baseline machine-learning (ML) models (Equa-

tions 14, 15, 16, 17, 18, and 19; see the STARMethods), we iden-

tified a non-linear SVM classifier using a radial basis function

(RBF) kernel having the highest classification performance in

our study (Figure S4B).

We implemented a 5-fold cross-validation testing protocol

within the PKIS1 dataset to train and fine-tune the optimal hyper-

parameters (C and Gamma) of the SVM-RBF model (see Fig-

ure S4C and S4D). An impending characteristic in classifying

compound-kinase bioactivity profiles is the inherent data imbal-

ance between the class labels (the average ratio of positives to

negatives in PKIS1 is 1:20; Figure S3A). To account for such

imbalanced classification task, we adopted an ensemble

schema, termed ensemble of under-sampled SVM (eSVM),

which has been shown to improve the performance and



Figure 3. Analysis of Chemogenomic Landscape Underlying the Druggable Kinome

(A) Comparative analysis of kinase-kinase similarities based on the sequence similarity space and the chemical similarity space among the 248 kinase targets,

where the former was calculated using the BLASTp algorithm and the latter using ECFP4 FP (the kinase sub-families are color coded; a high-resolution version of

the cluster solutions is given in Figure S2). The cosine distances between E values estimated based on these orthogonal approaches were used to depict kinase-

kinase association in the dendrograms.

(B and C) A differential heatmap, highlighting the strength of those associations reflected by the two approaches (B). A subset of the heatmap comparing the

targets associated with stronger sequence similarity in comparison with chemogenomic similarity (C) (inset) (see the STAR Methods).

(D) The adjusted Rand index and cophenetic correlation metrics calculated based on similarity and dissimilarity statistical estimates among the active (A) and

inactive (IA) compound sets, respectively, across the different FPs. The FPs capture non-redundant information of the chemogenomic representations among

kinases (the chemogenomic clustering solutions based on the different compound FPs excluding ECFP4 are shown separately (see also Figure S1).
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generalizability of the SVM classifier (Kang and Cho, 2006) (see

the STARMethods). All of the 54,316 investigated compound-ki-

nase interactions among 367 compounds and 148 kinases were

assigned to an activity class by aggregating the prediction out-

comes from 23 individual classifiers through a majority voting

system; similarly, all the performancemetrics of the eSVMmodel

were evaluated by averaging the measures over the 23 indepen-

dent ensembles (Equations 14, 15, 16, 17, 18, and 19; see the

STAR Methods). The eSVM ensemble model classified the

PKIS1 dataset with a precision rate of 84.8% and an AUC of
0.74, and the Fb metric accounting both for precision and recall

was 0.72. Comparison of the AUC metric of the trained eSVM

model with that of individual FP measures highlights the im-

provements gained by the integrated eSVMmodel when predict-

ing the true activity classes of the KIs (p < 10�10, DeLong’s test;

Figure 4A). Furthermore, when recapitulating the activity classes

in the external PKIS2 validation dataset (a total of 1,057 interac-

tions; Figure S3B), the measured equilibrium dissociation con-

stant (KD) values of the interactions classified as actives by the

eSVM model showed a median KD level of 0.093 mM, a
Cell Chemical Biology 26, 1–15, November 21, 2019 5



Figure 4. Evaluation of the Ensemble SVM-

RBF Model

(A) The receiver operator characteristic (ROC)

curve comparing the performance of the inte-

grated ensemble SVM classifier (eSVM) with the

statistical E value estimates from the individual

FPs (ECFP4-A; Atompairs-A; Torsion-IA; active [A]

and inactive [IA] compound sets) in the PKIS1

dataset (Elkins et al., 2016). The area under the

ROC curve (AUROC) for the various models are

provided in the color-coded legend (the differ-

ences of the observed AUROCs were highly sig-

nificant; p < 10�10, DeLong’s test).

(B) The distribution of the bioactivity values of the

active and inactive classes in the independent

PKIS2 validation dataset (Drewry et al., 2017) as

predicted by the eSVM model. The difference

between the two classes was highly significant

(p < 10�10, Wilcoxon test).
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significantly higher affinity than those classified as inactives

(p < 10�10, unpaired two-sided Wilcoxon test at 99% CI; Fig-

ure 4B). These results suggest an accurate predictive power of

our systematic computational approach in elucidating com-

pound-target interactions across diverse kinase sets of the

druggable kinome (Figure S3C). We also observed a 9.1-fold

enrichment of true hits when comparing the model predictions

against the experimentally defined active class (KD < 1 mM) in

the PKIS2 dataset (p < 10�10, Fisher’s exact test).

Applications to Repositioning and Lead Screening
After validating the competence of our computational platform

in the PKIS datasets, we next extended its application to predict-

ing potent small-molecule KIs. We addressed two prevalent

tasks in the pre-clinical drug discovery process, namely, com-

pound repurposing and lead molecule identification. The repur-

posing collection consisted of compounds and their target anno-

tations, compiled and curated from multiple data resources

such as the Drug Repositioning Hub, DrugBank, and IUPHAR

(Corsello et al., 2017; Harding et al., 2018; Wishart et al., 2018);

this collection of 18,077 compounds comprises mostly non-KIs

and KIs whose activity profile is poorly established (see Table

S3). Similarly, the lead molecule library is a compendium of

133,631 potential lead molecules obtained from various chemi-

cal diversity libraries (including Specs consortium, Tripos collec-

tion, MicroSource Spectrum, ChemBridge DIVERSet, and

ChemDiv diversity collections; Table S3). Before activity class

prediction, the compounds from both of these libraries were

curated, among other criteria, by selecting small-molecule inhib-

itors with molecular weights <700 Da (see the STAR Methods).

The activity classes of these 151,708 compounds were pre-

dicted across the 248 kinases in our druggable kinome panel,

resulting in approximately 37 million kinase-compound associa-

tions, using the eSVM-RBF model.

In the current target profiling study, given an instance of com-

pound-kinase interaction, the practical prediction task involves

estimating a statistical measure of similarity and dissimilarity of

the query compound with the predefined active and inactive

ligand sets of each kinase, to make the decision whether or

not the particular compound should be considered as potent
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inhibitor of the selected kinase. To improve the sensitivity of

the activity class predictions, we further aggregated the statisti-

cal estimates (Z scores) from the FPs and classified the com-

pound-kinase activity using the eSVM-RBF classifiers. Applying

an objective threshold of R0.875 for both normalized eSVM

score and for the prediction score (Equations 7 and 8; STAR

Methods), defined based on a pilot study among well-estab-

lished kinase targets (see Table S4), we selected 51 com-

pound-kinase interactions between 51 compounds and 8 ki-

nases for further biochemical validation (Table S5). We did not

favor any specific targets in the experimental validations, rather

selected the targets based solely on the predicted potency

as estimated by the data-driven computational models. Among

the 51 selected interactions, 46 were novel associations and 5

compound-kinase interactions have previously been reported,

thereby serving as positive controls of our model predictions

(Table S6).

The experimental validations of the model predictions were

performed sequentially using a two-phase screening procedure,

namely, a single concentration assay followed by a dose-

response assay, both of which use a cell-free biochemical kinase

testing protocol (Equation 1; see the STAR Methods). Those

compound-kinase interactions (37% of the 51 predicted interac-

tions) that exhibited a residual activity of 50%or less in the single

concentration assay (10 mM of compound) were selected for the

dose-response study (12 concentration doses ranging from

0.0375 nM to 12.5 mM) to estimate the half-maximal inhibitory

concentration (IC50) values (Tables 1; see also S5). The potency

values of the five known compound-kinase associations (com-

pounds 2, 6, 7, 11, and 23) were similar to those established in

previous studies (Bamford et al., 2005; Kolb et al., 2008; Metz

et al., 2011; Wang et al., 2016b), supporting the accuracy of

the model and the consistency of our experimental assay (Table

S6). When examining the novel compound predictions validated

from the repurposing collection, we identified LY456236, a

selective, non-competitive metabotropic glutamate receptor 1

(mGlu1) inhibitor that has been shown to inhibit phosphoinositide

hydrolysis in vitro (IC50 = 0.145 mM) (Shannon et al., 2005). Inter-

estingly, our study confirmed that LY456236 inhibits also the

epidermal growth factor receptor (EGFR) with an IC50 value of



Table 1. Compounds Predicted and Validated across Various Kinase Targets, with Their Single-Dose and Dose-Response Activities

Compound Structure Intended Target Predicted Target (UniProt ID) % Residual activity (10mM) IC50 (mM)

LY456236 mGlu1 EGFR (UniProt: P00533) 16.6 0.918

Sapanisertib mTOR HCK (UniProt: P08631) 16.8 1.767

Compound 1 –a EGFR (UniProt: P00533) 33.8 0.09

Compound 2 – EGFR (UniProt: P00533) 12.3 0.104

Compound 3 – EGFR (UniProt: P00533) 41.7 0.498

Compound 4 – EGFR (UniProt: P00533) 8.7 0.03

Compound 5 – EGFR (UniProt: P00533) 4.6 0.02

Compound 6 – EGFR (UniProt: P00533) 38.8 1.573

Compound 7 – EGFR (UniProt: P00533) 5,6 0.067

(Continued on next page)

Cell Chemical Biology 26, 1–15, November 21, 2019 7

Please cite this article in press as: Ravikumar et al., Chemogenomic Analysis of the Druggable Kinome and Its Application to Repositioning and Lead
Identification Studies, Cell Chemical Biology (2019), https://doi.org/10.1016/j.chembiol.2019.08.007



Table 1. Continued

Compound Structure Intended Target Predicted Target (UniProt ID) % Residual activity (10mM) IC50 (mM)

Compound 8 – EGFR (UniProt: P00533) 6.8 0.029

Compound 9 – EGFR (UniProt: P00533) 21.8 0.285

Compound 10 – EGFR (UniProt: P00533) 25.9 0.273

Compound 11 – EGFR (UniProt: P00533) 18.6 0.388

Compound 12 – EGFR (UniProt: P00533) 43.8 1.684

Compound 16 – FLT1 (UniProt: P17948) 2.4 0.085

Compound 17 – FLT1 (UniProt: P17948) �0.3 0.242

(Continued on next page)
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Table 1. Continued

Compound Structure Intended Target Predicted Target (UniProt ID) % Residual activity (10mM) IC50 (mM)

Compound 18 – FLT1 (UniProt: P17948) �2.7 0.016

Compound 22 – RPS6KA5/MSK1 (UniProt: O75582) 35.3 0.587

Compound 23 – RPS6KA5/MSK1 (UniProt: O75582) �5.5 0.118

aCompounds from leadmolecule libraries are marked with the intended target as ‘‘–’’ (for the full list, see Table S5). The first two compounds represent

repurposing cases. mTOR, mammalian target of rapamycin.
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0.91 mM (Table 1; Figure 5A). Similarly, sapanisertib (TAK-228), a

potent and selective mammalian target of rapamycin inhibitor

(IC50 < 0.10 mM), was confirmed to inhibit also the HCK protein

kinase with an IC50 value of 1.76 mM (Table 1, Figure 5A).

In addition to these possible repositioning opportunities, we

also experimentally validated novel predictions spanning 17

potential lead molecule interactions across three different

kinases from various kinome sub-families (compounds 1–23 in

Tables 1 and S5). Of the 12 compounds tested for EGFR

inhibition, we identified two compounds (compound 4 and

compound 5) whose IC50 values were z0.02 mM, i.e., only 1

log-fold less potent than that of the control compound

afatinib (IC50 = 0.005 mM; Table 1; see Figure S5A). When

validating the predicted FLT1 inhibitors, we identified com-

pounds 16 and 18, which exhibited IC50 values of 0.08 and

0.01 mM, respectively. Interestingly, these inhibitors were found

to be more potent than the FLT1 control compound sunitinib

(IC50 = 0.23 mM; Table 1; Figures 5B, see S5B). Similarly, when

experimentally assessing the RPS6KA5 (MSK1) inhibitors, com-

pounds 22 and 23 were found to inhibit MSK1 kinase with IC50

values of 0.58 and 0.11 mM, respectively, displaying a similar

potency to that of sunitinib (IC50 = 0.55 mM, Table 1; Figure 5C).

The biochemical validation of these novel compound-kinase

interactions demonstrates the wide applicability of our proposed

approach as an efficient computational screening platform for

the systematic profiling of the druggable kinome. The overall

precision of the computational-experimental strategy was 84%

(16/19 interactions with IC50 < 1 mM; Table 1), which provides a

1.5-fold increase in positive predictive value (PPV) and a 2.8-

fold decrease in false-discovery rate (FDR), compared with the

two-phase experimental assay (single and dose-response
assay) used in the PKIS2 chemogenomic study (Drewry

et al., 2017).

DISCUSSION

Most previous approaches to deconvoluting the kinase spec-

trum of anticancer drug treatments have been biased toward

clinically validated kinase targets (Fedorov et al., 2010). Although

developments in high-throughput screening techniques and

recent initiatives in elucidating the druggable genome have

enabled more holistic kinome-wide profiling strategies (Georgi

et al., 2018; Miduturu et al., 2011; Rodgers et al., 2018), there

is a need for systematic computational frameworks that enable

cost-effective analysis and profiling of the chemogenomic land-

scape of the druggable kinome. This work introduces a system-

atic methodology to comprehensively investigate the chemoge-

nomic space of the druggable kinome and provides an efficient

prediction platform to identify potent kinome-specific activities

(Figure 1A). Compared with an existing general statistical model,

such as SEA, our specific focus was on kinome space. Further-

more, while SEA estimates similarities among active ligand sets

of targets using ECFP4 compound FPs only (Lin et al., 2013), we

extended the statistical approach by several key improvements,

wherein both active ligands set similarities and inactive ligand set

dissimilarities among kinase targets were estimated using 8

different molecular FPs, giving rise to 16 independent represen-

tations of the kinase chemogenomic space (Figures 1B and 2).

We further combined these distinct features with an ensemble

SVM classification model to capture the full chemical similarity

space of the druggable kinome (Figure 1C). The implemented

ligand-based approach identifies kinome associations that can
Cell Chemical Biology 26, 1–15, November 21, 2019 9



Figure 5. Dose-Response Assay for Compounds Predicted Among Repurposing and Lead Screening Libraries

(A) The dose-response curve of the predicted repurposing compounds LY456236 and sapanisertib against EGFR and HCK protein kinases, in comparison with

their positive controls, afatinib and dasatinib, respectively.

(B) The dose-response curve of potential hit molecules (compounds 16 and 18) predicted to inhibit FLT1 kinase (the dose-response assay for compound 17 is

shown [see also Figure S5B] in comparison with their positive control sunitinib).

(C) The dose-response curve of potential hit molecules (compounds 22 and 23) predicted to inhibit MSK-1 kinase, in comparison with their positive control,

sunitinib. The IC50 dose-response measures for each compound-target interaction are provided in parentheses.
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be distant in their sequence space but still strongly related in

their chemical space (Figures 3A, see also S2). For instance,

the chemogenomic similarity between FLT4 tyrosine kinase pro-

tein and RPS6KB1, which belongs to the AGC kinase sub-family,

highlights the common scaffold similarities shared between

these distant protein kinases, thereby aiding in multi-targeted

drug designing (Besnard et al., 2012) (Figures 3B and 3C). Similar

to previous studies, we observed a high degree of correlation

(>0.42) among the similarity estimates from the active FPs

(Hert et al., 2008; Wang et al., 2016a), whereas the additional

dissimilarity estimates across inactive FPs showed a lower cor-

relation (<0.57) (Figure 2D), which indicates the additional infor-

mation obtained through this integrated approach. Furthermore,
10 Cell Chemical Biology 26, 1–15, November 21, 2019
when categorizing the activity classes in the KCGS dataset (Fig-

ure S3A), the previously established protocol of merely using sta-

tistical estimates from individual FPs (e.g., E value thresholds in

SEA) resulted in a lower performance compared with the eSVM

model that aggregates information from multiple FPs from both

active and inactive ligand sets (Figures 4A, see also S4A and

S4B). The existing implementations of such statistical models

have primarily focused on ranking the various compound repre-

sentations in terms of FPs, and then selecting an optimal FP to

perform the similarity estimation (Hert et al., 2008; Keiser et al.,

2007; Wang et al., 2016a). By integrating statistical estimators

for both active and inactive sets using an efficient ML algorithm,

we demonstrate how the implemented computational platform
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significantly reduces misclassification errors (Figure 4A). Simi-

larly, in the external validation PKIS2 compound sets (Fig-

ure S3B), the active compounds predicted by the model showed

a median bioactivity value of <0.10 mM (Figure 4B).

As an application of our computational framework, we profiled

the kinome-centric interactions for a compendium of 151,708

compounds. Before investigating these distinct repurposing

and drug-like molecule libraries, the compounds were curated

using the pan assay interference compounds filter to exclude

any unforeseen and non-specific interactions (Baell and Hollo-

way, 2010). In aggregation, approximately 37 million com-

pound-kinase associations were subjected to eSVM classifica-

tion, and of the classified active binders, 51 interactions were

later validated through an experimental assay (Table S5).

Through subsequent biochemical assays, we identified 19

small-molecule inhibitors, several of which exhibited a potency

of <1 mM in the dose-response assays, which is equal to the

threshold used to designate active interactions in the statistical

model (Table 1; see the STAR Methods). Apart from the two

potential repositioning predictions (Figure 5A), we identified

potent hit molecules for EGFR, MSK1, HCK, and FLT1 kinases,

with activities similar to, or more potent than their respective

control compounds used in the dose-response assays (Figures

5B and 5C; see also S5). Compared with standard high-

throughput kinase-profiling experiments, with an approximate

success rate of 18%, estimated based on the published data

(Davis et al., 2011), when applying the same activity threshold

of KD < 1 mM), we can estimate the likelihood of obtaining 19

or more positive predictions in a random sample of 51 com-

pound-kinase pairs (p = 0.00024, assuming a binomial distribu-

tion for the number of successes). The overall PPV of 84% (16/

19) and FDR of 15% (3/19) for our computational-experimental

approach provides 1.5-fold increase in PPV and 2.8-fold

decrease in FDR, compared with the two-phase experimental

assay implemented in PKIS2 (PPV = 57% and FDR = 42%), indi-

cating that one could replace the single-dose initial screen with

the computational platform to enrich the number of true actives

among the predicted interactions, and, more importantly, to gain

significant reductions both in time and costs of the experimental

screening process.

In total, 63% of the predicted interactions (32 of the 51 tested)

displayed a residual activity of >50% in the single-dose assay,

and hence were categorized as false-positives and excluded

from the further dose-response study (Table S5). In general,

computational models performing such classification tasks can

never be devoid of misclassification errors. We note that the

optimal hyperparameters (C and Gamma) of the classification

model were tuned using the Fb metric with a b value of 0.5

(see the STAR Methods), hence giving more weight to precision

than recall. Notably, most of the observed false-positives were in

the predicted associations with kinase targets CDK6, TGFBR2,

CHEK2, and FLT3 (Table S6). The Z score estimates from torsion

FPs obtained for the true-positive interactions (EGFR, FLT1,

MSK1, and HCK) and false-positive predictions (CDK6,

TGFRB2, CHEK2, and FLT3) showed a significant difference

(p = 0.03 for active and p = 0.0002 for inactive Z scores, respec-

tively, unpaired two-sided Wilcoxon test at 99% CI; Figure 6A).

We also observed a significant difference in compound diversity

among the ligand sets for the false-positive target predictions,
when compared with the diversity of compounds involved in

the true-positive predictions (two-sample Kolmogorov-Smirnov

test D = 0.195; p < 10�10 at 99%CI; Figure 6B). The performance

of any compound-centric prediction platform is bound to be

significantly dependent on the size and extent of diversity

observed among the active and inactive ligand sets accompa-

nying the kinase targets. Therefore, themore diverse these com-

pound sets are, the more distinct scaffolds will be identified and

used by the model for virtual screening. Although the results in

the PKIS datasets demonstrated the wide applicability of the

computational platform to various kinases (Figure S3C), there

was a clear enrichment for EGFR and TGFBR2 targets among

the selected hits (Table S5), which is likely due to the chemical

composition of the screened compound collection used in the

present work. We therefore further analyzed the diverse scaf-

folds underlying the computational hits selected using Scaffold

Hunter (Wetzel et al., 2009), which depicted 8 distinct maximum

common substructures among the 51 selected compounds

(Figures 6C and 6D), indicating various scaffolds for the com-

pounds selected for experimental validation. In future research,

the molecular scaffolds highlighting the commonalities of active

binders across distinct kinase targets could also be used for

multi-target de novo drug-design studies (Besnard et al.,

2012). In addition to the standard compound FPs, the perfor-

mance of the computational platform might be further improved

by incorporating other pharmacophore-based features for activ-

ity class prediction, similar to the features highlighted in ColBioS-

FlavRC (Bora et al., 2016).

This study has certain limitations, the most prominent of which

is the preference for implementing a compound-centric model.

Although target-centric models, such as KinomeFEATURE,

have recently been used for compound activity predictions (Lo

et al., 2018), they are often constrained by the availability and

quality of structural data essential for the comprehensive ki-

nome-profiling studies. Similarly, even though augmenting other

omics datasets to the prediction model might considerably

enhance the classification performance (Iorio et al., 2010), as

was shown, for instance, in the DEMAND algorithm (Woo et al.,

2015), the requirement of such information further restricts the

wider applicability and translatability of the prediction model.

Currently, our compound-centric model only requires the struc-

tural description of the compounds (SMILES), whereas inte-

grating other data resources would escalate the model’s data-

dependency requirements in performing similar classification

tasks, therefore hindering its application to kinases or com-

pounds lacking the required additional information. Existing in

silico methodologies often implement various ML algorithms to

facilitate the prediction of potent drug indications and target de-

convolutions studies (Lavecchia, 2015). Newer methods include

recently developed deep neural network models, such as Deep-

DTA, which uses one-dimensional representations of drugs and

targets for bioactivity affinity predictions (Ozturk et al., 2018). Our

study relied on an SVM algorithm for the classification task, and

this selection was due to the ‘‘tried-and-true’’ effectiveness of

SVMs when using the FP representations of the compounds as

input features for similarity searches (Geppert et al., 2008). An

additional benefit of the SVM model is its support for an

ensemble learning approach, similar to that adopted in a previ-

ous study (Kang and Cho, 2006). Although classification and
Cell Chemical Biology 26, 1–15, November 21, 2019 11



Figure 6. Comparing the Activity Classes and Scaffold Analysis of Assayed Interactions

(A) The Z score estimates for the 49 validated compound-kinase interactions obtained using torsion active (A) similarity and inactive (IA) dissimilarity estimates,

where the true-positive (TP) predictions confirmedwith biochemical assay are highlighted in Picton blue and the false-positives (FP) in orange peel. The difference

in Z scores between the TP and FP predictions was significant for both A and IA sets (p < 0.05, unpaired two-sided Wilcoxon test).

(B) The chemical diversity of compound set similarity estimates obtained from the statistical model using torsion FPs across the targets validated as TPs (EGFR,

FLT1, and MSK-1, Picton blue) and as FPs (TGFRB2, FLT3, CDK6, and CHEK2, orange peel). The difference in the distributions of the compound diversity was

evaluated using the two-sample Kolmogorov-Smirnov test (D = 0.195; p < 10�10).

(C) Scaffold analysis carried out using Scaffold Hunter v.2.6.0, illustrating the eight different maximum common substructures that underlie the molecular

scaffolds of the 51 selected computational hits from virtual kinome profiling.

(D) The scaffold clustering and tree diagram that represents the subset of scaffolds and their sequential generation from MCS, corresponding to the 51 com-

pounds selected for the experimental validation.
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regression models may prioritize distinct structural features for

activity prediction (Rodriguez-Perez et al., 2017), the choice of

using a classification algorithm instead of a regression frame-

work (Cichonska et al., 2017) stems from the eventual applica-

tion of the platform as a pre-screening tool for prioritizing potent

compound-kinase interactions, thereby reducing the number of

compounds that are subjected to further biochemical or pre-clin-

ical testing. Finally, the entire study was designed specifically for

the druggable kinome, and such a restriction was enforced to

expedite the kinome-specific drug discovery process. The

model uses the high degree of polypharmacology observed

among KIs (Hanson et al., 2018) to improve the specificity of

compound-kinase interaction predictions compared with more

generalized models. The application of the proposed platform

is currently limited to the 248 kinases that form the druggable ki-

nome panel. However, by adding other screening studies for ki-

nase and other target classes (Fedorov et al., 2010; Rodgers

et al., 2018), the current platform can be extended in coverage,

and also to enable predictions for mutant kinase targets as

well as for selectivity analysis. However, such more detailed pre-

diction tasks require more comprehensive and standardized

dose-response bioactivity data to allow for systematic and

large-scale compound selectivity analyses, which are critical

for KI discovery.

SIGNIFICANCE

The proposed chemoinformatic platform enables system-

atic exploration of the polypharmacological space of protein

kinases. The various proof-of-concept case studies demon-

strated the capability of the computational model in diverse

drug discovery endeavors, ranging from investigating the

compound’s repositioning potential to implementing effi-

cient lead identification strategies. These applications will

significantly enhance the hit-lead optimization phase of a

rational-based drug discovery process. Systematic map-

ping of the chemogenomic associations of kinases will

further pave the way for more efficient multi-targeted drug

development processes that maintain an acceptable effi-

cacy/safety ratio for promiscuous KIs. Incorporation of our

computational platform into traditional kinome-profiling

campaigns should greatly accelerate the screening process

and improve its accuracy. In addition, the implementation of

the model as an easy-to-use web-application, which re-

quires minimal compound description for the prediction

task, provides chemical biologists with informed sugges-

tions regarding their compounds’ activity across the drug-

gable kinome.
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METHOD DETAILS

Single-Dose and Dose-Response Assays
Kinase enzyme systems and ADP-Glo Assay kits (Promega) were used to experimentally validate the predictions as previously

described with minor modifications (Cichonska et al., 2017). The inhibitors were dissolved into 200nl or 400nl of kinase buffer with

5%DMSOand the kinasewas transferred at 400nl or 200nl in the optimization steps or in the inhibitor dose-response screen, respec-

tively. 400nl of substrate/ATP mix was added to attain a kinase reaction volume 1ul. The kinase amounts were optimized on 2-fold

dilutions (11 amounts from 40ng to 0.03906ng) at 50 mM ATP concentration with three technical replicates. The ATP concentrations

were optimized at 7 concentrations on 2-fold dilutions (from 50 mM to 0.78125 mM), with two technical replicates for each kinase in the

presence of positive control inhibitors. The compound dose-response assay was performed at 12 compound concentrations from

12500 nM to 0.0375 nM, with three technical and two biological replicates using the optimized kinase and ATP concentrations. Anal-

ysis of the results was performed using GraphPad Prism 7 (GraphPad Software, Inc. California, USA).

% Residual Activity =
sample� positive control

negative control � positive control
3 100 (Equation 1)
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positive control = reaction in absence of kinase

negative control = reaction in absence of compound
Kinome Profiling Dataset: Compilation and Curation
The set of molecular kinases that form the druggable kinome panel in this study was curated from a list of 459 unique kinases manu-

ally extracted and compiled from a previous work (Christmann-Franck et al., 2016). The biochemical screening information pertaining

to these kinases were retrieved from numerous studies and compiled from existing activity resources, such as ChEMBL, canSAR,

and DrugKiNET (http://www.drugkinet.ca/) (Bento et al., 2014; Tym et al., 2016), which includes the interaction estimates (bioactivity

values), the compound’s structural descriptions (canonical SMILES) and target’s sequence information. Since this study focuses on

small-molecule kinase inhibitors, the compounds with molecular weight >700 Daltons and with the number of nitrogen or oxygen

atoms > 8 were excluded (Keiser et al., 2007; Lin et al., 2013). The resulting compounds’ protonation states and valency criteria

were satisfied using Open Babel (http://openbabel.org/). To evaluate the performance of the implemented model, compounds

that overlap with the previously published kinase chemogenomic set (Drewry et al., 2017; Elkins et al., 2016) were initially held-

out during the model development phase. To standardize the response measures, the compound affinity values in the interaction

dataset were restricted to dose-response activity end-points (IC50, Ki or Kd). For those compound-kinase interactions that had mul-

tiple affinity measures from distinct sources, the activity values were summarized by their geometric mean (Wang et al., 2016a). An

activity threshold of 1mM (Christmann-Franck et al., 2016; Lin et al., 2013) was later applied to classify the active and inactive binding

classes in the compound-target interaction dataset. To calculate statistically relevant compound-centric estimates, kinase targets

with fewer than 10 active ligands and 7 inactive ligands were excluded from the study. The resulting set of 248 kinases (48% of

the human kinome) with 74,033 kinase inhibitors and 251,078 compound-kinase interactions form the druggable kinome panel in

our study (Figure 1A and Table S1). To the best of our knowledge, the compiled list of annotated KIs, their target interactions, and

structural descriptions is the most comprehensive kinome-specific activity resource to date.

Feature Enumeration: Compound Set Similarity and Dissimilarity Estimators
Compound fingerprints (FPs) were enumerated for the pre-determined active and inactive compound sets of each 248 kinase targets

using the RDKit chemoinformatics python module (http://www.rdkit.org). FPs were calculated using eight different topological com-

pound representations (Daylight, MACCS, ECFP4/6, Torsion, Atompairs, FCFP4/6) (Figure 1B). Both compound-compound similar-

ity and dissimilarity (1-similarity) estimateswere calculated using the Tanimoto coefficient (Tc) forMACCS andDaylight FPs and using

the Dice index (DI) for the other FPs (Fligner et al., 2002) (Equations 2, 3, 4, and 5). The assumption underlying the implemented com-

pound-centric statistical model is that two kinase targets (Kinases 1 and 2) share a common chemical space if the compounds that

actively bind to them are structurally similar and if the active compounds of Kinase 1 are structurally dissimilar to the inactive com-

pound sets of Kinase 2. Therefore, the chemogenomic similarities among the 248 kinase targets were estimated using both their

active compound similarity space and their inactive compound dissimilarity space and utilizing all the eight different FP representa-

tions (Figure 1B).

Given compounds A and B, let us define;

a = number of bits set in compound A

b = number of bits set in compound B

c = number of bits set common in A and B

S1 = kinase 1’s active or inactive compound set

S2 = kinase 2’s active or inactive compound set

Tc* = optimal similarity (or dissimilarity) threshold
Tc ðSimilarityÞ = c

a+b+ c
(Equation 2)
Tc ðDissimilarityÞ = 1� c

a+b+ c
(Equation 3)
DI ðSimilarityÞ = c

a3 a+ b3b+ c
;a= b= 0:5 (Equation 4)
DI ðDissimilarityÞ = 1� c

a3 a+ b3b+ c
;a= b= 0:5 (Equation 5)
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X

ScoreS1;S2 =

x˛S1;y˛S2

Tcðx;yÞRTc�

Tcðx; yÞ ðand analogous for DIÞ (Equation 6)

Prediction Model: Implementation of an Ensemble SVM Model (eSVM)
The initially held-out kinase chemogenomic screening data (KCGS), consisting both of the published kinase inhibitors screening da-

tasets, PKIS1 (Elkins et al., 2016) and PKIS2 (Drewry et al., 2017) (see Figures S3A and S3B), were used to build and validate the

classification model (Figure 1C). The input features were the statistical Z-score estimates obtained from the 16 FPs’ similarity and

dissimilarity enumerations. Prior to implementing a classification algorithm, the performance of the distinct FP-based statistical fea-

tures and various baseline models were evaluated in terms of classifying the activity classes in PKIS1 dataset. The evaluation of

various baseline models and the implementation of our selected Support Vector Machine (SVM) utilizing the radial basis kernel func-

tion (SVM-RBF) were carried out using the scikit-learnmachine learningmodule in python (Pedregosa et al., 2011). The PKIS1 dataset

consisting of 54,316 compound-kinase interactions (with 2,821 positives and 51,495 negatives) were split into training and test sets

using the standard 80:20 ratio (Figure S3A). The test set consisted of 1,128 interactions (564 positives and 564 negatives), and the

training set consisted of 53,188 interactions (2,257 positives and 50,931 negatives). Similar to traditional screening datasets, the ratio

of positives to negatives in the PKIS1 dataset was approximately 1:20. To address this class imbalance in the training dataset, we

used an ensemble SVM model (eSVM) (Kang and Cho, 2006) as the classification algorithm. To build a generalized SVM model that

accounts for the class imbalance and to prevent model overfitting, 23 (50931/2257) ensemble SVMs were generated and subjected

to 5-fold cross validations. The various performance metrics, used in evaluating the eSVM model, were employed by averaging

the values across all the 23 ensembles (Equations 14, 15, 16, 17, 18, and 19). Using such performancemetrics, themodel hyperpara-

meters (C and Gamma) were fine-tuned prior to eSVM model implementation. The activity class for a given compound-kinase

interaction was scored by normalizing the activity class determined by all the 23 eSVM’s, termed as normalized SVM score (Equa-

tion 7). The performance of the integrated statistical and eSVMmodel, in comparison to standard fingerprints (ECFP4, Atompairs and

Torsion FPs) in classifying the activity classes of PKIS1 test set was determined by the AUC metric. Both the ECFP4 and Atompairs

fingerprints were selected for this comparison as they have been employed in similar classification tasks in the previous studies

(Keiser et al., 2007; Lin et al., 2013; Wang et al., 2016a). The proposed integrative analysis framework was further validated using

the independent PKIS2 dataset, consisting of 1,057 compound-kinase interactions with 612 positives and 455 negatives

(Figure S3B).

Given a compound-kinase interaction i:

normalized SVM scoreðiÞ =
PE

NE
(Equation 7)
prediction scoreðiÞ =
SFP

NFP
(Equation 8)

PE = number of ensembles that classify i as positive.

NE = total number of ensembles in the SVM model.

SFP = number of FP estimates with significant E-values (%1 3 10-5)

NFP = number of FP estimates in the statistical model

The above-mentioned scoring functions were established to summarize the compound-kinase associations investigated using

both the statistical E-value estimates and the SVMmodels (normalized SVM score and prediction score ranges from 0 to 1). A higher

score signifies higher a confidence for the true compound-kinase interaction predictions.

Application of the Model: Compound Library for Virtual Profiling
The integrative computational framework encompassing the developed statistical model and the eSVM classification algorithm

was later applied to predict novel insights into compound-kinase interactions (Figures 1A–1D). A compendium of approximately

150,000 compounds from both the repurposing and lead screening libraries were utilized for such classification task (Table S3).

These compounds were curated using a protocol similar to that for the kinome dataset preparation, in addition, compounds that

are likely to interfere with broad molecular targets were filtered using the PAINS filter (Baell and Holloway, 2010). The resulting

compound set was virtually profiled across the 248 kinase targets, where approximately 37 million compound-kinase interac-

tions were classified using the eSVM model. A threshold of R0.875 for both the normalized SVM and prediction scores were

used to select 51 interactions that were later experimentally validated through single-dose and dose-response biochemical

assays (Equations 7 and 8). This threshold of R0.875 was selected based on a single-dose response pilot study, wherein

the residual activity of 4 compound-kinase interactions with scores ranging between 0.625 and 1 was initially experimentally
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validated (Table S4). Those interactions with normalized SVM score and prediction score R0.875 were found to be true pos-

itives with the % residual activity of <20%, hence the threshold of R0.875 was used for selecting the 51 predicted interaction

for experimental validation.

A Web-Application to Virtually Profile the Druggable Kinome
To promote the wide application of the computational platform and the accompanying data resource, we have implemented the

analysis framework, consisting of both the statistical model and eSVM algorithm, as an easy-to-use web-application, termed Virtual

Kinome Profiler (https://virtualkinomeprofiler.fimm.fi/). VKP enables end-users to efficiently utilize the platform to systematically

classify and prioritize kinome-specific activities of their compounds of interest across a pre-defined set of druggable kinases. The

web-applicationmerely requires the structural description (SMILES) of the compound as input, to perform the whole virtual screening

process (each compound takes approximately 2.5 h to virtually screen against the selected panel of 248 kinases). In concurrencewith

high-throughput biochemical screening procedure, the web-application facilitates in-silico profiling of compounds across all the ki-

nase targets simultaneously (248 in the present version). However, once more bioactivity data will be collected and standardized for

these and other kinases, the kinome coverage and accuracy of the web-application will increase accordingly. In addition to the

computational platform, the comprehensive compound sets and their associated kinome-specific activity resource can be down-

loaded as stand-alone repositories for local use. The output from the web-application includes the statistical estimates from various

FPs and the eSVM scores for each of the evaluated kinase-compound interaction, which can be downloaded as a .csv or .pdf file for

further analysis (Figure 1D and Table S7).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Model: Null Distribution Mean and Standard Deviation
When comparing ligand sets of distinct kinase targets 1 and 2, the statistical significance of the similarity and dissimilarity estimates

(Equation 6) was evaluated against a reference null distribution, and the correspondingmean and standard deviationswere evaluated

at different similarity and dissimilarity thresholds (Tc* ranging from 0 to 1; step of 0.01). The null distributions were generated for each

FP by randomly sampling ligand set sizes from a range of 100 to 13106 product set sizes (e.g. S13S2), observed among the kinase

targets in the curated interaction dataset. Such sampling was performed over 103 permutations, and the original scores (Equation 6)

were calculated for each product set size at the distinct Tanimoto thresholds (99 Tc thresholds). For each FP, the average scores

(across 103 permutations) for a given Tc captures the relationship of mean and standard deviation with the sampled product set sizes

in the curated dataset (see also Figures 2A and 2B). Both the mean (m) and standard deviation (s) were non-linearly fit to the sampled

product set sizes using the Scipy python module (http://www.scipy.org/) (see Table S2). For a given product set sizes observed

among two kinase targets, the expected mean and standard deviations were used to convert the original Scores to Z-scores (Equa-

tions 9 and 10).

For each FP at a Tanimoto threshold Tc [i]:

ScoreS1;S2;i =
X

x˛S1;y˛S2

Tcðx;yÞRTc½i�

Tcðx; yÞ (Equation 9)
Z�ScoreS1;S2;i =
ScoreS1;S2;i � mðTc½i�Þ

s ðTc½i�Þ (Equation 10)

Statistical Model: Optimal Thresholds and Statistical E-Values
The distribution of Z-scores (Equation 10) estimated for an individual FP obtained at a given Tc threshold corresponds to an Extreme

Value Distribution (EVD) (Figure 1B). This is similar to the EVD observed in the standard BLAST algorithm (Altschul et al., 1990) im-

plemented for sequence similarity searches. The estimated EVD gives the likelihood of observing a similar or better score at random.

Hence, each of the 99 Z score distributions (for each FP) was fitted to an empirical generalized extreme value Gumbel distribution

(where right tail corresponds to active similarities; and left tail to inactive dissimilarities), thereby providing the probability of obtaining

the observed Z-scores at random (E-values). An E-value statistic gives the balanced likelihood of observing the score by a random

chance by accounting for the disproportionate compound set sizes related to each kinase targets. EachZ score (z) distribution across

the 99 Tc thresholds was considered as an independent statistical score and the optimal Tc threshold (Tc*) (Equation 6), the threshold

at which a Z score distribution best fits an empirical EVD, was defined using the Akaike Information Criterion (AIC) (see Figure 2C). In

other words, AIC was used as a goodness-of-fit estimator as the number of parameters (location and scale) was constant (k = 2)

across the different statistical models. Using the optimal Tanimoto thresholds (Tc*) (Table S2; Figure 2D) for similarity and dissimilarity

estimates across each fingerprint, the expected mean, standard deviation, and the corresponding Z-scores were calculated (Equa-

tions 9 and 10). The E-value for an observed Z score of z is calculated based on a cumulative Gumbel distribution, with zeromean and

unit standard deviation:
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PðZ > zÞ = 1� e�e
� pffiffiffi

6
p z� G

0 ð1Þ
; (Equation 11)

where p is pi (z3.14159), and G’(1) is the Euler-Mascheroni constant (z0.57721).

For z > 28, the computation exceeds the numerical precision of the programming languages, hence a Taylor series approximation

was used:

PðZ > zÞ = �
�
x +

x2

2
+

x3

6

�
; (Equation 12)

where x = � e
� pffiffiffi

6
p z� G

0 ð1Þ
.The corresponding E-value is calculated as:

EðzÞ = PðzÞN; (Equation 13)

where N is the number of dataset searches.

The steps detailed in the above statistical module of the analysis framework implement significant improvements over the similarity

ensemble approach (Keiser et al., 2007; Lin et al., 2013; Wang et al., 2016a). These include, for instance, adopting a kinase-specific

model rather than an all-inclusive framework, evaluation of both the active and inactive ligand set similarity and dissimilarity estimates

from eight distinct molecular FPs, making use of data-specific optimal FP thresholds, and finally the implementation of an efficient

eSVM classification algorithm to consolidate the non-redundant information from the 16 features.

Evaluation: Performance Measures for Classification Model Accuracy
The binary classification performance of the various machine learning classifiers were evaluated using statistical performance mea-

sures calculated based on a confusion matrix. In case of the ensemble SVM model, the results of the performance measures were

average across all the 23 ensembles.

Confusion matrix:
Observed/Predicted 0 1

0 TN FP

1 FN TP
Accuracy =
TP+TN

TP+FP+TN+FN
(Equation 14)
Precision =
TP

TP+FP
(Equation 15)
Recall =
TP

TP+FN
(Equation 16)
False Discovery Rate =
FP

TP+ FP
(Equation 17)
F�measure= 2 3
Precision 3 Recal

Precision+Recall
(Equation 18)
Fb = ð1+ bÞ2 3
Precision 3 Recal

b2 3Precision+Recall
;b= 0:5 (Equation 19)

Visualization: Chemogenomic Clustering and Differential Heatmaps
The statistical E-value estimates portray the strength of chemogenomic similarities or dissimilarities observed among the 248 kinases

in our druggable kinome panel. Each of the target-target similarity/dissimilarity matrices (a total of 16 matrices: 8 FPs used in active

ligand set similarity estimates and 8 FPs used in inactive ligand set dissimilarity estimates) were converted to a binary matrix using an
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E-value threshold of 1310-10. Each such binary matrix was converted to a distance matrix by calculating the cosine distance among

the 248-binary target vectors. The chemogenomic clustering of these 16 distinct target-target distance matrices was carried out us-

ing an unsupervised agglomerative hierarchical clustering algorithm, namely Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) (Lin et al., 2013). The correlation among these clustering solutions and their subcluster diversity were enumerated using

cophenetic correlation and adjusted Rand index. A similar clustering protocol was also implemented to visualize the target-target

sequence similarity E-values obtained from the BLASTp search algorithm. The E-value matrices obtained from both the ECFP4

fingerprint and the sequence similarity algorithmwere log-transformed and their differences, highlighting the target-target similarities

from these orthogonal approaches, were depicted as a differential heatmap.

DATA AND CODE AVAILABILITY

The VirtualKinomeProfiler web-application and the accompanying data supporting the current study are hosted on the FIMM server

and are freely available through the VKP website: https://virtualkinomeprofiler.fimm.fi/. The codes implementing the chemogenomic

analysis and prediction framework are available under the Mozilla Public License 2.0 (https://github.com/BalaguruRavikumar/

VirtualKinomeProfiler).
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