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A B S T R A C T

Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurode-
generative diseases for decades but its physiological function has remained unclear. We have previously found
that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a
small-molecule inhibitor induces clearance of protein aggregates in Parkinson’s disease models. Since autophagy
induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how
PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy
in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and
restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was
restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein
phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and acti-
vator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in
the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-
associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP over-
expression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and
cancers, and PP2A activators would have enormous potential as drug therapy but development of such com-
pounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study
supports the further development of PREP inhibitors as PP2A activators.

1. Introduction

Autophagy-lysosomal and ubiquitin-proteasomal pathways are re-
sponsible for the degradation of the majority of damaged proteins and
their aggregates. Proteasomes degrade unstable, short-lived proteins
while long-lived proteins as well as protein aggregates are degraded by
macroautophagy (hereafter called autophagy) [1,2]. Changes in au-
tophagy activity are observed in various neurodegenerative disorders,
cancer, metabolic and infectious diseases [3,4]. In the case of

neurodegenerative proteinopathies such as Parkinson’s, Alzheimer’s
(AD), and Huntington’s diseases, accumulation and aggregation of toxic
proteins are the main cause of pathology [5]. These toxic protein ag-
gregates can either directly or indirectly inhibit protein degradation
pathways that further dampen aggregate clearance from the affected
cells [6,7]. Additionally, ageing negatively affects protein degradation
systems and is considered as one of the greatest risks for neurodegen-
erative proteinopathies that develop over long period of time and are
mainly diagnosed in elderly [2,8,9]. Transgenic animals that lack
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essential autophagy proteins (atg5, atg7, beclin1) develop progressive
motor deficits while neuronal cells harbor ubiquitin-positive inclusions
that further validates importance of autophagy in aggregate clearance
[10–12].

Pharmacological approaches to either upregulate or inhibit autop-
hagy have received a lot of attention. For example, cancer treatment
would benefit from either autophagy inhibition or deletion, depending
on the cancer type [4,13]. While in the case of neurodegenerative
disorders, autophagy activation would increase protein aggregate
clearance [3,14], and e.g. rapamycin has shown to be effective in re-
ducing behavioral deficits and protein load in the animal models of
neurodegenerative diseases [15,16]. However, adverse effects have
limited the clinical trials of classical autophagy activators [17], and
therefore, novel autophagy activating compounds are needed. We have
recently identified prolyl oligopeptidase (PREP) inhibitors as novel
autophagy inducers, and shown that beclin1-mediated autophagy can
be activated by a small-molecule PREP inhibitor, KYP-2047 [18]. Ad-
ditionally, in aSyn based Parkinson’s disease mouse models, PREP in-
hibition has shown beneficial impact in vitro and in vivo [18–20], and
the concept of PREP inhibition was shown to be safe in early clinical
trials [21–23].

PREP is a serine protease, and the research on PREP has mainly
focused on its enzymatic activity and ability to cleave short proline-
containing peptides [24]. Hydrolytic action of PREP was the rationale
behind the development of small-molecule PREP inhibitors but al-
though showing some beneficial effects in preclinical memory models,
their impact on neuropeptide levels in vivo remained unclear [25].
Moreover, physiology of PREP function has remained unclear and since
in vivo evidence of PREP cleaving proline-containing peptides is in-
consistent, direct protein-protein interactions as we have shown with
aSyn [26], might be more relevant for PREP-related actions [27]. Since
autophagy has raised interest in drug discovery in several fields, we
wanted to study the mechanism of how PREP regulates it. While doing
this research, we found that small-molecule PREP inhibitor, KYP-2047,
leads to the activation of protein phosphatase 2A (PP2A), and PREP
negatively modulates PP2A activity by regulating interactions between
catalytic subunit of PP2A (PP2Ac) and its regulatory proteins - protein
phosphatase methylesterase 1 (PME1) and protein phosphatase 2
phosphatase activator (PTPA).

2. Materials and methods

2.1. Reagents

Reagents were purchased from Sigma-Aldrich (St- Louis, MO) if not
otherwise specified. Ethanol was purchased from Altia (Helsinki,
Finland). The PREP inhibitor, KYP-2047 (4-phenylbutanoyl-l-prolyl-
2(S)-cyanopyrrolidine), was synthesized for us in the School of
Pharmacy, University of Eastern Finland [28].

2.2. DNA constructs

Preparation of wt human pAAV1-EF1α-PREP (hPREP; #59967,
Addgene, Brandon Harvey Lab; RRID:Addgene_59967) and pAAV1-
EF1α-S554A-hPREP (S554A-PREP; #59968, Addgene, Brandon Harvey
Lab; RRID:Addgene_59968) have been described previously in
Savolainen et al. [18]. Additional PREP mutants (D149A-PREP, T202C-
PREP, T204A-PREP, T590C-PREP, and H680A-PREP) with known en-
zymatic activity and structural changes were selected for site-directed
mutagenesis of wt PREP (QuikChange II XL, #200521, Agilent Tech-
nologies).

pAAV-EF1a-hPREP [Δ189-209aa] (LoopA-PREP) truncate was cre-
ated by substituting residues from 189 to 209 with a short insert
[TGGTQ] [29]. pAAV1-EF1α-PREP was amplified to create two PREP
fragments. First fragment contained 1-188aa of PREP with 15 bp 5′
overhang. Second fragment contained 5′ overhang complementary to

first fragment followed by a truncated loop, PREP 210-710aa, and 3′
overhang. pAAV1-EF1α-PREP backbone was digested with KpnI-HF
(R3142, NEB) and EcoRV-HF (R3195, NEB), gel purified and re-
combined with inserts using an In-Fusion HD cloning kit (639645,
Clontech). Similarly, pAAV-EF1a control vector with 50 bp insert was
created by annealing complementary oligonucleotides with 15 bp
overhangs (10x annealing buffer: 100 nM Tris HCl, 500 mM NaCl, 10
mM EDTA) and recombined with In-Fusion HD cloning kit into the
pAAV-EF1a-PREP backbone.

pCMV3-PPP2AC-C-FLAG (HG10420-CF), pCMV3-N-FLAG-PPP2AC
(HG10420-NF), pCMV3-PPP2R4A (HG12287-UT), and pCMV3-N-
FLAG-PPP2R4A (HG12287-NF) were purchased from Sino-Biological.
pAAV-EF1a-FLAG(C)-PME1 and pAAV-EF1a-PME1-FLAG(N) inserts
were amplified from pUC19-PPME1 (HG29687-U, Sino-Biological) with
overhangs containing either N- or C-terminal FLAG sequence. pAAV1-
EF1α-PREP backbone was digested with KpnI-HF (NEB) and EcoRV-HF
(NEB), gel purified and recombined with all of the aforementioned in-
serts using an In-Fusion HD cloning kit (Clontech).

For protein-fragment complementation assay (PCA), cDNA of PREP,
all of the PREP mutants, PP2Ac, PME1 and PTPA were cloned in a
pcDNA3.1/zeo backbone containing humanized G. princeps PCA frag-
ments (GLuc) [27]. All of the GLuc PCA constructs used in this study
contained a (GGGGS)2SG linker between the GLuc and cDNA of in-
terest. Based on the N- or C-terminal placement of GLuc fragments,
either cDNA targets’ start or stop codon was omitted. PREP-GLuc-2N
and S554A-PREP-GLuc-2N have been described previously [27]. wt
PREP and S554A-PREP constructs and empty GLuc-1N plasmid (back-
bone) were digested with EcoRI-HF (R3101, NEB) and KpnI-HF (NEB)
restriction enzymes, gel purified, and ligated with Ligate-IT Ligation Kit
(#K1422, ThermoFisher Scientific).

PREP mutants (D149A-PREP, T202C-PREP, T204A-PREP, T590C-
PREP, H680A-PREP and LoopA-PREP), PP2Ac (HG10420-CF, Sino-
Biological), PME1 (Sino-Biological) and PTPA (HG12287-UT, Sino-
Biological) cDNA was PCR amplified to create insert oligonucleotides
with 15 bp overhangs. Inserts were gel purified and recombined with
EcoRI-HF (NEB) and KpnI-HF (NEB) digested and gel purified GLuc-1N,
Gluc-2N, GLuc-1C, and GLuc-2C backbone using In-Fusion cloning kit
(Clontech). Additionally, pcDNA3.1-PP2Ac and pcDNA3.1-PME1 were
created by recombining PCR amplified fragments in GLuc-1N backbone
digested with HindIII-HF (R3104, NEB) and EcoRI (NEB) as described
above but in this case, the GLuc fragment was removed from the con-
struct. Identity of all constructs was confirmed by DNA sequencing.

2.3. Cell cultures

Human embryonic kidney (HEK-293; RRID: CVCL_0045) cells and
HEK-293 PREPko cells [30] were cultured in full Eagle’s medium
(DMEM; #D6429, Sigma) with an additional 10 % (v/v) fetal bovine
serum (FBS; #16000-044, ThermoFisher Scientific), 1 % (v/v) L-glu-
tamine-penicillin-streptomycin solution (#15140122, ThermoFisher
Scientific). HEK-293 PREPko cells were cultured in 20 % (v/v) FBS
(ThermoFisher Scientific). Human neuroblastoma cells (SH-SY5Y) and
SH-SY5Y PREPko cell lines were cultured with Dulbecco’s modified
eagle medium (DMEM-Glutamax; #31966021, ThermoFisher Scien-
tific) containing 15 % FBS (ThermoFisher Scientific) for wt and 30 %
FBS for SH-SY5Y PREPko cells, 1 % non-essential amino acids (NEAA;
#11140050, ThermoFisher Scientific) and 50 μg/ml Gentamycin
(15750-045, ThermoFisher Scientific). Generation of the SH-SY5Y
PREPko cells were performed with CRISPR-cas9n plasmid the same way
as HEK-293 PREPko cells described in Svarcbahs et al. [30]. Shortly, wt
SH-SY5Y were transfected with two CRISPR-cas9n nickase plasmids as
described below in cell treatments section and after 48 h selection
single cell clone selection was performed in 96-well plates. Removal of
PREP was verified by using PREP activity assay as described earlier
[20] (Supplementary Fig. S1).

HEK-293 cells stably expressing GFP-LC3B-RFP construct [31] was
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created by using following protocol. HEK-293 cells were seeded at
density of 4 × 105 cells per well on 6-well and transfected with pMRX-
IP-GFP-LC3-RFP plasmid (2500 ng/well; #84573, Addgene, Noboru
Mizushima Lab; RRID:Addgene_84573) using Lipofectamine 3000
(#L3000015, ThermoFisher Scientific) transfection reagent according
manufacturers protocol. Selection was conducted using 3 μg/ml pur-
omycin for 48 h. After selection cells were trypsinized and seeded on
96-well plate in single cell suspension, and followed based on their GFP
expression. Selected cell colonies expressing GFP-LC3B-RFP were cul-
tured further and used in experiments. All cell culture experiments were
done between passages 3–20.

2.4. Animal tissue

All animal procedures were carried out according to the European
Communities Council Directive 86/609/EEC and were approved by the
Finnish National Animal Experiment Board. PREPko mice (Deltagene
Inc, CA) and wild-type (wt) littermates were-back crossed in C57BL/
6JRccHsd genetic background (Envigo, The Netherlands; 5–10 back
crossings). C57BL/6JRccHsd mouse was used as this was original
background for PREPko mouse. Generation of PREPko mice used in
these experiments has been described previously [32]. Mice were
housed under standard laboratory conditions in National Animal La-
boratory Center, University of Helsinki. Cortical tissue samples were
collected from naïve 3–4 months old animals (male; weight 25−30 g).
No grouping was needed since only mice strains (wt/PREPko) were
compared. Briefly, mice were deeply anesthetized with lethal dose of
sodium pentobarbital (150 mg/kg; Orion Pharma, Finland) and trans-
cardially perfused with phosphate-buffered saline (PBS, pH 7.4; 137
mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4). The brains
were rapidly frozen in isopentane on dry ice and were kept at −80 °C
for further analyses. To follow 3R principle, striatal wt and PREPko
mouse tissue samples (n = 5 / group) with GFP or PREP overexpression
used in this study, were originally prepared and collected for a previous
study [33].

2.5. Cell treatments

All of the cell transfections were performed with Lipofectamine
3000 (#L3000015, ThermoFisher Scientific). For co-immunoprecipita-
tion (co-IP) studies, HEK-293 or HEK-293 PREPko cells were plated in
T-25 flasks and on the following day they were transfected for 24 h. For
transient PREP deletion, cells were plated on 6-well plates (400,000
cells per well). On the next day, cells were transfected with PREP
CRISPR-cas9 plasmid or empty control plasmid. After 24 h transfection,
cell media was exchanged to one containing puromycin (1 μg/ml) and
cells were incubated for an additional 48 h. For PREP inhibitor ex-
periments, either concentration of 10 μM (PCA interaction assays) or 1
μM (all other cell culture treatments) of KYP-2047 was used based on
our previous studies [18,20,27]. KYP-2047 was diluted to cell culture
medium from 100 mM stock in 100 % DMSO, and corresponding con-
centration of DMSO was used as a vehicle control. Okadaic acid
(O8010), a PP2A inhibitor, was diluted to DMSO as 50 μM stock and
then diluted to 50 nM in cell medium for assays. Bafilomycin 1A
(SML1661), an autophagy inhibitor, was diluted to 20 or 50 nM from
ready made 0.16 mM solution in DMSO.

To determine autophagic flux in 96-well plate format we used
slightly modified procedure described in [31]. GFP-LC3-RFP expressing
HEK-293 cells were plated on black poly-L-lysine coated 96-well plates
at a density of 35,000 cells/well. KYP-2047 was used with concentra-
tion 1 μM and rapamycin (0.5 μM; BML-A275, Enzo Life Sciences) was
used as a positive control for autophagic flux induction and bafilomycin
1A (20−50 nM; SML1661) as autophagy inhibitor. OA was used in
GFP-LC3-RFP cells with concentration of 25 nM. 24 h post treatment
cells were washed twice with warm PBS. After washes 150 μl PBS was
added and GFP signal was read by Victor2 multilabel counter

(PerkinElmer; excitation/emission 485 nm/535 nm). Only GFP signal
was used in the analysis since RFP signal was not reliably detectable in
well-plate format, and in construct RFP may be also degraded by ly-
sosomes to certain extent [31]. However, Hoechst nuclear stain
(#94403) was used to control the total cell count, and this result did not
alter results based on GFP-reading. Representative pictures from GFP-
LC3-RFP expressing cells were taken by Leica DMi8 fluorescence mi-
croscope (Leica Microsystems, Wetzlar, Germany).

Autophagy changes were also monitored by using CytoID
Autophagy Detection Kit (ENZ-51031, Enzo Life Sciences) according to
manufacturer’s instructions. Briefly, HEK-293 cells were plated with
density of 30,000 cells/well in 96-well plate, and incubated with 24 h 1
μM KYP-2047 +/- 50 nM Bafilomycin A1 while PP242, an mTOR in-
hibitor, served as a positive control (0.5 μM; P0037). GFP signal was
read as above and Hoechst nuclear stain was used to correlate GFP
signal with cell amount.

2.6. Western blot

Cells and animal tissue were lysed in modified RIPA buffer (50 mM
Tris HCl pH 7.4, 1 % NP-40, 0.25 % sodium deoxycholate, 150 mM
NaCl) containing phosphatase inhibitor (#87786, ThermoFisher
Scientific) and protease inhibitor cocktail (#78430, ThermoFisher
Scientific) unless otherwise specified. Samples were sonicated 3 × 1 s
and centrifuged at 16,000 g for 15 min. Protein concentration was
measured from supernatant with BCA (bicinchoninic acid; #23225,
ThermoFisher Scientific). Standard SDS-PAGE techniques were used
and ∼30 μg of sample was loaded to 12 % (#4561044, Bio-Rad,) or
4–20 % Mini-Protean TGX gels (#4561094, Bio-Rad). Gels were
transferred by Trans-Blot Turbo Transfer System (#1704150, Bio-Rad)
onto Trans-Blot Turbo Midi PVDF (#1704157, Bio-Rad) or ni-
trocellulose (#1704159, Bio-Rad) membranes. Membranes were in-
cubated at +4 °C overnight in 5 % skim milk or 5 % Bovine Serum
Albumin (BSA) in Tris-buffered saline with 0.05 % Tween-20 (TBS-T). A
list and details of primary antibodies and respective concentrations is
presented in Table 1. After overnight incubation, the membranes were
washed and incubated with appropriate HRP-conjugated secondary
antibodies for 2 h in room temperature, goat anti-mouse HRP (#31430,
ThermoFisher Scientific); goat-anti rabbit (#31463, ThermoFisher Sci-
entific). The membranes containing co-IP samples were incubated with
Clean-Blot IP Detection Reagent (#21230, ThermoFisher Scientific) in 5
% skim milk. The images were captured using the ChemiDoc XRS+
(Bio-Rad, Hercules, CA). To verify that bands are in the linear range of
the detection, increasing exposure time and automatic detection of
saturated pixels in ImageLab software (version 6.01, Bio-Rad) was used.
Thereafter, images were converted to 8-bit grayscale format, and the
optical densities (OD) of the bands were measured by ImageJ (histo-
gram area analysis; version 1.48; National Institute of Health, Bethesda,
MD). The OD obtained from each band was normalized against the
corresponding beta-actin band. The control group each studied protein
was set as 100 % for, and treatments were compared to control group of
the current protein. To show variance of control group, the control
signals were averaged and then control each signal was normalized to
this average value. Treatment effects were correlated to average value
of control of corresponding protein. All immunoblotting analysis were
done with 3–4 technical replicates of each treatment per membrane,
and with 2–3 biological replicates (at least 3 different WB assays). All
pictures of original WB membranes used for figures in this study are
presented in Source file.

2.7. Co-immunoprecipitation

Cells were lysed in washing buffer (20 mM Tris, pH 7.5, 150 mM
NaCl, 1 mM EDTA, 1 mM EGTA, 1 % Triton X-100 and 2.5 mM sodium
pyrophosphate) supplemented with protease inhibitor cocktail
(#78430, ThermoFisher Scientific). Samples were sonicated 3 x 1 s and
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centrifuged at 16,000 g for 15 min. 10 μL of agarose with anti-FLAG M2
antibody (#2220, Sigma) was used per immunoprecipitation reaction
and were washed according to the manufacturer’s instructions. Samples
were incubated for 2 h in washing buffer at 4 °C with gentle agitation.
PREP inhibitor or DMSO control was added directly to the sample at a
final concentration of 1 μM. Beads were washed three times with
washing buffer and the FLAG fusion proteins were eluted from the
agarose beads with FLAG peptide (300 μg/mL, #F3290, Sigma) in Tris-
buffered saline for 30 min. Laemmli buffer was added and lysate was
boiled for 3 min at 95 °C, thereafter samples were processed for WB.

2.8. Reverse transcription qPCR (RT-qPCR)

RNA was extracted using the Aurum Total RNA Mini Kit
(#7326820, Bio-Rad), and cDNA was prepared using iScript Advanced
cDNA Synthesis Kit for RT-qPCR (#1708891, Bio-Rad) with random
primers according to the manufacturer's instructions in 20 μL reaction.
For relative RT-qPCR 1 ng of cDNA was used per reaction in 20 μL
reaction. PCR was carried out using SsoAdvanced Universal SYBR
Green Supermix (#1725272, Bio-Rad) on a MiniOpticon PCR system
(#3593995, Bio-Rad) with 1 ng of cDNA per reaction with standard
cycling conditions (10 s 98 °C; 20 s 60 °C; 30 s 72 °C for 35–40 cycles
depending on the marker, 5 min extension at 72 °C and melting curve
from 75−95 °C). List of primers can be found in Supplementary Table
S1. White PCR plates (#MLL4851, Bio-Rad) with optical flat 8-cap
strips (#TCS0803, Bio-Rad) were used. Three independent experiments
and 3 technical replicates per sample were used. MIQE guidelines were
followed in RT-qPCR experiments [34].

2.9. Immunocytochemistry

ICC to detect changes in co-localization between PP2Ac and PME1,
and PP2Ac and PTPA after PREP inhibition or deletion was performed
as described in Myöhänen et al. [20]. Briefly, HEK-293 or PREPko HEK-
293 cells were plated over glass coverslips in a 12-well plate with a
density of 100,000 cells/well and allowed to attach overnight. There-
after, HEK-293 cells were treated for 4 h with 1 μM KYP-2047 or 1 μM
DMSO (vehicle) and fixed with 4 % paraformaldehyde for staining.
Unspecific binding was blocked with 10 % normal goat serum (S-1000,
Vector Laboratories) for 30 min and thereafter cells were incubated
with primary antibodies against PP2Ac, PME1 and PTPA overnight at
+4 °C (details in Table 1). After washes, the following secondary an-
tibodies were used to incubate cells 1 h in room temperature: for mouse
PP2Ac, anti-mouse AlexaFluor488 (dilution 1:400; ab150113, Abcam);
for rabbit PP2Ac, anti-rabbit AlexaFluor 488 (dilution 1:400;
ab150077, Abcam); for mouse PTPA, anti-mouse AlexaFluor 568 (di-
lution 1:400; ab175473, Abcam); for rabbit PME-1, anti-rabbit Alexa-
Fluor 568 (dilution 1:400; ab175471, Abcam). Cells were mounted with
Vectashield containing DAPI to stain nuclei (H-1200, Vector Labora-
tories). Imaging was performed using Leica TCS SP5 confocal micro-
scope (Leica Microsystems). Images were converted from grayscale to
RGB color and recolored with corresponding colors, and minor mod-
ifications to brightness and contrast were made.

2.10. Protein-fragment complementation assay

The PCA was performed as described previously in Savolainen et al.
[27]. HEK-293 or HEK-293 PREPko cells were plated on Poly-L-lysine
coated white walled 96-well plates (25,000 cells/well; #6005070,
PerkinElmer) and after 24 h they were transfected with PCA reporter
constructs (100 ng of plasmid DNA/well). 48 h after transfection, the
cells were washed with PBS and phenol red free DMEM (#21063-029,
ThermoFisher Scientific) without serum and antibiotics was added to
the cells. The cells were allowed to settle for 1 h. If inhibitors were
tested, they were added to the cells in phenol red free DMEM and the
cells were treated for 4 h prior to measurement. A GLuc-PCA signal wasTa
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detected by injecting 25 μl of native coelenterazine (Nanolight Tech-
nology) to the cells (final concentration 20 μM) and measuring the
luminescence signal with Varioskan Flash multiplate reader (Thermo-
Fisher Scientific). All the experiments were done with 8 parallels of
each condition and each experiment was repeated at least three times.
Transfection efficiency of PCA constructs was assessed by WB.

2.11. Data and statistical analyses

All experiments were done at least in triplicate, with 3–8 individual
samples on each, and samples were not used to re-analyze same protein.
Data are expressed as mean values± standard error of the mean
(mean± SEM), and negative control average was set as 100 % on each
assay to reduce variability between repeats. Error bars in the figures
represent SEM if not otherwise stated in the figure legend. Differences
between groups were analyzed using two-tailed unpaired student’s t-
test. One-way analysis of variance (ANOVA) was followed by Tukey’s
post-hoc comparison if ANOVA assay gave statistical significance
(P< 0.05). Striatal protein levels between GFP and PREP-injected an-
imals were analyzed with a two-way ANOVA followed by Tukey’s post-
hoc comparison if ANOVA assay gave statistical significance (P< 0.05).
In all cases, p values of< 0.05 were considered to be significant.
Statistical analysis was performed using PRISM GraphPad statistical
software (version 6.07, GraphPad Software, Inc., San Diego, CA).

3. Results

3.1. PREP inhibition induces autophagic flux

In our previous studies [18], we have shown that LC3BII levels were
increased in cell cultures when PREP was inhibited by KYP-2047, and
further increase was observed when KYP-2047 was combined with
bafilomycin A1, indicating an increase in autophagic flux [35]. In this
study, we tested both 4 and 24 h PREP inhibition, and interestingly,
LC3BII levels were significantly increased in Western blot (WB) at both
time points (Fig. 1A). We have also earlier shown that PREP knock-out
(PREPko) HEK-293 cells have elevated autophagic flux [30]. At basal
conditions, aforementioned cells showed decreased LC3BII levels while
PREPko mouse cortical homogenates showed significantly elevated
LC3BII levels (Fig. 1B). However, since LC3BII levels alone are not
sufficient to verify autophagic flux, we wanted to further characterize
this by repeating autophagic flux assay using bafilomycin A1 that
blocks the fusion of autophagosomes to lysosomes. When autophagy
inducer is used in the presence of bafilomycin A1, it leads to sig-
nificantly elevated LC3BII levels as autophagosomes are not degreaded
[35]. Both in KYP-2047 treated cells (24 h; Fig. 1C) and PREPko HEK-
293 cells (24 h; Fig. 1D), PREP inhibition or removal further increased
LC3BII levels when combined with bafilomycin A1. Additionally, we
also tested the impact of PREP inhibition on autophagic flux by using
GFP-LC3B autophagy reporter cell line and CytoID autophagy detection
kit. KYP-2047 showed only mild reduction in GFP signal in autophagy
reported cell line but clear increase was seen in CytoID assay, parti-
cularly when combined with bafilomycin A1 (Fig. 1A-B). Taken to-
gether, these results clearly indicated that both PREP inhibition or re-
moval increase autophagic flux.

3.2. Impact of PREP modifications on beclin1 and bcl2 phosphorylation and
their regulators

Previously, we observed increase in beclin1 protein levels after
PREP inhibition in vitro and in vivo [18]. To initiate autophagy, beclin1
or bcl2/bcl-xL proteins needs to be phosphorylated to reduce complex
interaction [36]. 4 h PREP inhibition in HEK-293 cells increased both
normal and phosphorylated Thr119 beclin1 (p-beclin1) levels, and also
elevated bcl2 levels (Fig. 2A). Even after 24 h PREP inhibition, beclin1,
bcl2, and their corresponding phosphorylated p-beclin and Ser70 blc2

forms (p-bcl2) were significantly increased (supplementary Fig. S1).
Similar to PREP inhibitors, PREPko HEK-293 cells had upregulated
beclin1 and p-beclin1 levels but significantly decreased bcl2 levels and
elevated p-bcl2 (Fig. 1B), indicating that PREP regulates more beclin1
than bcl2. Transient PREP deletion by CRISPR-Cas9 elevated p-beclin1
and p-bcl2 (supplementary Fig. S1) while in PREPko mouse cortex, bcl-
xL levels were lowered and phosphorylated Ser62 bcl-xL was upregu-
lated similar to bcl2/p-bcl2 in PREPko cells (Fig. 2B). Corresponding to
these results, PREP overexpression in cells reduced p-beclin1 and bcl2
levels (Fig. 2C). While PREP was restored to PREPko HEK-293 cells,
beclin1 phosphorylation decreased but only minor impact on bcl2 was
seen (Fig. 2C), supporting the importance of PREP for beclin1 regula-
tion.

Beclin1 phosphorylation is regulated by death-associated protein
kinase 1 (DAPK) [36] while bcl2 is dephosphorylated by c-Jun N-
terminal kinase 1 (JNK1) [37]. Therefore, we next studied how PREP
modifications affect DAPK and JNK1. Reduced DAPK Ser308 phos-
phorylation (p-DAPK) activates DAPK [36], and reduced p-DAPK levels
were seen in HEK-293 cells after 4 h KYP-2047 treatment (Fig. 3A).
Interestingly, JNK1 phosphorylation (p-JNK1) was also reduced after 4
h PREP inhibition (Fig. 3A) but this effect was not seen at 24 h time
point for either DAPK or JNK1 (supplementary Fig. S1). In HEK-293
PREPko cells and mouse cortex (Fig. 3B), as well as after transient PREP
deletion (supplementary Fig. S1), upregulation in DAPK and JNK1 le-
vels and decrease in p-DAPK and p-JNK1 was significant. When PREP
was overexpressed in HEK-293 cells, DAPK levels decreased but p-JNK1
levels were greatly increased (Fig. 3C), and PREP restoration to PREPko
cells significantly elevated p-DAPK, JNK1, and p-JNK1 (Fig. 3C), em-
phasizing the role of PREP in regulation on these kinases. Furthermore,
to cross-validate the observation seen in HEK-293 cells, neuroblastoma
(SH-SY5Y) cell line was treated for 4 h with KYP-2047 and we gener-
ated a PREPko SH-SY5Y line. Similar changes in DAPK and JNK1
phosphorylation after PREP inhibition or deletion was seen (Supple-
mentary Fig. S1). These findings were further studied in mouse striatal
tissue, and when PREP was overexpressed in mouse striatum, increased
p-DAPK levels were seen, and similar trend was present when PREP was
restored to PREPko mouse striatum (Supplementary Fig. S1). To study if
PREP modifications regulate transcription of DAPK or JNK1, we mea-
sured the mRNA levels by using quantitative reverse transcription PCR
(RT-qPCR). In PREPko cells DAPK mRNA levels were significantly re-
duced but no changes were detected after PREP inhibition or in PREPko
mouse cortex, and no alterations in JNK1 mRNA levels were seen
(Supplementary Fig. S3).

3.3. PP2Ac phosphorylation is decreased after PREP inhibition

Since PREP inhibition and deletion lead to dephosphorylation of
both DAPK and JNK1, we looked for a phosphatase that regulates both
of these kinases. Previous studies have reported that PP2A can depho-
sphorylate both of these kinases [38–40], we wanted to investigate
whether PREP inhibition affects PP2A. When we studied the levels of
catalytic subunit (PP2Ac) and its inhibitory phosphorylation (Tyr307;
p-PP2Ac [41];), we observed slight increase in total PP2Ac and decrease
in p-PP2Ac levels after 4 h (Fig. 4A) and 24 h (Supplementary Fig. S2)
PREP inhibition by 1 μM KYP-2047 in HEK-293 cells, indicating PP2A
activation. Similar impact was seen in SH-SY5Y cells (Supplementary
Fig. S2). Interestingly, rapid changes in phosphorylation levels after 10
min PREP inhibition were not observed (Supplementary Fig. S2), and
PP2Ac mRNA levels were not increased at either 4 h or 24 h PREP
inhibition (supplementary Fig. S3).

To further validate the effect of KYP-2047 on PP2Ac depho-
sphorylation, HEK-293 cells were incubated for 4 h with either KYP-
2047 or 0.5 μM FTY720 (fingolimod), a known PP2Ac activator
[41,42]. p-PP2Ac levels were decreased at similar extent by KYP-2047
and FTY720 treatments compared to the control group (Fig. 4B). We
next analyzed the effect of 4 h 50 nM okadaic acid treatment (OA; PP2A
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Fig. 1. PREP inhibition induces autophagic flux. (A) Impact of 4 (n = 10) and 24 h (n = 12) PREP inhibition by 1 μM KYP-2047 on LC3BII levels in HEK-293 cells
assayed by Western blot. (B) LC3BII protein levels in PREP knock-out (PREPko) HEK-293 cells (n = 7) and PREPko mouse cortex (n = 10). (C) LC3BII levels after
incubating HEK-293 cells with 24 h vehicle (1 μM DMSO), 50 nM bafilomycin A1 (baf) or 50 nM bafilomycin A1 + 1 μM KYP-2047 (n = 8). (D) LC3BII levels after
incubating HEK-293 cells or PREPko HEK-293 cells for 24 h with 50 nM bafilomycin A1 (n = 6). (E) GFP readings from GFP-LC3B-RFP stably expressing cell culture
after 24 h exposure to 0.5 μM rapamycin (Rap), 50 nM bafilomycin A1 (Baf) and 1 μM KYP-2047 with representative pictures from GFP-LC3B-RFP cell cultures after
treatments (n = 7). (F) CytoID assay after 24 h incubations as with GFP-LC3B-RFP cell culture in panel (0.5 μM PP242 as a positive control; n = 8). Data are
presented as mean±SEM. *, p<0.05; **, p<0.01; ***, p< 0.001. Unpaired Student’s t-test in A–B, 1-way ANOVA with Tukey post-test in C and E, 2-way ANOVA
with Bonferroni’s post-test in D (p< 0.0001 50 nM baf and p = 0.0008 cell line) and F (p = 0.0005 baf and p = 0.026 treatment).
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specific dose [43]) on p-PP2Ac levels in HEK-293 cells in the presence
and absence of 1 μM KYP-2047 (Fig. 4C). PP2Ac phosphorylation in the
OA treated group was significantly elevated as expected. However, the
effect was offset in the OA and KYP-2047 co-treated group (Fig. 4C),
indicating that KYP-2047 can partially reduce OA inhibition of PP2Ac.
Since p-PP2Ac antibody showed decreased signal after FTY720 and
increased levels after OA treatments, we concluded that this antibody
can be used as an indicator for inactive and active form of PP2Ac.

Deletion of PREP from HEK-293 and SH-SY5Y cells decreased the
levels of phosphorylated PP2Ac (Fig. 4D, supplementary Fig. S2) but no
changes were seen in HEK-293 or SH-SY5Y PREPko cell PP2Ac protein
or mRNA levels (Fig. 4D, supplementary Fig. S3). PREPko mouse cor-
tical tissue had elevated PP2Ac protein and mRNA levels however,
changes were not seen in PP2Ac phosphorylation compared to wt lit-
termates (Fig. 4D, supplementary Fig. S3). Additionally, changes were
not seen in PP2Ac or its phosphorylation when PREP was either

Fig. 2. 4 h PREP modulations affect beclin1 and bcl2/bcl-xl phosphorylation. The levels of beclin1, Thr119 phosphorylated beclin (p-beclin1) and bcl2/Ser70
phosphorylated bcl2 (p-bcl2; cells) or bcl-xl/Ser62 phosphorylated bcl-xl (p-bcl-xl; mouse cortex) were studied by Western blot. (A) HEK-293 cells incubated for 4 h
with a PREP inhibitor (KYP-2047, 1 μM; n = 8). (B) PREP knock-out (PREPko) HEK-293 cells (n = 7) and PREPko mouse cortex (n = 7). (C) HEK-293 cells with
transient PREP or S554A-PREP (catalytically inactive PREP) overexpression or PREPko HEK-293 cells where PREP or S554A-PREP had been restored (n = 6). Data
are presented as mean± SEM. *, p< 0.05; 1-way ANOVA with Tukey’s post-test (C) and unpaired student’s t-test (A–B).

Fig. 3. PREP modulations regulate phosphorylation of DAPK and JNK1. Levels of DAPK and Ser308 phosphorylated DAPK (p-DAPK), and JNK1/Tyr185 phos-
phorylated JNK1 (p-JNK1) were by immunoblotting. (A) 4 h with 1 μM KYP-2047 in HEK-293 cells (n = 13). (B) PREPko HEK-293 cells (n = 9) and cortex of PREPko
mice (n = 10). (C) PREP overexpression in HEK-293 cells and restoring PREP to PREPko HEK-293 cells. Data are presented as mean±SEM. *, p< 0.05; 1-way
ANOVA with Tukey’s post-test (C) and unpaired student’s t-test (A–B).
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Fig. 4. PREP inhibition or deletion reduces inhibitory PP2Ac Tyr-307 phosphorylation (p-PP2Ac). Total PP2Ac and Tyr307 phosphorylated PP2Ac (p-PP2Ac) levels
were studied by Western blot in following conditions; (A) HEK-293 cells treated for 4 h with 1 μM KYP-2047 (n = 9). (B) HEK-293 cells incubated for 4 h with 0.5 μM
FTY720 (fingolimod) and 1 μM KYP-2047 (n = 8). (C) HEK-293 cells incubated with 50 nM okadaic acid (OA) or 50 nM OA +1 μM KYP-2047 for 4 h (n = 8). (D)
PREP knock-out (PREPko) HEK-293 cells and PREPko mouse cortex (n = 7). (E) HEK-293 cells treated for 4 h with different doses of KYP-2047 (10 nM, 1 μM, and 10
μM; n= 6–8). (F) HEK-293 cells treated for 24 h with 50 nM OA or combination of 1 μM KYP-2047 and 50 nM OA (n = 6). (G) LC3BII levels in HEK-293 cells (n = 9)
and (H) GFP signal in GFP-LC3B-RFP cell culture after same treatments (OA concentration 25 nM in H; n = 8). Bars represent mean±SEM. *, p<0.05; **, p<0.01;
1-way ANOVA with Tukey’s post-test (B–C, E–H) and unpaired student’s t-test (A, D).
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overexpressed or restored in mouse striatum although PREP over-
expression elevated p-PP2Ac levels (supplementary Fig. S2). Fig. 4E
demonstrates that PP2A is dephosphorylated dose dependently fol-
lowing KYP treatment without changes in total PP2Ac levels. Full im-
pact is achieved by 1 μM KYP-2047 and 10 μM dose does not further
decrease p-PP2Ac levels (Fig. 4E).

We also wanted to characterize if increased autophagy caused by
PREP inhibition is dependent on PP2A activation. We noticed that after
24 h of OA and KYP-2047 co-treatment, KYP-2047 could attenuate the
OA induced PP2A phosphorylation (Fig. 4F). However, LC3BII levels
that OA tremendously elevated were not changed when OA was com-
bined with KYP-2047 (Fig. 4G), and the negative impact of OA and OA
+ KYP-2047 on autophagic flux was confirmed in GFP-LC3B-RFP cell
line (Fig. 4H).

3.4. 55-kDa regulatory subunit B alpha (B55α), PME-1, and PTPA protein
levels and distribution are altered after PREP inhibition and deletion

After revealing that PREP modulates PP2Ac phosphorylation and
activity, we wanted to further clarify mechanisms behind this phe-
nomenon. Due to its important functions in cell, PP2A is highly regu-
lated by interactions with other proteins. PP2A-interacting proteins,
such as PME1 and PTPA heavily regulate PP2A complex stability and
interaction with regulatory subunits. PME1 is essential for demethyla-
tion and inactivation of PP2Ac [44]. At the same time, formation of
PP2Ac-PME1 complex increases PP2Ac stability [45] while allowing
PTPA to reactivate PP2Ac [46]. We wanted to study how PREP mod-
ifications affect aforementioned network and also whether there are
changes in 55-kDa regulatory subunit B alpha (B55α) since it is re-
sponsible for PP2A-Tau interactions [47]. B55α protein levels were
upregulated and PME1 levels were decreased after 4 h (Fig. 5A) and 24
h KYP-2047 treatment in HEK-293 and in SH-SY5Y cells (Supplemen-
tary Fig. S4). Interestingly, PME1 levels were decreased already after 10
min PREP inhibition and after transient PREP deletion while B55α and
PTPA remained unchanged (Supplementary Fig. S54). Meanwhile, no
changes in B55α transcription were observed (Supplementary Fig. S3).
In PREPko cells and PREPko mouse cortex, B55α protein levels in-
creased relative to control groups (Fig. 5B; Suppelementary Fig. S4). On
the contrary, PREP overexpression or restoration reduced B55α and
upregulated PME1 levels in cells (Fig. 5C) and reduced B55α levels in
PREPko mouse striatum, although not significantly (Supplementary Fig.
S4). PTPA protein levels were decreased only by PREP overexpression
or restoration in wt and PREPko HEK-293 cells (Fig. 5C). Interestingly,
inactive PREP (S554A-PREP) overexpression or restoration did not
cause any changes in B55α, PME1 or PTPA levels in HEK-293 cells
(Fig. 5C).

Since we and others have shown that PREP is able to regulate other
proteins via direct protein-protein interactions [27,48,49], we per-
formed immunocytochemistry (ICC) to establish PP2Ac-PME1 and
PP2Ac-PTPA colocalization in SH-SY5Y cells with PREP inhibition and
deletion (Fig. 5D-E). Colocalization between PP2Ac-PME1 showed in-
creased signal after 4 h KYP-2047 treatment (Fig. 5D). Notably, PREPko
cells exhibited loss of nearly all of the nuclear PME1 and PP2Ac pool. In
cytosol, almost all of the PP2Ac-PME1 colocalization was lost and
PP2Ac puncta were smaller and diffuse (Fig. 5D). Similarly to PME1,
increased colocalization was seen between PP2Ac-PTPA complex after
PREP inhibition or deletion (Fig. 5E).

3.5. PP2A complex forms an interaction with PREP

The robust change in PP2Ac phosphorylation and changes in PME1
and PTPA levels and colocalizations prompted us to further investigate
the interactions between PREP and the PP2Ac complex subunits or
regulatory proteins. We performed co-immunoprecipitation (coIP) be-
tween FLAG-tagged PP2Ac, PME1 or PTPA and PREP as we had seen
changes in their expression after PREP modifications (Fig. 6A-D).

Reverse coIP with FLAG-tagged PREP did not pulldown PP2A complex,
however, it has to be emphasized that PREP protein can be linked only
from the N-terminal side and any protein anchors from the C-terminal
side of PREP renders it inactive [27].

PME1 overexpression increased pulldown of PREP in coIP fractions
with either C- or N-terminally FLAG-tagged PP2Ac (Fig. 6A). FLAG-
PME1 immunoprecipitated PREP (Fig. 6B) but pulldown was not af-
fected by addition of KYP-2047 to the incubation buffer. However,
FLAG-PTPA (Fig. 6C) pulldown of PREP was more pronounced when
PP2Ac was co-overexpressed. To follow up coIP results, split Gaussian
luciferase (GLuc) protein-fragment complementation assay (PCA) was
used to screen for putative interaction partners. A luminescence signal
indicating a direct interaction between PREP-PP2Ac, PREP-PME1, and
PREP-PTPA (Fig. 6D) was seen. These luminescence signals were clearly
above background ranging between 10000–200000 relative light units
(RLU) depending on the combination of proteins and not all combina-
tions (N or C terminal GLuc fragments) gave a reliable signal. Signals
below background level (1000 RLU) were discarded as no interaction
(Supplementary Fig. S5). When cells were treated with 10 μM KYP-
2047, the signal intensity was significantly increased for PREP-PME1
and upregulated for PREP-PTPA interaction (Fig. 6D) while negligible
changes were seen for the PREP-PP2Ac complex. When PREP or S554A-
PREP complex formation with the aforementioned proteins was tested,
signal intensity was increased between S554A-PREP-PME1 and S554A-
PREP-PP2Ac complex (Fig. 6E), but due to the large variation, differ-
ences were not significant. In addition, PME1-PP2Ac and PTPA-PP2Ac
complex formation was tested to see if PREP restoration or inhibition
would have an effect on PP2A subunit interaction (Fig. 6F) but sig-
nificant changes were not seen.

3.6. Mutation in the highly mobile PREP Loop B affects PREP interaction
and leads to diminished PREP effect on PP2Ac phosphorylation

Increased PCA signal intensity seen between PP2A complex and
S554A-PREP (Fig. 6E) was an indicator that catalytical inactivation of
PREP has an impact on PREP interaction with PP2A complex. To test
hypothesis that PREP loops are important for not only PREP substrate
gating but as well for interaction with other proteins, a set of PREP
mutants with earlier published enzymatic activity and partially known
kinetics [29,50] were created for PCA screen. D149A is point mutation
in β-propeller, and mutations T202C-PREP (increased activity/mobi-
lity) and T204A-PREP (wt activity) are site-mutations located in the
Loop A. T590C-PREP mutation is located in the Loop B, and H680A is
mutation in the catalytic triad that inactivates PREP hydrolytic activity
but still allows inhibitor binding to Ser554 (for more detailed table of
PREP point mutations and their impact on PREP functions, see sup-
plementary material in Tsirigotaki et al. [51]). PCA interaction of PREP
mutants with PME1 can be seen in the Fig. 7A and PP2Ac or PTPA
interaction with PREP in Supplementary Fig. S6. PREP inhibition by
KYP-2047 (10 μM) significantly upregulated PCA interaction signal
between wt PREP, T204A-PREP or H680A-PREP and PME1, PP2Ac or
PTPA (Fig. 7A, Supplementary Fig. S6). An outlier observed in all of the
PCA tests was T590C mutation in Loop B of PREP; interaction between
T590C-PREP and PME1 (84.87 %±6.68), PP2Ac (42.63 %±5.08) or
PTPA (35.10 %±5.62) was reduced compared to the wt PREP DMSO
control. Particular site-mutation increases the preference for shorter
peptides and has been implicated in the substrate gating however, it
might be also disrupting the normal function of Loop A [29].

Based on the PCA data, we proceeded to coIP PREP mutants with
FLAG-PME1 (Fig. 7B) as PME1 pulldown with PREP has shown the most
robust interaction (Fig. 7B). PREP site-mutation did not abolish inter-
action between PREP and PME1 and all of the tested PREP mutants
were immunoprecipitated with FLAG-PME1. However, when a set of
PREP mutants were transfected to wt and PREPko HEK-293 cells and
tested for the p-PP2Ac levels, an interesting pattern emerged (Fig. 7C-
D). Wt PREP, S554A-PREP, and T204A-PREP overexpression in the
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PREPko cells resulted in the upregulation of the levels of p-PP2Ac while
T590C-PREP mutant overexpression did not result in the upregulation
of inhibitory p-PP2Ac levels (Fig. 7D). In wt HEK-293 cells, only
overexpression of wt PREP resulted in significant increase in p-PP2A
levels (Fig. 7C).

4. Discussion

We have earlier shown that PREP can negatively regulate beclin1-
induced autophagy [18], however the mechanism remained unknown.
In this study, we identify PREP as a negative regulator and interaction
partner of PP2A complex. This interaction could be modulated by a
small-molecule PREP inhibitor that induced a robust dephosphorylation
of PP2A, leading to activation of PP2A downstream kinase pathways
responsible for the induction of beclin-1 dependent autophagy. Deletion
of PREP had similar effect to PREP inhibition while PREP over-
expression or restoration inhibited PP2A from cell cultures to in vivo,

emphasizing the importance of PREP in PP2A regulation.
PP2A is a major Ser/Thr phosphatase in mammalian cells [52] and

main regulator for cell cycle and cell growth. Therefore, its lowered
activity and changes in subunit distribution can easily lead to un-
controllable cell proliferation and tumorigenesis [53], tau hyperpho-
sphorylation leading to AD [54], and aggregation of aSyn seen in Par-
kinson’s disease and in dementia with Lewy bodies disease [55]. It is
not surprising that activation of PP2A has been suggested as a ther-
apeutic target for several disorders [54,56,57] with multi-target fea-
tures that might be the key e.g. in finding a disease-modifying therapy
for neurodegenerative diseases [42]. Most of the currently known PP2A
activators are targeted at cancer treatment where known PP2A acti-
vators show tolerable properties [56,58,59], however their relatively
high toxicity could be a deterrent for the treatment of neurodegenera-
tive disorders. The concept of PREP inhibition has been shown to be
safe in preclinical studies [18–20] and in clinical trials [21–23], and we
suggest that the novel PP2A regulatory mechanism revealed in this

Fig. 5. PREP inhibition or deletion affects protein levels of regulatory subunit B55α and endogenous regulators PTPA and PME1, and their colocalization with PP2Ac.
(A) B55α, PTPA, and PME1 protein levels were investigated by immunoblotting from HEK-293 cells treated with 1 μM KYP-2047 for 4 h (n = 6), and same assays
were done (B) in lysates of PREPko HEK-293 cells (n = 7) and mice cortical samples (n = 6), and after (C) HEK-293 wt and PREPko cells were transfected with PREP
or catalytically inactive PREP (S554A-PREP; n = 6). (D–E) Immunocytochemistry (ICC) was performed between (D) PP2Ac and PME1 and (E) PP2Ac and PTPA in
SH-SY5Y wt cells incubated with either 1 μM DMSO or KYP-2047 or in SH-SY5Y PREPko cells. Colocalization (white) is presented between (D) PP2Ac (green), PME1
(magenta), and (E) PP2Ac (green), and PTPA (magenta). Cell nuclei were stained with DAPI, and smaller inset is magnification from larger image. Scale bars are 10
μm in all images. Bars represent mean± SEM. *, p<0.05; 1-way ANOVA with Tukey’s post-test (C) and unpaired student’s t-test (A–B). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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study offers a potentially safe target to induce PP2A activity, solving a
problem that has followed PP2A-targeted drug discovery. It is not
completely clear, why PREP inhibition can safely activate PP2A and its
downstream pathways but our data indicates that although e.g. au-
tophagy is still active after 24 h PREP inhibition, the dephosphorylation
of critical kinases driving cell towards apoptosis, such as DAPK and
JNK1, are restored to basal conditions and this could protect the cell
(see below).

There is a growing body of evidence that PREP regulates other
proteins via protein-protein interactions, and PREP inhibitors can
modify PREP conformation and alter the interaction-based functions
[26,27]. This is further supported by our current study, where we
showed that PREP can regulate complex network between PP2Ac,
PME1 and PTPA (Fig. 8), and restoring and overexpressing PREP in
cells or in vivo reduced PP2A activity. Interestingly, PREP catalytical
activity was not essential for protein binding, supporting the hypothesis
that peptidase activity could have secondary effect [60]. However,
PP2Ac inhibition and changes in downstream kinase pathways after
PREP protein overexpression point to the minute conformation changes
and/or PREP enzymatic activity as a prerequisite for the PP2A in-
activation. PREP is highly dynamic enzyme, and only porcine PREP can
be crystallized without stabilizing the structure with PREP inhibitor
[50,61]. Its flexible and dynamic external loops control substrate gating
[29,50] but we hypothesized that either these loops or the shift in PREP
conformation induced by loop movements are responsible for protein-
protein interactions. For the first time, more specific location for reg-
ulatory interaction of PREP has been revealed showing that PREP with

mutation in loop B (T590C-PREP) exhibit interaction with PME1,
PP2Ac, and PTPA but does not upregulate PP2Ac phosphorylation.
Therefore, it is possible that loop B or the conformation of PREP that
T590C mutation stabilizes is critical for PREP related interactions. More
thorough investigation using molecular dynamics is required to clarify
this in detail. Additionally, PREP inhibitor binding in the active site and
impact of this on loop B dynamics should be studied in order to design
novel PREP inhibitors targeted at PP2A activation.

Our results indicate that when PREP is inhibited by KYP-2047, it
does not dissolve PP2Ac-PME1 complex but enhances it, which leads to
initial decrease in PP2Ac activity. PP2Ac-PME1 complex inhibits PP2Ac
catalytical activity and at the same time stabilizes PP2Ac in in-
tracellular pool and protects it from the proteasomal degradation [62].
Interestingly, we also saw reduced PME1 signal in nuclei of PREPko
cells. It has been suggested that most of the physiological PME1 effects
are dependent on the nuclear PME1 where it is able to stabilize inactive
PP2A fraction [63] and it has been suggested that PME1 nuclear ac-
cumulation can contribute to PP2A-dependent tumor development
[64,65]. Therefore, loss of nearly all of the nuclear PME1 and PP2Ac
pool would imply PREP role in the nuclear PME1 retention. However,
although PREP was interacting with a PP2A inhibitor, PME1, KYP-2047
also increased interaction between PP2Ac and PTPA, leading to its
dephosphorylation, activation and holoenzyme formation. Removal of
PREP also increased activation of PP2Ac but this is probably due the
reduced PP2Ac-PME1 interaction since in PREPko cells almost all of the
PP2Ac-PME1 colocalization in cytosol was lost (see schematic drawing
in Fig. 8).

Fig. 6. PREP forms direct protein-protein interactions with PP2A complex and its regulators PME1 and PTPA. (A–D) Co-immunoprecipitation (coIP) followed by
immunoblotting was performed to assess the interactions between PP2A complex (PP2Ac, PTPA or PME1) and PREP. (A) PREPko HEK-293 cells were co-transfected
with N- or C-terminally FLAG-tagged PP2Ac and PREP, PME1 or empty vector. Co-immunoprecipitation was performed with anti-FLAG antibody (3 independent
experiments). (B–C) wt and PREPko HEK-293 cells were transfected with (B) FLAG-PME1 and PREP or empty vector. Lysates were split in two aliquots then
immunoprecipitated with FLAG antibody in presence of 1 μM KYP-2047 or DMSO. (C) PREPko HEK-293 cells were transfected with FLAG-PTPA, PREP, and PP2Ac or
empty vector. Samples were split in aliquots then immunoprecipitated with FLAG antibody in presence of 1 μM KYP-2047 or DMSO (n = 3). (D–F) Analyses of the
luminescence signal (normalized to corresponding control) from protein-fragment complementation assay (PCA). (D) HEK-293 PREPko cells were co-transfected with
Gaussian luciferase (GLuc) fragment fused to PREP and GLuc-PME1, GLuc-PTPA or GLuc-PP2Ac. Prior to analyses, cells were incubated for 4 h with KYP-2047 (10
μM). KYP-2047 treatment significantly increase interaction between PREP and PME1. (E) HEK-293 PREPko cells were co-transfected with GLuc fused PREP or S554A-
PREP and GLuc-PME1, GLuc-PTPA or GLuc-PP2Ac. (F) PCA assay of GLuc fused PP2Ac with GLuc-PME1 or GLuc-PTPA was studied after 4 h KYP-2047 incubation (10
μM). n = 24 in PCA assays. Bars represent mean± SEM. *, p< 0.05; PCA data was analyzed by unpaired student’s t-test (D–F) and one-way ANOVA with Tukey’s
post-hoc comparison (G).
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PP2A is known to regulate autophagy via several pathways, in-
cluding DAPK-beclin1 axis [36,38,66], direct dephosphorylation of
ULK1 [67,68], and mTOR regulated interaction with AMBRA [69]. Our
results showed that PREP inhibition increased DAPK dephosphorylation
at Ser308. PP2A is a known activator of DAPK via dephosphorylation of
its amino acid residue while DAPK has been shown to inactivate its
catalytical activity by autophosphorylation [66,70]. This led to beclin1
phosphorylation that is essential for dissociation of beclin1-bcl2/bcl-xl
complex and initiation of autophagy [36]. DAPK regulated autophagy
has been mainly associated with autophagy-associated apoptosis [71]
but there are no reports about PREP inhibitors inducing apoptosis, ra-
ther protecting cell from apoptosis [72]. Our results show that after 24

h PREP inhibition, DAPK phosphorylation was restored to normal levels
although tight-binding inhibitor KYP-2047 is inhibiting PREP in cells
[20]. We suggest that although PREP inhibition activates critical ki-
nases that can drive cell to apoptosis, PREP inhibition effect is mild and
can be overcome by other regulators, preventing cellular death. Ad-
ditionally, elevated bcl2 levels induced by PREP inhibition can partially
protect cells from apoptosis. Interestingly, PREP inhibition elevated
bcl2 levels at 4 h time point but phosphorylation of bcl2/bcl-xl was
increased only after longer PREP inhibition and in PREPko cells and
mouse cortex. Elevated bcl2 levels can arise from decreased JNK1
phosphorylation and inactivation [37] that we have shown in this
study. Besides, Puttonen et al. [72] reported elevated bcl2 levels in cells

Fig. 7. Loop B PREP mutant (T590C-PREP) maintains interaction with PP2A complex but does not have an effect on the PP2Ac phosphorylation levels. (A) PCA
interaction assay was performed between GLuc-PME1 and different PREP mutants (wt PREP, D149A, T202C, T204A, T590C, and H680A) in HEK-293 PREPko cells.
Cells were treated for 4 h with KYP-2047 (10 μM) or DMSO. (B) coIP followed by immunoblotting was performed with site-directed PREP mutants and FLAG-PME1.
HEK-293 PREPko cells were transfected with N-terminally FLAG-tagged PME1 and PREP mutants (S554A, LoopA truncate, D149A, T202C, T204A, T590C, H680A) or
control vector. Lysates were immunoprecipitated with FLAG antibody and analyzed by immunoblotting. (C, D) Selected PREP mutants were tested for their ability to
alter PP2Ac and Tyr307 phosphorylated PP2Ac (p-PP2Ac) levels in (C) wt (n = 6) and (D) PREPko HEK-293 (n = 6) cells after 24 h transient transfection. Bars
represent mean± SEM. * and #, p< 0.05; * represent differences between DMSO and KYP-2047 treatment for each mutant and # represent difference between
T590C-PREP and other PREP mutants for the same treatment condition (DMSO vs. DMSO; KYP-2047 vs. KYP-2047). (A) Two-way ANOVA with Tukey’s post-hoc
comparison. (B–C) One-way ANOVA with Tukey’s post-hoc comparison.
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after PREP inhibition but the mechanism remained unclear until now.
However, JNK1 was also dephosphorylated and inactivated in PREPko
systems where bcl2/bcl-xl phosphorylation was elevated. Earlier study
has suggested that JNK1 and other traditional kinases phosphorylating
bcl2/bcl-xl are not involved in autophagy initiation [73]. This was also
shown in our study, and although JNK1 activation is reported to induce
autophagy via bcl2/bcl-xl phosphorylation [74], our results indicate
that at least in PREP-regulated autophagy, DAPK activation overcomes
the impact of JNK1 inactivation in inducing autophagy.

Our finding explains several earlier findings about PREP, including
its impacts on cell proliferation, changes in its activity during onto-
genesis [75], tumors [76,77], inflammation [78–81] and neurodegen-
eration [82]. Earlier reports show that PREP activity and protein levels
are significantly elevated in tumors and that PREP inhibition affects
proliferation rate of certain cancer types namely neuroblastoma, gastric
cancer, and human breast cancer cell lines where PP2A activity changes
are observed. The effects arise from the G0/G1 arrest but the mechanism
has remained unclear [76,83]. PP2A is known master regulator for cell
cycle [84], and our data indicates that elevated PREP levels can reduce
PP2A activity that can contribute to cell division and differentiation
during ontogenesis and to tumor growth in cancer. However, it remains
unclear what elevates PREP protein levels and activity in cancer. Ad-
ditionally, PREPko mouse has reduced neuronal size and neuronal
connections [32] that may well arise from overactive PP2A [85]. Sev-
eral studies have connected elevated PREP to inflammation [78,79] but
similar to earlier PREP findings, the mechanism has not been revealed.
Our data shows strong JNK1 phosphorylation by active PREP, and JNK1
is known the be the main regulator for inflammation, and elevated
JNK1 activation has been connected to neurodegeneration [86]. PP2A
deficits have also been connected with Tau hyperphosphorylation in AD
[54] with increased colocalization between phosphorylated PP2Ac
(inactive) and hyperphosphorylated tau in tangle-bearing neurons from
AD patients brains [87]. We have earlier shown increased PREP activity
and colocalization of PREP with Tau tangles in post mortem AD brains
[82], and our current findings further supports the possibility that PREP
has a role in pathophysiology of AD and other tauopathies.

In conclusion, we propose that PREP regulates autophagy by ne-
gatively regulating PP2A, and this is the main physiological function for
PREP, while hydrolytic function has only secondary purpose.
Additionally, increased PREP activity – that has been connected e.g.
with tumors and AD – can lead to reduced PP2A activity, connecting

PREP to pathophysiology of these disorders. As discussed above, the
concept of PREP inhibition is considered safe even in clinical trials, and
therefore, PREP inhibition can offer a safe possibility for PP2A and
autophagy activating therapy that can be applicable for several dis-
eases.
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