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Abstract: Information from seedling stands in time and space is essential for sustainable forest
management. To fulfil these informational needs with limited resources, remote sensing is seen
as an intriguing alternative for forest inventorying. The structure and tree species composition in
seedling stands have created challenges for capturing this information using sensors providing sparse
point densities that do not have the ability to penetrate canopy gaps or provide spectral information.
Therefore, multispectral airborne laser scanning (mALS) systems providing dense point clouds
coupled with multispectral intensity data theoretically offer advantages for the characterization of
seedling stands. The aim of this study was to investigate the capability of Optech Titan mALS data to
characterize seedling stands in leaf-off and leaf-on conditions, as well as to retrieve the most important
forest inventory attributes, such as distinguishing deciduous from coniferous trees, and estimating
tree density and height. First, single-tree detection approaches were used to derive crown boundaries
and tree heights from which forest structural attributes were aggregated for sample plots. To predict
tree species, a random forests classifier was trained using features from two single-channel intensities
(SCIs) with wavelengths of 1550 (SCI-Ch1) and 1064 nm (SCI-Ch2), and multichannel intensity (MCI)
data composed of three mALS channels. The most important and uncorrelated features were analyzed
and selected from 208 features. The highest overall accuracies in classification of Norway spruce,
birch, and nontree class in leaf-off and leaf-on conditions obtained using SCI-Ch1 and SCI-Ch2
were 87.36% and 69.47%, respectively. The use of MCI data improved classification by up to 96.55%
and 92.54% in leaf-off and leaf-on conditions, respectively. Overall, leaf-off data were favorable for
distinguishing deciduous from coniferous trees and tree density estimation with a relative root mean
square error (RMSE) of 37.9%, whereas leaf-on data provided more accurate height estimations, with a
relative RMSE of 10.76%. Determining the canopy threshold for separating ground returns from
vegetation returns was found to be critical, as mapped trees might have a height below one meter.
The results showed that mALS data provided benefits for characterizing seedling stands compared to
single-channel ALS systems.
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1. Introduction

Conifer-dominated forest stands with a mean height below 7 m, or deciduous-dominated stands
with a mean height below 9 m, are considered seedling stands in Finland [1]. In seedling stands,
the tree species of interest compete for limited growing resources with understory vegetation or other
trees. The management of seedling stands, involving tending, cleaning of competing vegetation,
and thinning treatments, defines the later stand development [2]. For instance, timely cleaning was
shown to reduce canopy competition and increase mean diameter growth of young Norway spruce
stands (Picea abies (L.) Karst.) by 21–32% [3].

The management of seedling stands requires spatially explicit and up-to-date information about
tree density, height, and species composition. Conventionally, the required information is collected
using field visits, which are laborious, time-consuming, and costly. As a result, alternative technologies,
such as remote sensing (RS)-based inventorying [4], must be developed and investigated to complement
or replace the costly methods of acquiring the information from seedling stands. Considering the
required spatial resolution and scale, the most intriguing RS technologies include aerial imaging and
airborne laser scanning (ALS).

Aerial images can be used to construct point clouds using a photogrammetric method known
as automatic image matching, which is a technique for matching and extracting the correspondence
between two or more overlapping images captured from the same scene [5,6]. To characterize
seedling stands, aerial imagery is often acquired from an unmanned aerial vehicle (UAV) and
processed with an image matching technique. The data can include photogrammetric point clouds
(PPC) and image mosaics from spectral bands such as red, green, blue (RGB), near infrared (NIR),
red edge, or hyperspectral bands. For example, UAV data have been processed with individual
tree detection (ITD) methods and used for tree density estimation [7,8]. Other methods, such as
area-based approach (ABA [9]), computer visioning [10], convolutional neural networks (CNNs [11]),
manual interpretation [12], and object-based image analysis (OBIA [13–15]), have also been used for
tree density estimation. Previously, aerial imagery was used to investigate stocking and regeneration
density using manual image interpretation [16,17], competition assessment [18], and to develop an
ITD method [19]. The ITD method has rarely been used in seedling stands studies, although it is
capable of detecting individual trees. ALS was shown to be better able to penetrate the canopy and
retrieve forest attributes than aerial imagery [20]. Therefore, ALS data could be suitable for seedling
stand inventories.

ALS is an active RS technology that measures the distance to a target by sending and receiving
laser pulses [21]. The data acquired from ordinary single-channel (monochromatic) ALS systems
were used in a few seedling stands inventory-focused RS studies using ITD methods to analyze
small trees in the forest-tundra ecotone [22,23], to estimate aboveground biomass (AGB) in young
forests [24], and to predict and model AGB changes in young forests [25]. Single-channel ALS data
were also used in the ABA method for tree density and height estimations during regeneration or
for young forests [26,27], and to estimate the biophysical properties of regeneration forest stands [9].
A combination of single-channel ALS and airborne imagery was studied for the characterization
seedling stands vegetation using ITD [28] and to detect the requirement for seedling stand tending
using ABA [29].

The majority of these seedling stands studies using ALS applied a single canopy threshold
(Cth, a.k.a. ground threshold or height threshold) of 0.5 m [25,27,29]. The Cth is used to differentiate
the canopy laser returns from all laser returns, which can be from obstacles such as ground vegetation,
tree stumps, and rocks. In studying seedling stands using ALS data, as Cth decreases, the likelihood of
interference from obstacles such as ground vegetation, tree stumps, and rocks increases [29]. Therefore,
the interference should be minimized, although increasing Cth is not the solution, as it leads to the
loss of seedlings shorter than the Cth. Optimizing Cth in studies of mature forests has improved the
final models for each metric [30]. An optimum Cth that provides a reasonable balance between the
interference of obstacles and tree detection accuracy is also needed for seedling stand studies.
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With single-channel ALS for forest inventories at a species level, aerial images are required.
However, mALS providing multichannel intensity (MCI) data which are equivalent to aerial photos
can eliminate this need. This was demonstrated in the study of Yu et al. [31], where it was applied as a
single-senor solution for mature forest inventories. Moreover, treetops are more likely to be hit with
the increase of point density, which is important for seedling stand inventories, because treetops are
closely located to one another, and penetrating between canopies is important. Hence, the features of
mALS make it potentially capable of characterizing seedling stands. To the best of authors knowledge,
this has not been studied yet, and understanding is limited about how well it could be applied.

This study was mainly designed to investigate the ability of mALS data to provide dense and MCI
point clouds to estimate tree density and height in young (mean tree height ≤ 1.3 m, YoS) and advanced
seedling (mean tree height > 1.3 m, AdS) stands. In addition, we compared characterizations of the
seedling stands in leaf-off and leaf-on conditions, and optimized Cth in tree detection, classification,
and height estimation. We hypothesized that:

1. MCI data, together with dense point clouds from mALS, will improve the classification of
segments to spruce, birch, and nontrees, compared to single-channel ALS data from 1550 nm and
1064 nm in seedling stands,

2. Leaf-off data will be more suitable for inventories of coniferous seedlings, and
3. Lowering Cth improves tree detection, classification, and height estimation.

2. Materials and Methods

2.1. Study Area and Establishment of Sample Plots

The study area is located in southern boreal forest zone in Evo, Finland (61.20◦ N, 25.08◦ E, 133–150 m
above sea level; Figure 1). It mainly includes managed forests where Scots pine (Pinus sylvestris L.) and
Norway spruce are the dominant tree species.
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One YoS and two AdS stands from the study area were selected based on existing forest resource
information. The seedling stands were selected based on tree density, which had to be higher than
2400 trees per hectare (TPH), since this density was required to establish sample plots and thin them
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into different densities. Five sample plots were established with an 8 m radius for YoS, and 7 sample
plots with a 10-m radius were established for AdS. The YoS sample plots were thinned approximately
into the following target tree densities: 1200, 1400, 1600, 1800, and 2000 TPH. Similarly, the sample plots
in AdS were thinned to the following tree densities: 1000, 1200, 1400, 1600, 1800, 2200, and 2400 TPH.

The sample plots were established between April and May 2016. The locations of sample
plots were recorded using the Trimble GeoXT Global Navigation Satellite System (GNSS) device
(Trimble, Sunnyvale, CA, USA). The GNSS locations were differentially corrected by applying the
data from the local reference station. The expected accuracy was below 1 m in an open area.
Next, thinning treatments were applied followed by measuring the tree attributes in June 2016 (Table 1).
Then, the plot-level forest inventory attributes of the sample plots were compiled. All the remaining
trees in YoS sample plots were Norway spruce, unlike in AdS, where an admixture of birch from
0% to 34.3% existed. The site type of the sample plots was mesic heath forest. Among the plots,
the proportion of Norway spruce was predominant over birch by 91.8%.

In AdS, the tree species was determined and the diameter at breast height (DBH) was measured
with steel calipers from trees with a height ≥1.3 m. The height of each tree species was measured from
every third tree using an electronic hypsometer (Vertex IV, Haglöf, Långsele, Sweden). The height
of the tallest tree in each sample plot was also measured. YoS measurements were the same as those
of AdSs, with the exception of diameter at ground, which was measured instead of DBH, since the
mean height was less than 1.3 m in the YoS sample plots (Table 1). The height of the trees in each
sample plot was predicted by fitting the Näslund’s height curve [32], obtained from the sample tree
height measurements. The relative root mean square error (rRMSE) of the tree height prediction
was 12.8% (relative bias −0.13%) and 11.4% (relative bias 0.57%) for YoS and AdS, respectively.
Plot-level tree density was calculated by dividing the number of trees observed in each plot by its
area, and subsequently converting the area to hectares. Tree density and height statistics are shown in
Table 1. Notably, many grasses and ferns were observed during field data collection in June.

2.2. Remote Sensing Data

Remote sensing data were captured using an Optech Titan mALS scanner (Teledyne Optech, Toronto,
ON, Canada) from a 500 m flight height. The data were acquired on 1 May and 12 to 14 June 2016 under
leaf-off and leaf-on conditions (as leaf-off and leaf-on data, respectively). The sensor sends and records
laser pulses in three channels: green (Channel (Ch) 3, 532 nm), NIR (Channel 2, 1064 nm), and short-wave
infrared (Channel 1, 1550 nm). Its beam divergence in Channels 1 and 2 is about 0.35 mrad (1/e), and in
Channel 3 is about 0.7 mrad (1/e). The sensor operates with a pulse rate of 250 kHz per channel.

The data were preprocessed into ground and nonground points using a standard procedure in
TerraScan (TerraSolid Oy, Helsinki, Finland). Possible noises, such as the hits below the ground or
above the canopy, were then removed from the data. Next, the point clouds were height normalized
by subtracting the ground elevation from the height measurement of the points using a digital terrain
model (DTM) created from the classified ground points of three channels separately to avoid any
possible discrepancy among the channels. The DTM was created in the format of a triangulated
irregular network (TIN) and ground elevation for the point was interpolated based on the TIN model.
The process was performed separately for leaf-on and leaf-off data. The accuracy of the DTM was
expected to be 20 cm. The average point density of all laser returns per channel and for all channels
within YoS, AdS, and all plots are presented in Table 2 with leaf-off and leaf-on data. The proportion of
laser returns—i.e., first/single, second, third, and last returns—in leaf-off and leaf-on is listed in Table 3
within the plots of the study area.

More than 85% of laser returns in both leaf-off and leaf-on data were obtained from first/single
returns, and less than 0.20% from last returns (Table 3).

Figure 2 shows an outline and summary of each subsection in methodology part.
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Table 1. Tree density and height variation in sample plots. YoS: young seedling stands; AdS: advanced seedling stands; min, max, mean, and std: minimum, maximum,
mean, and standard deviation of field-measured tree heights, respectively; TPH%: proportion of spruce trees over birch (TPH: trees per hectare, Height unit: meter).

Total Trees Spruce Birch

Stand
development

class

Plot name
Tree

density Height Tree
density Height Tree

density Height

(TPH) mean (m) (TPH) TPH % min (m) max (m) mean (m) std (m) (TPH) min (m) max (m) mean (m) std (m)

YoS GT1 1989 1.19 1989 100 0.73 1.87 1.19 0.33 0
(n = 5) GT2 1790 1.16 1790 100 0.77 1.78 1.16 0.24 0

GT3 1194 1.12 1194 100 0.77 1.61 1.12 0.19 0
GT4 1393 1.05 1393 100 0.82 1.48 1.05 0.20 0
GT5 1592 1.14 1592 100 0.86 1.56 1.14 0.19 0

AdS G3 1592 3.20 1369 85.99 1.71 4.00 3.12 0.58 223 3.28 4.33 3.67 0.3
(n = 7) G4 1814 3.66 1273 70.18 1.57 4.40 3.44 0.63 541 3.36 5.01 4.17 0.5

G5 1401 2.70 1401 100 1.62 3.87 2.70 0.54 0
G6 2069 3.08 2037 98.45 1.71 4.54 3.07 0.66 32 3.44 3.44 3.44
G7 2228 3.72 1464 65.71 2.09 4.21 3.27 0.52 764 3.36 5.58 4.58 0.6
G9 1210 2.45 1210 100 1.71 3.56 2.45 0.50 0
G10 796 2.95 796 100 2.03 3.96 2.95 0.58 0

Table 2. Average point density (points/m2) for all channels from all laser returns among young seedling stands (YoS), and advanced seedling stands (AdS) plots in
leaf-off and leaf-on data.

Condition Channel YoS (n = 5) AdS (n = 7) All Plots (n = 12)

Leaf-off 1 18.32 21.87 20.76
2 14.74 23.88 21.01
3 14.98 19.86 18.33

All 48.04 65.61 60.10

Leaf-on 1 15.74 19.88 18.58
2 15.86 20.61 19.12
3 15.58 21.25 19.47

All 47.18 61.74 57.17

Table 3. Percentage of different laser returns for all channels within all plots (n = 12) in leaf-off and leaf-on data.

Return Type Leaf-Off Leaf-On

First and Single/Only 89.19 85.57
Second 9.43 11.94
Third 1.22 2.29

Last/Ground 0.16 0.20

Total number 192,582 183,207
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2.3. Creating Canopy Height Model and Delineating Tree Crowns

The canopy height models (CHMs) with a resolution of 0.1 m were created by assigning the maximum
height of the first and only/single laser returns of all three channels to each raster cell. Empty pixels (gaps)
in the CHM were interpolated using the focal function in Raster R package [33] using a 7 × 7 kernel
window size. The process of filling gaps only affected the null pixels. Next, the CHM was smoothed three
times using a low-pass mean filter with a window size of 3 × 3; subsequently, the watershed segmentation
method was applied in ArcMap (version 10.3.1) to segment tree crown boundaries without setting the
threshold to flow in CHM, corresponding to a Cth of 0 m. In the watershed segmentation, the flow direction
of each cell of the CHM was calculated after the CHM had been negated. Then, each segment represented
a watershed where imagined water would flow from adjacent cells.

2.4. Feature Extraction from Multispectral ALS Data

The maximum height (Hmax) of each segment was extracted from the highest point of all laser
returns in each segment. Simultaneously, 208 spectral features were extracted from the intensity of
the laser returns above 6 Cths (0, 0.2, 0.4, 0.6, 0.8, and 1 m; schematized in Figure 3) for each channel
to separate Norway spruces from other vegetation (Table 4). The intensity of laser returns was not
calibrated. The features were then grouped into two categories: (1) single-channel intensity (SCI) and
(2) multichannel intensity (MCI).

The SCI features include the minimum, maximum, mean, standard deviation, coefficient of variation,
range, skewness, and kurtosis of the intensity, as well as the intensity percentiles from 5% to 95% in
5% increments for each channel (Table 4). MCI features were calculated using the ratios of the intensity
features of each channel divided by the sum of all channels as ratio (Ri

F), the subtraction of Channels
2 and 3, divided by the sum of Channels 2 and 3 (as green Normalized Differential Vegetation Index,
gNDVIF) and dividing Channel 2 by Channel 3 (as green simple ratio, gSRF). In total, 78 SCI features,
together with 130 MCI features, were extracted for each of the six Cth per segment. The features were
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statistical measurements applied to both SCI and MCI features for each segment. Table 4 provides
definitions of the SCI and MCI features.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 20 
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Table 4. List of all features derived from spectral information of the laser returns Superscripts (i) 1, 2,
and 3 represent channel numbers and subscript F refers to single-channel intensity feature used.

Feature Definition

Single-channel Intensity (SCI) features

Imin Minimum intensity
Imax Maximum intensity
Imean Mean intensity
Istd Standard deviation of intensity
Icov Coefficient of variation (i.e., relative standard deviation) of intensity
Isk Skewness of intensity

Irange Range of intensity
Ikut Kurtosis of intensity

I5, to I 95 Percentiles of intensity from 5% to 95% in 5% increments

Multichannel intensity (MCI) features

Ri
F = Ii

F/(I1
F + I2

F + I3
F) Ratios of intensity features

gNDVIF = (I2
F – I3

F)/(I2
F + I3

F) Green normalized differential vegetation index (gNDVI)
gSRF = I2

F/I3
F Green simple ratio vegetation index (gSR)

2.5. Selection of Training and Validation Data

A total of 217 (67, 115 and 35 for birch, spruce and nontree, respectively) and 334 (113, 144 and 77
for birch, spruce and nontree, respectively) segments located outside the field sample plot boundaries
were visually labeled in the leaf-off and leaf-on data, respectively. During visual labelling, UAV-RGB
orthomosaics with a resolution of 2.5 cm captured on 9 and 11 May (leaf-off) and 29 June (leaf-on) in
2016 over the same study area [7] were used as a background image. Hmax was also used as an auxiliary
attribute for differentiating birch from grasses and bushes to distinguish short leafless birches and tall
bushes in leaf-off data. The segments were labeled as three classes: Norway spruce, birch, and nontree
(stumps/deadwood, bush/grass, and rock). The labeled segments were then used as training data for
feature importance analysis and classification.

Using a similar procedure as described above, a total of 92 (28, 58 and 6; for birch, spruce and
nontree, respectively) and 96 (22, 48 and 26; for birch, spruce and nontree, respectively) segments
were labeled as validation data located inside sample plot boundaries in leaf-off and leaf-on data,
respectively. The aim was to create a number of validation data that was approximately one-third
the number of training data for both epochs. In other words, they are two independent and separate
datasets located inside (validation) and outside (training) of the plot boundaries.
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In both the training and validation data, segments obtained from the watershed method using a
Cth of 0 m were used for labeling in leaf-off and leaf-on conditions. Finally, the labels were spatially
joined to segments derived from features of other Cth applied in leaf-off and leaf-on, respectively.

2.6. Feature Importance Analysis and Classification

Before the feature importance analyses, features with different Cths were subgrouped based on the
intensity groups according to their SCI-Ch1, SCI-Ch2, SCI-Ch3, MCI-Ri

F, MCI-gNDVIF, and MCI-gSRF

features. Next, the most important features from each subgroup for the separation of Norway spruces
from birches, Norway spruces from nontrees, and birches from nontree classes were selected using a
random forests (RF [34]) classifier with 1000 decision trees. The RF was implemented using version
0.20.1 of Scikit-learn [35]. The three most important features from each subgroup were preselected.
The next step was to investigate the correlations between the selected three features with all other
features in each subgroup. When detecting correlations above 0.8, less important features were
removed from further analyses. Finally, the most important and uncorrelated features were used to
train an RF model to classify the identified segments into Norway spruce, birch, and nontree classes.

In addition to the above-mentioned classification used for the selected features (combining all three
channels; MCI), two other classifications were also run using SCI-Ch1 and SCI-Ch2 data, because they
are the most commonly used wavelengths in single-channel ALS systems [36]. The feature importance
analysis and classifications were carried out identically for each of the 36 datasets (6 Cths with three
intensities in leaf-off and leaf-on data).

2.7. Tree Density and Height Retrieval

After predicting classes, the plot-level tree density and height of the Norway spruces were
calculated. The tree density was calculated by dividing the predicted number of Norway spruce in
each plot by its area, and subsequently converting the area to hectare. The tree height was derived
by calculating arithmetic mean height of Hmaxs of the segments classified as Norway spruce within
each plot.

2.8. Accuracy Evaluations

The classification accuracy was evaluated by calculating the overall accuracy (OA), recall
(i.e., omission error), and precision (i.e., commission error) using the validation data. For simplicity,
only the mean of the recall and precision per class are reported.

The plot-level tree density of Norway spruce trees was compared to field-measured tree density,
and the bias and RMSE were calculated using Equations (1)–(4). To evaluate the accuracy of remotely
sensed tree height, the estimation of the plot-level mean tree height (derived from Hmax) was compared
with its corresponding height from field data using:

Bias =

∑n
i = 1(yi − ŷi)

n
, (1)

rBias(%) = 100×
Bias

y
, (2)

RMSE =

√∑n
i = 1(yi − ŷi)

2

n
, (3)

rRMSE(%) = 100 ×
RMSE

y
, (4)

where n is the number of plots, yi is the value estimated from the field data for plot i, ŷi is the aggregated
value from the detected trees for plot i, and y is the mean of the variable in the field data.
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Additionally, Pearson correlation coefficient (r) was calculated, which measures the linear
relationship between the remotely sensed and field data as x and y, respectively (Equation (5)).

r =

∑n
i = 1(xi − x) (yi − y)√∑n

i = 1(xi − x)2∑n
i = 1(yi − y)2

, (5)

The tree density and height were analyzed and are reported for all sample plots (n = 12), YoS (n = 5),
and AdS (n = 7) for both leaf-off and leaf-on conditions using mALS data and 6 Cths of 0, 0.2, 0.4, 0.6,
0.8, and 1 m.

3. Results

3.1. Feature Importance Analysis

For SCI features, intensity percentiles between 10% and 65% were selected as the most important
features for separating classes from each other in leaf-off data. The most important features nominated
by RF for SCI varied between minimum intensity (Imin) and the 70% percentile for leaf-on data (Table 5).

Table 5. The most important features selected for classification in leaf-off and leaf-on data. Green-colored
features represent the most important and uncorrelated features. The descriptions of the features can
be found in Table 4. The numbers in parentheses represent the feature importance score.

Leaf-Off Leaf-On

Feature
groups

Spruce and
Birch

Spruce and
Nontrees

Birch and
Nontrees

Spruce and
Birch

Spruce and
Nontrees

Birch and
Nontrees

SCI-Ch1 I30 (0.133) I30 (0.119) I35 (0.128) Imin (0.161) I15 (0.064) I30 (0.127)
SCI-Ch2 I55 (0.144) I10 (0.079) I30 (0.127) Icov (0.090) Imin (0.091) Imin (0.143)
SCI-Ch3 I65 (0.096) I30 (0.143) I30 (0.085) I70 (0.076) I70 (0.111) I20 (0.125)
MCI-Ri

F I50
2 (0.097) I50

2 (0.055) Imin
3 (0.060) I55

1 (0.067) I50
2 (0.068) I65

3 (0.054)
MCI-gNDVI Imin (0.148) I45 (0.125) I45 (0.085) Imin (0.106) I70 (0.111) I75 (0.074)

MCI-gSR Imin (0.149) I45 (0.125) I45 (0.085) Imin (0.105) I70 (0.111) I75 (0.072)

For MCI features, Imin and percentiles close to 50% (I45 and I50) features were selected as the most
important features in leaf-off data. Imin, middle, and upper intensity percentiles (I50, I55, I65, and I75)
were selected for leaf-on datasets (Table 5).

Approximately half (9 and 8 features of 18 in leaf-off and leaf-on, respectively) of the RF-nominated
features were either highly correlated (r ≥ 80%) or the same features were selected to separate different
classes from each other; consequently, they were dropped after the correlation analysis step (Table 5).
To explain with an example, in the SCI-Ch3 subgroup in leaf-off, the same feature (I30) was nominated
twice (to separate Norway spruce from nontrees and birch from nontrees), and it was highly correlated
with I65 (r = 91) (results not shown). Therefore, I30 was selected due to its higher importance score
(0.143) compared to I65 (0.096).

For MCI features, Imin and I45 were selected for both gNDVI and gSR in leaf-off data, with Imin and
I70 in leaf-on data. I50

2 was selected for MCI-Ri
F in both leaf-off and leaf-on. Overall, minimum and

middle intensity percentiles were more useful.
As illustrated in Figure 4, the distribution of the selected most important and uncorrelated

features demonstrated that the selected features were suitable to separate Norway spruce, birch,
and nontree classes. As an example, the value distribution of MCI-Imin

3 and I20 (in SCI-Ch3) features
were descriptive in leaf-off and leaf-on data, respectively.
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Figure 4. Box-whisker plots of the selected most important and uncorrelated features (green-colored
features in Table 5). The boxes show the mean and first and third quantiles in the box, as well as the
minimum and maximum values in line, using validation data with a canopy threshold (Cth) of 0.4 m in
leaf-off (A) and leaf-on (B) conditions. Features of single- and multi- channel intensity (SCI and MCI,
respectively) data are plotted in left and right, respectively. Explanations for features are provided in
Table 4.

3.2. Accuracy of Classification

As presented in Table 6, using MCI features, the OA of classification generally improved in the
leaf-off condition from 83.70% to 96.74% as Cth increased from 0 m to 0.8 m. Similarly, in leaf-on
conditions, the OA improved from 77.89% to 92.54% as Cth increased from 0 m to 1 m. In other words,
in leaf-on conditions, OA values increased as Cth increased, whereas in leaf-off conditions, the initial
increase of Cth from 0 to 0.2 m resulted in a jump of about 10% in OA, followed by a similar OA when
Cth increased.

Using features from only SCI-Ch1 for classification, OA values ranged from 71.74% to 87.36% in
leaf-off and from 46.27% to 58.95% in leaf-on conditions with Cth from 0 to 1 m. Only using features
from SCI-Ch2 yielded OA values between 44.57% and 82.76% in leaf-off, and from 59.70% to 69.47% in
leaf-on (Table 6).

Leaf-off data provided more accurate classification results compared to leaf-on data, irrespective of
the input data (MCI, SCI-Ch1, or SCI-Ch1; Table 6). In the leaf-off condition, MCI data improved the
OA by ~10% and ~18% compared to SCI-Ch1 and SCI-Ch2, respectively. Similarly, MCI improved
classification accuracy by 33% and 21% in leaf-on conditions compared to SCI-Ch1 and SCI-Ch2,
respectively. Figure 5 shows the classified treetops within in an advanced seedling plot (T2G7) in
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leaf-off condition using Cth 0.4 m. Precision and recall had the same trends as OA, being most accurate
in MCI in both epochs.

Table 6. Accuracy of classification when canopy threshold (Cth) varied from 0 to 1 m in leaf-off

and leaf-on conditions using multichannel intensity (MCI) features and only single-channel intensity
(SCI-Ch1 and only SCI-Ch2). OA: overall accuracy; recall and precision: mean precision and recall
values of all three (Norway spruce, birch, and nontree) classes, respectively.

Cth (m) Leaf-Off Leaf-On

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

MCI
OA (%) 83.70 94.57 94.57 96.74 96.74 96.55 77.89 82.11 86.46 88.42 89.29 92.54

Precision 0.71 0.86 0.86 0.93 0.93 0.82 0.79 0.82 0.87 0.89 0.88 0.81
Recall 0.73 0.85 0.85 0.93 0.93 0.82 0.85 0.87 0.90 0.92 0.93 0.95

SCI-Ch1
OA (%) 71.74 85.87 85.87 84.78 84.78 87.36 58.95 53.68 54.17 54.74 52.38 46.27

Precision 0.51 0.74 0.74 0.73 0.73 0.66 0.58 0.53 0.55 0.55 0.54 0.44
Recall 0.51 0.81 0.81 0.80 0.80 0.76 0.64 0.61 0.61 0.61 0.63 0.64

SCI-Ch2
OA (%) 44.57 81.52 81.52 81.52 81.52 82.76 63.16 69.47 66.67 65.26 63.10 59.70

Precision 0.31 0.70 0.70 0.71 0.71 0.67 0.64 0.71 0.66 0.65 0.62 0.52
Recall 0.29 0.78 0.78 0.83 0.83 0.73 0.70 0.76 0.71 0.71 0.69 0.72
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Figure 5. Classified treetops in an advanced seedling plot using leaf-off data in canopy threshold (Cth)
of 0.4 m (background is RGB orthomosaic in leaf-off from UAV with resolution of 2.5 cm).

3.3. Tree Density Estimation

The density of Norway spruce trees was most accurately estimated in the leaf-off condition for all
Cth values among all plots. It was most accurate with the Cth of 0.4 m, yielding an rRMSE of 37.9% and
56.96% (rBias: −23.44% and 44.76%) in leaf-off and leaf-on conditions, respectively (Figure 6; Table 7).
It was overestimated in leaf-off data from the Cth of 0.0 to 0.4 m (rBias: −52.02% to −18.99%), but was
underestimated in higher Cth values and all Cth values in leaf-on data.
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Figure 6. Tree density (unit: tree per hectare) of Norway spruce seedlings in leaf-off (a) and leaf-on
(b) conditions, separating plots in young seedling stand (YoS, n = 5) and advanced seedling stand (AdS,
n = 7) in canopy thresholds of 0.4 m.

Table 7. Evaluation of the accuracy of Norway spruce tree density among all (n = 12), young seedling
(YoS, n = 5), and advanced seedling (AdS, n = 7) plots in leaf-off and leaf-on conditions in each of the
canopy thresholds (Cths). Unit: trees per hectare.

Leaf-Off Leaf-On

Cth RMSE rRSME Bias rBias r RMSE rRSME Bias rBias r

All 1147 78.62 −759 −52.02 −0.20 953 67.25 766 54.05 0.14
0.0 YoS 1242 78.03 −836 −52.53 −0.14 1399 93.81 1362 91.33 0.95

AdS 1074 78.73 −705 −51.68 −0.47 401 29.39 341 25.00 0.79
All 553 37.90 −342 −23.44 0.35 941 66.12 819 57.55 0.36

0.2 YoS 740 46.49 −458 −28.78 −0.65 1350 89.66 1317 87.47 0.89
AdS 366 26.83 −259 −18.99 0.73 467 34.23 464 34.01 0.99
All 553 37.90 −342 −23.44 0.35 831 56.96 653 44.76 0.14

0.4 YoS 740 46.49 −458 −28.78 −0.65 1249 78.47 1224 76.90 0.52
AdS 366 26.83 −259 −18.99 0.73 265 19.42 246 18.03 0.96
All 929 65.28 649 45.60 0.20 965 67.81 744 52.28 0.19

0.6 YoS 1427 94.78 1386 92.05 0.83 1460 96.97 1416 94.05 0.70
AdS 158 11.58 123 9.02 0.96 271 19.86 264 19.35 0.99
All 929 65.28 649 45.60 0.20 889 64.92 700 51.12 0.39

0.8 YoS 1427 94.78 1386 92.05 0.83 1337 97.11 1297 94.21 0.84
AdS 158 11.58 123 9.02 0.96 281 20.60 273 20.01 0.98
All 887 62.59 591 41.70 0.23 922 64.79 706 49.61 0.23

1.0 YoS 1371 91.93 1342 89.99 0.90 1397 92.78 1356 90.06 0.84
AdS 85 6.23 55 4.03 0.98 250 18.33 241 17.67 0.98

Density (unit: tree per hectare) of Norway spruce seedlings in leaf-off (a) and leaf-on (b) conditions,
separating plots in young seedling stand (YoS, n = 5) and advanced seedling stand (AdS, n = 7) in
canopy thresholds of 0.4 m.

Comparing results among AdS stands, the 1.0 m Cth outperformed the other Cth values with an
underestimation of only 4.03% and 18.33% in leaf-off and leaf-on conditions, respectively. The 0.4 m
Cth provided the most accurate estimations for the YoS plots, with an rRMSE of 46.49% and 78.47% in
leaf-off and leaf-on, respectively. Notably, the estimation had the same accuracy for both 0.2 and 0.4 m
Cth in leaf-off (rRMSE 46.49%).

The estimation of Norway spruce tree density was more accurate in AdS stands than YoS.
For example, the rRMSE in leaf-off with a Cth of 0.4 m was 26.83% in AdS and 46.49% in YoS (Table 7).
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3.4. Tree Height Estimation

Regardless of Cth, the height estimation of Norway spruce trees among all plots was more accurate
in the leaf-on compared to the leaf-off condition. The most accurate result was achieved in leaf-on,
with a Cth of 0.2 m with an rRMSE of 10.76% (rBias: 6.88%) (Figure 7, Table 8). The lowest rBias with
the 1 m Cth (rBias 1.29%) was obtained as a result of overestimation in YoS and underestimation in AdS
plots neutralizing each other. Also, correlation in the 0.2 m Cth was highest (r = 0.98). In the leaf-off

condition, however, the Cth values of 0.6 and 0.8 m yielded the most accurate height estimation for
Norway spruce with an rRMSE of 18.93%.
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Figure 7. Height (unit: meter) of Norway spruce seedlings in leaf-off (a) and leaf-on (b) conditions,
separating plots in young seedling stand (YoS, n = 5) and advanced seedling stand (AdS, n = 7) in
canopy thresholds of 0.2 m.

Table 8. Evaluation of the height estimation of Norway spruce trees among all (n = 12), young seedling
(YoS; n = 5), and advanced seedling (AdS; n = 7) plots in leaf-off and leaf-on conditions for each canopy
threshold (Cth). Unit: meter.

Leaf-Off Leaf-On

Cth RMSE rRSME Bias rBias r RMSE rRSME Bias rBias r

All 1.11 49.92 0.99 44.52 0.88 0.28 12.02 0.14 6.01 0.97
0.0 YoS 0.84 74.13 0.84 74.13 0.17 0.33 28.62 0.13 11.28 0.59

AdS 1.27 42.30 1.10 36.64 0.84 0.25 8.33 0.15 5.00 0.96
All 0.86 38.68 0.82 36.88 0.96 0.25 10.76 0.16 6.88 0.98

0.2 YoS 0.66 58.24 0.66 58.24 0.85 0.08 7.04 0.01 0.88 0.80
AdS 0.98 32.64 0.94 31.31 0.94 0.31 10.32 0.25 8.33 0.97
All 0.86 38.68 0.82 36.88 0.96 0.33 14.84 0.24 10.79 0.98

0.4 YoS 0.66 58.24 0.66 58.24 0.85 0.27 23.83 0.22 19.41 0.86
AdS 0.98 32.64 0.94 31.31 0.94 0.36 11.99 0.25 8.33 0.92
All 0.44 18.93 0.41 17.64 0.99 0.27 11.62 0.05 2.15 0.96

0.6 YoS 0.26 22.87 0.25 21.99 0.88 0.19 16.71 −0.12 −10.55 0.59
AdS 0.52 17.32 0.51 16.99 0.97 0.31 10.32 0.14 4.66 0.93
All 0.44 18.93 0.41 17.64 0.99 0.32 13.11 0.09 3.69 0.95

0.8 YoS 0.26 22.87 0.25 21.99 0.88 0.04 3.54 −0.02 −1.77 0.83
AdS 0.52 17.32 0.51 16.99 0.97 0.38 12.66 0.14 4.66 0.88
All 0.46 19.74 0.37 15.88 0.98 0.28 12.05 0.03 1.29 0.95

1.0 YoS 0.04 3.47 0.04 3.47 0.98 0.11 9.67 −0.09 −7.92 0.97
AdS 0.57 18.98 0.56 18.65 0.99 0.35 11.66 0.10 3.33 0.91
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Comparing the results among AdS plots, the Cth of 1.0 m with underestimation of 3.33% and Cth

of 0.6 and 0.8 m with underestimation of 16.99% yielded the most accurate leaf-on and leaf-off data,
respectively. In YoS, however, the most accurate result was obtained using a Cth of 0.2 m in leaf-on,
with underestimation of 0.88%.

4. Discussion

4.1. Feature Importance Analysis and Classification

We aimed to explore the most important and uncorrelated ALS intensity features for the
classification of individual segments. Nearly half of the most important intensity features, nominated by
RF, were observed to be highly correlated (r ≥ 80%) or were repeatedly selected to separate classes
from each other. This correlation issue was also documented by Shi et al. [37], where 60% of their
ALS features had high correlation (r > 70%). Imin, middle, and upper intensity percentiles (I50, I55,
I65, and I75) were most useful for leaf-on datasets (Table 5). Mean and high intensity percentile
values were shown to provide the most information for species classification by Shi et al. [37] and
Axelsson et al. [38], respectively.

Using MCI data improved the OA of classification by approximately 10% and 33% in leaf-off and
leaf-on conditions for all Cth compared to SCI-Ch1 and SCI-Ch2, which proves our hypothesis about
the ability of mALS features in classification. For example, the OA of 94.57% was obtained in leaf-off

MCI data with Cth 0.6 and 0.8 m, and was 84.78% and 81.52% when using only SCI-Ch1 and SCI-Ch2,
respectively (Table 6). Our findings demonstrated the advantage of the combined use of MCI features
over SCI-Ch1 and SCI-Ch2 in classifying seedlings. Many other studies reported similar results but
in mature forests [31,36,38–40]. To the best of our knowledge, mALS data have not been used to
characterize seedling stands; hence, here we compared our findings with those of similar studies in
mature forests. For example, Yu et al. [31] used mALS data to classify Scots pine, Norway spruce,
and birch within 22 sample plots (32 × 32 m) containing 1903 mature trees, and achieved better accuracy
(OA = 86%) using MCI features. Notably, OA is affected by other factors such as species composition,
stand structure, age, and method of selecting best features, which differed among the various studies.
Moreover, the intensity of laser returns was not calibrated in the present study, firstly because the
question of whether intensity correction can improve the results could be a future topic of investigation,
and secondly, because the use of MCI features in this study was intended to serve to eliminate possible
variations in intensity.

Comparing SCI-Ch2 and SCI-Ch1 in the leaf-on condition, our findings showed more accurate OA
when using SCI-Ch2 (OA of 69.47% with Cth of 0.2 m), which could be due to the higher reflectance of
vegetation in the NIR wavelength in the leaf-on condition.

The combined use of MCI features resulted in more accurate classification results. The most
accurate classification yielded a mean precision of 0.93 using leaf-off MCI features with Cth values
of 0.6 and 0.8 m, which was comparable with mean precision of 0.87 [14] and 0.81 [11]. Feduck and
Mcdermid [14] used leaf-off UAV-RGB imagery to detect coniferous seedlings from nonseedling objects
in harvested and replanted stands using a three-step object-based method, and Fromm et al. [11]
used leaf-off and leaf-on UAV-RGB imagery to detect coniferous seedlings using a faster region-CNN.
As we classified segments into more classes (Norway spruce, birch, and nontrees) than the two
aforementioned studies, the fact that we obtained higher accuracies emphasizes the ability of the input
data and method used in our study. Notably, the field measured seedlings in the other studies were
different from ours in terms of number and size.

According to our findings, increasing Cth improved the accuracy of classification, which could be
due to minimizing the effect of ground returns and removing low-height segments. This was clearly
observed, as the Cth of 0 m yielded the worst results. Increasing Cth above 1 m also led to the omission
of shorter seedlings; thus, we focused on optimizing Cth between 0 and 1 m.



Remote Sens. 2020, 12, 3328 15 of 20

The OA obtained with SCI-Ch1 and SCI-Ch2 when using the highest Cth (1 m) in leaf-off condition
were 87.36% and 82.76%, respectively, whereas a higher OA of 83.70% was already achieved when
using MCI with the lowest Cth (0 m; Table 6). A similar pattern was observed in the leaf-on condition.
We concluded that using mALS makes it possible to perform detections with a smaller Cth compared to
both SCI-Ch1 and SCI-Ch2, due to the higher efficiency of mALS compared to SCI-Ch1 and SCI-Ch2 in
the classification of vegetation. mALS demonstrated more reliable potential for classification compared
to both SCI-Ch1 and SCI-Ch2 in characterizations of small seedlings.

4.2. Tree Density Estimation

Dense point clouds from ALS, processed with the ITD method, produced accurate density
estimates of the seedling stands. The tree density of Norway spruce seedlings was most accurately
predicted in leaf-off data using a Cth 0.4 m (rRMSE: 37.9%). Our results also showed that mALS data
outperformed in leaf-off compared to leaf-on for tree density estimation of Norway spruce seedlings.

The ITD method (watershed segmentation) was used to detect tree crowns in this study, which,
to the best of our knowledge, has not yet been employed in characterizing seedling stands using
ALS data. Two similar studies in seedling stands using ALS data with the ABA method in tree
density estimation of seedling stands reported rRMSE values of 53.4% and 42%, respectively [9,27].
The improvement in accuracy achieved in this study could be firstly attributed to the use of the ITD
method; secondly, the higher point density (~57 points/m2) used in this work compared to those of
approximately 5 and 1.2 points/m2 applied in the two other studies, respectively, would be expected to
improve the estimates. Therefore, dense point clouds from mALS can also enhance tree detection in
seedling stands. Notably, the increase in accuracy in leaf-off conditions can be attributed to the higher
point density (60.10 points/m2) than in leaf-on (57.17 points/m2).

Another seedling stands study at the stand level used low-density (~0.7 points/m2), single-channel
ALS with the ABA method and predicted the total tree density with an rRMSE of 47% [26]. According to
Puliti et al. [9], a decrease in RMSE occurs when plot-level estimates are scaled to the stand level.
Korhonen et al. [29] reported that using stand-level ABA with ALS usually results in higher accuracy
than plot-level estimates, because random errors cancel each other out. Therefore, as our tree density
estimation was at the plot level, the achieved rRMSE of 37.9% compared to the rRMSE of 47% obtained
in the study of Ørka et al. [26] at the stand level further endorses the capability of the dense mALS
data processed with the ITD method in this study. Our method also pursues plot-level estimations
because more dense ALS data are becoming available.

Tree density estimation was more accurately predicted in AdS than YoS (Table 7), potentially because
the shortest tree in AdS (minimum height of 1.57 m) was above the highest Cth (1 m) used. Therefore,
theoretically, selecting any Cth (0–1 m), no trees were cut out in AdS for the classification phase, because all
trees were already above 1 m. The situation was different in YoS, where the tree height ranged from 0.73 to
1.87 m, overlapping the Cth range and allowing the change in Cth to affect the tree density estimation by
omitting trees shorter than the applied Cth (Table 1).

The sharp treetops in both YoS and AdS lowered the chance of being hit by the laser. In YoS,
however, the treetops fell within the range of the applied Cth, whereas in AdS, the treetops were
already above all the Cth values, which caused the omission of treetops to be more influential in
YoS, resulting in higher underestimation of tree density as Cth increased. Note that when Cth was
smaller, overestimation was observed. Therefore, according to our Cth optimization, the most accurate
tree density in YoS was obtained with a Cth of 0.4 m (rRMSE: 46.49% and rBias: −28.78%). In AdS,
however, 1 m was the optimum Cth both in leaf-off and leaf-on conditions (rRMSE 6.23% and 18.33%,
respectively). Therefore, applying a Cth of 1 m is recommended for seedling stands with minimum
height above 1.5 m, as supported by our results for AdS.

Our tree density estimation in AdS and YoS outperformed the values reported by Imangholiloo et al. [7],
who used the same ITD method as ours and UAV-PPC and hyperspectral data. They reported rRMSE
values of 19.2% and 58.2% for AdS and YoS in leaf-on data, respectively. In this study, we obtained an
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rRMSE of 6.23% with a Cth of 1.0 m for AdS, and an rRMSE of 46.49% in YoS with a Cth of 0.4 m, both in
leaf-off. The better results in this research may be due to the dense point clouds and the penetration of ALS
inside the canopy, especially in dense plots.

In our characterizations of seedling stands, we achieved almost the same rRMSE using ALS as
studies using UAVs. For example, Puliti et al. [9] and Imangholiloo et al. [7] reported rRMSE values of
36.3% and 38.1% using ABA and ITD methods, respectively. Reaching the same accuracy (rRMSE 37.9%
in leaf-off, Cth 0.4 m) reflects the superior ability of ALS, i.e., it provides advantages in penetrating the
canopy, and is independent of direct sunlight, clear sky, and the ITD method used in our study.

In this study, we assessed the effect of different Cth values. The results of Cth optimization suggested
Cth values of 0.4 and 1.0 m for YoS and AdS, respectively, to estimate tree density. These values are
almost equal with the selected Cth values of 0.5 and 1.0 m for YoS and AdS, respectively, in the UAV
study of Imangholiloo et al. [7]. We also found a Cth of 0.4 m to be the optimum Cth for all plots,
which was the same as that obtained in the ALS study by Korpela et al. [39], who selected a Cth of
0.4 m after testing Cth in the range of 0.1 to 0.5 m. Ørka et al. [26] also used three Cth values of 0, 0.5,
and 1.0 m, employing ALS to predict tree density in regeneration forests. They achieved the most
accurate tree density estimation using a 0.5 m Cth.

In our study, misclassification of nontrees (especially bushes and grasses) as Norway spruces also
affected the tree density estimation. For instance, with a Cth of 0.4 m, the leaf-off data commissions
(precision) of birch, Norway spruce, and nontree classes were 0.89%, 1.00%, and 0.67%, respectively
(results not shown). Carefully checking the confusion matrix of the data, in the validation data
(92 segments), all Norway spruces (58) were correctly classified; however, one nontree and one birch
segment were misclassified as Norway spruce, leading to overestimation of Norway spruce tree density
(rBias: −23.44%).

4.3. Tree Height Estimation

Dense point clouds from mALS analyzed with ITD methods produced highly accurate height
estimation in seedling stands. The height of Norway spruce was most accurately predicted in leaf-on
data using a Cth of 0.2 m (rRMSE: 10.76%). The novel use of leaf-off and leaf-on mALS data in seedling
stands demonstrated that leaf-on data outperformed leaf-off data for tree height estimation of Norway
spruce seedlings.

A few studies have assessed trees height in seedling stands using ALS data with ABA methods.
The heights of seedling stands were reported with rRMSEs of 28% [26] and 32.0% [9] at the stand
and plot levels, respectively. The improvement in height estimation accuracy achieved in this study
could mainly be attributed to the higher point density (~57 points/m2) used in our research compared
to the point density of approximately 0.7 and 5 points/m2 applied in the two others, respectively.
Therefore, dense point clouds from ALS also enhance the tree height estimation in seedling stands
studies. In addition to the dense point clouds used, the difference could also be due to the ITD method
used in this study.

The tree height was underestimated by 6.88% in leaf-on data with a Cth of 0.2 m. Korpela et al. [28]
also used the ITD method with leaf-on ALS and aerial imagery in seedling stands, and obtained
underestimations of tree height of between 20% and 40%. Their study area was more complex
(i.e., higher tree density and classification classes) than that in this study. The point density of
57.17 points/m2 used in this study was higher than theirs, i.e., 6–9 points/m2, and they used spectral
data from aerial images instead of our use of intensity data from mALS.

Two similar studies, Vepakomma et al. [8] and Imangholiloo et al. [7], using the ITD method
and UAV-PPC data instead of ALS, underestimated height by 0.39 and 0.16 m (6.90%), respectively.
Reaching the same accuracy (bias: 0.16 m in leaf-on, Cth 0.2 m) reflects the superior ability of ALS, as it
operates independent of direct sunlight and clear sky. Goodbody et al. [15] and Puliti et al. [9] applied
UAV in seedling studies using OBIA and ABA methods, achieving an RMSE of 0.92 m and an rRMSE
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of 30.9%, respectively. The improvement (RMSE: 0.25 m and rRMSE: 10.76% in leaf-on, Cth 0.2 m)
could be due to the ITD method and the dense point clouds used in this study.

In terms of optimum Cth for tree height estimation, the Cth values of 0.2 m, and 0.2, and 0.6 m were
found to be optimal for YoS and AdS, respectively. These values are lower than the 0.5 and 1.0 m Cth

values for YoS and AdS, respectively, selected by Imangholiloo et al. [7]. Similarly, in terms of optimum
Cth among all plots, the Cth of 0.2 m in this study was lower than the 0.4 m used by Korpela et al. [28].
The lower Cth could be due to the remaining (correctly classified) tall spruces, thereby increasing the
mean plot height. Ørka et al. [26] used three Cth values of 0, 0.5, and 1.0 m for ALS point clouds to
predict tree-height-related attributes in regeneration forests. They achieved the most accurate height
estimation with a Cth of 0 m, which is close to the Cth value of 0.2 m in our study.

Another factor potentially influencing height estimation is the accuracy of Näslund’s model in
predicting heights of field data, as well as the accuracy of the DTM used for the height normalization
of ALS point clouds. If tree height is measured at the individual tree level during field surveys,
Näslund’s model would not be needed and the ALS-estimated tree heights could be assessed at the
individual tree and plot levels. More important than the previously mentioned factors, possible tree
height growth between leaf-off ALS data acquisitions and field data collection (time lag was about
45 days) could have caused the higher underestimation of height in leaf-off than in leaf-on conditions.

Another issue in the tree height estimations of YoS was their higher vulnerability to the influence of
DTM errors compared to AdS. When height normalization of point clouds was conducted, we assumed
that errors affected over- or under- estimations of YoS heights more than for AdS. To illustrate, if DTM
has a 20 cm error, for example, its proportional error to a tree with a height of 1 m (20%) would be
higher than for a tree with a height of 20 m (1%). As a result, the error in DTM for height normalization
can influence tree density estimation, especially for YoS. This consequently affects height estimation,
because trees are relatively smaller in YoS than AdS; hence, the error in the DTM influences the
estimation proportional to their short height more significantly.

4.4. Comparing Leaf-Off and Leaf-On Data

We observed that the mALS data acquired in leaf-off conditions produced the most accurate
estimates for classification and tree density. Leaf-on data produced more accurate results for tree
height estimation.

For classification in leaf-off and leaf-on conditions, the advantage seen from the use of leaf-off data
in this study was in line with the findings of Kim et al. [40], who used leaf-off and leaf-on ALS data for
species classification of mature broadleaved and coniferous trees. Their leaf-off data yielded a higher
OA (83.4%) than leaf-on data (73.1%). The outperformance of leaf-off ALS data was supported by other
studies that used Optech Titan mALS data for species classification of trees in mature forests [31,38].
The more accurate OA in the leaf-off condition in our study may have occurred because coniferous
trees are green in leaf-off, while other classes (birch, grass, etc.) are leafless. Therefore, the classification
was easier in leaf-off than in leaf-on conditions, in which both tree species (Norway spruce and birch)
and nontree classes were green, and harder to separate. Leaf-off MCI data were more favorable for
classification than leaf-on because the interference of grass and bushes was eliminated in the leaf-off

condition. Classification was closely related to the accuracy of estimating tree density; thus, leaf-off

also produced more accurate results compared to leaf-on data.
In terms of height estimation of Norway spruce seedlings, leaf-on data yielded more accurate

results. Compared with mature forests, leaf-off ALS data analyzed with ABA outperformed leaf-on
data [41–43]. The decision to use leaf-off data was, however, in contrast with our findings that showed
higher suitability of leaf-on data for height estimation. This finding could be due to height growth
between leaf-off ALS data collection and field height measurement during leaf-on time (time lag of
45 days), as explained in Section 4.3.
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5. Conclusions

The ability of mALS compared to single-channel ALS data to characterize tree attributes (species,
density, and height) in seedling stands in YoS, AdS, and all plots was assessed in this study. The data
were obtained in leaf-off and leaf-on conditions. The optimal Cth for each of the estimations was
addressed separately.

According to our classification results, the MCI data produced more accurate results compared to
both SCI-Ch1 and SCI-Ch2 for characterizations of small seedlings (YoS). The use of MCI data also
allowed detection using a lower Cth compared to both SCI-Ch1 and SCI-Ch2. The reason for this
finding probably lies in the higher efficiency of MCI than SCI in the detection of vegetation. It is
critical to adjust Cth depending on the tree height in seedling stands, since, based on the results,
the classification accuracy improved with increasing Cth.

Our results also demonstrated the capability of mALS for tree density estimations in seedling
plots. The results were further improved with the use of the ITD method. A Cth of 0.4 m yielded the
most accurate tree density estimation for all plots, whereas Cth values of 0.4 and 1.0 m yielded the
best results for YoS and AdS, respectively. Overall, tree density was estimated more accurately in AdS
compare to YoS, and in the leaf-off compared to the leaf-on condition. Leaf-on conditions, however,
resulted in more accurate tree height estimates. The Cth of 0.2 m resulted in the most accurate tree
height estimates for all plots, whereas Cth values of 0.2 and both 0.2 and 0.6 m resulted in the most
accurate results for YoS and AdS, respectively. We concluded that mALS data are a reliable resource for
undertaking RS-based inventories of seedling stands. Further research with a larger number of sample
plots including diverse seedling species, densities, and heights is required. Generally, leaf-off data are
recommended, since the data can additionally provide accurate DTMs, if not otherwise available.
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