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Abstract: Hundreds of narrow bands over a continuous spectral range make hyperspectral imagery
rich in information about objects, while at the same time causing the neighboring bands to be highly
correlated. Band selection is a technique that provides clear physical-meaning results for hyperspectral
dimensional reduction, alleviating the difficulty for transferring and processing hyperspectral images
caused by a property of hyperspectral images: large data volumes. In this study, a simple and
efficient band ranking via extended coefficient of variation (BRECV) is proposed for unsupervised
hyperspectral band selection. The naive idea of the BRECV algorithm is to select bands with relatively
smaller means and lager standard deviations compared to their adjacent bands. To make this
simple idea into an algorithm, and inspired by coefficient of variation (CV), we constructed an
extended CV matrix for every three adjacent bands to study the changes of means and standard
deviations, and accordingly propose a criterion to allocate values to each band for ranking. A derived
unsupervised band selection based on the same idea while using entropy is also presented. Though
the underlying idea is quite simple, and both cluster and optimization methods are not used, the
BRECV method acquires qualitatively the same level of classification accuracy, compared with some
state-of-the-art band selection methods

Keywords: hyperspectral imagery; unsupervised band selection; coefficient of variation; band
ranking; entropy; conditional entropy

1. Introduction

Hyperspectral images have a wide range of applications, such as change detection [1], target
detection [2–4], semantic interpretation [5] and image classification [6–8]. The reason why hyperspectral
images can identify and distinguish a variety of materials is that they have a large amount of narrow
spectral bands [9]. On the other hand, while providing detailed spectral measurements, the large
number of bands also make the hyperspectral images inconvenient to acquire, store, transmit, process,
and also cause the curse of dimensionality [10,11]. However, a subset (i.e., a few bands) of an entire
hyperspectral data set could be sufficient to identify and distinguish objects as the information in the
nearby bands is highly correlated [12,13]. As a result, dimensional reduction should be applied to reduce
the inter-band spectral redundancy without losing significant information in data exploitation [14–16]
and to fulfill the requirements of following tasks, taking classification after dimensional reduction as
an example.
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Feature extraction and band selection (also known as feature selection) are the two main methods
of dimensional reduction for hyperspectral images. Unlike band selection methods, which only retain
the most informative observations without any transformation [17], the results of feature extraction
methods are hard to explain physically. Hence, band selection methods are beneficial for hyperspectral
data, not only for analysis but also for storage, transmission and processing. Meanwhile, they may
also alleviate the effect of the curse of dimensionality.

According to whether prior knowledge, such as object information, participates in the band
selection process and the degree of participation, band selection methods are divided into three
categories: unsupervised band selection methods, semi-supervised band selection methods and
supervised band selection methods [18]. As the acquisition of the prior knowledge is costly and usually
time-consuming, unsupervised band selection methods are the most practical.

According to [9], there are mainly six types of hyperspectral band selection methods:
ranking-based, searching-based, clustering-based, sparsity-based, embedding-based and hybrid
scheme-based. The ranking-based methods rank each band according to some metrics (such as
max information, dissimilarity, and/or correlation of bands) [19,20]. Searching-based methods
convert the band selection problem to an optimization problem and select bands according to a
given criterion function [21–23]. Clustering-based methods select the representation bands from
the band clusters [9,24–26]. Sparsity-based methods transform the band selection problem to a
sparsity-constrained optimization one [9,27,28]. Embedding-based methods use different learning
criteria, such as the support vector machine (SVM) classifier or deep learning model, to select
bands [29,30].

In this work, we propose a simple and efficient band ranking method termed BRECV for
hyperspectral band selection. The basic idea is to select bands with relatively lower means and larger
standard deviation compared with their adjacent bands. It is believed that these bands are more
informative than their adjacent bands and should be chosen.

Coefficient of variation (CV), also known as relative standard deviation, is a dimensionless statistic
composed of the mean and the standard deviation of a signal. To study the changes of means and
standard deviations between every three nearby bands, we extend the original scalar CVs to a 3×3 CV
matrix. Analyzing the changes of means and standard deviations becomes easier if the CV matrix is
used. A criterion for assigning values for each band for ranking is proposed. Depending on the simple
idea, some derived methods using entropy are also presented.

As we only deal with the mean and standard deviation of each band in a hyperspectral image,
we do not need to face the large-volume problem, thus speeding up the band selection schedule.
Meanwhile, though the idea is very simple and both cluster and optimization methods are not used,
the BRECV method achieves qualitatively the same level of classification accuracy compared with
some state-of-the-art band selection methods. In addition, the bands selected have a clear physical
meaning: more informative than their adjacent bands.

2. Data Sets

Several real-world hyperspectral data sets were used to verify the effectiveness of the BRECV
method. The details of these data sets are introduced in this section.

• Indian Pines

The Indian Pines data set was captured by AVIRIS sensor in Northwestern Indiana, USA,
in 1992 [31]. This image consists of 145 × 145 pixels. There are 16 labeled classes, and the wavelengths
range from 0.4 µm to 2.5 µm [32]. Four all-zero bands and 20 bands affected by water absorption are
removed [31]. Two hundred bands are left for doing experiments.
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• Kennedy Space Center (KSC)

This data set was also captured by AVIRIS sensor over Kennedy Space Center, Florida, USA,
in 1996. The image consists of 512×614 pixels. There are 13 labeled classes, and 176 bands are left for
doing experiments. The wavelengths of this image range from 0.4 µm to 2.5 µm.

• Pavia University

This data set was captured by the ROSIS sensor over Pavia, Northern Italy, in 1998. This image
consists of 610 × 340 pixels, and the wavelengths range from 0.43 µm to 0.86 µm. The spatial resolution
is 1.3 m. There are 103 bands and 9 classes of interest.

• Botswana

This data set was captured by the NASA EO-1 satellite over Okavango Delta, Botswana, in 2001.
The image consists of 1476 × 256 pixels and 14 classes of interest. The wavelengths of this image range
from 0.4 µm to 2.5 µm. One hundred and forty-five bands are left to do experiments.

• Salinas

The Salinas data set was also captured by AVIRIS sensor over Salinas Valley, California, USA,
in 1998. The image consists of 512 × 217 pixels. There are 16 classes of interest, and the wavelengths
range from 0.4 µm to 2.5 µm. Twenty bands are removed due to water absorption, and 204 bands are
used in experiments.

• Taita Hills

The Taita Hills data set was captured by airborne AisaEAGLE (Specim Ltd., Finland) imaging
spectrometer in Taita-Taveta District, Kenya, in 2012 [8]. The image consists of 586 × 701 pixels
with 64 bands from 0.4 µm to 1.0 µm in 0.6 m ground resolution. The image is classified with field
information to six agricultural classes, namely to “Acacia” (Acacia spp.), “Banana” (Musa acuminate),
“Grevillea” (Grevillea robusta), “Maize” (Zea mays), “Mango” (Mangifera indica) and “Sugarcane”
(Saccharum officinarum) [8]. Out of the classes, acacia, grevillea and mango are trees between 3 to
14 m tall, while banana, maize and sugarcane are tall grasses. Figure 1 shows the data in false-color
image composition and the related ground truth investigated the following day after the airborne
imagery acquisition.
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ground truth (b).
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3. The BRECV Method

3.1. Underlying Impetus

We believe that for adjacent bands, a band with a relatively smaller mean and a relatively larger
standard deviation means that this band is more informative than its nearby bands. On the contrary,
if a band has an increased mean and a decreased standard deviation compared with its adjacent band,
this band should not be selected. In our experiment, we directly dropped these bands. From the above
analysis, the changes of means and standard deviations of nearby bands need to be investigated.

To this end, we constructed a 3×3 matrix extended from CV for every three adjacent bands. CV is
dimensionless and calculates the standard deviation on the unit mean of a band:

CV = σ/µ (1)

σ is the standard deviation, and µ is the mean of a band.

3.2. Extend Scalar CVs to A 3 × 3 Matrix

Given three adjacent bands named b1, b2 and b3 with means of µ1, µ2, µ3 and standard deviations
of σ1, σ2, σ3, we could construct a matrix:

M =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 =

σ1/µ1 σ2/µ1 σ3/µ1

σ1/µ2 σ2/µ2 σ3/µ2

σ1/µ3 σ2/µ3 σ3/µ3

 (2)

Clearly, we could evaluate the changes of standard deviations through each row in M and the
changes of means through each column in M. For a band with a relatively larger standard deviation
compared with its adjacent bands, m22 will be greater than m21 and m23. For a band with a relatively
smaller mean compared with its adjacent bands, m22 will also be greater than m12 and m32, as mean is
on the denominator. From this observation, it is easy to select bands with relatively smaller means
and larger standard deviations. To evaluate the degree of increase in the standard deviation of b2
compared with b1 and b3, and the degree of decrease in the mean of b2 compared with b1 and b3,
a criterion is proposed:

value(b2) = m22 −m21 − (m12 −m11) + m22 −m23 − (m32 −m33) (3)

m22 −m21 − (m12 −m11) is used to compare b2 with b1, and m22 −m23 − (m32 −m33) is used to compare
b2 with b3. The right-hand side of Equation (3) is equal to (σ2 − σ1)(1/µ2 − 1/µ1), where σ2 − σ1

assesses the degree of how much bigger σ2 is than σ1, and 1/µ2 − 1/µ1 measures the degree of how
much smaller µ2 is than µ1. Therefore, according to Equation (3), b2 will have a large value if its mean
is relatively smaller, and its standard deviation is relatively bigger. For every three adjacent bands,
we could use Equation (3) to assign value to the middle band. Therefore, every band in a hyperspectral
image will obtain a value for ranking. Ranking these values, we could get the order of each band for
band selection.

3.3. Does Entropy Also Work?

In information theory, entropy is usually used to assess the “information” in a signal. The BRECV
method tries to select bands that are more informative than their adjacent bands. It is reasonable to
ask whether entropy could also be used based on the same idea as the BRECV method. To verify this,
we use the conditional entropy to find the relationship between nearby bands. For every adjacent three
bands, b1, b2 and b3, b2 will obtain a value based on:

value(b2) = H(b2|b1) + H(b2|b3). (4)
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H(b2 | b1) is the conditional entropy of b2 given b1 and H(b2 | b3) is the conditional entropy of b2
given b3. Then, the values are sorted for band selection. This method is termed as band ranking via
entropy (BRE).

3.4. Drop Adjacent Bands

In some cases, nearby bands will have similar values, resulting in that some adjacent bands will
be selected sequentially. To avoid this situation, a band will be dropped if its left band or right band
has already been chosen. For instance, if b2 has already been selected, b1 and b3 will be discarded
even they have higher values than other bands. The BRECV and BRE methods with dropping adjacent
bands are termed as BRECVD and BRED.

The CV values of each band could be directly sorted; this also could be used for band selection.
This method is called as band ranking via CV (BRCV). Therefore, in this study, three band selection
methods are proposed: BRCV, BRECV/BRECVD and BRE/BRED.

3.5. Time Complexity Analysis

Given a hyperspectral image I ∈ Rh×w×c, the time complexity to calculate means of bands is
O(hwc), and the time complexity to calculate standard deviations of bands is O(hwc). h means the
height, w means the width, and c means the number of bands in a hyperspectral image. Operations
on allocating values for bands, sorting values and dropping adjacent bands involve only means and
standard deviations. Since c usually is far less than hwc, we could omit these operations. Hence,
the time complexities of BRECV and BRECVD is linear.

Though we do not analyze the space complexity in detail, as only means and standard deviations
of bands are used, the space complexity is also very low for BRECV and BRECVD. For the BRCV,
BRE and BRED methods, their performances are not robust, which will be shown in the experimental
results later. In this case, we do not analyze their computational complexity.

4. Results and Discussion

To verify the effectiveness of the proposed methods, classification experiments were implemented
on the above-mentioned six different real-work hyperspectral images. Details of the experimental
setup and results are shown in this section together with the discussion.

4.1. Comparison Methods

• Optimal neighborhood reconstruction (ONR) [32]

ONR selects bands by finding the optimal band combination to reconstruct the original data.
A noise reducer was used to minimize the influence of noisy bands.

• Optimal clustering framework (OCF) [26]

OCF first finds the optimal clustering under some reasonable constraint and then ranks the
clustering to effectively select bands on the clustering structure. OCF could also automatically
determine the number of the required bands to choose.

• Enhanced fast density-peak-based clustering (EFDPC) [19,32]

EFDPC tries to find the cluster centers with properties as large local density and large intercluster
distance. Large local density means a cluster should have as many points as possible. Large intercluster
distance means different cluster centers should be far from each other. EFDPC ranks bands through
weighting these two properties.
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4.2. Classifiers

Support vector machine (SVM) and k-nearest neighborhood (KNN) classifiers are used to verify
the classification performance for different band selection methods. We used the SVM and KNN
classifiers provided by MATLAB R2019b. For SVM classifiers, the kernel function is “rbf”, and the
coding method is “onevsall”. For KNN classifiers, k is 3. All the parameters were the same for each
classification experiment.

For each data set, 10% of labeled samples of each class were randomly selected to train the
classifiers, and the rest 90% of samples were used for testing. Each experiment was implemented
100 times individually, and these results were averaged to have a stable result. Overall accuracy (OA)
curves were used to compare different band select methods. Similar to [26] and [32], we only used at
most 30 bands in each experiment. Our code is available at https://github.com/cvvsu/BRECV.

4.3. Classification Results

• Indian Pines

From Figure 2, BRECV and BRECVD showed similar classification performance compared with
OCF, ONR and EFDPC. EFDPC outperformed all other band selection methods on the Indian Pines
data set. The BRCV, BRE and BRED methods did not show acceptable classification results on the
Indian Pines data set. The dropping adjacent bands method did not show an obvious improvement for
BRECV and improved the performance a little bit for BRE.

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 12 

still had a lower performance on this data set. The dropping adjacent bands method improved the

performance of the BRE method a lot.

(a) (b) 

Figure 2. Overall accuracy (OA) curves produced by support vector machine (SVM) and k-nearest 

neighborhood (KNN) classifiers for the Indian Pines data set. (a) The OA curves produced by SVM 

classifier. (b) The OA curves produced by KNN classifier.

(a) (b) 

Figure 3. OA curves produced by SVM and KNN classifiers for the KSC data set. (a) The OA curves 

produced by SVM classifier. (b) The OA curves produced by KNN classifier.

• Pavia University

From Figure 4, On the Pavia University data set, the performance of BRECVD and BRED 

methods exceeded OCF methods when the number of selected bands greater than 25. BRECV 

outperformed the EFDPC method at first and was finally overtaken. BRCV still had the lowest 

performance compared with other methods. 

• Botswana

From Figure 5, on the Botswana data set, except the BRCV method, all the other band selection

methods showed similar classification performance. 

• Salinas 

From Figure 6, on the Salinas data set, similar to the results on the Botswana data set, all methods 

except BRCV had qualitatively the same level of performance. 

• Taita Hills

Figure 2. Overall accuracy (OA) curves produced by support vector machine (SVM) and k-nearest
neighborhood (KNN) classifiers for the Indian Pines data set. (a) The OA curves produced by SVM
classifier. (b) The OA curves produced by KNN classifier.

• KSC

From Figure 3, on the KSC data set, the classification results of the BRECV and BRECVD methods
were quite similar compared with OCF and ONR and were better than EFDPC. The performances of
BRE and BRED we also acceptable on the KSC data set. However, the BRCV method still had a lower
performance on this data set. The dropping adjacent bands method improved the performance of the
BRE method a lot.

• Pavia University

From Figure 4, On the Pavia University data set, the performance of BRECVD and BRED methods
exceeded OCF methods when the number of selected bands greater than 25. BRECV outperformed the
EFDPC method at first and was finally overtaken. BRCV still had the lowest performance compared
with other methods.

https://github.com/cvvsu/BRECV
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• Botswana

From Figure 5, on the Botswana data set, except the BRCV method, all the other band selection
methods showed similar classification performance.
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• Salinas

From Figure 6, on the Salinas data set, similar to the results on the Botswana data set, all methods
except BRCV had qualitatively the same level of performance.
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• Taita Hills

From Figure 7, on the Taita Hills data set, except the BRECV method, all the other methods showed
similar classification performance. The classification result of the BRECV method was slightly worse
compared to other methods. Interestingly, the BRCV method also verified itself on the Taita Hills data
set. For the BRECVD method, there were only 26 bands selected.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 12 
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• Average OAs over different selected bands

Table 1 shows the indices of selected bands by BRECVD on different data sets. Tables 2 and 3
show the average OAs by SVM classifier and KNN classifier over the 30 selected bands, respectively.
Generally, BRECV and BRECVD had better average OAs on different data sets compared with the
EFDPC method. The performances of BRE and BRED methods were not robust, and their performances
on the Indian Pines data set were quite bad. The BRCV method achieved relatively better performance
on the Taita Hills data set, and on other data sets, the BRCV method did not have acceptable
classification performance.
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Table 1. Bands selected by band ranking via extended coefficient of variation with dropping adjacent
bands (BRECVD) on different data sets.

Data Sets Indexes of Selected 30 Bands

Indian Pines 13/18/32/90/26/65/117/163/190/181/161/168/193/178/128/49/173/51/170/70/186/88/183/84/72/145/196/131/176/165
KSC 79/81/60/73/70/49/23/28/54/43/67/51/30/20/18/15/143/41/45/87/12/56/9/58/47/6/75/65/39/90

Pavia University 3/12/63/26/20/60/39/47/100/88/42/31/90/53/49/93/5795/44/98/35/51/102/18/82/15/9/85/80/74
Botswana 121/43/51/7/97/16/41/65/4/18/92/129/100/70/56/87/21/137/53/34/123/132/26/95/126/58/24/90/119/106

Salinas 72/68/32/54/11/27/167/24/62/93/164/128/176/134/19/125/15/52/75/13/136/172/141/131/91/46/100/87/89/17
Taita Hills (26 bands) 31/13/48/51/54/63/45/56/61/59/42/2/24/40/22/29/20/26/18/6/16/8/10/38/4/35

Table 2. OAs by SVM with standard deviation averaged over 30 selected bands.

Indian
Pines

Pavia
University Salinas KSC Botswana Taita Hills

BRCV 0.5553± 0.1122 0.6699± 0.0967 0.6412± 0.1490 0.6547± 0.1110 0.4852± 0.0852 0.7944± 0.0567
BRE 0.5476± 0.0733 0.7229± 0.1641 0.8389± 0.1081 0.8001± 0.0873 0.7988± 0.1426 0.8005± 0.0899

BRED 0.5821± 0.0868 0.8005± 0.1526 0.8577± 0.1146 0.8061± 0.0866 0.8144± 0.1363 0.8096± 0.0881
BRECV 0.7018± 0.1093 0.8191± 0.1085 0.8818± 0.0841 0.8059± 0.1027 0.8261± 0.1067 0.7963± 0.0332

BRECVD 0.6984± 0.1082 0.8272± 0.1134 0.8883± 0.0792 0.8158± 0.1079 0.8393± 0.1051 0.8059± 0.0421
EFDPC 0.7037± 0.1216 0.7046± 0.1432 0.8815± 0.0769 0.7690± 0.1818 0.8086± 0.1325 0.7733± 0.1046

OCF 0.6974± 0.0886 0.8606± 0.0909 0.8974± 0.0640 0.8369± 0.1308 0.8275± 0.1053 0.8091± 0.0593
ONR 0.7242± 0.0954 0.8838± 0.0830 0.8939± 0.0795 0.8393± 0.0924 0.8559± 0.1038 0.8146± 0.0871

Table 3. OAs by KNN with standard deviation averaged over 30 selected bands.

Indian
Pines

Pavia
University Salinas KSC Botswana Taita Hills

BRCV 0.5174± 0.0816 0.6813± 0.0754 0.6484± 0.1510 0.6229± 0.0881 0.4660± 0.0596 0.7603± 0.0623
BRE 0.5014± 0.0583 0.7132± 0.1217 0.8233± 0.1020 0.7788± 0.0741 0.7664± 0.1269 0.7542± 0.0700

BRED 0.5422± 0.0645 0.7760± 0.1117 0.8373± 0.1074 0.7723± 0.0710 0.7870± 0.1227 0.7606± 0.0676
BRECV 0.6341± 0.0799 0.8042± 0.0810 0.8587± 0.0739 0.7707± 0.0866 0.7656± 0.0984 0.7408± 0.0461

BRECVD 0.6332± 0.0795 0.8095± 0.0838 0.8650± 0.0691 0.7757± 0.0893 0.7883± 0.0939 0.7509± 0.0524
EFDPC 0.6393± 0.0880 0.7105± 0.1114 0.8610± 0.0748 0.7273± 0.1565 0.7780± 0.1145 0.7301± 0.0993

OCF 0.6330± 0.0705 0.8265± 0.0717 0.8710± 0.0568 0.7936± 0.1192 0.7933± 0.0891 0.7583± 0.0429
ONR 0.6401± 0.0690 0.8549± 0.0673 0.8636± 0.0983 0.7964± 0.0792 0.8210± 0.0967 0.7638± 0.0663

4.4. Discussion

From the above experiments, we found that the proposed BRECV and BRECVD methods achieved
quite stable performances on all the data sets. The performances of entropy-based methods were
not robust, and directly ranking the CV value of each band did not provide good results except
on the Taita Hills data set. One possible reason is that mean and standard deviation provide two
dimensions to investigate the relationships between nearby bands, while entropy and pure CV provide
just one dimension.

Compared with the EFDPC method, the BRECV and BRECVD methods achieved better
classification results. Only on the Indian Pines data set, both the tree methods had similar performance.
Compared with the OCF, BRECV and BRECVD showed better performance on the Indian Pines data
set and had a similar performance on the other five data sets. The ONR method outperformed all other
methods on most data sets. In most cases, dropping adjacent bands for BRE and BRECV methods
improved the classification performance.

Considering the fact that BRECV and BRECVD methods use neither clustering nor optimization
methods, and select bands based only on means and standard deviations of bands, it is reasonable to
believe these two methods are also useful for hyperspectral band selection. Moreover, the physical
meaning is clear for bands selected by BRECV and BRECVD.
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From the classification performance of the proposed methods, we could say that the bands selected
by our methods were representative and informative since these selected bands from a hyperspectral
image achieved qualitatively the save level of classification performance, compared with the results of
some state-of-the-art band selection methods and the whole hyperspectral data set. Figure 8 illustrates
the scatter plots of means and standard deviations of bands in each data set; the selected bands are
also shown in filled red colors. Figure 8 illustrates a concrete sense of the relative locations of selected
bands in each hyperspectral data set. For the KSC data set, the selected bands were mainly located in a
small band region, which is similar to the results of ONR. In ONR, the selected bands from the KSC
data set only covered 2

5 of the whole spectrum.
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5. Conclusions

This study investigated the relationship between nearby bands in a hyperspectral data set and
proposes a criterion for band ranking. An extended matrix based on coefficient of variation was used
to help study changes of means and standard deviations. Finally, several band ranking methods
are presented for hyperspectral band selection according to the relationships between nearby bands.
The proposed methods were quite efficient, as the methods did not need to face the large-volume
problem. Compared with other band selection methods, the proposed methods obtained qualitatively
the same level of classification performance.
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