
https://helda.helsinki.fi

Square functions and radonifying operators

Hytönen, Tuomas

Springer-Verlag

2018

Hytönen , T , van Neerven , J , Veraar , M & Weis , L 2018 , Square functions and

radonifying operators . in ANALYSIS IN BANACH SPACES : VOL II: PROBABILISTIC

METHODS AND OPERATOR THEORY . vol. 67 , Ergebnisse der Mathematik und iher

Grenzgebiete 3 Folge , vol. 67 , Springer-Verlag , HEIDELBERGER PLATZ 3, D-14197

BERLIN, GERMANY , pp. 251-358 . https://doi.org/10.1007/978-3-319-69808-3_4

http://hdl.handle.net/10138/321713

https://doi.org/10.1007/978-3-319-69808-3_4

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Tuomas Hytönen
Jan van Neerven
Mark Veraar
Lutz Weis

Analysis in Banach Spaces

Volume II
Probabilistic Methods and Operator Theory

September 15, 2017



Dedicated to the memory of

Nigel J. Kalton (1946–2010)
&

Alan G. R. McIntosh (1942–2016)







Preface

In Volume I of ‘Analysis in Banach spaces’ we presented essential techniques
for the analysis of Banach space-valued functions, from integration theory and
martingale inequalities to the extension of classical singular integral operators,
such as the Hilbert transform and Mihlin Fourier multiplier operators, from
Lp-spaces of scalar-valued functions to Lp-spaces of functions taking values in
UMD Banach spaces.

In the present volume we concentrate on a second, closely related question
central to the theory of evolution equations, namely how to extend various
classical L2-estimates and related Hilbert space techniques to the Banach
space setting, in particular to the Lp-scale.

Already in the mid-1980s, motivated by the square root problem for secto-
rial operators, Alan McIntosh forged the classical theory of square functions
in Fourier Analysis, pioneered by Paley, Marcinkiewicz–Zygmund, and Stein,
into a powerful tool for the study of general sectorial operators on Hilbert
spaces. Just as one can view Harmonic Analysis as the ‘spectral theory of
the Laplacian’ (Strichartz), McIntosh’s square function techniques for secto-
rial operators capture essential singular integral estimates still available in
this more general setting. Extension of these estimates to the Lp-setting re-
quires a substitute for the basic Hilbertian orthogonality techniques on which
they rely. The theory of random sums, in particular Rademacher sums and
Gaussian sums, originally developed in the context of Probability Theory in
Banach spaces and the Geometry of Banach spaces, provides just that. The
fine properties of Banach space-valued random sums are intimately connected
with various probabilistic notions such as type, cotype, and K-convexity which
often take on the role of geometrical properties of the classical Lp-spaces that
are explicit or implicit in the treatment of classical inequalities. The first two
chapters of this volume present those aspects that are relevant to our purpose.
For a fuller treatment of this fascinating topic the reader is referred to the
rich literature on the Geometry of Banach spaces and Probability in Banach
spaces.
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Volume I already provided a first glance into the programme outlined above
when we proved an operator-valued version of the Mihlin multiplier theorem
by replacing the uniform boundedness condition on certain operator families
appearing in the conditions of the Mihlin theorem by the stricter requirement
of R-boundedness. This magic wand can be applied to a surprising number
of operator theoretic Hilbert space results. This volume presents a wealth
of analytical methods that allow one to verify the R-boundedness of many
sets of classical operators relevant in applications to Harmonic Analysis and
Stochastic Analysis.

A second tool to extend Hilbert space techniques to a Banach space setting
consists of replacing L2-spaces by generalised square function estimates which,
in an abstract Banach space setting, can be alternatively described in an
operator-theoretic way through the theory of radonifying operators. This class
of operators connects the theory of Banach space-valued Gaussian random
sums to methods from operator theory in a rather direct way, thus paving
the way to substantial applications in vector-valued Harmonic Analysis and
Stochastic Analysis. On an ‘operational level’, they display the same function
space properties (such as versions of Hölder’s inequality, Fatou’s lemma, and
Fubini’s theorem) as their classical counterparts do.

With these tools at hand we present a far reaching extension of the theory
of the H1-functional calculus on Hilbert spaces to the Lp-setting, including
characterisations of its boundedness in terms of square function estimates,
R-boundedness and dilations. From these flow the results which made the
H1-functional calculus so useful in the theory of evolution equations in Lp-
spaces: the operator sum method, an operator valued calculus and a variety of
techniques to verify the boundedness of the H1-functional calculus for most
differential operators of importance in applications.

The randomisation techniques and their operator theoretic counterparts
worked out in the present book will also set the stage for Volume III. There
we will present vector-valued function spaces, complete our treatment of vec-
tor valued harmonic analysis and discuss the theory of operator valued Itô
integrals in UMD Banach spaces and their application to maximal regularity
estimates for stochastic evolution equations with Gaussian noise. It is here
that generalised square functions display their full power as they furnish a
close link between stochastic estimates such as the vector valued Burkholder–
Davis–Gundy inequalities and harmonic analytic properties of the underlying
partial differential operator, encoded in its H1-calculus.

*
It is perhaps interesting to notice a change of generation in the contents of
this volume compared to Volume I. With important exceptions mostly on the
scale of subsections, the main body of the material presented in Volume I may
be considered ‘classical’ by now. In fact, the following subjective definition of
‘classical’ has been has proposed by D. Cruz-Uribe (private communication):
“Anything that was proved before I started graduate school.” By a three-
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quarter majority within the present authorship, this definition would render
all results obtained by mid-1980’s ‘classical’.

The main results of the first two chapters on random sums and their con-
nections to Banach space theory are still largely classical in this sense. How-
ever, an important turning point occurs in the beginning of Chapter 8, dedi-
cated to the notion of R-boundedness. Although the deep roots of this theory
are older, its systematic development only begins in the 1990’s and reaches
its full bloom around and after the turn of the millennium; some basic ques-
tions related to the comparison of R-boundedness with related notions were
settled as recently as 2016. Likewise, while the foundations of the theory of
radonifying operators are certainly classical, their interpretation and system-
atic exploitation as generalised square functions in Chapter 9 is a successful
creation of the 2000’s. As for the theory of the H1-calculus developed in the
last chapter, only the groundwork in a Hilbert space context is classical. Its
extension to Banach spaces is more recent, and especially its fundamental con-
nections with the generalised square functions, a key theme of our treatment,
have only been revealed during this century.

*
Two stylistic conventions of Volume I will stay in force in the present volume
as well: Most of the time, we are quite explicit with the constants appearing
in our estimates, and we especially try to keep track of the dependence on the
main parameters involved. Some of these explicit quantitative formulations
appear here for the first time. We also pay more attention than many texts
to the impact of the underlying scalar field (real or complex) on the results
under consideration. A careful distinction between linear and conjugate-linear
duality is particularly critical to the correct formulation of some key results
concerning the generalised square functions, which are among the main char-
acters of the present volume.

*
This project was initiated in Delft and Karlsruhe in 2008. Critical to its
eventual progress was the possibility of intensive joint working periods in
the serenity provided by the Banach Center in Będlewo (2012), Mathematis-
ches Forschungsinstitut Oberwolfach (2013), Stiftsgut Keysermühle in Klin-
genmünster (2014 and 2015), Hotel ’t Paviljoen in Rhenen (2015), and Buiten-
goed de Uylenburg in Delfgauw (2017). All four of us also met three times in
Helsinki (2014, 2016 and 2017), and a number of additional working sessions
were held by subgroups of the author team. One of us (J.v.N.) wishes to thank
Marta Sanz-Solé for her hospitality during a sabbatical leave at the University
of Barcelona in 2013.

Preliminary versions of parts of the material were presented in advanced
courses and lecture series at various international venues and in seminars at
our departments, and we would like to thank the students and colleagues who
attended these events for feedback that shaped and improved the final form
of the text. Special thanks go to Alex Amenta, Markus Antoni, Sonja Cox,
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Chiara Gallarati, Fabian Hornung, Luca Hornung, Nick Lindemulder, Emiel
Lorist, Bas Nieraeth, Jan Rozendaal, Emil Vuorinen, and Ivan Yaroslavtsev
who did detailed readings of portions of this book. Needless to say, we take full
responsibility for any remaining errors. A list with errata will be maintained on
our personal websites. We wish to thank Klaas Pieter Hart for LATEX support.

During the writing of this book, we have benefited from external funding
by the European Research Council (ERC Starting Grant “AnProb” to T.H.),
the Academy of Finland (grants 130166 and 133264 to T.H., and the Centre of
Excellence in Analysis and Dynamics, of which T.H. is a member), the Nether-
lands Organisation for Scientific research (NWO) (VIDI grant 639.032.201 and
VICI grant 639.033.604 to J.v.N. and VENI grant 639.031.930 and VIDI grant
639.032.427 to M.V.), and the German Research Foundation (DFG) (Research
Training group 1254 and Collaborative Research Center 1173 of which L.W. is
a member). We also wish to thank the Banach Center in Będlewo and Mathe-
matisches Forschungsinstitut Oberwolfach for allowing us to spend two highly
productive weeks in both wonderful locations.

Delft, Helsinki and Karlsruhe,
September 15, 2017.
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(⌦,A ,P) - probability space
P - probability measure
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Standing assumptions

Throughout this book, two conventions will be in force.

1. Unless stated otherwise, the scalar field K can be real or complex. Results
which do not explicitly specify the scalar field to be real or complex are
true over both the real and complex scalars.

2. In the context of randomisation, a Rademacher variable is a uniformly
distributed random variable taking values in the set {z 2 K : |z| = 1}.
Such variables are denoted by the letter ". Thus, whenever we work over
R it is understood that " is a real Rademacher variable, i.e.,

P(" = 1) = P(" = �1) =
1

2
,

and whenever we work over C it is understood that " is a complex
Rademacher variable (also called a Steinhaus variable), i.e.,

P(a < arg(") < b) =
1

2⇡
(b� a).

Occasionally we need to use real Rademacher variables when working over
the complex scalars. In those instances we will always denote these with
the letter r. Similar conventions are in force with respect to Gaussian
random variables: a Gaussian random variable is a standard normal real-
valued variable when working over R and a standard normal complex-
valued variable when working over C.
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Random sums

One of the main themes in these volumes is the use of probabilistic techniques
in general, and random sums in particular, in Banach space-valued Analysis.
A first glimpse of their usefulness was already offered by the classical Theorem
2.1.9 of Paley, Marcinkiewicz and Zygmund on the extendability of bounded
operators on Lp(S) to bounded operators on Lp(S;H), the proof of which
involved estimates on Gaussian random sums. On the other hand, Rademacher
random sums played a key role both in the formulation and in the proofs of
the Littlewood–Paley theory in Lp(Rd;X) developed in Chapter 5.

In the chapter at hand, we will make a systematic investigation of the
properties of the mentioned the two aforementioned species of random sums,
Rademacher and Gaussian sums. The first three Sections 6.1, 6.2, and 6.3
are concerned with their basic relations and estimates in the context of finite
sums, whereas Section 6.4 is devoted to two fundamental convergence results,
the Itô–Nisio theorem and the Hoffmann-Jørgensen–Kwapień theorem, for
infinite random series. In the final Section 6.5, we present Pisier’s theorem
on the comparison of Rademacher sums and trigonometric sums. It will be
applied in the further development of the Littlewood–Paley theory, to which
we return in Chapter 8.

With one exception, the present chapter deals with general aspects of
random sums that remain valid in arbitrary Banach spaces. The rich interplay
between more sophisticated estimates for these sums on the one hand, and the
properties of the underlying Banach spaces on the other hand, will be taken
up in the following Chapter 7. The exception is the Hoffmann-Jørgensen–
Kwapień theorem, which relates the convergence of X-valued random sums
to the containment of c

0

as an isomorphic subspace in X. It will play an
important role in Chapter 9, where we extend the present considerations of
random sums over finite or countable sequences xn = f(n) in order to deal
with certain ‘randomised norms’ of functions f on general measure spaces.
This, in turn, provides a powerful tool for the study of the H1-calculus in
the last chapter.
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6.1 Basic notions and estimates

We begin with a brief discussion of the notion of random variable in the Banach
space-valued context. We refer the reader to Appendix E for an introduction
to some standard notions of probability theory.

Let X be a (real or complex) Banach space.

Definition 6.1.1. An X-valued random variable is an X-valued strongly mea-
surable function ⇠ defined on some probability space (⌦,F ,P).

The underlying probability space (⌦,F ,P) will always be considered given
and fixed, and when several random variables are considered simultaneously
we will assume them to be defined on the same probability space, unless the
contrary is stated (and there are also cases when this is useful).

The notion of strong measurability has been studied in great detail in
Chapter 1. We recall that a function is said to be strongly measurable if it is
the pointwise limit of a sequence of simple functions. By the Pettis measura-
bility theorem (Theorem 1.1.6) a function ⇠ is strongly measurable if and only
if it is separably-valued and weakly measurable, where the latter means that
the scalar-valued functions h⇠, x⇤i are measurable in the usual sense for all
functionals x 2 X⇤. Moreover, strongly measurable functions are measurable
(Corollary 1.1.2), i.e., the pre-images of open sets are measurable, and in sep-
arable Banach spaces the notions of strong measurability and measurability
coincide (Corollary 1.1.10). As a consequence of these facts, standard defini-
tions and results for measurable random variables taking values in separable
metric spaces, such as those collected in Appendix E, apply in the present
setting.

Remark 6.1.2 (Strong measurability versus strong P-measurability). A further
subtlety concerns the distinction between strong measurability and strong
µ-measurability (cf. Definitions 1.1.4 and 1.1.14). Recall that a function is
said to be strongly P-measurable if it is P-almost everywhere (in contrast to
everywhere) the pointwise limit of a sequence of simple functions; if we work
over a general measure space it is furthermore required that the approximating
simple functions be supported on sets of finite measure. If ⇠ is a strongly P-
measurable, then ⇠ can be redefined on a P-null set to become a strongly
measurable random variable e⇠ (Proposition 1.1.16). We may then define

P(⇠ 2 B) := P(e⇠ 2 B)

for any set B in B(X), the Borel �-algebra of X. This definition is indepen-
dent of the choice of the pointwise defined representative e⇠ and allows one
to treat strongly P-measurable functions as random variables. As long as we
are dealing with properties of random variables that only depend on their
(joint) distributions, we may thus use the notions of ‘strongly measurable’
and ‘strongly P-measurable’ interchangeably, and we will indeed do so. Only
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when the risk of confusion arises we will be more precise in this respect, for
instance when dealing with the �-algebra generated by a random variable or
a family of random variables.

In the same vein, an integrable random variable will always mean a random
variable that is Bochner integrable with respect to P.

The Bochner integral of an integrable X-valued random variable ⇠ is called
its mean (value) or expectation and is denoted by E(⇠) or just E⇠. Thus,

E⇠ :=
ˆ
⌦
⇠ dP.

The distribution of ⇠ is the Borel probability measure µ⇠ on X defined by

µ⇠(B) := P(⇠ 2 B), ⇠ 2 B(X).

As a consequence of the substitution rule (Theorem 1.2.6), the expectation of
an integrable random variable is given in terms of its distribution by

E⇠ =
ˆ
X
x dµ⇠(x).

Simple criteria for random variables to have the same distribution can be
given in terms of the so-called characteristic function, which is discussed in
Section E.1.c.

A family of X-valued random variables (⇠i)i2I is said to be independent
if for all choices of distinct indices i

1

, . . . , iN 2 I and all B
1

, . . . , BN 2 B(X)
we have

P(⇠i1 2 B
1

, . . . , ⇠i
N

2 BN ) =
N
Y

n=1

P(⇠i
n

2 Bn),

or equivalently (by Dynkin’s lemma, Lemma A.1.3) the distribution of the
XN -valued random variable (⇠i1 , . . . , ⇠iN ) equals the product of the distribu-
tions of the ⇠i

n

. For further details the reader is referred to Section E.1.b.
The identity

E(⇠
1

⇠
2

) = E⇠
1

· E⇠
2

for independent scalar-valued integrable random variables ⇠
1

and ⇠
2

admits the
following extension to the vector-valued case. For a discussion of independence
of random variables with values in a metric space we refer to Appendix E.

Proposition 6.1.3. Let X
1

, X
2

, Y be Banach spaces and � : X
1

⇥X
2

! Y
be a bounded bilinear mapping. If the random variables ⇠

1

and ⇠
2

are indepen-
dent and integrable, with values in X

1

and X
2

respectively, then �(⇠
1

, ⇠
2

) is
integrable and

E�(⇠
1

, ⇠
2

) = �(E⇠
1

,E⇠
2

).
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Proof. The integrability of �(⇠
1

, ⇠
2

) follows from

Ek�(⇠
1

, ⇠
2

)k 6 k�kE(k⇠
1

kk⇠
2

k) = k�kEk⇠
1

kEk⇠
2

k < 1,

where k�k := sup{k�(x
1

, x
2

)k : kx
1

k, kx
2

k 6 1} is finite by assumption.
To prove the identity for the expectation we proceed as follows. Let A

1

2
�(⇠

1

) and A
2

2 �(⇠
2

) (we use the notation �(⇠) to denote the �-algebra
generated by ⇠). Then, by bilinearity,

E�(1A1 ⌦ x
1

,1A2 ⌦ x
2

) = E(1A11A2�(x1

, x
2

))

= E1A1E1A2�(x1

, x
2

)

= �(E(1A1 ⌦ x
1

),E(1A2 ⌦ x
2

)).

Once again by bilinearity, this proves the identity E�(�
1

,�
2

) = �(E�
1

,E�
2

)
for all simple �k : ⌦ ! Xk that are �(⇠k)-measurable, k = 1, 2. By
dominated convergence, this implies the same identity for arbitrary �k 2
L1(⌦,�(⇠k);Xk); in particular, this proves the identity for ⇠

1

and ⇠
2

. ⇤

It is evident how to extend this result to the multilinear case, and to the
sesquilinear case when K = C. The prime examples of interest include duality
and scalar multiplication

�(x, x⇤) := hx, x⇤i X
1

= X, X
2

= X⇤, Y = K,

�(�, x) := �x X
1

= K, X
2

= Y = X.

In such cases, we will apply Proposition 6.1.3 casually, without an explicit
reference to either the proposition or a particular “bilinear form”.

6.1.a Symmetric random variables and randomisation

A distinguished role in the subsequent developments is played by random
variables with a simple additional property:

Definition 6.1.4 (Symmetric random variables). An X-valued random
variable is called:

(1) symmetric, if ⇠ and ✏⇠ are identically distributed for all ✏ 2 K with |✏| = 1;
(2) real-symmetric, if ⇠ and �⇠ are identically distributed.

Clearly, symmetry implies real-symmetry, and in real Banach spaces the two
notions coincide. In complex Banach spaces a random variable ⇠ is symmetric
if and only if ⇠ and ei✓⇠ are identically distributed for all ✓ 2 [0, 2⇡]. We will
sometimes refer to the latter property as complex-symmetry.

Symmetric random variables have a useful monotonicity property with
respect to taking Lp-norms:
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Proposition 6.1.5. Let ⇠ and ⌘ be X-valued random variables. If ⌘ is real-
symmetric and independent of ⇠, then for all 1 6 p 6 1 we have

k⇠kLp

(⌦;X)

6 k⇠ + ⌘kLp

(⌦;X)

.

Somewhat informal statements such as this one are to be interpreted in the
obvious way; for instance, here we are saying that ⇠ + ⌘ 2 Lp(⌦;X) implies
⇠ 2 Lp(⌦;X) along with the stated inequality.

Proof. The real-symmetry of ⌘ and the independence of ⇠ and ⌘ imply that
⇠ + ⌘ and ⇠ � ⌘ are identically distributed, and therefore

�

Ek⇠kp
�

1/p
=

1

2

�

Ek(⇠ + ⌘) + (⇠ � ⌘)kp
�

1/p

6 1

2

�

Ek⇠ + ⌘kp
�

1/p
+

1

2

�

Ek⇠ � ⌘kp
�

1/p
=
�

Ek⇠ + ⌘kp
�

1/p
.

Here we took 1 6 p < 1; the modification needed for p = 1 is obvious. ⇤

As a typical application, suppose (⇠n)Nn=1

is a sequence of independent real-
symmetric scalar-valued random variables and (xn)

N
n=1

is a sequence in X.
Then, for all I ✓ {1, . . . , N},

�

�

�

X

n2I

⇠nxn

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

n=1

⇠nxn

�

�

�

Lp

(⌦;X)

.

By a limiting argument, a similar inequality holds for convergent random
series. A more general inequality, the Kahane contraction principle, will be
discussed in the next section.

Of special interest are Rademacher and Gaussian random variables.

Definition 6.1.6 (Rademacher variables and sequences). A Radem-
acher variable is a random variable " uniformly distributed over {z 2 K : |z| =
1}. A Rademacher sequence consists of independent Rademacher variables "n.

In the real case, a Rademacher variable " takes the values ±1 with equal
probability 1

2

, i.e.,

P(" = 1) = P(" = �1) =
1

2
.

In the complex case, a Rademacher variable is a random variable with uni-
form distribution on the unit circle in the complex plane. Classically, such
variables are sometimes called Steinhaus random variables. If we wish to use
real Rademachers in a complex setting, this will be explicitly mentioned and
the notation r will be used instead of ".

The notion of a Gaussian random variable is discussed at length in Ap-
pendix E.2, and we will not repeat it here. We only point out that this notion
is adapted to the scalar field in the same way as the notion of symmetry
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and that of a Rademacher variable. If we wish to use real Gaussian variables
when working over the complex scalars, we will always mention this explic-
itly. In this situation we will use the notation g for real Gaussians and reserve
the notation � for complex Gaussians. Whereas Rademacher variables are
intimately connected with unconditionality and provide the tool for randomi-
sation techniques, the main virtue of Gaussians is their invariance under the
orthogonal group. This is the basis of the principle of covariance domination,
the consequences of which will be explored in later chapters.

Definition 6.1.7 (Gaussian sequences). A Gaussian sequence consists of
independent standard Gaussian variables �n.

The reader should keep in mind that both the definition of symmetry and that
of Rademacher and Gaussian variables depends on the choice of the under-
lying scalar field. Although this convention is perhaps not entirely standard
in the Probability literature, it is analogous to the standard convention in
Functional Analysis that a linear map is a real-linear map in the real case and
a complex-linear map in the complex case. We wish to emphasise that this is
not an accidental observation but a key point: our definition of symmetry is
consistent with the scalar multiplication of the underlying Banach space X.
The advantages of this approach will become clear along the way.

The Rademacher variables are often hiding in the background, even when
their presence is not immediately obvious, thanks to the following basic
lemma, which may be regarded as a toy model of the randomisation tech-
nique discussed below.

Lemma 6.1.8 (Polar decomposition). Let ⇠ be a symmetric X-valued
random variable, and " an independent Rademacher variable. Then ⇠ and "⇠
are identically distributed.

If X = K, they are also identically distributed with "|⇠|.

Proof. Preserving the joint distributions, we may assume that the independent
random variables are defined on different probability spaces ⌦⇠ and ⌦". We
denote the corresponding probabilities and expectations by obvious subscripts.
Then

P("⇠ 2 B) = E1{"⇠2B} = E"E⇠1{"⇠2B}
(⇤)
= E"E⇠1{⇠2B} = P(⇠ 2 B),

where the critical step (⇤) used the fact that, for each fixed ! 2 ⌦", the
random variables "(!)⇠ and ⇠ on ⌦⇠ have equal distribution by the assumed
symmetry of ⇠.

If X = K we can make a similar computation

P("⇠ 2 B) = E⇠E"1{"⇠2B}
(⇤)
= E⇠E"1{"|⇠|2B} = P("|⇠| 2 B).

In (⇤) we used the fact that, for each fixed ! 2 ⌦⇠, the random variables
⇠(!)/|⇠(!)| · " and ", and therefore also ⇠(!)" and |⇠(!)|", have equal distri-
bution by the assumed symmetry of ". ⇤
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Randomisation

We will now present an extremely useful result that permits one to change
the signs of the coefficients in a sum of independent symmetric variables in a
deterministic or random way. For its formulation we need a definition.

Definition 6.1.9. Let I and J be index sets.

• Two families of random variables (⇠i)i2I and (⌘i)i2I are called identi-
cally distributed if for all indices i

1

, . . . , iN 2 I the random variables
(⇠i1 , . . . , ⇠iN ) and (⌘i1 , . . . , ⌘iN ) are identically distributed.

• Two families of random variables (⇠i)i2I and (⌘j)j2J are called indepen-
dent if for all indices i

1

, . . . , iN 2 I and j
1

, . . . , jM 2 J the random vari-
ables (⇠i1 , . . . , ⇠iN ) and (⌘j1 , . . . , ⌘jM ) are independent.

By Dynkin’s lemma (Lemma A.1.3), the random variables (⇠i1 , . . . , ⇠iN ) and
(⌘i1 , . . . , ⌘iN ) are identically distributed if and only if

P(⇠i1 2 B
1

, . . . , ⇠i
N

2 BN ) = P(⌘i1 2 B
1

, . . . , ⌘i
N

2 BN )

for all Borel sets B
1

, . . . , BN . In particular, two families of independent random
variables are identically distributed if and only if for every i 2 I the random
variables ⇠i and ⌘i are identically distributed.

Likewise, the random variables (⇠i1 , . . . , ⇠iN ) and (⌘j1 , . . . , ⌘jM ) are inde-
pendent if and only if

P(⇠i1 2 B
1

, . . . , ⇠i
N

2 BN , ⌘j1 2 C
1

, . . . , ⌘j
M

2 CM )

= P(⇠i1 2 B
1

, . . . , ⇠i
N

2 BN )P(⌘j1 2 C
1

, . . . , ⌘j
M

2 CM )

for all Borel sets B
1

, . . . , BN and C
1

, . . . , CM . It is not true, however, that two
families of independent random variables (⇠i)i2I and (⌘i)i2I are independent
if for all i, i0 2 I the random variables ⇠i and ⌘i0 are independent.

Example 6.1.10. Let "
1

and "
2

be independent Rademacher variables and let
⌘ := "

1

"
2

. Then clearly {"
1

, "
2

} and {⌘} are not independent; however, ⌘ is
independent of both "

1

and "
2

. In fact, assuming without loss of generality
that "

1

and "
2

are defined on different probability spaces ⌦
1

,⌦
2

, we have

P("
1

2 A, ⌘ 2 B) = E
1

E
2

(1{"12A}1{"1"22B}) = E
1

(1{"12A}E2

1{"1"22B})

= E
1

(1{"12A}E2

1{"22B}) = E
1

(1{"12A})E2

(1{"22B}),

where E
1

(1{"12A}) = P("
1

2 A) and

E
2

(1{"22B}) = E
1

E
2

(1{"22B}) = E
1

E
2

(1{"1"22B}) = P(⌘ 2 B).

Proposition 6.1.11 (Randomisation). Let (⇠n)n>1

be a sequence of inde-
pendent and symmetric X-valued random variables, let (✏n)n>1

be a sequence
in {z 2 K : |z| = 1}, and let ("n)n>1

be a Rademacher sequence which is
independent of (⇠n)n>1

.
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(1) The sequences (⇠n)n>1

, (✏n⇠n)n>1

, and ("n⇠n)n>1

are identically dis-
tributed.

(2) If the random variables ⇠n are scalar-valued, then the sequences (⇠n)n>1

and ("n|⇠|n)n>1

are identically distributed.

The same result holds if one replaces {symmetric, K, Rademacher} by {real-
symmetric, C, real Rademacher}.

Proof. (1): By independence, we may assume that each ⇠n and "n is defined
on a different probability space, say ⇠n on ⌦n and "n on ⌦0

n. From this it is
clear that the sequence ("n⇠n)n>1

since the random variables are defined on
the different probability spaces ⌦n ⇥⌦0

n.
Thus it suffices to show that for each fixed n > 1, the random variables

⇠n, ✏n⇠n, and "n⇠n are identically distributed. For ⇠n and ✏n⇠n this is the
definition of symmetry. For ⇠n and "n⇠n, this is Lemma 6.1.8.

(2): As above, it suffices to prove that ⇠n and "n|⇠n| are identically dis-
tributed. This follows from Lemma 6.1.8. ⇤

A first application of these ideas is the following simple maximal estimate.

Proposition 6.1.12 (Lévy’s inequality). Let ⇠
1

, . . . , ⇠n be independent
real-symmetric X-valued random variables, and put Sk :=

Pk
j=1

⇠j for k =
1, . . . , n. Then for all r > 0 we have

P
⇣

max
16k6n

kSkk > r
⌘

6 2P(kSnk > r).

Proof. Put

A :=
�

max
16k6n

kSkk > r
 

,

Ak := {kS
1

k 6 r, . . . , kSk�1

k 6 r, kSkk > r}; k = 1, . . . , n.

The sets A
1

, . . . , An are disjoint and
Sn

k=1

Ak = A.
The identity Sk = 1

2

(Sn + (2Sk � Sn)) implies that

{kSkk > r} ✓ {kSnk > r} [ {k2Sk � Snk > r}.

By Proposition 6.1.11, (⇠
1

, . . . , ⇠n) and (⇠
1

, . . . , ⇠k,�⇠k+1

, . . . ,�⇠n) are iden-
tically distributed, which, in view of the identities

Sn = Sk + ⇠k+1

+ · · ·+ ⇠n, 2Sk � Sn = Sk � ⇠k+1

� · · ·� ⇠n,

implies that (⇠
1

, . . . , ⇠k, Sn) and (⇠
1

, . . . , ⇠k, 2Sk � Sn) are identically dis-
tributed. Hence,

P(Ak) 6 P(Ak \ {kSnk > r}) + P(Ak \ {k2Sk � Snk > r})
= 2P(Ak \ {kSnk > r}).
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Summing over k, we obtain

P(A) =

n
X

k=1

P(Ak) 6 2

n
X

k=1

P(Ak \ {kSnk > r}) = 2P(kSnk > r).

⇤

6.1.b Kahane’s contraction principle

One of the most useful tools for estimating random sums is the following
contraction principle due to Kahane, which asserts that scalar sequences act
as multipliers with respect to the Lp-norm. The randomisation technique gives
us this immediate extension from a version already covered in Proposition
3.2.10.

Theorem 6.1.13 (Kahane’s contraction principle). Let 1 6 p 6 1 and
let (⇠n)Nn=1

be a sequence of independent random variables in Lp(⌦;X).

(i) If all ⇠n are K-symmetric, then for all sequences (an)Nn=1

in K we have

�

�

�

N
X

n=1

an⇠n
�

�

�

Lp

(⌦;X)

6 max
16n6N

|an|
�

�

�

N
X

n=1

⇠n
�

�

�

Lp

(⌦;X)

.

(ii) If all ⇠n are R-symmetric, then for all sequences (an)Nn=1

in C we have

�

�

�

N
X

n=1

an⇠n
�

�

�

Lp

(⌦;X)

6 ⇡

2
max

16n6N
|an|

�

�

�

N
X

n=1

⇠n
�

�

�

Lp

(⌦;X)

.

The constants in these inequalities are sharp.

Proof. The special case that ⇠n = "nxn in (i) or ⇠n = rnxn in (ii) has already
been treated in Proposition 3.2.10. We will use randomisation to reduce the
general statement to this special case.

Indeed, letting ("n)Nn=1

be an independent Rademacher sequence on an-
other probability space ⌦0, we have

�

�

�

N
X

n=1

an⇠n
�

�

�

Lp

(⌦;X)

=
�

�

�

N
X

n=1

an"n⇠n
�

�

�

Lp

(⌦;Lp

(⌦0
;X))

6 max
16n6N

|an|
�

�

�

N
X

n=1

"n⇠n
�

�

�

Lp

(⌦;Lp

(⌦0
;X))

= max
16n6N

|an|
�

�

�

N
X

n=1

⇠n
�

�

�

Lp

(⌦;X)
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in case (i), and (ii) is proved similarly with obvious modifications. Both equal-
ities above are based on randomisation, and the inequality is the special case
of the theorem proved in Proposition 3.2.10, with "nxn in place of ⇠n. The
sharpness has already been observed in this special case.

While the above chain of identities and estimates above is meaningful for
all p 2 [1,1], one can also derive the case p = 1 simply as the limit p ! 1
of finite exponents, using kfkL1

(⌦)

= limp!1 kfkLp

(⌦)

. ⇤

Remark 6.1.14. The symmetry assumption may be dropped from one of the
variables ⇠m, say ⇠

1

, in Theorem 6.1.13. Namely, suppose that ⇠
1

, . . . , ⇠N are
independent and ⇠

2

, . . . , ⇠N are K-symmetric, and consider a random variable
" uniformly distributed over {z 2 K : |z| = 1} and independent of all
⇠
1

, . . . , ⇠N . Then (⇠
1

, "⇠
2

, . . . , "⇠N ) is equidistributed with (⇠
1

, ⇠
2

, . . . , ⇠N ), and

�

�

�

N
X

n=1

an⇠n
�

�

�

Lp

(⌦;X)

=
�

�

�

a
1

⇠
1

+

N
X

n=2

an"⇠n
�

�

�

Lp

(⌦;X)

=
�

�

�

a
1

"̄⇠
1

+

N
X

n=2

an⇠n
�

�

�

Lp

(⌦;X)

,

where "̄⇠
1

is a K-symmetric random variable. In particular, it follows that

�

�

�

a
1

"̄⇠
1

+

N
X

n=2

an⇠n
�

�

�

Lp

(⌦;X)

6 kak1
�

�

�

N
X

n=1

⇠n
�

�

�

Lp

(⌦;X)

.

This formulation includes Proposition 6.1.5 as a special case.

6.1.c Norm comparison of different random sums

In this subsection we prove several basic Lp-norm comparisons between the
different types of random sums discussed so far.

Rademacher sums versus other symmetric random sums

We begin with the comparison of Rademacher sums against random sums
involving general symmetric random coefficients.

Proposition 6.1.15 (Comparison). Let 1 6 p 6 1 and let (⇠n)Nn=1

be a
sequence of independent symmetric random variables in Lp and let ("n)n>1

denote a Rademacher sequence. Then for all x
1

, . . . , xN 2 X we have

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6 max
16n6N

1

E|⇠n|

�

�

�

N
X

n=1

⇠nxn

�

�

�

Lp

(⌦;X)

.

Note that in the case ⇠n is real/complex symmetric, the Rademacher sequence
in the above result should be real/complex as well.
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Proof. We may assume that the sequences (⇠n)Nn=1

and ("n)Nn=1

are defined on
two separate probability spaces ⌦⇠ and ⌦". Expectations will be denoted by
E⇠ and E" respectively. We may also assume that E⇠|⇠n| > 0, since otherwise
there is nothing to prove.

Let e⇠n := ⇠n/E⇠|⇠n|. By the Kahane contraction principle it suffices to
prove the inequality

E"
�

�

�

N
X

n=1

"nxn

�

�

�

p
6 E⇠

�

�

�

N
X

n=1

e⇠nxn

�

�

�

p
.

By Proposition 6.1.11 the sequences (e⇠n)Nn=1

and ("n|e⇠n|)Nn=1

are identically
distributed. Using this together with the fact that E⇠|e⇠n| = 1 and Jensen’s
inequality, we estimate, for p 2 [1,1).

E"
�

�

�

N
X

n=1

"nxn

�

�

�

p
= E"

�

�

�

E⇠
N
X

n=1

"n|e⇠n|xn

�

�

�

p

6 E"E⇠
�

�

�

N
X

n=1

"n|e⇠n|xn

�

�

�

p
= E⇠

�

�

�

N
X

n=1

e⇠nxn

�

�

�

p
.

The case p = 1 can be obtained as the limit p ! 1 in the statement. ⇤

A converse estimate holds for uniformly bounded random variables:

Proposition 6.1.16. Let (⇠n)n>1

be a sequence of independent symmetric
random variables in L1. Then for all x

1

, . . . , xN 2 X and 1 6 p 6 1 we
have

�

�

�

N
X

n=1

⇠nxn

�

�

�

Lp

(⌦;X)

6 max
16n6N

k⇠nkL1

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

.

Proof. By Proposition 6.1.11 and the contraction principle we have

�

�

�

N
X

n=1

⇠nxn

�

�

�

p

Lp

(⌦;X)

= E⇠E"
�

�

�

N
X

n=1

"n⇠nxn

�

�

�

p

6 E⇠ max
16n6N

k⇠nkpE"
�

�

�

N
X

n=1

"nxn

�

�

�

p

6 max
16n6N

k⇠nkpL1

�

�

�

N
X

n=1

"nxn

�

�

�

p

Lp

(⌦;X)

if p 2 [1,1), and the case p = 1 follows by taking the limit p ! 1. ⇤

We now specialise to the comparison of Rademacher and Gaussian random
sums. To this purpose, we recall the identities (cf. (E.2) and (E.4))
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E|�| = 1p
2⇡

ˆ 1

�1
|x|e�x2/2 dx =

2p
2⇡

ˆ 1

0

te�t2/2 dt =
p

2/⇡ (6.1)

in the real case, and

E|�| = 1

⇡

ˆ
C
|z|e�|z|2 dz = 2

ˆ 1

0

r2e�r2 dr =
1

2

p
⇡ (6.2)

in the complex case.

Corollary 6.1.17. If ("n)n>1

is a Rademacher sequence and (�n)n>1

is a
Gaussian sequence, then for all x

1

, . . . , xN 2 X and 1 6 p < 1,
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6 1

E|�|

�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

, (6.3)

with E|�| as in (6.1) (in the real case) or (6.2) (in the complex case).

Note that Gaussian sums are not in the scope of Proposition 6.1.16 (because a
Gaussian random variable is unbounded), and indeed the next example shows
that the estimate reverse to (6.3) fails for X = c

0

. As will be shown later
(Corollary 7.2.10), for Banach spaces X with finite cotype a reverse estimate
does hold.

Example 6.1.18. Let (en)Nn=1

be the standard basis of `1N . Then

E
�

�

�

N
X

n=1

"nen
�

�

�

p

`1
N

= 1 and E
�

�

�

N
X

n=1

�nen
�

�

�

p

`1
N

> E max
16n6N

|�n|p > (log(N))p/2

5p/2

for any p 2 [1,1). Here the final estimate follows from (E.10). In particular,
there does not exist any finite constant C > 0 such that

�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;c0)
6 C

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;c0)

holds for all N > 1.

Real-symmetric sums versus complex-symmetric sums

We now turn to the comparison of real and complex versions of our basic
random sums. Propositions 6.1.19 and 6.1.21 show that it is always possible
to translate estimates in terms of complex Rademachers or Gaussians into
estimates for real Rademachers or Gaussians.

Proposition 6.1.19. Let (rn)n>1

and ("n)n>1

be real and complex Radem-
acher sequences, respectively, and let X be a complex Banach space. Then for
all x

1

, . . . , xN 2 X and 1 6 p 6 1 we have

2

⇡

�

�

�

N
X

n=1

rnxn

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6 ⇡

2

�

�

�

N
X

n=1

rnxn

�

�

�

Lp

(⌦;X)

.

Moreover, the constant ⇡
2

in the second estimate is optimal.
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Proof. We may assume that (rn)n>1

and ("n)n>1

are defined on distinct prob-
ability spaces ⌦ and ⌦0. For each fixed !0 2 ⌦0, we have

2

⇡

�

�

�

N
X

n=1

rnxn

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

n=1

rn"n(!
0)xn

�

�

�

Lp

(⌦;X)

6 ⇡

2

�

�

�

N
X

n=1

rnxn

�

�

�

Lp

(⌦;X)

,

where the second estimate is an application of the contraction principle (The-
orem 6.1.13(ii)) with an = "n(!0) and ⇠n = rnxn, and the first one is also seen
as an application of the same result by taking an = "̄n(!) and ⇠n = rn"n(!)xn.

Taking the Lp(⌦0)-norms and using the randomisation identity

�

�

�

N
X

n=1

rn"nxn

�

�

�

Lp

(⌦⇥⌦0
;X)

=
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦0
;X)

,

we obtain the claimed estimate.
We show that the estimate is optimal in the end-point case p = 1. It

suffices to consider X = C. Assume the second estimate holds with constant
C instead of ⇡

2

. Let xn = e2⇡in/N . Then we have the following chain

1 =
1

N

�

�

�

N
X

n=1

"nxn

�

�

�

L1
(⌦)

6 C

N

�

�

�

N
X

n=1

rnxn

�

�

�

L1
(⌦)

! 2C

⇡
,

where the first identity is verified in Lemma 6.1.20 below, and the final limit
as N ! 1 has been evaluated in the proof of Proposition 3.2.10. This shows
that C > ⇡/2. ⇤

The proof of sharpness above used the following simple result concerning the
L1-norms of Rademacher sums.

Lemma 6.1.20. For all scalars a
1

, . . . , aN ,

�

�

�

N
X

n=1

an"n
�

�

�

L1
(⌦)

=

N
X

n=1

|an|.

Proof. Without loss of generality we can assume an 6= 0 for all 1 6 n 6 N . The
inequality k

PN
n=1

an"nkL1
(⌦)

6 PN
n=1

|an| is trivial. To prove the opposite
inequality we consider the real and complex case separately.

In the real case one has

P
⇣

�

�

�

N
X

n=1

an"n
�

�

�

=

N
X

n=1

|an|
⌘

> P
⇣

N
\

n=1

{"n = sgn(an)}
⌘

= 2�N .

From this the required inequality follows. In the complex case let ↵ 2 (0,⇡/2)
be arbitrary. Then
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P
⇣

�

�

�

N
X

n=1

an"n
�

�

�

> cos(↵)
N
X

n=1

|an|
⌘

> P
⇣

<
N
X

n=1

an"n > cos(↵)
N
X

n=1

|an|
⌘

> P
⇣

N
\

n=1

{| arg(an"n)| 6 ↵}
⌘

= (↵/⇡)N .

Therefore, k
PN

n=1

an"nkL1
(⌦)

> cos(↵)
PN

n=1

|an|. As ↵ 2 (0,⇡/2) was arbi-
trary, the result follows. ⇤

We have the following Gaussian analogue of Proposition 6.1.19.

Proposition 6.1.21. Let (gn)n>1

and (�n)n>1

and be real and complex Gaus-
sian sequences, respectively, and let X be a complex Banach space. Then for
all x

1

, . . . , xN 2 X and 1 6 p < 1 we have

1p
2

�

�

�

N
X

n=1

gnxn

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

6
p
2
�

�

�

N
X

n=1

gnxn

�

�

�

Lp

(⌦;X)

.

Moreover, the constant 1p
2

in the first estimate is optimal.

Proof. On a possibly larger probability space let (g0n)n>1

be a real Gaussian
sequence which is independent of (gn)n>1

. By Proposition 6.1.5,

�

�

�

N
X

n=1

gnxn

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

n=1

(gn + ig0n)xn

�

�

�

Lp

(⌦;X)

.

The first inequality follows from this by noting that the random variables gn+
ig0n are independent complex Gaussians with variance 2. The second inequality
follows by considering real and imaginary parts separately and noting that
<�n and =�n are independent Gaussians with variance 1

2

.
The constant

p
2 on the left-hand side of the estimate is optimal already

for N = 1. Indeed, from (E.2) and (E.4) we see that

kgkp
k�kp

=

p
2� ((p+ 1)/2)

⇡1/(2p)� (p/2 + 1)
.

Letting p ! 1, the latter tends to
p
2 by elementary arguments. ⇤

Remark 6.1.22. As a consequence of the optimality on the left-hand side in
Proposition 6.1.21, a central limit theorem argument (see Proposition 6.2.5
below) shows that the constant 2/⇡ in Proposition 6.1.19 cannot be replaced
by a constant larger than 1/

p
2.
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6.1.d Covariance domination for Gaussian sums

We continue with a very useful comparison principle for Gaussian random
sums. In view of later applications we provide two versions, both of which hold
for real and complex Banach spaces, provided we keep in mind the convention
that Gaussian random variables are to be understood as real (complex) when
we work over the real (complex) scalars.

Proposition 6.1.23. Let p 2 [1,1). For all m ⇥ n matrices A = (aij)
m,n
i,j=1

with entries in K and all finite sequences (xj)
n
j=1

in X,

�

�

�

m
X

i=1

�i

n
X

j=1

aijxj

�

�

�

Lp

(⌦;X)

6 kAk
�

�

�

n
X

j=1

�jxj

�

�

�

Lp

(⌦;X)

.

For the proof of Proposition 6.1.23 we need an elementary identity for ma-
trices. Since we have reserved the symbol T ⇤ 2 L (X⇤

2

, X⇤
1

) for the Banach
adjoint of an operator T 2 L (X

1

, X
2

), we denote by T ? 2 L (H
2

, H
1

) the
Hilbert space (hermitian) adjoint of a Hilbert space operator T 2 L (H

1

, H
2

).

Lemma 6.1.24. For every square matrix T with kTk 6 1 we have

T (I � T ?T )1/2 = (I � TT ?)1/2T. (6.4)

Proof. Observe that the power series (1 � z)1/2 =
P1

n=0

�n
1
2

�

(�z)n converges
absolutely in the closed disk |z| 6 1, and hence

(I � S)1/2 =

1
X

n=0

✓

n
1

2

◆

(�1)nSn

for both self-adjoint matrices S 2 {T ?T, TT ?} of norm kSk 6 1. Since clearly
T (T ?T )n = (TT ?)nT for every n 2 N, the result follows. ⇤

Proof of Proposition 6.1.23. We may assume that kAk = 1. By adding zero
terms to the matrix A = (aij)

m,n
i,j=1

, we may also assume that m = n. Let B
be the 2n⇥ 2n-matrix given by

B =

✓

A (I �AA?)1/2

(I �A?A)1/2 �A?

◆

.

From (6.4) we deduce that B?B = I. Writing B = (bij)2ni,j=1

we have aij = bij
for 1 6 i, j 6 n. By Proposition 6.1.5,

E
�

�

�

n
X

i=1

�i

n
X

j=1

aijxj

�

�

�

p
6 E

�

�

�

2n
X

i=1

�i

n
X

j=1

bijxj

�

�

�

p
= E

�

�

�

n
X

j=1

Gjxj

�

�

�

p
,
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where Gj =
P

2m
i=1

�ibij , for 1 6 j 6 n. The result now follows from the fact
that (Gj)

n
j=1

is a Gaussian sequence by Proposition E.2.12: joint Gaussianity
is evident, and uncorrelatedness follows from

E(GkG`) =

2m
X

i=1

2m
X

j=1

E(�i�j)bikbj` =
2m
X

i=1

bikbi` = (B?B)k` = �k`.

⇤
Theorem 6.1.25 (Covariance domination - I). Let (�k)k>1

be a Gaus-
sian sequence and let x

1

, . . . , xM and y
1

, . . . , yN be elements of X satisfying
M
X

m=1

|hxm, x⇤i|2 6
N
X

n=1

|hyn, x⇤i|2, x⇤ 2 X⇤.

Then, for all 1 6 p < 1,

E
�

�

�

M
X

m=1

�mxm

�

�

�

p
6 E

�

�

�

N
X

n=1

�nyn
�

�

�

p
.

Proof. Consider the subspace V := {(hyn, x⇤i)Nn=1

: x⇤ 2 X⇤} ✓ `2N . By
assumption, the linear operator

A : V ! `2M : (hyn, x⇤i)Nn=1

! (hxm, x⇤i)Mm=1

is well defined and has norm kAk 6 1. Thus it extends (by composing with
the orthogonal projection of `2N onto V ) to a linear operator A : `2N ! `2M
of the same norm. Such an operator is given by a matrix (amn)

M,N
m,n=1

, hence
hxm, x⇤i =

PN
n=1

amnhyn, x⇤i for all m = 1, . . . ,M and x⇤ 2 X⇤, and thus
xm =

PN
n=1

amnyn for all m = 1, . . . ,M . Therefore

�

�

�

M
X

m=1

�mxm

�

�

�

Lp

(⌦;X)

=
�

�

�

M
X

m=1

�m

N
X

n=1

amnyn
�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

n=1

�nyn
�

�

�

Lp

(⌦;X)

by Proposition 6.1.23. ⇤
Corollary 6.1.26 (Covariance domination - II). Let (�k)k>1

be a Gaus-
sian sequence. Let x

1

, . . . , xM and y
1

, . . . , yN be elements of a complex Banach
space X satisfying

M
X

m=1

(<hxm, x⇤i)2 6
N
X

n=1

(<hyn, x⇤i)2, x⇤ 2 X⇤.

Then, for all 1 6 p < 1,

E
�

�

�

M
X

m=1

�mxm

�

�

�

p
6 E

�

�

�

N
X

n=1

�nyn
�

�

�

p
.



6.2 Comparison of different Lp-norms 17

Proof. Applying the assumptions to ix⇤ we also obtain

M
X

m=1

(=hxm, x⇤i)2 6
N
X

n=1

(=hyn, x⇤i)2, x⇤ 2 X⇤.

Adding these inequalities gives the assumption of Theorem 6.1.25. ⇤

Note that we could also derive Theorem 6.1.25 from Corollary 6.1.26 by an
application of Lemma E.1.15.

6.2 Comparison of different Lp-norms

In this section we study another norm comparison phenomenon for random
sums, namely, the comparability of different Lp-norms of a fixed random sum.
A prime example of this phenomenon is the Kahane–Khintchine inequality
for Rademacher sums,

�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

6 q,p
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

(6.5)

for all p, q 2 (0,1). (The case of actual interest is of course 0 < p < q < 1,
since in the complementary range the result is immediate with constant 1 by
Hölder’s inequality.)

The above inequality was already given in Theorem 3.2.23, where it was
derived as a corollary of a John–Nirenberg inequality for martingales. In this
section, we give a complete alternative proof from a different point of view of
independent interest: so-called hypercontractivity of the discrete heat semi-
group. This leads to the asymptotically optimal (for large exponents) bound
of the constant, q,p 6

q

q�1

p�1

in the case we work over the real scalar field

(and consequently use real Rademacher variables) and q,p 6 ⇡2

4

q

q�1

p�1

in case
we work over the complex field (and use complex Rademachers), and thereby
to exponential square-integrability estimates as a substitute of the (false) L1

bound at the end-point q = 1.
The Gaussian version of the Kahane–Khintchine inequality holds as well

but, in contrast to some estimates in the previous section, it does not seem to
follow from a simple randomisation argument. Instead, a different approach
via the central limit theorem will be used. This has independent interest as
another route from results for Rademacher sums to their Gaussian counter-
parts.

Notation. We remind the reader that of the convention, in force throughout
these volumes, that Rademacher variables are understood to be real (resp.
complex) when we work over the real (resp. complex) scalar field. Accord-
ingly, the numerical value of the Kahane–Khintchine constant q,p depends
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on the choice of the scalar field. In certain situations one wishes to consider
real Rademacher variables even when the underlying scalar field is complex.
To anticipate on such situations we introduce the notation Rq,p for the least
constant  in the inequality

�

�

�

N
X

n=1

rnxn

�

�

�

Lq

(⌦;X)

6 
�

�

�

N
X

n=1

rnxn

�

�

�

Lp

(⌦;X)

with real Rademacher variables rn, regardless the choice of the scalar field.
For reasons of notational symmetry we also introduce the notation Cq,p for
the best constant for the inequality with complex Rademacher variables "n;
of course this definition only makes sense when the scalar field is complex.

If a fixed Banach space X is given, we denote by q,p,X the best constant
in the inequality (6.5) with the choice of xn limited to X; as in the general
Kahane–Khintchine inequality the Rademacher variables are understood to be
real or complex depending on whether X is a real or complex Banach space.
If we want to insist on the use of real (resp. complex) Rademacher variables
we write Rq,p,X (resp. Cq,p,X). With this notation the equality

q,p;XR = Rq,p,X

is evident; recall that XR is the real Banach space obtained by restricting the
scalar multiplication in X to the reals.

In all this notation, a superscript ‘�’ will be added to indicate that (real)
(complex) Rademacher variables have been replaced by (real) (complex) Gaus-
sian variables.

6.2.a The discrete heat semigroup and hypercontractivity

Consider the two-point space D = {�1, 1} with the uniform probability distri-
bution µ(±1) = 1

2

. The two-dimensional space of functions on this space has
a basis consisting of 1 (the constant function) and r (a canonical Rademacher
function defined by r(±1) = ±1).

The space DN = {�1, 1}N is sometimes called the discrete (hyper)cube.
If rn is the canonical Rademacher function defined on the nth component of
DN , by induction one checks that a basis of functions on DN is given by the
Walsh functions

w↵ :=
Y

n2↵
rn, ↵ ✓ {1, . . . , N},

where the empty product is defined as 1, as usual. It is immediate that these
functions are orthonormal in L2(DN ), where DN is equipped with the product
measure. Thus any function f : DN ! X can be written as

f =
X

↵✓{1,...,N}

w↵x↵, x↵ = E(w↵f).



6.2 Comparison of different Lp-norms 19

The discrete heat semigroup is defined as

T (t)f =
X

↵✓{1,...,N}

e�t#↵w↵x↵ =
X

↵✓{1,...,N}

⇣

Y

n2↵
e�trn

⌘

x↵ (6.6)

where #↵ is the number of elements of the set ↵. From the equality on the
right it is immediate that

T (t) =
N
Y

n=1

Tn(t), (6.7)

where
Tn(t)(x+ rny) = x+ e�trny, x, y 2 X,

is the one-dimensional discrete heat semigroup acting on the nth coordinate.
Thanks to the product formula, non-trivial properties of T (t) on DN can
be deduced from two-point inequalities on the space D = {�1, 1}. Here is a
simple example.

Lemma 6.2.1. The operators T (t), t > 0, are positive on Lp(DN ) and con-
tractive on Lp(DN ;X) for all p 2 [1,1] and all Banach spaces X.

Proof. For N = 1, the orthogonal projections to 1 and r are given by E and
I � E. Thus, for f = x+ ry with x, y 2 X, we see that

T (t)f = x+ e�try = Ef + e�t(I � E)f = e�tf + (1� e�t)Ef (6.8)

is a convex combination of the positive contractions I and E. The case of
general N > 1 follows from (6.7). ⇤

The main result of this subsection is the following strengthening known as
hypercontractivity (‘more than contractivity’). That is, as soon as t > 0, the
operator T (t) is contractive not only from Lp into itself, but into a ‘better’
space Lq ✓ Lp with q > p. (Of course, these spaces coincide as sets on the
finite measure space DN , but Lq has a stronger norm.)

Theorem 6.2.2 (Hypercontractivity of the discrete heat semigroup).
Let X be a Banach space and 1 < p 6 q < 1. Let (T (t))t>0

be the discrete
heat semigroup defined in (6.6). Then

kT (t)kLp

(DN

;X)!Lq

(DN

;X)

6 1

if and only if

e�t 6
r

p� 1

q � 1
.

As in the simple Lemma 6.2.1, the core of the theorem is a two-point inequality.
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Lemma 6.2.3 (Bonami’s inequality). Let r be a real Rademacher random
variable and let 1 < p < q < 1. Then for every real number ✓ > 0,

kx+ ✓rykLq

(⌦;X)

6 kx+ rykLp

(⌦;X)

for all x, y 2 X

if and only if

✓ 6
r

p� 1

q � 1
.

Proof. Note that the lemma is simply a restatement, with ✓ = e�t, of the fact
that Theorem 6.2.2 holds for N = 1. Since T (t) is a positive operator, it suffices
(by Theorem 2.1.3) to consider X = R. This reduction is also immediate from
(6.8), which implies that kT (t)fk 6 T (t)(kfk).
Case 1 < p < q 6 2: The result is clear for x = 0. If x 6= 0, then by
homogeneity we only need to consider x = 1.

First assume that |y| 6 1. Using the binomial series and the inequality
(1 + z)a 6 1 + az for all z > 0 and 0 < a < 1, we estimate

⇣ |1 + ✓y|q

2
+

|1� ✓y|q

2

⌘p/q
=
⇣

1 +
X

n>1

✓

q

2n

◆

✓2ny2n
⌘p/q

6 1 +
p

q

X

n>1

✓

q

2n

◆

✓2ny2n 6 1 +
X

n>1

✓

p

2n

◆

y2n =
|1 + y|p

2
+

|1� y|p

2
,

where we used that p
q

� q
2n

�

✓2n 6
� p
2n

�

. Indeed, the latter follows from

p

q

✓

q

2n

◆

✓2n 6 p(p� 1)(2� q)(3� q) · · · (2n� 1� q)

(2n)!

(p� 1)n�1

(q � 1)n�1

6 p(p� 1)(2� p)(3� p) · · · (2n� 1� p)

(2n)!
=

✓

p

2n

◆

,

where we used that 1 < p < q 6 2 implies 0 6 (k�q)/
p
q � 1 6 (k�p)/

p
p� 1

for all k > 2.
Next assume that |y| > 1. If 0 6 a, b 6 1, then 1+ab�a�b = (1�a)(1�b) >

0, so a+ b 6 1+ ab. Hence, |1± ✓y| = |y||y�1 ± ✓| 6 |y|(1± ✓y�1). Therefore,
from the above applied to y�1 we obtain that

⇣ |1 + ✓y|q

2
+

|1� ✓y|q

2

⌘

1/q
6 |y|

⇣ |1 + ✓y�1|q

2
+

|1� ✓y�1|q

2

⌘

1/q

6 |y|
⇣ |1 + y�1|p

2
+

|1� y�1|p

2

⌘

1/p

=
⇣ |1 + y|p

2
+

|1� y|p

2

⌘

1/p
.

This completes the proof for 1 < p < q 6 2. In particular, we have shown that
the operator T (t) : Lp(D) ! Lq(D) is a contraction for e�t 6

q

p�1

q�1

.
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Case 2 6 p < q < 1: We use a duality argument. Indeed, T (t) is for-
mally self-adjoint, and the conjugate exponents satisfy 1 < q0 < p0 6 2

and q0�1

p0�1

= p�1

q�1

so that kT (t)kLp

(D)!Lq

(D)

= kT (t)kLq

0
(D)!Lp

0
(D)

6 1 for

e�t 6
q

q0�1

p0�1

=
q

p�1

q�1

by the previous case.

Case 1 < p < 2 < q < 1: The result follows by combining the previous two
cases. Indeed, applying the cases already proved to the pairs (q, 2) and (2, p)

and using p�1

q�1

= p�1

2�1

2�1

q�1

, we can split t = t
1

+ t
2

so that e�t1 6
q

1

q�2

and
e�t2 6 p

p� 1. Then

kT (t)kLp!Lq = kT (t
1

)T (t
2

)kLp!Lq 6 kT (t
1

)kL2!LqkT (t
2

)kLp!L2 6 1.

Necessity of ✓ 6
q

p�1

q�1

: To prove the “if” part note that the second order
Taylor polynomials for �(y) := k1 + ✓rykqq and  (y) := kx+ rykqp satisfy

�(y) = 1 + q(q � 1)✓2y2 +O(y3) and  (y) = 1 + q(p� 1)✓2y2 +O(y3)

Therefore, Lemma 6.2.3 implies 0 6 lim
y!0

( (y)��(y))/y2 = q(p�1)�q(q�1)✓2,

and hence ✓2 6 (p� 1)/(q � 1). ⇤

Proof of Theorem 6.2.2. We use induction on N . The case N = 1 is already
contained in Lemma 6.2.3. Suppose that the theorem is true for N � 1. Then,
writing DN = DN1 ⇥ DN (where DN is simply the Nth copy of D in the
product) and accordingly T (t) = TN�1(t)TN (t), where TN�1 is the discrete
heat semigroup on DN�1 and TN on DN , we have

kT (t)fkLq

(DN

;X)

= kTN (t)TN�1(t)fkLq

(D
N

;Lq

(DN�1
;X))

6 kTN�1(t)fkLp

(D
N

;Lq

(DN�1
;X))

6 kfkLp

(D
N

;Lp

(DN�1
;X))

= kfkLp

(DN

;X)

,

where the two inequalities were applications of Lemma 6.2.3 (with range
Lq(DN�1;X) in place of X) and the induction hypothesis (pointwise on DN ).
⇤

6.2.b Kahane–Khintchine inequalities

As an immediate consequence of the hypercontractivity estimates, we obtain
the following:

Theorem 6.2.4 (Kahane–Khintchine inequality, Rademacher sums).
Let ("n)n>1

be a Rademacher sequence. Then for all 0 < p < q < 1 and all
sequences (xn)

N
n=1

in any Banach space X, we have

�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

6 q,p
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

. (6.9)
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For 1 < p < q < 1, in the real and complex case one has, respectively,

Rq,p 6
r

q � 1

p� 1
and Cq,p 6 ⇡2

4

r

q � 1

p� 1
.

In Theorem 6.6.5 in the Notes we indicate the sharper bound Cq,p 6
p

q/p in
the complex case.

Proof. By Proposition 6.1.19 it suffices to prove the estimate for a real Rade-
macher sequence (rn)n>1

. Let f :=
PN

n=1

rnxn and note that all its Lp-norms
are finite. If 1 < p < q < 1 the result follows from Theorem 6.2.2 by observing
that T (t)f = e�tf and choosing t > 0 such that e�t =

q

p�1

q�1

.
If 0 < p 6 1 < q < 1, we pick r 2 (q,1) and write 1/q = ✓/p+ (1� ✓)/r

with ✓ 2 (0, 1). Then

kfkq 6 kfk✓pkfk1�✓r 6 kfk✓p(r,qkfkq)1�✓,

and therefore kfkq 6 (1�✓)/✓r,q kfkp. It follows that q,p 6 (1�✓)/✓r,q < 1 by
the previous case.

If 0 < p < q < 1, we can pick any r 2 (1,1) and observe that kfkq 6
kfkr 6 r,pkfkp, so that q,p 6 r,p < 1 by the previous case. ⇤

In the scalar case, (6.9) reduces to the classical Khintchine’s inequality:

�1

p,2

�

�

�

N
X

n=1

cn"n
�

�

�

Lp

6
�

�

�

N
X

n=1

cn"n
�

�

�

L2
=
⇣

N
X

n=1

|cn|2
⌘

1/2
6 

2,p

�

�

�

N
X

n=1

cn"n
�

�

�

Lp

,

(6.10)
for all p 2 (0,1), where the equality is immediate by orthogonality.

In contrast to (6.10), recall from Lemma 6.1.20 that

�

�

�

N
X

n=1

cn"n
�

�

�

L1
=

N
X

n=1

|cn|.

Since the `1 and `2-norms are not comparable, the Kahane–Khintchine in-
equalities cannot be extended to q = 1.

Gaussian case

The Gaussian version of Theorem 6.2.4 does not seem to be available via a
simple randomisation argument, and we will instead introduce another im-
portant tool allowing the passage from Rademacher variables to Gaussian
variables. This is based on an application of the following consequence of the
central limit theorem (Theorems E.2.15 and E.2.16).
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Proposition 6.2.5. Let ("1m)m>1

, . . . , ("Nm)m>1

be independent Rademacher
sequences and define

⇢nk :=
1p
k

k
X

m=1

"nm, k > 1, n = 1, . . . , N.

Let �1, . . . , �N be independent standard Gaussian variables. Let (xn)
N
n=1

be a
sequence in X. Then, for all 0 < p < 1,

lim
k!1

�

�

�

N
X

n=1

⇢nkxn

�

�

�

Lp

(⌦;X)

=
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

.

Proof. Defining "m : ⌦ ! KN , ⇢k : ⌦ ! KN , and � : ⌦ ! KN in the obvious
way, by the central limit theorem (see Theorems E.2.15 and E.2.16 for the
real and complex case respectively) we have limk!1 ⇢1k = � in distribution.
Let

⇠k :=
�

�

�

N
X

n=1

⇢nkxn

�

�

�

, ⇠ :=
�

�

�

N
X

n=1

�nxn

�

�

�

.

By the continuity of the mapping f : Rn ! [0,1) given by

f(a
1

, . . . , an) =
�

�

�

N
X

n=1

anxn

�

�

�

,

this implies that ⇠k ! ⇠ in distribution.
Now let 0 < p < q < 1 be given. By Khintchine’s inequality (6.9),

k⇢nkkLq 6 q,2, where q,2 = 1 if 0 < q 6 2. Therefore, by the triangle
inequality,

k⇠kkLq 6
N
X

n=1

k⇢nkkLqkxnk 6 q,2

N
X

n=1

kxnk.

By Example A.3.2, the family {|⇠k|p : k > 1} is uniformly integrable and
therefore Proposition E.1.7 implies that limk!1 k⇠kkLp = k⇠kLp . ⇤

Theorem 6.2.6 (Kahane–Khintchine inequality, Gaussian sums). Let
0 < p < q < 1, and let (xn)

N
n=1

be a sequence in a Banach space X. Then

�

�

�

N
X

n=1

�nxn

�

�

�

Lq

(⌦;X)

6 q,p
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

,

where q,p is the best constant in the Kahane–Khintchine inequality for
Rademacher sums (Theorem 6.2.4).
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Proof. Let ("nm)m,n>1

be a doubly indexed Rademacher sequence, let (⇢nk )k,n>1

be as in Proposition 6.2.5, and let SN
k :=

PN
n=1

⇢nkxn. With SN :=
PN

n=1

�nxn,
from Proposition 6.2.5 (applied first in Lq and later in Lp) and Theorem 6.2.4
we obtain

kSNkLq

(⌦;X)

= lim
k!1

kSN
k kLq

(⌦;X)

6 q,p lim
k!1

kSN
k kLp

(⌦;X)

= q,pkSNkLp

(⌦;X)

.

⇤

6.2.c End-point bounds related to p = 0 and q = 1

In this subsection we will derive some consequences of the Kahane–Khintchine
inequalities. The results will be equally valid for both Rademacher and Gaus-
sian sequences, and we denote by (⇠n)n>1

a generic choice of either ("n)n>1

or (�n)n>1

.
As a substitute of the false L1 limit of the Kahane–Khintchine inequali-

ties, we have the following result on exponential square integrability:

Proposition 6.2.7. Let (⇠n)n>1

be either a Rademacher sequence ("n)n>1

or a Gaussian sequence (�n)n>1

, and for given x
1

, . . . , xN 2 X put S :=
PN

n=1

⇠nxn. If

0 < � <
1

2eEkSk2 ,

then
Ee�kSk2 6 1

1� 2e�EkSk2 .

Proof. We use Theorem 6.2.4 or 6.2.6 depending on the nature of ⇠n, and the
inequality

2k
2k,2 6 (2k � 1)k 6 2kkk 6 2kekk!.

(Note that, in the first step, we are using the fact that the same, and in fact
better, numerical bound for 

2k,2 holds in the complex case as in the real
case, although we only gave a proof with a slightly weaker version. Using this
weaker version would require the replacement of 2e by a somewhat larger
numerical factor.)

This gives

Ee�kSk2

=
X

k>0

1

k!
�kEkSk2k = 1 +

X

k>1

1

k!
�kEkSk2k

6 1 +
X

k>1

1

k!
�k2k

2k,2(EkSk2)k 6 1 +
X

k>1

�k(2e)k(EkSk2)k.

⇤
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The following classical lemma allows us to extend the Kahane–Khintchine
inequality to a version at the end-point p = 0.

Lemma 6.2.8 (Paley–Zygmund inequality). Let ⇠ be a non-negative ran-
dom variable. If 0 < E⇠2 6 C(E⇠)2 < 1, then for all 0 < r < 1 we have

P(⇠ > rE⇠) > (1� r)2

C
.

Proof. Using the non-negativity of ⇠ we have

(1� r)E⇠ = E(⇠ � rE⇠) 6 E(1{⇠>rE⇠}(⇠ � rE⇠)) 6 E(1{⇠>rE⇠}⇠)

and therefore, by the Cauchy–Schwarz inequality,

(1� r)2(E⇠)2 6
�

E(1{⇠>rE⇠}⇠)
�

2 6 E1{⇠>rE⇠}E⇠2 6 CE1{⇠>rE⇠}(E⇠)2.

The result follows upon dividing both sides by (E⇠)2. ⇤

Corollary 6.2.9. Let (⇠n)n>1

be either a Rademacher sequence ("n)n>1

or a
Gaussian sequence (�n)n>1

, and

S :=

N
X

n=1

⇠nxn,

where xn 2 X. If for some � > 0 and q 2 (0,1), we have

P
⇣

kSk > �
⌘

6 ⌘ <
1

2
2q,q

,

then
kSkLq

(⌦;X)

6 �

(1� 
2q,q

p
⌘)1/q

.

Proof. We apply Lemma 6.2.8 to the random variable ⇠ := kSkq. Note that the
claim of the corollary is about bounding (E⇠)1/q from above. We may assume
that E⇠ > �q, since otherwise the claim is trivial. By the Kahane–Khintchine
inequality, we then have

0 < E⇠2 6 2q
2q,q(E⇠)2 < 1.

Hence the assumption of Lemma 6.2.8 holds with C = 2q
2q,q. With r :=

�q/E⇠ 2 (0, 1), the conclusion of the said lemma, in combination with the
assumption, gives

(1� �q/E⇠)2
2
2q,q

=
(1� r)2

C2

6 P(⇠ > rE⇠) = P(⇠ > �q) = P
⇣

kSk > �
⌘

6 ⌘.

Solving for E⇠, this gives the claimed inequality. ⇤
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Remark 6.2.10. The obtained Kahane–Khintchine constant (in the case of real
Rademacher sums) is asymptotically optimal in the following sense:

lim
p6q

p,q!1

r

p� 1

q � 1
Rq,p = 1,

where p, q both tend to 1 under the condition p 6 q. Indeed, we already
proved that

q

p�1

q�1

Rq,p 6 1 for all 1 < p < q < 1. To prove the converse
bound, first note that Rq,p > kgkq/kgkp where g is a real standard Gaussian
random variable; this is immediate from (2.3). Hence it is enough to prove that
kgkp/

p
p� 1 has a limit in (0,1) as p ! 1, and this is immediate from the

exact formula (E.2) for kgkp and Stirling’s approximation of the � function.
(The value of the limit is e�1/2, but this is irrelevant.)

6.3 The random sequence spaces "p(X) and �p(X)

For 1 6 p < 1 and integers N > 1, we define "pN (X) and �pN (X) as the
Banach spaces of sequences (xn)

N
n=1

in X, endowed with the norms

k(xn)
N
n=1

k"p
N

(X)

:=
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

,

k(xn)
N
n=1

k�p

N

(X)

:=
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

.

Similarly, we denote by "p(X) and �p(X) the Banach spaces of sequences
(xn)n>1

in X for which the sums
P

n>1

"nxn and
P

n>1

�nxn converge in
Lp(⌦;X), endowed with the norms

k(xn)n>1

k"p(X)

:=
�

�

�

X

n>1

"nxn

�

�

�

Lp

(⌦;X)

= sup
N>1

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

,

k(xn)n>1

k�p

(X)

:=
�

�

�

X

n>1

�nxn

�

�

�

Lp

(⌦;X)

= sup
N>1

�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

.

(6.11)

where in both lines the second identity follows from Fatou’s lemma (which
gives the inequality ‘6’) and Proposition 6.1.5 (which gives the inequality ‘>’).
Note that we have continuous inclusions `1(X) ,! "p(X) ,! `1(X). Indeed,
by another application of Proposition 6.1.5 and the triangle inequality one
has

sup
n>1

kxnk 6
�

�(xn)n>1

�

�

"p(X)

6
X

n>1

kxnk.

A similar result holds for �p(X).
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Although (6.11) provides two descriptions of the norms of "p(X) and
�p(X), the finiteness of the suprema on the right hand sides does not imply
the convergence of the corresponding infinite sums; a simple counterexample
in the Rademacher case is the standard unit basis (xn)n>1

of c
0

. For Ba-
nach spaces not containing a closed subspace isomorphic to c

0

, the theorem of
Hoffmann-Jørgensen and Kwapień (Theorem 6.4.10) implies that the finite-
ness of the suprema in (6.11) does imply the convergence of the corresponding
infinite sums.

The following result is immediate from the Kahane–Khintchine inequalities
(Theorems 6.2.4 and 6.2.6); note in particular that these theorems immedi-
ately imply that a series

P

n>1

"nxn or
P

n>1

�nxn converges in Lp(⌦;X) if
and only if it converges in Lq(⌦;X).

Proposition 6.3.1. For all 1 6 p, q < 1 we have natural isomorphisms of
Banach spaces

"p(X) ' "q(X), �p(X) ' �q(X),

with norm equivalences

�1

p,qk(xn)n>1

k"p(X)

6 k(xn)n>1

k"q(X)

6 q,pk(xn)n>1

k"p(X)

and

�1

p,qk(xn)n>1

k�p

(X)

6 k(xn)n>1

k�q

(X)

6 q,pk(xn)n>1

k�p

(X)

.

and the same holds for finite sequences (xn)
N
n=1

, replacing "(X) and �(X) by
"N (X) and �pN (X), respectively.

Motivated by the above we will always write

"N (X) = "2N (X), "(X) = "2(X),

and similarly

�N (X) = �2N (X), �(X) = �2(X).

As a consequence of Proposition 6.1.15 we obtain:

Proposition 6.3.2. For all p 2 [1,1) we have a continuous embedding
�p(X) ,! "p(X) and

k(xn)n>1

k"p(X)

6 1

E|�|k(xn)n>1

k�p

(X)

.

Recall from (6.2) that E|�| =
p

2/⇡ in the real case and E|�| = 1

2

p
⇡ in the

complex case.
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It follows from Corollary 7.2.10 that �p(X) = "p(X) isomorphically if X
has finite cotype. Assuming the stronger property of K-convexity, the dual
spaces of "p(X) and �p(X) will be identified in Section 7.4.c.

For each p 2 [1,1) the spaces "pN (K) and �pN (K) are isomorphic to `2N
with uniform estimates in N > 1. Indeed, by Khintchine’s inequality (6.9)

�1

2,p

⇣

N
X

n=1

|xn|2
⌘

1/2
6
�

�(xn)
N
n=1

�

�

"p
N

(K)

6 p,2
⇣

N
X

n=1

|xn|2
⌘

1/2
,

and the same result holds for �pN (K). Passing to the limit N ! 1 we obtain
the isomorphisms "p(K) ' �p(K) ' `2 with

�1

2,p

⇣

X

n>1

|xn|2
⌘

1/2
6
�

�(xn)n>1

�

�

"p(K)

6 p,2
⇣

X

n>1

|xn|2
⌘

1/2
,

and similarly for �p(K).

6.3.a Coincidence with square function spaces when X = Lq

In the next proposition we give an explicit representation of "pN (X) and �pN (X)
in the case X = Lq(S) in terms of so-called square function norms.

Proposition 6.3.3. Let (S,A , µ) be a measure space and let q 2 [1,1). Then
for all x

1

, . . . , xN 2 Lq(S) and 1 6 p < 1 one has the square function
estimate

1

c

�

�

�

⇣

N
X

n=1

|xn|2
⌘

1/2�
�

�

Lq

(S)

6
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;Lq

(S))

6 C
�

�

�

⇣

N
X

n=1

|xn|2
⌘

1/2�
�

�

Lq

(S)

with c = 
2,qq,p and C = p,qq,2. The same estimates hold when the

Rademacher sequence ("n)Nn=1

is replaced by a Gaussian sequence (�n)Nn=1

.

In particular, the proposition implies that we have isomorphisms

"pN (Lq(S)) ' �pN (Lq(S)) ' Lq(S; `2N )

with isomorphism constants independent of N . Passing to the limit N ! 1
we obtain the isomorphisms

"p(Lq(S)) ' �p(Lq(S)) ' Lq(S; `2)

with the same isomorphism constants.
The above square function estimates for Rademacher and Gaussian sums

will be generalised to Banach lattices with finite cotype in Theorem 7.2.13.
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Proof of Proposition 6.3.3. We prove the result for Rademacher sums and
Gaussian sums simultaneously. Set X = Lq(S) for brevity and let (⇠n)Nn>1

be a Rademacher sequence or a Gaussian sequence. In either case, by the
Kahane–Khintchine inequalities we have

1

q,p

�

�

�

N
X

n=1

⇠nxn

�

�

�

Lq

(⌦;X)

6
�

�

�

N
X

n=1

⇠nxn

�

�

�

Lp

(⌦;X)

6 p,q
�

�

�

N
X

n=1

⇠nxn

�

�

�

Lq

(⌦;X)

.

(6.12)
Moreover, by Khintchine’s inequality (6.9), applied pointwise in S,

�

�

�

N
X

n=1

⇠nxn

�

�

�

q

Lq

(⌦;X)

=

ˆ
S
E
�

�

�

N
X

n=1

⇠nxn

�

�

�

q
dµ

6 qq,2

ˆ
S

⇣

E
�

�

�

N
X

n=1

⇠nxn

�

�

�

2

⌘q/2
dµ

= qq,2

ˆ
S

⇣

N
X

n=1

|xn|2
⌘q/2

dµ

= qq,2

�

�

�

⇣

N
X

n=1

|xn|2
⌘

1/2�
�

�

q

Lq

(S)

.

(6.13)

Reversing this reasoning we obtain

�

�

�

⇣

N
X

n=1

|xn|2
⌘

1/2�
�

�

q

Lq

(S)

6 q
2,q

�

�

�

N
X

n=1

⇠nxn

�

�

�

q

Lq

(⌦;X)

. (6.14)

The desired estimates follow by combining (6.12), (6.13), (6.14). ⇤

6.3.b Dual and bi-dual of "pN(X) and �p
N(X)

Here we identify the dual and bi-dual of the spaces of random sequences of
finite length.

Proposition 6.3.4. Let (⇠n)n>1

be a Rademacher or Gaussian sequence, let
X be a Banach space, N > 1 and p 2 [1,1). The following isometries hold

⇠pN (X) '
n

N
X

n=1

⇠nxn : xn 2 X
o

✓ Lp(⌦;X),

[⇠pN (X)]⇤ '
nh

N
X

n=1

⇠̄nx
⇤
n

i

: x⇤
n 2 X⇤

o

✓ Lp0
(⌦;X⇤)/

N
\

n=1

N(E(⇠n·)),

[⇠pN (X)]⇤⇤ ' ⇠pN (X⇤⇤) '
n

N
X

n=1

⇠nx
⇤⇤
n : x⇤⇤

n 2 X⇤⇤
o

✓ Lp(⌦;X⇤⇤),



30 6 Random sums

under the natural duality pairings

D

N
X

n=1

⇠nzn,
h

N
X

n=1

⇠̄nx
⇤
n

iE

= E
D

N
X

n=1

⇠nzn,
N
X

n=1

⇠̄nx
⇤
n+F

E

=

N
X

n=1

hzn, x⇤
ni, (6.15)

for any F 2
TN

n=1

N(E(⇠n·)), and both zn = xn 2 X and zn = x⇤⇤
n 2 X⇤⇤.

Above, we have denoted by

N(E(⇠n·)) := {F 2 Lp0
(⌦;X⇤) : E(⇠nF ) = 0}

the null space of the operator E(⇠n·) : Lp0
(⌦;X⇤) ! X⇤.

Remark 6.3.5. Since the sequences (⇠n)Nn=1

and (⇠̄n)Nn=1

are identically dis-
tributed, we have equal norms on the dual space given by

k(xn)
N
n=1

k
[⇠p

N

(X)]

⇤ =
�

�

�

h

N
X

n=1

⇠̄nx
⇤
n

i

�

�

�

Lp

0
(⌦;X⇤

)/
T

N

n=1 N(E(⇠
n

·))

=
�

�

�

h

N
X

n=1

⇠nx
⇤
n

i

�

�

�

Lp

0
(⌦;X⇤

)/
T

N

n=1 N(E(¯⇠
n

·))
,

but the latter has the disadvantage of obscuring the natural duality (6.15).

Proof of Proposition 6.3.4. For a systematic argument, we will prove a slightly
more general statement for any sequence of independent random variables
⇠n 2 Lp(⌦) \ Lp0

(⌦) with E⇠n = 0 and E|⇠n|2 = 1.

Case I: (⌦,A ,P) is finitely generated. (Note that this covers the case of the
real version of "pN (X), but not the complex nor the Gaussian cases.) The
assumption of a finitely generated measure space trivialises the duality theory
of the Lp-spaces, including the vector-valued versions and the end points p =
1,1. Thus, with E := Lp(⌦;X), we have

E⇤ = Lp0
(⌦;X⇤), E⇤⇤ = Lp(⌦;X⇤⇤).

On E, we consider the bounded projection

⇡⇠Nf :=

N
X

n=1

⇠nE(⇠̄nf),

so that ⇠pN (X) ' R(⇡⇠N ) ✓ E, where R(⇡⇠N ) denotes the range of the operator
⇡⇠N . By a general result about duals of subspaces and quotients (Proposition
B.1.4), we have

R(⇡⇠N )⇤ = E⇤/R(⇡⇠N )?, R(⇠⇠N )⇤⇤ = (E⇤/R(⇡⇠N )?)⇤ = (R(⇡⇠N )?)?,
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where ? denotes the annihilator. Moreover, for any projection P , we have

R(P )? = N(P ⇤) = R(I � P ⇤).

Using this repeatedly with both P = ⇡⇠N and P = I � (⇡⇠N )⇤, we obtain

(R(⇡⇠N )?)? = R(I � (⇡⇠N )⇤)? = R((⇡⇠N )⇤⇤).

For the specific operator ⇡⇠N , it is immediate to verify that

N((⇡⇠N )⇤) =

N
\

n=1

N(E(⇠n·)),

whereas (⇡⇠N )⇤⇤ 2 L (E⇤⇤) is given by the same formula as ⇡⇠N 2 L (E).

Case II: the general case via approximation. Note that it is obvious that the
dual and bi-dual of ⇠pN (X) '⇠,p,N XN coincide with (X⇤)N and (X⇤⇤)N as
sets, so the only issue is identifying the correct norms on these spaces. The
strategy is to do this by a reduction to Case I via approximation of ⇠n with
simple functions.

Given � > 0, we can find independent simple functions sn that share the
properties Esn = 0 and E|sn|2 = 1 with ⇠n and ksn � ⇠nk

max{p,p0} 6 �. The
space spN (X) is then defined in the obvious way with ⇠n replaced by sn. Since
these functions can be considered in the finitely generated measure space
(⌦,�(s

1

, . . . , sN ),P), Case I of the proof applies to give

kx⇤k
[sp

N

(X)]

⇤ = kx⇤k
(sp

N

)

0
(X⇤

)

for all x⇤ = (x⇤
n)

N
n=1

2 (X⇤)N ,

kx⇤⇤k
[sp

N

(X)]

⇤⇤ = kx⇤⇤k
(sp

N

)(X⇤⇤
)

for all x⇤⇤ = (x⇤⇤
n )Nn=1

2 (X⇤⇤)N ,

where we have given the following temporary notation for the norm on (X⇤)N

that we would like to identify as the dual norm corresponding to the norm
k · k⇠p

N

(X)

on XN :

k(x⇤
n)

N
n=1

k
(⇠p

N

)

0
(X⇤

)

:=
�

�

�

h

N
X

n=1

⇠̄nx
⇤
n

i

�

�

�

Lp

0
(⌦;X⇤

)/
T

N

n=1 N(E(⇠
n

·))
.

Testing the Lp0
(⌦;X⇤)-norm of

PN
n=1

⇠̄nx⇤
n + F , where F 2

TN
n=1

N(E(⇠n·))
with ⇠kxk 2 Lp(⌦)⌦X, it is immediate that

k(x⇤
n)

N
n=1

k
(⇠p

N

)

0
(X⇤

)

> 1

k⇠
1

kp
max

16k6N
kx⇤

kkX⇤ .

The bounds

k(zn)Nn=1

k⇠p
N

(Z)

> 1

k⇠
1

kp0
max

16k6N
kzkkZ , Z 2 {X,X⇤⇤},



32 6 Random sums

are similar and even easier, since no F is involved.
It is then immediate to check that
�

�

�

kxksp
N

(X)

� kxk⇠p
N

(X)

�

�

�

6
N
X

n=1

ksn � ⇠nkpkxnk 6 �Nk⇠
1

kp0kxk⇠p
N

(X)

.

On the other hand, let F 2
TN

n=1

N(E(⇠n·)). Then

F 0 := F �
N
X

n=1

s̄nE(snF ) = F �
N
X

n=1

s̄nE([sn � ⇠n]F )

belongs to
TN

n=1

N(E(sn·)), and hence

kx⇤k
(sp

N

)

0
(X⇤

)

6
�

�

�

N
X

n=1

s̄nx
⇤
n + F 0

�

�

�

Lp

0
(⌦;X⇤

)

6
�

�

�

N
X

n=1

⇠̄nx
⇤
n + F

�

�

�

Lp

0
(⌦;X⇤

)

+

N
X

n=1

ksn � ⇠nkp0kx⇤
nkX⇤

+

N
X

n=1

ksnkp0ksn � ⇠nkpkFkp0 ,

where moreover

kFkp0 6
�

�

�

N
X

n=1

⇠̄nx
⇤
n + F

�

�

�

Lp

0
(⌦;X)

+

N
X

n=1

k⇠nkp0kx⇤
nkX⇤ .

Taking the infimum over F , and bounding each kx⇤
nkX⇤ by kx⇤k

(sp
N

)

0
(X⇤

)

, we
deduce an estimate of the form

kx⇤k
(sp

N

)

0
(X⇤

)

6 (1 + cN,p,⇠�)kx⇤k
(⇠p

N

)

0
(X⇤

)

,

and an estimate reversing the roles of s and ⇠ is obtained in the same way.
Moreover, by definition of duality, we also have

kx⇤k
[⇠p

N

(X)]

⇤ = sup
n

|hx,x⇤i| : kxk⇠p
N

(X)

6 1}

6 (1 + cN,p,⇠�) sup
n

|hx,x⇤i| : kxksp
N

(X)

6 1}

= (1 + cN,p,⇠�)kx⇤k
[sp

N

(X)]

⇤ ,

and an estimate reversing the roles of s and ⇠ is again obtained in the same
way.

Summarising, we have checked that

(1 + cN,p,⇠�)
�1 6

kx⇤k
(sp

N

)

0
(X⇤

)

kx⇤k
(⇠p

N

)

0
(X)

,
kx⇤k

[sp
N

(X)]

⇤

kx⇤k
[⇠p

N

(X)]

⇤
6 (1 + cN,p,⇠�),
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and we know from Case I that kx⇤k
[sp

N

(X)]

⇤ = kx⇤k
(sp

N

)

0
(X⇤

)

. Thus

kx⇤k
[⇠p

N

(X)]

⇤ 6 (1 + cN,p,⇠�)kx⇤k
[sp

N

(X)]

⇤

= (1 + cN,p,⇠�)kx⇤k
(sp

N

)

0
(X)

6 (1 + cN,p,⇠�)
2kx⇤k

(⇠p
N

)

0
(X)

,

and an estimate in the reverse direction is similar. Thus

(1 + cN,p,⇠�)
�2 6

kx⇤k
[⇠p

N

(X)]

⇤

kx⇤k
(⇠p

N

)

0
(X)

6 (1 + cN,p,⇠�)
2.

This bound holds for arbitrary � > 0 and is independent of the approxi-
mating functions sn (which depend on �). Letting � ! 0, we deduce that
kx⇤k

[⇠p
N

(X)]

⇤ = kx⇤k
(⇠p

N

)

0
(X)

. The equality of the bi-dual norms, namely
kx⇤⇤k

[⇠p
N

(X)]

⇤⇤ = kx⇤⇤k⇠p
N

(X⇤⇤
)

, is obtained in a similar way. ⇤

Remark 6.3.6 (Rademacher projections). In the case of the space "pN (X), the
projections ⇡"N =: ⇡N , which played a key role in the previous proof, are called
the Rademacher projections. They will be studied in detail in Section 7.4.a in
connection with the so-called K-convexity property.

6.4 Convergence of random series

We will now present some applications of the techniques developed so far to
the convergence of infinite random series. The main results of this section,
the Itô-Nisio theorem and the Hoffmann-Jørgensen–Kwapień theorem, pro-
vide two examples of ‘weak equals strong’ results: if the random series has
sufficient ‘structure’, a rather weak a priori assumption on the convergence
or boundedness of the partial sums implies stronger forms of convergence.

6.4.a Itô–Nisio equivalence of different modes of convergence

The main result of this subsection is the Itô–Nisio theorem, which states
that for the partial sums of a sequence of independent symmetric X-valued
random variables, convergence in probability and almost sure convergence are
equivalent and can both be tested along functionals. A version of this theorem
for Lp-martingales has already been proved in Chapter 3. In contrast to the
martingale setting, the present version for random sums does not impose any
integrability assumptions on the random variables.

Theorem 6.4.1 (Itô–Nisio). Let (⇠n)n>1

be a sequence of independent real-
symmetric X-valued random variables, put Sn :=

Pn
j=1

⇠j, and let S be an
X-valued random variable. The following assertions are equivalent:

(1) for all x⇤ 2 X⇤ we have limn!1hSn, x⇤i = hS, x⇤i almost surely;
(2) for all x⇤ 2 X⇤ we have limn!1hSn, x⇤i = hS, x⇤i in probability;
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(3) limn!1 Sn = S almost surely;
(4) limn!1 Sn = S in probability.

If these equivalent conditions hold and if supn>1

EkSnkp < 1 for some 1 6
p < 1, then

lim
n!1

EkSn � Skp = 0.

It is important to observe that the condition (1) is strictly stronger than the
requirement that “for all x⇤ 2 X⇤ the sequence hSn, x⇤i converges almost
surely”; namely, requiring the limit to take the form hS, x⇤i for a fixed X-
valued random variable S imposes a non-trivial constraint. The same applies
to condition (2). See Remark 6.4.3 below for details.

Consequences of the Itô–Nisio theorem

Before going to the proof, we point out immediate corollaries for the Radem-
acher and Gaussian series of our primary interest, which only uses Theorem
6.4.1 (4),(3)

Corollary 6.4.2. For any sequence (xn)n>1

in X the following assertions are
equivalent:

(1) for all p 2 [1,1) the sum
P

n>1

"nxn converges in Lp(⌦;X);
(2) for some p 2 [1,1) the sum

P

n>1

"nxn converges in Lp(⌦;X);
(3) the sum

P

n>1

"nxn converges in probability;
(4) the sum

P

n>1

"nxn converges almost surely.

If these equivalent conditions hold, then for all � > 0,

E exp
⇣

�
�

�

�

X

n>1

"nxn

�

�

�

2

⌘

< 1.

Proof. The implications (1))(2))(3) are clear and the equivalence (3),(4)
follows from Theorem 6.4.1 (4),(3).

(3))(1): Fix p 2 [1,1). Suppose that the partial sums Sn =
Pn

j=1

"jxj

converge to S =
P

j>1

"jxj in probability. It suffices to show that (Sn)n>1

is
a Cauchy sequence in Lp(⌦;X). Let � 2 (0, 1) be arbitrary and let N > 1 be
such that for all m,n > N ,

P(kSn � Smk > �/2) <
1

42p
2p,p

=: ⌘.

Applying Corollary 6.2.9 to the random sums Sn � Sm with m,n > N , we
find that

kSn � SmkLp

(⌦;X)

6 �/2

1� 
2p,p

p
⌘
= �,

which is the required Cauchy criterion.
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It remains to prove the exponential square-integrability. If

� <
1

2eEkSk2 6 1

2eEkSmk2 ,

it follows from Fatou’s lemma, Proposition 6.2.7 and monotone convergence
that

Ee�kSk2 6 lim
m!1

Ee�kSm

k2 6 lim
m!1

1

1� 2e�EkSmk2 =
1

1� 2e�EkSk2 . (6.16)

In general, we have

Ee�kSk2 6 Ee2�(kS�S
n

k2
+kS

n

k2
) 6 (Ee4�kS�S

n

k2

)1/2(Ee4�kSn

k2

)1/2,

where the last estimate follows from the Cauchy–Schwarz inequality. The sec-
ond term is finite, since Sn 2 L1(⌦;X). If we choose n > 1 so large that
4� < (2eEkS � Snk2)�1, then the first term is finite by (6.16) applied to
S � Sn in place of S and 4� in place of �. ⇤

Remark 6.4.3. Applying Corollary 6.4.2 to each scalar sequence (hxn, x⇤i)n>1

in place of (xn)n>1

, we find in particular that the following are equivalent:

(20) for all x⇤ 2 X⇤, the sum
P

n>1

"nhxn, x⇤i converges in L2(⌦);
(30) for all x⇤ 2 X⇤, the sum

P

n>1

"nhxn, x⇤i converges in probability;
(40) for all x⇤ 2 X⇤, the sum

P

n>1

"nhxn, x⇤i converges almost surely.

But (20) is obviously equivalent to

(200) for all x⇤ 2 X⇤, the sum
P

n>1

|hxn, x⇤i|2 converges.

If X = H is a Hilbert space, then (200) (and hence the other equivalent con-
ditions above) holds in particular when xn = hn is an orthonormal sequence.
On the other hand, the condition (1) of Corollary 6.4.2 for this sequence,
with p = 2, would be equivalent to the convergence of

P

n>1

khnk2, which
is obviously false. Hence we see that the equivalent conditions (20) through
(40) above are in general strictly weaker than the equivalent conditions (1)
through (4) of Corollary 6.4.2. This shows in particular that the conditions
that limn!1hSn, x⇤i = hS, x⇤i in probability (resp. almost surely) in the Itô–
Nisio theorem cannot be replaced by the condition that hSn, x⇤i converges in
probability (resp. almost surely).

For Gaussian sequences, we have an almost complete analogue of Corollary
6.4.2, the only difference being that the exponential square integrability only
holds for small enough � > 0:

Corollary 6.4.4. For any sequence (xn)n>1

in X the following are equivalent:

(1) for all p 2 [1,1) the sum
P

n>1

�nxn converges in Lp(⌦;X);
(2) for some p 2 [1,1) the sum

P

n>1

�nxn converges in Lp(⌦;X);
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(3) the sum
P

n>1

�nxn converges in probability;
(4) the sum

P

n>1

�nxn converges almost surely.

If these equivalent conditions hold, then for small enough � > 0,

E exp
⇣

�
�

�

�

X

n>1

�nxn

�

�

�

2

⌘

< 1.

Proof. This is the basically same as the proof of Corollary 6.4.2, but using
the Gaussian version of the Kahane–Khintchine inequality and its corollaries
instead of the Rademacher version. The only difference is that we only claim
the exponential square-integrability for small enough � > 0, which allows us
to skip the last part of the proof. ⇤

Proof of the Itô–Nisio theorem

We will give the proof of Theorem 6.4.1 in two parts:

Proof of Theorem 6.4.1, Part I. Here we check that (4),(3))(1),(2), and
verify the final claim of the theorem. The remaining implication (2))(4) will
be verified in Part II of the proof after developing some auxiliary results.

(3))(1) is clear.
(3))(4) is a special case of the general relation between convergence al-

most surely and in probability (Proposition E.1.5). (1))(2) is an application
of the same result to each scalar function sequence hSn, x⇤i.

(4))(3): By the triangle inequality and Lévy’s inequality (Proposition
6.1.12), we have

P
⇣

[

m,n>N

{kSn � Smk > "}
⌘

6 2P
⇣

[

n>N

{kSn � SNk > "/2}
⌘

= lim
k!1

2P
⇣

max
N6n6k

kSn � SNk > "/2
⌘

6 lim sup
k!1

4P(kSk � SNk > "/2).

If Sn converges in probability, the limit as N ! 1 of the right side, and hence
of the left side, vanishes for every " > 0. Thus

P
⇣

[

k>1

\

N>1

[

m,n>N

{kSn � Smk > k�1}
⌘

6
X

k>1

lim
N!1

P
⇣

[

m,n>N

{kSn � Smk > "}
⌘

= 0.

The set on the left is precisely the set in which (Sn)n>1

fails to be Cauchy,
and hence (Sn)n>1

is almost surely Cauchy, hence convergent, to some S̃. On
the other hand, since Sn ! S in probability, we have Sn

k

! S almost surely
along a subsequence (Proposition E.1.5), and hence S̃ = S. So we have proved
that Sn ! S almost surely as claimed.
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(2))(1): This follows by applying the previous implication to hSn, x⇤i in
place of Sn.

It remains to prove the assertion about Lp-convergence. First we note that
EkSkp < 1 by Fatou’s lemma. Moreover, we have S = Sn+(S�Sn) with Sn

and S�Sn independent, and therefore EkSnkp 6 EkSkp by Proposition 6.1.5.
Hence by an integration by parts and Lévy’s inequality (Proposition 6.1.12),

E sup
16k6n

kSkkp =

ˆ 1

0

prp�1P
⇣

sup
16k6n

kSkk > r
⌘

dr

6 2

ˆ 1

0

prp�1P(kSnk > r) dr = 2EkSnkp 6 2EkSkp.

By the monotone convergence theorem, E supk>1

kSkkp 6 2EkSkp. Hence
limn!1 EkSn � Skp = 0 by the dominated convergence theorem. ⇤

Tightness

For the proof of the remaining implication in the Itô–Nisio theorem, we need
some elements of the notion of uniform tightness. In order to introduce this
property, we will first prove that individual random variables are tight.

Proposition 6.4.5 (Tightness). Every X-valued random variable is tight,
i.e., for every " > 0 there exists a compact set K ✓ X such that P(X /2 K) <
".

Proof. Since the range of any strongly measurable function ⇠ is contained in
a separable closed subspace of X we may assume that X is separable. Let
(xn)n>1

be a dense sequence in X and fix " > 0. For each integer k > 1 the
closed balls B(xn,

1

k ) = {x 2 X : kx� xnk 6 1

k} cover x, and therefore there
exists an index Nk > 1 such that

P
⇣

⇠ 2
N

k

[

n=1

BX

�

xn,
1

k

�

⌘

> 1� "

2k
.

The set

K :=
\

k>1

N
k

[

n=1

BX

�

xn,
1

k

�

is closed and totally bounded, and therefore compact. Moreover,

P(⇠ 2 X \K) 6
X

k>1

"

2k
= ".

⇤

A family X of X-valued random variables is called uniformly tight if for every
" > 0 there exists a compact set K in X such that

P(⇠ /2 K) < ", ⇠ 2 X .
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Lemma 6.4.6. If X is uniformly tight, then X �X = {⇠
1

�⇠
2

: ⇠
1

, ⇠
2

2 X }
is uniformly tight.

Proof. Let " > 0 be arbitrary and fixed. Choose a compact set K in X such
that P(⇠ 62 K) < " for all ⇠ 2 X . The set L = {x � y : x, y 2 K} is
compact, being the image of the compact set K ⇥ K under the continuous
map (x, y) 7! x� y. Since ⇠

1

(!), ⇠
2

(!) 2 K implies ⇠
1

(!)� ⇠
2

(!) 2 L,

P(⇠
1

� ⇠
2

62 L) 6 P(⇠
1

62 K) + P(⇠
2

62 K) < 2".

⇤

The proof below will also make use of the theory of characteristic functions,
which the reader may recall from Appendix E.1.c.

Proof of Theorem 6.4.1, Part II. It remains to prove (2))(4). We split this
into two steps.

Step 1 – In this step we prove that the sequence (Sn)n>1

is uniformly tight.
For all m > n and x⇤ 2 X⇤ the random variables hSm � Sn, x⇤i and

±hSn, x⇤i are independent. Hence by Proposition E.1.12, hS � Sn, x⇤i and
±hSn, x⇤i are independent. Next we claim that S and S � 2Sn are identically
distributed. Denote their distributions by µ and �n, respectively. By the in-
dependence of hS � Sn, x⇤i and ±hSn, x⇤i and the real-symmetry of Sn, for
all x⇤ 2 X⇤ we have

bµ(x⇤) = E
�

exp(i<hS, x⇤i)
�

= E
�

exp(i<hS � Sn, x
⇤i)

�

E
�

exp(i<hSn, x
⇤i)

�

= E
�

exp(i<hS � Sn, x
⇤i)

�

E
�

exp(i<h�Sn, x
⇤i)

�

= E
�

exp(i<hS � 2Sn, x
⇤i)

�

= c�n(x
⇤).

By Theorem E.1.16, this shows that µ = �n and the claim is proved.
Given " > 0 we can find a compact set K ✓ X with µ({K) = P(S 62 K) <

". The set L := 1

2

(K �K) is compact as well, and arguing as in the proof of
Lemma 6.4.6 we have

P(Sn 62 L) 6 P(S 62 K) + P(S � 2Sn 62 K) = 2P(S 62 K) < 2".

It follows that P(Sn 62 L) < 2" for all n > 1, and therefore the sequence
(Sn)n>1

is uniformly tight.
Step 2 – By Lemma 6.4.6, the sequence (Sn � S)n>1

is uniformly tight.
Let ⌫n denote the distribution of Sn � S. We need to prove that for all " > 0
and r > 0 there exists an index N > 1 such that

P(kSn � Sk > r) = ⌫n({B(0, r)) < ", n > N,

Suppose, for a contradiction, that such an N does not exist for certain " > 0
and r > 0. Then there exists a subsequence (Sn

k

)k>1

such that
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⌫n
k

({B(0, r)) > ", k > 1.

On the other hand, by uniform tightness we find a compact set K such that
⌫n

k

(K) > 1� 1

2

" for all k > 1. It follows that

⌫n
k

(K \ {B(0, r)) > 1

2
", k > 1.

By covering the compact set K \ {B(0, r) with finitely many open balls of
radius 1

2

r and passing to a subsequence, we find a ball B such that 0 /2 B and
a number � > 0 such that

⌫n
k

j

(K \B) = P(Sn
k

j

� S 2 K \B) > �, j > 1.

By the Hahn–Banach separation theorem, there exists a functional x⇤ 2 X⇤

such that <hx, x⇤i > 1 for all x 2 B. For all ! 2 {Sn
k

j

�S 2 K\B} it follows
that |hSn

k

j

(!)� S(!), x⇤i| > 1. Hence

P(|hSn
k

j

� S, x⇤i| > 1) > P(Sn
k

j

� S 2 K \B) > �

Thus, hSn
k

, x⇤i fails to converge to hS, x⇤i in probability. This contradiction
concludes the proof. ⇤

6.4.b Boundedness implies convergence if and only if c0 6✓ X

In this section we give a sufficient condition for almost sure convergence in
terms of boundedness in probability. It will play an important role in Chap-
ter 9.

Definition 6.4.7. A sequence (⇠n)n>1

of X-valued random variables is said
to be bounded in probability if for all " > 0 there exists an r > 0 such that

P(k⇠nk > r) < ", n > 1.

To give a quick example, Chebyshev’s inequality

P{|⇠| > r} =
1

rp

ˆ
{|⇠|p>rp}

rp dP 6 1

rp

ˆ
{|⇠|p>rp}

|⇠|p dP 6 1

rp
E|⇠|p

implies that uniformly bounded families in Lp(⌦;X) are bounded in proba-
bility.

Proposition 6.4.8. If the sequence (⇠n)n>1

of X-valued random variables
converges in probability, then (⇠n)n>1

is bounded in probability.

Proof. Suppose limn!1 ⇠n = ⇠ in probability and let " > 0 be given. Choose
m

0

> 0 so large that P(k⇠k > m
0

/2) < "
2

, and choose N > 1 such that
P(k⇠n � ⇠k > m

0

/2) < "/2 for all n > N . Then, for n > N ,

P(k⇠nk > m
0

) 6 P(k⇠n � ⇠k > m
0

/2) + P(k⇠k > m
0

/2) < ".

For n = 1, . . . , N � 1 choose mn > 0 so large that P(k⇠nk > mn) < ". Then,
with r := max{m

0

,m
1

, . . . ,mN�1

} we have P(k⇠nk > r) < " for all n > 1. ⇤
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Our next aim is the prove a result on equivalence of almost sure boundedness
and boundedness in probability for the partial sums of symmetric X-valued
random variables.

Proposition 6.4.9. Let (⇠n)n>1

be a sequence of independent real-symmetric
X-valued random variables and let Sn =

Pn
j=1

⇠j. The following assertions
are equivalent:

(1) the sequence (Sn)n>1

is bounded almost surely;
(2) the sequence (Sn)n>1

is bounded in probability.

Proof. (1))(2): Fix " > 0 and choose r > 0 so that P(supn>1

kSnk > r) < ".
Then

P(kSnk > r) 6 P(sup
j>1

kSjk > r) < "

for all n > 1, and therefore (Sn)n>1

is bounded in probability.
(2))(1): Fix " > 0 arbitrary and choose r > 0 so large that P(kSnk >

r) < " for all n > 1. By Lévy’s inequality (Proposition 6.1.12),

P
⇣

sup
16j6n

kSjk > r
⌘

6 2P(kSnk > r) < 2".

It follows that P(supj>1

kSjk > r) 6 2". In particular, P(supj>1

kSjk = 1) 6
2". Since " > 0 was arbitrary, this shows that (Sn)n>1

is bounded almost
surely. ⇤

Theorem 6.4.10 (Hoffmann-Jørgensen and Kwapień). For a Banach
space X the following assertions are equivalent:

(1) for all sequences (⇠n)n>1

of independent real-symmetric X-valued random
variables, the almost sure boundedness of the partial sum sequence (Sn)n>1

implies the almost sure convergence of (Sn)n>1

;
(2) for all sequences (xn)n>1

in X, the almost sure boundedness of the partial
sums of

P

n>1

rnxn implies limn!1 xn = 0;
(3) the space X contains no closed subspace isomorphic to c

0

.

Proof. (1))(2) is trivial.
(2))(3): Suppose that X contains a subspace isomorphic to c

0

and let en
denote the n-th unit vector of c

0

. The sum
P

n>1

rn(!)en fails to converge for
all ! 2 ⌦ while its partial sums are uniformly bounded.

(3))(2): Suppose that (2) does not hold. Then there exists a sequence
(xn)n>1

in X with
� := lim sup

n!1
kxnk > 0 (6.17)

such that the partial sums of
P

n>1

rnxn are bounded almost surely.
Let G denote the �-algebra generated by the sequence (rn)n>1

. We claim
that for all B 2 G ,
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lim
n!1

P
�

B \ {rn = �1}
�

= lim
n!1

P
�

B \ {rn = 1}
�

=
1

2
P(B). (6.18)

For all B 2 GN , the �-algebra generated by r
1

, . . . , rN , this follows imme-
diately from the fact that rn is independent of GN for all n > N . The case
for B 2 G now follows from the general fact of measure theory (see Lemma
A.1.2) that for any B 2 G and any " > 0 there exist N sufficiently large and
BN 2 GN such that P(BN�B) < ".

Choose M > 0 in such a way that

P
⇣

sup
n>1

�

�

�

n
X

j=1

rjxj

�

�

�

6 M
⌘

>
1

2
.

We will construct a subsequence (xn
j

)j>1

such that kxn
j

k > 1

2

� for every j,
and for any finite choice a

1

, . . . , ak 2 {�1, 1} one has k
Pk

j=1

ajxn
j

k 6 M . The
Bessaga–Pelczyński criterion (Theorem 1.2.40) then implies that X contains
a copy of c

0

.
By (6.17) and (6.18) we can find an index n

1

> 1 such that for either
choice of a

1

2 {�1, 1},

P
⇣

sup
n>1

�

�

�

n
X

j=1

rjxj

�

�

�

6 M, rn1 = a
1

⌘

>
1

4
, kxn1k > 1

2
�.

Continuing inductively, we find a sequence 1 6 n
1

< n
2

< . . . such that for
any choice of a

1

, . . . , ak 2 {�1, 1}, we have

P
⇣

sup
n>1

�

�

�

n
X

j=1

rjxj

�

�

�

6 M, rn1 = a
1

, . . . , rn
k

= ak
⌘

>
1

2k+1

, kxn
k

k > �

2
.

Define
r0m :=

n rm, if m = nj for some j > 1,
�rm, otherwise.

Then both (rm)m>1

and (r0m)m>1

are real Rademacher sequences. Fixing
a
1

, . . . , ak 2 {�1, 1}, we find that

P
⇣

sup
n>1

�

�

�

n
X

j=1

r0jxj

�

�

�

6 M, rn1 = a
1

, . . . , rn
k

= ak
⌘

>
1

2k+1

.

Since P
�

rn1 = a
1

, . . . , rn
k

= ak
�

= 1

2

k

, the event

n

sup
n>1

�

�

�

n
X

j=1

rjxj

�

�

�

6 M, sup
n>1

�

�

�

n
X

j=1

r0jxj

�

�

�

6 M, rn1 = a
1

, . . . , rn
k

= ak
o

has positive probability and hence is non-empty. Choosing any ! in the above
event we obtain
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�

�

�

k
X

j=1

ajxn
j

�

�

�

=
�

�

�

1

2

n
k

X

j=1

rj(!)xj +
1

2

n
k

X

j=1

r0j(!)xj

�

�

�

6 M.

(2))(1): Suppose the partial sums Sn =
PN

n=1

⇠n are bounded almost
surely but fail to converge almost surely. Then by Theorem 6.4.1 it fails to
be Cauchy in probability, and there exist r > 0, " > 0, and an increasing
sequence 1 6 n

1

< n
2

< . . . such that

P(kSn
k+1 � Sn

k

k > r) > ", k = 1, 3, 5, . . .

Put ⌘k := Sn
k+1 � Sn

k

. The partial sums of
P

k>1

⌘k are bounded almost
surely.

On a possibly larger probability space, let (rn)n>1

be a real Rademacher
sequence independent of (⇠n)n>1

. By Proposition 6.4.9, the partial sums of
P

k>1

⌘k are bounded in probability, and because (⌘n)n>1

and (rn⌘n)n>1

are
identically distributed the same is true for the partial sums of

P

k>1

rk⌘k.
Another application of Proposition 6.4.9 shows that the partial sums of this
series are bounded almost surely.

We may assume that the sequences (⌘k)k>1

and (rk)k>1

are defined on
two separate probability spaces, say on ⌦⌘ and ⌦r. By Fubini’s theorem, for
almost all ! 2 ⌦⌘ the partial sums of

P

k>1

rk⌘k(!) are bounded almost
surely on ⌦r. By (2), limk!1 ⌘k(!) = 0 for almost all ! 2 ⌦⌘. This implies
that limk!1 ⌘k = limk!1 Sn

k+1 � Sn
k

= 0 in probability. This contradiction
concludes the proof. ⇤
Remark 6.4.11. The theorem remains true if we replace ‘real-symmetric’ by
‘symmetric’ in condition (1). In fact, denoting this modified condition (1)0, we
have the implications (1)0 )(2)0 )(3))(2))(1))(1)0, where (2)0 is obtained
from (2) by replacing the real Rademachers rn by Rademachers "n.

Corollary 6.4.12. Let 1 6 p < 1 and let X be a Banach space not
containing a closed subspace isomorphic to c

0

. If (⇠n)n>1

is a sequence of
independent real-symmetric X-valued random variables whose partial sums
Sn =

Pn
j=1

⇠j are bounded in Lp(⌦;X), then the sequence (Sn)n>1

converges
both in Lp(⌦;X) and almost everywhere.

Proof. By Chebyshev’s inequality, the sequence (Sn)n>1

is bounded in prob-
ability, hence bounded almost surely by Proposition 6.4.9. The Hoffmann-
Jørgensen–Kwapień Theorem 6.4.10 now implies that (Sn)n>1

converges to
some random variable S almost everywhere. Moreover, by the Itô–Nisio The-
orem 6.4.1, the boundedness of (Sn)n>1

in Lp(⌦;X) implies its convergence
in Lp(⌦;X). ⇤

6.5 Comparison of random sums and trigonometric sums

The comparison result of this section has a somewhat different flavour than
the ones we have encountered so far. It establishes a comparison between the
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complex Rademacher sums
PN

j=1

"jxj and the lacunary trigonometric sums
PN

j=1

e
2

jxj , where
ek(t) := e2⇡ikt

is the k-th trigonometric monomial on the unit interval T := [0, 1). While
each individual ek is clearly distributed like a complex Rademacher variable,
the trigonometric monomials are highly non-independent; indeed ek = (e

1

)k,
so they are all generated by the first one. Nevertheless, in analogy with the
comparison results for other random sums, we have:

Theorem 6.5.1 (Pisier). Let X be an arbitrary complex Banach space and
let p 2 [1,1). Then

1

4

�

�

�

N
X

j=1

"jxj

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

j=1

e
2

jxj

�

�

�

Lp

(T;X)

6 4
�

�

�

N
X

j=1

"jxj

�

�

�

Lp

(⌦;X)

for all N 2 Z
+

and all x
1

, . . . , xN 2 X.

This two-sided inequality depends on two facts: first, that the exponential
sequence {2j}1j=1

is a so-called Sidon set (Proposition 6.5.3), and second,
that all Sidon sets satisfy such an estimate (Theorem 6.5.5). We start with
the definition.

Definition 6.5.2 (Sidon sets). A subset ⇤ ✓ Z is called a Sidon set if the
following estimate holds uniformly over all finitely non-zero sequences (c�)�2⇤
of complex numbers:

X

�2⇤
|c�| 6 C

�

�

�

X

�2⇤
c�e�

�

�

�

1
.

The smallest admissible constant C is called the Sidon constant of ⇤ and is
denoted by S(⇤).

Basic examples of Sidon sets are provided by lacunary sequences. We say that
a sequence (�j)1j=1

of positive numbers is A-lacunary if �j+1

/�j > A > 1 for
all j.

Proposition 6.5.3. Every A-lacunary sequence ⇤ of positive integers is a
Sidon set with S(⇤) 6 2dlogA max{3, (2A � 1)/(A � 1)}e. In particular,
S({2j}1j=1

) 6 4.

The key technical tool for the proof is provided by the following lemma.

Lemma 6.5.4. Let A > 1 and B > max{3, (2A�1)/(A�1)}, and let (µj)
1
j=1

be a B-lacunary sequence of positive integers and ⇠j 2 T. Then the Riesz
product

R(x) :=
N
Y

j=1

[1 + cos(2⇡(µjx+ ⇠j))]

has Fourier coefficients bR(0) = 1, bR(±µj) =
1

2

e±2⇡i⇠
j for j = 1, . . . , N , and

bR(k) 6= 0 only if k = 0 or µj/A < |k| < Aµj for one of these j.
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Proof. Expanding the product, we have

R(x) =
N
Y

j=1

h

1 +
1

2

�

e2⇡i(µj

x+⇠
j

) + e�2⇡i(µ
j

x+⇠
j

)

 

i

=
X

↵2{�1,0,+1}N

2�|↵| exp
⇣

2⇡i
N
X

j=1

↵j(µjx+ ⇠j)
⌘

=
X

k2Z
ek(x)

X

↵2{�1,0,+1}N

↵·µ=k

2�|↵|e2⇡i↵·⇠,

(6.19)

where µ := (µ
1

, . . . , µN ) 2 ZN
+

, ⇠ := (⇠
1

, . . . , ⇠N ) 2 TN , and |↵| :=
PN

j=1

|↵j |.
We next check that the equation ↵ · µ = k has at most one solution for

a given k, and any solution at all only when k = 0 or µj/A < |k| < Aµj for
some µj . In fact, we have

↵ · µ =

N
X

j=1

↵jµj = ±µj1 ± µj2 ± . . . , µj
`

> Bµj
`+1 .

Suppose that two such sums are equal, ↵ · µ = ↵0 · µ. If µj01
< µj1 (including

formally the case that ↵ 6= 0 = ↵0), then the sum of all the terms other than
µj1 on both sides of the equation is strictly less than

2

1
X

`=1

B�`µj1 =
2

B � 1
µj1 6 µj1

since B > 3. This lead to the contradiction µj1 = |↵j1µj1 | = |↵ · µ� (↵ · µ�
↵j1µj1)| = |↵0 · µ� (↵ · µ� ↵j1µj1)| < µj1 .

If µj1 = µj01
and ↵j1 6= ↵j01

, then the rest of the terms have the same
upper bound as above, and we arrive at the even stronger contradiction that
2µj1 = |↵j1µj1 �↵j01

µj01
| = |↵ ·µ� (↵ ·µ�↵j1µj1)�↵0 ·µ+(↵0 ·µ�↵0

j01
µj01

)| =
|� (↵ · µ� ↵j1µj1) + (↵0 · µ� ↵0

j01
µj01

)| < µj1 . Thus it must be that µj1 = µj01

and ↵j1 = ↵0
j01

, but then we may cancel these terms from both sides and we
are left with the equality of similar shorter sums. By induction it follows that
↵ = ↵0. In particular, we have that ↵ = 0 is the unique solution of ↵ · µ = 0,
while ↵ = ±uj (here uj is the standard basis in RN ) is the unique solution
of ↵ · µ = ±µj , and then it is easy to check the values of the corresponding
Fourier coefficients from (6.19).

Finally, if k = ↵ · µ 6= 0, then |k| lies strictly between

µj1

⇣

1�
1
X

`=1

B�`
⌘

= µj1
B � 2

B � 1
and µj1

1
X

`=0

B�` = µj1
B

B � 1
,

and B > (2A� 1)/(A� 1) > A/(A� 1) implies that µj1/A < |k| < Aµj1 . ⇤
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Proof of Proposition 6.5.3. Let ⇤ = (�j)1j=1

be an A-lacunary sequence. It
is immediate that each subsequence ⇤s := (�jr�s)

1
j=1

, s = 0, . . . , r � 1, is
Ar-lacunary. Let r be the smallest positive integer such that B := Ar >
max{3, (2A� 1)/(A� 1)}. Hence Lemma 6.5.4 applies to the Riesz products

Rs(x) :=
N
Y

j=1

[1 + cos(2⇡(�jr�sx+ ⇠jr�s))].

It follows that their sum R :=
Pr�1

s=0

Rs has Fourier coefficients

bR(0) = r, bR(±�j) =
1

2
e±2⇡i⇠

j j = 1, . . . , rN ;

note in particular that bRs(±µj0r�s0) = 0 for s 6= s0 since µj0r�s0/µjr�s /2
(A�1, A) for any j.

Thus, for a trigonometric polynomial f =
P

�2⇤ c�e�,

ˆ
T
R(x)f(x) dx =

X

k2Z

bR(�k) bf(k) =
1

2

rN
X

j=1

e�2⇡i⇠
jc�

j

=
1

2

rN
X

j=1

|c�
j

|,

when we make the obvious choice of ⇠j in the definition of the Riesz product
Rs. On the other hand, we have

�

�

�

ˆ
T
R(x)f(x) dx

�

�

�

6 kRk
1

kfk1 = r
�

�

�

X

�2⇤
c�e�

�

�

�

1
,

since the non-negative function R satisfies kRk
1

=
´
T R(x) dx = bR(0) = r.

Letting N ! 1, we have shown that

X

�2⇤
|c�| 6 2r

�

�

�

X

�2⇤
c�e�

�

�

�

1
, r =

l

logA max
�

3,
2A� 1

A� 1

 

m

.

⇤

The general comparison result involving Sidon sets is the following. Clearly
Theorem 6.5.1 is a direct consequence of Theorem 6.5.5 and Proposition 6.5.3.

Theorem 6.5.5 (Pisier). Let X be an arbitrary Banach space and p 2
[1,1). If ⇤ ✓ Z is a Sidon set, then

1

S(⇤)

�

�

�

X

�2⇤
"�x�

�

�

�

Lp

(⌦;X)

6
�

�

�

X

�2⇤
e�x�

�

�

�

Lp

(T;X)

6 S(⇤)
�

�

�

X

�2⇤
"�x�

�

�

�

Lp

(⌦;X)

for all finitely non-zero sequences of x� 2 X.
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Proof. It follows at once from the definition of a Sidon set that the following
functionals are uniformly bounded with norm at most S(⇤), as the complex
signs ✏� vary arbitrarily on the unit circle:

f =
X

�2⇤
c�e� 7!

X

�2⇤
✏�c�,

where the domain is the subspace of C(T) of all finite linear combinations
of the e�, � 2 ⇤. We now consider one such functional for a fixed choice of
complex signs ✏�. By the Hahn–Banach theorem, this functional has a bounded
extension to all of C(T); thus there exists a regular Borel measure µ on T, of
total variation kµk 6 S(⇤), such thatˆ

T
e� dµ = ✏�, � 2 ⇤.

Let eµ be its reflection, eµ(A) := µ(�A). Then, for any finite sum f =
P

�2⇤ e�x�,

f ⇤ eµ(t) =
ˆ
T
f(t� s) deµ(s) =

ˆ
T
f(t+ s) dµ(s)

=
X

�2⇤
e�(t)x�

ˆ
T
e�(s) dµ(s) =

X

�2⇤
✏�e�(t)x�,

and thus
�

�

�

X

�2⇤
✏�e�x�

�

�

�

Lp

(T;X)

= kf ⇤ eµkLp

(T;X)

6 kfkLp

(T;X)

keµk 6 S(⇤)
�

�

�

X

�2⇤
e�x�

�

�

�

Lp

(T;X)

for all p 2 [1,1]. Applying this with ✏̄�x� in place of x�, and noting that the
conjugate coefficients ✏̄� are as arbitrary as the original ✏�, we obtain a similar
estimate to the other direction. For p 2 [1,1), we may take the inequality to
the power p, substitute random signs "j in place of ✏j , and integrate over the
underlying probability space. The proof is concluded by using the contraction
principle, which shows that

�

�

�

X

�2⇤
"�e�x�

�

�

�

Lp

(⌦⇥T;X)

=
�

�

�

X

�2⇤
"�x�

�

�

�

Lp

(⌦;X)

.

⇤

6.6 Notes

Section 6.1

General references to probability in Banach spaces are Diestel, Jarchow, and
Tonge [1995], Kahane [1985], Kwapień and Woyczyński [2002], Ledoux and
Talagrand [1991], Vakhania, Tarieladze, and Chobanyan [1987].
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Kahane’s contraction principle in its basic version, Theorem 6.1.13(i), is
from Kahane [1985], while the variant in Theorem 6.1.13(ii) is from Pietsch
and Wenzel [1998, 3.5.4]. We refer to Section 3.2.b for the heart of the argu-
ment in the case of Rademacher sequences, from which the present extension
to symmetric random variables was straightforward.

Lévy’s inequality (Proposition 6.1.12) is classical and the proof presented
here can be found in many textbooks. It has various refinements which can
be found in the general references already cited.

A different proof of the covariance domination (Theorem 6.1.25) can be
found in Albiac and Kalton [2006, Chapter 7].

Tail estimates related to the contraction principle

The following tail estimate is a variation on the contraction principle:

Theorem 6.6.1 (Kahane’s contraction principle, tail estimate). Let
(⇠n)Nn=1

be a sequence of independent and symmetric random variables with
values in a Banach space X. Then for all scalar sequences (an)Nn=1

we have

P
⇣

�

�

�

N
X

n=1

an⇠n
�

�

�

> t
⌘

6 2P
⇣

max
16n6N

|aN |
�

�

�

N
X

n=1

⇠n
�

�

�

> t
⌘

.

Proof. By symmetry it suffices to consider the case of non-negative scalars
(an)Nn=1

, and by renumbering and scaling we may also assume that 0 6 aN 6
. . . 6 a

1

= 1. Let aN+1

= 0. Writing Sn =
Pn

k=1

⇠k, summation by parts
gives

N
X

n=1

an⇠n =

N
X

n=1

an(Sn � Sn�1

) =

N
X

n=1

(an � an+1

)Sn.

Since
PN

n=1

(an � an+1

) = a
1

= 1,

n

N
X

n=1

(an � an+1

)Sn > t
o

✓
n

max
16n6N

kSnk > t
o

.

Therefore, Lévy’s inequality (Proposition 6.1.12) implies the required result.
⇤

A thorough presentation of tail estimates for sums of independent random
variables can be found in De la Peña and Giné [1999].

Section 6.2

Theorem 6.2.2 and Lemma 6.2.3 go back to Bonami [1970]. About the same
time, hypercontractivity for Gaussian random variables was proved by Nel-
son [1973], improving an earlier result of Nelson [1966]. Proofs based on the
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logarithmic Sobolev inequality were given subsequently by Gross [1975]. The
proof of Lemma 6.2.3 presented here is from Beckner [1975] and the induction
argument used in our proof of Theorem 6.2.2 is from Kwapień and Szulga
[1991]. Hypercontractivity estimates such as the one of Theorem 6.2.2 exist
both in the analytic and probabilistic framework. Accounts of the history of
the subject are given in Davies, Gross, and Simon [1992], Bakry, Gentil, and
Ledoux [2014], Simon [2015]. In the vector-valued case, Theorem 6.2.2 is due
to Borell [1979]. Non-symmetric versions of these results have been obtained
in Oleszkiewicz [2003], Wolff [2007]. A further discussion on a complex version
of Theorem 6.2.2 can be found in Theorem 6.6.5 below.

The Kahane–Khintchine inequality (Theorem 6.2.4) is Kahane’s vector-
valued extension of the classical scalar-valued version due to Khintchine [1923].
A tail estimate that captures the essence of this inequality is already contained
in Kahane [1964]; that this implies the version of the estimate as in Theorem
6.2.4 was pointed out in Kahane [1985]. Other proofs based on estimates of tail
probabilities can be found in Ledoux and Talagrand [1991] and Oleszkiewicz
[2014]. The proof presented here based on the hypercontractivity estimates
can be found, e.g., in Kwapień and Woyczyński [2002] and De la Peña and
Giné [1999]. A proof via the martingale John–Nirenberg inequality was given
in Chapter 3.

The constant in the Kahane–Khintchine inequalities

We remind the reader of the notation employed for the optimal constants in
the Kahane–Khintchine inequalities explained at the beginning of Section 6.2.
It will be used freely in the discussion that follows.

The optimal constant in the Kahane–Khintchine inequalities for real
Rademacher sums is known in a few instances. Szarek [1976] proved that


2,1,R =

p
2,

thereby resolving an old conjecture of Littlewood. The optimal constants q,2,R
have been obtained by Whittle [1960] for all q > 2, and independently by
Ste

b

cin [1961] for integers q > 2. The problem was settled by Haagerup [1981],
who found the best constants p,2,R and 

2,p,R for all 0 < p < 1. As a special
case of his results one has

q,2,R = k�kq for q > 2,

where � is standard real Gaussian variable. König and Kwapień [2001] and
Baernstein and Culverhouse [2002] extended several of the above results to
more general rotationally invariant random variables in Rd, and a case which
was left open for the complex Rademachers was eventually solved in König
[2014]. Similar results were obtained by Latała and Oleszkiewicz [1995a] for
random variables which are uniformly distributed on [0, 1]. For even expo-
nents, Nayar and Oleszkiewicz [2012] extended several of the above results to
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ultra sub-Gaussian random vectors (this class includes random variables which
are uniformly distributed on a ball or sphere centred at zero). In particular,
it follows from their results that

q,p,R =
k�kq
k�kp

for p, q 2 2N, q > p.

Eskenazis, Nayar, and Tkocz [2016] obtained optimal constants for Gaussian
mixtures which are random variables of the form �⇠, where � is a standard
Gaussian random variable and ⇠ is an independent positive random variable
which has finite p-moments for all p < 1.

Almost 20 years after Szarek [1976]’s proof that 
2,1,R =

p
2, Latała and

Oleszkiewicz [1994] found a very short proof of the more general fact that

R
2,1,X = R

2,1 =
p
2

holds for any Banach space X. An alternative approach can be found in De
la Peña and Giné [1999, Section 1.3] and Latała and Oleszkiewicz [1995b],
where the following optimal constants are obtained:

Rq,p,X = Rq,p = 21/p�1/q for q 2 (0, 2] and p 2 (0, 1] and q > p,

R
4,2,X = R

4,2 = 31/4.

These results provide support for the following conjecture:

Conjecture 6.6.2 (Kwapień). For any Banach space X and all 0 < p 6 q < 1,

Rq,p,X = Rq,p = q,p;R.

For Hilbert spaces this is indeed true. In fact, Fubini’s theorem and Mink-
owski’s inequality imply the identity Rq,p,Lq

= q,p,R, and the statement in
the conjecture for Hilbert spaces follows from this since every Hilbert space
is isometric to a closed subspace of an Lq-space. In Oleszkiewicz [2014] it has
been shown that sup

16p6q 
R
q,p,X/q,p,R ! 1 as q ! 1, providing further

evidence for the conjecture.
Let (gn)Nn=1

be a real Gaussian sequence. For real scalars c
1

, . . . , cn, the
Gaussian sum

PN
n=1

cngn is a real Gaussian random variable with variance
PN

n=1

c2n; from this one easily derives that

�q,p,R =
kgkq
k�kp

for p, q 2 (0,1),

where g is a standard real Gaussian variable. A deep result of Latała and
Oleszkiewicz [1999] states that for any Banach space X and all 0 < p 6 q < 1
one has

�,Rq,p,X = �,Rq,p = �q,p,R =
k�kq
k�kp

.
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Hypercontractivity and Kahane–Khintchine inequalities for complex Radem-
achers

In Lemma 6.2.3 (and hence in 6.2.2), only real Rademacher sequences are con-
sidered. The difficulty in the complex case is that the �-algebra generated by
a complex Rademacher random variable is not finite. For this reason we had
to deduce the complex case of Theorem 6.2.4 from the real case via Proposi-
tion 6.1.19. There is a natural complex analogue of Lemma 6.2.3, namely, a
hypercontractivity estimate for the Poisson semigroup.

For n 2 Z, let en(✓) := e2⇡in✓ be the trigonometric functions on the torus
T = [0, 1]. The next result is due to Weissler [1980] (see also Beckner [1995],
Janson [1983]).

Theorem 6.6.3 (Hypercontractivity of the Poisson semigroup). Let
X be a Banach space and 1 < p 6 q < 1. The Poisson semigroup (P (t))t>0

on Lp(T), defined by

P (t)f =
X

n2Z
ane

�t|n|en for f =
X

n2Z
anen 2 Lp(T),

satisfies
kP (t)kLp!Lq 6 1

if and only if

e�t 6
r

p� 1

q � 1
.

The proof of Theorem 6.6.3 is based on a logarithmic Sobolev inequality on the
torus. Since the Poisson semigroup positive, the above result extends to the
Banach space-valued setting by Theorem 2.1.3. An interesting consequence is
the following complex variant of Lemma 6.2.3.

Corollary 6.6.4. Let " be a complex Rademacher random variable and X a
complex Banach space. Then for all x, y 2 X and 0 < p < q < 1,

kx+ ✓"ykLq

(⌦;X)

6 kx+ "ykLp

(⌦;X)

for all 0 6 ✓ 6
r

p

q
.

Observe that
q

p
q 6

q

p�1

q�1

, and therefore the estimate in the case of complex
Rademachers is better than the one for real Rademachers. In the proof we use
an argument due to Janson, as presented in Weissler [1980].

Proof. The proof uses some elementary facts from the theory of sub-harmonic
functions. Let D ✓ C denote the open unit disk. Fix x, y 2 X and define
u : D ! [0,1) by u(z) = kx + zyk1/n, where n > 1 is fixed for the moment.
Since

u(z) = sup
kx⇤k61

|hx+ zy, x⇤i|1/n,
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u is sub-harmonic by Rudin [1987, Theorem 17.3]. Define the harmonic func-
tion v : D ! C by

v(re2⇡i✓) := (P (t)[u(e2⇡i·)])(✓), ✓ 2 [0, 1], r = e�t, t > 0.

Since u|@D = v|@D, from Rudin [1987, Theorem 17.4] it follows that u 6 v on
D.

Fix r = e�t 2 [0,
q

p
q ) and choose n > 1 so large that r 6

q

np�1

nq�1

. Since

✓ 7! e2⇡i✓ has the same distribution as ", we have

kx+ r"ykLq

(⌦;X)

=
⇣

ˆ
1

0

kx+ re2⇡i✓ykq d✓
⌘

1/q
=
⇣

ˆ
1

0

|u(re2⇡i✓)|nq d✓
⌘

1/q
,

and the same hold if we replace q and r by p and 1 respectively. Combining
the above observations with Theorem 6.6.3 we obtain

kx+ r"ykLq

(⌦;X)

=
⇣

ˆ
1

0

|u(re2⇡i✓)|nq d✓
⌘

1/q
6
⇣

ˆ
1

0

|v(re2⇡i✓)|nq d✓
⌘

1/q

= kP (t)u(e2⇡i·)knnq 6 ku(e2⇡i·)knnp = kx+ "ykLp

(⌦;X)

.

This proves the result for 0 6 r <
q

p
q . The case r =

q

p
q follows by a limiting

argument. ⇤

With the help of this result, Theorem 6.2.2 can be extended to the complex
case. This leads to the following complex version of Theorem 6.2.4:

Theorem 6.6.5. Let ("n)n>1

be a complex Rademacher sequence. Then for
all 0 < p < q < 1 and all sequences (xn)

N
n=1

in X,

�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

6
r

q

p

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

,

Section 6.3

A good source for the material in this section is Pisier [1989].

Section 6.4

The Itô–Nisio Theorem 6.4.1 is from Itô and Nisio [1968]. Further equiva-
lences to the four listed in the text can be found, for example, in Kwapień
and Woyczyński [2002]. A martingale version has already been presented in
Theorem 3.3.14.

The Hoffmann-Jørgensen–Kwapień Theorem 6.4.10 is due to Hoffmann-
Jørgensen [1974] and Kwapień [1974]. In Hoffmann-Jørgensen [1974] it is
proved that if X is a Banach space and (⌦,P) is a probability space rich
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enough to support a Rademacher sequence, then the conditions of Theorem
6.4.10 are equivalent to the non-containment of c

0

in Lp(⌦;X) for some (or
equivalently, all) 1 6 p < 1, and it was conjectured that the latter is equiv-
alent to the non-containment of c

0

is X. This is condition (3) of Theorem
6.4.10. In the same issue of Studia Mathematica, Kwapień [1974] settled this
conjecture in the affirmative.

Section 6.5

Theorems 6.5.1 and 6.5.5 on the comparison of Rademacher and trigonometric
sums are due to Pisier [1978a]. The related fact that lacunary sequences are
Sidon sets (Proposition 6.5.3) is classical. We have adapted an argument from
Zygmund [2002, Theorem VI.6.1].
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Type, cotype, and related properties

In this chapter we will see that some of the deeper properties of Rademacher
sums and Gaussian sums are intimately linked with the geometry of the Ba-
nach space in which they live. In one direction, important geometric notions
such as type, cotype, and K-convexity are defined through a priori assump-
tions on the behaviour of random sums. In the other direction, the presence of
such properties often significantly improves the behaviour of random sums. For
example, in every Banach space with finite cotype, Lp-norms of Rademacher
sums and Gaussian sums are equivalent.

After discussing the definitions and basic properties of type and cotype, we
undertake a study of so-called summing operators. Their importance to the
topic at hand largely stems from the fact that if X has cotype q, then every
bounded linear operator T : C(K) ! X, where K is a compact Hausdorff
space, is (q, 1)-summing. This fundamental result, together with the factori-
sation theorem of Pisier proved in Section 7.2 is at the basis of some subtle
comparison results in the same section, which also includes the comparison
of Rademacher sums and Gaussian sums for spaces of finite cotype. These
results will play an important role in later chapters.

In Section 7.3, we provide Kwapień’s isomorphic characterisation of Hilbert
spaces in terms of type and cotype 2, and present the geometric characteri-
sations for non-trivial type and cotype due to Maurey and Pisier. The latter
allows us to compare several of the earlier encountered Banach space proper-
ties with type and cotype. For example, UMD Banach spaces are shown to
have non-trivial type and finite cotype.

The dual of every Banach space X with type p has cotype q, with 1

p+
1

q = 1,
but the converse fails. The symmetry between these notions (and indeed,
between several other notions as well) is restored by introducing an a priori
boundedness assumption, called K-convexity, on the Rademacher projections
in X. Banach spaces with this property are the object of study in Section
7.4 and often play a role when duality arguments are applied for random
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sums. Among other things we will prove Pisier’s theorem on the equivalence
of K-convexity and non-trivial type.

In the final section of this chapter we study various types of estimates
for Banach space-valued double random sums. In contrast to the situation
for random sums, the contraction principle generally fails for double random
sums. For a given Banach space, the validity of various kinds of contraction
principles becomes a useful property that has far-reaching consequences, some
of which will be explored in later chapters.

7.1 Type and cotype

In this first section, we introduce the definitions and basic properties of type
and cotype and the main examples of spaces satisfying one or the other of these
conditions. Among the deeper results is the König–Tzafriri Theorem 7.1.14,
which deduces cotype form type with quantitative estimates for the relevant
constants. The section concludes with a far reaching extremality property of
Gaussian sequence in spaces with the best possible type or cotype 2.

7.1.a Definitions and basic properties

Unless stated otherwise, ("n)n>1

will always denote a Rademacher sequence
defined on some probability space (⌦,P). Recall the standing assumption that
Rademacher sequences are real (respectively, complex) when we work over the
real (respectively, complex) scalar field.

Definition 7.1.1 (Type and cotype). Let X be a Banach space, let p 2
[1, 2] and q 2 [2,1].

(1) The space X is said to have type p if there exists a constant ⌧ > 0 such
that for all finite sequences x

1

, . . . , xN in X we have

⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

p⌘1/p
6 ⌧

⇣

N
X

n=1

kxnkp
⌘

1/p
.

(2) The space X is said to have cotype q if there exists a constant c > 0 such
that for all finite sequences x

1

, . . . , xN in X we have

⇣

N
X

n=1

kxnkq
⌘

1/q
6 c

⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

q⌘1/q
,

with the usual modification for q = 1.

We denote by ⌧p,X and cq,X the least admissible constants in (1) and (2) and
refer to them as the type p constant and cotype q constant of X, respectively.



7.1 Type and cotype 55

From the case N = 1 we see that ⌧p,X > 1 and cq,X > 1. By the Kahane–
Khintchine inequalities, the exponents (with the exception of q = 1) in the
Rademacher sums in (1) and (2) could be replaced by any exponent r 2 [1,1).
This leads to the same properties, but with different constants.

To check that the ensemble of spaces considered in Definition 7.1.1 is non-
void, we immediately provide:

Example 7.1.2. Every Hilbert space H has type 2 and cotype 2, with constants
⌧
2,H = 1 and c

2,H = 1. Indeed, for all h
1

, . . . , hN 2 H we have

E
�

�

�

N
X

n=1

"nhn

�

�

�

2

= E
⇣

N
X

n=1

"nhn

�

�

�

N
X

n=1

"nhn

⌘

= E
N
X

n=1

N
X

m=1

"n"m(hn|hm)

=

N
X

n=1

N
X

m=1

E("n"m)(hn|hm) =

N
X

n=1

(hn|hn) =

N
X

n=1

khnk2.

This result can be interpreted as a generalisation of the parallelogram law.
In Section 7.3.a we show that up to isomorphism, Hilbert spaces are the only
Banach spaces with both type 2 and cotype 2.

It is easy to check that the inequalities defining type and cotype cannot
be satisfied for any p > 2 and q < 2, respectively, even in one-dimensional
spaces X. This explains the restrictions imposed on these numbers.

By the triangle inequality, every Banach space X has type 1, with constant
⌧
1,X = 1. Likewise, the inequalities

sup
n>1

kxnk 6
�

�

�

N
X

n=1

"nxn

�

�

�

L1
(⌦;X)

6
�

�

�

N
X

n=1

"nxn

�

�

�

L1
(⌦;X)

show that every Banach space has cotype 1, with constant c1,X = 1. We
say that X has non-trivial type if X has type p for some p 2 (1, 2], and finite
cotype if it has cotype q for some q 2 [2,1).

From the fact that the sequence space norm k·k`t
N

(X)

is decreasing and the
probability space norm k · kLt

(⌦;X)

is increasing in t 2 [1,1), it follows that
if X has type p (cotype q), then it also has type u for all u 2 [1, p] (cotype v
for all v 2 [q,1]) and ⌧u,X 6 ⌧p,X (cv,X 6 cq,X). In particular, every Hilbert
space is also an example of a space with type p and cotype q for every p 2 [1, 2]
and q 2 [2,1].

The property of type is well-behaved under interpolation, as shown by the
following proposition. This is not the case for cotype, and we refer to the Notes
for further comments on this point. An interpolation result for cotype will be
proved, for K-convex Banach spaces X, in Proposition 7.4.17. The relevant
terminology on interpolation can be found in Appendix C.

Proposition 7.1.3. Let (X
0

, X
1

) be an interpolation couple and assume Xi

has type pi 2 [1, 2] for i = 1, 2. Let ✓ 2 (0, 1) and p 2 [1, 2] satisfy 1

p = 1�✓
p0

+
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✓
p1

. The complex interpolation space X✓ = [X
0

, X
1

]✓ and the real interpolation
spaces X✓,p0,p1 = (X

0

, X
1

)✓,p0,p1 have type p, with constants

⌧p,X
✓

6 ⌧1�✓p0,X0
⌧✓p1,X1

,

⌧p,X
✓,p0,p1

6 ⌧1�✓p0,X0
⌧✓p1,X1

.

Recall that X✓,p0,p1 = (X
0

, X
1

)✓,p with equivalent norms (see Appendix
C.3.14).

Proof. Fix N > 1. The operators T : `pi

N (Xi) ! Lp
i(Xi) given by T (xn)

N
n=1

=
PN

n=1

"nxn, are bounded with norm at most ⌧p
i

,X
i

. As in shown in Theorem
2.2.6,

[`p0

N (X
0

), `p1

N (X
1

)]✓ = `pN (X✓),

[Lp0(X
0

), Lp1(X
1

)]✓ = Lp(X✓),

and therefore by interpolation we find that T : `pN (X✓) ! Lp(X✓) is bounded
with norm kTk 6 ⌧1�✓p0,X0

⌧✓p1,X1
. The proof for the real interpolation spaces

follows the same lines, but uses Theorem 2.2.10. ⇤

There will be occasions where we wish to compare the type and cotype of
a complex Banach space X and its realification XR. For a complex Banach
space X we write ⌧Rp,X and cRq,X for the best constant in the definition of type
p and cotype q while using real Rademacher random variables. Thus

⌧Rp,X = ⌧p,XR , cRq,X = cq,XR ,

and by randomisation and Proposition 6.1.19,

⌧p,X 6 ⌧Rp,X 6 1

2
⇡⌧p,X , cq,X 6 cRq,X 6 1

2
⇡cq,X . (7.1)

7.1.b Basic examples

We shall next analyse the type and cotype properties of general Lr-spaces,
the finite-dimensional sequence spaces `1N and `1N , and the Schatten classes
C r.

In the context of type and cotype of Lr-type spaces, it is often convenient
to use type and cotype constants ⌧p,X;s and cq,X;s with a secondary parameter
s, where these are defined as the least admissible constants in the estimates

�

�

�

N
X

n=1

"nxn

�

�

�

Ls

(⌦;X)

6 ⌧p,X;s

⇣

N
X

n=1

kxnkp
⌘

1/p
,

⇣

N
X

n=1

kxnkq
⌘

1/q
6 cq,X;s

�

�

�

N
X

n=1

"nxn

�

�

�

Ls

(⌦;X)

.
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One can immediately estimate the ratios ⌧p,X;s/⌧p,X and cq,X;s/cq,X from
above and below with the Kahane–Khintchine inequality.

In the next proposition and its corollary, (S,A , µ) is an arbitrary measure
space.

Proposition 7.1.4. Let X be a Banach space, let p 2 [1, 2], q 2 [2,1], and
r 2 [1,1).

(1) If X has type p, then Lr(S;X) has type p ^ r, with

⌧p^r,Lr

(S;X);s 6 ⌧p,X;s, s 2 [r,1).

(2) If X has cotype q, then Lr(S;X) has cotype q _ r, with

cq_r,Lr

(S;X);t 6 cq,X;t, t 2 [1, r].

Proof. We will prove the result for type, the case of cotype being similar. If
r < p we may replace p by r and thereby assume that 1 6 p 6 r 6 s.

Fix f
1

, . . . , fN 2 Lr(S;X). In the remainder of the proof, without loss
of generality we may assume that µ is �-finite (replace S by the union of
the sets Sj = {2j 6 max

16n6N kfnk < 2j+1}, each of which has finite µ-
measure). Using Minkowski’s inequality twice (Proposition 1.2.22) and the
type p property,

�

�

�

N
X

n=1

"nfn
�

�

�

Ls

(⌦;Lr

(S;X))

6
�

�

�

N
X

n=1

"nfn
�

�

�

Lr

(S;Ls

(⌦;X))

6 ⌧p,X;s

�

�(fn)
N
n=1

�

�

Lr

(S;`p(X))

6 ⌧p,X;s

�

�(fn)
N
n=1

�

�

`p(Lr

(S;X))

.

⇤

The usefulness of having these estimates with constant one is most evident in
iterative considerations. As an immediate corollary we deduce:

Corollary 7.1.5. Let X be a Banach space, let p 2 [1, 2] and q 2 [2,1], let
r = (r

1

, . . . , rN ) 2 [1,1)N and write

Lr(S;X) := Lr1(S
1

(Lr2(S
2

, . . . Lr
N (SN ;X) . . .)).

(1) If X has type p, then Lr(S;X) has type p ^ r := p ^ r
1

^ . . . ^ rN , with

⌧p^r,Lr
(S;X);s 6 ⌧p,X;s, s 2 [r

1

_ . . . _ rN ,1).

(2) If X has cotype q, then Lr(S;X) has cotype q_ r := q_ r
1

_ . . ._ rN , with

cq_r,Lr
(S;X);t 6 cq,X;t, t 2 [1, r

1

^ . . . ^ rN ].
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The point is that the type and cotype estimates only depend on the upper
and lower bounds for the sequence (rn)Nn=1

, not on the number of elements of
this sequence. This phenomenon already appeared in Theorem 4.3.17, where
we verified it by a more ad hoc argument.

Corollary 7.1.6. Let r 2 [1,1), and (S,A , µ) be a measure space such that
Lr(S) is infinite-dimensional. Then

⌧p,Lr

(S);r =

(

1, p 6 r ^ 2,

1, p > r ^ 2;

cq,Lr

(S);r =

(

1, q < r _ 2,

1, q > r _ 2.

Proof. The cases with ‘constant 1’ are immediate from Proposition 7.1.4, even
without the infinite-dimensionality assumption.

For the cases with ‘constant 1’ (i.e., the failure of the corresponding
property), we detail the case of type, that of cotype being similar. Thus,
we show that if dimLr(S) = 1, then Lr(S) fails type p > min{r, 2}. For this
we may assume that 1 6 r < p 6 2, the remaining case being immediate from
the fact that no Banach space has type greater than 2.

For each N > 1, the measure space S contains disjoint measurable sets
S
1

, . . . , SN of positive and finite measure. Indeed, otherwise S consists of
finitely many atoms and possibly a purely infinite part, contradicting the
assumption that Lp(S) be infinite-dimensional.

Fix N > 1. Choose disjoint sets S
1

, . . . , SN of positive finite measure. With
fn = µ(Sn)

�1/r
1S

n

we then have, by Fubini’ theorem and disjoint supports,
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k"nfnkrLr
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⌘
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N
X
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k"nfnkrLr

(⌦;Lr
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⌘

1/r
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X
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1
⌘

1/r
= N1/r,

whereas
⇣

N
X

n=1

kfnkpLr

(S)

⌘

1/p
=
⇣

N
X

n=1

1
⌘

1/p
= N1/p.

Letting N ! 1 we see that Lr(S) cannot have type p. ⇤
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The finite-dimensional spaces `1N and `1N play an important role in the theory
of type and cotype, and their type and cotype constants are given in the
following proposition.

Proposition 7.1.7. For p 2 [1, 2] and q 2 [2,1], we have

⌧p,`1
N

= N1/p0
, cq,`1

N

6 
2,1, cq,`1

N

= N1/q, (7.2)

and
1

2
(blog

3

Nc+ 1)1/p
0 6 ⌧p,`1

N

6 (2e logN)1/p
0
_ 21/p

0
. (7.3)

Proof of (7.2). Let us begin by noting the obvious identities ⌧p,`p
N

= 1 and
cq,`q

N

= 1.
Concerning ⌧p,`1

N

, we use kxk`p
N

6 kxk`1
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In the converse direction, we choose xk = ek, the unit vectors, to see that
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The case of cq,`1
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is similar: We use kxk`1
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Conversely, with xk = ek, we have

N1/q =
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kenkq`1
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1/q
6 cq,`1
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.

The estimate cq,`1
N

6 c
2,`1

N

6 
2,1 is a special case of the similar bound

for general L1(S)-spaces (see Corollary 7.1.5) and the Kahane–Khintchine
inequality. ⇤
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In order to estimate ⌧p,`1
N

from below, we will make use of the bound already
proved for ⌧p,`1

N

, via the following notion, whose deeper connections with type
and cotype will be explored later in this chapter:

Definition 7.1.8 (Isomorphic copy of Y in X). Let X and Y be Banach
spaces and let � > 1 be a constant. We say that X contains a �-isomorphic
copy of Y , and write Y ✓� X, if there exist T 2 L (Y,X) and constants
�
1

,�
2

> 0 such that �
1

�
2

6 � and

1

�
1

kyk 6 kTyk 6 �
2

kyk, y 2 Y.

We say that X contains an isomorphic copy of Y if X contains a �-isomorphic
copy of Y for some � > 1.

It is immediate to check that if Y ✓� X, then

⌧p,Y 6 �⌧p,X , cq,Y 6 �cq,X , (7.4)

for all 1 6 p 6 2 and 2 6 q 6 1. For the present purposes, we will need the
following basic example:

Example 7.1.9 (`1N contains an isomorphic copy of `1n). We shall prove that

(1) for K = R, `1
2

N�1 contains a 1-isomorphic copy of `1N ;

(2) for K = C, `1JN�1 contains a
1

cos(⇡/J)
-isomorphic copy of `1N for J > 3.

In particular, `1N ✓
2

`1
3

N�1 , and for every " > 0 there exists M = M(N, ")
such that `1N ✓

1+" `1M .

Proof. Consider the index set ⇥ := {e2⇡ik/J : k = 1, . . . , J}N�1 and the
operator

T : `1N ! `1(⇥) = `1JN�1 : a = (an)
N
n=1

7!
⇣

N�1

X

n=1

✓nan + aN
⌘

✓2⇥
,

where we take J = 2 in the real case and J > 3 in the complex case.
In the real case, we have ⇥ = {�1, 1}N�1 and with the choice ✓n =

sgn(an) sgn(aN ) we find that

kTak`1(⇥)

= max
✓2{�1,1}N�1

�

�

�

N�1

X

n=1

✓nan + aN
�

�

�

=
�

�

�

sgn(aN )

N
X

n=1

|an|
�

�

�

= kak`1 .

In the complex case, writing an = |an|e�i�
n , we choose ✓n = ei n such that

| n � (�n � �N )| 6 ⇡/J to see that

kTak`1(⇥)

> max
✓2⇥

<
⇣

ei�N

h

N�1

X

n=1

✓nan + aN
i⌘
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> <
⇣

N�1

X

n=1

|an|ei( n

��
n

+�
N

) + |aN |
⌘

=

N�1

X

n=1

|an| cos( n � [�n � �N ]) + |aN | > cos(⇡/J)
N
X

n=1

|an|,

while clearly kTak`1(⇥)

6 kak`1 . ⇤

We are now ready for:

Proof of (7.3). Concerning ⌧
2,`1

N

, we use kxk`1
N

6 kxk`s
N

6 N1/skxk`1
N

and
the estimate ⌧

2,`s
N

6 ⌧R
2,`s

N

6 Rs,2 6
p
s� 1 for s 2 [2,1) (the first follows

from (7.1), the second from Corollary 7.1.6, and the third from Theorem
6.2.4), to obtain

�

�

�

K
X

k=1

"kxk

�

�

�

L2
(⌦;`1

N

)

6
�

�

�

K
X

k=1

"kxk

�

�

�

L2
(⌦;`s

N

)

6 ⌧
2,`s

N

⇣

K
X

k=1

kxkk2`s
N

⌘

1/2

6 (s� 1)1/2N1/s
⇣

K
X

k=1

kxkk2`1
N

⌘

1/2
.

Therefore, ⌧
2,`1

N

6 (s � 1)1/2N1/s for s 2 [2,1). If N 2 {1, 2}, we can take
s = 2 to find ⌧

2,`1
N

6 21/2, which implies the upper bound in (7.3) for p = 2.
If N > 3, then with s = 2 log(N) we find

⌧
2,`1

N

6 (2 log(N)� 1)1/2N1/(2 log(N)) 6 (2 log(N))1/2e1/2,

which again implies the upper bound in (7.3) for p = 2.
For all N > 1 we have ⌧

1,`1
N

= 1. For p 2 (1, 2), by interpolation (see
Proposition 7.1.3) we obtain

⌧p,`1
N

6 ⌧1�2/p0

1,`1
N

⌧2/p
0

2,`1
N

= ⌧2/p
0

2,`1
N

,

which, combined with the preceding bound for ⌧
2,`1

N

, gives the asserted upper
bound in (7.3).

The lower bound for ⌧p,`1
N

follows from the fact that `1
3

n�1 contains a
2-isomorphic copy of `1n, and hence

⌧p,`1
N

> 1

2
⌧p,`1

n

=
1

2
n1/p0

for N > 3n�1. With n = blog
3

Nc+1, we have ⌧p,`1
N

> 1

2

(blog
3

Nc+1)1/p
0
. ⇤
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As an immediate consequence of these finite-dimensional bounds of Proposi-
tion 7.1.7, we have

Corollary 7.1.10. The spaces c
0

and `1 do not have non-trivial type or finite
cotype. The space `1 has cotype 2, but no non-trivial type.

Concerning the Schatten class C p (see Appendix D for the definition), we
have the following result.

Proposition 7.1.11. For all p 2 (1,1) the Schatten class C p has type p ^ 2
and cotype p _ 2.

The proposition is also true for p = 1, that is to say, C 1 has cotype 2. This is
a deeper result that we shall not prove here.

The result of the proposition is optimal in view of the fact that C p contains
an isometric copy of `p. To see this, let (en)n>1

be the standard unit basis of
`2. Then, for all scalar sequences c = (cn)n>1

,

kck`p =
�

�

�

X

n>1

cn(en ⌦ en)
�

�

�

Cp

.

The key to Proposition 7.1.11 is an explicit computation for the case when
p is an even integer:

Lemma 7.1.12. ⌧
2,C 2n 6 

2n,2 for all n 2 Z
+

.

Proof. We use the results of Appendix D. Iterating the identity for u⇤u pre-
ceding (D.2) and using Lemma D.1.1, we find that kuk2nC 2n = tr((u⇤u)n).
Therefore, if ("i)i>1

is a Rademacher sequence,

E
�

�

�

N
X

i=1

"ixi

�

�

�

2n

C 2n
= E

⇣

tr
X

i1,j1,...,in,jn2{1,...,N}

"i1"j1 · · · "in"jnx⇤
i1xj1 · · ·x⇤

i
n

xj
n

⌘

=

⇤
X

i1,j1,...,in,jn2{1,...,N}

tr(x⇤
i1xj1 · · ·x⇤

i
n

xj
n

)

6
⇤
X

i1,j1,...,in,jn2{1,...,N}

kxi1kC 2n · · · kxj
n

kC 2n ,

where ⇤ signifies the following restriction in the summation:

• in the real case, each value k 2 {1, . . . , N} appears an even number of
times in the sequence (i

1

, j
1

, . . . , in, jn);
• in the complex case, each value k 2 {1, . . . , N} appears an equal number

of times in the sequence (i
1

, . . . , in) and in the sequence (j
1

, . . . , jn).
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Indeed, the second identity follows easily by considering when Erk (with a
real Rademacher r) or E("k"`) = E("`�k) is zero or one.

Exactly the same computation shows that non-negative numbers ai satisfy

E
�

�

�

N
X

i=1

"iai
�

�

�

2n
=

⇤
X

i1,j1,...,in,jn2{1,...,N}

ai1aj1 · · · ainajn .

Using this with ai = kxikC 2n , we find that

⇣

E
�

�

�

N
X

i=1

"ixi

�

�

�

2n

C 2n

⌘

1/2n
6
⇣

E
�

�

�

N
X

i=1

"ikxikC 2n

�

�

�

2n⌘1/2n
6 

2n,2

⇣

N
X

i=1

kxik2C 2n

⌘

1/2
,

which is the asserted estimate. ⇤

Proof of Proposition 7.1.11. We first prove the ‘type’ part. The case p = 2n 2
2Z

+

is contained in Lemma 7.1.12. The result for p 2 [2,1) follows from this
by interpolation, using Propositions 7.1.3 and D.3.1. The result for p 2 (1, 2)
also follows by interpolation again, now using the obvious fact that C 1 has
type 1.

The ‘cotype’ part follows by duality, using Proposition 7.1.13 below and
Theorem D.2.6. ⇤

7.1.c Type implies cotype

As it turns out, in many ways non-trivial type is a stronger property than finite
cotype. In this subsection we prove two results featuring this phenomenon: if a
space X has non-trivial type, then both X and its dual X⇤ have finite cotype.
From Corollary 7.1.10 we already know that neither of these implications
is reversible: the space `1 has cotype 2, yet neither this space itself, nor its
predual c

0

and its dual `1 have non-trivial type.
We begin with the simple duality result.

Proposition 7.1.13. If X has type p 2 [1, 2], then X⇤ has cotype p0 2 [2,1]
with 1

p + 1

p0 = 1. Moreover, cp0,X⇤ 6 ⌧p,X .

Proof. In the proof we take p 2 (1, 2]; the case p = 1 is trivial. Let x⇤
1

, . . . , x⇤
N 2

X⇤ and " > 0 be given and choose norm one vectors x
1

, . . . , xN 2 X such
that hxn, x⇤

ni > (1 � ")kx⇤
nk. If a = (a

1

, . . . , aN ) is a sequence of scalars we
write kakp =

�

PN
n=1

|an|p
�

1/p. By Hölder’s inequality,

(1� ")
⇣

N
X

n=1

kx⇤
nkp

0
⌘

1/p0

6
⇣

N
X

n=1

hxn, x
⇤
nip

0
⌘

1/p0

= sup
kak

p

61

�

�

�

N
X

n=1

anhxn, x
⇤
ni
�

�

�

= sup
kak

p

61

�

�

�

E
D

N
X

m=1

"mamxm,
N
X

n=1

"nx
⇤
n

E

�

�

�
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6 sup
kak

p

61

⇣

E
�

�

�

N
X

m=1

"mamxm

�

�

�

p⌘1/p⇣

E
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

p0
⌘

1/p0

6 ⌧p,X sup
kak

p

61

⇣

N
X

m=1

|am|p kxmkp
⌘

1/p⇣

E
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

p0
⌘

1/p0

= ⌧p,X
⇣

E
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

p0
⌘

1/p0

.

Since " > 0 was arbitrary, this proves the result. ⇤

The deduction of cotype from type within the same space is deeper:

Theorem 7.1.14 (König–Tzafriri). If X has type p 2 (1, 2], then it has
cotype q = 2 + (L⌧p,X)p

0
with constant cq,X 6 J , where (J, L) = (2, 2) if

K = R and (J, L) = (3, 6) if K = C.

For a finite sequence (xi)
n
i=1

we set

k(xi)
n
i=1

k"p(X)

:=
�

�

�

n
X

i=1

"ixi

�

�

�

Lp

(⌦;X)

.

These norms and associated spaces have been studied in Section 6.3. Here it
will be convenient to work with finite sequences and to view the space of finite
sequences as a subspace of "p(X) by adding zeros. For later use we record the
simple fact, which is proved by writing out the definitions, that if X has type
p, then so has "p(X) and ⌧"p(X)

= ⌧p,X .
The proof makes use of auxiliary coefficients �p,X(n) defined as the least

constants in the estimate

min
16k6n

kvkk"p(X)

6 �p,X(n)
�

�[vk]
n
k=1

�

�

"p(X)

over all choices of sequences vk = (xk
i )

I
k

i=1

2 "p(X) with Ik 2 N. Here we
use the convention that [vk]nk=1

is the finite sequence obtained by putting all
sequences together in one larger sequence in the following way:

[vk]
n
k=1

= (x1

1

, . . . , x1

I1 , x
2

1

, . . . , x2

I2 , · · · , x
n
1

, . . . , xn
I
n

).

Changing the order of the sequence does not influence the norm in "p(X).

Lemma 7.1.15. We have 1 = �p,X(1) > �p,X(2) > . . . and

�p,X(mn) 6 �p,X(m)�p,X(n).

Proof. Clearly min
16k6n kvkk is decreasing in n, while the contraction princi-

ple implies that
�

�[vk]nk=1

�

�

Lp

(⌦;X)

is increasing in n; from this the decreasing
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nature of �p,X(n) is evident. For the sub-multiplicativity estimate, let vjk,
1 6 j 6 m, 1 6 k 6 n, be an array of elements of "p(X). Then

min
16j6m
16k6n

kvjkk"p(X)

6 min
16j6m

�p,X(n)
�

�[vjk]
n
k=1

�

�

"p(X)

6 �p,X(m)�p,X(n)
�

�[vjk]
m,n
j,k=1

�

�

"p(X)

,

where we first applied the definition of �p,X(n) to [vjk]nk=1

for each fixed j,
and then the definition of �p,X(m) to the functions [vjk]

m,n
j,k=1

(the order is
irrelevant for the norm in "p(X). ⇤

Proof of Theorem 7.1.14. The plan is to derive a bound on �p,X(n) from the
assumption on type, and use this to derive a bound on cotype.

For a given M , the definition of �p,X(M) and normalisation implies that
we can find a sequence v

1

, . . . , vM 2 "p(X) in such a way that

min
16k6M

kvkk"p(X)

= 1,
�

�[vk]
M
k=1

�

�

"p(X)

6 1 + ✏

�p,X(M)
.

Suppose that some vk has norm kvkk"p(X)

> 1. If we replace this vk by
v0k := kvkk�1

"p(X)

vk, the equality above remains valid, and so does the inequality
by the contraction principle. Repeating this for all k, we may in fact assume
that kvkk"p(X)

⌘ 1. Another application of the contraction principle then
shows, for any sequence of scalars c

1

, . . . , cM , that

max
16k6M

kckvkk"p(X)

6
�

�[ckvk]
M
k=1

�

�

"p(X)

6
⇣

max
16k6M

|ck|
⌘ 1 + ✏

�p,X(M)
.

Hence, ek 7! vk realises a (1 + ✏)/�p,X(M)-isomorphic copy of `1M into "p(X)
in the sense of Definition 7.1.8.

In what follows, let (J,K) := (2, 1) if K = R, and (J,K) := (3, 2) if
K = C. For M = Jm�1, the space `1m admits a K-isomorphic embedding into
`1M by the result of Example 7.1.9, and hence a K(1+ ✏)/�p,X(M)-isomorphic
embedding into "p(X). Thus

⌧p,`1
m

6 K(1 + ✏)

�p,X(M)
⌧p,"p(X)

=
K(1 + ✏)

�p,X(M)
⌧p,X ,

and being true for every ✏ > 0, this also holds with ✏ = 0. On the other hand,
(7.2) states that ⌧p,`1

m

= m1/p0
, and thus �p,X(M) 6 K⌧p,Xm�1/p0

.
Let us consider the smallest m such that K⌧p,Xm�1/p0 6 J�1. Thus

�p,X(Mk) 6 �p,X(M)k 6 K⌧p,Xm�1/p0 6 J�k and K⌧p,X(m�1)�1/p0
> J�1,

so that m� 1 < (JK⌧p,X)p
0
.

We then turn to the estimation of the cotype constant. Consider a se-
quence of vectors x

1

, x
2

, . . . , xN enumerated in the decreasing order of the
norm kx

1

k > kx
2

k > . . .. Thus applying the definition of �p,X(n) with single-
ton sequences vj = (xj) gives
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kxnk = min
16j6n

kxjk 6 �p,X(n)
�

�(xj)
n
j=1

�

�

"p(X)

6 �p,X(n)
�

�

�

N
X

j=1

"jxj

�

�

�

L2
(⌦;X)

=: �p,X(n)EN .

Then, for any q > m,

N
X

n=1

kxnkq 6
N
X

n=1

�p,X(n)qEq
N 6

1
X

k=0

Mk+1�1

X

n=Mk

�p,X(Mk)qEq
N

6
1
X

k=0

Mk+1J�kqEq
N = M

1
X

k=0

J (m�q)kEq
N =

MEq
N

1� Jm�q
.

Requiring q > m+ 1, we have M/(1� Jm�q) 6 Jm�1/(1� J�1) 6 Jm 6 Jq,
and hence

⇣

N
X

n=1

kxnkq
⌘

1/q
6 JEN = J

�

�

�

N
X

j=1

"jxj

�

�

�

L2
(⌦;X)

6 J
�

�

�

N
X

j=1

"jxj

�

�

�

Lq

(⌦;X)

.

Recalling that m� 1 < (JK⌧p,X)p
0
, the set of admissible q > m+ 1 includes

at least all q > 2 + (JK⌧p,X)p
0
. ⇤

7.1.d Type and cotype for general random sequences

The notions of type and cotype have been defined in terms of Rademacher
variables. However, they immediately extend to more general classes of ran-
dom variables:

Proposition 7.1.16. Let X be a Banach space, let p 2 [1, 2] and q 2 [2,1]
and let (⌘n)Nn=1

be a sequence of X-valued independent symmetric random
variables. Then the following assertions hold:

(1) If X has type p and the random variables (⌘n)Nn=1

are in Lp(⌦;X), then

⇣

E
�

�

�

N
X

n=1

⌘n
�

�

�

p⌘1/p
6 ⌧p,X

⇣

N
X

n=1

Ek⌘nkp
⌘

1/p
.

(2) If X has cotype q and the random variable (⌘n)Nn=1

are in Lq(⌦;X), then

⇣

N
X

n=1

Ek⌘nkq
⌘

1/q
6 cq,X

⇣

E
�

�

�

N
X

n=1

⌘n
�

�

�

q⌘1/q
.

The reader is reminded that the definition of symmetry takes the scalar field
K into account: by Definition 6.1.4, a random variable ⌘ is symmetric if ⌘ and
✏⌘ are identically distributed for all ✏ 2 K with |✏| = 1.
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Proof. (1): Let ("n)n>1

be a Rademacher sequence on a probability space
(⌦",P"). It follows from Proposition 6.1.11 that (⌘n)Nn=1

and ("n⌘n)Nn=1

are
identically distributed. Therefore, by Fubini’s theorem,

E
�

�

�

N
X

n=1

⌘n
�

�

�

p
= E"E

�

�

�

N
X

n=1

"n⌘n
�

�

�

p
= EE"

�

�

�

N
X

n=1

"n⌘n
�

�

�

p

6 ⌧pp,XE
N
X

n=1

k⌘nkp = ⌧pp,X

N
X

n=1

Ek⌘nkp.

The proof of (2) is similar and is left to the reader. ⇤

Taking ⌘n = ⇠nxn, with xn 2 X and scalar-valued random variables ⇠n,
this suggests the following generalisation of the notions of type and cotype.
Let ⇠ be a symmetric random variable with finite moments of all orders, i.e.
E|⇠|p < 1 for all 1 6 p < 1. Let (⇠n)n>1

be a sequence of independent
random variables, each distributed like ⇠.

Definition 7.1.17. Let X be a Banach space, let p 2 [1, 2] and q 2 [2,1].

(1) The space X is said to have ⇠-type p if there exists a constant ⌧ > 0 such
that for all finite sequences x

1

, . . . , xN 2 X we have

⇣

E
�

�

�

N
X

n=1

⇠nxn

�

�

�

p⌘1/p
6 ⌧

⇣

N
X

n=1

kxnkp
⌘

1/p
.

(2) The space X is said to have ⇠-cotype q if there exists a constant c > 0
such that for all finite sequences x

1

, . . . , xN 2 X we have

⇣

N
X

n=1

kxnkq
⌘

1/q
6 c

⇣

E
�

�

�

N
X

n=1

⇠nxn

�

�

�

q⌘1/q
,

with the usual modification for q = 1.

We denote by ⌧ ⇠p,X and c⇠q,X the least admissible constants in (1) and (2) and
refer to them as the ⇠-type p constant and ⇠-cotype q constant of X, respec-
tively. A case of prominent interest involves the case of a standard Gaussian
random variable �, in which case we speak of Gaussian type and cotype and
denote the corresponding constants by ⌧�p,X and c�q,X . The definitions of real
and complex standard Gaussian variables are stated in Section E.2.

Proposition 7.1.18. Let X be a Banach space, p 2 [1, 2] and q 2 [2,1].
Let (⇠n)n>1

be a sequence of independent symmetric random variables, each
equidistributed with a given non-zero random variable ⇠.

(1) If ⇠ 2 Lp(⌦), then X has type p if and only if it has ⇠-type p, and

k⇠k
1

⌧p,X 6 ⌧ ⇠p,X 6 k⇠kp⌧p,X .
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(2) if ⇠ 2 Lq(⌦) and X has cotype q, then it also has ⇠-cotype q, and

c⇠q,X 6 1

k⇠kq
cq,X .

Proof. The upper bounds for the ⇠-(co)type constants by the (co)type con-
stants follow from Proposition 7.1.16, where we take ⌘n = ⇠nxn. The lower
bound for ⌧ ⇠p,X follows from Proposition 6.1.15. ⇤

The corresponding converse result for cotype q holds as well (see Corollary
7.2.9), but is considerably more difficult to prove. For the moment we content
ourselves with the following weaker converse.

Proposition 7.1.19. If X has ⇠-cotype q, then it has cotype r for every r > q,
and

cr,X 6 2
⇣r + q

r � q

⌘

1/r
k⇠k

3rq/(r�q) · c⇠q,X .

Proof. We shall assume that "
1

, . . . , "N and ⇠
1

, . . . ⇠N are defined on proba-
bility spaces ⌦ and ⌦0 respectively and write E and E0 for the corresponding
expectations. Let x

1

, . . . , xN 2 X. We first derive a version of the cotype q
estimate with auxiliary coefficients �(n) > 0:

N
X
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N
X

n=1

⇠n
xn

�(n)

�

�

�

q

= (c⇠q,X)qE0E
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,

where we used randomisation and applied the contraction principle. The term
involving ⇠n can be estimated as follows, for any s > q:
�

�
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|⇠n|
�(n)
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�

�

Lq
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6
�

�

�

⇣

X

n>1

|⇠n|s

�(n)s
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(⌦0
)

= k⇠kLs
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)

⇣

X
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�(n)�s
⌘

1/s
.

It follows that
N
X

n=1

kxnkq

�(n)q
6 (c⇠q,X)qk⇠kqLs

(⌦0
)

⇣

X
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X
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�

q

Lq
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. (7.5)

Let us now turn to the actual proof of the proposition. Suppose that the
vectors x

1

, . . . , xN are ordered in such a way that kx
1

k > kx
2

k > . . . > kxNk.
If � is increasing, for 1 6 m 6 N we have
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kxmkq

�(m)q
= min

16n6m

kxnkq

�(n)q
6 1

m

m
X

n=1

kxnkq

�(n)q
6 1

m

N
X

n=1

kxnkq

�(n)q
=:

1

m
Sq.

For r > q, choosing �(m) := m� with � := 1

2

( 1q � 1

r ), and using that for any
↵ > 1 we have

X

m>1

m�↵ = 1 +
X

m>2

m�↵ 6 1 +

ˆ 1

1

t�↵ dt = 1� 1

1� ↵
, (7.6)

we obtain
N
X

m=1

kxmkr 6
1
X

m=1

m�r/q�(m)rSr =

1
X

m=1

m�r/q+r�Sr

6
⇣

1� 1

1� r/q + r�

⌘

Sr =
r + q

r � q
Sr.

(7.7)

Choosing s := 3

2

��1 and using (7.6) again,

⇣

X
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⌘

1/s
=
⇣

X
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n�s✏
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1/s
6
⇣ s✏

s✏� 1

⌘

1/s
= 32✏/3 6 2, (7.8)

since ✏ 6 1

2q 6 1

4

. Combination of (7.7) with the estimate for Sq of (7.5) and
substituting the estimate of (7.8), we obtain
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N
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X
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"nxn

�

�

�

Lq

(⌦;X)

where s = 3/(2✏) = 3rq/(r � q). This completes the proof. ⇤

7.1.e Extremality of Gaussians in (co)type 2 spaces

Spaces with type 2 or cotype 2 enjoy some special properties that do not have
a full counterpart in spaces with type p < 2 or cotype q > 2. An example
is the following comparison principle, which can be viewed as an extremal
property of the Gaussian random variables.

We fix a measure space (S,A , µ). As always, (�n)n>1

denotes a Gaussian
sequence on a probability space (⌦,P).

Theorem 7.1.20. Let X be a Banach space and (fn)Nn=1

be an orthogonal
system in L2(S).

(1) If X has Gaussian cotype 2, then for all x
1

, . . . , xN 2 X,
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N
X
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fnxn
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2,X sup

16n6N
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(S)
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N
X
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�nxn
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�

L2
(⌦;X)

.
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(2) If X has Gaussian type 2, then for all x
1

, . . . , xN 2 X,

inf
16n6N

kfnkL2
(S)
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X
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�nxn
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L2
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fnxn
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�

�

L2
(S;X)

.

This result can be derived from Theorems 9.2.10 and 9.2.11. To keep the pre-
sentation self-contained we present a more direct argument using the following
approximation result:

Lemma 7.1.21. Let (fn)Nn=1

be an orthonormal system in L2(S). Given any
✏ > 0, there exists another orthonormal system (sn)Nn=1

consisting of simple
functions with ksn � fnk2 6 ✏ for all n = 1, . . . , N .

Proof. Assume for induction that we have already found simple functions
s
1

, . . . , sk�1

such that ksj � fjk2 6 ✏j for some small numbers ✏j > 0, and
these sj are orthonormal. (The assumption is vacuous for k = 1.) We construct
sk as follows. Let first s0k be any simple function such that ks0k � fkk2 6 ✏0k.
Let

s00k := s0k �
k�1

X

j=1

(sj |s0k)sj

be its projection orthogonal to the sj ’s. Then, using (fj |fk) = 0, we have

s00k � fk = s0k � fk �
k�1

X

j=1

(sj |s0k � fk)sj �
k�1

X

j=1

(sj � fj |fk)sj ,

and hence (noting that the first and second term together are of the form
(I � P )(s0k � fk) with P an orthogonal projection)

ks00k � fkk2 6 ks0k � fkk2 +
k�1

X

j=1

ksj � fjk2 6 ✏0k +

k�1

X

j=1

✏j =: ✏00k .

Finally, we set sk := ks00kk
�1

2

s00k so that

sk � fk =
s00k � fk
ks00kk2

+
1� ks00kk2
ks00kk2

fk.

From kfkk2 = 1 we have |1�ks00kk2|kfkk2 = |1�ks00kk2| = |kfkk2 �ks00kk2| and
ks00kk2 > kfkk2 � ks00k � fkk2 = 1� ks00k � fkk2, and therefore

ksk�fkk2 6 ks00k � fkk2
ks00kk2

+

�
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�

�

ks00kk2
6 2ks00k � fkk2

1� ks00k � fkk2
6 2✏00k

1� ✏00k
=: ✏k.

Thus we have increased the length of the simple orthonormal sequence with
a new function sk that is within ✏k of the original fk. It is clear from above
that if the previous number ✏

1

, . . . , ✏k�1

, ✏0k are small, then ✏k will be small as
well. So if we pick a small enough ✏

1

and ✏0
1

, . . . , ✏0N , relative to the given ✏,
then all ✏

1

, . . . , ✏N will remain smaller than this ✏. ⇤
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Proof of Theorem 7.1.20. We may assume that an := kfnkL2
(S)

6= 0 for all
n. Writing fn = an�n, the functions �n are orthonormal, and the asserted
bounds for fn will follow from the analogous bounds for �n by the contraction
principle. So we may assume without loss of generality that the functions fn
are orthonormal to begin with. By the continuous dependence on fn 2 L2(S)
of the terms occurring in (1) and (2), invoking the approximation result of
Lemma 7.1.21 we may further assume that each fn is a simple function, say
fn =

PM
m=1

anm1A
m

, where we may clearly choose representations with the
same disjoint sets Am for each n.

Then
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where the norm on the right can be rearranged into
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.

Since qnm := µ(Am)1/2anm satisfies

M
X

m=1

qnmqkm =

M
X

m=1

µ(Am)anmakm =

ˆ
S
fnfk dµ = �nk,

the transformed sequence �̃n :=
PM

m=1

qnm�m is another independent stan-
dard Gaussian sequence. This completes the proof. ⇤

If (fn)Nn=1

is any sequence of functions in L2(S) and ("n)Nn=1

is a Rademacher
sequence, then ("nfn)Nn=1

is orthogonal in L2(S ⇥⌦). Hence Theorem 7.1.20
implies:

Corollary 7.1.22. Let X be a Banach space and (fn)Nn=1

be an arbitrary
sequence in L2(S).

(1) If X has cotype 2, then for all x
1

, . . . , xN 2 X,
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.

(2) If X has type 2, then for all x
1

, . . . , xN 2 X,
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As a corollary we obtain the following comparison result for Gaussian and
Rademacher sums in spaces with Gaussian cotype 2.

Corollary 7.1.23. Let X be a Banach space with Gaussian cotype 2. Then
the L2-norms of Gaussian and Rademacher sums are comparable, and
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.

Proof. The first estimate has already been proved in Proposition 6.1.15 and
doesn’t require the cotype 2 assumption. For the second one, we use ran-
domisation (see Proposition 6.1.11) with a Rademacher sequence ("0n)n>1

on
a distinct probability space (⌦0,P0) to obtain
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where the first term was estimated by the contraction principle, and the second
one by Corollary 7.1.22 with fn = (|�n|� t)

+

. Next, we observe that

k(|�|� t)
+

k2
2
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0

2�e�t2/2P(|�| > �) d� = e�t2/2k�k2
2

= e�t2/2,

where we used the estimate P(|�| > t + �) 6 e�t2/2P(|�| > �) (see Lemma
E.2.18 (1) in the real case and (E.8) in the complex case). Now, let us choose
t := 2

q

log(2c�
2,X), so that c�q,Xe�t2/4 = 1
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. We then have
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Absorbing the (obviously finite) last term in the left-hand side, we obtain the
assertion. ⇤
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We will use this to prove that Gaussian cotype 2 is equivalent to cotype 2
(so that in the preceding corollary the Gaussian cotype 2 assumption can be
replaced by cotype 2).

Corollary 7.1.24. A Banach space X has cotype 2 if and only if it has Gaus-
sian cotype 2, and in this case

c�
2,X 6 c

2,X 6 4c�
2,X

q

log(2c�
2,X).

Proof. The first estimate is contained in Proposition 7.1.18, observing that
k�k

2

= 1. For the second estimate, we have
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,

using Corollary 7.1.23 in the second step. ⇤

As we shall see in the next section, the last two corollaries have analogues
for the general cotype q case; however, the proofs are complicated by the fact
that a reasonable cotype q > 2 analogue of Theorem 7.1.20 does not exist,
and the cotype q > 2 version of Corollary 7.1.22 is somewhat weaker.

7.2 Comparison theorems under finite cotype

In this section we present several comparison results for random sums in spaces
with finite (Gaussian) cotype q. Among other things, in Section 7.2.d we will
show that Gaussian cotype q is equivalent to cotype q, and that Gaussian
and Rademacher sums are comparable under finite cotype q. Furthermore,
in Section 7.2.e we derive an extension of Khintchine’s inequality for Banach
lattices. This will be used in Theorem 7.5.20 to prove that Banach lattices
with finite cotype have Pisier’s contraction property.

The comparison results of this section will also play an important role
in Section 8.5.c, where they are used to find sufficient conditions for R-
boundedness for integral operators.

The main tool for the proof of the comparison results is a factorisation
theorem of Pisier for so-called (q, 1)-summing operators. We do not aim at
presenting a systematic account of the theory of summing operators and limit
ourselves strictly to those results that will be needed later on.
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7.2.a Summing operators

Let X and Y be Banach spaces and let p, q 2 [1,1).

Definition 7.2.1. An operator T 2 L (X,Y ) is called (q, p)-summing if there
exists a constant C > 0 such that for all finite sequences (xn)

N
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in X,

⇣

N
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1/q
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|hxn, x
⇤i|p

⌘

1/p
.

The least admissible constant C is called the (q, p)-summing norm of T and
is denoted by ⇡q,p(T ), or just ⇡p(T ) if q = p.

By taking xn = �nx for some fixed vector x 2 X, one easily checks that the
only operator which is (q, p)-summing for some q < p, is the zero operator.
Therefore, we will only consider indices p 6 q in what follows.

Remark 7.2.2. In the important special case when X is a closed subspace of
C(K), with K a compact Hausdorff space, the right-hand side in the inequality
of Definition 7.2.1 can be expressed as follows, where 1

p + 1

p0 = 1:
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(7.9)

Our principal interest to the theory of summing operators stems from their
connection to cotype, as shown by the following result:

Proposition 7.2.3. Let X and Y be a Banach spaces, and let Y have finite
cotype q. Then every bounded linear operator T 2 L (X,Y ) is (q, 1)-summing,
with ⇡q,1(T ) 6 cq,Y kTk.

Proof. Let x
1

, . . . , xN 2 X. Then
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,

where
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by interchanging the suprema. ⇤

7.2.b Pisier’s factorisation theorem

The (q, 1)-summing property of operators into a cotype q space, as shown in
Proposition 7.2.3, is most efficiently exploited in the case when the domain
of the operator is a C(K)-space, via a powerful factorisation theorem due
to Pisier that is available in this situation. As a matter of fact, our principal
applications of this theorem will only deal with the case when K = {1, . . . , N}
so that C(K) = `1N ; we will indicate a couple of places in the proof where
the use of some standard but heavy theorems of functional analysis can be
avoided in this important special case.

Pisier’s factorisation theorem features the Lorentz space Lq,1(µ), consisting
of all measurable functions for which the following norm is finite:

kfkLq,1
(µ) := q

ˆ 1

0

µ(|f | > t)1/q dt.

Some properties of this space are discussed in Appendix F.

Theorem 7.2.4 (Pisier’s factorisation theorem). Let K be a compact
Hausdorff space and let X be a Banach space. Let q 2 [1,1). For an operator
T 2 L (C(K), X) the following assertions are equivalent:

(1) T is (q, 1) summing.
(2) there exists a constant C > 0 and a regular Borel probability measure µ

on K such that for all x 2 C(K),

kTxk 6 q�1CkxkLq,1
(µ).

(3) there exists a constant C > 0 and a regular Borel probability measure µ
on K such that for all x 2 C(K),

kTxk 6 Ckxk1/qL1
(µ)kxk

1/q0

C(K)

.

In this situation, the least constants C in (2) and (3) are equal and satisfy

⇡q,1(T ) 6 C 6 q1/q⇡q,1(T ).

Before turning to the proof of Theorem 7.2.4 we give an important corollary,
through which most of our applications of the theorem take place:
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Corollary 7.2.5. Let K be a compact Hausdorff space, let X be a Banach
space with cotype q 2 [2,1), and let p 2 (q,1). For every T 2 L (C(K), X),
there exists a regular Borel probability measure µ on K such that for all x 2
C(K),

kTxk 6 q1/q�1cq,XkTkkxkLq,1
(µ) 6

q1/qp

p� q
cq,XkTkkxkLp

(µ).

In particular, T extends to a bounded operator from Lp(K,µ) into X.

Proof. By Theorem 7.2.4 there exists a regular Borel probability measure µ
on K such that

kTxk 6 q1/q�1⇡q,1(T )kxkLq,1
(µ) 6 q1/q�1cq,XkTkkxkLq,1

(µ),

using Proposition 7.2.3 in the second step. Using the fact that µ is a probability
measure along with Chebyshev’s inequality, we have
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kxkp.

(7.10)

This gives the second claimed estimate. ⇤

Proof of Theorem 7.2.4. We prove (1))(3))(1) and (2))(3))(2).
(1))(3): We may assume that T 6= 0. Fix an integer n > 1. Let Cn denote

the smallest constant which satisfies
⇣

n
X

k=1

kTxkkq
⌘

1/q
6 Cn

�

�

�

n
X

k=1

|xk|
�

�

�

C(K)

for all x
1

, . . . , xn 2 C(K). By (7.9), limn!1 Cn = ⇡q,1(T ). Let �n := 1 � 1

n .
Choose a sequence (x(n)

k )nk=1

in C(K) such that

1 =
⇣

n
X

k=1

kTx(n)
k kq

⌘

1/q
> �nCn

�

�

�

n
X

k=1

|x(n)
k |

�

�

�

C(K)

.

Since (`qn(X))⇤ = `q
0

n (X
⇤) we can find functionals '(n)

1

, . . . ,'(n)
n 2 X⇤ such

that k('(n)
k )nk=1

k
`q

0
n

(X⇤
)

= 1 and

1 =

n
X

k=1

hTx(n)
k ,'(n)

k i.

By the Riesz representation theorem, (C(K))⇤ coincides with the space of
regular Borel measures on K. (When K = {1, . . . , N}, it suffices to use the
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elementary duality (`1N )⇤ = `1N , where elements of the latter space can be
identified with (regular Borel) measures on {1, . . . , N}.) Define a functional
µn on C(K) by

hy, µni :=
n
X

k=1

hT (yx(n)
k ),'(n)

k i.

If kykC(K)

6 1, then

|hy, µni| 6
⇣

n
X

k=1

|T (yx(n)
k )|q

⌘

1/q

6 Cn

�

�

�

n
X

k=1

|yx(n)
k |

�

�

�

C(K)

6 Cn

�

�

�

n
X

k=1

|x(n)
k |

�

�

�

C(K)

6 ��1

n .

Therefore kµnk
(C(K))

⇤ 6 ��1

n 6 2.
By the Banach–Alaoglu theorem, the sequence (µn)n>1

has a weak⇤-
accumulation point µ in (C(K))⇤. (In the case that K = {1, . . . , N} and
(C(K))⇤ = `1N , we can just apply the relative compactness of bounded sets in
a finite-dimensional space.) From limn!1 �n = 1 we infer that kµk

(C(K))

⇤ 6 1.
On the other hand, from h1, µni = 1 we see that h1, µi = 1, and therefore µ
is a probability measure.

To show that µ has the desired properties, fix x 2 C(K) with kxkC(K)

= 1.
Put yk := (1� |x|)x(n)

k , k = 1, . . . , n, and yn+1

:= (Cn�n)�1x. Then,

(Cn�n)
�qkTxkq = kTyn+1

kq =
n+1

X

k=1

kTykkq �
n
X

k=1

kTykkq

6 Cq
n+1

�

�

�

n+1

X

k=1

|yk|
�

�

�

q
�

n
X

k=1

kT ((1� |x|)x(n)
k )kq

= Cq
n+1

�

�

�

n+1

X

k=1

|yk|
�

�

�

q
� |h(1� |x|), µni|q.

The pointwise inequality
Pn

k=1

|x(n)
k | 6 (Cn�n)�1 implies

n+1

X

k=1

|yk| =
⇣

n
X

k=1

|yk|
⌘

+ |yn+1

| 6 (Cn�n)
�1(1� |x|) + (Cn�n)

�1|x| = (Cn�n)
�1

and therefore

kTxkq 6 Cq
n+1

� (Cn�n)
q|h(1� |x|), µni|q.

Taking limits along a suitable subsequence we find

kTxkq 6 ⇡q,1(T )
q(1� |h(1� |x|), µi|q)
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= ⇡q,1(T )
q(1� |1� h|x|, µi|q)

6 q⇡q,1(T )
q|h|x|, µi| = q⇡q,1(T )

qkxkL1
(µ),

where we used the mean value theorem. Since kxkC(K)

= 1, this proves that
(3) holds, with C 6 q1/q⇡q,1(T ).

(3))(1): Fix x
1

, . . . , xN 2 C(K) and put A :=
�

�

PN
n=1

|xn|
�

�

C(K)

. Since
kxnkC(K)

6 A we have

C�1

⇣

N
X

n=1

kTxnkq
⌘

1/q
6
⇣

N
X

n=1

kxnkL1
(µ)kxnkq/q

0

C(K)

⌘

1/q

6 A1/q0
⇣

�

�

�

N
X

n=1

|xn|
�

�

�

L1
(µ)

⌘

1/q
6 A =

�

�

�

N
X

n=1

|xn|
�

�

�

C(K)

.

Now 1 follows from (7.9), with ⇡q,1(T ) 6 C.
(2))(3): This follows from the elementary estimate

kfkL1,q
(µ) = q

ˆ 1

0

µ(|f | > t)1/q dt = q

ˆ kfk1

0

µ(|f | > t)1/q dt

6 qkfk1/q
0

1

⇣

ˆ 1

0

µ(|f | > t) dt
⌘

1/q
= qkfk1/q

0

1 kfk1/q
1

.

(3))(2): We first show that T : C(K) ! X has an extension to a bounded
linear operator bT : L1(µ) ! X which satisfies

k bTxk 6 Ckxk1/qL1
(µ)kxk

1/q0

L1
(µ), x 2 L1(µ). (7.11)

(When K = {1, . . . , N}, this is trivial, since C(K) = `1N = L1(µ).)
For any x 2 L1(µ), by Lusin’s theorem there exists a sequence of functions

(xn)n>1

in C(K) such that kxnk 6 kxkL1
(µ) and limn!1 xn = x µ-almost

everywhere. By the dominated convergence theorem, limn!1 xn = x in L1(µ)
and for all m,n > 1,

kTxn � Txmk 6 Ckxn � xmk1/qL1
(µ)kxn � xmk1/q

0

L1
(µ)

6 Ckxn � xmk1/qL1
(µ)(2kxkL1

(µ))
1/q0 .

Therefore, (Txn)n>1

is a Cauchy sequence in X, and hence convergent to
some y 2 X. One easily checks that the limit y does not depend on the choice
of the sequence (xn)n>1

. Defining bTx := y, we see that (7.11) holds.
We shall prove (2) for bT and for all x 2 L1(µ). By density and the

continuity of the inclusion L1(µ) ,! Lq,1(µ) it even suffices to consider µ-
simple functions. Let x =

PN
n=1

an1A
n

with |a
1

| > |a
2

| > . . . > |aN | and An

disjoint and µ(An) > 0. Let yk :=
Pk

n=1

a
n

|a
n

|1A
n

, so that kykk1 = 1 and
kykk1 = µ(Sk) := µ(

Sk
n=1

An). Denoting aN+1

:= 0, we observe that



7.2 Comparison theorems under finite cotype 79

µ(|x| > t) = µ(Sk) if and only if |ak+1

| 6 t < |ak|. (7.12)

Via the representation

x =

N
X

n=1

|an|
an
|an|

1A
n

=

N
X

n=1

N
X

k=n

(|ak|� |ak+1

|) an
|an|

1A
n

=

N
X

k=1

(|ak|� |ak+1

|)yk

it follows from (7.11) that

k bTxk 6
N
X

k=1

(|ak|� |ak+1

|)k bTykk 6 C
N
X

k=1

(|ak|� |ak+1

|)kykk1/qL1
(µ)kykk

1/q0

L1
(µ)

= C
N
X

k=1

(|ak|� |ak+1

|)µ(Sk)
1/q = C

N
X

k=1

ˆ |a
k

|

|a
k+1|

µ(Sk)
1/q dt

(7.12)
= C

N
X

k=1

ˆ |a
k

|

|a
k+1|

µ(|x| > t)1/q dt = q�1CkxkLq,1
(µ).

This completes the proof. ⇤

7.2.c Contraction principle with function coefficients

Our next aim is to extend the simple estimates for spaces with cotype 2 of
the previous section to spaces with arbitrary finite cotype q. We fix a measure
space (S,A , µ). As always, ("n)n>1

will denote a Rademacher sequence on a
probability space (⌦,P). The following result should be viewed as an extension
of the contraction principle for function coefficients.

Theorem 7.2.6. Let X be a Banach space with finite cotype q.

(1) For all sequences f
1

, . . . , fN 2 Lq,1(S) and x
1

, . . . , xN 2 X, we have

�

�

�

N
X

n=1

"nfnxn

�

�

�

Lq

(S⇥⌦;X)

6 cq,Xq1/q
ˆ 1

0

max
16n6N

µ(|fn| > t)1/q dt ·
�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

.

(7.13)

(2) If r > q, then for all sequences f
1

, . . . , fN 2 Lr(S) and x
1

, . . . , xN 2 X,

�

�

�

N
X

n=1

"nfnxn

�

�

�

Lr

(S;Lq

(⌦;X))

6 cq,X
q1/qr

r � q
max

16n6N
kfnkLr

(S)

·
�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

.

(7.14)
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Of course, the mixed norm in (2) can be easily compared with an Lr(S⇥⌦;X)-
norm via the Kahane–Khintchine inequality, but we present the form of the
estimate that is most natural for the application of the cotype q assumption.

Proof. (1): Define the operator T : `1N ! Lq(⌦;X) by T (a) :=
PN

n=1

"nanxn.
By the Kahane contraction principle,

kTkL (`1
N

,Lq

(⌦;X))

6
�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

.

Since Lq(⌦;X) has cotype q with constant cq,X it follows from Corollary 7.2.5
of Pisier’s factorisation theorem that there exists a probability measure ⌫ on
{1, 2, . . . , N} such that

�

�

�

N
X

n=1

"nanxn

�

�

�

Lq

(⌦;X)

= kTakLq

(⌦;X)

6 cq,Xq1/q�1kTkkak`q,1
N

(⌫) (7.15)

6 cq,X
q1/qr

r � q
kTkkak`r

N

(⌫), (7.16)

where `q,1N (⌫) and `rN (⌫) denote the Lorentz space Lq,1 and the space Lr de-
fined on {1, . . . , N} with measure ⌫, and the last estimate was the embedding
between these spaces established in (7.10). We shall apply both the interme-
diate inequality (7.15) and the final one (7.16), in both cases with an = fn(s),
in order to establish the two forms of the theorem.

Using (7.15) and taking Lq(µ)-norms, it follows from Minkowski’s inequal-
ity that

�

�

�

N
X

n=1

"nfnxn

�

�

�

Lq

(S;Lq

(⌦;X))

6 cq,Xq1/qkTk
⇣

ˆ
S

⇣

ˆ 1

0

⇣

N
X

n=1

⌫(n)1{|f
n

(s)|>t}

⌘

1/q
dt
⌘q

dµ(s)
⌘

1/q

6 cq,Xq1/qkTk
ˆ 1

0

⇣

ˆ
S

N
X

n=1

⌫(n)1{|f
n

(s)|>t} dµ(s)
⌘

1/q
dt

= cq,Xq1/qkTk
ˆ 1

0

⇣

N
X

n=1

⌫(n)µ(|fn| > t)
⌘

1/q
dt

6 cq,Xq1/q
ˆ 1

0

⇣

max
16n6N

µ(|fn| > t)
⌘

1/q
dt ·

�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

.

This proves the first assertion.
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(2): Using (7.16) and taking Lr(µ)-norms, we have, abbreviating Cq,r :=
q1/qr/(r � q),

�

�

�

N
X

n=1

"nfnxn

�

�

�

Lr

(S;Lq

(⌦;X))

6 cq,XCq,rkTk
⇣

ˆ
S

N
X

n=1

⌫(n)|fn(s)|r dµ(s)
⌘

1/r

= cq,XCq,rkTk
⇣

N
X

n=1

⌫(n)kfnkrLr

(S)

⌘

1/r

6 cq,XCq,rkTk max
16n6N

kfnkLr

(S)

6 cq,X
q1/qr

r � q
max

16n6N
kfnkLr

(S)

�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

.

This proves the second assertion. ⇤

Remark 7.2.7. Suppose, conversely, that S is non-atomic and that there exists
a constant C > 0 such that

�

�

�

N
X

n=1

"nfnxn

�

�

�

Lq

(S⇥⌦;X)

6 C

ˆ 1

0

max
16n6N

µ(|fn| > t)1/q dt ·
�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

(7.17)

for all finite sequences (fn)Nn=1

in Lq,1(S) and (xn)
N
n=1

in X. Then X has
cotype q with cq,X 6 C. Indeed, let x

1

, . . . , xN 2 X be arbitrary. Select
disjoint measurable sets S

1

, . . . , SN in S with µ(S
1

) = · · · = µ(SN ) 2 (0,1).
Letting fn = µ(S

1

)�1/q
1S

n

for n = 1, 2, . . . , N , we have

µ(|fn| > t) = µ(S
1

) · 1
[0,µ(S1)

�1/q
)

(t)

for all n = 1, . . . , N , so

ˆ 1

0

max
16n6N

µ(|fn| > t)1/q dt =

ˆ µ(S1)
�1/q

0

µ(S
1

)1/q dt = 1.

Therefore, by the definition of fn and (7.17),

N
X

n=1

kxnkq =
�

�

�

N
X

n=1

"nfnxn

�

�

�

q

Lq

(S⇥⌦;X)

6 Cq
�

�

�

N
X

n=1

"nxn

�

�

�

q

Lq

(⌦;X)

.

7.2.d Equivalence of cotype and Gaussian cotype

In Proposition 7.1.18 we have seen that type p implies ⇠-type p and vice versa,
and that cotype q implies ⇠-cotype q. In this subsection we will prove that for
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cotype the converse assertion also holds, i.e., ⇠-cotype q implies cotype q. In
particular this improves the preliminary result of Corollary 7.1.24, where it
was shown that ⇠-cotype q implies cotype r for all r > q.

First we establish a general comparison result, which for q = 2 and ⇠ = �
is contained in Corollary 7.1.23.

Proposition 7.2.8. Let X be a Banach space with ⇠-cotype q, where ⇠ is a
symmetric random variable with finite moments of all orders. Then we have
equivalence of ⇠-sums and Rademacher sums,

k⇠k
1

�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

6
�

�

�

N
X

n=1

⇠nxn

�

�

�

Lq

(⌦;X)

6 A⇠q,X

�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

,

with constant

A⇠q,X 6 min
�

24c⇠q,Xk⇠k2
6q, 6k⇠k

4q log(32c⇠
q,X

k⇠k6q)

 

.

The second bound for A⇠q,X is interesting when the moments k⇠kp, finite for
all p by assumption, are sub-exponentially increasing in p, for this will then
beat the linear dependence on c⇠q,X given by the first upper bound. The sub-
exponential growth is manifestly the case in the important application to
Gaussian random variables, where one has k�kp 6 p

p.

Proof. We may assume that the sequences ("n)Nn=1

and (⇠n)Nn=1

are defined
on distinct probability spaces (⌦,P) and (⌦0,P0).

The first estimate has already been proved in Proposition 6.1.15. From
Proposition 7.1.19 we know that X has cotype r, for every r > q, with

cr,X 6 2
⇣r + q

r � q

⌘

1/r
k⇠k

3rq/(r�q) · c⇠q,X ,

so in particular (using that 1/(2q) 6 1/4)

c
2q,X 6 2 · 31/4k⇠k

6q · c⇠q,X .

By Theorem 7.2.6 applied with 2q in place of q, we have, for all r > 2q,

�

�

�

N
X

n=1

"nfnxn

�

�

�

Lr

(S;L2q
(⌦;X))
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2q,X(2q)1/(2q)

r

r � 2q
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16n6N
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�
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N
X
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"nxn

�

�

�

L2q
(⌦;X)

.

Hence with, say, r = kq with k > 2, and using that (2q)1/(2q) 6
p
2 (as q > 2),

we obtain
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�

�

�

N
X
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(7.18)
By randomisation and taking k = 6, we obtain
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using the Khintchine–Kahane inequality along with the observation that

2q,q 6 ⇡2

4

p

(2q � 1)/(q � 1) 6 1

4

⇡2

p
3 for q > 2.

For the alternative bound, we make the following splitting relative to a
parameter t > 0:
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,

where the first term was simply estimated by the contraction principle. In the
second term, we apply (7.18) with fn = (|⇠n|� t)

+

with k = 4 to deduce that
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,
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using the Khintchine–Kahane inequality as before. We also estimate

k(|⇠|� t)
+

k4q
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ˆ 1

t
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=
4q

u� 4q
t4q�uk⇠kuu 6 t4q�uk⇠kuu,

if u > 8q. Putting everything together, we have shown that
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N
X
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�

Lq

(⌦0
;X)

6 t
⇣

1 + 32c⇠q,Xk⇠k
6q · k⇠ku/4qu t�u/4q
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�

�

�

N
X
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"nxn

�

�

�

Lq

(⌦;X)

= 2(32c⇠q,Xk⇠k
6q)

4q/uk⇠ku
�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

= 2ek⇠k
4q log(32c⇠

q,X

k⇠k6q)

�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

,

choosing t = (32k⇠k
6q · c⇠q,X)4q/uk⇠ku and u = 4q log(32k⇠k

6q · c⇠q,X), which
is in the admissible range u > 8q, since k⇠k

6q · c⇠q,X > k⇠kq · c⇠q,X > 1 (as is
immediate from the ⇠-cotype inequality with N = 1) and log 32 > 2. ⇤

Corollary 7.2.9 (Cotype versus ⇠-cotype). Let ⇠ be a non-zero symmetric
random variable with finite moments. A Banach space X has cotype q if and
only if it has ⇠-cotype q, and in this case

k⇠kqc⇠q,X 6 cq,X 6 A⇠q,Xc⇠q,X ,

where A⇠q,X is as in Proposition 7.2.8.

Proof. The first estimate has already been verified in Proposition 7.1.18. The
second one follows from Proposition 7.2.8 by

⇣

N
X

n=1

kxnkq
⌘

1/q
6 c⇠q,X

�

�

�

N
X

n=1

⇠nxn

�

�

�

Lq

(⌦;X)

6 c⇠q,XA⇠q,X

�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

.

⇤

We conclude this section by formulating the key consequences in the case of
Gaussian random variables.
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Corollary 7.2.10 (Gaussian sums versus Rademacher sums under
finite cotype). If X has finite (Gaussian) cotype q, then Gaussian and
Rademacher sums in X are comparable: for all p 2 (0,1),

k�k
1

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

6 ⇤p,qA
�
q,X

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

,

where ⇤p,q := max{p,q,q,p} = p,qq,p and A�q,X 6 12
q

q log(80
p
qc�q,X).

We have already seen in Example 6.1.18 that Gaussian and Rademacher sums
in c

0

are incomparable, and indeed this space has no finite cotype. In Corollary
7.3.10 we will see that the finite cotype assumption in the above corollary is
actually necessary.

Proof. The lower estimate was already checked in Proposition 6.1.15. For p =
q, the upper estimate is an application of the previous proposition with ⇠ = �;
the bound for A�q,X uses the estimate k�kp 6 p

p. The case of general p follows
from the Khintchine–Kahane inequality for both Gaussian and Rademacher
sums,

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6 p,q
�

�
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N
X
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"nxn

�

�

�

Lq

(⌦;X)

,

�
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N
X

n=1

�nxn

�

�

�

Lq

(⌦;X)

6 q,p
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

.

⇤

Corollary 7.2.11 (Gaussian cotype q versus cotype q). A Banach space
X has cotype q if and only if it has Gaussian cotype q, and in this case

k�kqc�q,X 6 cq,X 6 12 · c�q,X ·
q

q log(80
p
qc�q,X).

Proof. The first assertion is just the special case ⇠ = � of Corollary 7.2.9, with
the estimate for A�q,X taken from the upper estimate just proved. ⇤

7.2.e Finite cotype in Banach lattices

We have seen in Proposition 6.3.3 that, in the usual Lp-spaces, both Radem-
acher and Gaussian sums reduce to classical square functions. The main result
of this subsection is a far-reaching generalisation of this result in the context
of Banach lattices. We have just seen in Corollary 7.2.10 that finite cotype
is sufficient for the mutual comparability of Rademacher and Gaussian sums.
The Khintchine–Maurey inequality, which we prove here, shows that this same
cotype condition ensures the comparability of these random sums with square
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functions in abstract Banach lattices. A brief presentation of the concepts we
need from the theory of Banach lattices can be found in Appendix F, where in
particular it is explained how to define (

PN
n=1

|xn|p)1/p for p 2 [1,1) by the
Krivine calculus. All spaces in this subsection are over the real scalar field.

We will need the following extension of Khintchine’s inequality. Here, and
in the rest of this subsection, (rn)n>1

is a real Rademacher sequence.

Lemma 7.2.12. Let X be a Banach lattice. Then for all 1 6 p < 1 and
x
1

, . . . , xN 2 X,

1

R
2,p

⇣

N
X

n=1

|xn|2
⌘

1/2
6
⇣

E
�

�

�

N
X

n=1

rnxn

�

�

�

p⌘1/p
6 Rp,2

⇣

N
X

n=1

|xn|2
⌘

1/2
.

Note that the middle term is well defined by means of the usual lattice oper-
ations, since the random variable

PN
n=1

rnxn is discrete, i.e.,

⇣

E
�

�

�

N
X

n=1

rnxn

�

�

�

p⌘1/p
=
⇣

2�N
X

✏2{�1,1}N

�

�

�

N
X

n=1

✏nxn

�

�

�

p⌘1/p
.

Proof. Put x :=
PN

n=1

|xn| and let S : Ix ! C(K) be the lattice isomorphism
given by Kakutani’s theorem (Theorem F.2.1). Set fn := Sxn. By Khintchine’s
inequality,

1

R
2,p

⇣

N
X

n=1

|fn|2
⌘

1/2
6
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E
�

�

�

N
X
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rnfn
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p⌘1/p
6 Rp,2

⇣

N
X

n=1

|fn|2
⌘

1/2
.

Now the result follows if we apply S�1 on both sides and use (F.1). ⇤

Next we generalise the square function estimate for Lq-spaces from Proposi-
tion 6.3.3.

Theorem 7.2.13 (Khintchine–Maurey). Let X be a Banach lattice with
finite cotype q. Then for all x

1

, . . . , xN 2 X,

1

R
2,1
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�
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⇣
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X
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|xn|2
⌘
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6 E
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6 5
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1/2�
�

�

. (7.19)

The left-hand side inequality holds for any Banach lattice and the constant
R
2,1 =

p
2 (see the Notes of Chapter 6). The proof of the right-hand side

inequality depends on an application of Pisier’s factorisation theorem.

Lemma 7.2.14. Let X be a Banach lattice with finite cotype q. Then for all
p 2 (q,1) and x

1

, . . . , xN 2 X we have

⇣
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.
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Proof. Without loss of generality we may assume that x := (
PN

n=1

|xn|p)1/p
has norm 1. Let S : Ix ! C(K) be the lattice isometry given by Kakutani’s
Theorem F.2.1. Note that kyk 6 kykI

x

for all y 2 Ix, which means that the
embedding E : Ix ! X is contractive. Also note that the vectors xn are
in Ix and satisfy kxnkI

x

6 kxkI
x

= 1 = kxk. Since X has cotype q and
ES�1 2 L (C(K), X), it follows from Corollary 7.2.5 to Pisier’s factorisation
theorem that there exists a probability measure ⌫ on K such that

kES�1fk 6 q1/qp

p� q
cq,XkfkLp

(⌫), f 2 C(K).

Writing xn = ES�1Sxn =: ES�1fn, with fn = Sxn 2 C(K), we have
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where
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⇤

Proposition 7.2.15. Let X be a Banach lattice with finite cotype q. Then
any simple function f =

PN
n=1

xn1A
n

2 Lp(S;X) with p 2 (q,1) satisfies

kfkLp

(S;X)

6 q1/qp

p� q
cq,XkfkX(Lp

(S))

,

where the expression on the right is defined as
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Proof. Applying Lemma 7.2.14 with µ(An)
1/pxn in place of xn, we have

kfkLp

(S;X)

=
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N
X
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µ(An)kxnkp
⌘

1/p
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6 q1/qp

p� q
cq,X
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.

⇤

Proof of Theorem 7.2.13. We first prove the left-hand estimate in (7.19). By
taking norms on both sides of the first inequality in Lemma 7.2.12 (with p = 1)
we obtain
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where we applied the triangle inequality and the fact that (rn)Nn=1

takes
finitely many values, to pull out the expectation. This proves the first in-
equality in (7.19).

Turning to the right-hand side inequality, let X be of finite cotype q. By
Hölder’s inequality, Proposition 7.2.15 (applied to p = 2q and the simple
function f =

PN
n=1

rnxn), and Lemma 7.2.12 we obtain
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and 3R
2q,2 6 3

p
2q < 5

p
q. ⇤

7.3 Geometric characterisations

We now provide geometric descriptions of some of the classes of spaces that
were featured prominently in the previous sections. Indeed, we are going to
prove that (see Definition 7.3.7 for the terminology used in 2 and 3)

(1) a Banach space has both type 2 and cotype 2 if and only if it is isomorphic
to a Hilbert space;

(2) a Banach space has non-trivial type if and only if it does not contain the
spaces `1N , N > 1, uniformly;

(3) a Banach space has finite cotype if and only if it does not contain the
spaces `1N , N > 1, uniformly.
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While type and cotype as such are sometimes referred to as ‘geometric’ prop-
erties of a Banach space, the reader will agree that the above characterisations
— involving isomorphisms and containments of appropriate subspaces — are
geometric in a rather stricter sense of the word.

The equivalence (1) is the content of Kwapień’s Theorem 7.3.1, which we
prove in Section 7.3.a. Both (2) and (3) are contained in the Maurey–Pisier
Theorem 7.3.8, which we prove in Section 7.3.b.

The two theorems will play a somewhat opposite role in our subsequent
analysis. For our purposes, Kwapień’s theorem will often imply a ‘negative’
statement: it will be used to show that certain results can only be true in the
context of Hilbert spaces, and never beyond. In contrast, the Maurey–Pisier
theorem will be frequently invoked to check that non-trivial type or finite
cotype is implied by some other Banach space property (P ) — by checking,
often straightforwardly, that (P ) is incompatible with the containment of `1N
or `1N — and useful implications of type and cotype can then be used as
additional tools to achieve stronger theorems under the assumption of (P ).

7.3.a Kwapień’s characterisation of type and cotype 2

The main result of this subsection is the following isomorphic characterisation
of Hilbert spaces.

Theorem 7.3.1 (Kwapień). For a Banach space X the following assertions
are equivalent:

(1) X has type 2 and cotype 2;
(2) X is isomorphic to a Hilbert space H.

If these equivalent conditions are satisfied, an isomorphism J : X ! H can
be constructed such that

kJkkJ�1k 6 ⌧�
2,Xc�

2,X .

This theorem will be obtained from the special case X = Y and T = I of the
following factorisation result.

Theorem 7.3.2 (Maurey). Let X and Y be Banach spaces and let T 2
L (X,Y ). If X has type 2 and Y has cotype 2, then there exist a Hilbert space
H and operators R 2 L (X,H) and S 2 L (H,Y ) such that T = SR and

kSkkRk 6 ⌧�
2,Xc�

2,XkTk.

We need several preliminary results on factorisation of operators.

Proposition 7.3.3. Let X and Y be Banach spaces, let T 2 L (X,Y ), and
let C > 0. The following assertions are equivalent:

(1) there exists a Hilbert space H and operators R 2 L (X,H) and S 2
L (H,Y ) such that T = SR and kSkkRk 6 C.
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(2) for all finite sequences (xm)Mm=1

and (yn)Nn=1

in X such that

N
X

n=1

|hyn, x⇤i|2 6
M
X

m=1

|hxm, x⇤i|2, x⇤ 2 X⇤

we have
N
X

n=1

kTynk2 6 C2

M
X

m=1

kxmk2.

This proposition will be proved at the end of the section. Assuming it for the
moment, we first show how Theorem 7.3.2 is deduced from it.

Proof of Theorem 7.3.2. Let (xm)Mm=1

and (yn)Nn=1

be sequences in X such
that for all x⇤ 2 X⇤,

N
X

n=1

|hyn, x⇤i|2 6
M
X

m=1

|hxm, x⇤i|2.

Let (�n)n>1

be a Gaussian sequence. By Theorem 6.1.25,
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�nTyn
�

�

�

2

6 (c�
2,Y )

2kTk2E
�

�

�

N
X

n=1

�nyn
�

�

�

2

6 (c�
2,Y )

2kTk2E
�

�

�

M
X

m=1

�mxm

�

�

�

2

6 (⌧�
2,X)2(c�
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M
X
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This verifies condition (2) of Proposition 7.3.3 with C = ⌧�
2,Xc�

2,Y kTk. ⇤

For the proof of Proposition 7.3.3 we need the following lemma.
The cone generated by a subset A of a real vector space V is the set

cone(A) =
n

N
X

n=1

↵nan 2 V : ↵
1

, . . . ,↵N > 0, a
1

, . . . , aN 2 A, N > 1
o

.

Lemma 7.3.4. Let V be a real vector space. Let A,B ✓ V be non-empty
subsets such that V = cone(A) � cone(B) and let f : A ! R, g : B ! R be
given functions. Then the following assertions are equivalent:

(1) there exists a linear functional � : V ! R such that for all a 2 A, f(a) 6
�(a), and for all b 2 B, g(b) > �(b).
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(2) whenever (↵n)
N
n=1

and (�m)Mm=1

are two finite sequences of non-negative
scalars, and (an)Mn=1

in A and (bm)Mm=1

in B are such that
PN

n=1

↵nan =
PM

m=1

�mbm, then

N
X

n=1

↵nf(an) 6
M
X

m=1

�mg(bm).

Proof. (1))(2): This follows from
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N
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⇣

M
X

m=1

�mbm
⌘
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M
X
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�m�(bm) 6
M
X

m=1
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(2))(1): Define p : V ! [�1,1) by

p(v) = inf
n

M
X

m=1

�mg(bm)�
N
X

n=1

↵nf(an)
o

,

where the infimum is taken over all non-negative sequences (↵n)
N
n=1

and
(�m)Mm=1

and all sequences (an)Nn=1

in A and (bm)Mm=1

in B such that
v =

PM
m=1

�mbm�
PN

n=1

↵nan. Since V = cone(A)�cone(B), p is well defined.
Moreover, one easily checks that for all v

1

, v
2

2 V , p(v
1

+ v
2

) 6 p(v
1

)+ p(v
2

),
and for all v 2 V and � > 0, p(�v) = �p(v). We also claim that p(0) = 0.
Indeed, p(0) 6 0 is clear from 0 = 0b � 0a for a 2 A and b 2 B. Let 0 be
represented as

0 =

M
X

m=1

�mbm �
M
X

m=1

↵nan.

By (2) it follows that

M
X

m=1

�mg(bm) >
N
X

n=1

↵nf(an),

so that p(0) > 0. This proves the claim. Moreover, for all v 2 V , 0 = p(0) 6
p(v)+p(�v), so that p(v) > �1. This shows that p is a sub-linear functional.
By the Hahn–Banach theorem for real vector spaces (Theorem B.1.1) there
exists a linear functional � : V ! R such that �(v) 6 p(v) for all v 2 V .

Next we show that for all v 2 A, p(�v) 6 �f(v). Indeed, fix b 2 B
arbitrarily. Then the assertion follows from the representation �v = 0b� 1v.
Similarly, for all v 2 B, p(v) 6 g(v).

We conclude that for all a 2 A, ��(a) = �(�a) 6 p(�a) 6 �f(a), so
f(a) 6 �(a). Similarly, for all b 2 B, �(b) 6 p(b) 6 g(b). ⇤
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Proof of Proposition 7.3.3. (1))(2): Let (xm)Mm=1

and (yn)Nn=1

be sequences
in X be such that for all x⇤ 2 X⇤,

N
X

n=1

|hyn, x⇤i|2 6
M
X

m=1

|hxm, x⇤i|2.

Let um = Rxm and vn = Ryn. For h 2 H let h⇤ 2 H⇤ be defined as h⇤(h0) :=
(h0|h), where (·|·) is the inner product of H. Then, for all h 2 H,

N
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|(vn|h)|2 =
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X
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|hvn, h⇤i|2 =
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|hyn, R⇤h⇤i|2

6
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X
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M
X
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|hum, h⇤i|2 =

M
X
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|(um|h)|2.

(7.20)

Let (hj)
k
j=1

be an orthonormal basis for the subspace spanned in H by the
vectors (um)Mm=1

and (vn)Nn=1

. By (7.20),
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Therefore,
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M
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m=1

kumk2 6 kSk2kRk2
M
X

m=1

kxmk2.

(2))(1): First we consider the case K = R. Let F (X⇤) be the real vector
space of all functions f : X⇤ ! R. With each x 2 X, we can associate an
element bx 2 F (X⇤) by setting bx(x⇤) = hx, x⇤i. Let V be the subspace of all
f 2 F (X⇤) that can be written as a finite sum of the form f =

PN
n=1

�nbxnbyn
with xn, yn 2 X and �n 2 R for all 1 6 n 6 N .

Let A = B = {bx2 2 V : x 2 X}. We claim that V = cone(B) � cone(A).
Indeed, by linearity of V it suffices to consider � = �bxby 2 V , where � 2 R
and x, y 2 X are arbitrary. Then

� =
1

4
�
�

(bx+ by)2 � (bx� by)2
�

defines an element in cone(B)� cone(A) and the claim follows.
Let f : A ! R be given by f(bx2) = kTxk2 and let g : B ! R be given by

g(bx2) = C2kxk2, where C is as in the statement of the result. If
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N
X

n=1

↵2

nby
2

n =

M
X

m=1

�2

mbx
2

m

for some sequences of positive scalars (↵n)
N
n=1

and (�m)Mm=1

, then by the
assumption of (2),

N
X

n=1

kT (↵nyn)k2 6 C2

M
X

m=1

k�mxmk2

and therefore,
N
X

n=1

↵2

nf(byn) 6
M
X

m=1

�2

mg(bxm).

By Lemma 7.3.4, there exists a linear functional � : V ! R such that

kTxk2 = f(bx2) 6 �(bx2) 6 g(bx2) = C2kxk2

for all x 2 X. Define a bilinear form on X by (x, y) := �(bxby) and consider the
seminorm p(x) := (x, x)1/2. Let N = {x 2 X : p(x) = 0} and consider the
real vector space X

0

= X/N . Let H be the completion of X
0

with respect to
the norm p(·). Then the induced bilinear form on X

0

has a unique continuous
extension to H. This turns H into a real Hilbert space.

Let R : X ! H be given Rx = x mod(N ). Then kRxk = p(x) 6 Ckxk
for all x 2 X. Let S

0

: X
0

! X be given by S
0

(Rx) = Tx. Then
kS

0

(Rx)k = kTxk 6 p(x) = kRxkH . Therefore, S
0

is well defined and has
a unique continuous extension to an operator S 2 L (H,X) with kSk 6 1.
Now T = SR is the required factorisation.

Next we turn to the case K = C, which will be reduced to the real case by
forgetting the complex structure of X. Let XR be the real Banach space thus
obtained and let X⇤

R denote its (real) dual. In order not to overburden the
notation, the element in XR corresponding to an x 2 X will also be denoted
by x.

Let (xm)Mm=1

and (yn)Nn=1

be sequences in X such that in XR we have

N
X

n=1

|hyn, x⇤
Ri|2 6

M
X

m=1

|hxm, x⇤
Ri|2 (7.21)

for all x⇤
R 2 X⇤

R. We claim that

N
X

n=1

kTynk2 6 C2

M
X

m=1

kxmk2. (7.22)

Indeed, let x⇤ 2 X⇤ be arbitrary. Let x⇤
R, y

⇤
R 2 X⇤

R be defined by hx, x⇤
Ri =

<hx, x⇤i and hx, y⇤Ri = =hx, x⇤i. Then x⇤ = x⇤
R + iy⇤R. Therefore, by (7.21),

applied to x⇤
R and y⇤R, we find
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N
X

n=1

|hyn, x⇤i|2 =

N
X

n=1

|hyn, x⇤
Ri|2 + |hyn, y⇤Ri|2

6
M
X

m=1

|hxm, x⇤
Ri|2 +

M
X

m=1

|hxm, y⇤Ri|2 =

M
X

m=1

|hxm, x⇤i|2.

Since x⇤ 2 X⇤ was arbitrary, the assumption in Proposition 7.3.3 gives (7.22)
and the claim is proved.

Let (·, ·) be the symmetric bilinear form on XR that was constructed in
first part of the proof. We use it to define a sesquilinear form [·, ·] on X by

[x, y] :=
1

2⇡

ˆ
2⇡

0

(ei✓x, ei✓y)� i(iei✓x, ei✓y) d✓.

Linearity in the first variable is clear. To prove conjugate-linearity in the
second variable, the reader may verify that the substitution ✓0 = ✓ + 1

2

⇡
proves the identity [x, iy] = �i[x, y].

Set p(x) := [x, x]1/2. Then p is real-valued and defines a seminorm on X.
Moreover,

|p(x)|2 = <|p(x)|2 =
1

2⇡

ˆ
2⇡

0

(ei✓x, ei✓x) d✓

6 1

2⇡

ˆ
2⇡

0

C2kei✓xk2 d✓ = C2kxk2.

Let N and X
0

be as before and let H again be the completion of X
0

with
respect to the norm p(·). Then the sesquilinear form has a unique continuous
extension to H. In this way H becomes a complex Hilbert space and the proof
can be finished as in the real case. ⇤

As an application we will prove the following isomorphic characterisation of
Hilbert spaces. For the definition and properties of Fourier type p we refer to
Section 2.4.b.

Theorem 7.3.5 (Kwapień). For a Banach space X the following assertions
are equivalent:

(1) X has Fourier type 2;
(2) there exists a constant C > 0 such that for all finite sequences (xk)|k|6n

in X,
�

�

�

X

|k|6n

ekxk

�

�

�

L2
(T;X)

6 C
⇣

X

|k|6n

kxkk2
⌘

1/2
;

(3) there exists a constant eC > 0 such that for all finite sequences (xk)|k|6n

in X,
⇣

X

|k|6n

kxkk2
⌘

1/2
6 eC

�

�

�

X

|k|6n

ekxk

�

�

�

L2
(T;X)

;
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(4) X is isomorphic to a Hilbert space H.

If these equivalent conditions are satisfied, then

⌧
2,X 6 '

2,X(Z) 6 eC, c
2,X 6 '

2,X(T) 6 C,

and the isomorphism J : X ! H in (4) can be taken such that

kJkkJ�1k 6 ⌧�
2,Xc�

2,X .

The equivalences (1),(2),(3) have already been proved in Proposition
2.4.20. Moreover, the best constants in (2) and (3) are equal to the Fourier
type 2 constants '

2,X(T) and '
2,X(Z), respectively. The implication (4))(1)

has already been noted at the beginning of this section. It remains to prove the
implication (1))(4). This will be done by showing that X has type 2 and co-
type 2 and then appealing to Kwapień’s isomorphic characterisation of Hilbert
spaces (Theorem 7.3.1); this will also produce the estimate for kJkkJ�1k.

In fact we have the following general result.

Proposition 7.3.6. Let X be a Banach space, and let p 2 [1, 2] and p0 2
[2,1] satisfy 1

p + 1

p0 = 1. If X has Fourier type p, then X has type p and
cotype p0, with constants

⌧p,X 6 'p,X(Z), cp,X 6 'p,X(T),

with 'p,X(T) and 'p,X(Z) the operator norms of the Fourier transform from
Lp(T;X) into `p

0
(Z;X) and from `p(Z;X) into Lp(T;X), respectively.

Proof. We may assume that p 2 (1, 2] and p0 2 [2,1), the case p = 1 and
p0 = 1 being trivial.

We use the equivalent formulations of Fourier type as given by Proposi-
tion 2.4.20 and recall the notation ek(t) := e2⇡ikt for k 2 Z and t 2 T. Fix a
sequence (xj)

N
j=1

in X. Since for fixed t 2 T, ("j)nj=1

and (ej(t)"j)nj=1

are iden-
tically distributed Rademacher sequences, by averaging over T and Fubini’s
theorem we obtain

�

�

�

N
X

j=1

"jxj

�

�

�

Lp

0
(⌦;X)

=
⇣

ˆ
T

�

�

�

N
X

j=1

"jej(t)xj

�

�

�

p0

Lp

0
(⌦;X)

dt
⌘

1/p0

=
⇣

ˆ
⌦

�

�

�

N
X

j=1

"jej(t)xj

�

�

�

p0

Lp

0
(T;X)

dP
⌘

1/p0

6 'p,X(Z)
⇣

N
X

j=1

kxjkp
⌘

1/p
.

Thus X has type p with ⌧p,X 6 'p,X(Z).
Similarly,
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⇣

N
X

j=1

kxjkp
0
⌘

1/p0

6 'p,X(T)
⇣

ˆ
⌦

�

�

�

N
X

j=1

"jej(t)xj

�

�

�

p0

Lp

0
(T;X)

dP
⌘

1/p0

= 'p,X(T)
⇣

ˆ
T

�

�

�

N
X

j=1

"jej(t)xj

�

�

�

p0

Lp

0
(⌦;X)

dt
⌘

1/p0

= 'p,X(T)
�

�

�

N
X

j=1

"jxj

�

�

�

Lp

(⌦;X)

.

Thus X has cotype p0 with cp0,X 6 'p,X(T). ⇤

Proof of Theorem 7.3.5. If X has Fourier type 2, then by Proposition 7.3.6
X has type 2 and cotype 2 with ⌧

2,X 6 '
2,X(Z) and c

2,X 6 '
2,X(T). Hence

by Theorem 7.3.1, X is isomorphic to a Hilbert space and an isomorphism
J : X ! H may be constructed such that kJkkJ�1k 6 ⌧�

2,Xc�
2,X . ⇤

7.3.b Maurey–Pisier characterisation of non-trivial (co)type

Among the deepest results in the theory of type and cotype is the celebrated
Maurey–Pisier theorem. We will only need the special case which provides a
characterisation of non-trivial type and finite cotype in terms of the following
notion:

Definition 7.3.7 (Uniform containment of `pN). Let X be a Banach space,
p 2 [1,1], and let � > 1 be a constant. We say X contains the spaces `pN
�-uniformly if `1N ✓� X, i.e., X contains a �-isomorphic copy of `pN in the
sense of Definition 7.1.8 for every N > 1.

We say that X contains the spaces `pN uniformly if X contains the spaces
`pN �-uniformly for some � > 1.

Theorem 7.3.8 (Maurey–Pisier). Let X be a Banach space.

(1) The following conditions are equivalent:
(i) X has non-trivial type;
(ii) X does not contain the spaces `1N uniformly;
(iii) for any � > 1, X does not contain the spaces `1N �-uniformly.

(2) The following conditions are equivalent:
(i) X has finite cotype;
(ii) X does not contain the spaces `1N uniformly;
(iii) for any � > 1, X does not contain the spaces `1N �-uniformly.

Remark 7.3.9. We shall actually prove the following quantitative statements:

(a) If X has type p 2 (1, 2], then

`1N 6✓� X when N1/p0
> �⌧p,X .
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(b) If X has cotype q 2 [2,1), then

`1N 6✓� X when N1/q > �cq,X .

(c) If `1N 6✓
1+" X, then

⌧p,X 6 5 for all p 6 1 +
⇣ "

50N

⌘N+1

.

(d) If `1N 6✓
1+" X, then

cq,X 6 5 for all q >
⇣50N

"

⌘

2(N+1)

.

Here (a) and (b) prove the (straightforward) implications (i))(iii) of Theorem
7.3.8, while (c) and (d) correspond to the deepest implications (ii))(i). The
implications (iii))(ii) are of course trivial.

Proof of (a) and (b). If `1N ✓� X, then by Proposition 7.1.7 and (7.4),

N1/p0
= ⌧p,`1

N

6 �⌧p,X .

Likewise, if `1N ✓� X, then by Proposition 7.1.7,

N1/q = cq,`1
N

6 �cq,X .

⇤

Before going to the more sophisticated proofs of the “(ii))(i)” statements, we
demonstrate the use of the theorem with some important consequences.

Consequences of the Maurey–Pisier theorem

In Corollary 7.2.10 we have seen that Gaussian sums and Rademacher sums
are comparable in spaces with finite (Gaussian) cotype. Below we show that
finite (Gaussian) cotype is actually necessary for such a comparison result.

Corollary 7.3.10. Let X be a Banach space and p 2 (0,1). Assume that
there exists a constant C > 0 such that for all integers N > 1 and vectors
x
1

, . . . , xN 2 X, we have

�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

6 C
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

.

Then X has finite cotype.

Proof. Let � > 1. If `1N ✓� X, then by Example 6.1.18, we have C >
�
p

log(N)/(2
1,p). This clearly cannot hold for all N > 1, and therefore,

X has finite cotype by Theorem 7.3.8. ⇤



98 7 Type, cotype, and related properties

Corollary 7.3.11. If a Banach space X has non-trivial type, then it also has
finite cotype.

This is a qualitative formulation of Theorem 7.1.14, which gave additional
quantitative information. The point of reproving the result here is to show how
effortlessly this qualitative statement follows from the Maurey–Pisier theorem.
Note that a quantitative version could be given even here, using the additional
information from Remark 7.3.9; however, the reader can easily check that these
bounds would be far inferior to those given in Theorem 7.1.14. The moral of
the story is that, while Theorem 7.3.8 is extremely powerful for checking the
non-trivial type or finite cotype property of Banach spaces qualitatively, it is
not particularly adequate for quantitative considerations.

Proof of Corollary 7.3.11. Let X have non-trivial type. Then by Theorem
7.3.8 there are N,� > 1 such that `1N 6✓� X. By Example 7.1.9, we have
`1N ✓p

� `1M for some M = M(N,�). Then `1M 6✓p
� X, since otherwise we

would run into the contradiction that `1N ✓p
� `

1
M ✓p

� X and hence `1N ✓� X.
Thus X has finite cotype, again by Theorem 7.3.8. ⇤

This method for proving that a Banach space has finite cotype is very robust
due to the following universality of the `1N -spaces:

Lemma 7.3.12. Let E be a finite-dimensional Banach space. Then for each
" > 0 there exists an N such that the space `1N contains a (1 + ")-isomorphic
copy of E.

Proof. Let � > 0 be such that (1��)�1 < 1+". Since the closed unit ball BE⇤

is compact we can find (x⇤
n)

N
n=1

in BE⇤ such that for all x⇤ 2 BE⇤ , one has
min

16n6N kx⇤ � x⇤
nk < �. Let T : E ! `1N be defined by Tx = (hx, x⇤

ni)Nn=1

.
Let x 2 E be arbitrary. It is clear that kTxk = max

16n6N |hx, x⇤
ni| 6 kxk.

To estimate kTxk from below, using the Hahn–Banach theorem we pick an
x⇤ 2 B⇤

E such that hx, x⇤i = kxk. Let 1 6 k 6 N be such that kx⇤ � x⇤
kk < �.

Then

kTxk`1
N

= max
16n6N

|hx, x⇤
ni| > |hx, x⇤

ki|

> |hx, x⇤i|� |hx, x⇤ � x⇤
ki| > kxk � �kxk = (1� �)kxk.

⇤

Let (P ) be a property of a Banach space defined by a family of sub-properties
(Pi), i 2 I , such that X has (P ) if and only if it has at least one (Pi). We
say that (P ) is

• local, if each (Pi) holds for X if and only if it holds for every finite-
dimensional subspace of X.
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• stable under isomorphisms, if there exists a mapping f : I ⇥ [1,1) ! I

such that, whenever X has (Pi) and eX is �-isomorphic to X (i.e., there
exists an isomorphism J : X ! eX with kJkkJ�1k 6 �), then eX has
(Pf(i,�)).

An easy combination of the definitions shows that if (P ) is both local and
stable under isomorphisms, whenever X has (Pi) and Y ✓� X, then Y has
(Pf(i,�)).

Example 7.3.13. In applications to typical Banach space properties, we take
(P ) to be the qualitative property, and (Pi) to be “property (P ) with constant
at most i”. For instance, if (P ) is the property “X has type p”, and (Pi) the
property “⌧p,X 6 i” (for i 2 [1,1) =: I ), then (P ) is both local and stable
under isomorphisms (with f(i,�) = � · i). In contrast, it is not true that
“X has (P ) if and only if every finite-dimensional subspace has (P )”; indeed,
every finite-dimensional space has type p, but not every Banach space has it.
On the other hand, the stability under isomorphisms would not be true for
a fixed (Pi); the constant ⌧p,X can certainly increase under an isomorphism.
This explains the need for a somewhat complicated definition above.

Corollary 7.3.14. Let (P ) be a local property that is stable under isomor-
phisms. Suppose that there exists a Banach space Y that does not satisfy (P ).
Then every Banach space with (P ) has finite cotype.

Proof. Suppose, for contradiction, that X is a Banach space with (P ) and
without finite cotype. By Theorem 7.3.8, for every � > 1 and N > 1, we have
`1N ✓� X. Thus each `1N has (Pf(i,�)).

On the other hand, consider any finite-dimensional subspace E of Y . By
Lemma 7.3.12, we can find an N such that E ✓� `1N . Since `1N has (Pf(i,�)),
the space E has (Pf(f(i,�),�)). As this holds for every finite-dimensional sub-
space E ✓ Y , locality implies that Y has (Pf(f(i,�),�)). Hence Y has (P ),
which is a contradiction. ⇤

As a final application of the Maurey–Pisier theorem at this point, we give a
proof of the following result that was already mentioned in Chapter 4:

Proposition 7.3.15. Every UMD space has non-trivial type and finite cotype.

A quantitative statement could be extracted from the proof via the bounds in
Remark 7.3.9. We leave this as an exercise, and refer the reader to the Notes
for much better estimates available via a different approach.

We recall from Chapter 4 (see Definition 4.2.1) the notation �p,X for the
UMD constants of a UMD Banach space X.

Proof. Let X be a UMD space and suppose that `1
2

n

✓� X. By Proposition
4.2.19 we have �

2,`12n
> 1

2

n, and hence
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�
2,X > 1

�
�
2,`12n

> n

2�
.

Thus n 6 2��
2,X and we conclude that `1N 6✓� X for N > 22��2,X+1. Theorem

7.3.8 implies that X has non-trivial type.
That X has finite cotype can be derived similarly. Alternatively, via either

Corollary 7.3.11 or Corollary 7.3.14, if follows from the fact, just proved, that
X has non-trivial type. ⇤

Proof of the main implications in the Maurey–Pisier theorem

We continue with the more sophisticated proofs of the (ii))(i) statements
of Theorem 7.3.8. In both cases, the proof proceeds through an intermediate
notion, which somewhat bridges the gap between the uniform (over sequences
of any length) inequalities defining type and cotype, and the behaviour of
N -dimensional subspaces for a fixed N .

Definition 7.3.16. For each N > 1, let ⌧
2,X(N) be the least constant such

that for all x
1

, . . . , xN 2 X we have

�

�

�

N
X

n=1

"nxn

�

�

�

L2
(⌦;X)

6 ⌧
2,X(N)

⇣

N
X

n=1

kxnk2
⌘

1/2
.

Similarly, let c
2,X(N) be the least constant such that for all x

1

, . . . , xN 2 X
we have

⇣

N
X

n=1

kxnk2
⌘

1/2
6 c

2,X(N)
�

�

�

N
X

n=1

"nxn

�

�

�

L2
(⌦;X)

.

By the Cauchy–Schwarz inequality, it is immediate that

1 6 ⌧
2,X(N), c

2,X(N) 6
p
N.

These numbers come rather close to characterising the type p and cotype q
properties of X:

Lemma 7.3.17. Let X be a Banach space, p 2 (1, 2] and q 2 [2,1). Then

1


2,p

sup
N>1

⇣

N1/2�1/p⌧
2,X(N)

⌘

6 ⌧p,X 6 21/p
�

�

�

�

2k(1/2�1/p)⌧
2,X(2k)

�1
k=0

�

�

�

`p0
,

1

q,2
sup
N>1

⇣

N1/q�1/2c
2,X(N)

⌘

6 cq,X 6 31/q
�

�

�

�

2k(1/q�1/2)c
2,X(2k)

�1
k=0

�

�

�

`q
.

Proof. The left estimates are straightforward. For instance, the first follows
from

�

�

�

N
X

n=1

"nxn

�

�

�

L2
(⌦;X)

6 
2,p

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)
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6 
2,p⌧p,X

⇣

N
X

n=1

kxnkp
⌘

1/p

6 
2,p⌧p,XN1/p�1/2

⇣

N
X

n=1

kxnk2
⌘

1/2
.

We leave the other case, which is equally easy, to the reader.
For the converse estimates it is helpful to rearrange the vectors xn in

decreasing order according to their norms, kx
1

k > kx
2

k > . . . > kxNk, and
denote xn := 0 for n > N . For such a sequence, we have the estimate

⇣ 1

2k

2

k+1�1

X

n=2

k

kxnkb
⌘

1/b
6 kx

2

kk 6
⇣ 1

2k�1

2

k

X

n=2

k�1
+1

kxnka
⌘

1/a
(7.23)

for all a, b > 0; multiplying all powers of 2 to the right, this will produce the
factor 2k(1/b�1/a)21/a, which gives decay when b > a. Now

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

n=1

"nxn

�

�

�

L2
(⌦;X)

6 kx
1

k +

1
X

k=1

�

�

�

2

k+1�1

X

n=2

k

"nxn

�

�

�

L2
(⌦;X)

6 kx
1

k +

1
X

k=1

⌧
2,X(2k)

⇣

2

k+1�1

X

n=2

k

kxnk2
⌘

1/2

(7.23)
6 kx

1

k +

1
X

k=1

⌧
2,X(2k)2k(1/2�1/p)21/p

⇣

2

k

X

n=2

k�1
+1

kxnkp
⌘

1/p

6 21/p
⇣

1 +

1
X

k=1

[⌧
2,X(2k)2k(1/2�1/p)]p

0
⌘

1/p0
⇣

N
X

n=1

kxnkp
⌘

1/p
,

keeping in mind the convention that xn = 0 if n > N . Similarly, using the
contraction principle, we have

N
X

n=1

kxnkq = kx
1

kq +
1
X

k=1

2

k+1�1

X

n=2

k

kxnkq

(7.23)
6 kx

1

kq +
1
X

k=1

[2k(1/q�1/2)21/2]q
⇣

2

k

X

n=2

k�1
+1

kxnk2
⌘q/2

6 kx
1

kq +
1
X

k=1

[2k(1/q�1/2)21/2]qc
2,X(2k�1)q

�

�

�

2

k

X

n=2

k�1
+1

"nxn

�

�

�

q

L2
(⌦;X)
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6
⇣

1 +

1
X

k=1

[2(k�1)(1/q�1/2)21/q]qc
2,X(2k�1)q

⌘

�

�

�

N
X

n=1

"nxn

�

�

�

q

L2
(⌦;X)

6 3
⇣

1
X

k=0

[2k(1/q�1/2)c
2,X(2k)]q

⌘

�

�

�

N
X

n=1

"nxn

�

�

�

q

Lq

(⌦;X)

.

⇤

The numbers ⌧
2,X(N) and c

2,X(N) enjoy an important algebraic property:

Lemma 7.3.18. Let X be a Banach space. Then for all M,N > 1 we have
the sub-multiplicative estimates

⌧
2,X(MN) 6 ⌧

2,X(M)⌧
2,X(N),

c
2,X(MN) 6 c

2,X(M)c
2,X(N).

Proof. Let ("mn)m,n>1

be a doubly indexed Rademacher sequence and ("0n)n>1

be another Rademacher sequence, defined on a second probability space
(⌦0,P0). Then, for all sequences (xmn)

M,N
m,n=1

in X,

E
�

�

�

M
X

m=1

N
X

n=1

"mnxmn

�

�

�

2

= EE0
�

�

�

M
X

m=1

"0m

N
X

n=1

"mnxmn

�

�

�

2

6 c
2,X(M)2

M
X

m=1

E
�

�

�

N
X

n=1

"mnxmn

�

�

�

2

6 c
2,X(M)2c

2,X(N)2
M
X

m=1

N
X

n=1

kxmnk2,

where we used that ("0m"mn)m,n>1

and ("mn)m,n>1

are identically distributed.
This proves the inequality for ⌧

2,X(MN). The proof of the inequality for
c
2,X(MN) is similar. ⇤

Lemma 7.3.19. Let a : Z
+

! R
+

be non-decreasing, sub-multiplicative, and
a(n) 6 n1/2 for all n.

If a(N) < N1/2 for some N , then in fact a(N) = N1/2�" for some " 2
(0, 1

2

], and a(n) 6
p
2N"n1/2�" for all n 2 Z

+

.
In this case, we have (2k(1/q�1/2)a(2k))1k=0

2 `q for all q > 1/", and the
`q-norm is bounded by 2N" for q > 2/".

Proof. Sub-multiplicativity implies a(n) 6 a(1)a(n) and hence a(1) > 1. Thus
a(N) < N1/2 can only happen for N > 2, and in this case the number a(N) 2
[1, N1/2) can be written in the form a(N) = N1/2�" for some " 2 (0, 1

2

].
For arbitrary n 2 Z

+

, let Nk 6 n < Nk+1 and write m := dn/Nke. Then
m 2 [1, N ] and also m < n/Nk + 1 6 2n/Nk so that mNk 6 2n. Thus

a(n) 6 a(Nkm) 6 a(N)ka(m) 6 N (1/2�")km1/2
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= (Nkm)1/2�"m" 6 (2n)1/2�"N" 6
p
2N"n1/2�"

and

k(2k(1/q�1/2)a(2k))1k=0

kq`q 6
1
X

k=0

2k(1�q/2)2q/2N"q2k(q/2�q") =
2q/2N"q

1� 21�q"

provided that q > 1/". If q > 2/", then the denominator is at least 1

2

and,
taking qth roots, the norm is at most 21/2+1/qN" 6 2N", since q > 2. ⇤

Proposition 7.3.20. Let X be a Banach space and let N > 1 be an integer.

(1) X has non-trivial type if and only if ⌧
2,X(N) <

p
N for some N > 1.

(2) X has finite cotype if and only if c
2,X(N) <

p
N for some N > 1.

The short proof contains additional quantitative information on the assertions.

Proof. If X has type p > 1, then ⌧
2,X(N) 6 

2,p⌧p,XN1/p�1/2 6 N1/2�"

for any fixed 0 < " < 1 � 1/p, as soon as N is large enough. Conversely,
if ⌧

2,X(N) 6 N1/2�", then Lemma 7.3.19 shows (noting that 1/p0 � 1/2 =

1/2 � 1/p) that (2k(1/2�1/p)⌧
2,X(2k))1k=0

2 `p
0

for all p0 > 1/", and Lemma
7.3.17 implies that ⌧p,X , being dominated by the mentioned `p

0
-norm, is finite.

Quantitatively, if p0 > 2/", then the `p
0
-norm is at most 2N", and ⌧p,X 6

21/p · 2N1/" 6 4N".
For cotype, the argument is completely analogous. In particular, for q >

2/" we get cq,X 6 31/q · 2N" 6 4N". ⇤

Now the missing ingredient for the proof of Theorem 7.3.8 is a relation between
the numbers ⌧

2,X(N) (respectively c
2,X(N)) and the isomorphic containment

of `1N (respectively `1N ). This is accomplished in the following two lemmas.

Lemma 7.3.21. Let N > 1 be an integer. Suppose that for some " 2 (0, 1]
and 0 < � 6 ("/(20N))N+1 we have ⌧

2,X(N) >
p

(1� �)N . Then X contains
a (1 + ")-isomorphic copy of `1N .

In particular, if ⌧
2,X(N) =

p
N , then X contains a (1+ ")-isomorphic copy of

`1N for every " 2 (0, 1].

Proof. The conclusion is obvious if N = 1, so we assume that N > 2. By the
definition of ⌧

2,X(N) we can find (xn)
N
n=1

in X such that

⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

2

⌘

1/2
> (1� �)1/2

p
N
⇣

N
X

n=1

kxnk2
⌘

1/2
. (7.24)

By homogeneity we may assume that

⇣

N
X

n=1

kxnk2
⌘

1/2
=

p
N. (7.25)
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It follows from (7.24), (7.25), the triangle inequality, and the Cauchy–Schwarz
inequality that

(1� �)1/2N 6
⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

2

⌘

1/2
6

N
X

n=1

kxnk 6
p
N
⇣

N
X

n=1

kxnk2
⌘

1/2
= N.

(7.26)
We will draw several conclusions from (7.26). The first is that the norm of
each xn is close to one. To quantify this, let a = (kx

1

k, . . . , kxNk) and let
e = (1, . . . , 1). We write b · c for the inner product of b, c 2 RN , and kbk

2

for
the Euclidean norm of b 2 RN . Let b = a·e

e·e e. Since (a � b) · b = 0, it follows
from (7.26) that

ka� bk2
2

= kak2 � kbk2
2

6 N � (1� �)N = �N. (7.27)

Moreover, by (7.26), (1��)1/2 6 bn 6 1. It follows from (7.27) that |an�bn| 6p
�N for all n and this implies that

kxnk = an 6 bn +
p
�N 6 1 +

p
�N, (7.28)

and

kxnk = an > bn �
p
�N > (1� �)1/2 �

p
�N.

Next we prove a lower bound on the size of
PN

n=1

↵nxn uniformly over
|↵n| = 1, not just on average. Let us first consider the case of complex scalars.
For ↵ 2 (SC)N fixed, let A := A✓ := {� 2 (SC)N : | arg �n � arg↵n| 6
✓ for all n = 1, . . . , N}. It follows with (7.26) that we have

(1� �)N2 6 E
�

�

�

N
X

n=1

"nxn

�

�

�

2

6 E1"2A

�

�

�

N
X

n=1

"nxn

�

�

�

2

+ E1"/2A

⇣

N
X

n=1

kxnk
⌘

2

6 E1"2A

⇣

�

�

�

N
X

n=1

↵nxn

�

�

�

+

N
X

n=1

|"n � ↵n|kxnk
⌘

2

+ P(" /2 A)N2

6 P(" 2 A)
⇣

�

�

�

N
X

n=1

↵nxn

�

�

�

+ ✓N
⌘

2

+ (1� P(" 2 A))N2.

Rearranging terms and substituting P(" 2 A) = (✓/⇡)N , this implies that

�

�

�

N
X

n=1

↵nxn

�

�

�

> N
⇣

p

1� � · P(" 2 A)�1 � ✓
⌘

> N
⇣

1� �(⇡/✓)N � ✓
⌘

.

Choosing ✓ = ⇡�1/(N+1), we arrive at
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�

�

�

N
X

n=1

↵nxn

�

�

�

> N(1� (1 + ⇡)�1/(N+1)). (7.29)

In the case of real scalars, we can run the same computation with ✓ = 0, since
the singleton A = A

0

= {↵} already has a positive probability P(" 2 A) =
P(" = ↵) = 2�N in the real case. Now the term involving |"n � ↵n| is absent,
and we arrive at

�

�

�

N
X

n=1

↵nxn

�

�

�

> N
p

1� � · P(" = ↵)�1 > N(1� �2N ),

which is better than (7.29) for the relevant values of �.
We will show that X contains a �-isomorphic copy of `1N for some � > 0

to be determined shortly. Define a linear mapping T : `1N ! X by Ten := xn.
Consider a sequence c = (cn)Nn=1

2 KN and assume without loss of generality
that

PN
n=1

|cn| = 1. Then by (7.28),

�

�

�

N
X

n=1

cnxn

�

�

�

6
N
X

n=1

|cn| kxnk 6 (1 +
p
�N). (7.30)

For the lower bound, we write cn = ⇢n↵n with ⇢n > 0 and ↵n 2 SK, where
PN

n=1

⇢n =
PN

n=1

|cn| = 1.
Noting that

�

�

�

N
X

n=1

(↵n � cn)xn

�

�

�

6
N
X

n=1

|↵n � cn|kxnk

6 (1 +
p
�N)

N
X

n=1

(1� ⇢n) = (1 +
p
�N)(N � 1),

we find that
�

�

�

N
X

n=1

cnxn

�

�

�

>
�

�

�

N
X

n=1

↵nxn

�

�

�

�
�

�

�

N
X

n=1

(↵n � cn)xn

�

�

�

> N(1� (1 + ⇡)�1/(N+1))�
N
X

n=1

|↵n � cn|kxnk

> N(1� (1 + ⇡)�1/(N+1))� (1 +
p
�N)(N � 1)

> 1�N
�

(1 + ⇡)�1/(N+1) +
p
�N

�

.

(7.31)

The two bounds (7.30) and (7.31) prove that the T defined above realises a
�-isomorphic copy of `1N in X with

� 6 1 +
p
�N

1�N
�

(1 + ⇡)�1/(N+1) +
p
�N

�
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(i)

6 1 +N�1/(N+1)

1� 5N�1/(N+1)

(ii)

6 1 + 20N�1/(N+1) 6 1 + ",

where in (i) we used
p
�N 6 �1/(N+1)N and in (ii) we used 1+x

1�5x 6 1 + 20x

for 0 6 x 6 1

20

with x = N�1/(N+1). ⇤

Lemma 7.3.22. Let N > 1 be an integer. Suppose that for some " 2 (0, 1] and
0 < � 6 ("/(20N))N+1 we have c

2,X(N) >
p

N/(1 + �). Then X contains a
(1 + ")-isomorphic copy of `1N .

In particular, if c
2,X(N) =

p
N , then X contains a (1+ ")-isomorphic copy of

`1N for every " 2 (0, 1].

Proof. Choose a sequence (xn)
N
n=1

in X such that

⇣

N
X

n=1

kxnk2
⌘

1/2
> (1 + �)�1/2N1/2

⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

2

⌘

1/2
. (7.32)

By homogeneity we may assume that

⇣

N
X

n=1

kxnk2
⌘

1/2
=

p
N.

By the contraction principle, the Cauchy–Schwarz inequality, and (7.32),

1 6 max
16n6N

kxnk 6 E
�

�

�

N
X

n=1

"nxn

�

�

�

6
⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

2

⌘

1/2
6 (1 + �)1/2.

Let m := E
�

�

PN
n=1

"nxn

�

�. Then,

E
⇣

�

�

�

N
X

n=1

"nxn

�

�

�

�m
⌘

2

= E
�

�

�

N
X

n=1

"nxn

�

�

�

2

�m2 6 (1 + �)� 1 = �.

Consider fixed ✓
1

, . . . , ✓N 2 SK, let A = A⌘ := {↵ 2 (SK)N : | arg↵n �
arg ✓n| 6 ⌘ for all n}. Then

P(" 2 A)
�

�

�

�

�

�

N
X

n=1

✓nxn

�

�

�

�m
�

�

�

= E1{"2A}

�

�

�

�

�

�

N
X

n=1

["n + (✓n � "n)]xn

�

�

�

�m
�

�

�

6 E
�

�

�

�

�

�

N
X

n=1

"nxn

�

�

�

�m
�

�

�

+ E1{"2A}

N
X

n=1

|✓n � "n|kxnk
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6
p
� + P(" 2 A)⌘

N
X

n=1

kxnk 6
p
� + P(" 2 A)⌘N,

and hence

�

�

�

�

�

�

N
X

n=1

✓nxn

�

�

�

�m
�

�

�

6
p
�

P(" 2 A)
+ ⌘N =

p
�
⇣⇡

⌘

⌘N
+ ⌘N = (1 + ⇡N)�1/(2N+2),

if we choose ⌘ = ⇡�1/(2N+2). In the real case, we can run the same computation
with ⌘ = 0 and P(" 2 A) = 2�N to get the upper bound

p
�2N , which is better

than the above in the relevant parameter range. Since |m�1| 6 �/2, we further
deduce that

�

�

�

�

�

�

N
X

n=1

✓nxn

�

�

�

� 1
�

�

�

6 5N�1/(2N+2)

for all complex signs ✓
1

, . . . , ✓N 2 SK.
Let us then consider an arbitrary scalar sequence c = (cn)Nn=1

, which we
normalise with maxn |cn| = 1. Since c 2 (̄BK)N can be written as a convex
combination of some (✓n)Nn=1

2 SN
K , we immediately deduce that

�

�

�

N
X

n=1

cnxn

�

�

�

6 sup
✓1,...,✓N2SK

�

�

�

N
X

n=1

✓nxn

�

�

�

6 1 + 5N�1/(2N+2).

For an inequality in the opposite direction, recall that kxnk 6 (1 + �)1/2

for all 1 6 n 6 N . This also gives the estimate

kxnk2 = N �
X

m 6=n

kxmk2 > N � (N � 1)(1 + �) = 1 + � �N� > (1�N�)2,

using that the assumptions on � and " imply N� 6 1.
If the index k is chosen such that |ak| = maxn |an| = 1, then by the

previous two inequalities,

2(1�N�) 6 2kcnxnk 6
�

�

�

ckxk +
X

n 6=k

cnxn

�

�

�

+
�

�

�

ckxk �
X

n 6=k

cnxn

�

�

�

6
�

�

�

N
X

n=1

cnxn

�

�

�

+ 1 + 5N�1/(2N+2).

This shows that

�

�

�

N
X

n=1

cnxn

�

�

�

> 2(1�N�)� 1� 5N�1/(2N+2) > 1� 6N�1/(2N+2).

Combination of the upper and lower bounds for k
PN

n=1

cnxnk shows that X
contains a �-isomorphic copy of `1N with
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� 6 1 + 5N�1/(2N+2)

1� 6N�1/(2N+2)

6 1 + 20N�1/(2N+2) 6 1 + ",

where both estimates follow by the assumption on � and ". ⇤

We can now complete:

Proof of Theorem 7.3.8 and Remark 7.3.9. It remains to prove the implica-
tions “(ii))(i)”, namely, that the failure of the uniform containment of `1N
(respectively `1N ) for some � > 1 implies some non-trivial type p > 1 (respec-
tively, some finite cotype q < 1).

Hence, let � = 1+ " be a number for which X does not contain the spaces
`1N �-uniformly. Therefore, there exists an N for which X does not contain a
�-isomorphic copy of `1N . By Lemma 7.3.21, this implies that

⌧
2,X(N) 6

p

(1� �)N <
p
N, � =

⇣ "

20N

⌘N+1

,

and hence X has non-trivial type by Proposition 7.3.20. Quantitatively, we
have

⌧
2,X(N) 6

p
e��N = N1/2��/2 logN 6 N1/2�⌘, ⌘ =

⇣ "

40N

⌘N+1

.

By the proof of Proposition 7.3.20, X has type p for all p0 > 1/⌘, in particular
for all p 6 1 + ⌘. Moreover, for p0 > 2/⌘, in particular for p = 1 + ⌘/2, we
have

⌧
1+⌘/2,X 6 4N⌘ 6 5.

For the case of cotype, we argue similarly. Suppose that X does not contain
a (1 + ")-isomorphic copy of `1N . By Lemma 7.3.22, this implies that

c
2,X(N) 6

r

N

1 + �
<

p
N, � =

⇣ "

20N

⌘

2(N+1)

and hence X has finite cotype by Proposition 7.3.20. Quantitatively, we have

c
2,X(N) 6

p

e��/2N = N1/2��/4 logN 6 N1/2�⌘, ⌘ =
⇣ "

40N

⌘

2(N+1)

.

By the proof of Proposition 7.3.20, X has cotype q for all q > 1/⌘. Moreover,
for q = 2/⌘, we have

⌧
2/⌘,X 6 4N⌘ 6 5.

⇤
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7.4 K-convexity

The dual X⇤ of a Banach space X with type p has cotype p0, 1

p +
1

p0 (Proposi-
tion 7.1.13), but no such duality exists between cotype and type: the space `1
has cotype 2, but neither its predual c

0

nor its dual `1 has non-trivial type
(Corollary 7.1.10). The notion of K-convexity was invented to make up for
this defect: within the class of K-convex spaces (which is self-dual in the sense
that a Banach space X is K-convex if and only if X⇤ is K-convex) there is a
perfect duality between type and cotype.

After having dealt with some generalities in Section 7.4.a, the topic of
duality will be taken up in Section 7.4.b, where we prove that in the pres-
ence of K-convexity, cotype dualises to type. Then, in Section 7.4.c, we turn
to the duality of the spaces "p(X) introduced in Section 6.3 and prove that
K-convexity implies "p(X)⇤ = "p

0
(X⇤) with equivalent norms whose con-

stants are bounded by the K-convexity constant of X. We also prove that
K-convexity is necessary for this result to be true. In Section 7.4.e we show
that K-convexity can be equivalently defined by replacing Rademacher vari-
ables by certain other variables, such as Gaussians. In the final Section 7.4.f we
prove the basic theorem of Pisier that K-convexity is equivalent to non-trivial
type.

7.4.a Definition and basic properties

Let ("n)n>1

be a Rademacher sequence on a probability space (⌦,P), and let
X be a Banach space.

Definition 7.4.1. For p 2 (1,1) and N 2 Z
+

, let KN
p,X be the smallest

admissible constant in the estimate

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6 KN
p,X sup

n

�

�

�

N
X

n=1

hxn, x
⇤
ni
�

�

�

:
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lp

0
(⌦;X⇤

)

6 1
o

,

where x
1

, . . . , xN 2 X are arbitrary, and the supremum is taken over all
x⇤
1

, . . . , x⇤
N 2 X⇤ subject to the stated inequality.

The Banach space X is called K-convex if, for some p 2 (1,1),

Kp,X := sup
N>1

KN
p,X = lim

N!1
KN

p,X < 1.

It is clear that this definition is independent of the particular choice of
the Rademacher sequence ("n)n>1

. Since ("n)n>1

is another Rademacher se-
quence, the conjugation bars could be dropped from the definition; however,
the stated form is suggestive of the duality

�

�

�

N
X

n=1

hxn, x
⇤
ni
�

�

�

=
�

�

�

E
D

N
X

n=1

"nxn,
N
X

m=1

"mx⇤
m

E

�

�

�
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6
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lp

0
(⌦;X⇤

)

,

which shows that KN
p,X > 1.

Example 7.4.2. Every Hilbert space H is K-convex, with K
2,H = 1, since the

orthogonality of the "n in L2(⌦) implies

�

�

�

N
X

n=1

"nxn

�

�

�

2

L2
(⌦;H)

=

N
X

n=1

kxnk2H ,
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

2

L2
(⌦;H⇤

)

=

N
X

n=1

kx⇤
nk2H⇤ ,

and of course we have

⇣

N
X

n=1

kxnk2H
⌘

1/2
= sup

n

�

�

�

N
X

n=1

hxn, x
⇤
ni
�

�

�

:
⇣

N
X

n=1

kx⇤
nk2H⇤

⌘

1/2o

.

The following lemma shows that both the exponent p and the choice of the
scalar field are somewhat immaterial for the definition of K-convexity:

Lemma 7.4.3. Let X be a Banach space. Then for all p, q 2 (1,1),

KN
p,X 6 max{p,q,p0,q0}KN

q,X ,

4

⇡2

KN
p,XR 6 KN

p,X 6 ⇡2

4
KN

p,XR .

Here, XR is the realification of a complex Banach space X (see Appendix B).
When convenient, we may also write KR

p,X := Kp,XR .

Proof. By two applications of the Kahane–Khintchine inequality (Theorem
6.2.4), with the definition of KN

q,X in between, we have
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�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6 p,q
�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

6 p,qK
N
q,X sup

n

�

�

�

N
X

n=1

hxn, x
⇤
ni
�

�

�

:
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lq

0
(⌦;X⇤

)

6 1
o

6 p,qK
N
q,X sup

n

�

�

�

N
X

n=1

hxn, x
⇤
ni
�

�

�

:
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lp

0
(⌦;X⇤

)

6 p0,q0

o

,

and thus KN
p,X 6 p,qp0,q0KN

q,X , where one of p,q and p0,q0 is always 1.
The proof of the second estimate is entirely similar; instead of comparing

Lp and Lq-norms, we compare real and complex Rademacher sums via Propo-
sition 6.1.19. Instead of a product of Khintchine–Kahane constants, this gives
the constant (⇡/2) = ⇡2/4 in both directions. ⇤
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Definition 7.4.4. For N = 1, 2, . . . and 1 < p < 1 the Rademacher projec-
tions on Lp(⌦;X) are defined by

⇡Nf :=

N
X

n=1

"nE("nf), f 2 Lp(⌦;X).

To see that ⇡N is indeed a projection, note that E("n"m) = �nm and therefore

⇡N (⇡Nf) =
N
X

n=1

"nE("n
N
X

m=1

"mE("mf)) =
N
X

n=1

"nE("nf) = ⇡Nf.

Proposition 7.4.5. Let X be a Banach space with dual X⇤, and let Y ✓ X⇤

be a norming subspace for X. Then for all p 2 (1,1) and N 2 Z
+

we have

k⇡NkL (Lp

(⌦;X))

= KN
p,X = KN

p0,X⇤ = KN
p0,Y .

In particular, a Banach space is K-convex if and only if its dual is, and the
norm of ⇡N 2 L (Lp(⌦;X)) is also independent of the particular Rademacher
sequence appearing in its definition.

This proposition shows that the present Definition 7.4.1 of K-convexity is
equal to that of Section 4.3.b in terms of supN>1

k⇡NkL (Lp

(⌦;X))

(where ⇡N
was defined in terms of the real Rademachers rn) in real Banach spaces, and
(by Lemma 7.4.3) equivalent in complex Banach spaces.

Proof. Step 1: We prove that k⇡NkL (Lp

(⌦;X))

6 KN
p,X . Indeed, by definition,

k⇡NfkLp

(⌦;X)

6 KN
p,X sup

n

�

�

�

N
X

n=1

hE("nf), x⇤
ni
�

�

�

:
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lp

0
(⌦;X⇤

)

6 1
o

,

where

�

�

�

N
X

n=1

hE("nf), x⇤
ni
�

�

�

=
�

�

�

E
D

f,
N
X

n=1

"nx
⇤
n

E

�

�

�

6 kfkLp

(⌦;X)

�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lp

0
(⌦;X⇤

)

6 kfkLp

(⌦;X)

,

and thus k⇡NfkLp

(⌦;X)

6 KN
p,XkfkLp

(⌦;X)

.
Step 2: Let us write

⇡Ng :=

N
X

n=1

"nE("ng)

for the Rademacher projection defined in terms of the conjugate Rademacher
sequence ("n)n>1

on Lp0
(⌦;X⇤) ✓ (Lp(⌦;X))⇤. For f 2 Lp(⌦;X) and g 2

Lp0
(⌦;X⇤), one checks that
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hf, ⇡̄Ngi = E
D

f,
N
X

n=1

"nE("ng)
E

= E
D

N
X

n=1

"nE("nf), g
E

= h⇡Nf, gi,

and hence ⇡N = ⇡⇤
N |Lp

0
(⌦;X⇤

)

. It follows at once that

k⇡NkL (Lp

0
(⌦;Y ))

6 k⇡NkL (Lp

0
(⌦;X⇤

))

6 k⇡NkL (Lp

(⌦;X))

.

Step 3: We prove that KN
p,X 6 k⇡NkL (Lp

0
(⌦;Y ))

. Indeed, since Lp0
(⌦;Y )

is norming for Lp(⌦;X) (Proposition 1.3.1), we have

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

= sup
n

�

�

�

E
D

N
X

n=1

"nxn, g
E

�

�

�

: kgkLp

0
(⌦;Y )

6 1
o

,

where

E
D

N
X

n=1

"nxn, g
E

=

N
X

n=1

hxn,E("ng)i =:

N
X

n=1

hxn, x
⇤
ni

and
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lp

0
(⌦;Y )

= k⇡NgkLp

0
(⌦;Y )

6 k⇡NkL (Lp

0
(⌦;Y )

.

So we have checked that
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N
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"nxn
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�

Lp

(⌦;X)

6 k⇡NkL (Lp

0
(⌦;Y )

sup
n

�

�

�

N
X

n=1

hxn, x
⇤
ni
�

�

�

:
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lp

0
(⌦;Y )

6 1
o

,

(7.33)

and this shows that Kp,X 6 k⇡NkL (Lp

0
(⌦;Y ))

.
Step 4: Conclusion. We have now proved that

KN
p,X 6 k⇡NkL (Lp

0
(⌦;Y ))

6 k⇡NkL (Lp

0
(⌦;X⇤

))

6 k⇡NkL (Lp

(⌦;X))

6 KN
p,X ,

and hence all these quantities are actually equal. In particular, we have KN
p,X =

k⇡NkL (Lp

(⌦;X))

, which shows that the latter is independent of the choice of
the Rademacher sequence, since the former is. Applying this with p0 in place
of p, with X⇤ or Y in place of X, and with ("n)n>1

in place of ("n)n>1

, we
also see that

KN
p0,X⇤ = k⇡NkL (Lp

0
(⌦;X⇤

))

, KN
p0,Y = k⇡NkL (Lp

0
(⌦;Y ))

.

Combining all the equalities, we have proved the Proposition. ⇤

An intermediate step above is worth isolating as an independent result:
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Corollary 7.4.6. Let X be a Banach space and let Y ✓ X⇤ be a closed lin-
ear subspace that is norming for X. Then for all p 2 (1,1), N 2 Z

+

, and
x
1

, . . . , xN 2 X, we have

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6 KN
p,X sup

n

�

�

�

N
X

n=1

hxn, x
⇤
ni
�

�

�

:
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lp

0
(⌦;Y )

6 1
o

,

where the supremum is over all x⇤
1

, . . . , x⇤
N 2 Y with the specified constraint.

Proof. In (7.33), we proved this with k⇡NkL (Lp

0
(⌦;Y ))

in place of KN
p,X . But

Proposition 7.4.5 informs us that k⇡NkL (Lp

0
(⌦;Y ))

= KN
p0,Y = KN

p,X . ⇤

Example 7.4.7. Let (S,A , µ) be a measure space and fix 1 < p < 1. If X is
K-convex and 1 < p < 1, then Lp(S;X) is K-convex and Kp,Lp

(S;X)

= Kp,X .
This follows readily by Fubini’s theorem from the characterisation of

K-convexity by the Lp-boundedness of the projections ⇡N , since ⇡N on
Lp(⌦;Lp(S;X)) ' Lp(S;Lp(⌦;X)) acts pointwise at every s 2 S as ⇡N
on Lp(⌦;X).

In particular, the spaces Lp(S) with 1 < p < 1 are K-convex. Estimates for
their K-convexity constants can be obtained from Lemma 7.4.3.

We recall from Chapter 4 (see Proposition 4.2.3) the notation �±
p,X for the

one-sided UMD constants of a UMD Banach space X.

Example 7.4.8. Every UMD space X is K-convex, and KR
p,X 6 �+

p,XR for every
p 2 (1,1). This was proved in Proposition 4.3.10, where K-convexity was
defined in terms of the real version of the projections ⇡N only.

Example 7.4.9. If a real Banach space X is K-convex, then the real projec-
tions ⇡N are bounded on Lp(⌦;X) with constant Kp,X , and by the triangle
inequality, their extensions to Lp(⌦;XC) are bounded by 2Kp,X , no matter
which admissible norm is used on the complexification XC. If XC is equipped
with the particular norm of X�,p

C introduced in Section 2.1.b, then Proposition
2.1.12 even guarantees that the norm is preserved. Thus

KR
p,XC 6 2Kp,X , Kp,X�,p

C
= Kp,X ,

and from Lemma 7.4.3 we conclude that

Kp,XC 6 ⇡2

2
Kp,X , Kp,X�,p

C
6 ⇡2

4
Kp,X ,

where XC in both estimates is equipped with any admissible norm.
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7.4.b K-convexity and type

We begin with the application for which the notion of K-convexity was first
invented: the restoration of the missing symmetry in the duality of type and
cotype (cf. Proposition 7.1.13 and the preceding discussion).

Proposition 7.4.10. Let X be a K-convex Banach space. If X has cotype
q 2 [2,1), then X⇤ has type q0, with ⌧q0,X⇤ 6 cq,XKq,X .

Proof. Since X ✓ X⇤⇤ is norming for X⇤, Corollary 7.4.6 guarantees that
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,

where
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n=1

hxn, x
⇤
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6
⇣

N
X

n=1

kxnkq
⌘

1/q⇣ N
X

n=1

kx⇤
nkq

0
⌘

1/q0

and
⇣

N
X

n=1

kxnkq
⌘

1/q
6 cq,X

�

�

�

N
X

n=1

"nxn

�

�

�

Lq

(⌦;X)

6 cq,X .

Hence
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lq

0
(⌦;X⇤

)

6 Kq0,X⇤cq,X
⇣

N
X

n=1

kx⇤
nk

q0

X⇤

⌘

1/q0

,

which proves that ⌧q0,X⇤ 6 Kq0,X⇤cq,X = Kq,Xcq,X . ⇤

If we apply the result to X⇤ (which is also K-convex) in place of X, we see that
cotype q of X⇤ implies type q of X⇤⇤, and hence of X ✓ X⇤⇤. Alternatively,
in order to get from cotype q of X⇤ to type q of X, one can run the same
argument, even slightly simplified, since in the first step one can directly use
the definition of K-convexity of X, instead of Corollary 7.4.6.

While in Proposition 7.4.10 we deduced type from K-convexity and cotype,
we next show that K-convexity alone already implies some non-trivial type.
This will be accomplished with the help of the Maurey–Pisier Theorem 7.3.8
and the growth of the K-convexity constants of the finite-dimensional `1n-
spaces, as quantified in the following:

Lemma 7.4.11. For all p 2 (1,1) and integers N > 1, we have

Kp,`1
2N

> (
2,1)

�1

p
N,

where `1
2

N

is considered over real scalars.
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Proof. Consider the probability space DN = {�1, 1}N with the uniform prob-
ability measure µ({d}) = 2�N , d 2 DN . Observe that the coordinate map-
pings sn(d) = dn form a real Rademacher sequence.

Let fN : ⌦ ! `1(DN ) be defined by

fN :=

N
Y

n=1

(1 + snrn),

where (rn)Nn=1

is a real Rademacher sequence defined on a probability space
(⌦,P). By the independence of the coordinate functions sn we obtain, writing
Eµ for integration with respect to µ,

kfN (!)k`1(D
N

)

=

N
Y

n=1

Eµ|1 + snrn(!)| =
N
Y

n=1

Eµ(1 + snrn(!)) =
N
Y

n=1

1 = 1

for all ! 2 ⌦. Therefore, kfNkLp

(⌦;`1(D
N

))

= 1. On the other hand, for all
1 6 n 6 N we have E(rnfN ) = sn, and therefore ⇡NfN =

PN
n=1

rnsn. By the
Khintchine inequality for the Rademacher sequence (sn)Nn=1

(see (3.34)) we
obtain, for all ! 2 ⌦,

k⇡NfN (!)k`1(D
N

)

= Eµ

�

�

�

N
X

n=1

rn(!)sn
�

�

�

> �1

2,1

⇣

N
X

n=1

|rn(!)|2
⌘

1/2
= �1

2,1

p
N.

Fixing p 2 (1,1), it follows that k⇡NkL (Lp

(⌦;`1(D
N

)))

> (
2,1)

�1

p
N , and

therefore Kp,`1(D
N

)

> (
2,1)

�1

p
N . Since `1(DN ) is isometrically isomorphic

to `1
2

N

, this proves the estimate in the first part of the proposition. ⇤

Proposition 7.4.12. Every K-convex Banach space has non-trivial type and
finite cotype.

Proof. Let first X be a K-convex real Banach space. Lemma 7.4.11 shows
that X cannot contain the real spaces `1N uniformly. Therefore, the Maurey–
Pisier Theorem 7.3.8 implies that X has non-trivial type and hence also, by
Corollary 7.3.11, finite cotype.

If X is a complex K-convex Banach space, then XR is K-convex by Lemma
7.4.3, and therefore X has non-trivial type and finite cotype by (7.1). ⇤

7.4.c K-convexity and duality of the spaces "pN(X)

The purpose of this subsection is to have a closer look at the duality of the
random sequence norms suggested by the very Definition 7.4.1. Recall that
the spaces "pN (X), N > 1, were defined in Section 6.3 as the Banach spaces
of sequences (xn)

N
n=1

in X endowed with the norm
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k(xn)
N
n=1

k"p
N

(X)

:=
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

.

Likewise the space "p(X) was defined to be the Banach space of sequences
(xn)n>1

in X for which the sum
P

n>1

"nxn converges in Lp(⌦;X), endowed
with the norm

k(xn)n>1

k"p(X)

:=
�

�

�

X

n>1

"nxn

�

�

�

Lp

(⌦;X)

= sup
N>1

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

.

Among other things it was shown in Section 6.3 (see Proposition 6.3.4) that for
all p 2 [1,1) one has a natural identification ("pN (X))⇤⇤ = "pN (X⇤⇤) for any
Banach space X, whereas the description of the first dual ("pN (X))⇤ offered
there was more complicated.

As suggested by the very Definition 7.4.1, the simpler identification

("pN (X))⇤ ' "p
0

N (X⇤) (7.34)

will be available when p 2 (1,1) and X is K-convex, and under these as-
sumptions one also has a similar identification of the infinite sequence spaces,
("p(X))⇤ ' "p

0
(X⇤). We begin with a preliminary observation about a limit

⇡ = limN!1 ⇡N of the Rademacher projections ⇡N .

Proposition 7.4.13. Let X be a K-convex Banach space and let p 2 (1,1).
Then the strong operator limit ⇡ := limn!1 ⇡n exists in L (Lp(⌦;X)) and
defines a projection on Lp(⌦;X) of norm k⇡k = Kp,X .

Proof. Let E1 := E(·|F1) denote the conditional expectation with respect
to the �-algebra F1 := �("n, n > 1). For all f 2 Lp(⌦;X) and n > 1 we
have ⇡nf = ⇡nE1f , and therefore it suffices to establish the existence of the
limit limn!1 ⇡nf for functions f 2 Lp(F1;X).

Fix f 2 Lp(F1;X) and " > 0. Since
S

N>1

Lp(FN ;X) (with FN :=
�("

1

, . . . , "N )) is dense in Lp(F1;X) (by Lemma A.1.2), there exist N > 1
and g 2 Lp(FN ;X) such that kf � gkLp

(⌦;X)

< ". For all k > N , we have
E("kg) = EEN ("kg) = E(gE("k)) = 0. It follows that for all m,n > N , one
has ⇡ng = ⇡mg, and hence

k⇡nf � ⇡mfkLp

(⌦;X)

6 k(⇡n � ⇡m)(f � g)kLp

(⌦;X)

+ k⇡ng � ⇡mgkLp

(⌦;X)

6 2Kp,Xkf � gkLp

(⌦;X)

+ 0 = 2Kp,X".

This shows that (⇡nf)n>1

is a Cauchy sequence in Lp(⌦;X) and therefore it
is convergent. The limit ⇡f := limn!1 ⇡nf defines a bounded operator satis-
fying k⇡k 6 lim supn!1 k⇡nk 6 Kp,X . Finally, since ⇡|Lp

(F
N

)

= ⇡N |Lp

(F
N

)

,
it follows that k⇡k > k⇡Nk and therefore also k⇡k > Kp,X . ⇤
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We now turn to the problem of proving (7.34). Let us start by making some
elementary observations. Let 1 6 p 6 1. Each function g 2 "p

0

N (X⇤) defines
an element, denoted jN (g), of ("pN (X))⇤ in the following way. Writing g =
PN

n=1

"nx⇤
n, for each f =

PN
n=1

"nxn 2 "pN (X) we define

hf, jN (g)i := Ehf, gi =
N
X

n=1

hxn, x
⇤
ni.

Clearly, the mapping
jN : "p

0

N (X⇤) ! ("pN (X))⇤

is linear and contractive. In the same way each g 2 "p
0
(X⇤) defines an element

j(g) of ("p(X))⇤ and the resulting map

j : "p
0
(X⇤) ! ("p(X))⇤

is contractive.
We claim that jN is injective. For if jNg = 0 for some g =

PN
n=1

"nx⇤
n 2

"p
0

N (X⇤), then hx, x⇤
ni = h"nx, jNgi = 0 for all 1 6 n 6 N and x 2 X. It

follows that x⇤
n = 0 for all 1 6 n 6 N , and therefore g = 0. The proof that j

is injective is similar.

Theorem 7.4.14. Let X be a K-convex Banach space. Then for all 1 < p <
1 the following assertions hold:

(1) for each N > 1, the embedding jN : "p
0

N (X⇤) ! ("pN (X))⇤ induces an
isomorphism of Banach spaces

"p
0

N (X⇤) ' ("pN (X))⇤.

Moreover, kjNk 6 1 and kj�1

N k 6 Kp,X .
(2) the embedding j induces an isomorphism of Banach spaces

"p
0
(X⇤) ' ("p(X))⇤.

Moreover, kjk 6 1 and kj�1k 6 Kp,X .

Proof. (1): Fix 1 < p < 1 and 1 6 n 6 N . For each g⇤ 2 ("pN (X))⇤,
the linear mapping x 7! h"nx, g⇤i is bounded on X and defines an element
x⇤
n 2 X⇤. Setting g :=

PN
n=1

"nx⇤
n we have jN (g) = g⇤. This shows that

jN is surjective. To obtain the required estimate let " > 0 be arbitrary. By
Proposition 1.3.1 we can find an f 2 Lp(⌦;X) with kfkLp

(⌦;X)

6 1 such that
|hf, gi| > (1� ")kgkLp

0
(⌦;X⇤

)

. It follows that

(1� ")kgkLp

0
(⌦;X⇤

)

6 |hf, gi| = |hf,⇡Ngi| = |h⇡Nf, gi|
6 k⇡NfkLp

(⌦;X)

kjN (g)k
("p

N

(X))

⇤
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6 Kp,XkjN (g)k
("p

N

(X))

⇤ .

Since " > 0 was arbitrary it follows that kj�1

N k 6 Kp,X . The estimate kjNk 6 1
has already been noted above.

(2): This can be proved in the same way, except for some problems with
convergence that have to be overcome. For g⇤ 2 ("p(X))⇤ and each n > 1,
define the functionals x⇤

n 2 X⇤ as in (1). We claim that the sum
P

n>1

"nx⇤
n

converges in Lp0
(⌦;X⇤) and thus defines an element g 2 "p

0
(X⇤), and that

we have j(g) = g⇤. Once this claim has been proved the proof can be finished
as in part (1).

By Proposition 7.4.12, X has non-trivial type, and therefore X⇤ has
finite cotype by Proposition 7.1.13. In particular, X⇤ does not contain
an isomorphic copy of c

0

. Hence, by the theorem of Hoffmann-Jørgensen
and Kwapień (see Corollary 6.4.12), to prove the convergence of the series
P

n>1

"nx⇤
n it suffices to show that its partial sums gN =

PN
n=1

"nx⇤
n satisfy

supN>1

kgNkLp

0
(⌦;X⇤

)

< 1.
Let iN : "pN (X) ! "p(X) be the canonical inclusion mapping and define

g⇤N 2 ("pN (X))⇤ by g⇤N := i⇤Ng⇤. It is easily checked that jNgN = g⇤N , and now
part (1) shows that

kgNkLp

0
(⌦;X⇤

)

6 Kp,XkjN (gN )k
("p

N

(X))

⇤

= Kp,Xkg⇤Nk
("p

N

(X))

⇤

= Kp,X 6 Kp,XkI⇤Ng⇤k
("p

N

(X))

⇤ 6 Kp,Xkg⇤k
("p(X))

⇤ .

This proves that supN>1

kgNkLp

0
(⌦;X⇤

)

< 1, establishing the claim. ⇤

7.4.d K-convexity and interpolation

We begin with an interpolation result for the K-convexity property itself. The
K-convexity property interpolates:

Proposition 7.4.15. Let (X
0

, X
1

) be an interpolation couple with both X
0

and X
1

K-convex. Let ✓ 2 (0, 1) and let p
0

, p
1

, p, q 2 (1,1) satisfy 1

p = 1�✓
p0

+
✓
p1

. The complex interpolation space X✓ = [X
0

, X
1

]✓ and the real interpolation
space X✓,p0,p1 = (X

0

, X
1

)✓,p0,p1 are K-convex and

Kp,X
✓

6 K1�✓
p0,X0

K✓
p1,X1

and Kp,X
✓,p0,p1

6 K1�✓
p0,X0

K✓
p1,X1

.

Recall that X✓,p0,p1 = (X
0

, X
1

)✓,p with equivalent norms (see Theorem
C.3.14).

Proof. Since the projections ⇡N are bounded on Lp
i(⌦;Xi) with norms at

most Kp
i

,X
i

, it follows from the properties of complex interpolation that each
⇡N is bounded on Lp(⌦;X✓) with norm at most K1�✓

p,X0
K✓

p,X1
. The result for

the real interpolation space is proved in the same way. ⇤
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In the following, K-convexity is used as a tool to guarantee a natural inter-
polation of the spaces "p(X):

Theorem 7.4.16. Let (X
0

, X
1

) be an interpolation couple of K-convex Ba-
nach spaces X

0

and X
1

. Let ✓ 2 (0, 1) and assume that p
0

, p
1

, p 2 (1,1)
satisfy 1

p = 1�✓
p0

+ ✓
p1

. Then:

(1) we have
["p0(X

0

), "p1(X
1

)]✓ = "p(X✓)

with equivalence of norms

kxk"p(X
✓

)

6 kxk
["p0 (X0),"p1 (X1)]✓

6 K1�✓
p0,X0

K✓
p1,X1

kxk"p(X
✓

)

for all sequences x = (xn)n>1

in the complex interpolation space X✓ =
[X

0

, X
1

]✓.
(2) we have

("p0(X
0

), "p1(X
1

))✓,p0,p1 = "p(X✓,p0,p1)

with equivalence of norms

kxk"p(X
✓,p0,p1 )

6 kxk
("p0 (X0),"p1 (X1))✓,p0,p1

6 K1�✓
p0,X0

K✓
p1,X1

kxk"p(X
✓,p0,p1 )

for all sequences x = (xn)n>1

in the real interpolation space X✓,p0,p1 =
(X

0

, X
1

)✓,p0,p1 .

In both (1) and (2), the first inequality does not require any K-convexity as-
sumptions.

Recall that X✓,p0,p1 = (X
0

, X
1

)✓,p with equivalent norms (see Appendix
C.3.14).

Proof. It suffices to prove the corresponding results for the spaces "N (X).
Indeed, since X

0

, X
1

, X✓, X✓,p0,p1 have non-trivial type (see Propositions 7.1.3
and 7.4.12) they do not contain a copy of c

0

. Therefore, if we can prove
the norm estimates uniformly in N , the corresponding results for the spaces
"(X) follow from the theorem of Hoffmann-Jørgensen and Kwapień (Theorem
6.4.10).

In the case of "N (X) the identities of the spaces under consideration follow
from interpolation of product spaces and it suffices to prove the required
estimates for the norms.

For any Banach space X define the isometry RN : "qN (X) ! Lq(⌦, X)

by RNx =
PN

n=1

"nxn, where x = (xn)
N
n=1

is a sequence in X. Assuming
that X is K-convex and q 2 (1,1), define EN : Lq(⌦;X) ! "qN (⌦;X) by
ENf = (E("n⇡Nf))Nn=1

. Then kENfk"q
N

(⌦;X)

= k⇡NfkLq

(⌦;X)

6 Kq,X and
hence EN is bounded with norm 6 Kq,X .

Since ENRN = I, for all sequences x = (xn)
N
n=1

in X✓ = [X
0

, X
1

]✓, it
follows that



120 7 Type, cotype, and related properties

kxk
["

p0
N

(X0),"
p1
N

(X1)]✓
= kENRNxk

["
p0
N

(X0),"
p1
N

(X1)]✓

6 K1�✓
p0,X0

K✓
p1,X1

kRNxk
[Lp0

(⌦;X0),Lp1
(⌦;X1)]✓

= K1�✓
p0,X0

K✓
p1,X1

kRNxkLp

(⌦;X
✓

)

= K1�✓
p0,X0

K✓
p1,X1

kxk"p
N

(X
✓

)

.

Also,

kxk"p
N

(X
✓

)

= kRNxkLp

(⌦;X
✓

)

= kRNxk
[Lp0

(⌦;X0),Lp1
(⌦;X1)]✓

6 kxk
["

p0
N

(X0),"
p1
N

(X1)]✓
;

this inequality does not require any K-convexity assumptions. This completes
the proof for complex interpolation. The proof for real interpolation proceeds
along the same lines. ⇤

In Proposition 7.1.3 we have seen that type is preserved under interpolation.
As a consequence of the preceding theorem we obtain a similar result for
cotype provided the spaces under consideration are K-convex:

Proposition 7.4.17. Let (X
0

, X
1

) be an interpolation couple, with X
0

and
X

1

K-convex, with finite cotype q
0

and q
1

, respectively. Let ✓ 2 (0, 1) and as-
sume that 1

q = 1�✓
q0

+ ✓
q1

. Then the complex interpolation space X✓ = [X
0

, X
1

]✓
and the real interpolation space X✓,q0,q1 = (X

0

, X
1

)✓,q0,q1 have cotype q, and
we have

cq,X
✓

6 K1�✓
q0,X0

K✓
q1,X1

c1�✓q0,X0
c✓q1,X1

,

cq,X
✓,q0,q1

6 K1�✓
q0,X0

K✓
q1,X1

c1�✓q0,X0
c✓q1,X1

.

Proof. The operator T : "qi(Xi) ! `qi(Xi) given by T (xn)n>1

= (xn)n>1

is
bounded with norm 6 cq

i

,X
i

. Therefore, by Theorem 7.4.14 and interpolation
and, writing x = (xn)n>1

,

kTxk`q(X
✓

)

= kTxk
[`q0 (X0),`q1 (X1)]✓

6 c1�✓q0,X0
c✓q1,X1

kxk
["q0 (X0),"q1 (X1)]✓

6 c1�✓q0,X0
c✓q1,X1

K1�✓
q0,X0

K✓
q1,X1

kxk"q(X
✓

)

.

This proves that X✓ has cotype q, with the indicated bound for the cotype
constant.

The result for real interpolation is proved in the same way. ⇤

7.4.e K-convexity with respect to general random variables

We have seen that the notions of type and cotype can be equivalently formu-
lated in terms of appropriate sequences of independent identically distributed
symmetric random variables. In particular, a Banach space has type p (cotype
q) if and only if it has Gaussian type p (Gaussian cotype q). Here we will prove
similar results for K-convexity.
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Throughout this section we assume that ⇠ is a symmetric random variable
with finite moments of all orders, normalised so that E|⇠|2 = 1, defined on
some probability space (⌦,P). By (⇠n)n>1

we denote a sequence of indepen-
dent random variables, each of which is equidistributed with ⇠.

Let p 2 (1,1). We define K⇠,N
p,X as the smallest constant such that

�

�

�

N
X

n=1

⇠nxn

�

�

�

Lp

(⌦;X)

6 sup
n

�

�

�

X

n=1

hxn, x
⇤
ni
�

�

�

:
�

�

�

N
X

n=1

⇠nx
⇤
n

�

�

�

Lp

0
(⌦;X⇤

)

o

and ⇡⇠N as the operator acting on f 2 Lp(⌦;X) by

⇡⇠Nf :=

N
X

n=1

⇠nE(⇠nf).

Note that E(⇠nf) is well defined by Hölder’s inequality, and the L2-normal-
isation of ⇠ ensures that each ⇡⇠N is a projection in Lp(⌦;X). We say that X
is K⇠-convex if

K⇠
p,X := sup

N>1

K⇠,N
p,X < 1.

Mutatis mutandis, Proposition 7.4.5, Corollary 7.4.6 and Theorem 7.4.14 ex-
tend to this setting, showing in particular that

k⇡⇠NkL (Lp

(⌦;X))

= K⇠,N
p,X = K⇠,N

p0,X⇤ = K⇠,N
p0,Y

whenever Y ✓ X⇤ is a norming subspace for X; note the appearance of the
conjugations ⇠ in the last two constants, since in the considered generality ⇠n
and ⇠n need not be equally distributed.

The main result of this subsection (Proposition 7.4.18) states that X is
K⇠-convex if and only if X is K-convex.

Proposition 7.4.18. A Banach space X is K⇠-convex if and only if X is
K-convex. Moreover, for all 1 < p < 1 we have

k⇠k�2

1

Kp,X 6 K⇠
p,X 6 C⇠

p,XKp,X ,

where C⇠
p,X depends on X via the cotype properties of X and X⇤.

Proof. If X is K⇠-convex, then two applications of Proposition 6.1.15 give

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6 k⇠k�1

1

�

�

�

N
X

n=1

⇠nxn

�

�

�

Lp

(⌦;X)

6 k⇠k�1

1

K⇠,N
p,X sup

n

�

�

�

N
X

n=1

hxn, x
⇤
ni
�

�

�

:
�

�

�

N
X

n=1

⇠nx
⇤
n

�

�

�

Lp

0
(⌦;X⇤

)

6 1
o
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6 k⇠k�1

1

K⇠,N
p,X sup

n

�

�

�

N
X

n=1

hxn, x
⇤
ni
�

�

�

:
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lp

0
(⌦;X⇤

)

6 k⇠k�1

1

o

,

and hence KN
p,X 6 k⇠k�2

1

K⇠,N
p,X .

Assume then that X is K-convex; proving that X is K⇠-convex is the
deeper direction of the theorem. By Proposition 7.4.5, X⇤ is also K convex.
Hence by Proposition 7.4.12, both X and X⇤ have finite cotype, say q and r,
respectively. Let s := max{q, p} and t := max{r, p0}. Then X has cotype
s, thus ⇠-cotype s (Corollary 7.2.9), and hence by Proposition 7.2.8 we can
estimate

�

�

�

N
X

n=1

⇠nxn

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

n=1

⇠nxn

�

�

�

Ls

(⌦;X)

6 A⇠s,X

�

�

�

N
X

n=1

"nxn

�

�

�

Ls

(⌦;X)

6 A⇠s,XKN
s,X

n

�

�

�

N
X

n=1

hxn, x
⇤
ni
�

�

�

:
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Ls

0
(⌦;X)

6 1
o

.

Similarly, for any x⇤
1

, . . . , x⇤
N 2 X⇤ as above, we note that X⇤ has cotype t,

hence ⇠-cotype t (Corollary 7.2.9), and applying again Proposition 7.2.8 we
get

�

�

�

N
X

n=1

⇠nx
⇤
n

�

�

�

Lp

0
(⌦;X⇤

)

6
�

�

�

N
X

n=1

⇠nx
⇤
n

�

�

�

Lt

(⌦;X⇤
)

6 A⇠t,X⇤

�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Lt

(⌦;X⇤
)

6 A⇠t,X⇤t,s0
�

�

�

N
X

n=1

"nx
⇤
n

�

�

�

Ls

0
(⌦;X)

6 A⇠t,X⇤t,s0 .

Substituting back, this shows that K⇠,N
p,X 6 A⇠s,XA⇠t,X⇤t,s0Ks,X . Since KN

s,X 6
max{s,p,s0,p0}KN

p,X (Lemma 7.4.3), we obtain the claimed result with
C⇠

p,X = A⇠s,XA⇠t,X⇤t,s0 max{s,p,s0,p0}, where s := max{q, p} and t :=

max{r, p0}, and A⇠s,X and A⇠t,X⇤ are the constants from Proposition 7.2.8.
⇤

Remark 7.4.19. If ⇠ 2 L1, one can take C⇠
p,X = k⇠k21 in Proposition 7.4.18.

Corollary 7.4.20. A Banach space is K-convex if and only if it is Gaussian
K-convex, and

k�k2
1

Kp,X 6 K�
p,X 6 C�

p,XKp,X , 1 < p < 1,

where C�
p,X depends on X via the cotype properties of X and X⇤.

As an application of these notions we give a simple proof of the following result,
which is a special case of much more general theorem of Pisier considered in
the following subsection:
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Proposition 7.4.21. Every Banach space X with type 2 is K-convex, and

K�
2,X 6 ⌧�

2,X .

By Proposition 7.4.5, a similar result holds if X⇤ has type 2.

Proof. To prove this let f =
PM

m=1

1⌦
m

xm be a simple random variable, with
the sets ⌦m measurable, disjoint, and of positive probability. With ym :=
(P(⌦m))1/2xm we have

Ekfk2 =

M
X

m=1

kymk2

and

E|hf, x⇤i|2 =

M
X

m=1

|hym, x⇤i|2, x⇤ 2 X⇤.

Let zn := E(�nf). Then, by the orthonormality of the Gaussian sequence
(�n)n>1

in L2(⌦),

N
X

n=1

|hzn, x⇤i|2 =

N
X

n=1

|E(�nhf, x⇤i)|2 6 E|hf, x⇤i|2 =

M
X

m=1

|hym, x⇤i|2

for all x⇤ 2 X⇤. Hence, by Theorem 6.1.25,

Ek⇡�Nfk2 = E
�

�

�

N
X

n=1

�nzn
�

�

�

2

6 E
�

�

�

M
X

m=1

�mym
�

�

�

2

6 (⌧�
2,X)2

M
X

m=1

kymk2 = (⌧�
2,X)2Ekfk2.

It follows that k⇡�NkL (L2
(⌦;X))

6 ⌧�
2,X . This proves that X is Gaussian K-

convex with constant K�
2,X 6 ⌧�

2,X . ⇤

7.4.f Equivalence of K-convexity and non-trivial type

This subsection is devoted to Pisier’s theorem which asserts that K-convexity
is equivalent to non-trivial type. It is useful at this point to recall the notation
of the Walsh functions (w↵)↵✓{1,...,N} introduced in Section 6.2.a. We observe
that the real Rademacher projection ⇡N of any function

f =
X

↵✓{1,...,N}

w↵x↵ 2 Lp(DN ;X) (7.35)

is given by

⇡Nf =

N
X

n=1

w{n}x{n}.
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and note that KR
p,X = supN>1

k⇡NkL (Lp

(DN

;X))

.
As a warm-up in this notation, we first give another proof of Proposition

7.4.21 with a slightly different constant.

Proposition 7.4.22. Every Banach space X of type 2 is K-convex, and

KR
2,X 6 kgk�1

1

⌧g
2,X ,

where g is a real standard Gaussian variable.

Proof. Let (g↵)↵✓{1,...,N} be a real Gaussian sequence and (x↵)↵✓{1,...,N} be a
sequence in X. By Proposition 6.1.15, the contraction principle, and Theorem
7.1.20 (which can be applied since cotype 2 implies Gaussian cotype 2 by
Proposition 7.1.18),

�

�

�

⇡N
X

↵

w↵x↵
�

�

�

L2
(⌦;X)

=
�

�

�

N
X

n=1

w{n}x{n}

�

�

�

L2
(⌦;X)

6 kgk�1

1

�

�

�

N
X

n=1

g{n}x{n}

�

�

�

L2
(⌦;X)

6 kgk�1

1

�

�

�

X

↵

g↵x↵
�

�

�

L2
(⌦;X)

6 kgk�1

1

⌧g
2,X

�

�

�

X

↵

w↵x↵
�

�

�

L2
(⌦;X)

.

This implies that X is K-convex with KR
2,X 6 kgk�1

1

⌧g
2,X . ⇤

Theorem 7.4.23 (Pisier). A Banach space is K-convex if and only if it has
non-trivial type.

That K-convexity implies non-trivial type has already been shown in Propo-
sition 7.4.12. The proof of the converse implication will occupy us for the
remainder of this section. It will also produce an estimate for Kp,X in terms
of the type constant ⌧p,X .

Before turning to the proof we note a direct consequence:

Corollary 7.4.24. A Banach space X has non-trivial type if and only if X⇤

has non-trivial type.

Proof. By Proposition 7.4.5 X is K-convex if and only if X⇤ is K-convex. ⇤

We start with a general lemma. It is the only place in the deduction of K-
convexity, where the non-trivial type assumption is used.

Lemma 7.4.25. Let X be a Banach space with type p 2 (1, 2] and let 1

p+
1

p0 =

1. Let P
1

, . . . , PM 2 L (X) be commuting contractive projections on X. Then
for any convex combination S =

PM
m=1

�mPm one has

kSx+ xk > 1

4
(2⌧Rp,X)�p0

kxk > 1

4
(⇡⌧p,X)�p0

kxk.
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Proof. It suffices to prove the left-hand inequality for real Banach spaces;
for complex spaces X it follows by applying the real case to XR noting that
⌧Rp,X = ⌧p,XR . The right-hand side is trivial for real spaces X, and for complex
spaces it follows from ⌧Rp,X 6 1

2

⇡⌧p,X (see (7.1)).
It thus remains to prove the left-hand inequality for real Banach spaces

X. Let x 2 X with kxk = 1 be fixed and put a := kSx+ xk. As kSk 6 1, for
all n > 0 we have

kSn+1x+ Snxk 6 a.

Hence, by the triangle inequality,

1 = kxk 6 kSnxk+
n�1

X

i=0

kSi+1x+ Sixk 6 kSnxk+ na. (7.36)

Let (rn)n>1

be a real Rademacher sequence on a probability space (⌦,P).
On a distinct probability space (⌦0,P0) let ⌘

1

, . . . , ⌘N be independent copies
of a discrete random variable ⌘ : ⌦0 ! L (X) satisfying P(⌘ = Pm) = �m for
all 1 6 m 6 M . Note that E0(⌘) = S.

Fix ! 2 ⌦ and set

B := {1 6 n 6 N : rn(!) = 1}, C := {1 6 n 6 N : rn(!) = �1}.

Put k := |B| and ` := |C|. Clearly, the sets B and C and the integers k and `
depend on N and the fixed ! 2 ⌦, but we shall omit this from the notation.
Let ⌘B =

Q

n2B ⌘n. From ⌘2n = ⌘n we see that ⌘B⌘n = ⌘B for n 2 B. Also,
E0⌘B = Sk and, for n 2 C, E0⌘B⌘n = Sk+1. By these observations and the
fact that k⌘Bk 6 1 pointwise, we obtain

kkSkx� `Sk+1xk =
�

�

�

E0
⇣

X

n2B

⌘Bx�
X

n2C

⌘B⌘nx
⌘

�

�

�

6 E0
�

�

�

X

n2B

⌘Bx�
X

n2C

⌘B⌘nx
�

�

�

= E0
�

�

�

⌘B
⇣

N
X

n=1

rn(!)⌘nx
⌘

�

�

�

6 E0
�

�

�

N
X

n=1

rn(!)⌘nx
�

�

�

.

On the other hand, since kSkx�`Sk+1x = NSkx�`(Skx+Sk+1x), it follows
from (7.36) that

kkSkx� `Sk+1xk > kNSkxk � k`(Skx+ Sk+1x)k
> N(1� ka)� `a = N �N2a+N`a� `a > N �N2a.

We conclude that

N �N2a 6 E0
�

�

�

N
X

n=1

rn(!)⌘nx
�

�

�

.
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Since ! 2 ⌦ was arbitrary, we can take expectations and apply Fubini’s
theorem and Hölder’s inequality to obtain

EE0
�

�

�

N
X

n=1

rn⌘nx
�

�

�

6 E0
⇣

E
�

�

�

N
X

n=1

rn⌘nx
�

�

�

p⌘1/p

6 ⌧p,XE0
⇣

N
X

n=1

k⌘nxkp
⌘

1/p
= ⌧p,XN1/p

and therefore
N �N2a 6 ⌧p,XN1/p.

Letting N ! 1, we see that a must be non-zero.
If a > 1

2

, then a = kSx + xk > 1

2

> 1

4

(2⌧Rp,X)�p0
(since ⌧Rp,X > 1) and

we are done. If a < 1

2

, then we choose N > 1 such that 1

4

< Na 6 1

2

. It
follows that N

2

6 ⌧p,XN1/p, and therefore, N 6 (2⌧p,X)p
0
. But then a > 1

4N >
4�1(2⌧p,X)�p0

. This concludes the proof. ⇤

Let us fix p 2 [1,1]. On Lp(DM ;X) we consider the multiplication operator
A, defined by

Af =
X

↵

(#↵)w↵x↵,

where f is represented in the form (7.35) and #↵ denotes the number of
elements of the set ↵. In the same way we define, for t 2 R, the multiplication
operators T (t) on Lp(DM ;X)

T (t)f =
X

↵

e�(#↵)tw↵x↵.

Note that the function t 7! T (t) is differentiable, with derivative

T 0(t)f = �AT (t)f, t 2 R.

It was shown in Lemma 6.2.1 (and its proof) that the operators T (t) are
contractions and can be represented as

T (t) =
M
Y

m=1

(Pm + e�tQm) =

M
Y

m=1

((1� e�t)Pm + e�tI), (7.37)

where Pm 2 L (Lp(DM ;X)) is the averaging operator in the mth coordinate,

(Pmf)(d
1

, . . . , dM ) =
1

2
f(d

1

, . . . , dm�1

, 1, dm+1

, . . . , dM )

+
1

2
f(d

1

, . . . , dm�1

,�1, dm+1

, . . . , dM ).

and Qm = I � Pm. Recall that each Pm is a contractive projection and that
PmPk = PkPm for all 1 6 m, k 6 M . Note that Pmw↵ = 0 if m 2 ↵ and
Pmw↵ = w↵ if m /2 ↵.
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Lemma 7.4.26. Each operator T (t) is a convex combination of commuting
projections of the form

Q

m2↵ Pm (where P? := I).

Proof. This follows by induction on N in the second product in (7.37). ⇤

In the next proposition we shall work over the complex scalars. In the case of
a real Banach space X we can apply the results below to its complexification.

For all � 2 C\{0, 1, . . . ,M} the operator (��A) is invertible on Lp(DM ;X)
and its inverse is given by

(��A)�1

⇣

X

↵

w↵x↵
⌘

=
X

↵

(�� (#↵))�1w↵x↵.

For ✓ 2 (0, ⇡
2

) put

�✓ := {� 2 C \ {0} : arg(�) = ±✓}.

Proposition 7.4.27. If X is a complex Banach space with type p 2 (1, 2],
then:

(1) for all s 2 R \ {0} we have

k(is�A)�1kL (Lp

(DM

;X))

6 L

|s| , (7.38)

where L = 4⇡(2⌧Rp,X)p
0
.

(2) for ✓ = arctan(2L) and � 2 {⌃✓ we have

k(��A)�1kL (Lp

(DM

;X)

6 2L

sin(✓)|�| . (7.39)

Proof. (1): Fix s 2 R\{0} and set t
0

= ⇡/|s|. By Proposition 7.1.4, Lp(⌦;X)
has type p with constant ⌧Rp,Lp

(⌦;X)

= ⌧Rp,X . It follows from Lemmas 7.4.25
and 7.4.26 that

1

4
(2⌧Rp,X)�p0

kfk 6 kT (t
0

)f + fk.

On the other hand, since T 0(t)f = �AT (t)f , it follows from the contractivity
of T (t) that

kT (t
0

)f + fk = keist0T (t
0

)f � fk =
�

�

�

ˆ t0

0

eist0T (t)(is�A)f dt
�

�

�

6
ˆ t0

0

kT (t)(is�A)fk dt 6 t
0

k(is�A)fk.

Combining these estimates, we obtain

k(is�A)fk > 1

4t
0

(2⌧Rp,X)�p0
kfk =

|s|
L
kfk,
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and (7.38) follows.
(2): We will deduce (2) from (1) using the following standard perturbation

argument: If �
0

,� 2 C are such that �
0

� A is invertible and |� � �
0

| <
k(�

0

�A)�1k�1, then ��A is invertible and

(��A)�1 =
X

n>0

(�
0

� �)n(�
0

�A)�(n+1). (7.40)

We apply this result as follows. Let ✓ = arctan(2L). For � 2 �✓ write
� = se±i✓ and take �

0

:= i=(�). Then, by part (1),

|�� �
0

| = |=(�)|
tan ✓

6 L

tan ✓
k(�

0

�A)�1k�1

L (Lp

(DM

;X))

=
1

2
k(�

0

�A)�1k�1

L (Lp

(DM

;X))

,

and (7.40) implies that

k(��A)�1k 6
X

n>0

|�
0

� �|nk(�
0

�A)�1kn+1

6 k(�
0

�A)�1k
X

n>0

2�n 6 2L

|Im(�)| =
2L

sin(✓)|�| .

Therefore, the analytic function r(�) := �(� � A)�1 is uniformly bounded
on �✓ by 2L

sin(✓) . By the three lines lemma of Proposition H.2.6 (applied to
� 7! r(��)) we find that kr(�)k 6 2L

sin(✓) for all � 2 {⌃✓ and this implies
(7.39). ⇤

We are now ready to prove the remaining half of Theorem 7.4.23, namely, that
non-trivial type implies K-convexity. The proof we are about to give uses the
theory of analytic semigroups as presented in Appendix G.

End of the proof of Theorem 7.4.23. It remains to prove that a space of non-
trivial type is K-convex.

Combining Proposition 7.4.27 with Theorem G.5.2, our operator �A
generates an analytic C

0

-semigroup (T (z))z2⌃ 1
2
⇡�✓

on Lp(Dm;X) which is
uniformly bounded on this sector by a constant CL depending only L =
4⇡(2⌧Rp,X)p

0
and ✓ = arctan(2L). More precisely, by (G.5)

CL 6 2

cos(✓)

2L

sin(✓)
=

8

sin(2✓)
.

On the other hand, the formula

eT (z)f :=
X

↵✓{1,...,M}

e�z(#↵)w↵x↵,
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defines an analytic extension of (T (t))t>0

to the open right-half plane ⌃ 1
2⇡

.
By uniqueness of analytic extensions, eT (z) = T (z) on ⌃ 1

2⇡�✓
.

The punctured ball Br\{0} with radius r = e�2⇡L is contained in the range
of ⌃ 1

2⇡�✓
under the mapping z 7! e�z. Consequently, the analytic function

S : Br ! L (Lp(DM ;X)) given by

T (z)f =
X

↵✓{1,...,M}

z#↵w↵x↵

is uniformly bounded by CL as well. By Cauchy’s formula

⇡Mf =
X

#↵=1

w↵x↵ =
X

↵✓{1,...,M}

1

2⇡i

ˆ
@B

r

z#↵

z2
w↵x↵ dz =

1

2⇡i

ˆ
@B

r

T (z)

z2
dz.

From this identity we infer that

k⇡Mk 6 r�1CL = e2⇡LCL 6 8e2⇡L

sin(2✓)
=

8(L2 + 1)e2⇡L

L
6 10Le2⇡,

where we used that L > 4⇡(2⌧Rp,X)p
0 > 16⇡ to simplify the expression. This

shows that X is K-convex with constant Kp,X 6 10Le2⇡L. ⇤

From the above proof we actually see that the following explicit bound
holds.

Theorem 7.4.28. If X is a Banach space with type p 2 (1, 2], then X is
K-convex and

KR
p,X 6 10Le2⇡L, L = 4⇡(2⌧Rp,X)p

0
.

For Hilbert spaces H and p = 2, we know KR
2,H = 1; the above estimate then

takes the form
KR

2,H 6 160⇡e32⇡
2

⇡ 7 · 10139,

which is roughly the square of the number of atoms in the universe (which is
currently estimated to be within the range of 1078 to 1082).

7.5 Contraction principles for double random sums

The inequalities for Rademacher sums and Gaussian sums in a Banach space
X studied in the previous sections often fail for double and multiple random
sums. Whether or not inequalities such as the contraction principle extend to
such sums becomes a property that the space X may or may not have. For
instance, a Banach space X is has Pisier’s contraction property if the con-
traction principle holds for double (and then also for multiple) Rademacher
(or equivalently, Gaussian) sums in X. A weaker form of this property, suffi-
cient in many applications, is the triangular contraction property. As it turns
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out, every space Lp with 1 6 p < 1 enjoys Pisier’s contraction property and
every UMD Banach space enjoys the triangular contraction property. These
facts will be of paramount importance in later chapters. For example, many
multiplier theorems admit a vector-valued extension if and only if the Banach
space has UMD and satisfies Pisier’s contraction property.

7.5.a Pisier’s contraction property

Let ("0m)m>1

and ("00n)n>1

be independent Rademacher sequences. By inde-
pendence, there is no loss of generality in assuming that the sequences live on
distinct probability spaces (⌦0,P0) and (⌦00,P00), and we shall always assume
this to make the arguments more transparent.

On the product space (⌦,P) = (⌦0⇥⌦00,P0⇥P00), the sequence ("0m"00n)1m,n=1

consists of Rademacher variables, but as a doubly-indexed sequence it fails to
be a Rademacher sequence. To see this let us put ⌘mn := "0m"

00
n. Knowing ⌘

11

,
⌘
12

, ⌘
21

, we can express ⌘
22

in terms of there random variables via the identity

⌘
11

⌘
12

⌘
21

= "0
1

"00
1

"0
1

"00
2

"0
2

"00
1

= "0
2

"00
2

= ⌘
22

.

Thus the random variables ⌘mn fail independence. Nevertheless, in many
situations one would like to manipulate the ⌘mn as if they were a genuine
Rademacher sequence. In particular one would like to have a contraction prin-
ciple available.

Definition 7.5.1 (Pisier’s contraction property). A Banach space X is
said to have Pisier’s contraction property if there exists a constant C > 0
such that for all choices of finite scalar sequences (amn)

M,N
m,n=1

and vectors
(xmn)

M,N
m,n=1

in X,

E0E00
�

�

�

M
X

m=1

N
X

n=1

amn"
0
m"

00
nxmn

�

�

�

2

6 C2kak1E0E00
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nxmn

�

�

�

2

.

The least admissible constant in this definition is denoted by ↵X . By a simple
convexity argument, an equivalent definition is obtained (with the same best
constant) if one only considers scalars amn of modulus one.

From a repeated application of the Kahane–Khintchine inequality,
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⇣

E0E00
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nymn

�

�

�

p⌘1/p

6 p,q
⇣

E0
⇣

E00
�

�

�

N
X

n=1

"00n

M
X

m=1

"0mymn

�

�

�

q⌘p/q⌘1/p

= p,q
⇣

E0
�

�

�

M
X

m=1

"0m

N
X

n=1

"00nymn

�

�

�

p

Lq

(⌦00
;X)

⌘

1/p

6 2p,q

⇣

E0
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nymn

�

�

�

q

Lq

(⌦00
;X)

⌘

1/q

= 2p,q

⇣

E0E00
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nymn

�

�

�

q⌘1/q
,

(7.41)

we see that the moments or order 2 in Definition 7.5.1 may be replaced by
moments of any order p. The resulting constants will be denoted by ↵p,X .
Thus, ↵X = ↵

2,X . For 1 6 p, q < 1 the above estimate implies that

1

2p,q
2

q,p

↵p,X 6 ↵q,X 6 2p,q
2

q,p↵p,X .

Example 7.5.2. Every Hilbert space X has Pisier’s contraction property, with
constant ↵X = 1. This is clear by writing out the square norms as inner
products and using the orthonormality of the sequence ("0m"

00
n)m,n>1

in L2:

E("0m1
"00n1

·"0m2
"00n2

) = E("0m1
"0m2

) ·E("00n1
"00n2

) = �m1,m2�n1,n2 = �
(m1,n1),(m2,n2)

.

Proposition 7.5.3. Let (S,A , µ) be a measure space and let 1 6 p < 1.
The space Lp(S) has Pisier’s contraction property. More generally, if X has
Pisier’s contraction property, then Lp(S;X) has this property and

↵p,Lp

(S;X)

= ↵p,X .

Proof. For all fmn 2 Lp(S;X), m = 1, . . . ,M , n = 1, . . . , N , we have

E0E00
�

�

�

M
X

m=1

N
X

n=1

amn"
0
m"

00
nfmn

�

�

�

p

Lp

(S;X)

=

ˆ
S
E0E00

�

�

�

M
X

m=1

N
X

n=1

amn"
0
m"

00
nfmn(s)

�

�

�

p
dµ(s)

6 ↵p
p,Xkakp1

ˆ
S
E0E00

�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nfmn(s)

�

�

�

p
dµ(s)

= ↵p
p,Xkakp1E0E00

�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nfmn

�

�

�

p

Lp

(S;X)

.
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This gives the bound ↵p,Lp

(S;X)

6 ↵p,X . The opposite inequality follows from
the fact that Lp(S;X) contains X as a closed subspace (we are of course
assuming here that dimLp(S) > 1 to avoid trivialities). ⇤

Pisier’s contraction property is often applied through the following result, in
which ("0m)m>1

and ("00n)n>1

are Rademacher sequences on probability spaces
(⌦0,P0) and (⌦00,P00) respectively, and let ("mn)m,n>1

are a doubly indexed
Rademacher sequence on (⌦,P).

Proposition 7.5.4. Let X be a Banach space and let p 2 [1,1). The follow-
ing assertions are equivalent:

(1) X has Pisier’s contraction property.
(2) there exist constants ↵+

p,X and ↵�
p,X such that for all finite doubly indexed

sequences (xmn)
M,N
m,n=1

in X we have

1

↵+

p,X

�

�

�

M
X

m=1

N
X

n=1

"mnxmn

�

�

�

Lp

(⌦;X)

6
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nxmn

�

�

�

Lp

(⌦0⇥⌦00
;X)

6 ↵�
p,X

�

�

�

M
X

m=1

N
X

n=1

"mnxmn

�

�

�

Lp

(⌦;X)

.

(7.42)
(3) The mapping "mnx 7! "0m"

00
nx induces an isomorphism of Banach spaces

"MN (X) ' "M ("N (X)), such that every x = (xmn)
M,N
m,n=1

satisfies

1

↵+

p,X

kxk"p
MN

(X)

6 kxk"p
M

("p
N

(X))

6 ↵�
p,Xkxk"p

MN

(X)

.

The least admissible constants ↵+

p,X and ↵�
p,X in (7.42) satisfy

max{↵+

p,X ,↵�
p,X} 6 ↵p,X 6 ↵+

p,X↵
�
p,X .

A Gaussian version of Proposition 7.5.4 will be proved in Corollary 7.5.19.

Proof. (1))(2): By randomisation and Fubini’s theorem,

E
�

�

�

M
X

m=1

N
X

n=1

"mnxmn

�

�

�

p
= E0E00E

�

�

�

M
X

m=1

N
X

n=1

"mn"
0
m"

00
nxmn

�

�

�

p

= EE0E00
�

�

�

M
X

m=1

N
X

n=1

"mn"
0
m"

00
nxmn

�

�

�

p
6 ↵p

p,XE0E00
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nxmn

�

�

�

p
.

This gives the left-hand side inequality in (2). To prove the right-hand side
inequality in (2) we fix scalars ✏mn of modulus one and use Pisier’s contraction
property once more to obtain
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E0E00
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nxmn

�

�

�

p

= E0E00
�

�

�

M
X

m=1

N
X

n=1

✏mn✏mn"
0
m"

00
nxmn

�

�

�

p
6 ↵p

p,X E0E00
�

�

�

M
X

m=1

N
X

n=1

✏mn"
0
m"

00
nxmn

�

�

�

p
.

Taking ✏mn = "mn(!) and taking expectations,

E0E00
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nxmn

�

�

�

p
6 ↵p

p,X EE0E00
�

�

�

M
X

m=1

N
X

n=1

"mn"
0
m"

00
nxmn

�

�

�

p

= ↵p
p,XE0E00E

�

�

�

M
X

m=1

N
X

n=1

"mn"
0
m"

00
nxmn

�

�

�

p
= ↵p

p,XE
�

�

�

M
X

m=1

N
X

n=1

"mnxmn

�

�

�

p
.

(2))(1): By Kahane’s contraction principle applied to the left-hand side
sum in (2) we see that X satisfies Pisier’s contraction property with constant
↵p,X 6 ↵+

p,X↵
�
p,X :

E0E00
�

�

�

M
X

m=1

N
X

n=1

amn"
0
m"

00
nxmn

�

�

�

p

6 (↵�
p,X)pE

�

�

�

M
X

m=1

N
X

n=1

amn"mnxmn

�

�

�

p

6 (↵�
p,X)pkakp1E

�

�

�

M
X

m=1

N
X

n=1

"mnxmn

�

�

�

p

6 (↵�
p,X)p(↵+

p,X)pkakp1E0E00
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nxmn

�

�

�

p
.

(2),(3): This is just a rewording of the definitions. ⇤

In order to generalise Proposition 7.5.4 to multiple sums we need the following
notation. Let ("(j)k )k>1

, j = 1, . . . , d, be independent Rademacher sequences.
We are concerned with d-fold products of these random variables of the form

"k :=

d
Y

j=1

"(j)k
j

, k = (k
1

, . . . , kd).

Also let ("k)k2Zd

+
denote a Rademacher sequence indexed by Zd

+

.

Proposition 7.5.5. Let X be a Banach space and let p 2 [1,1). The follow-
ing assertions are equivalent:

(1) X has Pisier’s contraction property;
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(2) there exists a constant C > 0 such that for all scalar sequences (ak)k2Zd

+

in K and all finitely non-zero (xk)k2Zd

+
in X one has

�

�

�

X

k2Zd

+

ak"kxk

�

�

�

Lp

(⌦;X)

6 Ckakd1
�

�

�

X

k2Zd

+

"kxk

�

�

�

Lp

(⌦;X)

;

(3) there exist constants C+ > 0 and C� > 0 such that for all finitely non-zero
(xk)k2Zd

+
in X one has

1

C+

�

�

�

X

k2Zd

+

"kxk

�

�

�

Lp

(⌦;X)

6
�

�

�

X

k2Zd

+

"kxk

�

�

�

Lp

(⌦;X)

6 C�
�

�

�

X

k2Zd

+

"kxk

�

�

�

Lp

(⌦;X)

.

In this situation we may take C 6 (↵�
p,X)d�1(↵+

p,X)d�1 and C± 6 (↵±
p,X)d�1.

Proof. (1))(2) and (1))(3): The idea is to use an iteration argument to
replace the Rademachers one by one by multi-indexed ones and then to use
the Kahane contraction property. This gives the right-hand side estimate in
(3). Reversing the argument gives the left-hand side estimate in (3), as well
as (2). Let us write out the case d = 3. By independence we may assume that
the "l, "0m, "00n are defined on distinct probability spaces.

EE0E00
�

�

�

N
X

l,m,n=1

almn"l"
0
m"

00
nxlmn

�

�

�

p
= EE0E00

�

�

�

N
X

m,n=1

"0m"
00
n

⇣

N
X

l=1

almn"lxlmn

⌘

�

�

�

p

6 ↵�
p,XEE0

�

�

�

N
X

m,n=1

"0mn

⇣

N
X

l=1

almn"lxlmn

⌘

�

�

�

p

6 (↵�
p,X)2EE0

�

�

�

N
X

l,m,n=1

"lmnalmnxlmn

�

�

�

p
.

By the Kahane contraction principle,

EE0
�

�

�

N
X

l,m,n=1

"lmnalmnxlmn

�

�

�

p
6 kak1EE0

�

�

�

N
X

l,m,n=1

"lmnxlmn

�

�

�

p
.

Finally, reversing the step in the previous computation,

EE0
�

�

�

N
X

l,m,n=1

"lmnalmnxlmn

�

�

�

p
6 (↵+

p,X)2EE0E00
�

�

�

N
X

l,m,n=1

almn"l"
0
m"

00
nxlmn

�

�

�

p
.

(2))(1) and (3))(1): If the scalars ak1,k2 and vectors xk1,k2 are given, we
apply (2) and (3) with ak := ak1,k2 and xk := xk1,k2 to arrive at the inequality
in Definition 7.5.1, respectively condition (2) of Proposition 7.5.4. ⇤
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We conclude this subsection with an important example of spaces failing
Pisier’s contraction property:

Proposition 7.5.6. The Schatten class C p(`2) has Pisier’s contraction prop-
erty if and only if p = 2.

Proof. The positive result for p = 2 is immediate from the fact that C p(`2)
is a Hilbert space (see Appendix D). To prove the negative result for p 6= 2,
it suffices to show that the relevant constant of the finite-dimensional spaces
C p(`2N ) increase unboundedly as N ! 1.

We represent operators on `2n as matrices (amn)
N
m,n=1

with respect to
the canonical basis (en)Nn=1

. Since ✏mamn =
PN

k=1

✏m�mkakn and ✏0namn =
PN

k=1

amk�kn✏0n, where the diagonal matrices (dmk = ✏m�mk)
N
m,k=1

and
(d0kn = ✏0n�kn)

N
k,n=1

represent unitary operators for |✏m| = |✏0n| = 1, it fol-
lows from (D.5) that

k(amn)
N
m,n=1

kCp = k(✏m✏0namn)
N
m,n=1

kCp ,

for any fixed |✏m| = |✏0n| = 1, and then, averaging over all such numbers, that

k(amn)
N
m,n=1

kCp =
�

�

�

N
X

m,n=1

"m"
0
namnEmn

�

�

�

L2
(⌦;Cp

)

,

where Emn is the matrix with entry 1 at the position (m,n), and all other
entries equal to zero.

Now it is immediate from the definition of Pisier’s contraction property
that, if |amn| = |bmn|, then

k(amn)
N
m,n=1

kCp

↵Cp

(`2
N

)

6 k(bmn)
N
m,n=1

kCp 6 ↵Cp

(`2
N

)

k(amn)
N
m,n=1

kCp . (7.43)

With N = 2M , let us consider the following two matrices on `2N = (`2
2

)⌦M :
Let A :=

�

1 1

1 �1

�⌦M , and B be simply the N ⇥ N matrix with all entries
equal to one. Since 2�1/2

�

1 1

1 �1

�

is a unitary matrix on `2
2

, the matrix A is
2M/2 = N1/2 times a unitary matrix on `2N , and hence it can be written
as A = N1/2

PN
n=1

( |qn)qn for some orthonormal basis (qn)Nn=1

. Thus the
approximation numbers of A are an(A) = N1/2 for all n = 1, . . . , N , and
hence

kAkCp =
⇣

N
X

n=1

an(A)p
⌘

1/p
= N1/2+1/p.

On the other hand, the matrix B has rank one, and can be written as B =
N( |e)e, where e = N�1/2

PN
n=1

en. Thus a
1

(B) = N and an(B) = 0 for
n > 2, so that kBkCp = N . Since the two matrices have entries of size
|amn| = |bmn| = 1, we conclude from (7.43) that
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↵Cp

(`2
N

)

> max
n N

N1/p+1/2
,
N1/p+1/2

N

o

= N |1/2�1/p|, N = 2M ,

and this increases without limit as N ! 1 unless p = 2. ⇤

7.5.b The triangular contraction property

In many application it suffices to have the following weaker version of Pisier’s
contraction property.

Definition 7.5.7. A Banach space X has the triangular contraction property
if there is a constant �X > 0 such that all finite sequences (xmn)

M
m,n=1

in X
satisfy

�

�

�

M
X

m=1

m
X

n=1

"0m"
00
nxmn

�

�

�

L2
(⌦0⇥⌦00

;X)

6 �X

�

�

�

M
X

m=1

M
X

n=1

"0m"
00
nxmn

�

�

�

L2
(⌦0⇥⌦00

;X)

.

We denote by �X the least admissible constant in this inequality.

Interchanging the roles of the indices m and n in the above estimate, we
could also have defined the triangular contraction property in terms of the
lower triangular projections, and this leads to the same best constant �X .
Using this remark we see that the moments of order 2 in Definition 7.5.7
may be replaced by moments of any order p. The resulting constants will be
denoted by �p,X . Thus, �X = �

2,X . For 1 6 p, q < 1, repetition of the
estimate (7.41) shows that

1

2p,q
2

q,p

�p,X 6 �q,X 6 2p,q
2

q,p�p,X .

Trivially, every Banach space with Pisier’s contraction property has the
triangular contraction property and �p,X 6 ↵p,X . The converse does not
hold: the Schatten class C p with 1 < p < 1 has the triangular contraction
property but does not have Pisier’s contraction property unless p 6= 2. We
refer the reader to Example 7.6.18 in the Notes for a more details on this.

Below we will show that the triangular contraction property implies finite
cotype. In particular this implies that c

0

does not have the triangular con-
traction property. On the other hand, we will see that every UMD space has
the triangular contraction property, and that a Banach lattice has Pisier’s
contraction property if and only if it has finite cotype.

Proposition 7.5.8. If X has the triangular contraction property, then so does
Lp(S;X) for all p 2 [1,1), and

�p,Lp

(S;X)

= �p,X .

Proof. The proof is similar to the case of Pisier’s contraction property in
Proposition 7.5.3. ⇤
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Theorem 7.5.9. Every UMD space has the triangular contraction property,
and �p,X 6 �+

p,X for all p 2 (1,1).

For UMD Banach lattices this result can be improved: they even have the
stronger Pisier’s contraction property; see Theorem 7.5.20 and the remark
following it.

Proof. We need to show that

E0E00
�

�

�

M
X

m=1

m
X

n=1

"0m"
00
nxmn

�

�

�

p
6 (�+

p,X)pE0E00
�

�

�

M
X

m=1

M
X

m=1

"0m"
00
nxmn

�

�

�

p
(7.44)

for all vectors xmn 2 X and m,n = 1, . . . ,M . For 1 6 n 6 M let F 00
n =

�("00
1

, "00
2

, . . . , "00n) and fm =
PM

n=1

"00nxmn. Then

M
X

m=1

m
X

n=1

"0m"
00
nxmn =

M
X

m=1

"0mE(fm|F 00
n ),

M
X

m=1

M
X

n=1

"0m"
00
nxmn =

M
X

m=1

"0mfm,

so that (7.44) follows from the Stein inequality (Theorem 4.2.23). ⇤

Next we prove that the triangular contraction property (and hence Pisier’s
contraction property) implies finite cotype. Moreover, we will prove a Gaussian
counterpart of Proposition 7.5.4. Since both of these properties are local, in
view of Corollary 7.3.14, all we need to do is exhibit an example of a Banach
space not having the triangular contraction property.

Proposition 7.5.10. We have limN!1�L (`2
N

)

= 1. As a consequence, the
Banach space of all compact operators acting on `2 fails the triangular con-
traction property.

For the proof we need two lemmas.

Lemma 7.5.11 (Discrete Hilbert transform). For all x 2 `2,
X

m2Z

�

�

�

X

n 6=m

xn

m� n

�

�

�

2

6 ⇡2kxk2.

Proof. By density it suffices to consider elements x 2 `2 with finite support.
Let fx : [0, 1] ! C be given by the finite sum fx(t) =

P

n2Z e
2⇡intxn. Since´

1

0

(1 � 2t)e�2⇡int dt equals 1

⇡in for n 6= 0 and 0 for n = 0, for all m 2 Z we
have

ym : =
X

n 6=m

xn

m� n
=
X

n 6=0

xm�n

n
=
X

n 6=0

i⇡xm�n

ˆ
1

0

(1� 2t)e�i2⇡nt dt
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= i⇡

ˆ
1

0

e�2⇡imt(1� 2t)
X

n 6=0

xm�ne
2⇡i(m�n)t dt

= i⇡

ˆ
1

0

e�2⇡imt(1� 2t)fx(t) dt.

Therefore, by Plancherel’s identity,

X

m2Z
|ym|2 = ⇡2

ˆ
1

0

|(1� 2t)fx(t)|2 dt 6 ⇡2

ˆ
1

0

|fx(t)|2 dt = ⇡2

X

m2Z
|xm|2.

⇤

Lemma 7.5.12. Let N be a positive integer and let the lower triangle projec-
tion TN : L (`2N ) ! L (`2N ) be defined by

(TNA)mn =

⇢

amn, if m > n;
0, otherwise,

where we identified A 2 L (`2N ) with an N ⇥N matrix (amn). Then

kTNk > ⇡�1(log(N)� 1).

The same estimate holds for the norm of the upper triangle projection.

Proof. Let (amn) be the N ⇥N Hilbert matrix with coefficients amn = 1

m�n

if m 6= n and amn = 0 if m = n. By Lemma 7.5.11, for all x 2 `2N we have

kAxk2 =

N
X

m=1

�

�

�

X

n 6=m

xn

m� n

�

�

�

2

6 ⇡2kxk2.

On the other hand, since e = (1, . . . , 1) 2 `2N satisfies kek =
p
N , we obtain

kTNAk > N�1|h(TNA)e, ei| = N�1

N
X

m=1

m�1

X

n=1

1

m� n

> N�1

N
X

m=1

ˆ m�1

0

1

m� t
dt = N�1

N
X

m=1

log(m)

> N�1

ˆ N

0

log(t) dt = log(N)� 1.

Therefore, log(N)� 1 6 kTNAk 6 kTNkkAk 6 ⇡kTNk. The final assertion is
clear from the above proof. ⇤

Proof of Proposition 7.5.10. Fix N > 3. By Lemma 7.5.12 it suffices to show
that �L (`2

N

)

> kTNk. Fix x 2 L (`2N ), let (umn) be the standard basis in
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L (`2N ) and write x =
PN

m,n=1

xmnumn. Let C and D be the random diagonal
matrices defined by cnn = "0n and dnn = "00n. By the ideal properties of the
norm in L (`2N ),

kxkL (`2
N

)

= kCxDkL (`2
N

)

=
�

�

�

N
X

m=1

N
X

n=1

"0m"
00
nxmnumn

�

�

�

L (`2
N

)

.

On the other hand, taking square expectations,

kxk2L (`2
N

)

= E
�

�

�

N
X

m=1

N
X

n=1

"0m"
00
nxmnumn

�

�

�

2

L (`2
N

)

> ��2

L (`2
N

)

E
�

�

�

N
X

m=1

m
X

n=1

"0m"
00
nxmnumn

�

�

�

2

L (`2
N

)

= ��2

L (`2
N

)

EkCTNxDk2L (`2
N

)

= ��2

L (`2
N

)

kTNxk2L (`2
N

)

.

Since x 2 L (`2N ) was arbitrary, this proves the result. ⇤

Corollary 7.5.13. If a Banach space X has the triangular contraction prop-
erty, then X has finite cotype. In particular, if X has Pisier’s contraction
property, then X has finite cotype.

Proof. By Lemma 7.3.12, for every N > 1 we can find an integer M = M(N)
such that `1M contains a 2-isomorphic copy of L (`2N ). Therefore, �`1

M

>
1

2

�L (`2
N

)

. Since from Proposition 7.5.10 we know that limN!1�L (`2
N

)

= 1,
a Banach space containing the spaces `1M uniformly cannot have the trian-
gular contraction property. By the Maurey–Pisier Theorem 7.3.8, this proves
the result. ⇤

The converse of Corollary 7.5.13 does not hold. In the next proposition we
show that the space of trace class operators C 1(`2), which is known to have
cotype 2, does not satisfy the triangular contraction property. The proof is
similar to that in Proposition 7.5.10 but uses an additional trace duality ar-
gument.

Proposition 7.5.14. We have limN!1�C 1
(`2

N

)

= 1. As a consequence, the
space C 1(`2) of trace class operators on `2 does not have the triangular con-
traction property.

Proof. Fix N > 3. As before it suffices to estimate �C 1
(`2

N

)

from below. Let
SN be the lower triangle projection on the space C 1(`2N ). As in the proof of
Proposition 7.5.10, �C 1

(`2
N

)

> kSNk. By Theorem D.2.6, the trace duality
pairing

hx, yi = tr(xy), x 2 C 1(`2N ), y 2 L (`2N ).
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sets up an isometric isomorphism (C 1(`2N ))⇤ ' L (`2N ). Moreover, since
S⇤
N = UN , the upper triangle projection on L (`2N ), it follows that �C 1

(`2
N

)

>
kSNk = kTNk > ⇡�1(log(N)� 1). ⇤

7.5.c Duality and interpolation

We proceed with a duality result for the double random sum properties intro-
duced in Section 7.5.

Proposition 7.5.15 (Duality of contraction properties). Let X be a K-
convex Banach space.

(1) X has Pisier’s contraction property if and only if X⇤ has Pisier’s contrac-
tion property.

(2) X has the triangular contraction property if and only if X⇤ has the trian-
gular contraction property.

Moreover, ↵X⇤ 6 K2

2,X↵X and �X⇤ 6 K2

2,X�X .

Proof. (1): Suppose first that X has Pisier’s contraction property. Choose
scalars amn such that supm,n |amn| 6 1. Let ("0m)Mm=1

and ("00n)
N
n=1

be
Rademacher sequences on probability spaces (⌦0,P0) and (⌦00,P00), respec-
tively. Let T be the bounded linear operator on "N ("M (X)) given by

T
⇣

N
X

n=1

M
X

m=1

"00n"
0
mxmn

⌘

=

N
X

n=1

M
X

m=1

amn"
00
n"

0
mxmn.

Then kTk 6 ↵X . Let " > 0 be arbitrary and fixed. Given (x⇤
mn)

M,N
m,n=1

in
X⇤, put g :=

PM
m=1

PN
n=1

"0m"
00
nx

⇤
mn. By Proposition 1.3.1 we can find f 2

L2(⌦0 ⇥⌦00;X) of norm 6 1 such that

kTgkL2
(⌦0⇥⌦00

;X⇤
)

6 |hf, Tgi|+ ".

Denote by ⇡0
M and ⇡00

N the Rademacher projections on ⌦0 and ⌦00 respectively.
As Tg = ⇡00

N⇡
0
MTg = ⇡0

M⇡00
NTg we obtain

|hf, Tgi| = |hT⇡00
N⇡

0
Mf, gi|

6 kTk k⇡Nk k⇡Mk kfkL2
(⌦0⇥⌦00

;X)

kgkL2
(⌦0⇥⌦00

;X⇤
)

6 ↵XK2

2,XkgkL2
(⌦0⇥⌦00

;X⇤
)

.

Combining the estimates and letting " # 0, we find kTgkL2
(⌦0⇥⌦00

;X⇤
)

6
↵XK2

2,XkgkL2
(⌦0⇥⌦00

;X⇤
)

and hence X⇤ has Pisier’s contraction property.
For the converse assume that X⇤ has Pisier’s contraction property. By

Proposition 7.4.5 X⇤ is K-convex. Therefore, by the result just proved, X⇤⇤

has Pisier’s contraction property. Since X can be identified with a closed
subspace of X⇤⇤, X has Pisier’s contraction property.

(2): This follows from the proof of (1), taking amn = 1 if m 6 n and
amn = 0 otherwise. ⇤
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By iterating the interpolation of "p(X)-spaces in Theorem 7.4.16, we obtain:

Proposition 7.5.16. Let (X
0

, X
1

) be an interpolation couple of K-convex
Banach spaces X

0

and X
1

. Let ✓ 2 (0, 1) and assume that p
0

, p
1

, p 2 (1,1)
satisfy 1

p = 1�✓
p0

+ ✓
p1

. Then

(1) We have
["p0("p0(X

0

)), "p1("p1(X
1

))]✓ = "p("p(X✓))

with equivalence of norms

kxk"p("p(X
✓

))

6 kxk
["p0 ("p0 (X0)),"p1 ("p1 (X1))]✓

6
�

K1�✓
p0,X0

K✓
p1,X1

�

2kxk"p("p(X
✓

))

for all sequences x = (xn)n>1

in the interpolation space X✓ = [X
0

, X
1

]✓.
The first inequality does not require any K-convexity assumptions.

(2) Replacing each occurrence of the complex interpolation functor [·, ·]✓ by the
real interpolation functor (·, ·)✓,p0,p1 in (1), the resulting statement is also
true.

Proof. As indicated, the proof is just an iteration of Theorem 7.4.16: For the
identity of spaces, we have

["p0("p0(X
0

)), "p1("p1(X
1

))]✓ = "p(["p0(X
0

), "p1(X
1

)]✓) = "p("p(X✓)),

where both equalities are applications of Theorem 7.4.16. For the norm
bounds, we have

kxk
["p0 ("p0 (X0)),"p1 ("p1 (X1))]✓

6 K1�✓
p0,"p0 (X0)

K✓
p1,"p1 (X1)

kxk"p(["p0 (X0),"p1 (X1)]✓)

6 K1�✓
p0,"p0 (X0)

K✓
p1,"p1 (X1)

K1�✓
p0,X0

K✓
p1,X1

kxk"p("p(X
✓

))

,

and moreover Kp
i

,"pi (X
i

)

= Kp
i

,X
i

since Xi ✓
1

"pi(Xi) ✓
1

Lp
i(⌦;Xi) and

Kp
i

,Lp

i

(⌦;X
i

)

= Kp
i

,X
i

(Example 7.4.7). The remaining claims are similar
and entirely routine. ⇤

As a consequence we have:

Proposition 7.5.17 (Interpolation of contraction properties). Let
(X

0

, X
1

) be an interpolation couple of K-convex Banach spaces X
0

and X
1

.
Let ✓ 2 (0, 1) and p, p

0

, p
1

2 (1,1) satisfy 1

p = 1�✓
p0

+ ✓
p1

.

(1) If X
0

and X
1

have Pisier’s contraction property, then the complex interpo-
lation spaces X✓ = [X

0

, X
1

]✓ and the real interpolation spaces X✓,p0,p1 =
(X

0

, X
1

)✓,p0,p1 have Pisier’s contraction property and

↵p,X
✓

6 (K1�✓
p0,X0

K✓
p1,X1

)2↵1�✓
p0,X0

↵✓p1,X1
,

↵p,X
✓,p0,p1

6 (K1�✓
p0,X0

K✓
p1,X1

)2↵1�✓
p0,X0

↵✓p1,X1
.
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(2) If X
0

and X
1

have the triangular contraction property, then the com-
plex interpolation spaces X✓ = [X

0

, X
1

]✓ and the real interpolation spaces
X✓,p0,p1 = (X

0

, X
1

)✓,p0,p1 have the triangular contraction property and

�p,X
✓

6 (K1�✓
p0,X0

K✓
p1,X1

)2�1�✓
p0,X0

�✓
p1,X1

,

�p,X
✓,p0,p1

6 (K1�✓
p0,X0

K✓
p1,X1

)2�1�✓
p0,X0

�✓
p0,X1

.

Recall that X✓,p0,p1 = (X
0

, X
1

)✓,p with equivalent norms (see Appendix
C.3.14). The reason the square of the K-convexity constant appears in the
estimate is that the interpolation of "-spaces of Theorem 7.4.16 has to be
used twice due to the double random sums.

Proof. Both contraction properties are statements about uniform bounded-
ness of operators T : (xm,n)m,n>1

! (↵m,nxm,n)m,n>1

on "p("p(X)), over
different ranges of the coefficients ↵m,n. By Proposition 7.5.16, we have
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and estimates for ↵p,X
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and �p,X
✓

follow at once.
The case of X✓,p0,p1 is entirely similar. ⇤

7.5.d Gaussian version of Pisier’s contraction property

We next discuss a Gaussian version of Pisier’s contraction property. In what
follows we let (�n)n>1

and (�0n)n>1

be Gaussian sequences, defined on dis-
tinct probability spaces (⌦,P) and (⌦0,P0) respectively, and let ("0n)n>1

be
a Rademacher sequence on (⌦0,P0). For any Banach space X, Proposition
6.1.15 and randomisation imply that
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In the next proposition we show that the first and last random sum are equiv-
alent if and only if X has finite cotype.

Proposition 7.5.18. For a Banach space X the following assertions are
equivalent:

(1) there exists a constant C > 0 such that for all sequences x
1

, . . . , xN in X,
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(2) X has finite cotype.

Proof. (2))(1): Applying pointwise in ! 2 ⌦ the comparability of Gaussian
and Rademacher sums in L2(⌦0;X) established in Corollary 7.2.10 (also using
the notation of the said corollary) and (de)randomisation, we have:
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(1))(2): By Lemma 7.3.12 and the Maurey–Pisier Theorem 7.3.8 it suf-
fices to show that lim supN!1 C`1

N

= 1, where C`1
N

denotes the least con-
stant for the right-hand side inequality in (1) for the space `1N .

We claim that

EE0
⇣

max
16n6N

|�0n�n|
⌘

> 1

2e
logN, E

⇣

max
16n6N

|�n|2
⌘

6 2 log(2N). (7.45)

The second estimate follows from Proposition E.2.21. For proving the first
inequality we note that for all t > 0,
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.

This completes the proof of (7.45).
By (7.45) and the Cauchy–Schwarz inequality,
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This implies that lim supN!1 C`1
N

= 1, and the result follows. ⇤

Corollary 7.5.19 (Pisier’s contraction property, Gaussian version).
For a Banach space X the following assertions are equivalent:

(1) for all finite doubly indexed sequences (xmn)
M,N
m,n=1

in X we have
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. (7.46)

(2) X has Pisier’s contraction property.

Proof. (2))(1): By Corollary 7.5.13, (2) implies that X has finite cotype. By
Proposition 6.1.15 and randomisation,
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In the same way,

E0E00
�

�

�

M
X

m=1

N
X

n=1

"0m�
00
nxmn

�

�

�

2

hX E0E00
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nxmn

�

�

�

2

.

Putting this identities together, invoking Proposition 7.5.4, and using Propo-
sition 6.1.15 once more, we obtain
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(1))(2): Taking xmn = xn if m = n and xmn = 0 otherwise, it follows
from Proposition 7.5.18 that X has finite cotype. Then, arguing in the same
way,
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By Proposition 7.5.4, this implies that X has Pisier’s contraction property. ⇤

7.5.e Double random sums in Banach lattices

We conclude our discussion of double random sums by the following theorem,
which shows that, in the special case of Banach lattices, Pisier’s contraction
property is but a reformulation of finite cotype.

Theorem 7.5.20 (Pisier). A Banach lattice X has Pisier’s contraction
property if and only if it has finite cotype. Specifically, if X has cotype q,
then

↵
2q,X 6 6(R

2,1p,2q)
2q cq,X .

Since every UMD space has finite cotype by Proposition 7.3.15, as a conse-
quence we note that every UMD lattice X has Pisier’s contraction property.

Proof of Theorem 7.5.20. That Pisier’s contraction property implies finite co-
type was already observed in Corollary 7.5.13.

For the other direction, the key is to apply Proposition 7.2.15 to the simple
function f :=
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r0mr00n↵mnxmn. Using first the iterated Kahane–
Khintchine inequality in (7.41), this gives
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Writing out the definition, using the iterated Kahane–Khintchine inequality
in (7.41) twice more and a trivial contractivity estimate of `2 sums in between,
we have
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Finally, note that 3(R
2q,2)

2 < 3 · 2q = 6q. ⇤

7.6 Notes

General references covering aspects of the geometry of Banach spaces related
to this chapter include Lindenstrauss and Tzafriri [1979], Pisier [1989], Ledoux
and Talagrand [1991], Diestel, Jarchow, and Tonge [1995], Pietsch and Wenzel
[1998], Li and Queffélec [2004], Albiac and Kalton [2006], Garling [2007], and
Pisier [2016].

Section 7.1

The story of the birth of the notions of type and cotype is told in the review
paper by Maurey [2003]. The origins are two-fold: on the one hand, type and
cotype properties appeared in connection with summing operators, and on
the other hand these notions allowed vector-valued extensions of some of the
classical theorems of probability theory, such as the law of large numbers and
the central limit theorem. Our presentation places the emphasis on the former,
although in later chapters we will see plenty of applications of the ideas of
this chapter to vector-valued harmonic and stochastic analysis.

The analogue of Proposition 7.1.3 for cotype does not hold in general (see
Garling and Montgomery-Smith [1991]). Further examples of Banach space
properties that do not interpolate (the Radon-Nikodým property being one
of them) can be found in the same paper.

The order of the type and cotype constants of `1N and `1N given in Propo-
sition 7.1.7 is folklore. The type 2 constant ⌧

2,`1
N

has been studied in detail in
Dümbgen, van de Geer, Veraar, and Wellner [2010]. In particular, the following
is shown:

c2N := E max
16n6N

|�n|2 6 ⌧2
2,`1

N

6 2 log(2N).

Moreover, in the real case c2N/2 log(2N) ! 1 as N ! 1.
The result that the Schatten classes C p, p 2 [1,1), have type p ^ 2 and

cotype p _ 2 is due to Tomczak-Jaegermann [1974]. In Proposition 7.1.11 we
only covered the case p 2 (1,1); the case p = 1 requires a different argument
and will not be needed here. The result has been extended to more general
non-commutative Lp-spaces by Fack [1987].

Theorem 7.1.14 is due to König and Tzafriri [1981]. An alternative ap-
proach due to Hinrichs [1996] based on the notion of Walsh type will be
explained in Corollary 7.6.14.

It is an interesting observation of Pisier (see James [1978]) that in the
definition of type 2 it suffices to consider vectors of norm one.
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The results on ⇠-type p and ⇠-cotype q presented in Proposition 7.1.18
are folklore. A discussion on Proposition 7.1.19 and its consequences is given
in the Notes of Section 7.2. Theorem 7.1.20(2) was proved by Dodds and
Sukochev [1997].

The strong law of large numbers

The notion of type is closely connected to the strong law of large numbers
in Banach spaces. Probability theory in Banach spaces is a subject in its
own right, and all we can do here is to highlight some of the main results.
The interested reader is referred to the monographs of Hoffmann-Jørgensen
[1977], Ledoux and Talagrand [1991], Linde [1986] and Vakhania, Tarieladze,
and Chobanyan [1987].

We recall a version of the strong law valid in general Banach spaces due to
Mourier [1949] and contained in Theorem 3.3.10: If (⇠n)n>1

is a sequence of
independent, identically distributed random variables in L1(⌦;X) with mean
zero, then

lim
N!1

1

N

N
X

n=1

⇠n = 0 almost surely. (7.47)

It was the basic discovery of Beck [1962] that the assumption on identical
distribution may be relaxed under a condition on the Banach space X:

Theorem 7.6.1 (Beck). A Banach space X has non-trivial type if and only
if the following property holds:

For every sequence of independent mean zero random variables (⇠n)n>1

that is bounded in L2(⌦;X) we have (7.47).

Originally, this was stated in terms of so-called B-convexity (see Definition
7.6.7) instead of non-trivial type, but the two conditions are now known to
be equivalent (see Proposition 7.6.8).

It is also possible to characterise any given type p 2 (1, 2] through a version
of the strong law. This is due to Hoffmann-Jørgensen and Pisier [1976] and
De Acosta [1981].

Proposition 7.6.2. A Banach space X has type p 2 (1, 2] if and only if the
following property holds:

For every sequence of independent mean zero random variables (⇠n)n>1

satisfying
P

n>1

n�pEk⇠nkp < 1, we have (7.47).

A thorough study of the strong law of large numbers, the central limit theo-
rem, and the law of the iterated logarithm in Banach spaces is undertaken in
Hoffmann-Jørgensen [1977] and Ledoux and Talagrand [1991].
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Section 7.2

The notion of a summing operator has its roots in the work of Grothendieck
[1953] who proved, in effect, that every operator from `1 to `2 is 1-summing;
this is known as Grothendieck’s inequality. The general definition of p-
summing operators is due to Pietsch [1966/1967]. It was through the work
of Lindenstrauss and Pełczyński [1971] that the fundamental importance of
this inequality of was realised and the connections with summing operators
were established. Standard references for the modern theory of summing oper-
ators are the monographs Diestel, Jarchow, and Tonge [1995], Jameson [1987]
and Tomczak-Jaegermann [1989]. They also provide extensive historical and
bibliographical notes.

Proposition 7.2.3 implies that if X has cotype q, then the identity operator
IX is (q, 1)-summing. In Talagrand [1992b], it was proved that the converse
statement holds for q > 2. He also showed that the converse does not hold for
q = 2 (see Talagrand [1992a]). We refer to the monograph Talagrand [2014,
Chapter 16] for a survey of these results and several related open problems.

In Pisier’s factorisation Theorem 7.2.4 one has ⇡q,1(T ) 6 C 6 q1/q⇡q,1(T ).
Montgomery-Smith [1990] proved that the factor q1/q is best possible. Kalton
and Montgomery-Smith [1993] have extended Theorem 7.2.4 to quasi-Banach
spaces and therefore many of the presented consequences can be proved in this
setting as well (see Kalton [2005]). Defant and Sánchez Pérez [2009] proved a
version of Theorem 7.2.4 for Banach function spaces instead of Lq,1-spaces.

Theorem 7.2.6 is due to Hytönen and Veraar [2009] and can be viewed
as an extension of Ledoux and Talagrand [1991, Proposition 9.14] and Pisier
[1986a, Proposition 3.2(ii)], where (7.13) is proved in the case that the func-
tions fn of independent, symmetric, identically distributed random variables.
A similar technique was used in Maurey and Pisier [1976]. Hytönen and Ver-
aar [2009] also contains a dual version of Theorem 7.2.6 for spaces with type
p, which generalises a corresponding results for independent identically dis-
tributed random variables in Ledoux and Talagrand [1991, Proposition 9.15].
In the case q = 2 in Theorem 7.2.6, a version of the estimate (7.14) (with
different constant without blow-up) also holds at the end-point r = q = 2 and
follows from Theorem 7.1.20. Corollary 7.1.24 for spaces of Gaussian cotype
2 is due to Pisier [1986b].

On the equivalence of ⇠-cotype q and cotype q

Corollary 7.2.11, on the equivalence of Gaussian cotype q and cotype q, and
Corollary 7.2.10, on the comparison of Rademacher and Gaussian sums, are
due to Maurey and Pisier [1976]. They derived these results from the Maurey–
Pisier Theorem 7.3.8 and a variant of Theorem 7.2.6. In Proposition 7.1.19 we
gave a simple proof of the weaker statement that ⇠-cotype q implies cotype
r for every r > q which is inspired by Talagrand [1992a]. In this paper a
characterisation of operators T : C(K) ! X of cotype q is given in terms of
a factorisation through a certain Lorentz space depending on q.
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The extension of Khintchine’s inequality of Theorem 7.2.13 is due to Mau-
rey [1974b]. For K-convex Banach lattices the difficult part of Theorem 7.2.13
can be proved by a duality argument which avoids the use of Pisier’s factori-
sation Theorem 7.2.4:

Proposition 7.6.3. Let X be a K-convex Banach lattice. Then
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Proof. The following version of the Cauchy–Schwarz inequality for the Krivine
calculus discussed in Appendix F holds: for all x⇤
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where 1

p + 1

p0 = 1. A proof can be found in Lindenstrauss and Tzafriri [1979,
Proposition 1.d.2]. Hence by easy half of the Khintchine–Maurey inequality
(Theorem 7.2.13), applied to X⇤,
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6 1 it follows from Corollary 7.4.6 that
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Section 7.3

Our presentation of the factorisation theorems of Kwapień [1972] and Mau-
rey [1974c] follows Albiac and Kalton [2006]. These theorems are frequently
applied to show that certain results, valid in a Hilbert space context, cannot
be extended to more general Banach spaces. One such application (already
contained in Kwapień [1972]) is Theorem 7.3.5 which shows that, up to isomor-
phism, Hilbert spaces are the only Banach spaces with Fourier type 2. The
original proof of Proposition 7.3.3 uses ultrafilter techniques to reduce the
problem to the finite-dimensional case (see also Lindenstrauss and Pełczyński
[1971, Theorem 7.3]).

The method used to prove Theorem 7.3.8 is a variation of Pisier [1974] and
Hinrichs [1996]. There is a far-reaching generalisation of Theorem 7.3.8 due
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to Maurey and Pisier [1976] and Pisier [1983]. For 1 6 p < 2 it implies that if
X does not contain the spaces `pN uniformly, then X has type p+ " for some
" > 0. We refer to Maurey [2003] and Milman and Schechtman [1986] for a
detailed account on the general Maurey–Pisier theorem and its connections
to local theory of geometry of Banach spaces.

Stable type

While Theorem 7.3.8 is very handy for the qualitative verification of some
non-trivial type or cotype, another variant is more useful for quantitative
conclusions. This involves the following notion:

Definition 7.6.4. A Banach space X has stable type p 2 (1, 2) with constant
�p,X , if for any finite sequence x

1

, . . . , xN 2 X of arbitrary length N , we have
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where (✓(p)n )n>1

is an independent sequence of p-stable random variables i.e.,
random variables with characteristic function E exp(�it✓(p)n ) = exp(�|t|p).

For the existence and basic properties of p-stable random variables, see e.g.
Albiac and Kalton [2006]. Stable type implies type with the same index p (see
Pisier [1986a]); in fact ⌧p,X . (p � 1)�p,X with a universal implied constant
(see Hytönen, Li, and Naor [2016]). The promised variant of Theorem 7.3.8
now reads as follows:

Theorem 7.6.5 (Pisier [1983]). For every " 2 (0, 1] and p 2 (1, 2), there
exists �p(") > 0 such that any Banach space X contains a (1 + ")-isomorphic
copy of `pN as long as

N < �p(")�
p0

p,X .

An original application of this theorem was to reprove a result of Johnson
and Schechtman [1982] on the existence of large `pn subspaces of `1N ; namely,
that `p�N ✓

1+" `1N for some � = �(p, ") > 0. In another direction, this theorem
says that if `pN 6✓

1+" X, then X must have stable (and hence usual) type p

with a constant satisfying �p(")�
p0

p,X 6 N . In Hytönen, Li, and Naor [2016],
it has been observed that one can take �p(1) > [c(p� 1)]p

0
for some universal

c 2 (0, 1); whence �p(")�p0

p,X > (c⌧p,X)p
0
. This, in turn, was used to give the

following quantitative elaboration of the folklore Proposition 7.3.15 on the
non-trivial type and cotype of UMD spaces:

Proposition 7.6.6. There is a universal constant a 2 (1,1) such that every
UMD space X has type (a · �

2,X)0 and cotype a · �
2,X with constants

⌧
(a·�2,X)

0 6 a, ca·�2,X 6 a.
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B-convexity

Another characterisation of non-trivial type is in terms of the following notion:

Definition 7.6.7 (B-convexity). A Banach space is said to be B-convex if
there exists an integer N > 1 and a � > 0 such that for all x

1

, . . . , xN 2 X
there exist signs ✏

1

, . . . , ✏N 2 {z 2 K : |z| = 1} which satisfy

1

N

�

�

�

N
X

n=1

✏nxn

�

�

�

6 (1� �) max
16n6N

kxnk.

Proposition 7.6.8. A Banach space is B-convex if and only if it has non-
trivial type.

Proof. Step 1: Suppose that X has no non-trivial type. We claim that X
is not B-convex. Let N > 1 and � > 0 be arbitrary. By the Maurey–Pisier
Theorem 7.3.8, X contains `1N (1 + �)-uniformly. This means that we can
find an isomorphic embedding T : `1N ! X such that kak`1

N

6 kTakX 6
(1 + �)kak`1

N

. Then, for all scalars ✏
1

, . . . , ✏N of modulus one,

1

N

�

�

�

N
X

n=1

✏nTen
�

�

�

> 1

N

�

�

�

N
X

n=1

✏nen
�

�

�

`1
N

= 1 > (1 + �)�1 max
16n6N

kTenk,

where (en)Nn=1

is the standard basis in `1N . This proves our claim.
Step 2: Suppose next that X has type p 2 (1, 2]. Let N > 1 be any integer

such that � := 1�N�1/p0
⌧p,X > 0. Then for x

1

, . . . , xN 2 X,

�

�

�

1

N

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

6 N�1⌧p,X
⇣

N
X

n=1

kxnkp
⌘

1/p

6 N�1/p0
⌧p,X max

16n6N
kxnk = (1� �) max

16n6N
kxnk.

It follows that there exists an ! 2 ⌦ with

�

�

�

1

N

N
X

n=1

"n(!)xn

�

�

�

6 (1� �) max
16n6N

kxnk,

This proves that X is B-convex. ⇤

Metric versions of type and cotype

While the notion of type studied in this chapter requires the structure of
an underlying normed space, close relatives of this notion can be defined in
arbitrary metric spaces:
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Definition 7.6.9. Let (X, d) be a metric space. For a function f : DN :=

{�1, 1}N ! X, we define the reflection ef(✏) := f(�✏) and the discrete gradi-
ent rf := (@nf)Nn=1

: DN ! [0,1)N , where

@nf(✏) :=
1

2
d
⇣

f(✏), f(✏
1

, . . . , ✏n�1

,�✏n, ✏n+1

, . . . , ✏N )
⌘

(1) The space X is said to have Enflo-type p if

k 1

2

d(f, ef)kLp

(DN

)

6 ⌧Ep,XkrfkLp

(DN

;`p
N

)

(2) The space X is said to have metric (or non-linear) type p if

k 1

2

d(f, ef)kL2
(DN

)

6 ⌧nlp,XN1/p�1/2krfkL2
(DN

;`2
N

)

The notion of Enflo-type is implicit in Enflo [1978] and explicit in Bourgain,
Milman, and Wolfson [1986], where also metric type was defined; the latter is
called non-linear type by Naor and Schechtman [2002]. Enflo-type p generalises
the notion of p-roundness, which corresponds to the case ⌧Ep,X = 1, and which
was earlier used by Enflo [1969] to show that Lp1(0, 1) and Lp2(0, 1) are not
uniformly homeomorphic for 1 6 p

1

< p
2

6 2. The main result of Bourgain,
Milman, and Wolfson [1986] is a metric analogue of Theorem 7.3.8: A metric
space has non-linear type p > 1 if and only if it does not contain uniform bi-
Lipschitz images of the discrete cubes {�1, 1}N with the Hamming distance.

If X is a Banach space and f(") =
PN

n=1

"nxn with x
1

, . . . , xN 2 X,
then 1

2

d(f, ef) = kfk and @nf = kxnk. From this it is immediate that
⌧p,X 6 ⌧Ep,X ; indeed, the usual type is simply the specialisation of Enflo-
type to the Rademacher sums in place of general functions on DN . Similarly,
⌧
2,X(N) 6 ⌧nlp,XN1/p�1/2, where ⌧

2,X(N) appears in Definition 7.3.16. Deeper
implications between the different notions are summarised in the following:

Theorem 7.6.10 (Bourgain, Milman and Wolfson; Pisier; Naor and
Schechtman). Let X be a Banach space, and let p 2 (1, 2] and p

1

2 [1, p).

(1) If X has type p, then it has Enflo-type p
1

.
(2) If X has Enflo-type p, then it has metric type p

1

.
(3) If X has metric type p, then it has type p

1

.
(4) If X is a UMD space of type p, then it has Enflo-type p.
(5) If X is a UMD space of Enflo-type p, then it has metric type p.

Here (1) is due to Pisier [1986a], while (2) was pointed out in the same paper
as an immediate consequence of the results of Bourgain, Milman, and Wolfson
[1986], who first proved the resulting implication from type p 2 (1, 2] to metric
type p

1

2 [1, p), as well as its partial converse (3). Another proof of these
results is given by Pisier [1986a].

The improvements in UMD spaces, (4) and (5), are due to Naor and
Schechtman [2002]. Their key tool for these results is a version of Pisier’s
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discrete Poincaré inequality (4.59) discussed in the Notes of Chapter 4. In
the absence of the UMD property, the implications in (4) and (5) present
interesting open problems.

It has been a longstanding open problem how to define cotype in metric
spaces in such a way that for Banach spaces it coincides with the usual notion
of cotype. After more than 20 years this was solved in Mendel and Naor [2008].
Stating their definition would take us somewhat afield, but their main result
is easy to state:

Theorem 7.6.11 (Mendel–Naor). Let X be a Banach space and q 2 [2,1).
Then X has metric cotype q if and only if X has cotype q.

Parts of the aforementioned developments on metric type and cotype were
motivated by Ribe [1976], who proved that uniformly homeomorphic Banach
spaces have the same finite dimensional subspaces. An excellent introduction
to type and cotype in metric spaces and their connections to non-linear ge-
ometry of Banach spaces is given in Naor [2012]. This paper also presents
several applications, notably in probability theory and computer science, and
a number of open problems is formulated.

Section 7.4

The notion of K-convexity was introduced by Maurey and Pisier [1976] in
order to obtain duality results for cotype analogous to those for type. Theorem
7.4.23 is due to Pisier [1982]. Our proof essentially follows the presentation
of Maurey [2003] except that we use the theory of analytic semigroups from
Section G.5 to shorten the presentation. It would be interesting to have a
proof which provides a better constant (cf. the discussion on Walsh type and
K-convexity below). In Pisier [1982] is explained that for a large class of
analytic semigroups on Lp(G) the tensor extension to Lp(G;X) is analytic
as well in case X is K-convex or satisfies other geometric conditions. A new
class of examples was recently found by Arhancet [2015] assuming X satisfies
a non-commutative version of K-convexity.

Pisier has shown (see Maurey [2003]) that if a finite-dimensional Banach
space X is isomorphic to a Hilbert space H of the same dimension, then
K

2,X 6 4 log(dX,H), where

dX,H = inf
�

kTkkT�1k : T : X ! Y isomorphism
 

is the so-called Banach–Mazur distance between X and H.
The idea of the proof of Lemma 7.4.3 goes back to Tomczak-Jaegermann

[1989], where the equivalence of Gaussian and Rademacher K-convexity is
proved with a similar method. Theorem 7.4.16 can be found in Kaip and Saal
[2012].
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Walsh type and K-convexity

An alternative approach to Pisier’s characterisation of K-convexity (see The-
orem 7.4.23) was discovered by Hinrichs [1996, 1999] (see also Pietsch and
Wenzel [1998]). A key ingredient is the notion of Walsh type 2. Following the
notation introduced in the main text, a Banach space X is said to have Walsh
type 2 if there exists a constant ! > 0 such that for all (x↵)↵✓{1,...,n} in X
we have

�

�

�

X

↵

w↵x↵
�

�

�

L2
(Dn

;X)

6 !
⇣

X

↵

kx↵k2
⌘

1/2
.

The least admissible constant is denoted by !X(2n). It increases with n and
it is easy to check that it is sub-multiplicative in the sense that

!X(2m+n) 6 !X(2m)!X(2n). (7.48)

The constants !X(2n) are the Walsh analogues of the corresponding constants
⌧X(N) (with N = 2n) from Definition 7.3.16. If H is a Hilbert space, then
!H(2n) = 1 by orthogonality. The following result was proved in Hinrichs
[1999] in the more general setting of K-convex operators.

Theorem 7.6.12 (Hinrichs). For all � 2 [0, 1

2

) there exists a constant C� >
0 such that for all n > 1 the Rademacher projection ⇡n on L2(Dn;X) is
bounded of norm

k⇡nk 6 C� max
16m6n

2�m�!X(2m).

In particular, if for some � 2 [0, 1

2

) one has supm>1

2�m�!X(2m) < 1, then
X is K-convex.

By checking the estimates in Hinrichs paper one can see that the constant C�
is also a very large number. However, it is better than the one in the proof
of Theorem 7.4.28. A technical but key difference in the proofs is that using
the Walsh type 2 constants Hinrichs was able to give a lower estimate for
k�x + T (t)xk for any � 2 ( 2

3

, 1], and in Proposition 7.4.27 we only give an
estimate for � = 1.

To see how to deduce K-convexity for spaces with non-trivial type from
Theorem 7.6.12, we need some results on the constants !X(2n) which are of
independent interest. The following key estimate is due to Hinrichs [1996],
where it is formulated for an arbitrary finite orthonormal system.

Proposition 7.6.13. For all n > 1 one has 2n/2!X(2n) 6 n1/2⌧X(n).

Proof. Let rj = w{j} for j 2 {1, . . . , n} and define the sets W and W↵ by

W↵ = {w↵rj : 1 6 j 6 n}, for ↵ ✓ {1, . . . , n}.

Then
S

↵W↵ = W . Moreover, for every � ✓ {1, . . . , n} one has
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#{↵ 2 {1, . . . , n} : w� 2 W↵} = n.

Therefore, for any choice (xw)w2W one has
�

�

�

X

↵

w↵x↵
�

�

�

2

=
�

�

�

n�1

X

↵✓{1,...n}

X

w2W
↵

wxw

�

�

�

2

6 n�1

X

↵✓{1,...n}

�

�

�

X

w2W
↵

wxw

�

�

�

2

6 n�1

X

↵✓{1,...n}

⌧X(n)
⇣

X

w2W
↵

kxwk2
⌘

1/2

6 ⌧X(n)2n/2n�1

⇣

X

↵✓{1,...n}

X

w2W
↵

kxwk2
⌘

1/2

= ⌧X(n)(n�12n)1/2
⇣

X

↵

kx↵k2
⌘

1/2
.

⇤

If X has type p 2 (1, 2], then by Proposition 7.6.13 and Lemma 7.3.17,

!X(2n) 6 2n/2n�1/2⌧X(n) 6 C2n/2n�1/p0
, n 2 N,

where C = 
2,p⌧p,X . Setting n = dCp0

ee, we find

!(2n) 6 C2n/2n�1/p0 6 2n(
1
2�✓) (7.49)

with ✓�1 = (Cp0
e+ 1)p0 log(2). The estimate (7.49) implies the following:

Corollary 7.6.14 (Hinrichs). If X has type p 2 (1, 2], then

!X(2k) 6 2n(
1
2�✓)2k(

1
2�✓), for all k 2 N,

where n = dCp0
ee, ✓�1 = (Cp0

e+ 1)p0 log(2) and C = 
2,p⌧p,X .

Moreover, X is K-convex with K
2,X 6 C↵2n↵, where ↵ = 1

2

� ✓ and C↵
is as in Theorem 7.6.12.

Proof. Let j 2 N be such that 2nj 6 2k < 2n(j+1). Then by monotonicity,
(7.48), and (7.49),

!X(2k) 6 !X(2n(j+1)) 6 !X(2n)j+1 6 2(j+1)n( 1
2�✓) 6 2(k+n)( 1

2�✓).

⇤
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Walsh cotype 2

Similarly, the Walsh cotype 2 constant !0
X(2n) is defined as the least constant

!0 > 0 such that for all (x↵)↵✓{1,...,n} in X we have

⇣

X

↵

kx↵k2
⌘

1/2
6 !0

�

�

�

X

↵

w↵x↵
�

�

�

L2
(Dn

;X)

.

The following simple identity holds for the constants !0
X(2n). It can be viewed

as an analogue of the corresponding fact for Fourier type on Td (see Proposi-
tion 2.4.20).

Proposition 7.6.15. For any X and n 2 N, !X(2n) = !0
X(2n).

Proof. In order to prove this we use a slightly different notation for the Walsh
system. Define, for a 2 Dn = {�1, 1}n,

wa(b) :=
n
Y

j=1

(�rj(b))
(a

j

+1)/2.

Then (wa)a2Dn is the Walsh system on L2(Dn). The advantage of this nota-
tion is that the identity wa(b) = wb(a) holds for all a, b 2 {�1, 1}n. Indeed,

wa(b) =
n
Y

j=1

(�rj(b))
(a

j

+1)/2 =

n
Y

j=1

(�bj)
(a

j

+1)/2 =

n
Y

j=1

(�aj)
(b

j

+1)/2 = wb(a).

Let (xa)a2Dn in X be arbitrary and for each b 2 Dn let

yb :=
X

a2{�1,1}n

wa(b)xa.

Then for all c 2 Dn one sees that (using wc(b) = wb(c))

2�n
X

b2Dn

wb(c)yb =
X

a2Dn

⇣

2�n
X

b2Dn

wc(b)wa(b)
⌘

xa =
X

a2Dn

hwc, waixa = xc.

It follows that
�

�

�

X

a2Dn

waxa

�

�

�

2

2

= 2�n
X

b2Dn

kybk2

6 !0
X(2n)22�n

�

�

�

X

b2Dn

wbyb
�

�

�

2

2

= !0
X(2n)

X

a2Dn

kxak2.

This proves the inequality !X(2n) 6 !0
X(2n). The converse inequality can be

proved similarly. ⇤
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Arguing as in Proposition 7.3.6 (and using Proposition 7.6.15 in the cotype
case) one shows that

⌧X(2n), cX(2n) 6 !X(2n). (7.50)

By Kwapień’s Theorem 7.3.1, this implies that supn2N !(2
n) < 1 if and only

if X is isomorphic to a Hilbert space. From Lemma 7.3.17 together with (7.49)
and (7.50) one deduces the following variant of Theorem 7.1.14 with slightly
different constants:

Corollary 7.6.16. If X has type p 2 (1, 2], then it has cotype q for all q >
(Cp0

e+ 1)p0 log(2), where C = 
2,p⌧p,X .

Section 7.5

Pisier’s contraction property was introduced in Pisier [1978b], where Theo-
rem 7.5.20 was proved. In the subsequent literature, the name ‘property (↵)’
has become standard. We have tried to replace it with the more descrip-
tive ‘Pisier’s contraction property’. What we call the triangular contraction
property has been referred to as ‘property (�)’ or ‘weak (↵)’ in the liter-
ature. Theorem 7.5.9 is due to Kalton and Weis [2001], where it was even
shown that analytic UMD implies the triangular contraction property. The
fact that C 1(`2) does not have the triangular projection property (see Propo-
sition 7.5.14) follows from the work of Haagerup and Pisier [1989]. The key
result in the proof is the unboundedness of the triangular projection (see
Lemma 7.5.12) which was shown by Kwapień and Pełczyński [1970].

The norm of the discrete Hilbert transform of Lemma 7.5.11 equals ⇡; this
is a classical result of Schur [1911], which is also easy to extract from the ar-
gument presented here. A shorter proof of Proposition 7.5.15(1) can be found
in Van Neerven and Weis [2008]. This proof does not give information on the
constants and, more importantly, it cannot be adapted to prove the corre-
sponding result for the triangular contraction property. Propositions 7.5.16
and 7.5.17(1) can be found in Kaip and Saal [2012].

Following Van Neerven and Weis [2008], the two separate estimates in
(7.42), involving the constants ↵±

X := ↵±
2,X , can also be studied independently.

The Gaussian versions of these constants, ↵�,±X are defined analogously. Nei-
ther one of the two inequalities (7.42) holds in X = c

0

, i.e.,

↵�
c0 = ↵+

c0 = 1. (7.51)

The proof of Proposition 7.5.18 shows that ↵�,�X < 1 implies that X has
finite cotype. As a consequence, ↵�,�c0 = 1. A central limit theorem argument
shows that also ↵�

c0 = 1.

Example 7.6.17. To prove that ↵+

c0 = 1, let N > 1 be fixed and take xmn =
1p
M
en, where en is the nth unit vector of `1N . On the one hand we have, by

the central limit theorem (see Section E.2.b), (E.10), and (E.11),
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lim
M!1

E
�

�

�

M
X

m=1

N
X

n=1

"mnxmn

�

�

�

2

`1
N

= lim
M!1

E
�

�

�

N
X

n=1

1p
M

M
X

m=1

"mnen
�

�

�

2

`1
N

= E
�

�

�

N
X

n=1

�nen
�

�

�

2

`1
N

h logN,

while on the other hand

lim
M!1

E0E00
�

�

�

M
X

m=1

N
X

n=1

"0m"
00
nxmn

�

�

�

2

`1
N

= lim
M!1

E0E00
�

�

�

N
X

n=1

1p
M

M
X

m=1

"0m"
00
nen

�

�

�

2

`1
N

= E0E00
�

�

�

N
X

n=1

�0"00nen
�

�

�

2

`1
N

= E0|�|2E00
�

�

�

N
X

n=1

"00nen
�

�

�

2

`1
N

= 1.

This implies ↵+

c0 &
p

log(N) for every N > 1 and hence ↵+

c0 = 1.

From Example 7.6.17 and Lemma 7.3.12 we deduce that ↵�,�c0 = ↵�,+c0 = 1.
The following example has been observed in Van Neerven and Weis [2008]

with a different proof:

Example 7.6.18. For p 2 (1,1), the Schatten class C p = C p(`2) satisfies

↵+

Cp

< 1 if and only if p 2 [2,1),

↵�
Cp

< 1 if and only if p 2 (1, 2].

Proof. The “if” claims follow from the type or cotype 2 properties of C p

(recorded in Proposition 7.1.11) and Proposition 7.6.22 below. On the other
hand, we know from Proposition 7.5.6 that ↵Cp = 1 for all p 6= 2. From this,
the “only if” claims actually follow from the “if” claims: whenever ↵±

Cp

< 1
and p 6= 2, we must have ↵⌥

Cp

= 1, since otherwise we would get ↵Cp 6
↵+

Cp

↵�
Cp

< 1, a contradiction. ⇤

Example 7.6.18 shows that the separate study of the two inequalities in (7.42)
is indeed meaningful, in that either of the two bounds may be true or false in
a given Banach space independently of the other one.

The following result is obtained by repeating previous arguments and in
particular using the Maurey–Pisier theorem to derive finite cotype from the
finiteness of the corresponding constants ↵±

X and ↵�,±X .

Proposition 7.6.19. Let X be a Banach space.

(1) ↵�
X < 1 if and only if ↵�,�X < 1;

(2) ↵+

X < 1 if and only if ↵�,+X < 1.
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If at least one of the conditions ↵�
X < 1 or ↵+

X < 1 is satisfied, then X has
finite cotype.
Combining this result with Theorem 7.5.20 we obtain:
Corollary 7.6.20. For any Banach lattice X the following assertions are
equivalent:

(1) X has Pisier’s contraction property;
(2) ↵+

X < 1;
(3) ↵�

X < 1;
(4) X has finite cotype.
As we noted in Proposition 7.5.4, the constant ↵±

p,X can be described as the
optimal constants in the embeddings between "MN (X) and "M ("N (X)), i.e.,

1

↵+

p,X

kxk"p
MN

(X)

6 kxk"p
M

("p
N

(X))

6 ↵�
p,Xkxk"p

MN

(X)

.

On the other hand, we recall from Theorem 7.4.14 that K-convexity allows
us to identify "pN (X)⇤ and "p

0

N (X⇤) so that

kx⇤k
"p

0
N

(X⇤
)

6 kx⇤k
("p

N

(X))

⇤ 6 kx⇤k
"p

0
N

(X⇤
)

.

These observations imply the following elaboration of Proposition 7.5.15 from
Van Neerven and Weis [2008].

Proposition 7.6.21. If X is a K-convex Banach space, then

↵+

p0,X⇤ 6 Kp,X↵
�
p,X , ↵�

p0,X⇤ 6 K2

p,X↵
+

p,X , p 2 (1,1).

Proof. Let x

⇤ = (x⇤
mn)

M,N
m,n=1

2 XMN . Then

kx⇤k
"p

0
MN

(X⇤
)

6 Kp,Xkx⇤k
("p

MN

(X))

⇤ = Kp,X sup
n

|hx,x⇤i| : kxk"p
MN

(X)

6 1
o

6 Kp,X sup
n

|hx,x⇤i| : kxk"p
M

("p
N

(X))

6 ↵�
p,X

o

6 Kp,X↵
�
p,Xkx⇤k

"p
0

M

("p
0

N

(X⇤
))

,

where the suprema are over all x = (xmn)
M,N
m,n=1

with the specified norm
constraint, and hx,x⇤i =

PM,N
m,n=1

hxmn, x⇤
mni. Thus ↵+

p0,X⇤ 6 Kp,X↵
�
p,X .

Similarly,

kx⇤k
"p

0
M

("p
0

N

(X⇤
))

6 Kp,Xkx⇤k
"p

0
M
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which shows that ↵�
p0,X⇤ 6 K2

p,X↵
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p,X . ⇤
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The next result from Van Neerven, Veraar, and Weis [2015] establishes a
simple relation between the one-sided Pisier contraction properties on the one
hand and type and cotype 2 on the other.

Proposition 7.6.22. Let X be a Banach space.

(1) If X has cotype 2, then ↵�
2,X 6 4c�

2,X

q

log(2c�
2,X) and ↵�,�

2,X 6 c�
2,X

(2) If X has type 2, then ↵+

2,X 6 k�k�1

1

⌧�
2,X and ↵�,+

2,X 6 ⌧�
2,X .

where c�
2,X and ⌧�

2,X are the Gaussian cotype 2 and type 2 constants of X.

Proof. (1): By the extremality of Gaussians among all orthonormal sequences
under cotype 2 (Theorem 7.1.20 applied to the orthonormal sequence "0m"00n),
and the comparability of Gaussians and Rademachers under the same condi-
tion (Corollary 7.1.23; the more general Corollary 7.2.10 would give the same
result with a worse numerical factor), we have
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which proves the estimate for ↵�
2,X .

(2): By an application of the same results with the type 2 assumption (in
this case, Corollary 7.1.23 can be replaced by the more elementary Proposition
6.1.15), we have
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which proves the estimate for ↵+

2,X . The estimates for ↵�,±
2,X can be proved in

a similar way. ⇤

Convexity and concavity of Banach lattices

In this paragraph we will indicate some connections between type and cotype
on the one hand and some other notions on the other hand in the setting of
Banach lattices. For details we refer to Diestel, Jarchow, and Tonge [1995]
and Lindenstrauss and Tzafriri [1979].

Definition 7.6.23. Let X be a Banach lattice and let p, q 2 [1,1).
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(1) X is said to be p-convex if there exists a constant C > 0 such that for all
finite sequences x

1

, . . . , xN in X we have
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.

(2) X is said to be q-concave if there exists a constant c > 0 such that for all
finite sequences x

1

, . . . , xN in X we have
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Theorem 7.6.24. Let X be a Banach lattice and let 1 < p
0

< p 6 2 and
2 6 q < q

0

< 1. The following assertions hold:

(1) if X is q-concave, then X has cotype q;
(2) if X is p-convex and q-concave, then X has type p;
(3) if X has type p, then X is p

0

-convex;
(4) if X has cotype q, then X is q

0

-concave.

Part (4) has already been shown in Lemma 7.2.14. The other assertions can
be proved by applying the Khintchine–Maurey inequality (Theorem 7.2.13).

When proving bounds for functions taking values in Banach function
spaces, it is often possible to use p-convexity and q-concavity to reduce the
vector-valued estimates to the corresponding estimates in the scalar-valued
setting. By means of Kakutani’s representation Theorem F.2.1 such results
can often be extended to general Banach lattices. An example where this
technique is used is the following basic observation due to García-Cuerva,
Torrea, and Kazarian [1996, Proposition 2.2].

Proposition 7.6.25. Let X be a Banach lattice and let p 2 (1, 2]. If X is
p-convex and p0-concave, then X has Fourier type p.

In the same paper it is shown that this result fails for general Banach spaces
if p 2 (1, 2) and X has type p+ " and cotype p0 � " for some " > 0. The proof
of Proposition 7.6.25 for Banach function spaces X applies the Hausdorff–
Young inequality pointwise and then uses the p-convexity and q-concavity
assumptions.

By replacing the assumption of cotype q in Theorem 7.2.6(2) by the
stronger (according to Theorem 7.6.24) assumption of q-concavity, the lim-
iting case r = q can be covered:

Theorem 7.6.26. Let q 2 [2,1) and let X be a q-concave Banach lattice.
Then there exists a constant C = C(q,X) such that for all finite sequences
(fn)Nn=1

in Lq(S) and (xn)
N
n=1

in X,
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. (7.52)
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Proof. Definition 7.6.23 implies the following integral version of q-concavity:
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,

where � : S ! X is a simple function. To prove (7.52), by density it suffices
to prove the estimate simple functions f

1

, . . . fN : S ! K with kfnkq 6 1. If
X is a Banach function space, then by the above estimate and Minkowski’s
inequality,
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This implies the result for Banach lattice by Corollary F.2.2. Now the re-
sult follows if we combine the above estimate with the Khintchine–Maurey
inequality (Theorem 7.2.13). ⇤
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R-boundedness

In this chapter we continue the investigation of random series with vector-
valued coefficients and we study the transformations of such series under the
termwise action of families of bounded operators. As we will see, this provides
us with an abstract framework that captures the essentials of many classical
estimates in harmonic analysis and stochastic analysis.

More precisely, this chapter is about proving (and using) inequalities of
the type
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where in each case the operators Tn are drawn from some family T ✓
L (X,Y ) of operators between two Banach spaces (or Banach lattices in the
third inequality). If such inequalities hold, with a constant C independent of
N > 1 and the choices of x

1

, . . . , xN 2 X and T
1

, . . . , TN 2 T , we call T
R-bounded, �-bounded, or `2-bounded, respectively. We have already encoun-
tered the notion of R-boundedness in Chapter 5, where it was instrumental
in proving the operator-valued Mihlin multiplier theorem.

As it turns out, the three notions are equivalent in most common situ-
ations, although not in full generality. Even when equivalent, it is useful to
have all three notions at hand. A key difference between the first two notions
comes from the fact that products, but not sums, of independent Rademacher
variables are again Rademacher variables, whereas sums, but not products,
of independent Gaussian variables remain Gaussian. More subtly, the rota-
tional invariance of Gaussian vectors in Kd is at the heart of the proof of the
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ideal property for �-radonifying operators, to be proved in Chapter 9, which
in turn provides us with a powerful tool in connection with R-boundedness
and �-boundedness questions.

All three notions are strongly linked with other questions studied in these
volumes. R-boundedness offers a connection with unconditional convergence
via the random signs provided by the Rademacher variables. �-boundedness,
in turn, is needed in the Gaussian context of stochastic integration with re-
spect to Brownian motion. Finally, square functions are most convenient when
pointwise estimates of functions are involved and in connection with methods
of classical Fourier analysis and stochastic analysis. From the point of view of
applications it is therefore essential to have a large supply of R-bounded sets,
and indeed the theory abounds in interesting examples. To illustrate this, we
list some concrete sets of operators which will be proved to be R-bounded:

• Multiplication operators f 7! mf on Lp(S;X), 1 6 p < 1, with uniformly
bounded symbols m 2 L1(S).

• Semigroups of operators f 7! e�tAf on Lp(Rd;X), 1 < p < 1, where e�tA

is for example the heat semigroup et4 or the Poisson semigroup e�t(�4)

1/2

.
• Conditional expectation operators f 7! E(f |Fk) on Lp(S;X), 1 < p < 1,

when the �-algebras Fk form an increasing sequence (a filtration).
• Fourier multipliers f 7! Tmf on Lp(R;X), 1 < p < 1, when the symbols

m satisfy the multiplier conditions |m(⇠)|, |⇠m0(⇠)| 6 1 uniformly.

The first (easy) example is valid in the generality of arbitrary Banach spaces
X, but the other three require UMD and, in the last case, also Pisier’s contrac-
tion property, hinting at the interesting connections of R-boundedness with
the properties of Banach spaces that we have investigated so far. Many more
examples will be encountered throughout this text.

8.1 Basic theory

Throughout this chapter, X and Y are Banach spaces, ("n)n>1

is a Radem-
acher sequence and (�n)n>1

a Gaussian sequence on a fixed probability space
(⌦,P). We remind the reader of the convention, used throughout the book,
that both Rademacher and Gaussian variables are understood to be real if we
work over the real scalar field and complex when we work over the complex
scalars.

8.1.a Definition and comparison with related notions

We begin our discussion by recalling the Kahane contraction principle (The-
orem 6.1.13). It asserts that for all 1 6 p < 1 and scalar sequences (an)Nn=1

we have
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regardless the choice of vectors x
1

, . . . , xN from X, when ⇠
1

, . . . , ⇠N is an
independent sequence of either Rademacher or Gaussian random variables. In
many situations one needs an analogous inequality in which the scalars an are
replaced by bounded operators Tn from X into a possibly different Banach
space Y . This leads to the following definition.

Definition 8.1.1. Let X and Y be Banach spaces and consider a family of
operators T ✓ L (X,Y ).

(1) T is said to be R-bounded if there exists a constant C > 0 such that for
all finite sequences (Tn)

N
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.

(2) T is said to be �-bounded if there exists a constant C > 0 such that for
all finite sequences (Tn)

N
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in X,
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(3) If X and Y are Banach lattices, then T is said to be `2-bounded if there
exists a constant C > 0 such that for all finite sequences (Tn)

N
n=1

in T
and (xn)

N
n=1

in X,
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In all three definitions, the stated inequalities are assumed to hold for finite
sequences on any length. The least admissible constants in the inequalities are
called the R-bound, the �-bound, and the `2-bound of T and denoted by
R(T ), �(T ), and `2(T ), respectively.

It is often convenient to extend the definition of the bounds R(T ), �(T ),
`2(T ) to arbitrary families of operators T , declaring the bounds to take the
value 1 when T fails the respective boundedness property.

Remark 8.1.2. If in (1) we replace L2(⌦;Y ) by Lp(⌦;Y ) and L2(⌦;X) by
Lq(⌦;X), we obtain an equivalent definition of R-boundedness, but with
a possibly different best constant that we denote by Rp,q(T ). It follows
from the Kahane–Khintchine inequality (Theorem 6.2.4) that Rp,q(T ) 6
p,2R(T )

2,q and R(T ) 6 
2,pRp,q(T )q,2. The same remark applies to

(2). Especially in the context of Lp-spaces (of both scalar and vector-valued
functions), it is often convenient to work with Rp(T ) := Rp,p(T ) and
�p(T ) := �p,p(T ).
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The principal relations between these different notions and that of uniform
boundedness are summarised in the following:

Theorem 8.1.3. Let X and Y be Banach spaces and let T be a family of op-
erators in L (X,Y ). Then R-boundedness of T implies �-boundedness, which
implies uniform boundedness, and for all p 2 [1,1) we have

sup
T2T

kTk 6 �p(T ) 6 Rp(T ).

Furthermore,

(1) if Y has type 2 and X has cotype 2 (in particular if X = Y is a Hilbert
space), then R-boundedness, �-boundedness and uniform boundedness are
all equivalent, and

sup
T2T

kTk 6 R(T ) 6 ⌧
2,Y c2,X sup

T2T
kTk;

(2) if X has finite cotype q 2 [2,1), then R-boundedness and �-boundedness
are equivalent, and

�q(T ) 6 Rq(T ) 6 k�k�1

1

A�q,X�q(T ),

where A�q,X 6 12
q

q log(80
p
qc�q,X) is the constant of Corollary 7.2.10;

(3) if X and Y are Banach lattices with finite cotype q 2 [2,1) (in particular,
if they are Lp-spaces with p 2 [1,1)), then R-boundedness, �-boundedness
and `2-boundedness are all equivalent, and

�5

4
⇡2R

2,1
p
qcq,Y

��1

R
1

(T ) 6 `2(T ) 6 5

4
⇡2R

2,1
p
qcq,XR

1

(T ).

Each one of the two bounds requires the cotype of only one of the spaces,
as evident from the formula.

It is known that the Kahane–Khintchine constant R
2,1 in part (3) equals

p
2;

cf. the Notes of Chapter 6.
In both (1) and (2), the assumptions on the spaces are also necessary for

the conclusions. We return to these converse implications in Proposition 8.6.1
and Theorem 8.6.4.

Proof. The estimate supT2T kTk 6 �p(T ) follows by considering N = 1 in
the definition of �-boundedness; after cancelling k�

1

kp from both sides, this
reduces to kT

1

x
1

k 6 �(T )kx
1

k.
In order to prove that �p(T ) 6 Rp(T ), we may assume that ("n)n>1

and
(�n)n>1

are defined on distinct probability spaces, to be distinguished by a
subscript. Then for all T

1

, . . . , TN 2 T and x
1

, . . . , xN 2 X, by randomising
(Proposition 6.1.11) and Fubini’s theorem we obtain
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which proves the required estimate.
(1): With M := supT2T kTk we have
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(2): By Corollaries 6.1.17 and 7.2.10 we have
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(3): By Proposition 6.1.19 and the Khintchine–Maurey inequality (Theo-
rem 7.2.13),
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The proof of the other inequality is similar. Thus `2-boundedness is equivalent
to R-boundedness, which is equivalent to �-boundedness by (2). ⇤
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Remark 8.1.4. In the important special case X = Lp(S) and Y = Lq(T ), the
bounds in (3) of Theorem 8.1.3 can be simplified to

1

q,22,p
Rq,p(T ) 6 `2(T ) 6 

2,qp,2Rq,p(T ).

This follows easily from the classical Khintchine inequality and Fubini’s the-
orem, without the more advanced Theorem 7.2.13; indeed,
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showing that `2(T ) 6 
2,qp,2Rq,p(T ). The other inequality is proved in a

similar way.

For the rest of this chapter we will develop the theory of R-boundedness and
leave it to the reader to verify that, apart from those instances where the
contrary is explicitly stated, it is possible to replace the "n’s by �n’s to obtain
counterparts in terms of �-boundedness, with the same estimates for the �-
bounds. In the context of Lp-spaces, we will also develop some techniques in
the framework of `2-boundedness but, due to the equivalence just established,
mostly refer to it also as R-boundedness.

8.1.b Testing R-boundedness with distinct operators

Despite the largely analogous theories of R-boundedness and �-boundedness,
we start with an important property of R-boundedness, whose truth or falsity
for �-boundedness presents an open problem. This is the possibility of restrict-
ing the quantifiers in the definition of R-boundedness to all possible choices
of distinct operators T

1

, . . . , TN only. Being allowed to do so is sometimes
convenient in concrete situations.

Proposition 8.1.5. A family T of operators in L (X,Y ) is R-bounded if and
only if for some (equivalently, for all) 1 6 p < 1 there exists a constant C > 0
such that for all N > 1, all T

1

, . . . , TN 2 T satisfying

Ti 6= Tj whenever i 6= j,

and all x
1

, . . . , xN 2 X we have
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In this situation Rp(T ) equals the least admissible constant C in the above
estimate.

Proof. We only need to prove the ‘if’ part and the bound Rp(T ) 6 C.
Fix arbitrary operators T

1

, . . . , TN 2 T . Let S
1

, . . . , SK 2 T be distinct
operators with {Sk : 1 6 k 6 K} = {Tn : 1 6 n 6 N}. Write {1, . . . , N} as
a disjoint union

SK
k=1

Ik by grouping the indices corresponding to the same
operator, i.e., let Ik = {n : Tn = Sk}. Let ("0n)n>1

be a Rademacher sequence
on a distinct probability space (⌦0,P0). Let ⇠k =

P

n2I
k

"nxn for k = 1, . . . ,K.
Then ⇠

1

, . . . , ⇠k are independent and symmetric X-valued random variables,
and by randomisation we obtain

E
�

�

�

N
X

n=1

"nTnxn

�

�

�

p
= E

�

�

�

K
X

k=1

Sk⇠k
�

�

�

p
= EE0

�

�

�

K
X

k=1

"0kSk⇠k
�

�

�

p

6 Cp
pEE0

�

�

�

K
X

k=1

"0k⇠k
�

�

�

p
= Cp

pE
�

�

�

K
X

k=1

⇠k
�

�

�

p
= Cp

pE
�

�

�

N
X

n=1

"nxn

�

�

�

p
.

⇤

Corollary 8.1.6. For a sequence (Tn)n>1

of operators in L (X,Y ) the fol-
lowing assertions are equivalent:

(1) the family {Tn : n > 1} is R-bounded;
(2) for some (equivalently, for all) 1 6 p < 1 there exists a constant C > 0

such that for all N > 1 and all x
1

, . . . , xN 2 X,

E
�

�

�

N
X

n=1

"nTnxn

�

�

�

p
6 CpE

�

�

�

N
X

n=1

"nxn

�

�

�

p
.

In this situation, R({Tn : n > 1}) equals the least admissible constant C in
assertion (2).

Proof. We only need to prove that (2) implies (1) with Rp({Tn : n > 1}) 6 C.
Fix arbitrary operators S

1

, . . . , SM 2 {Tn : n > 1}. By Proposition 8.1.5
we may assume that Si 6= Sj whenever i 6= j. Choose N > 1 so large that
{S

1

, . . . , SM} ✓ {T
1

, . . . , TN}. For each m, let n(m) be the first index such
that Sm = Tn(m)

. Fix arbitrary x
1

, . . . , xM and define yn = xm if n = n(m)
and set yn = 0 for all remaining n. Then, for Rademacher sequences ("m)Nm=1

and ("0n)
N
n=1

,

E
�

�

�

M
X

m=1

"mSmxm

�

�

�

p
= E0

�

�

�

N
X

n=1

"0nTnyn
�

�

�

p
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6 CpE0
�

�

�

N
X

n=1

"0nyn
�

�

�

p
= CpE

�

�

�

M
X

m=1

"mxm

�

�

�

p
.

⇤

8.1.c First examples: multiplication and averaging operators

Example 8.1.7. Every singleton {T} in L (X,Y ) is both R-bounded and �-
bounded and R({T}) = �(T ) = kTk.

The corresponding result on `2-boundedness is more subtle: every single-
ton {T} is `2-bounded with `2({T}) 6 KGkTk, where KG is the so-called
Grothendieck constant (see the Notes at the end of the chapter).

Another immediate example of R-boundedness is provided by the Kahane
contraction principle:

Example 8.1.8. For any Banach space X the family IX := {cIX : |c| 6 1} is
R-bounded and Rp(IX) = 1 for all 1 6 p < 1.

This bootstraps via Fubini’s theorem into the following, which we may also
occasionally refer to as the ‘contraction principle’ in the sequel.

Example 8.1.9 (R-boundedness of L1-multipliers on Lp). Let (S,A , µ) be a
measure space and let 1 6 p < 1. For a function m 2 L1(S) define the
bounded multiplier Mm 2 L (Lp(S;X)) by

(Mmf)(s) := m(s)f(s), s 2 S.

Then the set M = {Mm : kmk1 6 1} is R-bounded and Rp(M ) 6 1.
Indeed, by Fubini’s theorem (the use of which is justified by Proposition

1.1.15) and the Kahane contraction principle,

E
�

�

�

N
X

n=1

"nMm
n

fn
�

�

�

p

Lp

(S;X)

=

ˆ
S
E
�

�

�

N
X

n=1

"nmn(⇠)fn(⇠)
�

�

�

p
dµ(⇠)

6
ˆ
S
E
�

�

�

N
X

n=1

"nfn(⇠)
�

�

�

p
dµ(⇠)

= E
�

�

�

N
X

n=1

"nfn
�

�

�

p

Lp

(S;X)

.

This example cannot be extended to p = 1. Indeed, let f
1

= · · · = fN = 1,
the constant one function on the unit interval (0, 1). Let (�n)n>0

be a sequence
of Rademacher functions on (0, 1). Then, by Lemma 6.1.20,

E
�

�

�

N
X

n=1

"nfn
�

�

�

2

L1
(0,1;X)

= N, E
�

�

�

N
X

n=1

"n�nfn
�

�

�

2

L1
(0,1;X)

= N2.
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This may serve to explain why we exclude the exponent p = 1 when dis-
cussing R-boundedness issues.

The same basic principle of contraction also gives R-bounds for families
of operators suitably dominated by a single operator. Other instances of the
same phenomenon will appear later in the chapter.

Proposition 8.1.10 (Domination by a linear operator). Let (S
1

,A
1

, µ
1

)
and (S

2

,A
2

, µ
2

) be measure spaces and let 1 6 p, q < 1. If U : Lp(S
1

) !
Lq(S

2

) is a positive operator, then

TU := {T 2 L (Lp(S
1

), Lq(S
2

)) : |Tf | 6 U |f | for all f 2 Lp(S
1

)}

is R-bounded, and
Rq,p(TU ) 6 q,pkUk.

Proof. We use the contraction principle, applied with the bounded functions
Tnfn/U |fn| (with, say, 0/0 := 0) together with the linearity and boundedness
of U , the Kahane–Khintchine inequality and the contraction principle with
|fn|/fn, to estimate

�

�

�

N
X

n=1

"nTnfn
�

�

�

Lq

(⌦⇥S2)

6
�

�

�

N
X

n=1

"nU |fn|
�

�

�

Lq

(⌦⇥S2)

6 kUk
�

�

�

N
X

n=1

"n|fn|
�

�

�

Lq

(⌦;Lp

(S1))

6 kUkq,p
�

�

�

N
X

n=1

"n|fn|
�

�

�

Lp

(⌦⇥S1)

6 kUkq,p
�

�

�

N
X

n=1

"nfn
�

�

�

Lp

(⌦⇥S1)

.

⇤

Remark 8.1.11. If U is an integral operator given by

Uf(s) :=

ˆ
S1

u(s, t)f(t) dµ
1

(t),

with non-negative kernel u, then the collection TU contains in particular all
integral operators of the form

Tf(s) :=

ˆ
S1

k(s, t)f(t) dµ
1

(t)

with |k(s, t)| 6 u(s, t).
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Averaging operators

The second basic source of R-boundedness is the process of averaging, which
we first discuss in a probabilistic set-up. We recall from Section 2.6 that the
conditional expectation operator f 7! E(f |A 0), where A 0 ✓ A is a �-finite
sub-�-algebra, are positive contractions on the spaces Lp(S), 1 6 p 6 1, and
can be extended to contractions on the spaces Lp(S;X) for any Banach space
X. We have also proved in Theorem 4.2.23 an inequality which can be neatly
restated in the language of R-boundedness:

Theorem 8.1.12 (Stein’s inequality on R-boundedness of conditional
expectations). Let X be a UMD space and let 1 < p < 1. Let (An)n2Z
be a �-finite filtration in a measure space (S,A , µ). Then the family E =
{E(·|An) : n 2 Z} of conditional expectations is R-bounded on Lp(S;X) and

Rp(E ) 6 �+

p,X ,

where �+

p,X is the one-sided UMD-constant of X from Proposition 4.2.3.

Proof. We proved in Theorem 4.2.23 that

�

�

�

N
X

n=1

"nE(fn|An)
�

�

�

Lp

(S⇥⌦;X)

6 �+

p,X

�

�

�

N
X

n=1

"nfn
�

�

�

Lp

(S⇥⌦;X)

,

and by re-indexing our filtration, we can start the sum from n = �M instead
of n = 1. With M,N arbitrary, this gives the R-boundedness inequality for
any choice of finitely many distinct operators from E , which by Proposition
8.1.5 gives the full R-boundedness. (Alternatively, we could also achieve the
repetition by applying the Stein inequality as stated to a new filtration, where
some of the �-algebras are repeated.) ⇤

With the help of Theorem 8.1.12 we can also obtain a similar bound for more
‘geometric’ averaging operators over Euclidean balls:

Proposition 8.1.13 (R-boundedness of averaging operators). Let X
be a UMD space and 1 < p < 1. The family A of all averaging operators

f 7! ABf :=
⇣ 1

|B|

ˆ
B
f(x) dx

⌘

1B ,

where B runs over all balls in Rd, is R-bounded on Lp(Rd;X), and

Rp(A ) 6 cd�
+

p,X .

Proof. Let us write �́
B = 1

|B|
´
B for the average over B. We need to estimate

�

�

�

N
X

n=1

"n1B
n

�
ˆ
B

n

fn dx
�

�

�

Lp

(Rd

;X)

.
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We recall the covering Lemma 3.2.26 which states that for every axes-
parallel cube Q ✓ Rd, there exists a ‘dyadic’ cube D in one of 3d ‘dyadic
systems’ D↵, ↵ 2 {0, 1

3

, 2

3

}d, such that `(Q) 6 3`(D), where ` denotes the
side-length of the cubes. For the present purposes, it is not necessary to recall
the precise description of the ‘dyadic systems’ D↵ (although the interested
reader will find all the details around the cited covering Lemma 3.2.26); it is
enough to know that D↵ = [j2ZD↵

j , where each D↵
j is the set of atoms of

an atomic �-algebra F↵
j := �(D↵

j ), where (F↵
j )j2Z is a filtration of Rd. If

D 2 D↵
j , we note that �́

D g is the constant value of E(g|F↵
j ) on the atom D.

For each Bn, let Qn ◆ Bn with `(Qn) = diam(Bn) be the minimal axes-
parallel cube containing it, and Dn ◆ Qn a containing dyadic cube with
`(Dn) 6 3`(Qn) = 3 diam(Bn) in some D↵

n

j
n

, as provided by the Covering
Lemma just discussed.

We observe that

1B
n

�
ˆ
B

n

fn dx =
|Dn|
|Bn|

1B
n

�
ˆ
D

n

1B
n

fn dx =
|Dn|
|Bn|

1B
n

E(1B
n

fn|F↵
n

j
n

).

Note that
|Dn|
|Bn|

=
|Dn|
|Qn|

|Qn|
|Bn|

6 3d
2d

|Bd| =: c0d,

where |Bd| is the volume of the unit ball in Rd.
With these preparations, the main argument proceeds as

�

�

�

N
X

n=1

"n1B
n

�
ˆ
B

n

fn dx
�

�

�

Lp

(Rd

;X)

=
�

�

�

N
X

n=1

"n
|Dn|
|Bn|

1B
n

E(1B
n

fn|F↵
n

j
n

)
�

�

�

Lp

(Rd

;X)

6 c0d
X

↵2{0, 13 ,
2
3}d

�

�

�

X

n:↵
n

=↵

"nE(1B
n

fn|F↵
j
n

)
�

�

�

Lp

(Rd

;X)

6 c0d
X

↵2{0, 13 ,
2
3}d

�+

p,X

�

�

�

X

n:↵
n

=↵

"n1B
n

fn
�

�

�

Lp

(Rd

;X)

6 c0d3
d�+

p,X

�

�

�

N
X

n=1

"nfn
�

�

�

Lp

(Rd

;X)

,

where the first and third estimates were applications of the R-boundedness
of the L1-multipliers of Example 8.1.9 with mn = |D

n

|
|B

n

|1B
n

and mn =

1{m:↵
m

=↵}(n)1B
n

, while the second estimate was the R-boundedness of con-
ditional expectation from Theorem 8.1.12. We have proved the proposition
with cd = c0d3

d = 18d|Bd|�1. ⇤
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Tensor extensions

Let (S
1

,A
1

, µ
1

) and (S
2

,A
2

, µ
2

) be measure spaces. By the extension theorem
of Paley and Marcinkiewicz–Zygmund (Theorem 2.1.9), when H is a Hilbert
space and 1 6 p, q < 1, every bounded operator from Lp(S

1

) to Lq(S
2

)
extends to a bounded operator from Lp(S

1

;H) to Lq(S
2

;H). The next propo-
sition considers the extension of R-bounded sets of operators from Lp(S

1

) to
Lq(S

2

).

Proposition 8.1.14 (H-valued extensions). Let H be a Hilbert space and
1 6 p, q < 1. If T ✓ L (Lp(S

1

), Lq(S
2

)) is R-bounded, then T ⌦ IH :=
{T ⌦ IH : T 2 T } ✓ L (Lp(S

1

;H), Lq(S
2

;H)) is R-bounded and

Rq,p(T ⌦ IH) 6 �q,p
k�kp
k�kq

Rq,p(T ).

Proof. Let (�m)m>1

and ("0n)n>1

be a Gaussian sequence and a Rademacher
sequence on distinct probability spaces (⌦,P) and (⌦0,P0), respectively. Let
(hm)Mm=1

be an orthonormal system in H. Observe that for all sequences of
scalars (↵m)Mm=1

, the following identity holds (see (2.3)):

k�kq
�

�

�

M
X

m=1

↵mhm

�

�

�

H
=
�

�

�

M
X

m=1

↵m�m
�

�

�

Lq

(⌦)

.

Fix functions F
1

, . . . , FN 2 Lp(S
1

;H) of the form Fn :=
PM

m=1

fmn ⌦ hm

and put Gn :=
PM

m=1

fmn�m. By the observation, pointwise on ⌦0 ⇥ S we
have

k�kq
�

�

�

N
X

n=1

"0n(Tn ⌦ IH)Fn

�

�

�

H
=
�

�

�

N
X

n=1

"0nTnGn

�

�

�

Lq

(⌦)

.

Therefore, taking Lq(⌦0;Lq(S
2

)-norms, after interchanging the integrals the
R-boundedness of T implies

k�kq
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N
X
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"0n(Tn ⌦ IH)Fn
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�
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Lq
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6 Rq,p(T )
�

�

�

N
X
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"0nGn
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Lq
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(⌦0
;Lq

(S1)))
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6 Rq,p(T )�q,p
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�

N
X

n=1

"0nGn

�

�

�

Lp

(⌦;Lp

(⌦0
;Lq

(S1)))

,

using the Kahane–Khintchine inequality for Gaussian sums in the last step.
Finally, by performing the same calculation in the reverse direction,
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;Lq
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.

This proves the required estimate for functions F
1

, . . . , FN of the form spec-
ified above. Since such functions form a dense subspace of Lp(S

1

;H), the
estimate extends to arbitrary F

1

, . . . , FN in Lp(S
1

;H). ⇤

With regard to the simple extension Theorem 2.1.3 one may ask whether a
similar R-boundedness result holds: If T is an R-bounded family of positive
operators on Lp(S), is the family of tensor extensions TX = {T⌦IX : T 2 T }
R-bounded on Lp(S;X)? The next example shows that for 1 < p < 1, the
R-boundedness of TX implies the triangular contraction property. Therefore
the question has a negative answer for Banach spaces failing this property,
such as c

0

and C 1(`2) (see Corollary 7.5.13 and Proposition 7.5.14).

Example 8.1.15. Let ("n)n>1

and ("0m)m>1

be Rademacher sequences on dis-
tinct probability spaces (⌦,P) and (⌦0,P0), respectively. For n > 1 let
Fn = �("

1

, . . . , "n) and Tn = E(·|Fn). Then each Tn is a positive oper-
ator and by Theorem 8.1.12, the family {Tn : n > 1} is R-bounded on
Lp(⌦) for any p 2 (1,1), with R-bound at most �+

p,Lp

(⌦)

6 �p,K = p⇤ � 1

(see Chapter 4). Now let X be any Banach space an suppose the family
TX := {Tn ⌦ IX : n > 1} is R-bounded. Then, with fn :=

PN
m=1

rmxmn

where (xmn)
N
m,n=1

is a doubly indexed sequence in X,
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.

This means that X has the triangular contraction property.

We conclude this section with an explicit example of a uniformly bounded
family which fails to be R-bounded:

Proposition 8.1.16. Let X be a non-zero Banach space, let 1 6 p 6 1,
and let (S(t))t2R denote the left-translation group on Lp(R;X). The following
assertions are equivalent:
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(1) the family of extensions (S(t)⌦ IX)t2R is R-bounded on Lp(R;X);
(2) the family of extensions (S(t)⌦ IX)t2R is �-bounded on Lp(R;X);
(3) p = 2 and X is isomorphic to a Hilbert space.

Proof. The implications (1))(2) and (3))(1) follow from the observations,
already made, that R-boundedness implies �-boundedness, and that both no-
tions are equivalent to uniform boundedness in Hilbert spaces. It thus remains
to prove the implication (2))(3).

We begin by showing that (2) implies p = 2. By considering only Gaussian
sums with values in a given one-dimensional subspace of X, it suffices to
consider the case X = K.

First assume that p 2 (2,1]. Let u
1

, . . . , uN be distinct real numbers
and let f 2 Lp(R) be an arbitrary function of norm one whose support is
contained in an interval of length not exceeding min

16i 6=j6N |ui � uj |. With
fn := S(�un)f we have
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= N.

On the other hand, Hölder’s inequality, the disjointness of the supports of the
functions fn, and Khintchine’s inequality imply
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If p = 1, the disjointness assumption implies
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L1
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6 E
⇣

sup
16n6N

|�n|2
⌘

. 2 log(2N)

using Proposition E.2.21. In both cases, comparing these inequalities we see
that the family (S(t))t2R cannot be R-bounded on Lp(R).

The case p 2 [1, 2) can be handled similarly. Indeed, by the Kahane–
Khintchine inequality,
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whereas
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2

Lp

(R)
= N.

This again shows that (S(t))t2R cannot be R-bounded on Lp(R). This con-
cludes the proof that (2) implies p = 2.
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Next we show that (2) implies that X is isomorphic to a Hilbert space.
We will actually deduce from (2) that X has both type 2 and cotype 2; the
conclusion then follows by an appeal to Kwapień’s theorem (Theorem 7.3.1).

We have already seen that (2) forces p = 2. Let u
1

, . . . , uN be finitely
many distinct real numbers, let f 2 L2(R) be an arbitrary function of
norm one whose support is contained in an interval of length not exceed-
ing min

16i 6=j6N |ui � uj |, and let x
1

, . . . , xN 2 X be arbitrary. With gn :=
S(�un)f ⌦ xn we have
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X
,

whereas, on the other hand, the disjointness of the supports of the functions
gn implies that
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�

�

�

2

L2
(R;X)

=

N
X

n=1

kgnk2L2
(R;X)

=

N
X

n=1

kxnk2.

Comparing these equalities, we see that the �-boundedness of the operators
S(u)⌦IX implies that X has (Gaussian) type 2. The proof that X has (Gaus-
sian) cotype 2 is proved by a similar modification of the arguments as in the
first part of the proof. ⇤

8.1.d R-boundedness versus boundedness on "pN(X)

The following elementary reformulation of R-boundedness in the language of
the Rademacher spaces introduced in Section 6.3 is surprisingly useful in many
applications:

Proposition 8.1.17. Let X and Y be Banach spaces. A family T ✓ L (X,Y )
is R-bounded with constant Rp(T ) 6 C if and only if every finite sequence
(Tn)

N
n=1

in T determines a bounded operator eT of norm k eTk 6 C from "pN (X)
to "pN (Y ) through the action

eT : (xn)
N
n=1

7! (Tnxn)
N
n=1

.

Under an additional assumption on the Banach spaces, the uniform bounded-
ness of the operators eT of the previous remark bootstraps into R-boundedness
of these operators:

Proposition 8.1.18. Let X and Y be Banach spaces with Pisier’s contraction
property, and T ✓ L (X,Y ) be an R-bounded family. For any given N > 1,
let fTN be the family of all operators in "pN (X) ! "pN (Y ) of the form

eT : (xn)
N
n=1

7! (Tnxn)
N
n=1

,
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where (Tn)
N
n=1

✓ T . Then fTN is R-bounded, and

Rp(fTN ) 6 ↵+

p,X↵
�
p,Y Rp(T ).

Proof. With eTk = (Tkn)
N
n=1

2 fTN and exk = (xkn)
N
n=1

2 "pN (X) we have

�

�

�

K
X

k=1

"k eTkexk

�

�

�

Lp

(⌦;"p
N

(Y ))

=
�

�

�

K
X

k=1

"k

N
X

n=1

"0nTknxkn

�

�

�

Lp

(⌦⇥⌦0
;Y )

6 ↵�
p,Y

�

�

�

K
X

k=1

N
X

n=1

"knTknxkn

�

�

�

Lp

(⌦;Y )

6 ↵�
p,Y Rp(T )

�

�

�

K
X

k=1

N
X

n=1

"knxkn

�

�

�

Lp

(⌦;X)

6 ↵�
p,Y Rp(T )↵+

p,X

�

�

�

K
X

k=1

"k

N
X

n=1

"0nxkn

�

�

�

Lp

(⌦⇥⌦0
;X)

= ↵�
p,Y Rp(T )↵+

p,X

�

�

�

K
X

k=1

"kexkn

�

�

�

Lp

(⌦;"p
N

(X))

,

where ↵+

p,X and ↵�
p,X denote the least admissible constants in (7.42). ⇤

8.1.e Stability of R-boundedness under set operations

We record some simple facts about the stability of R-boundedness under var-
ious algebraic manipulations. As a direct consequence of the definitions one
sees that

Proposition 8.1.19 (Unions, sums, products). Let X,Y, Z be Banach
spaces and 1 6 p < 1.

(1) If S ✓ T ✓ L (X,Y ) and T is R-bounded, then so is S and

Rp(S ) 6 Rp(T ).

(2) If S ✓ L (X,Y ) and T ✓ L (X,Y ) are R-bounded, then the families
S [ T and S + T = {S + T : S 2 S , T 2 T }, are R-bounded and

Rp(S + T ) 6 Rp(S ) + Rp(T ),

Rp(S [ T ) 6 Rp(S ) + Rp(T ).

(3) If S ✓ L (X,Y ) and T ✓ L (Y, Z) are R-bounded, then the family
T S = {TS : S 2 S , T 2 T } is R-bounded and

Rp(T S ) 6 Rp(S )Rp(T ).
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Proof. (1): This is clear from the definition of R-boundedness.
(2): Let S ,T 2 L (X,Y ). The inequality Rp(S + T ) 6 Rp(S ) +

Rp(T ) is a trivial consequence of the triangle inequality in Lp(⌦;X). Then,
by Kahane’s contraction principle,

Rp(S [ T ) 6 Rp

�

(S [ {0}) + (T [ {0})
�

6 Rp(S [ {0}) + R(T [ {0}) = Rp(S ) + R(T ).

(3): Let T
1

S
1

, . . . , TNSN 2 T S and x
1

, . . . , xN 2 X. Then

�

�

�

N
X

n=1

"nTnSnxn

�

�

�

Lp

(⌦;Z)

6 Rp(T )
�

�

�

N
X

n=1

"nSnxn

�

�

�

Lp

(⌦;Y )

6 Rp(T )Rp(S )
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

.

⇤

As an immediate generalisation, if (Tk)k>1

is a sequence of R-bounded sets
in L (X,Y ) whose R-bounds are summable, then the union T =

S

k>1

Tk is
R-bounded, with R-bound

Rp(T ) 6
X

k>1

Rp(Tk)

for all 1 6 p < 1. This elementary observation can be refined if we make use
of the cotype and type properties of X and Y , respectively. For p = 1 and
q = 1 we recover the aforementioned result, while the other extreme case
p = q = 2 and r = 1 reduces, via Kwapień’s theorem, to the assertion that
every uniformly bounded sequence of Hilbert space operators is R-bounded.

Proposition 8.1.20. Suppose that X has cotype q 2 [2,1] and Y has type
p 2 [1, 2]. Let (Tk)k>1

be a sequence of R-bounded families in L (X,Y ) and
suppose that the sequence of R-bounds (Rp(Tk))k>1

belongs to `r, where 1

r =
1

p � 1

q . Then the union T :=
S

k>1

Tk is R-bounded and

Rp,q(T ) 6 ⌧p,Y cq,Xk(Rp(Tk))k>1

k`r .

Proof. We prove this for q 2 [2,1) and r 2 [1,1), the cases q = 1 and
r = 1 being similar and simpler.

Upon replacing Tn+1

by Tn+1

\
Sn

m=1

Tm, we may assume that the families
Tn are disjoint.

Fix N > 1 and choose arbitrary operators T
1

, . . . , TN 2 T . For each k > 1
set INk = {1 6 n 6 N : Tn 2 Tk} and note that at most finitely many of these
sets are non-empty. Randomising with an independent Rademacher sequence
("0n)n>1

, using Hölder’s inequality with exponents r/p and r/(r�p) = q/p we
obtain (with obvious changes if q = 1)
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E
�

�

�

N
X

n=1

"nTnxn

�

�

�

p
= EE0

�

�

�

X

k>1

"0k
X

n2IN

k

"nTnxn
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�
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6 ⌧pp,Y
X

k>1

E
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�

�

X

n2IN
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"nTnxn
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�

�

p

6 ⌧pp,Y
X

k>1

Rp(Tk)
pE
�

�

�

X

n2IN

k

"nxn

�

�

�

p

6 ⌧pp,Y

⇣

X

k>1

Rp(Tk)
r
⌘p/r⇣

E
X

k>1

�

�

�

X

n2IN

k

"nxn

�

�

�

q⌘p/q

6 ⌧pp,Y c
p
q,X

⇣

X

k>1

Rp(Tk)
r
⌘p/r⇣

EE0
�

�

�

X

k>1

"0k
X

n2IN

k

"nxn

�

�

�

q⌘p/q

= ⌧pp,Y c
p
q,X

⇣

X

k>1

Rp(Tk)
r
⌘p/r⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

q⌘p/q
.

⇤

Convex hulls

Among the most useful properties of R-boundedness is its interplay with con-
vexity.

Proposition 8.1.21 (Convex hull). If T is R-bounded in L (X,Y ), then
the convex hull and the absolute convex hull of T are R-bounded in L (X,Y ).
Moreover,

Rp(T ) = Rp(conv(T )) = Rp(abs conv(T )).

Proof. We begin with the proof concerning the convex hull. Choose operators
S
1

, . . . , SN 2 conv(T ). Recalling from Lemma 3.2.13 that

conv(T )⇥ · · ·⇥ conv(T ) = conv(T ⇥ · · ·⇥ T ),

we can find �
1

, . . . ,�k 2 [0, 1] with
Pk

j=1

�j = 1 such that Sn =
Pk

j=1

�jTjn

with Tjn 2 T for all j = 1, . . . , k and n = 1, . . . , N . Then, for all x
1

, . . . , xN 2
X,

E
�

�

�

N
X

n=1

"nSnxn

�

�

�

Lp

(⌦;Y )

6
k
X

j=1

�j
�

�

�

N
X

n=1

"nTjnxn

�

�

�

Lp

(⌦;Y )

6 Rp(T )

k
X

j=1

�j
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

= Rp(T )
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

.
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This proves the R-boundedness of conv(T ) with the estimate Rp(conv(T )) 6
Rp(T ). The opposite inequality Rp(T ) 6 Rp(conv(T )) is trivial.

By the contraction principle the set T 0 := {�T : T 2 T , |�| 6 1} is
R-bounded and Rp(T 0) = Rp(T ). Since convT 0 = abs convT 0, the result
for the absolute convex hull follows from this. ⇤

Topological closures

For the next result we recall that the weak operator topology on L (X,Y ) is
the topology generated by the sets of the form

�

S 2 L (X,Y ) : |h(S � T )x, y⇤i| < "
 

with T 2 L (X,Y ), x 2 X, y⇤ 2 Y ⇤, and " > 0. Similarly, the strong operator
topology on L (X,Y ) is the topology generated by the sets of the form

�

S 2 L (X,Y ) : k(S � T )xk < "
 

with T 2 L (X,Y ), x 2 X, and " > 0.
It is easy to check that limn!1 Tn = T in the weak (respectively, strong)

operator topology if and only if limn!1hTnx, y⇤i = hTx, y⇤i for all x 2 X
and y⇤ 2 X⇤ (respectively, limn!1 Tnx = Tx for all x 2 X).

Proposition 8.1.22 (Weak and strong operator topology closures). If
T ✓ L (X,Y ) is R-bounded, then its closures T

wo and T
so in the weak and

strong operator topologies are R-bounded, and for all 1 6 p < 1 we have

Rp(T
wo

) = Rp(T
so

) = Rp(T ).

Proof. The assertion concerning the strong operator topology follows from the
corresponding assertion for the weak operator topology. As the strong case is
simpler to prove, for the convenience of the reader we include a proof for this
case as well.

Let T
1

, . . . , TN 2 T
so and x

1

, . . . , xN 2 X be arbitrary. Fix an arbitrary
" > 0. Choose operators T

1

, . . . , TN 2 T such that for all n = 1, . . . , N ,

kTnxn � Tnxnk < 2�n", n = 1, . . . , N.

Then,

�

�

�

N
X

n=1

"nTnxn

�

�

�

Lp

(⌦;Y )

6
�

�

�

N
X

n=1

"nTnxn

�

�

�

Lp

(⌦;Y )

+

N
X

n=1

kTnxn � Tnxnk

6 Rp(T )
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

+ ".

Since the choice of " > 0 was arbitrary, this proves that T
so is R-bounded

with Rp(T
so

) 6 Rp(T ). The converse inequality is trivial.
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To prove the assertion for the closure in the weak operator topology we
argue similarly. Let T

1

, . . . , TN 2 T
wo and x

1

, . . . , xN 2 X be arbitrary. Fix
an arbitrary " > 0. Let 1

p + 1

p0 = 1 and fix a simple function g 2 Lp0
(⌦;Y ⇤)

of norm one, say g =
Pk

j=1

1⌦
j

⌦ y⇤j with the sets ⌦j 2 F disjoint. Choose
operators T

1

, . . . , TN 2 T such that for all n = 1, . . . , N ,

|hTnxn � Tnxn, y
⇤
j i| < 2�n", j = 1, . . . , k.

Then

E|hTnxn �Tnxn, gi| = E
k
X

j=1

1⌦
j

|hTnxn �Tnxn, y
⇤
j i| 6 2�n"

k
X

j=1

E1⌦
j

= 2�n"

and therefore

E
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D

N
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"nTnxn, g
E

�

�

�

6 E
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D

N
X

n=1

"nTnxn, g
E

�

�

�

+

N
X

n=1

E|hTnxn � Tnxn, gi|

6
⇣

E
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�

�

N
X

n=1

"nTnxn

�

�

�

p⌘1/p
+

N
X

n=1

2�n"

6 Rp(T )
⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

p⌘1/p
+ ".

Upon taking the supremum over all simple functions g of norm one in
Lp0

(⌦;Y ⇤) and applying Proposition 1.3.1 we obtain the estimate

⇣

E
�

�

�

N
X

n=1

"nTnxn

�

�

�

p⌘1/p
6 Rp(T )

⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

p⌘1/p
+ ".

Since the choice of " > 0 was arbitrary, this proves that T
wo is R-bounded

with Rp(T
wo

) 6 Rp(T ). The converse inequality is trivial. ⇤

In the same way as above one proves that if T ✓ L (Y ⇤, X⇤) is R-bounded,
then its closure T

wo

⇤

in the weak⇤ operator topology is R-bounded and
Rp(T

wo

⇤

) = Rp(T ) for all 1 6 p < 1.

Remark 8.1.23. The R-boundedness of the closure in the weak operator can
alternatively be deduced from the R-boundedness of the closure in the strong
operator topology and the Hahn-Banach theorem. For S := convT , by
Proposition B.2.4 we have S

so

= S
wo and therefore, by Proposition 8.1.21,

Rp(T
wo

) 6 Rp(S
wo

) = Rp(S
so

) = Rp(S ) = Rp(T ).

The reverse estimate Rp(T ) 6 Rp(T
wo

) is obvious.
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As a first application we prove:

Proposition 8.1.24. Let I be an index set, and let for each i 2 I and n > 1
an operator Tn(i) 2 L (X,Y ) be given, and assume that

T (i) :=
X

n>1

Tn(i)

converges in the weak operator topology of L (X,Y ) for all i 2 I. If each of
the families Tn := {Tn(i) : i 2 I} is R-bounded and if

P

n>1

R(Tn) < 1,
then T := {T (i) : i 2 I} is R-bounded, and for all 1 6 p < 1 we have

Rp(T ) 6
X

n>1

Rp(Tn).

Proof. Put Sk(i) =
Pk

j=1

Tj(i). For all x
1

, . . . , xN 2 X and i
1

, . . . , iN 2 I we
have

�
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N
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"nSk(in)xn
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6
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6
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Rp(Tj)
�
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N
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"nxn
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�

Lp

(⌦;X)

.

In view of the fact that T (i) = limk!1 Sk(i) in the weak operator topology
and

P

n>1

Rp(Tn) 6 p,2
P

n>1

R(Tn) < 1, the proof is finished by an
appeal to Proposition 8.1.22. ⇤

8.2 Sources of R-boundedness in real analysis

We interrupt our development of Banach space-valued analysis to discuss the
various appearances of R-boundedness in the context of classical real analysis
on the (scalar-valued) Lp-spaces. This setting offers a number of specific tech-
niques for proving R-boundedness that are not available in the full generality
of Banach spaces.

8.2.a Pointwise domination by the maximal operator

In Proposition 8.1.10 we already saw that operators pointwise dominated by
a fixed bounded linear operator will be R-bounded Lp-spaces. On Euclidean
domains the role of the dominating operator can also be assumed by the
Hardy–Littlewood maximal operator

Mf(x) := sup
Q3x

1

|Q|

ˆ
Q
|f | dy,

where the supremum is over all axes-parallel cubes Q ✓ Rd containing x.



184 8 R-boundedness

Proposition 8.2.1 (Domination by the maximal operator). For all
1 < p < 1 the family

TM := {T 2 L (Lp(Rd)) : |Tf | 6 M |f | for all f 2 Lp(Rd)}

is R-bounded, and Rp(TM ) 6 cp,d.

Proof. We have
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⇣

N
X
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|Tnfn|2
⌘
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6
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N
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(Rd

)

6 cp,d
�

�

�

⇣

N
X

n=1

|fn|2
⌘

1/2�
�

�

Lp

(Rd

)

,

where the last estimate is a direct application of the Fefferman–Stein maxi-
mal inequality (Theorem 3.2.28). This proves the `2-boundedness of TM , and
therewith its R-boundedness. ⇤

Remark 8.2.2. Using the full scope of the Fefferman–Stein inequality

�

�

�

⇣

N
X

n=1

|Mfn|q
⌘

1/q�
�

�

Lp

(Rd

)

6 cp,q,d
�

�

�

⇣

N
X

n=1

|fn|q
⌘

1/q�
�

�

Lp

(Rd

)

, 1 < p, q < 1,

the same proof also shows that TM has the property of `q-boundedness, which
may be defined for Banach lattices X,Y by the inequality

�

�

�

⇣

N
X

n=1

|Tnfn|q
⌘

1/q�
�

�

Y
6 C

�

�

�

⇣

N
X

n=1

|fn|q
⌘

1/q�
�

�

X
, (8.1)

over the usual quantifiers. It is important here that, when choosing the oper-
ators (Tn)

N
n=1

, repetitions are allowed.

Here is a model application of Proposition 8.2.1:

Proposition 8.2.3. Let K consist of all k 2 L1(Rd) such that
ˆ
Rd

ess sup
|y|>|x|

|k(y)| dx 6 1.

Then the family of convolution operators TK := {f 7! k ⇤ f : k 2 K } is
R-bounded on Lp(Rd) for all p 2 (1,1), and Rp(TK ) 6 cp,d.

Proof. By Proposition 2.3.9, for each k 2 K and f 2 Lp(Rd), |k ⇤ f(x)| 6
Mf(x) for x 2 Rd. Therefore, the result follows from Proposition 8.2.1. ⇤
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Corollary 8.2.4. Let K consist of kernels k 2 L1(Rd) that are radially de-
creasing, i.e., |k(y)| 6 |k(x)| for all x, y 2 Rd with |y| > |x|, and

ˆ
Rd

|k(x)| dx 6 1.

Then the family of convolution operators TK := {f 7! k ⇤ f : k 2 K } is
R-bounded on Lp(Rd) for all p 2 (1,1), and Rp(TK ) 6 cp,d.

Example 8.2.5 (R-analyticity of the heat semigroup). Consider the heat semi-
group (H(z))z2| arg(z)|<⇡/2 on Lp(Rd) (see Example G.5.6) given by convolu-
tion with the heat kernel,

H(z)f = kz ⇤ f, | arg(z)| < ⇡/2,

where the kernels kz : Rd ! C given by

kz(x) =
1

p

(2⇡z)d
exp(�|x|2/(2z)), x 2 Rd.

The family {kt : t > 0} clearly satisfies the conditions of Corollary 8.2.4. We
claim that for all ✓ < 1

2

⇡ the family {kz : | arg(z)| 6 ✓} still satisfies the
condition of Proposition 8.2.3 up to a multiplicative constant. As a result the
family (H(z))| arg(z)|6✓ is R-bounded on Lp(Rd) for all p 2 (1,1).

To prove the claim, fix z 2 C with | arg(z)| 6 ✓ and put t := <z. With
c(z) := cos(arg z) we have |z| = t/c(z) and <(1/z) = <z̄/|z|2 = t�1c2(z), and
therefore

�

�

�

1
p

(2⇡z)d
exp(�|x|2/(2z))

�

�

�

=
1

p

(2⇡td/cd(z)
exp(�|x|2c2(z)/2t)

= c�d/2(z)kt/c2(z)(x).

The kernel on the right-hand side is positive and satisfies |kt(y)| > |kt(x)| if
|y| 6 |x|, and ˆ

Rd

c�d/2(z)kt/c2(z)(x) dx 6 1

cosd/2 ✓
.

It follows that the condition of Proposition 8.2.3 is satisfied, with constant
1/ cosd/2 ✓ instead of 1.

8.2.b Inequalities with Muckenhoupt weights

Many common operators of real and harmonic analysis are known to be
bounded on the weighted spaces Lp(w) := Lp(Rd, w), when w is a weight
in the Muckenhoupt class Ap. We refer the reader to Appendix J for a brief
introduction to these classes. In particular we recall that, by definition, a
weight w 2 L1

loc

(Rd) belongs to the Muckenhoupt Ap class if w(x) > 0 for
almost all x 2 Rd and
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[w]A
p

:= sup
Q

⇣

�
ˆ
Q
w(x) dx

⌘⇣

�
ˆ
Q
w1�p0

(x) dx
⌘p�1

< 1;

the supremum is taken over all (axes-parallel) cubes Q ✓ Rd. The Notes at
the end of the chapter provide a sample of the many Lp(w)-boundedness the-
orems for various classical operators. Such weighted bounds provide a powerful
tool for deducing R-boundedness (or, what is equivalent in this setting, `2-
boundedness) of operators on Lp(Rd). In fact, without additional effort, more
generally we also get `q-boundedness (see (8.1)), which is useful in various
applications.

Theorem 8.2.6. Let r 2 (1,1) and let �r : [1,1) ! [0,1) be a non-
decreasing function. Let T be a class of (not necessarily linear or even sub-
linear) operators simultaneously acting in Lr(w) for every w 2 Ar and such
that the inequality

kTfkLr

(w)

6 �r([w]A
r

)kfkLr

(w)

holds for all T 2 T , w 2 Ar and f 2 Lr(w). Then for all p 2 (1,1) and
w 2 Ap, every T 2 T is defined and bounded on Lp(w), and the family
T is `q-bounded on Lp(w) for all q 2 (1,1). Moreover, there exists a non-
decreasing function �pqr : [1,1) ! [0,1) such that

�

�

�

⇣

N
X

n=1

|Tnfn|q
⌘

1/q�
�

�

Lp

(w)

6 �pqr([w]A
p

)
�

�

�

⇣

N
X

n=1

|fn|q
⌘

1/q�
�

�

Lp

(w)

for all fn 2 Lp(w) and Tn 2 T .

Proof. That the action of T 2 T is automatically defined on f 2 Lp(w) for
w 2 Ap is immediate from Corollary J.2.6, which guarantees that such an f
also belongs to Lr(W ) for some W 2 Ar, and on this space the action of T is
defined by assumption.

Let us consider the pair of functions

(f, g) :=
⇣⇣

N
X

n=1

|fn|r
⌘

1/r
,
⇣

N
X

n=1

|Tnfn|r
⌘

1/r⌘

.

It is immediate from the assumption that

kgkLr

(w)

6 �r([w]A
r

)kfkLr

(w)

for all w 2 Ar.

Thus, Rubio de Francia’s extrapolation theorem (Theorem J.2.1) guarantees
that

kgkLp

(w)

6 �pr([w]A
p

)kfkLp

(w)

for all p 2 (1,1) and w 2 Ap,

which is the claimed conclusion in the special case that q = r. Specialising
further to N = 1, and writing q instead of p we find that we obtain an
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estimate similar to the assumption but with arbitrary q 2 (1,1) in place of
r. Repeating the same argument starting from this q, we obtain the claimed
conclusion for all p, q 2 (1,1). ⇤

Remark 8.2.7. By Muckenhoupt’s classical Theorem J.1.1, the Hardy–Little-
wood maximal operator M , and hence also the class TM defined in Proposition
8.2.1, satisfies the assumption, and therefore the conclusion, of Theorem 8.2.6.
Thus Proposition 8.2.1 and its corollaries in the previous subsection can also
be viewed as corollaries of Theorem 8.2.6.

8.2.c Characterisation by weighted inequalities in Lp

In the next two propositions we characterise `r-boundedness (see (8.1)) in
terms of weighted boundedness of a family of operators T ✓ L (Lp, Lq). The
proof works for non-linear operators and we will consider this setting below.
For r = 2 the results imply a characterisation of R-boundedness of families of
operators acting between Lp and Lq (see Theorem 8.2.11).

Proposition 8.2.8. Let (S
1

,A
1

, µ
1

) and (S
2

,A
2

, µ
2

) be �-finite measure
spaces and let 0 < r < p, q < 1. Let T be a family of (possibly non-linear)
mappings from Lp(µ

1

) into Lq(µ
2

) such that T (�f) = �T (f) for all f 2
Lp(µ

1

) and � > 0. For any constant C > 0 the following assertions are
equivalent:

(1) for all finite sequences (Tn)
N
n=1

in T and all (fn)Nn=1

in Lp(µ
1

) we have

�

�

�

⇣

N
X

n=1

|Tnfn|r
⌘

1/r�
�

�

Lq

(µ2)

6 C
�

�

�

⇣

N
X

n=1

|fn|r
⌘

1/r�
�

�

Lp

(µ1)

;

(2) for all non-negative w
2

2 Lq/(q�r)(µ
2

) there exists a non-negative weight
w

1

2 Lp/(p�r)(µ
1

) satisfying kw
1

kLp/(p�r)
(µ1)

6 kw
2

kLq/(q�r)
(µ2)

such that

kTfkLr

(w2µ2)
6 CkfkLr

(w1µ1)
, T 2 T , f 2 Lp(µ

1

). (8.2)

Note that by Hölder’s inequality we have continuous inclusions Lp(µ
1

) ✓
Lr(w

1

µ
1

) and Lq(µ
2

) ✓ Lr(w
1

µ
2

).
A corresponding result for 0 < p, q < r < 1 is stated in Proposition

8.2.10.
One of the main ingredients in the proof of Proposition 8.2.8 is a mini-max

lemma from real analysis (see the Notes for more information).

Lemma 8.2.9 (Mini-max Lemma). Let A and B be convex subsets of a
vector space V and a Hausdorff topological vector space W , respectively, and
assume that B is compact. Let � : A⇥B ! R[ {+1} be a function with the
following properties:

(i) for all b 2 B, �(·, b) is concave;
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(ii) for all a 2 A, �(a, ·) is convex and lower semi-continuous.

Then
min
b2B

sup
a2A

�(a, b) = sup
a2A

min
b2B

�(a, b) 6 0.

Proof of Proposition 8.2.8. (2))(1): Let f
1

, . . . , fn 2 Lp(µ
1

). By the Hahn-
Banach theorem we can find w

2

2 (Lq/r(µ
2

))⇤ = L
q

q�r (µ
2

) of norm one with
w

2

> 0 such that

⇣

ˆ
S2

⇣

N
X

n=1

|Tnfn|r
⌘q/r

dµ
2

⌘r/q
=

ˆ
S2

N
X

n=1

|Tnfn|r w2

dµ
2

.

Now let w
1

be as in assertion (2) of the proposition. By the assumption,

⇣

ˆ
S2

⇣

N
X

n=1

|Tnfn|r
⌘q/r

dµ
2

⌘r/q
=

N
X

n=1

ˆ
S2

|Tnfn|r w2

dµ
2

6 Cr
N
X

n=1

ˆ
S1

|fn|r w1

dµ
1

= Cr

ˆ
S1

N
X

n=1

|fn|r w1

dµ
1

6 Cr
⇣

ˆ
S1

⇣

N
X

n=1

|fn|r
⌘p/r

dµ
1

⌘r/p
,

where we used Hölder’s inequality with r
p + p�r

p = 1 and kw
1

kLp/(p�r)
(µ1)

6
kw

2

kLq/(q�r)
(µ2)

= 1. This proves (1).

(1))(2): It suffices to consider w
2

2 Lq/(q�r)(µ
2

) with w
2

> 0 and
kw

2

kLq/(q�r)
(µ1)

= 1. Let A ✓ Lp/r(µ
1

)⇥ Lq/r(µ
2

) be the set of pairs (a
1

, a
2

)
such that

a
1

=

N
X

n=1

|fn|r, a
2

=

N
X

n=1

|Tnfn|r,

with Tn 2 T and fn 2 Lp(µ
1

) for 1 6 n 6 N , where N may vary as well. Then
A is a convex set. Indeed, let (a

1

, a
2

) and (b
1

, b
2

) in A and let � 2 (0, 1). We can
write a

1

=
PN

n=1

|fn|r and b
1

=
PM

n=N+1

|fn|r and a
2

=
PN

n=1

|Tnfn|r and
b
2

=
PM

n=N+1

|Tnfn|r with fn 2 Lp(µ
1

) for all 1 6 n 6 N . Let gn = �1/rfn
for 1 6 n 6 N and gn = (1� �)1/rfn for N + 1 6 n 6 M . Clearly, we have

�a
1

+ (1� �)b
1

=

N
X

n=1

|gn|r and �a
2

+ (1� �)b
2

=

M
X

n=1

|Tngn|r.

and thus �(a
1

, a
2

)+ (1��)(b
1

, b
2

) is in A. Consider the following convex and
weakly compact set B of Lp/(p�r)(µ

1

):

B =
�

b 2 Lp/(p�r)(µ
1

) : b > 0, kbkLp/(p�r)
(µ1)

6 1
 

.
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Let � : A⇥B ! (�1,1] be given by

�(a, b) =

ˆ
S2

a
2

w
2

dµ
2

� Cr

ˆ
S1

a
1

b dµ
1

, a = (a
1

, a
2

).

For fixed b 2 B, �(·, b) is affine-linear and hence concave. Similarly, for each
a 2 A, �(a, ·) is linear and hence convex. Clearly, �(a, ·) is weakly continuous.

By the assumption and Hölder’s inequality one sees that for all a 2 A,

min
b2B

�(a, b) = min
b2B

h

ˆ
S2

N
X

n=1

|Tfn|rw2

dµ
2

� Cr

ˆ
S1

N
X

n=1

|fn|rb dµ1

i

6
�

�

�

N
X

n=1

|Tfn|r
�

�

�

Lq/r

(µ2)

� Cr
�

�

�

N
X

n=1

|fn|r
�

�

�

Lp/r

(µ1)

6 0.

It follows from the mini-max Lemma 8.2.9 that

min
b2B

sup
a2A

�(a, b) = sup
a2A

min
b2B

�(a, b) 6 0.

Hence can find a w
1

2 B such that for all a 2 A one has �(a,w
1

) 6 0. In
particular, considering a = (|f |r, |Tf |r) with f 2 Lp(µ

1

), we obtain (8.2). ⇤

The following version of Proposition 8.2.8 holds for p, q < r.

Proposition 8.2.10. Let (S
1

,A
1

, µ
1

) and (S
2

,A
2

, µ
2

) be �-finite measure
spaces and let 0 < p, q < r < 1. Let T be a family of (possibly non-
linear) mappings from Lp(µ

1

) into Lq(µ
2

) such that T (�f) = �T (f) for all
f 2 Lp(µ

1

) and � > 0. For any constant C > 0 the following assertions are
equivalent:

(1) for all finite sequences (Tn)
N
n=1

in T and all (fn)Nn=1

in Lp(µ
1

) we have

�

�

�

⇣

N
X

n=1

|Tnfn|r
⌘

1/r�
�

�

Lq

(µ2)

6 C
�

�

�

⇣

N
X

n=1

|fn|r
⌘

1/r�
�

�

Lp

(µ1)

;

(2) for all non-negative w
1

2 Lp/(r�p)(µ
1

) there exists a non-negative weight
w

2

2 Lq/(r�q)(µ
2

) satisfying kw
2

kLq/(r�q)
(µ2)

6 kw
1

kLp/(r�p)
(µ1)

such that

kTfkLr

(w�1
2 µ2)

6 CkfkLr

(w�1
1 µ1)

, T 2 T , f 2 Lr(w�1

1

µ
1

). (8.3)

In the above result it is understood that wi(s)�1 = 0 if wi(s) = 0, i = 1, 2.
Note that by Hölder’s inequality we have continuous inclusions Lr(w�1

1

µ
1

) ✓
Lp(µ

1

) and Lr(w�1

2

µ
2

) ✓ Lq(µ
2

).

Proof. Note that for every function f 2 L⇢(µi) with ⇢ 2 (0, 1) we have

kfkL⇢

(µ
i

)

= inf
v2V

⇢

ˆ
S
i

|f |v�1 dµi, (8.4)
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where V⇢ = {v > 0 and kvkL⇢/(1�⇢)
(µ

i

)

6 1} and the infimum is attained.
Indeed, the inequality ‘6’ of (8.4) follows from Hölder’s inequality, while ‘>’
follows by taking v = |f |1�⇢/kfk1�⇢L⇢

(µ1)

(2))(1): Let f
1

, . . . , fN 2 Lp(µ
1

) and set f := (
PN

n=1

|fn|r)1/r. By (8.4)
(applied, with ⇢ = p/r, to the function fr =

PN
n=1

|fn|r), there exists a weight
w

1

2 Vp/r of norm one such that

kfrkLp/r

(µ1)
=

ˆ
S1

|f |rw�1

1

dµ
1

.

Let w
2

be as in (2). Then kw
2

kLq/(r�q)
(µ2)

6 1 and it follows from (8.4)
(applied, with ⇢ = q/r, to the function

PN
n=1

|Tnfn|r), and the assumption in
(2) that

⇣

ˆ
S2

⇣

N
X

n=1

|Tnfn|r
⌘q/r

dµ
2

⌘r/q
6
ˆ
S2

N
X

n=1

|Tnfn|r w�1

2

dµ
2

6 Cr

ˆ
S1

N
X

n=1

|fn|r w�1

1

dµ
1

= Cr
⇣

ˆ
S1

⇣

N
X

n=1

|fn|r
⌘p/r

dµ
1

⌘r/p
.

(1))(2): It suffices to consider w
1

2 Lp/(r�p)(µ
1

) with w
1

> 0 and
kw

1

kLp/(r�p)
(µ1)

= 1.
Let A ✓ L1(w�1

1

µ
1

)⇥ Lq/r(µ
2

) be the set of pairs (a
1

, a
2

) such that

a
1

=

N
X

n=1

|fn|r, a
2

=

N
X

n=1

|Tnfn|r

with Tn 2 T and fn 2 Lr(w�1

1

µ
1

) ✓ Lp(µ
1

) for 1 6 n 6 N , where N may
vary as well. Then as in the proof of Proposition 8.2.8 we see that A is a
convex set. Consider the following convex and weakly compact set B:

B =
�

b 2 Lr/(r�q)(µ
2

) : b > 0, kbkLr/(r�q)
(µ2)

6 1
 

.

Let � : A⇥B ! (�1,1] be given by

�(a, b) =

ˆ
S2

a
2

b�q/r dµ
2

� Cr

ˆ
S1

a
1

w�1

1

dµ
1

, a = (a
1

, a
2

).

For fixed b 2 B, �(·, b) is linear and hence concave. On the other hand, since
x 7! x�q/r is convex, �(a, ·) is convex for each a 2 A.

We claim that �(a, ·) is weakly lower semi-continuous. Indeed, let r 2
[0,1). It suffices to show that Br = {b 2 B : �(a, b) 6 r} is weakly
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closed. Since Br is convex (by the convexity of x 7! x�q/r), it suffices to
show that Br is closed. Choose (bn)n>1

in Br such that limn!1 bn = b ex-
ists in Lr/r�q(µ

2

). We can find a subsequence such that limk!1 bn
k

= b
almost everywhere, hence b > 0, and it follows from Fatou’s lemma that
�(a, b) 6 lim infk!1 �(a, bn

k

) 6 r. Thus Br is closed and the claim follows.
By the assumption, (8.4) (noting that b 2 B implies bq/r 2 Vq/r), and

Hölder’s inequality one sees that for all a 2 A,

min
b2B

�(a, b) = min
b2B

h

ˆ
S2

N
X

n=1

|Tfn|rb�q/r dµ
2

� Cr

ˆ
S1

N
X

n=1

|fn|rw�1

1

dµ
1

i

6
�

�

�

N
X

n=1

|Tfn|r
�

�

�

Lq/r

(µ2)

� Cr
�

�

�

N
X

n=1

|fn|r
�

�

�

Lp/r

(µ1)

6 0.

It follows from the mini-max Lemma 8.2.9 that

min
b2B

sup
a2A

�(a, b) = sup
a2A

min
b2B

�(a, b) 6 0.

Hence there exists a b 2 B such that �(a, b) 6 0 for all a 2 A. In particular,
considering a = (|f |r, |Tf |r) with f 2 Lr(w�1

1

µ
1

), we obtain (8.3) with w
2

:=
bq/r. ut ⇤

Propositions 8.2.8 and 8.2.10 and Remark 8.1.4 immediately give the following
characterisation of R-boundedness of families of operators from Lp into Lq.

Theorem 8.2.11 (R-boundedness from Lp to Lq via weights). Let
(S

1

,A
1

, µ
1

) and (S
2

,A
2

, µ
2

) be measure spaces and let p, q 2 (1,1). Let T ✓
L (Lp(µ

1

), Lq(µ
2

)) be a family of linear operators. Then:

(1) if p, q 2 (2,1), the family T is R-bounded if and only if there exists
a constant C > 0 such that for every w

2

2 Lq/(q�2)(µ
2

) with w
2

> 0
there exists a w

1

2 Lp/(p�2)(µ
1

) with w
1

> 0 and kw
1

kLp/(p�2)
(µ2)

6
kw

2

kLq/(q�2)
(µ1)

such that

kTfkL2
(w2)

6 CkfkL2
(w1)

, T 2 T , f 2 L2(µ
1

); (8.5)

(2) if p, q 2 (1, 2), the family T is R-bounded if and only if there exists a
constant C > 0 such that for every weight w

1

2 Lp/(2�p)(µ
1

) with w
1

> 0
there exists a weight w

2

2 Lq/(2�q)(µ
2

) with w
2

> 0 and kw
2

kLq/(2�q)
(µ2)

6
kw

1

kLp/(2�p)
(µ1)

such that

kTfkL2
(w�1

2 )

6 CkfkL2
(w�1

1 )

, T 2 T , f 2 L2(w�1

1

µ
1

). (8.6)

If C 0 denotes the least admissible constant in (8.5) or (8.6), then for all 1 6
r < 1 we have

(p,22,q)
�1C 0 6 Rq,p(T ) 6 

2,pq,2C
0.
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8.3 Fourier multipliers and R-boundedness

A Fourier multiplier with symbol m 2 L1(Rd;L (X,Y )) is the operator

f 7! Tmf = (m bf)
b

,

initially defined on the space
b

L1(Rd;X) = {
b

g : g 2 L1(Rd;X)} of in-
verse Fourier transforms of L1(Rd;X)-functions, and mapping into

b

L1(Rd;Y ).
These operators have been studied in Chapter 5, where we addressed the basic
question of their Lp-boundedness, i.e., the a priori estimate

kTmfkLp

(Rd

;Y )

6 CkfkLp

(Rd

;X)

for all f 2
b

L1(Rd;X)\Lp(Rd;X) or a dense subspace thereof. This estimate,
when valid, permits the unique extension of Tm to a bounded linear operator
from Lp(Rd;X) to Lp(Rd;Y ).

This theory has intimate ties with R-boundedness. We already saw a
glimpse of this interplay in Chapter 5 where, among other things, the fol-
lowing implications were established (see Theorems 5.3.15 and 5.3.18):

{m(⇠), ⇠m0(⇠) : ⇠ 2 R} ✓ L (X,Y ) is R-bounded, and X,Y have UMD
) Tm : Lp(R;X) ! Lp(R;Y ) is bounded for p 2 (1,1)

) {m(⇠) : ⇠ 2 R Lebesgue-point of m} is R-bounded.

With the general theory of R-boundedness at hand, we now return to ex-
plore its further connections to Fourier multipliers. We begin with a new proof
of the first implication above, which uses R-boundedness in more systematic
way, leading not only to an essentially sharper form of the final result but also
to a number of intermediate R-boundedness estimates of independent interest.

8.3.a Multipliers of bounded variation on the line

The following R-boundedness result is fairly immediate. We denote by

�E := T1
E

(8.7)

the Fourier multiplier whose symbol is the indicator function of the set E.

Proposition 8.3.1. Let X be a UMD space and p 2 (1,1). Let J be the
collection of all intervals J ✓ R. Then

�J := {�J : J 2 J }

is R-bounded on Lp(R;X), and more precisely

Rp

�

�J : J 2 J } 6 ~p,X := kHkL (Lp

(R;X))

,

where H denotes the Hilbert transform.
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Proof. By Lemma 5.3.9 (or a direct verification by comparison of the corre-
sponding multipliers), when J is a finite interval, we have the representation

�J =
i

2

⇣

Ma
J

HM�a
J

�Mb
J

HM�b

⌘

,

where each Ma is the modulation operator Ma : f 7! eaf (where ea(t) :=
exp(2⇡iat)), and aJ and bJ are the left and right end-points of the interval
J . By Example 8.1.9, we have Rp({Ma : a 2 R}) = 1 on Lp(R;X), and
by Example 8.1.7 the singleton {H} has R-bound ~p,X on Lp(R;X). So a
version of the claim, where the R-bound is over all finite intervals, follows
from the sum and product rules of R-bounds. The general case follows since
�

(a,1)

f = limn!1�
(a,n)f and a similar result for �

(�1,b), by the stability
of R-boundedness under strong operator closure (Proposition 8.1.22). ⇤

Definition 8.3.2. Let S ✓ R and X be a normed space. A function f : S ! X
is said to have bounded variation if

kfk
˙V 1

(S;X)

:= sup
K>0

sup
t0,t1,...,tK2S
t0<t1<...<t

K

K
X

k=1

kf(tk�1

)� f(tk)k < 1.

For such functions we define

kfkV 1
(S;X)

:= kfk
˙V 1

(S;X)

+ sup
t2S

kf(t)k.

Lemma 8.3.3. Let I ✓ R be an interval and X a normed space. If f : I ! X
has bounded variation, then f has at most countably many points of disconti-
nuity.

Proof. Let us write

Jf(t) := lim sup
s!t

kf(s)� f(t)k.

Then f is discontinuous at t if and only if Jf(t) > 0. Let " > 0 and suppose
that there are K points x

0

< x
1

< . . . < xK�1

where Jf(xk) > ". Let
� := min

16k<K |xk�1

� xk|. By definition of Jf , we can find points yk 2
B(xk, �/2)\{xk} such that kf(xk)�f(yk)k > ". Denoting t

2k := min{xk, yk},
t
2k+1

:= max{xk, yk}, it then follows that (tk)2Kk=1

is an increasing sequence,
and

K" <
K�1

X

k=0

kf(xk)� f(yk)k =

K�1

X

k=0

kf(t
2k)� f(t

2k+1

)k

6
2K�1

X

k=1

kf(tk�1

)� f(tk)k 6 kfk
˙V 1

(I;X)

.
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This shows that K < "�1kfk
˙V 1

(I;X)

. In particular, for every n 2 Z
+

, there
are only finitely many points x where Jf(x) > n�1, and hence only countably
many points where Jf(x) > 0. This proves the lemma. ⇤

A bounded absolutely convex set T of a normed space Z gives rise to the
normed space

ZT := {z 2 Z : z 2 �T for some � > 0}

where the norm is given by the Minkowski functional

kzkT := inf{� > 0 : z 2 �T }.

In this situation, we will denote V̇ 1(S;ZT ) simply by V̇ 1(S;T ), and similarly
for the inhomogeneous version V 1. We are particularly concerned with the case
of an R-bounded set T ✓ L (X,Y ).

Theorem 8.3.4. Let X or Y (sic!) be a UMD space, and p 2 (1,1). Let
T ✓ L (X,Y ) be an absolutely convex, R-bounded set. Let J ✓ R be an
interval. Then every m 2 V 1(J ;T ) gives rise to a bounded operator Tm1

J

2
L (Lp(R;X), Lp(R;Y )), and moreover, for every M > 0,

Rp({Tm1
J

: kmkV 1
(J;T )

6 M, J 2 J }) 6 M min{~p,X , ~p,Y }Rp(T ).

In this inequality it is understood that ~p,Z = 1 if the Banach space Z fails
UMD.

Proof. Let J = (a, b) and let first m = m1J = m1

(a,b) 2 V 1(J ;T ) be a step
function,

m1J =

K
X

k=0

↵k1I
k

,

where I
0

= (a, a
0

), Ik = [ak�1

, ak) for k = 1, . . . ,K, and IK = [aK�1

, b) for
some �1 6 a < a

0

< a
1

< . . . < aK�1

< b 6 1. Denoting �j := ↵j � ↵j�1

for j > 1, we can rearrange

m1J =

K
X

k=0

⇣

↵
0

+

k
X

j=1

�j
⌘

1I
k

= ↵
0

1J +

K
X

j=1

�j

K
X

k=j

1I
k

= ↵
0

1J +

K
X

j=1

�j1
[a

j�1,b),

to see that

Tm1
J

�↵01J

=

K
X

j=1

�j�
[a

j

,b) =

K
X

j=1

k�jkT
�j

k�jkT
�

[a
j�1,b),
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where k↵
0

kT 6 kmkL1
(J;T )

and
PK

j=1

k�jkT 6 kmk
˙V 1

(J;T )

. Thus by Propo-
sitions 8.1.21, 8.1.19 and 8.3.1,

Tm1
J

2 M conv(T �J ) =: fT ,

and
Rp(fT ) 6 M min{~p,X , ~p,Y }Rp(T ) =: fM,

where the minimum comes from the fact that all T 2 T and �I 2 �J

commute, so that one can use the R-boundedness of �J on either Lp(R;X)
or Lp(R;Y ), and take the smaller of the resulting bounds.

For a general m in the set under consideration, we first consider approxi-
mating step functions m(k), where (say) m(k) takes the constant value m(inf I)
on all dyadic intervals I of length 2�k contained in [�2k, 2k)\J , and the con-
stant extension of this function in J \ [�2k, 2k). Then m(k)(⇠) ! m(⇠) at all
points of continuity of m, which is at almost every ⇠ 2 J by Lemma 8.3.3. For
f 2

b

L1(R;X), it follows from dominated convergence that

Tm1
J

f(x) =

ˆ
J
m(⇠) bf(⇠)ei2⇡⇠x d⇠ = lim

k!1
Tm(k)1

J

f(x),

where the multipliers m(k) have the form considered in the first part of the
proof.

We apply this observation to N functions fn 2 Lp(R;X)\
b

L1(R;X), mul-
tipliers mn and intervals Jn, and use Fatou’s lemma to deduce that

�

�

�

N
X

n=1

"nTm
n

1
J

n

fn
�

�

�

Lp

(R⇥⌦;Y )

6 lim inf
k!1

�

�

�

N
X

n=1

"nTm(k)
n

1
J

n

fn
�

�

�

Lp

(R⇥⌦;Y )

6 fM
�

�

�

N
X

n=1

"nfn
�

�

�

Lp

(R⇥⌦;X)

,

by the case of step functions already considered. By density, this proves in
particular the boundedness of each Tm1

J

, and then also the R-boundedness
of the full collection, as stated. ⇤

Example 8.3.5 (R-analyticity of the Poisson semigroup). The Poisson semi-
group (Pt)t>0

on Lp(R;X) can be defined as the Fourier multiplier corre-
sponding to the symbol mt(⇠) = e�2⇡t|⇠|. In this formalism it admits a natu-
ral extension (Pz)| arg z|<⇡/2, simply by replacing t by z in the formula for the
multiplier. With Theorem 8.3.4, it is not difficult to check that (Pz)| arg z|6✓
is R-bounded on Lp(R;X) when p 2 (1,1), X is a UMD space, and ✓ < ⇡/2.

Indeed, writing z = u+ iv, we clearly have |mz(⇠)| = e�2⇡u|⇠| 6 1, and

kmzk ˙V 1
(R;C) 6

ˆ
R
|m0

z(⇠)| d⇠ =
ˆ
R
2⇡|z|e�2⇡u|⇠| d⇠ = 2

|z|
u

6 2

cos ✓
.
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Thus

Rp({Pz}| arg z|6✓) 6 ~p,X sup
| arg z|6✓

kmzkV 1
(R;C) 6 ~p,X

⇣

1 +
2

cos ✓

⌘

.

Example 8.3.6 (R-analyticity of the heat semigroup revisited). Similar consid-
erations as in Example 8.3.5 also apply to the heat semigroup (Ht)t>0

defined
by the multiplier mt(⇠) = e�t(2⇡)2|⇠|2 and its analytic extension (see also
Example 8.2.5). Essentially the same computations give case d = 1 of the
following bound for | arg(z)| < ✓ < ⇡/2:

Rp

��

Hz 2 L (Lp(Rd;X))
 

| arg z|6✓
�

6 ~dp,X
⇣

1 +
2

cos ✓

⌘d
.

The general case follows by observing that the heat semigroup on Lp(Rd;X)
is a product of one-dimensional heat semigroups in each coordinate direction.

Lemma 8.3.7. If f 2 V 1(I;X) and � 2 V 1(I;K) =: V 1(I), then �f 2
V 1(I;X) and

k�fkV 1
(I;X)

6 k�kV 1
(I)kfkV 1

(I;X)

.

Proof. We have
K
X

k=1

k(�f)(tk)� (�f)(tk�1

)k

=

K
X

k=1

k(�(tk)� �(tk�1

)
�

f(tk) + �(tk�1

)(f(tk)� f(tk�1

)
�

k

6 k�k
˙V 1

(I)kfk1 + k�k1kfk
˙V 1

(I;X)

.

Hence

k�fkV 1
(I;X)

= k�fk1 + k�fk
˙V 1

(I;X)

6 k�k1kfk1 + k�k
˙V 1

(I)kfk1 + k�k1kfk
˙V 1

(I;X)

6
�

k�k1 + k�k
˙V 1

(I)

��

kfk1 + kfk
˙V 1

(I;X)

�

= k�kV 1
(I)kfkV 1

(I;X)

.

⇤

While the variation norm k kV 1 is reasonably workable in this one-dimensional
setting, we record its domination by the following related quantities, which
become more essential in the higher-dimensional extensions:

Lemma 8.3.8. For all f 2 C1(I;X) we have

kfkV 1
(I;X)

6 sup
t2I

kf(t)k +

ˆ
I
kf 0(t)k dt =: kfkV 1

(I;X)

6 sup
t2I

kf(t)k + |I| sup
t2I

kf 0(t)k =: kfkV 1
1(I;X)

.

Proof. This is immediate. ⇤
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8.3.b The Marcinkiewicz multiplier theorem on the line

The following theorem is the most important result concerning Fourier multi-
pliers on Lp(R;X). A somewhat weaker version, together with several appli-
cations, was already presented in Chapter 5.

Theorem 8.3.9 (Marcinkiewicz multiplier theorem). Let X and Y be
UMD spaces, p 2 (1,1), and T ✓ L (X,Y ) be R-bounded. Let m : R !
L (X,Y ) have uniformly T -bounded variation over the intervals

I 2 I :=
�

(2k, 2k+1), (�2k+1,�2k) : k 2 Z
 

,

in the sense that
M := sup

I2I
kmkV 1

(I;T )

< 1.

Then m defines a Fourier multiplier from Lp(R;X) to Lp(R;Y ) with norm

kTmkL (Lp

(R;X),Lp

(R;Y ))

6 100 · �p,X�p,Y min{~p,X , ~p,Y }M.

The proof will follow the general outline of the proof of Mihlin’s multiplier
theorem 5.3.18, but using the results above as a substitute of some auxiliary
estimates in the said proof. The computation will make decisive use of the
auxiliary Littlewood–Paley functions

�I(x) := 2|I| · �(2|I|x), b�(⇠) :=
sin4( 1

2

⇡⇠)

( 1
2

⇡⇠)2
(8.8)

introduced and studied in Chapter 5. We record two facts about these func-
tions proved there: First, we have the Littlewood–Paley type inequality

�

�

�

X

I2I±

"I�I ⇤ f
�

�

�

Lp

(R⇥⌦;X)

6 �+

p,XkfkLp

(R;X)

,

I± := {I 2 I : I ✓ R±}
(8.9)

proved in Lemma 5.3.22, which is a key point where the UMD property enters
into the estimate. Second, there is the variation norm estimate:

Lemma 8.3.10. We have
�

�

�

1

b�I

�

�

�

V 1
1(I;R)

6 6.

Proof. By definition and a simple change of variable in (8.8), we have
�

�

�

1

b�I

�

�

�

V 1
1(I;R)

= sup
⇠2I

1

|b�I(⇠)|
+ |I| sup

⇠2I

�

�

�

⇣ 1

b�I

⌘0
(⇠)

�

�

�

= sup
⇠2[

1
2 ,1]

1

|b�(⇠)|
+

1

2
sup

⇠2[

1
2 ,1]

�

�

�

⇣ 1

b�

⌘0
(⇠)

�

�

�
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6 ⇡2

4
+

1

2
· 2⇡ < 6,

where the penultimate estimate was made in Lemma 5.3.23. ⇤

Proof of Theorem 8.3.9. Let us fix a function f 2 S (R;X) ✓
b

L1(R;X), so
that Tmf 2

b

L1(R;Y ). We will estimate its Lp(R;Y )-norm by dualising with
g 2 S (R;Y ⇤), a norming subspace of the dual space. Using the basic proper-
ties of the Fourier transform, we compute:

|hTmf, gi| = |hm bf,
b

gi| =
�

�

�

X

I2I

h1Im bf,
b

gi
�

�

�

=
�

�

�

X

�2{�,+}

X

I2I
�

h 1Im

b�I

b

�I

b�I
bf,

b

�I

b

gi
�

�

�

, I� := {I 2 I : I ✓ R�},

=
�

�

�

X

�2{�,+}

E
D

X

I2I
�

"ImI
b�I
bf,
X

I2I
�

"̄I

b

�I

b

g
E

�

�

�

, mI :=
1Im

b�I

b

�I

,

=
�

�

�

X

�2{�,+}

E
D

X

I2I
�

"ITm
I

(�I ⇤ f),
X

I2I
�

"̄I�I ⇤ g
E

�

�

�

6
X

�2{�,+}

�

�

�

X

I2I
�

"ITm
I

(�I ⇤ f)
�

�

�

Lp

(R⇥⌦;Y )

�

�

�

X

I2I
�

"̄I�I ⇤ g
�

�

�

Lp

0
(R⇥⌦;Y ⇤

)

6
X

�2{�,+}

sup
I2I

kmIkV 1
(I;T )

Rp(T )min{~p,X , ~p,Y }

⇥
�

�

�

X

I2I
�

"I�I ⇤ f
�

�

�

Lp

(R⇥⌦;X)

�

�

�

X

I2I
�

"̄I�I ⇤ g
�

�

�

Lp

0
(R⇥⌦;Y ⇤

)

by Theorem 8.3.4

6
X

�2{�,+}

sup
I2I

kmIkV 1
(I;T )

Rp(T )min{~p,X , ~p,Y }

⇥ �+

p,XkfkLp

(R;X)

· �+

p0,Y ⇤kgkLp

0
(R;Y ⇤

)

by (8.9) both in Lp(R;X) and in Lp0
(R;Y ⇤).

This is a bound of the asserted form, except for the quantities kmIkV 1
(I;T )

in place of kmkV 1
(I;T )

. But

kmIkV 1
(I;T )

=
�

�

�

m

b�I

b

�I

�

�

�

V 1
(I;T )

6
�

�

�

1

b�I

�

�

�

2

V 1
1(I;R)

kmkV 1
(I;T )

6 62kmkV 1
(I;T )

by Lemmas 8.3.7 and 8.3.8 in the second to last step, and Lemma 8.3.10 in
the last one. Hence

kTmkL (Lp

(R;X),Lp

(R;Y )

6
X

�2{�,+}

sup
I2I

kmIkV 1
(I;T )

Rp(T )min{~p,X , ~p,Y }�+

p,X�
+

p0,Y ⇤
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6 2 sup
I2I

(62kmkV 1
(I;T )

)Rp(T )min{~p,X , ~p,Y }�+

p,X�
+

p0,Y ⇤ ,

which is the asserted bound, after estimating 2 · 62 < 100 and �+

p,X 6 �p,X ,
�+

p0,Y ⇤ 6 �p0,Y ⇤ = �p,Y . ⇤

As an immediate corollary we obtain the following result, also contained (aside
from an unimportant numerical factor) in Theorem 5.3.18:

Corollary 8.3.11 (Mihlin’s multiplier theorem). Let X and Y be UMD
spaces, and p 2 (1,1). Let m 2 C1(R \ {0};L (X,Y )) satisfy

M := Rp

��

m(⇠), ⇠m0(⇠) : ⇠ 2 R \ {0}
 �

< 1.

Then m defines a Fourier multiplier from Lp(R;X) to Lp(R;Y ) with norm

kTmkL (Lp

(R;X),Lp

(R;Y ))

6 200 · �p,X�p,Y min{~p,X , ~p,Y }M.

Proof. Let T be the closure of the absolute convex hull of {m(⇠), {|⇠|m0(⇠) :
⇠ 2 R \ {0}}. For I 2 I , we have

kmk
˙V 1

(I;T )

6
ˆ
I
km0(⇠)kT d⇠ 6

ˆ
I

1

|⇠| d⇠ = log 2.

Thus

kmkV 1
(I;T )

= sup
⇠2I

km(⇠)kT + kmk
˙V 1

(I;T )

6 1 + log 2 < 2.

By Theorem 8.3.9, we have

kTmkL (Lp

(R;X),Lp

(R;Y ))

6 100 · �p,X�p,Y min{~p,X , ~p,Y } sup
I2I

kmkV 1
(I;T )

Rp(T )

6 100 · �p,X�p,Y min{~p,X , ~p,Y } · 2 ·M,

as claimed. ⇤

Under the additional assumption of Pisier’s contraction property, R-bound-
edness also appears as a conclusion on large classes of the operators Tm them-
selves. This stronger assumption is also necessary for this kind of conclusions,
as we show in Proposition 8.3.24 below.

Theorem 8.3.12 (Venni). Let X and Y be UMD spaces with Pisier’s con-
traction property. Let p 2 (1,1) and T ✓ L (X,Y ) be an R-bounded set. Let
MT ✓ C1(R \ {0};L (X,Y )) be the collection of all multipliers that satisfy

�

m(⇠), ⇠m0(⇠) : ⇠ 2 R \ {0}
 

✓ T .

Then {Tm : m 2 MT } ✓ L (Lp(R;X), Lp(R;Y )) is R-bounded, and in fact

Rp({Tm : m 2 MT }) 6 200 · ↵+

p,X↵
�
p,Y �p,X�p,Y min{~p,X , ~p,Y }Rp(T ).
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Proof. By Proposition 8.1.17 it suffices to prove a uniform bound for the
diagonal operators (Tm

n

)Nn=1

acting from "pN (Lp(R;X)) ' Lp(R; "pN (X)) to
"pN (Lp(R;Y )) ' Lp(R; "pN (Y )), where the identifications of the spaces are
isometric. Under these identifications, we observe that (Tm

n

)Nn=1

coincides
with the Fourier multiplier Tem with diagonal-operator-valued symbol em(⇠) =
(mn(⇠))Nn=1

2 L ("pN (X), "pN (Y )).
Since mn(⇠), ⇠m0

n(⇠) 2 T for each n, it follows that em(⇠), ⇠ em0(⇠) 2 fTN ,
where fTN is defined in Proposition 8.1.18. The aforementioned proposition
guarantees that Rp(fTN ) 6 ↵+

p,X↵
�
p,Y Rp(T ). Thus the multiplier em is in the

scope of Corollary 8.3.11 with X and Y replaced by "pN (X) and "pN (Y ), and
M 6 ↵+

p,X↵
�
p,Y Rp(T ). Since, by Fubini’s theorem,

�p,"p
N

(X)

= �p,X , ~p,"p
N

(X)

= ~p,X ,

and likewise for Y in place of X, the claim of the theorem follows from Corol-
lary 8.3.11 via the said identifications. ⇤

8.3.c Multipliers of bounded rectangular variation

We now turn to an extension of the results of the previous sections to several
variables. The theory is unfortunately burdened by somewhat heavy nota-
tion, but the patient reader will hopefully be rewarded by a reasonably clean
formulation of the main theorems in the following subsection.

The analogue of Proposition 8.3.1 is fairly immediate:

Lemma 8.3.13. Let J d be the collection of all axes-parallel rectangles in Rd,
i.e., rectangles which are products of intervals in each coordinate. Then

Rp

�

�R 2 L (Lp(Rd;X)) : R 2 J d
 

6 ~dp,X .

Proof. By Fubini’s theorem, if m is a Fourier multiplier for Lp(R;X), then
⇠ 7! m(⇠i) is a Fourier multiplier for Lp(Rd;X) for any i = 1, . . . , d. So using
1I1⇥...⇥I

d

(⇠) = 1I1(⇠1) · · ·1I
d

(⇠n), the lemma is an immediate corollary of the
one-dimensional case (Proposition 8.3.1) and the product rule for R-bounds
(Proposition 8.1.19). ⇤

In order to define a workable version of bounded variation in several variables,
we need to introduce some notation. For a function ↵ defined on the integer
lattice Zd, we denote

�i↵(k) := ↵(k)� ↵(k � ei)

and, for � 2 {0, 1}d,
�� :=

Y

i:�
i

=1

�i.
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For a set X , we let X � := X |�| as a set, but we index the components of
x 2 X � by the positions of the non-zero components of �, e.g., if � = (0, 1, 1),
then a typical element of X � is written as x� = (x

2

, x
3

). In particular, we
denote by 0� the vector of |�| zeros.

Writing 1 := (1, 1, . . . , 1) (d times) we will frequently split X d =
X 1�� ⇥ X � , leading to a representation of a generic element x 2 X d as
x = (x1�� , x�). If d = 3 and � = (0, 1, 1), we have 1 � � = (1, 0, 0), and
x = (x1�� , x�) = (x

1

, (x
2

, x
3

))

Definition 8.3.14. Let R = I
1

⇥ · · · ⇥ Id ✓ Rd be a rectangle, and X be a
normed space. A function f : R ! X is said to have bounded rectangular
variation, if

kfkV 1
(R;X)

:= sup
�

X

�2{0,1}d

X

j
�

2N�

0

�

<j
�

6K
�

k��(f � �)(01�� , j�)k < 1,

where the supremum is over all finite rectangular lattices, interpreted as map-
pings

� = (�
1

, . . . ,�d), �i : {0, 1, . . . ,Ki} ! Ii increasing,

where the lattice size K = (K
1

, . . . ,Kd) 2 Zd
+

is also arbitrary.
We denote by eV 1(R;X) the space of all f 2 V 1(R;X) that are continuous

at almost every point of R.

Proposition 8.3.15. Let X or Y (sic!) be a UMD space, and p 2 (1,1).
Let T ✓ L (X,Y ) be a closed, absolutely convex, R-bounded set. Then all
m 2 eV 1(R;T ), with R a rectangle in Rd, give rise to

Tm1
R

2 L (Lp(Rd;X), Lp(Rd;Y )),

and moreover

Rp({Tm1
R

: m 2 eV 1(R;T ), kmkV 1
(R;T )

6 M, R 2 J d})
6 M min{~p,X , ~p,Y }dRp(T ).

Proof. Let first m 2 V 1(R;T ), and then also m1R, be a step function

m1R =
X

k2Nd

k6K

↵(k)1R
k

,

where Rk = I1k1
⇥ · · ·⇥Idk

d

, Ii
0

= (ai, ai
0

), Iik
i

= [aik
i

�1

, aik
i

) for ki = 1, . . . ,Ki�
1, and IiK

i

= [aiK
i

�1

, bi) for some �1 6 ai < ai
0

< ai
1

< . . . < aiK
i

�1

< bi 6
1, for i = 1, . . . , d.

We write
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↵(k) =
X

�2{0,1}d

X

j
�

2N�

0

�

<j
�

6k
�

��↵(01�� , j�),

m1R =
X

�2{0,1}d

X

j
�

2N�

0

�

<j
�

6K
�

��↵(01�� , j�)
X

k2Nd

j
�

6k
�

;k6K

1R
k

.

Here the last sum is the indicator of some S�,j
�

2 J d, while
X

�2{0,1}d

X

j
�

2N�

0

�

<j
�

6K
�

k��↵(01�� , j�)kT 6 kmkV 1
(R;T )

6 M

by definition of rectangular variation. Thus

Tm1
R

=
X

�2{0,1}d

X

j
�

2N�

0

�

<j
�

6K
�

��↵(01�� , j�)�S
�,j

�

2 M conv(T �J d) =: fT

for all such multipliers m, where

Rp(fT ) 6 M min{~p,X , ~p,Y }dRp(T ) =: fM.

The minimum comes from the fact that all T 2 T and �S 2 �J d com-
mute, so that one can use the R-boundedness of �J d on either Lp(Rd;X) or
Lp(Rd;Y ), and take the smaller of the resulting bounds.

For a general m 2 eV 1(R;T ) in the set under consideration, we first con-
sider approximating step functions m(k) defined as follows: On each dyadic
cubes Q of side-length 2�k and contained in R(k) := [�2k, 2k)d \R, the func-
tion m(k) takes the constant value m(aQ), where Q = aQ + 2�k[0, 1)d. On all
other dyadic cubes Q of the same side-length, m(k) takes the constant value
m(aQ0), where aQ0 is nearest to aQ among the those Q0 contained in R(k).

It follows that m(k)(⇠) ! m(⇠) at all points of continuity of m, which is
almost everywhere on R for m 2 eV 1(R;X). For f 2

b

L1(Rd;X), it follows from
dominated convergence that

Tm1
R

f(x) =

ˆ
R
m(⇠) bf(⇠)ei2⇡⇠x d⇠ = lim

k!1
Tm(k)1

R

f(x),

where the multipliers m(k) have the form considered in the first part of the
proof.

We apply this observation to N functions fn 2 Lp(Rd;X) \
b

L1(Rd;X),
multipliers mn and rectangles Rn, and use Fatou’s lemma to deduce that

�

�

�

N
X

n=1

"nTm
n

1
R

n

fn
�

�

�

Lp

(Rd⇥⌦;Y )

6 lim inf
k!1

�

�

�

N
X

n=1

"nTm(k)
n

1
R

n

fn
�

�

�

Lp

(Rd⇥⌦;Y )
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6 fM
�

�

�

N
X

n=1

"nfn
�

�

�

Lp

(Rd⇥⌦;X)

by the case of step functions already considered. By density, this proves in
particular the boundedness of each Tm1

R

, and then also the R-boundedness
of the full collection, as stated. ⇤

We provide the following workable condition for estimating the rectangular
variation of a function:

Lemma 8.3.16. Under the above assumptions,

kfkV 1
(R;X)

6
X

�2{0,1}d

sup
⇠2R1��

ˆ
R

�

k@�f(⇠)k d⇠� =: kfkV 1
(R;X)

6
X

�2{0,1}d

|R� | sup
⇠2R

k@�fk =: kfkV 1
1(R;X)

,

where |R� | is the |�|-dimensional Lebesgue measure of R� (interpreted as 1
for � = 0).

Proof. The second estimate is obvious. The first one depends on the basic
identity

��↵(j) =

ˆ
(j�1,j)

�

@�↵(⇠) d⇠� ,

which reduces to the fundamental theorem of calculus for |�| = 1, and can be
checked by induction on |�| in the general case.

Thus, turning to the expression appearing in the formula of kfkV 1
(R;X)

,
X

j
�

2N�

0

�

<j
�

6K
�

k��(f � �)(01�� , j�)k

6
X

j
�

2N�

0

�

<j
�

6K
�

ˆ
(�(j�1),�(j))

�

k(��f)(�1��(01��), ⇠�)k d⇠�

6
ˆ
R

�

k(��f)(�1��(01��), ⇠�)k d⇠�

6 sup
⇠1��

2R1��

ˆ
R

�

k(��f)(⇠)k d⇠� .

Summing over � 2 {0, 1}d and taking the supremum over the rectangular
lattices � proves the lemma. ⇤
Lemma 8.3.17. Let f 2 V 1(R;X) and � 2 V 1

1(R;K) =: V 1

1(R). Then
�f 2 V 1(R;X) and

k�fkV 1
(R;X)

6 k�kV 1
1(R)

kfkV 1
(R;X)

.
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Proof. Let us denote c� := |R� |k@��k1. We have

@�(�f) =
X

�6�
@����@�f,

hence ˆ
R

�

k@�(�f)(⇠)k d⇠� 6
X

�6�

ˆ
R

���

ˆ
R

�

c���
|R��� |

k@�fk d⇠� d⇠���

6
X

�6�
c��� sup

⇠2R
���

ˆ
R

�

k@�fk d⇠� ,

and thus

k�fkV 1
(R;X)

=
X

�2{0,1}d

sup
⇠1��

2R1��

ˆ
R

�

k@�(�f)(⇠)k d⇠�

6
X

�2{0,1}d

X

�6�
c��� sup

⇠1��

2R1��

sup
⇠
���

2R
���

ˆ
R

�

k@�fk d⇠�

=
X

�2{0,1}d

X

�>�
c��� sup

⇠1��

2R1��

ˆ
R

�

k@�fk d⇠� ,

where
X

�>�
c��� 6

X

�2{0,1}d

c� = k�kV 1
1(R)

, and the remaining terms are

bounded by kfkV 1
(R;X)

. ⇤
Lemma 8.3.18. For a function of the product form � =

Qd
i=1

�(i), where
�(i)(x) = �(i)(xi), we have

k�kV 1
1(R)

=

d
Y

i=1

k�(i)kV 1
1(I

i

)

, R = I
1

⇥ · · ·⇥ Id.

Proof. We have

@��(⇠) =
⇣

Y

i:�
i

=1

(�(i))0(⇠i)
⌘⇣

Y

i:�
i

=0

�(i)(⇠i)
⌘

, |R� | =
Y

i:�
i

=1

|Ii|,

and hence

|R� |k@��kL1
(R)

=
⇣

Y

i:�
i

=1

|Ii|k(�(i))kL1
(I

i

)

⌘⇣

Y

i:�
i

=0

k�(i)kL1
(I

i

)

⌘

.

Summing over � 2 {0, 1}d,

k�kV 1
1(R)

=
X

�2{0,1}d

|R� |k@��kL1
(R)

=

d
Y

i=1

⇣

k�(i)kL1
(I

i

)

+ |Ii|k(�(i))kL1
(I

i

)

⌘

=

d
Y

i=1

k�(i)kV 1
1(I

i

)

.

⇤



8.3 Fourier multipliers and R-boundedness 205

8.3.d The product-space multiplier theorem

Broadly speaking, product-space theory (also known as multi-parameter the-
ory) on Rd refers to the explicit interpretation of this space as R⇥ · · ·⇥R (d
times), or sometimes more generally as Rd1 ⇥ · · ·⇥Rd

N (d
1

+ . . .+dN = d), in
such a way that the objects under consideration are allowed to behave some-
what independently in all the different coordinate directions. In the specific
context of Fourier multipliers, we are interested in multiplier classes that are
preserved by multi-parameter dilations of the form

m 7! m
(�1,...,�d

)

, m
(�1,...,�d

)

(⇠) := m(�
1

⇠
1

, . . . ,�d⇠d),

rather than just the isotropic one parameter dilations corresponding to the
case �

1

= . . . = �d = �. The main result concerning product-space Fourier
multipliers reads as follows:

Theorem 8.3.19 (Marcinkiewicz multiplier theorem in Rd). Let X
and Y be UMD spaces with Pisier’s contraction property, p 2 (1,1), and
T ✓ L (X,Y ) be R-bounded. Let m : R ! L (X,Y ) have uniformly T -
bounded variation over the rectangles

R 2 I d :=
�

(2k, 2k+1), (�2k+1,�2k) : k 2 Z
 d

,

in the sense that
M := sup

R2I d

kmkV 1
(R;T )

< 1.

Then m defines a Fourier multiplier from Lp(R;X) to Lp(R;Y ) with norm

kTmkL (Lp

(Rd

;X),Lp

(Rd

;Y ))

6
�

100�p,X�p,Y min{~p,X , ~p,Y }
�d�

↵�
p,Y ↵

+

p,X

�d�1

Rp(T )M.

For R = I
1

⇥ · · ·⇥ Id 2 I d, we define the function

�R :=

d
Y

i=1

�(i)
I
i

, �(i)
I
i

(x) := �I
i

(xi),

where the one-variable functions �I
i

are those defined in (8.8). Let also

"R :=

d
Y

i=1

"(i)I
i

be a product of independent Rademacher variables "(i)I
i

, where we assume that
"(i)I

i

is defined on the ith factor of a product probability space ⌦d.
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Lemma 8.3.20. For each � = (�
1

, . . . ,�d) 2 {�,+}d, we have
�

�

�

X

R2I d

�

"R�R ⇤ f
�

�

�

Lp

(Rd⇥⌦d

;X)

6 (�+

p,X)dkfkLp

(Rd

;X)

,

I d
� := I�1 ⇥ · · ·⇥ I�

d

.

Proof. The expression on the right splits into a product form:
X

R2I d

�

"(1)I1
· · · "(d)I

d

�R ⇤ f =
⇣

X

I12I

"(1)I1
�(1)

I1

⌘

⇤
1

· · ·
⇣

X

I
d

2I

"(d)I
d

�(d)
I
d

⌘

⇤d f,

where ⇤i is the convolution with respect to the xi variable only. By (8.9),
each of the factors (

P

I
i

2I "(i)I
i

�(i)
I
i

)⇤i maps Lp(R;X) (of the xi variable) into
Lp(R⇥⌦;X) with norm at most �+

p,X ; a d-fold application of this observation
together with Fubini’s theorem proves the claim. ⇤

Lemma 8.3.21.
�

�

�

1

b�R

�

�

�

V 1
1(R)

6 6d.

Proof. Since the function to be estimated takes the product form

1

b�R(⇠)
=

d
Y

i=1

1

b�I
i

(⇠i)
, R = I

1

⇥ · · ·⇥ Id,

Lemma 8.3.18 applies and gives the identity

�

�

�

1

b�R

�

�

�

V 1
1(R)

=
d
Y

i=1

�

�

�

1

b�I
i

�

�

�

V 1
1(I

i

)

,

and the asserted bound for the right-hand side follows at once from Lemma
8.3.10. ⇤

Proof of Theorem 8.3.19. We follow the proof of Theorem 8.3.9 with minor
modifications. Let us fix a function f 2 S (Rd;X) ✓

b

L1(Rd;X), so that
Tmf 2

b

L1(Rd;Y ). We will estimate its Lp(Rd;Y )-norm by dualising with g 2
S (Rd;Y ⇤), a norming subspace of the dual space. Using the basic properties
of the Fourier transform, we compute:

|hTmf, gi| = |hm bf,
b

gi| =
�

�

�

X

R2I d

h1Rm bf,
b

gi
�

�

�

=
�

�

�

X

�2{±}d

X

R2I d

�

h 1Rm

b�R

b

�R

b�R
bf,

b

�R

b

gi
�

�

�

=
�

�

�

X

�2{±}d

E
D

X

R2I d

�

"RmR
b�R

bf,
X

R2I d

�

"̄R

b

�R

b

g
E

�

�

�

, mR :=
1Rm

b�R

b

�R

,
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=
�

�

�

X

�2{±}d

E
D

X

R2I d

�

"RTm
R

(�R ⇤ f),
X

R2I d

�

"̄R�R ⇤ g
E

�

�

�

6
X

�2{±}d

�

�

�

X

R2I d

�

"RTm
R

(�R ⇤ f)
�

�

�

Lp

(Rd⇥⌦d

;Y )

�

�

�

X

R2I d

�

"̄R�R ⇤ g
�

�

�

Lp

0
(Rd⇥⌦d

;Y ⇤
)

,

where
�

�

�

X

R2I d

�

"̄R�R ⇤ g
�

�

�

Lp

0
(Rd⇥⌦d

;Y ⇤
)

6 (�p0,Y ⇤)dkgkLp

0
(Rd

;Y ⇤
)

by Lemma 8.3.20. For the factor involving the multipliers Tm
R

, we first apply
the contraction property and then Proposition 8.3.15 to arrive at

�

�

�

X

R2I d

�

"RTm
R

(�R ⇤ f)
�

�

�

Lp

(Rd⇥⌦d

;Y )

6 (↵�
p,Y )

d�1

�

�

�

X

R2I d

�

"RTm
R

(�R ⇤ f)
�

�

�

Lp

(Rd⇥⌦;Y )

6 (↵�
p,Y )

d�1 sup
R2I d

kmRkV 1
(R;T )

Rp(T )min{~p,X , ~p,Y }d

⇥
�

�

�

X

R2I d

�

"R�R ⇤ f
�

�

�

Lp

(Rd⇥⌦;X)

.

Another application of the contraction property, followed by Lemma 8.3.20,
gives

�

�

�

X

R2I d

�

"R�R ⇤ f
�

�

�

Lp

(Rd⇥⌦;X)

6 (↵+

p,X)d�1

�

�

�

X

R2I d

�

"R�R ⇤ f
�

�

�

Lp

(Rd⇥⌦d

;X)

6 (↵+

p,X)d�1(�p,X)dkfkLp

(Rd

;X)

.

It remains to estimate

kmRkV 1
(R;T )

6
�

�

�

m

b�R

b

�R

�

�

�

V 1
(I;T )

6
�

�

�

1

b�R

�

�

�

2

V 1
1(R)

kmkV 1
(R;T )

6 (6d)2kmkV 1
(R;T )

by Lemma 8.3.21 in the last step. Putting together all the estimates, observing
a factor 2d from the sum

P

�2{±}d

, and estimating 2d ·(6d)2 = (2·62)d < 100d,
we obtain the asserted bound. ⇤

Corollary 8.3.22 (Lizorkin’s multiplier theorem). Let X and Y be
UMD spaces with Pisier’s contraction property and p 2 (1,1). Consider an
operator-valued function m 2 Cd((R \ {0})d;L (X,Y )) such that

M := Rp

��

⇠�@�m(⇠) : ⇠ 2 (R \ {0})d,� 2 {0, 1}d
 �

< 1.

Then m defines a Fourier multiplier from Lp(Rd;X) to Lp(Rd;Y ) of norm
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kTmkL (Lp

(Rd

;X),Lp

(Rd

;Y ))

6
�

200�p,X�p,Y min{~p,X , ~p,Y }
�d�

↵�
p,Y ↵

+

p,X

�d�1

M.

Proof. Let T be the closure of the convex hull of
�

⇠�@�m(⇠) : ⇠ 2 (R \
{0})d,� 2 {0, 1}d

 

, which is R-bounded with the same Rp-bound M . Then

k1RmkV 1
(R;T )

6 k1RmkV 1
1(R;T )

=
X

�2{0,1}d

|R� | sup
⇠2R

k@�m(⇠)kT 6
X

�2{0,1}d

|R� | sup
⇠2R

|⇠�� |

=
X

�2{0,1}d

Y

i:�
i

=1

|Ii| sup
⇠
i

2I
i

|⇠�1

i | =
X

�2{0,1}d

1 = 2d,

where we used the basic property of the intervals Ii 2 I that dist(Ii, 0) = |Ii|
in the penultimate step. Substituting this and Rp(T ) = M into the conclusion
of Theorem 8.3.9, we get the claim of the corollary. ⇤

The higher-dimensional analogue of Theorem 8.3.12 is now immediate:

Corollary 8.3.23. Let X and Y be UMD spaces with Pisier’s contraction
property. Let p 2 (1,1) and T ✓ L (X,Y ) be an R-bounded set. Let MT ✓
Cd((R \ {0})d;L (X,Y )) be the collection of all multipliers that satisfy

�

⇠�@�m(⇠) : ⇠ 2 (R \ {0})d,� 2 {0, 1}d
 

✓ T .

Then {Tm : m 2 MT } ✓ L (Lp(Rd;X), Lp(Rd;Y )) is R-bounded, and in fact

Rp({Tm : m 2 MT }) 6
�

200↵+

p,X↵
�
p,Y �p,X�p,Y min{~p,X , ~p,Y }

�d
Rp(T ).

Proof. We adapt the proof of Theorem 8.3.12 with cosmetic modifications.
By Proposition 8.1.17 it suffices to prove a uniform bound for the diag-
onal operators (Tm

n

)Nn=1

acting from "pN (Lp(Rd;X)) ' Lp(Rd; "pN (X)) to
"pN (Lp(Rd;Y )) ' Lp(Rd; "pN (Y )), where the identifications of the spaces
are isometric. Under these identifications, we observe that (Tm

n

)Nn=1

coin-
cides with the Fourier multiplier Tem with diagonal-operator-valued symbol
em(⇠) = (mn(⇠))Nn=1

2 L ("pN (X), "pN (Y )).
Since ⇠�@�mn(⇠) 2 T for each n, it follows that ⇠�@� em(⇠) 2 fTN , where

fTN is defined in Proposition 8.1.18. The aforementioned proposition guar-
antees that Rp(fTN ) 6 ↵+

p,X↵
�
p,Y Rp(T ). Thus the multiplier em is in the

scope of Corollary 8.3.22 with X and Y replaced by "pN (X) and "pN (Y ), and
M 6 ↵+

p,X↵
�
p,Y Rp(T ). Since, by Fubini’s theorem,

�p,"p
N

(X)

= �p,X , ~p,"p
N

(X)

= ~p,X , ↵±
p,"p

N

(X)

= ↵±
p,X

and likewise for Y in place of X, the claim of the theorem follows from Corol-
lary 8.3.22 via the said identifications. ⇤
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8.3.e Necessity of Pisier’s contraction property

While the one-dimensional Marcinkiewicz and Mihlin multiplier theorems
(Theorem 8.3.9 and Corollary 8.3.11), as well the d-dimensional Mihlin The-
orem 5.5.10 treated in Chapter 5, are valid in general UMD spaces, several
variants above, namely Theorems 8.3.12 and 8.3.19 as well as Corollaries 8.3.22
and 8.3.23, were only formulated under the additional assumption of Pisier’s
contraction property of the underlying spaces. The goal of this subsection is
to justify the necessity of this assumption in the case that X = Y , already for
scalar-valued multipliers.

Proposition 8.3.24. Let M ✓ C1(R) be the collection of all multipliers such
that |m(⇠)|, |⇠m0(⇠)| 6 1. Let X be a Banach space and p 2 (1,1). If {Tm :
m 2 M } is R-bounded on Lp(R;X), then X has Pisier’s contraction property,
and

↵p,X 6 4M, M := Rp

�

{Tm 2 L (Lp(R;X)) : m 2 M }
�

.

Proof. By Proposition 8.1.17, the assumption means in particular that the op-
erators (Tm

n

)Nn=1

are uniformly bounded on "pN (Lp(R;X)) whenever (mn)
N
n=1

belongs to MN , with norm at most M . Under the isometric identification
"pN (Lp(R;X)) ' Lp(R; "pN (X)), the operator (Tm

n

)Nn=1

becomes the Fourier
multiplier Tem where em(⇠) = (mn(⇠))Nn=1

is a diagonal operator on "pN (X). By
the transference Theorem 5.7.1, we also have that the restriction to integer
points, (em(k))k2Z, defines a Fourier multiplier on Lp(T; "pN (X)) of at most
the same norm, i.e., at most M again.

Let us write out the boundedness of this multiplier acting on a lacunary
trigonometric polynomial f(t) =

PN
k=1

e
2

k(t)ak, where ek(t) := ei2⇡kt and
ak =

PN
n=1

"nxkn 2 "pN (X), where we have a free choice of vectors xkn 2 X.
This reads as

�

�

�

N
X

k,n=1

e
2

k"nmn(2
k)xkn

�

�

�

Lp

(⌦⇥T;X)

6 M
�

�

�

N
X

k,n=1

e
2

k"nxkn

�

�

�

Lp

(⌦⇥T;X)

.

Let ("0k)Nk=1

be a Rademacher sequence on another probability space ⌦0 Apply-
ing the previous bound to "0kxkn in place of xkn and using that (e

2

k(t)"0k)
N
k=1

is equidistributed with ("0k)
N
k=1

for each t 2 T, it follows that

�

�

�

N
X

k,n=1

"0k"nmn(2
k)xkn

�

�

�

Lp

(⌦⇥⌦0
;X)

6 M
�

�

�

N
X

k,n=1

"0k"nxkn

�

�

�

Lp

(⌦⇥⌦0
;X)

. (8.10)

This resembles the defining condition of Pisier’s contraction property, except
that we need to check that we can arrange arbitrary numbers ↵kn of modulus
at most one as the values of the multipliers mn(2

k).
This can be done as follows: Fix a function � 2 C1(R), supported on ( 1

2

, 2)
with k�k1 = �(1) = 1, |�0(⇠)| 6 (1 + �)2 on [ 1

2

, 1] and |�0(⇠)| 6 (1 + �) on
[1, 2]. We then set
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�n(⇠) :=
N
X

k=1

↵kn�(2
�k⇠).

Clearly �n(2
k) = ↵kn. Let s be the unique integer such that 2�s|⇠| 2 [1, 2).

Then

|�n(⇠)| 6
N
X

k=1

|�(2�k⇠)| 6
s+1

X

k=s

1 6 2,

and

|⇠�0
n(⇠)| 6

N
X

k=1

|2�k⇠�0(2�k⇠)| 6
s+1

X

k=s

|2�k⇠||�0(2�k⇠)| 6 2 · 2(1 + �).

So we deduce that mn = 4�1(1+ �)�1�n 2 M is a valid multiplier for (8.10),
which then reads, in the limit � ! 0, as

�

�

�

N
X

k,n=1

"0k"n↵knxkn

�

�

�

Lp

(⌦⇥⌦;X)

6 4M
�

�

�

N
X

k,n=1

"0k"nxkn

�

�

�

Lp

(⌦⇥⌦;X)

for arbitrary scalars ↵kn of modulus at most 1. This completes the proof. ⇤

Proposition 8.3.25. Let M ✓ C2(R2) be the collection of all multipliers
such that |⇠�@�m(⇠)| 6 1 for all � 2 {0, 1}2. Let X be a Banach space and
p 2 (1,1). If all Tm with m 2 M are uniformly bounded on Lp(R2;X), then
X has Pisier’s contraction property, and

↵p,X 6 16M, M := sup
m2M

�

{Tm 2 L (Lp(R2;X)) : m 2 M }
�

.

Proof. The proof is very similar to the previous one. By the transference The-
orem 5.7.1 again, we find that each (m(k))k2Z2 defines a Fourier multiplier on
Lp(T2;X) of norm at most the same M . Written out for a bivariate lacunary
trigonometric polynomial f(s, t) =

PN
j,k=1

xjke
2

j (s)esk(t), this means that

�

�

�

N
X

j,k=1

e(1)
2

j

e(2)
2

k

m(2j , 2k)xjk

�

�

�

Lp

(T2
;X)

6 M
�

�

�

N
X

j,k=1

e(1)
2

j

e(2)
2

k

xjk

�

�

�

Lp

(T2
;X)

,

where the superscripts (i) for i = 1, 2 indicate that these functions depend
on the ith variable only. Applying this to "j"0kxjk in place of xjk, and using
that (e

2

j (t
1

)"j)Nj=1

and ("j)Nj=1

, as well as (e
2

k(t
2

)"0k)
N
k=1

and ("0k)
N
k=1

, are
equidistributed for every (t

1

, t
2

) 2 T2, we get

�

�

�

N
X

j,k=1

"j"
0
km(2j , 2k)xjk

�

�

�

Lp

(⌦;X)

6 M
�

�

�

N
X

j,k=1

"j"
0
kxjk

�

�

�

Lp

(⌦;X)

, (8.11)
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and it only remains to check that we have sufficient freedom in the choice of
values m(2j , 2k).

To this end, we consider

�(⇠) :=
N
X

j,k=1

↵jk�(2
�j⇠

1

)�(2�k⇠
2

),

where � is as in the proof of Proposition 8.3.24. If s, t are the unique integers
such that 2�s|⇠

1

|, 2�t|⇠
2

| 2 [1, 2), then

|⇠�@��(⇠)| 6
s+1

X

j=s

|2�j⇠
1

|�1 |�(�1)(2�j⇠
1

)|
t+1

X

k=t

|2�k⇠
2

|�2 |�(�2)(2�k⇠
2

)|

6
�

4(1 + �)
�

2

,

since both sums have the same form that was already estimated in the proof
of Proposition 8.3.24. We conclude that m = 4�2(1 + �)�2� is an admissible
choice in (8.11), and hence, in the limit as � ! 0,

�

�

�

N
X

j,k=1

"j"
0
k↵jkxjk

�

�

�

Lp

(⌦;X)

6 42M
�

�

�

N
X

j,k=1

"j"
0
kxjk

�

�

�

Lp

(⌦;X)

,

for any scalars ↵jk of absolute value at most one. ⇤

8.4 Sources of R-boundedness in operator theory

In this section we present various general constructions of R-bounded families
of operators on Banach spaces. In contrast to Section 8.2, which dealt with
the specific context of Lp-spaces, we now work in abstract spaces.

8.4.a Duality and interpolation

It is often useful to know how the property of R-boundedness behaves under
taking adjoints. We begin with the delicate problem of the R-boundedness of
adjoint families. As it turns out, all goes well in K-convex spaces.

Proposition 8.4.1 (Duality). Let p 2 (1,1) and 1

p + 1

p0 = 1. Let T be
a family of operators in L (X,Y ) and denote by T ⇤ = {T ⇤ : T 2 T } the
adjoint family in L (Y ⇤, X⇤).

(1) If X is K-convex and T is R-bounded, then T ⇤ is R-bounded and we have

Rp0(T ⇤) 6 Kp,XRp(T ).
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(2) If Y is K-convex and T ⇤ is R-bounded, then T is R-bounded and we have

Rp0(T ) 6 Kp0,Y Rp(T
⇤).

Proof. (1): Let T ⇤
1

, . . . , T ⇤
N 2 T ⇤ and y⇤

1

, . . . , y⇤N 2 X⇤. Let x
1

, . . . , xN 2 X

be such that
�

�

PN
n=1

"nxn

�

�

Lp

(⌦;X)

6 1. Then, by Hölder’s inequality we have
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⇤
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⇤
ni
�

�

�

=
�

�

�

N
X

n=1

hTnxn, y
⇤
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�

�

�
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"ny
⇤
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�

�

�
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0
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)

6 Rp(T )
�

�

�

N
X
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"ny
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�

�

�

Lp

0
(⌦;Y ⇤

)

.

Taking the supremum over all admissible finite sequence (xn)
N
n=1

, it follows
from Corollary 7.4.6 that

�

�

�

N
X

n=1

"nT
⇤
ny

⇤
n

�

�

�

Lp

0
(⌦;X⇤
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6 Rp(T )Kp,X

�

�

�

N
X

n=1

"ny
⇤
n

�

�

�

Lp

0
(⌦;Y ⇤

)

.

(2): Since Y is K-convex, Y ⇤ is K-convex (see Proposition 7.4.5) and
Kp,Y ⇤ = Kp0,Y . Therefore (1) implies that the bi-adjoint family T ⇤⇤ is R-
bounded, with Rp0(T ⇤⇤) 6 Kp0,Y Rp(T ⇤). Now (2) follows by taking restric-
tions. ⇤

The following example shows for general Banach spaces, the adjoint of an
R-bounded family need not be R-bounded.

Example 8.4.2. Let X be any Banach space and consider the unit ball T =
BX⇤ as a uniformly bounded family in L (X,K). The adjoint family T ⇤ can
be identified with BX⇤ , viewing each x⇤ 2 BX⇤ as a bounded operator from
K to X⇤ through the action t 7! tx⇤. Inspecting the proof of Proposition
8.6.1 below we see that it contains the statement that if BX⇤ is R-bounded in
L (K, X⇤), then X⇤ has type 2. Taking X = `1, we see that T = B`1 is R-
bounded in L (`1,K) by Proposition 8.6.1, since `1 has cotype 2 (see Corollary
7.1.6) and K has type 2. On the other hand, the adjoint family T ⇤ = B`1
is not R-bounded in L (K, `1) since `1 does not have type 2 (see Corollary
7.1.10).

Next we show that for arbitrary Banach spaces X and Y , R-boundedness is
preserved under taking bi-adjoints.
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Proposition 8.4.3 (Bi-duality). A family T in L (X,Y ) is R-bounded if
and only if the bi-adjoint family T ⇤⇤ = {T ⇤⇤ : T 2 T } in L (X⇤⇤, Y ⇤⇤) is
R-bounded, and in this case for all 1 6 p < 1 we have

Rp(T ) = Rp(T
⇤⇤).

Proof. We only need to prove the ‘only if’ part, the ‘if’ part being clear from
the fact that X and Y are isometrically contained in their bi-duals and that,
under these identifications, T ⇤⇤ restricts to T .

Given T
1

, . . . , TN 2 T , the operator T : "pN (X) ! "pN (Y ) defined by
T : (xn)

N
n=1

7! (Tnxn)
N
n=1

is bounded of norm kTk 6 Rp(T ) (see Proposition
8.1.17). Under the isometric isomorphism (see Proposition 6.3.4)

("pN (X))⇤⇤ ' "pN (X⇤⇤),

the operator S : "pN (X⇤⇤) ! "pN (Y ⇤⇤) defined by S : (xn)
N
n=1

7! (T ⇤⇤
n xn)

N
n=1

equals T ⇤⇤, and therefore kSk = kT ⇤⇤k = kTk 6 Rp(T ). In view of Proposi-
tion 8.1.17, this implies the result. ⇤

Interpolation

R-boundedness interpolates under a K-convexity assumption:

Proposition 8.4.4. Suppose (X
0

, X
1

) and (Y
0

, Y
1

) are interpolation couples,
with X

0

and X
1

K-convex. Suppose further that T is a family of linear
operators from X

0

+ X
1

to Y
0

+ Y
1

which map X
0

into Y
0

and X
1

into
Y
1

. If the restricted families T
0

✓ L (X
0

, Y
0

) and T
1

✓ L (X
1

, Y
1

) are
R-bounded, then for all for ✓ 2 (0, 1) and p, p

0

, p
1

2 (1,1) such that
1

p = 1�✓
p0

+ ✓
p1

the interpolated families T✓ ✓ L ([X
0

, X
1

]✓, [Y0

, Y
1

]✓) and
T✓,p0,p1 ✓ L ((X

0

, X
1

)✓,p0,p1 , (Y0

, Y
1

)✓,p0,p1) are R-bounded, and we have

Rp(T✓) 6 K1�✓
p0,X0

K✓
p1,X1

(Rp0(T0

))1�✓(Rp1(T1

))✓,

Rp(T✓,p0,p1) 6 K1�✓
p0,X0

K✓
p1,X1

(Rp0(T0

))1�✓(Rp1(T1

))✓.

Recall that X✓,p0,p1 = (X
0

, X
1

)✓,p with equivalent norms (see Appendix
C.3.14).

Proof. This is immediate from Theorem 7.4.16 and the description of R-
bounded families in terms of bounded operators on the spaces "pN (X). For
x = (xn)

N
n=1

in X
0

\X
1

and T = (Tn)
N
n=1

in T we have, using the notation
of Proposition 8.1.17,

kTxk"p
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6 kTxk
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p0
N

(Y0),"
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N
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6 K1�✓
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(Rp0(T0

))1�✓(Rp1(T1

))✓kxk"p
N

(X
✓

)

.

The proof for the real interpolation spaces runs along the same lines. ⇤
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8.4.b Unconditionality

Although not every Banach space X has the triangular contraction prop-
erty, the projection onto the diagonal is always bounded for X-valued double
Rademacher sums. This provides a way introduce additional randomness, a
trick that will be used in the proof main result of this subsection, Proposition
8.4.6.

Lemma 8.4.5 (Diagonal projection). Let X be a Banach space and let
("n)Nn=1

and ("0n)
N
n=1

be Rademacher sequences on distinct probability spaces
(⌦,P) and (⌦0,P0), respectively. Then for all 1 6 p < 1 and finite sequences
(xnk)

N
n,k=1

in X,
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N
X
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�
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�

p
6 EE0

�
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p
.

Proof. By Jensen’s inequality,
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Since for each !0 2 ⌦0, ("n"0n(!0))n>1

is identically distributed with ("n)n>1

,
it follows that

E0E
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and the result follows. ⇤

We now present an abstract method to derive R-boundedness from uncondi-
tionality.

Proposition 8.4.6. Suppose X, Y , Z are Banach spaces and (Un)n>1

and
(Vn)n>1

are sequences of operators in L (X,Y ) and L (Y, Z) satisfying the
following conditions:

(i) there exists a finite constant MU > 0 such that

⇣

E
�

�

�

N
X

n=1

"nUnx
�

�

�

2

⌘

1/2
6 MUkxk

for all N > 1 and x 2 X;
(ii) there exists a finite constant MV > 0 such that

�

�

�

N
X

n=1

✏nVnx
�

�

�

6 MV kxk

for all scalars |✏
1

| = . . . = |✏N | = 1 and all N > 1 and x 2 X.
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Then the following assertions hold:

(1) the set {Un : n > 1} is R-bounded, with R-bound at most MU .
(2) if Y has the triangular contraction property and T := {Tn : n > 1} is an

R-bounded set in L (Y ) with R-bound R(T ), the family

n

N
X

n=1

VnTnUn : N > 1
o

is R-bounded, with R-bound at most MUMV�Y R(T ).
(3) if Y has Pisier’s contraction property and T is an R-bounded family in

L (Y ) with R-bound R(T ), the family

n

N
X

n=1

VnTnUn : N > 1, Tn 2 T (n = 1, . . . , N)
o

is R-bounded, with R-bound at most MUMV ↵
�
Y ↵

+

Y R(T ).

We will sometimes apply this result to families of operators indexed by Z. The
proposition can easily be adapted to this case; alternatively one can apply it,
after re-indexing, to the indices n > �N and then letting N ! 1 (noting
that R-boundedness passes on to the limit).

The proposition provides the abstract setting to prove R-boundedness re-
sults for the H1-functional calculus in Theorem 10.3.4.

Proof. In the proof below, ("n)n>1

, ("0n)n>1

, ("00mn)n>1

are Rademacher se-
quences on distinct probability spaces ⌦,⌦0, ⌦00.

(1): For all finite sequences x
1

, . . . , xN 2 X, by Lemma 8.4.5 we obtain
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.

By Corollary 8.1.6, the R-boundedness of (Un)n>1

follows from this.
(2): We start with the preliminary estimate
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(8.12)

where we used the assumption on the Vm’s pointwise on ⌦. Let us write
Sn :=

Pn
m=1

VmTmUm and pick x
1

, . . . , xN 2 X. Applying (8.12) with ym =
PN

n=1

1m6n"0nTmUmxn gives
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E0
�

�

�

N
X

n=1

"0nSnxn

�

�

�

2

= E0
�

�

�

N
X

m=1

Vmym
�

�

�

2

6 M2

V E0E
�

�

�

N
X

n,m=1

1m6n"m"
0
nTmUmxn

�

�

�

2

6 M2

V�
2

Y E0E
�

�

�

N
X

n,m=1

"m"
0
nTmUmxn

�

�

�

2

;

in the last step we used the triangular contraction property. By the R-
boundedness of T ,
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;

in the last step we used the assumption on the Um’s. By Corollary 8.1.6, this
gives the R-boundedness of the operators Sn.

(3): For each n > 1 we choose operators Tmn 2 T , m = 1, . . . , n, and set
Sn :=

Pn
m=1

VmTmnUm. Proceeding as in part (2), replacing Tm by Tmn we
obtain
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We now use the Pisier contraction property of Y to replace the double
Rademacher sum by a single doubly indexed Rademacher sum (via Proposi-
tion 7.5.4), then the R-boundedness of T , then once again Pisier’s contraction
property, and the Kahane contraction principle, to obtain
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6 M2
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"0nxn
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⇤

8.5 Integral means and smooth functions

We are interested in the R-boundedness of certain operator families associated
with operator-valued functions. This covers, for instance, certain families of
convolution operators with operator-valued kernels to be studied later on.

8.5.a Integral means I: elementary estimates

Throughout this section, (S,A , µ) is a fixed measure space. The following
terminology has already been introduced in the Notes of Chapter 1.

Definition 8.5.1. An operator-valued function f : S ! L (X,Y ) is called:

(i) strongly µ-measurable, if for all x 2 X the Y -valued function s 7!
fx(s) := f(s)x is strongly µ-measurable;

(ii) weakly µ-measurable, if for all x 2 X and y⇤ 2 Y ⇤ the scalar-valued
function s 7! hfx, y⇤i(s) := hf(s), y⇤i is µ-measurable.

One should be aware of the fact that there is a slight abuse of terminology
here. Indeed, L (X,Y ) is a Banach space in its own right, and therefore the
term ‘strongly µ-measurable’ could also refer to the notion as introduced in
Definition 1.1.14. It will always be clear from the context, however, that for
operator-valued functions we use the notion of strong µ-measurability in the
sense of Definition 8.5.1. For a fuller discussion we refer the reader to the
Notes of Chapter 1.

Let 1 6 r 6 1 and 1

r + 1

r0 = 1 and suppose a function f : S ! L (X,Y )
is given such that

s 7! f(s)x belongs to Lr(S;Y ) for all x 2 X

(i.e., f belongs to the space Lr
so

(S;L (X,Y )) introduced in Definition 1.1.27.
By the closed graph theorem, the mapping x 7! fx is bounded from X to
Lr(S;Y ), and therefore

sup
kxk61

kfxkLr

(S;Y )

< 1.

For all � 2 Lr0(S) it is now possible to define a bounded operator T f
� 2

L (X,Y ) by

T f
� x :=

ˆ
S
�(s)f(s)x dµ(s), x 2 X. (8.13)
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Clearly,
kT f

� k 6 k�kr0 sup
kxk61

kfxkLr

(S;Y )

.

In this section we will investigate the R-boundedness in L (X,Y ) of the family

T f
r0 := {T f

� : k�kr0 6 1}. (8.14)

As it turns out, it is useful to distinguish the cases r0 = 1, r0 = 1, and
1 < r0 < 1.

L1-integral means

We begin with the case r0 = 1. By Propositions 8.1.21 and 8.1.22, the strongly
closed absolutely convex hull of an R-bounded set is R-bounded. This may be
used to show that R-boundedness is preserved by taking integral means:

Theorem 8.5.2 (L1-integral means). Let T ✓ L (X,Y ) be R-bounded.
If f : S ! L (X,Y ) is strongly µ-measurable and take values in T , then the
family T f

1

is R-bounded and for all 1 6 p < 1 we have

Rp(T
f
1

) 6 Rp(T ).

The idea of the proof below is to write, for � 2 L1(S) with k�k
1

6 1,

T f
� =

ˆ
S
k�k

1

�(s)

|�(s)|f(s)
|�(s)|
k�k

1

dµ(s).

Since |�|
k�k1

dµ is a probability measure and k�k
1

�
|�|f takes values in abs convT ,

we may try to use the above observations. Some care is needed, however, due
to the fact that f is not assumed to be strongly µ-measurable in the uniform
operator topology, but only the functions fx. We therefore must implement
the idea in the strong operator topology.

Proof. Let T f
� 2 T f

1

be arbitrary. By Propositions 8.1.21 and 8.1.22 it suffices
to check that T f

� 2 abs conv
so

(T ). We may assume that � 6= 0 in L1(S). Fix
x
1

, . . . , xk 2 X and note that

T f
� xj =

ˆ
S
g(s)xj d⌫(s), j = 1, . . . , k,

where g(s) := k�k
1

�(s)
|�(s)|f(s) and d⌫(s) = |�(s)|

k�k1
dµ(s) satisfies ⌫(S) = 1. Here

we let �(s)
|�(s)| = 0 if �(s) = 0.

Clearly, the Y k-valued function s 7! (g(s)x
1

, . . . , g(s)xk) is ⌫-Bochner in-
tegrable and takes values in abs conv((Tx

1

, . . . , Txk) : T 2 T ). From Propo-
sition 1.2.12 applied to Y k we deduce that
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(T f
� x1

, . . . , T f
� xk) =

ˆ
S
(g(s)x

1

, . . . , g(s)xk) d⌫(s)

belongs to abs conv((Tx
1

, . . . , Txk) : T 2 T ), where the closure is taken in
Y k. This means that for every " > 0 we can find T 2 abs conv(T ) such that

kT f
� xj � Txjk < ", j = 1, . . . , k.

Since the choices of x
1

, . . . , xk 2 X and " > 0 were arbitrary, we have shown
that every open set (in the strong operator topology) in L (X,Y ) containing
T f
� intersects abs conv(T ). It follows that T f

� 2 abs conv
so

(T ). ⇤

Example 8.5.3. Let f : S ! L (X,Y ) be strongly measurable and take values
in an R-bounded subset T of L (X,Y ). For A 2 A with 0 < µ(A) < 1 let
TA 2 L (X,Y ) be defined by

TAx =
1

µ(A)

ˆ
A
fx dµ, x 2 X.

Since � := 1

µ(A)

1A is L1-normalised, it follows from Theorem 8.5.2 that the
family S := {TA : A 2 A with 0 < µ(A) < 1} is R-bounded and Rp(S ) 6
Rp(T ).

L1-integral means

Recall that if f : S ! L (X,Y ) has the property that fx 2 L1(S;Y ) for
all x 2 X, then for functions � 2 L1(S) we may define the operator T f

� 2
L (X,Y ) by (8.13), i.e.,

T f
� x :=

ˆ
S
�(s)f(s)x dµ(s).

The next result proves shows that the family T f
1 = {T f

� : k�k1 6 1} is
always R-bounded.

Theorem 8.5.4 (L1-integral means). If f : S ! L (X,Y ) is strongly
µ-measurable and has the property that fx 2 L1(S;Y ) for all x 2 X, then the
family T f

1 is R-bounded and for all 1 6 p < 1 we have

Rp(T
f
1) 6 p,1 sup

kxk61

ˆ
S
kfxk dµ.

Under the stronger assumption that s 7! kf(s)k is integrable, we have

Rp(T
f
1) 6

ˆ
S
kfk dµ.

Note that the second estimate does not feature the constant p,1.
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Remark 8.5.5. It may happen that the mapping s 7! kf(s)k fails to be µ-
measurable. The second part of the theorem remains true, however, if we
replace the integrability of kfk by the condition that there be a non-negative
integrable function g such that kfk 6 g almost everywhere; the inequality for
Rp(T f

1) should then be replaced by Rp(T f
1) 6 kgk

1

. If X is separable this
pathology does not arise: by considering a dense sequence (xn)n>1

in the unit
ball of X we see that s 7! kf(s)k = supn>1

kf(s)xnk is µ-measurable.

Proof. Fix �
1

, . . . ,�N 2 L1(S) of norm at most one and x
1

, . . . , xN 2 X.
Using the Kahane contraction principle we estimate

�

�

�

N
X

n=1

"nT
f
�
n

xn

�

�

�

Lp

(⌦;Y )

=
�

�

�

ˆ
S

N
X

n=1

"n�n(s)f(s)xn dµ(s)
�

�

�

Lp

(⌦;Y )

6
ˆ
S

�

�

�

N
X

n=1

"n�n(s)f(s)xn

�

�

�

Lp

(⌦;Y )

dµ(s)

6
ˆ
S

�

�

�

N
X

n=1

"nf(s)xn

�

�

�

Lp

(⌦;Y )

dµ(s).

Using the Kahane–Khintchine inequality and Fubini’s theorem, the right-hand
side may be estimated as follows:

ˆ
S

�

�

�

N
X

n=1

"nf(s)xn

�

�

�

Lp

(⌦;Y )

dµ(s) 6 p,1E
ˆ
S

�

�

�

N
X

n=1

"nf(s)xn

�

�

�

dµ(s)

6 p,1ME
�

�

�

N
X

n=1

"nxn

�

�

�

6 p,1M
�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

,

where M is the operator norm of the mapping x 7! fx. This gives the first
inequality for Rp(T f ).

If kfk is integrable, we may alternatively estimate

ˆ
S

�

�

�

N
X

n=1

"nf(s)xn

�

�

�

Lp

(⌦;Y )

dµ(s) 6
ˆ
S
kfk dµ

�

�

�

N
X

n=1

"nxn

�

�

�

Lp

(⌦;X)

.

⇤

Example 8.5.6 (R-boundedness of Laplace transforms I). In this example we
assume that X and Y are complex Banach spaces.

Suppose that f : R
+

! L (X,Y ) satisfies fx 2 L1(R
+

;Y ) for all x 2 X.
Define the Laplace transform of f by
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bf(�)x :=

ˆ 1

0

e��tf(t)x dt, x 2 X, � 2 C
+

,

where C
+

= {� 2 C : <� > 0}. Theorem 8.5.4 implies that the set
{ bf(�) : <� > 0} is R-bounded and

Rp

�

bf(�) : <� > 0
�

6 p,1 sup
kxk61

ˆ 1

0

kf(t)xk dt,

and the constant p,1 can be omitted if kf(·)k is integrable. These results
follow from the fact that for <� > 0, bf(�) = T f

�
�

with ��(t) = exp(��t)
satisfying k��k1 = 1.

8.5.b The range of differentiable and holomorphic functions

As a useful consequence of Theorem 8.5.4 we show next that sufficiently
smooth L (X,Y )-valued functions have R-bounded ranges. More refined ver-
sions of this result will be presented in the next subsection.

Let �1 6 a < b 6 1. We recall from Lemma 2.5.8 that W 1,1(a, b;X)
equals the space of all f 2 L1(a, b;X) for which there exists a g 2 L1(a, b;X)

such that t 7! f(t) �
´ t
a g(s) ds is constant for almost all t 2 (a, b). In this

case g is unique and coincides with the weak and almost everywhere deriva-
tive of f . Moreover, after possibly redefining f on a set of measure zero, f
is absolutely continuous and therefore the limits f(a+) = limt#a f(t) and
f(b�) = limt"b f(t) exist.

Proposition 8.5.7 (Functions with integrable derivative). Let �1 <
a < b < 1. Let f : (a, b) ! L (X,Y ) be such that each of the functions
t 7! f(t)x, x 2 X, is in W 1,1(a, b;Y ). Then the set

Tf := {f(t) : t 2 (a, b)}

is R-bounded, there exists a constant M > 0 such that kf 0xkL1
(a,b;Y )

6 Mkxk
for all x 2 X, and for all 1 6 p < 1 we have

Rp(Tf ) 6 kf(a+)k+ p,1 sup
kxk61

ˆ b

a
kf 0(t)xk dt.

If
´ b
a kf 0(t)k dt < 1, then

Rp(Tf ) 6 kf(a+)k+
ˆ b

a
kf 0(t)k dt.

For a = �1 and/or b = 1, one can apply the theorem with �1 < a0 < b0 <
1 and pass to the limits lima0!�1 and/or limb0!1 in the above estimates.
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Proof. Note that f(a+) := limt#a f(t) exists in the strong operator topology.
Since

f(t)x = f(a+)x+

ˆ b

a
1

(a,t)(s)f
0(s)x ds,

the result follows from Theorem 8.5.4. ⇤

As a further illustration we have the following R-boundedness result for func-
tions defined on a sector ⌃� = {z 2 C \ {0} : | arg z| < �} in the complex
plane.

Proposition 8.5.8. Let 0 < � < ⇡. If f : ⌃� ! L (X,Y ) is a bounded
holomorphic function, the following assertions hold:

(1) if {f(�) : � 2 @⌃⌫ , � 6= 0} is R-bounded, then {f(�) : � 2 ⌃⌫} is R-
bounded, with the same R-bound;

(2) If a 2 (1,1) and 0 < ⌫ < �, and {f(akz) : k 2 Z} is R-bounded for each
non-zero z 2 @⌃⌫ , with uniform R-bounds, then for all µ 2 (0, ⌫) the set
{f(�) : � 2 ⌃µ} is R-bounded with

R
�

{f(�) : � 2 ⌃µ}
�

6 2a
⇣

1+
1

⇡
tan

�µ

⌫

⇡

2

�

⌘

sup
| arg(z)|=⌫

z 6=0

R({f(akz) : k 2 Z}).

Proof. Replacing f by the function � 2 C
+

7! f(�↵), ↵ = 2⌫/⇡, we may
assume that ⌫ = 1

2

⇡. Assertion (1) now follows from Theorem 8.5.2 and Pois-
son’s formula

f(u+ iv) =

ˆ 1

�1
h(u, v � s)f(is) ds, ↵ > 0,

with h(u, v) = 1

⇡
u

u2
+v2 , noting that kh(u, ·)k

1

= 1.

Turning to the proof of (2), again we may assume that ⌫ = 1

2

⇡. Set � :=
tan(µ), where now µ 2 (0, 1

2

⇡). For any t 2 R, t 6= 0,

R
�

{f(iakt) : k 2 Z}
�

6 sup
| arg(z)|= 1

2⇡
z 6=0

R
�

{f(akz) : k 2 Z}
�

=: C.

We will first prove the R-boundedness of the sets {f(z) : arg(z) =
µ, z 6= 0} and {f(z) : arg(z) = �µ, z 6= 0}. We begin with the former.
Let �

1

, . . . ,�N 2 C satisfy arg �n = µ. We may write �n = un + i�un with
un > 0 and � = tanµ. Choose kn 2 Z so that akn < un 6 akn

+1. Then

f(�n) =

ˆ 1

�1
f(it)h(un,�un � t) dt =

ˆ 1

�1
f(iaknt)h(un,�un � aknt)akn dt.

Hence, for any finite sequence x
1

, . . . , xN 2 X,
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�

�

�

N
X

n=1

"nf(�n)xn

�

�

�

L1
(⌦;X)

6
ˆ 1

�1

�

�

�

N
X

n=1

"nf(ia
k
nt)h(un,�un � aknt)aknxn

�

�

�

L1
(⌦;X)

dt

6 C

ˆ 1

�1

�

�

�

N
X

n=1

"nh(un,�un � aknt)aknxn

�

�

�

L1
(⌦;X)

dt

6 C

ˆ 1

�1
sup

16n6N
|h(un,�un � aknt)|akn dt

�

�

�

N
X

n=1

"nxn

�

�

�

L1
(⌦;X)

,

applying Kahane’s contraction principle in the last step. To estimate the in-
tegral, with sn := una�k

n 2 (1, a] we have

|h(un,�un � aknt)|akn =
1

⇡

aknun

u2

n + (�un � aknt)2
=

1

⇡

sn
s2n + (�sn � t)2

.

Since for s 2 (1, a], we have

s

s2 + (�s� t)2
6

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

a

1 + t2
, t 2 (�1, 0);

1, t 2 [0,�a];

a

1 + (�a� t)2
, t 2 (�a,1),

it follows thatˆ 1

�1
sup

16n6N
|h(un, un � aknt)|akn dt 6 1

⇡

�a⇡

2
+ a� +

a⇡

2

�

= a
�

1 +
�

⇡

�

.

Consequently {f(z) : arg(z) = µ z 6= 0} is R-bounded, with R-bound at most
a(1 + �

⇡ )C.
By symmetry, the same holds for {f(z) : arg(z) = �µ z 6= 0}. Taking

unions, we find that {f(z) : | arg(z)| = µ} is R-bounded, with R-bound at
most 2a(1 + �

⇡ )C. We now apply part (1) to complete the proof. ⇤

As a consequence we obtain the following result for the strip

S✓ := {z 2 C : |Im(z)| < ✓}.

Corollary 8.5.9. Let ✓ > 0. If f : S✓ ! L (X,Y ) is a bounded holomorphic
function, then:

(1) if 0 < ⌘ < ✓ and {f(�) : � 2 @S⌘, � 6= 0} is R-bounded, then {f(�) : � 2
S⌘} is R-bounded, with the same R-bound;
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(2) if b 2 (0,1) and 0 < ⌘ < ✓, and if {f(kb + z) : k 2 Z} is R-bounded for
each non-zero z 2 @S⌘, with uniform R-bounds, then for all � 2 (0, ⌘) the
set {f(�) : � 2 S�} is R-bounded, and

R({f(�) : � 2 S�}) 6 2eb
⇣

1+
1

⇡
tan

��

⌘

⇡

2

�

⌘

sup
|=(z)|=⌘

R({f(kb+z) : k 2 Z}).

Proof. Both results follow from Proposition 8.5.8 applied to the function z 7!
f( ✓� log(z)) defined on ⌃�. ⇤

We continue with a generalisation of part (1) of Proposition 8.5.8 and Corol-
lary 8.5.9. By a Jordan domain we understand a connected open set in the
complex plane whose boundary is the homeomorphic image of the unit circle.

Proposition 8.5.10. Let D ( C be simply connected Jordan domain. Sup-
pose f : D ! L (X,Y ) is strongly continuous, and assume that f is holo-
morphic on D. If {f(z) : z 2 @D} is R-bounded, then {f(z) : z 2 D} is
R-bounded as well, and both sets have the same R-bound.

Proof. By the Riemann mapping theorem there exists a conformal mapping
which maps D bijectively onto the open unit disc and which extends continu-
ously to a homeomorphism from D onto the closed unit disc. By the Poisson
formula for the disc,

f(rei✓) =
1

2⇡

ˆ
2⇡

0

Pr(✓ � ')f(ei') d',

where
Pr(✓) =

1� r2

1� 2r cos ✓ + r2
.

Noting that Pr(✓) > 0 and

1

2⇡

ˆ
2⇡

0

Pr(✓) d✓ = 1, r 2 (0, 1),

the result follows from Theorem 8.5.2. ⇤

Without a priori R-boundedness assumptions, operator-valued holomorphic
functions are automatically R-bounded on compact sets:

Proposition 8.5.11. Let D be a domain in C and let f : D ! L (X,Y ) be
holomorphic. For every compact set K ✓ D the family TK := {f(z) : z 2 K}
is R-bounded.

Proof. For each z
0

2 D the function f may be expressed as a power series in
a neighbourhood of z

0

. More precisely,

f(z) =
1
X

n=0

1

n!
f (n)(z

0

)(z � z
0

)n, |z � z
0

| < r(z
0

),
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where r(z
0

) > 0 is the radius of convergence of the power series. Then, by
Proposition 8.1.24,

R
�

{f(z) : |z � z
0

| < 1

2

r(z
0

)}
�

6
1
X

n=0

1

n!
kf (n)(z

0

)k( 1
2

r(z
0

))n < 1.

Since K can be covered with finitely many balls of the form {z 2 D : |z�zj | <
1

2

r(zj)}, the result follows. ⇤

8.5.c Integral means II: the effect of type and cotype

Let us fix a measure space (S,A , µ) as well as an exponent 1 < r < 1, and
consider a strongly measurable function f : S ! L (X,Y ) (in the sense of
Definition 8.5.1) such that

fx 2 Lr(S;Y ) for all x 2 X. (8.15)

By the closed graph theorem there exists a constant M > 0 such that
kfxkLr

(S;Y )

6 Mkxk for all x 2 X. Our aim is to prove, under suitable
assumptions on X and/or Y , the R-boundedness of the family T f

r0 defined by
(8.14), i.e.,

T f
r0 := {T f

� : k�kr0 6 1}.

Here T f
� is defined by (8.13),

T f
� x :=

ˆ
S
�(s)f(s)x dµ(s).

We begin with the case where s 7! kf(s)k belongs to Lr(S); concerning
the measurability of the function the same observations as in Remark 8.5.5
apply. Under this assumption, which is stronger than (8.15), we are able to
exploit both the cotype of X and type of Y . Under the more general assump-
tion (8.15), only the type properties of Y can be exploited, as we will see in
Theorem 8.5.15.

Theorem 8.5.12. Let X have cotype q 2 [2,1], Y type p 2 [1, 2], and suppose
that 1 6 r < 1 satisfies 1

p � 1

q < 1

r . Let f : S ! L (X,Y ) be a strongly µ-
measurable function with the property that s 7! kf(s)k belongs to Lr(S). Then
the family T f

r0 is R-bounded and

R(T f
r0 ) .

⇣

ˆ
S
kfkr dµ

⌘

1/r
,

with an implied constant depending only on X, Y , p, q and r.

Remark 8.5.13. In each of the following situations, Theorem 8.5.12 also holds
in the limiting case 1

r = 1

p � 1

q :
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(i) p = 1, q = 1, r = 1. This follows from Theorem 8.5.4.
(ii) p = 2, q = 2, r = 1. This will follow from Proposition 8.6.1 and the

uniform boundedness of T f
1

.
(iii) p = 2, q = 1, r = 2. This will follow from Corollary 7.1.22 and the proof

of Theorem 8.5.15.

In all three cases it is enough to assume that fx 2 Lr(S;Y ) for all x 2 X (see
Theorem 8.5.15 below) and we obtain the bound

R(T f
r0 ) . sup

kxk61

⇣

ˆ
S
kfxkr dµ

⌘

1/r
.

(iv) p = 1, q = 2, r = 2, and s 7! kf(s)k belongs to Lr(S). This follows from
the last part of the proof of Theorem 8.5.12 and Corollary 7.1.22.

Proof of Theorem 8.5.12. Fix x
1

, . . . , xN 2 X and functions �
1

, . . . ,�N 2
Lr0(S) such that sup

16n6N k�nkLr

0
(S)

6 1.
First assume that p 2 (1, 2] and q 2 [2,1). Let p

0

2 (1, p) and q
0

2 (q,1)
be such that 1

r = 1

p0
� 1

q0
, so that 1

r0 =
1

p0
0
+ 1

q0
. Let

gn := |�n|r
0/q0 , hn :=

�n

|�n|
|�n|r

0/p0
0 .

Then kgnkLq0
(S)

6 1, khnkLp

0
0
(S)

6 1 and �n = gnhn for all n = 1, . . . , N .

Choose y⇤
1

, . . . , y⇤N 2 Y ⇤ such that Ek
PN

n=1

"ny⇤nkp
0
0 6 1. By Hölder’s inequal-

ity and the identity 1

p0
= 1

r + 1

q0
,

�

�

�

E
D

N
X

n=1

"nT
f
�
n

xn,
N
X

n=1

"ny
⇤
n

E

�

�

�

=
�

�

�

E
ˆ
S

D

f(s)
N
X

n=1

"ngn(s)xn,
N
X

n=1

"nhn(s)y
⇤
n

E

dµ(s)
�

�

�

6
⇣

E
�

�

�

f
N
X

n=1

"ngnxn

�

�

�

p0

Lp0
(S;Y )

⌘

1/p0
⇣

E
�

�

�

N
X

n=1

"nhny
⇤
n

�

�

�

p0
0

Lp

0
0
(S;Y ⇤

)

⌘

1/p0
0

6 kfkr
⇣

E
�

�

�

N
X

n=1

"ngnxn

�

�

�

q0

Lq0
(S;X)

⌘

1/q0⇣

E
�

�

�

N
X

n=1

"nhny
⇤
n

�

�

�

p0
0

Lp

0
0
(S;Y ⇤

)

⌘

1/p0
0

,

(8.16)
where kfkr = (

´
S kfkr dµ)1/r. Since X has cotype q < q

0

it follows from
Theorem 7.2.6 that

⇣

E
�

�

�

N
X

n=1

"ngnxn

�

�

�

q0

Lq0
(S;X)

⌘

1/q0
.q0,X

⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

q0⌘1/q0
.

Also, Y has type p, so by Proposition 7.1.13, Y ⇤ has cotype p0 < p0
0

and it
follows from Theorem 7.2.6 that
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⇣

E
�

�

�

N
X

n=1

"nhny
⇤
n

�

�

�

p0
0

Lp

0
0
(S;Y ⇤

)

⌘

1/p0
0 .p0,Y

⇣
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Putting together these estimates, we conclude that
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By assumption Y has non-trivial type, so Y is K-convex by Theorem 7.4.23.
Taking the supremum over all y⇤

1

, . . . , y⇤N 2 Y ⇤, by Corollary 7.4.6 we obtain
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.

If p > 1 and q = 1, one can easily adjust the above argument (take gn = 1

for n = 1, . . . , N in this case).
If p = 1 and q < 1, then the duality argument does not work since

Y has trivial type. However, one can argue more directly in this case. By
assumption, we now have r0 > q. By the triangle inequality, Hölder’s inequality
and Theorem 7.2.6,
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.

⇤

Example 8.5.14 (R-boundedness of Laplace transforms II). Suppose that X
has cotype q 2 [2,1] and Y has type p 2 [1, 2]. Let 1 6 r < 1 satisfy 1

p �
1

q <
1

r . If f : R
+

! L (X,Y ) is such that for all x 2 X, t 7! f(t)x is strongly
measurable and kf(·)k 2 Lr(R

+

), then the set {(<�)1/r0 bf(�) : <� > 0} is
R-bounded and

R
�

{(<�)1/r
0
bf(�) : <� > 0}

�

. kf(·)kr

with implied constant depending on X, Y , p, q, r. Indeed, this follows
from Theorem 8.5.12 by proceeding as in Example 8.5.6, taking ��(t) =
(<�)1/r0 exp(��t)).

In the cases when X has cotype 2 or Y has type 2, the following sharp result
holds. If f : R

+

! L (X,Y ) is strongly measurable and satisfies kf(·)k 2
L2(R

+

), the set
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{(<�)1/2 bf(�) : <� > 0}

is R-bounded. This follows from Remark 8.5.13.

It is possible to replace the integrability condition on f by an integrability con-
dition on the orbits fx, at the expense of not being able to exploit information
about the cotype of X but only the type of Y .

Theorem 8.5.15. Let f : S ! L (X,Y ) be strongly µ-measurable.

(1) If Y has type 2 and fx 2 L2(S;Y ) for all x 2 X, then the family T f
2

=

{T f
� : k�k

2

6 1} is R-bounded and

R(T f
2

) . sup
kxk61

kfxkL2
(S;Y )

,

with an implied constant depending only on Y .
(2) If Y has type p 2 (1, 2) and fx 2 Lr(S;Y ) for all x 2 X, with r 2 (1, p),

then the family T f
r0 = {T f

� : k�kr0 6 1} is R-bounded and

R(T f
r0 ) . sup

kxk61

kfxkLr

(S;Y )

,

with an implied constant depending only on Y , p, r.

Proof. We begin with the proof of (2). Fix r 2 (1, p). Then, arguing as in the
proof of Theorem 8.5.12,
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where M = supkxk61

kfxkLr

(S;Y )

. Since Y ⇤ has cotype p0, from Theorem 7.2.6
we infer that
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As in the proof of Theorem 8.5.12, combining these estimates and using that
Y is K-convex, we obtain that
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⇣
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This completes the proof of (2). For the proof of (1) we may replace p and r by
2 in the above argument and invoke Corollary 7.1.22 instead of Theorem 7.2.6.
⇤

The final result in this section shows how one can use Theorem 7.2.6 to obtain
a version of Theorem 8.5.12 with sharp exponents.

For two measurable scalar-valued functions � and  we will write

� �  () 8t > 0 : µ({|�| > t}) 6 µ({| | > t}).

For  2 L1(S) + L1(S) let

L (S) = {� 2 L1(S) + L1(S) : � �  }.

Proposition 8.5.16. Let X have cotype q 2 [2,1] and Y type p 2 [1, 2],
and let 1

r = 1

p � 1

q and 1

r + 1

r0 = 1. Let � = min{ r0

q ,
r0

p0 }. Suppose f : S !
L (X,Y ) is strongly µ-measurable and satisfies kf(·)k 2 Lr(S). Then, for any
 2 Lr0,�(S),

R
�

{T f
� 2 L (X,Y ) : � 2 L (S)}

�

.
⇣
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S
kfkr dµ
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1/r
k kLr
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,�

(S)

,

with implied constant independent of f and  .

Since each � 2 L (S) is also in Lr0(S) (see (F.3) and Lemma F.3.5), the
operators T f

� 2 L (X,Y ) are well defined. In the limiting cases p 2 {1, 2} and
q 2 {2,1}, Remark 8.5.13 gives a stronger result.

Proof. The proof follows the lines of Theorem 8.5.12. Without loss of gen-
erality we may assume that k kLr,�

(S)

= 1. Let �
1

, . . . ,�N 2 L�0(S) and
x
1

, . . . , xN 2 X be arbitrary and fixed.
First assume that p 2 (1, 2] and q 2 [2,1). Let

gn := |�n|r
0/q, hn :=

�n

|�n|
|�n|r

0/p0

for n = 1, . . . , N , so that �n = gnhn. Choose y⇤
1

, . . . , y⇤N 2 Y ⇤ such that
Ek

PN
n=1

"ny⇤nkp
0 6 1. Following the lines of (8.16) and using the identity

1

p = 1

r + 1

q , we obtain the estimate
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where kfkr = (
´
S kfkr dµ)1/r as before. Since X has cotype q by Theorem

7.2.6 and the assumption �n �  ,
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It follows from (F.4) and the inclusion Lr0,�(S) ,! Lr0,r0/q(S) (see Lemma
F.3.5) that ˆ 1
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µ(| | > tq/r
0
)1/q dt =

r0

q
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µ(| | > t)1/qtr
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Since Y has type p it follows that Y ⇤ has cotype p0 (see Proposition 7.1.13),
and therefore it follows from Theorem 7.2.6 that
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As before, since Lr0,�(S) ,! Lr0,r0/p0
(S) we haveˆ 1

0

µ(| | > tp
0/r0)1/p

0
dt 6 Cp,r,�.

The result can now be finished using the same duality argument as in Theorem
8.5.12.

If p > 1 and q = 1 one can easily adjust the above argument (take gn = 1

in this case). If p = 1 and q < 1, then one can argue as in Theorem 8.5.12,
but instead of Theorem 7.2.6 one has to apply Theorem 7.2.6. If p = 1 and
q = 1 the result follows from Theorem 8.5.12. ⇤
In the same way one can prove the following version for the strong operator
topology:
Proposition 8.5.17. If Y has type p 2 (1, 2], fx 2 Lr(S;Y ) for all x 2 X,
and  2 Lp0,1(S), then the family T f = {T f

� 2 L (X,Y ) : � 2 L (S)} is
R-bounded and

R(T f ) . k kLp

0
,1
(S)

sup
kxk61

kfkLr

(S;Y )

,

with an implied constant independent of  and f .
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8.5.d The range of functions of fractional smoothness

By Proposition 8.5.7, operator-valued functions with integrable derivatives
have R-bounded ranges. It is natural to ask whether this result is the best pos-
sible. As an application of Theorem 8.5.12 we show next that, in the presence
of non-trivial type p and/or finite cotype q, R-boundedness can be obtained
under weaker regularity assumptions, the amount of regularity needed being
measured by the exponent 1

p � 1

q . In the limiting case p = q = 2 (which, by
Kwapień’s theorem, corresponds to the Hilbert space case), no regularity is
needed at all: uniform boundedness of the range suffices.

Let D ✓ Rd be a domain and let p 2 [1,1) and 0 < s < 1. We recall from
Section 2.5.d that the Sobolev space W s,p(D;X) is defined as the space of all
f 2 Lp(D;X) for which

[f ]W s,p

(D;X)

=
⇣

ˆ
D

ˆ
D

kf(u)� f(v)kp

|u� v|sp+d
du dv

⌘

1/p

is finite. Endowed with the norm

kfkW s,p

(D;X)

= kfkLp

(D;X)

+ [f ]W s,p

(D;X)

,

this is a Banach space.

Definition 8.5.18. A domain D ✓ Rd is called plump, with parameters R >
0 and � 2 (0, 1], if for all x 2 D and r 2 (0, R] there exists a z 2 D such that

B(z, �r) ✓ B(x, r) \D.

In such domains, we have a good integral representation of Sobolev functions:

Proposition 8.5.19. Let D ✓ Rd be plump with parameters R > 0 and � 2
(0, 1]. Then for all x 2 D there exist measurable functions Gx : D ! R and
Hx : D ⇥D ! R such that for all p 2 (d,1) and s > d/p,

ku 7! Gx(u)kLp

0
(D)

6 Cd,p(R�)
�d/p,

�

�

�

(u, v) 7! |u� v|s+d/pHx(u, v)
�

�

�

Lp

0
(D⇥D)

6 Cd,p,s�
�2d/pRs�d/p,

and such that for any Banach space X, any f 2 W s,p(D;X), and any Lebesgue
point x of f we have

f(x) =

ˆ
D
Gx(u) f(u) du+

ˆˆ
D⇥D

Hx(u, v)(f(u)� f(v)) du dv.

Proof. Let B := B(0, 1) ✓ Rd be the unit ball, and � := |B|�1

1B its nor-
malised indicator function.

Given x 2 D, we fix sequence of points (xk)
1
k=0

, guaranteed by plumpness
of D, such that B(xk, �2�kR) ✓ B(x, 2�kR) \ D for every k > 0. If x is a
Lebesgue point of f , it follows that
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f(x) = lim
k!1

ˆ
D
�
⇣ y � xk

�2�kR

⌘ f(y)

(�2�kR)d
dy,

where we note that there is no difference between integrating over D or Rd,
due to the support of �. Defining

Gx(y) := �
⇣y � x

0

�R

⌘ 1

(�R)d
, kGxkLp

0
(D)

= (�R)�d/pk�kp0 = cd,p(�R)�d/p,

we can write a telescopic expansion

f(x)�
ˆ
D
Gx(y)f(y) dy

=

1
X

k=0

⇣

ˆ
D
�
⇣ y � xk+1

�2�(k+1)R

⌘ f(y)

(�2�(k+1)R)d
dy �

ˆ
D
�
⇣ y � xk

�2�kR

⌘ f(y)

(�2�kR)d
dy
⌘

=
1
X

k=0

ˆˆ
D⇥D

�
⇣ u� xk+1

�2�(k+1)R

⌘

�
⇣ v � xk

�2�kR

⌘ (f(u)� f(v))

(�2�(k+1)R)d(�2�kR)d
du dv

=:

1
X

k=0

ˆˆ
D⇥D

Hx
k (u, v)(f(u)� f(v)) du dv.

Note that

suppHx
k = B(xk+1

, �2�(k+1)R)⇥B(xk, �2
�kR)

✓ B(x, 2�(k+1)R)⇥B(x, 2�kR),

and hence |u� v| 6 |u� x|+ |v � x| 6 3

2

2�kR for (u, v) 2 suppHx
k . Thus

k(u, v) 7! |u� v|s+d/pHx
k (u, v)kLp

0
(D⇥D)

6 cd,p,s(2
�kR)s+d/pkHx

k kLp

0
(D⇥D)

= cd,p,s(2
�kR)s+d/p(�2�kR)�2d/p = cd,p,s�

�2d/p(2�kR)s�d/p.

Defining

Hx(u, v) :=
1
X

k=0

Hx
k (u, v),

we have

k(u, v) 7! |u� v|s+d/pHx(u, v)kLp

0
(D⇥D)

6
1
X

k=0

k(u, v) 7! |u� v|s+d/pHx(u, v)kLp

0
(D⇥D)

6 cd,p,s�
�2d/pRs�d/p,

where convergence is guaranteed by s > d/p. Since the function (u, v) 7!
|u� v|�s�d/p(f(u)� f(v)) belongs to Lp(D ⇥D), we obtain the convergence
of the integral representation
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f(x) =

ˆ
D
Gx(y)f(y) dy +

ˆˆ
D⇥D

Hx(u, v)(f(u)� f(v)) du dv

as claimed. ⇤

A classical corollary of Proposition 8.5.19 is the following:

Corollary 8.5.20 (Sobolev embedding theorem). Let D ✓ Rd be plump
with parameters R > 0 and � 2 (0, 1]. Then for all p 2 (d,1) and s > d/p,
and every Banach space X, we have a continuous embedding

W s,p(D;X) ,! L1(D;X).

Proof. From the proven representation, we deduce by Hölder’s inequality that

kf(x)k 6 kGxkLp

0
(D)

kfkLp

(D;X)

+ k(u, v) 7! |u� v|s+d/pHx(u, v)kLp

0
(D⇥D)

[f ]W s,p

(D;X)

6 cd,s,p((�R)�d/p + ��2d/pRs�d/p)kfkW s,p

(D;X)

.

This is valid at every Lebesgue point of f , and thereby almost everywhere. ⇤

By an elaboration of the same argument, we have a strengthening of this result
involving R-boundedness.

Theorem 8.5.21. Let X and Y be Banach space such that X has cotype
q 2 [2,1] and Y has type p 2 [1, 2], and let 1

p � 1

q < 1

r < s < 1. Let
D ✓ Rd be a plump domain with parameters � 2 (0, 1] and R > 0. Then every
f 2 W s,r(D;L (X,Y )) has R-bounded range, and

R
�

{f(t) : t Lebesgue point of f}
�

. kfkW s,r

(D;L (X,Y ))

,

where the implied constant depends on the various parameters in the state-
ment, but is independent of the function f .

On a bounded domain D it is immediate to check that C↵(D;L (X,Y )) ,!
W s,r(D;L (X,Y )) for ↵ > s, so we also obtain sufficient conditions for an
R-bounded range of Hölder continuous functions.

Proof. Using the representation given in Proposition 8.5.19, recalling the no-
tation

T f
r0 :=

n

x 7!
ˆ
D
�(t)f(t)x dt : k�kr0 6 1

o

introduced before Theorem 8.5.12, and denoting

F (u, v) :=
f(u)� f(v)

|u� v|s+d/r
, kFkLr

(D⇥D;L (X,Y ))

= [f ]W s,r

(D;L (X,Y ))

,

we find that
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f(t) =

ˆ
D
Gt(u)f(u) du+

ˆˆ
D⇥D

|u� v|s+d/rHt(u, v)F (u, v) du dv

2 kGtkLr

0
(D)

T f
r0 + k(u, v) 7! |u� v|s+d/pHt(u, v)kLr

0
(D⇥D)

T F
r0

✓ Cd,r(R�)
�d/rT f

r0 + Cd,s,r�
�2d/rRs�d/rT F

r0 .

(8.17)

By Theorem 8.5.12,

R(T f
r0 ) . kfkLr

(D;L (X,Y ))

, R(T F
r0 ) . kfkLr

(D⇥D;L (X,Y ))

.

Combining the estimates, we obtain the claim of the theorem. ⇤

Remark 8.5.22. Step (8.17) above implies the slightly more precise bound

R({f(t) : t Lebesgue point of f})
. Cd,r(R�)

�d/rkfkLr

(D;L (X,Y ))

+ Cd,s,r�
�2d/rRs�d/r[f ]W s,r

(D;L (X,Y ))

.

In the case of a special domain (such as Rd or a half space) that is plump
with some � 2 (0, 1] and every R > 0, we can optimise over R > 0 to get

R({f(t) : t Lebesgue point of f})

. Cd,r,s,�kfk1�d/rs
Lr

(D;L (X,Y ))

[f ]d/rsW s,r

(D;L (X,Y ))

.

8.6 Coincidence of R-boundedness with other notions

We have already seen in Theorem 8.1.3 that R-boundedness in L (X,Y ) agrees
with uniform boundedness if X has cotype 2 and Y has type 2, and with �-
boundedness if X has finite cotype. The aim of this section is to show that
both these coincidences actually characterise the respective properties of the
Banach spaces, and hence cannot be extended any further. In a more specific
situation of R-boundedness in Lp-spaces, we also show that R-boundedness
can be completely characterised by appropriate weighted norm inequalities.

8.6.a Coincidence with boundedness implies (co)type 2

Recall from Theorem 8.1.3 that an R-bounded family T ✓ L (X,Y ) is always
uniformly bounded, and the converse holds if X has cotype 2 and Y has type
2. In fact this is the only situation where the converse holds, and we have the
following more detailed result.

Proposition 8.6.1. For non-zero Banach spaces X and Y the following as-
sertions are equivalent:

(1) X has cotype 2 and Y has type 2;
(2) every uniformly bounded family in L (X,Y ) is R-bounded.
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In that case,
R(B̄L (X,Y )

) 6 ⌧
2,Y c2,X ,

where B̄Z denotes the closed unit ball of a Banach space Z, and we have

⌧
2,Y = R(B̄Y ⌦ {x⇤

0

}), c
2,X = R({y

0

}⌦ B̄X⇤),

where x⇤
0

2 X⇤ and y
0

2 Y are arbitrary fixed vectors of norm one and
y ⌦ x⇤ 2 Y ⌦X⇤ designates the operator x 2 X 7! hx, x⇤iy 2 Y .

Corollary 8.6.2. A Banach space X is isomorphic to a Hilbert space if and
only if every uniformly bounded family in L (X) is R-bounded.

Proof of Proposition 8.6.1. (1))(2): This easy implication and the related
estimate was already proved in Theorem 8.1.3.

(2))(1): We first consider the cotype 2 of X. Fix an arbitrary norm one
vector y

0

2 Y . For any x
1

, . . . , xN 2 X and x⇤
1

, . . . , x⇤
N 2 B̄X⇤ , we have

N
X

n=1

|hxn, x
⇤
ni|2 = E

�

�

�

N
X

n=1

"nhxn, x
⇤
ni
�

�

�

2

= E
�

�

�

N
X

n=1

"ny0 ⌦ x⇤
n(xn)

�

�

�

2

.

If the x
1

, . . . , xN 2 X are given, we can pick the x⇤
1

, . . . , x⇤
N 2 B̄X⇤ so that

hxn, x⇤
ni = kxnk, and then

N
X

n=1

kxnk2 = E
�

�

�

N
X

n=1

"ny0 ⌦ x⇤
n(xn)

�

�

�

2

6 R({y
0

}⌦ B̄X⇤)E
�

�

�

N
X

n=1

"nxn

�

�

�

2

,

proving that c
2,X 6 R({y

0

} ⌦ B̄X⇤). On the other hand, we always have
|hxn, x⇤

ni| 6 kxnk, and hence

E
�

�

�

N
X

n=1

"ny0 ⌦ x⇤
n(xn)

�

�

�

2

6
N
X

n=1

kxnk2 6 c
2,XE

�

�

�

N
X

n=1

"nxn

�

�

�

2

,

proving that R({y
0

}⌦ B̄X⇤) 6 c
2,X .

Next we consider the type 2 of Y . Fix an arbitrary x⇤
0

2 X⇤ of norm one
and 0 < ⌘ < 1, and pick x

0

2 X of norm one so that hx
0

, x⇤
0

i > ⌘. For any
choice of y

1

, . . . , yN 2 Y , we let zn := yn/kynk if yn 6= 0 and z
0

:= 0 if yn = 0,
so that zn 2 B̄Y in either case. Then

E
�

�

�

N
X

n=1

"nyn
�

�

�

2

6 E
�

�

�

N
X

n=1

"nzn
Dkynkx0

⌘
, x⇤

0

E

�

�

�

2

6 R(B̄Y ⌦ {x⇤
0

})2E
�

�

�

N
X

n=1

"n
kynkx0

⌘

�

�

�

2

,

where
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E
�

�

�

N
X

n=1

"n
kynkx0

⌘

�

�

�

2

=
1

⌘2
E
�

�

�

N
X

n=1

"nkynk
�

�

�

2

=
1

⌘2

N
X

n=1

kynk2.

This proves that ⌧
2,Y 6 (1 � ")�1R(B̄Y ⌦ {x⇤

0

}), and hence ⌧
2,Y 6 R(B̄Y ⌦

{x⇤
0

}) by letting ⌘ " 1. On the other hand, if y
1

, . . . , yN 2 B̄Y and x
1

, . . . , xN 2
X, then

E
�

�

�

N
X

n=1

"nynhxn, x
⇤
0

i
�

�

�

2

6 ⌧2
2,Y

N
X

n=1

kynhxn, x
⇤
0

ik2 6 ⌧2
2,Y E

�

�

�

N
X

n=1

"nhxn, x
⇤
0

i
�

�

�

2

= ⌧2
2,Y E

�

�

�

D

N
X

n=1

"nxn, x
⇤
0

E

�

�

�

2

6 ⌧2
2,Y E

�

�

�

N
X

n=1

"nxn

�

�

�

2

,

which proves that R(B̄Y ⌦ {x⇤
0

}) 6 ⌧
2,Y .

The final assertion follows from Kwapień’s isomorphic characterisation of
Hilbert spaces as the only Banach spaces with both type 2 and cotype 2
(Theorem 7.3.1). ⇤

By way of exception we state the analogous result for �-boundedness as well,
since the special properties of Gaussian variables can be used to give an es-
pecially satisfactory quantitative form of the statement:

Proposition 8.6.3. For non-zero Banach spaces X and Y the following as-
sertions are equivalent:

(1) X has (Gaussian) cotype 2 and Y has (Gaussian) type 2;
(2) every uniformly bounded family in L (X,Y ) is �-bounded.

In that case,
�(B̄Y ⌦ B̄X⇤) = �(B̄L (X,Y )

) = ⌧�
2,Y c

�
2,X ,

where ⌧�
2,Y and c�

2,X denote the Gaussian versions of the type 2 and cotype 2
constants.

If X = Y and these equivalent conditions hold, then an isomorphism J :
X ! H to a Hilbert space H can be constructed so that

kJkkJ�1k 6 �(B̄L (X)

).

Proof. The implication (1))(2) and the estimate �(B̄L (X,Y )

) 6 ⌧�
2,Y c

�
2,X are

proved exactly as in Proposition 8.6.1, and it is evident that �(B̄Y ⌦ B̄X⇤) 6
�(B̄L (X,Y )

). The main point is the implication (2))(1) and the estimate
⌧�
2,Y c

�
2,X 6 �(B̄Y ⌦ B̄X⇤), to which we now turn.

Let x
1

, . . . , xK 2 X and y
1

, . . . , yN 2 Y . We pick x⇤
1

, . . . , x⇤
K 2 B̄X⇤ so that

hxk, x⇤
ki = kxkk, and we also choose z

1

, . . . , zN 2 B̄Y so that yn = kynkzn.
The point is that with this choice

kxkkyn = hxk, x
⇤
kikynkzn = (zn ⌦ x⇤

k)(kynkxk),
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where zn ⌦ x⇤
k 2 B̄Y ⌦ B̄X⇤ . Now

⇣

K
X
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kxkk2
⌘

E
�

�

�

N
X

n=1

�nyn
�

�

�

2

= E
�

�

�
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�n
⇣
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⌘
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�

2

= E
�

�

�

N
X

n=1

K
X

k=1

�knkxkkyn
�

�

�

2

,

(8.18)

since the Gaussian sequences

n

�n
⇣

K
X

k=1

kxkk2
⌘

1/2oN

n=1

and
n

K
X

k=1

�knkxkk
oN

n=1

have the same joint distribution. Now
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N
X
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K
X

k=1

�knkxkkyn
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�

�

2

= E
�

�

�

N
X

n=1

K
X

k=1

�kn(zn ⌦ x⇤
k)(kynkxk)

�

�

�

2

6 �(B̄Y ⌦ B̄X⇤)2E
�

�

�

N
X

n=1

K
X

k=1

�knkynkxk

�

�

�

2

and, by similar reasoning as in (8.18),
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�

�
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X
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K
X
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�knkynkxk
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�

�

2

= E
�

�

�

K
X

k=1
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X

n=1

kynk2
⌘

1/2
xk

�

�

�
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�

�
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X
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�kxk

�

�

�

2

⇣

N
X

n=1

kynk2
⌘

.

Altogether we have checked that

⇣

K
X

k=1

kxkk2
⌘

E
�

�

�

N
X

n=1

�nyn
�

�

�

2

6 �(B̄Y ⌦ B̄X⇤)2E
�

�

�

K
X

k=1

�kxk

�

�

�

2

⇣

N
X

n=1

kynk2
⌘

.

This shows that c�
2,X⌧

�
2,Y 6 �(B̄Y ⌦ B̄X⇤), as claimed.

The last assertion follows from Kwapień’s Theorem 7.3.1. ⇤

8.6.b Coincidence with �-boundedness implies finite cotype

Recall from Theorem 8.1.3 that an R-bounded family T ✓ L (X,Y ) is always
�-bounded, and the converse holds if X has finite cotype. This is again the only
case for the converse implication, and we have the following characterisation:

Theorem 8.6.4. For a Banach space X the following assertions are equiva-
lent:
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(1) for any Banach space Y , any �-bounded family in L (X,Y ) is R-bounded;
(2) any �-bounded family in L (X,K) is R-bounded;
(3) X has finite cotype.

To prepare for the proof we start with a lemma, which is of some independent
interest as it gives a description of certain R-bounded sets in L (c

0

,K).

Lemma 8.6.5. Let (cn)n>1

be a sequence of scalars. For n > 1 let Tn 2
L (c

0

,K) = (c
0

)⇤ = `1 be given by

Tn = cne
⇤
n,

where (e⇤n)n>1

is the standard unit basis of `1. The sequence (Tn)n>1

is R-
bounded if and only if c 2 `2, and in that case we have

R({Tn : n > 1}) = kck`2 .

Proof. Suppose first that c 2 `2. For all x
1

, . . . , xN 2 c
0

one has

�

�

�

N
X

n=1

"nTnxn

�

�

�

L2
(⌦)

=
⇣

N
X

n=1

|cnhxn, e
⇤
ni|2

⌘

1/2
6
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N
X

n=1

|cn|2kxnk2
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1/2

6 kck`2 sup
16n6N

kxnk 6 kck`2
�

�

�

N
X

n=1

"nxn

�

�

�

L2
(⌦;c0)

,

using Proposition 6.1.5 in the last inequality. By Corollary 8.1.6 this implies
that (Tn)n>1

is R-bounded, with R({Tn : n > 1}) 6 kck`2 .
In the converse direction, assume that (Tn)n>1

is R-bounded. Fix an inte-
ger N > 1 and consider the standard unit basis vectors en of c

0

. Then,

⇣

N
X

n=1

|cn|2
⌘

1/2
=
⇣

N
X

n=1

|Tnen|2
⌘

1/2
=
�

�

�

N
X

n=1

"nTnen
�

�

�

L2
(⌦)

6 R({Tn : n > 1})
�

�

�

X

n>1

"nen
�

�

�

L2
(⌦;c0)

= R({Tn : n > 1}).

It follows that c 2 `2 and kck`2 6 R({Tn : n > 1}). ⇤

This lemma implies that the standard unit basis vectors e⇤n 2 `1 satisfy

R({e⇤n : 1 6 n 6 N}) = N1/2.

The next lemma establishes a logarithmic improvement for the �-bound of
this family.

Lemma 8.6.6. Let the notation be as in Lemma 8.6.5 and let K = R. For all
N > 2,

⇣ N

4 log 2N

⌘

1/2
6 �

�

{e⇤n : 1 6 n 6 N}
�

6
⇣ 10N

logN

⌘

1/2
.



8.6 Coincidence of R-boundedness with other notions 239

Proof. Fix N > 2. Let (Sj)
J
j=1

✓ {e⇤n : 1 6 n 6 N}. We will first show that
for all x

1

, . . . , xJ 2 c
0

one has

�

�

�

J
X
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�jSjxj
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. (8.19)

For 1 6 n 6 N let An := {j : Sj = e⇤n} and set

an :=
⇣

X

j2A
n

|hxj , e
⇤
ni|2

⌘

1/2
.

By Proposition E.2.20 applied to a real Gaussian sequence (gn)n>1

,
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�
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�jSjxj
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�

�
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J
X

j=1

|Sj(xj)|2 =

N
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6 5N

logN
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6 5N

logN
E sup

16n6N
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6 10N

logN
E sup

16n6N
|�nan|2

(8.20)

applying Proposition 6.1.21 in the last step. For 1 6 n 6 N set �n :=
P

j2A
n

�jxj . Then (�nn)
N
n=1

is a sequence of independent c
0

-valued random
variables and

E|�nn|2 = E|h�n, e
⇤
ni|2 = a2n.

It follows that the Gaussian sequences (�nn)
N
n=1

and (�nan)Nn=1

have the same
joint distribution. Therefore

E sup
16n6N

|�nan|2 = E sup
16n6N

|�nn|2. (8.21)

For any sequence of signs ✏ = (✏k)k>1

let I✏ : c0 ! c
0

be the isometry given
by I✏((↵k)k>1

) = (✏k↵k)k>1

. Let ("0n)
N
n=1

be a Rademacher sequence on a
distinct probability space (⌦0,P0). Then, pointwise on ⌦,
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,
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where we used that I"0(!0
)

is an isometry for each !0 2 ⌦0. Combining the
above estimate with (8.21) and using that �

1

, . . . ,�N are independent and
symmetric we obtain
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.

Combining this estimate with (8.20), (8.19) follows.
To prove the lower estimate, let cN = �(e⇤n : 1 6 n 6 N). Then, for all

N > 2, we may apply Proposition E.2.21 to obtain

N = E
�

�

�

N
X

n=1

�nhen, e⇤ni
�

�

�

2

6 c2NE
�

�

�

N
X

n=1

�nen
�

�

�

2

= c2NE sup
16n6N

|�n|2 6 4c2N log(2N),

where as before we applied Proposition 6.1.21 to reduce to real Gaussians. ⇤

Proof of Theorem 8.6.4. The implication (1))(2) is trivial, and the implica-
tion (3))(1) along with the estimate has already been proved.

(2))(3): Suppose that X does not have finite cotype. We first claim that
for every M > 0 there exists a finite family S ✓ L (X,K) such that �(S ) 6 1
and R(S ) > M . Indeed, fix M > 0. By the Maurey–Pisier theorem 7.3.8, X
contains the spaces `1N �-uniformly for some � > 1. Therefore, for any N > 1
there exists a bounded linear operator JN : `1N ! X such that

kxk 6 kJNxk 6 �kxk

for all x 2 `1N . Let XN = JN (`1N ) and let IN : XN ! `1N be the unique
invertible operator such that JNIN is the identity on XN . Then kINk 6 1.
Let (e⇤n)

N
n=1

be the standard basis in `1N . For 1 6 n 6 N let x⇤
n 2 X⇤

N be
defined by x⇤

n := I⇤Ne⇤n, and let z⇤n 2 X⇤ be a Hahn-Banach extension of x⇤
n.

Set SN := {z⇤n : 1 6 n 6 N} and TN := {e⇤n : 1 6 n 6 N}. By Lemmas
8.6.6 and 8.6.5 we have

�(TN ) 6 (10N/ logN)1/2, R(TN ) = N1/2.

For all 1 6 n 6 N we have z⇤n = e⇤n � ĨN , where the operator ĨN : X ! `1N is
defined by ĨNx := (hx, z⇤ni)Nn=1

and satisfies kĨNk = kINk 6 1. It follows that

�(SN ) 6 kĨNk�(TN ) 6
⇣ 10N

logN

⌘

1/2

and

N1/2 = R(TN ) 6 �R(S |X
N

) 6 �R(SN ).
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By a re-scaling, the claim follows.
By the claim, for each n > 1 we can find a family Sn ✓ L (X,K) such

that �(Sn) 6 1 and R(Sn) > 4n. Now let S =
S

n>1

2�nSn. Clearly,
�(S ) 6 P

n>1

2�n�(Sn) 6 1. On the other hand, for every n > 1, R(S ) >
R(2�nSn) > 2�n4n = 2n and hence S is not be R-bounded. ⇤

8.7 Notes

The origins of R-boundedness

The notion of R-boundedness has its roots in the theory of Fourier multipliers
and the results discussed in Section 8.3. In particular, Proposition 8.3.1 con-
cerning the R-boundedness of the interval multipliers �I is the analogue on
Lp(R;X) of a similar result on Lp(T;X) from Bourgain [1986], which has been
often referred to as the “first implicit use of R-boundedness”. However, the
scalar-valued original of this inequality, stated by Zygmund [1938] as a square
function estimate (i.e., `2-boundedness), already made use of a reformulation
in terms of the Rademacher functions (i.e., R-boundedness) to actually prove
it. Clearly square function estimates in the form of `2-boundedness are at the
heart of Littlewood–Paley theory, e.g. for the partial sums of these decompo-
sitions. This was already pointed out in Muckenhoupt and Stein [1965] and
Bonami and Clerc [1973].

A notable implicit appearance of R-boundedness in the classical litera-
ture is the negative solution of the ball multiplier problem — the question of
Lp(Rd)-boundedness of the Fourier multiplier�B(0,1) (see (8.7)) whose symbol
is the indicator of the unit ball B(0, 1) ✓ Rd — by Fefferman [1971]. Namely,
it had been observed earlier by Y. Meyer (see Fefferman [1971, Lemma 1])
that if this boundedness were true for a given p, then the family of Fourier
multipliers {�H : H ✓ R2 a half-space} would be R-bounded in Lp(R2), and
the core of Fefferman’s argument, “based on a slight variant of (Schönberg’s
improvement of) Besicovitch’s construction for the Kakeya needle problem”,
was to show that this R-boundedness fails for all p 6= 2.

In any case, Bourgain [1986] was probably the first to use this notion in
the context of analysis in Banach spaces.

The explicit use of R-boundedness has a history of its own. Edwards and
Gaudry [1977] defined the Riesz property of a collection E of sets (rather than
operators) E ✓ Rn as (in our language) the R-boundedness of the multiplier
operators (defined in (8.7)) �E = T1

E

, E 2 E , on Lp(Rn). This definition and
name was obviously motivated by the classical versions of Proposition 8.3.1
and its multivariate extension in Lemma 8.3.13, which guaranteed this prop-
erty for the family of all (axes-parallel) rectangles as a corollary of the Lp-
boundedness of the Hilbert transform — in the scalar case a classical theorem
of Riesz [1928].
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The notion of R-boundedness of a family of operators, as we have used
it, was first formally introduced by Berkson and Gillespie [1994], who called
it the R-property, making connections to the works of both Bourgain [1986]
and Edwards and Gaudry [1977]. The same definition under the now stan-
dard name of R-boundedness was adopted by Clément, De Pagter, Sukochev,
and Witvliet [2000], who reinterpreted the ‘R’ as ‘randomised’ and provided
a detailed analysis including many of the results that we have discussed in
Section 8.1. The alternative interpretation of the ‘R’ as ‘Rademacher’ (with
obvious reference to the Rademacher variables used in the definition) has
been proposed by Kalton and Weis [2001]. This more specific name is perhaps
preferable in order to make a distinction from other possible versions of ran-
domised boundedness such as the �-boundedness (Gaussian boundedness), at
least in contexts where both notions make an appearance. Fortunately enough,
everyone could agree on the letter ‘R’.

General treatments of R-boundedness from the early years of the theory
are provided by Denk, Hieber, and Prüss [2003] and Kunstmann and Weis
[2004].

Section 8.1

The key properties of R-boundedness expressed in Propositions 8.1.5 (testing
R-boundedness with distinct operators), 8.1.21 (stability under convex hulls)
and 8.1.22 (in the case of strong operator closure) were all stated and proved
in the first systematic analysis of R-boundedness by Clément, De Pagter,
Sukochev, and Witvliet [2000], but the convexity was already implicit in the
work of Bourgain [1986]. Whether �-boundedness can be tested with distinct
operators is an open problem. Krivine [1974] showed that a family consisting
of a single operator T 2 L (X,Y ) is `2-bounded by KGkTk, where KG is
the Grothendieck constant (see Lindenstrauss and Tzafriri [1979, Theorem
1.f.14]). This was used in Kwapień, Veraar, and Weis [2016] to show that `2-
boundedness can be tested with distinct operators. Proposition 8.1.24 is taken
from Weis [2001b]. Proposition 8.1.20 is due to Van Gaans [2006].

Theorem 8.1.12 on the R-boundedness of conditional expectations is just
a reformulation of Theorem 4.2.23; it was stated as a lemma by Bourgain
[1984, 1986], extending the scalar-valued version due to Stein [1970b]. The
ball-averaging version in Proposition 8.1.13 is from Hytönen, Van Neerven,
and Portal [2008b], which contains the following elaboration: if X is a UMD
space, 1 < p < 1, and Lp(Rd;X) has type t 2 (1, 2], then for each ↵ > 1 the
family A↵ of averaging operators

f 7! A↵Bf := 1↵B�
ˆ
B
f dx,

where B runs over all balls in Rd, is R-bounded on Lp(Rd;X) with

R(A↵) 6 C(1 + log↵)↵d/t
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with a constant C depending only on X, p, t and d. This result plays a role in
a change-of-aperture theorem for so-called tent spaces of X-valued functions.
The proof is more difficult and depends on dyadic techniques developed by
Figiel [1988] and Hytönen, McIntosh, and Portal [2008a]. For X = K the
logarithmic factor was subsequently removed in Auscher [2011].

Proposition 8.1.14 appears in Maas and Van Neerven [2009]. The observa-
tion in Proposition 8.1.18 is the idea behind the multiplier results in Girardi
and Weis [2003a].

Counterexamples

The essence of Proposition 8.1.16 (the failure of the R-boundedness of trans-
lations) is folklore. It can be elaborated as follows:

Example 8.7.1. Consider the Besov space X = Bs
p,1(R) and let Y = Lp(R),

with p 2 [1,1) and s > 0. Let S = {S(u) 2 L (X,Y ) : u 2 R}, where
S(u)f(v) = f(v + u) are the left-translation operators. Then

(1) S is R-bounded if s > |1/p� 1/2|;
(2) S is not R-bounded if s < |1/p� 1/2|;
(3) S is R-bounded if s = 1/2 and p = 1;
(4) S is semi-R-bounded (see Definition 8.7.3) if 1 6 p < 2 and s = 1/p�1/2.

Assertions (1) and (2) are from Hytönen and Veraar [2009] and (3) and (4)
from Veraar and Weis [2010]. It seems to be unknown whether S is R-bounded
if s = |1/p�1/2| and p 2 (1,1). If p 2 [2,1), then {S(u) 2 L (X) : u 2 R} is
semi-R-bounded (this notion is introduced and discussed below); this follows
from the remarks below Definition 8.7.3 and the fact that X has type 2.

In Hoffmann, Kalton, and Kucherenko [2004] various negative results for R-
boundedness of operators on L1-spaces and C(K)-spaces have been obtained.
In particular, they obtained the following negative result:

Theorem 8.7.2. Let X be a separable Banach space supporting an R-bounded
C

0

-semigroup (S(t))t>0

consisting of weakly compact operators.

(1) If X = L1(µ), then X is isomorphic to `1 (i.e., µ is purely atomic).
(2) If X = C(K), then X is isomorphic to c

0

.

Since differential operators on a bounded domain D often have compact re-
solvents, the semigroups generated by such operators on L1(D) and C(D) are
generally not R-bounded. A characterisation of R-boundedness in L1(µ) was
obtained in Kalton and Kucherenko [2008]; with the results of this paper one
also obtains negative results for certain differential operators on unbounded
domains.
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Semi-R-boundedness

The following weaker version of R-boundedness has been introduced and stud-
ied in Hoffmann, Kalton, and Kucherenko [2004].

Definition 8.7.3. A collection T ✓ L (X,Y ) is said to be semi-R-bounded
if there exists a constant C > 0 such that for all finite sequences (Tn)

N
n=1

in
T , scalars (an)Nn=1

, and x 2 X,

⇣

E
�

�

�

N
X

n=1

"nTnanx
�

�

�

2

⌘

1/2
6 C

⇣

N
X

n=1

|an|2
⌘

1/2
kxk.

The least admissible constant C in the above inequality is called the semi-R-
bound, and is denoted by R

semi

(T ).

It is shown in Hoffmann, Kalton, and Kucherenko [2004] that a Banach space
X has type 2 if and only if every uniformly bounded subset of L (X) is semi-R-
bounded, and that in a separable Banach space, every semi-R-bounded subset
of L (X) is R-bounded if and only if either X is isomorphic to `2 or every
bounded operator from X to `2 is absolutely summing. Examples of spaces
with the latter property include the L1-spaces. Parts of this result have been
extended to operator families in L (X,Y ) in Blasco, Fourie, and Schoeman
[2007] and Veraar and Weis [2010]. The latter paper also contains the following
simple observation:

Proposition 8.7.4. Let X be a Banach space and fix a constant C > 0. For
any family of operators T ✓ L (X) the following assertions are equivalent:

(1) T is semi-R-bounded with constant R
semi

(T ) 6 C;
(2) T x = {Tx : T 2 T }, considered as a subset of L (K;Y ), is R-bounded

for all x 2 X with constant R(Tx) 6 Ckxk.

Using this characterisation, many results on R-boundedness can be extended
to semi-R-boundedness.

Different versions of R-boundedness have been studied in Kalton and Weis
[2001] in connections with the H1-calculus for sectorial operators.

Section 8.2

The results of Section 8.2.a, on the deduction of R-boundedness from point-
wise domination, are mostly folklore. Some of these statements in the explicit
language of R-boundedness appear in Weis [2001a]. Maximal estimates to
prove R-boundedness of the semigroups with Gaussian bounds were already
used in Denk, Hieber, and Prüss [2003].

The notion of `s-boundedness (sometimes called Rs-boundedness) is stan-
dard in harmonic analysis. It is important here that, when choosing operators
from T , repetitions are allowed. Indeed, Kunstmann, P. C. and Ullmann
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[2014] show that a single (!) operator on a Hilbert space may not be `s-
bounded if s 6= 2. Weis [2001a] used `s-boundedness for different values of s
to derive R-boundedness results for a large class of semigroups on Lp-spaces by
an interpolation argument. These results will be explained in detail in Section
10.7.d. In Blunck and Kunstmann [2002] and Kunstmann and Weis [2004],
`s-boundedness and R-boundedness results are derived from off-diagonal es-
timates. The notion of `s-boundedness was further studied by Kunstmann,
P. C. and Ullmann [2014] in connection with functional calculus. In Amenta,
Lorist, and Veraar [2017b] the more restrictive notion of `r(`s)-boundedness
was introduced in order to study Fourier multiplier theorems with operator-
valued symbols on Banach lattices.

Theorem 8.2.6, which deduces `s-boundedness from uniform weighted es-
timates, is due to Rubio de Francia [1984]. A thorough modern treatment of
this and related topics is provided by Cruz-Uribe, Martell, and Pérez [2011].
Typical examples of classes of operators satisfying such weighted estimates
are Calderoń–Zygmund operators and in particular Fourier multiplier oper-
ators (see García-Cuerva and Rubio de Francia [1985, Theorems IV.3.1 and
IV.3.9]). Fröhlich [2007] applied weighted estimates to obtain R-analyticity for
the Stokes semigroup. Similar applications to semigroups and evolution fami-
lies generated by elliptic equations can be found in Haller-Dintelmann, Heck,
and Hieber [2003, 2006] and Gallarati and Veraar [2017a,b], respectively.

The weighted characterisations of `s-boundedness of Propositions 8.2.8 and
8.2.10 are due to Rubio de Francia [1982] (see also García-Cuerva and Rubio de
Francia [1985]). We follow the presentation of Grafakos [2009, Section 9.5.3]
with minor changes. Lemma 8.2.9 is due to Fan [1953] and an elementary
proof can be found in the appendices of both García-Cuerva and Rubio de
Francia [1985] and Grafakos [2008]. Proposition 8.2.8 was applied in Gallarati,
Lorist, and Veraar [2016] to derive R-boundedness results for certain integral
operators of non-convolution type.

Another general tool for checking R-boundedness in Lp(Rd) has been in-
troduced quite recently:

Theorem 8.7.5 (Bateman and Thiele [2013]). Let T be a family of sub-
linear operators uniformly bounded on L2(Rd) and let 1 < p

0

< p
1

< 1.
Suppose that the following holds for both i = 0, 1: There is a constant Ci

such that for all H,G ✓ Rd of finite positive measure, there are major subsets
H 0 ✓ H and G0 ✓ G, namely

|H 0| > 1

2

|H|, |G0| > 1

2

|G|,

such that, for every T 2 T and f 2 L2(Rd), we have

⇣

ˆ
G0

|T (1H0f)|2 dx
⌘

1/2
6 Ci

⇣ |G|
|H|

⌘

1/2�1/p
i

kfkL2
(Rd

)

.

Then T ✓ L (Lp(Rd)) is `2-bounded for every p 2 (p
0

, p
1

).
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The original application of this tool by Bateman and Thiele [2013] was the
proof of the Lp(R2)-boundedness, for p 2 ( 3

2

,1), of the Hilbert transform
along a one-variable vector field v : R ! R2 \ {0}, namely

Hvf(x) := p. v.

ˆ
R
f(x� tv(x

1

))
dt

t
, x = (x

1

, x
2

) 2 R2.

The core of their argument is to show the `2-boundedness of a family of
frequency-truncated versions of Hv with the help of Theorem 8.7.5. Further
applications of Theorem 8.7.5, to reprove several classical inequalities of har-
monic analysis, have been explored by Demeter and Silva [2015].

Section 8.3

Proposition 8.3.1 on the R-boundedness of the interval multipliers �I is a
birthplace of R-boundedness and was already discussed at the beginning of
these Notes. The Marcinkiewicz multiplier theorem 8.3.9 is a classical result
of Marcinkiewicz [1939] in the scalar-valued case, and was extended to scalar-
valued multipliers m in UMD spaces by Bourgain [1986]. The concise argument
of Bourgain [1986] was substantially elaborated by Zimmermann [1989], who
proved the multivariate extension as in Theorem 8.3.19 for scalar-valued m.
One can clearly identify early versions of Theorem 8.3.4 (which is implicit in
Bourgain [1986]) and Proposition 8.3.15 (again for scalar-valued m) in the
paper of Zimmermann [1989]. The first operator-valued multiplier theorem
was the Mihlin-type result here stated as Corollary 8.3.11 and first proved by
Weis [2001b]. The operator-valued versions of the Marcinkiewicz-type theo-
rems 8.3.9 and 8.3.19 were shortly after obtained by Štrkalj and Weis [2007].
(The publication year of this paper, “received by the editors October 1, 1999”,
is exceptionally misleading.) Independently, these results were also obtained
by Haller, Heck, and Noll [2002]. The statement of the multiplier theorem
of Mihlin [1956], in Corollary 8.3.11, as a corollary to that of Marcinkiewicz
[1939] agrees with the historical order of developments in the scalar-valued
case, although originally this ‘corollary’ was not quite as immediate, as the
theorem of Marcinkiewicz [1939] was formulated in the periodic case. The same
applies to the multivariate Corollary 8.3.22, whose scalar-valued version is due
to Lizorkin [1963]. In Kunstmann and Weis [2004] a direct approach to the
operator-valued Mihlin theorems is given which is also based on Ste

b

cin-type
multiplier theorems as in Theorem 8.3.4 and Proposition 8.3.15. However, here
only multipliers satisfying integral conditions as in Lemmas 8.3.8 and 8.3.16
in place of the more general variational norm are considered. Denk, Hieber,
and Prüss [2003] contains a further variations of the R-boundedness approach
to operator-valued multiplier theorems.

The failure of the multivariate Marcinkiewicz Theorem 8.3.19 in general
UMD spaces was also discovered by Zimmermann [1989], who gave a coun-
terexample in the Schatten classes C p with p 2 (1,1)\{2}. The more precise
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result of Proposition 8.3.25, that the additional requirement on X is exactly
Pisier’s contraction property, is due to Lancien [1998]. We should recall, how-
ever, that a version of the multivariate multiplier theorem is also valid for
general UMD spaces, but this requires somewhat stronger assumptions on
the multiplier m than Theorem 8.3.19 or its Corollary 8.3.22, in exchange
for the weaker assumptions on the space (see Theorem 5.5.10). This variant
of the multivariate multiplier theorem has the same vector-valued history as
Theorem 8.3.19.

That Pisier’s contraction property leads to the R-boundedness of col-
lections of multiplier operators, as in Theorem 8.3.12 and Corollary 8.3.23,
was first established by Venni [2003], and independently by Girardi and Weis
[2003b] by a simpler and more general approach. The necessity of Pisier’s con-
traction property (Proposition 8.3.24) for these results was shown by Hytönen
and Weis [2008]. This result can be elaborated in the following ways:

1. It suffices to consider just the special multipliers ms(⇠) = (2⇡|⇠|)i2s, whose
associated operators are Tm

s

= (�4)is, the imaginary powers of the
Laplacian (see Proposition 10.5.4).

2. It is possible to build a single multiplier m 2 C1(R\{0}) with the bounds
|⇠|k|@km(⇠)| 6 Ck for all k 2 N, such that for any p 2 (1,1), we have
• Tm 2 L (Lp(R;X)) if and only if X is a UMD space, and
• {Tm(2

j ·) : j 2 Z} is an R-bounded subset of L (Lp(R;X)) if and only
if X is a UMD space with Pisier’s contraction property.

This is essentially based on implanting all the possible (countably many,
after restricting to ↵kn = ±1) finite constructions from the proof of Propo-
sition 8.3.24 into a single multiplier m; see Hytönen [2007c].

It might be interesting to note that the original proofs, by Hytönen and Weis
[2008] and Lancien [1998], of both Propositions 8.3.24 and 8.3.25 on the ne-
cessity of Pisier’s contraction property for different multiplier theorem, used
Pisier’s Theorem 6.5.1 on random versus trigonometric sums to deduce the
estimates (8.10) and (8.11) from their trigonometric variants right above each
of them. We have replaced the application of this non-trivial theorem by a
simple randomisation argument.

Beyond Mihlin’s theorem without Pisier’s contraction property

Fix a positive vector ↵ 2 (0,1)d. The associated anisotropic size %↵(x) of
x 2 Rd, introduced by Fabes and Rivière [1966], is defined as the unique
positive solution % of

d
X

i=1

x2

i

%2↵i

= 1

if x 6= 0, and %↵(0) := 0. The following result is from Hytönen [2007a]:

Theorem 8.7.6. Let X be a UMD space and p 2 (1,1). If m 2 Cd(Rd \
{0};L (X)) satisfies
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R
�

{%↵(⇠)↵·�@�m(⇠) : ⇠ 2 Rd \ {0},� 2 {0, 1}d}
�

< 1,

then m is a Fourier multiplier on Lp(Rd;X).

Note that %↵(x)↵i > |xi|, so that %↵(⇠)↵·� > |⇠� |, so that the assumption on
the multiplier m is stronger than the one in Corollary 8.3.22. For this reason,
Theorem 8.7.6 seems not to have a scalar-valued predecessor, as such a result
was never needed given the existence of the stronger Corollary 8.3.22. In the
vector-valued case, the advantage of Theorem 8.7.6 over Corollary 8.3.22 is
the fact that Theorem 8.7.6 does not require Pisier’s contraction property. If
↵ = (1, . . . , 1), the anisotropic size reduces to %↵(x) = |x|, and Theorem 8.7.6
reduces to Theorem 5.5.10.

Another interesting set of multipliers outside the Mihlin class consists of
m(⇠) = (|⇠i|/|⇠|)s with s > 0. The boundedness Tm 2 L (Lp(Rd;X)) for all
UMD spaces X and p 2 (1,1) has been established by ad hoc arguments by
Hytönen [2007c] and Hytönen, Li, and Naor [2016] (showing a d-independent
bound), and finally by a systematic approach with a sharp bound as a special
case of results for so-called Lévy multipliers by Yaroslavstev [2017], who ex-
tended the results of Bañuelos, Bielaszewski, and Bogdan [2011] to the vector-
valued setting.

Section 8.4

The duality result in Proposition 8.4.1 is due to Kalton and Weis [2001]. The
counterexample Example 8.4.2 on `1 is folklore. It was shown in Kwapień,
Veraar, and Weis [2016] that K-convexity of X is also necessary in Proposition
8.4.1(1) when quantifying over all R-bounded subsets of L (X,Y ). The bi-
duality result of Proposition 8.4.3 is due to Hoffmann, Kalton, and Kucherenko
[2004] with a similar proof. An alternative proof using the principle of local
reflexivity can be found in De Pagter and Ricker [2010]. Proposition 8.4.4
on the permanence of R-boundedness under interpolation can be found in
Kaip and Saal [2012]. Lemma 8.4.5 is taken from Girardi and Weis [2003a].
Proposition 8.4.6 is a variation of a result in Kalton and Weis [2001], where
the result is stated under a more restrictive unconditionality assumption.

Section 8.5

Theorem 8.5.2 and Propositions 8.5.10 and 8.5.11 are taken from Weis [2001b],
which also contains slightly weaker formulations of Theorem 8.5.4 and Propo-
sition 8.5.7. Proposition 8.5.8 is taken from Kunstmann and Weis [2004].

A proof of the Riemann mapping theorem, in its formulation used in the
proof of Proposition 8.5.10, can be found in Carathéodory [1954, pp. 88–107].

The results of Section 8.5.c are from Hytönen and Veraar [2009] where
further variations results can be found as well. Instead of the Fourier ana-
lytic approach, our proof of Theorem 8.5.21 uses the description of Sobolev
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spaces of fractional order by difference norms. Theorem 8.5.12 was used by
Kriegler [2014] and Kriegler and Weis [2017] to obtain R-boundedness for the
Hörmander functional calculus for free.

Mapping properties of the vector-valued Sobolev spaces W 1,p(D;X) and
W 1,p

0

(D;X) have been studied in recent paper Arendt and Kreuter [2016].
Incidentally, it contains an independent (and different) proof to Theorem
2.5.7(2).

Section 8.6

Proposition 8.6.1 is taken from Arendt and Bu [2002] who, so they write, “are
indebted to C. Le Merdy and G. Pisier for communicating them this result.”
The quantitative estimates of that proposition are implicit in Arendt and
Bu [2002], but in the Gaussian version given in Proposition 8.6.3 they may be
new. The difficult implication of Theorem 8.6.4 is taken from Kwapień, Veraar,
and Weis [2016]. Using a deep result of Talagrand [1992a] on the cotype of
operators on `1N , these authors also proved the following characterisation:

Theorem 8.7.7. Let X and Y be Banach lattices with Y non-zero. The fol-
lowing assertions are equivalent:

(1) every R-bounded family T ✓ L (X,Y ) is `2-bounded.
(2) every �-bounded family T ✓ L (X,Y ) is `2-bounded.
(3) X has finite cotype.

In this case, `2(T ) .X R(T ) hX �(T ).

A similar (but simpler) result with the roles of R-boundedness and `2-
boundedness reversed, is proved there as well and in this case it characterises
finite cotype of Y .

Further results

There are many further important applications of R-boundedness to the H1-
functional calculus (see Chapter 10) and several related topics which will be
discussed in depth in Volume III. Let us mention here some applications which
we will not pursue any further.

Representations of amenable groups

As a consequence of the classical unitarisation theorem of Day and Dixmier
(see Pisier [2001]), every bounded strongly continuous representation ⇡ : G !
L (X) of an amenable, locally compact group G, has a bounded extension e⇡ :
C⇤(G) ! L (X) to the group C⇤-algebra C⇤(G) of G if X is a Hilbert space.
In Le Merdy [2010] this result has been extended to general Banach spaces as
follows: If ⇡ : G ! L (X) is a bounded strongly continuous representation,
then ⇡ has a unique extension to a homomorphism e⇡ : C⇤(G) ! L (X)
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with �-bounded range if and only if ⇡ has �-bounded range. For Banach
spaces X with Pisier’s contraction property, it is furthermore shown that
⇡ : G ! L (X) extends to a bounded homomorphism e⇡ : C⇤(G) ! L (X) if
and only if the range of ⇡ is R-bounded, and in that case the range is even
matricially R-bounded. For G = Z one has C⇤(G) = C(T) and the following
result is obtained as a special case: If X has Pisier’s contraction property and
T 2 L (X) is invertible, then there exists a constant C > 0 such that

�

�

�

X

n2Z
Tn

�

�

�

6 C sup
z2T

|cnzn|

for all finitely non-zero complex sequences (cn)n2Z if and only if the family
{Tn : n 2 Z} is R-bounded. Earlier R-boundedness results for the range of a
bounded representation ⇡ : C(K) ! L (X) appeared in De Pagter and Ricker
[2007]. Related results can be found in Kriegler and Le Merdy [2010].

Representation of R-bounded sets on Hilbert spaces

In this volume we have encountered many instances of results that are clas-
sical in Hilbert spaces and extend to the Banach space setting if one adds
appropriate R-boundedness assumptions. Contemplating this body of results
one cannot escape the impression that R-bounded sets of operators behave
very much like uniformly bounded sets of Hilbert space operators. From a
factorisation theorem due to Maurey [1974a] it follows that for `s-bounded
sets of operators on Lp (see the Notes of Section 8.2) there exists a factori-
sation through Ls (see also García-Cuerva and Rubio de Francia [1985]). In
Le Merdy and Simard [2002] a different proof of the factorisation theorem was
given in the special case s = 2 using the theory of completely bounded maps.

The following factorisation through Hilbert spaces of R-bounded sets on
general Banach spaces is given in Kalton and Weis [preprint].

Theorem 8.7.8. Let X be a Banach space and let T ✓ L (X) be a closed,
absolutely convex, R-bounded set of operators. Let B

1

be the Banach space
obtained by norming

S

n>1

n⌧ with the Minkowski functional of ⌧ . Then there
exists a Hilbert space H, a closed sub-algebra B

2

of L (H), and continuous
linear multiplicative maps ⇢ : B

1

! B
2

and ⇡ : B
2

! L (X) such that

⇡ � ⇢(T ) = T

for all T 2 ⌧ .

Although this theorem is not strong enough to deduce many properties of ⌧
from the properties of the set of Hilbert space operators ⇢(⌧) in L (H), it does
give some heuristic explanation of the observed phenomena and explains the
many uses of R-boundedness in Analysis.
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Square functions and radonifying operators

A deep concept in mathematics is usually not an idea in its pure form,
but rather takes various shapes depending on the uses it is put to. The
same is true of square functions. These appear in a variety of forms,
and while in spirit they are all the same, in actual practice they can
be quite different. Thus the metamorphosis of square functions is all
important. —Elias M. Stein

Many of the results earlier in this book so far illustrate, among the class of
all Banach spaces, the distinguished role of Hilbert spaces. Perhaps luckily for
those who choose to find their living in more barren spaces, it is often possible
to identify useful Hilbertian components for objects in other Banach spaces
of interest.

Square functions provide a well-known representation of classical function
space norms in terms of expressions involving a quadratic component. Exam-
ples to keep in mind include norm equivalences such as the Littlewood–Paley
inequality for functions f 2 Lp(R), p 2 (1,1),

kfkLp

(R) h
�

�

�

⇣

ˆ 1

0

�

�

�

t
@

@t
u(t, ·)

�

�

�

2 dt

t

⌘

1/2�
�

�

Lp

(R)
, (9.1)

where u is the harmonic extension of f into the upper half-plane, or the
Burkholder–Davis–Gundy inequality for martingales (fn)n>1

in Lp(⌦), p 2
(1,1),

kfNkLp

(⌦)

h
�

�

�

⇣

N
X

n=1

|dfn|2
⌘

1/2�
�

�

Lp

(⌦)

,

where dfn := fn � fn�1

(with f
0

:= 0) is their difference sequence.
In the present chapter we will present another metamorphosis of square

functions which makes it possible to extend them to general Banach spaces.
The basic difficulty is that in an abstract Banach space X there is no way to
make ‘pointwise evaluations’ of elements to form the L2-integrals ‘inside the
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norm of X’. We overcome this problem by identifying the norm on the right-
hand side of (9.1) with the norm of an associated �-radonifying operator, an
idea which carries over to the Banach space setting (as explained in more
detail in Section 9.1). In spite of their operator-theoretic definition, these
generalised square function norms still behave much like function space norms.
Among other things we will prove versions of the dominated convergence
theorem, Fatou’s lemma, and Fubini’s theorem, as well as a multiplier theorem
involving operator-valued multipliers whose range is �-bounded. The ‘Hilbert
space component’ in (9.1), namely the possibility to estimate the norm in
(9.1) by applying transformations bounded on L2(R

+

) to the term t @@tu(t, x)
as a function of t for fixed values of x 2 R, reincarnates in the so-called ‘ideal
property’ of generalised square functions. We also prove various embedding
theorems between square function spaces and the classical Sobolev and Hölder
spaces.

Throughout this chapter we fix a Hilbert space H with inner product (·|·)
and a Banach space X with duality pairing h·, ·i, both over the scalar field
K which may be either R or C. Unless stated otherwise, (�n)n>1

will always
denote a Gaussian sequence defined on some underlying probability space
(⌦,P). We remind the reader of the convention that when K = R, (�n)n>1

is a sequence of independent real-valued standard normal variables and when
K = C, (�n)n>1

is a sequence of independent complex-valued standard normal
variables.

9.1 Radonifying operators

Radonifying operators provide the abstract setting to study square functions
from an abstract functional analytic point of view. Before turning to the
mathematical details, to guide our intuition it will be helpful to explain the
heuristics of this approach.

9.1.a Heuristics

We have already seen in the preceding chapters that random sums are often
an effective substitute for discrete square functions. Indeed, for any sequence
(xn)

N
n=1

in Lp(S), p 2 [1,1), by Proposition 6.3.3 we have

�

�

�

⇣

N
X

n=1

|xn|2
⌘

1/2�
�

�

Lp

(S)

h E
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(S)

. (9.2)

For the L2-normalised step functions f : [0, 1] ! Lp(S) of the form

f =

N
X

n=1

1

(t
n�1,tn)p

tn � tn�1

⌦ xn,
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the equivalence of norms (9.2) takes the form

�

�

�

⇣

ˆ
1

0

|f(t, ·)|2 dt
⌘

1/2�
�

�

Lp

(S)

=
�

�
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N
X

n=1
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�

Lp

(S)

,

where (�n)Nn=1

is a Gaussian sequence defined on some probability space.
This suggests to define, for step functions f of the above form with values in
a Banach space X, the ‘square function norm’ of f by

kfk�(0,1;X)

=
�

�

�

N
X

n=1

1

(t
n�1,tn)p

tn � tn�1

⌦ xn

�

�

�

�(0,1;X)

:= E
�

�

�

N
X

n=1

�nxn

�

�

�

. (9.3)

This norm ‘replaces’ the orthonormal functions hn = 1

(t
n�1,tn)/

p
tn � tn�1

by the Gaussian sequence �n.
At this point, the reader may wonder why, in (9.2) and (9.3), we choose

to use Gaussians rather than Rademachers. After all, since Lp(S) has finite
cotype for p 2 [1,1), the resulting norm would have been equivalent. The
reason is that only in this way we ensure that the norm of a simple f in
�(0, 1;X) is independent of the chosen representation as a sum of indicators.
This depends on the fundamental invariance of the distribution of a Gaussian
vector (�

1

, . . . , �N ) in KN under orthogonal or unitary transformations for
K = R respectively K = C. This property distinguishes Gaussian vectors
among other possible choices of random variables when we are working with
orthonormal sequences in Hilbert spaces (such as the hn 2 L2(0, 1) in the
present discussion).

These considerations suggest, for an arbitrary measure space (S,A , µ),
to introduce the Banach space �(S;X) as the completion of the µ-simple
functions f : S ! X with respect to the norm

�

�

�

N
X

n=1

1A
n

p

µ(An)
⌦ xn

�

�

�

�(S;X)

:= E
�

�

�

N
X

n=1

�nxn

�

�

�

,

where the sets An 2 A are taken disjoint and of finite positive measure. More
generally we may define this space as the completion of L2(S)⌦X with respect
to the norm

�

�

�

N
X

n=1

hn ⌦ xn

�

�

�

2

�(S;X)

:= E
�

�

�

N
X

n=1

�nxn

�

�

�

2

, (9.4)

where the hn are taken orthonormal in L2(S). Here, as we did before, we
interpret h ⌦ x 2 L2(S) ⌦ X as the function s 7! h(s)x. We will see below
that this norm is indeed the right one to extend the equivalences (9.1)–(9.2)
to a large class of Banach spaces.

The key observation now is that the expression on the right of (9.4) makes
perfect sense for arbitrary Hilbert spaces H and Banach spaces X, provided
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we interpret
PN

n=1

hn⌦xn as the finite rank operator from the dual space H⇤

into X defined by

h⇤ 7!
N
X

n=1

hhn, h
⇤ixn.

In the case of real scalars there is no need to distinguish H and its (Banach)
dual H⇤ and we may use the inner product of H instead. This observation
will be the point of departure in this chapter. The space �(H,X) can now be
defined as the completion of the space H ⌦X of finite rank operators from H
to X with respect to the norm provided by (9.4).

9.1.b The operator spaces �1(H,X) and �(H,X)

To start with, we take up the duality issue raised in the last paragraph of the
preceding section. When dealing with complex Hilbert spaces and complex
Banach spaces simultaneously we have to carefully distinguish between Hilbert
space adjoints and Banach space adjoints. The identification of the dual H⇤

of a Hilbert space H with the space H itself is conjugate-linear rather than
linear, and in the context of this chapter the careless identification of H and
H⇤ would lead to the simultaneous consideration of both linear and conjugate-
linear operators. The easiest and most elegant way out is to stay, at all times,
within the category of Banach spaces. Accordingly, we shall never identify a
Hilbert space with its dual, but rather treat Hilbert spaces just as any other
Banach space.

The dual H⇤ of a Hilbert space H has the structure of a Hilbert space in
a natural way. Indeed, by the Riesz representation theorem, every h⇤ 2 H⇤

has the form  h for a unique h 2 H, where

hh0, hi := (h0|h), h0 2 H.

Here (·|·) denotes the inner product of H; it is bilinear in the case of real
Hilbert spaces and linear in the first variable and conjugate-linear in the sec-
ond variable in the case of complex Hilbert spaces. Now the formula

( h1 | h2) := (h
2

|h
1

) (9.5)

defines an inner product on H⇤. In the case of real Hilbert spaces this is clear,
and in the case of complex Hilbert spaces we note that c h =  ch implies

(c h1 | h2) = ( ch1 | h2) = (h
2

|ch
1

) = c(h
2

|h
1

) = c( h1 | h2)

and

( h1 |c h2) = ( h1 | ch2) = (ch
2

|h
1

) = c(h
2

|h
1

) = c( h1 | h2).

Two vectors  h1 , h2 are orthonormal in H⇤ if and only if h
1

, h
2

are
orthonormal in H. Moreover, for all h in the span of orthonormal vectors
h
1

, . . . , hN in H we have the Parseval identity
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khk2 =

N
X

n=1

|hh, h
n

i|2.

The space �1(H,X)

We begin with a discussion of a somewhat larger space of all �-summing oper-
ators, which appears naturally in results such as the �-Fatou lemma (Propo-
sition 9.4.6) and the �-multiplier theorem (Theorem 9.5.1). The space of �-
radonifying operators will be defined as the closure of the finite rank operators
in the space of �-summing operators.

Definition 9.1.1. A linear operator T : H ! X is called �-summing if

sup E
�

�

�

k
X

j=1

�j Thj

�

�

�

2

< 1,

where the supremum is taken over all finite orthonormal systems {h
1

, . . . , hk}
in H.

With respect to the norm k · k�1(H,X)

defined by

kTk2�1(H,X)

:= supE
�

�

�

k
X

j=1

�j Thj

�

�

�

2

,

the space �1(H,X) of all �-summing operators from H to X is a normed
linear space. By the Kahane-Khintchine inequality, Theorem 6.2.6, we arrive
at an equivalent norm if we replace the exponent 2 by any exponent p 2
[1,1). We shall denote by �p1(H,X) the space �1(H,X) endowed with this
equivalent norm. From now on we consider the exponent p 2 [1,1) to be
fixed.

By considering one-element orthonormal systems {h} we see that every
�-summing operator is bounded and satisfies

k�kpkTk 6 kTk�p

1(H,X)

. (9.6)

In particular, this implies the simple but very useful result that for every
x⇤ 2 X⇤ we have

kT ⇤x⇤k 6 kTk kx⇤k 6 k�k�1

p kTk�p

1(H,X)

kx⇤k. (9.7)

Proposition 9.1.2. The space �1(H,X) is a Banach space.

Proof. Let (Tn)n>1

be Cauchy in �1(H,X). By (9.6), (Tn)n>1

is a Cauchy
sequence in L (H,X), and therefore it tends to an operator T in L (H,X).

Given " > 0, we choose N > 1 such that kTn � Tmk�1(H,X)

< " for
all m,n > N . Let {h

1

, . . . , hk} be an orthonormal system in H. By Fatou’s
lemma, for all n > N ,
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E
�

�

�

k
X

j=1

�j (Tn � T )hj

�

�

�

2

6 lim inf
m!1

E
�

�

�

k
X

j=1

�j (Tn � Tm)hj

�

�

�

2

6 "2.

Therefore, Tn � T 2 �1(H,X) and kTn � Tk�1(H,X)

6 " for all n > N .
This proves that T 2 �1(H,X) and that limn!1 Tn = T in the norm of
�1(H,X). ⇤

Finite rank operators

For h⇤ 2 H⇤ and x 2 X we denote by h⇤⌦x the rank one operator in L (H,X)
defined by

(h⇤ ⌦ x)h := hh, h⇤ix, h 2 H.

Under this identification, H⇤ ⌦ X coincides with the space of all finite rank
operators in L (H,X). Every such operator can be represented in the form

T =

N
X

n=1

h⇤
n ⌦ xn (9.8)

with (h⇤
n)

N
n=1

orthonormal in H⇤ and (xn)
N
n=1

a sequence in X. Its adjoint
T ⇤ 2 L (X⇤, H⇤) is given by

T ⇤x⇤ =

N
X

n=1

hxn, x
⇤ih⇤

n.

In particular, the range of T ⇤ is contained in the span of (h⇤
n)

N
n=1

. Conversely,
if the range of the adjoint of a bounded operator T 2 L (H,X) is contained in
the span of a finite sequence (h⇤

n)
N
n=1

, then T vanishes on the pre-annihilator
?(h⇤

n)
N
n=1

= {h 2 H : hh, h⇤
ni = 0, n = 1, . . . , N} which has finite co-

dimension in H, and therefore T 2 H⇤ ⌦X.
It is a simple observation that every finite rank operator from H to X

belongs to �1(H,X), and its norm can be determined as follows.

Proposition 9.1.3 (Exchanging orthonormal sequences with Gaus-
sians). If T =

PN
n=1

h⇤
n ⌦ xn is a finite rank operator with h⇤

1

, . . . , h⇤
N

orthonormal in H⇤ and x
1

, . . . , xN 2 X, then T 2 �1(H,X) and for all
1 6 p < 1 we have

�

�

�

N
X

n=1

h⇤
n ⌦ xn

�

�

�

�p

1(H,X)

=
�

�

�

N
X

n=1

�n xn

�

�

�

Lp

(⌦;X)

. (9.9)

Proof. Let u
1

, . . . , uM 2 H be an orthonormal system. Let A be the M ⇥N
matrix given by amn = hum, h⇤

ni. It is easily checked that kAk 6 1 and
therefore, by Proposition 6.1.23,
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�

�

�

M
X

m=1

�mTum

�

�

�

Lp

(⌦;X)

=
�

�

�

M
X

m=1

�m

N
X

n=1

amnxn

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

.

This shows that T 2 �1(H,X) and that the estimate ‘6’ in (9.9) holds.
To prove the reverse inequality ‘>’ in (9.9), let h = {h

1

, . . . , hN} be the
orthonormal system in H determined by the condition h⇤

n =  h
n

as in (9.5).
Then

kTk�p

1(H,X)

>
�

�

�

N
X

n=1

�nThn

�

�

�

Lp

(⌦;X)

=
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

.

⇤

Note that for p = 2 we recover the identity (9.4).
The estimate ‘6’ of Proposition 9.1.3 can be alternatively deduced from

covariance domination. Indeed, let u
1

, . . . , uM 2 H be an orthonormal system.
Then, for all x⇤ 2 X⇤,

M
X

m=1

|hTum, x⇤i|2 =

M
X

m=1

�

�

�

N
X

n=1

hum, h⇤
nihxn, x

⇤i
�

�

�

2

=

M
X

m=1

�

�

�

D

um,
N
X

n=1

hxn, x
⇤ih⇤

n

E

�

�

�

2

6
�

�

�

N
X

n=1

hxn, x
⇤ih⇤

n

�

�

�

2

H⇤
=

N
X

n=1

|hxn, x
⇤i|2.

Therefore, by Theorem 6.1.25,

E
�

�

�

M
X

m=1

�m Tum

�

�

�

p
6 E

�

�

�

N
X

n=1

�n xn

�

�

�

p
.

The space �(H,X)

In Proposition 9.1.3 we have seen that every finite rank operator from H to
X belongs to �1(H,X).

Definition 9.1.4. The space �(H,X) is defined as the closure of the fi-
nite rank operators in �1(H,X). The operators in �(H,X) are called �-
radonifying.

We shall denote by �p(H,X) the space �(H,X) endowed with the equiva-
lent norm inherited from �p1(H,X). Thus, �(H,X) = �2(H,X). In Theorem
9.1.20 we will show that if X does not contain a closed subspace isomorphic
to c

0

, then �1(H,X) = �(H,X). In general, however, �(H,X) is a proper
closed subspace of �1(H,X).
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It is immediate from the above definition that H⇤⌦X is dense in �(H,X).
By Proposition 9.1.3, for any finite rank operator in H⇤⌦X of the form (9.8)
we have

�

�

�

N
X

n=1

h⇤
n ⌦ xn

�

�

�

p

�p

(H,X)

= E
�

�

�

N
X

n=1

�nxn

�

�

�

p
. (9.10)

Example 9.1.5. The spaces �p(`2N , X) and �p(`2, X) are naturally isometric to
the spaces �pN (X) and �p(X) which have been introduced in Section 6.3.

Non-trivial examples of �-radonifying operators will be given at several places
in this chapter. Among other things, it will be shown that if eH is another
Hilbert space, then �(H, eH) coincides with the space of Hilbert-Schmidt op-
erators from H to eH, and that if X = Lp(⌫), then we have a canonical
isomorphism

�(H,Lp(⌫)) ' Lp(⌫;H⇤).

Proposition 9.1.6. Every operator T 2 �(H,X) is compact.

Proof. By the definition of �(H,X), there exist finite rank operators Tn 2
H⇤ ⌦X such that limn!1 Tn = T in �(H,X). Each operator Tn is compact
and by (9.6) we have limn!1 Tn = T in L (H,X). Therefore T , being the
uniform limit of a sequence of compact operators, is compact. ⇤

The next result shows that every T 2 �(H,X) is ‘supported’ on a separable
closed subspace of H. This fact will be used repeatedly to reduce considera-
tions to separable Hilbert spaces.

Proposition 9.1.7. If T 2 �(H,X), then (N(T ))? is separable.

Proof. Suppose that T = limn!1 Tn in �(H,X) where each Tn has finite rank,
say Tnh =

Pk
n

j=1

hh, h⇤
jnixjn. Let H

0

denote the closure of the linear span of
all vectors hjn, n > 1, 1 6 j 6 kn, where h⇤

jn =  h
jn

according to the Riesz
representation theorem (see (9.5)). Then H

0

is separable. If h ? H
0

, then
Tnh = 0 for all n > 1 and consequently Th = 0. It follows that H?

0

✓ N(T ),
and from this we obtain (N(T ))? ✓ (H?

0

)? = H
0

. ⇤

Hilbert-Schmidt operators

When K is a Hilbert space, the space �(H,K) coincides with the space of all
Hilbert–Schmidt operators from H to K. For the convenience of the reader
we recall the definition of these operators; for the details we refer to Appendix
D.

Definition 9.1.8. A linear operator T : H ! K is called a Hilbert-Schmidt
operator if

sup

k
X

j=1

kThjk2 < 1,
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where the supremum is taken over all finite orthonormal systems {h
1

, . . . , hk}
in H.

With respect to the norm

kTkC 2
(H,K)

:= sup
⇣

k
X

j=1

kThjk2
⌘

1/2
,

the space C 2(H,K) of all Hilbert–Schmidt operators from H to K is a Hilbert
space. If T 2 C 2(H,K) and (hi)i2I is a maximal orthonormal system in H,
then

X

i2I

kThik2 = kTk2C 2
(H,K)

.

The bound ‘6’ is immediate from the definition of the sum as the supremum
of its finite sub-sums. For the estimate ‘>’ one may first observe that the left
side is actually independent of the chosen maximal orthonormal system, and
then note that any finite orthonormal system can be completed to a maximal
orthonormal system.

A direct consequence of the above observation is that there can be at most
countably many i 2 I for which Thi 6= 0. It follows that T is supported on
the separable closed subspace spanned by these hi. Let us label them as hi1 ,
hi2 , . . . and denote by PN the orthogonal projection onto the span of the first
N vectors. Then TPN has finite rank, and

kTPN � Tk2 = sup
khk61

kTPNh� Thk2

= sup
khk61

�

�

�

1
X

n=N+1

(h|hi
n

)Thi
n

�

�

�

2

6 sup
khk61

1
X

n=N+1

|(h|hi
n

)|2
1
X

n=N+1

kThi
n

k2 6
1
X

n=N+1

kThi
n

k2.

As the right-hand side tends to 0, this shows that limN!1 kTPN �Tk = 0. In
particular, T is compact. This shows that the definition of a Hilbert-Schmidt
operator given here coincides with the one given in Appendix D.

Proposition 9.1.9 (Operators into Hilbert spaces). Let H and K be
Hilbert spaces. Then T 2 �(H,K) if and only if T 2 C 2(H,K), and in this
case we have

kTk�(H,K)

= kTkC 2
(H,K)

.

Proof. Let T 2 L (H,K), and let h
1

, . . . , hN be any finite orthonormal system
in H. Then

E
�

�

�

N
X

n=1

�nThn

�

�

�

2

= E
N
X

m,n=1

�m�n(Thm|Thn) =

N
X

n=1

kThnk2.
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Taking the supremum over all finite orthonormal systems, the left-hand side
becomes kTk2�1(H,K)

while the right-hand side gives kTk2C 2
(H,K)

, and this
shows that �1(H,K) = C 2(H,K) with equal norms. Since finite-rank opera-
tors are dense in C 2(H,K), they are dense in �1(H,K), and so these spaces
coincide with �(H,K). ⇤

9.1.c The ideal property

In this section we prove the so-called ideal property, which arguably is the
single most important property of the spaces �1(H,X) and �(H,X). It asserts
that both spaces are closed under left and right multiplication by Banach
space operators and Hilbert space operators, respectively. As we shall see, this
property provides a very powerful tool to study the structure of operators in
�1(H,X) and �(H,X).

Theorem 9.1.10 (Ideal property). Let T 2 �1(H,X). If G is another
Hilbert space and Y another Banach space, then for all S 2 L (G,H) and
U 2 L (X,Y ) we have UTS 2 �1(G, Y ) and for all 1 6 p < 1 we have

kUTSk�p

1(G,Y )

6 kUkkTk�p

1(H,X)

kSk.

If moreover T 2 �(H,X), then UTS 2 �(G, Y ).

Proof. Let (gm)Mm=1

be an orthonormal system in G and let (hn)
N
n=1

in H
be an orthonormal basis for the span of {Sgm : 1 6 m 6 M}. Let A be the
M ⇥N matrix with coefficients amn = (Sgm|hn). From Sgm =

PN
n=1

amnhn

one easily deduces that kAk 6 kSk. It follows from Proposition 6.1.23 that

�

�

�

M
X

m=1

�mUTSgm
�

�

�

Lp

(⌦;Y )

=
�

�

�

U
M
X

m=1

�m

N
X

n=1

amnThn

�

�

�

Lp

(⌦;Y )

6 kUkkAk
�

�

�

N
X

n=1

�nThn

�

�

�

Lp

(⌦;Y )

6 kUk kSk kTk�p

1(H,X)

.

Hence UTS 2 �1(G, Y ) and the required estimate follows.
Next assume that T 2 �(H,X). Choose finite rank operators (Tn)n>1

such
that Tn ! T in �(H,X). Then, by the estimate just proved,

kUTnS � UTSk�p

1(G,Y )

= kU(Tn � T )Sk�p

1(G,Y )

6 kUk kTn � Tk�p

1(H,X)

kSk,

the right-hand side of which tends to zero as n ! 1. Since each UTnS is a
finite rank operator, the result follows. ⇤
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Example 9.1.11 (Restriction). If T 2 �(H,X), then for every closed subspace
G ✓ H we have T |G 2 �(G,X) and

kT |Gk�p

(G,X)

6 kTk�p

(H,X)

.

This is immediate from the definitions, but it also follows from the right ideal
property applied to the inclusion mapping from G to H.

Example 9.1.12 (Null extension). Suppose that we have an orthogonal decom-
position H = H

0

�H
1

. If T 2 �(H
0

, X), then T � 0 2 �(H,X) and

kT � 0k�p

(H,X)

= kTk�p

(H0,X)

.

Indeed, letting P : H ! H
0

be the orthogonal projection, the first assertion
along with the inequality kT �0k�p

(H,X)

6 kTk�p

(H0,X)

follows from the right
ideal property. The reverse inequality follows from the previous example.

These examples are also valid for �1(H,X). In the next example we specialise
the previous two examples to H = L2(S).

Example 9.1.13. Let (S,A , µ) be a measure space and fix a set A 2 A . For a
bounded operator T : L2(S) ! X we may define the ‘restriction of T to A’
as the operator RAT 2 L (L2(A), X) given by

(RAT )f := T (EAf), f 2 L2(A),

where EA : L2(A) ! L2(S) is the extension operator. Then T 2 �(S;X)
implies RAT 2 �(A;X) and kRATk�(A;X)

6 kTk�(S;X)

.
Similarly for a bounded operator T : L2(A) ! X we may define the

‘extension of T from A to S’ as the operator EAT 2 L (L2(S), X) given by

EATf := T (RAf), f 2 L2(S),

where RA : L2(S) ! L2(A) is the restriction operator. Then T 2 �(A;X) if
and only if EAT 2 �(S;X), in which case we have kEATk�(S;X)

= kTk�(A;X)

.

9.1.d Convergence results

We have seen that �-radonification of operators is preserved by left and right
multiplication. Our next result considers the situation where we multiply with
convergent sequences of operators.

Theorem 9.1.14. Let G be another Hilbert space and let Y be another Ba-
nach space. Let T 2 �(H,X). Let S, S

1

, S
2

, . . . in L (G,H) and U,U
1

, U
2

, . . .
in L (X,Y ) be such that

(i) limn!1 S⇤
nh

⇤ = S⇤h⇤ for all h⇤ 2 R(T ⇤),
(ii) limn!1 Unx = Ux for all x 2 R(T ).
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Then limn!1 UnTSn = UTS in �(G, Y ).

Proof. Let P be the orthogonal projection from H onto R(T ⇤) = N(T )?. Let
X

0

= R(T ). Replacing Sn and S by PSn and PS, and Un and U by Un|X0

and U |X0 , we see that (i) and (ii) can be replaced by
(i)0 limn!1 S⇤

nh
⇤ = S⇤h⇤ for all h⇤ 2 H⇤,

(ii)0 limn!1 Unx = Ux for all x 2 X.
The uniform boundedness theorem implies that supn>1

kUnk 6 C < 1.
Hence, by the triangle inequality and the ideal property,

kUnTSn � UTSk�(G,Y )

6 kUnTSn � UnTSk�(G,Y )

+ kUnTS � UTSk�(G,Y )

6 CkT (Sn � S)k�(G,X)

+ k(Un � U)Tk�(H,Y )

kSk.

Thus we may consider left and right multiplication separately. Moreover,
by approximation it suffices to consider finite rank operators T . So let
T =

PM
m=1

h⇤
m ⌦ xm. Then, by the triangle inequality, it remains to prove

the result for rank one operators T = h⇤ ⌦ x.
To prove the right convergence observe that

T (S � Sn) = (S⇤ � S⇤
n)h

⇤ ⌦ x.

Therefore, by Proposition 9.1.3,

kT � (S � Sn)k�(G,X)

= kxkkS⇤h⇤ � S⇤
nh

⇤k,

which tends to zero as n ! 1.
Next we consider the left convergence. Again by Proposition 9.1.3 we find

kUnT � UTk�(H,Y )

= kUnx� Uxk kh⇤k,

which again tends to zero as n ! 1. ⇤
Example 9.1.15 (Approximation). Suppose that H is a separable Hilbert space
with orthonormal basis (hn)n>1

. Let Pn denote the orthogonal projection onto
the span of {h

1

, . . . , hn}. Then for all T 2 �(H,X) we have limn!1 TPn = T
in �(H,X).

Example 9.1.16 (Strong measurability). Let S be a measure space and H a
separable Hilbert space. For a function � : S ! �(H,X) define �h : S ! X
by (�h)(s) := �(s)h for h 2 H. The following assertions are equivalent:
(1) � is strongly µ-measurable;
(2) �h is strongly µ-measurable for all h 2 H.
It suffices to prove that (2) implies (1). If (hn)n>1

is an orthonormal basis for
H, then with the notation of Example 9.1.15 for all s 2 S we have

�(s) = lim
n!1

�(s)Pn = lim
n!1

n
X

j=1

(·|hj)�(s)hj ,

with convergence in the norm of �(H,X). The result now follows from the
strong µ-measurability of the functions s 7! �(s)hj on the right-hand side.
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Testing against an orthonormal basis

We proceed with a characterisation of �-summing and �-radonifying operators
in terms of orthonormal bases. We formulate the result for separable infinite-
dimensional spaces; for finite-dimensional spaces the same result holds with a
slightly simpler proof.

Theorem 9.1.17 (Testing against an orthonormal basis). Let H be sep-
arable and let (hn)n>1

be any fixed orthonormal basis for H.

(1) An operator T 2 L (H,X) belongs to �1(H,X) if and only if for some
(equivalently, for all) 1 6 p < 1,

sup
N>1

E
�

�

�

N
X

n=1

�n Thn

�

�

�

p
< 1.

In this case,

kTkp�p

1(H,X)

= sup
N>1

E
�

�

�

N
X

n=1

�n Thn

�

�

�

p
.

(2) An operator T 2 L (H,X) belongs to �(H,X) if and only if for some
(equivalently, for all) 1 6 p < 1,

X

n>1

�n Thn converges in Lp(⌦;X).

In this case, the sum converges almost surely and

kTkp�p

(H,X)

= E
�

�

�

X

n>1

�n Thn

�

�

�

p
.

Proof. (1): We only need to prove the ‘if’ part. Let {h0
1

, . . . , h0
k} be an or-

thonormal system in H. Then we can write h0
j =

P

n>1

ajnhn with ajn =

(h0
j |hn). For each N the k⇥N matrix AN with coefficients (ajn)k,Nj,n=1

satisfies
kANk 6 1. It follows from Fatou’s lemma and Proposition 6.1.23 that

E
�

�

�

k
X

j=1

�j Th
0
j

�

�

�

p
6 lim inf

N!1
E
�

�

�

k
X

j=1

�j

N
X

n=1

ajnThn

�

�

�

p
6 sup

N>1

E
�

�

�

N
X

n=1

�n Thn

�

�

�

p
.

It follows that

kTkp�p

1(H,X)

6 sup
N>1

E
�

�

�

N
X

n=1

�n Thn

�

�

�

p
.

The reverse estimate trivially holds and the proof of (1) is complete.
(2): Let Pn denote the orthogonal projection in H onto the linear span of

{h
1

, . . . , hn}. By Proposition 9.1.3 for all m < n we have
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E
�

�

�

n
X

j=m+1

�jThj

�

�

�

p
= kTPn � TPmkp�p

(H,X)

. (9.11)

To prove the ‘only if’ part, we note that the result of Example 9.1.15
implies if T 2 �(H,X), then limn!1 TPn = T in �(H,X) and therefore the
right-hand side of (9.11) tends to 0 as m,n ! 1. This proves the convergence
of the sum

P

n>1

�nThn in Lp(⌦;X).
To prove the ‘if’ part, note that the convergence of the sum

P

n>1

�n Thn

and identity (9.11) imply that the sequence of finite rank operators (TPn)n>1

is a Cauchy sequence in �(H,X). Its limit equals T , since limn!1 TPnh = Th
for all h 2 H.

The almost sure convergence follows from Corollary 6.4.4. ⇤

Remark 9.1.18. Many authors take part (2) as the definition of the space
�(H,X). The drawback of this approach, at least on the theoretical side,
is that it leads to redundant separability assumptions. On the other hand, in
Proposition 9.1.7 we have shown that in the approach taken here, one can
always reduce to the separable case. In applications, on the other side, it has
the advantage that summability needs to be checked only for one fixed choice
of an orthonormal basis. For example, in Corollary 9.1.27 we shall establish
the �-radonification of the indefinite integral I : L2(0, 1) ! C↵[0, 1] for all
↵ 2 [0, 1/2) by exploiting properties of the Haar basis.

Using the notion of summability developed in Chapter 4 we can prove the
following version of the above theorem for general Hilbert spaces H:

Theorem 9.1.19 (Testing against a maximal orthonormal system).
Let H be a Hilbert space with a maximal orthonormal system (hi)i2I and let
(�i)i2I be a family of independent standard Gaussian random variables with
the same index set. A bounded operator T : H ! X belongs to �(H,X) if and
only if

X

i2I

�iThi

is summable in L2(⌦;X). In this situation we have

kTk2�(H,X)

= E
�

�

�

X

i2I

�iThi

�

�

�

2

.

Proof. We begin with the ‘if’ part. Since
P

i2I �iThi is summable, the set
I
0

= {i 2 I : Thi 6= 0} is countable. If I
0

is finite, then T has finite rank
and the result is clear. Suppose therefore that I

0

is countably infinite, and
let � : N ! I

0

be an enumeration. Let H
0

= {hi : i 2 I
0

}. It is immediate
from the definition of summability that

P

k>0

��(k)Th�(k) is convergent. By
Theorem 9.1.17 this implies that T |H0 2 �(H

0

, X) and



9.1 Radonifying operators 265

E
�

�

�

X

i2I

�iThi

�

�

�

2

= E
�

�

�

X

i2I0

�iThi

�

�

�

2

= kT |H0k2�(H0,X)

.

Since T |H0 � 0 = T the result and the required norm identity for T follows
from Example 9.1.12.

To prove the ‘only if’ part, choose a finite rank operators Tn : H ! X
such that Tn ! T in �(H,X). The set I

0

:=
S

n>1

{i 2 I : Tnhi 6= 0}
is countable. Therefore, the linear subspace H

0

= span{hi : i 2 I
0

} of H is
separable. Moreover, since for each n > 1 and i 2 I \ I

0

, Tnhi = 0 we obtain
that Thi = 0 for all i 2 I \I

0

. By Example 9.1.11, T |H0 2 �(H
0

, X) and hence
Theorem 9.1.17 implies that

P

i2I �iThi =
P

i2I0
�iT |H0hi is summable in

L2(⌦;X). ⇤

9.1.e Coincidence �1(H,X) = �(H,X) when c0 6✓ X

In various situations it is easier to prove that an operator belongs to �1(H,X)
than to �(H,X). A typical situation occurs when one uses the �-multiplier
theorem (Theorem 9.5.1 below), which allows one to prove that certain point-
wise multipliers M : S ! L (X,Y ) map �(L2(S), X) into �1(L2(S), Y ). In
such situations one may use the following theorem to obtain that the operator
in fact belongs to �(H,X).

Theorem 9.1.20. Let X be a Banach space that does not contain a closed
subspace isomorphic to c

0

. Then �1(H,X) = �(H,X).

Proof. Let T 2 �1(H,X). Let us first the case of a separable Hilbert space
H, and let (hn)n>1

be an orthonormal basis for H. Clearly,

sup
N>1

�

�

�

N
X

n=1

�nThn

�

�

�

Lp

(⌦;X)

< 1.

The theorem of Hoffmann-Jørgensen and Kwapień, or more precisely its Corol-
lary 6.4.12, now implies that

P

n>1

�nThn converges in Lp(⌦;X) and almost
surely. By Theorem 9.1.17(2), this implies that T 2 �(H,X)

Next consider the non-separable case. We claim that there exists a sep-
arable closed subspace H

0

of H such that T vanishes on H?
0

. To this end
let H

1

:= N(T ) be the null space of T and let (hi)i2I be a maximal or-
thonormal system for H

0

:= H?
1

. We want to prove that H
0

is separable, i.e.,
that the index set I is countable. Suppose the contrary. Then there exists
an integer N > 1 such that kThik > 1/N for uncountably many i 2 I. Put
J := {i 2 I : kThik > 1/N}. Let (jn)n>1

be any sequence in J with no
repeated entries. For all N > 1 we have

E
�

�

�

N
X

n=1

�nThj
n

�

�

�

2

6 kTk2�1(H,X)

.
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Hence, by Corollary 6.1.17,

E
�

�

�

N
X

n=1

"nThj
n

�

�

�

2

6 1

k�k2
1

kTk2�1(H,X)

.

This means that the random variables SN :=
PN

n=1

"nThj
n

are bounded in
L2(⌦;X), and again by Corollary 6.4.12 the sum

P

n>1

"nThj
n

converges
almost surely. But this is only possible when limn!1 Thj

n

= 0, contradicting
the fact that jn 2 J for all n > 1. This proves the claim.

By the right-ideal property and the result in the separable case T |H0 2
�1(H

0

, X) = �(H
0

, X). Now the result follows from Example 9.1.12. ⇤

The assumption that X should not contain an isomorphic copy of c
0

cannot
be omitted, as is demonstrated by the next example.

Example 9.1.21. In this example the scalar field is real, but it is straightfor-
ward to modify it to the complex setting. We shall prove that the multiplica-
tion operator T : `2 ! c

0

defined by

T
�

(↵n)n>1

�

:=
�

↵n/
p

log(n+ 1)
�

n>1

is �-summing but fails to be �-radonifying.
By the basic Gaussian tail estimate P(|�| > t) 6 e�t2/2 (see (E.8) and

Lemma E.2.17), for all t > 0 and any choice of constants cn > 0 we have

P
n

sup
16n6N

|�n|2

cn
> t

o

6
N
X

n=1

P(|�n|2 > cnt) 6
N
X

n=1

e�
1
2 cnt.

With cn = log(n+ 1) > log 2 this gives, for t > 0,

P
n

sup
16n6N

|�n|2

log(n+ 1)
> t

o

6
N
X

n=1

e�
1
2 t log(n+1).

Integrating over t > 0 gives, using the bound above for t > 4 and a trivial
bound for t 2 [0, 4],

E
⇣

sup
16n6N

|�n|2

log(n+ 1)

⌘

6 4 +

N
X

n=1

ˆ 1

4

e�
1
2 t log(n+1) dt

= 4 +
N
X

n=1

2

(n+ 1)2 log(n+ 1)
6 C < 1.

Let (un)n>1

be the standard unit basis of `2. Then

sup
N>1

E
�

�

�

N
X

n=1

�nTun

�

�

�

2

c0
= sup

N>1

E
⇣

sup
16n6N

|�n|2

log(n+ 1)

⌘

< 1.
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Hence by Theorem 9.1.17(1) the operator T is �-summing.
To prove that T is not �-radonifying, consider the partial sums ⇠k :=

P

2k
n=k �nTun. By an estimate for the maximum of Gaussian variables, (E.10),

we have
E max

k6n62k
|�n|2 > 1

5
log(k + 1).

Therefore, we find that for every k > 1,

k⇠kk2L2
(⌦;c0)

= E
⇣

max
k6n62k

|�n|2

log(n+ 1)

⌘

> 5�1 log(k + 1)

log(k + 1)
> 1

5
.

Thus the series
P

n>1

�nTun fails to converge in L2(⌦; c
0

), and hence T is
not �-radonifying.

9.1.f Trace duality

In this section we describe a natural pairing between �(H,X) and �(H⇤, X⇤),
the so-called trace duality.

Recall from Appendix D that C 1(H) denotes the Banach space of trace
class operators on H. The trace tr(T ) of an operator T 2 C 1(H) is defined by

tr(T ) =
X

i2I

(Thi|hi),

where (hi)i2I is any maximal orthonormal system in H, and it satisfies

|tr(T )| 6 kTkC 1
(H)

(see Proposition D.2.5). The careful reader should be warned that Appendix
D is written with the implicit convention of a complex inner product that is
linear in the second variable and conjugate-linear in the first one. Since the
opposite convention is in force in this chapter, the formulas from Appendix D
should be used with corresponding simple modifications.

Proposition 9.1.22. For all T 2 �(H,X) and S 2 �(H⇤, X⇤) we have S⇤T 2
C 1(H) and

|tr(S⇤T )| 6 kS⇤TkC 1
(H)

6 kSk�(H⇤,X⇤
)

kTk�(H,X)

.

This result admits an extension to the case T 2 �1(H,X) and S 2
�1(H⇤, X⇤); this will be discussed in the Notes.

Proof. Since T and S are both compact (Proposition 9.1.6), S⇤T is also com-
pact and hence it has a singular value decomposition (cf. (D.1)):

S⇤T =
X

n>1

⌧n(·|fn)gn
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where ⌧
1

> ⌧
2

> · · · > 0, and (fm)m>1

and (gm)m>1

are both orthonor-
mal systems in H. Let (g⇤n)n>1

be the orthonormal system in H⇤ defined by
hh, g⇤ni = (h|gn). It follows that

N
X

n=1

⌧n =

N
X

n=1

hS⇤Tfn, g
⇤
ni = E

D

N
X

n=1

�nTfn,
N
X

n=1

�nSg
⇤
n

E

6 kTk�(H,X)

kSk�(H⇤,X⇤
)

.

Passing to the limit N ! 1 we infer that S⇤T 2 C 1(H) and

kS⇤TkC 1
(H)

=
X

n>1

⌧n 6 kTk�(H,X)

kSk�(H⇤,X⇤
)

.

Finally, the estimate | tr(S⇤T )| 6 kS⇤TkC 1
(H)

is in Proposition D.2.5. ⇤

To obtain a converse we will assume that X is K-convex.

Proposition 9.1.23. Let X be K-convex and suppose that Y ✓ X⇤ is a closed
subspace that is norming for X. Let T 2 L (H,X). If for all finite rank
operators S : H⇤ ! Y we have

| tr(S⇤T )| 6 CkSk�(H⇤,X⇤
)

,

then T 2 �(H,X) and kTk�(H,X)

6 CK�
X , where K�

X is the Gaussian K-
convexity constant of X.

Two cases of interest are Y = X⇤, or the case X = Z⇤ and Y = Z, where Z
is a given Banach space.

Proof. Fix an orthonormal sequence (hn)
N
n=1

in H and a number " > 0.
For any sequence (x⇤

n)
N
n=1

in Y , Proposition 9.1.3 shows that the operator
S :=

PN
n=1

hn ⌦ x⇤
n has norm

kSk�(H⇤,X⇤
)

=
�

�

�

N
X

n=1

�nx
⇤
n

�

�

�

L2
(⌦;X⇤

)

.

On the other hand, by the Gaussian version of Corollary 7.4.6 in Section 7.4.e
we can pick the sequence (x⇤

n)
N
n=1

in Y so that the above norm is at most 1,
while

�

�

�

N
X

n=1

�nThn

�

�

�

L2
(⌦;X)

6 K�
X

�

�

�

N
X

n=1

hThn, x
⇤
ni
�

�

�

+ "

= K�
X | tr(S⇤T )|+ " 6 K�

XC + ",

where the last step used the assumption of the proposition. It follows that
T 2 �1(H,X) and kTk�1(H,X)

6 CK�
X .

Finally, by Proposition 7.4.12, K-convex spaces cannot contain an iso-
morphic copy of c

0

. An appeal to Theorem 9.1.20 therefore shows that
T 2 �(H,X). ⇤
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Theorem 9.1.24 (Trace duality). For all S 2 �(H⇤, X⇤) the mapping
�S : T 7! tr(S⇤T ) defines an element �S 2 (�(H,X))⇤ of norm

k�Sk 6 kSk�(H⇤,X⇤
)

.

If X is K-convex, then � : S 7! �S establishes an isomorphism of Banach
spaces

�(H⇤, X⇤) ' (�(H,X))⇤

and for all S 2 �(H⇤, X⇤) we have

k�Sk 6 kSk�(H⇤,X⇤
)

6 K�
Xk�Sk.

Proof. The first assertion follows from Proposition 9.1.22. It remains to prove
that if X is K-convex, then � is surjective and kSk�(H⇤,X⇤

)

6 K�
Xk�Sk.

Let ⇤ 2 (�(H,X))⇤ be given. We claim that the bounded operator S :
H⇤ ! X⇤ defined by hx, Sh⇤i = hh⇤ ⌦ x,⇤i belongs to �(H⇤, X⇤) and that

tr(S⇤T ) = ⇤(T ), T 2 �(H,X). (9.12)

The identity (9.12) is clear for T = h⇤ ⌦ x and extends to all finite rank
operators T : H ! X by linearity. Moreover, for a finite rank operator T :
H ! X it follows that

| tr(S⇤T )| = |⇤(T )| 6 k⇤k kTk�(H,X)

.

Since T was arbitrary, it follows from Proposition 9.1.23 with X replaced by
X⇤ and norming subspace Y = X of X⇤⇤, that S 2 �(H⇤, X⇤), and

kSk�(H⇤,X⇤
)

6 K�
Xk⇤k.

Now (9.12) follows by density and continuity. Clearly, this implies �S = ⇤.
This completes the proof. ⇤

9.1.g Interpolation

In this section we discuss complex and real interpolation of the spaces �(H,X)
assuming that X is K-convex. The discrete case has already been treated in
Theorem 7.4.16. We use the notation of Appendix C; in particular we recall
that the real interpolation space (X

0

, X
1

)✓,p0,p1 = (X
0

, X
1

)✓,p0,p1 coincides
with (X

0

, X
1

)✓,p with equivalent norms when 1

p = 1�✓
p0

+ ✓
p1

(see Theorem
C.3.14).

Theorem 9.1.25. Let H be a Hilbert space and let (X
0

, X
1

) be an interpola-
tion couple of Banach spaces, and assume that both X

0

and X
1

are K-convex.
Let ✓ 2 (0, 1) and p

0

, p
1

, p 2 (1,1) satisfy 1

p = 1�✓
p0

+ ✓
p1

. Then:
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(1) we have [�p0(H,X
0

), �p1(H,X
1

)]✓ = �p(H, [X
0

, X
1

]✓) isometrically, and
for all T 2 �p(H, [X

0

, X
1

]✓) we have

kTk�p

(H,X
✓

)

6 kTk
[�p0

(H,X0),�p1
(H,X1)]✓

6 (K�
p0,X0

)1�✓(K�
p1,X1

)✓kTk�p

(H,[X0,X1]✓)
.

(2) we have (�p0(H,X
0

), �p1(H,X
1

))✓,p0,p1 = �p(H, (X
0

, X
1

)✓,p0,p1) isometri-
cally, and for all T 2 �p(H,X✓) we have

kTk�p

(H,(X0,X1)✓,p0,p1 )
6 kTk

(�p0
(H,X0),�p1

(H,X1))✓,p0,p1

6 (K�
p0,X0

)1�✓(K�
p1,X1

)✓kTk�p

(H,X
✓,p0,p1 )

.

In both (1) and (2), the first inequality does not require any K-convexity as-
sumptions.

Proof. (1): For all ✓ 2 (0, 1) and q 2 [1,1) we have a continuous embedding
�q(H, [X

0

, X
1

]✓) ,! �2(H,X
0

+ X
1

). Therefore [�p0(H,X
0

), �p1(H,X
1

)]✓ ,!
�2(H,X

0

+ X
1

) as well. Since any T 2 �2(H,X
0

+ X
1

) is supported on a
separable closed subspace of H, below it suffices to consider separable H.

We claim that the space of finite rank operators H ⌦ (X
0

\X
1

) is dense
in [�p0(H,X

0

), �p1(H,X
1

)]✓ and �p(H, [X
0

, X
1

]✓). Indeed, for the former note
that by Corollary C.2.8 �(H,X

0

)\�(H,X
1

) is dense in [�(H,X
0

), �(H,X
1

)]✓.
By using a suitable sequence of finite rank projections Pn : H ! H (see
Example 9.1.15) one obtains that H ⌦ (X

0

\ X
1

) is dense in �(H,X
0

) \
�(H,X

1

). The density of H⌦ (X
0

\X
1

) in �p(H,X✓) follows from the density
of H ⌦ [X

0

, X
1

]✓ in �(H, [X
0

, X
1

]✓) and the density of X
0

\X
1

in [X
0

, X
1

]✓
(Corollary C.2.8).

Now the proof of the theorem can be completed in a similar way as in The-
orem 7.4.16. Fix an orthonormal basis (hn)n>1

for H. For a Banach space Y
and q 2 [1,1), consider the isometric embedding RN : �q(H,Y ) ! Lq(⌦;Y )

by RNT =
PN

n=1

�nThn. If Y is K-convex and q 2 (1,1), define EN :

Lq(⌦;Y ) ! �q(H,Y ) by ENf =
PN

n=1

hn ⌦ E(�̄n⇡�Nf). Then by the Gaus-
sian version of K-convexity (Corollary 7.4.20), we have

kENfk�q

(H,Y )

= k⇡�NfkLq

(⌦;Y )

6 K�
q,Y kfkLq

(⌦;Y )

and thus kENkL (Lq

(⌦;Y ),�q

(H,Y ))

6 K�
q,Y . Since ENRN = I, it follows that

kTk
[�p0

(H,X0),�p1
(H,X1)]✓

= kENRNTk
[�p0

(H,X0),�p1
(H,X1)]✓

6 (K�
p0,X0

)1�✓(K�
p1,X1

)✓kRNTk
[Lp0

(⌦;X0),Lp1
(⌦;X1)]✓

= (K�
p0,X0

)1�✓(K�
p1,X1

)✓kRNTkLp

(⌦;[X0,X1]✓)

= (K�
p0,X0

)1�✓(K�
p1,X1

)✓kTk�p

(H;[X0,X1]✓)
.

Also,
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kTk�p

(H,[X0,X1]✓)
= kRNTkLp

(⌦;[X0,X1]✓)

= kRNTk
[Lp0

(⌦;X0),Lp1
(⌦;X1)]✓

6 kTk
[�p0

(H,X0),�p1
(H,X1)]✓

;

this inequality does not require any K-convexity assumptions. This completes
the proof for complex interpolation. The proof for real interpolation proceeds
along the same lines. ⇤

9.1.h The indefinite integral and Brownian motion

In this subsection we present a classical example of a �-radonifying operator
which is connected to the construction of the Wiener process or Brownian
motion. We recall from Section 2.5 the fractional Sobolev norm

kfkW↵,p

(0,1;X)

:= kfkLp

(0,1;X)

+ [f ]W↵,p

(0,1;X)

,

where

[f ]W↵,p

(0,1;X)

:=
⇣

ˆ
1

0

ˆ
1

0

kf(t)� f(s)kp

|t� s|↵p+1

ds dt
⌘

1/p
.

Proposition 9.1.26 (�-radonification of the indefinite integral). Let
0 < ↵ < 1

2

and 1 6 p < 1. The indefinite integral

(Jf)(t) :=

ˆ t

0

f(s) ds

is �-radonifying from L2(0, 1) to W↵,p(0, 1).

For the proof (and also for reference in our subsequent considerations), we
recall the basic identity

�

�

�

N
X

n=1

an�n
�

�

�

Lp

(⌦)

= k�kLp

(⌦)

⇣

N
X

n=1

|an|2
⌘

1/2
. (9.13)

If (S,A , µ) be a measure space and p 2 [1,1), Fubini’s theorem implies that
for all x

1

, . . . , xN 2 Lp(S), we have

�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;Lp

(S))

= k�kLp

(⌦)

�

�

�

⇣

N
X

n=1

|xn|2
⌘

1/2�
�

�

Lp

(S)

. (9.14)

Proof of Proposition 9.1.26. We apply (9.14) to both parts of the Sobolev
norm.

Let h
1

, . . . , hN be an orthonormal system in L2(0, 1). For all 0 6 s < t 6 1,

N
X

n=1

|Jhn(t)� Jhn(s)|2 =

N
X

n=1

|(hn|1
[s,t])|2 6 k1

[s,t]k2L2
(0,1) = t� s. (9.15)
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Taking s = 0 and using (9.14) we find that

E
�

�

�

N
X

n=1

�nJhn

�

�

�

p

Lp

(0,1)
= k�kpLp

(⌦)

ˆ
1

0

⇣

N
X

n=1

|Jhn(t)|2
⌘p/2

dt

6 k�kpLp

(⌦)

ˆ
1

0

tp/2 dt.

Similarly,

E
h

N
X

n=1

�nJhn

ip

W↵,p

(0,1)

= k�kpLp

(⌦)

ˆ
1

0

ˆ
1

0

|t� s|�↵p�1

⇣

N
X

n=1

|Jhn(t)� Jhn(s)|2
⌘p/2

ds dt

6 k�kpLp

(⌦)

ˆ
1

0

ˆ
1

0

|t� s|�↵p�1|t� s|p/2 ds dt

= Cp,↵k�kpLp

(⌦)

,

where we use that ↵ < 1/2 to see that the last integral is finite. Taking the
supremum over all finite orthonormal systems {h

1

, . . . , hN} in L2(0, 1), the
result follows from Theorem 9.1.20. Here we use that W↵,p does not contain
an isomorphic copy of c

0

, because it has cotype p _ 2. ⇤

From the last part of the proof one can also deduce that J does not belong
to the space �(0, 1;W 1

2 ,p(0, 1)). Indeed, if (hn)n>1

is an orthonormal basis for
L2(0, 1) we can take the supremum over all N > 1 in the last estimate and
obtain equality in (9.15). Incorporating this into the above computation we
find that the sum

PN
n=1

�nJhn diverges in Lp(⌦;W
1
2 ,p(0, 1)) as N ! 1.

For 0 < ↵ < 1 we define C↵[0, 1] as the space of Hölder continuous func-
tions f : [0, 1] ! K of exponent ↵. This is a Banach space with respect to the
norm

kfkC↵

[0,1] := kfk1 + sup
06s<t61

|f(t)� f(s)|
(t� s)↵

.

Corollary 9.1.27. The indefinite integral is �-radonifying from L2(0, 1) to
C↵[0, 1] for all 0 < ↵ < 1

2

.

This result follows from Proposition 9.1.26 for large enough p and the well-
known Sobolev embedding W↵,p(0, 1) ,! C↵� 1

p [0, 1]. A more direct argument
will be presented below. As a consequence of Proposition 9.1.26 and The-
orem 9.1.17 the series ⇠ :=

P

n>1

�nJhn converges in Lp(⌦;C↵[0, 1]) for all
↵ 2 [0, 1/2) and almost surely in C↵[0, 1], say on a set⌦

0

2 A with P(⌦
0

) = 1.
Define B : [0, 1]⇥ ⌦ ! R by B(t,!) = ⇠(!)(t) when ! 2 ⌦

0

and zero other-
wise. Then B is a standard Brownian motion on ⌦⇥[0, 1]. Indeed, B(0,!) = 0
and for s, t 2 [0, 1], we have
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E(B(s, ·)B(t, ·)) =
X

n>1

(Jhn)(s)(Jhn)(t)

=
X

n>1

(hn|1
[0,s])(hn|1

[0,t]) = (1
[0,s]|1[0,t]) = min{s, t}.

Moreover, B has ↵-Hölder continuous paths for each 0 6 ↵ < 1/2.
In order to give a direct proof of Corollary 9.1.27 we use a lemma on the

almost sure boundedness of Gaussian sequences.

Lemma 9.1.28. If (�n)n>1

is a Gaussian sequence, then for all � > 1 we
have

lim sup
n!1

|�n|
p

log(n+ 1)
6

p
2� almost surely.

Proof. For all t > 0,

P{|�n| > t} =
2p
2⇡

ˆ 1

t
e�u2/2du 6 2

t
p
2⇡

ˆ 1

t
ue�u2/2du =

2

t
p
2⇡

e�t2/2.

Fix � > 1. For all n > 1 we have 2� log(n+ 1) > 1 and therefore

P
�

|�n| >
p

2� log(n+ 1)
 

<
p

2/⇡ (n+ 1)��.

The Borel-Cantelli lemma now implies that with probability one, |�n| >
p

2� log(n+ 1) for at most finitely many n > 1. ⇤

Let (hn)n>1

be the Haar basis of L2(0, 1), defined by h
1

⌘ 1 and hn := �jk

for n > 2, where n = 2j + k with j = 0, 1, 2, . . . and k = 1, . . . , 2j , and

�jk := 2j/21
(

k�1

2j
, k�1/2

2j
)

� 2j/21
(

k�1/2

2j
, k

2j
)

.

Note that �jk is supported on the interval [k�1

2

j

, k
2

j

]. The sequence (hn)n>1

is
orthonormal in L2(0, 1). To see that (hn)n>1

is a basis in L2(0, 1), note that
if (h|hn)L2

(0,1) = 0 for all n > 1, then h annihilates all dyadic step functions.
Since these step functions are dense in L2(0, 1) it follows that h = 0.

Proof of Corollary 9.1.27. The crux of this proof is to prove the convergence
of the sum

P

n>1

�nJhn, where hn are the Haar functions introduced above.
By Theorem 9.1.17 and the second part of Theorem 6.4.1 it suffices to prove

that the sum
P1

n=2

�n Jhn =
P1

j=0

P

2

j

k=1

�
2

j

+kJ�jk converges in C↵[0, 1]
almost surely.

Step 1 – Let 0 6 s < t 6 1 for the moment and let j
0

> 1. Let j
1

> 1 be
the unique index such that 2�j1+1 > t� s > 2�j1 and write

1
X

j=j0

2

j

X

k=1

|�
2

j

+k(!)|
�

�

�

J�jk(t)� J�jk(s)

(t� s)↵

�

�

�
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6
⇣

j0_j1�1

X

j=j0

+

1
X

j=j0_j1

⌘

2

j

X

k=1

C(!)
p

j
�

�

�

J�jk(t)� J�jk(s)

(t� s)↵

�

�

�

=: (I) + (II),

where C(!) := supj,k |�2j+k(!)|/
p
j < 1 almost surely by Lemma 9.1.28.

We estimate (I) and (II) separately. As for (I), if j
1

6 j
0

, then (I) = 0, so
we may assume that j

0

< j
1

. For all j
0

6 j < j
1

, we have |J�jk(t)�J�jk(s)| 6
2j/2(t�s); and for all but at most two indices k we have J�jk(t) = J�jk(s) =
0. Since t� s h 2�j1 6 2�j0 and ↵ 2 (0, 1

2

), we obtain

(I) 6 C(!)
j1�1

X

j=j0

2

j

X

k=1

p

j
�

�

�

J�jk(t)� J�jk(s)

(t� s)↵

�

�

�

. C(!)
j1�1

X

j=j0

p

j · 2j/2(t� s)1�↵

. C(!)j3/2
1

· 2j1/22�j1(1�↵) = C(!)j3/2
1

2j1(↵�1/2)

. C(!)j3/2
0

2j0(↵�1/2).

As for (II), for all j > j
1

we have t � s > 1/2j , so t and s belong to
different sub-intervals of length 1/2j . Therefore, J�jk(t) = J�jk(s) = 0 for
all but two indices k 2 {1, . . . , 2j}, and for these two indices we either have
0 6 J�jk(t) 6 2�j/2�1 and J�jk(s) = 0 or the other way around; in either
case |J�jk(t) � J�jk(s)| 6 2�j/2�1. As a consequence, for almost all ! 2 ⌦
we obtain the estimate

(II) 6 C(!)
1
X

j=j0_j1

2

j

X

k=1

p

j
�

�

�

J�jk(t)� J�jk(s)

(t� s)↵

�

�

�

. C(!) · 2↵j1
1
X

j=j0_j1

p

j · 2�j/2 . C(!)2↵j1
p

j
0

_ j
1

2�(j0_j1)/2

6 C(!)
p

j
0

_ j
1

2(j0_j1)(↵�1/2) . C(!)
p

j
0

2j0(↵�1/2).

Collecting terms we find, for almost all ! 2 ⌦,

sup
06s<t61

1
X

j=j0

2

j

X

k=1

|�
2

j

+k(!)|
�

�

�

J�jk(t)� J�jk(s)

(t� s)↵

�

�

�

6 C(!)j3/2
0

2j0(↵�1/2),

and this tends to 0 as j
0

! 1, since ↵ < 1/2.
Step 2 – For all 0 < t 6 1 we have, since Jf(0) = 0,

|Jf(t)| = |Jf(t)� Jf(0)|
t↵

· t↵ 6 sup
0<⌧61

|Jf(⌧)� Jf(0)|
⌧↵

.

Step 3 – By Steps 1 and 2 the sum
P1

j=0

P

2

j

k=1

�
2

j

+kJ�jk converges in
C↵[0, 1] almost surely. As we have noticed before, the theorem is a consequence
of this fact. ⇤
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9.2 Functions representing a �-radonifying operator

Let (S,A , µ) be a measure space. In this section we take a closer look at the
spaces �(H,X) and �1(H,X) in the particular case when H = L2(S). In
order to simplify notation we shall write

�(S;X) := �(L2(S), X), �1(S;X) := �1(L2(S), X).

As we have pointed out in the introduction, under the identification of L2(S)
with its Banach space dual we may think of the space L2(S)⌦X in two ways:
as the space of square integrable functions f : S ! X with finite-dimensional
range in X, or as the space of finite rank operators from L2(S) to X. The
function h⌦ x (with h 2 L2(S) and x 2 X) then corresponds to the operator
defined by

(h⌦ x)g :=

ˆ
S
g(s)h(s)x dµ(s), g 2 L2(S). (9.16)

Thus, as an operator, h⌦x is the operator of integration against the functions
t 7! (h⌦ x)(t) = h(t)x.

9.2.a Definitions and basic properties

The identification (9.16) invites us to think of �(S;X) as a space of X-valued
generalised functions (distributions) on S. The immediate question that arises
is how to recognise those functions f : S ! X that define an element of
�(S;X).

Definition 9.2.1. A function f : S ! X is said to be weakly in Lp if for all
x⇤ 2 X⇤ the function hf, x⇤i is µ-measurable and belongs to Lp(S).

Recall from Theorem 1.2.37 that if f : S ! X is strongly µ-measurable and
weakly in L2, then for all g 2 L2(S) the function s 7! g(s)f(s) is Pettis
integrable. It thus makes sense to define the bounded operator

If : L2(S) ! X, g 7! Ifg :=

ˆ
S
g(s)f(s) dµ(s),

where the integral is well defined in the Pettis sense. We shall call If the Pettis
integral operator with kernel f . With these notation, (9.16) becomes

I
(h⌦x)g =

ˆ
S
g(s)h(s)x dµ(s).

Identifying L2(S) and its dual as usual, the adjoint mapping I⇤f : X⇤ ! L2(S)
is given by I⇤fx⇤ = hf, x⇤i. In particular, by (9.7),

khf, x⇤ikL2
(S)

6 kIfkL (L2
(S),X)

kx⇤k 6 k�k�1

p kIfk�p

(L2
(S),X)

kx⇤k. (9.17)
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The following proposition is obvious from the definitions and Corollary 1.1.25,
which says that two strongly µ-measurable functions f

1

, f
2

coincide µ-almost
everywhere as soon as the scalar functions hf

1

, x⇤i, hf
2

, x⇤i coincide almost
everywhere for every x⇤ in a weak⇤ dense subspace of X⇤.

Proposition 9.2.2. Let Y be a weak⇤ dense subspace of X⇤. Let f
1

, f
2

: S !
X be strongly µ-measurable and such that for all x⇤ 2 X⇤ the functions hf

1

, x⇤i
and hf

2

, x⇤i belong to L2(S). Then the following are equivalent:

(1) for all x⇤ 2 Y , hf
1

, x⇤i = hf
2

, x⇤i almost everywhere;
(2) f

1

= f
2

almost everywhere;
(3) If1 = If2 .

Definition 9.2.3. A function f : S ! X is said to belong to, or be in,
�(S;X) (respectively, �1(S;X)) if it satisfies the following two conditions:

(i) f : S ! X is strongly µ-measurable and weakly in L2;
(ii) the Pettis integral operator If : L2(S) ! X belongs to �(S;X) (respec-

tively, �1(S;X)).

In this situation we write ‘f 2 �(S;X)’, respectively ‘f 2 �1(S;X)’, and

kfk�p

(S;X)

:= kIfk�p

(S;X)

, kfk�p

1(S;X)

:= kIfk�p

1(S;X)

.

The reason for including strong measurability in part 9.2.3 is that then Pettis’s
theorem (Theorem 1.2.37) applies and guarantees that the Pettis integral
operator If is well defined.

By (9.17), for f 2 �1(S;X) the following estimate holds:

khf, x⇤ikL2
(S)

6 k�k�1

p kfk�p

1(S;X)

kx⇤k, x⇤ 2 X⇤. (9.18)

It follows from Examples 9.1.11 and 9.1.12 that if A 2 A , then f |A 2 �(A;X)
if and only if 1Af 2 �(S;X) and that

kf |Ak�p

(A;X)

= k1Afk�p

(S;X)

, p 2 [1,1). (9.19)

A similar result holds for �1(S;X).

Example 9.2.4. Let f =
PN

n=1

hn ⌦ xn, where h
1

, . . . , hN 2 L2(S) are or-
thonormal in L2(S) and x

1

, . . . , xN 2 X. Then by Proposition 9.1.3,

kfk�p

(S;X)

=
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

.

In particular, for a µ-simple function of the form f =
PN

n=1

1p
µ(A

n

)

1A
n

⌦xn,

where the sets An 2 A are disjoint with positive finite measure, we have

�

�

�

N
X

n=1

1
p

µ(An)
1A

n

⌦ xn

�

�

�

�p

(S;X)

=
�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

.
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Proposition 9.2.5 (Density). µ-simple functions are dense in �(S;X).

Proof. By the density of finite rank operators in �(S;X) and linearity, it
suffices to show that every rank one operator T = g⌦x, where g 2 L2(S) and
x 2 X, can be approximated by operators of the form If , where f : S ! X is
µ-simple.

Choose µ-simple functions (gn)n>1

in L2(S) such that limn!1 gn = g in
L2(S) and let fn := gn ⌦ x in �(S;X). Then, by Proposition 9.1.3,

kT � If
n

k�(S;X)

= k(g � gn)⌦ xk�(S;X)

= kg � gnkL2
(S)

kxk,

and the result follows. ⇤

A refinement of this result will be proved in Proposition 9.2.8 below. The
reader should be warned that in general not every operator T 2 �1(L2(S), X)
has the form If for some strongly µ-measurable function f : S ! X that is
weakly in L2 (see Example 9.3.5). However, in the case of a discrete measure
space every operator has this form.

Example 9.2.6. Consider an operator T 2 �(`2, X) and define f : N ! X by
f(n) := Tun, where (un)n>1

is the standard unit basis of `2. Then T = If .

The following elementary convergence result will be frequently used to identify
a limit of a sequence in �(S;X).

Lemma 9.2.7. Let T 2 �(S;X) and let (fn)n>1

be a sequence of functions in
�(S;X). Suppose that limn!1 If

n

= T in �(S;X). Let f : S ! X be strongly
measurable and weakly in L2(S). If for all x⇤ 2 X⇤ we have hfn, x⇤i ! hf, x⇤i
almost everywhere, then T = If .

Proof. It suffices to show that for all x⇤ 2 X⇤ we have T ⇤x⇤ = hf, x⇤i.
Fix an element x⇤ 2 X⇤. By (9.7),

khfn, x⇤i � T ⇤x⇤kL2
(S)

6 kIf
n

� Tk�(S;X)

kx⇤k

and the latter converges to zero. Therefore, hfn, x⇤i ! T ⇤x⇤ in L2(S). Choos-
ing a subsequence (fn

k

)k>1

such that hfn
k

, x⇤i ! T ⇤x⇤ almost everywhere, it
follows that hf, x⇤i = T ⇤x⇤. ⇤

We conclude with a useful approximation result.

Proposition 9.2.8. If f : S ! X belongs to �(S;X), then there exists a
sequence of µ-simple functions fn : S ! X with the following properties:

(1) fn ! f in �(S;X);
(2) fn ! f µ-almost everywhere on S.
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Proof. We prove the proposition in three steps.
Step 1 – First we consider the case µ(S) < 1. By normalising µ we may

then assume that µ(S) = 1.
Off a set of arbitrarily small measure, the strongly µ-measurable function

f belongs to L1(S;X), and an approximation result in this space, stated in
Lemma 1.2.19, guarantees that for each " > 0 there exists a µ-simple function
g and a set B 2 A with µ(B) > 1 � " such that sups2B kf(s) � g(s)k < ".
We use this observation to find a sequence of µ-simple functions (fn)n>1

and
a sequence of measurable sets (Bn)n>1

such that

sup
s2B

n

kfn(s)� f(s)k <
1

n
and µ(S \Bn) < 2�n�1.

Upon replacing Bn by
T

j>n Bj , the sets (Bn)n>1

can be taken to be increasing
with µ(S \ Bn) < 2�n. For each n > 1, let (Anm)Mn

m=1

be the atoms of the
�-algebra generated by the sets B

1

, . . . , Bn and the functions f
1

, . . . , fn. Let

Pnf =

M
n

X

m=1

1A
nm

⌦ 1

µ(Anm)

ˆ
A

nm

f dµ.

The set B =
S

n>1

Bn satisfies µ(B) = 1. Now fix s 2 B and choose an
arbitrary " > 0. Let N > 1 be so large that 2

N < " and s 2 BN . Fix an
arbitrary n > N and choose m such that s 2 Anm. Note that kf�fNk < 1/N
on Anm. Then also kPnf � PnfNk < 1/N on Anm. But for n > N we have
PnfN = fN and therefore

kf(s)� Pnf(s)k 6 kf(s)� fN (s)k+ kPnfN (s)� Pnf(s)k <
1

N
+

1

N
< ".

This shows that Pnf ! f µ-almost everywhere.
Step 2 – If µ(S) = 1, Proposition 1.1.15 guarantees that f vanishes off a

�-finite subset of S, so without loss of generality we may assume that µ is �-
finite to begin with. Then we can find a sequence of disjoint sets S

1

, S
2

, . . . in
A such that µ(Sm) < 1 and

S

m>1

Sm = S. Applying Step 2 to each set Sm,
we find a sequence (Pmnf)n>1

supported in Sm such that limn!1 Pmnf = f
almost everywhere on Sm. The function Pnf :=

Pn
m=1

1S
m

Pmnf then has
the desired properties.

Step 3 – The convergence Pnf ! f in �(S;X) is a consequence of Theorem
9.1.14 since we may regard the operators as self-adjoint operators in L2(S) as
well and there we have Pnh =

Pn
m=1

1S
m

Pmnh ! h in the norm of L2(S). ⇤

9.2.b Square integrability versus �-radonification

Let (S,A , µ) be a measure space. Recall the notation �(S;X) := �(L2(S), X)
introduced before, where we agreed to say that a function f : S ! X belongs
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to �(S;X) if it is strongly µ-measurable and weakly in L2 and the associated
Pettis integral operator If : L2(S) ! X belongs to �(S;X).

We proceed with a characterisation of the functions f : S ! K in �(S;K)
for a Hilbert space K. Somewhat informally, the next result asserts that

�(S;K) = L2(S;K).

This is one of the reasons why kfk�(S;K)

is sometimes called a ‘square func-
tion norm’. In Theorems 9.2.10 and 9.2.11 below we will see that one-sided
continuous inclusions L2(S;X) ,! �(S;X) and �(S;X) ,! L2(S;X) hold for
a Banach space X if X has type 2 and cotype 2, respectively. In Section 9.3
we will see another reason why �(S;X) is called a square function space.

Proposition 9.2.9. Let (S,A , µ) be a measure space and let K be a Hilbert
space. Then:

(1) if T 2 �(S;K), the T = If for a unique f 2 L2(S;K);
(2) if f : S ! K is strongly measurable and weakly L2 and If 2 �(S;K), then

f 2 L2(S;K).

In this situation we have kfk�(S;K)

= kfkL2
(S;K)

.

Proof. Let T : L2(S) ! K have finite rank, say T =
PN

n=1

hn ⌦ kn with
h
1

, . . . , hN orthonormal in L2(S). Then for all g 2 L2(S) we have

Tg =

N
X

n=1

⇣

ˆ
S
hng dµ

⌘

kn,

which shows that T = If with f =
PN

n=1

hn ⌦ kn, where now we interpret
hn⌦kn as the function s 7! hn(s)kn. Furthermore, by Example 9.2.4 we have

kTk2�(S;K)

= E
�

�

�

N
X

n=1

�nkn
�

�

�

2

=

N
X

n=1

kknk2 = kfk2L2
(S;K)

.

Since the finite rank operators are dense in �(S;K) this gives (1). To prove
(2) we note that if If 2 �(S;K), then by (1) we have If = Ig for some g 2
L2(S;K). But then for all k⇤ 2 K⇤ we have hf, k⇤i = I⇤fk⇤ = I⇤gk⇤ = hg, k⇤i
and therefore f = g µ-almost everywhere by Corollary 1.1.25. In particular,
f 2 L2(S;K). ⇤

In Proposition 9.2.9 we have seen that �(S;X) = L2(S;X) isometrically if
X is a Hilbert space. In the rest of this subsection we shall investigate the
situation for Banach spaces X and we will show that the preceding identity
characterises Hilbert spaces.

Recall that ⌧�p,X and c�q,X denote the Gaussian type p and Gaussian cotype
q constants (see Section 7.1.d).
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Theorem 9.2.10. Let X be a Banach space and let (S,A , µ) be a measure
space.

(1) If X has type 2, then the identity mapping f ⌦ x 7! f ⌦ x extends to a
continuous embedding L2(S;X) ,! �(S;X). Moreover,

kfk�(S;X)

6 ⌧�
2,XkfkL2

(S;X)

, f 2 L2(S;X).

(2) If dim(L2(S)) = 1 and there exists a constant ⌧ > 0 such that for all
µ-simple functions f : S ! X we have

kfk�(S;X)

6 ⌧kfkL2
(S;X)

,

then X has type 2 and constant ⌧�
2,X 6 ⌧ .

The above result and Theorem 9.2.11 below can be used to give a short proof
of Theorem 7.1.20.

Proof. (1): By density it suffices to show that the estimate in (1) holds for
every µ-simple function f :=

PN
n=1

|Sn|�1/2
1S

n

⌦ xn, where (Sn)
N
n=1

is a
disjoint sequence in A . By Example 9.2.4,

kfk�(S;X)

=
�

�

�

N
X

n=1

�nxn

�

�

�

L2
(⌦;X)

6 ⌧�
2,X

⇣

N
X

n=1

kxnk2
⌘

1/2
= ⌧�

2,XkfkL2
(S;X)

.

(2): Fix a sequence (xn)
N
n=1

in X and choose a sequence of disjoint sets
(Sn)

N
n=1

in A with 0 < µ(Sn) < 1; the latter is possible since dim(L2(S)) =

1. Let f :=
PN

n=1

|Sn|�1/2
1S

n

⌦ xn as before. Then

⇣

E
�

�

�

N
X

n=1

�nxn

�

�

�

2

⌘

1/2
= kfk�(S;X)

6 ⌧kfkL2
(S;X)

= ⌧
⇣

N
X

n=1

kxnk2
⌘

1/2
.

⇤

In Sections 9.7.a and 9.7.b we will show that for Banach spaces with type p
certain spaces of smooth functions embed in �(0, 1;X). Moreover, such results
characterise the type p property.

The next result is the ‘dual’ version of Theorem 9.2.10 and is proved in
the same way.

Theorem 9.2.11. Let X be a Banach space and let (S,A , µ) be a measure
space.

(1) If X has cotype 2, then the identity mapping f ⌦ x 7! f ⌦ x extends to a
continuous embedding �(S;X) ,! L2(S;X) and

kfkL2
(S;X)

6 c�
2,Xkfk�(S;X)

, f 2 �(S;X).
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(2) If dim(L2(S)) = 1 and there exists a constant c such that for all µ-simple
functions f : S ! X we have

kfkL2
(S;X)

6 ckfk�(S;X)

,

then X has cotype 2 and constant c�
2,X 6 c.

We can now prove a converse to Proposition 9.2.9, where it has been ob-
served that �(S;X) = L2(S;X) isometrically if X is a Hilbert space. This
converse asserts, somewhat informally, that if �(S;X) ' L2(S;X), then X is
isomorphic to a Hilbert space.

Corollary 9.2.12. Let X be a Banach space and suppose that dim(L2(S)) =
1. If there are constants c and ⌧ such that for all µ-simple functions f : S !
X we have

c�1kfkL2
(S;X)

6 kfk�(S;X)

6 ⌧kfkL2
(S;X)

,

then there exists a Hilbert space H and an isomorphism J : X ! H such that
kJkkJ�1k 6 c⌧ .

Proof. By Theorems 9.2.10 and 9.2.11, X has type 2 with constant ⌧�
2,X 6

⌧ and cotype 2 with constant c�
2,X 6 c. Therefore, the result follows from

Kwapień’s theorem (Theorem 7.3.1). ⇤

One may wonder about the role of the exponent 2 in the above results. The
following result shows that the type 2 and cotype 2 properties in both sec-
ond parts of Theorems 9.2.10 and 9.2.11 already follow under much weaker
assumptions.

Theorem 9.2.13. Let X be a Banach space.

(1) If there exists a constant ⌧ > 0 such that for all µ-simple functions f :
(0, 1) ! X we have

kfk�(0,1;X)

6 ⌧kfkL1
(0,1;X)

,

then X has type 2 and ⌧�
2,X 6 ⌧ .

(2) If there exists a constant c > 0 such that for all µ-simple functions f :
(0, 1) ! X we have

kfkL1
(0,1;X)

6 ckfk�(0,1;X)

,

then X has cotype 2 and c�
2,X 6 c.

Proof. Let (xn)
N
n=1

be a sequence in X with at least one non-zero element.
Choose a disjoint sequence (Sn)

N
n=1

of Borel sets in (0, 1) with

|Sn| =
kxnk2

PN
n=1

kxnk2
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and let f :=
PN

n=1

|Sn|�1/2
1S

n

⌦ xn. In case (1) it follows that

⇣

E
�

�

�

N
X

n=1

�nxn

�

�

�

2

⌘

1/2
= kfk�(0,1;X)

6 ⌧kfkL1
(0,1;X)

= ⌧
⇣

N
X

n=1

kxnk2
⌘

1/2
.

In case (2) it follows that

⇣

N
X

n=1

kxnk2
⌘

1/2
= kfkL1

(0,1;X)

6 ckfk�(0,1;X)

= c
⇣

E
�

�

�

N
X

n=1

�nxn

�

�

�

2

⌘

1/2
.

⇤

9.2.c Trace duality and the �-Hölder inequality

We now specialise the trace duality discussed in Section 9.1.f to H = L2(S).
This leads to an interesting inequality of Hölder type.

Theorem 9.2.14. Let (S,A , µ) be a measure space.

(1) If f : S ! X and g : S ! X⇤ belong to �(S;X) and �(S;X⇤) respectively,
then hf, gi 2 L1(S), ˆ

S
hf, gi dµ = tr(I⇤gIf ),

and
khf, gikL1

(S)

6 kfk�(S;X)

kgk�(S;X⇤
)

.

(2) Let X be K-convex and let Y ✓ X⇤ be a closed subspace that is norming
for X. A strongly measurable and weakly L2 function f : S ! X belongs
to �(S;X) if and only if

�

�

�

ˆ
S
hf, gi dµ

�

�

�

6 Ckgk�(S;X⇤
)

for all g 2 L2(S)⌦ Y , and in this case we have kfk�(S;X)

6 K�
XC.

Proof. We first establish (1) in two steps:

Case of simple functions f and g: We can express f and g in the form

f =

N
X

n=1

1
p

µ(Sn)
1S

n

⌦ xn and g =

N
X

n=1

1
p

µ(Sn)
1S

n

⌦ x⇤
n,

where Sn 2 S are disjoint with finite positive measure, xn 2 X and x⇤
n 2 X⇤.

Choose scalars ✏n 2 K of modulus one such that ✏nhxn, x⇤
ni = |hxn, x⇤

ni|. Then

khf, gikL1
(S)

=

N
X

n=1

|hxn, x
⇤
ni| =

N
X

n=1

h✏nxn, x
⇤
ni
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6
�

�

�

N
X

n=1

✏n�nxn

�

�

�

L2
(⌦;X)

�

�

�

N
X

n=1

�nx
⇤
n

�

�

�

L2
(⌦;X⇤

)

= kfk�(S;X)

kgk�(S;X)

.

To prove the identity for the trace note that

kI⇤gIfkC 1
(H)

6 kfk�(S;X)

kgk�(S;X⇤
)

by Proposition 9.1.22. Extending (1S
n

/
p

µ(Sn))
N
n=1

to an orthonormal basis
(hi)i2I for L2(S),

ˆ
S
hf, gi dµ =

N
X

n=1

hxn, x
⇤
ni =

X

i2I

hIfhi, Ighii = tr(I⇤gIf ).

Approximation by simple functions: Suppose that we already know the result
for some fixed g : S ! X⇤ in �(S;X⇤) and for all simple f : S ! X. We
deduce the result for the same g and a general f : S ! X in �(S;X) as
follows: By Proposition 9.2.8 we can find simple functions fn : S ! X such
that fn ! f in �(S;X) and µ-almost everywhere. By assumption, we have

khfm, gi � hfn, gikL1
(S)

6 kfm � fnk�(S;X)

kgk�(S;X⇤
)

! 0

as m,n ! 1. Therefore, (hfn, gi)n>1

converges in L1(S) to a function h, say.
On the other hand, we also know that hfn, gi ! hf, gi µ-almost everywhere.
Thus in fact hf, gi = h 2 L1(S), and hence hfn, gi ! hf, gi in L1(S). From
this convergence as well as from fn ! f in �(S;X), (1) easily follows using
the trace estimate of Proposition 9.1.22.

Note that simple exchanging the roles of f and g, the same argument also
shows that if the result holds for some fixed f : S ! X in �(S;X) and for all
simple g : S ! X⇤, then it holds for the same f and a general g : S ! X⇤ in
�(S;X⇤).

Let now g be simple and fixed. Then we know the result when also f is
simple, and therefore, by the previous approximation, when f is arbitrary.
Then let f be arbitrary and fixed. By what we just said, we know the result
when g is simple, and therefore, by the previous approximation, when g is
arbitrary. This completes the proof of (1).

(2): We have already proved that the ‘only if part’ holds with constant
C = kfk�(S;X)

; K-convexity is not needed here.
To prove the ‘if’ part we assume that X is K-convex. Let R : L2(S) ! X⇤

be a finite rank operator taking values in Y , say R =
PN

n=1

hn ⌦ x⇤
n with

(hn)
N
n=1

orthonormal in L2(S) and (x⇤
n)

N
n=1

a sequence in Y . Let g : S ! Y

be given by g(s) =
PN

n=1

hn(s)x⇤
n. Since R⇤If is a finite rank operator on

L2(S) taking its range in the span of (hn)
N
n=1

, its trace is well defined and
given by
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tr(R⇤If ) =
N
X

n=1

hIfhn, x
⇤
ni =

N
X

n=1

ˆ
S
hnhf, x⇤

ni dµ =

ˆ
S
hf, gi dµ.

As a consequence, the assumption in (2) gives us

| tr(R⇤If )| =
�

�

�

ˆ
S
hf, giµ(s)

�

�

�

6 Ckgk�(S;X⇤
)

= CkRk�(S;X⇤
)

,

The result now follows from Proposition 9.1.23. ⇤

9.3 Square function characterisations

In this section we show that the norm of �(H,X) has an equivalent square
function interpretation when X is a Banach function space with finite cotype.
In Section 9.3.a this will be demonstrated for X = Lp(S) and in Section 9.3.b
for the general case. Moreover, we will characterise those functions f : S ! X
belonging to �(S;X).

9.3.a Square functions in Lp-spaces

We begin with the concrete case when X = Lp(S) with p 2 [1,1). We have
the following characterisation:

Proposition 9.3.1. Let 1 6 p < 1. For a bounded operator T 2 L (H,Lp(S))
the following assertions are equivalent:

(1) T 2 �(H,Lp(S));
(2) T 2 �1(H,Lp(S));
(3) we have

sup
�

�

�

⇣

N
X

n=1

|Thn|2
⌘

1/2�
�

�

Lp

(S)

< 1,

where the supremum is over all finite orthonormal systems {h
1

, . . . , hN}
in H.

In this case,

kTk�p

(H,Lp

(S))

= sup
�

�

�

⇣

N
X

n=1

|Thn|2
⌘

1/2�
�

�

Lp

(S)

. (9.20)

Proof. The equivalence (1),(2) follows from the more general coincidence of
�(H,X) and �1(H,X) whenever X does not contain a copy of c

0

(Theorem
9.1.20); indeed, the space X = Lp(S), having finite cotype (Corollary 7.1.6),
cannot contain a copy of c

0

, which has no finite cotype (Corollary 7.1.10).
Taking xn = Thn for orthonormal hn 2 H in (9.14) we obtain the equiva-

lence (2),(3) as well as the identity (9.20) for the norms. ⇤
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In the case of a separable Hilbert spaces H with orthonormal basis (hn)>1

,
we furthermore obtain the identity

kTk�p

(H,Lp

(S))

= k�kLp

(⌦)

�

�

�

⇣

X

n>1

|Thn|2
⌘

1/2�
�

�

Lp

(S)

. (9.21)

Any function � 2 Lp(S;H⇤) defines a bounded operator T� 2 L (H,Lp(S))
by the prescription (T�h)(s) := hh,�(s)i. We will show next that T� 2
�(H,Lp(S)) and that all operators in �(H,Lp(S)) have this form. Somewhat
informally, the next proposition asserts that the mapping � 7! T� establishes
an isomorphism of Banach spaces

Lp(S;H⇤) ' �(H,Lp(S)).

The reason for working with Lp(S;H⇤) and duality rather than with Lp(S;H)
and the inner product is that presently the mapping � 7! T� is linear; other-
wise this mapping would be conjugate-linear. Over the real scalar field there
is of course no difference.

Proposition 9.3.2. Let 1 6 p < 1. Let � : Lp(S;H⇤) and define T 2
L (H,Lp(S)) by (Th)(s) = hh,�(s)i. Then T 2 �(H,Lp(S)) and

kTk�p

(H,Lp

(S))

= k�kLp

(⌦)

k�kLp

(S;H⇤
)

. (9.22)

Conversely, if T 2 �(H,Lp(S)), then there exists a unique � : Lp(S;H⇤) such
that (Th)(s) = hh,�(s)i for almost all s 2 S.

Proof. Fix a function � 2 Lp(S;H⇤). By strong measurability and the result
of Example 9.1.12 we may assume that H⇤, and hence H, is separable. In that
case the norm in �p(H,Lp(S)) can be calculated using any orthonormal basis
(hn)n>1

for H (see Theorem 9.1.17). Let (h⇤
n)n>1

be the orthonormal basis
in H⇤ determined by the conditions hhn, h⇤

mi = �m,n. Let I ✓ N be a finite
index set. By (9.14),

�

�

�

X

n2I

�nThn

�

�

�

Lp

(⌦;Lp

(S))

= k�kLp

(⌦)

�

�

�

⇣

X

n2I

|hhn,�i|2
⌘

1/2�
�

�

Lp

(S)

. (9.23)

Noting that
�

�

�

⇣

X

n>1

|hhn,�i|2
⌘

1/2�
�

�

Lp

(S)

= k�kLp

(S;H)

,

(9.23) implies that
P

n>1

�nThn converges in Lp(⌦;Lp(S)). Taking I =
{1, . . . , N} and passing to the limit N ! 1, (9.22) follows as well.

In the converse direction, let T 2 �p(H;Lp(S)) be given. By Proposition
9.1.7 we may again assume that H is separable. Let (hn)n>1

be an orthonormal
basis of H; then

P

n>1

�nThn converges in Lp(⌦;Lp(S)) by Theorem 9.1.17.
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Define �N 2 H⇤ ⌦ Lp(S) by �N :=
PN

n=1

h⇤
n ⌦ Thn. Using (9.23) we see

that (�N )N>1

is a Cauchy sequence in Lp(S;H⇤) and therefore it converges
to some � 2 Lp(S;H⇤). For all h 2 H which belong to the linear span of
(hn)n>1

we clearly have Th = hh,�i. This identity extends to general h 2 H
by approximation. Uniqueness of � follows from Corollary 1.1.25. ⇤

For H = L2(T ), the above lemma takes the form

Lp(S;L2(T )) ' �(T, Lp(S))

upon identifying L2(S) with its Banach space dual by identifying h 2 L2(S)
with the functional in (L2(S))⇤ given by

g 7!
ˆ
S
gh dµ.

The norm of Lp(S;L2(T )) is often called a square function norm.

Corollary 9.3.3. Let (S,A , µ) be a finite measure space and H a Hilbert
space. For all T 2 L (H,L1(S)) and 1 6 p < 1 we have T 2 �(H,Lp(S))
and

kTk�p

(H,Lp

(S))

6 (µ(S))1/pk�kLp

(⌦)

kTkL (H,L1
(S))

.

Proof. Let (hn)
N
n=1

be an orthonormal system in H. Fixing c 2 `2N , for µ-
almost all s 2 S we have

�

�

�

N
X

n=1

cn(Thn)(s)
�

�

�

6
�

�

�

N
X

n=1

cnThn

�

�

�

1

6 kTkL (H,L1
(S))

�

�

�

N
X

n=1

cnhn

�

�

�

H
= kTkL (H,L1

(S))

kck`2
N

.

Taking the supremum over a countable dense set in the unit ball of `2N we
obtain the following estimate, valid for µ-almost all s 2 S:

⇣

N
X

n=1

|(Thn)(s)|2
⌘

1/2
6 kTkL (H,L1

(S))

.

Hence,
�

�

�

⇣

N
X

n=1

|Thn|2
⌘

1/2�
�

�

Lp

(S)

6 µ(S)1/pkTkL (H,L1
(S))

.

By (9.21) the result follows from this. ⇤

A neat application of Corollary 9.3.3 is the �-radonification of Sobolev em-
beddings.
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Example 9.3.4 (Sobolev embeddings). Let D ✓ Rd be open with finite Lebesgue
measure. If ↵ > d/2 and D is regular enough, it is well-known that we have
the Sobolev embedding W↵,2(D) ,! L1(D), and it follows from Corollary
9.3.3 that for all p 2 [1,1) the embedding

W↵,2(D) ,! Lp(D)

is �-radonifying.

Example 9.3.5 (Weighted indefinite integrals). Let X = Lp(0, 1) with p 2
[1,1). Let k : (0, 1)⇥ (0, 1) ! K be a measurable function such that

ess sup
t2(0,1)

ˆ
1

0

|k(t, s)|2 ds < 1. (9.24)

Let T : L2(0, 1) ! Lp(0, 1) be the operator given by

(Tg)(t) =

ˆ
1

0

k(t, s)g(s) ds. (9.25)

Then by Hölder’s inequality T 2 L (L2(0, 1), L1(0, 1)) and therefore T 2
�(0, 1;Lp(0, 1)) by Corollary 9.3.3.

Incidentally, this example shows that not every operator T 2 �(S;Lp(0, 1)) has
the form If for some strongly measurable function f : S ! Lp(0, 1). Indeed,
let p 2 (2,1) and ↵ 2 (1/p, 1/2) and let k(t, s) = |t�s|�↵. It is clear that this
kernel satisfies (9.24). Now suppose that the operator T defined by (9.25) is of
the form T = If for some strongly measurable function f : (0, 1) ! Lp(0, 1)

which is weakly L2. Then for all g 2 Lp0
(0, 1) and h 2 L2(0, 1) we have, using

that k(s, t) = k(t, s),
ˆ

1

0

ˆ
1

0

k(t, s)g(s)h(t) ds dt = hTh, gi = hh, T ⇤gi = hh, hf, gii.

It follows that for almost all t 2 (0, 1) we have (f(s))(t) = k(t, s) for almost all
s 2 (0, 1). But then, after choosing a jointly measurable function representing
f , by Fubini’s theorem this implies that, for almost all s 2 (0, 1), we have
(f(s))(t) = k(t, s) for almost all t 2 (0, 1). Hence kf(s)kLp

(0,1) = 1 for
almost all s 2 (0, 1).

This phenomenon cannot occur if X has cotype 2, since for any Banach
space X with cotype 2 we have a continuous inclusion �(0, 1;X) ,! L2(0, 1;X)
(see Theorem 9.2.11).

9.3.b Square functions in Banach function spaces

Our next aim is to extend the isomorphism
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Lp(S;H⇤) ' �p(H,Lp(S))

of Section 9.3.a to the setting where Lp(S) is replaced by an arbitrary Banach
function space with finite cotype. For the definition Banach function spaces
the reader is referred to Appendix F.

In order to formulate the next result we need the following notation. For
a Banach function space E(S) over a measure space (S,A , µ) and a Banach
space X, we denote by E(S;X) the space of all strongly µ-measurable func-
tions � : S ! X for which

k�kE(S;X)

:=
�

�s 7! k�(s)kX
�

�

E(S)

is finite. Arguing in the standard proof of for the completeness of Lp(S;X)-
spaces, one easily shows that E(S;X) is a Banach space. In the proof of the
next theorem we will need the simple fact that if fn ! f in E(S;X), then
there exists a subsequence such that fn

k

! f µ-almost everywhere. As for
Lp(S;X) the proof of this fact is a by-product of the completeness proof.

Theorem 9.3.6. Let E(S) be a Banach function space with finite cotype.
Then the mapping U : E(S;H⇤) ! L (H,E(S)) defined by

(Uf)h := hh, f(·)i, h 2 H,

defines an isomorphism of Banach spaces

E(S;H⇤) ' �(H,E(S)).

Furthermore, for an operator T 2 L (H,E(S)) the following assertions are
equivalent:

(1) T 2 �(H,E(S));
(2) there exists a function 0 6 g 2 E(S) such that for all finite orthonormal

systems (hn)
N
n=1

we have

⇣

N
X

n=1

|Thn|2
⌘

1/2
6 g µ-almost everywhere;

(3) there exists a function 0 6 g 2 E(S) such that for all h 2 H we have

|Th| 6 khkHg µ-almost everywhere;

(4) there exists a function k 2 E(S;H⇤) such that for all h 2 H we have

Th = hh, k(·)i µ-almost everywhere.

If H is separable with an orthonormal basis (hn)n>1

, then we have the further
equivalence
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(5) The function
�

P

n>1

|Thn|2
�

1/2 belongs to E(S).

In this situation, in (4) we may take k =
�

P

n>1

|Thn|2
�

1/2 and we have

kTk�(H,E(S))

hE(S)

kkkE(S;H⇤
)

=
�

�

�

⇣

X

n>1

|Thn|2
⌘

1/2�
�

�

E(S)

. (9.26)

In the proof we will use that for all x
1

, . . . , xN 2 E(S) we have

�

�

�

⇣

N
X

n=1

|xn|2
⌘

1/2�
�

�

E(S)

hE

�

�

�

N
X

n=1

"nxn

�

�

�

L2
(⌦;E(S))

hE

�

�

�

N
X

n=1

�nxn

�

�

�

L2
(⌦;E(S))

.

(9.27)
The first estimate is the Khintchine–Maurey inequality (see Theorem 7.2.13)
and the second estimate follows from Corollary 7.2.10.

Proof. Since E(S) has finite cotype, it does not contain a closed subspace iso-
morphic to c

0

(which fails to have finite cotype by Corollary 7.1.10). Therefore,
by Theorem 9.1.20, �1(H,E(S)) = �(H,E(S)); this will be used several times
below.

(2))(1): Let (hn)
N
n=1

be a finite orthonormal system (hn)
N
n=1

in H. By
(9.27), applied with xn := Thn, (2) implies that

E
�

�

�

N
X

n=1

�nThn

�

�

�

2

E(S)

6 C2kgk2E(S)

< 1.

Since this is uniform over all finite orthonormal system in H, this means that
T 2 �1(H,E(S)).

(1))(3): By Proposition 9.1.7, T is supported on some separable closed
subspace H 0 of H, say with orthonormal basis (h0

n)n>1

. By a Cauchy sequence
argument and letting N ! 1 in (9.27) with xn = Th0

n, we see that the func-
tion g =

�

P

n>1

|Th0
n|2

�

1/2 is well defined and belongs to E(S). Now let
h 2 H be arbitrary and write h = h0 + (h0)? along the orthogonal decompo-
sition H = H 0 � (H 0)?. Then

|Th| = |Th0| =
�

�

�

X

n>1

(h0|h0
n)Th

0
n

�

�

�

6
⇣

X

n>1

|(h0|h0
n)|2

⌘

1/2⇣X

n>1

|Th0
n|2

⌘

1/2
6 kh0kg 6 khkg.

(3))(4) for separable H: Choose a countable dense set H
0

in H which is
closed under taking Q-linear combinations. Let N 2 A be a µ-null set such
that for all s 2 {N and for all h 2 H

0

, |Th(s)| 6 g(s)khkH and h 7! Th(s)
is Q-linear on H

0

. For each fixed s 2 {N , the mapping h ! Th(s) therefore
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has a unique extension to an element k(s) 2 H⇤ of norm 6 g(s) with Th(s) =
hh, k(s)i for all h 2 H

0

. Note that the right-hand side is µ-measurable as a
function of s since this is true for the left-hand side. By an approximation
argument we obtain that for all h 2 H we have Th(s) = hh, k(s)i for µ-almost
all s 2 S.

(4))(2): Let (hn)
N
n=1

be an orthonormal sequence in H and let g = kkkH⇤ .
Let N 2 A be a µ-null set such that for all s 2 {N and all 1 6 n 6 N we
have Thn(s) = hhn, k(s)i. Then for s 2 {N ,

⇣

N
X

n=1

|Thn(s)|2
⌘

1/2
=
⇣

N
X

n=1

|hhn, k(s)i|2
⌘

1/2
6 kk(s)kH⇤ = g(s).

This gives (2). If H is separable with orthonormal basis (hn)n>1

, equality
is obtained in the preceding estimate if we pass to the limit N ! 1. This
proves the last identity in (9.26) if H is separable. The first part of (9.26) for
separable H follows by taking an orthonormal basis (hn)n>1

for H and letting
N tend to infinity in (9.27).

This completes the proofs of (3))(4))(2) under the assumption that H
is separable.

(3))(1) for general H: The above argument proves that if (3) holds,
then the restriction of T to any separable closed subspace H 0 of H belongs
to �(H 0, E(S)) and satisfies kTk�(H0,E(S))

6 CkgkE(S)

. This implies that T 2
�1(H,E(S)) and kTk�1(H,E(S))

6 CkgkE(S)

and (1) follows.
We have now completed the proof of the equivalences (1),(2),(3), and,

incidentally, the equivalence of these conditions with (9.3.6).
(1))(4) for general H: As in the proof of (1))(3) we may assume that

H is separable, and for separable H the proof of all equivalences has already
been established. ⇤

Let (S,A , µ) and (T,B, ⌫) be �-finite measure spaces and E(S) a Banach
function space over (S,A , µ). As a variation on an observation in Propo-
sition 1.2.25, the next lemma shows that strongly ⌫-measurable functions
T ! E(S)) can be identified with jointly measurable functions on T ⇥ S.

Lemma 9.3.7. Let (S,A , µ) and (T,B, ⌫) be �-finite measure spaces. Let
E(S) be a Banach function space over (T,B, ⌫). For each strongly µ-meas-
urable function f : T ! E(S), there exists a jointly ⌫⇥µ-measurable function
g : T ⇥ S ! K such that for ⌫-almost all t 2 T the identity g(t, s) = f(t)(s)
holds for µ-almost all s 2 S.

Proof. It suffices to consider the case of real scalars. By applying the in-
vertible transformation in the range of our functions, we may assume that
|f(t)(s)| < 1. By Lemma 2.1.4 we can find a sequence (fn)n>1

of count-
ably valued ⌫-simple functions such that for ⌫-almost all t 2 T , kfn(t)(·) �
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f(t)(·)kE(S)

< 2�n. Clearly, the functions gn(t, s) = fn(t)(s) can be chosen in
a jointly measurable way. Now for ⌫-almost all t 2 T ,

�

�

�

X

n>1

|f(t)(·)� gn(t, ·)|
�

�

�

E(S)

6
X

n>1

kf(t)(·)� gn(t, ·)kE(S)

< 1.

Thus for ⌫-almost all t 2 T , for µ-almost all s 2 S we have
P

n>1

|f(t)(s) �
gn(t, s)| < 1. Therefore, by Fubini’s theorem, (gn)n>1

converges ⌫⇥µ almost
everywhere, and we can put g(t, s) := limn!1 gn(t, s) for those (t, s) for which
this limit exists and zero otherwise. Clearly, g has the required properties. ⇤

We will now specialise Theorem 9.3.6 to the case H = L2(T ), identifying
(L2(T ))⇤ = L2(T ) as usual.

Theorem 9.3.8. Let (S,A , µ) and (T,B, ⌫) be �-finite measure spaces. Let
E(S) be a Banach function space over (S,A , µ) with finite cotype. For a
strongly ⌫-measurable function f : T ! E(S), the following assertions are
equivalent:

(1) If 2 �(L2(T ), E(S));
(2) f 2 E(S;L2(T )).

In this case we have kIfk�(L2
(T ),E)

hE kfkE(S;L2
(T ))

.

Proof. We begin with the observation that in both implications (1))(2) and
(2))(1) there is no loss of generality in assuming that L2(T ) is separable.
Indeed, for the first implication we note that If is separably supported, and
this allows us to pass to a µ-countably generated sub-�-algebra. For the sec-
ond implication we argue similarly, now using that the strongly measurable
functions f is ⌫-essentially separably valued. This proves our claim. We may
therefore fix an orthonormal basis (hn)n>1

in L2(T ) and put

xn :=

ˆ
T
f(t)hn(t) dµ(t).

By Proposition 1.2.25 we have

xn(s) =

ˆ
T
g(t, s)hn(t) d⌫(t)

for µ-almost all s 2 S and all n > 1.
Let g : T⇥S ! K be as in Lemma 9.3.7. Note that hg(t, ·), x⇤i = hf(t), x⇤i

for all x⇤ 2 E⇤(S).
(1))(2): Define

fn(t)(s) :=
n
X

k=1

hk(t)xk(s).

By Parseval’s identity, for all 0 6 m 6 n we have
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kfn � fmkE(S;L2
(T ))

=
�

�

�

s 7!
⇣

n
X

k=m+1

|xk(s)|2
⌘

1/2�
�

�

E(S)

hE

�

�

�

n
X

k=m+1

�kxk

�

�

�

L2
(⌦;E(S))

.

By the assumption and Theorem 9.1.17 we know that
P1

k=1

�kxk converges
in L2(⌦;E(S)). Therefore, (fn)n>1

is a Cauchy sequence in E(S;L2(T )). By
the completeness of E(S;L2(T )) we find that there exists a function F 2
E(S;L2(T )) such that F = limn!1 fn in E(S;L2(T )). Taking an almost
everywhere convergent subsequence we find that f = F . The final identity
follows by taking m = 0 and letting n ! 1.

(2))(1): Let f 2 E(S;L2(T )). We claim that f is weakly in L2(T ).
Indeed, let x⇤ 2 E⇤(S) with kx⇤k 6 1 be fixed. Since (T,B, ⌫) is �-finite
there is an exhausting sequence for T , i.e., an increasing sequence (Cm)m>1

of sets of finite measure whose union covers T . For each m > 1, let Am = {t 2
T : kf(t)kE(S)

6 m} \ Cm. Then 1A
m

hf(·), x⇤i belongs to L2(T ) and for all
m,N > 1 and all h 2 L2(T ) of norm one we have

�

�

�

D

h,1A
m

hf(·), x⇤i
E

�

�

�

=
�

�

�

D

ˆ
T
h(t)1A

m

f(t) dµ(t), x⇤
E

�

�

�

=
�

�

�

D

s 7!
ˆ
T
h(t)1A

m

g(t, s) dµ(t), x⇤
E

�

�

�

= |hs 7! hg(·, s),1A
m

hi, x⇤i|
6
�

�s 7! |hg(·, s),1A
m

hi|
�

�

E(S)

6
�

�s 7! |kg(·, s)kL2
(T )

k1A
m

hkL2
(T )

�

�

E(S)

6
�

�s 7! |kg(·, s)kL2
(T )

�

�

E(S)

= kfkE(S;L2
(T ))

.

Here we used the fact that for µ-almost all s 2 S,
⇣

ˆ
T
1A

m

f(t)h(t) dµ(t)
⌘

(s) =

ˆ
T
1A

m

g(t, s)h(t) d⌫(t),

which can be seen as in Proposition 1.2.25.
Taking the supremum over all khk 6 1 and letting m ! 1, we obtain

khf, x⇤ikL2
(T )

6 kfkE(S;L2
(T ))

. This proves the claim.
Since f is weakly in L2, the operator If : L2(T ) ! E(S) is bounded.

Observe that by Theorem 9.3.6 and Bessel’s inequality (applied µ-almost ev-
erywhere in S) we have

�

�

�

N
X

n=1

�nxn

�

�

�

L2
(⌦;E)

hE

�

�

�

s 7!
⇣

N
X

n=1

|xn(s)|2
⌘

1/2�
�

�

=
�

�

�

s 7!
⇣

N
X

n=1

|hg(·, s), hni|2
⌘

1/2�
�

�

E(S)
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6
�

�s 7! kg(·, s)kL2
(T )

�

�

E(S)

= kfkE(S;L2
(T ))

.

It follows that If 2 �1(L2(T ), E(S)), and since E(S) does not contain a copy
of c

0

it follows from Theorem 9.1.20 that If 2 �(L2(T ), E(S)). ⇤

9.4 Function space properties

In this section we will prove a number of further results which collectively
show that spaces of �-radonifying operators display many similarities with
spaces of (generalised) measurable functions.

9.4.a Convergence theorems

We will show that operator sequences in �(H,X) satisfy convergence criteria
analogous to the dominated convergence theorem and Fatou’s lemma from
real analysis. We begin with an extension of the covariance domination result
of Theorem 6.1.25. Somewhat informally it expresses that an operator that
is ‘pointwise’ dominated by a �-radonifying operator is itself a radonifying
operator. This is yet another analogy of the �-radonifying norm with Banach
function space norms, but the pointwise domination in the sense of evaluating
functions at every point is replaced by the application of the adjoint operators
on every vector in the dual space.

Theorem 9.4.1 (Domination). Let H
1

and H
2

be Hilbert spaces and let
T
1

2 L (H
1

, X) and T
2

2 L (H
2

, X). If

kT ⇤
1

x⇤kH⇤
1
6 kT ⇤

2

x⇤kH⇤
2
, x⇤ 2 X⇤,

then T
2

2 �(H
2

, X) implies T
1

2 �(H
1

, X) and for all 1 6 p < 1 we have

kT
1

k�p

(H1,X)

6 kT
2

k�p

(H2,X)

.

In fact, there exists a linear contraction U 2 L (H
1

, H
2

) such that T
1

= T
2

U ,
and hence R(T

1

) ✓ R(T
2

).

The analogous result for �1(H,X) also holds and can be obtained with the
same proof.

Proof. Put eH
1

= R(T ⇤
1

) and eH
2

= R(T ⇤
2

). By the assumption the mapping

j : T ⇤
2

x⇤ 7! T ⇤
1

x⇤ (9.28)

is well defined and extends to a linear contraction from eH
2

to eH
1

. We extend
j to a contraction in L (H⇤

2

, H⇤
1

) by setting

j ⌘ 0 on the orthogonal complement of eH
2

. (9.29)
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Now let U = j⇤ 2 L (H
1

, H
2

) where we identify H⇤⇤
i with Hi for i = 1, 2. Then

for all h 2 H
1

and x⇤ 2 X⇤ we have hT
2

Uh, x⇤i = hh, jT ⇤
2

x⇤i = hh, T ⇤
1

x⇤i =
hT

1

h, x⇤i. Hence T
2

U = T
1

and the result follows from the right ideal property
(Theorem 9.1.10). ⇤
Theorem 9.4.2 (�-Dominated convergence). Let Tn, T 2 L (H,X) sat-
isfy limn!1 T ⇤

nx
⇤ = T ⇤x⇤ in H⇤ for all x⇤ 2 X⇤. If there exists U 2 �(H,X)

such that
kT ⇤

nx
⇤kH⇤ 6 kU⇤x⇤kH⇤

for all n > 1 and x⇤ 2 X⇤, then Tn, T 2 �(H,X) and limn!1 Tn = T in
�(H,X).

Using Example 9.1.21 one may check that the convergence assertion is false if
�(H,X) is replaced by �1(H,X).

Proof. Clearly, k(Tn�T )⇤x⇤k 6 kV ⇤x⇤k, where V = 2U . By Theorem 9.4.1 we
have Tn, T 2 �(H,X) and Tn�T = V Un for suitable contractions Un 2 L (H)
given by the analogues of (9.28) and (9.29) in this situation, i.e., Un = j⇤n,
where jn : V ⇤x⇤ 7! (Tn � T )⇤x⇤ and jn annihilates R(V ⇤)?. Therefore

kTn � Tk�(H,X)

= kV Unk�(H,X)

.

We claim that limn!1 U⇤
nh

⇤ = 0 for all h⇤ 2 R(V ⇤). Indeed, if h⇤ = V ⇤x⇤

this follows from (9.28) and the assumption of the theorem, for

lim
n!1

U⇤
nV

⇤x⇤ = lim
n!1

(T ⇤
n � T ⇤)x⇤ = 0.

Since supn>1

kUnk 6 1 this extends to limn!1 U⇤
nh

⇤ = 0 for all h⇤ 2 R(V ⇤)
and the claim follows. Now the result follows from Theorem 9.1.14. ⇤

Applying the result of Theorem 9.4.2 to functions �n,� : S ! X we obtain
the following corollary.

Corollary 9.4.3. Suppose �n,� : S ! X satisfy limn!1h�n, x⇤i = h�, x⇤i
in L2(S) for all x⇤ 2 X⇤. If there exists  2 �(S;X) such that

kh�n, x
⇤ikL2

(S)

6 kh , x⇤ikL2
(S)

for all n > 1 and x⇤ 2 X⇤, then �n 2 �(S;X) and limn!1 �n = � in �(S;X).

Example 9.4.4 (Multiplication by bounded functions). If � 2 �(S;X) and f 2
L1(S), then f� 2 �(S;X) and

kf�k�(S;X)

6 kfkL1
(S)

k�k�(S;X)

.

Moreover, if (fn)n>1

is a bounded sequence in L1(S) satisfying limn!1 fn =
f almost everywhere, then

lim
n!1

kfn�� f�k�(S;X)

= 0.
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An interesting special case is provided next.

Example 9.4.5 (Truncation). If � 2 �(S;X), then

lim
n!1

k�� 1{k�k6n}�k�(S;X)

= 0.

We continue with an analogue of Fatou’s lemma:

Proposition 9.4.6 (�-Fatou lemma). Let (Tn)n>1

be a bounded sequence
in �1(H,X). If T 2 L (H,X) is an operator such that

lim
n!1

hTnh, x
⇤i = hTh, x⇤i, h 2 H, x⇤ 2 X⇤,

then T 2 �1(H,X) and for all 1 6 p < 1 we have

kTk�p

1(H,X)

6 lim inf
n!1

kTnk�p

1(H,X)

.

Proof. Let {h
1

, . . . , hK} be an orthonormal system in H. For a fixed ! 2 ⌦,

�

�

�

K
X

k=1

�k(!)Thk

�

�

�

= sup
x⇤2B

X

⇤

�

�

�

D

K
X

k=1

�k(!)Thk, x
⇤
E

�

�

�

= sup
x⇤2B

X

⇤
lim

n!1

�

�

�

D

K
X

k=1

�k(!)Tnhk, x
⇤
E

�

�

�

6 lim inf
n!1

�

�

�

K
X

k=1

�k(!)Tnhk

�

�

�

.

Taking pth powers and applying the usual Fatou’s lemma, we deduce that

E
�

�

�

K
X

k=1

�kThk

�

�

�

p
6 lim inf

n!1
E
�

�

�

K
X

k=1

�kTnhk

�

�

�

p
6 lim inf

n!1
kTnkp�p

(H;X)

.

Taking the supremum over all finite orthonormal systems proves the proposi-
tion. ⇤

If H = L2(S) we may replace the weak convergence assumption by a pointwise
convergence assumption:

Corollary 9.4.7. Let �n : S ! X be functions in �1(S;X) with

sup
n

k�nk�1(S;X)

< 1,

and let � : S ! X be a strongly µ-measurable function such that for all
x⇤ 2 X⇤ we have

lim
n!1

h�n, x
⇤i = h�, x⇤i almost everywhere.

Then � 2 �1(S;X) and for all 1 6 p < 1 we have

k�k�p

1(S;X)

6 lim inf
n!1

k�nk�p

1(S;X)

.
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Proof. We begin by noting that for all x⇤ 2 X⇤ we have kh�n, x⇤ikL2
(S)

6
k�nk�1(S;X)

kx⇤k.
We claim that for all f 2 L2(S) and x⇤ 2 X⇤ we have

lim
n!1

ˆ
S
fh�n, x

⇤i dµ =

ˆ
S
fh�, x⇤i dµ.

To prove this fix an element x⇤ 2 X⇤. Using the reflexivity of L2(S), ev-
ery subsequence (�n

k

) of (�n) has a further subsequence (�n
k

j

) such that
h�n

k

, x⇤i ! g weakly in L2 for some function g 2 L2(S). By the almost
everywhere convergence h�n, x⇤i ! h�, x⇤i we see that g = h�, x⇤i.

The above being true for every subsequence (�n
k

), the claim has been
proved. This means that the assumptions of Proposition 9.4.6 are satisfied
and the result follows. ⇤

9.4.b Fubini-type theorems

In this section we consider ‘Fubini type’ isomorphisms of the form

Lp(S; �(H,X)) ' �(H,Lp(S;X)),

�(G, �(H,X)) ' �(H, �(G,X)),

which will be shown to hold for every Banach space X. The special case of the
first isomorphism for X = K has already been established in Section 9.3.a.

Theorem 9.4.8 (�-Fubini isomorphism). Let (S,A , µ) be a �-finite mea-
sure space, let H be a Hilbert space, and let 1 6 p < 1. The mapping
U : Lp(S; �(H,X)) ! L (H,Lp(S;X)) defined by

(Uf)h := f(·)h, h 2 H,

defines an isometry of Banach spaces

Lp(S; �p(H,X)) ' �p(H,Lp(S;X)).

Proof. Let f 2 Lp(S; �(H,X)) be a µ-simple function of the form f =
PM

m=1

1S
m

⌦ Um, where Um =
PN

n=1

h⇤
n ⌦ xmn with (h⇤

n)
N
n=1

orthonormal
in H⇤. Since each f(s) is a finite rank operator, by (9.10) and Fubini’s theo-
rem we obtain

kUfk�p

(H,Lp

(S;X))

=
⇣

E
�

�

�

N
X

n=1

�n (Uf)hn

�

�

�

p

Lp

(S;X)

⌘

1/p

=
⇣

ˆ
S
E
�

�

�

N
X

n=1

�n fhn

�

�

�

p
dµ
⌘

1/p

=
⇣

ˆ
S
kfkp�p

(H,X)

dµ
⌘

1/p
= kfkLp

(S;�p

(H,X))

.
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Since µ-simple functions f of the above form are dense, this computation
shows that U extends to an isometry from Lp(S; �p(H,X)) onto a closed
subspace of �p(H,Lp(S;X)). To show that this operator is surjective it is
enough to show that its range is dense. However,

U
⇣

M
X

m=1

1S
m

⌦
⇣

N
X

n=1

h⇤
n ⌦ xmn

⌘⌘

=

N
X

n=1

h⇤
n ⌦

⇣

M
X

m=1

1S
m

⌦ xmn

⌘

,

for all Sn 2 A with µ(Sn) < 1, orthonormal h⇤
1

, . . . , h⇤
N 2 H⇤, and arbi-

trary xmn 2 X. The elements appearing on the right hand side are dense in
�p(H,Lp(S;X)). ⇤

Proposition 9.4.9. Let G and H be Hilbert spaces and X be a Banach space.
The mapping g ⌦ (h⌦ x) 7! h⌦ (g ⌦ x) extends to an isometric isomorphism
of Banach spaces

�p(G, �p(H,X)) h �p(H, �p(G,X)).

Proof. Let g
1

, . . . , gM 2 G and h
1

, . . . , hN 2 H be orthonormal systems and
(xmn)

M,N
m,n=1

✓ X. Then,

�

�

�

M
X

m=1

gm ⌦
⇣

N
X

n=1

hn ⌦ xmn

⌘

�

�

�

p

�p

(G,�p

(H,X))

= EE0
�

�

�

M
X

m=1

�m

N
X

n=1

�0nxmn

�

�

�

p
.

Now we apply Fubini’s theorem and rewrite the resulting expression as the
norm of �p(H, �p(G,X)). ⇤

Let G and H be Hilbert spaces. On G⌦H, we define an inner product by

(g
1

⌦ h
1

|g
2

⌦ h
2

) := (g
1

|g
2

)(h
1

|h
2

).

We write G⌦
2

H for the completion of G⌦H with respect to the norm induced
by the above inner product.

Theorem 9.4.10 (�-Fubini theorem). Let G and H be infinite dimen-
sional Hilbert spaces. For a Banach space X the following assertions are equiv-
alent:

(1) X has Pisier’s contraction property;
(2) the mapping

g ⌦ (h⌦ x) 7! (g ⌦ h)⌦ x

extends to an isomorphism of Banach spaces

�(G, �(H,X)) ' �(G⌦
2

H,X).

Proof. For elements in the algebraic tensor products, the equivalence of norms
is merely a restatement of the inequalities in Corollary 7.5.19. The general
result follows by approximation. ⇤
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As an immediate consequence we have the following result.

Corollary 9.4.11. Let (S
1

,A
1

, µ
1

) and (S
2

,A
2

, µ
2

) be �-finite measure
spaces. If X has Pisier’s contraction property, then

�(L2(S
1

), �(L2(S
2

), X)) ' �(L2(S
1

⇥ S
2

), X).

In certain special situations the use of Pisier’s contraction property can be
avoided. The next example will be useful in Chapter 10.

Example 9.4.12. Let (S,A , µ) be a measure space, H a Hilbert space and X
a Banach space. For a fixed function g 2 L2(S) of norm one, the mapping
PN

n=1

hn ⌦ xn 7!
PN

n=1

(g ⌦ hn) ⌦ xn extends to an isometry of �(H,X)
into �(L2(S;H), X). This allows us to interpret g ⌦ T , for every operator
T 2 �(H,X), as an element of �(L2(S;H), X), and under this identification
we have

kg ⌦ Tk�(L2
(S;H),X)

= kg ⌦ Tk�(S;�(H,X))

= kgkL2
(S)

kTk�(H,X)

.

The second identity is a trivial consequence of Proposition 9.1.3. To prove the
first equality, we apply Proposition 9.1.3 twice:

�

�

�

N
X

n=1

(g ⌦ hn)⌦ xn

�

�

�

�(L2
(S;H),X)

=
�

�

�

N
X

n=1

�nxn

�

�

�

L2
(⌦;X)

kgkL2
(S)

=
�

�

�

N
X

n=1

hn ⌦ xn

�

�

�

�(L2
(S;H),X)

kgkL2
(S)

.

9.4.c Partitions, type and cotype

An elementary property of the Lp-norms is the following identity for any
measurable partition (Sj)j>1

✓ A of the underlying measure space (S,A , µ):

kfkLp

(S;X)

=
⇣

X

j>1

kf |S
j

kpLp

(S
j

;X)

⌘

1/p
.

The following result provides conditions for the analogous inequalities ‘6’ and
‘>’ for the �-norm.

Proposition 9.4.13. Let (S,A , µ) be a measure space.

(1) Let X have type p 2 [1, 2]. Let (Sj)j>1

✓ A be a partition of S. Then for
all R 2 �(L2(S), X) we have

kRk�(L2
(S),X)

6 
2,p⌧p,X

⇣

X

j>1

kR|S
j

kp�(L2
(S),X)

⌘

1/p
.



9.5 The �-multiplier theorem 299

(2) Let X have cotype q 2 [2,1] and let (Sj)j>1

✓ A be disjoint. Then for
all R 2 �(L2(S), X) we have

⇣

X

j>1

kR|S
j

kq�(L2
(S),X)

⌘

1/q
6 q,2cq,XkRk�(L2

(S),X)

,

with the obvious modification if q = 1.

Proof. (1) We may assume that µ(Sj) > 0 for all j. Fixing R, we may also
assume that ⌃ is countably generated. As a result, L2(S) is separable and we
may choose an orthonormal basis (hjk)j,k>1

for L2(S) in such a way that for
each j the sequence (hjk)k>1

is an orthonormal basis for L2(Sj). Let (�jk)j,k>1

and (r0j)j>1

be a doubly-indexed Gaussian sequence and a Rademacher se-
quence on probability spaces (⌦,P) and (⌦0,P0), respectively. By a standard
randomisation argument,

kRk�(L2
(S),X)

=
⇣

E
�

�

�

X

j,k>1

�jkRhjk

�

�

�

2

⌘

1/2

=
⇣

E
�

�

�

X

j,k>1

�jkR|S
j

hjk

�

�

�

2

⌘

1/2

=
⇣

E0
�

�

�

X

j>1

r0j
X

k>1

�jkR|S
j

hjk

�

�

�

2

L2
(⌦;X)

⌘

1/2

6 ⌧p,L2
(⌦;X)

⇣

X

j>1

�

�

�

X

k>1

�jkR|S
j

hjk

�

�

�

p

L2
(⌦;X)

⌘

1/p

= 
2,p⌧p,X

⇣

X

j>1

kR|S
j

kp�(L2
(S),X)

⌘

1/p
.

(2): This is proved similarly. ⇤

9.5 The �-multiplier theorem

In this section we will study under what conditions an operator-valued func-
tion M : S ! L (X,Y ) acts as a ‘pointwise’ multiplier from �(S;X) to
�(S;Y ). We have already seen one such example in Example 9.4.4. The gen-
eral case is more complicated and in general it is not sufficient that the range
of M is uniformly bounded. Below it will be shown that in the most common
situations M is bounded as a pointwise multiplier if and only if its range is
essentially �-bounded.

To warm up we consider the discrete case S = N with the counting mea-
sure. We fix 1 6 p < 1. By Theorem 9.1.17 we know that f 2 �(N;X) if and
only if the sum

P

n>1

�nf(n) converges in Lp(⌦;X), in which case
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kfk�p

(N;X)

=
�

�

�

X

n>1

�nf(n)
�

�

�

Lp

(⌦;X)

.

By considering finitely supported functions f , we see that

kMfk�p

(N;Y )

6 Ckfk�p

(N;X)

holds if and only if for all 1 6 m 6 n and all xm, . . . , xn 2 X we have

�

�

�

n
X

j=m

�jM(j)xj

�

�

�

Lp

(⌦;Y )

6 C
�

�

�

n
X

j=m

�jxj

�

�

�

Lp

(⌦;X)

. (9.30)

This is clearly true if the range of M is �-bounded, with constant C equal
to its �-bound. Conversely, (9.30) is almost the definition of �-boundedness
of the range of M , except that (9.30) does not automatically involve possible
repetitions of operators M(j), unless M takes each value infinitely many times.
However, if X has finite cotype, then (9.30) implies that the range of M is
�-bounded: Following the lines of the proof that �-boundedness implies R-
boundedness under finite cotype (Theorem 8.1.3), (9.30) implies a similar
estimate with Rademacher variables "j in place of the Gaussian �j under
the same assumption. But Proposition 8.1.5 guarantees that the resulting
R-boundedness type estimate with distinct operators M(j) already implies
the full R-boundedness involving possible repetition. This then implies �-
boundedness, again by (Theorem 8.1.3).

9.5.a Sufficient conditions for pointwise multiplication

We will now extend the preceding considerations to general measure spaces
(S,A , µ). Unlike in the discrete case this requires quite subtle approximation
arguments.

The proof of our first main result relies on the �-Fatou lemma (Proposition
9.4.6). This explains why a mapping from �(S;X) into �1(S;Y ) is obtained
(rather than from �(S;X) into �(S;Y )).

Theorem 9.5.1 (�-Multiplier theorem). Suppose that M : S ! L (X,Y )
is strongly µ-measurable (in the sense of Definition 8.5.1) and has �-bounded
range M := {M(s) : s 2 S}. Then for every function � : S ! X in �(S;X),
the function M� : S ! Y belongs to �1(S;Y ) and

kM�k�p

1(S;Y )

6 �p(M ) k�k�p

(S;X)

. (9.31)

Furthermore, the mapping fM : � 7! M� has a unique extension to a bounded
operator

fM : �p(L2(S), X) ! �p1(L2(S), Y )

of norm kfMk 6 �p(M ).
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In various situations the range space �1(S;Y ) can be replaced by �(S;Y );
see Corollaries 9.5.2 and 9.5.3 below.

For the theorem to be applicable, it suffices to know that M has �-bounded
range on S\N for some µ-null set N , provided one replaces �({M(s) : s 2 S)})
by �({M(s) : s 2 S \ N)}). This rather obvious observation will be used in
the sequence without further comment.

Proof. Let � : S ! X be a µ-simple function which we keep fixed throughout
Steps 1 and 2 below.

By virtue of the strong µ-measurability of the functions Mxj , where
x
1

, . . . , xj span a finite-dimensional subspace on X in which � takes its val-
ues, we may assume that the �-algebra A is µ-essentially countably generated.
This implies that L2(S) is separable, say with orthonormal basis (gm)m>1

.
Step 1 – In this step we consider the special case where M is µ-simple. By

passing to a common refinement we may assume that

� =

k
X

j=1

1
p

µ(Aj)
1A

j

⌦ xj , M =

k
X

j=1

1A
j

⌦Mj ,

with disjoint sets Aj 2 A of finite positive measure; we then have M =
{M

1

, . . . ,Mk}. Clearly,

M� =

k
X

j=1

1
p

µ(Aj)
1A

j

⌦Mjxj .

This is a µ-simple function with values in Y which therefore defines an element
M� 2 �p(S;Y ). By Example 9.2.4 we obtain

kM�kp�p

(S;Y )

= E
�

�

�

k
X

j=1

�jMjxj

�

�

�

p

6 (�p(M ))pE
�

�

�

k
X

j=1

�jxj

�

�

�

p
= (�p(M ))pk�kp�p

(S;X)

.

Step 2 – Let (Sj)j>1

be a collection of disjoint sets in A of finite positive
measure that µ-essentially generates A . By adjoining finitely many sets if nec-
essary and passing to a refinement we may assume that � is µ|A

k0
-measurable

for some k
0

> 1, where for k > 1 we set Ak := �(S
1

, . . . , Sk). For a bounded
strongly measurable function  : S ! X let

Pk :=

k
X

j=1

1S
j

µ(Sj)

ˆ
S
j

 dµ.

Define the functions Mk : S ! L (X,Y ) by Mkx = Pk(Mx). By the Gaussian
version of Example 8.5.3, �p(Mk(s) : s 2 S) 6 �p(M ) and therefore Step 1
implies that
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kMk�k�p

(S;Y )

6 �p(M )k�k�p

(S;X)

. (9.32)
It is easily checked that for all k > k

0

and f 2 L2(S) we have IM
k

�f =
IM�Pkf . Since Pk ! I strongly on L2(S) (the convergence being evident for
µ-simple functions built on the sets Sj), for all f 2 L2(S) we obtain

lim
k!1

IM
k

�f = IM�f

in Y . As a consequence of this and (9.32), the �-Fatou lemma (Proposition
9.4.6) implies that IM� 2 �1(L2(S), Y ) and

kM�k�p

1(S;Y )

6 lim inf
k!1

kMk�k�p

1(S;Y )

6 �p(M )k�k�p

(S;X)

.

Step 3 – In Steps 1 and 2 we have shown that (9.31) holds for all µ-simple
functions � : S ! X. By the density of the µ-simple functions in �(S;X) it
follows that the mapping fMI� := IM� has a unique extension to an operator
from �p(S;X) into �p1(S;Y ) of norm at most �p(M ).

Step 4 – We prove that for all functions � : S ! X in �(S;X), the
pointwise product M� is weakly in L2. (Clearly it is strongly µ-measurable.)

By Proposition 9.2.8 we can find a sequence of µ-simple functions �n :
S ! Y in �(S;X) such that �n ! � in �(S;X) and almost everywhere
on S. Thus also M�n ! M� almost everywhere, and hence in particular
hM�n, y⇤i ! hM�, y⇤i almost everywhere for each y⇤ 2 Y ⇤. On the other
hand, by (9.18), we also find, for fixed y⇤ 2 Y ⇤ and m,n > 1, that

khM�n, y
⇤i � hM�m, y⇤ikL2

(S)

= khM(�n � �m), y⇤ikL2
(S)

6 kM(�n � �m)k�1(S;Y )

ky⇤k
6 �(M )k�n � �mk�(S;X)

ky⇤k.

Therefore, (hM�n, y⇤i)n>1

is a Cauchy sequence, and hence convergent, in
L2(S). But the L2(S)-limit must coincide with the pointwise almost every-
where limit, and hence hM�, y⇤i = limn!1hM�n, y⇤i in L2(S). In particular,
hM�, y⇤i 2 L2(S), and hence M� is weakly in L2(S), as claimed.

Step 5 – Finally we prove that for all functions � : S ! X in �(S;X),
we have fMI� = IM�, that is, the abstract extension coincides with pointwise
multiplication by M .

By definition of the abstract extension, we have

fMI� = lim
n!1

fMI�
n

= lim
n!1

IM�
n

,

where the limit is in �1(L2(S), Y ), and a fortiori in L (L2(S), Y ). Taking
adjoints and evaluating against y⇤ 2 Y ⇤, it follows in particular that

(fMI�)⇤y⇤ = lim
n!1

I⇤M�
n

y⇤ = lim
n!1

hM�n, y
⇤i = hM�, y⇤i = I⇤M�y

⇤,

where the limits are in L2(S). Valid for every y⇤ 2 Y ⇤, this shows that
(fMI�)⇤ = I⇤M� and hence fMI� = IM�, which concludes the proof. ⇤
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Under additional assumptions, fM takes values in �(S;Y ):

Corollary 9.5.2. In addition to the conditions of Theorem 9.5.1, assume that
D ✓ X is a dense set and C is an algebra of sets µ-essentially generating A
such that for all x 2 D and C 2 C with µ(C) < 1 we have 1CMx 2 �(S;Y ).
Then fM maps �(S;X) into �(S;Y ).

In applications this subtlety is important; on (R
+

, dt
t ) it permits us to check

the condition just for finite intervals (a, b).

Proof. By assumption fM maps all functions of the form 1C ⌦x, where C 2 C
and x 2 D, into �(S;Y ). Note that every E 2 A of finite µ-measure is
arbitrarily close in µ-measure to some C 2 C , and hence 1E is arbitrarily
close in L2(S) to some indicator of the type 1C . And clearly every x 2 X is
arbitrarily close to some x0 2 D by definition of density. Since k�⌦xk�(S,X)

=
k�kL2

(S)

kxk, it follows at once that every indicator 1E ⌦x is arbitrarily close
in �(S;X) to some 1C ⌦ x0, where C 2 C and x0 2 D. By the continuity
of fM (established in Theorem 9.5.1), fM maps all 1E ⌦ x into �(S;Y ), and
hence by linearity it maps all simple functions into �(S;Y ). By the density of
simple functions in �(S;X) and the continuity of fM again, we conclude that
fM : �(S;X ! �(S;Y ), as claimed. ⇤

As a consequence of Theorem 9.1.20 we also have the following corollary:

Corollary 9.5.3. In addition to the conditions of Theorem 9.5.1, assume that
Y does not contain a copy of c

0

. Then fM maps �(S;X) into �(S;Y ).

9.5.b Necessity of �-boundedness

We proceed with a converse to Theorem 9.5.1, which is most conveniently
phrased in the setting of a metric measure space, i.e., a complete separable
metric space (S, d) with a measure µ on the Borel �-algebra B(S) that is
locally finite in the sense that every point s 2 S has an open neighbourhood
of finite µ-measure.

For µ-almost all s 2 S it is possible to find an R > 0 such that

0 < µ(B(s, r)) < 1 for all 0 < r < R.

To see this, define the topological support supp(µ) to be the smallest closed set
with the property that its complement has µ-measure 0. Note that supp(µ)
equals the intersection of all closed sets whose complements have µ-measure
0: the union of these complements can be covered by countably many sets
from this union and therefore has µ-measure 0. Now to prove the claim we
note that if s 2 supp(µ), then µ(B(s, r)) > 0 for all r > 0, for otherwise this
ball would belong to the complement of supp(µ). By choosing r > 0 small
enough we can also guarantee that µ(B(s, r)) < 1.
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A function M : S ! L (X,Y ) is said to be strongly locally integrable if
Mx : S ! Y is locally integrable for all x 2 X. Note that if M is locally
bounded, then it is strongly locally integrable.

A point s 2 supp(µ) will be called a strong Lebesgue point for such a
strongly locally integrable function M : S ! L (X,Y ) if for all x 2 X we
have

lim
r#0

1

µ(B(s, r))

ˆ
B(s,r)

Mx dµ = M(s)x.

Example 9.5.4. Let (S,A , µ) be a metric measure space and let M : S !
L (X,Y ) be strongly continuous. Then every s 2 supp(µ) is a strong Lebesgue
point of M .

To see this, fix s 2 supp(µ) and choose arbitrary x 2 X and " > 0. Let
� > 0 be so small that for all t 2 B(s, �) we have kM(s)x�M(t)xk < ". Then
for all sufficiently small r 2 (0, �),

�

�

�

M(s)x� 1

µ(B(s, r))

ˆ
B(s,r)

M(t)x dµ(t)
�

�

�

=
1

µ(B(s, r))

�

�

�

ˆ
B(s,r)

M(s)x�M(t)x dµ(t)
�

�

�

6 1

µ(B(s, r))

ˆ
B(s,r)

kM(s)x�M(t)xk dµ(t)

6 1

µ(B(s, r))

ˆ
B(s,r)

" dµ(t) = ".

Example 9.5.5. Suppose that X is separable and let S be an open subset of
Rn. Let � denote the Lebesgue measure on S. If M : S ! L (X,Y ) is strongly
�-measurable (in the sense of Definition 8.5.1) and essentially locally bounded,
then almost every s 2 S is a strong Lebesgue point for M .

Let S
0

✓ S be a measurable set such �(S \ S
0

) = 0 and M is locally
bounded on S

0

. Let {xk : k > 1} ✓ X be a countable dense subset. For fixed
k > 1, by the classical Lebesgue differentiation theorem (see Theorem 2.3.4)
we can find a measurable set Sk ✓ S with �(S \ Sk) = 0 such that for all
s 2 Sk we have

lim
r#0

1

�(B(s, r))

ˆ
B(s,r)

kMxk �M(s)xkk d� = 0. (9.33)

Since M is locally bounded, on the set
T

k>0

Sk the relation (9.33) holds with
xk replaced by an arbitrary x 2 X. Since �(S\

T

k>0

Sk) = 0 the result follows
from this.

The Lebesgue differentiation theorem holds for more general measure spaces,
and the above example can be extended to such situations. We refer to the
Notes for a discussion of this point.
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Proposition 9.5.6. Let (S,A , µ) be a non-atomic metric measure space and
let M : S ! L (X,Y ) be a strongly locally integrable function. If there exists
a constant C > 0 such that for all µ-simple functions � : S ! X the function
M� belongs to �1(S;Y ) and

kM�k�1(S;Y )

6 Ck�k�(S;X)

,

then
M = {M(s) : s is a strong Lebesgue point for M}

is �-bounded, with �p(M ) 6 C.

Proof. Pick arbitrary M
1

, . . . ,MN 2 M , say Mn = M(sn) for certain strong
Lebesgue points s

1

, . . . , sN 2 supp(µ) and pick x
1

, . . . , xN 2 X. Let R > 0 be
such that 0 < µ(B(sj , r)) < 1 for all 1 6 j 6 n and 0 < r < R.

For s
0

2 S and 0 < � < r < R consider the annulus

A(s
0

, �, r) := B(s
0

, r) \B(s
0

, �) = {s 2 S : � 6 d(s, s
0

) < r}.

Thanks to the non-atomicity assumption we have µ(A(s
0

, �, r)) > 0 for small
enough �, and for those � we may define the vector y(s

0

, �, r;x) 2 Y by

y(s
0

, �, r;x) :=
1

µ(A(s
0

, �, r))

ˆ
A(s0,�,r)

Mx dµ.

These annuli will be used to circumvent the problem that some of the points
sn might coincide (cf. Remark 9.5.7 below).

Let " > 0 be fixed. Let ⇢ := min{d(sm, sn) : 1 6 m,n 6 N, sm 6= sn}^R
and �

0

:= ⇢/2. Since s
1

is a strong Lebesgue point and µ({s
1

}) = 0 by the
non-atomicity assumption, we can choose numbers 0 < �

1

< r
1

< �
0

such that
µ(A(s

1

, �
1

, r
1

)) > 0 and

ky(s
1

, �
1

, r
1

;x
1

)�M(s
1

)x
1

k <
"

N
. (9.34)

In the same way we can recursively choose numbers �n > 0 and rn > 0 such
that for all n = 1, . . . , N ,

(i) �n < rn < �n�1

,
(ii) µ(A(sn, �n, rn)) > 0,
(iii) ky(sn, �n, rn;xn)�M(sn)xnk < "/N .

Put An := A(sn, �n, rn) and yn := y(sn, �n, rn;xn). The definition of ⇢ and the
fact that we have imposed rn < ⇢/2 guarantee that the sets An, n = 1, . . . N ,
are disjoint. Define

� :=

N
X

n=1

1
p

µ(An)
1A

n

⌦ xn,  :=

N
X

n=1

1
p

µ(An)
1A

n

⌦M(sn)xn.
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For functions ⇣ : S ! X belonging to �1(S;X) we define the µ-simple func-
tion P ⇣ : S ! X by

P ⇣ :=

N
X

n=1

1

µ(An)
1A

n

⌦
ˆ
A

n

⇣ dµ.

For f 2 L2(S) we have IP⇣f = I⇣Pf , where on the right-hand side we consider
P as a projection in L2(S), and therefore, by the right ideal property,

kP ⇣k�1(S;Y )

= kI⇣ � Pk�1(S;Y )

6 kI⇣k�1(S;Y )

= k⇣k�1(S;Y )

. (9.35)

It is easily checked that

PM� =

N
X

n=1

1
p

µ(An)
1A

n

⌦ yn

and therefore, by (9.34),

k � PM�k�1(S;Y )

=
�

�

�

N
X

n=1

�n(M(sn)xn � yn)
�

�

�

L2
(⌦;Y )

< ".

By the disjointness of the sets An (in (a) and (c) below) and (9.35) (in (b)),

�

�

�

N
X

n=1

�nM(sn)xn

�

�

�

L2
(⌦;Y )

(a)

= k k�1(S;Y )

6 "+ kPM�k�1(S;Y )

(b)

6 "+ kM�k�1(S;Y )

6 "+ Ck�k�(S;X)

(c)

= "+ C
⇣

E
�

�

�

N
X

n=1

�nxn

�

�

�

2

⌘

1/2
.

Since " > 0 was arbitrary, this completes the proof. ⇤

Remark 9.5.7 (The role of annuli). If, in the above proof, we used balls rather
than the annuli An, a problem with repeating entries will occur if sm = sn for
certain m 6= n. The proof makes essential use of the fact that the functions
1A

n

/
p

µ(An) are orthonormal in L2(S); the corresponding assertion for the
indicators of balls would fail in this case.

Remark 9.5.8 (The case when X has finite cotype). If X has finite cotype, then
a subset of L (X,Y ) is �-bounded if and only if it is R-bounded (Theorem
8.6.4). In order to test R-boundedness of M , by Proposition 8.1.5 it suffices
to check the R-boundedness inequality for pairwise distinct operators. In the
proof of the proposition it then suffices to consider distinct points sn. In this
situation there is no need to use annuli, and if one works with balls there is
no need to exclude atoms. Hence, the non-atomicity assumption is redundant



9.5 The �-multiplier theorem 307

if X has finite cotype (at the expense of extra constants in the estimate due
to changing back and forth to Rademacher sums).

It is an open problem whether the analogue of Proposition 8.1.5 for �-
boundedness holds.

As an application of the �-multiplier theorem we show next that as soon as we
have a square function estimate for (say) the Lebesgue measure, it holds for
every Borel measure. We formulate the result for strongly continuous functions
M ; the reader may check that an analogous result holds if Mx 2 L1(S;Y ) for
all x 2 X (strong boundedness is needed to pass from (3) to (2); it guarantees
that M is locally integrable with respect to every locally finite measure µ).

Corollary 9.5.9. Let (S,A , µ) be a metric measure space and let (T,B, ⌫)
be a measure space. Fix 1 6 p < 1 and let M : S ! L (Lp(T )) be strongly
continuous. The following assertions are equivalent:

(1) there exists a constant C > 0 such that for all � 2 Lp(T ;L2(S, µ)) we have
M� 2 Lp(T ;L2(S, µ)) and

kM�kLp

(T ;L2
(S,µ)) 6 Ck�kLp

(T ;L2
(S,µ));

(2) there exists a constant C > 0 such that for all locally finite Borel measures
� on S satisfying supp(�) ✓ supp(µ) and all � 2 Lp(T ;L2(S,�)) we have
M� 2 Lp(T ;L2(S,�)) and

kM�kLp

(T ;L2
(S,�)) 6 Ck�kLp

(T ;L2
(S,�));

(3) M = {M(s) : s 2 supp(µ)} is �-bounded.

Proof. Recall from (9.22) that

k�k�(T,Lp

(S))

= k�kLp

(⌦)

k�kLp

(S;L2
(T ))

. (9.36)

(1))(3): Let � : S ! Lp(T ) be µ-simple. It follows from the assumption
in (1) and (9.36) that

kM�k�p

(S,µ;Lp

(T ))

6 Ck�k�p

(S,µ;Lp

(T ))

.

Hence Proposition 9.5.6 implies that �p(M ) 6 C.
(3))(2): Since Lp(T ) does not contain a copy of c

0

, by Theorem 9.1.20
we have �p1(S,�;Lp(T )) = �p(S,�;Lp(T )). Hence by Theorem 9.5.1 applied
to (S,B(S),�) (and the observation following its statement) and (9.36),

kM�k�p

(S,�;Lp

(T ))

6 �p(M )k�k�p

(S,�;Lp

(T ))

6 �p(M )k�kLp

(⌦)

k�kLp

(T ;L2
(S,�)).

Now the result follows from (9.36).
(2))(1): This is trivial. ⇤

In applications one often takes (S,A , µ) to be an open domain in Rd with
the Lebesgue measure, in which case the inclusion of the supports in (2) is
automatic.
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9.6 Extension theorems

In Chapter 2 we have seen various examples of bounded operators T on spaces
L2(S) whose tensor extension T ⌦ IX fails to extend boundedly to L2(S;X).
These include some of the principal operators in Analysis, such as the Fourier–
Plancherel transform, the Hilbert transform, and the Itô isometry. In general,
whether or not a given operator has a bounded vector-valued counterpart is
closely linked with the geometry of the Banach space X. In this section we
will show that the tensor extension of any bounded operator on L2(S) extends
boundedly to �(S;X), for any Banach space X. This is a first demonstration
of the general principle that �(S;X) is a natural vector-valued analogue of
L2(S) as far as vector-valued Analysis is concerned, much in the same way as
randomised boundedness takes over the role of uniform boundedness.

9.6.a General extension results

In this subsection we deal with the general theory that is valid without further
assumptions on the Banach space X.

As an application of the ideal property we first show that the tensor ex-
tension of a bounded operator U : H

1

! H
2

acts boundedly as an operator
from �(H⇤

1

, X) to �(H⇤
2

, X).
As always, we do not identify Hilbert spaces with their duals and denote

by U⇤ the Banach space adjoint of U .

Theorem 9.6.1. Let H
1

and H
2

be Hilbert spaces. For all bounded linear
operators U : H

1

! H
2

the mapping

U ⌦ IX : h⌦ x 7! Uh⌦ x, h 2 H
1

, x 2 X,

has a unique extension to a bounded linear operator eU : �(H⇤
1

, X) ! �(H⇤
2

, X)
of the same norm. For all T 2 �(H⇤

1

, X) we have the identity

eUT = T � U⇤.

Proof. For any rank one operator T = h ⌦ x, where h 2 H
1

and x 2 X, and
any g⇤ 2 H⇤

2

, we have

eUTg⇤ = (Uh⌦ x)g⇤ = hUh, g⇤ix = hh, U⇤g⇤ix = (h⌦ x)U⇤g⇤ = TU⇤g⇤.

By linearity we obtain the identity eUT = T � U⇤ for all finite rank operators
T : H⇤

1

! X. By the right-ideal property it follows that keUTk�(H⇤
2 ,X)

6
kUkkTk�(H⇤

1 ;X)

. By density eU has a unique extension to a bounded linear
operator eU from �(H⇤

1

, X) into �(H⇤
2

, X) of norm keUk 6 kUk. The reverse
estimate kUk 6 keUk is trivial. ⇤
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At first sight it may seem natural to extend U to an operator eU 0 : �(H
1

, X) !
�(H

2

, X) by defining it as the mapping T 7! T � U?, where U? is the Hilbert
space adjoint of U , but this definition does not agree with the tensor extension
of U when the scalar field is complex. The simplest way to see this is to observe
that over the complex scalars the mapping U 7! eU 0 is conjugate-linear instead
of linear; on the other hand, the mapping U 7! U ⌦ IX is obviously linear.

Remark 9.6.2. The identity eUT = T � U⇤ even extends U ⌦ IX to a bounded
operator from �1(H⇤

1

, X) into �1(H⇤
2

, X). In general however, this extension
is non-unique (apart from the case c

0

6✓ X, in which case �1(H⇤, X) =
�(H⇤, X) for any Hilbert space H).

Example 9.6.3 (The case H = L2(S)). Next we consider the important special
case Hj = L2(Sj), where (Sj ,Aj , µj) are measure spaces (j = 1, 2). Let
U : L2(S

1

) ! L2(S
2

) be bounded. Suppose that a function � : S
1

! X
of the form

� = f ⌦ x

is given, with f 2 L2(S
1

) and x 2 X, and let I� : L2(S) ! X be the associated
integral operator,

I�g =

ˆ
S
g� dµ = hf, gix,

identifying in the last identity the function g 2 L2(S) with the functional in
the Banach space dual (L2(S))⇤ given by the action h 7!

´
S gh dµ. Then we

see that

(eUI�)g = I� � U⇤g = hf, U⇤gix = hUf, gix = I
(U⌦I

X

)�g.

Example 9.6.4 (Kernel operators). Let k : S
1

⇥ S
2

! K be a µ
1

⇥ µ
2

-
measurable function which is integrable on sets of finite measure. Suppose
that the operator Uk, defined on µ

1

-simple functions f : S
1

! K by

Ukf(t) =

ˆ
S1

k(s, t)f(s) dµ
1

(s),

extends to a bounded operator from L2(S
1

) into L2(S
2

). Then Theorem 9.6.1
provides us with a bounded extension eUk : �(L2(S

1

), X) ! �(L2(S
2

), X)
which for µ

1

-simple functions � : S
1

! X takes the form

(eUkI�)(t) =
ˆ
S1

k(s, t)�(s) dµ
1

(s).

Note that the Banach space adjoint operator is given by

(U⇤
k g)(s) =

ˆ
S2

k(s, t)g(t) dµ
2

(t);

in particular U⇤
k = Uk if and only if k(s, t) = k(t, s) (no conjugation; this is

because we consider the Banach space adjoint).



310 9 Square functions and radonifying operators

Example 9.6.5 (Fourier–Plancherel transform). In this example the scalar field
is C. We apply the above observations to the Fourier–Plancherel isometry F
on L2(Rd),

Ff(⇠) =

ˆ
Rd

exp(�2⇡i x · ⇠)f(x) dx, ⇠ 2 Rd.

As we have seen in Section 2.1, this operator extends to a bounded operator
on L2(Rd;X) only if X is isomorphic to a Hilbert space. In contrast, Theorem
9.6.1 shows that F has an isometric extension fF to �(L2(Rd), X) given by
fFT = T � F ⇤ = T � F , where we used that F ⇤ = F (cf. the previous
example); once again we remind the reader that F ⇤ is the Banach space
adjoint. By Example 9.6.4, for all simple functions � : Rd ! X we have

fF�(⇠) =

ˆ
Rd

exp(�2⇡i x · ⇠)�(x) dx, ⇠ 2 Rd.

Example 9.6.6 (Young’s inequality). For a fixed k 2 L1(Rd), the convolution
operator Ck : f 7! f ⇤k is bounded on L2(Rd) and satisfies kCkk 6 kkkL1

(Rd

)

.
Therefore, it extends to a bounded operator fCk on �(L2(Rd), X) of the same
norm. For all simple functions � : Rd ! K we have

Ck�(x) =

ˆ
Rd

k(y � x)�(x) dx, x 2 Rd.

We continue with two abstract examples which will play an important role in
the next subsection.

Example 9.6.7 (Tensors). When we view an element h 2 H as a bounded
operator Th from K to H, given by Thc = ch, and identify �(K, X) with X in
the natural way, then fTh 2 L (X, �(H⇤, X)) is given by

fThx = h⌦ x.

Example 9.6.8 (Evaluations). When we view an element h 2 H as a bounded
operator Eh from H⇤ to K, given by Ehh⇤ = hh, h⇤i, and identify �(K, X)

with X in the natural way, then fEh 2 L (�(H,X), X) is given by

fEhT = Th.

The final result of this subsection has a different flavour in that it deals with
the extension of operators initially defined on the Banach space target X,
rather than the Hilbert space domain H, of �(H,X).

Proposition 9.6.9. Let T be a bounded subset of L (X,Y ) and let H be a
Hilbert space. For each T 2 T let eT 2 L (�(H,X), �(H,Y )) be defined by
eTR := T �R. The collection fT = { eT : T 2 T } is bounded, with
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sup
T2T

kTk = sup
eT2fT

k eTk.

If T is �-bounded, then so is fT and we have

�(fT ) = �(T ).

Proof. The boundedness assertion is clear, and we concentrate on the �-
boundedness. Let (�j)j>1

and (e�j)j>1

be two sequences of independent stan-
dard Gaussian random variables, on probability spaces (⌦,P) and ( e⌦, fF , eP)
respectively. Let (hi)

n
i=1

be a finite orthonormal system in H. Then

EeE
�

�

�

n
X

i=1

e�i

k
X

j=1

�jTjRjhi

�

�

�

2

= eEE
�

�

�

k
X

j=1

�jTj

n
X

i=1

e�iRjhi

�

�

�

2

6 �2(T )eEE
�

�

�

k
X

j=1

�j

n
X

i=1

e�iRjhi

�

�

�

2

= �2(T )EeE
�

�

�

n
X

i=1

e�i

k
X

j=1

�jRjhi

�

�

�

2

6 �2(T )E
�

�

�

k
X

j=1

�jRj

�

�

�

2

�(H,X)

.

Taking the supremum over all finite orthonormal systems, we arrive at

E
�

�

�

k
X

j=1

�j eTjRj

�

�

�

2

�(H,Y )

6 �2(T )E
�

�

�

k
X

j=1

�jRj

�

�

�

2

�(H,X)

.

This proves the inequality �(fT ) 6 �(T ). The reverse inequality holds triv-
ially. ⇤

9.6.b R-bounded extensions via Pisier’s contraction property

In this and the following subsection we pursue the topic of extending Hilbert
space operators to spaces of �-radonifying operators in the presence of addi-
tional Banach space properties (in contrast to the results of Section 9.6.a that
are valid for general spaces).

If S is a uniformly bounded family of operators in L (H
1

, H
2

), the fam-
ily fS = {eS : S 2 T } as defined in Theorem 9.6.1 is uniformly bounded
in L (�(H⇤

1

, X), �(H⇤
2

, X)). In the situation that X has Pisier’s contraction
property (see Definition 7.5.1) we can say more: in that case fS is �-bounded
in L (�(H⇤

1

, X), �(H⇤
2

, X)).
Recall from (7.46) that X has Pisier’s contraction property if and only if

there exist constants ↵
+

and ↵� such that
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E
�

�

�

M
X

m=1

N
X

n=1

�mnxmn

�

�

�

2

6 ↵2

+

E0E00
�

�

�

M
X

m=1

N
X

n=1

�0m�
00
nxmn

�

�

�

2

,

E0E00
�

�

�

M
X

m=1

N
X

n=1

�0m�
00
nxmn

�

�

�

2

6 ↵2

�E
�

�

�

M
X

m=1

N
X

n=1

�mnxmn

�

�

�

2

.

The least constants in these inequalities will be denoted by ↵�
+

(X) and ↵��(X).

Theorem 9.6.10 (Haak–Kunstmann). Let S ✓ L (H
1

, H
2

) be a uni-
formly bounded family of operators. If X has Pisier’s contraction property,
then its extension fS is �-bounded and R-bounded in L (�(H⇤

1

, X), �(H⇤
2

, X))
and

�( fS ) 6 ↵�
+

(X)↵��(X) sup
S2S

kSk.

Proof. Let ↵
+

= ↵�
+

(X) and ↵� = ↵��(X). Assuming without loss of general-
ity that supS2S kSk 6 1, we must prove that for all S

1

, . . . , SN 2 L (H
1

, H
2

)
of norm at most one and all T

1

, . . . , TN 2 �(H⇤
1

, X),

E
�

�

�

N
X

n=1

�n eSnTn

�

�

�

2

�(H⇤
2 ,X)

6 ↵2

+

↵2

�E
�

�

�

N
X

n=1

�nTn

�

�

�

2

�(H⇤
1 ,X)

.

For this purpose it suffices to assume that each of the Tn has finite rank, and
by an orthogonalisation procedure we may even assume that

Tn =

M
X

m=1

hm ⌦ xmn,

where (hm)Mm=1

is some fixed orthonormal system in H
1

.
Choose an orthonormal basis (gk)Kk=1

for the span of {Snhm : 1 6 m 6
M, 1 6 n 6 N} in H

2

and denote the corresponding functionals in H⇤
2

by
(g⇤k)

K
k=1

, i.e., hh, g⇤ki := (h|gk). Applying Proposition 9.1.3,

E
�

�

�

N
X

n=1

�n eSnTn

�

�

�

2

�(H⇤
2 ,X)

= E
�

�

�

N
X

n=1

�n

M
X

m=1

Sn(hm ⌦ xmn)
�

�

�

2

�(H⇤
2 ,X)

= EE0
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�

�

K
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�0k

N
X
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M
X
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�nhSnhm, g⇤kixmn
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�

2

= EE0
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�

�

K
X
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N
X

l=1

�0k�l

N
X

n=1

M
X
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�lnhSnhm, g⇤kixmn

�

�

�

2

6 ↵2

�E
�

�

�

K
X

k=1

N
X

l=1

�kl

N
X

n=1

M
X

m=1

�lnhSnhm, g⇤kixmn

�

�

�

2

(⇤)
6 ↵2

�E
�

�

�

N
X

n=1

M
X
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�mnxmn

�

�

�

2
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6 ↵2

�↵
2

+

EE0
�

�

�

M
X

m=1

�0m

N
X

n=1

�nxmn

�

�

�

2

= ↵2

�↵
2

+

E
�

�

�

M
X

m=1

hm ⌦
N
X

n=1

�nxmn

�

�

�

2

�(H⇤
1 ,X)

= ↵2

�↵
2

+

E
�

�

�

N
X

n=1

�nTn

�

�

�

2

�(H⇤
1 ,X)

,

where (⇤) follows from Proposition 6.1.23 by considering the matrix A :
`2MN ! `2KN with coefficients a

(kl),(mn) = �lnhSnhm, g⇤ki. To estimate the
operator norm of A we note that if

P

m,n |cmn|2 6 1, then by the assumption
sup

16n6N kSnk 6 1 and the orthonormality of (g⇤k)k>1

and (hm)m>1

,

kAck2 =

N
X
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X
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|cml|2 6 1.

This proves the first part of the result.
Pisier’s contraction property implies finite cotype by Corollary 7.5.13.

Thus the R-boundedness of fS follows from its �-boundedness by Theorem
8.1.3, which also contains additional quantitative information. ⇤

We have the following converse to Theorem 9.6.10:

Proposition 9.6.11. Let H
1

and H
2

be infinite-dimensional Hilbert spaces
and let X be a Banach space. If the family

U = {eU : U 2 L (H
1

, H
2

), kUk 6 1}

is �-bounded in L (�(H⇤
1

, X), �(H⇤
2

, X)), then X has Pisier’s contraction
property and ↵�X 6 �(U ).

Proof. Fix a sequence (xmn)
M,N
m,n=1

in X and let (amn)
M,N
m,n=1

be a scalar se-
quence with |amn| 6 1 for all m,n. Let (hm)Mm=1

be an orthonormal system in
H

1

and let (gn)Nn=1

be an orthonormal system in H
2

. For m = 1, . . . ,M and
n = 1, . . . , N let Sn : H

1

! H
2

and Tn : H
1

! X be defined by

Snhm := amngm and Tnhm := xmn.

We extend these definitions by setting Sn ⌘ 0 and Tn ⌘ 0 on the orthogonal
complement of the linear span of {h

1

, . . . , hN}. Then kSnk 6 1, S⇤
ngm =

amnhm and by Proposition 9.1.3 we have
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⇤

Inspecting the proof of Theorem 9.6.10 we see that the estimate for the �-
bound simplifies when one of the Hilbert spaces is the scalar field:

• If H
1

= K, then �( fS ) 6 ↵��(X);
• If H

2

= K, then �( fS ) 6 ↵�
+

(X).

Combining Examples 9.6.7 and 9.6.8 with the above, we obtain the following
corollary.

Corollary 9.6.12. Let X be a Banach space with Pisier’s contraction prop-
erty and let H be a Hilbert space.

(1) For each h 2 H define the operator Th : X ! �(H⇤, X) by

Thx := h⌦ x.

Then the family T = {Th : khk 6 1} is �-bounded and �(T ) 6 ↵��(X).
(2) For each h 2 H define the operator Eh : �(H,X) ! X by

EhT := Th.

Then the family E = {Eh : khk 6 1} is �-bounded and �(E ) 6 ↵�
+

(X).

Since every Banach space with Pisier’s contraction property has finite cotype
(Corollary 7.5.13), one can replace �-boundedness by R-boundedness at the
expense of an additional multiplicative constant.

9.6.c R-bounded extensions via type and cotype

In this section we will study the estimates of Corollary 9.6.12 using type and
cotype of X instead of Pisier’s contraction property.
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Theorem 9.6.13. Let X be a Banach space and let H be an infinite dimen-
sional Hilbert space. For each h 2 H define the operator Th : X ! �(H⇤, X)
by

Thx := h⌦ x.

The following are equivalent:

(1) the family T = {Th : khk 6 1} is R-bounded;
(2) the family T = {Th : khk 6 1} is �-bounded;
(3) the space X has finite cotype.

Furthermore in this case

R(T ) 6 3k�k
2qq,2cq,X ,

whenever X has cotype q.

Since Pisier’s contraction property implies finite cotype, this result is an im-
provement of Corollary 9.6.12(1). In the quantitative bound above, q,2 is the
constant from the Kahane–Khintchine inequality.

Proof. (3))(1): Fix f
1

, . . . , fN in the unit ball of H and x
1

, . . . , xN in X.
Let (hk)

K
k=1

be an orthonormal basis for the span of {f
1

, . . . , fN} and let
h⇤
k :=  h

k

as in (9.5). Let X have cotype q 2 [2,1) and fix r 2 (q,1). For
⇠n =

PK
k=1

�0khfn, h⇤
ki, from (9.13) we see that ⇠n 2 Lr(⌦0) and

k⇠nkr = k�kr
⇣

K
X

k=1

|hfn, h⇤
ki|2

⌘

1/2
= k�krkfnkH 6 k�kr.

Therefore, by Proposition 9.1.3 and Theorem 7.2.6, we obtain
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The claimed estimate follows with r = 2q and 2q1/q 6 2e1/e < 3.
(1))(2): This follows from Theorem 8.1.3.
(2))(3): Let (xn)

N
n=1

in X be arbitrary. Using the notation introduced in
the proof of (3))(1), it follows from Proposition 9.1.3 that

EE0
�

�

�

N
X

n=1

�0n�nxn

�

�

�

2

= EE0
�

�

�

N
X

k=1

�0k

N
X

n=1

�nhhn, h
⇤
kixn

�

�

�

2

= E
�

�

�

N
X

n=1

�nTh
n

xn

�

�

�

2

�(H⇤,X)

6 �(T )E
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�nxn
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�

2

.

The result follows from this through an application of Proposition 7.5.18. ⇤

The next result is an analogue of the R-boundedness result of Corollary
9.6.12(2) under the assumption that X has non-trivial type, or equivalently,
that X is K-convex (see Theorem 7.4.23).

Theorem 9.6.14. Let X be a Banach space and H be a Hilbert space. For
each h 2 H define the operator Eh : �(H,X) ! X by

EhT := Th.

If X has non-trivial type p > 1, the family E = {Eh : khk 6 1} is R-bounded
in L (�(H,X), X) and

R(E ) 6 3k�k
2p0p0,2⌧p,XK

2,X ,

where K
2,X is the K-convexity constant of X.

Proof. By Proposition 7.1.13, X⇤ has finite cotype p0 and cp0,X⇤ 6 ⌧p,X .
Therefore, by Theorem 9.6.13 the set

T := {Th : x⇤ 7! h⌦ x⇤; khkH 6 1} ✓ L (X⇤, �(H⇤, X⇤))

is R-bounded, and

R(T ) 6 3k�k
2p0p0,2cp0,X⇤ 6 3k�k

2p0p0,2⌧p,X .

Using trace duality (see Theorem 9.1.24, which can be applied here since non-
trivial type implies K-convexity by Theorem 7.4.23), we see that �(H⇤, X⇤) =
�(H,X)⇤ with equivalent norms. Moreover, from

hEhS, x
⇤i = hSh, x⇤i = hS, h⌦ x⇤i = hS, Thx

⇤i, S 2 �(H,X),

we infer that E⇤
h = Th, and hence T = {E⇤ : E 2 E } = E ⇤ in the notation of

Proposition 8.4.1. From this proposition, we deduce that

R(E ) 6 K
2,XR(E ⇤) = K

2,XR(T ) 6 3k�k
2p0p0,2⌧p,XK

2,X .

⇤
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Remark 9.6.15. The results of Corollary 9.6.12(2) and Theorem 9.6.14 are
incomparable. Indeed, `1 satisfies Pisier’s contraction property but does not
have non-trivial type (see Corollary 7.1.10 and Proposition 7.5.3), whereas the
Schatten classes C p have non-trivial type for all p 2 (1,1) (see Proposition
7.1.11 but Pisier’s contraction property only for p = 2 (see Example 7.6.18).

It would be interesting to have a necessary and sufficient condition on
the Banach space X in order that the family E = {Eh : khk 6 1} is R-
bounded or �-bounded. By considering finite rank operators one sees that the
�-boundedness of E is equivalent to the assertion that for all (amn)

M,N
m,n=1

with
PM

m=1

|amn|2 6 1 for all 1 6 n 6 N and all (xmn)
M,N
m,n=1

in X we have

E
�

�

�

N
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�n

M
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amnxmn

�
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�

2

6 C2E
�

�

�

M
X

m=1

�0m

N
X

n=1

�nxmn

�

�

�

2

.

Application to integral operators

As an application of the preceding results, we study the R-boundedness of
families of integral operators associated with certain operator-valued functions
� : S ! L (X,Y ).

To be more precise, suppose that � : S ! L (X,Y ) has the property that
�x : S ! Y is weakly in L2(S) for all x 2 X. Then the Pettis integral operator
I�x : L2(S) ! Y is well defined for every x 2 X (see Section 9.2). Under the
stronger assumption that �x belongs to �(S;Y ) for all x 2 X we have the
following result.

Corollary 9.6.16. Let (S,A , µ) be a measure space and let X and Y be Ba-
nach spaces, Y having Pisier’s contraction property or non-trivial type. Let
� : S ! L (X,Y ) be a function with the property that �x 2 �(S;Y ) for all
x 2 X. Then for all h 2 L2(S) the operator V�,h : X ! Y defined by

V�,hx := I�xh =

ˆ
S
h(s)�(s)x dµ(s)

is bounded. Moreover, the family V� = {V�,h : khk
2

6 1} is R-bounded, and

R(V�) 6 R(E )kx 7! I�xkL (X,�(S;Y ))

< 1,

where E is as in Theorem 9.6.14.

Proof. By Corollary 9.6.12(2) (if X has Pisier’s contraction property) or The-
orem 9.6.14 (if X has non-trivial type), the family E = {Eh : khk

2

6 1} is
R-bounded in L (�(S;Y ), Y ).

By assumption each operator I�x, as a bounded operator from L2(S) to
X, belongs to �(S;Y ). By the closed graph theorem, the mapping I� : X !
�(S;Y ) given by I�x := I�x is bounded. Since V�,h = Eh � I�, each operator
V�,h is bounded and the R-boundedness of V� follows from the R-boundedness
of E in L (�(S;Y ), Y ). ⇤
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As an application of this corollary we prove an R-boundedness result for
Laplace transforms.

Example 9.6.17 (R-boundedness of Laplace transforms). Suppose that � :
R

+

! L (X,Y ) is strongly measurable and has the property that �x 2
�(R

+

;Y ) for all x 2 X. Define, for � 2 C
+

= {� 2 C : <� > 0}, the
operators b�(�) : X ! Y by

b�(�)x := I�x(e��·) =
ˆ 1

0

e��t�(t)x dt.

Then the family

{
p

<(�)b�(�) : � 2 C
+

} ✓ L (X,Y )

is R-bounded if Y has Pisier’s contraction property or non-trivial type.
This follows from Corollary 9.6.16 by observing that the functions t 7!
p

<(�) exp(��t) have L2(R
+

)-norm one.

Proposition 9.7.21 will give a weaker form of the above result which holds for
arbitrary Banach spaces Y .

Translation operators

Let (S(t))t2R denote the left-translation group on Lp(R),

S(t)f(s) := f(s+ t), s, t 2 R.

In Proposition 8.1.16 it has been shown that {S(t) : t 2 R} is R-bounded (or
�-bounded) on Lp(R;X) if and only if p = 2 and X is isomorphic to a Hilbert
space. We we will show now, on the space �(R;X) both R-boundedness and
�-boundedness of the translation group are characterised in terms of Pisier’s
contraction property:

Proposition 9.6.18. Let X be a non-zero Banach space and let (S(t))t2R de-
note the left-translation group on L2(R). The following assertions are equiva-
lent:

(1) the family of extensions (S(t)⌦ IX)t2R is R-bounded on �(R;X);
(2) the family of extensions (S(t)⌦ IX)t2R is �-bounded on �(R;X);
(3) X has Pisier’s contraction property.

Proof. Let us write eS(t) = S(t)⌦ IX for brevity.
(1))(2): This follows from Theorem 8.1.3.
(2))(3): Suppose that SX := (eS(t))t2R is �-bounded with constant C.

Let (�0n)n>1

and (�00n)n>1

be Gaussian sequences on probability spaces (⌦0,P0)
and (⌦00,P00) respectively, and let (�mn)m,n>1

be a doubly indexed Gaussian



9.6 Extension theorems 319

sequence on a probability space (⌦,P). Let (xmn)
M,N
m,n=1

a doubly indexed
sequence in X. According to Corollary 7.5.19 it suffices to show that
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. (9.37)

Choose an orthonormal basis (hn)n>1

for L2(0, 1) and extend each hn by
zero outside the interval (0, 1). For each m 2 Z and n > 1 let hm

n 2 L2(R)
be defined by hm

n (t) = hn(t + m) = S(m)hn(t). Then (hm
n )m2Z,n>1

is an
orthonormal basis for L2(R).

Step 1 – In this step we prove the inequality “ .X ” in (9.37).
Put fm :=

PN
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hn ⌦ xmn. Since eS(m)fm =
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n=1

S(m)hn ⌦ xmn =
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By the same argument,
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Therefore, by the �-boundedness of SX ,
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. (9.38)

By Corollary 6.1.17 and symmetry, the left hand side satisfies
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Substituting into (9.38), we have proved that

↵�,+
2,X 6 k�k�1

1

R(SX).

Step 2 – Next we prove the inequality “ &X ” in (9.37). Put fm :=
PN

n=1

hm
n ⌦ xmn. Then
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On the other hand,
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Therefore, by the �-boundedness of SX ,
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Applying (9.38) with N = 1, we have

E0E
�

�

�

M
X

m=1

�0m�m1

xm1

�

�

�

2

6 R(SX)2E0
�

�

�

M
X

m=1

�0mxm1

�

�

�

2

.

By Proposition 7.5.18 this implies that X has finite cotype. Therefore, by
Corollary 7.2.10 we see that (�0m)m>1

can be replaced by a Rademacher se-
quence ("0m)m>1

, and then we can use symmetry as in Step 1:
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(9.40)

Now the assertion of Step 2 follows from (9.39) and (9.40). (Note that, in
contrast to Step 1, the dependence of the constant ↵�,�

2,X on R(S ) given by
this argument is rather implicit, due to the application of Proposition 7.5.18
and Corollary 7.2.10.)

(3))(1): This is a consequence of Theorem 9.6.10. ⇤

9.7 Function space embeddings

Even if L2(0, 1;X) may fail to embed into �(0, 1;X) in general, sufficiently
smooth functions do belong to �(0, 1;X). A similar phenomenon occurs in
Proposition 8.5.7, where we derived a sufficient condition for R-boundedness
using smoothness conditions. In this section we study the embedding of various
classical function spaces into �(S;X).



9.7 Function space embeddings 321

9.7.a Embedding Sobolev spaces

We begin with some simple embedding results valid for arbitrary Banach
spaces X.

Proposition 9.7.1. Let �1 < a < b < 1. If � 2 W 1,1(a0, b;X) for all
a < a0 < b and satisfies

ˆ b

a
(s� a)1/2k�0(s)k ds < 1,

then � 2 �(a, b;X) and

k�k�(a,b;X)

6 (b� a)1/2k�(b)k+
ˆ b

a
(s� a)1/2k�0(s)k ds.

Proof. The condition on �0 implies that it is integrable on every interval (a0, b)
with a < a0 < b. Put  (s, t) := 1

(t,b)(s)�
0(s) for s, t 2 (a, b). Then

�(t) = �(b)�
ˆ b

a
 (s, t) ds

for all t 2 (a, b). For all s 2 (a, b) the function t 7!  (s, t) = 1

(t,b)(s)�
0(s) =

1

(a,s)(t)�
0(s) is in �(a, b;X) and

k1
(a,s)(·)�0(s)k�(a,b;X)

= k1
(a,s)k2k�0(s)k = (s� a)1/2k�0(s)k.

It follows that the �(a, b;X)-valued function s 7!  (s, ·) is Bochner integrable.
We find that � 2 �(a, b;X) and

k�k�(a,b;X)

6 (b� a)1/2k�(b)k+
ˆ b

a
k (s, ·)k�(a,b;X)

ds

= (b� a)1/2k�(b)k+
ˆ b

a
(s� a)1/2k�0(s)k ds.

⇤

The proposition implies that every f 2 W 1,1(a, b;X) defines an element of
�(a, b;X), i.e., we have a natural inclusion W 1,1(a, b;X) ,! �(a, b;X), and

k�k�(a,b;X)

6 (b� a)1/2k�(b)k+ (b� a)1/2
ˆ b

a
k�0(s)k ds

In the converse direction we have the following result.

Proposition 9.7.2. Let �1 < a < b < 1. If f is absolutely continuous,
f 2 �(a, b;X) and f 0 2 �(a, b;X), then f 2 C

1
2 ([a, b];X) and

kfkC([a,b];X)

6 (b� a)�1/2kfk�(a,b;X)

+ (b� a)1/2kf 0k�(a,b;X)

,

[f ]
C

1
2
([a,b];X)

6 kf 0k�(a,b;X)

.
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Proof. For a 6 s < t 6 b, f(t) = f(s) +
´ t
s f 0(r) dr = f(s) + If 0

1

[s,t]. Multi-
plying by 1

(a,b)(s) and integrating over s we find that

f(t)(b� a) = If (1
[a,b]) +

ˆ b

a
If 0

1

[s,t] ds.

Therefore,

kf(t)k 6 (b� a)�1/2kIfkL (L2
(a,b),X)

+ (b� a)1/2kIf 0kL (L2
(a,b),X)

.

Similarly,

kf(t)� f(s)k = kIf 0
1

[s,t]k 6 (t� s)1/2kIf 0kL (L2
(a,b),X)

.

⇤

The effect of type

The next result presents a refinement of the proposition in the presence of type
p 2 [1, 2). The case p = 2 has already been considered in Theorem 9.2.10.

Recall that for s 2 (0, 1) and p 2 [1,1) the Sobolev norm k · kW s,p

(a,b;X)

is given by
kfkW s,p

(a,b;X)

= kfkLp

(a,b;X)

+ [f ]W s,p

(a,b;X)

,

where

[f ]W s,p

(a,b;X)

=
⇣

ˆ b

a

ˆ b

a

kf(x)� f(y)kp

|x� y|sp+1

dx dy
⌘

1/p
.

Theorem 9.7.3. Let X be a Banach space, let p 2 [1, 2) and s := 1

p � 1

2

. Let
I ✓ R be a non-empty open interval. Then

W s,p(I;X) ,! �(I;X)

if and only if X has type p. In this situation we have

kfk�(I;X)

6 5⌧�p,X
�

|I|�skfkLp

(a,b;X)

+ [f ]W s,p

(a,b;X)

�

.

In case |I| = 1 we use the convention |I|�s = 0.

Proof. Let us first assume that X has type p.
Step 1: In this step we consider the unit interval I = (0, 1). Let If :

L1(0, 1) ! X be given by

If� =

ˆ
1

0

�(t)f(t) dt.

We will show that If 2 �(0, 1;X). To this end we estimate the radonifying
norm in terms of the Haar basis (hn)n>1

= (1
(0,1),�jk)

06j<1,16k62

j of (0, 1)
(see Section 9.1.h). For 1 6 n

1

6 n
2

< 1 we have
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�

�

�

n2
X

n=n1

�nIfhn

�

�

�

Lp

(⌦;X)

6 ⌧p,X
⇣

n2
X

n=n1

kIfhnkp
⌘

1/p
.

Moreover, if 2N1 < n
1

6 n
2

6 2 · 2N2 , then

n2
X

n=n1

kIfhnkp 6
N2
X

j=N1

2

j

X

k=1

kIf�jkkp

=

N2
X

j=N1

2jp/2
2

j

X

k=1

�

�

�

ˆ
(k� 1

2 )2
�j

(k�1)2

�j

f(t+ 2�j�1)� f(t) dt
�

�

�

p

6
N2
X

j=N1

2
1
2 jp+(j+1)(1�p)

2

j

X

k=1

ˆ
(k� 1

2 )2
�j

(k�1)2

�j

kf(t+ 2�j�1)� f(t)kp dt

6
N2
X

j=N1

2jsp
ˆ

1�2

�j�1

0

kf(t+ 2�j�1)� f(t)kp dt,

using that s = 1

p � 1

2

and 21�p 6 1 in the last step.
Introducing an extra term and integral we can write

ˆ
1�2

�j�1

0

kf(t+ 2�j�1)� f(t)kp dt

= 2j+3

ˆ
1�2

�j�1

0

ˆ
2

�j�2

2

�j�3

kf(t+ 2�j�1)� f(t+ h) + f(t+ h)� f(t)kp dh dt.

Therefore, by the triangle inequality,

⇣

N2
X

j=N1

2

j

X

k=1

kIf�jkkp
⌘

1/p
6 T

1

+ T
2

,

where T
1

and T
2

are given by

T p
1

= 8

N2
X

j=N1

2j(sp+1)

ˆ
1�2

�j�1

0

ˆ
2

�j�2

2

�j�3

kf(t+ 2�j�1)� f(t+ h)kp dh dt,

T p
2

= 8

N2
X

j=N1

2j(sp+1)

ˆ
1�2

�j�1

0

ˆ
2

�j�2

2

�j�3

kf(t+ h)� f(t)kp dh dt.

To estimate T
1

we make a substitution in t and then one in h,

T p
1

= 8

N2
X

j=N1

ˆ
1

2

�j�1

ˆ �2

�j�2

�3·2�j�3

2j(sp+1)kf(t)� f(t+ h)kp dh dt



324 9 Square functions and radonifying operators

6 3

N2
X

j=N1

ˆ
1

2

�j�1

ˆ �2

�j�2

�2

�j�1

kf(t)� f(t+ h)kp

|h|sp+1

dh dt
⇣

2j 6 3

8
|h|�1

⌘

6 3

ˆˆ
�

2�N1�1

kf(t)� f(u)kp

|t� u|sp+1

dt du, �� := {(t, u) 2 [0, 1]2 : |t� u| 6 �}.

The term T
2

can be estimated as

T p
2

= 8

N2
X

j=N1

ˆ
1�2

�j�1

0

ˆ
2

�j�2

2

�j�3

2j(sp+1)kf(t+ h)� f(t)kp dh dt

6 2

N2
X

j=N1

ˆ
1�2

�j�1

0

ˆ
2

�j�2

2

�j�3

kf(t+ h)� f(t)kp

|h|sp+1

dh dt
⇣

2j 6 1

4
|h|�1

⌘

6 2

ˆˆ
�

2�N1�2

kf(t)� f(u)kp

|t� u|sp+1

dt du.

Since f 2 W s,p(0, 1;X), both terms converge to zero as N
1

! 1. Therefore,
by Theorem 9.1.17 we find f 2 �(0, 1;X). Moreover, taking N

1

= 0 and letting
N

2

! 1, and taking into account the term

kIf1
(0,1)k 6 kfkL1

(0,1;X)

6 kfkLp

(0,1;X)

corresponding to h
1

= 1

(0,1), it follows that

kfk�p

(0,1;X)

6 ⌧�p,X
�

kIf1
(0,1)k + T

1

+ T
2

�

6 ⌧�p,X
�

kfkLp

(0,1;X)

+ (3 + 2)[f ]W s,p

(0,1;X)

�

6 5⌧�p,XkfkW s,p

(0,1;X)

.

Step 2: Assume next that I = (a, b) is a bounded interval. Let f 2
W s,p(I;X) be arbitrary. Let g : (0, 1) ! X be given by g(t) = f(a+ t(b�a)).
Then g 2 W s,p(0, 1;X) and

[g]W s,p

(0,1;X)

= |I|�1/2[f ]W s,p

(I;X)

, kgkLp

(0,1;X)

= |I|�1/pkfkLp

(I;X)

,

and
kgk�(0,1;X)

= |I|�1/2kfk�(I;X)

.

Therefore, by the previous step we find

kfk�(I;X)

= |I|1/2kgk�(0,1;X)

6 5⌧�p,X |I|1/2
�

kgkLp

(0,1;X)

+ [g]W s,p

(0,1;X)

�

= 5⌧�p,X
�

|I|
1
2�

1
p kfkLp

(I;X)

+ [f ]W s,p

(I;X)

�

.

Step 3: If I is an infinite intervals, let fn := f |I\(�n,n) and f±
m,n :=

f |I\±(m,n) for 0 6 m < n < 1. Then by what has already been proved and
(9.19) we obtain
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k1
(�n,n)f � 1

(�m,m)

fk�(R+;X)

6
X

�=±
kf�m,nk�(�(m,n);X)

6 5⌧�p,X
X

�=±

�

(n�m)
1
2�

1
p kf�n,mkLp

(�(m,n);X)

+ [f�m,n]W↵,p

(�(m,n);X)

�

.

As m,n ! 1, the latter tends to zero by the dominated convergence the-
orem. This proves that (1I\(�n,n)f)n>1

is a Cauchy sequence in �(I;X).
Since 1I\(�n,n)hf, x⇤i ! hf, x⇤i pointwise it follows from Lemma 9.2.7 that
f 2 �(I;X) and 1I\(�n,n)f ! f in �(R

+

;X). Taking m = 0 in the above
norm estimate and letting n ! 1 gives

kfk�(I;X)

6 5⌧�p,X [f ]W s,p

(I;X)

.

The converse result: Assume that we have a continuous embedding
W s,p(I;X) ,! �(I;X). We must show that X has type p. We will only con-
sider the case of a bounded interval I, as the other cases can be done in a
similar way. By using translations and dilations as in Step 2 we may assume
that I = (0, 1).

Let C be the norm of the embedding mapping W s,p(0, 1;X) ,! �(0, 1;X).
Let (xn)

N
n=1

be an arbitrary sequence in X. Let tj = j/(2N) for j = 0, . . . , 2N .
Let f =

PN
n=1

1

(t2n�2,t2n�1]
⌦ xn and extend this function identically zero

outside (0, 1). Clearly,

kfkLp

(I;X)

= (2N)�1/p
⇣

N
X

n=1

kxnkp
⌘

1/p
.

Moreover,

[f ]pW s,p

(0,1;X)

= 2

ˆ
1

0

ˆ
1

y

kf(y)� f(x)kp

|y � x|sp+1

dx dy

= 2

ˆ
1

0

ˆ
1�y

0

kf(y)� f(y + h)kp

hsp+1

dh dy

6 2

ˆ
1

0

ˆ
1

0

kf(y)� f(y + h)kp

hsp+1

dy dh =: 2(T p
1

+ T p
2

).

Here T p
1

and T p
2

are given by the integrals over (0, 1) ⇥ (0, 1/(2N)) and h 2
(0, 1)⇥ (1/(2N), 1) respectively.

By the triangle inequality,

T
2

6
⇣

ˆ
1

1/(2N)

ˆ
1

0

kf(y)kp

hsp+1

dy dh
⌘

1/p
+
⇣

ˆ
1

1/(2N)

ˆ
1

0

kf(y + h)kp

hsp+1

dy dh
⌘

1/p

6 Cp((2N)sp � 1)1/pkfkLp

(I;X)

6 Cp(2N)�1/2
⇣

N
X

n=1

kxnkp
⌘

1/p
.
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Turning to T
1

, for 0 < h 6 1/(2N), we have

f(·+ h)� f(·) =
N
X

n=1

�

1

(t2n�2�h,t2n�2]
� 1

(t2n�1�h,t2n�1]

�

⌦ xn.

Therefore, kf(·+ h)� f(·)kpLp

(0,1;X)

6 2h
PN

n=1

kxnkp and it follows that

T p
1

=

ˆ
(2N)

�1

0

kf(·)� f(·+ h)kpLp

(0,1;X)

hsp+1

dh

6
⇣

ˆ
(2N)

�1

0

2h�sp dh
⌘

N
X

n=1

kxnkp = Cp(2N)�p/2
N
X

n=1

kxnkp.

We conclude that

[f ]W s,p

(0,1;X)

6 CpN
�1/2

⇣

N
X

n=1

kxnkp
⌘

1/p
.

(The numerical value of Cp may be different from line to line). Using Example
9.2.4 it follows that

�

�

�

N
X

n=1

�nxn

�

�

�

Lp

(⌦;X)

= (2N)1/2kfk�p

(I;X)

6 C(2N)1/2kfkW s,p

(0,1;X)

6 C
�

(2N)�s + Cp

�

⇣

N
X

n=1

kxnkp
⌘

1/p
.

Since (2N)�s 6 1 this shows that X has type p with ⌧�p,X 6 C(1 + Cp). ⇤

9.7.b Embedding Hölder spaces

As an immediate consequence of Theorem 9.7.3 we obtain the following result
for Hölder continuous functions.

Corollary 9.7.4. Let X be a Banach space with type 1 6 p < 2. If I is an
interval of finite length, then for all ↵ > 1

p �
1

2

we have a continuous inclusion

C↵(I;X) ,! �(I;X).

The following example shows that for X = `p with 1 6 p < 2 the above result
fails at the critical exponent ↵ = 1

p � 1

2

.

Example 9.7.5. Let 1 6 p < 2 and 0 < ↵ 6 1

2

satisfy ↵ = 1

p � 1

2

. There
exists a function f 2 C↵([0, 1]; `p) for which the associated integral operator
If : L2(0, 1) ! `p does not belong to �(0, 1; `p).
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Proof. For j > 0 and k = 1, . . . , 2j let 'jk be the Schauder functions on [0, 1],
i.e.,

'jk(t) =

ˆ t

0

�jk(s) ds,

where �jk are the Haar functions on (0, 1) as defined before the proof of
Corollary 9.1.27. Let (en)n>1

denote the standard basis in `p. For n = 1, 2, . . .
let fn : [0, 1] ! `p be defined as

fn(t) =
n
X

j=0

2

j

X

k=1

2(1�1/p)j'jk(t)e
2

j

+k.

The function fn 2 L2(0, 1) ⌦ `p belongs to �(0, 1; `p), and by the square
function estimate of Proposition 9.3.2 we have

kIf
n

kp�p

(L2
(0,1),`p) = k�kpp

n
X

j=0

2

j

X

k=1

2(p�1)j
⇣

ˆ
1

0

'2

nk(t) dt
⌘p/2

= k�kpp
n
X

j=0

2

j

X

k=1

2(p�1)j
⇣2�2j�2

3

⌘p/2
= k�kpp

n

12p/2
.

Therefore
kIf

n

k�p

(L2
(0,1),`p) = Kpn

1/p (9.41)

with Kp = k�kp/
p
12.

We claim that fn is ↵-Hölder continuous and

kfnkC↵

([0,1];`p) = sup
t2[0,1]

kfn(t)k`p + sup
06s<t61

kfn(t)� fn(s)k`p
(t� s)↵

6 Cp, (9.42)

where Cp is a constant independent of n. Indeed, for each t 2 [0, 1], we have

kfn(t)k`p =
⇣

n
X

j=0

2

j

X

k=1

2(p�1)j |'jk(t)|p
⌘

1/p
6
⇣

n
X

j=0

2(p�1)j2�(j+2)p/2
⌘

1/p

=
1

2

⇣

n
X

j=0

2�(1�p/2)j
⌘

1/p
6 1

2

⇣ 21�p/2

21�p/2 � 1

⌘

1/p
.

Now let 0 6 s < t 6 1. Let j
0

> 1 be the largest integer for which there
exists an integer 1 6 k 6 2j0 such that s, t 2 [(k � 1)2�j0 , (k + 1)2�j0 ]. Then

(k � 1)2�j0 6 s 6 k2�j0 6 t 6 (k + 1)2�j0 . (9.43)

Indeed, otherwise both s and t are contained in either the left or the right half
of the interval [(k� 1)2�j0 , (k+ 1)2�j0 ] and one could replace j

0

with j
0

+ 1.
Also,
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2�j0�1 6 t� s 6 2�j0+1.

The upper estimate is clear. For the lower estimate assume that t�s < 2�j0�1.
Then t � k2�j0 < 2�j0�1 and k2�j0 � s < 2�j0�1. Therefore, t, s 2 [(k �
1

2

)2�j0 , (k + 1

2

)2�j0 ] = [(2k � 1)2�j0�1, (2k + 1)2�j0�1]. This contradicts the
choice of j

0

.
Now for each 0 6 j 6 j

0

let kj be the unique integer such that s 2
[(kj � 1)2�j , kj2�j). Two cases can occur: (i) t 2 [(kj � 1)2�j , kj2�j ] or (ii)
t 2 [kj2�j , (kj + 1)2�j ].

Since 'jk
j

is supported on the interval [kj

�1

2

j

, k
j

2

j

] and satisfies |'0| = 2j/2

in its interior, in case (i) it follows that

|'jk
j

(t)� 'jk
j

(s)| 6 2j/2(t� s) 6 2j/22(�j0+1)(1�↵)(t� s)↵.

In case (ii) it follows that 'jk
j

(kj2�j) = 0 = 'jk
j

(t) and

|'jk
j

(t)� 'jk
j

(s)| = |'jk
j

(kj2
�j)� 'jk

j

(s)| 6 2j/2(kj2
�j � s)

6 2j/2(t� s) 6 2j/22(�j0+1)(1�↵)(t� s)↵,

and in the same way

|'jk
j

+1

(t)� 'jk
j

+1

(s)| = |'jk
j

+1

(t)� 'jk
j

+1

(kj2
�j)|

6 2j/22(�j0+1)(1�↵)(t� s)↵.

For k 62 {kj , kj + 1} the support of 'jk is disjoint from (
k
j

�1

2

j

, k
j

+1

2

j

) and we
infer from (9.43) that 'jk(s) = 'jk(t) = 0.

For j
0

< j 6 n let `j < mj be the unique integers such that s 2 [(`j �
1)2�j , `j2�j ] and t 2 [(mj � 1)2�j ,mj2

�j ]. Then

|'j`
j

(t)� 'j`
j

(s)| = |'j`
j

(s)| 6 2�
1
2 j�1,

|'jm
j

(t)� 'jm
j

(s)| = |'jm
j

(t)| 6 2�
1
2 j�1.

As in case (i) for the remaining k 62 {`j ,mj} we have 'jk(s) = 'jk(t) = 0.
We conclude that

kfn(t)� fn(s)kp

6
j0
X

j=0

2

j

X

k=1

2(p�1)j |'jk(t)� 'jk(s)|p +
n
X

j=j0+1

2

j

X

k=1

2(p�1)j |'jk(t)� 'jk(s)|p

=

j0
X

j=0

X

k2{k
j

,k
j

+1}

2(p�1)j |'jk(t)� 'jk(s)|p

+

n
X

j=j0+1

X

k2{`
j

,m
j

}

2(p�1)j |'jk(t)� 'jk(s)|p
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6 2

j0
X

j=0

2(p�1)j2
1
2 jp2(�j0+1)(1�↵)p(t� s)↵p + 2

n
X

j=j0+1

2(p�1)j2�
1
2 jp�p

6 21+(�j0+1)(1�↵)p 2
(

3
2p�1)(j0+1)

2
3
2p�1 � 1

(t� s)↵p + 21�p 2
�(j0+1)(1� p

2 )

1� 2�(1� p

2 )

(⇤)
6 Cp(t� s)↵p.

In (⇤) we used the assumption that ↵ = 1

p � 1

2

to evaluate the left expression
and 2�(j0+1) 6 (t� s) and (1� p

2

) = ↵p to estimate the right expression. This
concludes the proof of (9.42).

Now suppose, for a contradiction, that every function f 2 C↵([0, 1]; `p)
belongs to �(0, 1; `p). Then the closed graph theorem produces a constant
C > 0 such that

kIfk�(0,1;`p) 6 CkfkC↵

([0,1];X)

.

Now (9.41) and (9.42) would imply that Kpn1/p 6 CCp for all n > 1, which
is absurd. ⇤

Close inspection of the proof reveals that the argument actually shows that
if X is a Banach space such that C↵([0, 1];X) embeds into �(0, 1;X) for
↵ = 1

p � 1

2

, then X cannot contain the spaces `pN uniformly. Therefore, by
the Maurey-Pisier theorem X has type p + " for some " > 0 (see the Notes
of Chapter 7; the case p = 1 corresponds to Theorem 7.3.8). For p = 1, this
observation combines with Theorem 9.7.3 to the following result:

Corollary 9.7.6. For a Banach space X the following assertions are equiva-
lent:

(1) C1/2([0, 1];X) ,! �(0, 1;X) continuously;
(2) X has non-trivial type.

9.7.c Embeddings involving holomorphic functions

In this subsection we work over the complex scalars. We are concerned with
the relation between the radonifying norm and Bochner norms in spaces of
holomorphic X-valued functions defined on suitable domains in the complex
plane. Two domains are of principal interest: the horizontal strip of height
↵ > 0,

S↵ := {z 2 C : |Im(z)| < ↵}
and the sector of angle 0 < ! < ⇡,

⌃! := {z 2 C \ {0} : |arg(z)| < !}.

The following convention will be in force: If X
1

and X
2

are normed spaces,
continuously embedded in a Hausdorff topological vector space X , the nota-
tion kxkX1 . kxkX2 will express that x 2 X

2

implies x 2 X
1

and the stated
estimate holds with a constant independent of x and the spaces X

1

and X
2

.
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The main result of this section is the following embedding result for holo-
morphic functions with values in a Banach space X with type p and cotype
q. We recall the notation ⌧�q,X and c�q,X for the Gaussian type p and Gaussian
cotype q constants of X.

Theorem 9.7.7. Let X be a Banach space with type p 2 [1, 2] and cotype
q 2 [2,1]. Let 0 6 a < b < c↵. Then we have the following estimates:

(1) For all holomorphic functions f : S↵ ! X,

(c�q,X)�1

X

j2{�1,1}

kf(t+ ija)kLq

(R,dt;X)

.
X

j2{�1,1}

kf(t+ ijb)k�(R,dt;X)

.⌧�p,X
X

j2{�1,1}

kf(t+ ijc)kLp

(R,dt;X)

.

(2) For all holomorphic functions f : ⌃↵ ! X with ↵ < ⇡,

(c�q,X)�1

X

j2{�1,1}

kf(eijat)kLq

(R+, dt

t

;X)

.
X

j2{�1,1}

kf(eijbt)k�(R+, dt

t

;X)

.⌧�p,X
X

j2{�1,1}

kf(eijct)kLp

(R+, dt

t

;X)

.

The implied constants are independent of f and X.

The type p and cotype q assumptions are also necessary for the respective
embedding to hold true; this is discussed in the Notes. After having developed
some tools to handle radonifying norms of holomorphic functions, the proof
Theorem 9.7.7 is given at the end of this subsection.

The spaces �k(D;X)

Let D ✓ Rd be an open set and let k 2 N. For functions f 2 Ck(D;X) whose
mixed partial derivatives up to order k belong to �(D;X) we define the norm

kfk�k

(D;X)

:=
X

|↵|6k

kf (↵)k�(D;X)

,

and define the Banach space �k(D;X) as the completion with respect to this
norm of the space of functions used in its definition.

Identifying an open subset of C with a subset of R2, as a consequence
of the Cauchy–Riemann equations we have the following simple result for
holomorphic functions:
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Proposition 9.7.8. Let D ✓ C be open and let k 2 N . A holomorphic func-
tion f : D ! X belongs to �k(D;X) if and only if its complex derivatives
f (j), j = 0, . . . , k, belong to �(D;X).

It is possible to relate the norm of a holomorphic function f 2 �k(D;X) to
its classical Sobolev norm:

Proposition 9.7.9. Let D ✓ C be open and let f : D ! X be a holomorphic
function. Let D

1

, D
2

, D
3

be bounded open subsets of D such that D
1

✓ D
2

and
D

2

✓ D
3

. Then f 2 �(D
2

;X), and for all p 2 [1,1] and all integers k, ` > 0
the following estimates hold:

C�1

1

kfkW `,p

(D1;X)

6 kfk�k

(D2;X)

6 C
2

kfkW `,p

(D3;X)

,

with constants C
1

and C
2

depending on k, `, p, and the domains, but inde-
pendent of f and X.

Proof. We begin with the proof of the right-hand estimate, for which it suffices
to take ` = 0 and p = 1. We can cover D

2

by finitely many balls contained in
D

3

. By an argument involving a partition of unity, dilations, and translations,
we may assume that D

2

= {z 2 C : |z| < 1} and D
3

= {z 2 C : |z| < 1 + 2"}
for some " > 0.

By Cauchy’s formula, for all t 2 [1 + ", 1 + 2"] we have

1

n!
kf (n)(0)k =

1

2⇡

�

�

�

˛
{|z|=t}

f(z)

zn+1

dz
�

�

�

6 1

2⇡

1

(1 + ")n+1

˛
{|z|=t}

kf(z)k |dz|.

Integrating over t 2 [1 + ", 1 + 2"], we find

1

n!
kf (n)(0)k ."

1

(1 + ")n+1

kfkL1
(D3;X)

. (9.44)

Writing f(z) =
P1

n=0

1

n!f
(n)(0)zn, by the triangle inequality and (9.44) we

find

kf (k)k�(D2;X)

6
1
X

n=k

1

(n� k)!
kf (n)(0)kkzn�kkL2

(D2)

." kfkL1
(D3;X)

1
X

n=k

n!

(n� k)!

⇡1/2

(1 + ")n+1

=: C",kkfkL1
(D3;X)

.

Turning to the left-hand side estimate, again it suffices to consider D
1

=
{z 2 C : |z| < 1} and D

2

= {z 2 C : |z| < 1 + 2"} for some " > 0. Using
Cauchy’s formula again, the Cauchy–Schwarz inequality, and the inequality
khf, x⇤ikL2

(D2)
6 kfk�(D2;X)

kx⇤k (see (9.7)), for all x⇤ 2 X⇤ we find
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"|hf (k)(0), x⇤i| 6 k!

2⇡

ˆ
1+2"

1+"

˛
{|z|=t}

|hf(z), x⇤i|
|z|k+1

|dz| dt

."
k!

"k
khf, x⇤ikL2

(D2)
6 Ck,"kfk�(D2;X)

kx⇤k.

The result now follows by taking the supremum over all kx⇤k 6 1. ⇤

Holomorphic functions on a strip

Consider the strip S↵ = {z 2 C : |Im(z)| < ↵}.

Proposition 9.7.10. Fix a real number ↵ > 0 and let f : S↵ ! X be a
holomorphic function. Then, for all 0 6 a < b < ↵:

(1)
X

✏2{�1,1}

sup
s2[0,1]

⇣

kf(·+s+i✏a)k�(Z;X)

+kf 0(·+s+i✏a)k�(Z;X)

⌘

. kfk�(S
b

;X)

;

(2) if f is bounded, then kfk�(S
b

;X)

.
X

✏2{�1,1}

kf(·+ i✏b)k�(R;X)

;

(3)
X

✏2{�1,1}

kf(·+ i✏b)k�(R;X)

6
X

✏2{�1,1}

⇣

kf(·+ i✏b)k�(Z;X)

+

ˆ
1

0

kf 0(·+ s+ i✏b)k�(Z;X)

ds
⌘

,

where the finiteness of any of the expressions implies the finiteness of the
previous expression in the chain of estimates. In each of the estimates, the
implied constant depends on b� a only.

Proof. (1): Let us first assume that f 2 �(Sb;X). Fix a radius 0 < r <
min{ 1

2

, b � a} and a number s 2 [0, 1], and consider the disjoint balls Bn :=

{z 2 C : |z � n � s � ia| < r}, n 2 Z. The functions �n := |Bn|�1/2
1B

n

,
n 2 Z, for an orthonormal system in L2(Sb). By the mean value property (or
Cauchy’s formula),

f(n+ s+ ia) =
1

|Bn|

ˆ
B

n

f(z) dA(z) =
1

r⇡1/2
If�n,

where A is the area (2-dimensional Lebesgue) measure in the complex plane.
It follows that for every s 2 [0, 1],

r⇡1/2kf(·+ s+ ia)k�(Z;X)

=
�

�

�

X

n2Z
�nIf�n

�

�

�

L2
(⌦;X)

6 kfk�(S
b

;X)

.

The same estimate holds for the �-norm of f(·+ s� ia).
To estimate the �-norm of f 0(· + s + ia) we use a similar argument. Fix

again a radius 0 < r < min{ 1

2

, b�a}. Consider the disjoint annuli An := {z 2
C : 1

2

r < |z � n� s� ia| < r}, n 2 Z. With
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c2 :=
�

�

�

z 7! 1A
n

z � (n+ s+ ia)

�

�

�

2

L2
(S

b

)

=

ˆ
2⇡

0

ˆ r

r/2
|tei✓|�2t dt d✓ = 2⇡ log(2),

the functions z 7!  n(z) := c�1(z � (n + s + ia))�1

1A
n

, n 2 Z, form an
orthonormal system in L2(Sb). Using Cauchy’s formula we find

f 0(n+ s+ ia) =
1

|An|

ˆ
A

n

f(z)

z � (n+ s+ ia)
dA(z) = MIf n,

where M := c
|A

n

| depends only on r. It follows that for every s 2 [0, 1],

1

M
kf 0(·+ s+ ia)k�(Z;X)

=
�

�

�

X

n2Z
�nIf n

�

�

�

L2
(⌦;X)

6 kfk�(S
b

;X)

.

The same estimate holds for the �-norm of f 0(·+ s� ia). This completes the
proof of (1).

(2): Assume now that f is bounded on S↵ and f(· + i✏b) 2 �(R;X) for
✏ 2 {�1, 1}. We will use the Poisson formula for the strip (see Lemma C.2.9,
where it is formulated for the vertical unit strip),

g(x+ iy) = [k0y ⇤ g(·+ ib)](x) + [k1y ⇤ g(·� ib)](x), x 2 R, |y| < ↵, (9.45)

for bounded holomorphic functions g : S↵ ! C which are square-integrable
on {z 2 C : Im(z) = ±b}. The kernels kjy : R ! R are positive and satisfy

kk0ykL1
(R) + kk1ykL1

(R) =
ˆ
R

�

k0y(t) + k1y(t)
�

dt = 1

for �b < y < b. As a consequence,

kg(·+ iy)kL2
(R) 6 kk0ykL1

(R)kg(·+ ib)kL2
(R) + kk1ykL1

(R)kg(·� ib)kL2
(R)

6 max
✏=±1

kg(·+ ✏ib)kL2
(R) 6 kgkL2

(R+i{±b}),

and, integrating over y 2 (�b, b),

kgkL2
(S

b

)

6
p
2bkgkL2

(R+i{±b}).

Thus the linear mapping K : L2(R+ i{±b}) ! L2(Sb) given by

Kg(x+ iy) := k0y ⇤ g(·+ ib)(x) + k1y ⇤ g(·� ib)(x)

is bounded with norm 6
p
2b, and by result of Example 9.6.4 extends to a

bounded operator K : �(L2(R + i{±b});X) ! �(L2(Sb);X) of norm 6
p
2b;

moreover (9.45) holds with g replaced by f . Hence

kfk�(S
b

;X)

6
p
2bkfk�(R+i{±b};X)
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6
p
2b
⇣

kf(·+ ib)k�(R;X)

+ kf(·� ib)k�(R;X)

⌘

,

and the required estimate (2) follows.
(3): We use the simple fact that for all t 2 R we have

f(t± ib) =
X

n2Z
1

[n,n+1)

(·)f(n± ib) +

ˆ
1

0

X

n2Z
1

[n+s,n+1)

(·)f 0(n+ s± ib) ds.

Hence, taking �-norms with respect to t 2 R on both sides,

kf(· ± b)k�(R;X)

6
�

�

�

X

n2Z
1

[n,n+1)

(t)f(n± ib)
�

�

�

�(R, dt;X)

+

ˆ
1

0

�

�

�

X

n2Z
1

[n+s,n+1)

(t)f 0(n+ s± ib)
�

�

�

�(R, dt;X)

ds

= kf(· ± ib)k�(Z;X)

+

ˆ
1

0

(1� s)1/2kf 0(·+ s± ib)k�(Z;X)

ds,

where the last step uses that k1
[n+s,n+1)

kL2
(R) = (1�s)1/2 along with the fact

that if the functions hn, n 2 Z, are orthonormal in L2(R), then k
P

n2Z hn ⌦
xnk�(R;X)

= k(xn)n2Zk�(Z;X)

. This completes the proof. ⇤

Proposition 9.7.11. Let f : S↵ ! X be holomorphic and let 0 6 a < b <
c < d < ↵. Let Z = �(R;X) or Z = Lp(R;X) with p 2 [1,1]. Then for every
integer k > 1 the following chain of inequalities holds:

sup
y2[�a,a]

kf(·+ iy)kZ .
ˆ b

�b
kf(·+ iy)kZ dy (9.46)

.
k
X

j=0

kf (j)(·+ iy)k�((�b,b), dy;Z)

(9.47)

.
k+1

X

j=0

sup
y2[�b,b]

kf (j)(·+ iy)kZ (9.48)

. sup
y2[�c,c]

kf(·+ iy)kZ (9.49)

.
X

✏2{�1,1}

kf(·+ ✏id)kZ , (9.50)

where the finiteness of any of the expressions implies the finiteness of the
previous expression in the chain of estimates. In all estimates the implied
constants depend on a, b, c, and d, and the second and the fourth also on k,
but are independent of f and X.
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As a consequence of this result, all the norms in Proposition 9.7.10 are con-
nected to the above expressions.

Proof. We prove (9.46) by using a Poisson transformation argument. As in
the proof of Proposition 9.7.10 one sees that for all ✓ 2 [b, a) and all (x, y) 2
R⇥ [�a, a] we can write

f(x+ iy) = [k0y ⇤ f(·+ i✓)](x) + [k1y ⇤ f(·� i✓)](x),

and hence
kf(·+ iy)kZ 6 kf(·+ i✓)kZ + kf(·� i✓)kZ .

Now an integration over ✓ 2 [b, a) gives (9.46). The inequality (9.50) can be
proved in the same way, this time taking ✓ = d and s 2 [�c, c].

The inequalities (9.47) and (9.48) are immediate from Propositions 9.7.1
and 9.7.2, respectively.

It remains to prove the inequality (9.49). By assumption,

C := sup
y2[�c,c]

kf(·+ iy)kZ

is finite. Define the function F : Sc ! Z by

F (x+ iy)(t) := f(t+ x+ iy), t 2 R, (x, y) 2 Sc.

(In the case Z = �(R;X), Proposition 9.7.9 guarantees that F indeed takes
its values in Z.) We claim that F is holomorphic. By Proposition B.3.1 it
suffices to show that F is bounded and z 7! hF (z), gi is holomorphic for all
g 2 G, where G is some subspace of Z⇤ separating the points of Z. For each
x+ iy 2 Sc, by translation invariance we have

kF (x+ iy)kZ = kf(·+ x+ iy)kZ = kf(·+ iy)kZ 6 C.

Thus F is bounded. The subspace

G = span{1I ⌦ x⇤ : I ✓ R a bounded interval, x⇤ 2 X⇤}

separates the points of Z, and the functions

x+ iy 7! hF (x+ iy),1I ⌦ x⇤i =
ˆ
I
hf(x+ iy + t), x⇤i dt

are holomorphic. This establishes the claim.
We can now apply Proposition 9.7.9 and conclude that F 2 W k+1,1(Sb;Z)

and kFkWk+1,1
(S

b

;Z)

. kFkL1
(S

c

;Z)

. Consequently, for all y 2 (�b, b),

k+1

X

j=0

kf (j)(·+ iy)kZ =

k+1

X

j=0

kF (j)(iy)kZ 6 kFkWk+1,1
(S

b

;Z)

. kFkL1
(S

c

;Z)

6 C.
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Taking the supremum over y 2 [�b, b] gives

sup
y2[�b,b]

k+1

X

j=0

kf (j)(·+ iy)kZ . sup
y2[�c,c]

kf(·+ iy)kZ .

At the expense of another constant k+1, we may interchange the supremum
and the sum on the left-hand side to obtain the estimate of (9.49). ⇤

We are now ready for the proof of Theorem 9.7.7.

Proof of Theorem 9.7.7. (1): We start with the proof of the first estimate.
Fix t 2 [0, 1] and first assume that q < 1. By Proposition 9.7.10,

X

✏2{�1,1}

⇣

X

n2Z
kf(t+ i✏b)kq

⌘

1/q
6 c�q,X

X

✏2{�1,1}

kf(·+ t+ i✏b)k�(Z;X)

6 c�q,X
X

✏2{�1,1}

kf(·+ ✏ic)k�(R;X)

.

Taking qth powers and integrating over t 2 [0, 1], this gives the result. If
q = 1, the `q-sum on the left-hand side must be replaced by a supremum
over n 2 Z.

Turning to the second estimate in (1), fix an arbitrary c0 2 (b, c). By the
type p assumption,

kn 7! f(n)k�(Z;X)

6 ⌧�p,X

⇣

X

n2Z
kf(n)kp

⌘

1/p
.

Therefore, by Proposition 9.7.10, for every r 2 [0, 1] we have
X

✏2{�1,1}

kf(·+ ✏ib)k�(R;X)

=
X

✏2{�1,1}

kf(·+ r + ✏ib)k�(R;X)

.
X

✏2{�1,1}

kf(·+ r + ✏ib)k�(Z;X)

+

+
X

✏2{�1,1}

ˆ
1

0

kf 0(·+ t+ r + ✏ib)k�(Z;X)

dt

6 ⌧�p,X
X

✏2{�1,1}

⇣

X

n2Z
kf(n+ r + ✏ic0)kp

⌘

1/p
+

+ ⌧�p,X
X

✏2{�1,1}

ˆ
1

0

⇣

X

n2Z
kf 0(n+ t+ r + ✏ic0)kp

⌘

1/p
dt.



9.7 Function space embeddings 337

Taking pth powers and integrating over all r 2 [0, 1] gives
X

✏2{�1,1}

kf(·+ ✏ib)k�(R;X)

. ⌧�p,X
X

✏2{�1,1}

⇣

kf(·+ ✏ic0)kLp

(R;X)

+ kf 0(·+ ✏ic0)kLp

(R;X)

⌘

. ⌧�p,X
X

✏2{�1,1}

kf(·+ ✏ic)kLp

(R;X)

,

where the last estimate follows by application of (the last two estimates) of
Proposition 9.7.11 with Z = Lp(R;X). This completes the proof of the second
estimate in (1).

(2): The corresponding result for the sector follows from the result for
the strip since z 7! ez maps the strip Sb bi-holomorphically onto the sector
⌃b. Note that for the substitution s = et one has dt = ds

s which gives the
additional division by t in (2) in both cases. ⇤

Remark 9.7.12. By Proposition 9.7.10 and its analogue for the Lp-norm, under
the assumptions of Theorem 9.7.7 the following variation of the estimate in
part (1) holds:

ckfkLp

(S
c

;X)

6 kfk�(S
a

;X)

6 CkfkLp

(S
b

;X)

.

Similarly, the estimate in part (2) can be replaced by

ckfkLq

(⌃
c

;X)

6 kfk�(⌃
a

;X)

6 CkfkLp

(⌃
b

;X)

.

9.7.d Hilbert sequences

We have introduced �-radonifying operators in terms of their action on finite
orthonormal systems and obtained characterisations in terms of summability
properties on orthonormal bases. Often one needs to estimate Gaussian sums
P

n>1

�nThn when the system (hn)n>1

is not necessarily orthonormal but
satisfies certain weaker conditions. In this section we develop some techniques
to handle such situations and show their usefulness in two situations: we will
use them to derive an estimate for continuous dual square functions (Proposi-
tion 9.7.19) and an R-boundedness result for Laplace transforms (Proposition
9.7.21) which is a variant of Example 9.6.17 valid without restrictions on the
Banach space.

Definition 9.7.13. Let H be a Hilbert space with a maximal orthonormal
system (hj)j2I . A family f = (fj)j2J in H indexed by a subset J ✓ I is called
a Hilbert system if there exists a constant C > 0 such that for any choice of
finitely many scalars a

1

, . . . , aN and distinct indices j
1

, . . . , jN 2 J ,
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�

�

�

N
X

n=1

anfj
n

�

�

�

H
6 C

⇣

N
X

n=1

|an|2
⌘

1/2
.

The least admissible constant in this inequality be denoted by Cf and will be
called the Hilbert constant of f = (fj)j2J .

The reason for assuming that J is a subset of I is to avoid the possibility that
J has a greater cardinality than I; this already causes problems in the case I
and J are finite. We will not always repeat this assumption; whenever we speak
of a Hilbert system in a Hilbert space H, it will be implicitly understood that
the cardinality of its index set does not exceed that of a maximal orthonormal
system H. In most applications, I = J is either the set of all integers or the
set of positive integers, and in both cases such a Hilbert system will be called
a Hilbert sequence.

Proposition 9.7.14. Let f = (fj)j2J be a Hilbert system in H with Hilbert
constant Cf .

(1) If T 2 �1(H,X), then

sup
�

�

�

N
X

n=1

�nTfj
n

�

�

�

L2
(⌦;X)

6 CfkTk�1(H,X)

,

where the supremum is taken over all finite choices of distinct indices
j
1

, . . . , jN 2 J .
(2) If T 2 �(H,X), then

P

j2J �jTfj is summable in L2(⌦;X) and
�

�

�

X

j2J

�jTfj
�

�

�

L2
(⌦;X)

6 CfkTk�(H,X)

.

For the definition of summability we refer to Definition 4.1.2; for countable
index sets it is equivalent to unconditional convergence. In general, if

P

j2J yj
is summable in a Banach space Y , then yj = 0 for all but countably many
j 2 J .

Proof. Let (hi)i2I be a maximal orthonormal system in H.
(1): If j

1

, . . . , jN are distinct elements of J and (hi)i2I is a maximal
orthonormal system with J ✓ I, we may define a linear operator S : H ! H
by putting

Shj
n

:= fj
n

for n 2 {1, . . . , N} and Shj := 0 for the remaining indices j 2 I \{j
1

, . . . , jN}.
For h 2 H of the form

PN
n=1

anhj
n

we have

kShk2H =
�

�

�

N
X

n=1

anfj
n

�

�

�

2

H
6 C2

f

N
X

n=1

|an|2 = C2

fkhk2H ,
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and the set of all such h is dense in H. It follows that S is bounded and
kSk 6 Cf . The ideal property (Theorem 9.1.10) now gives

E
�

�

�

N
X

n=1

�nTfj
n

�

�

�

2

= E
�

�

�

N
X

n=1

�nTShj
n

�

�

�

2

6 kTSk2�1(H,X)

6 C2

fkTk2�1(H,X)

.

(2): We now define a linear operator S : H ! H by Shj := fj for j 2 J
and Shj := 0 for j 2 I\J . As before one sees that S is bounded and kSk 6 Cf .

The right ideal property implies TS 2 �(H,X). By Theorem 9.1.19
P

j2J �jTfj =
P

j2J �jTShj is summable in L2(⌦;X) and

E
�

�

�

X

j2J

�jTfj
�

�

�

2

= E
�

�

�

X

j2I

�jTShj

�

�

�

2

= kTSk2�(H,X)

6 C2

fkTk2�(H,X)

.

⇤

Examples of Hilbert sequences

A sequence is a Hilbert sequence if it is almost orthogonal:

Proposition 9.7.15. Let (fn)n2Z be a sequence in H. If there exists a func-
tion F : Z ! R

+

such that for all n,m 2 Z we have

|(fn|fm)| 6 F (n�m) with
X

j2Z
|F (j)| < 1,

then (fn)n2Z is a Hilbert sequence with constant at most (
P

j2Z |F (j)|)1/2.

Proof. Let a = (an)n2Z be a finitely non-zero sequence of scalars. Then
�

�

�

X

n2Z
anfn

�

�

�

2

=
X

m,n

anam(fn|fm) 6
X

m,n

|an||am|F (n�m) 6 kak`2ka ⇤ Fk`2

where the last estimate follows from the Cauchy–Schwarz inequality; here
a ⇤ F denotes the convolution product for the additive group Z with the
counting measure. By Young’s inequality, ka⇤Fk`2 6 kak`2kFk`1 and therefore
k
P

n2Z anfnk2 6 kFk`1kak2`2 . ⇤

The following example contains a simple application of Proposition 9.7.15 and
will be used in Proposition 9.7.19.

Example 9.7.16. Fix real numbers q > 0 and s 2 R. For n 2 Z let

fn,s(t) :=
q

cosh(q(t� s+ n))
, t 2 R.

We will show that the sequence (fn)n2Z is a Hilbert sequence in L2(R) with
Hilbert constant at most (10q + 16)1/2.
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By a substitution, for all n,m 2 Z we have

(fn|fm) =

ˆ
R

q

cosh(t) cosh(t+ (n�m)q)
dt := F (n�m).

Then F (0) = 2q, F (�j) = F (j), and for j > 1 we use the inequality cosh(x) >
1

2

max{ex, e�x} to estimate the integral on each of the intervals (�1,�jq],
(�jq, 0], [0,1) separately:

ˆ 1

0

1

cosh(t) cosh(t+ jq)
dt 6 4

ˆ
[0,1)

e�2t�jq dt = 2e�jq,

ˆ
0

�jq

1

cosh(t) cosh(t+ jq)
dt 6 4

ˆ
(�jq,0]

ete�t�jq dt = 4jqe�jq,

ˆ �jq

�1

1

cosh(t) cosh(t+ jq)
dt 6 4

ˆ
(�1,�jq]

e2t+jq dt = 2e�jq.

Multiplying by q and adding up, for j > 1 this gives the bound F (j) 6
4q(1 + jq)e�jq. Accordingly,

X

j2Z
F (j) 6 2q + 8q

X

j>1

(1 + jq)e�jq = 2q +
8q2

(eq � 1)2
+

8q(q + 1)

eq � 1
6 10q + 16.

Now the result follows from Proposition 9.7.15.

A different class of examples is obtained as follows.

Proposition 9.7.17. Let � 2 L2(R) and define the sequence (fn)n2Z in
L2(R) by fn(t) = e2⇡int�(t). Define F : [0, 1] ! [0,1] as

F (t) :=
X

k2Z
|�(t+ k)|2.

Then (fn)n2Z is a Hilbert sequence in L2(R) with Hilbert constant C if and
only if F (t) 6 C2 for almost every t 2 [0, 1].

Proof. Let en(t) = e2⇡int for n 2 Z. For a finitely non-zero sequence of scalars
(an)n2Z, we have

�

�

�

X

n2Z
anfn

�

�

�

2

L2
(R)

=
X

k2Z

ˆ k+1

k

�

�

�

X

n2I

anen(t)�(t)
�

�

�

2

dt

=
X

k2Z

ˆ
1

0

�

�

�

X

n2Z
anen(t)�(t+ k)

�

�

�

2

dt

=

ˆ
1

0

�

�

�

X

n2Z
anen(t)

�

�

�

2

F (t) dt.
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If F 6 C2 almost everywhere, the above identity gives
�

�

�

X

n2Z
anfn

�

�

�

2

6 C2

�

�

�

X

n2Z
anen

�

�

�

L2
(T)

= C2

X

n2Z
|an|2.

and (fn)n2Z is a Hilbert sequence with constant C. Conversely, if (fn)n2Z
is a Hilbert sequence with constant C, the above identity shows that for all
trigonometric polynomials p =

P

n2Z anen we have
ˆ

1

0

|p(t)|2F (t) dt 6 C2

X

n2Z
|an|2 = C2kpk2L2

(T).

This gives F (t) 6 C2 for almost every t 2 [0, 1]. ⇤

Example 9.7.18. For any a > 0 and ⇢ 2 [0, 1) the functions

fn(t) = e�at+2⇡i(n+⇢)t, n 2 Z,

define a Hilbert sequence in L2(R
+

). Indeed, identifying fn with functions in
L2(R) and using the preceding notation, for all t 2 [0, 1] we have

F (t) =
X

k2Z
|�(t+ k)|2 =

X

k>0

e�2a(t+k) =
e2a(1�t)

e2a � 1
.

Now Proposition 9.7.17 implies that (fn), as a sequence in L2(R), is a Hilbert
sequence with constant Cf = 1/

p
1� e�2a. But then of course (fn) is also a

Hilbert sequence in L2(R
+

), with the same constant.

Application to dual square functions

As a first application of Hilbert sequences we present two results providing
estimates of continuous (dual) square functions in terms of related discrete
square functions. Both will be needed in Chapter 10 (in the proofs of Propo-
sitions 10.4.15 and 10.4.15).

Let S↵ := {z 2 C : |Im(z)| < ↵} denote the horizontal strip of height ↵.

Proposition 9.7.19. Let g : S↵ ! X⇤ be holomorphic. If

sup
|�|<↵

sup
t2[0,1)

sup
N>0

�

�

�

X

|n|6N

"ng(n+ t+ i�)
�

�

�

L2
(⌦;X⇤

)

< 1,

where ("n)n2Z is a Rademacher sequence, then g defines an element of
�(R;X)⇤ and

kgk�(R;X)

⇤ 6 C↵ sup
|�|<↵

sup
t2[0,1)

sup
N>0

�

�

�

X

|n|6N

"ng(·+ t+ i�)
�

�

�

L2
(⌦;X⇤

)

,

where C↵ h
q

1 + 1

↵ .
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Proof. By taking N = 0, the assumption on g implies that it is bounded on
S↵. For 0 < � < ↵, the Poisson formula for the vertical unit strip (Lemma
C.2.9), applied after a re-scaling to the horizontal strip S↵, gives the following
representation for the values of g on the real line:

g(t) =
X

✏2{�1,1}

k ⇤ g(·+ i✏�)(t), t 2 R,

where k(t) = 1/(4� cosh( ⇡t
2� )). Therefore, for any step function f : R ! X, by

Fubini’s theorem and the evenness of k we haveˆ
R
hf(t), g(t)i dt =

X

✏2{�1,1}

ˆ
R
hk ⇤ f(t), g(t+ i✏�)i dt

=
X

✏2{�1,1}

ˆ
1

0

X

n2Z
hk ⇤ f(t+ n), g(t+ n+ i✏�)i dt

=
X

✏2{�1,1}

E
ˆ

1

0

D

X

n2Z
"nk ⇤ f(t+ n),

X

n2Z
"ng(t+ n+ i✏�)

E

dt.

Hence
�

�

�

ˆ
R
hf(t), g(t)i dt

�

�

�

6
X

✏2{�1,1}

sup
t2[0,1)

�

�

�

X

n2Z
"nk ⇤ f(t+ n)

�

�

�

L2
(⌦;X)

⇥ sup
t2[0,1)

sup
N>0

�

�

�

X

|n|6N

"ng(t+ n+ i✏�)
�

�

�

L2
(⌦;X⇤

)

.

Estimating the Rademacher series by a Gaussian series using Corollary 6.1.17,
we have

�

�

�

X

n2Z
"nk ⇤ f(t+ n)

�

�

�

L2
(⌦;X)

6 1

E|�|

�

�

�

X

n2Z
�nk ⇤ f(t+ n)

�

�

�

L2
(⌦;X)

=
1

E|�|

�

�

�

X

n2Z
�nIfkn,t

�

�

�

L2
(⌦;X)

,

where kn,t(s) = k(t + n � s), s 2 R. Writing k(s) = 1

2⇡ q/cosh(qs) with
q = ⇡/(2�), by the result of Example 9.7.16 the sequence (kn,t)n2Z is a Hilbert
sequence with constant c� = 1

2⇡

p

10⇡/(2�) + 16. Therefore by Proposition
9.7.14,

�

�

�

X

n2Z
�nIfkn,t

�

�

�

L2
(⌦;X)

6 c�kfk�(R;X)

.

Combining the estimate, using that E|�| =
p

2/⇡, and finally letting � " ↵,
this gives the result, with constant C↵ =

q

5

8↵ + 2

⇡ . ⇤
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Using rather different techniques, an analogous result for square functions
can be proved provided one replaces the Rademacher sequence by a Gaussian
sequence.

Proposition 9.7.20. Let f : S↵ ! X be holomorphic. If

sup
|�|<↵

sup
t2[0,1)

kf(·+ t+ i�)k�(Z;X)

< 1,

then f 2 �(R;X) and

kfk�(R;X)

6 C↵ sup
|�|<↵,t2[0,1)

kf(·+ t+ i�)k�(Z;X)

,

where C↵ h
p
↵+ 1

↵ .

Proof. Consider the isometric isomorphism J : L2(R) ! L2((0, 1)⇥Z) defined
by Jf(t, n) := f(t+ n). By Theorem 9.6.1

kfk�(R,X)

6 k(t, n) 7! f(t+ n)k�((0,1)⇥Z;X)

.

Fix � 2 [↵/2,↵) and put R� := {z 2 C : 0 6 � 1

2

< <(z) < 3

2

, |=(z)| < �}.
For all t 2 [0, 1) and n 2 Z, Cauchy’s theorem gives

f(t+ n) =
1

2⇡i

ˆ
@R

�

f(z + n)

z � t
dz

The function
z 7!

h

(t, n) 7! f(z + n)

z � t

i

is Bochner integrable along @R� as a function with values in �(L2((0, 1) ⇥
Z);X) and

k(t, n) 7! f(t+ n)k�((0,1)⇥Z;X)

6 1

2⇡

ˆ
@R

�

�

�

�

(t, n) 7! f(z + n)

z � t

�

�

�

�((0,1)⇥Z;X)

|dz|

=
1

2⇡

ˆ
@R

�

�

�

�

1

z � ·

�

�

�

L2
(0,1)

kf(z + ·)k�(Z;X)

|dz|

6 sup
|�|<↵

sup
t2[0,1)

kf(·+ t+ i�)k�(Z;X)

⇥ 1

2⇡

ˆ
@R

�

�

�

�

1

z � ·

�

�

�

L2
(0,1)

|dz|,

where the middle inequality follows from the result of Example 9.4.12. This
completes the proof, except for the quantitative estimate for the constant. For
this we estimate the integral on the right-hand side by using that if t 2 [0, 1),
then |z � t| > � > ↵

2

if z = x ± i� with � 1

2

6 x 6 3

2

and |z � t| > 1 if z =
1

2

±1+ iy with �� 6 y 6 �. Thus each of the two horizontal parts contributes
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at most
p
2 · 2

↵ , and each of the vertical parts at most
p
2� · 1 6

p
2↵. This

leads to the explicit bound

C↵ =

p
2

⇡
(
2

↵
+

p
↵).

⇤

Application to Laplace transforms

As a second application we will prove a version of Example 9.6.17 in general
Banach spaces.

Proposition 9.7.21. Suppose that � : R
+

! L (X,Y ) is strongly measurable
and has the property that �x 2 �1(R

+

;Y ) with k�xk�1(R+;Y )

6 Kkxk for
all x 2 X. Define, for � 2 C

+

= {� 2 C : <� > 0}, the operators b�(�) 2
L (X,Y ) by

b�(�)x :=

ˆ 1

0

e��t�(t)x dt.

Then for every � > 0, the family

{b�(�) : <(�) > �}

is R-bounded, and its R-bound is at most
p
2⇡e2⇡K/

p
1� e��.

Proof. Fix real numbers � > 0, a 2 [�/2, 3�/2], and ⇢ 2 [0, 1). By Example
9.7.18 and a suitable substitution

fn(t) = e�at�2⇡i(n+⇢)t, n 2 Z,

defines a Hilbert sequence in L2(R
+

) with constant C2

f = 1

1�e�2a 6 1

1�e��

.
Therefore, by Corollary 6.1.17 and Proposition 9.7.14, for all x 2 X and for
N > 0 we obtain

E
�

�

�

X

|n|6N

"nb�(a+ 2⇡i(n+ ⇢))x
�

�

�

2

6 1

(E|�|)2E
�

�

�

X

|n|6N

�nb�(a+ 2⇡(n+ ⇢))x
�

�

�

2

6
C2

f

(E|�|)2 k�xk
2

�1(R+;Y )

6 K2

(E|�|)2(1� e��)
kxk2.

By Proposition 8.4.6(1) setting V� = {z 2 C : �/2 6 <(z) 6 3�/2}, we have

sup
z2@V

�

R({b�(z + 2⇡in)) : n 2 Z}) 6 K

E|�|
p
1� e��

.
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The function b� is bounded and holomorphic on {z 2 C : <(z) > �}. Indeed,
it is clear that b� is bounded and that z 7! hb�(z)x, x⇤i is holomorphic for all
x⇤ 2 X⇤. The proof of Proposition B.3.1 shows that z 7! b�(z) 2 L (X,Y )
is continuous in the uniform operator topology, and therefore Corollary B.3.3
implies the asserted holomorphy.

Now we apply Corollary 8.5.9. After translating and rotating our strip, we
infer from this corollary (and after letting the width of the strip tend to zero)
that

R({b�(z) : <(z) > �}) 6 R({b�(z) : <(z) = �}) 6 2e2⇡K

E|�|
p
1� e��

.

⇤

9.8 Notes

The quote in the beginning of the chapter is taken from Stein [1982]. This
reference contains an excellent overview of the development of square functions
in harmonic analysis.

Section 9.1

The heuristics behind our approach to this topic are largely due to Kalton
and Weis [2016]; many of the actual results treated in the other sections are
also from this paper. Despite its relatively recent publication year, a preprint
had circulated in the community for more than a decade and provided the
infrastructure and the inspiration for much of the work on this topic over the
current century, including large parts of the present chapter.

The theory of �-radonifying operators can be traced back to the pioneering
works of Gel0fand [1955], Segal [1956], Gross [1962, 1967], Kallianpur [1971].
The class of �-summing operators was introduced by Linde and Pietsch [1974]
and further studied by Figiel and Tomczak-Jaegermann [1979]. Linde and
Pietsch [1974] also contains Proposition 9.1.3 and Example 9.1.21. Some re-
lated results from these papers are discussed further below in these Notes (see
page 351). The first systematic study of �-radonifying operators is Neidhardt
[1978].

The ideal property (Theorem 9.1.10) can be traced back to Gross [1962,
Theorem 5]. Another proof of the ideal property for H

1

= H
2

=: H and K = C
can be given by using that

(i) Every Hilbert space operator T of norm less than 1 is a convex combination
of finitely many unitaries;

(ii) If R : H ! X is �-radonifying and U is unitary on H, then RU : H ! X
is �-radonifying (with the same norm).
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An elementary proof of (i) can be found in Gardner [1984] (see also Blackadar
[2006]). Assertion (ii) is an immediate consequence of the fact that unitaries
map orthonormal systems to orthonormal systems. If one only considers finite
rank operators (or finite Gaussian sums) as in Proposition 6.1.23 it suffices to
show that every matrix of norm 6 1 can be written as a convex combination
of unitary matrices. In this form the proof was presented in Diestel, Jarchow,
and Tonge [1995, Theorem 12.15].

A variant of this proof can be based on writing a contraction T as a sum of
two self-adjoint contractions, for example T = 1

2

(T+T ?)+ 1

2

(T�T ?), and then
writing a self-adjoint contraction S as a convex combination of two unitaries,
for example S = 1

2

(S + i
p
I � S⇤S) + 1

2

(S � i
p
I � S⇤S). The simplicity of

this argument comes at a price: it produces an additional constant 2.
Theorem 9.1.14 combines results from Van Neerven, Veraar, and Weis

[2007a] and Cox and Van Neerven [2010].
The characterisation of �-radonifying operators in terms of their action on

an orthonormal bases (Theorem 9.1.17) is frequently taken as the definition
of �-radonifying operators and goes back to the early days of the subject;
an obvious disadvantage of this approach is that it limits the scope of the
theory to separable Hilbert spaces. This unsatisfactory state of affairs is fixed
by Theorem 9.1.19, which is taken from Van Neerven [2010].

As is evident from its proof, Theorem 9.1.20 on the equality of �(H,X) =
�1(H,X) for Banach spaces X not containing a copy of c

0

is hardly more
than a restatement of the Kwapień–Hoffmann-Jørgensen theorem (Theorem
6.4.10) in the Gaussian context. In its present formulation the result is taken
from Kalton and Weis [2016]. Example 9.1.21 is due to Linde and Pietsch
[1974].

Theorem 9.1.24 is essentially due to Pisier [1989]; its present formulation
was stated by Kalton and Weis [2016], where the other results of Section 9.1.f
can also be found.

Complex interpolation of �(H
0

, X
0

) and �(H
1

, X
1

) is considered in Suárez
and Weis [2006, 2009]. In Theorem 9.1.25 we have only presented the special
case where H

0

= H
1

.
The �-radonification of the indefinite integral J : L2(0, 1) ! C[0, 1] as-

serted in Corollary 9.1.27 is equivalent to the existence of Brownian motion
and even provides a natural formula for Brownian motion in terms of a Gaus-
sian series. When stated in this form, Corollary 9.1.27 is a classical result
which goes back to Wiener [1923]. The proof of Corollary 9.1.27 via the Haar
system is due to Ciesielski [1991]. It is a substantial simplification of Wiener’s
original arguments, which used the trigonometric system instead. Revuz and
Yor [1999] offers a comprehensive study of Brownian motion and its many
applications.

If follows from Corollary 9.1.27 that Brownian motions have a version with
paths in C↵[0, 1] for all ↵ 2 [0, 1/2). It is well-known that almost surely the
paths do not belong to C1/2[0, 1]. It was shown in Ciesielski [1991] (see also
Ciesielski [1993]) that the trajectories of a Brownian motion do belong to the
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Besov space B1/2
p,1(0, 1) almost surely, for any p 2 [1,1). Since the indefinite

integral �-radonifying as an operator from L2(0, 1) to C↵(0, 1) for ↵ 2 [0, 1

2

),
this result could suggest that the indefinite integral should be �-radonifying as
an operator from L2(0, 1) to B1/2

p,1(0, 1). Perhaps surprisingly, this is not the
case. In fact, in Roynette [1993] it is shown that there exists a constant C > 0

with the property that the B1/2
p,1(0, 1)-norm of almost all trajectories of the

Brownian motion B are greater than C. Now, if J : L2(0, 1) ! B1/2
p,1(0, 1) were

�-radonifying, then the induced random variable B : ⌦ ! B1/2
p,1(0, 1) would

be strongly measurable and Gaussian (in the sense that its composition with
any functional x⇤ 2 X⇤ is Gaussian distributed). But then the general theory
of Gaussian random variables precludes the existence of the aforementioned
constant C (see, e.g., Ledoux and Talagrand [1991, Section 3.1]). Roynette
[1993] also showed that almost surely the trajectories of B do not belong to
B1/2

p,q (0, 1) for any q 2 [1,1). The above results have been extended to the
setting of Brownian motions with values in Banach spaces in Hytönen and
Veraar [2008] with a different approach.

Early history of �-radonifying operators

The pioneering works of Gel0fand [1955], Segal [1956], Gross [1962, 1967],
Kallianpur [1971], Baxendale [1976] considered the so-called radonification
problem which asks for conditions for a cylindrical distribution on a Banach
space X to be representable as an X-valued random variable.

A cylindrical distribution on a Banach space X is a bounded linear operator
W : X⇤ ! L2(⌦), where (⌦,P) is a probability space. It is said to be Gaussian
if Wx⇤ is Gaussian distributed for all x⇤ 2 X⇤. The prime example arises in the
context of Hilbert spaces: If H is a Hilbert space with maximal orthonormal
system (hi)i2I , and (�i)i2I a family of independent standard Gaussian random
variables with the same index set on a probability space (⌦,P), then for all
h 2 H, the family (�i(h|hi))i2I is summable in L2(⌦) (in the sense defined in
Chapter 4) and

WHh :=
X

i2I

�i(h|hi), h 2 H, (9.51)

defines a cylindrical Gaussian distribution WH on H. The rather straightfor-
ward proof is left to the reader. In some respects, the cylindrical distribution
W serves as a substitute for the Lebesgue measure in the infinite dimensional
context. This idea will be further developed in the next volume in connection
with the co-called Malliavin calculus.

A cylindrical distribution W : X⇤ ! L2(⌦) is said to be Radon if there
exists a random variable ⇠ : ⌦ ! X such that Wx⇤ = h⇠, x⇤i for all x⇤ 2 X⇤.
Here, as always, it is understood that random variables are strongly mea-
surable; therefore, the distribution of the random variable ⇠, if it exists, is a
Radon probability measure on X. (A probability measure µ on a topological
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Hausdorff space T is said to be Radon if for every " > 0 there exists a compact
subset K of T such that µ({K) < ". Also note that the random variable ⇠, if
it exists, is necessarily unique.

If T is a bounded linear operator from X into another real Banach space
Y , then T maps every (Gaussian) cylindrical distribution WH on X to a
cylindrical (Gaussian) distribution T (W ) on Y given by

T (W )y⇤ := W (T ⇤y⇤), y⇤ 2 Y ⇤.

The following theorem can be found in Kuo [1975]:

Theorem 9.8.1. A bounded operator T : H ! X is �-radonifying (i.e., be-
longs to �(H,X)) if and only if the cylindrical distribution T (WH) on X is
Radon.

For Gaussian cylindrical distributions, Gross [1962, 1967] obtained a further
necessary and sufficient condition for �-radonification in terms of so-called
measurable seminorms on H. These developments marked the birth of the
theory of Gaussian distributions on Banach spaces. Comprehensive accounts
of this theory can be found in Vakhania, Tarieladze, and Chobanyan [1987],
Bogachev [1998].

Section 9.2

We follow the presentation of Kalton and Weis [2016]. Theorem 9.2.14 is
taken from this reference. Proposition 9.2.8 is due to Rosiński and Suchanecki
[1980]. Theorem 9.2.10 goes back to Hoffmann-Jørgensen and Pisier [1976] and
Rosiński and Suchanecki [1980]; in its present formulation it can be found in
Van Neerven and Weis [2005b].

Section 9.3

The isomorphic identification �(H,Lp(µ)) h Lp(µ;H⇤) of Proposition 9.3.2
goes back to the extension theorem of Marcinkiewicz, Paley, and Zygmund,
presented here as Theorem 2.1.9. In its present formulation the result can be
found in Brzeźniak and Peszat [1999] (under some additional assumptions)
and Brzeźniak and Van Neerven [2003]. A related result can be found in
Carmona and Chevet [1979].

Corollary 9.3.3 and Example 9.3.4 go back to Van Neerven, Veraar, and
Weis [2008]. The special case for p = 2 (in the formulation that if (S,A , µ) is
a finite measure space, then every operator on L2(S) which can be factored
through L1(S) is Hilbert–Schmidt) is folklore; we learnt the result through
Arendt [2005/06]. Example 9.3.4 is not optimal: the Sobolev embeddings of
this example are in fact p-summing (which is stronger in view of Proposition
9.8.7 below).

Theorem 9.3.6 unifies various results in Van Neerven, Veraar, and Weis
[2007a,b, 2008]. Theorem 9.3.8 is due to Van Neerven and Weis [2005a].
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Section 9.4

Theorems 9.4.1 goes back to Neidhardt [1978]. In its present form it is taken
from Van Neerven [2010]. Theorem 9.4.2 is essentially due to Van Neerven and
Weis [2005a]. Theorem 9.4.10 is due to Kalton and Weis [2016]. A detailed
investigation of the connection of Theorem 9.4.10 with properties (↵±) (see
Proposition 7.5.4) is carried out in Van Neerven and Weis [2008].

Section 9.5

Theorem 9.5.1 is due to Kalton and Weis [2016], where also a simple version
of its converse, Proposition 9.5.6, can be found. It is an open problem whether
the multiplier M always takes �(S;X) to �(S;X).

Section 9.6

The extension property of Theorem 9.6.1 is due to Kalton and Weis [2016].
Besides being an important theoretical tool, it is often useful when there is
no extension from L2(S) to the Bochner space L2(S;X) for a given Banach
space X.

The R-boundedness results for Banach spaces with Pisier’s contraction
property of Theorem 9.6.10 and Corollary 9.6.12 (and its converse Proposition
9.6.11) are due to Haak and Kunstmann [2006]. They applied these results to
admissibility questions in control theory (see Haak [2004] and the referenced
cited therein). Some of their results hold under different assumptions on the
underlying Banach spaces. Theorem 9.6.13 is due to Kaiser and Weis [2008];
the dual version in Theorem 9.6.14 is due to Hytönen and Veraar [2009]. We
do not know whether the assumptions on Y in Example 9.6.17 can be dropped
or relaxed. A partial result in this direction is Proposition 9.7.21.

The characterisation of R-boundedness of translations on �(R;X) of
Proposition 9.6.18 seems to be new.

Section 9.7

Proposition 9.7.1 is due to Kalton and Weis [2016] and Proposition 9.7.2 is
due to Veraar and Weis [2015].

Theorem 9.7.3 can be viewed as a special case of the main result of Kalton,
Van Neerven, Veraar, and Weis [2008], which asserts that if either D = Rd

or D ✓ Rd is a non-empty bounded open domain, then a Banach space X

has type p 2 [1, 2] if and only if the Besov space B
(

1
p

� 1
2 )d

p,p (D;X) embeds
continuously into �(D;X). The converse embedding holds if and only if X
has cotype p. The proof of these results are based on an extension argument
to reduce the proof to the case D = Rd and Fourier analytic description of the
norm of the Besov space based on the Littlewood-Paley decomposition. The
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non-trivial fact that Bs
p,p(D;X) = W s,p(D;X) with equivalent norms will be

proved in the next volume. The direct proof of Theorem 9.7.3 presented here
for D = I, an open interval in R, is a variation of the one given in Van Neerven,
Veraar, and Weis [2007b].

Example 9.7.5 is due to Van Neerven, Veraar, and Weis [2007b], where
the same example is actually used to prove that C

1
p

� 1
2 ([0, 1];X) embeds into

�(0, 1;X) if and only if X has stable type p. For a discussion of stable type we
refer the reader to Ledoux and Talagrand [1991] and Pisier [1986a]. For the
present discussion the following facts are relevant:

• stable type 2 is equivalent to type 2;
• for any p 2 [1, 2), stable type p implies type p+ " for some " > 0.

Proposition 9.4.13 is due to Kalton, Van Neerven, Veraar, and Weis [2008].
The results of Section 9.7.c are taken from Veraar and Weis [2015]. There,

the necessity of the type p and cotype q assumption for Theorem 9.7.7 was
proved as well. Both can be deduced by applying the estimate in the strip
case to

f(t) =
N
X

n=1

�n(t)xn, where �n(z) = sinc(2⇡z � cn),

with c
1

, . . . , cN > 0 a suitable sequence of real numbers which grows expo-
nentially and which makes the sequence (�n)n>1

orthogonal on L2(�1, 1). In
particular, the �-norm of � is simple to calculate. However, it is quite tedious
to find good estimates for the Lp and Lq-norms of f .

The results on Hilbert sequences presented in Section 9.7.d are taken from
Haak, Van Neerven, and Veraar [2007]. If one is interested in sufficient condi-
tions for �-radonification, the role of orthonormal systems may be replaced by
Bessel sequences. This provides a flexible tool for checking �-radonification.
A family of vectors (fj)j2Z in H is called a Bessel sequence if if there exists a
constant C > 0 such that for any finite distinct choice of j

1

, . . . , jN 2 Z and
↵
1

, . . . ,↵N 2 K,
⇣

N
X

n=1

|↵n|2
⌘

1/2
6 C

�

�

�

N
X

n=1

↵nfj
n

�

�

�

H
.

It is immediate from the definition that Bessel sequences have to be linearly
independent.

Proposition 9.7.21 was first proved in Van Neerven and Weis [2006]. The
proof using Hilbert sequences is from Haak, Van Neerven, and Veraar [2007],
where similar methods are used to also show that the set {

p
�b�(�) : � 2

⌃⇡

2 �"} is R-bounded for every " 2 (0,⇡/2). Proposition 9.7.17 is due to
Casazza, Christensen, and Kalton [2001]. The argument in Example 9.7.18 is
taken from Haak, Van Neerven, and Veraar [2007, Example 2.5]. The following
more general result is given in Jacob and Zwart [2001, Theorem 1, (3),(5)].
A a Riesz sequence is a sequence that is both a Hilbert sequence and a Bessel
sequence.
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Theorem 9.8.2. Let (�n)n>1

be a sequence in C
+

which is properly spaced
in the sense that

inf
m 6=n

�

�

�

�m � �n
<(�n)

�

�

�

> 0.

Then the functions

fn(t) :=
p

<(�n)e��n

t, n > 1,

define a Riesz sequence, i.e., there are constants 0 < c 6 C < 1 such that

c2
X

n>1

|↵n|2 6
�

�

�

X

n>1

↵nfn
�

�

�

2

6 C2

X

n>1

|↵n|2

for all sequences (↵n)n>1

2 `2.

More on this topic can be found in Young [2001].

Further results

More on �-summing operators

Let H and X be a Hilbert space and a Banach space, respectively. As an
application of the ideal property we give a characterisation of �1(H,X) which
does not involve the use of orthonormal systems.

Theorem 9.8.3. Let p 2 [1,1). For a bounded operator T 2 L (H,X) the
following are equivalent:

(1) T 2 �1(H,X);
(2) there exists a constant Cp > 0 such that for all finite sequences (hn)

N
n=1

in H,
�

�

�

N
X

n=1

�nThn

�

�

�

Lp

(⌦;X)

6 Cp sup
khk61

⇣

N
X

n=1

|(hn|h)|2
⌘

1/2
.

In this situation, kTk�p

1(H,X)

equals the least admissible constant in (2).

Proof. If (2) holds, then we obtain (1) by considering orthonormal h
1

, . . . , hN ;
this also gives the inequality kTk�p

1(H,X)

6 C
0

, where C
0

is the least admissi-
ble constant in (2). Suppose now that (1) holds and fix vectors h

1

, . . . , hN 2 H.
Let u

1

, . . . , uN be the standard unit vectors of `2N and define S : `2N ! H by
Sun = hn. Then

kSk = sup
kuk

`

2
N

61, khk61

|(Su|h)|

= sup
khk61

kckKN

61

�

�

�

N
X

n=1

cn(hn|h)
�

�

�

= sup
khk61

⇣

N
X

n=1

|(hn|h)|2
⌘

1/2
.
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Now (2), as well as the inequality C
0

6 kTk�p

1(H,X)

, follows from the right
ideal property:

E
�

�

�

N
X

n=1

�nThn

�

�

�

p
= E

�

�

�

N
X

n=1

�nTSun

�

�

�

p
6 kTSkp

�p

1(`2
N

)

6 kTkp�p

1(H,X)

kSkp.

⇤

This result suggests the following definition.

Definition 9.8.4. Let X and Y be Banach spaces.

(i) A bounded operator T : X ! Y is said to be �-summing if there exists a
constant C > 0 such that for all finite sequences (xn)

N
n=1

in X we have

�

�

�

N
X

n=1

�nTxn

�

�

�

L2
(⌦;X)

6 C sup
kx⇤k61

⇣

N
X

n=1

|hxn, x
⇤i|2

⌘

1/2
. (9.52)

(ii) A bounded operator T : X ! Y is said to be �-radonifying if there exists
a constant C > 0 such that for all sequences (xn)n>1

in X we have
�

�

�

X

n>1

�nTxn

�

�

�

L2
(⌦;X)

6 C sup
kx⇤k61

⇣

X

n>1

|hxn, x
⇤i|2

⌘

1/2
. (9.53)

In the second part of this definition it is part of the assumptions that the
sum

P

n>1

�nTxn converges in L2(⌦;X) for all sequences (xn)n>1

with the
property that

P

n>1

|hxn, x⇤i|2 is finite.
It is rather surprising that the Gaussian sequences in the above definition

may be replaced by Rademacher sequences to obtain an equivalent definition:

Theorem 9.8.5. Let X and Y be Banach spaces. A bounded operator T :
X ! Y is �-summing (respectively, �-radonifying) if and only if (9.52) (re-
spectively, (9.53)) holds with the Gaussian sequences replaced by Rademacher
sequences.

A detailed proof can be found in Diestel, Jarchow, and Tonge [1995, Theorem
12.20]. For the reader’s convenience we sketch the main steps in the real case;
the complex case requires some obvious adjustments. We only need to show
that the Rademacher definition implies its Gaussian counterpart, the converse
being a consequence of the fact that we can always estimate Rademacher sums
by Gaussian sums (Corollary 6.1.17).

Let SN�1 be the unit sphere in RN and let O(N) denote the group of
orthogonal matrices on RN . Each a 2 SN�1 defines a mapping 'a : O(N) !
SN�1 by 'a(v) := v(a). The first observation is that the image under 'a of
the Haar measure oN of O(N) equals the normalised surface area measure
�N�1 on SN�1:

'a(o
N ) = �N�1, a 2 SN�1.
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By change of variables, this is then used to show that if U : `2N ! X is a
bounded operator, then

E
�

�

�

N
X

n=1

�nUen
�

�

�

2

=

ˆ
O(N)

E
�

�

�

N
X

n=1

"nUven
�

�

�

2

doN (v),

with (en)Nn=1

the standard unit basis of `2N . Using self-explanatory terminol-
ogy, now let T : X ! Y be "-summing. Fix an arbitrary sequence (xn)

N
n=1

in
X and consider the operator Y : `2N ! X defined by Uen := xn. Applying
the above identity to TU and using that T is "-summing we obtain

E
�

�

�

N
X

n=1

�nTxn

�

�

�

2

=

ˆ
O(N)

E
�

�

�

N
X

n=1

"nTUven
�

�

�

2

doN (v)

6 C2 sup
v2O(N)

sup
kx⇤k61

N
X

n=1

|hUven, x
⇤i|2

6 C2 sup
v2O(N)

sup
kx⇤k61

kv⇤U⇤x⇤k2

6 C2kUk2 = C2

X

n>1

|hxn, x
⇤i|2.

This proves that T is �-summing. The proof of the corresponding assertion
about radonification follows by a standard Cauchy sequence argument.

Let W be the cylindrical mapping defined in (9.51). The main result of
Linde and Pietsch [1974] (who define �-summing operators through (9.52))
asserts that a bounded operator T : H ! X is �-summing if and only if T (W )
is weak⇤-Radon, in the sense that there exists a weak⇤-measurable random
variable ⇠ with values in X⇤⇤, whose distribution is a Radon measure on
(X,weak⇤⇤), such that T (W )x⇤ = hx⇤, ⇠i almost surely for all x⇤ 2 X⇤. This
result is a natural companion to the fact, observed at the beginning of these
Notes, that a bounded operator T : H ! X is �-radonifying if and only if
T (W ) is Radon.

Next we will prove that the trace duality result of Proposition 9.1.22
extends to �-summing operators. More precisely, for T 2 �1(H,X) and
S 2 �1(H⇤, X⇤) we have

|tr(S⇤T )| 6 kS⇤TkC 1
(H)

6 kSk�1(H⇤,X⇤
)

kTk�1(H,X)

.

One can argue as before, but we have to assure that R = S⇤T is a compact
operator. To prove this first note that as in the proof of Proposition 9.1.22
one sees that for all orthonormal systems (fn)n>1

and (gn)n>1

in H we have
P

n>1

|(Rfi|gi)| 6 kSk�1(H⇤,X⇤
)

kTk�1(H,X)

. It follows from Diestel, Jarchow,
and Tonge [1995, Theorem 4.6(a)] that R is compact. Therefore, R has a
singular value decomposition and the proof can be finished along the lines of
Proposition 9.1.22.
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Alternatively, for each finite I ✓ N , we let TI =
P

i2I h
⇤
i ⌦ Thi. This

forms a net in a natural way and hTIh, x⇤i ! hTh, x⇤i for all h 2 H and
x⇤ 2 X⇤. Since each TI has finite rank, S⇤TI is compact and hence the proof
of Proposition 9.1.22 and the ideal property give that kS⇤TIkC 1

(H)

6 K.
Since C1(H) = K (H)⇤, it follows that there exists a sub-net (�(I))I and R 2
C 1(H) such that S⇤T�(I) ! R weak⇤. Identification of the limit shows that
R = S⇤T and by the properties of the weak⇤-topology we have kS⇤RkC 1

(H)

6
kSk�1(H⇤,X⇤

)

kTk�1(H,X)

.

Relation to p-summing operators

Recall from Section 7.2.a that an operator is p-summing if there exists a
constant C > 0 such that for all choices x

1

, . . . , xN 2 X,

⇣

N
X

n=1

kTxnkp
⌘

1/p
6 C sup

kx⇤k61

⇣

N
X

n=1

|hxn, x
⇤i|p

⌘

1/p
, (9.54)

and we write ⇡p(T ) for the least admissible constant C.
In the original definition of p-summing, the sequence spaces `p can be

equivalently replaced by any sufficiently non-trivial Lp(S)-space.

Lemma 9.8.6. Let X,Y be Banach spaces, T 2 L (X,Y ), and (S,A , µ) be
a measure space. If T is p-summing, then

kTfkLp

(S;Y )

6 C sup
kx⇤k61

khf, x⇤ikLp

(S)

, f 2 Lp(S;X) (9.55)

with C 6 ⇡p(T ). Conversely, if (9.55) holds for some infinite-dimensional
Lp(S), then T is p-summing and ⇡p(T ) 6 C.

Proof. Assume first that T is p-summing. Since both sides of (9.55) are con-
tinuous in f 2 Lp(S;X), it suffices to check the bound for every simple
function f =

PN
n=1

zn1A
n

(disjoint An). But this reduces to (9.54) with
xn = µ(An)

1/pzn.
Conversely, suppose that (9.55) holds. The assumption that dimLp(S) =

1 implies that we can choose disjoint sets A
1

, . . . , AN with µ(An) 2 (0,1).
To prove (9.54), it suffices to write (9.55) for f =

PN
n=1

1A
n

µ(An)
�1/pxn. ⇤

As a consequence we obtain that every p-summing operator is �-summing:

Proposition 9.8.7. If T 2 ⇡p(X,Y ) for some 1 6 p < 1, then T 2
�1(X,Y ) and

kTk�p

1(X,Y )

6 p,2kTk⇡p

(X,Y )

.

In particular, if c
0

6✓ Y and X = H is a Hilbert space, then ⇡p(H,Y ) ,!
�(H,Y ) continuously by Theorems 9.1.20 and 9.8.3.
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Proof. For a finite system (xn)
N
n=1

in X, we have, applying Lemma 9.8.6 to
the function f =

PN
n=1

�nxn 2 Lp(⌦;X) in the first step,

�

�

�

N
X

n=1

�nTxn

�

�

�

Lp

(⌦;Y )

6 ⇡p(T ) sup
x⇤2B

X

⇤

�

�

�

N
X

n=1

�nhxn, x
⇤i
�

�

�

Lp

(⌦)

6 ⇡p(T )p,2 sup
x⇤2B

X

⇤

�

�

�

N
X

n=1

�nhxn, x
⇤i
�

�

�

L2
(⌦)

= ⇡p(T )p,2 sup
x⇤2B

X

⇤

⇣

N
X

n=1

|hxn, x
⇤i|2

⌘

1/2

⇤

This result is just a sample from a body of related results, none of which
will be used in these volumes. Further results along this line are developed
in Diestel, Jarchow, and Tonge [1995]. For example, it is shown that if Y has
cotype 2, then for every p 2 [2,1) the space �1(X,Y ) coincides with the
space ⇡p(X,Y ) of p-summing operators from X to Y . Furthermore, if X also
has cotype 2, this is true for all p 2 [1,1).

In fact, �-radonifying operators can be thought of as the Gaussian ana-
logues of p-summing operators. For a systematic exposition of this point of
view we refer the reader to the Maurey-Schwartz seminar notes published be-
tween 1972 and 1976, the monograph by Schwartz [1973], and the lecture notes
by Badrikian and Chevet [1974]. More recent monographs touching on this
subject include Bogachev [1998], Mushtari [1996], and Vakhania, Tarieladze,
and Chobanyan [1987].

The Kwapień-Szymański theorem

If H is separable, then a bounded operator from H into another Hilbert space
X is Hilbert-Schmidt if and only if for some (equivalently, every) orthonormal
basis (hn)n>1

of H we have
X

n>1

kThnk2 < 1. (9.56)

This leads to the natural question whether, if T : H ! X is �-radonifying
from a separable Hilbert space H into a Banach space X, it is true that (9.56)
holds for some (or every) orthonormal basis (hn)n>1

of H. For spaces X with
cotype 2 the answer is trivially affirmative. The next example shows that, in
general, (9.56) need not hold for every orthonormal basis:

Example 9.8.8. Let T : `2 ! `p be the diagonal operator (cn)n>1

7! (ancn)n>1

.
Here we assume that (an)n>1

is bounded and 2 6 p < 1, so that T is well
defined as a bounded operator.
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Denote by (en)n>1

the standard unit basis of `2. From

E
�

�

�

N
X

n=M

�nanen
�

�

�

p
= E

N
X

n=M

|�n|p|an|p = E|�|p
N
X

n=M

|an|p

we see that T is �-radonifying if and only if (an)n>1

belongs to `p. In that
case,

X

n>1

kTenk2 =
X

n>1

|an|2,

and this sum diverges if we take (an)n>1

from `p \ `2.

This example is rather discouraging, and the following affirmative result due
to Kwapień and Szymański [1980] may therefore come as a surprise.

Theorem 9.8.9 (Kwapień–Szymański). Let H be a separable Hilbert
space and X a Banach space. If T 2 �(H,X), then there exists an orthonormal
basis (hn)n>1

of H such that
X

n>1

kThnk2 < 1.

Proof. Fix any orthonormal basis (hn)n>1

of H. By assumption, the sequence
P

n>1

�nThn converges in L2(⌦;X), and therefore there exist indices 0 =
N

1

< N
2

< . . . such that

X

n>1

E
�

�

�

N
n+1
X

j=N
n

+1

�jThj

�

�

�

2

< 1.

To finish the proof we will show that there exists, for every n > 1, a unitary
operator Un 2 L (Hn), where Hn is the span of the vectors hN

n

+1

, . . . , hN
n+1 ,

such that

N
n+1
X

j=N
n

+1

kTUnhjk2 6 E
�

�

�

N
n+1
X

j=N
n

+1

�jThj

�

�

�

2

. (9.57)

The orthonormal basis (h0
n)n>1

defined by h0
j = Unhj for Nn +1 6 j 6 Nn+1

then has the desired property.
Let ⌫n denote the Haar measure on the compact group U(Hn) of all unitary

operators on Hn. Denoting by �n the surface measure on the unit sphere Sn of
Hn and using that �n is the image measure of ⌫n under the mapping U 7! Uhj ,
for all Nn + 1 6 j 6 Nn+1

we have
ˆ
TU(H

n

)

kTUhjk2 d⌫n(U) =

ˆ
S
n

kThk2 d�n(h).
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Summing over j and using that �n is also the image measure of (Nn+1

�
Nn)

�1k · k2 d�n(·) under the mapping h 7! h/khk, we obtain

N
n+1
X

j=N
n

+1

ˆ
TU(H

n

)

kUhjk2 d⌫n(U) = (Nn+1

�Nn)

ˆ
S
n

kThk2 d�n(h)

= (Nn+1

�Nn)

ˆ
S
n

�

�

�

T
h

khk

�

�

�

2

khk2 d�n(h)

=

ˆ
H

n

kThk2 d�n(h) = E
�

�

�

N
n+1
X

j=N
n

+1

�jThj

�

�

�

2

.

Since ⌫n is a probability measure, there must exist a Un 2 U(Hn) such that
(9.57) holds. ⇤

Entropy numbers

Following Pietsch [1980, Chapter 12], the entropy numbers en(T ) of a bounded
operator T 2 L (X,F ) are defined as the infimum of all " > 0 such that there
are x

1

, . . . , x
2

n�1 2 T (BX) such that

T (BX) ✓
2

n�1
[

j=1

(xj + "BF ).

Here BX and BF denote the closed unit balls of X and F . Note that T is
compact if and only if limn!1 en(T ) = 0. Thus the entropy numbers en(T )
measure the degree of compactness of an operator T .

The following result is due to Kühn [1982]. The two parts of the theorem
can be viewed as an operator theoretical reformulation of classical results due
to Dudley [1967] (part (1)) and Sudakov [1971] (part (2)).

Theorem 9.8.10. For any bounded operator T 2 L (H,X),

(1) if
P

n>1

n�1/2en(T ⇤) < 1, then T 2 �(H,X);
(2) if T 2 �(H,X), then supn>1

n1/2en(T ⇤) < 1.

If fact we have the following quantitative version of part (2): there exists an
absolute constant C > 0 such that for all Hilbert spaces H, Banach spaces X,
and operators T 2 �(H,X) we have

sup
n>1

n1/2en(T
⇤) 6 CkTk�(H,X)

.

In combination with a result of Tomczak-Jaegermann [1987] to the effect that
for any compact operator T 2 L (`2, X) we have

1

32
en(T

⇤) 6 en(T ) 6 32en(T
⇤),
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and recalling that �-radonifying operators are supported on a separable closed
subspace by Proposition 9.1.7, this implies the inequality

sup
n>1

n1/2en(T ) 6 CkTk�(H,X)

for some absolute constant C. See Cobos and Kühn [2001] and Kühn and
Schonbek [2001], where these results are applied to obtain estimates for the en-
tropy numbers of certain diagonal operators between Banach sequence spaces.
Kühn [1982] also showed that Theorem 9.8.10 can be improved for Banach
spaces with (co)type 2:

Theorem 9.8.11. For any bounded operator T 2 L (H,X),

(1) if X has type 2 and (
P

n>1

(en(T ⇤))2)1/2 < 1, then T 2 �(H,X);
(2) if X has cotype 2 and T 2 �(H,X), then (

P

n>1

(en(T ⇤))2)1/2 < 1.
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The H1-functional calculus

Now that we have a variety of probabilistic and operator-theoretic tools at our
disposal it is time to start using them. The present chapter is devoted to the
study of sectorial operators (this class of operators includes, e.g., uniformly
elliptic second order differential operators) and their holomorphic functional
calculus formally defined by the Dunford integral

f(A) =
1

2⇡i

ˆ
@⌃

f(z)(z �A)�1 dz.

Here f is a bounded holomorphic function on a sector ⌃ about the positive
real line containing the spectrum of A, and on the complement of ⌃ the
parabolic bound

k(z �A)�1k . 1

|z|
is assumed. Unless f has additional integrability properties near the origin and
infinity, this Dunford integral is a singular integral and the operator f(A) can
be defined only as an unbounded operator. If f(A) is bounded and satisfies

kf(A)k . kfk1

for all bounded holomorphic function on ⌃, then A is said to have a bounded
H1-calculus on ⌃. For classical operators such as A = �� on Lp(Rd), the
boundedness of the H1-calculus can be proved using Fourier analysis meth-
ods such as the Fourier multiplier theorems of Volume I and classical square
function estimates. With this model in mind we use the probabilistic and
operator-theoretic techniques of earlier chapters of the present volume to de-
velop the theory of H1-calculus for general sectorial operators acting on a
Banach. In particular we study their R-boundedness properties and character-
isations in terms of the generalised square functions developed in the previous
chapter. Both will play a crucial role in Volume III as a bridge connecting esti-
mates from harmonic analysis, stochastic analysis, and operator theory. This
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will be particularly useful in the theory of maximal regularity for solutions of
evolution equations of parabolic type.

To give an impression of how the Banach space properties studied in earlier
chapters enter the picture we mention the facts, proved in this chapter, that
the Laplace operator on Lp(Rd;X), 1 < p < 1, has a bounded H1-calculus
if and only if X is a UMD space, and that in this situation the range of
its H1-calculus is �-bounded if and only if X also has Pisier’s contraction
property.

Besides studying the H1-calculus for its own sake, we provide three im-
portant classes of examples of operators admitting a bounded H1-calculus:

• If A is the generator of a C
0

-semigroup of contractions on a Hilbert space,
then A has a bounded H1-calculus;

• If A is the generator of a C
0

-semigroup of positive contractions on an
Lp-space, then A has a bounded H1-calculus.

• If iA is the generator of a bounded C
0

-group on a UMD space, then A has
a bounded H1-calculus.

After a careful study of the H1-calculus for sectorial operators, in the
second part of the chapter we also consider bisectorial operators and, in par-
ticular, generators of bounded C

0

-groups. Their functional calculus properties
are intimately connected to those of sectorial operators, a fact which we ex-
ploit to pass form third example in our list, which can be treated by means
of transference techniques, to the second via dilation arguments. In the con-
cluding section we combine the `p-boundedness techniques of Chapter 8 with
interpolation theory and an ergodic theorem to give a substantial improve-
ment of the second example in case the semigroup has a bounded analytic
extension to a sector.

10.1 Sectorial operators

For 0 < ! < ⇡ we denote by

⌃! := {z 2 C \ {0} : | arg(z)| < !}

the open sector of angle ! in the complex plane; the argument is taken in
(�⇡,⇡). For z 2 %(A), the resolvent set of A, let R(z,A) := (z�A)�1 denote
the resolvent of A. Any operator with non-empty resolvent set is closed.

Definition 10.1.1 (Sectorial operators). A linear operator (A,D(A)) is
said to be sectorial if there exists ! 2 (0,⇡) such that the spectrum �(A) is
contained in ⌃! and

M!,A := sup
z2{⌃

!

kzR(z,A)k < 1.
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In this situation we say that A is !-sectorial with constant M!,A. The infimum
of all ! 2 (0,⇡) such that A is !-sectorial is called the angle of sectoriality of
A and is denoted by !(A).

�(A)

!

Fig. 10.1: The spectrum of a sectorial operator

The reader is cautioned that the definition of sectoriality varies in the liter-
ature. As we will see, various results admit a somewhat cleaner statement if
the requirement that A have dense range is added to the definition, and this
is indeed what some authors do. This has the further benefit that sectorial
operators with dense range are automatically injective. What is more, impos-
ing dense range is hardly a restriction, for the following reason. If the Banach
space X is reflexive (and more generally, if the resolvent operators of A are
weakly compact), then every sectorial operator A on X is densely defined and
we have a direct sum decomposition

X = N(A)� R(A). (10.1)

Moreover, the part of A in R(A) is sectorial, densely defined, has dense range,
and is injective, while the part of A in N(A) equals the zero operator. Thus all
useful information about A is contained in the part of A in R(A). The reader
is referred to Propositions 10.1.8 and 10.1.9 for the full statement of these
results.

There are various reasons for insisting on the more general definition of
a sectorial operator adopted here. Firstly, some natural sectorial operators
fail to have dense range. These include the Laplace operator on L1(Rd), the
Neumann Laplacian on Lp(D) with D ✓ Rd bounded, and the Ornstein-
Uhlenbeck operator on Lp(Rd, �d), with �d the standard Gaussian measure on
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Rd. Secondly, with our definition of sectoriality, the adjoint A⇤ of a densely
defined sectorial operator is sectorial, but with an additional dense range
condition this statement would no longer be true, as in general the range
of A⇤ is weak⇤-dense only. Thirdly, and perhaps most importantly, in our
approach it becomes transparent which results need additional assumptions
and which do not. In general, the need of additional assumptions is reflected in
limitations on range of applicability. For instance, in the treatment of the H1-
calculus associated with a sectorial operator A, as a rule of thumb statements
about f(A)x for functions in f 2 H1(⌃) tend to be true for general elements
x in X, whereas statements involving functions f 2 H1(⌃) usually require
the consideration of elements x in D(A) \ R(A) or its closure.

10.1.a Examples

Before turning to some basic properties of sectorial operators it is instructive
to present some examples. With an eye towards the above discussion, in each
of these examples we pay attention as to whether or not the operator has
dense range and/or is injective. We will freely use the terminology and results
of Appendix G on semigroups of operators.

The first two examples describe the relationship between sectorial opera-
tors and bounded (analytic) semigroups.

Example 10.1.2 (Sectorial operators and bounded semigroups). If a linear oper-
ator �A generates a uniformly bounded C

0

-semigroup (S(t))t>0

on a Banach
space X, then A is densely defined, closed, and !-sectorial for all 1

2

⇡ < ! < ⇡.
In particular, !(A) = 1

2

⇡. Indeed, by Proposition G.4.1, the open left half-
plane C� = {<� < 0} is contained in the resolvent set of A and we have the
bound

kR(�, A)k 6 M

|<�|

for all � 2 C�. Moreover, if | arg(�)| > 1

2

⇡ + ⌫, with ⌫ 2 (0, 1

2

⇡), then

kR(�, A)k 6 M

|<�| 6
M

sin ⌫

1

|�|

and A is 1

2

⇡ + ⌫-sectorial.

Example 10.1.3 (Sectorial operators and bounded analytic semigroups). The-
orem G.5.2 may be formulated as stating that for a densely defined operator
A on a Banach space X,

A is sectorial of angle 0 < ✓ < 1

2

⇡ (10.2)

if and only if

�A generates a bounded analytic C
0

-semigroup (S(t))t>0

(10.3)
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on ⌃⌘ for some 0 < ✓ < 1

2

⇡.

Moreover,

inf
�

✓ 2 (0,⇡/2) : (10.2) holds
 

= ⇡/2� sup
�

⌘ 2 (0,⇡/2) : (10.3) holds
 

.

We continue with some concrete examples, restricting ourselves to some model
cases which can be treated here in a self-contained manner. More sophisticated
examples will be discussed in the Notes at the end of the chapter. The exam-
ples presented here will be revisited several times as the chapter unfolds, since
they serve well to illustrate the various concepts we are about to discuss.

Example 10.1.4 (First derivative). The first derivative Af = f 0 with domain
D(A) = W 1,p(R;X) is !-sectorial on Lp(R;X), 1 6 p < 1, for all 1

2

⇡ <
! < ⇡. In order to prove this it suffices to recall that in Example G.4.4 we
have checked that �A generates the translation group, and therefore Example
10.1.2 implies that A is !-sectorial for all 1

2

⇡ < ! < ⇡.
Lemma 2.5.11 implies that A is injective. To show that R(A) is dense for

p 2 (1,1), first consider the scalar-valued case. The direct sum decomposition
(10.1) implies that the range of A is dense in Lp(R). Denoting the range in
the scalar-valued case by R, the range of A in the vector-valued case contains
R⌦X, which is dense in Lp(R;X).

The operator A does not have dense range for p = 1. Indeed, approx-
imating f 2 D(A) in the norm of W 1,1(R;X) = D(A) by test functions
fn 2 C1

c

(Rd;X), one sees that

hAf,1⌦ x⇤i = lim
n!1

hf 0
n,1⌦ x⇤i = lim

r!1

ˆ r

�r

d

dt
hfn(t), x⇤i dt = 0.

Since hAf,1 ⌦ x⇤i =
´
RhAf(t), x⇤i dt = h

´
R Af(t) dt, x⇤i, it follows that´

R Af(t) dt = 0. Thus we see that R(A) is contained in the proper closed
subspace {g 2 L1(R;X) :

´1
�1 g(t) dt = 0} of L1(R;X).

This example is somewhat deceptive in that it conceals a much better property
of the first derivative, namely that the operators ±iA = ±id/dx are bisectorial
of angle 0. The notion of bisectoriality will be discussed at length in Section
10.6.

Example 10.1.5 (Laplacian on Rd). In Example G.5.6 it is shown that the
Laplacian � on Lp(Rd;X), 1 6 p < 1, with domain D(�) = H2,p(R;X),
generates an analytic C

0

-semigroup which is bounded on every sector ⌃⌘,
⌘ 2 (0, 1

2

⇡). Thus Example 10.1.3 implies that �� is sectorial of zero angle.
Let us show that � is injective. If f 2 D(�) satisfies �f = 0, then for all

x⇤ 2 X⇤ the function hf, x⇤i 2 Lp(Rd) belongs to the domain of the scalar-
valued Laplacian and h�f, x⇤i = �hf, x⇤i. Thus it suffices to prove injectivity
in the scalar case; for once we have that, in the vector-valued case it will imply
that hf, x⇤i = 0 for all x⇤ 2 X⇤, and therefore f = 0 by Corollary 1.1.25.
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Suppose then that the scalar-valued function f 2 D(�) satisfies �f = 0.
Replacing f by f ⇤� for some test function (and noting that f = 0 if f ⇤� = 0
for all test functions �), we may assume that f is smooth. Then, by the
maximum principle, �f = 0 implies that f is constant. Since also f 2 Lp(Rd),
this is only possible if f = 0.

For 1 < p < 1 the density of the range of � can be proved as in Example
10.1.4. For p = 1, h�f,1 ⌦ x⇤i = 0 implies that R(�) is contained in the
proper closed subspace {f 2 L1(Rd;X) :

´
Rd

f(x) dx = 0} of L1(Rd;X).

10.1.b Basic properties

We now turn to the study of some basic properties of sectorial operators.
Readers familiar with the topic may safely skip this discussion and proceed
immediately to Section 10.2.a.

We begin with the simple observation that sectoriality can be checked on
a half-line (see Lemma G.1.4):

Proposition 10.1.6. A linear operator A is sectorial if and only if the open
half-line (�1, 0) is contained in %(A) and sup�<0

k�R(�, A)k < 1. More
precisely, if

sup
�<0

k�R(�, A)k =: M < 1,

then A is sectorial with !(A) 6 ⇡ � arcsin(1/M).

Proposition 10.1.7 implies that M > 1, so that arcsin(1/M) is well defined.
The next proposition gives useful characterisations of the kernel and the clo-
sure of the range of a sectorial operator.

Proposition 10.1.7. Let A be sectorial.

(1) For all x 2 D(A),

lim
t!1

t(t+A)�1x = x, lim
t!1

A(t+A)�1x = 0. (10.4)

(2) For all x 2 R(A),

lim
t#0

t(t+A)�1x = 0, lim
t#0

A(t+A)�1x = x. (10.5)

(3) N(A)\R(A) = {0} and N(A)�R(A) = {x 2 X : lim
t#0

t(t+A)�1x exists}.

Proof. (1): If x 2 D(A) then

lim
t!1

t(t+A)�1x� x = � lim
t!1

A(t+A)�1x = � lim
t!1

1

t
[t(t+A)�1]Ax = 0

by the uniform boundedness of the operators t(t+A)�1, t > 0. By an approx-
imation argument using the uniform boundedness of the operators t(t+A)�1

and A(t+A)�1, the conclusion extends to all x 2 D(A).
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(2): If x 2 R(A), say x = Ay with y 2 D(A), then

lim
t#0

t(t+A)�1x = � lim
t#0

A(t+A)�1x+ x = lim
t#0

t(1� t(t+A)�1)y = 0.

As in the proof of (1), by an approximation argument the conclusion extends
to all x 2 R(A).

(3): For all x 2 R(A) by (2) we have limt#0 t(t+A)�1x = 0. On the other
hand, for all x 2 N(A) we have

lim
t#0

t(t+A)�1x = x� lim
t#0

(t+A)�1Ax = x.

It follows that N(A) \ R(A) = {0}.
Turning to the second assertion, by the above the asserted limits exist for

all x 2 N(A) � R(A). Conversely, suppose x 2 X is such that limt#0 t(t +
A)�1x =: y exists. Then

A(t+A)�1x = x� t(t+A)�1x ! x� y

as t # 0. It follows that x� y 2 R(A). It also follows that tA(t+A)�1x ! 0 as
t # 0. Since the graph of A is closed, this implies that y 2 D(A) and Ay = 0.
Hence x = y + (x� y) with x� y 2 R(A) and y 2 N(A). ⇤

If Y is a subspace of X and A is linear operator on X with domain D(A), the
part of A in Y is the linear operator AY on Y with domain D(AY ) defined by

D(AY ) := {y 2 D(A) \ Y : Ay 2 Y },
AY y := Ay, y 2 D(AY ).

The intersection D(A) \ R(A) plays a central role in the whole subject. The
next proposition shows, among other things, that the part of A in the closure
of this subspace has particularly good properties.

Proposition 10.1.8. Let A be !-sectorial for some 0 < ! < ⇡.

(1) D(A) \ R(A) = R(A(I +A)�2).
(2) D(A) \ R(A) = D(A) \ R(A) = R(A(I +A)�2).
(3) The part of A in D(A) \ R(A) is closed, densely defined, injective, has

dense range, and is !-sectorial.
(4) If A is densely defined, then D(A) \ R(A) = R(A).

Proof. (1): For x 2 X, the identity

A(I +A)�2x = (I +A)�1A(I +A)�1x

shows “◆”. If x 2 D(A) \ R(A), then (I +A)x 2 R(A), say (I +A)x = Ay for
some y 2 D(A). Let z := (I +A)y. Then
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x = (I +A)�1Ay = A(I +A)�2z.

(2): It suffices to prove the inclusion D(A) \ R(A) ✓ D(A) \ R(A). Let
x 2 D(A) \ R(A) and fix " > 0. By (10.4) we can find t > 0 such that

kx� t(t+A)�1xk <
"

2
.

Since y = t(t+A)�1x belongs to R(A), by (10.5) we can find s > 0 such that

ky �A(s+A)�1yk <
"

2
.

It follows that
kx� tA(s+A)�1(t+A)�1xk < "

and the result follows since tA(s+A)�1(t+A)�1x 2 D(A) \ R(A).
(3): Let us write Y = D(A) \ R(A) for brevity and denote by AY the part

of A in Y . Since A is closed it is clear that AY is closed. Since (��A)�1 maps
D(A)\R(A) into itself, it also maps Y into itself, and from this it follows that
if � 2 %(A) then � 2 %(AY ) and (�� AY )

�1 = (�� A)�1|Y . As a result, AY

is !-sectorial on Y .
We prove next that AY has dense range in Y and is injective. If y 2

D(A) \ R(A), then by (10.5),

y = lim
t#0

A(t+A)�1y = lim
t#0

AY (t+A)�1y

belongs to R(AY ). This being true for all y in the dense subspace D(A)\R(A)
of Y , it follows that R(AY ) = Y . By the result of Proposition 10.1.7(2) it
follows that N(AY ) = {0}.

We show next that D(AY ) is dense in Y . If y 2 D(A) \ R(A), then
limt#0 A(t+A)�1y = y by (10.5). Moreover, for each t > 0,

lim
n!1

n(n+A)�1A(t+A)�1y = A(t+A)�1y;

here we used that A(t+A)�1y = (t+A)�1Ay belongs to D(A) together with
(10.4). Since the vectors n(n+A)�1A(t+A)�1y belong to D(AY ) (because

nA(n+A)�1A(t+A)�1y = nA(t+A)�1y � n2A(n+A)�1(t+A)�1y

belongs to Y ), it follows that A(t + A)�1y 2 D(AY ) for all t > 0, and there-
fore also y 2 D(AY ). This proves that D(A) \ R(A) ✓ D(AY ) and therefore
D(AY ) = Y .

(4): If A is densely defined, then by (2) we have D(A) \ R(A) = D(A) \
R(A) = R(A). ⇤



10.1 Sectorial operators 367

The final result of this subsection shows that in reflexive Banach spaces X,
sectorial operators are automatically densely defined, so it always holds that
D(A) \ R(A) = R(A). Even more importantly, X decomposes as the direct
sum of N(A) and R(A):

Proposition 10.1.9. Let A be an !-sectorial operator on a reflexive Banach
space X for some 0 < ! < ⇡. Then A is densely defined and therefore

D(A) \ R(A) = R(A).

Furthermore, we have a direct sum decomposition

X = N(A)� R(A).

Proof. We begin with the proof of the direct sum decomposition. Since X is
reflexive the resolvent operators (t

0

+A)�1 are weakly compact for all t
0

> 0.
By the resolvent identity

R(�, A)�R(µ,A) = (µ� �)R(�, A)R(µ,A), �, µ 2 %(A),

we have
(t+A)�1 = (t

0

+A)�1[I + (t
0

� t)(t+A)�1],

which implies that for each x 2 X, {t(t + A)�1x : t 2 (0, 1)} is contained
in some scalar multiple of the relatively compact set (t

0

+ A)�1BX , with
BX the unit ball of X. As a consequence, for every x 2 X we may extract
a subsequence tn # 0 such that the weak limit limn!1 tn(tn + A)�1x =: y
exists. Using that closed subspaces are weakly closed, we may now argue as
in the proof of Proposition 10.1.7(3) to conclude that x = y + (x � y) with
y 2 N(A) and x� y 2 R(A).

To prove that A is densely defined we will show that the part AY is densely
defined in Y := R(A). Since N(A) is contained in D(A) the decomposition then
implies that A is densely defined in X.

Fix an arbitrary y 2 Y . Since the operators n(n + AY )
�1 are uniformly

bounded, we may select a subsequence nk ! 1 such that nk(nk +AY )
�1y is

weakly convergent, say to x 2 X. Then x 2 Y and, by the resolvent identity,

(1 +AY )
�1y = lim

k!1
nk(nk +AY )

�1(1 +AY )
�1x

= lim
k!1

nk(nk +AY )
�1x+ nk(1 +AY )

�1x

µ+ nk
= (1 +AY )

�1x,

where the limits are taken in the weak topology. It follows that y = x =
limk!1 nkR(�nk, AY )y weakly, which shows that y belongs to the weak clo-
sure of D(AY ). Since this equals the strong closure by the Hahn–Banach the-
orem, this completes the proof. ⇤
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Remark 10.1.10. The proof of the direct sum decomposition extends to arbi-
trary Banach spaces as long as A has weakly compact resolvent operators (the
resolvent identity implies that if R(�, A) is weakly compact for some � 2 %(A),
then it is weakly compact for all � 2 %(A)).

As is shown in the following example, a general sectorial operator A need not
be densely defined and the direct sum decomposition of Proposition 10.1.9
may fail.

Example 10.1.11. Consider the bounded linear operator A on X = C[0, 1] by
Af(s) = sf(s). This operator is injective and sectorial of angle zero, and
N(A) � R(A) = R(A) = {f 2 C[0, 1] : f(0) = 0} is a proper subspace of
C[0, 1].

The inverse operator A�1 with D(A�1) = {f 2 C[0, 1] : f(0) = 0} provides
an example of a sectorial operator of angle zero which does not have a dense
domain.

10.2 Construction of the H1-calculus

The construction of the H1-calculus proceeds in two stages. The first gener-
alises the Dunford functional calculus

f(A) =
1

2⇡i

ˆ
�
f(z)R(z,A) dz

for bounded operators A and f a holomorphic function in a neighbourhood
of its spectrum �(A), to sectorial operators A. The requirement will be that
f belongs to the Hardy space H1(⌃�), where !(A) < � < ⇡. This is by itself
not a very useful calculus, and the second stage of the construction consists
of extending the Dunford calculus to suitable bounded holomorphic functions
on ⌃, that is, for functions in the Hardy space H1(⌃). Whether or not this
is possible depends on the operator A, and A is said to have a bounded H1-
functional calculus if there exists a constant M such that

kf(A)k 6 Mkfk1, f 2 H1(⌃) \H1(⌃). (10.6)

When (10.6) holds, the restriction of the H1-calculus to functions in H1(⌃)\
H1(⌃) can be extended to a calculus for functions in H1(⌃) by an approx-
imation argument.

The preliminary H1-calculus, which we will call the Dunford calculus in
view of its close analogy with the Dunford calculus for bounded linear op-
erators, is “easy” in the sense that it is defined, for any sectorial operator,
in terms of absolutely convergent integrals. In contrast, the H1-calculus in-
volves singular integrals which do not always converge. For operators for which
they do converge, the H1-calculus provides a powerful tool with a wealth of
non-trivial applications.
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10.2.a The Dunford calculus

We begin by setting up a preliminary calculus f 7! f(A) for sectorial oper-
ators A and functions f which are holomorphic and integrable on an open
sector whose opening angle is somewhat larger than the angle of sectoriality
of A. This calculus, the so-called Dunford calculus of A, involves an absolutely
convergent integral of Dunford type.

Definition 10.2.1 (The Hardy spaces Hp(⌃�)). Let 1 6 p 6 1 and
0 < � < ⇡. The Banach space of all holomorphic functions f : ⌃� ! C for
which

kfkHp

(⌃
�

)

:= sup
|⌫|<�

�

�t 7! f(ei⌫t)
�

�

Lp

(R+, dt

t

)

< 1

is denoted by Hp(⌃�).

Appendix H contains some generalities about holomorphic functions on sectors
which will be used freely in this chapter. Among other things, it is shown there
that by restriction, every function f 2 Hp(⌃�) with 1 6 p 6 1 belongs to
H1(⌃�0) for all 0 < �0 < �.

Suppose now that A is sectorial, with angle of sectoriality !(A). Recall
that this means that for all !(A) < � < ⇡ we have {⌃� ✓ %(A) and

M�,A := sup
z2{⌃

�

kzR(z,A)k < 1.

We will refer to M�,A as the �-sectoriality constant of A. This constant
depends continuously on � 2 (!(A),⇡).

For functions f 2 H1(⌃�) we may define a bounded operator f(A) by the
Dunford integral

f(A) :=
1

2⇡i

ˆ
@⌃

⌫

f(z)R(z,A) dz, (10.7)

where !(A) < ⌫ < � is chosen arbitrarily; the boundary @⌃⌫ is oriented
‘downwards’ so as to have the spectrum of A at the left-hand side while
traversing it. The estimate

kf(A)k 6 M⌫,A

2⇡

ˆ
@⌃

⌫

|f(z)| |dz||z| 6 M⌫,A

⇡
kfkH1

(⌃
�

)

shows that the integral in (10.7) is well defined as a Bochner integral in L (X).
Taking the infimum over all ⌫ 2 (!(A),�) gives the bound

kf(A)k 6 M�,A

⇡
kfkH1

(⌃
�

)

. (10.8)

Next we show that the definition of f(A) is independent of the choice
of ⌫ 2 (!(A),�). Letting Arc(r, ⌘) = {reiy 2 C : |y| < ⌘} for r > 0 and
⌘ 2 (0,�), we have
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ˆ

Arc(r,⌘)
|f(z)| |dz||z| =

ˆ ⌘

�⌘
|f(reiy)||y| dy ! 0,

as r ! 1 or r # 0 by Proposition H.2.5. Therefore, since z 7! f(z)R(z,A)
is holomorphic on ⌃� \⌃!(A)

, one can use Cauchy’s theorem to see that the
right-hand side of (10.7) does not depend on the choice of ⌫ 2 (!(A),�).

By a change of variables, for all t > 0 we have kz 7! f(tz)kH1
(⌃

�

)

=
kfkH1

(⌃
�

)

and consequently (10.8) self-improves to

sup
t>0

kf(tA)k 6 M�,A

⇡
kfkH1

(⌃
�

)

. (10.9)

Theorem 10.2.2 (Dunford calculus). Let A be a sectorial operator on a
Banach space X and let !(A) < � < ⇡. The mapping f 7! f(A) from H1(⌃�)
to L (X) is linear, and multiplicative in the sense that if f, g 2 H1(⌃�) are
such that fg 2 H1(⌃�), then

(fg)(A) = f(A)g(A).

It has the following convergence property: if the functions fn, f 2 H1(⌃�)
are uniformly bounded and satisfy fn(z) ! f(z) for all z 2 ⌃�, then for all
g 2 H1(⌃�) we have

lim
n!1

(fng)(A) = (fg)(A). (10.10)

Proof. Linearity of the mapping f 7! f(A) is clear from the definitions. To
prove multiplicativity we choose angles !(A) < ⌫0 < ⌫ < �0 < �. Then, for
f 2 H1(⌃�) and g 2 H1(⌃�) such that fg 2 H1(⌃�), the restrictions to ⌃�0

satisfy f 2 H1(⌃�0) \H1(⌃�0) and g 2 H1(⌃�0). By the resolvent identity
we obtain

f(A)g(A) =
⇣ 1

2⇡i

⌘

2

⇣

ˆ
@⌃

⌫

f(µ)R(µ,A) dµ
⌘⇣

ˆ
@⌃

⌫

0

g(�)R(�, A) d�
⌘

=
⇣ 1

2⇡i

⌘

2

ˆ
@⌃

⌫

0

ˆ
@⌃

⌫

f(µ)g(�)

�� µ
[R(µ,A)�R(�, A)] dµ d�

=
1

2⇡i

ˆ
@⌃

⌫

0

g(�)
h 1

2⇡i

ˆ
@⌃

⌫

f(µ)

µ� �
dµ
i

R(�, A) d�

+
1

2⇡i

ˆ
@⌃

⌫

f(µ)
h 1

2⇡i

ˆ
@⌃

⌫

0

g(�)

�� µ
d�
i

R(µ,A) dµ

=
1

2⇡i

ˆ
@⌃

⌫

0

g(�)f(�)R(�, A)d� = (fg)(A).

Here we used that
1

2⇡i

ˆ
@⌃

⌫

f(µ)

µ� �
dµ = f(�)
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by Cauchy’s formula and

1

2⇡i

ˆ
@⌃

⌫

0

g(�)

�� µ
d� = 0

by Cauchy’s theorem since � 7! g(�)(�� µ)�1 is holomorphic on ⌃⌫0 .
The convergence property (10.10) follows from the dominated convergence

theorem. ⇤

Proposition 10.2.3. Let A be a sectorial operator and let

⇣�1,...,�n

(z) := z
n
Y

j=1

1

�j � z
,

where n > 2 and �j 6= 0 satisfies | arg(�j)| > !(A), j = 1, . . . , n. Then

⇣�1,...,�n

(A) = A
n
Y

j=1

R(�j , A).

Proof. By the convergence property of the Dunford calculus we may assume
that �i 6= �j for all i 6= j. Let !(A) < ⌫ < min

16j6n | arg(�j)| and put
⌃⌫(") := ⌃⌫ [ B(0, ") with 0 < " < min

16j6n |�j |. Set  (z) :=
Qn

j=1

1

�
j

�z .
By Cauchy’s theorem,

⇣�1,...,�n

(A)x =
1

2⇡i

ˆ
@⌃

⌫

 (z)zR(z,A) dz =
1

2⇡i

ˆ
@⌃

⌫

(")
 (z)zR(z,A) dz.

Writing zR(z,A) = I+AR(z,A) and applying Cauchy’s theorem to the func-
tion  and the residue theorem to the function  (·)AR(·, A) (which has poles
at �

1

, . . . ,�n), we obtain

⇣�1,...,�n

(A)x =
1

2⇡i

ˆ
@⌃

⌫

(")
 (z) dz +

1

2⇡i

ˆ
@⌃

⌫

(")
 (z)AR(z,A) dz

= 0 +

n
X

k=1

n
Y

j 6=k

1

�j � �k
AR(�k, A) = A

n
Y

j=1

R(�j , A),

where the latter follows by repeated application of the resolvent identity. ⇤

As a first application of the part of the lemma we continue with a very useful
formula that will play an important role in the developments in later sections,
the so-called Calderón reproducing formula. The second part of the proof uses
the following elementary lemma, which will also be useful at other places.

Lemma 10.2.4. Let � 2 (0,⇡). For every z 2 ⌃� we have

|1 + z| > (|z| _ 1) sin(� _ ⇡
2

) =

⇢

|z| _ 1, if � 2 (0, 1

2

⇡],
(|z| _ 1) sin(�), if � 2 ( 1

2

⇡,⇡).
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Proof. Let z = rei⌫ with r > 0 and ⌫ 2 (��,�). If |⌫| 6 1

2

⇡, then

|1 + z| =
�

(1 + r2 + 2r cos(⌫)
�

1/2 > (1 + r2)1/2 > r _ 1.

This estimate gives the required estimate if 0 < � 6 1

2

⇡.
Next consider the case 1

2

⇡ < � < ⇡ and 1

2

⇡ < |⌫| < �. If r > 1, then

|1 + z| > |=(1 + z)| = r| sin(⌫)| > r| sin(�)|.

If r 2 (0, 1), then

|1 + z|2 = 1 + r2 + 2r cos(⌫) > 1� cos2(⌫) = sin2(⌫) > sin2(�).

This proves the remaining case of the estimate. ⇤

Proposition 10.2.5 (Calderón reproducing formula I). Let A be a sec-
torial operator, let !(A) < � < ⇡, and assume f 2 H1(⌃�) satisfies

ˆ 1

0

f(t)
dt

t
= 1.

Then for all x 2 D(A) \ R(A) we have
ˆ 1

0

f(tA)x
dt

t
= x,

the integral being convergent as an improper integral in X. If z 7! log(z)f(z)
belongs to H1(⌃�), the same conclusion holds for all x 2 D(A) \ R(A).

The growth condition in second part of the statement holds in particular if

|f(z)| . min{|z|�↵, |z|↵}

for some ↵ > 0 and all z 2 ⌃�. The additional assumption on f can be avoided
if A has a bounded H1(⌃�)-calculus (see Proposition 10.2.15 below).

Proof. Fix an arbitrary x 2 D(A)\R(A). By analytic continuation the identity´1
0

f(tz) dt
t = 1 extends to z 2 ⌃�. Put

'a,b(z) :=

ˆ b

a
f(zt)

dt

t
.

This function is holomorphic on ⌃�. For |⌫| < � we use Fubini’s theorem and
a substitution to estimate

ˆ 1

0

|'a,b(se
i⌫)| ds

s
6
ˆ b

a

ˆ 1

0

|f(tsei⌫)| ds
s

dt

t
6 log(b/a)kfkH1

(⌃
�

)

.

Therefore 'a,b 2 H1(⌃�). Clearly, we have 'a,b(z) ! 1 as a # 0 and b ! 1.
Let !(A) < ⌫ < �. By Fubini’s theorem,
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'a,b(A)x =
1

2⇡i

ˆ
@⌃

⌫

'a,b(z)R(z,A)x dz

=
1

2⇡i

ˆ b

a

ˆ
@⌃

⌫

f(tz)R(z,A)x dz
dt

t
=

ˆ b

a
f(tA)x

dt

t
.

(10.11)

We recall from Propositions 10.1.8 and 10.2.3 that D(A) \ R(A) = R(⇣(A))
with ⇣(A) = A(I + A)�2, so we may write x = ⇣(A)y for some y 2 X. By
(10.11) and Theorem 10.2.2 we then obtain

ˆ b

a
f(tA)x

dt

t
= 'a,b(A)⇣(A)y = ('a,b⇣)(A)y ! ⇣(A)y = x

as a # 0 and b ! 1. This completes the proof of the first assertion.
Assume now that z 7! log(z)f(z) belongs to H1(⌃�). We claim that

sup
0<a6b<1

�

�

�

ˆ b

a
f(tA)

dt

t

�

�

�

6 Cf,�, (10.12)

with an explicit bound on the constant Cf,�. The improper convergence of´1
0

f(tA)x dt
t for x 2 D(A) \ R(A) then follows from the first part of the

proof and an approximation argument.
For all z 2 ⌃�,

'a,b(z) =

ˆ b

0

f(tz)
dt

t
�
ˆ a

0

f(tz)
dt

t

=

ˆ
1

0

f(tbz)
dt

t
�
ˆ

1

0

f(taz)
dt

t
=: h(bz)� h(az)

with h(z) :=
´
1

0

f(tz) dt
t . Set g(z) :=

´1
1

f(tz) dt
t and note that

 (z) := h(z)� z

1 + z
= �g(z) +

1

1 + z
, z 2 ⌃�.

We claim that  2 H1(⌃�). To show this we use both expressions for  on
different parts of the H1-norm. We have, for 0 < |⌫| < �,

ˆ
1

0

| (sei⌫)| ds
s

6
ˆ

1

0

|h(sei⌫)| ds
s

+

ˆ
1

0

1

|1 + sei⌫ | ds.

Using the inequality |1 + sei⌫ | > sin(� _ 1

2

⇡) from Lemma 10.2.4, the second
integral on the right-hand side is bounded by 1/ sin(� _ 1

2

⇡). For the first
integral we note that

ˆ
1

0

|h(sei⌫)| ds
s

6
ˆ

1

0

ˆ
1

0

|f(stei⌫)| dt
t

ds

s
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=

ˆ
1

0

ˆ
1

0

|f(stei⌫)| ds
s

dt

t

=

ˆ
1

0

ˆ s

0

|f(tei⌫)| ds
s

dt

t

=

ˆ
1

0

ˆ
1

t
|f(tei⌫)| ds

s

dt

t
=

ˆ
1

0

|f(tei⌫) log(t)| dt
t
.

On the interval (1,1) we have
ˆ 1

1

| (sei⌫)| ds
s

6
ˆ 1

1

|g(sei⌫)| dt
t
+

ˆ 1

1

1

|1 + sei⌫ |
ds

s
.

Using again that |1 + sei⌫ | > s sin(� _ 1

2

⇡), the latter integral is bounded by
1/ sin(� _ 1

2

⇡). In the same way as before we see that
ˆ 1

1

|g(sei⌫)| dt
t

6
ˆ 1

1

|f(tei⌫) log(t)| dt
t
.

It follows that  2 H1(⌃�) with

k kH1
(⌃

�

)

6 kz 7! f(z) log(z)kH1
(⌃

�

)

+ C�,

where C� = 2/ sin(� _ 1

2

⇡).
Let !(A) < ⌫ < �. By the above estimates, for all t > 0 we have

k (tA)k 6 1

2⇡

ˆ
@⌃

⌫

| (tz)|kzR(z,A)k |dz|
|z|

6 M⌫,A

2⇡

ˆ
@⌃

⌫

| (z)| |dz||z| 6 M⌫,A

2⇡
(kz 7! f(z) log(z)kH1

(⌃
�

)

+ C�)

Since

'a,b(z) = h(bz)� h(az) =  (bz)�  (az) +
(b� a)z

(1 + bz)(1 + az)
,

we can use the linearity of the Dunford calculus, Proposition 10.2.3 and the
resolvent identity to obtain

'a,b(A) =  (bA)�  (aA) + (b� a)A(1 + bA)�1(1 + aA)�1

=  (bA)�  (aA) + (1 + aA)�1 � (1 + bA)�1.

Hence by the previous estimates (and taking the infimum over all ⌫),

k'a,b(A)k 6 k (bA)k+ k (aA)k+ k(1 + bA)�1k+ k(1 + aA)�1k

6 2M�,A

⇣kz 7! f(z) log(z)kH1
(⌃

�

)

+ C�
2⇡

+ 1
⌘

.

This completes the proof of (10.12). ⇤
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As an application of the second part of Proposition 10.2.3 we describe a useful
approximation procedure.

Proposition 10.2.6. For n > 1 the functions

⇣n(z) :=
n

n+ z
� 1

1 + nz

belong to H1(⌃�) \H1(⌃�) for all 0 < � < ⇡, and they satisfy

k⇣nkH1
(⌃

�

)

6 1

sin(� _ 1

2

⇡)
.

In particular, for 0 < � 6 1

2

⇡ we have k⇣nkH1
(⌃

�

)

6 1. Moreover, for any
sectorial operator A,

(1) we have

⇣n(A) = n(n+A)�1 � 1

n

⇣ 1

n
+A

⌘�1

and for all � > !(A)

sup
n>1

k⇣n(A)k 6 2M�,A;

(2) for all x 2 X we have ⇣n(A)x 2 D(A) \ R(A);
(3) for all x 2 D(A) \ R(A) we have

lim
n!1

⇣n(A)x = x.

Proof. That ⇣n 2 H1(⌃�) is clear by writing

⇣n(z) =
(n2 � 1)z

(n+ z)(1 + nz)
. (10.13)

To obtain the bound for their norms in H1(⌃�) write

⇣n(z) =
n2 � 1

n2

1

(1 + z
n )(1 +

1

nz )
.

For z = rei⌫ with r > 0 and |⌫| < �, we have

w := n2

�

1 +
z

n

��

1 +
1

nz

�

= n2 + 1 + nrei⌫ +
n

r
e�i⌫

= n2 + 1 + n
�

r +
1

r

�

cos(⌫) + in
�

r � 1

r

�

sin(⌫).

Therefore, if ⌫ 2 [0,⇡/2], then cos(⌫) > 0 and hence |⇣(z)| 6 n2�1

n2
+1

6 1. It
remains to check that for ⌫ 2 [⇡/2,⇡), we have |⇣(z)| 6 1/sin(⌫). The latter
holds if and only if
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|w|2 > (n2 � 1)2 sin2(⌫).

The latter inequality indeed holds, for it is elementary to verify that

|w|2 � (n2 � 1)2 sin2(⌫) =
1

r2
�

(n2 + 1)r cos(⌫) + n(r2 + 1)
�

2 > 0.

(1): The identity for the operators ⇣n(A) follows from (10.13) and Propo-
sition 10.2.3, and their uniform boundedness with constant 2M�,A from the
sectoriality of A.

(2): That ⇣n(A)x 2 D(A) is immediate from the identity in (1), and that
⇣n(A)x 2 R(A) follows by rewriting

⇣n(A) = (n2 � 1)A(n+A)�1(1 + nA)�1.

(3): This is immediate from the assertions in part (1) and the convergence
results of (10.4) and (10.5). ⇤

The analytic semigroup generated by a densely defined sectorial operator

It is shown in Theorem G.5.2 that if A is a densely defined sectorial operator
on a Banach space X, then �A generates a bounded analytic C

0

-semigroup
(S(t))t>0

which is given by the inverse Laplace transform representation

S(t)x =
1

2⇡i

ˆ
�
etzR(z,�A)x dz, t > 0, x 2 X,

where � is the upwards oriented contour in the left-half plane specified in the
theorem.

Here we wish to point out that the operators S(t) can also be constructed
directly from the Dunford calculus of A. This is not immediately obvious, as
one cannot define them as S(t) = exp(�tA) using the exponential function
exp(�tz): this function does not belong to H1(⌃�) for any 0 < � < ⇡. This
defect can be remedied by compensating the non-integrability near 0 by an
additional additive term

exp(�tz) =
⇣

exp(�tz)� 1

1 + tz

⌘

+
1

1 + tz

and interpreting 1

1+t· (A) as (I + tA)�1.

Proposition 10.2.7. Let A be a densely defined sectorial operator satisfying
!(A) < 1

2

⇡, let !(A) < � < 1

2

⇡ and ⌘ 2 (0, 1

2

⇡��), and denote by (S(⇣))⇣2⌃
⌘

the bounded analytic C
0

-semigroup generated by �A. Then for all z 2 ⌃⌘ the
following identity holds:

S(⇣)� (1 + ⇣A)�1 = f⇣(A),

where
f⇣(z) = exp(�⇣z)� 1

1 + ⇣z
.
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Observe that z 7! exp(�z) � 1

1+z belongs to H1(⌃�+⌘), so f⇣ belongs to
H1(⌃�) and f⇣(A) can be defined through the Dunford calculus of A.

Proof. It suffices to prove the identity for ⇣ = t > 0, since then the result for
⇣ 2 ⌃⌘ follows by analytic continuation. Fix t > 0 and 0 < " < 1/t, and put
⌃⌘(") := ⌃⌘ [ B(0, "). By Cauchy’s theorem, the path of integration in the
Dunford integral may be changed from @⌃⌘ to @⌃⌘(") to obtain

ft(A) =
1

2⇡i

ˆ
@⌃

⌘

(")
ft(z)R(z,A) dz

=
1

2⇡i

ˆ
@⌃

⌘

(")
e�tzR(z,A) dz � 1

2⇡i

ˆ
@⌃

⌘

(")

1

1 + tz
R(z,A) dz.

After substituting z 7! �z, the first integral is seen to coincide with the inverse
Laplace transform representation of S(t) of Theorem G.5.2 (applied to �A).
To evaluate the second integral we use the holomorphy of z 7! R(z,A)x and
Cauchy’s theorem:

1

2⇡i

ˆ
@⌃

⌫

(")

1

1 + tz
R(z,A) dz = � 1

2⇡it

ˆ
�

R(z,A)

�t�1 � z
dz

= �t�1R(�t�1, A) = (I + tA)�1.

This proves the identity ft(A) = S(t)� (1 + tA)�1. ⇤

It is worth mentioning that for densely defined sectorial operators A satisfying
!(A) < 1

2

⇡, the convergence assertions in parts (1) and (2) of Proposition
10.1.8 have counterparts in terms of the semigroup (S(t))t>0

generated by
�A. As a rule of thumb, for t ! 1 (resp. for t # 0) the limiting behaviour of
S(t) is the same as that for A(t+ A)�1 t ! 1 (resp. for t # 0), and also the
same as that for t(t + A)�1 for t # 0 (resp. for t ! 1). Let us illustrate this
by proving one of these correspondences: we will show that

for all x 2 R(A) we have limt!1 S(t)x = 0.

By the inverse Laplace transform representation,

S(t)x =
1

2⇡i

ˆ
@⌃

⌘

(")
etz(z +A)�1x dz =

1

2⇡i

ˆ
@⌃

⌘

(")

ez

z

⇥z

t

�z

t
+A)�1

�⇤

x dz,

where ⌃⌘(") is as before. In the second identity we used Cauchy’s theorem to
justify that we did not change the path of integration. By repeating the proof
of Proposition 10.1.7(2) verbatim, z

t (
z
t + A)�1 tends to 0 strongly as t ! 1

on R(A). Therefore the claim follows by dominated convergence.
We can push this idea a little further. Writing (cf. Proposition G.2.3)

S(t)x � x = �
´ t
0

AS(s)x ds, for x 2 R(A) we may pass to the limit t ! 1
to obtain a special case of the Calderón reproducing formula (Proposition
10.2.5):
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x = lim
t!1

x� S(t)x =

ˆ 1

0

AS(s)x ds =

ˆ 1

0

f(sA)x
ds

s
,

for f(z) = z exp(�z), with improper convergence of the integral. To justify
the last step in this computation we use the following fact which, for later
reference, we state as a lemma:

Lemma 10.2.8. Let A be a densely defined sectorial operator and let f(z) =
z exp(�z). Then for all t > 0 we have f(tA) = tAS(t).

Proof. Fixing !(A) < ⌫ < 1

2

⇡ and using the notation as before, we compute

f(tA) =
1

2⇡i

ˆ
@⌃

⌫

(")
ze�zR(z, tA) dz

=
1

2⇡i

ˆ
@⌃

⌫

(")
tze�tzR(z,A) dz

=
1

2⇡i

ˆ
@⌃

⌫

(")
te�tzAR(z,A) dz +

1

2⇡i

ˆ
@⌃

⌫

(")
te�tz dz

=
1

2⇡i
A

ˆ
@⌃

⌫

(")
te�tzR(z,A) dz

= tAS(t),

where the last step follows from Theorem G.5.2 after the substitution z 7! �z.
In the computation Cauchy’s theorem was used twice, first to see that one
integral vanishes, and then to change the path of integration to the one used
in Theorem G.5.2. Hille’s theorem (Theorem 1.2.4) was used to pull A out of
the integral. ⇤

The technique used in Proposition 10.2.7 is not limited the example treated
here, but it will not pursue it any further. Instead, Volume III will include
an account of the so-called extended Dunford calculus, which systematically
develops an idea introduced in (10.14) and allows the treatment of a wider
ranges of examples. For now we content ourselves with a variation on this
theme which provides a formula for the operators R(µ,A) in terms of a Dun-
ford integral.

Example 10.2.9. Let A be a sectorial operator and let !(A) < � < ⇡. Then
for all µ /2 ⌃� for all x 2 R(A) we have

1

2⇡i

ˆ
@⌃

�

(µ� z)�1R(z,A)x dz = R(µ,A)x.

To see that the integral is absolutely convergent near the origin, we write
x = Ay with y 2 D(A) and use that R(z,A)x = AR(z,A)y = zR(z,A)y � y
remains bounded near 0. Defining ⌃⌫(") as before, from Cauchy’s integral
theorem and the holomorphy of z 7! R(z,A)x we find

1

2⇡i

ˆ
@⌃

�

R(z,A)x

µ� z
dz =

1

2⇡i

ˆ
@⌃

�

(")

R(z,A)x

µ� z
dz = R(µ,A)x.
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10.2.b The H1-calculus

We now restrict the Dunford calculus to functions in H1(⌃�)\H1(⌃�) and
address the problem of extending this restricted calculus to general functions
in H1(⌃�). This is a non-trivial problem, if only because H1(⌃�)\H1(⌃�)
fails to be dense in H1(⌃�), but more profoundly, because the Dunford in-
tegrals become singular for functions in H1(⌃�).

Definition 10.2.10 (Operators with a bounded H1-calculus). Let A
be a sectorial operator on X and let !(A) < � < ⇡. The operator A is said to
have a bounded H1(⌃�)-calculus if there exists a constant C > 0 such that

kf(A)k 6 Ckfk1, f 2 H1(⌃�) \H1(⌃�).

We define

!H1(A) := inf
�

!(A) < � < ⇡ : A has a bounded H1(⌃�)-calculus
 

.

Suppose now that A is a sectorial operator on X and let f 2 H1(⌃�)
with !(A) < � < ⇡. By Propositions 10.1.8 and 10.2.3, for the function
⇣(z) := z(1 + z)�2 we have ⇣(A) = A(I + A)�2 and D(A) \ R(A) = R(⇣(A)).
If x 2 D(A) \ R(A), say x = ⇣(A)y with y 2 X, define

 A(f)x := (f⇣)(A)y (10.14)

using the Dunford calculus of A applied to f⇣ 2 H1(⌃�). To see that this
is well defined suppose that ⇣(A)y = 0. Then (I + A)�1[(1 + A)�1y � y] =
�A(I + A)�2y = 0, so (1 + A)�1y � y, and by the resolvent identity this
implies R(z,A)y = z�1y. Then, with !(A) < ⌫ < �,

(f⇣)(A)y =
1

2⇡i

ˆ
@⌃

⌫

f(z)⇣(z)R(z,A)y dz =
1

2⇡i

ˆ
@⌃

⌫

f(z)

(1 + z)2
y dz = 0

by Cauchy’s theorem.
For f 2 H1(⌃�) \H1(⌃�) we have  A(f)x = (f⇣)(A)y = f(A)⇣(A)y =

f(A)x by the multiplicativity of the Dunford calculus. This shows that

 A(f) = f(A) on D(A) \ R(A). (10.15)

The next proposition shows that whether or not A has a bounded H1-
calculus is completely determined by the part of A in D(A) \ R(A).

Proposition 10.2.11. Let A be a sectorial operator on X and let !(A) <
� < ⇡. Let C > 0. The following assertions are equivalent:

(1) A has a bounded H1(⌃�)-calculus, i.e., there exists a constant C > 0
such that for all f 2 H1(⌃�) \H1(⌃�),

kf(A)xk 6 Ckfk1kxk, x 2 X;
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(2) there exists a constant C > 0 such that for all f 2 H1(⌃�) \H1(⌃�),

kf(A)xk 6 Ckfk1kxk, x 2 D(A) \ R(A);

(3) there exists a constant C > 0 such that for all f 2 H1(⌃�),

k A(f)xk 6 Ckfk1kxk, x 2 D(A) \ R(A).

If C
(1)

, C
(2)

, and C
(3)

denote the respective best constants, then C
(2)

6 C
(1)

6
2M�,AC

(3)

and C
(3)

6 C
(2)

/ sin(� _ 1

2

⇡), and if D(A) \ R(A) is dense, then
C

(1)

6 C
(3)

.

Observe that if !H1(A) 6 1

2

⇡, then C
(3)

6 C
(2)

, and if in addition D(A)\R(A)
is dense then all three constants are equal:

C
(1)

= C
(2)

= C
(3)

.

Proof. (1))(2): This holds trivially, with bound C
(2)

6 C
(1)

.
(2))(3): Let f 2 H1(⌃�) be given and let ⇣n be the functions of Propo-

sition 10.2.6. Then ⇣nf 2 H1(⌃�) \ H1(⌃�). Using the definition (10.14),
the convergence property of the Dunford calculus, its multiplicativity, the as-
sumption in (2), and the H1-bound for the ⇣n of Proposition 10.2.6 we obtain,
for all x 2 D(A) \ R(A), say x = ⇣(A)y,

k A(f)xk = k(f⇣)(A)yk = lim
n!1

k(⇣nf⇣)(A)yk

= lim
n!1

k(⇣nf)(A)⇣(A)yk 6 C lim sup
n!1

k⇣nfk1k⇣(A)yk

6 C

sin(� _ 1

2

⇡)
kfk1kxk.

This proves that (3) holds, with bound C
(3)

6 C
(2)

/ sin(� _ 1

2

⇡).
(3))(1): For any f 2 H1(⌃�) \H1(⌃�) and x 2 X we have ⇣n(A)x 2

D(A) \ R(A) and therefore by the convergence property of the Dunford cal-
culus, its multiplicativity, (10.15), and the assumption in (3),

kf(A)xk = lim
n!1

k(⇣nf)(A)xk = lim
n!1

kf(A)⇣n(A)xk

= lim
n!1

k A(f)⇣n(A)xk 6 Ckfk1 lim inf
n!1

k⇣n(A)xk.

If D(A)\R(A) is dense, for x 2 X we have limn!1 ⇣n(A)x = x by the conver-
gence assertion in Proposition 10.2.6; this gives (1) with bound C

(1)

6 C
(3)

.
In general, all we can say is that k⇣n(A)xk 6 2M�,ACkxk using the bound on
⇣n(A) of Proposition 10.2.6; this gives (1) with bound C

(1)

6 2M�,AC
(3)

. ⇤

Suppose now that A has a bounded H1(⌃�)-calculus. We claim that for all
f 2 H1(⌃�) and x 2 D(A) \ R(A) we have  A(f)x 2 D(A) \ R(A). To see
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this it suffices to consider x 2 D(A) \ R(A), say x = ⇣(A)y. Then, arguing as
in the above proof,

 A(f)x = (f⇣)(A)y = lim
n!1

(⇣nf⇣)(A)y = lim
n!1

⇣(A)(⇣nf)(A)y

with ⇣(A)(⇣nf)(A)y 2 R(⇣(A)) = D(A) \ R(A). This proves the claimed in-
variance.

We may now define a bounded operator

f(A) : D(A) \ R(A) ! D(A) \ R(A)

by
f(A)x :=  A(f)x, x 2 D(A) \ R(A).

By (10.15), for f 2 H1(⌃�) \H1(⌃�) this definition is consistent with the
Dunford calculus.

Definition 10.2.12 (The H1-calculus). Let A be a sectorial operator ad-
mitting a bounded H1(⌃�)-calculus. The mapping

f 7! f(A)

from H1(⌃�) to L (D(A) \ R(A)) defined above is called the H1(⌃�)-
calculus of A.

By Proposition 10.2.11 we have the norm estimate

kf(A)kL (D(A)\R(A))

6 M1
�,Akfk1, f 2 H1(⌃�),

where M1
�,A := C

(3)

is the best constant in part (3) of the proposition. This
constant will be referred to as the boundedness constant of the H1(⌃�)-
calculus of A. Note that we have already defined the angle !H1(A) of the
H1(⌃�)-calculus through Definition 10.2.10; Proposition 10.2.11 shows that
we could equivalently have defined this angle using Definition 10.2.12.

The next theorem describes some elementary properties of the H1-
calculus.

Theorem 10.2.13. Let A be a sectorial operator on X with a bounded
H1(⌃�)-calculus. The mapping

f 7! f(A)

from H1(⌃�) to L (D(A) \ R(A)) is linear and multiplicative and satisfies

1(A)x = x and rµ(A)x = R(µ,A)x, x 2 D(A) \ R(A),

where rµ(z) = (µ � z)�1 with µ /2 ⌃�. Furthermore, if the functions fn, f 2
H1(⌃�) are uniformly bounded and satisfy fn(z) ! f(z) for all z 2 ⌃�, then

lim
n!1

fn(A)x = f(A)x, x 2 D(A) \ R(A). (10.16)



382 10 The H1-functional calculus

Proof. The linearity and multiplicativity are consequences of the convergence
property, since it allows us to approximate functions f in H1(⌃�) by func-
tions fn = ⇣nf in H1(⌃�)\H1(⌃�), where the functions ⇣n are as in Propo-
sition 10.2.6, and apply the linearity and multiplicativity of the Dunford cal-
culus.

For x 2 D(A) \ R(A) the identity 1(A)x = x is clear from (10.14). Simi-
larly, writing x = ⇣(A)y, by (10.14) we have rµ(A)x = (rµ⇣)(A)y. If we can
prove that (rµ⇣)(A) = AR(µ,A)(I + A)�2 the identity rµ(A)x = R(µ,A)x
follows from it since x = ⇣(A)y = A(I+A)�2y. But this identity follows from
Proposition 10.2.3.

Both identities 1(A)x = x and rµ(A)x = R(µ,A)x extend to x 2
D(A) \ R(A) by the boundedness of the operators involved. Note that the
identity for the resolvent is consistent with the formula in Example 10.2.9.

We now turn to the proof of the convergence property. Using first (10.14),
then the convergence property of the Dunford calculus, and then again (10.14),
for all x = ⇣(A)y 2 D(A) \ R(A) we obtain

lim
n!1

fn(A)x = lim
n!1

(fn⇣)(A)y = (f⇣)(A)y = f(A)x.

This gives the desired convergence on the dense subspace D(A)\R(A). Since
the operators fn(A) are uniformly bounded (as the functions fn are uniformly
bounded in H1(⌃�)), the result follows from this. ⇤

Theorem 10.2.14 (Uniqueness of the H1-calculus). Let A be a sec-
torial operator on X and let !(A) < � < ⇡. Suppose  : H1(⌃�) !
L (D(A) \ R(A)) is bounded, linear and multiplicative, satisfies

 rµ = R(µ,A)

for all functions rµ(z) = (µ � z)�1 with µ 62 ⌃�, and has the following con-
vergence property:

if fn, f are functions in H1(⌃�) satisfying fn ! f pointwise on ⌃�
and supn kfnk1 < 1, then  (fn)x !  (f)x for all x 2 D(A) \ R(A).

Then:

(1) A has a bounded H1(⌃�)-calculus;
(2)  f = f(A) as operators in L (D(A) \ R(A)) for all f 2 H1(⌃�).

Proof. First consider a function f 2 H1(⌃#) \H1(⌃#) with � < # < ⇡. We
can interpret Cauchy’s formula as a Bochner integral in H1(⌃�):

f(·) = 1

2⇡i

ˆ
@⌃

�

0

f(µ)

µ� · dµ =

ˆ
@⌃

�

0

h(µ)rµ(·) dµ

where � < �0 < #, the function µ 7! rµ(·) := µ(µ� ·)�1 is uniformly bounded
and continuous on @⌃�0 as a function with values in H1(⌃�), and µ 7!
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h(µ) := 1

2⇡if(µ)/µ is integrable on @⌃�0 . The convergence property implies
that for any x 2 D(A) \ R(A) the operator  x : f 7!  (f)x is closed as an
operator from H1(⌃�) to X. Therefore, by Hille’s theorem (Theorem 1.2.4)
we may pull  x through the integral defining  (f):

 (f)x =

ˆ
@⌃

�

0

h(µ) (rµ)x dµ =

ˆ
@⌃

�

0

h(µ)µR(µ,A)x dµ

=
1

2⇡i

ˆ
@⌃

�

0

f(µ)R(µ,A)x dµ = f(A)x.

If f 2 H1(⌃�) \ H1(⌃�), consider the function fn(z) = f(z1�
1
n ) which

belongs to H1(⌃� n

n�1
) \ H1(⌃� n

n�1
) for n > 2. We just saw that  (fn) =

fn(A). Furthermore limn!1 fn(z) = f(z) and (fn)n>1

is uniformly bounded
in H1(⌃�). Therefore, the convergence property implies  (fn)x !  (f)x for
all x 2 D(A) \ R(A). On the other hand, writing x = ⇣(A)y 2 D(A) \ R(A),
we find

fn(A)x = fn(A)⇣(A)y = (fn⇣)(A)y ! (f⇣)(A)y = f(A)⇣(A)y = f(A)x,

where we used Theorem 10.2.2. This shows that f(A) =  (f) on D(A) \
R(A), and then on D(A) \ R(A) by the boundedness of these operators. As a
consequence, for all x 2 D(A) \ R(A) we obtain

kf(A)xk = k (f)xk 6 k kkfk1kxk.

By Proposition 10.2.11 this proves (1).
For a general f 2 H1(⌃�) there are fn 2 H1(⌃�) \ H1(⌃�) with

fn(�) ! f(�) for � 2 ⌃� and supn kfnkH1
(⌃

�

)

< 1. As both f 7!  f
and f 7! f(A) have the convergence property (the latter in the sense of
Theorem 10.2.13), for all x 2 D(A) \ R(A) we conclude that  (f)x =
limn!1  (fn)x = limn!1 fn(A)x = f(A)x, and by a density argument this
extends to x 2 D(A) \ R(A). This proves (2). ⇤

Assuming the boundedness of the H1-calculus we can eliminate the growth
assumption in the second part of the Calderón reproducing formula (Propo-
sition 10.2.5):

Proposition 10.2.15 (Calderón reproducing formula II). Let A be a
sectorial operator with a bounded H1(⌃�)-calculus, where !(A) < � < ⇡,
and suppose that f 2 H1(⌃�) satisfies

ˆ 1

0

f(t)
dt

t
= 1.

Then for all x 2 D(A) \ R(A) we have
ˆ 1

0

f(tA)x
dt

t
= x,
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the integral being convergent as an improper integral in X. Moreover,

sup
0<a6b<1

�

�

�

ˆ b

a
f(tA)x

dt

t

�

�

�

6 M1
�,AkfkH1

(⌃
�

)

kxk.

Proof. In the first part of Proposition 10.2.5 we have already seen that the
reproducing identity holds for x 2 D(A) \ R(A). Moreover, as in the proof
of the second part of the proposition, the identity extends to D(A) \ R(A)
if we can prove the uniform boundedness of the operators x 7! 'a,b(A)x :=´ b
a f(tA)x dt

t , 0 < a 6 b < 1, on this space. But in view of

k'a,bkH1
(⌃

�

)

= sup
z2⌃

�

|'a,b(z)| 6 sup
z2⌃

�

ˆ 1

0

|f(tz)| dt
t

= kfkH1
(⌃

�

)

,

this follows from the boundedness of the H1(⌃�)-calculus. ⇤

We conclude this section with two constructions of new sectorial operators
from old. The first describes a simple scaling property that will be frequently
used without comment. For f : ⌃# ! C and µ 2 C put

fµ(z) := f(µz), z 2 ⌃�.

Lemma 10.2.16. Let A be a sectorial operator and let !(A) < � < # < ⇡
and µ 2 ⌃#��. If f 2 H1(⌃#), then:

(1) µA is sectorial with !(µA) < #;
(2) fµ 2 H1(⌃�) and fµ(A) = f(µA);
(3) the mapping µ 7! f(µA) is holomorphic from ⌃��# to L (D(A) \ R(A)).

Moreover, if A admits a bounded H1(⌃�)-calculus and f 2 H1(⌃#), then:

(1)0 µA admits a bounded H1-calculus with !H1(µA) < #;
(2)0 fµ 2 H1(⌃�) and fµ(A) = f(µA);
(3)0 the mapping µ 7! f(µA) is holomorphic from ⌃��# to L (D(A) \ R(A)).

Proof. The first two assertions are obvious. For the third, let !(A) < ⌫ < �.
Let D be a closed disk contained in ⌃#��. By Fubini’s theorem and Cauchy’s
theorem, we obtain

ˆ
@D

f(µA) dµ =
1

2⇡i

ˆ
@⌃

⌫

ˆ
@D

f(µz)R(z,A) dµ dz = 0.

Now the holomorphy of µ 7! f(µA) follows from Morera’s theorem.
The proofs of (1)0–(3)0 are similar. For (3)0 let ⇣n be the functions con-

sidered in Proposition 10.2.6. By (3), µ 7! f(µA)⇣n(A) is holomorphic and
thus ˆ

@D
f(µA)⇣n(A)x dµ = 0, x 2 D(A) \ R(A).
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By the dominated convergence theorem and Proposition 10.2.6,
ˆ
@D

f(µA)x dµ = 0, x 2 D(A) \ R(A).

Therefore, the holomorphy of µ 7! f(µA)x follows from Morera’s theorem.
Inspection of the proof of Proposition B.3.1 shows that µ 7! f(µA) 2
L (D(A) \ R(A)) is continuous in the uniform operator topology. Therefore,
Corollary B.3.3 implies that µ 7! f(µA) is holomorphic as an operator-valued
function. ⇤

The second construction formalises the idea of “substituting” A into an integral
expression.

Lemma 10.2.17. Let A be a sectorial operator on a Banach space X and let
!(A) < � < ⇡. Assume either one of the following:

(a) p = 1;
(b) p = 1, A has a bounded H1-calculus, and !H1(A) < � < ⇡.

Let (S,A , µ) be a �-finite measure space. Suppose that f : S ⇥ ⌃� ! C is a
measurable function with the following properties:

(i) z 7! f(s, z) belongs to Hp(⌃�) for all s 2 S;

(ii) sup
|⌫|<�

�

�

�

t 7!
ˆ
S
|f(s, ei⌫t)| dµ(s)

�

�

�

Lp

(R+, dt

t

)

< 1.

Then the function g(z) =
´
S f(s, z) dµ(s) belongs to Hp(⌃�) and

g(A)x =

ˆ
S
f(s,A)x dµ(s),

⇢

x 2 X in case (a)
x 2 D(A) \ R(A) in case (b) .

Proof. (a): Let D be a closed disk contained in ⌃�. Applying first Fubini’s
theorem and then Cauchy’s theorem we see that

ˆ
@D

g(�) d� =

ˆ
S

⇣

ˆ
@D

f(s,�) d�
⌘

dµ(s) = 0.

Hence Morera’s theorem implies that g is holomorphic on ⌃�. Also,

sup
|⌫|<�

kg(ei⌫ ·)kLp

(R+, dt

t

)

6 sup
|⌫|<�

�

�

�

t 7!
ˆ
S
|f(s, ei⌫t)| dµ(s)

�

�

�

Lp

(R+, dt

t

)

< 1,

and thus g 2 Hp(⌃�). By Fubini’s theorem,

g(A)x =
1

2⇡i

ˆ
@⌃

⌫

g(�)R(�, A)x d�

=

ˆ
S

⇣ 1

2⇡i

ˆ
@⌃

⌫

f(s,�)R(�, A)x d�
⌘

dµ(s) =

ˆ
S
f(s,A)x dµ(s)
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for all x 2 X.
(b): Let ⇣n be the functions considered in Proposition 10.2.6 and put

fn(s, z) := ⇣n(z)f(s, z), g(z) :=

ˆ
S
fn(s, z) dµ(s).

Then fn 2 H1(⌃�) and hence, by the result of (a),

gn(A)x =

ˆ
S
fn(s,A)x dµ(s), x 2 X.

Letting n ! 1, the required identity follows from Theorem 10.2.13 and the
dominated convergence theorem. ⇤
Proposition 10.2.18 (Restrictions). Let Y ✓ X be a closed subspace which
is invariant under R(�, A) for all � 2 %(A). Then the part AY of A to Y has
a bounded H1-calculus on X, then AY has a bounded H1-calculus on Y with
!H1(AY ) 6 !H1(A), and for all f 2 H1(⌃�) with !H1(A) < � < ⇡ we
have

f(AY )x = f(A)x, x 2 Y.

Proof. For !(A) < � < ⇡ and � 2 {⌃�, the restricted resolvent operator
R(�, A)|Y is a two-sided inverse of � � AY , and therefore � 2 %(AY ) and
R(�, AY ) = R(�, A)|Y . From this, the rest trivially follows. ⇤

It suffices to assume the invariance of Y under the resolvent for one point
�
0

2 {⌃�. Indeed, for |�� �
0

| < � with � > 0 small enough, by the Neumann
series argument of Lemma G.1.1 (or repeated use of the resolvent identity)
we have � 2 %(A) and

R(�, A) =
1
X

n=0

(�� �
0

)nR(�
0

, A)n+1.

This implies that Y is invariant under R(�, A). The set of all � 2 %(A) for
which the resolvent leaves Y invariant is therefore open, and evidently it is
closed as well. It therefore includes the connected component of %(A) contain-
ing �

0

, which contains {⌃�; the latter is all that was used in the proof of the
proposition.

Next we will consider the functional calculus for the adjoint operator A⇤.
A brief introduction to the theory of adjoint operators can be found in Section
G.1. If A is a densely defined sectorial operator, then its adjoint A⇤ is sectorial
as well and !(A) = !(A⇤); this is immediate from the fact that R(�, A⇤) =
R(�, A)⇤ for all � 2 %(A⇤) = %(A). Therefore, if !(A) < ⌫ < � < ⇡, then for
functions f 2 H1(⌃�) the operators f(A⇤) defined by Dunford calculus,

f(A⇤) =
1

2⇡i

ˆ
@⌃

⌫

f(z)R(z,A⇤) dz,

are well defined and satisfy f(A⇤) = f(A)⇤.
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Lemma 10.2.19. Let A be a densely defined sectorial operator and let !(A) <
� < ⇡. Then for all x 2 D(A) \ R(A) = R(A) and x⇤ 2 D(A⇤) \ R(A⇤), we
have

1

2MA,�
kxk 6 sup

�

|hx, y⇤i| : y⇤ 2 D(A⇤) \ R(A⇤), ky⇤k 6 1
 

6 kxk

1

2MA,�
kx⇤k 6 sup

�

|hy, x⇤i| : y 2 D(A) \ R(A), kyk 6 1
 

6 kx⇤k.

Proof. It suffices to prove the left-hand estimates. Fix x 2 D(A) \ R(A) and
put

|||x||| := sup{|hx, y⇤i| : y⇤ 2 D(A⇤) \ R(A⇤), ky⇤k 6 1}.

Choose x⇤ 2 X⇤ such that |hx, x⇤i| = kxk. As in Proposition 10.2.6 we have
⇣n(A)x ! x as n ! 1, y⇤n := ⇣n(A⇤)x⇤ 2 D(A⇤) \ R(A⇤), and ky⇤nk 6
2M�,Akx⇤k. Then

kxk = |hx, x⇤i| = lim
n!1

|h⇣n(A)x, x⇤i| = lim
n!1

|hx, y⇤ni| 6 2M�,A|||x|||.

This proves the first assertion. The proof of the second is similar. ⇤

Proposition 10.2.20 (Adjoints). Let A be a densely defined sectorial oper-
ator with a bounded H1-calculus. Then A⇤ has a bounded H1-calculus, we
have !H1(A) = !H1(A⇤), and for all f 2 H1(⌃�) with !H1(A) < � < ⇡
we have

hx, f(A⇤)x⇤i = hf(A)x, x⇤i, x 2 D(A) \ R(A), x⇤ 2 D(A⇤) \ R(A⇤).

Proof. For f 2 H1(⌃�) \ H1(⌃�), the identity f(A)⇤ = f(A⇤) implies
hx, f(A⇤)x⇤i = hf(A)x, x⇤i for all x 2 X and x⇤ 2 X⇤ and therefore

|hx, f(A⇤)x⇤i| 6 M1
�,AkfkH1

(⌃
�

)

kxk kx⇤k.

Taking the supremum over all x 2 X with kxk 6 1, we see that A⇤ has a
bounded H1(⌃�)-calculus with angle !H1(A⇤) 6 !H1(A).

Now let f 2 H1(⌃�) and let ⇣n be as in Proposition 10.2.6. Then by
the convergence property of Theorem 10.2.13, for all x 2 D(A) \ R(A) and
x⇤ 2 D(A⇤) \ R(A⇤) we obtain

hx, f(A⇤)x⇤i = lim
n!1

hx, (⇣nf)(A⇤)x⇤i = lim
n!1

h(⇣nf)(A)x, x⇤i = hf(A)x, x⇤i,

using that ⇣nf 2 H1(⌃�) \H1(⌃�) in the middle step, so that the duality
identity of the first part of the proof applies.

To finish the proof it remains to be shown that the converse inequality
!H1(A) 6 !H1(A⇤) holds. But this follows by applying what has been said
above to the part of A⇤ in D(A⇤) \ R(A⇤) and using the lemma to embed X
isomorphically onto a closed subspace of the dual of D(A⇤) \ R(A⇤). ⇤
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10.2.c First examples

We will now present some first examples of operators having a bounded H1-
calculus. They only serve to give a first flavour of the subject, and most of
them admit far-reaching generalisations, some of which are collected in the
Notes at the end of the chapter.

Proposition 10.2.21 (Bounded operators). Let A be a bounded operator
whose spectrum �(A) avoids the negative axis (�1, 0]. For any 0 < � < ⇡
such that �(A) ✓ ⌃�, A has a bounded H1(⌃�)-calculus.

Proof. We define the calculus by the Dunford integral

f(A) =
1

2⇡i

ˆ
�
f(z)R(z,A) dz,

where � is a simple closed Jordan curve contained in ⌃� containing the
spectrum of A in its interior, oriented in the counter-clockwise direction. If
f 2 H1(⌃�) \ H1(⌃�), then by Cauchy’s theorem the contour � may be
changed to @⌃�, and therefore the above definition agrees with the Dunford
calculus of A as a sectorial operator. ⇤

The condition 0 /2 �(A) \ (�1, 0] cannot be omitted, as can be seen from
Corollary 10.2.29.

Proposition 10.2.22 (Pointwise multipliers). Let (S,A , µ) be a measure
space, let 0 < � < ⇡, and let m : S ! C be a measurable function taking
values in ⌃� µ-almost surely. Let 1 6 p < 1 and consider the pointwise
multiplication operator Am on Lp(S) given by

Mm�(s) := m(s)�(s), s 2 S,

with its natural domain D(Mm) = {� 2 Lp(S) : m� 2 Lp(S)}. Then Am is a
sectorial operator with a bounded H1(⌃�)-calculus on Lp(S).

Proof. For z 62 ⌃� we have z 2 %(Am) and R(z,Am)�(s) = (z�m(s))�1f(s).
Fix ! < ⌫ < �. For functions f 2 H1(⌃�) \H1(⌃�) and � 2 Lp(S) we then
have

f(Am)�(s) =
1

2⇡i

ˆ
@⌃

⌫

f(z)

z �m(s)
�(s) dz = f(m(s))�(s)

for µ-almost all s 2 S. Clearly, kf(Am)k 6 kfk1 and therefore Am has a
bounded H1(⌃�)-calculus on Lp(S), with constant M1

�,A
m

6 1. ⇤

We continue with two basic Hilbertian examples.

Proposition 10.2.23 (Positive self-adjoint operators). Let A be a
densely defined self-adjoint operator on a complex Hilbert space H which is
positive in the sense that the spectrum �(A) is contained in the positive half-
line [0,1). Then A has a bounded H1-calculus of angle 0.
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Proof. By Proposition 10.2.11 it suffices to consider the part of A in H
0

:=
D(A) \ R(A). Considered as an operator on that space, A is positive, self-
adjoint and injective by Proposition 10.1.8.

By the spectral theorem for self-adjoint operators, A is unitarily equivalent
to a multiplication operator. More precisely, there exists a measure space
(S,A , µ) and measurable function m : S ! [0,1) and a invertible operator
U 2 L (H

0

, L2(S)) such that

A = U�1AmU,

where Am is as in Proposition 10.2.22. Since A is injective, Am is injective and
hence {s 2 S : m(s) = 0} has measure zero. Since the property of having a
bounded H1-calculus calculus is inherited under similarity transforms, from
Proposition 10.2.22 we conclude that A is sectorial and has a bounded H1-
calculus with !H1(A) = 0. ⇤

Theorem 10.2.24 (Contraction semigroups on Hilbert spaces). Sup-
pose that �A generates a C

0

-contraction semigroup on a Hilbert space H.
Then A has a bounded H1(⌃�)-functional calculus for all 1

2

⇡ < � < ⇡ and

kf(A)k 6 kfkH1
(⌃ 1

2
⇡

)

, f 2 H1(⌃�) \H1(⌃�).

In particular, this calculus has angle !H1(A) 6 1

2

⇡ and constants M1
�,A 6 1

for all 1

2

⇡ < � < ⇡.

In Theorem 10.4.21 it will be shown that for any sectorial operator A with a
bounded H1-calculus on a Hilbert space one has equality !H1(A) = !(A).
Moreover, a characterisation of those operators satisfying !H1(A) < 1

2

⇡ will
be given in Theorem 10.4.22.

Proof. We prove the theorem in three steps.
Step 1 – First we assume in addition that A is a bounded operator and

that �A+ c generates a C
0

-contraction semigroup on H for some fixed c > 0,
or equivalently (see Corollary G.4.5) that <(Ax|x) > ckxk2 for all x 2 H.
Observe that {� 2 C : <(�) > �c} ✓ ⇢(A) and since �(A) is compact, A is
sectorial of angle 1

2

⇡ � � for some � > 0. Next note that

((A+A?)x|x) = (Ax|x) + (Ax|x) = 2<(Ax|x) > 2ckxk2,

so that A+A? is self-adjoint and positive.
Fix 1

2

⇡ < � < ⇡ and let f 2 H1(⌃�). Then � 7! f(�)(A? + �)�1 is
holomorphic in {⌃ 1

2⇡��
. By Cauchy’s theorem applied to the boundary of the

semi-annulus {r 6 |z| 6 R} \ {<z > 0}, upon letting r # 0 and R ! 1 and
using Lemma H.1.4, we obtain

ˆ
iR

f(�)(A? + �)�1 d� = 0.
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Hence,

f(A) =
1

2⇡i

ˆ
iR

f(�)R(�, A) d�

= � 1

2⇡i

ˆ
iR

f(�)
⇥

(A� �)�1 + (A? + �)�1

⇤

d�

=
1

2⇡

ˆ
R
f(it)(A? + it)�1(A? +A)(A� it)�1 dt.

Therefore, for all x, y 2 H,

(f(A)x|y) (10.17)

=
1

2⇡

ˆ
R
f(it)

⇣

(A? +A)1/2(A� it)�1x
�

�

�

(A? +A)1/2(A� it)�1y
⌘

dt.

So far we took f 2 H1(⌃�). Taking f = ⇣n as in Proposition 10.2.6 an letting
n ! 1, and taking x = y in (10.17), for all x 2 H (remember that in this
step A is bounded and invertible) we obtain

kxk2 =
1

2⇡

ˆ
R
k(A? +A)1/2(A� it)�1xk2 dt. (10.18)

It now follows from (10.17) and (10.18) that

|(f(A)x, y)| 6 kfkH1
(⌃ 1

2
⇡

)

⇣ 1

2⇡

ˆ
R
k(A? +A)1/2(A� it)�1xk2 dt

⌘

1/2

⇥
⇣ 1

2⇡

ˆ
R
k(A? +A)1/2(A� it)�1yk2 dt

⌘

1/2

= kfkH1
(⌃ 1

2
⇡

)

kxkkyk.

Step 2 – We reduce the general case to the case considered in Step 1. The
assumptions of the theorem imply that A is sectorial of angle 1

2

⇡.
For any " > 0 define a bounded operator

A" := ((A+ ")�1 + ")�1 = "�1 � "�2("+ "�1 +A)�1.

Then k("+ "�1 +A)�1k 6 ("+ "�1)�1 = "("2 + 1)�1 and therefore

ke�tA
"k 6 e�"

�1te"
�2tk("+"�1

+A)

�1k 6 e�"(1+"
2
)

�1t.

Hence A" satisfies the assumption of Step 1 and in particular A" is sectorial
of angle 1

2

⇡ with uniform estimates in ". Moreover, for all <� < 0,

kR(�, A)�R(�, A")xk = kR(�, A")(A�A")R(�, A)xk

6 1

<(�)k(A�A")R(�, A)x.k
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The right-hand side tends to zero as " # 0 since for all x 2 D(A),

kAx�A"xk 6 kAx� "�1("+ "�1 +A)�1Axk+ k("+ "�1 +A)�1xk ! 0

by Proposition 10.1.7 and the sectoriality of A. Therefore, for f 2 H1(⌃�) \
H1(⌃�) and 1

2

⇡ < ⌫ < �, by dominated convergence we obtain

f(A)x =

ˆ
@⌃

!

f(�)R(�, A)x d�

= lim
"#0

ˆ
@⌃

!

f(�)R(�, A")x d�

= lim
"#0

ˆ
iR

f(�)R(�, A")x d� = lim
"#0

f(A")x.

By Step 1,

kf(A")xk 6 kfkH1
(⌃ 1

2
⇡

)

kxk, f 2 H1(⌃�) \H1(⌃�),

and the estimate kf(A)xk 6 kfkH1
(⌃ 1

2
⇡

)

kxk follows by letting " # 0. This
completes the proof. ⇤

In the setting of general Banach spaces, an essential feature in the proof of
Theorem 10.2.24 persists, namely the norm equivalence given in (10.18) in
terms of A. It will be shown in Section 10.4.a that, modulo some assumptions
that are automatically satisfied in the Hilbertian case, such norm equivalences
resurface as square function estimates and characterise sectorial operators
with a bounded H1-calculus.

Let us also point out that an analogue of Theorem 10.2.24 holds for positive
C

0

-contraction semigroups on Lp-spaces when 1 < p < 1 (see Theorem
10.7.12).

Recall from Example 10.1.5 that the operator A = �� is densely defined,
injective and sectorial of angle !(A) = 0.

Theorem 10.2.25 (Laplacian on Lp(Rd;X)). Let X be a UMD Banach
space and 1 < p < 1. The Laplace operator �� has a bounded H1-calculus
on Lp(Rd;X) of angle 0.

The UMD assumption is necessary, as a consequence of Corollary 10.5.2 below.

Proof. Define, for f 2 H1(⌃�) with 0 < � < ⇡,

 (f)� := F�1[f(4⇡2| · |2)b�(·)], � 2 S (Rd;X).

To prove the boundedness of f(A) we check the conditions of the Mihlin
multiplier theorem (Theorem 5.5.10). For this we have to bound, for multi-
indices ↵ 6 (1, . . . , 1),
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|t||↵|D↵f(|t|2) = |t|2|↵|2|↵|t↵f (|↵|)(|t|2) =
⇣2t

|t|

⌘↵
(|t|2)|↵|f (|↵|)(|t|2).

But for integers k > 1, the boundedness of tkf (k)(t) for t > 0 follows from the
Cauchy formula since f 2 H1(⌃�) for � > 0. Indeed, for �0 2 (0,�), we have

|tkf (k)(t)| 6 1

2⇡

ˆ
�
�

0

|t|k|f(z)|
|z � t|k+1

|dz| 6 C

2⇡

ˆ
�
�

0

1

|z � 1|k+1

|dz| < 1.

Hence  (f) defines a bounded operator on Lp(Rd;X). One can check
directly that the mapping f 7!  (f) satisfies the assumptions of Theorem
10.2.14. For instance, the multiplicativity follows from the properties of the
convolution product, and the convergence property follows from the domi-
nated convergence theorem since b� 2 L1(Rd;X) and S (Rd;X) is dense in
Lp(Rd;X). By Theorem 10.2.14, f 7!  (f) must be the bounded H1(⌃�)-
calculus of ��. Since � > 0 was arbitrary, the result follows. ⇤

In the same way one proves that the first derivative Af = f 0 on Lp(R;X) is
sectorial and has a bounded H1(⌃!)-calculus with !(A) = !H1(A) = 1

2

⇡ if
1 < p < 1 and X is a UMD space. Indeed, for f 2 H1(⌃�) with � 2 ( 1

2

⇡,⇡)
define

 (f)� := F�1[f(2⇡i·)b�(·)], � 2 S (Rd;X).

The boundedness of  (A) again follows from the Mihlin multiplier theorem.
In the same way as in the previous example one checks that f 7!  (f) defines
a bounded H1(⌃�)-calculus for A.

Remark 10.2.26. Let � 2 (0,⇡) and 1 < p < 1. The UMD property is not
only sufficient for the boundedness of the H1(⌃�) functional calculus of ��
on Lp(Rd;X), but also necessary. As a consequence the UMD property of X
can be characterised in terms of the spectral theory of the operator �� on
Lp(Rd;X). This point will be taken up in Section 10.5.

Counterexamples

In this section we discuss a class of diagonal operators modelled on a Schauder
basis. It will be convenient later on to label the bases with index set Z. From
Chapter 4 we recall that a sequence (xn)n2Z in a Banach space X is called
a Schauder basis if for each x 2 X there exists a unique sequence of scalars
(↵n)n2Z such that x =

P

n2Z ↵nxn, the summation being understood in the
improper sense, i.e., x = limm,n!1

Pn
k=�m ↵kxk (see Definition 4.1.14).

As a side-remark on double-sided improper convergence, observe that the
limit limm,n!1

Pn
k=�m ↵kxk exists if and only if both limn!1

Pn
k=1

↵kxk

and limm!1
P

0

k=�m ↵kxk exist. The ‘if’ part is clear. To prove the ‘only if’
part, let x = limm,n!1

Pn
k=�m ↵kxk be the limit. Given an " > 0 we choose

N so large that
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�

�

�

x�
n
X

k=�m

↵kxk

�

�

�

< "

for all m,n > N . Then, for m,n > N ,

�

�

�

n
X

k=1

↵kxk �
m
X

k=1

↵kxk

�

�

�

=
�

�

�

n
X

k=�N

↵kxk �
m
X

k=�N

↵kxk

�

�

�

< 2".

Therefore the series
P1

k=1

↵kxk converges. In the same way one sees that
P

0

k=�1 ↵kxk converges.
Now let (xn)n2Z be a Schauder basis. By an application of the closed graph

theorem, the coordinate projections

x⇤
j :

X

n2Z
↵nxn 7! ↵j

are bounded. Therefore, for M,N 2 Z with M 6 N we can define the projec-
tions PM,N 2 L (X) by

PM,N :
X

n2Z
↵nxn 7!

N
X

n=M

↵nxn.

By the uniform boundedness principle, we have

C := sup
M6N

kPM,Nk < 1.

Throughout this subsection the constant C will have the above meaning.
We start with a multiplier lemma of Marcinkiewicz type.

Lemma 10.2.27. Let X be a Banach space with a Schauder basis (xn)n2Z.
Assume that (�n)n2Z is a sequence of scalars such that

L := sup
n2Z

|�n|+
X

n2Z
|�n+1

� �n| < 1.

If x =
P

n2Z cnxn, then
P

n2Z �ncnxn converges in X and
�

�

�

X

n2Z
�ncnxn

�

�

�

6 2CLkxk.

Proof. As explained before the lemma it suffices to consider bases over the
index sets Z

+

and Z� separately. By relabelling we may assume that cj = 0
for j 6 0. Let sn =

Pn
j=1

cjxj and tn =
Pn

j=1

�jcjxj for n > 1. A summation
by parts gives

tn = �n+1

sn �
n
X

j=1

(�j+1

� �j)sj .
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The boundedness of the partial sum projections implies ksjk 6 Ckxk and
thus

ktnk 6 |�n+1

|ksnk+
n
X

j=1

|�j+1

� �j |ksjk 6 CLkxk.

Therefore, the required estimate follows as soon as we have shown that (tn)n>1

is convergent. Applying the above estimate with sn � sm (where 1 6 m 6 n)
instead of x (and thus c

1

= . . . = cm = 0), we obtain ktn�tmk 6 CLksn�smk.
It follows that (tn)n>1

is a Cauchy sequence, hence convergent. ⇤

A Schauder basis (xn)n2Z is called unconditional if there exists a constant M >
0 such that for all finitely non-zero sequences (cn)n2Z and scalar sequences of
modulus one (✏n)n2Z we have

�

�

�

X

n2Z
✏ncnxn

�

�

�

6 M
�

�

�

X

n2Z
cnxn

�

�

�

.

A Schauder basis (xn)n2Z is called conditional if it is not unconditional.

Proposition 10.2.28. On a Banach space X with a Schauder basis (xn)n2Z
consider the diagonal operator A defined by

A
X

n2Z
cnxn =

X

n2Z
2ncnxn,

D(A) =
n

X

n2Z
cnxn 2 X :

X

n2Z
2ncnxn converges in X

o

.

Then:

(1) A is sectorial with !(A) = 0, and A is densely defined, injective, and has
dense range.

(2) A has a bounded H1-calculus if and only if (xn)n2Z is unconditional.

As a consequence of (1) and Theorem G.5.2, �A generates an analytic C
0

-
semigroup which is uniformly bounded and strongly continuous on ⌃! for
every ! 2 (0, 1

2

⇡). This can also be shown directly by a variation of the proof
below.

Proof. In order to show that A is sectorial with !(A) = 0, let ! 2 (0, 1

2

⇡). We
will frequently use the following estimate (see Lemma 10.2.4):

|1 + z| > (|z| _ 1) sin(!), t > 0, z 2 ⌃⇡�!. (10.19)

Let z 2 ⌃⇡�!. Then with �n(z) = (z + 2n)�1, n 2 Z, we have

�n(z) := |z||�n(z)| =
2�n|z|

|2�nz + 1| 6 1 +
1

|2�nz + 1| 6
2

sin(!)
,
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where we used (10.19) in the last step. Similarly, let

 (z) := |z|
X

n2Z
|�n+1

(z)� �n(z)| =
X

n2Z

|z|2�(n+1)

|2�(n+1)z + 1||2�nz + 1|
.

Let m 2 Z be the unique integer such that 2m < |z| 6 2m+1. For n 6 m� 1,
by (10.19) we can estimate

|z|2�(n+1)

|2�(n+1)z + 1||2�nz + 1|
6 2

sin(!)

1

|2�nz + 1| 6
2

sin2(!)
2�m+n.

For n > m we have

|z|2�(n+1)

|2�(n+1)z + 1||2�nz + 1|
6 2m�n�1

sin2(!)
.

Therefore,

 (z) 6 2

sin2(!)

X

n6m�1

2�m+n +
1

sin2(!)

X

n>m

2m�n�1 =
3

sin2(!)
.

By Lemma 10.2.27, the mapping R(z)(
P

n2Z ↵nxn) :=
P

n2Z �n(z)↵nxn is
bounded on X and

|z| kR(z)k 6 2C(�(z) +  (z)) 6 4C

sin(!)
+

6C

sin2(!)
.

It follows that z 2 %(�A) and R(z,�A) = R(z). This shows that ⌃⇡�! ✓
%(A), so {⌃! ✓ %(A), and the above bound shows that A is sectorial of angle
!(A) 6 !. Injectivity of A is clear from the fact that (xn)n2Z is a Schauder
basis. Since xn 2 D(A) \ R(A), the density assertions follow as well.

Next we prove that the boundedness of the H1-calculus of A is equivalent
to the unconditionality of the basis (xn)n2Z. Suppose first that (xn)n2Z is un-
conditional, say with unconditionality constant M . Then A admits a bounded
H1-calculus of zero angle, given by

f(A)xn =
1

2⇡i

ˆ
@⌃

⌫

f(z)

z � 2n
xn dz = f(2n)xn,

for all f 2 H1(⌃�)\H1(⌃�) and 0 < ⌫ < � < ⇡. Clearly, the unconditionality
implies kf(A)k 6 Mkfk1.

Conversely, suppose that the operator A has a bounded H1(⌃!)-calculus
for some ! 2 (0,⇡). Let ! < ⌫ < � < ⇡. Letting ⇣(z) = z(1 + z)�2 we have
⇣(A)xn = ⇣(2n)xn. It follows that for f 2 H1(⌃�), f⇣ 2 H1(⌃�) and hence

f(A)xn =
1

⇣(2n)
(f⇣)(A)xn
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=
1

2⇡i⇣(2n)

ˆ
@⌃

⌫

f(z)⇣(z)R(z,A)xn dz

=
1

2⇡i⇣(2n)

ˆ
@⌃

⌫

f(z)⇣(z)

z � 2n
xn dz = f(2n)xn.

By a classical interpolation theorem of complex analysis (see Proposition
H.2.7), there exists a constant C� such that for any bounded sequence (↵n)n2Z
contained in ⌃� there exists a function f 2 H1(⌃�) of norm kfk1 6 C�
such that f(2n) = ↵n for all n 2 Z. Then, for any finitely non-zero sequence
(cn)n2Z,
�

�

�

X

n2Z
↵ncnxn

�

�

�

=
�

�

�

X

n2Z
f(2n)cnxn

�

�

�

=
�

�

�

f(A)
X

n2Z
cnxn

�

�

�

6 kf(A)k
�

�

�

X

n2Z
cnxn

�

�

�

,

where we applied the identity f(A)xn = f(2n)xn. Since kf(A)k 6 C�M1
!,A,

this proves that (xn)n2Z is unconditional, with unconditionality constant at
most C�M1

!,A. ⇤

We leave it to the reader to check that Proposition 10.2.28 remains true if the
index set I is replaced by either Z>0

or Z<0

. The resulting diagonal operators
A then have some additional structure: in the case of I = Z>0

, A is invertible,
and in the case I = Z<0

, A is a bounded operator by Lemma 10.2.27. An
immediate consequence is the following result.

Corollary 10.2.29. If X has a conditional Schauder basis (xn)n>1

, then the
following hold:

(1) there exists an invertible sectorial operator A with !(A) = 0 such that A
does not have a bounded H1-calculus.

(2) there exists a bounded sectorial operator A with !(A) = 0 such that A does
not have a bounded H1-calculus.

It can be shown that every Banach space with a Schauder basis has a condi-
tional Schauder basis (see the Notes), but it would take us too far afield to
prove this result. Instead we choose to present some more concrete examples
below and refer the reader to the Notes for a further discussion.

Example 10.2.30. The standard trigonometric system (en)n2Z, en(x) = e2⇡inx,
is a Schauder basis in Lp(T) for 1 < p < 1 by Proposition 5.2.7. Consider
the diagonal operator

A� :=
X

n2Z
2nb�(n)en, � 2 Lp(T),

with its natural domain consisting of all � 2 Lp(T) for which this series
converges in Lp(T). By Proposition 10.2.28, A is sectorial of angle 0. By
Proposition 10.2.28, A has a bounded H1-calculus if and only if (en)n2Z
is an unconditional basis, and in Example 4.1.12 it was shown that this is the
case if and only if p = 2.
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In order to give an example of a sectorial operator on a Hilbert space without a
bounded H1-calculus we will use a variation of Example 10.2.30 on weighted
spaces. The only fact which will be needed is that the periodic Hilbert trans-
form eH introduced in Chapter 5,

eH
⇣

X

k2Z
akek

⌘

:= �i
X

k2Z
sgn(k)akek

is bounded on the weighted space L2(T, w) with w(x) = |x|↵ and ↵ 2 (�1, 1).
In order to be self-contained we include a proof, which actually extends with-
out additional difficulty to p 2 (1,1) and the UMD-valued setting.

Proposition 10.2.31. Let X be a UMD Banach space and let p 2 (1,1). Let
↵ 2 (�1, p � 1) and set w(x) = |x|↵. Then the Hilbert transform H and the
periodic Hilbert transform eH are bounded on Lp(R, w;X) and Lp(T, w;X),
respectively.

Proof. By density it suffices to prove that there exists a constant C > 0 such
that kHfkLp

(R,w;X)

6 CkfkLp

(R,w;X)

for all f 2 C
c

(R \ {0};X). We start
from the identity

Hf = w�1/pH(w1/pf) + Tf,

where

Tf(x) =
1

⇡
w(x)�1/p

ˆ
R

w(x)1/p � w(y)1/p

x� y
f(y) dy.

Note that the right-hand side is well defined as a Bochner integral in X. The
boundedness of the Hilbert transform in Lp(R;X), which was established in
Theorem 5.1.13, gives

kw�1/pH(w1/pf)kLp

(R,w;X)

= kH(w1/pf)kp 6 kHkkw1/pfkp = kHkkfkw,p.

Accordingly it suffices to prove that kTfkLp

(R,w;X)

6 CkfkLp

(R,w;X)

. By the
identity

|x|1/pw(x)1/p|Tf(x)| = 1

⇡

ˆ
R
k(x/y)|y|1/pw(y)1/pf(y)dy|y| ,

where k(y) = |y|1/p| |y|
↵/p�1

y�1

|, the latter integral can be viewed as a convolution
on the multiplicative group (R \ {0}, ·) with Haar measure dy

|y| . Using the
assumption ↵ 2 (�1, p � 1) with p 2 (1,1), it is easy to check that k 2
L1(R \ {0}, dy

|y| ). Therefore, by Young’s inequality,

kTfkLp

(R,w;X)

=
�

�| · |1/pw1/pTf
�

�

Lp

(R\{0}, dy

|y| )

6 kkkL1
(R\{0}, dy

|y| )

�

�| · |1/pw1/pf
�

�

Lp

(R\{0}, dy

|y| )
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= kkkL1
(R\{0}, dy

|y| )
kfkLp

(R,w;X)

.

This gives the desired estimate, with C = kkkL1
(R\{0}, dy

|y| )
.

The boundedness of eH follows from the boundedness of H by repeating
the transference argument of Proposition 5.2.5, replacing dx by w(x) dx at
the appropriate places. ⇤

Example 10.2.32. Let again ↵ 2 (�1, p � 1) with p 2 (1,1) and w(x) =
|x|↵. Using Proposition 10.2.31, the proof of Proposition 5.2.7 extends to
the weighted setting and we find that the trigonometric system (en)n2Z is a
Schauder basis in Lp(T, w).

For f 2 Lp(T, w) let
A� :=

X

n2Z
2nb�(n)en

with its natural domain. By Proposition 10.2.28, A is sectorial of angle 0. We
will show that A has a bounded H1-calculus if and only if p = 2 and ↵ = 0.

It suffices to prove the ‘only if’ part. Let us assume that A has a bounded
H1(⌃�)-calculus for some � 2 (0,⇡). As in Example 10.2.30, an application
of Proposition 10.2.28 gives the necessity of the condition p = 2. To show
that ↵ = 0 we note that the operators Ais, s 2 R, are bounded on Lp(T, w)
by the boundedness of the H1(⌃�)-calculus on this space (note that z 7!
zis = exp(is(log |z|+ i arg(z)) belongs to H1(⌃⇡�� for every � 2 (0,⇡)). The
following argument shows that the boundedness of operators Ais for some
s /2 1

log(2)

N forces ↵ = 0.
As in the proof of Proposition 10.2.28, the H1-calculus of A is given by

f(A)en = f(2n)en for f 2 H1(⌃�). In particular, taking f(z) = zis, we
find that Aisen = e2⇡i log(2)snen = T (s log(2))en, where T (s) denotes right-
translation over s. Thus we find that T (s) is a bounded operator on Lp(T, w).
But it is easy to check that this is only true for ↵ = 0.

Later we will see that this example admits a different interpretation: it pro-
vides an operator A on Lp(T, w) which has bounded imaginary powers for all
p 2 (1,1) but has a bounded H1-calculus only for p = 2.

10.3 R-boundedness of the H1-calculus

This section is devoted to a study of the R-boundedness of various classes
of operators of the form f(A), where A is a sectorial operator, possibly with
a bounded H1-calculus. We remind the reader of the fact that throughout
this chapter we work over the complex scalar field. ‘R-boundedness’ there-
fore refers to random sums with complex Rademacher variables. At the ex-
pense of an additional numerical constant the corresponding results for real
Rademacher sums hold as well and follow by estimating random sums involv-
ing real Rademachers in terms of the corresponding sums involving complex
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Rademachers by means of Proposition 6.1.19. Most proofs, however, also work
for real Rademachers, and in those cases no additional constant is obtained.
We let the interested reader check the particular instances at hand.

10.3.a R-sectoriality

As a first step in our programme it is of interest to study the R-boundedness
of the operators zR(z,A) as they appear in the Dunford calculus by writing

f(A) =
1

2⇡i

ˆ
@⌃

f(z)[zR(z,A)]
dz

z
.

This leads to the notion of R-sectoriality:

Definition 10.3.1 (R-sectorial operators). A sectorial operator A is called
R-sectorial if for some !(A) < � < ⇡ the family

T�,A :=
�

zR(z,A) : z 2 {⌃�
 

is R-bounded.

The angle of R-sectoriality is the number

!R(A) := inf
�

� 2 (!(A),⇡) : T�,A is R-bounded
 

.

For !R(A) < � < ⇡, the R-bound of T�,A will be denoted by MR
�,A.

The class of �-sectorial operators is defined similarly, replacing R-bounded-
ness by �-boundedness. The associated angle and bounds are denoted by
!�(A) and M�

�,A. By Theorem 8.1.3, R-boundedness implies �-boundedness,
and thus every R-sectorial operator is �-sectorial, and when X has finite co-
type these notions are equivalent.

The Dunford calculus of an R-sectorial operator is R-bounded:

Proposition 10.3.2 (R-boundedness of the Dunford calculus). Let A
be an R-sectorial operator on X and let !R(A) < � < ⇡. Then the set

{f(A) : f 2 H1(⌃�), kfkH1
(⌃

�

)

6 1}

is R-bounded, with R-bound at most 1

⇡M
R
�,A.

Proof. Fixing an arbitrary !R(A) < ⌫ < �, we have

f(A) =
1

2⇡i

ˆ
@⌃

⌫

f(z)[zR(z,A)]
dz

z
.

Since A is R-sectorial, {zR(z,A) : z 2 @⌃⌫ \{0}} is R-bounded with constant
MR
⌫,A. Hence, by Theorem 8.5.2, the set in the statement of the proposition is

R-bounded, with R-bound at most 1

⇡M
R
⌫,A. Since this is true for all !R(A) <

⌫ < ⇡, by Proposition 8.1.22 we may pass to the limit ⌫ " � to obtain the
desired bound 1

⇡M
R
�,A. ⇤
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From Theorem G.5.2 we know that if A is densely defined and sectorial of angle
!(A) < 1

2

⇡, then �A generates a bounded analytic C
0

-semigroup (S(⇣))⇣2⌃
⌘

for every ⌘ 2 (0, 1

2

⇡�!(A)), given by an inverse Laplace transform represen-
tation. By the same proof as in Proposition 10.3.2, this representation implies
that if A is R-sectorial and !(A) < 1

2

⇡, then (S(⇣))⇣2⌃
⌘

is R-bounded for
every ⌘ 2 (0, 1

2

⇡ � !R(A)). In fact more is true:

Proposition 10.3.3. Let A be a densely defined sectorial operator of angle
< 1

2

⇡ on a Banach space X and let (S(t))t>0

be the bounded analytic C
0

-
semigroup generated by �A (see Theorem G.5.2). The following assertions
are equivalent:

(1) A is R-sectorial with !R(A) < 1

2

⇡;
(2) {tR(it, A) : t 2 R \ {0}} is R-bounded;
(3) {S(z) : z 2 ⌃!} is R-bounded for some ! 2 (0, 1

2

⇡);
(4) {S(t) : t > 0} and {tAS(t) : t > 0} are R-bounded.

In this situation we have sup{! 2 (0, 1

2

⇡) : (3) holds} = 1

2

⇡ � !R(A).

From the proof it is easy to extract explicit estimates for the R-bounds of the
sets in (3) and (4) analogous to the one of Proposition 10.3.2. Likewise the
proof produces explicit estimates for the abscissa !R(A) and the constants
MR
�,A in terms of the R-bounds in (3) and (4).

Proof. (1),(2): Repeating the proof of Proposition 10.1.6, the condition in
(2) is seen to be equivalent to the R-boundedness of �R(�, A) on two rotated
sectors ±i⌃! for some 0 < ! < 1

2

⇡. By Proposition 8.5.8 the latter implies
the R-boundedness of �R(�, A) in the remaining part of the left half-plane.

(1))(4): The R-boundedness of the set {S(t) : t > 0} is an immediate
consequence of Propositions 10.2.7; and 10.3.2; alternatively one can use the
inverse Laplace representation formula for S(t) and proceed as in the proof
of Proposition 10.3.2. Note that both arguments also establish the implica-
tion (1))(3). The R-boundedness of the set {tAS(t) : t > 0} follows from
Proposition 10.3.2 in combination with Lemma 10.2.8.

(4))(3): The proof is similar to the proof of (2))(1) in Theorem G.5.3.
For the reader’s convenience we indicate the main steps.

Let
0 < � <

n

sin(!),
1

eM

o

,

where M is the R-bound of {tAS(t) : t > 0}. Then
S

t>0

B(t, �t) = ⌃⌘ with
� = sin(⌘); note that 0 < ⌘ < !. For any z 2 ⌃⌘, choose t = t(z) > 0 such
that z 2 B(t, �t). Then we can express S(z) in terms of the Taylor expansion
of z 7! S(z) in a point t > 0:

S(z) = S(t) +
X

n>1

1

n!
(�A)nS(t)(z � t)n
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= S(t) +
X

n>1

nn

n!

⇣

�(t/n)AS(t/n)
�z

t
� 1

�

⌘n
.

Using Proposition 8.1.24 (with I = ⌃⌘) together with the inequality nn 6
n!en, and noting that |z � t| < �t, we obtain

R({S(z) : | arg(z)| 6 �}) 6 R({S(t) : t > 0}) +
X

n>1

enMn�n.

The series on the right-hand side is convergent by the choice of �.
(3))(1): Let 0 < �0 < �. The R-boundedness of the operators �R(�, A)

on the punctured lines e±
1
2⇡i�

0
(R \ {0}) follows from Theorem 8.5.2 and the

representation of the resolvent as the Laplace transform of the C
0

-semigroups
(S(e±i�0t)t>0

. As in the proof of (1))(4), the R-boundedness in {⌃ 1
2⇡��

fol-
lows from this by Proposition 8.5.8. ⇤

10.3.b The main R-boundedness result

The main result of this subsection is formulated under two different geometric
assumptions on X in terms of double random sums:

(a) the triangular contraction property with associated constant �X (see Def-
inition 7.5.7);

(b) the Pisier contraction property with associated constants ↵X and ↵±
X (see

Definition 7.5.1 and Proposition 7.5.4).

Pisier’s contraction property trivially implies the triangular contraction prop-
erty. Every UMD space has the triangular contraction property (Theorem
7.5.9), and a Banach lattice has Pisier’s contraction property if and only it
has finite cotype (Theorem 7.5.20).

Somewhat informally, the main result below states that

(a) if X has the triangular contraction property and A has a bounded H1-
calculus, then A is R-sectorial;

(b) if X has Pisier’s contraction property and A has a bounded H1-calculus,
then the full H1-calculus of A is R-bounded.

We recall the notation M1
�,A for the boundedness constant of the H1(⌃�)-

calculus of A.

Theorem 10.3.4 (R-sectoriality, R-boundedness of the H1-calculus).
Let A be a sectorial operator on a Banach space X and let !(A) < � < ⇡. If
A has a bounded H1(⌃�)-calculus, then:

(1) for all � < # < ⇡, 0 < � < #� �, and f 2 H1(⌃#), the set

{f(zA) : | arg(z)| 6 �}

is R-bounded, with R-bound at most C�,�,#M1
�,AkfkH1

(⌃
#

)

;
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(2) if X has the triangular contraction property, and A is densely defined, then
A is R-sectorial with !R(A) 6 !H1(A), and for all !H1(A) < � < # < ⇡
the set

{f(A) : f 2 H1(⌃#), kfkH1
(⌃

�

)

6 1}

is R-bounded, with R-bound at most C�,#(M1
�,A)

2�X ;
(3) if X has Pisier’s contraction property, and A is densely defined and has

a dense range and a bounded H1(⌃⌘)-calculus for some !(A) < ⌘ < �,
then the set

{f(A) : f 2 H1(⌃�), kfkH1
(⌃

�

)

6 1}

is R-bounded, with R-bound at most C⌘,�(M1
⌘,A)

2↵�
X↵

+

X .

The attentive reader will notice that the assumption that A is densely defined
and has dense range in (3) is redundant provided we interpret f(A) as a
bounded operator on D(A) \ R(A). In the formulation as stated the operators
f(A) are defined on X.

The proof of this theorem requires some preparation. In Section 10.3.c we
associate certain unconditional decompositions to the H1-calculus of A. The
proof of Theorem 10.3.4 will be given in Section 10.3.d.

Examples of R-bounded sets associated with a sectorial operator A

We continue with several examples of applications of Proposition 10.3.2 and
Theorem 10.3.4.

Example 10.3.5. Let A be R-sectorial and let !R(A) < � < ⇡. By Proposition
10.3.2, for all � > ↵ > 0 and 0 < � < ⇡ � �, the set

{(zA)↵(I + zA)�� : | arg(z)| 6 �}

is R-bounded. These operators are to be interpreted as f↵,�(A) with

f↵,�(�) =
�↵

(1 + �)�
.

Similar interpretations apply below. Clearly, for | arg(z)| 6 � the functions
f↵,�(z·) belong to H1(⌃�) with norms kf↵,�(z·)kH1

(⌃
�

)

6 C�+�, and therefore
Proposition 10.3.2 gives the required result.

By the same reasoning, if !R(A) < � < 1

2

⇡, then for all ↵ > 0 and
0 < � < 1

2

⇡ � � the set

{(zA)↵e�zA : | arg(z)| 6 �}

is R-bounded.
The above two sets are also R-bounded under the alternative assumption

that A is a sectorial operator with a bounded H1(⌃�)-calculus for some
� 2 (0,⇡); this time the result follows from Theorem 10.3.4(1).
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The next example shows that the triangular contraction property cannot be
omitted from Theorem 10.3.4(2).

Example 10.3.6. Let X be a Banach space. On the Rademacher space "(X) =
"2(X) (see Section 6.3) we define the operator A by

A((xn)n>1

) := (2nxn)n>1

(10.20)

with its natural maximal domain consisting of those sequences (xn)n>1

2 "(X)
for which (2nxn)n>1

belongs to "(X) again. By Kahane’s contraction principle,
A is sectorial of zero angle. Moreover, A has a bounded H1(⌃�)-calculus for
any 0 < � < ⇡, given by

f((xn)n>1

) := (f(2n)xn)n>1

;

this easily follows by verifying the conditions of Theorem 10.2.14. If X has
the triangular contraction property, then so does "(X), and therefore A is
R-sectorial by Theorem 10.3.4(2).

Let now X be an arbitrary Banach space and suppose that the operator
A defined by (10.20) is R-sectorial. We will show that X has the triangular
contraction property. Let M > 1 be an arbitrary integer, set �j := 2M(j+ 1

2 )

for j 2 Z, and let (xn,k)
K
k,n=1

be a sequence in X. Define the elements x(k) =

(x(k)
n )n>1

2 "(X) by x(k)
2

Mn

:= xn,k for n 2 {1, . . . ,K} and x(k)
j := 0 for the

remaining coordinates. Then, by the assumed R-sectoriality of A,

E0E
�

�

�

K
X

k=1

K
X

n=1

"0k"n�n�k(1 + �n�k)
�1xn,k

�

�

�

2

X

= E0
�

�

�

K
X

k=1

"0k(1 + ��1

k A)�1x(k)
�

�

�

2

"(X)

6 (MR
�,A)

2E0
�

�

�

K
X

k=1

"0kx
(k)
�

�

�

2

"(X)

= (MR
�,A)

2E0E
�

�

�

K
X

k=1

K
X

n=1

"0k"nxn,k

�

�

�

2

X
.

Letting M ! 1, we obtain

E0E
�

�

�

K
X

k=1

k
X

n=1

"0k"nxn,k

�

�

�

2

X
6 (MR

�,A)
2E0E

�

�

�

K
X

k=1

K
X

n=1

"0k"nxn,k

�

�

�

2

X
.

This shows that X has the triangular projection property, with constant�X 6
MR
�,A.

Also Pisier’s contraction property cannot be omitted in Theorem 10.3.4(3):
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Example 10.3.7. As we have seen in Example 10.2.26, A = �� is sectorial
and has a bounded H1-calculus of zero angle on Lp(Rd;X) whenever X is a
UMD space and 1 < p < 1. Theorem 10.3.4(3) implies that if in addition X
has Pisier’s contraction property, then for any 0 < � < ⇡ the set

{f(��) : f 2 H1(⌃�), kfkH1
(⌃

�

)

6 1} (10.21)

is R-bounded. (Alternatively, one can derive this from Corollary 8.3.23, where
even more general Fourier multiplier operators are considered.)

Let now X be an arbitrary UMD Banach space and let again 1 < p < 1.
For s 2 R consider the functions fs(z) := zis. These functions are uni-
formly bounded in H1(⌃�) for each 0 < � < ⇡, and therefore the operators
fs(��) =: (��)is are well defined and uniformly bounded on Lp(Rd;X). Up
to a normalising constant, the set

{(��)is : s 2 (0, 1]} (10.22)

is a subset of the set in (10.21). In Section 10.5 we will show that if the set in
(10.22) is R-bounded, then X has Pisier’s contraction property.

10.3.c Unconditional decompositions associated with A

In the setting of diagonal operators on Schauder bases, Proposition 10.2.28
revealed a clear connection between boundedness of H1-calculi and uncondi-
tionality. We will now develop this idea more systematically by showing that
the H1-calculus of a general sectorial operator A can be understood in terms
of unconditional “decompositions” associated the operator A. To explain this
further, suppose that A has a bounded H1-calculus on a Banach space X,
let !H1(A) < � < ⇡, and consider a function f 2 H1(⌃�) satisfying

X

n2Z
f(2nz) = 1, z 2 ⌃�. (10.23)

Such functions can be constructed by taking any  2 H1(⌃�) satisfying´1
0

 (t) dt
t = 1, and putting

f(z) :=

ˆ
2

1

 (tz)
dt

t
. (10.24)

Applying the Calderón reproducing formula of Proposition 10.2.15, in com-
bination with the unconditionality result proved in Lemma 10.3.8 below the
identity (10.23) will give an unconditionally convergent decomposition

x =
X

n2Z
f(2nA)x, x 2 D(A) \ R(A).

The operators f(2nA) can thus be viewed as analogues to “coordinate projec-
tions”, the main difference being that the operators f(2kA) and f(2`A) are
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no longer disjoint projections for k 6= `, but have some “overlap”. Reason-
ing along the same lines, for g(z) := z(1 + z)�1 the operators g(2nA) =
2nA(I + 2nA)�1 = A(2�n + A)�1 can be viewed as analogues to “par-
tial sum projections” (recall from Proposition 10.1.7 that A(t + A)�1 ! I
strongly on R(A)). It turns out that this can be used to show that the family
{g(2nA) : n 2 Z} is R-bounded if X has the triangular contraction property.

It will turn out that such results indeed hold for general operators A with
a bounded H1-calculus and will essentially follow from the unconditional
convergence of the sums

P

n2Z f(2
nA)x. The main technical tool for this is

the following lemma.

Lemma 10.3.8 (Unconditionality). Let A be a sectorial operator on a Ba-
nach space X with a bounded H1-calculus. Let !H1(A) < � < # < ⇡. If
f 2 H1(⌃#), then:

(1) for all finite subsets F ✓ Z and scalars |↵j | 6 1, j 2 F , we have

sup
t>0

�

�

�

X

j2F

↵jf(2
jtA)

�

�

�

6 K#��M
1
�,AkfkH1

(⌃
#

)

, (10.25)

where M1
�,A is the boundedness constant of the H1(⌃�)-calculus of A;

(2) if, in addition, f satisfies
X

n2Z
f(2nz) = 1, z 2 ⌃�,

then
x =

X

n2Z
f(2nA)x, x 2 D(A) \ R(A),

with unconditional convergence of the sum.

Proof. (1): Consider the function g : ⌃� ! C,

g(z) :=
X

j2F

↵jf(2
jtz),

with t > 0, F ✓ Z finite, and |↵j | 6 1 for j 2 F . By Proposition H.2.3 (applied
to the functions t 7! f(tz)), g belongs to H1(⌃�) \H1(⌃�) with

kgkH1
(⌃

�

)

6 K#��kfkH1
(⌃

#

)

. (10.26)

From the boundedness of the H1(⌃�)-calculus of A we then obtain
�

�

�

X

j2F

↵jf(2
jtA)

�

�

�

= kg(A)k 6 M1
�,AkgkH1

(⌃
�

)

6 K#��M
1
�,AkfkH1

(⌃
#

)

.

(2): In view of the bound proved in (1) it suffices to consider elements
x 2 D(A) \ R(A). Now (10.26) implies
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N
X

n=�M

|f(2nz)| 6 K#��kfkH1
(⌃

#

)

, z 2 ⌃�. (10.27)

Let us write x = ⇣(A)y = A(I + A)�2y. For !H1(A) < ⌫ < �, the func-
tions f(2n·)⇣(·) belong to H1(⌃⌫), and by dominated convergence and the
properties of the functional calculus we obtain

N
X

n=�M

f(2nA)x =

N
X

n=�M

f(2nA)⇣(A)y

=

N
X

n=�M

1

2⇡i

ˆ
@⌃

⌫

f(2nz)R(z,A)⇣(z)y dz

M,N!1�! 1

2⇡i

ˆ
@⌃

⌫

R(z,A)⇣(z)y dz = ⇣(A)y = x,

with absolute convergence of the sum on the left hand side because of (10.27).
This proves the unconditional (and even absolute) convergence for x 2

D(A) \ R(A). To prove the unconditional convergence for x 2 D(A) \ R(A),
let " > 0 be arbitrary and fixed, and choose y 2 D(A) \ R(A) such that
kx � yk < ". Since y =

P

n2Z f(2
nA)y converges unconditionally we may

choose a finite set F" ✓ Z such that for every finite set F ✓ Z containing F"
we have ky �

P

n2F f(2nA)yk < ". Now let F ✓ Z be a finite set containing
F". Then from (10.25) we obtain
�

�

�

x�
X

n2F

f(2nA)x
�

�

�

6 kx� yk+
�

�

�

y �
X

n2F

f(2nA)y
�

�

�

+
�

�

�

X

n2F

f(2nA)(y � x)
�

�

�

6 2"+K#��M
1
�,AkfkH1

(⌃
#

)

",

and the unconditional convergence follows. ⇤

Remark 10.3.9. For functions f 2 H1(⌃#) of the form (10.24) with z 7!
 (z) log(z) 2 H1(⌃�) and !(A) < � < #, part (2) of the lemma remains
true for general sectorial operators A; in this case, Proposition 10.2.5 and
(10.12) give the following version of the bound in (1):

�

�

�

n
X

k=m

f(2kA)x
�

�

�

6 C ,�kxk, x 2 D(A) \ R(A),

uniformly with respect to m,n > 1, where C ,� is the constant in the proof
of Proposition 10.2.5.

10.3.d Proof of the main result

Proof of Theorem 10.3.4(1). Fix f 2 H1(⌃#) and 0 < � < #� �. We need to
prove the following estimate
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R({f(zA) : | arg(z)| 6 �}) 6 C�,�,#M
1
�,AkfkH1

(⌃
#

)

.

Let � < ! < # � � and put f±!(z) := f(e±i!z) for z 2 ⌃�. Since f±! 2
H1(⌃#�!) of norm kf±!kH1

(⌃
#�!

)

6 kfkH1
(⌃

#

)

, Lemma 10.3.8 gives
�

�

�

X

n2F

✏nf±!(2
nA)

�

�

�

6 K#��M
1
�,AkfkH1

(⌃
#

)

for all finite F ✓ Z and all finite sequences of modulus one scalars (✏n)n2F .
In particular, the condition of Proposition 8.4.6(1) is satisfied, and therefore
for all t > 0 we have

R({f±!(2ntA) : n 2 Z}) 6 K#��M
1
�,AkfkH1

(⌃
#

)

.

Now Proposition 8.5.8 gives

R({f(zA) : | arg(z)| 6 �}) 6 4K#��

⇣

1 +
1

⇡
tan(

�

!

1

2
⇡)
⌘

M1
�,AkfkH1

(⌃
#

)

.

Letting ! " # � � the desired result is obtained, with constant C�,�,# =
4K#��(1 +

1

⇡ tan( �
#��

⇡
2

)). ⇤

For the proof of Theorem 10.3.4(2) we need some preparation.

Lemma 10.3.10. The function f : C \ (�1, 0] ! C,

f(z) =
z1/2

(1 + z)1/2(1 + 2z)1/2
,

belongs to H1(⌃�), 0 < � < ⇡, and

kfkH1
(⌃

�

)

6 4

sin(� _ ⇡
2

)
.

Proof. Let r > 0 and 0 < |⌫| 6 � < ⇡ be arbitrary. By Lemma 10.2.4 we have
|1 + rei⌫ | > (r _ 1) sin(� _ 1

2

⇡) and therefore

|f(rei⌫)| 6 r1/2

(r _ 1)1/2((2r) _ 1)1/2 sin(� _ 1

2

⇡)
6 r1/2

(r _ 1) sin(� _ 1

2

⇡)
.

This estimate easily implies
ˆ 1

0

|f(tei⌫)|dt
t

6 4

sin(� _ 1

2

⇡)
,

which is the required bound on the H1-norm of f . ⇤
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Proof of Theorem 10.3.4(2). We begin by proving the R-boundedness of the
set {(I + zA)�1 : | arg(z)| 6 �} for any fixed 0 < � < ⇡ � �. Choose ! and #
such that

� < ! < ⇡ � # < ⇡ � �.

The idea of the proof is to deduce this from Proposition 8.4.6(2) for a suitable
family (Uj)j2Z , using Proposition 8.5.8 to discretise the problem.

Fix t > 0 and m,n 2 Z with m < n. Using the resolvent identity

(I + �A)�1 � (I + µA)�1 = A(µ� �)(I + �A)�1(I + µA)�1

and a telescoping argument, we obtain

(I + 2mte±i!A)�1 � (I + 2nte±i!A)�1

=

n�1

X

j=m

(I + 2jte±i!A)�1 � (I + 2j+1te±i!A)�1

=

n�1

X

j=m

2jte±i!A(I + 2jte±i!A)�1(I + 2j+1te±i!A)�1

=

n�1

X

j=m

f2(2jte±i!A) =

n�1

X

j=m

U2

j ,

where f is as in Lemma 10.3.10 and Uj := f(2jte±i!A). Since for the function
f±! = f(e±i!·), we have

kf±!kH1
(⌃

#

)

6 kfkH1
(⌃

#+!

)

6 C#+!,

where C#+! := 4/sin((#+ !) _ ⇡
2

). by Lemma 10.3.10. Therefore, by Lemma
10.3.8 (applied the rotated function z 7! f(e±i!z)) and give

sup
t>0

sup
m<n

sup
|✏

m

| ...,|✏
n�1|=1

�

�

�

n�1

X

j=m

✏jUj

�

�

�

6 C#+!K#��M
1
�,A.

Hence by Proposition 8.4.6(2) with Un = Vn and Tn = I,

R
n

n�1

X

j=m

U2

j : m,n 2 Z
o

6 C2

#+!K
2

#��(M
1
�,A)

2�X .

By the above identities, this gives the R-boundedness of the set

S (t) :=
n

(I + 2mte±i!A)�1 � (I + 2nte±i!A)�1 : m,n 2 Z, m < n
o

,

with the same R-bound. Next, since A is densely defined, limm!�1(I +
t2me±i!A)�1x = x for all x 2 D(A) = X by Proposition 10.1.7(1). Therefore
the family
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{(I + 2nte±i!A)�1 � I : n 2 Z}

belongs to the strong operator closure of S (t) and is therefore R-bounded by
Proposition 8.1.22, with the same R-bound. It follows that

R({(I + 2nte±i!A)�1 : n 2 Z}) 6 1 +K2

#��(M
1
�,A)

2�X .

So far, t > 0 was arbitrary and fixed. Now by Proposition 8.5.8,

MR
⇡��,A = R({(I + zA)�1 : | arg(z)| 6 �}) 6 C�,�(M

1
�,A)

2�X ,

where C�,� = 4
�

1+ 1

⇡ tan( �!
1

2

⇡)
��

1+K2

#���X

�

(we may suppress the depen-
dence on # and !, sine they can be made depend on � and �). ⇤

For the proof of Theorem 10.3.4(3) we also need some preparation.

Lemma 10.3.11. Let A be a sectorial operator on a Banach space X. Let
!(A) < � < ⇡ and let f 2 H1(⌃�) be given. For µ 2 {⌃� consider rµ(z) :=
(µ� z)�1. Then rµf 2 H1(⌃�) and

(rµf)(A) = R(µ,A)f(A).

Proof. As in Proposition 10.2.6 let

⇣n(z) =
n

n+ z
� 1

1 + nz
=

(n2 � 1)z

(n+ z)(1 + nz)
. (10.28)

By the multiplicativity of the Dunford calculus (see Theorem 10.2.2)

(rµf)(A)⇣n(A) = (rµf⇣n)(A) = (⇣nrµ)(A)f(A)

= ⇣n(A)R(µ,A)f(A) = R(µ,A)f(A)⇣n(A),

where in the penultimate step we used Proposition 10.2.3 and in the last step
the commutativity of the Dunford calculus. Now the required identity follows
from the convergence property of the Dunford calculus. ⇤

Lemma 10.3.12. Let 0 < µ < ⌫ < ⇡. For all 0 < ↵ < 1 and non-zero
z 2 @⌃⌫ the function  z,↵(�) := �↵/(z � �)2↵ belongs to H1(⌃µ) and

k z,↵kH1
(⌃

⌫�µ

)

6 C⌫�µ,↵|z|�↵

with C⌫�µ,↵ = 2

↵ (sin(
1

2

⇡ _ (⇡ � ✓)))2↵.

Proof. For all |✓| < µ we have
ˆ 1

0

| z,↵(re
i✓)| dr

r
=

ˆ 1

0

r↵

|z � rei✓|2↵
dr

r

6 |z|�↵
ˆ 1

0

⇢↵

|1� ⇢e�i(⌫�µ)|2↵
d⇢

⇢
=: c⌫�µ,↵|z|�↵,
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where, by using Lemma 10.2.4,

c✓,↵ 6 1

(sin( 1
2

⇡ _ (⇡ � ✓)))2↵

ˆ 1

0

⇢↵

(1 _ ⇢2↵)
d⇢

⇢

and ˆ 1

0

⇢↵

(1 _ ⇢2↵)
d⇢

⇢
=

ˆ
1

0

⇢↵
d⇢

⇢
+

ˆ 1

1

⇢�↵
d⇢

⇢
=

2

↵
.

⇤

Lemma 10.3.13. Let A be a sectorial operator on a Banach space X. Let
!(A) < � < ⇡ and let f 2 H1(⌃�) be given. Let �z(�) := �1/2/(z � �). Then
for all !(A) < ⌫ < � we have

f(A) =
1

2⇡i

ˆ
@⌃

⌫

z1/2f(z)�z(A)
dz

z
. (10.29)

Before turning to the proof we must justify the well-definedness of the opera-
tors �z(A) and the convergence of integral on the right-hand side. By Lemma
10.3.12, the operators �z(A) are well defined through the Dunford calculus
and the family {z1/2�z(A) : z 2 @⌃⌫} is uniformly bounded. This, in turn,
combined with the fact that f 2 H1(⌃�), shows that the integral in the
statement of the lemma is absolutely convergent.

Comparing (10.29) with the Dunford integral

f(A) =
1

2⇡i

ˆ
@⌃

⌫

f(z)[zR(z,A)]
dz

z

we see what the lemma achieves: it allows us to replace the bounded function
z 7! zR(z,A) in the Dunford integral by another function, namely the func-
tion z 7! z1/2�z(A). The improvement consists of the fact that the operators
z1/2�z(A) are obtained through the Dunford calculus of A, whereas the oper-
ators zR(z,A) are not (as � 7! z/(�� z) does not belong to H1(⌃!) for any
0 < ! < ⇡).

Proof of Lemma 10.3.13. Let !(A) < ⌫ < � < ⇡ be as in the statement of
the lemma and fix !(A) < µ < ⌫. Let ⇣n, n > 1, be the functions in (10.28)
and put

⌘±n (�) := �±1/2⇣n(�), � 2 ⌃µ.

By the multiplicativity of the Dunford calculus,

f(A)⇣n(A)2 = (f⇣2n)(A)(⌘+ · (⌘�f))(A) = ⌘+n (A)(⌘�n f)(A).

For z 2 @⌃⌫ we may apply Lemma 10.3.11 to see that

⌘+n (A)R(z,A) = (⌘+n rz)(A).
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Furthermore, it follows from the identity

⌘+n (�)rz(�) = �1/2⇣n(�)(z � �)�1 = �z(�)⇣n(�)

and the multiplicativity of the Dunford calculus that

(⌘+n rz)(A) = �z(A)⇣n(A), z 2 @⌃⌫ .

It follows that

f(A)⇣n(A)2 =
1

2⇡i
⌘+n (A)

ˆ
@⌃

⌫

⌘�n (z)f(z)R(z,A) dz

=
1

2⇡i
⌘+n (A)

ˆ
@⌃

⌫

z�1/2⇣n(z)f(z)R(z,A) dz

=
1

2⇡i

ˆ
@⌃

⌫

z�1/2⇣n(z)f(z)(⌘
+

n rz)(A) dz

=
1

2⇡i

ˆ
@⌃

⌫

⇣n(z)[z
1/2f(z)�z(A)]⇣n(A)

dz

z
.

Letting n ! 1, (10.29) follows from the convergence property of the Dunford
calculus and the dominated convergence theorem. ⇤

Proof of Theorem 10.3.4(3). We must prove the R-boundedness of the set

S := {f(A) : f 2 H1(⌃�), kfkH1
(⌃

�

)

6 1},

along with the stated bound for its R-boundedness constant.
Fix !H1(A) < ⌘ < µ < ⌫ < � and first consider a function f 2 H1(⌃�)\

H1(⌃�). Let �z(�) = �1/2/(z � �) as in Lemma 10.3.13. By that lemma,

f(A) =
1

2⇡i

ˆ
@⌃

⌫

z1/2f(z)�z(A)
dz

z

=
X

✏=±1

1

2⇡i
✏e�✏i⌫/2

ˆ 1

0

f(e�✏i⌫t)�e�✏i⌫ (t�1A)
dt

t

=
X

j2Z

X

✏=±1

1

2⇡i
✏e�✏i⌫/2

ˆ
2

1

f(e�✏i⌫2jt)�e�✏i⌫ (t�12�jA)
dt

t
.

Fix f
1

, . . . , fN 2 H1(⌃�) \ H1(⌃�) with kfnk1 6 1 and x
1

, . . . , xN 2 X.
Introducing

Uj(t, ✏) := �1/2
e�✏i⌫

(t�12�jA)

we can write
N
X

n=1

"nfn(A)xn =
X

j2Z

X

✏=±1

1

2⇡i
✏e�✏i⌫/2

ˆ
2

1

N
X

n=1

"nfn(e
�✏i⌫2jt)U2

j (t, ✏)xn
dt

t
,
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where ("n)n2Z is a Rademacher sequence. Therefore,

⇣

E
�

�

�

N
X

n=1

"nfn(A)xn

�

�

�

2

⌘

1/2

6 log(2)

⇡
sup
t>0

sup
k>1

max
✏=±1

⇣

E
�

�

�

N
X

n=1

"n
X

|j|6k

fn(e
�✏i⌫2jt)U2

j (t, ✏)xn

�

�

�

2

⌘

1/2

6 log(2)

⇡
sup
t>0

max
✏=±1

R(S (t, ✏))
⇣

E
�

�

�

N
X

n=1

"nxn

�

�

�

2

⌘

1/2
,

where for t > 0 and ✏ 2 {�1, 1} the operator family S (t, ✏) is given by

S (t, ✏) :=
n

X

|j|6k

fn(e
�✏i⌫2jt)U2

j (t, ✏) : n > 1, k > 1
o

.

It remains to estimate R(S (t, ✏)) with a bound that is uniform in t > 0
and ✏ 2 {�1, 1}. To do so we will apply Proposition 8.4.6(3), for fixed t > 0,
to the operators Un = Vn := Un(t, ✏) and the set

T := {fn(z) : z 2 ⌃�, n 2 N} ✓ {cI : |c| 6 1},

which is R-bounded with constant 1, by the Kahane contraction principle.
To check the conditions on Un needed to apply Proposition 8.4.6(3), we

apply Lemma 10.3.8, which gives the bound

sup
t>0

sup
m<n

sup
|✏

m

| ...,|✏
n�1|=1

�

�

�

n�1

X

j=m

✏jUj(t, ✏)
�

�

�

6 Kµ�⌘M
1
⌘,Ak�

1/2
e�✏i⌫

kH1
(⌃

µ

)

,

with k�1/2
e�✏i⌫

kH1
(⌃

µ

)

6 C⌫�µ,1/4 by Lemma 10.3.12, with the constant as in
the lemma. Thanks to this bound we are in a position to apply Proposition
8.4.6(3) and obtain

R(S (t, ✏)) 6 K2

µ�⌘(M
1
⌘,A)

2C2

⌫�µ, 14
↵�
X↵

+

X .

Setting S
1

:= {f(A) : f 2 H1(⌃�) \H1(⌃�), kfkH1
(⌃

�

)

6 1}, this proves
that S

1

is R-bounded and

R(S
1

) 6 log(2)

⇡
sup
t>0

sup
✏2{�1,1}

R(S (t, ✏)) 6 K2

µ�⌘(M
1
⌘,A)

2C2

⌫�µ,1/4↵
�
X↵

+

X .

Finally, since f(A)⇣m(A)x ! f(A)x for all x 2 X = D(A) \ R(A), by Proposi-
tion 8.1.22 S is contained in the closure of S

1

in the strong operator topology,
and hence S is R-bounded with the same bound. ⇤
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Remark 10.3.14. If we do not assume that A has dense range and dense do-
main in Theorem 10.3.4(3), then the above proof still gives the R-boundedness
of S

1

with the bound as stated.

The following simple corollary is of independent interest.

Corollary 10.3.15. Let A be a sectorial operator on a Banach space X. Con-
sider the function �z(�) = �1/2/(z � �). If, for some !(A) < ⌫ < ⇡ we have

ˆ
@⌃

⌫

|z1/2h�z(A)x, x⇤i| |dz||z| < 1

for all x 2 X and x⇤ 2 X⇤, then A has a bounded H1(⌃�)-calculus for all
⌫ < � < ⇡.

Proof. It has already been observed in Lemma 10.3.13 the operators �z(A)
are well defined by the Dunford calculus of A and the operators z1/2�z(A)
are uniformly bounded as z ranges over @⌃⌫ .

By a standard closed graph argument there exists a constant C > 0 such
that ˆ

@⌃
⌫

|z1/2h�z(A)x, x⇤i| |dz||z| 6 Ckxkkx⇤k

for all x 2 X and x⇤ 2 X⇤.
Let !(A) < ⌫ < � < ⇡, and let f 2 H1(⌃�) \ H1(⌃�) be given. By

Lemma 10.3.13, for x 2 D(A) \ R(A) we have

f(A) =
1

2⇡i

ˆ
@⌃

⌫

z1/2f(z)�z(A)
dz

z
.

Hence for all x 2 X and x⇤ 2 X⇤,

|hf(A)x, x⇤i| = 1

2⇡
kfkH1

(⌃
�

)

ˆ
@⌃

⌫

|z1/2h�z(A)x, x⇤i| |dz||z|
6 Ckxkkx⇤kkfkH1

(⌃
�

)

.

Hence kf(A)xk 6 C
2⇡kfkH1

(⌃
�

)

kxk. This shows that condition (2) of Propo-
sition 10.2.11 is satisfied. It follows that A has a bounded H1(⌃�)-calculus
with constant M1

A,⌫ 6 C
2⇡/ sin(� _ 1

2

⇡) (recall that this constant has been
defined as the best constant in condition (2) of this proposition). ⇤

10.4 Square functions and H1-calculus

From its early days, the topic of H1-calculus has been intimately connected
with square functions. As we will see, the boundedness of suitable square
functions associated with a sectorial operator imply that the operator has
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a bounded H1-calculus and vice versa. Such results were originally proved
for continuous square functions in a Hilbert space setting and subsequently
generalised to Banach spaces with finite cotype. A typical example of a square
function estimate is the equivalence of norms

�

�

�

⇣

ˆ 1

0

�

�tk
dk

dtk
e�t�f

�

�

2

dt

t

⌘

1/2�
�

�

Lp

(Rd

)

h kfkLp

(Rd

)

, (10.30)

valid for all f 2 Lp(Rd), 1 < p < 1 and integers k > 1. The expression on
the left-hand side is the classical Littlewood-Paley g-function norm. As we
will see, the equivalence of norms (10.30) will be a simple consequence of the
abstract equivalence of norms for continuous square functions associated with
the operator A = ��.

10.4.a Discrete square functions

We start with a study of discrete square function estimates. Apart from their
intrinsic interest they have the additional advantage over their continuous
analogues that they can be stated and proved without any geometrical as-
sumptions on the Banach space X. In contrast, the treatment of continuous
square functions requires X to have finite cotype in most of the results.

Definition 10.4.1 (Discrete square functions). Let A be a sectorial op-
erator on a Banach space X, let !(A) < � < ⇡, and consider a function
� 2 H1(⌃�). Let ("n)n2Z be a Rademacher sequence. The discrete square
function norm, associated with A and �, of a vector x 2 X is defined by

kxk�,A := sup
t>0

sup
N>1

⇣

E
�

�

�

X

|n|6N

"n�(2
ntA)x

�

�

�

2

⌘

1/2

whenever this expression is finite.

The supremum over t > 0 can be replaced by a supremum by t 2 [1, 2], as
can be seen by writing t = s2n with s 2 [1, 2] and n 2 Z. The parameter t
may seem awkward at first sight and can indeed be avoided under suitable
assumptions (see Proposition 10.4.8 below).

Remark 10.4.2. In the setting of Definition 10.4.1, for all x 2 D(A) \ R(A)
the square function kxk�,A is finite. To see this, let !(A) < ⌫ < �. Writing
x = ⇣(A)y with ⇣(z) = z(1 + z)�2, so ⇣(A) = A(I + A)�2 by Proposition
10.2.3, we estimate the Dunford integral:

k�(2ntA)xk 6 M⌫,A

2⇡

ˆ
@⌃

⌫

|�(2ntz)| |⇣(z)| kyk
�

�

�

dz

z

�

�

�

.

Summing over n 2 Z and using lim⌫!�M⌫,A = M�,A gives
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X

n2Z
k�(2ntA)xk 6 K��⌫

⇡
M�,Ak�kH1

(⌃
�

)

k⇣kH1
(⌃

�

)

kyk,

where K# = ( 4

⇡ log(2)

_ 2

⇡# )
1/p is the constant of Proposition H.2.3 which we

applied to the function z 7! �(e±i⌫z) on the sector ⌃��⌫ .

Remark 10.4.3. The square function kxk�,A of Definition 10.4.1 was intro-
duced using the dyadic points 2n, n 2 Z. All results in this subsection easily
remain true if the number 2 is replaced by any real number q 2 (1,1); the
constants in the corresponding estimates will then also depend on the value
of q.

The first main result of this section is the following square function bound for
operators with a bounded H1-calculus. Recall that the boundedness constant
of the H1(⌃�)-calculus of an operator A is denoted by M1

�,A; this constant
has been defined as the least admissible constant C in order that the inequality

kf(A)xk 6 CkhfkH1
(⌃

�

)

kxk

be satisfied for all f 2 H1(⌃�) and x 2 D(A) \ R(A).

Theorem 10.4.4 (H1-calculus implies square function bounds). Let
A be a sectorial operator with a bounded H1-calculus on a Banach space X
and let !H1(A) < � < # < ⇡. For all � 2 H1(⌃#) the following assertions
hold:

(1) for all x 2 X we have

kxk�,A 6 K#��M
1
�,Ak�kH1

(⌃
#

)

kxk

(2) if A is densely defined, then for all x⇤ 2 X⇤ we have

kx⇤k�,A⇤ 6 K#��M
1
�,Ak�kH1

(⌃
#

)

kx⇤k;

(3) if A is densely defined and � 6= 0, then for all x 2 R(A) we have

kxk 6 K#��M
1
�,AC�kxk�,A,

where C� = k�kH1
(⌃

#

)

/k�k2
L2

(R+, dt

t

)

.

Note that any function � 2 H1(⌃#) restricts to a function in H1(⌃#0) for
all 0 < #0 < # by Proposition H.2.4 and hence to a function in H2(⌃#0). In
particular, t 7! �(t) belongs L2(R

+

, dt
t ) (and is non-zero since � is non-zero

as a function in H1(⌃#)).

Proof. (1): By Lemma 10.3.8, for all x 2 X we have

kxk�,A 6 sup
t>0

sup
N>1

sup
|✏�N

|,...,|✏
N

|=1

�

�

�

X

|n|6N

✏n�(2
ntA)x

�

�

�
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6 K#��M
1
�,Ak�kH1

(⌃
#

)

kxk.

Taking ✏ = "(!) and averaging with respect to ! 2 ⌦ we obtain (1).
(2): This follows from the previous case applied to the adjoint operator

A⇤, which has an H1-calculus by Proposition 10.2.20.
(3): Fix any !H1(A) < � < # < ⇡. Let  2 H1(⌃#) be given by  (z) :=

c�1

� �(z) with c� :=
´1
0

|�(t)|2 dt
t . Analyticity of  follows by considering its

Taylor series. For all x 2 D(A) \ R(A) and x⇤ 2 X⇤, from the Calderón
reproducing formula (Proposition 10.2.5) we obtain

|hx, x⇤i| =
�

�

�

ˆ 1

0

h�(tA) (tA)x, x⇤i dt
t

�

�

�

=
�

�

�

X

n2Z

ˆ
2

1

h�(2ntA) (2ntA)x, x⇤i dt
t

�

�

�

6 lim inf
N!1

ˆ
2

1

�

�

�

X

|n|6N

h�(2ntA) (2ntA)x, x⇤i
�

�

�

dt

t

6 sup
N>1

sup
t2[1,2]

�

�

�

X

|n|6N

h�(2ntA) (2ntA)x, x⇤i
�

�

�

.

Randomising the sum in the last expression using a Rademacher sequence
("n)n2Z and noting that complex conjugate sequence ("n)n2Z is a Radem-
acher sequence as well, we obtain

|hx, x⇤i| 6 sup
N>1

sup
t2[1,2]

�

�

�

E
D

X

|n|6N

"n�(2
ntA)x,

X

|n|6N

"n (2
ntA⇤)x⇤

E

�

�

�

6 kxk�,Akx⇤k ,A
6 K#��M

1
�,Ac

�1

� k�kH1
(⌃

#

)

kxk�,A⇤kx⇤k

by applying (2) in the last step. Taking the supremum over all x⇤ 2 X⇤ of
norm 6 1, we infer that

kxk 6 K#��M
1
�,Ac

�1

� k�kH1
(⌃

#

)

kxk�,A.

This proves the desired bound for elements x 2 D(A) \ R(A). By an approx-
imating argument using (1) it follows that the estimate can be extended to
D(A) \ R(A) = R(A) (by Proposition 10.1.8 and the assumption that D(A) is
dense in X). ⇤
Remark 10.4.5. Let A be a sectorial operator and consider a non-zero � 2
H1(⌃#), where !(A) < # < ⇡. Inspecting the proof of Theorem 10.4.4, we see
that its conclusions hold if we have

sup
t>0

sup
N>1

sup
|✏�N

|,...,|✏
N

|=1

�

�

�

X

|n|6N

✏n�(2
ntA)

�

�

�

< 1.

Indeed, the assumption that A has a bounded H1-calculus was only used to
deduce this inequality via Lemma 10.3.8.
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Our next aim is to prove a converse to Theorem 10.4.4: Theorem 10.4.9 below
states that square function bounds together with R-sectoriality imply the
boundedness of the H1-calculus with !H1(A) 6 !R(A).

We need a preliminary result which allows us to compare the square func-
tions k · k�,A associated with different choices of �. For the second part of
the statement we recall from the discussion preceding Proposition 10.2.11
(see (10.14)) that for x 2 D(A) \ R(A) and f 2 H1(⌃�) one may define
f(A)x 2 D(A) \ R(A) by regularisation with the function ⇣(z) := z(1 + z)�2

through
f(A)x := (f⇣)(A)y

whenever y 2 X satisfies ⇣(A)y = x.
Recall the notation MR

�,A for the R-bound of the set {zR(z,A) : | arg(z)| <
�}.

Proposition 10.4.6 (Equivalence of discrete square functions). Let A
be an R-sectorial operator on a Banach space X and let !R(A) < ⌫ < � < ⇡.
Fix arbitrary �, 2 H1(⌃�) with  6= 0. Then the following assertions hold:

(1) for all f 2 H1(⌃�) \H1(⌃�) and x 2 X we have

kf(A)xk�,A 6 C�, (M
R
�,A)

2kfkH1
(⌃

�

)

kxk ,A;

(2) the same estimate holds for all f 2 H1(⌃�) and x 2 D(A)\R(A), provided
one interprets f(A)x as explained above;

(3) if both � and  are non-zero, then for all x 2 D(A) \ R(A) we have an
equivalence of homogeneous norms kxk�,A h kxk ,A, and moreover

kxk�,A 6 C�, (M
R
�,A)

2kxk ,A.

The proof of Proposition 10.4.6 is based on following lemma. Recall that an
operator-valued function is said to be strongly measurable its all of its orbits
are strongly measurable.

Lemma 10.4.7. Let K,L : R
+

! L (X) be bounded and strongly measurable
functions and let h 2 L1(R

+

, dt
t ). Assume that

K(t)x =

ˆ 1

0

h(ts)L(s)x
ds

s
, x 2 X, t > 0. (10.31)

Then for all x 2 X we have

sup
t>0

sup
N>1

E
�

�

�

X

|n|6N

"nK(2nt)x
�

�

�

2

6 khk2L1
(R+, dt

t

)

sup
t>0

sup
N>1

E
�

�

�

X

|n|6N

"nL(2
nt)x

�

�

�

2

.

Proof. In order to avoid convergence issues, we first replace h by hr := 1

[r,1/r]h
and L by Lr := 1

[r,1/r]L with r 2 (0, 1). Defining Kr as (10.31) with L replaced
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by Lr, we have Kr(t)x ! K(t)x for all t 2 (0,1) and x 2 X. Moreover, for
all n 2 Z and t > 0,

Kr(2
nt)x =

ˆ
2

1

X

j2Z
hr(2

n+jts)Lr(2
js)x

ds

s
.

By Kahane’s contraction principle (see Theorem 6.1.13),
�

�

�

X

|n|6N

"nKr(2
nt)x

�

�

�

L2
(⌦;X)

6
�

�

�

X

n2Z
"nKr(2

nt)x
�

�

�

L2
(⌦;X)

6
ˆ

2

1

�

�

�

X

n2Z

X

j2Z
"nhr(2

n+jts)Lr(2
js)x

�

�

�

L2
(⌦;X)

ds

s

=

ˆ
2

1

�

�

�

X

j2Z

X

k2Z
"k�jhr(2

kts)Lr(2
js)x

�

�

�

L2
(⌦;X)

ds

s

6
X

k2Z

ˆ
2

1

�

�

�

X

j2Z
"k�jhr(2

kts)Lr(2
js)x

�

�

�

L2
(⌦;X)

ds

s

6
X

k2Z

ˆ
2

1

|hr(ts2
k)| ds

s

⇣

sup
s2[1,2]

�

�

�

X

j2Z
"k�jLr(2

js)x
�

�

�

L2
(⌦;X)

⌘

6
ˆ 1

0

|h(s)| ds
s

sup
s2[1,2]

sup
N>1

�

�

�

X

|j|6N

"jLr(2
js)x

�

�

�

L2
(⌦;X)

.

Again by the Kahane contraction principle,
�

�

�

X

|j|6N

"jLr(2
js)x

�

�

�

L2
(⌦;X)

6
�

�

�

X

|j|6N

"jL(2
js)x

�

�

�

L2
(⌦;X)

.

The assertion now follows by combining the estimates and letting r # 0. ⇤

Proof of Proposition 10.4.6. We only need to prove assertions (1) and (2), as
(3) follows from (2) by taking f ⌘ 1.

We present the proof for general x 2 X and functions f 2 H1(⌃�) \
H1(⌃�); the reader may follow the lines of the proof to check that the
same proof applied almost verbatim to the case where x 2 D(A) \ R(A) and
f 2 H1(⌃�); the only difference is that the multiplicativity of the Dunford
calculus in (10.32) must now be invoked with f⇣ instead of f . This necessitates
choosing x 2 D(A) \ R(A).

Let ⇠ 2 H1(⌃�) \ H1(⌃�) be an arbitrary non-zero function. Let ⌘ 2
H1(⌃�) be defined by

⌘(z) := c�1

�,  (z)⇠(z), where c�, :=

ˆ 1

0

| (t)|2|⇠(t)|2 dt

t
,
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so that
´1
0

⇠(t)⌘(t) (t) dt
t = 1 (the integral defining c�, is finite by an ar-

gument similar to the one in the proof of Theorem 10.4.4. Analyticity of ⌘
follows by considering its Taylor series. Then

ˆ 1

0

⇠(tz)⌘(tz) (tz)
dt

t
= 1, z 2 ⌃�,

which is clear for z 2 R \ {0} and then in general by analytic continuation.
Let f 2 H1(⌃�)\H1(⌃�). By Fubini’s theorem and the multiplicativity

of the Dunford calculus

f(A) =
1

2⇡i

ˆ
@⌃

⌫

f(z)R(z,A) dz

=
1

2⇡i

ˆ 1

0

ˆ
@⌃

⌫

f(z)⇠(tz)⌘(tz) (tz)R(z,A) dz
dt

t

=

ˆ 1

0

f(A)⇠(tA)⌘(tA) (tA)
dt

t
.

(10.32)

For z 2 ⌃� set

U(z) :=

ˆ 1

0

⇠(tz)f(A)⌘(tA) (tA)
dt

t
, L(z) := zR(z,A)U(z).

An easy estimate using (10.9) shows that the operators U(z) thus defined are
uniformly bounded, and by Fubini’s theorem

f(A)�(sA)x =

ˆ 1

0

f(A)⇠(tA)⌘(tA) (tA)�(sA)x
dt

t

=

ˆ 1

0

⇣ 1

2⇡i

ˆ
@⌃

⌫

⇠(tz)�(sz)R(z,A) dz
⌘

f(A)⌘(tA) (tA)x
dt

t

=
1

2⇡i

ˆ
@⌃

⌫

�(sz)R(z,A)
⇣

ˆ 1

0

⇠(tz)f(A)⌘(tA) (tA)x
dt

t

⌘

dz

=
1

2⇡i

ˆ
@⌃

⌫

�(sz)R(z,A)U(z)x dz

=
1

2⇡i

X

✏=±1

ˆ 1

0

✏�(e�i✏⌫st)L(e�i✏⌫t)x
dt

t

=
1

2⇡i

X

✏=±1

ˆ 1

0

✏�(e�i✏⌫t)L(e�i✏⌫s�1t)x
dt

t
.

(10.33)
Hence by Lemma 10.4.7,

kf(A)xk�,A

= sup
t>0

sup
N>1

�

�

�

X

|n|6N

"nf(A)�(2ntA)x
�

�

�

L2
(⌦;X)
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6 1

⇡
k�kH1

(⌃
�

)

sup
✏2{�1,1}

sup
t>0

sup
N>1

�

�

�

X

|n|6N

"nL(e
�i✏⌫2nt)x

�

�

�

L2
(⌦;X)

6 1

⇡
k�kH1

(⌃
�

)

MR
⌫,A sup

✏2{�1,1}
sup
t>0

sup
N>1

�

�

�

X

|n|6N

"nU(e�i✏⌫2nt)x
�

�

�

L2
(⌦;X)

.

By another application of Lemma 10.4.7,

sup
t>0

sup
N>1

�

�

�

X

|n|6N

"nU(e�i✏⌫2nt)x
�

�

�

L2
(⌦;X)

= sup
t>0

sup
N>1

�

�

�

X

|n|6N

"n

ˆ 1

0

⇠(e�i✏⌫2nst)f(A)⌘(sA) (sA)x
ds

s

�

�

�

L2
(⌦;X)

= sup
t>0

sup
N>1

�

�

�

X

|n|6N

"n

ˆ 1

0

⇠(e�i✏⌫st)f(A)⌘(2�nsA) (2�nsA)x
ds

s

�

�

�

L2
(⌦;X)

6 k⇠kH1
(⌃

�

)

sup
t>0

sup
N>1

�

�

�

X

|m|6N

"mf(A)⌘(2mtA) (2mtA)x
�

�

�

L2
(⌦;X)

6 k⇠kH1
(⌃

�

)

sup
t>0

R({f(A)⌘(2mtA) : m 2 Z})kxk ,A.

To estimate the R-bound uniformly in t > 0 we invoke Proposition 10.3.2,
taking into account the estimate

sup
t>0

ˆ
@⌃

⌫

|f(z)||⌘(tz)|
�

�

�

dz

z

�

�

�

6 c�1

�, kfkH1
(⌃

�

)

k⇠ kH1
(⌃

�

)

. (10.34)

This gives the desired R-boundedness, with estimate

R({f(A)⌘(2mtA) : n 2 Z}) 6 1

⇡
MR
�,Ac

�1

�, kfkH1
(⌃

�

)

k⇠ kH1
(⌃

�

)

.

Putting together all the estimates we obtain part (1) with

C�, =
1

⇡2

k�kH1
(⌃

�

)

k⇠kH1
(⌃

�

)

k⇠ kH1
(⌃

�

)

k⇠ k�2

L2
(R+, dt

t

)

. (10.35)

⇤

As a first application we now show that the supremum over t in the definition
of the discrete square function norm k · k�,A can be eliminated under suitable
assumptions on � and A.

Proposition 10.4.8. Let A be an R-sectorial operator, let !R(A) < � < ⇡,
and let � 2 H1(⌃�) \ H2(⌃�) be a zero-free function with the property that
the functions

 t(z) =
�2(tz)

�(z)
, t > 0,
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satisfy
sup

t2[1,2]
k tkH1

(⌃
⌫

)

< 1.

Then for all x 2 D(A) \ R(A) we have an equivalence of norms

kxk�,A h sup
N>1

⇣

E
�

�

�

X

|n|6N

"n�(2
nA)x

�

�

�

2

⌘

1/2

with constants independent of x. This proves the upper bound in (10.35). The
lower bound (with constant 1) holds trivially.

It is easy to check that the condition on the  t’s is satisfied for common
choices such as �(z) = z↵e�z and �(z) = z↵/(1 + z)� for 0 < ↵ < �.

Proof. We apply Proposition 10.3.2, which gives us

R({ t(2
nA) : n 2 Z, t 2 [1, 2]}) 6 1

⇡
MR
�,A sup

t2[1,2]
k tkH1

(⌃
⌫

)

=: K.

For x 2 D(A) \ R(A), by Proposition 10.4.6(3), with C = (MR
⌫,A)

2C�,⇠ we
obtain

kxk�,A 6 Ckxk�2,A = C sup
t2[1,2]

sup
N>1

⇣

E
�

�

�

X

|n|6N

"n�
2(2ntA)x

�

�

�

2

⌘

1/2

= C sup
s2[1,2]

sup
N>1

⇣

E
�

�

�

X

|n|6N

"n 
2

t (2
nA)�(2nA)x

�

�

�

2

⌘

1/2

6 CK sup
N>1

⇣

E
�

�

�

X

|n|6N

"n�(2
nA)x

�

�

�

2

⌘

1/2
.

⇤

Theorem 10.4.4 admits the following converse:

Theorem 10.4.9 (Square function bounds imply H1-calculus). Let
A be an R-sectorial operator on a Banach space X. If, for some non-zero
�, 2 H1(⌃�) with !R(A) < � < ⇡, there exist constants c

0

, c
1

> 0 such that

kxk 6 c
0

kxk�,A, and kxk ,A 6 c
1

kxk, x 2 D(A) \ R(A),

then A has a bounded H1(⌃�)-calculus. In particular,

!H1(A) 6 !R(A).
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Proof. For f 2 H1(⌃�)\H1(⌃�) and x 2 D(A)\R(A), from our assumption
and Proposition 10.4.6 we infer that

kf(A)xk 6 c
0

kf(A)xk�,A
6 c

0

C�, (M
R
�,A)

2kfkH1
(⌃

�

)

kxk ,A
6 c

0

c
1

C�, (M
R
�,A)

2kfkH1
(⌃

�

)

kxk,

where C�, is as in Proposition 10.4.6. This proves the result, with bound
M1
�,A 6 c

0

c
1

C�, (MR
�,A)

2. ⇤

Corollary 10.4.10. Let A be a densely defined sectorial operator with a
bounded H1-calculus on a Banach space X with the triangular contraction
property. Then A is R-sectorial and

!H1(A) = !R(A) = !�(A).

Proof. By Theorem 10.3.4(2), A is R-sectorial and !R(A) 6 !H1(A). Further-
more, since the triangular contraction property implies finite cotype (Corol-
lary 7.5.13), A is �-sectorial with !R(A) = !�(A) by the equivalence of R-
boundedness and �-boundedness in such spaces (Theorem 8.1.3. The converse
estimate !H1(A) 6 !R(A) has been proved in Theorem 10.4.9. ⇤

The following converse to Lemma 10.3.8 once more expresses the close connec-
tion between the H1-calculus and unconditional convergence of the “parts”
�(2nA).

Proposition 10.4.11. Let A be a densely defined R-sectorial operator on a
Banach space X and let !R(A) < # < ⇡. If, for some non-zero � 2 H1(⌃#),

sup
t>0

sup
N>1

sup
|✏�N

|,...,|✏
N

|=1

�

�

�

X

|n|6N

✏n�(2
ntA)

�

�

�

< 1,

then A has a bounded H1(⌃�)-calculus for any � 2 (!R(A),⇡).

Proof. By Remark 10.4.5, the square function estimates of Theorem 10.4.4
hold. It thus follows from Theorem 10.4.9 that A has a bounded H1(⌃�)-
calculus for all !R(A) < � < ⇡. ⇤

10.4.b Continuous square functions

We now turn to continuous analogues of the preceding discrete square function
results. After some preliminary considerations on continuous square functions,
our first aim is to obtain a continuous analogue of Theorem 10.4.4: Bounded-
ness of the H1-calculus implies boundedness of continuous square functions.
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Definition 10.4.12 (Continuous square functions). Let A be a sectorial
operator on a Banach space X and let !(A) < � < ⇡. The continuous square
function norm of a vector x 2 X associated with a function � 2 H1(⌃�) is
defined by

|||x|||�,A :=
�

�t 7! �(tA)x
�

�

�(R+, dt

t

;X)

whenever t 7! �(tA)x belongs to �(R
+

, dt
t ;X).

In order to state our results in their strongest possible form we will also need
dual square functions. In order to introduce these we use the following termi-
nology. For a measure space (S,⌃, µ) and a strongly µ-measurable function
g : S ! X⇤ we say that g belongs to �⇤(S;X⇤) if

kgk�⇤
(S;X⇤

)

:= sup
f2�(S;X)

kfk
�(S;X)61

�

�

�

ˆ
S
hf(s), g(s)i dµ(s)

�

�

�

< 1,

the supremum being taken over all strongly measurable functions that are
weakly square integrable and belong to �(S;X). By density it suffices to con-
sider simple functions in the supremum.

Definition 10.4.13 (Continuous dual square functions). Let A be a
densely defined sectorial operator on a Banach space X and let !(A) < � < ⇡.
The continuous dual square function norm of a vector x⇤ 2 X⇤ associated with
a function � 2 H1(⌃�) and A is defined by

|||x⇤|||⇤�,A⇤ :=
�

�t 7! �(tA⇤)x⇤�
�

�⇤
(R+, dt

t

;X⇤
)

whenever t 7! �(tA⇤)x⇤ belongs to �⇤(R
+

, dt
t ;X

⇤).

Typical choices in applications include

�(z) = z↵(1 + z)�� , �(tA) = (tA)↵(I + tA)�� ;

�(z) = z↵ exp(�z), �(tA) = (tA)↵ exp(�tA),

where 0 < ↵ < �. For the negative Laplace operator A = �� on X = Lp(Rd),
1 < p < 1, the choice �k(z) = zk exp(�z) leads to a continuous square
function norm equivalent to the classical Littlewood-Paley g-function norm of
(10.30). To see this, recall that the radonifying norm in Lp(Rd)-space can be
computed using Proposition 9.3.2. Then

�

�

�

⇣

ˆ 1

0

�

�tk
dk

dtk
e�t�f

�

�

2

dt

t

⌘

1/2�
�

�

p
hp

�

�

�

t 7! tk
dk

dtk
e�t�f

�

�

�

�(R+, dt

t

;Lp

(Rd

))

=
�

�

�

t 7! tk(��)ke�t�f
�

�

�

�(R+, dt

t

;Lp

(Rd

))

=
�

�t 7! �k(tA)f
�

�

�(R+, dt

t

;Lp

(Rd

))

.
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We point out that the definition of continuous square functions is phrased
in terms of membership of the space �(R

+

, dt
t ;X). This space should be care-

fully distinguished from its larger variant �1(R
+

, dt
t ;X). In most applications

X has finite cotype or is even a UMD space, and in such cases both spaces are
equal, with identical norms, by Theorem 9.1.20. In the case of a general Ba-
nach space X, however, one must carefully distinguish between these spaces.
One of our main tools in the analysis of continuous square functions is the
�-multiplier theorem, Theorem 9.5.1, which asserts that �-bounded pointwise
multipliers act boundedly from �(R

+

, dt
t ;X) into �1(R

+

, dt
t ;X). This is only

a minor inconvenience in the case of square functions, thanks to the following
useful observation.

Lemma 10.4.14. Let A be a sectorial operator on a Banach space X and let
!(A) < � < ⇡. Then for all � 2 H1(⌃�) and x 2 D(A) \ R(A) the function
t 7! �(tA)x defines an element of �(R

+

, dt
t ;X).

Proof. Fix an x 2 D(A) \ R(A), say x = ⇣(A)y with ⇣(z) = z(1 + z)�2. With
!(A) < ⌫ < �, the Dunford calculus gives

�(tA)x =
1

2⇡i

ˆ
@⌃

⌫

�(tz)⇣(z)R(z,A)y dz.

As it was already observed before (see the discussion around Theorem 10.4.4),
Proposition H.2.4 implies that t 7! �(tz) belongs to L2(R

+

, dt
t ). Then for each

x
0

2 X the function t 7! �(tz)⌦x
0

belongs to �(R
+

, dt
t ;X) and by Proposition

9.1.3 its norm is given by
�

�t 7! �(tz)⌦ x
0

�

�

�(R+, dt

t

;X)

=
�

�t 7! �(tz)
�

�

L2
(R+, dt

t

;X)

kx
0

k.

Applying this with x
0

= x
0

(z) = R(z,A)y, we may interpret the above
Dunford integral as a Bochner integral in �(R

+

, dt
t ;X). This shows that

t 7! �(tA)x 2 �(R
+

, dt
t ;X) and

kt 7! �(tA)xk�(R+, dt

t

;X)

6 1

2⇡

ˆ
@⌃

⌫

�

�t 7! �(tz)⇣(z)R(z,A)y
�

�

�(R+, dt

t

;X)

|dz|

6 M⌫,A

2⇡

ˆ
@⌃

⌫

�

�t 7! �(tz)
�

�

L2
(R+, dt

t

)

|⇣(z)| kyk
�

�

�

dz

z

�

�

�

6 M⌫,A

⇡
k�kH2

(⌃
�

)

k⇣kH1
(⌃

�

)

kyk.

⇤

Our first result relating discrete and continuous square functions is as follows.
A further comparison will be given in Proposition 10.4.20.
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Proposition 10.4.15. Let A be a sectorial operator on a Banach space X
and let !(A) < � < ⇡. For � 2 H1(⌃�) and 0 < � < !(A) � � set �±�(z) =
�(e±i�z). Then,

(1) without any additional assumptions, for all x 2 D(A) \ R(A) we have

kxk�,A .� (|||x|||���

,A + |||x|||�
�

,A);

(2) if X has finite cotype, then for all x 2 D(A) \ R(A) we have

|||x|||�,A .� CX sup
|�|<�

kxk�
�

,A;

(3) if A is densely defined, then for all x⇤ 2 D(A⇤) \ R(A⇤) we have

|||x⇤|||⇤�,A⇤ .� sup
|�|<�

kx⇤k�
�

,A⇤ .

Proof. (1): We have

kxk�,A = sup
t2[1,2]

sup
N>1

�

�

�

X

|n|6N

"n�(2
ntA)x

�

�

�

L2
(⌦;X)

6 1

k�k
1

sup
t2[1,2]

sup
N>1

�

�

�

X

|n|6N

�n�(2
ntA)x

�

�

�

L2
(⌦;X)

.� (|||x|||���

,A + |||x|||�
�

,A),

where the last estimate follows from the sectorial version of Lemma 9.7.10.
(2): By the sectorial version of Proposition 9.7.20 we obtain

|||x|||�,A .� sup
|�|<�

sup
t2[1,2]

sup
N>1

�

�

�

X

|n|6N

�n�(t2
nei�A)x

�

�

�

L2
(⌦;X)

.� CX sup
|�|<�

sup
t2[1,2]

sup
N>1

�

�

�

X

|n|6N

"n�(t2
nei�A)x

�

�

�

L2
(⌦;X)

= CX sup
|�|<�

kxk�
�

,A,

where in the second step we applied the finite cotype of X to estimate the
Gaussian sequence by a Rademacher sequence (see Corollary 7.2.10).

(3): By the sectorial version of Proposition 9.7.19,

|||x⇤|||⇤�,A⇤ .� sup
|�|<�

sup
t2[1,2]

sup
N>1

�

�

�

X

|n|6N

"n�(t2
nei�A⇤)x⇤

�

�

�

L2
(⌦;X⇤

)

= sup
|�|<�

kx⇤k�
�

,A⇤ .

⇤
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We can now prove the following continuous analogue of Theorem 10.4.4.

Theorem 10.4.16 (H1-calculus implies square function bounds). Let
A be a sectorial operator with a bounded H1(⌃�)-calculus on a Banach space
X with finite cotype, and let !H1(A) < � < # < ⇡. Let � 2 H1(⌃#).

(1) If X has finite cotype, then for all x 2 D(A) \ R(A) we have
�

�t 7! �(tA)x
�

�

�(R+, dt

t

;X)

6 C#,�CXM1
�,Ak�kH1

(⌃
#

)

kxk.

(2) If A is densely defined, then for all x⇤ 2 D(A⇤) \ R(A⇤),
�

�t 7! �(tA⇤)x⇤�
�

�⇤
(R+, dt

t

;X⇤
)

6 C#,�M
1
�,Ak�kH1

(⌃
#

)

kx⇤k.

(3) If A is densely defined and � 6= 0, then for all x 2 D(A) \ R(A) we have

kxk 6 C#,�C�M
1
�,AM�,A

�

�t 7! �(tA)x
�

�

�(R+, dt

t

;X)

,

where C� = k�kH1
(⌃

#

)

k�k�2

L2
(R+, dt

t

)

.

In all three parts, membership of t 7! �(tA)x of the respective spaces is part
of the assertion.

Proof. (1): By density it suffices to consider x 2 D(A) \ R(A). Let � > 0
be such that # � � > � (for instance � = (# � �)/2). Since by Proposition
10.4.15(2),

|||x|||�,A .� CX sup
|�|<�

kxk�
�

,A,

it suffices to estimate kxk�
�

,A uniformly for |�| < �. Since

k��kH1
(⌃

#��

)

6 k�kH1
(⌃

#

)

,

it follows from Theorem 10.4.4(1) that

kxk�
�

,A .�,# M1
�,Ak�kH1

(⌃
#

)

kxk

with a constant depending on �,# but independent of �.
(2): This can be proved in the same way by using Proposition 10.4.15(3)

and Theorem 10.4.4(2) instead.
(3): Since we take x 2 D(A) \ R(A), Lemma 10.4.14 guarantees that

�(tA)x 2 �(R
+

, dt
t ;X). Let  2 H1(⌃#) be given by  (z) = c�1�(z) with

c =
´1
0

|�(t)|2 dt
t . For all x⇤ 2 D(A⇤) \ R(A⇤), from the reproducing formula

of Proposition 10.2.5 we obtain

|hx, x⇤i| =
�

�

�

ˆ 1

0

h�(tA) (tA)x, x⇤i dt
t

�

�

�
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6
�

�t 7! �(tA)x
�

�

�(R+, dt

t

;X)

�

�t 7!  (tA)⇤x⇤�
�

�⇤
(R+, dt

t

;X⇤
)

.

By (2),
k (tA)⇤x⇤k�⇤

(R+, dt

t

;X⇤
)

6 C#,�M
1
�,Ak�kH1

(⌃
#

)

kx⇤k.

Therefore,

|hx, x⇤i| 6 C#,�M
1
�,Ac

�1k�kH1
(⌃

#

)

kxk�,Akx⇤k.

Taking the supremum over all x⇤ 2 D(A⇤)\R(A⇤) of norm 6 1, from Lemma
10.2.19 we infer

kxk 6 2C#,�M�,AM
1
�,Ac

�1k�kH1
(⌃

#

)

kxk�,A.

⇤

Our next aim is to prove that boundedness of continuous square functions
implies the boundedness of the H1-calculus. Here we will follows the same
strategy as in the discrete setting. The following result is the continuous ana-
logue of Proposition 10.4.6.

Let M�
�,A denote the �-bound of the set {zR(z,A) : z 2 {⌃⌫}.

Proposition 10.4.17 (Equivalence of continuous square functions).
Let A be a �-sectorial operator on X and let !�(A) < ⌫ < � < ⇡. Fix
arbitrary �, 2 H1(⌃�), with  6= 0. Then the following assertions hold:

(1) for all f 2 H1(⌃�) \H1(⌃�) and x 2 D(A) \ R(A) we have

kf(A)�(·A)xk�(R+, dt

t

;X)

6 C�, (M
�
�,A)

2kfkH1
(⌃

�

)

k (·A)xk�(R+, dt

t

;X)

.

(2) if both � and  are non-zero, then for all x 2 D(A) \ R(A) we have an
equivalence of norms

k�(tA)xk�(L2
(R+, dt

t

),X)

h k (tA)xk�(L2
(R+, dt

t

),X)

with constants independent of x.

In the proof we use the following lemma.

Lemma 10.4.18. For any h 2 L1(R
+

, dt
t ), the operator Sh on L2(R

+

, dt
t )⌦X

defined by

Sh(u⌦ x)(s) :=
⇣

ˆ 1

0

h(st)u(t)
dt

t

⌘

⌦ x, s > 0,

extends uniquely to a bounded operator on �(R
+

, dt
t ;X) of norm kShk 6

khkL1
(R+, dt

t

)

.
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Proof. By Theorem 9.6.1 it suffices to show that u 7!
´1
0

h(t·)u(t) dt
t defines a

bounded operator on L2(R
+

, dt
t ). Let c = khkL1

(R+, dt

t

)

. By Jensen’s inequality
and Fubini’s theorem, for all u 2 L2(R

+

, dt
t ) we have

ˆ 1

0

�

�

�

ˆ 1

0

h(st)u(t)
dt

ct

�

�

�

2 ds

s
6
ˆ 1

0

ˆ 1

0

|h(st)| |u(t)|2 dt

ct

ds

s
=

ˆ 1

0

|u(t)|2 dt

t
.

This gives the result. ⇤

Proof of Proposition 10.4.17. As in the discrete case we only need to prove
assertion (1). Since x 2 D(A) \ R(A), all square functions are well defined by
Lemma 10.4.14. It was shown in the proof of Proposition 10.4.6 (see (10.33)),
using the same notation introduced there, that

f(A)�(sA) =
1

2⇡i

ˆ
@⌃

⌫

�(sz)R(z,A)U(z) dz

=
1

2⇡i

X

✏=±1

ˆ 1

0

✏�(ste�i✏⌫)te�i✏⌫R(te�i✏⌫ , A)U(te�i✏⌫)
dt

t
.

Using Lemma 10.4.18, the �-multiplier theorem (Theorem 9.5.1 applied in
combination with Lemma 10.4.14), the �-sectoriality of A, and Lemma 10.4.18
once again, we obtain

kt 7! f(A)�(tA)xk�(R+, dt

t

;X)

6 1

⇡
k�kH1

(⌃
�

)

sup
✏2{�1,1}

kt 7! tR(tei✏⌫ , A)U(tei✏⌫)xk�(R+, dt

t

;X)

6 1

⇡
M�
⌫,Ak�kH1

(⌃
�

)

sup
✏2{�1,1}

kt 7! U(tei✏⌫)xk�(R+, dt

t

;X)

6 1

⇡
M�
⌫,Ak�kH1

(⌃
�

)

k⇠kH1
(⌃

�

)

kt 7! f(A)⌘(tA) (tA)xk�(R+, dt

t

;X)

.

In view of the �-multiplier theorem, it remains to be shown that {f(A)⌘(tA) :
t > 0} is �-bounded. But this follows from the analogue of Proposition 10.3.2
for �-boundedness, taking into account the estimate (10.34). The �-multiplier
theorem applied in combination with Lemma 10.4.14, now gives

kt 7! f(A)⌘(tA) (tA)xk�(R+, dt

t

;X)

6 1

⇡
(M�

⌫,A)
2kfkH1

(⌃
�

)

k�kH1
(⌃

�

)

k⇠ kH1
(⌃

�

)

�

�t 7!  (tA)x
�

�

�(R+, dt

t

;X)

.

After letting ⌫ " �, this proves (1) with constant C�, as in (10.35). ⇤

The next result is a continuous time version of Theorem 10.4.9 and a converse
to Theorem 10.4.16.
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Theorem 10.4.19 (Square function bounds imply H1-calculus). Let
A be a �-sectorial operator on a Banach space X. If, for some non-zero �, 2
H1(⌃�) with !�(A) < � < ⇡, for all x 2 D(A) \ R(A) we have

kxk 6 c
0

�

�t 7! �(tA)x
�

�

�(R+, dt

t

;X)

and
�

�t 7!  (tA)x
�

�

�(R+, dt

t

;X)

6 c
1

kxk,

then A has a bounded H1(⌃�)-calculus. In particular,

!H1(A) 6 !�(A).

Recall from Corollary 10.4.10 that !H1(A) = !�(A) if we make the additional
assumption that X has the triangular contraction property.

Proof. Fix an arbitrary !�(A) < ⌫ < �. For f 2 H1(⌃�) \ H1(⌃�) and
x 2 R(A), from Proposition 10.4.17 we infer that

kf(A)xk 6 c
0

�

�t 7! f(A)�(tA)x
�

�

�(R+, dt

t

;X)

6 c
0

C�, (M
�
�,A)

2kfkH1
(⌃

�

)

kfk1
�

�t 7! �(tA)x
�

�

�(R+, dt

t

;X)

6 c
0

c
1

C�, (M
�
�,A)

2kfk1kxk,

where C�, is as in Proposition 10.4.17. This proves the result, with bound
M1
⌫,A 6 c

0

c
1

C�, (M
�
�,A)

2. ⇤

In Proposition 10.4.15 we have compared discrete and continuous square func-
tions at different angles. As a final result in this section we give conditions
under which discrete and continuous square functions are actually equivalent
for a fixed angle.

Proposition 10.4.20. Let A be an R-sectorial operator on a Banach space
X with finite cotype. Let !(A) < � < # < ⇡. For all � 2 H1(⌃#) and
x 2 D(A) \ R(A) we have

|||x|||�,A h kxk�,A
with a constant independent of x.

Proof. By Proposition 10.4.15(2) and Proposition 10.4.6, we have

|||x|||�,A .� CX sup
|�|<�

kxk�
�

,A .�,� CX(MR
⌫,A)

2C�,�kxk�,A.

The converse estimate follows in the same way by instead applying Proposi-
tions 10.4.15(1) and 10.4.17. ⇤
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Sectorial operators on Hilbert spaces revisited

In Hilbert spaces, square function estimates take a particularly simple form,
since by Proposition 9.2.9 we have

L2(R
+

,
dt

t
;H) ' �(R

+

,
dt

t
;H)

isometrically. For this reason, they are sometimes referred to as quadratic
estimates. Before coming to the main results, we also recall Proposition 10.1.9,
which implies that sectorial operators in Hilbert spaces A are densely defined
and satisfy D(A) \ R(A) = R(A).

We have the following fundamental characterisation of sectorial Hilbert
space operators with a bounded H1-calculus of angle less than 1

2

⇡.

Theorem 10.4.21 (McIntosh). For a sectorial operator A on a Hilbert
space H the following assertions are equivalent:

(1) A has a bounded H1(⌃�)-calculus for some � 2 (!(A),⇡);
(2) A has a bounded H1(⌃�)-calculus for all � 2 (!(A),⇡);
(3) for some � 2 (!(A),⇡) and some non-zero �, 2 H1(⌃�) there exist

constants c
0

> 0 and c
1

> 0 such that

kxk 6 c
0

�

�t 7! �(tA)x
�

�

L2
(R+, dt

t

;H)

and
�

�t 7!  (tA)x
�

�

L2
(R+, dt

t

;H)

6 c
1

kxk

for all x 2 R(A);
(4) for all � 2 (!(A),⇡) and all non-zero �, 2 H1(⌃�) there exist constants

c
0

> 0 and c
1

> 0 such that

kxk 6 c
0

�

�t 7! �(tA)x
�

�

L2
(R+, dt

t

;H)

and
�

�t 7!  (tA)x
�

�

L2
(R+, dt

t

;H)

6 c
1

kxk

for all x 2 R(A).

Moreover, we have equality of the bounds

!H1(A) = !R(A) = !�(A) = !(A).

Proof. The equality !R(A) = !�(A) = !(A) is an immediate consequence
of the fact that the notions of R-sectoriality, �-sectoriality and sectoriality
coincide in Hilbert spaces by Theorem 8.1.3.

(1))(3) and (2))(4): These implications follow from Theorem 10.4.16.
(3))(2): This follows from Theorem 10.4.19 which also gives the inequality

!H1(A) 6 !(A); the converse inequality holds trivially.
(2))(1) and (4))(3): These implications are trivial. ⇤

If �A is the generator of a C
0

-semigroup of contractions on Hilbert space,
then A has a bounded H1-calculus with !H1(A) 6 1

2

⇡ by Theorem 10.2.24.
The next result shows that in the case !(A) < 1

2

⇡, this actually gives a
characterisation of the boundedness of the H1-calculus.
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Theorem 10.4.22 (Le Merdy). A be a sectorial operator on a Hilbert space
H with dense range and which satisfies !(A) < 1

2

⇡. Then the following asser-
tions are equivalent:

(1) A has a bounded H1-calculus;
(2) �A generates C

0

-contraction semigroup with respect to some equivalent
Hilbertian norm on H.

Proof. (1))(2): By Theorem 10.4.21 we have !H1(A) = !(A) < 1

2

⇡.
Furthermore, Lemma 10.2.8, for the function '(z) = z exp(�z) we have
'(tA) = tAS(t), t > 0, where (S(t))t>0

denotes the bounded analytic C
0

-
semigroup generated by �A (see Theorem G.5.2). By Theorem 10.4.16,

|||x||| :=
�

�t 7! '(tA)x
�

�

L2
(R+, dt

t

;H)

=
�

�t 7! t1/2AS(t)x
�

�

L2
(R+;H)

defines an equivalent Hilbertian norm on H, and the estimate

|||S(s)x||| =
�

�t 7! t1/2AS(s+ t)x
�

�

L2
(R+;H)

6
�

�t 7! t1/2AS(t)x
�

�

L2
(R+;H)

= |||x|||

shows that (S(t))t>0

is contractive in this norm.
(2))(1): This follows from Theorem 10.2.24. ⇤

Square functions and H1-calculus in Lp-spaces

Theorem 10.4.23. Let (S,A , µ) be a �-finite measure space and p 2 (1,1).
Let A be a sectorial operator on Lp(S). Consider the following assertions for
�,# 2 (!(A),⇡):

(1) A has a bounded H1(⌃�)-calculus;
(2) A is R-sectorial with !R(A) < # and for some (equivalently, all) non-zero

� 2 H1(⌃#) there exist constants C
0

and C
1

such that

C�1

0

kxkp 6
�

�

�

⇣

ˆ 1

0

|�(tA)x|2 dt
⌘

1/2�
�

�

p
6 C

1

kxkp

for all x 2 R(A).

Then (1))(2) holds if # > �, and (2))(1) holds if � > #.

The constants in (2) can be taken as C
0

= k�k�2

L2
(R+, dt

t

)

C and C
1

= CpC,
where C := C#,�M1

�,AM�,Ak�kH1
(⌃

#

)

. The theorem remains true if Lp(S) is
replaced by any reflexive Banach function space with finite cotype.

Proof. Since Lp(S) is reflexive, D(A) is dense by Proposition 10.1.9. Since
Lp(S) has the triangular contraction principle and finite cotype, the implica-
tion (1))(2) for # > � is immediate from Theorems 10.3.4 (R-sectoriality)
and 9.3.8 and 10.4.16 (square function estimates). The implication (2))(1)
for � > # follows from Theorem 10.4.19, recalling that R-sectoriality implies
�-sectoriality. ⇤
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Similarly, Theorem 10.3.4 and Corollary 10.4.10 imply the following result.

Theorem 10.4.24. Let (S,A , µ) be a �-finite measure space and p 2 (1,1).
Let A be a sectorial operator with dense range and with a bounded H1(⌃�)-
calculus on Lp(S). Then A is R-sectorial, !R(A) = !H1(A) and the set

{f(A) : f 2 H1(⌃�), kfkH1
(⌃

�

)

6 1}

is R-bounded, with R-bound at most C⌘,�(M1
⌘,A)

2Cp, for any !(A) < ⌘ < �.

10.4.c The quadratic H1-calculus

In the preceding subsection we have characterised, under suitable assumptions
on A and X, the boundedness of the H1-calculus of a sectorial operator A
on X in terms of continuous square function estimates of the form

�

�t 7! �(tA)x
�

�

�(R+, dt

t

;X)

h kxk

under the assumption � 2 H1(⌃) for a suitable sector ⌃. By restriction, such
functions belong to H1(⌃0), and hence to Hp(⌃0) for all 1 < p < 1, for any
sector ⌃0 properly contained in ⌃ (see Proposition H.2.4). In particular they
belong to H2(⌃0), and the quadratic nature of square functions prompts the
natural question whether the above equivalence of norms extends to arbitrary
functions � 2 H2(⌃). The affirmative answer to this question will be deduced
from another result, which is of considerable interest in itself: the mapping
� 7! �(A), viewed as a bounded mapping

H1(⌃) ! L (X),

extends to a bounded linear mapping

H1(⌃;H⇤) ! L (X, �(H,X))

for any Hilbert space H, provided X has finite cotype. Taking H = L2(R
+

, dt
t )

will answer the question above (see Theorem 10.4.27).

Theorem 10.4.25 (Haak and Haase, Le Merdy). Let A be a sectorial
operator on a Banach space X with finite cotype q, with dense range and dense
domain, and assume that A has a bounded H1(⌃�)-functional calculus. Let
H be a Hilbert space, let � < # < ⇡, and define, for F 2 H1(⌃#;H⇤), the
operator F (A) : X ! L (H,X) by

[F (A)x]h := hh, F i(A)x, x 2 X, h 2 H.

Then F (A) maps X into �(H,X) boundedly and

kF (A)kL (X,�(H,X))

6 Cq,XC�,#(M
1
�,A)

2kFkH1
(⌃

�

;H⇤
)

,

where Cq,X = 2cq,Xq1/qk�k
2q, where � is a standard Gaussian variable.
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We start with a preliminary result on sequences of holomorphic functions
which is an analogue of Lemma 10.3.8(1).

Lemma 10.4.26. Let A be a sectorial operator with a bounded H1(⌃�)-
functional calculus on a Banach space X. Let f = (fn)n>1

2 H1(⌃�; `1).
Then for all finite sets I ✓ N>0

and scalars |↵n| 6 1 (n 2 I),
�

�

�

X

n2I

↵nfn(A)x
�

�

�

6 M1
�,AkfkH1

(⌃
�

;`1)kxk, x 2 D(A) \ R(A).

Proof. Let I ✓ N be finite and let �I =
P

n2I ↵nfn. Then �I 2 H1(⌃�) and
k�IkH1

(⌃
�

)

6 kfkH1
(⌃

�

;`1). Therefore, for all x 2 D(A) \ R(A),
�

�

�

X

n2I

↵nfn(A)x
�

�

�

= k�I(A)xk 6 M1
�,AkfkH1

(⌃
�

;`1)kxk

by the boundedness of the H1-calculus. ⇤

Lemma 10.4.26 is the only place where the boundedness of the functional
calculus is used.

Proof of Theorem 10.4.25. We may assume that kFkH1
(⌃

#

;H⇤
)

= 1. By The-
orem H.3.1, F admits a representation of the form

F (z) =
X

n>1

fn(z)gn(z)h
⇤
n, z 2 ⌃�,

where k(fn)n>1

kH1
(⌃

�

;`1) 6 1, k(gn)n>1

kH1
(⌃

�

;`1) 6 1, and kh⇤
nk 6 C�,#.

Moreover, by the properties of the functional calculus (see Theorem 10.2.13),
for all h 2 H and x 2 X we have

[hh, F i](A)x =
X

n>1

hh, h⇤
nifn(A)gn(A)x.

Let (hj)j2J be a finite orthonormal system in H and let (�j)j>1

be a
Gaussian sequence on a probability space (⌦,P). For n > 1 put

b�n :=
X

j2J

�jhhj , h
⇤
ni.

Then each b�n is a Gaussian random variable and for all r 2 [1,1) we have

kb�nkr = k�kr
⇣

X

j2J

|hhj , h
⇤
ni|2

⌘

1/2
6 k�krkh⇤

nk 6 C�,#k�kr. (10.36)

Using the identity [F (A)x]hj = [hhj , F i](A)x and the representation formula
for F , we obtain
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�

�

�

X

j2J

�j [F (A)x]hj

�

�

�

L2
(⌦;X)

=
�

�

�

X

n>1

b�nfn(A)gn(A)x
�

�

�

L2
(⌦;X)

6 lim inf
N!1

�

�

�

N
X

n=1

b�nfn(A)gn(A)x
�

�

�

L2
(⌦;X)

.

Let ("0n)n>1

be a Rademacher sequence on a distinct probability space (⌦0,P0).
By randomisation and Lemma 10.4.26 applied pointwise in ⌦, we have

�

�

�

N
X

n=1

b�nfn(A)gn(A)x
�

�

�

L2
(⌦;X)

6
�

�

�

N
X

m=1

"0mfm(A)

N
X

n=1

b�n"
0
ngn(A)x

�

�

�

L2
(⌦⇥⌦0

;X)

6 M1
�,A

�

�

�

N
X

n=1

b�n"
0
ngn(A)x

�

�

�

L2
(⌦⇥⌦0

;X)

.

Since X has cotype q < 1, from Theorem 7.2.6(2) and (10.36) we deduce
that

�

�

�

N
X

n=1

b�n"
0
ngn(A)x

�

�

�

L2
(⌦⇥⌦0

;X)

6 Cq,XC�,#
�

�

�

N
X

n=1

"0ngn(A)x
�

�

�

Lq

(⌦0
;X)

,

where Cq,X = 2cq,Xq1/qk�k
2q. By Lemma 10.4.26 applied pointwise in ⌦0, we

have k
PN

n=1

"0ngn(A)xk 6 M1
�,Akxk. Combining all estimates we obtain the

estimate

kF (A)xk�1(H,X)

6 sup
h

�

�

�

X

j2J

�j [F (A)x]hj

�

�

�

L2
(⌦;X)

6 Cq,XC�,#(M
1
�,A)

2kxk,

where the supremum extends over all finite orthonormal systems h = (hj)j2J

in H. This proves the required result, since by Theorem 9.1.20 we have
�1(H,X) = �(H,X), for the finite cotype assumption implies that X does
not contain an isomorphic copy of c

0

. ⇤

Next we consider the special case H = L2(R
+

, dt
t ) and obtain the announced

extension of Theorem 10.4.161 to functions � 2 H2(⌃#).

Theorem 10.4.27 (�-Square functions). Let A be a sectorial operator with
a bounded H1(⌃�)-calculus on a Banach space X with finite cotype q. Let
0 < � < # < ⇡. For all � 2 H2(⌃#) and all x 2 D(A) \ R(A) the function
t 7! �(tA)x belongs to �(R

+

, dt
t , X) and

�

�t 7! �(tA)x
�

�

�(R+, dt

t

,X)

6 Cq,XC�,#(M
1
�,A)

2k�kH2
(⌃

#

)

kxk

where the constants Cq,X and C�,# are as in Theorem 10.4.25.



10.4 Square functions and H1-calculus 435

Proof. Let � < #0 < #. The assumption on � implies that F (z) := [t 7! �(tz)]
defines an element of H1(⌃#;L2(R

+

, dt
t )) of norm kFkH1

(⌃
#

;L2
(R+, dt

t

))

=

k�kH2
(⌃

#

)

. Using Lemma 10.2.16, for h 2 L2(R
+

, dt
t ) we have

[F (A)x]h =

ˆ 1

0

h(t)�(tA)x
dt

t
.

This shows that in L (L2(R
+

, dt
t ), X) we have F (A)x = [t 7! �(tA)x]. Now

by Theorem 10.4.25, for all x 22 D(A) \ R(A) we obtain that t 7! �(tA)x
belongs to �(R

+

, dt
t , X) and gives the estimate

�

�t 7! �(tA)x
�

�

�(R+, dt

t

,X)

6 Cq,XC�,#(M
1
�,A)

2k�kH2
(⌃

#

)

kxk.

⇤

10.4.d Le Merdy’s theorem on the angle of the H1-calculus

In the previous section it has been shown that if A is densely defined and has
a bounded H1-calculus on a Banach space with the triangular contraction
property, then A is R-sectorial and !R(A) = !H1(A). In many applications
one knows that !(A) < 1

2

⇡, for instance when A is given by a sectorial form
of when �A generates a bounded analytic C

0

-semigroup (see Appendix G for
the precise statements). In such situations it is natural to ask whether one
also has !R(A) = !H1(A) < 1

2

⇡. Since there are many interesting holomor-
phic functions which are bounded on every proper subsector of C

+

, such as
z↵ exp(�z) with ↵ > 0, knowing that the angles are strictly smaller than 1

2

⇡
is quite a useful piece of information. In this section we present a theorem
due to Le Merdy describing a situation where this happens. It prominently
features the functions

'↵(z) := z↵ exp(�z), z 2 C
+

,

where ↵ > 0. If !(A) < 1

2

⇡, then the operators '↵(tA) are well defined
for all t > 0 by the Dunford calculus, and Lemma 10.4.14 shows that if all
x 2 D(A) \ R(A), then the function t 7! '↵(tA)x belongs to �(R

+

, dt
t ;X).

The theorem is concerned with what happens if a two-sided square function
estimate holds:

Theorem 10.4.28 (Le Merdy). Let A be a densely defined sectorial op-
erator with dense range, and which satisfies !(A) < 1

2

⇡, on a Banach space
X with Pisier’s contraction property. Suppose there is a constant C > 0 such
that the following two-sided estimate holds for all x 2 D(A) \ R(A):

C�1kxk 6
�

�t 7! '
1/2(tA)x

�

�

�(R+, dt

t

;X)

6 Ckxk. (10.37)

Then A is R-sectorial and has a bounded H1-calculus, and we have

!R(A) = !H1(A) <
1

2
⇡.
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All the steps in the proof rely on explicit quantitative estimates involving
the relevant constants, namely, the angle of sectoriality !(A), the sectoriality
constants M�,A for !(A) < � < 1

2

⇡, the constants associated with Pisier’s
contraction property, and the constants in (10.37). As a consequence it is
possible to give an explicit estimate for the difference 1

2

⇡ � !R(A). Since the
resulting expression is complicated and not likely to provide any new insights,
we leave this to the interested reader.

Pisier’s contraction property will enter through Corollary 9.4.11, which
implies that if X has this property, then we have a natural isomorphism of
Banach spaces

�(T ⇥ S;X) ' �(T ; �(S;X)) (10.38)

whenever (S,⌃, µ) and (T,B, ⌫) are �-finite measure spaces.
We begin with a simple extension result.

Lemma 10.4.29. Let X, Y be Banach spaces, (S,A , µ) and (T,B, ⌫) mea-
sure spaces, and let  : T ! L (X,Y ) a function such that for every x 2 X
the function t 7!  (t)x belongs to �(T, Y ) and

C�1kxk 6
�

�t 7!  (t)x
�

�

�(T ;X)

6 Ckxk.

If f 2 �(S;X), then t 7!
⇥

s 7!  (t)f(s)
⇤

belongs to �(T ; �(S;Y )) and

C�1kfk�(S;X)

6 k fk�(T ;�(S;Y ))

6 Ckfk�(S;X)

.

Proof. First we check that the mapping t 7!  (t)f(·) is strongly ⌫-measurable
as a function from T to �(S, Y ). By Example 9.1.16 it suffices to check that
t 7!  (t)Ifh is measurable for all h 2 L2(S), and this is clear from the
assumptions.

The next step is to show that the mapping t 7!
⇥

s 7!  (t)f(s)
⇤

defines an
element of �(T, �(S, Y )) and satisfies the required norm estimate for any f 2
�(S;X). Recall from Proposition 9.4.9 that this space isometrically coincides
with �(S, �(T, Y )).

First consider a µ-simple function f =
PN

n=1

1p
|A

n

|
1A

n

⌦ xn with disjoint

measurable sets An ✓ S of finite positive µ-measure. Then t 7!  (t)f(·) =
PN

n=1

1p
|A

n

|
1A

n

(·) (t)xn is a µ-simple function with values in �(T ;Y ) and

therefore, by Proposition 9.1.3, it belongs to �(S; �(T ;Y )) and its norm is
given by

�

�t 7!
⇥

s 7!  (t)f(s)
⇤

�

�

2

�(T,�(S,Y ))

=
�

�s 7!
⇥

t 7!  (t)f(s)
⇤

�

�

2

�(S,�(T,Y ))

= E
�

�

�

N
X

n=1

�n[t 7!  (t)xn]
�

�

�

2

�(T ;Y )

6 C2E
�

�

�

N
X

n=1

�nxn

�

�

�

2

= C2kfk2�(S;X)

,
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where in the penultimate step we used the assumption on  . By a density
argument (see Proposition 9.2.5) the result extends to general f 2 �(S;X).

The lower estimate also follows from

C2E
�

�

�

N
X

n=1

�n[t 7!  (t)xn]
�

�

�

2

�(T ;Y )

> E
�

�

�

N
X

n=1

�nxn

�

�

�

2

X
= kfk2�(S;X)

,

using the assumed lower bound for  . ⇤

The next lemma takes advantage of the specific properties of the functions
'↵(z) = z↵ exp(�z).

Lemma 10.4.30. Let X be a Banach space with Pisier’s contraction property.
Let ↵,� > 0 and assume that there constants C

0,A and C
1,A such that

C�1

0,Akxk 6
�

�t 7! '↵(tA)x
�

�

�(R+, dt

t

;X)

6 C
0,Akxk,

C�1

1,Akxk 6
�

�t 7! '�(tA)x
�

�

�(R+, dt

t

;X)

6 C
1,Akxk,

for all x 2 D(A) \ R(A). Then for all x 2 D(A) \ R(A),

C�1kxk 6
�

�t 7! '↵+�(tA)x
�

�

�(R+, dt

t

;X)

6 Ckxk,

where C = CXC↵,�C0,AC1,A for some constants CX , C↵,� > 0.

Proof. By the multiplicativity of the Dunford calculus, for all s, t > 0 we have

'↵(tA)'�(sA) = �(s, t)'↵+�((s+ t)A),

where �(s, t) = s↵t�

(t+s)↵+�

. The following simple identity for functions h 2
L2(R

+

, ds
s ) is the key to the proof:

ˆ 1

0

ˆ 1

0

|�(s, t)h(t+ s)|2 ds

s

dt

t
=

ˆ 1

0

ˆ 1

t

(s� t)2↵�1t2�

s2↵+2�
|h(s)|2 ds dt

t

=

ˆ 1

0

ˆ s

0

(s� t)2↵�1t2�

s2↵+2�
|h(s)|2 dt

t
ds

=

ˆ 1

0

ˆ
1

0

(1� t)2↵�1t2��1|h(s)|2 dt ds
s

= C2

↵,�

ˆ 1

0

|h(s)|2 ds

s
.

Stated differently, h 7! C�1

↵,� [(s, t) 7! �(s, t)h(s + t)] is an isometric map-
ping from L2(R

+

, ds
s ) into L2(R

+

⇥ R
+

, ds
s ⇥ dt

t ). By Theorem 9.6.1 it has
an isometric �-extension from �(R

+

, ds
s ;X) into �(R2

+

, ds
s ⇥ dt

t ;X). For all
x 2 D(A) \ R(A) the function s 7! '↵+�(sA)x belongs to �(R

+

, ds
s ;X) by

Proposition 10.4.14 and therefore
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�

�s 7! '↵+�(sA)x
�

�

�(R+, ds

s

;X)

= C↵,�
�

�(s, t) 7! �(s, t)'↵+�((s+ t)A)x
�

�

�(R2
+, ds

s

⇥ dt

t

;X)

= C↵,�
�

�(s, t) 7! '↵(tA)'�(sA)x
�

�

�(R2
+, ds

s

⇥ dt

t

;X)

.

It remains to estimate the last expression. Using Pisier’s contraction property
in the form (10.38), it follows that

�

�(s, t) 7! '↵(tA)'�(sA)x
�

�

�(R2
+, ds

s

⇥ dt

t

;X)

hX

�

�t 7!
⇥

s 7! '↵(tA)'�(sA)x
⇤

�

�

�(R+;

dt

t

;�(R+, ds

s

;X))

6 C
0,A

�

�s 7! '�(sA)x
�

�

�(R+, ds

s

;X)

6 C
0,AC1,Akxk,

where the two inequalities follow from Lemma 10.4.29 and the assumption.
The upper estimate of the lemma follows by combining the above estimates.

The lower estimate is proved in the same way, this time using the lower
estimate of Lemma 10.4.29. ⇤

The next lemma, which is again based on Pisier’s contraction property, will
allow us to manipulate �-norms.

Lemma 10.4.31. Let X be a Banach space with Pisier’s contraction property.
Let ⌫ be a �-finite measure on R

+

and assume that t 7! [s 7! f(s, t)] belongs
to �(R

+

, ⌫; �(R
+

;X)). Then for all g 2 L1(R2

+

) the function t 7! [s 7!
g(s, t)f(s+ t, t)] defines an element of �(R

+

, ⌫; �(R
+

;X)) and
�

�s 7! [t 7! g(s, t)f(s+ t, t)]
�

�

�(R+;�(R+,⌫;X))

6 CXkgk1
�

�s 7! [t 7! f(s, t)]
�

�

�(R+;�(R+,⌫;X))

.

Proof. Let � denote the Lebesgue measure on R
+

. We begin by observing that
for all h 2 L2(R

+

⇥ R
+

,�⇥ ⌫) the following estimate holds:
ˆ 1

0

ˆ 1

0

|g(s, t)h(s+ t, t)|2 ds d⌫(t) 6 kgk21
ˆ 1

0

ˆ 1

0

|h(s, t)|2 ds d⌫(t).

By Theorem 9.6.1 this estimate has the �-extension
�

�(s, t) 7! g(s, t)f(s+ t, t)]
�

�

�(R2
+,�⇥⌫;X)

6 kgk1
�

�(s, t) 7! f(s, t)]
�

�

�(R2
+,�⇥⌫;X)

.

Now the result follows by applying (10.38). ⇤

Proof of Theorem 10.4.28. The key point is to prove that A is R-sectorial
with angle !R(A) < 1

2

⇡. Once we know this, the remaining assertions follow
from the earlier results in this chapter. Indeed, Theorem 10.4.9 then implies
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that A has a bounded H1-calculus of angle !H1(A) 6 !R(A), and then
Corollary 10.4.10 gives that !H1(A) = !R(A).

To prove that A is R-sectorial, according to Proposition 10.3.3 it suffices
to show that the sets

{S(s) : s > 0} and {sAS(s) : s > 0} (10.39)

are R-bounded. Since X has Pisier’s contraction property, it has finite cotype
by Corollary 7.5.13, and therefore, �-boundedness and R boundedness are
equivalent by Theorem 8.1.3). Thus it suffices to check the �-boundedness of
the operator families in (10.39).

Repeated use of Lemma 10.4.30 gives that for all integers k > 1 and
x 2 D(A) \ R(A),

C�2kkxk 6
�

�s 7! 'k(sA)x
�

�

�(R+, ds

s

;X)

6 C2kkxk, (10.40)

where C is as in Lemma 10.4.30. By Lemma 10.2.8 and the multiplicativ-
ity of the Dunford calculus applied to the function (ze�z/k)k = zke�z, we
obtain 'k(sA) = skAkS(s), where (S(s))s>0

denotes the analytic semigroup
generated by �A. Therefore, (10.40) becomes

C�2kkxk 6
�

�s 7! sk�
1
2AkS(s)x

�

�

�(R+;X)

6 C2kkxk. (10.41)

Turning to the proof of the �-boundedness of the set {S(s) : s > 0}, fix a
finite sequence (tn)Nn=1

of non-negative real numbers and a sequence (xn)
N
n=1

in D(A) \ R(A). Then applying the lower and upper estimate of (10.41) with
k = 1 (in the first and last step) and Lemma 10.4.31 with g(s, n) = s1/2

(s+t
n

)

1/2

and f(s, n) = s1/2AS(s)xn, we obtain

C�2

�

�

�

N
X

n=1

�nS(tn)xn

�

�

�

L2
(⌦;X)

6
�

�

�

s 7!
N
X

n=1

�ns
1/2AS(s+ tn)xn

�

�

�

L2
(⌦;�(R+;X))

=
�

�

�

s 7!
⇥

n 7! s1/2

(s+ tn)1/2
(s+ tn)

1/2AS(s+ tn)xn

⇤

�

�

�

�(R+;�
N

(X))

6 CX

�

�

�

s 7!
⇥

n 7! s1/2AS(s)xn

⇤

�

�

�

�(R+;�
N

(X))

= CX

�

�

�

s 7! s1/2AS(s)
N
X

n=1

�nxn

�

�

�

L2
(⌦;�(R+;X))

6 C2CX

�

�

�

N
X

n=1

�nxn

�

�

�

L2
(⌦;X)

.
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This shows that the set {S(s) : s > 0} is �-bounded, with constant C4CX .
The proof of the �-boundedness of {sAS(s) : s > 0} proceeds in the same

way, this time applying the lower and upper estimate of (10.41) with k = 1
and k = 2, respectively, and Lemma 10.4.31 with with g(s, n) = st

n

(s+t
n

)

2 , where
f(s, n) = s2A2S(s)xn. With these choices,

C�2

�

�

�

N
X

n=1

�ntnAS(sn)xn

�

�

�

L2
(⌦;X)

6
�

�

�

s 7!
N
X

n=1

�ntns
1/2A2S(s+ tn)xn

�

�

�

L2
(⌦;�(R+;X))

=
�

�

�

s 7!
⇥

n 7! tns1/2

(s+ tn)3/2
(s+ tn)

3/2A2S(s+ tn)xn

⇤

�

�

�

�(R+;�
N

(X))

6 1

3
CX

�

�

�

s 7!
⇥

n 7! s3/2A2S(s)xn

⇤

�

�

�

�(R+;�
N

(X))

=
1

3
CX

�

�

�

s 7! s3/2A2S(s)
N
X

n=1

�nxn

�

�

�

L2
(⌦;�(R+;X))

6 1

3
C4CX

�

�

�

N
X

n=1

�nxn

�

�

�

L2
(⌦;X)

.

This shows that the set {sAS(s) : s > 0} is �-bounded, with constant 1

3

C6CX .
⇤

Remark 10.4.32.

(1) Instead of (10.40) one could use the following estimates in the above proof:

C�1kxk 6
�

�t 7! '
1/2(tA)x

�

�

�(R+, dt

t

;X)

6 Ckxk
�

�t 7! '
3/2(tA)x

�

�

�(R+, dt

t

;X)

6 C3kxk.

This gives the result with a better constant, but we haven’t introduced
fractional powers yet.

(2) Theorem 10.4.28 also holds if we assume the square function estimate holds
for '

1/n(tA), where n > 1 is an integer instead of '
1/2(tA). To see this

it suffices to observe that a repeated use of Lemma 10.4.30 still implies
(10.40).

10.5 Necessity of UMD and Pisier’s contraction property

This section is devoted to proving the necessity of the UMD property (resp.
Pisier’s contraction property) for the boundedness (resp. R-boundedness) of
the imaginary powers of the negative Laplace operator �� on Lp(Rd;X). This
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shows in particular the necessity of these assumption in Theorems 10.2.25 and
10.3.4(3). We begin with:

Theorem 10.5.1 (Guerre-Delabrière). If the operators (��)is are uni-
formly bounded on Lp

0

(T;X) for s 2 (0, 1], then X is a UMD space, and

�p,X 6 lim inf
s#0

k(��)iskL (Lp

(T;X))

.

Recall that Lp
0

(T;X) := {f 2 Lp(T;X) :
´
f = 0}. Before going to the proof,

we record:

Corollary 10.5.2 (Guerre-Delabrière). If the operators (��)is are uni-
formly bounded on Lp(Rd;X) for s 2 (0, 1], then X is a UMD space, and

�p,X 6 lim inf
s#0

k(��)iskL (Lp

(Rd

;X))

.

In particular, this shows that the UMD assumption is necessary in Theorem
10.2.25, not only for the Laplacian to have functional calculus of angle 0 on
Lp(Rd;X), but in fact for it to have a functional calculus of any angle at all.
Indeed, the functions fs(z) = zis = exp(is log z) are bounded and holomorphic
on the largest possible sector ⌃⇡ = C \ (�1, 0].

Proof. We observe that (��)is on Lp(Rd;X) is the Fourier multiplier Tm with
multiplier m(⇠) = (2⇡|⇠|)i2s; similarly, (��)is on Lp

0

(Td;X) is the periodic
Fourier multiplier eTem with multiplier em(k) = (2⇡|k|)i2s, k 2 Zd \ {0}.

Step 1: We apply a slight variant of the transference of Fourier multipliers
given in Proposition 5.7.1. It says that if every k 2 Zd is a Lebesgue point
of m 2 L1(Rd), then (m(k))k2Zd is a Fourier multiplier on Lp(Td;X) of at
most the norm of the Fourier multiplier m on Lp(Rd;X). A slight obstacle is
that 0 is not a Lebesgue point of our m(⇠), no matter how we define m(0).
But, if we only consider the action of these operators on Lp

0

(Td;X), the 0th
frequency never shows up, and one can check that the proof of Proposition
5.7.1 also applies, with trivial modifications, to the case that each k 2 Zd \{0}
is a Lebesgue point, giving in this case

k eT
(m(k))

k2Zd\{0}
kL (Lp

0(Td

;X))

6 kTmkL (Lp

(Rd

;X))

, i.e.

k(��)iskL (Lp

0(Td

;X))

6 k(��)iskL (Lp

(Rd

;X))

.

Step 2: Next we apply the operator (��)is on Lp
0

(Td;X) to functions of
the first variable only, f(t) = f

1

(t
1

), where f
1

2 Lp
0

(T;X). These have non-
zero Fourier coefficients only for k = (k

1

, 0, . . . , 0), in which case (2⇡|k|)i2s =
(2⇡|k

1

|)i2s, and we see that ((��)isf)(t) = ((��
1

)isf)(t
1

), where �
1

is the
one-dimensional Laplacian on T. Thus

k(��)iskL (Lp

0(T;X))

6 k(��)iskL (Lp

0(Td

;X))

.

Combining the above displayed estimates with Theorem 10.5.1 gives the state-
ment of the corollary. ⇤
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The proof of Theorem 10.5.1 is based on the fact that the values of the mul-
tiplier |⇠|is provide good approximations of any prescribed numbers |"k| = 1
on long intervals Ik 3 ⇠:

Lemma 10.5.3. Given a sequence sj # 0, numbers � > 0 and L > 2, and
complex signs |✏k| = 1 for 1 6 k 6 K, we can find integers N

0

= 0 < N
1

<
N

2

< . . . < NK and s = sj in such a way that

||⇠|is � ✏k| 6 � 8⇠ 2 Ik := [Nk � LNk�1

, LNk], k = 1, . . . ,K.

Proof. For ⇠ 2 Ik, we have

log |⇠|� logNk 2
h

log(1� LNk�1

Nk
), logL

i

✓ [log
1

2
, logL] ✓ [� �

2s
,
�

2s
],

provided that Nk > 2LNk�1

and s = sj is small enough, depending only on
L (indeed, we need s 6 �/(2 logL)). We fix such an s, and proceed to specify
the choice of Nk.

Let N
0

:= 0. Assuming that Nk�1

is already chosen, the choice of Nk is
as follows. Write ✏k = eitk . Since (log n)n>1

increases to 1 with decreasing
steps log(n + 1) � log n 6 1

n ! 0, we find that s log n comes infinitely often
arbitrarily close to tk + 2⇡Z. Thus we can pick Nk > 2LNk�1

such that

|s logNk � (tk + 2⇡mk)| 6 �/2

for some mk 2 Z. But then, for ⇠ 2 Ik, we have

||⇠|is � ✏k| = |eis log |⇠| � ei(tk+2⇡m
k

)|

6 s| log |⇠|� logNk|+ |s logNk � (tk + 2⇡mk)| 6
�

2
+
�

2
= �.

⇤

Proof of Theorem 10.5.1. We begin by exactly the same reduction as in the
proof of Theorem 5.2.10 (the necessity of UMD for the Hilbert transform’s
boundedness); but we repeat this short step for the reader’s convenience: By
Theorem 4.2.5 it suffices to estimate the dyadic UMD constant. In order to
most conveniently connect this with Fourier analysis, we choose a model of the
Rademacher system (rk)nk=1

, where the probability space is Tn = T
1

⇥· · ·⇥Tn

(each Tk is simply an indexed copy of T), and rk = rk(tk) is a function of the
kth coordinate only. Then it is (more than) sufficient to prove that

�

�

�

n
X

k=1

✏kfk
�

�

�

Lp

(Tn

;X)

6 lim inf
s#0

k(��)iskL (Lp

(T;X))

�

�

�

n
X

k=1

fk
�

�

�

Lp

(Tn

;X)

for all fk 2 Lp
0

(Tk;Lp(Tk�1;X)), since in particular each �k(r1, . . . , rk�1

)rk
has this form, and the latter are precisely the martingale differences of
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Paley–Walsh martingales (see Proposition 3.1.10). We use the convention that
Lp(T0;X) := X. By the density of trigonometric polynomials in Lp, we may
further assume that each fk is a trigonometric polynomial on Tk, with values
in the space of trigonometric polynomials on Tk�1.

Fix some (t
1

, . . . , tn) 2 Tn, and denote tk := (t
1

, . . . , tk) 2 Tk. We also
consider integers 0 = N

0

< N
1

< . . . < Nn, and denote Nk := (N
1

, . . . , Nk) 2
Zk. Since fk lacks the zeroth frequency as a function of tk, the function

t 2 T 7! Fk(t) := fk(Nkt+ tk) = fk(Nk�1

t+ tk�1

, Nkt+ tk)

has non-zero Fourier coefficients only for frequencies

|⇠| 2 Ik := [Nk � LNk�1

, LNk],

where L is a number depending only on the frequencies of the trigonometric
polynomials f

1

, . . . , fn. (By the assumption that (Nk)
n
k=1

is increasing, we
may absorb the dependence on Nk into a dependence on Nk only.)

Let us denote kfkA = kfkA(Tk

;X)

:=
P

⇠2Zk

k bf(⇠)kX , and observe that
(��)is is the Fourier multiplier with symbol (2⇡|⇠|)i2s = (2⇡)i2s|⇠|i2s. If we
now choose the integers Nk and the number s/2 > 0 (in place of s) as in
Lemma 10.5.3, this lemma guarantees that

k(��)is/2Fk � (2⇡)is✏kFkkA 6 �kFkkA 6 �kfkkA;

indeed, this holds for the trigonometric monomial e⇠ with |⇠| 2 Ik, and hence
for the A-norm of Fk by summing over all |⇠| 2 Ik.

Thus
�

�

�

n
X

k=1

✏kFk

�

�

�

p
=
�

�

�

n
X

k=1

(2⇡)is/2"kFk

�

�

�

p
6
�

�

�

n
X

k=1

(��)is/2Fk

�

�

�

p
+ �

n
X

k=1

kfkkA

and, noting that all Fk have integral zero,

�

�

�

n
X

k=1

(��)is/2Fk

�

�

�

p
6 k(��)is/2kL (Lp

0(T;X))

�

�

�

n
X

k=1

Fk

�

�

�

p
.

Taking the Lp(Tn)-norms with respect to tn 2 Tn, we note that

�

�

�

n
X

k=1

✏kFk

�

�

�

Lp

(Tn

;Lp

(T;X))

=
�

�

�

n
X

k=1

✏kfk(tNk + tk)
�

�

�

Lp

(T, dt;Lp

(Tn, dt
n

;X))

=
�

�

�

n
X

k=1

✏kfk(tk)
�

�

�

Lp

(T, dt;Lp

(Tn, dt
n

;X))

=
�

�

�

n
X

k=1

✏kfk
�

�

�

Lp

(Tn

;X)

by Fubini’s theorem and translation invariance of the Lp(Tn;X)-norm. Sub-
stituting back, we have checked that
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�

�

�

n
X

k=1

✏kfk
�

�

�

p
6 k(��)is/2kL (Lp

0(T;X))

�

�

�

n
X

k=1

fk
�

�

�

p
+ �

n
X

k=1

kfkkA.

As the only dependence on � here is the explicit factor in the last term, we
may pass to the limit � ! 0 to eliminate this term. Finally, we observe that
Lemma 10.5.3 allowed us to choose s (and then also s/2) as any number from
a given sequence sj ! 0 and hence we may finally pass to the limes inferior
along such a sequence to deduce that

�

�

�

n
X

k=1

✏kfk
�

�

�

p
6 lim inf

s!0

k(��)iskL (Lp

0(T;X))

�

�

�

n
X

k=1

fk
�

�

�

p
,

as claimed. ⇤

There is a variant involving R-boundedness and Pisier’s contraction property:

Proposition 10.5.4. If the operators (��)is are R-bounded on Lp
0

(T;X) for
s 2 (0, 1], then X has Pisier’s contraction property, and

↵p,X 6 lim
t#0

Rp

�

(��)is : s 2 (0, t)
�

.

Corollary 10.5.5. If the operators (��)is are R-bounded on Lp(Rd;X) for
s 2 (0, 1], then X has Pisier’s contraction property, and

↵p,X 6 lim
t#0

Rp

�

(��)is : s 2 (0, t)
�

.

This shows in particular that the assumption that X has Pisier’s contraction
property is necessary in Theorem 10.3.4(3).

Proof. The deduction of this corollary from Proposition 10.5.4 via transference
is very similar to the deduction of Corollary 10.5.2 from Theorem 10.5.1,
e.g. after reformulating the R-boundedness as the boundedness of suitable
operator-valued multipliers on Lp-spaces of "pN (X)-valued functions as in the
proof of Proposition 8.3.24. The details are left to the reader. ⇤

For the proof of Proposition 10.5.4, we borrow a piece of ergodic theory:

Lemma 10.5.6. Let s
1

, . . . , sn 2 R and 1 be linearly independent over Q, and
let s := (s

1

, . . . , sn). Then for every x 2 Tn, the orbit {x+ms mod 1 : m 2 N}
is dense in Tn.

Proof. Step 1: A zero/one law. We first check that if a measurable E ✓ Tn

is invariant under x 7! x + s mod 1, then |E| 2 {0, 1}. Indeed, writing the
Fourier series of 1E(t) = 1E+s(t) = 1E(t � s) in two ways, we find (with
convergence in L2(Tn)) that

X

k2Zn

c

1E(k)ek(t) =
X

k2Zn

c

1E(k)ek(t� s) =
X

k2Zn

c

1E(k)e
�i2⇡k·sek(t),
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and by the uniqueness of the Fourier series that c

1E(k)(e�i2⇡k·s � 1) = 0 for
all k 2 Zn. The second factor vanishes if and only if k · s is an integer, but the
assumed Q-linear independence of s

1

, . . . , sn and 1 implies that this can only
happen when k = 0. Hence we conclude that c

1E(k) = 0 for all k 2 Zn \ {0},
and thus 1E(t) = c

1E(0) is a constant almost everywhere. For an indicator
function, this leaves the two options |E| 2 {0, 1}.

Step 2: Density of x+Zs. Assume for contradiction that {x+ms : m 2 Z},
for some x 2 Tn, avoids a point y 2 Tn by a positive distance 3� > 0. But then
U := {x0 +ms : m 2 Zn, x0 2 B(x, �)} avoids V := {y0 +ms : m 2 Zn, y0 2
B(y, �)} by a positive distance � > 0. Clearly both U and V are invariant
under x 7! s and measurable with positive measure (as countable unions of
balls in Tn). On the other hand, being disjoint, neither can have full measure
in Tn. But this contradicts the zero/one law just established, thereby showing
that {x+ms : m 2 Z} must come arbitrarily close to every y 2 Tn.

Step 3: Density of x + Ns for some x. Fix a point x
0

2 Tn and let xk :=
x � ks for k = 0, 1, 2, . . .. Then there exists a subsequence xk

j

with a limit
x1 2 Tn. We show that x1+Ns is dense. Let y 2 Tn and � > 0 be arbitrary.
Since x

0

+Zs is dense, we can find some m 2 Z such that x
0

+ms 2 B(y, �/2).
Next, we choose k = kj > |m| so large that |xk � x1| 6 �/2. But then
x1+(m+k)s 2 x1+Ns is within �/2 from xk+(m+k)s = x

0

+ms 2 B(y, �/2),
and hence x1 + Ns comes within distance � from y. Since � and y were
arbitrary, this proves the density of x1 + Ns.

Step 4: Conclusion. If x 2 Tn is the point constructed in Step 3, and
x0 2 Tn is arbitrary, then

x0 + Ns = (x0 � x) + (x+ Ns) = (x0 � x) + x+ Ns = (x0 � x) + Tn = Tn,

and hence x0 + Ns is also dense. ⇤

Proof of Proposition 10.5.4. Applying the R-boundedness of (��)is to N

functions of the form fj =
PN

k=1

"0kenk

xjk, we deduce that

�

�

�

N
X

j,k=1

"j"
0
kenk

(2⇡|nk|)isjxjk

�

�

�

Lp

(⌦⇥T;X)

6 Rp((��)isj/2 : 1 6 j 6 N)
�

�

�

N
X

j,k=1

"j"
0
kenk

xjk

�

�

�

Lp

(⌦⇥T;X)

.

Since ("0kekj

(t))Nk=1

and ("0k)
N
k=1

are equidistributed for each t 2 T, we may
further eliminate the factors ek

j

and the integration over T in the Lp-norm.
Similarly, since ((2⇡)isj"j)Nj=1

and ("j)Nj=1

are equidistributed, we may also
eliminate the factors (2⇡)isj . The resulting estimate is essentially Pisier’s con-
traction property, up to checking that the factors |nk|isj can be chosen to
approximate an arbitrary double array of numbers ↵jk of modulus one.

To this end, we first pick 0 < s
1

, . . . , sn < t such that s
1

, . . . , sn and 1 are
linearly independent over Q, and Lemma 10.5.6 applies. We write ↵jk = eitjk
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for some tjk 2 T. Let s := (s
1

, . . . , sn), and tk := (t
1k, . . . , tnk) 2 Tn. We

want to choose N
1

, . . . , Nn 2 Z
+

such that

|s logNk � tk| 6 �, k = 1, . . . , n.

Let first N 0
k be so large that |s|/N 0

k 6 �/2. The apply Lemma 10.5.6 to find
nk 2 N such that

|s(logN 0
k + n0

k)� tk| 6 �/2.

Since log(n + 1) � log n 6 1/n 6 1/N 0
k for n > N 0

k, we can find an integer
Nk > N 0

k such that | logNk � (logN 0
k + nk)| 6 1/N 0

k, and hence

|s logNk � tk| 6 |s|| logNk � (logN 0
k + nk)|+ |s(logN 0

k + n0
k)� tk|

6 |s|/N 0
k + �/2 6 �/2 + �/2 = �,

as required.
Now we can estimate
�

�

�

N
X

j,k=1

"j"
0
k↵jkxjk

�

�

�

Lp

(⌦;X)

=
�

�

�

N
X

j,k=1

"j"
0
ke

it
jkxjk

�

�

�

Lp

(⌦;X)

6
�

�

�

N
X

j,k=1

"j"
0
k|Nk|isjxjk

�

�

�

Lp

(⌦;X)

+

N
X

j,k=1

|sj log |Nk|� tjk|kxjkkX

6 Rp((��)is/2 : 0 < s < t)
�

�

�

N
X

j,k=1

"j"
0
kxjk

�

�

�

Lp

(⌦;X)

+ �
N
X

j,k=1

kxjkkX .

Since � > 0 and the array (xjk)
N
j,k=1

is arbitrary, we conclude that

↵p,X 6 Rp((��)is/2 : 0 < s < t).

Finally, t > 0 was also arbitrary, so we can pass to the limit t # 0. ⇤

10.6 The bisectorial H1-calculus

In this section we discuss a variant of the H1-calculus for a class of operators,
whose spectrum is spread over two opposite sectors of the complex plane.
Throughout this chapter we shall work over the complex scalar field.

10.6.a Bisectorial operators

For 0 < ! < 1

2

⇡ we define ⌃+

! := ⌃! and ⌃�
! := �⌃!, and

⌃bi

! := ⌃+

! [⌃�
! .

Here, as always, ⌃! is the open sector about the positive real axis of opening
angle !. The set ⌃bi

! is called the bisector of angle !.
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Definition 10.6.1. A linear operator A on a Banach space X is said to be
bisectorial if there exists an ! 2 (0, 1

2

⇡) such that the spectrum �(A) is con-
tained in ⌃bi

! and

Mbi

!,A := sup
z2{⌃bi

!

kzR(z,A)k < 1.

In this situation we say that A is !-bisectorial. The infimum of all ! 2 (0, 1

2

⇡)
such that A is !-bisectorial is called the angle of bisectoriality of A and is
denoted by !bi(A).

Replacing the uniform boundedness condition on the operators zR(z,A) by an
R-boundedness condition we obtain the notion of an R-bisectorial operator;
the corresponding R-bounds will be denoted by Mbi,R

!,A .

�(A)

�(A) !

Fig. 10.2: The spectrum of a bisectorial operator

By Proposition 10.1.6 a linear operator A is bisectorial if and only if iR \
{0} ✓ %(A) and

sup
t2R+\{0}

ktR(it, A)k < 1.

Let us record some immediate consequences of the definition.

• An operator A is bisectorial if and only both operators ±iA are sectorial.
• A sectorial operator of angle less than 1

2

⇡ is bisectorial of the same angle.
• If A is bisectorial of angle less than 1

2

⇡ and �(A) ✓ C
+

, then A is sectorial
of the same angle under moderate growth conditions on the resolvent near 0
and infinity. Indeed, by assumption we have uniform bounds for zR(z,A)
on appropriate sectors around ±iR. The remaining uniform bound for
zR(z,A) in the remaining sector containing the negative real line follows
from this via the sectorial version of the three lines lemma.



448 10 The H1-functional calculus

In view of these facts it is to be expected that much of the theory of sectorial
operators carries over to, or has an analogue for, bisectorial operators. This is
indeed the case. In particular this is true for Propositions 10.1.7, 10.1.8, and
10.1.9. Their bisectorial analogues will be used without further comment.

The following result establishes a simple connection between the bisecto-
riality of an operator A and the sectoriality of its square A2.

Proposition 10.6.2. Let 0 < � < 1

2

⇡. If A is �-bisectorial (resp. �-R-
bisectorial), then:

(1) A2 is 2�-sectorial (resp. 2�-R-sectorial) and

Mbi

2�,A2 6 (M�,A)
2 (resp. Mbi,R

2�,A2 6 (MR
�,A)

2);

(2) R(A2) = R(A) and N(A2) = N(A).

Proof. If both ±z 2 %(A), then z2 2 %(A2) and

(z2 �A2)�1 = �(z �A)�1(�z �A)�1.

The (R-)resolvent bound for A2 also follows from this identity. This proves
(1).

To prove the first assertion in (2) let x 2 R(A). It follows from (10.5) (not-
ing that iA is sectorial) that x = lims!0

A(is+A)�1x = lims!0

limt!0

A2(it+
A)�1(is+A)�1x, so R(A) ✓ R(A2). The reverse inclusion is trivial.

If x 2 N(A2), then by (10.4) (again noting that iA is sectorial), Ax =
limt!0

(it + A)�1A2x = 0, so N(A2) ✓ N(A). The reverse inclusion is trivial.
⇤

Examples

The first example is of abstract nature and plays an important role in the
transference results of Section 10.7.b.

Example 10.6.3 (Generators of bounded C
0

-groups). If iA generates a bounded
C

0

-group (see Appendix G), then A is bisectorial of angle 0. This is imme-
diate from the easy part of the Hille–Yosida theorem, which provides (after
a rotation about 1

2

⇡) the resolvent estimate kR(�, iA)k 6 M�/|<�|, valid for
all 0 < � < 1

2

⇡ and � 2 ±⌃bi

� .

Example 10.6.4 (The operators ±id/dx). As a special case of the preceding
example, the operators ±id/dx are bisectorial on Lp(R;X) of angle 0, for all
1 < p < 1 and all Banach spaces X.

Example 10.6.5 (The Hodge–Dirac operator). On L2(Rd) � L2(Rd;Cd) we
consider the operator

D :=

✓

0 r?

r 0

◆
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with its natural domain D(D) = D(r) � D(r?), where D(r) is the Sobolev
space W 1,2(Rd) and D(r?) is the domain of the Hilbert space adjoint r⇤ =
�div of r. Standard arguments show that D is self-adjoint and therefore, by
Stone’s theorem (Theorem G.6.2), iD generates a unitary C

0

-group. Example
10.6.3 then gives the bisectoriality of D.

The interest of this operator derives from the fact that it “squares to ��”
in the sense that its square is of the form

D2 =

✓

�� 0
0 ⇤

◆

.

10.6.b Basic theory of the bisectorial calculus

The construction of the Dunford calculus of a bisectorial operator A is analo-
gous to the sectorial case, the only difference being that we replace the Hardy
spaces Hp(⌃) by their bisectorial counterparts Hp(⌃bi), the Banach spaces
of all holomorphic functions f : ⌃±bi

� ! C for which the norm

kfkHp

(⌃bi
�

)

:= sup
|⌫|<�

kt 7! f(ei⌫t)kLp

(R+, dt

t

)

is finite. We define the Dunford integrals by integrating over the boundary of
⌃bi. More precisely, for f 2 H1(⌃bi

� ) with !bi(A) < � < 1

2

⇡ we set

f(A) :=

ˆ
@⌃bi

⌫

f(z)R(z,A) dz,

where !bi(A) < ⌫ < � is chosen arbitrarily. The path of integration is tra-
versed so that the interior of the two sectors ⌃±

⌫ is always at the left hand. We
say that A has a bounded H1(⌃bi

� )-calculus if there exists a constant M > 0
such that

kf(A)k 6 Mkfk1 f 2 H1(⌃bi

� ) \H1(⌃bi

� ).

Proposition 10.2.11 carries over to the bisectorial case mutatis mutandis, with
only one small difference: we now set

e⇣(z) :=
z

z2 + 1
=

z

(z + i)(z � i)
,

then check that e⇣(A) = A(A + i)�1(A � i)�1 and define, for f 2 H1(⌃bi

� )

and x 2 D(A) \ R(A), say x = e⇣(A)y,

 A(f)x := (f e⇣)(A)y.

Proposition 10.6.6. Let A be a bisectorial operator on X and let !bi(A) <
� < 1

2

⇡. Let C > 0. The following assertions are equivalent:

(1) A has a bounded H1(⌃bi

� )-calculus;
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(2) there is a constant C > 0 such that for all f 2 H1(⌃bi

� ) \H1(⌃bi

� ),

kf(A)xk 6 Ckfk1kxk, x 2 D(A) \ R(A);

(3) there is a constant C > 0 such that for all f 2 H1(⌃bi

� ),

k A(f)xk 6 Ckfk1kxk, x 2 D(A) \ R(A).

Moreover, analogous relations between the best constants hold. The best con-
stant in (3) is denoted by Mbi,1

�,A .

As in the sectorial case the operators  A(f) map D(A) \ R(A) into itself and
the resulting mapping

 A : H1(⌃bi

� ) 7! L (D(A) \ R(A))

is called the H1(⌃bi

� )-calculus of A. It shares the properties collected in The-
orem 10.2.13: the calculus is additive, for x 2 D(A) \ R(A) we have

1(A)x = x and rµ(A)x = R(µ,A)x

for rµ(z) = (µ� z)�1 and µ 2 {⌃bi

� , and it enjoys the bisectorial analogue of
the convergence property (10.16). These properties will be used in the sequel
without further comment.

The next theorem establishes an important connection between the H1-
calculi of a bisectorial operator A and the sectorial operator A2. The proof
makes use of the fact, which we leave to the reader to verify, that the square
function characterisations of the H1-calculus of Section 10.4 carry over to
the bisectorial case mutatis mutandis. In the present chapter we will only
need the elementary part of the theorem, which is the implication (1))(2).
The power of the theorem, however, resides in the implication (2))(1), which
often allows one to study Riesz transforms by means of functional calculus
methods.

Theorem 10.6.7. Let A be an R-bisectorial operator on a Banach space.
Then A2 is R-sectorial, and for all !bi(A) < � < 1

2

⇡ the following asser-
tions hold:

(1) if A admits a bounded H1(⌃bi

� )-calculus, then A2 admits a bounded
H1(⌃

2�)-calculus and Mbi,1
2�,A2 6 M1

�,A;
(2) if A2 admits a bounded H1(⌃

2�)-calculus, then A admits a bounded
H1(⌃bi

# )-calculus for all � < # < ⇡.

Proof. The R-sectoriality of A2 with angle 2!R(A) has already been observed
in Proposition 10.6.2.

(1): To see that A2 admits a bounded H1(⌃
2�)-calculus, let f 2 H1(⌃

2�)\
H1(⌃

2�) be given and compute
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f(A2) =
1

2⇡i

ˆ
@⌃+

2⌫

f(z)R(z,A2) dz

=
1

2⇡i

ˆ
@⌃+

⌫

f(w2)R(w2, A2)2w dw

=
1

2⇡i

ˆ
@⌃+

⌫

f(w2)[R(w,A)�R(�w,A)] dw

=
1

2⇡i

ˆ
@⌃bi

⌫

f(w2)R(w,A) dw = ef(A),

(10.42)

where ef(z) := f(z2). Thus

kf(A2)kL (X)

= k ef(A)kL (X)

6 M1
⌫,Ak efkH1

(⌃bi
�

)

= M1
⌫,AkfkH1

(⌃+
2�)

.

It follows that A2 has a bounded H1(⌃
2�)-calculus. By Letting ⌫ " �, this

also gives the bound on the constants.
(2): Fix an arbitrary non-zero function g 2 H1(⌃

2#) \ H1(⌃
2#) with

� < # < ⇡, and define eg 2 H1(⌃bi

# ) \ H1(⌃bi

# ) by eg(z) := g(z2). Then eg is
non-zero on both ⌃±

# .
Since A2 has a bounded H1(⌃

2�)-functional calculus, by Theorem 10.4.4
it satisfies a discrete square function estimate

sup
t>0

sup
N>1

⇣

E
�

�

�

X

|n|6N

"ng(2
ntA2)x

�

�

�

2

⌘

1/2
h kxk

for x 2 R(A2) \ D(A2) = R(A) \ D(A). By (10.42) we have g(tA2) = eg(
p
tA),

and therefore by the substitution
p
t = s the above estimate is equivalent to

sup
s>0

sup
N>1

⇣

E
�

�

�

X

|n|6N

"neg(
p
2
n
sA)x

�

�

�

2

⌘

1/2
h kxk

for x 2 R(A2) \ D(A2) = R(A) \ D(A). By the bisectorial version of Theorem
10.4.9, this estimate implies that A has a bounded H1(⌃bi

� )-calculus. ⇤

10.7 Functional calculus for (semi)group generators

Having studied the properties of the H1-calculus in fair detail from an ab-
stract point of view, in this final section of this chapter we turn to some
concrete situations where the boundedness of the H1-calculus can actually
be verified. As we shall see, this often involves importing deep results from
other areas of analysis. This should not come as a surprise, since after all
proving the boundedness of the H1-calculus is tantamount to controlling sin-
gular integrals. We have already seen one explicit instance when we deduced
the boundedness of the H1-calculus for the Laplace operator on Lp(Rd),
1 < p < 1, from the Mihlin multiplier theorem. From this point of view the
highlights of this section will be the following results:
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• if iA is the generator of a uniformly bounded C
0

-group on a UMD Ba-
nach space X, then A has a bounded bisectorial H1-calculus of angle 0
(Theorem 10.7.10).

• if �A is the generator of a positive C
0

-semigroup of contractions on an
Lp-space with 1 < p < 1, then A has a bounded H1-calculus of angle
6 1

2

⇡ (Theorem 10.7.12).
• if �A is the generator of a positive C

0

-semigroup of contractions on an Lp-
space with 1 < p < 1, and if this semigroup is bounded and holomorphic
on a sector of angle ⌘ 2 (0, 1

2

⇡), then A has a bounded H1-calculus of
angle 6 1

2

⇡ � 1

2

⌘(p ^ p0) (Theorem 10.7.13).

The proofs of these theorems depend on transference techniques due to Coif-
man and Weiss in combination with, respectively, (a special case of) the
Akcoglu–Sucheston dilation theorem for positive contractions on Lp-spaces,
Akcoglu’s pointwise maximal ergodic theorem for positive contractions on Lp-
spaces, and complex interpolation of the spaces Lp(S; `qn).

10.7.a The Phillips calculus

For generators of (semi)groups, another useful functional calculus, besides
that of Dunford, can be defined as follows:

Definition 10.7.1 (Phillips calculus). Let X be a Banach space and A be
an operator in X.

(1) If iA generates a bounded C
0

-group (U(t))t2R on X, we define

�g(A)x :=

ˆ 1

�1
g(t)U(t)x dt, g 2 L1(R), x 2 X.

(2) If �A generates a bounded C
0

-semigroup (S(t))t>0

on X, we define

�+

g (A)x :=

ˆ 1

0

g(t)S(t)x dt, g 2 L1(R
+

), x 2 X.

It is immediate that the integrals exist and

k�g(A)kL (X)

6 kgkL1
(R) sup

t2R
kU(t)kL (X)

,

k�+

g (A)kL (X)

6 kgkL1
(R+)

sup
t2R+

kS(t)kL (X)

.
(10.43)

As in the case of the H1 calculus, the principal interest is in achieving such
estimates for other function classes in place of L1. This question will be con-
sidered in the rest of this chapter. First, however, we would like to relate the
Phillips calculus to the Dunford calculus:

Proposition 10.7.2. Let X be a Banach space and A be an operator in X.
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(1) If iA generates a bounded C
0

-group (U(t))t2R on X, then

f(A) = �g
f

(A) for all f 2 H1(⌃bi

� ), 0 < � < 1

2

⇡,

where

gf (t) :=

8

>

>

>

<

>

>

>

:

1

2⇡i

ˆ
@⌃�

1
2
⇡�⌫

eztf(iz) dz, t > 0,

� 1

2⇡i

ˆ
@⌃+

1
2
⇡�⌫

eztf(iz) dz, t < 0,
(10.44)

satisfies kgfkL1
(R) 6 (⇡ sin�)�1kfkH1

(⌃bi
�

)

.
(2) If �A generates a bounded C

0

-semigroup (S(t))t2R on X, then

f(A) = �+

g+
f

(A) for all f 2 H1(⌃�),
1

2

⇡ < � < ⇡,

where
gf (t) := � 1

2⇡i

ˆ
@⌃

⌫

eztf(z) dz, t > 0, (10.45)

satisfies kgfkL1
(R) 6 (2⇡ sin�)�1kfkH1

(⌃
�

)

.

Proof. (1): It follows from the assumption that A is bisectorial of angle 0.
Hence for 0 < � < 1

2

⇡ and f 2 H1(⌃bi

� ) the Dunford integral

f(A)x =
1

2⇡i

ˆ
@⌃bi

⌫

f(z)R(z,A)x dz, x 2 X,

is well defined; here 0 < ⌫ < � is arbitrary and @⌃⌫ is oriented in such a way
that ⌃⌫ is on the left-hand side when traversing it.

First substituting z = i⇣, then using the representation of the resolvent of
a semigroup generator as the Laplace transform of the semigroup (Proposition
G.4.1) and Fubini’s theorem (the use of which will be justified shortly), for
all x 2 X we obtain

f(A)x =
1

2⇡

ˆ
�i@⌃bi

⌫

f(i⇣)R(i⇣, A)x d⇣

(⇤)
= � 1

2⇡i

ˆ
@⌃+

1
2
⇡�⌫

f(i⇣)(⇣ + iA)�1x d⇣

� 1

2⇡i

ˆ
@⌃�

1
2
⇡�⌫

f(i⇣)(⇣ + iA)�1x d⇣

(⇤⇤)
= � 1

2⇡i

ˆ
@⌃+

1
2
⇡�⌫

f(i⇣)

ˆ 1

0

e�⇣tU(�t)x dt d⇣

+
1

2⇡i

ˆ
@⌃�

1
2
⇡�⌫

f(i⇣)

ˆ 1

0

e⇣tU(t)x dt d⇣
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=

ˆ 1

�1
gf (t)U(t)x dt = �g

f

(A)x.

In (⇤) we used that �i@⌃bi

⌫ = �(@⌃+

⌫ +@⌃�
⌫ ), and in (⇤⇤) that �iA generates

the C
0

-group (U(�t))t2R. Note that
ˆ 1

0

|gf (t)| dt 6
1

2⇡

ˆ
@⌃�

1
2
⇡�⌫

ˆ 1

0

e<zt|f(iz)| dt |dz|

=
1

2⇡

ˆ
@⌃�

1
2
⇡�⌫

|f(iz)| |dz||<z| =
1

2⇡ sin ⌫

ˆ
@⌃�

1
2
⇡�⌫

|f(iz)| |dz||z|

and likewise
ˆ

0

�1
|gf (t)| dt 6

1

2⇡ sin ⌫

ˆ
@⌃+

1
2
⇡�⌫

|f(iz)| |dz||z| .

It follows that gf 2 L1(R) and, letting ⌫ ! �, that kgfk1 6 1

⇡ sin�kfkH1
(⌃bi

�

)

;
at the same time this justifies the above use of Fubini’s theorem.

(2): Now A is sectorial of angle 1

2

⇡. Proceeding as in the bisectorial case, an
easy estimate shows that g+f 2 L1(R

+

) with kg+f kL1
(R+)

6 1

2⇡ cos�kfkH1
(⌃

�

)

,
and using Fubini’s theorem with 1

2

⇡ < ⌫ < � we obtain
ˆ 1

0

gf (t)S(t)x dt = � 1

2⇡i

ˆ 1

0

ˆ
@⌃

⌫

eztf(z)S(t)x dz dt

= � 1

2⇡i

ˆ
@⌃

⌫

f(z)

ˆ 1

0

eztS(t)x dt dz

= � 1

2⇡i

ˆ
@⌃

⌫

f(z)R(�z,�A)x dz

=
1

2⇡i

ˆ
@⌃

⌫

f(z)R(z,A)x dz = f(A)x.

as desired. ⇤

The relation of the functions gf and g+f with f is most conveniently expressed
in terms of the Fourier transform:

Lemma 10.7.3. Under the assumptions of Proposition 10.7.2, we have

bgf (⇠) = f(�2⇡⇠), bg+f (⇠) = �f(2⇡i⇠).

Proof. The Fourier transform of gf is easily computed: for ⇠ 6= 0 we have

bgf (⇠) =
1

2⇡i

ˆ
@⌃�

1
2
⇡�⌫

ˆ 1

0

e�2⇡it⇠eztf(iz) dt dz
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� 1

2⇡i

ˆ
@⌃+

1
2
⇡�⌫

ˆ
0

�1
e�2⇡it⇠eztf(iz) dt dz

=
1

2⇡i

ˆ
@⌃�

1
2
⇡�⌫

1

2⇡i⇠ � z
f(iz) dz +

1

2⇡i

ˆ
@⌃+

1
2
⇡�⌫

1

2⇡i⇠ � z
f(iz) dz

=
1

2⇡i

ˆ
@⌃�

⌫

1

2⇡⇠ + ⇣
f(⇣) d⇣ +

1

2⇡i

ˆ
@⌃+

⌫

1

2⇡⇠ + ⇣
f(⇣) d⇣

= f(�2⇡⇠),

using Cauchy’s theorem in the last step, noting that one integral gives f(�2⇡⇠)
and the other 0.

Similarly, for ⇠ 6= 0 we have

bg+f (⇠) =
1

2⇡i

ˆ
@⌃

⌫

ˆ 1

0

e�2⇡it⇠eztf(z) dt dz

=
1

2⇡i

ˆ
@⌃

⌫

1

2⇡i⇠ � z
f(z) dz

= �f(2⇡i⇠)

by Cauchy’s theorem, keeping in mind that 1

2

⇡ < ⌫ < ⇡ in this case. ⇤

We record an estimate that will play a role in an application of the Mihlin
multiplier theorem (Corollary 8.3.11) further below.

Lemma 10.7.4. If f 2 H1(⌃bi

� ) \ H1(⌃bi

� ) with 0 < � < 1

2

⇡, then the
function gf of (10.44) satisfies

sup
⇠2R\{0}

max{|bgf (⇠)|, |⇠bg0f (⇠)|} 6 1

sin�
kfkH1

(⌃bi
�

)

.

If f 2 H1(⌃�) \H1(⌃�) with 1

2

⇡ < � < ⇡, then the function g+f of (10.45)
satisfies

sup
⇠2R\{0}

max{|bg+f (⇠)|, |⇠(bg
+

f )
0(⇠)|} 6 1

cos�
kfkH1

(⌃bi
�

)

.

Proof. The claimed estimates, even with better constant 1, for |bgf (⇠)| and
|bg+f (⇠)| follow at once from Lemma 10.7.3.

Concerning the derivative, we can use Cauchy’s theorem to write

|f(z)| =
�

�

�

�1

2⇡i

˛
@D(z,r)

f(w)

(z � w)2
dw

�

�

�

6 1

2⇡

kfk1
r2

2⇡r =
kfk1
r

,

whenever the disc D(z, r) is in the domain of f . In the first case, we are
concerned with z = �2⇡⇠ 2 R and we can take r ! |z| sin�; in the second
case, we have z = i2⇡⇠ 2 iR and we can take r ! |z| cos�. Noting the
cancellation of the factor 2⇡|⇠| appearing in both the numerator and the
denominator, we obtain the claimed result. ⇤
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10.7.b Coifman–Weiss transference theorems

Given g 2 L1(R), we define the convolution operator Kg : Lp(R;X) !
Lp(R;X) for 1 6 p < 1 by

Kgf(t) :=

ˆ 1

�1
g(s)f(t� s) ds, f 2 Lp(R;X). (10.46)

With the help of Young’s inequality one checks that

kKgkL (Lp

(R;X))

6 kgk
1

. (10.47)

Theorem 10.7.5 (Coifman–Weiss, transference for bounded groups).
Let iA be the generator of a uniformly bounded C

0

-group (U(t))t2R on a
Banach space X and let g 2 L1(R). Then for all p 2 [1,1), the Phillips
calculus satisfies

k�g(A)kL (X)

6 kKgkL (Lp

(R;X))

sup
t2R

kU(t)k2L (X)

.

The point of the theorem is to “transfer” an estimate on Kg to an estimate on
�g(A). Of course one always has the elementary estimate in (10.43) involving
kgkL1

(R) but the theorem often provides a better estimate in situations where
we can estimate kKgkL (Lp

(R;X))

in a more clever way.

Example 10.7.6. Let X be Hilbert space and p = 2. From Parseval’s identity
we obtain

kKgkL (L2
(R;X))

= sup
s2R

|bg(s)|.

Theorem 10.7.10 will present a second example. These improvements over the
first inequality in (10.43) are essential in many applications.

Proof of Theorem 10.7.5. Set kUk1 := supt2R kU(t)k. By estimates (10.47)
and (10.43), and density in L1(R), without loss of generality we may assume
that g has support in interval [�N,N ], say. Given " > 0, we choose M so
large that M+N

M 6 1 + ". Since (U(t))�1 = U(�t) we have, for all y 2 X,

kyk 6 kUk1kU(�t)yk.

Applying this with y = �g(A)x, by averaging we obtain

k�g(A)xkp 6 kUkp1
2M

ˆ M

�M
kU(�s)�g(A)xkp ds

=
kUkp1
2M

ˆ M

�M

�

�

�

ˆ 1

�1
g(t)U(t� s)x dt

�

�

�

p
ds

by the definition of �g(A). Also 1

[�M�N,M+N ]

(t � s) = 1 if t 2 supp g ✓
[�N,N ] and s 2 [�M,M ], so that with � := 1

[�M�N,M+N ]

the last expression
can be rewritten as
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=
kUkp1
2M

ˆ M

�M

�

�

�

ˆ 1

�1
g(t)

⇥

U(t� s)x�(t� s)
⇤

dt
�

�

�

p
ds

and, by the definition of Kg,

=
kUkp1
2M

ˆ M

�M
kKg[U(·)x�(·)](s)kp ds

6 kUkp1
2M

kKg[U(·)x�(·)]kpLp

(R;X)

6 kUkp1
2M

kKgkpL (Lp

(R;X))

ˆ 1

�1
kU(s)x�(s)kp ds

=
kUkp1
2M

kKgkpL (Lp

(R;X))

ˆ N+M

�N�M
kU(s)xkp ds

6 kUkp1
2M

kKgkpL (Lp

(R;X))

2(N +M)kUkp1kxkp

6 (1 + ")kUk2p1 kKgkpL (Lp

(R;X))

kxkp

and the claim follows. ⇤

Remark 10.7.7. In exactly the same way one proves the following discrete
version of the theorem which will be needed shortly: if U is an invertible
operator on a Banach space X satisfying supn2Z kUnk < 1, then for all
a 2 `1(Z) we have

�

�

�

X

n2Z
anU

n
�

�

�

L (X)

6 kakL (`p(Z;X))

sup
n2Z

kUnk2,

where a is the convolution operator on `pZ given by (ac)n :=
P

k2Z akcn�k.

Coifman–Weiss transference for positive contractions

In the rest of this subsection, we consider another version of the Coifman–
Weiss transference. This will require some preparation.

Given a sequence a = (an)n2Z 2 `1(Z), we denote by a the corresponding
convolution operator on `p(Z;X), 1 6 p 6 1, i.e., for c = (cn)n2Z 2 `p(Z;X)
we set

(ac)n :=
X

k2Z
akcn�k.

By Young’s inequality, kakL (`p(Z;X)

6 kzk`1(Z). In what follows, sequences
(an)n>0

2 `1(N) will be identified with sequences (an)n2Z 2 `1(Z) in the
natural way by taking a�n = 0 for n > 1.

Proposition 10.7.8. Let (S,A , µ) be a measure space, p 2 (1,1), and T 2
L (Lp(S)) be a positive contraction. Then for every a 2 `1(N) and every
Banach space X we have
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�

�

�

X

n>0

anT
n
�

�

�

L (Lp

(S;X))

6 kakL (`p(Z;X))

.

Proof. By Theorem 2.1.3, T extends to a contraction on Lp(S;X). Since both
sides of the bound are dominated by kak`1 , by approximation, in the rest of
the proof we may assume that a is finitely supported.

Step 1 – First we consider the situation that (S,A , µ) is a measure space
having a finite number of points and µ gives mass 1 to every point. Then Lp(S)
may be identified with `pn, where n is the number of points. By the Akcoglu–
Sucheston Dilation Theorem I.1.2, there is a positive, invertible, isometric U 2
Lp(D), for some measure space D, as well as a positive isometric embedding
J : `pn ! Lp(D) and a positive surjective contraction P : Lp(D) ! R(J) such
that

T k = J�1PUkJ for all k = 0, 1, 2, . . .

Since all operators are positive, this identity extends to `pn(X). Hence
�

�

�

X

k>0

akT
k
�

�

�

L (`p
n

(X))

=
�

�

�

J�1P
X

k>0

akU
kJ
�

�

�

L (`p
n

(X))

6 kJ�1PkL (Lp

(D;X),`p
n

(X))

�

�

�

X

k>0

akU
k
�

�

�

L (Lp

(D;X))

kJkL (`p
n

(X),Lp

(D;X))

6 1 · kakL (`p(Z)) · 1,

where the last step used the following results: For the middle factor, this
was an application of Theorem 10.7.5 and Remark 10.7.7. For the other two
factors, the bounds are guaranteed by Theorem I.1.2 when X = K, and they
follow from this and the positivity for general X via Theorem 2.1.3.

Step 2 – We suppose again that (S,A , µ) consists of finitely many points,
but drop the assumption that µ assigns equal mass to each of them. After
deleting the points of zero mass, we may assume that all points have strictly
positive mass. Denoting by ⌫ the measure that gives mass one to each point,
we obtain an isometric isomorphism Lp(S, µ;X) ' Lp(S, ⌫;X) by sending f 2
Lp(S, µ;X) to the function ef 2 Lp(S, ⌫;X) given by ef(s) := µ({s})1/pf(s).
Along this isomorphism, T can be identified with a positive contraction eT on
Lp(S, ⌫). The result now follow from Step 1.

Step 3 – Now let (S,A , µ) be an arbitrary measure space and fix a function
f 2 Lp(S;X). Since each of the functions Tnf can be approximated by µ-
simple functions, in proving the estimate

�

�

�

X

n>0

anT
nf
�

�

�

6 kak`p(Z)kfk

we may replace the �-algebra A by the �-algebra generated by the countably
many sets of finite µ-measure involved in the above-mentioned approximation
of the functions Tnf , n > 0. Let (Aj)j>1

be an enumeration of these sets.



10.7 Functional calculus for (semi)group generators 459

Thus, we may assume that µ(Aj) < 1 for all j > 1 and that A is generated
by the sets Aj , j > 1.

For each k > 1, let Ek denote the conditional expectation in Lp(S) as-
sociated with the finite �-algebra Ak generated by the sets A

1

, . . . , Ak. The
operator Tk := Ek � T restricts to a positive contraction on Lp(S,Ak). Up to
a set of µ-measure zero, every set in the finite �-algebra Ak is a finite union
of atoms of finite and strictly positive µ-measure, and therefore Step 2 gives
us the inequality

�

�

�

X

n>0

anT
n
k f

�

�

�

Lp

(S;X)

6 kakL (`p(Z;X))

kfkLp

(S;X)

, k = 1, 2, . . .

The infinite sum on the left-hand side effectively extends over the finite set
of indices for which an is non-zero. Since Tkf ! Tf in Lp(S,A ) strongly
(recalling that we replaced the original �-algebra by the �-algebra generated
by the sets Aj , j > 1), upon passing to the limit k ! 1 we obtain the desired
estimate. ⇤

By using Proposition 10.7.8, it is possible to prove an analogue of Theorem
10.7.5 for generators of positive C

0

-contraction semigroups on Lp(S). We recall
from (10.46) the notation Kg for the convolution operator. Functions on R

+

will be identified with function on R in the natural way, i.e., by extending
them by zero on the negative axis.

Theorem 10.7.9 (Coifman–Weiss, transference for positive contrac-
tion semigroups on Lp-spaces). Let (S,A , µ) be a measure space, let
1 6 p < 1, and let X be a Banach space. Let �A be the generator of a posi-
tive C

0

-semigroup (T (t))t>0

of contractions on Lp(S), and hence on Lp(S;X).
Then the Phillips calculus satisfies, for all g 2 L1(R

+

),

k�+

g (A)kL (Lp

(S;X))

6 kKgkL (Lp

(R;X))

.

Proof. As in the discrete case, Young’s inequality allows us to reduce the proof
of the theorem to the case where g is a step function supported on finitely
many dyadic intervals [j2�n, (j + 1)2�n). The idea of the proof is to also
approximate the semigroup by powers of a fixed operator and then to apply
the bound for the discrete case.

Consider, for N = 1, 2, . . . and j 2 Z, the numbers

a(N)

j :=
1

2N

ˆ
1

0

ˆ
1

0

g
⇣j + t� s

2N

⌘

ds dt, (10.48)

where we think g as a function in Lp(R;X) by zero-extension on R�. Iden-
tifying the finite sequence a(N) = (a(N)

j )j2Z with an element of `1(Z), for a
finitely non-zero sequence c = (cj)j2Z we have

(a(N)c)k =
X

j2Z
a(N)

k�jcj
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=
1

2N

ˆ
1

0

ˆ
1

0

X

j2Z
g
⇣k � j + t� s

2N

⌘

ds dtcj

=

ˆ k+1

k

X

j2Z

ˆ j+1

j
g(N)(t� s) ds dtcj

(setting g(N)(u) := 2�Ng(2�Nu))

=

ˆ k+1

k

ˆ 1

�1
g(N)(t� s)C(s) ds dt

(setting C :=
P

j2Z cj1(j,j+1)

)

= Ek(g
(N) ⇤ C) (setting Ekh :=

´ k+1

k h(u) du).

Let EZ denote the conditional expectation with respect to the �-algebra gen-
erated by the intervals [k, k + 1). Then

ka(N)ck`p(Z;X)

=
⇣

X

k2Z
kEk(g

(N) ⇤ C)kpX
⌘

1/p

= kEZ(g
(N) ⇤ C)kLp

(R;X)

6 kg(N) ⇤ CkLp

(R;X)

6 kKg(N)kL (Lp

(R;X))

kCkLp

(R;X)

= kKgkL (Lp

(R;X))

kck`p(Z),

where the last identity follows by routine changes of variables.
So far, the sequence c = (cj)j2Z was finitely non-zero. Since such sequences

are dense in `p(Z;X), the above estimates prove that

ka(N)kL (`p(Z;X))

6 kKgkL (Lp

(R;X))

for all N.

Now we are in a position to apply Proposition 10.7.8 to the operator
T := T (2�N ) and obtain the estimate

�

�

�

X

j>0

a(N)

j T (j2�N )
�

�

�

L (Lp

(S;X))

6 ka(N)kL (`p(Z;X))

6 kKgkL (Lp

(R;X))

.

(10.49)

The final step is to realise that, in a sense to be made precise, a(N)

j ⇡
2�Ng(j2�N ) so that

X

j>0

a(N)

j T (j2�N )f ⇡ 2�N
X

j>0

g(j2�N )T (j2�N )f.

The latter is a Riemann sum for the integral �g(A)f =
´1
0

g(t)T (t)f dt.
Turning to the details, we begin by recalling the assumption, made at the

beginning of the proof, that g is a dyadic step function, say supported on
finitely many dyadic intervals of length 2�n, where n is some given positive
integer. Then for N > n we have g(t) = g(j2�N ) whenever t belongs to a
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dyadic interval of the form [j2�N , (j + 1)2�N ). As a result it is immediately
obvious that

k�g(A)fkLp

(S;X)

6 lim inf
N!1

�

�

�

2�N
X

j>0

g(j2�N )T (j2�N )f
�

�

�

Lp

(S;X)

,

keeping in mind that the sum on the right-hand side effectively extends over
at most finitely many non-zero terms. Again since g is dyadic, for N > n the
definition (10.48) implies that a(N)

j = 2�Ng(j2�N ) for all 0 6 j 6 2N � 1

except possibly for values of the form j = k2N�n. Therefore

lim inf
N!1

�

�

�

X

j>0

a(N)

j T (j2�N )f
�

�

�

Lp

(S;X)

= lim inf
N!1

�

�

�

2�N
X

j>0

g(j2�N )T (j2�N )f
�

�

�

Lp

(S;X)

,
(10.50)

as the relative contribution of the exceptional j’s tends to zero as N ! 1.
The proof is concluded by combining the estimates (10.49) and (10.50). ⇤

10.7.c Hieber–Prüss theorems on H1-calculus for generators

We are now in a position to present neat corollaries of the preceding con-
siderations in the context of H1-calculus. Recalling the notion of Fourier
multipliers from Section 8.3, we observe that

F (Kgf) = F (g ⇤ f) = bg bf = F (Tbgf), (10.51)

so that Kg coincides with the Fourier multiplier Tbg.

Theorem 10.7.10 (Hieber–Prüss I). Let iA be the generator of a uni-
formly bounded C

0

-group (U(t))t2R on a UMD space X. Then A has a bounded
bisectorial H1-calculus of angle 0.

Proof. Recall from Example 10.6.3 that if iA is the generator of a uniformly
bounded C

0

-group, then A is bisectorial of angle 0.
By Proposition 10.7.2 and Theorem 10.7.5, we have

kf(A)kL (X)

= k�g
f

(A)xkL (X)

6 kKg
f

kL (Lp

(R;X))

kUk21.

With observation (10.51), the Mihlin multiplier theorem (Corollary 8.3.11)
and Lemma 10.7.4, we obtain

kKg
f

kL (Lp

(R;X))

= kTbg
f

kL (Lp

(R;X))

6 200�2

p,X~p,X sup
⇠2R\{0}

max{|bgf (⇠)|, |⇠bg0f (⇠)|}

6 200kUk21�2

p,X~p,X
1

sin�
kfkH1

(⌃bi
�

)

.

This proves that A has a bounded bisectorial H1(⌃bi

� )-calculus. Since the
choice of 0 < � < 1

2

⇡ was arbitrary, the theorem is proved. ⇤
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Corollary 10.7.11. Let iA generate a bounded C
0

-group on a UMD Banach
space X. If A is R-bisectorial, then A2 is R-sectorial and has a bounded H1-
calculus of angle 0.

Proof. Combine the previous theorem with Theorem 10.6.7. ⇤

Theorem 10.7.12 (Hieber–Prüss II). Let (S,A , µ) be a measure space,
1 < p < 1, and X be a UMD space. Let �A be the generator of a positive
C

0

-contraction semigroup (S(t))t>0

on Lp(S), and thus on Lp(S;X) Then A
has a bounded H1-calculus on Lp(S;X) of angle !H1(A) 6 1

2

⇡.

Proof. By Proposition 10.7.2 and Theorem 10.7.9, for functions f 2 H1(⌃�)
with 1

2

⇡ < � < ⇡ we obtain

kf(A)kL (X)

= k�+

g+
f

(A)kL (X)

6 kKg+
f

kLp

(R;X)

,

where Kg+
f

denotes convolution with g+f .
By observation (10.51), the Mihlin multiplier theorem (Corollary 8.3.11)

and Lemma 10.7.4, we obtain

kKg+
f

kL (Lp

(R;X))

= kTbg+
f

kL (Lp

(R;X))

6 200�2

p,X~p,X sup
⇠2R\{0}

max{|bg+f (⇠)|, |⇠(bg
+

f )
0(⇠)|}

6 200kUk21�2

p,X~p,X
1

cos�
kfkH1

(⌃
�

)

.

⇤

10.7.d Analytic semigroups of positive contractions on Lp

In Theorem 10.7.12 we have seen that if �A generates a positive C
0

-
contraction semigroup (S(t))t>0

on a space Lp(S) with 1 < p < 1, then
A admits a bounded H1-calculus and !H1(A) 6 1

2

⇡. The following theorem
shows that under stronger assumptions one obtains !H1(A) < 1

2

⇡. Unlike
Theorem 10.7.12, the one that follows is restricted to the scalar-valued case.

Theorem 10.7.13. Let �A be the generator of a positive C
0

-contraction
semigroup (S(t))t>0

on a space Lp(S), where (S,A , µ) is a measure space
and 1 < p < 1. If (S(t))t>0

extends to a bounded analytic C
0

-contraction
semigroup on the sector ⌃⌘ for some 0 < ⌘ < 1

2

⇡, then A is R-sectorial,
admits a bounded H1-calculus, and we have

!R(A) = !H1(A) 6 1

2
⇡ � 1

2
⌘(p ^ p0).



10.7 Functional calculus for (semi)group generators 463

To prepare for the proof, we begin by preparing some lemmas for bounded
analytic operator-valued functions z 7! N(z) defined on a sector. Eventually
we shall apply these results to the analytic extension of the function N given
by

N(t)f :=
1

t

ˆ t

0

S(s)f ds, f 2 Lp(S).

Our main tool for estimating N will be the following semigroup version of
Akcoglu’s maximal ergodic theorem:

Theorem 10.7.14 (Akcoglu’s maximal ergodic theorem). If the C
0

-
semigroup (S(t))t>0

is positive and contractive on Lp(S), with 1 < p < 1,
then for all f 2 Lp(S) we have

�

�

�

�

sup
t>0

�

�

�

1

t

ˆ t

0

S(s)f ds
�

�

�

�

�

�

�

p

6 p0kfkp.

Proof. The main step is to prove that for all choices of finitely many dyadic
t
1

, . . . , tk > 0 and for all f 2 Lp(S) we have
�

�

�

�

sup
16j6k

�

�

�

1

tj

ˆ t
j

0

S(s)f ds
�

�

�

�

�

�

�

p

6 p0kfkp.

Once we have this, the general case follows by considering an enumeration of
the positive dyadic numbers, say (qn)n>1

, applying the above with tj = qj
for j = 1, . . . , k, and passing to the limit k ! 1. This will give the result
with ‘t > 00 replaced by ‘t > 0 and dyadic’; as a last step we can extend to
supremum to all t > 0 by the following limiting argument. From

�

�

�

ˆ t

0

S(s)f ds
�

�

p
6
ˆ t

0

kS(s)fkp ds

and the boundedness of the semigroup it immediate that s 7! (S(s)f)(x) is
locally integrable at almost every x 2 S, and then t 7! 1

t

´ t
0

S(s)f(x) ds is
continuous at the same values of x. From this the approximation by dyadic
values is immediate.

Let us now fix dyadic numbers t
1

, . . . , tk > 0. Fix an arbitrary " > 0 and
choose the integer N > 0 so large that

kS(t)f � fk < " for all t 2 [0, 2�N ]. (10.52)

We may assume that the numbers tj are pairwise different dyadic numbers
and have the form tj = mj2

�n with n > N . It then suffices to prove the
estimate

�

�

�

�

sup
16i6M

�

�

�

1

i2�n

ˆ i2�n

0

S(s)f ds
�

�

�

�

�

�

�

p

6 kfkp.
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Upon replacing f by |f |, there is no loss of generality if we assume f > 0. We
have, for n > N ,

�

�

�

sup
16i6M

1

i2�n

ˆ i2�n

0

S(s)f ds
�

�

�

p

=
�

�

�

sup
16i6M

1

i2�n

i�1

X

`=0

ˆ
(`+1)2

�n

`2�n

S(s)f ds
�

�

�

p

=
�

�

�

sup
16i6M

1

i

i�1

X

`=0

S(`2�n)eS
2

�nf
�

�

�

p
(with eS

2

�nf :=
1

2�n

ˆ
2

�n

0

S(s)f ds)

6 p0keS
2

�nfkp 6 p0(kfkp + "),

where the first estimate was an application of Akcoglu’s maximal ergodic
theorem in its discrete form given in Theorem I.2.1, and the last step used
(10.52). Since " > 0 was arbitrary, this completes the proof. ⇤

Corollary 10.7.15. If the C
0

-semigroup (S(t))t>0

is positive and contractive
on Lp(S), with 1 < p < 1, then for all t > 0 and f

1

, . . . , fk 2 Lp(S) we have
�

�

�

�

sup
16j6k

sup
t>0

�

�

�

1

t

ˆ t

0

S(s)fj ds
�

�

�

�

�

�

�

p

6 p0
�

�

�

sup
16j6k

|fj |
�

�

�

p
.

Proof. Apply the theorem with f := sup
16j6k |fj |. ⇤

Lemma 10.7.16. Let p 2 [1, 2] and suppose that N : ⌃� ! L (Lp(S)) is a
strongly continuous and uniformly bounded function, which is holomorphic on
⌃�. If there is a constant C > 0 such that, for all choices of finitely many
t
1

, . . . , tk 2 R
+

and f
1

, . . . , fk 2 Lp(S),
�

�

�

sup
16j6k

|N(tj)fj |
�

�

�

p
6 C

�

� sup
16j6k

|fj |
�

�

�

p
, (10.53)

then the family T = {N(z) : z 2 ⌃�p/2} is R-bounded and

R(T ) 6 2
2,pC

1�p/2 sup
t>0

kN(t)kp/2p .

Proof. For p = 2 this is clear. We may therefore assume that p 2 [1, 2).
The boundedness of N(z) on ⌃� implies that for z

1

, . . . , zk with | arg zj | =
� and f

1

, . . . , fk 2 Lp(S) we have

�

�

�

⇣

k
X

j=1

|N(zj)fj |p
⌘

1/p�
�

�

p

p
=

k
X

j=1

kN(zj)fjkpp

6 Kp
k
X

j=1

kfjkpp = Kp
�

�

�

⇣

k
X

j=1

|fj |p
⌘

1/p�
�

�

p

p
,

(10.54)
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where K := supz2⌃
�

kN(z)k. On the other hand, to prove the lemma it suf-
fices to show the following square function estimate: for all z

1

, . . . , zk with
| arg zj | = �p/2 and f

1

, . . . , fk 2 Lp(S),

�

�

�

⇣

k
X

j=1

|N(zj)fj |2
⌘

1/2�
�

�

p
6 C1�p/2Kp/2

�

�

�

⇣

k
X

j=1

|fj |2
⌘

1/2�
�

�

p
. (10.55)

Indeed, up to a multiplicative constant 
2,pp,2 = 

2,p in both directions, by
Proposition 6.3.3 the square functions on both sides of (10.55) are equivalent
to Rademacher sums, and interpreted in this way the inequality asserts the
R-boundedness of the family {N(z) : | arg z| = �p/2} with R-bound at most
2
2,pC. Then {N(z) : | arg z| 6 �p/2} is R-bounded, with the same R-bound,

by Proposition 8.5.8.
We shall obtain the estimate (10.55) (which can be interpreted as `2-

boundedness of the operators N(t)) by interpolating the inequalities (10.53)
and (10.54) (which can be interpreted as `1-boundedness and `p-boundedness
of these operators). To make this precise we fix t

1

, . . . , tk 2 R
+

and define a
strongly continuous mapping M : ⌃� ! L (Lp(S, `pk)) by

M(z)(f
1

, . . . , fk) = (N(t
1

z)f
1

, . . . , N(tkz)fk).

This mapping is holomorphic on ⌃�. Now (10.53) says that

kM(z)kL (Lp

(S,`1
k

))

6 C for arg z = 0

and (10.54) says that

kM(z)kL (Lp

(S,`p
k

))

6 K for | arg z| = �.

Since 1

2

= ✓
p + 1�✓

1 for ✓ = p
2

, the interpolation lemma 10.7.17 below (with
�
0

= 0, �
1

= �, p
0

= p
1

= p, q
0

= 1, q
1

= 2, and ✓ = p/2) gives

kM(z)kL (Lp

(S,`2
k

))

6 C1�p/2Kp/2 for | arg z| = �p/2,

which in turn implies (10.55) for zj = tje±i�p/2. ⇤

In the next lemma we use the notation ⌃�0,�1 = {z 2 C : �
0

< arg z < �
1

}.

Lemma 10.7.17. Let 6 p
0

, p
1

, q
0

, q
1

6 1 and fix an integer k > 1. Consider
a family of operators

N(z) : Lp0(S, `q0k ) \ Lp1(S, `q1k ) ! Lp0(S, `q0k ) + Lp1(S, `q1k )

satisfying the following conditions:

• as an Lp0(S; `q0k ) + Lp1(S; `q1k )-valued function, z ! N(z)F is continuous
on ⌃�0,�1 and holomorphic on ⌃�0,�1 for all F 2 Lp0(S; `q0k )\Lp1(S; `q1k );
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• the boundary functions r 7! N(rei�j )F are continuous Lp
j (S; `

q
j

k )-valued
functions for all F 2 Lp

j (S; `
q
j

k ) and

kN(z)kL (Lp

j

(S;`
q

j

k

))

6 Lj for arg z = �j (j = 0, 1). (10.56)

For ✓ 2 (0, 1) put

1

p
=

1� ✓

p
0

+
✓

p
1

,
1

q
=

1� ✓

q
0

+
✓

q
1

, � = (1� ✓)�
0

+ ✓�
1

.

Then N(z) maps Lp(S; `qk) into itself for all arg(z) = � and

kN(z)kL (Lp

(S;`q
k

))

6 K1�✓
0

K✓
1

for arg(z) = �.

Proof. Let S = {z : 0 < <z < 1} denote the unit strip and put

M(⇣) := N(exp[i(�
0

+ (�
1

� �
0

)⇣)]), ⇣ 2 S.

Then, by (10.56),

kM(⇣)kL (Lp

j

(S;`
q

j

k

))

6 Lj for <⇣ = j (j = 0, 1).

By Theorem 2.2.6, for the complex interpolation method we have an isometric
isomorphism

Lp(S, `qk) = [Lp0(S, `q0k ), Lp1(S, `q1k )]✓.

For F 2 Lp(S, `qk) with kFk < 1, by the definition of the complex method
there is a continuous function f : S ! Lp0(S; `q0k ) + Lp1(S; `q1k ), holomorphic
on S, with f(✓) = F and

kf(⇣)kLp

j

(S;`
q

j

k

)

6 1 for <⇣ = j (j = 0, 1).

For z 2 ⌃�0,�1 let ⇣(z) 2 S be the unique point such that exp[i(�
0

+ (�
1

�
�
0

)⇣(z))) = z.
Then for z 2 ⌃�0,�1 with arg(z) = �, say z = rei�, we have N(rei�)F =

M(✓ + i log r)f(✓). This suggests to consider the function

 (⇣) := M(⇣ + i log r)f(⇣), for ⇣ 2 S.

As a function with values in Lp0(S; `q0k )+Lp1(S; `q1k ), this function is continu-
ous on S and holomorphic on S, it satisfies k (z)kLp

j

(S;`
q

j

k

)

6 Lj (j = 0, 1),

and we have  (✓) = N(rei�)F . Again by the definition of the complex method
this implies N(rei�)F 2 [Lp0(S, `q0k ), Lp1(S, `q1k )]✓ = Lp(S, `qk) and

kN(rei�)FkLp

(S;`q
k

)

6 L1�✓
0

L✓
1

.

Since F 2 Lp(S; `qk) with kFk < 1 was arbitrary, this proves the lemma. ⇤
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Lemma 10.7.18. Let X and Y be Banach spaces and let 0 < ⌫ < � < # < ⇡.
Let N : ⌃# ! L (X,Y ) be a bounded holomorphic function and suppose that
the set {N(z) : z 2 @⌃�, z 6= 0} is R-bounded. Then

n

z
d

dz
N(z) : z 2 ⌃⌫

o

is R-bounded.

Proof. By Theorem 8.5.2, this follows from Cauchy’s formula

z
d

dz
N(z) =

ˆ
@⌃

�

hz(⇣)N(⇣) d⇣, z 2 ⌃⌫ ,

with hz(⇣) =
1

2⇡iz(⇣ � z)�2, noting that sup{khzk1 : z 2 @⌃⌫} < 1. ⇤

We are now ready to prove Theorem 10.7.13.

Proof of Theorem 10.7.13. First let p 2 (1, 2], and assume that the semigroup
(S(t))t>0

extends analytically to a bounded semigroup (S(z))z2⌃
⌘

for some
0 < ⌘ < 1

2

⇡. Then we may also extend N(t) = 1

t

´ t
0

S(s) ds holomorphically
to ⌃⌘ by

N(z)f =
1

z

ˆ
�0,z

S(µ)f dµ, z 2 ⌃⌘,

where �
0,z is the line segment connecting 0 and z. Fix 0 < � < ⌘ and observe

that the maximal ergodic estimate of Corollary 10.7.15, namely
�

�

�

sup
16j6k

|N(tj)fj |
�

�

�

p
6 p0

�

�

�

sup
16j6k

|fj |
�

�

�

p
,

implies (10.53) for the holomorphic function N(z), with constant C = p0. By
Lemma 10.7.16 we conclude that for �0 = �p/2 the set {N(z) : z 2 ⌃�0}
is R-bounded. Also, fixing any 0 < �00 < �0, Lemma 10.7.18 implies the R-
boundedness of {z d

dzN(z) : z 2 ⌃�00}. Since S(z) = N(z)+z d

dzN(z), it follows
that the set {S(z) : z 2 ⌃�00} is R-bounded.

If p 2 (2,1), by what we just proved the adjoint family {S⇤(z) : z 2 ⌃�00},
which is a bounded analytic C

0

-semigroup on Lp0
(S), is R-bounded on Lp0

(S).
By Proposition 8.4.1 (which can be applied because Lp(S) is K-convex), the
family {S(z) : z 2 ⌃�00} is R-bounded.

An appeal to Proposition 10.3.3 now shows that A is R-sectorial of angle
!R(A) 6 1

2

⇡��00. This was the heart of the matter: now that we have secured
R-sectoriality we may apply Proposition 10.4.10 to conclude that !H1(A) =
!R(A) 6 1

2

⇡ � �00 (the proposition can be applied since we already know,
by virtue of Theorem 10.7.12, that A has a bounded H1-calculus (of angle
6 1

2

⇡)).
Tracing the optimal values of the various angles provided by the above

proof, we find the explicit bound
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!H1(A) 6 1

2
⇡ � 1

2
⌘(p ^ p0).

This completes the proof of the theorem. ⇤

10.8 Notes

The H1-calculus for sectorial operators on Hilbert spaces was developed by
McIntosh [1986] as a tool in his pursuit of the Kato square root problem.
His work introduced harmonic analysis ideas motivated by Littlewood–Paley
theory and classical g-functions into abstract operator theory and combined
them with spectral theoretic techniques such as bounded imaginary powers
and semigroup theory. For the extension to Banach spaces, in particular Lp-
spaces, the central paper is by Cowling, Doust, McIntosh, and Yagi [1996].

A full treatment of the H1-calculus could easily cover a volume in itself. In
order to keep the presentation within reasonable bounds we chose to present
in this volume the construction of the H1-calculus and its characterisation
through square function estimates, along with a discussion of those examples
that can be treated in a self-contained way with tools from functional analysis
and harmonic analysis presently at our disposal. Further topics related to the
H1-calculus, such as fractional powers, bounded imaginary powers, sums of
operators, and perturbation theory, as well as their applications in the theory
of deterministic and stochastic evolution equations, will be treated in the next
volume.

Section 10.1

The material of this section is classical and can be found in, e.g., Denk, Hieber,
and Prüss [2003], Kato [1995], Komatsu [1966], Kunstmann and Weis [2004].
The notion of sectoriality goes back to the work of Kato (in connection with
form methods), Balakrishnan, Komatsu and others in the 1960s.

Section 10.2

The Dunford functional calculus for bounded operators is classical and can be
found in many functional analysis textbooks. Surveys of the theory of H1-
calculus include the monograph Haase [2006], the lecture notes Denk, Hieber,
and Prüss [2003], Kunstmann and Weis [2004], and the survey papers Weis
[2006] and Batty [2009].

The uniform boundedness in Calderón reproducing formula, Proposition
10.2.5, is essentially from McIntosh [1986]; our proof uses an idea of Haase
[2006, Proposition 5.2.4]. The version for functions f with f(z) log(z) in H1(⌃)
may be new.

Early examples of sectorial operators without a bounded H1-calculus were
given in McIntosh and Yagi [1990]. The idea of using conditional bases for this
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goes back to Baillon and Clément [1991], Venni [1993], Lancien [1998]. For
the existence of such bases in every Banach space with a Schauder basis see
Pelczyński and Singer [1964/1965] and the exposition in Albiac and Kalton
[2006, Section 9.5].

The connection between UMD and the bounded H1-calculus of the Lapla-
cian � on Lp(Rd;X) and the bisectorial operator �id/dx on Lp(R;X) was
pointed out in Hieber and Prüss [1998].

Theorem 10.2.24 is stated in between the lines in McIntosh [1986], where
also the contributions Yagi [1984] are credited. The direct proof presented here
is due to E. Franks and appears in Albrecht, Duong, and McIntosh [1996].
An extension of the theorem to the Banach space setting was obtained in
Kriegler and Weis [2010], where a characterisation of the contractivity of the
H1-calculus, i.e., the validity of the inequality kf(A)k 6 kfk1, is given in
terms of Blaschke products.

Section 10.3

The notion of R-sectoriality was introduced in Clément and Prüss [2001] and
Weis [2001a]. The characterisation of R-sectoriality of Proposition 10.3.3 is
due to Weis [2001b]. Theorem 10.3.4 was proved in Kalton and Weis [2001].
In particular this paper contains the result that the boundedness of the H1-
calculus implies R-sectoriality for spaces with the triangular contraction prop-
erty. Another result in this direction, due to Clément and Prüss [2001], states
that a sectorial operator with bounded imaginary powers on a UMD space is
R-sectorial.

The connection between unconditional decompositions and H1-calculi ex-
plained in Lemma 10.3.8 is one of the main themes in Kalton and Weis [2001].
Lemma 10.3.13 appears in Franks [1997]. It extends to the operator-valued
H1-calculus (an extension of the H1-calculus to be treated in the next vol-
ume) and in this form it appears in Kalton and Weis [2001] and Kalton and
Weis [2016]. Corollary 10.3.15 appears in Franks [1997]. Extensions and re-
lated results can be found in Boyadzhiev and deLaubenfels [1992], Cowling,
Doust, McIntosh, and Yagi [1996], Kalton and Weis [2001].

Permanence of R-sectoriality under real and complex interpolation was
proved in Kaip and Saal [2012]. By using Proposition 8.4.4 one can show
that consistent R-sectorial operators A

0

and A
1

on an interpolation couple
of K-convex Banach spaces interpolate, under both the complex and the real
method, to R-sectorial operators with an interpolated angle of R-sectoriality
!R(A✓) = (1� ✓)!R(A0

) + ✓!R(A1

).

Section 10.4

We refer the reader to Stein [1970b] for an in-depth discussion of the classical
square functions arising in harmonic analysis. McIntosh [1986] and Yagi [1984]
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introduced them as a tool in operator theory and considered square functions
of the form

|||x|||2�,A =

ˆ 1

0

k�(tA)xk2 dt

t

for � 2 H1
0

(⌃), the space of bounded holomorphic functions on ⌃ having
polynomial decay near zero and at infinity. This work was subsequently gen-
eralised to Banach spaces, first by Cowling, Doust, McIntosh, and Yagi [1996]
and subsequently Le Merdy [2004], Kalton and Weis [2016]. See also the survey
Le Merdy [2007].

Most of the results of Section 10.4.a are due to Kalton and Weis [2001],
Kunstmann and Weis [2004] and Kalton, Kunstmann, and Weis [2006]. Propo-
sition 10.4.6 is the discrete analogue of Proposition 10.4.17, which was proved
by Le Merdy [2003, Theorem 1.1] in Lp-spaces and at the same time for Ba-
nach spaces by Kalton and Weis [2016, Proposition 7.7] in the form stated
here.

The continuous square function results for general Banach spaces of Sec-
tion 10.4.b are due to Kalton and Weis [2016]. For Hilbert spaces they imply
Theorem 10.4.21, which is due to McIntosh [1986] and for Lp-spaces they im-
ply Theorem 10.4.23. For formulation of Theorem 10.4.23 as presented here is
from Le Merdy [2004]; a version without any R-sectoriality condition on A is
in Cowling, Doust, McIntosh, and Yagi [1996], but there only certain specific
functions � are allowed in the implication (2))(1) (square function estimates
imply H1-calculus).

Lemma 10.4.18 is a variation of Kalton, Kunstmann, and Weis [2006,
Lemma 4.7]. Proposition 10.4.15, on the equivalences between discrete and
continuous square functions, provides an effective way to go back and forth
between the discrete and the more difficult continuous time case. The dom-
ination of dual square function by discrete square functions of Proposition
10.4.15(3) seems to be new.

For general Banach spaces, strict inequality !(A) < !H1(A) may hold.
A first example without dense range was given in Cowling, Doust, McIntosh,
and Yagi [1996]. Subsequently in Kalton [2003] and example was constructed
on a uniformly convex space, and in Kalton and Weis [preprint] on a closed
subspace of Lp with p 2 (1, 2). It is still an open problem whether such an
example can exist on an Lp-space with 1 < p < 1, p 6= 2.

The equality !H1(A) = !R(A) for Banach spaces with the triangular con-
traction property, due to Kalton and Weis [2001], is a reasonable extension of
the Hilbert space result !H1(A) = !(A). Theorem 10.4.22 is due to Le Merdy
[1996, 1998] and (for invertible A) Grabowski and Callier [1996].

To avoid assumptions on the Banach space X, Kalton, Kunstmann, and
Weis [2006] coined the notion of almost R-sectoriality . We briefly indicate
how one can weaken the assumptions in some of the results of Section 10.4
by using this notion. By definition, a sectorial operator A has this property if
the set

{�AR(�, A)2 : |arg �| > !}
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is R-bounded for some ! 2 (!(A),⇡). R-sectoriality implies almost R-sector-
iality, but the converse is false by Kalton and Weis [preprint]. Let us denote
the abscissa of almost R-sectoriality by !̃R(A). With the help of Theorem
8.5.4 it is shown that every sectorial operator with a bounded H1-calculus
on a Banach space X is almost R-sectorial, and the equality !H1(A) = !̃R(A)
holds. More generally, every sectorial operator with bounded imaginary powers
is almost R-sectorial (but not necessarily R-sectorial). The following useful
property of almost R-sectorial operators (which is more general than Theorem
10.3.4(1)) is also shown: the set {'(tA) : t > 0} is R-bounded for all ' 2
H1(⌃�) with !̃R(A) < � < ⇡.

Theorem 10.4.25 is essentially due to Le Merdy [2014], who treated only
the case of finite-dimensional Hilbert spaces and formulated the result in a
somewhat different but equivalent form. The present formulation is from Haak
and Haase [2013], which systematically develops the `1-summability provided
the Franks–McIntosh Theorem H.3.1 used in the proof.

Theorem 10.4.28 is due to Le Merdy [2012]. The use of the specific square
function corresponding to �(z) = z1/2exp(�z) leads to a characterisation of
the H1-calculus with a sharper angle than is obtained by the characterisation
in Cowling, Doust, McIntosh, and Yagi [1996]. Note that no R-sectoriality
assumption is made in the statement of Theorem 10.4.28. In Le Merdy [2012],
the result is presented only in an Lp-setting, but the possibility to extend it
to Banach spaces with Pisier’s contraction property was already pointed out
in the paper. For sectorial operators on a Hilbert spaces, the theorem reduces
to a result of McIntosh [1986]. A discrete version of the theorem can be found
in Le Merdy [2014].

Ritt operators

We have treated both continuous square functions and their discrete ana-
logues, and in fact we used the former as a basis for discussing the latter.
In a different direction, it is possible to ‘discretise’ the H1-calculus on the
operator level. A Ritt operator is a bounded operator T acting on a Banach
space X which is power bounded, i.e., supn2N kTnk < 1, and satisfies

sup
n>1

nkTn � Tn�1k < 1.

Ritt operators take the role of sectorial operators for the discrete-time problem
(

un+1

= Tun + fn, n 2 Z,
u
0

= 0.

Early studies include Blunck [2001], Kalton and Portal [2008], Portal [2003].
Subsequently, the H1-calculus for Ritt operators has been developed by
Kalton and Portal [2008], Le Merdy [2014], Lancien and Le Merdy [2015],
Arhancet and Le Merdy [2014], Arhancet, Fackler, and Le Merdy [2017]. It
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was shown in Le Merdy [2014] a Ritt operator T on a space Lp with 1 < p < 1
admits a bounded H1-calculus if and only if the square functions estimate

�

�

�

⇣

X

n>1

nkTnf � Tn�1fk2
⌘

1/2�
�

�

Lp

h kfkLp

holds. This result was extended to Ritt operators on general Banach spaces
by Schwenninger [2016b]. In such results, the role of sectors is taken by Stolz
domains. By definition, the Stolz domain of angle ! 2 (0, 1

2

⇡) is the interior B!
of the convex hull of the point 1 and the disc B(0, sin!). A bounded operator
T 2 L (X) is a Ritt operator if and only if there exists an ! 2 (0, 1

2

⇡) such
that �(T ) ⇢ B! and

sup
�2C\B

!

k(�� 1)R(�, T )k < 1,

and in this case I � T is !-sectorial; see Lyubich [1999], Nagy and Zemánek
[1999] and the discussion in Le Merdy [2014].

Conical square functions

Besides the square functions functions that we have considered in this treat-
ment, square function norms of the form

⇣

ˆ
Rn

⇣

ˆˆ
|y�x|<t

|F (y, t)|2 dy dt

tn+1

⌘p/2
dx
⌘

1/p
, (10.57)

where frequently F (y, t) = ( (tA)f)(y), play an important role in the theory
of H1-calculus. The object in (10.57) is often called a conical square function
(norm), due to the cone-like shape of the integration domain {(y, t) 2 Rn ⇥
(0,1) : |y � x| < t}. The square functions of the type we have considered,
where the quadratic integral extends over t 2 (0,1) only, are sometimes
called vertical square functions, in order to make the distinction. In classical
harmonic analysis, one can also find several “non-tangential” square functions,
like the g⇤� function of Stein [1970a, Section IV.2], where the quadratic integral
extends over all (y, t) 2 Rd⇥(0,1) but involves a decaying factor as (y, t) gets
further away from the cone, but this direction would take us too far afield.

In the context of functional calculus, conical square functions as in (10.57)
are particularly useful when dealing with operators without reasonable ker-
nel bounds, such as the elliptic operators of the form �divBr studied in the
Kato square root problem (see also the Notes to Section 10.6). In general such
operators are not sectorial on Lp(Rd) for all 1 < p < 1 (see Auscher [2007]
for more on this). A sample of the rapidly growing literature on this sub-
ject is Auscher, Kriegler, Monniaux, and Portal [2012b], Auscher, McIntosh,
and Russ [2007], Auscher, Monniaux, and Portal [2012c, 2015], Hofmann and
Mayboroda [2009], Frey, McIntosh, and Portal [2014]. A comparison of square
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functions with the classical ‘vertical’ square functions is made in Auscher,
Hofmann, and Martell [2012a].

Conical square functions are closely related to the class of so-called tent
spaces T p,q introduced by Coifman, Meyer, and Stein [1985]. The space T p,2

with q = 2 has the closest relation to square functions. Harboure, Torrea, and
Viviani [1991] showed that these spaces can be isomorphically embedded as
complemented subspaces of a suitable Lp-space of Lq-valued functions. This
fact was used in Hytönen, Van Neerven, and Portal [2008b] to introduce the
vector-valued tent space T p,2(X) for UMD spaces X and to show that certain
singular integral operators are boundedness from Lp(X) to T p,2(X).

Section 10.5

Theorem 10.5.1 is due to Guerre-Delabrière [1991]; it is a variant of a result
of Bourgain [1983], treated earlier as Theorem 5.2.10, which derives the UMD
property from the boundedness of the Hilbert transform instead of that of
(��)is. The quantitative bound given in Theorem 10.5.1 is not stated by
Guerre-Delabrière [1991], but it is implicit in her argument; this was observed
in Hytönen [2007b].

Proposition 10.5.4 is due to Hytönen and Weis [2008], but the present
quantitative statement ‘with constant 1’ is new. The ergodic Lemma 10.5.6,
which is a standard result from ergodic theory adapted from Katok and Hassel-
blatt [1995], replaces in the present treatment an ad hoc argument in Hytönen
and Weis [2008] to approximate arbitrary coefficients ↵jk = ±1 as in the real
version of Pisier’s contraction property.

Section 10.6

Among the many works on bisectorial operators we mention Albrecht, Duong,
and McIntosh [1996], Auscher, McIntosh, and Nahmod [1997], Arendt and Bu
[2005], Dore and Venni [2005], Duelli and Weis [2005], Axelsson, Keith, and
McIntosh [2006], Arendt and Duelli [2006], Arendt and Zamboni [2010], Egert
[2015].

Alongside with id/dx, important examples of a bisectorial operators are
the Hodge–Dirac operator D of Example 10.6.5 and its perturbation AD,
given by

D :=

✓

0 � div
r 0

◆

, AD =

✓

1 0
0 B

◆

D =

✓

0 � div
Br 0

◆

,

where the operators act in L2(Rd)�L2(Rd;Rd), and B is (the pointwise mul-
tiplication by) a matrix-valued function with suitable ellipticity assumptions.
These operators were used in the seminal paper of Axelsson, Keith, and McIn-
tosh [2006] to give a new proof and several extensions of the Kato square root
conjecture,
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k
p
LukL2

(Rd

)

h krukL2
(Rd

;Rd

)

, L := � divBr,

originally solved by Auscher, Hofmann, Lacey, McIntosh, and Tchamitchian
[2002]. The estimate above is formally the boundedness, and boundedness
from below, of rL�1/2, which can be seen as a component of the matrix
sgn(AD) for the holomorphic function sgn(z) := z/

p
z2.

Related work on Hodge–Dirac operators include applications to bound-
ary value problems by Auscher, Axelsson, and Hofmann [2008], Amenta and
Auscher [2016], Auscher and Stahlhut [2016], the Stokes operator by McIn-
tosh and Monniaux [2016], non-symmetric Ornstein-Uhlenbeck operators by
Maas and Van Neerven [2009], and spin manifolds by Bandara, McIntosh, and
Rosén [2016], Bandara and Rosén [2017].

The new proof of the Kato conjecture by Axelsson, Keith, and McIntosh
[2006] using first-order methods was extended to the setting of Lp(Rd;X) by
Hytönen, McIntosh, and Portal [2008a]; here X is required to be a UMD space
and in addition to satisfy the RMF property, discussed in Section 3.6.b, which
was in fact first invented for the purposes of this paper. Besides the X-valued
extension, this paper offered an alternative approach to the Lp theory of the
Kato conjecture, which has been further explored by Auscher and Stahlhut
[2013], Frey, McIntosh, and Portal [2014], Hytönen and McIntosh [2010], and
Hytönen, McIntosh, and Portal [2011].

Section 10.7

Both Transference Theorems 10.7.5 and 10.7.9 are due to Coifman and Weiss
[1976]. Important contributions to vector-valued extensions of Theorem 10.7.5
include Berkson, Gillespie, and Muhly [1986, 1989], Asmar, Berkson, and
Gillespie [1990]. Theorem 10.7.10 is due to Hieber and Prüss [1998]. Our ap-
proach via the Phillips calculus is inspired by Haase [2006, Chapter 3], where
the formula (10.45) appears. Extensions of Theorems 10.7.9 and 10.7.10 to
unbounded C

0

-groups are obtained in Haase [2007, 2009], and to general C
0

-
semigroups in Haase [2011]. Among others, in the latter paper it is shown that
if (S(t))t>0

is any C
0

-semigroup on a Banach space X and if g 2 L1(R
+

) has
support in [a, b] ✓ (0,1), then

�

�

�

ˆ 1

0

g(t)S(t)x dt
�

�

�

.p (1 + log(b/a))
⇣

sup
t>0

kS(t)k
⌘

2

kKgkL (Lp

(R+;X)

,

where Kg denotes convolution with g. This result is subsequently used to
deduce a continuous-time version of results of Peller [1982] and Vitse [2005]
providing bounds for the Phillips calculus  A(f) for the generators �A of
polynomially bounded C

0

-semigroups in terms of suitable Besov norms of f .
Further extensions and consequences of Haase [2011] can be found in Haase
and Rozendaal [2013], Schwenninger [2016a]. An extension of the Phillips func-
tional calculus using techniques from systems theory has been obtained in
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Zwart [2012] in a Hilbert space setting. It has been extended to the Banach
space setting by Schwenninger and Zwart [2012].

Our proof of the second Transference Theorem 10.7.9, on positive con-
tractions on Lp, essentially follows the original one from Coifman and Weiss
[1976]. This has the advantage, over another variant explained shortly, that
one only needs the Akcoglu–Sucheston Dilation Theorem I.1.2 for the finite-
dimensional spaces `pn, and not the general version for Lp-spaces (which is
obtained from the `pn version through ultrapower techniques). A shortcut to
Theorem 10.7.9, taken in Kunstmann and Weis [2004], is to use the Fendler’s
semigroup version of the Akcoglu–Sucheston theorem:

Theorem 10.8.1 (Fendler). Every C
0

-semigroup of positive contractions on
a space Lp(S, µ) with 1 < p < 1 has a dilation to a C

0

-group of positive
isometries on Lp(T, ⌫).

To be more precise, Fendler’s theorem asserts the existence of a measure
space (T,B, ⌫), a C

0

-group of positive isometries (U(t))t2R on Lp(T, ⌫), a
positive isometric embedding J : Lp(S, µ) ! Lp(T, ⌫), and a positive norm
one projection P of Lp(T, ⌫) onto the range of J such that

JS(t) = PU(t)J, t > 0.

The only known proof of this theorem heavily relies on ultrapower techniques.
Boundedness of the imaginary powers of the negative generator �A ⌦

IX and an extension of Proposition 10.7.8 to the UMD-valued setting were
obtained in Clément and Prüss [1990]. In Clément and Prüss [2001], Corollary
10.7.11 (with a different proof) was also noted.

Theorem 10.7.13 is from Kalton and Weis [2001] and was foreshadowed in
Weis [2001a]; we follow the arguments in Kunstmann and Weis [2004]. This
theorem has a long history. Using advanced methods from harmonic analysis,
in particular square function estimates, Stein [1970b] showed (implicitly in
section IV.6) that if �A is the generator of a symmetric diffusion semigroup
(a precise definition is given in the discussion of Problem P.4) on L2(S), where
(S,A , µ) is a �-finite measure space, then A has a bounded H1-calculus
on Lp(S) with !H1(A) < 1

2

⇡ for all 1 < p < 1. Cowling [1983] gave a
more direct proof of this fact, using the Coifman–Weiss transference, and
eliminated assumption T (t)1 = 1. Carbonaro and Dragičević [2017] obtained
the bounded H1-calculus of angle !H1(A) 6 �⇤

p := arcsin(1 � 2

p ), which
is optimal if S(t) is the Ornstein–Uhlenbeck semigroup (see García-Cuerva,
Mauceri, Meda, Sjögren, and Torrea [2001, Theorem 2] and Hebisch, Mauceri,
and Meda [2004, Theorem 2.2]).

In another direction, Duong and Yan [2002] and Hieber and Prüss [1998]
made a big step forward by showing that A has a bounded H1-calculus with
!H1(A) 6 1

2

⇡ if �A generates a positive contractive semigroup S(t) on a
general Lp-space for just one p 2 (1,1). Finally it was shown in Kalton
and Weis [2001], Weis [2001a] (see also Kunstmann and Weis [2004]) that,
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if in addition S(t) extends to an analytic C
0

-semigroup bounded on a sector
⌃�, then !H1(A) < 1

2

⇡. Vector-valued extensions to special classes of UMD-
spaces were obtained by Xu [2015]. The H1-calculus for ‘diffusions’ on non-
commutative Lp-spaces has been studied Junge, Le Merdy, and Xu [2003].

Lemma 10.7.17 is a variant of the complex interpolation of Stein [1956];
see Voigt [1992] for an abstract version.

Several dilation results have been obtained in Arhancet, Fackler, and
Le Merdy [2017]. They showed that if A admits a bounded H1(⌃�)-calculus
on some Lp-space, with 1 < p < 1, for some 0 < � < 1

2

⇡, then (S(t))t>0

dilates to a bounded analytic semigroup (R(t))t>0

a larger Lp-space in such
a way that R(t) is a positive contraction for all t > 0. Moreover, on reflexive
Banach spaces X such that both X and X⇤ have finite cotype, they show that
there is a dilation to a group, which has additional structure if the semigroup
generated by �A is positive, or if X = Lp. These results elaborate previous
results of Fröhlich and Weis [2006].

Further examples of operators with an H1-calculus

Here we collect some further examples of operators with a bounded H1-
calculus.

Elliptic partial differential operators

Consider an elliptic system of the form

(Ax)(u) =
X

|↵|62m

a↵(D
↵x)(u), u 2 D,

where D is an open domain in Rd satisfying appropriate regularity conditions.
For D = Rd and Hölder continuous coefficients, proofs of the boundedness of
the H1-calculus of A on Lp(D,Cn), 1 < p < 1, were given in Amann,
Hieber, and Simonett [1994], Denk, Hieber, and Prüss [2003], Kalton, Kun-
stmann, and Weis [2006], for continuous coefficients in Duong and Simonett
[1997], and for VMO-coefficients in Duong and Yan [2002], Heck and Hieber
[2003]. Boundedness of the H1-calculus of elliptic operators satisfying suit-
able kernel bounds on rather general classes of metric measure spaces was
shown in Duong and Robinson [1996], Duong and McIntosh [1999]. In Denk,
Dore, Hieber, Prüss, and Venni [2004] it was shown that the Lp-realisation of a
sectorial operator governing an UMD-valued elliptic boundary value problem
with Lopatinskij–Shapiro boundary conditions admits a bounded H1-calculus
on Lp(D;X) for all 1 < p < 1, provided the top-order coefficients of A are
Hölder continuous and the domain G in Rd has compact C2m-boundary The
proof is based on kernel estimates and a perturbation result for operators ad-
mitting bounded H1-calculus. Nau and Saal [2012] obtained improvements
of some of these results in the special setting of cylindrical domains of the
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form ⌦ = V
1

⇥ . . . ⇥ Vn ✓ Rd, where each Vi ✓ Rd
i is a regular domain and

d
1

+ . . .+ dn = d.
In a different direction, the work of Duong and Robinson [1996], Duong

and McIntosh [1999] was generalised in Blunck and Kunstmann [2003], where
it was shown that kernel estimates can be replaced by weighted norm estimates
(also referred to as off-diagonal bounds or Davies–Gaffney estimates). For fixed
1 6 p < 2 < q 6 1 assume that

k1B(u,t1/m)

S(t)1B(v,t1/m)

kLp!Lq 6 1

|B(x, t1/m)|1/p�1/q
g
�d(u, v)

t1/m
�

(10.58)

for all t > 0 and u, v 2 D, where g : [0,1) ! [0,1) is a non-increasing
function that decays faster than any polynomial and (S(t))t>0

is the bounded
analytic C

0

-semigroup generated by �A on L2(D). Then (10.58) implies that
A has a bounded H1-calculus on Ls(D) for all s 2 (p, q). Moreover, denoting
by As the realisation of A on Ls(D), one has !H1(As) = !H1(A) = !(A).
This allows the treatment of various classes of examples that cannot be treated
via kernel estimate, such as Schrödinger operator with a singular potential,
elliptic higher order operators with bounded measurable coefficients, and el-
liptic second order operator with singular lower order terms. This techniques
is very flexible and has proved to be of use in a wide range of applications.

Stokes operators

For a bounded domain ⌦ ✓ Rd with a smooth boundary @⌦ we denote by
Pp the Helmholtz projection of Lp(⌦)d onto the Helmholtz space Lp,�(⌦)d of
divergence-free vector fields, 1 < p < 1. The Stokes operator then is defined
by Ap = Pp� with Dirichlet boundary values. The boundedness of the H1-
calculus of Ap is shown in Noll and Saal [2003] and Kalton, Kunstmann, and
Weis [2006] and, based on maximal regularity results, in Fröhlich [2001]. For
earlier results on bounded imaginary powers for Stokes operators see Giga
[1985]. Since then the boundedness of the H1-calculus of the Stokes operator
and its variants have also been considered on certain unbounded domains with
various boundary conditions, see e.g. Abels [2005a,b], Abels and Terasawa
[2009], Farwig and Myong-Hwan [2007], Geißert and Kunstmann [2015], Giga,
Gries, Hieber, Hussein, and Kashiwabara [2017], Kunstmann [2008], Maier
and Saal [2014], Prüss and Simonett [2016]. For Lipschitz domains, the Stokes
operator only operates - and has a bounded H1-calculus, on a part of the
Lp-scale, cf. Kunstmann and Weis [2017], McIntosh and Monniaux [2016].

L1 and C(K)-spaces

In L1(µ) and C(K) there are no interesting examples of unbounded oper-
ators with a bounded H1-calculus, and certainly no differential operators.
See Kalton and Weis [2001], Hoffmann, Kalton, and Kucherenko [2004] and
Kucherenko and Weis [2005] for some results in this direction. This situa-
tion reflects the well known fact that singular integral operators are generally
unbounded on L1(Rd)-spaces and C

b

(Rd)-spaces.
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Besov spaces and Triebel–Lizorkin spaces

In Dore [1999, 2001] it is shown that if A is a densely defined sectorial operator
with dense range on a Banach space X, then A induces sectorial operators
on the real interpolation spaces (X,D(A))✓,q which have a bounded H1-
functional calculus. If X = Lp(Rd) and D(A) = W 2,p(Rd), then (X,D(A))✓,q
equals the Besov spaces Bs

p,q(Rd) with 1 6 p, q 6 1 (see Bergh and Löfström
[1976]). Haase and Rozendaal [2016] obtain a functional calculus for generators
of bounded and unbounded groups on real interpolation spaces using functions
from the analytic Mihlin algebra. In Kalton and Kucherenko [2010] the so-
called absolute functional calculus was introduced for a sectorial operator A.
This calculus has much stronger properties than the H1-calculus. The authors
show that a sectorial operator has an absolute functional calculus if and only
if the underlying space is a certain real interpolation space.

Kunstmann, P. C. and Ullmann [2014] introduce generalised Triebel-
Lizorkin spaces associated with sectorial operators in Banach function spaces
and show that an `s-sectorial operator has a bounded H1-functional calculus
in its associated generalised Triebel–Lizorkin spaces.

The boundedness of H1-calculus for pseudodifferential operators in vari-
ous functions spaces on manifolds with or without corners is studied in Bilyj,
Schrohe, and Seiler [2010], Escher and Seiler [2008], Coriasco, Schrohe, and
Seiler [2007], Denk, Saal, and Seiler [2009].
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Problems

Random sums

The Kahane–Khintchine inequality (Theorem 6.2.4) states in particular that
for all exponents 0 < p 6 q < 1 there exists a constant Rq,p 6

q

q�1

p�1

such
that for any Banach space X and any finite sequence (xn)n>1

in X,

�

�

�

N
X

n=1

rnxn

�

�

�

Lq

(⌦;X)

6 Rq,p

�

�

�

N
X

n=1

rnxn

�

�

�

Lp

(⌦;X)

.

While a universal constant Rq,p works for all Banach spaces, in principle a
better constant could be available for specific spaces, especially for X = R.
Let us denote this latter constant by q,p,R.

Problem P.1 (Kwapień). Prove that the optimal constant in the Kahane–
Khintchine inequality for general Banach spaces the same as the constant for
the real line, i.e. prove that Rq,p = q,p,R for all 0 < p 6 q < 1?

There are a few cases for which the precise best constants Rq,p and q,p,R are
known, and in all these cases the conjectured equalities are true. For a fuller
discussion the reader is referred to the Notes of Chapter 6.

Problem P.2. Characterise the Banach spaces X for which a constant C > 0
exists such that for all sequences (xmn)

M,N
m,n=1

in X and all scalar sequences
(amn)

M,N
m,n=1

it is true that

E
�

�

�

N
X

n=1

�n

M
X

m=1

amnxmn

�

�

�

2

6 C2 sup
16n6N

⇣

M
X

m=1

|amn|2
⌘

EE0
�

�

�

M
X

m=1

�0m

N
X

n=1

�nxmn

�

�

�

2

,

where (�n)Nn=1

and (�0m)Mm=1

are Gaussian sequences on distinct probability
spaces (⌦,P) and (⌦0,P0).
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According to Remark 9.6.15, the above estimate holds for Banach spaces X
that have either Pisier’s contraction property (Corollary 9.6.12) or non-trivial
type (Theorem 9.6.14). It should be observed that neither one of these prop-
erties implies the other.

As explained in Example 9.6.17, the validity of this estimate implies R-
boundedness of Laplace transforms in the right half-plane.

The relation of type and Enflo-type

Problem P.3 (Enflo [1978]). If a Banach space has type p 2 (1, 2], does it
also have Enflo-type p (see Definition 7.6.9)?

This problem has been implicitly raised by Enflo [1978] and partially answered
by Pisier [1986a] and Naor and Schechtman [2002]. They proved, respectively,
that the assumption implies every Enflo-type p

1

2 [1, p) in general, and Enflo-
type p if the space is also assumed to be UMD; see Theorem 7.6.10. The general
case remains open.

Analyticity of diffusion semigroups and K-convexity

Let (S,A , µ) be a �-finite measure space. A family (T (t))t>0

of linear opera-
tors on L2(S) is called a symmetric diffusion semigroup if it is a C

0

-semigroup
on L2(S) and the following conditions are satisfied for all t > 0:

(i) T (t) is a contraction on Lp(S) for all 1 6 p 6 1;
(ii) T (t) is self-adjoint on L2(S);
(iii) T (t) is a positive operator;
(iv) T (t)1 = 1.

To be sure, in (i) we are asking that kT (t)fkp 6 kfkp for all f 2 Lp(S)\L2(S).
The strong continuity on L2(S), together with properties (i) and (ii), implies
that (T (t))t>0

is a C
0

-semigroup on Lp(S) for all p 2 [1,1); on L1(S) the
semigroup is weak⇤-continuous. Property (ii) implies moreover that (T (t))t>0

has an extension to an analytic C
0

-semigroup of contractions of angle 1

2

⇡ on
L2(S), and then the Stein interpolation theorem implies that (T (t))t>0

is an
analytic C

0

-contraction semigroup on Lp(S) for all p 2 (1,1) (with an angle
depending on p). The details can be found in Stein [1970b].

For any Banach space X, the tensor extensions T (t)⌦ IX , t > 0, define a
contractive C

0

-semigroup on Lp(S;X) by Theorem 2.1.3.

Problem P.4 (Pisier [1982]). Let (T (t))t>0

be a symmetric diffusion semi-
group on L2(S). Does (T (t)⌦ IX)t>0

extend to an analytic C
0

-semigroup on
Lp(S;X) for all p 2 (1,1) and all K-convex Banach spaces X?

A key ingredient in the proof of Pisier’s K-convexity Theorem 7.4.23 was the
positive resolution of this problem for the special case of the discrete heat
semigroup; the original argument of Pisier [1982] spells this out under more
general structural assumptions on the semigroup, namely, when (T (t))t>0

is
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a convolution semigroup on a compact Abelian group S = G, but not in the
full generality asked in Problem P.4. The same proof also gives an affirmative
answer for all diffusion semigroups under a stronger condition on the space
X, e.g., if X is uniformly convex or super-reflexive (and in particular if X
is a UMD space). This might be taken as evidence for a positive answer in
full generality, as already speculated by Pisier [1982]. Further progress on the
above problem was recently made in Arhancet [2015].

On the K-convexity constant

Problem P.5. Suppose the Banach space X has type 1 < p < 2. Do there
exist constants ✓(p) > 0 and C(p) > 0 such that the K-convexity constant
satisfies K

2,X 6 C(p)⌧✓(p)p,X ?

The case p = 2 was treated in Propositions 7.4.21 and 7.4.22 where the result
even holds with ✓(2) = 1. Theorem 7.4.28 provides an exponential bound
for p 2 (1, 2). In Proposition 4.3.10 we have seen that for all p 2 (1,1),
Kp,X 6 �p,X , where �p,X is the UMDp constant of X.

The vector-valued Marcinkiewicz Multiplier Theorem

It follows from the vector-valued Marcinkiewicz Multiplier Theorem 8.3.4 that
for a function m which has uniformly bounded variation over the intervals

I 2 I :=
�

(2k, 2k+1), (�2k+1,�2k) : k 2 Z
 

,

the Fourier multiplier operator Tm is bounded on Lp(R;X) whenever X is a
UMD space and p 2 (1,1). Extending the definition of bounded variation
from Definition 8.3.2, we say that a function f : I ! K has bounded s-
variation, for a given s 2 [1,1), if

kfk
˙V s

(I) := sup
K>0

sup
t0,t1,...,tK2I
t0<t1<...<t

K

K
X

k=1

|f(tk�1

)� f(tk)|s < 1.

We then write f 2 V s(I) and define the norm of f by

kfkV s

(I) := kfk
˙V s

(I) + sup
t2I

|f(t)|.

Moreover, for m : R ! K we write m 2 V s(I ) if supI2I kmkV s

(I) < 1,
where I is as above. Observe that V s0(I ) ✓ V s1(I ) if 1 6 s

0

6 s
1

< 1.

Problem P.6. Let X be a UMD space. Do there exist p, s 2 (1,1) such that
for every m 2 V s(I ), the operator Tm is bounded on Lp(R;X)?
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It would be interesting to investigate the dependence of p and s on the ge-
ometry of X. In the case X = C, Coifman, Rubio de Francia, and Semmes
[1988] proved that Tm is bounded whenever m 2 V s(I ) and p 2 (1,1) and
s 2 (2,1) satisfy 1

s >
�

�

1

p � 1

2

�

�. An extension to Banach spaces with the
so-called Littlewood–Paley–Rubio de Francia property (see page 481 in the
Notes of Chapter 5) was obtained in Hytönen and Potapov [2006]. Some of
these results have been strengthened in Amenta, Lorist, and Veraar [2017a,b]
for Banach lattices X whose q-concavification has the UMD property.

R-sectoriality of the Laplacian

For UMD spaces X and 1 < p < 1, by Theorem 10.2.25 the operator ��
has a bounded H1-calculus on Lp(Rd;X), and Theorem 10.3.4(2) implies
that �� is R-sectorial. Observe that Lp(Rd;X) has the triangular contrac-
tion property if X has it, and UMD spaces always have this property (see
Proposition 7.5.8 and Theorem 7.5.9), so the application of Theorem 10.3.4(2)
is justified. In the converse direction, the UMD property is necessary for the
bounded H1-calculus of �� on Lp(Rd;X) by Corollary 10.5.2. The following,
however, is open:

Problem P.7. Does R-sectoriality of �� on Lp(R;X) imply that X is a
UMD space? If not, which other spaces X are admissible?

The same question can be asked about the first derivative d/dx. Rather more
vaguely, one can ask whether there exists some “mechanism” to deduce uncon-
ditionality from R-boundedness, in analogy with, but reversing the direction,
of Proposition 8.4.6.

�-boundedness and radonifying operators

When working with R-boundedness, it is sometimes handy that, in place of
arbitrary tuples (T

1

, . . . , TN ) of operators, it is sufficient to consider distinct
choices of Tn (see Proposition 8.1.5). The proof of this result depends on
the multiplicative properties of the Rademacher variables, and its Gaussian
analogue is open:

Problem P.8. Do we get an equivalent definition of �-boundedness, if we
require the defining estimate for distinct choices of operators only, i.e., does the
�-boundedness analogue of Proposition 8.1.5 hold? If not, what is an example
of a collection that satisfies the defining estimate for distinct operators, but
fails to be �-bounded.

Since �-boundedness coincides with R-boundedness in spaces of finite cotype
(Theorem 8.6.4), the example would have to live in a space without cotype.
The proof of Theorem 8.6.4 produces an example of an R-bounded, but not �-
bounded family of operators, and one can readily check that the proof already
shows the failure of the restricted �-boundedness with distinct operators only;
thus are more refined example would be required for a negative solution of
Problem P.8.
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Problem P.9. Theorem 9.5.1 asserts that every strongly µ-measurable func-
tion M : S ! L (X,Y ) with �-bounded range acts as a pointwise multiplier
from �(L2(S), X) into �1(L2(S), Y ). Does M always take its values in the
smaller space �1(L2(S), Y )?

Inspecting the proof of Theorem 9.5.1 one sees that the main culprit is the
application of the �-Fatou lemma (Proposition 9.4.6). Easy examples show
that in this lemma the limit will in general fail to be �-radonifying. Thus, a
positive answer will either require a new proof avoiding the �-Fatou lemma
or an additional argument which explains why M takes values in �(L2(S), Y )
rather than just in �1(L2(S), Y ).

In most applications, Theorem 9.5.1 is applied in the context of UMD
spaces Y , which do not contain copies of c

0

; by Theorem 6.4.10 one then
has �1(L2(S), Y ) = �1(L2(S), Y ). In other applications one can give ad hoc
arguments to prove membership in �(L2(S), Y ), for instance as an application
of Corollary 9.5.2.

The H1-functional calculus and square function estimates

Theorems 10.4.25 and 10.4.27 give a subtle improvement of the square function
estimate of Theorem 10.4.16(1) for spaces X with finite cotype, in that they
are stated in terms of H2(⌃) rather than H1(⌃). It is not known whether
a similar improvement of the dual estimate of Theorem 10.4.16(2) holds for
general Banach spaces X.

Problem P.10 (Dual estimate for the quadratic H1-calculus). Let A
be a densely defined sectorial operator with dense range on a Banach space
X, and assume that A has a bounded H1(⌃�)-functional calculus for some
!(A) < � < ⇡. Let H be a Hilbert space, let � < # < ⇡, and define, for
F 2 H1(⌃#;H⇤), the operator F (A⇤) : X⇤ ! L (H,X⇤) by

[F (A⇤)x⇤]h := hh, F i(A⇤)x⇤, h 2 H, x⇤ 2 D(A⇤) \ R(A⇤).

Is it true that F (A⇤) extends to a linear bounded mapping from X⇤ into
�⇤(H,X⇤) and

kF (A⇤)x⇤k�⇤
(H,X⇤

)

6 C�,#,AkFkH1
(⌃

�

;H⇤
)

, x⇤ 2 D(A⇤) \ R(A⇤).

It follows from Theorem 10.4.25 applied to A⇤ that the answer is affirmative
under the additional assumption that X⇤ has finite cotype. In that case a
stronger version of the result holds where �⇤(H,X⇤) is replaced by �(H,X⇤)
(see Proposition 9.1.22). Note that if X has non-trivial type, then �⇤(H,X⇤) =
�(H,X⇤) (see Proposition 9.1.23).

Functional calculus for generators of diffusion semigroups

Let (T (t))t>0

be a diffusion semigroup on L2(S) in the sense of Problem P.4.
Let us fix a Banach space X and an exponent 1 6 p < 1, and denote the
generator of the C

0

-semigroup (T (t)⌦ IX)t>0

on Lp(S;X) by �AX .
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Problem P.11 (Xu [2015]). Is it true that if X is a UMD space, then
!H1(AX) < 1

2

⇡ or even !H1(AX) = !(AX) < 1

2

⇡?

Recall from Theorem 10.7.12 that AX has a bounded H1-calculus with
!H1(A) 6 1

2

⇡. By Proposition 10.3.3 and Corollary 10.4.10, the above prob-
lem can be equivalently formulated as follows: Does there exist a � > 0 such
that the set {T (z) ⌦ IX : | arg z| < �} is R-bounded? (As in the discus-
sion of Problem P.7 we observe that Lp(S;X) has the triangular contraction
property). The R-boundedness for z = t 2 [0,1) is known to hold. Indeed,
Hytönen, Li, and Naor [2016, Corollary 21] state this for the heat semigroup
on Rd, but the same proof (based on Rota’s theorem) works for any symmetric
diffusion semigroup.

It follows from the results in Xu [2015] that the answer to Problem P.11 is
affirmative for UMD spaces X that are a complex interpolation space between
a Hilbert space and some other UMD space. This brings a connection with
Problem O.3, which asks whether every UMD space has this form. Among
other examples, an affirmative answer is known for all UMD lattices (see
Rubio de Francia [1986]).

The role of positivity and contractivity

Problem P.12 (Fackler [2015]). Let �A generate a C
0

-semigroup (S(t))t>0

on an Lp-space, p 2 (1,1) \ {2}, which is either positive or contractive (but
not necessarily both). Does A have a bounded H1-calculus?

Theorem 10.7.12 shows that if (S(t))t>0

is both positive and contractive, then
A has a bounded H1-calculus. Moreover, for p = 2 contractivity suffices. Even
in the case p = 2 it is an open problem whether positivity of the semigroup is
already enough for having a bounded H1-calculus.

Carbonaro and Dragičević [2017] showed that if �A is the generator semi-
group which satisfies (i) and (ii) in the definition of a symmetric diffusion
semigroup given before Problem P.4, then A has a bounded H1-calculus of
angle !H1(A) 6 �⇤

p := arcsin(1 � 2

p ). No positivity is assumed, nor is it as-
sumed that 1 is mapped to 1. In the proof, it is used that the semigroup
is contractive and analytic on the sector ⌃ 1

2⇡��⇤
p

, a result due to Kriegler
[2011, Corollary 6.2 and Remark 2]. He also gave a strikingly simple exam-
ple of 2⇥ 2 matrices that shows the optimality of the angle �⇤

p. The equality
!H1(A) = �⇤

p is also reached in the case of the generator �A of the Ornstein–
Uhlenbeck semigroup; this was known earlier and is due to García-Cuerva,
Mauceri, Meda, Sjögren, and Torrea [2001, Theorem 2] and Hebisch, Mauceri,
and Meda [2004, Theorem 2.2].

The angle problem on Lp

Problem P.13. Let A be a sectorial operator with a bounded H1-calculus
on an Lp-space, for some p 2 (1,1). Is it true that !(A) = !H1(A)?
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By Corollary 10.4.10 one could equivalently ask whether !(A) = !R(A). More
specifically one could pose the problem for the special case where A generates
a positive C

0

-contraction semigroup (S(t))t>0

on an Lp-space with 1 < p < 1.
Such operators have a bounded H1-calculus by Theorem 10.7.12.

The above problem has a negative answer on general Banach spaces. In-
deed, Kalton [2003] showed that it is possible to construct, for every ✓ 2 (0,⇡),
an example of a sectorial operator A with a bounded H1-calculus whose an-
gles satisfy !(A) = 0 and !H1(A) = ✓. By Kalton and Weis [preprint], such
example can even be given on closed subspaces of an Lp-space with 1 < p < 2.





E

Probability theory

In this appendix we collect a number of results from elementary Probability
Theory which can be formulated for random variables with values in a metric
space. The treatment is tailored to our needs and only scratches the surface
of what could be said in this context.

E.1 Random variables

Let E be a separable metric space.

Definition E.1.1. An E-valued random variable is a measurable function
⇠ : ⌦ ! E, where (⌦,F ,P) is a probability space, and measurability means
that {⇠ 2 B} 2 F for every Borel set (equivalently, of every open set) in E.

Unless stated otherwise, all random variables will be defined on a probability
space (⌦,F ,P) which we consider to be fixed once and for all.

Remark E.1.2 (Random variables with values in a Banach space). Since E is
assumed to be a separable metric space, a function ⇠ : ⌦ ! E is measurable if
and only if it is strongly measurable, i.e., there exists a sequence of measurable
simple functions converging to f pointwise. This can be proved by repeating
the argument of Corollary 1.1.10. It is mainly for this reason that we restrict
our definition to separable metric spaces.

As a consequence, a function with values in a separable Banach space is
a random variable if and only if it is strongly measurable. If X is a general
Banach space, we define an X-valued random variable to be a strongly mea-
surable function ⇠ : ⌦ ! X. Such a function is always separably-valued, and
therefore it is a random variable in the sense of Definition E.1.1 if we replace
X by any separable closed subspace of X containing the range of ⇠.

Lemma E.1.3 (Borel–Cantelli). Let (S,A , µ) be a measure space. If
(An)n>1

is a sequence in A satisfying
P

n>1

µ(An) < 1, then
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µ
⇣

\

k>1

[

n>k

An

⌘

= 0.

The converse holds if (S,A , µ) is a probability space and the sets An are
independent.

Proof. Fix k
0

> 1. Then µ
�

T

k>1

S

n>k An

�

6 µ
�

S

n>k0
An

�

6 P

n>k0
µ(An),

and the right-hand side tends to 0 as k
0

! 1.
Suppose now that (S,A , µ) is a probability space and (An)n>1

is a se-
quence independent sets in A satisfying

P

n>1

µ(An) < 1. Using the in-
equality 1� x 6 exp(�x), we have

µ
⇣

[

n>k

An

⌘

= 1� µ
⇣

\

n>k

{An

⌘

= 1�
Y

n>k

µ({An)

> 1�
Y

n>k

exp(�µ(An)) = 1� exp(�
X

n>k

µ(An)).

Passing to the limit k ! 1 gives

µ
⇣

\

k>1

[

n>k

An

⌘

= lim
k!1

µ
⇣

[

n>k

An

⌘

= 1.

⇤

E.1.a Modes of convergence

In the absence of integrability properties, at least three natural notions of
convergence of random variables can be distinguished: pointwise convergence,
convergence in probability, and convergence in distribution. We shall discuss
these notions and their relations in some detail.

Definition E.1.4. Let (⇠n)n>1

be a sequence of E-valued random variables,
and ⇠ be another E-valued random variable.

(1) (⇠n)n>1

converges in probability to ⇠ (resp. is Cauchy in probability) if

P(d(⇠n, ⇠) > r) ! 0
⇣

resp. P(d(⇠n, ⇠m) > r) ! 0
⌘

for all r > 0 as n ! 1 (resp. n,m ! 1).
(2) (⇠n)n>1

converges in distribution to ⇠ if

Ef(⇠n) ! Ef(⇠)

for all f 2 C
b

(E), the space of bounded continuous functions f : E ! K.
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Clearly, if ⇠n ! ⇠ in distribution in E, and if � is a continuous mapping from
E into another metric space F , then �(⇠n) ! �(⇠) in distribution in F .

The main relations between these notions are summarised in the follow-
ing proposition. Some of these implications have already been considered in
Appendix A.2 in the case of scalar-valued function. While the metric space
versions hardly differ except in notation, we include the short proofs for com-
pleteness.

Proposition E.1.5. Let (⇠n)n>1

be a sequence of E-valued random variables,
and ⇠ be another E-valued random variable.

(1) If ⇠n ! ⇠ almost everywhere (a.e.), then ⇠n ! ⇠ in probability.
(2) If ⇠n ! ⇠ in probability, then ⇠n

k

! ⇠ a.e. along a subsequence.
(3) If ⇠n ! ⇠ in probability, then ⇠n ! ⇠ in distribution.
(4) If (⇠n)>1

is Cauchy in probability, then a subsequence (⇠n
k

)k>1

is Cauchy
a.e.

(5) If E is complete and (⇠n)n>1

is Cauchy in probability, it converges in
probability.

Proof. (1): Suppose that ⇠n ! ⇠ almost everywhere. Then 1{d(⇠
n

,⇠)>r} ! 0
almost everywhere, and

P(d(⇠n, ⇠) > r) = E1{d(⇠
n

,⇠)>r} ! 0

by dominated convergence, which proves convergence in probability.
(2): If ⇠n converges to ⇠ in probability, we inductively pick nk > nk�1

such
that P(Ak) := P(d(⇠n

k

, ⇠) > 2�k) < 2�k. Since
P

k>1

P(Ak) < 1, it follows
that almost every ! 2 ⌦ belongs to {Ak for all k > K(!). But this means
that d(⇠n

k

, ⇠) 6 2�k for all k > K(!), which clearly implies that ⇠n
k

! ⇠ at
such a point !.

(3): Let limn!1 ⇠n = ⇠ in probability. By (2), any subsequence (⇠n
k

)k>1

has a further subsequence (⇠n
k

j

)j>1

which converges almost everywhere.
By the dominated convergence theorem, for all f 2 C

b

(E) we then have
limj!1 Ef(⇠n

k

j

) = Ef(⇠). It follows that limn!1 ⇠n = ⇠ in distribution.
(4): If (⇠n)n>1

is Cauchy in probability, we inductively pick nk > nk�1

such that P(d(⇠n, ⇠m) > 2�k) < 2�k for all n,m > nk. Then in particular
P(Bk) := P(d(⇠n

k

, ⇠n
k+1) > 2�k) < 2�k. As in Part (2), this implies that at

almost every ! 2 ⌦, we have d(⇠n
k

, ⇠n
k+1) 6 2�k for all k > K(!), which

clearly implies that (⇠n
k

)k>1

is Cauchy at such a point !.
(5): If (⇠n)n>1

is Cauchy in probability, by (4) a subsequence (⇠n
k

)k>1

is
Cauchy almost everywhere, and hence convergent a.e. to some ⇠ by complete-
ness. In particular ⇠n

k

! ⇠ in probability by (1). Thus

P(d(⇠m, ⇠) > r) 6 P(d(⇠m, ⇠n
k

) > r/2) + P(d(⇠n
k

, ⇠) > r/2)

converges to 0 as m ! 1 and k ! 1. ⇤
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We define L0(⌦;E) as the set of equivalence classes of random variables on
⌦ with values in E, identifying random variables when they are equal almost
everywhere. This space is a metric space with respect to the distance function

�(⇠, ⌘) := E(d(⇠, ⌘) ^ 1).

Proposition E.1.6. We have limn!1 ⇠n = ⇠ in probability if and only if
limn!1 �(⇠n, ⇠) = 0. If E is complete, the space L0(⌦;E) is a complete metric
space with respect to �.
Proof. If (⇠n)n>1

converges to ⇠ in probability, then any subsequence (⇠n
k

)k>1

has a further subsequence (⇠n
k

j

)j>1

which converges to ⇠ almost surely. For
this subsequence we have limj!1 E(1 ^ d(⇠n

k

j

, ⇠)) = 0 by dominated con-
vergence. It follows that limn!1 E(1 ^ d(⇠n, ⇠)) = 0. The converse follows
from

P(d(⇠n, ⇠) > r) 6 P
�

1 ^ d(⇠n, ⇠) > 1 ^ r
�

6 1

1 ^ r
E(1 ^ d(⇠n, ⇠)).

This proves the first assertion.
The completeness of L0(⌦;E) follows from the fact, proved in Proposi-

tion E.1.5, that a sequence (⇠n)n>1

, which is Cauchy in probability, is also
convergent in probability. ⇤
Recall that a family of random variables {⇠i : i 2 I} is uniformly integrable if
and only if

lim
r!1

sup
i2I

E(1{|⇠
i

|>r}|⇠i|) ! 0.

Proposition E.1.7. Let (⇠n)n>1

be a uniformly integrable sequence of non-
negative random variables. If (⇠n)n>1

converges to the random variable ⇠ in
distribution, then ⇠ is integrable and limn!1 E⇠n = E⇠.

Proof. Fix r > 0. Since f(x) = x ^ r is bounded and continuous, we have

E(⇠ ^ r) = lim
n!1

E(⇠n ^ r) 6 lim inf
n!1

E⇠n.

Letting r ! 1, we see that one always has E⇠ 6 lim infn!1 E⇠n. By the
uniform integrability, the left hand side is finite, and therefore E⇠ < 1.

Next we prove the convergence. For fixed r > 0,

|E⇠ � E⇠n| 6 |E(⇠)� E(⇠ ^ r)|+ |E(⇠ ^ r)� E(⇠n ^ r)|+ |E(⇠n ^ r)� E(⇠n)|.
Fix an " > 0. Since ⇠n ! ⇠ in distribution, we have limn!1 |E(⇠^ r)�E(⇠n^
r)| = 0. By the uniform integrability of (⇠n)n>1

, we can find r
1

> 0 such that
for all r > r

1

one has

sup
n>1

|E(⇠n ^ r)� E(⇠n)| 6 sup
n>1

E(1{⇠
n

>r1}⇠n) < ".

Choose r
2

such that for all r > r
2

we have |E(⇠) � E(⇠ ^ r)| < ". Taking
r := r

1

_r
2

, we obtain lim supn!1 |E⇠�E⇠n| < 2". Since " > 0 was arbitrary,
this completes the proof. ⇤
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E.1.b Independence

Definition E.1.8. Suppose that I is an index set and that Ei, i 2 I, are
metric spaces. The random variables ⇠i : ⌦ ! Ei, i 2 I, are independent
if for all choices of distinct indices i

1

, . . . , iN 2 I and all Borel sets B
1

✓
Ei1 , . . . , BN ✓ Ei

N

we have

P(⇠i1 2 B
1

, . . . , ⇠i
N

2 BN ) =

N
Y

n=1

P(⇠n 2 Bn).

This definition can be rephrased in terms of �-algebras as follows. The �-
algebras Ai, i 2 I, are independent if for all choices of distinct indices
i
1

, . . . , iN 2 I and sets A
1

2 Ai1 , . . . , AN 2 Ai
N

we have

P(A
1

\ · · · \AN ) =

N
Y

n=1

P(An).

With this terminology, the random variables ⇠i are independent if and only if
the �-algebras �(⇠i) are independent.

Definition E.1.9. The distribution of an E-valued random variable ⇠ is the
Borel probability measure µ⇠ on E defined by

µ⇠(B) := P(⇠ 2 B).

If ⇠n is a random variable in the metric space En for n = 1, . . . , N , then
(⇠

1

, . . . , ⇠N ) is a random variable in E
1

⇥ · · ·⇥EN and we have the following
criterion for independence:

Proposition E.1.10. The following conditions are equivalent:

(1) the random variables ⇠
1

, . . . , ⇠N are independent;
(2) we have the coincidence of distributions

µ
(⇠1,...,⇠N )

= µ⇠1 ⇥ · · ·⇥ µ⇠
N

;

(3) we have
E[f

1

(⇠
1

) · · · fn(⇠N )] = Ef
1

(⇠
1

) · · ·EfN (⇠N )

for all fn 2 C
b

(En), n = 1, . . . , N .

Proof. (1))(3): By definition, ⇠
1

, . . . , ⇠N are independent if and only if prop-
erty (3) holds for all fn of the form fn = 1B

n

, where Bn is any Borel set of
En. By linearity with respect to each component, this implies the same prop-
erty for all simple Borel functions fn : En ! K. Since any fn 2 C

b

(En) is a
pointwise limit of a bounded sequence of such functions, property (3) follows
from independence by dominated convergence.

(3))(2): Suppose that Cn ✓ En are closed sets, and let
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fn,k(x) := (1� k · dist(x,En))+.

Then 0 6 fn.,k 6 1 and fn,k ! 1E
n

as k ! 1. Hence

E[1C1(⇠1) · · ·1C
N

(⇠N )] = lim
k!1

E[f
1,k(⇠1) · · · fN,k(⇠N )]

= lim
k!1

Ef
1,k(⇠1) · · · fN,k(⇠N ) = E1C1(⇠1) · · ·E1C

N

(⇠N )

by dominated convergence, and this shows that µ
(⇠1,...,⇠N )

and µ⇠1 ⇥ · · ·⇥µ⇠
N

agree on the collection C all products C
1

⇥ · · ·⇥ CN of closed sets Cn ✓ En.
Since this collection contains E

1

⇥· · ·⇥EN , is closed under finite intersections,
and generates the Borel �-algebra of E

1

⇥· · ·⇥EN , it follows Dynkin’s Lemma
A.1.3 that the said measures are equal.

(2))(1): This is obvious, since the definition of independence is simply
the coincidence of the two measures on all products B

1

⇥ · · · ⇥ BN of Borel
sets Bn ✓ En. ⇤
Remark E.1.11. Suppose ⇠n : ⌦ ! En, n = 1, . . . , N , are independent random
variables. Let e⌦ := ⌦

1

⇥ · · · ⇥ ⌦N , where each ⌦n a copy of ⌦. Define the
random variables e⇠n : e⌦ ! En by

e⇠n(!1

, . . . ,!N ) := ⇠n(!n).

The random variables (⇠
1

, . . . , ⇠N ) and (e⇠
1

, . . . ,f⇠N ) are identically distributed
and the random variables e⇠

1

, . . . ,f⇠N are independent. Since most computa-
tions only involve the (joint) distributions of the ⇠n one may just as well
work with the e⇠n instead of the ⇠n. This has the advantage that the Fubini
theorem can be used without any problems. We shall frequently refer to this
construction in an informal way by stating that

“independent random variables ⇠
1

, . . . , ⇠N may assumed to be defined
on distinct probability spaces ⌦

1

, . . . ,⌦N ”.

We record a simple application of Proposition E.1.10.

Proposition E.1.12. If limn!1 ⇠n = ⇠ and limn!1 ⌘n = ⌘ in probability in
E and F , respectively, and if for each n > 1 the random variables ⇠n and ⌘n
are independent, then ⇠ and ⌘ are independent.

Proof. The assumptions imply that ⇠n ! ⇠ and ⌘n ! ⌘ in distribution and
that limn!1(⇠n, ⌘n) ! (⇠, ⌘) in probability, and therefore limn!1(⇠n, ⌘n) !
(⇠, ⌘) in distribution by Proposition E.1.5.

For all f 2 C
b

(E) and g 2 C
b

(F ) we have, [(x, y) 7! f(x)g(y)] 2 C
b

(E ⇥
F ), and hence using Proposition E.1.10 and the assumptions,

E[f(⇠)g(⌘)] = lim
n!1

E[f(⇠n)g(⌘n)] = lim
n!1

Ef(⇠n)Eg(⌘n) = Ef(⇠)Eg(⌘).

By another application of Proposition E.1.10, this proves the independence of
⇠ and ⌘. ⇤



E.1 Random variables 493

E.1.c Characteristic functions

Let X be a Banach space. Recall from Section 1.1 that �(X⇤) denote the
�-algebra in X generated by X⇤. If X is separable, this �-algebra coincides
with the Borel �-algebra of X (Proposition 1.1.1), but in general it may be
coarser (cf. Example 1.4.3).

Definition E.1.13. The characteristic function of a probability measure µ on
(X,�(X⇤)) is the function bµ : X⇤ ! C defined by

bµ(x⇤) :=

ˆ
X
exp(i<hx, x⇤i) dµ(x).

Note that if ⇠ is an X-valued random variable, then the characteristic function
of its distribution is given by

cµ⇠(x
⇤) = E(exp(i<h⇠, x⇤i)).

Our aim is to prove that the mapping µ 7! bµ is injective. We will prove this
first for X = Rd and deduce the general case from this special case. When
applied to the distributions of two X-valued random variables ⇠

1

and ⇠
2

, it
will follow that ⇠

1

= ⇠
2

almost surely if they have the same characteristic
function.

Theorem E.1.14 (Uniqueness of the characteristic function on Rd).
Let �

1

and �
2

be Borel probability measures on Rd whose characteristic func-
tions are equal:

c�
1

(⇠) = c�
2

(⇠), ⇠ 2 Rd.

Then �
1

= �
2

.

Proof. By a standard approximation argument it suffices to prove that
ˆ
Rd

f d�
1

=

ˆ
Rd

f d�
2

, f 2 C
c

(Rd), (E.1)

where C
c

(Rd) denote the space of all compactly supported continuous func-
tions on Rd.

Let 0 < " < 1 be arbitrary and fix f 2 C
c

(Rd). We may assume that
kfk1 6 1. Let r > 0 be so large that the support of f is contained in an
open cube (�r, r)d satisfying �j

�

{(�r, r)d
�

6 " for j = 1, 2. By the Stone-
Weierstrass theorem there exists a trigonometric polynomial p : Rd ! C of
period 2r such that supx2[�r,r]d |f(x)� p(x)| 6 ". Then, noting that kpk1 6
1 + ",

�

�

�

ˆ
Rd

f d�
1

�
ˆ
Rd

f d�
2

�

�

�

6 2"+
�

�

�

ˆ
[�r,r]d

f d�
1

�
ˆ
[�r,r]d

f d�
2

�

�

�

6 4"+
�

�

�

ˆ
[�r,r]d

p d�
1

�
ˆ
[�r,r]d

p d�
2

�

�

�
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6 4"+ 2"(1 + ") +
�

�

�

ˆ
Rd

p d�
1

�
ˆ
Rd

p d�
2

�

�

�

= 4"+ 2"(1 + ").

The last equality follows from the equality of the characteristic functions of
�
1

and �
2

. Since " > 0 was arbitrary, this proves (E.1). ⇤

In order to extend Theorem E.1.14 to arbitrary (real or complex) Banach
spaces we need a lemma which enables us to reduce the complex case to the
real case.

As a preliminary remark we recall that if X is a complex Banach space,
then by restricting the scalar multiplication (c, x) 7! cx to the real scalars
we obtain a real Banach space which we shall denote by XR. As sets we have
X = XR. A vector x 2 X, when viewed as an element of XR, will be denoted
by xR. By X⇤ and X⇤

R we denote the (complex) dual of X and the (real) dual
of XR, respectively.

Lemma E.1.15. Let X be a complex Banach space. For all x⇤
R 2 X⇤

R there
exists a unique x⇤ 2 X⇤ such that for all x 2 X we have

hxR, x
⇤
Ri = <hx, x⇤i.

Conversely, for all x⇤ 2 X⇤ the mapping xR 7! <hx, x⇤i defines an element of
X⇤

R. The induced mappings X⇤
R ! X⇤ and X⇤ ! X⇤

R are inverse to each other.
Under the identifications XR = X and X⇤

R = X⇤ we have �(X⇤) = �(X⇤
R).

Proof. Given a functional x⇤
R 2 X⇤

R, define the mapping x⇤ : X ! C by

x⇤(x) := hxR, x
⇤
Ri � ih(ix)R, x⇤

Ri.

Then x⇤ is bounded and C-linear, since

x⇤(ix) = h(ix)R, x⇤
Ri � ih(�x)R, x

⇤
Ri = h(ix)R, x⇤

Ri+ ihxR, x
⇤
Ri

= i(�ih(ix)R, x⇤
Ri+ hxR, x

⇤
Ri) = ix⇤(x).

Moreover, <x⇤(x) = hxR, x⇤
Ri. This proves existence. To prove uniqueness,

suppose that <hx, x⇤i = 0 for all x 2 X. Then also =hx, x⇤i = <h�ix, x⇤i = 0,
and therefore hx, x⇤i = 0 for all x 2 X. It follows that x⇤ = 0. The converse
assertion is obvious.

That the induced mappings X⇤
R ! X⇤ and X⇤ ! X⇤

R are inverse to each
other is immediate from their definitions.

It remains to prove the identity �(X⇤) = �(X⇤
R). The inclusion ‘✓’ follows

by noting that for all x⇤ 2 X⇤,

{<x⇤ 2 [a, b], =x⇤ 2 [c, d]} = {<x⇤ 2 [a, b], �<ix⇤ 2 [c, d]}

and the fact that the rectangles {z 2 C : <z 2 [a, b], =z 2 [c, d]} generate the
Borel �-algebra of C. The inclusion ‘◆’ follows by noting that for all x⇤

R 2 X⇤
R

we have
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{x⇤
R 2 [a, b]} = {<x⇤ 2 [a, b]},

where x⇤ 2 X⇤ is as in the first part of the proof. ⇤
Theorem E.1.16 (Uniqueness of the characteristic function on X).
Let µ

1

and µ
2

be probability measures on (X,�(X⇤)) whose characteristic
functions are equal:

cµ
1

(x⇤) = cµ
2

(x⇤), x⇤ 2 X⇤.

Then µ
1

= µ
2

.

Proof. By Lemma E.1.15 it suffices to prove the theorem for real Banach
spaces X.

Let µ be probability measure on (X,�(X⇤)). For fixed x⇤
1

, . . . , x⇤
d 2 X⇤ con-

sider the map T : X ! Rd, x 7! (hx, x⇤
1

i, . . . , hx, x⇤
di). For all t = (t

1

, . . . , td) 2
Rd,

bµ
⇣

d
X

j=1

tjx
⇤
j

⌘

=

ˆ
Rd

exp(iht, Txi) dµ(x) =
ˆ
Rd

exp(iht, si) d(Tµ)(s) = cTµ(t),

where Tµ denotes the image measure of µ under T .
Applying this to µ

1

and µ
2

it follows that dTµ
1

(t) = dTµ
2

(t) for all t 2 Rd.
By Theorem E.1.14, Tµ

1

= Tµ
2

. As a result, µ
1

and µ
2

agree on the collection
C of all sets in X of the form

�

x 2 X : (hx, x⇤
1

i, . . . , hx, x⇤
di) 2 B

 

with d > 1, x⇤
1

, . . . , x⇤
d 2 X⇤ and B 2 B(Rd). The family C is closed under

finite intersections and generates the �-algebra �(X⇤). Therefore, µ
1

and µ
2

agree on �(X⇤) by Dynkin’s Lemma A.1.3. ⇤
Corollary E.1.17. If ⇠

1

and ⇠
2

are X-valued random variables whose dis-
tributions have the same characteristic function, then their distributions are
equal.

Proof. By strong measurability, ⇠
1

and ⇠
2

take values in some closed sep-
arable subspace X

0

of X almost surely. By the Hahn-Banach theorem the
distributions µ⇠1 and µ⇠2 , viewed as Borel measures on X

0

, have the same
characteristic functions.

We may therefore assume that X is separable. Since �(X⇤) = B(X) in
that case, it follows from Theorem E.1.16 that µ⇠1 = µ⇠2 . ⇤

E.2 Gaussian variables

A unified treatment of real and complex standard Gaussian variables could
be based on the central limit theorem which will be presented in the Theorem
E.2.15: if ("n)n>1

is a Rademacher sequence with values in K, then the limit
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� := lim
N!1

1p
N

N
X

n=1

"n

exists in distribution and defines a standard Gaussian variable with values in
K. We take a more pedestrian approach here; it will be shown below that it
leads to the same definitions.

Definition E.2.1 (Real Gaussian variables). A real-valued random vari-
able � is called real Gaussian if, for some � > 0, its distribution has density

f�(t) =
1p
2⇡�2

exp(�t2/2�2)

with respect to the Lebesgue measure on R.

The degenerate case � = 0 corresponds to the random variable which takes
the value 0 almost surely; this interpretation is justified by the observation
that lim�#0 f�(t) dt = �

0

weakly, with �
0

the Dirac measure at 0.
A real-valued Gaussian variable satisfies

E� = 0, E|�|2 = �2.

The number �2 is called the variance of �. A real Gaussian variable with
variance �2 = 1 is called a standard real Gaussian variable.

The substitution x2/2�2 = y shows that if � is real Gaussian with � > 0,
then for all 0 < p < 1 we have

E|�|p =
1p
2⇡

ˆ
R
|x|pe�x2/2 dx =

2p/2�p

p
⇡

� ((p+ 1)/2), (E.2)

where � (x) =
´1
0

tx�1e�t dt is the Euler gamma function.

Proposition E.2.2. A real-valued random variable � is real Gaussian, with
variance �2, if and only if its characteristic function is given by

E exp(i⇠�) = exp(� 1

2

�2⇠2), ⇠ 2 R.

Proof. The ‘only if’ statement is clear for � = 0, and for � > 0 it follows by
completing the squares and Cauchy’s theorem to shift the path of integration:

E exp(i⇠�) =
1p
2⇡

ˆ 1

�1
exp(it⇠ � t2/2�2) dt

=
1p
2⇡

ˆ 1

�1
exp(� 1

2

[(t/� � i�⇠)2 + �2⇠2]) dt

= exp(� 1

2

�2⇠2) · 1p
2⇡

ˆ
R�i�⇠

exp(� 1

2

z2) dz

= exp(� 1

2

�2⇠2) · 1p
2⇡

ˆ
R
exp(� 1

2

z2) dz

= exp(� 1

2

�2⇠2).

(E.3)

The ‘if’ part then follows from Theorem E.1.14. ⇤
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Definition E.2.3 (Complex Gaussian variables). A complex-valued ran-
dom variable � is called complex Gaussian if, for some � > 0, its distribution
has density

f�(z) =
1

⇡�2

exp(�|z|2/�2)

with respect the Lebesgue measure on C. If � = 1, then � is called a standard
complex Gaussian variable.

The same conventions hold with regard to the degenerate case � = 0. As in
the real case, a complex Gaussian variable satisfies

E� = 0, E|�|2 = �2.

The number �2 is again called the variance of �. More generally, for 0 < p < 1
and � > 0, using polar coordinates and substituting r2/�2 = y we compute:

E|�|p =
1

⇡�2

ˆ
C
|z|p exp(�|z|2/�2) dz

=
2

�2

ˆ 1

0

rp+1 exp(�r2/�2) dr

= �p

ˆ 1

0

yp/2 exp(�y) dy = �p� (p/2 + 1).

(E.4)

Proposition E.2.4. If �
1

and �
2

are independent standard real Gaussians
with variance �2, then

� :=
1p
2
(�

1

+ i�
2

)

is a standard complex Gaussian with variance �2. Conversely, if � is a complex
Gaussian with variance �2, then its real and imaginary parts are independent
real-valued Gaussians with variance 1

2

�2.

Proof. We compute

P(<� 2 [a, b], =� 2 [c, d])

= P(�
1

2 [a
p
2, b

p
2]) · P(�

2

2 [c
p
2, d

p
2])

=
1p
2⇡�2

ˆ b
p
2

a
p
2

exp(�s2/2�2) ds · 1p
2⇡�2

ˆ d
p
2

c
p
2

exp(�t2/2�2) dt

=
1

2⇡�2

ˆ b
p
2

a
p
2

ˆ d
p
2

c
p
2

exp(�(s2 + t2)/2�2) dt ds

=
1

⇡�2

ˆ b

a

ˆ d

c
exp(�(s2 + t2)/�2) dt ds.

This shows that the distribution of � agrees with that of a complex Gaussian
with variance �2 on all rectangles {<z 2 [a, b], =z 2 [c, d]}, and the claim
follows. The converse statement. follows by reversing the above computation.
⇤
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Corollary E.2.5. A complex-valued random variable � is complex Gaussian,
with variance �2, if and only if its characteristic function is given by

E exp(i<(⇠�)) = exp(� 1

4

�2|⇠|2), ⇠ 2 C.

Proof. If � is complex Gaussian, it follows from the previous results hat

E exp(i<(⇠�)) ⇠=a+ib
= E exp(i(a<� � b=�))

= E exp(ia<�)E exp(�ib=�)

= exp(�a2�2/4) exp(�b2�2/4)

= exp(� 1

4

|⇠|2�2).

(E.5)

The converse follows from Theorem E.1.16. ⇤

Definition E.2.6 (Gaussian random variables). A K-valued random vari-
able is Gaussian if it is K-Gaussian, i.e., real Gaussian in case K = R and
complex Gaussian in case K = C.

This definition is in line with various other notions that depend on the choice
of scalar field, such as symmetric random variables (Definition 6.1.4) and
Rademacher variables (Definition 6.1.6. The next proposition connects these
notions:

Lemma E.2.7. If � is Gaussian, then � is symmetric, and �/|�| is a Radem-
acher variable if � > 0.

Proof. In the real case this is obvious. In the complex case it follows from

P(arg(�/|�|) 2 [a, b]} =
1

⇡�2

ˆ 1

0

ˆ b

a
exp(�|r|2/�2) r d✓ dr

=
b� a

⇡�2

ˆ 1

0

exp(�|r|2/�2) r dr =
b� a

2⇡

that �/|�| is uniformly distributed on the unit circle. ⇤

E.2.a Multivariate Gaussian variables

Definition E.2.8. An Kn-valued random variable � = (�
1

, . . . , �n) is called
Gaussian if hc, �i :=

Pn
k=1

ck�k is Gaussian for all c = (c
1

, . . . , cn) 2 Kn.

In particular this definition implies that the coordinate variables �k are Gaus-
sian (take c = ek, the k-th standard unit vector in Kn). The converse is false:
there exist examples of scalar Gaussian random variables �

1

, . . . , �n for which
� = (�

1

, . . . , �n) is not Gaussian. A simple example is given by � = (�
1

, "�
1

)
where " is a Rademacher random variable which is independent of scalar
Gaussian random variable �

1

.
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Definition E.2.9. The covariance matrix Q = (qjk)nj,k=1

of a Gaussian ran-
dom variable � is defined by

qjk = E�j�k, j, k = 1, . . . , n.

The matrix Q is positive (i.e.,(Q⇠|⇠) > 0 for all ⇠ 2 Kn) and symmetric (i.e.,
qjk = qkj for all j, k = 1, . . . , n). Positivity follows from

(Q⇠|⇠) =
n
X

j,k=1

qjk⇠j⇠k = E
�

�

�

n
X

k=1

⇠k�k
�

�

�

2

and symmetry is evident. We call � a standard Gaussian random variable if
it has covariance matrix Q = I (the identity matrix).

The characteristic function of a Gaussian random variable � with covari-
ance matrix Q is given by

E
�

exp(ih�, ⇠i
�

= exp
�

� 1

2

(Q⇠|⇠)
�

, ⇠ 2 Rn

if the scalar field is real, and by

E
�

exp(i<h�, ⇠i
�

= exp
�

� 1

4

(Q⇠|⇠)
�

, ⇠ 2 Cn

if the scalar field is complex. This follows from (E.3) and (E.5), observing that
the Gaussian random variable h�, ⇠i has variance

E|h�, ⇠i|2 = E
n
X

j,k=1

⇠j⇠k�j�k =

n
X

j,k=1

qjk⇠j⇠k = (Q⇠|⇠).

The converse also holds:

Theorem E.2.10. An Rn-valued random variable � is Gaussian if and only
if its characteristic function has the form

E
�

exp(ih�, ⇠i
�

= exp
�

� 1

2

(Q⇠|⇠)
�

, ⇠ 2 Rn (E.6)

for some positive symmetric matrix Q with real coefficients. Similarly, a Cn-
valued random variable � is Gaussian if and only if its characteristic function
has the form

E
�

exp(i<h�, ⇠i
�

= exp
�

� 1

4

(Q⇠|⇠)
�

, ⇠ 2 Cn

for some positive symmetric matrix Q with complex coefficients. In either case,
� is standard Gaussian if and only if Q = I.

Proof. It remains to prove the ‘if’ part. Let us prove this for real scalars; the
proof for complex scalars is entirely similar.

Suppose that the characteristic function of � has the indicated form. We
have to check that for all ⇠ 2 Rn the scalar random variable h�, ⇠i is Gaussian.
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Applying (E.6) to the vectors t⇠ we see that the characteristic function of h�, ⇠i
equals

E
�

exp(�ith�, ⇠i)
�

= exp
�

� 1

2

t2(Q⇠|⇠)
�

, t 2 R.

Proposition E.2.2 implies that h�, ⇠i is Gaussian with variance (Q⇠|⇠). ⇤

Corollary E.2.11. Let �(1), . . . , �(N) be independent Gaussian random vari-
ables, with covariance matrices Q(1), . . . , Q(n). Then � :=

PN
k=1

�(k) is Gaus-
sian, with covariance matrix Q =

PN
k=1

Q(k).

Proof. We consider the real case, the complex case being entirely similar. For
all ⇠ 2 Rn we have, by independence and (E.6),

E
�

exp(�ih�, ⇠i)
�

= E
⇣

N
Y

k=1

exp(�ih�(k), ⇠i)
⌘

=

N
Y

k=1

E
�

exp(�ih�(k), ⇠i)
�

=

N
Y

k=1

exp
⇣

� 1

2

(Q(k)⇠|⇠)
⌘

= exp
�

� 1

2

(Q⇠|⇠)
�

,

where Q =
PN

k=1

Q(k). Since every Q(k) is positive and symmetric, Q is posi-
tive and symmetric as well, and our claim follows from Theorem E.2.10. ⇤

As a special case note that if �
1

, . . . , �n are independent scalar Gaussian ran-
dom variables, then � := (�

1

, . . . , �n) is Gaussian. Indeed, we have

� =

n
X

k=1

�k ek,

where ek denotes the k-th standard unit vector in Kn. We then apply the
above to the random variables �(k) := �k ek.

Geometric interpretation of the covariance matrix

We continue with a geometric interpretation of the covariance matrix Q of a
Gaussian random variable �. Our starting point is the standard result from
Linear Algebra that every positive symmetric matrix can be orthogonally di-
agonalised. Thus there exists an orthogonal basis {e

1

, . . . , en} of eigenvectors
of Q, which we normalise to have unit length. Using this basis we can decom-
pose � as follows:

� =

n
X

j=1

h�, eji ej . (E.7)

Each random variable h�, eji is Gaussian with variance



E.2 Gaussian variables 501

E|h�, eji|2 = (Qej |ej) = �j(ej |ej) = �j ,

where �j is the eigenvalue for ej . We shall prove in a moment that the random
variables h�, eji are independent. Assuming this for the moment, we see that
the components h�, eji ej , which are Gaussian and take their values in the
one-dimensional subspace spanned by ej , are independent as well. Thus, every
Gaussian random variable with values in Kn can be represented as a sum of
independent one-dimensional Gaussian random variables.

Note that in the decomposition (E.7) only the terms corresponding to
strictly positive eigenvalues have an effective contribution. Indeed, if �j = 0
for some 1 6 i 6 n, then E|h�, eji|2 = (Qej |ej) = 0, which implies that
h�, eji = 0 almost surely. Let J = {j 2 {1, . . . , n} : �j > 0} and for j 2 J let
xj :=

p

�j ej . Then,

� =
X

j2J

1

�j
h�, xjixj =

X

j2J

�jxj ,

where the variables �j := 1

�
j

h�, xji are independent and standard Gaussian.
To prove that the h�, eji are independent we first show that they are

uncorrelated, i.e., that

Eh�, ejih�, eki = 0, 1 6 j 6= k 6 n.

We use a trick which is known as polarisation. On the one hand we have

(Q(ej + ek)|ej + ek) = E|h�, ej + eki|2

= E|h�, eji|2 + 2<Eh�, ejih�, eki+ E|h�, eki|2

= (Qej |ej) + 2<Eh�, ejih�, eki+ (Qek|ek)

and on the other hand,

(ej + ek|ej + ek) = (Qej |ej) + (Qej |ek) + (Qek|ej) + (Qek|ek)
= (Qej |ej) + 2<(Qej |ek) + (Qek|ek),

where in the last step we used the symmetry of Q. Combining these identities
and recalling that ej and ek are orthonormal eigenvectors, we obtain, for
j 6= k,

<Eh�, ejih�, eki = <(Qej |ek) = <�j(ej |ek) = 0.

Repeating this argument with ej + ek replaced by iej + ek, we find that also
=Eh�, ejih�, eki = 0. This proves the claim.

Proposition E.2.12. Let � = (�
1

, . . . , �n) be a Gaussian random variable.
The components �

1

, . . . , �n are independent if and only if they are uncorre-
lated.
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Proof. The ‘only if’ part being clear, we prove the ‘if’ part. We consider the
real case, the complex case being entirely similar.

If the Gaussian variables �
1

, . . . , �n are uncorrelated, then the covariance
matrix of � = (�

1

, . . . , �n) is diagonal: Q = diag(s
1

, . . . , sn) with sk = E|�k|2.
Then the characteristic function of � is given by

E
�

exp(�ih�, ⇠i)
�

= exp(� 1

2

(Q⇠|⇠)) = exp
⇣

�1

2

n
X

k=1

sk|⇠k|2
⌘

=

n
Y

k=1

exp(� 1

2

sk|⇠k|2) =
n
Y

k=1

E
�

exp(�i⇠k�k)
�

.

The right-hand side is the characteristic function of �̃ := (�̃
1

, . . . , �̃n), where
the �̃k are independent random variables, with each �̃k distributed like the �k
of the same index. By the uniqueness of the characteristic function (Corollary
E.1.17), this shows that � and �̃ have the same distribution, and therefore the
components of � are independent, since those of �̃ are. ⇤

E.2.b The central limit theorem

The central limit theorem is the statement that suitably normalised sums of
independent random variables converge in distribution to a Gaussian random
variable. In order to prove this, it is convenient to begin with some generalities
on convergence of probability measures.

Definition E.2.13. A sequence of Borel probability measures (µn)n>1

on E
converges weakly to the Borel probability measure µ on E if for all f 2 C

b

(E)
we have

lim
n!1

ˆ
E
f dµn =

ˆ
E
f dµ.

Thus, limn!1 ⇠n = ⇠ in distribution if and only if limn!1 µ⇠
n

= µ⇠ weakly.
For Borel probability measures on Rd or Cd we have the following conve-

nient criterion for weak convergence in terms of their characteristic functions
(see Section E.1.c), due to Lévy.

Theorem E.2.14 (Lévy). A sequence (µn)n>1

of Borel probability measures
on Kd converges weakly to a Borel probability measure µ on Kd if and only if
their characteristic functions satisfy limn!1 bµn(⇠) = bµ(⇠) for all ⇠ 2 Kd.

Proof. We only prove the ‘if’ part, the ‘only if’ part being clear.
Real case – Step 1 – By the continuity of bµ at 0 we can find � > 0 so small

that
|bµ(⇠)� 1| < ", ⇠ 2 D := [��, �]d.

Write |D| := (2�)d for the Lebesgue measure of D. Define K := [�2��1, 2��1]d.
If x = (x

1

, . . . , xd) 2 {K, then at least one of its coordinates satisfies
|xk| > 2��1. Then,
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n
Y

j=1

�

�

�

sin �xj

�xj

�

�

�

6
�

�

�

sin �xk

�xk

�

�

�

<
1

2
.

Next, note that for all x 2 Rd we have

1

|D|

ˆ
D
exp(ihx, ⇠i) d⇠ =

d
Y

j=1

1

2�

ˆ �

��
eixj

⇠
j d⇠j =

d
Y

j=1

sin �xj

�xj
.

It follows that the integral on the left-hand side is a real number in the interval
[�1, 1], and by the previous estimate this number belongs to the interval
[� 1

2

, 1

2

] when x 2 {K. Thus for all n > 1 we have

1

|D|

ˆ
D

�

1� cµn(⇠)
�

d⇠ =
1

|D|

ˆ
D

ˆ
Rd

�

1� exp(ihx, ⇠i)
�

dµn(x) d⇠

=

ˆ
Rd

⇣

1� 1

|D|

ˆ
D
exp(ihx, ⇠i) d⇠

⌘

dµn(x)

>
ˆ
{K

⇣

1� 1

|D|

ˆ
D
exp(ihx, ⇠i) d⇠

⌘

dµn(x)

> 1

2
µn({K).

On the other hand, by the dominated convergence theorem,

lim
n!1

1

|D|

ˆ
D
|1� cµn(⇠)| d⇠ =

1

|D|

ˆ
D
|1� bµ(⇠)| d⇠ < ".

Combining these estimates, we obtain that lim supn!1 µn({K) < 2".
Replacing K by a larger cube, we may also assume that µ

�

{(�r, r)d
�

< 2".
Real case – Step 2 – Fix a function f 2 C

b

(Rd); we must prove that
limn!1

´
Rd

f dµn =
´
Rd

f dµ. We may assume that kfk1 6 1.
By the Stone-Weierstrass theorem there exists a trigonometric polyno-

mial p : Rd ! C of period `, where ` is the side-length of K, such that
supx2K |f(x) � p(x)| < ". Then, noting that kpk1 < 1 + ", for all large
enough n we have

�

�

�

ˆ
Rd

f dµn �
ˆ
Rd

f dµ
�

�

�

< 4"+
�

�

�

ˆ
K
f dµn �

ˆ
[�r,r]d

f dµ
�

�

�

< 6"+
�

�

�

ˆ
K
p dµn �

ˆ
[�r,r]d

p dµ
�

�

�

< 6"+ 4"(1 + ") +
�

�

�

ˆ
Rd

p dµn �
ˆ
Rd

p dµ
�

�

�

.

The assumption on the convergence of the characteristic functions therefore
implies that
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lim sup
n!1

�

�

�

ˆ
Rd

f dµn �
ˆ
Rd

f dµ
�

�

�

< 6"+ 4"(1 + ").

Since " > 0 was arbitrary, this completes the proof in the case Kd = Rd.

Complex case – To prove the result in the case Kd = Cd let T : Cd ! R2d

be defined by T (x+ iy) = (x,�y) where x, y 2 Rd. Let ⌫n = Tµn and ⌫ = Tµ
denote the image measures. Then for ⇠ = ⌘+ i⇣ with ⌘, ⇣ 2 Rd one can check
that b⌫n(⌘, ⇣) = bµn(⇠) and b⌫(⌘, ⇣) = bµ(⇠). Therefore, by the result for R2d we
find that ⌫n ! ⌫ weakly, and from this we see that µn ! µ weakly. ⇤

An Rd-valued random variable ⇠ is called symmetric if ⇠ and �⇠ are identically
distributed.

Theorem E.2.15 (Central limit theorem, real case). Let (⇠n)n>1

be
a sequence of independent, identically distributed, and square integrable Rd-
valued random variables and let qjk = E(⇠n,j⇠n,k) and E⇠n = 0. Then

lim
N!1

1p
N

N
X

n=1

⇠n = �

in distribution, where � is an Rd-valued Gaussian random variable with co-
variance matrix Q = (qjk).

Proof. We shall verify the conditions of Lévy’s theorem for the random vari-
ables �N = 1p

N

PN
n=1

⇠n. Let µN denote the distribution of �N . We proceed
in two steps.

Step 1 – First we consider the case d = 1. Moreover, by scaling we may
assume E(⇠2n) = q

11

= 1. Let µ denote that common distribution of each ⇠n.
Then by the dominated convergence theorem, bµ : R ! C is twice continuously
differentiable and bµ(0) = 1, bµ0(0) = iE(⇠) = 0 and bµ00(0) = �E(⇠2) = �1.
Hence, by Taylor’s theorem bµ(t) = 1� t2

2

+ o(t2). Therefore, by independence
and elementary calculus,

lim
N!1

cµN (s) = lim
N!1

N
Y

n=1

E exp(
is⇠np
N

) = lim
N!1

N
Y

n=1

bµ(
sp
N

) =

= lim
N!1

h

1� s2

2N
+ o

� s

N

�

iN
= exp(� 1

2

s2)

and the result follows since exp(� 1

2

s2) is the characteristic function of the
standard Gaussian measure.

Step 2 – The general case is reduced to the case d = 1 by observing that
by Theorem E.2.14 a sequence of Rd-valued random variables ⌘N converges in
distribution to ⌘ if and only if for all s 2 Rd \ {0} we have limN!1h⌘N , si =
h⌘, si in distribution. Now applying this with �N , we see that it suffices to
show limN!1h�N , si ! h�, si in distribution. Since
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h�N , si = 1p
N

N
X

n=1

h⇠n, si,

the result follows since the real-valued random variables h⇠n, si are centred
and E|h⇠n, si|2 = (Qs|s) = E|h�, si|2. ⇤

If �
1

and �
2

are two independent standard real-valued Gaussian random vari-
ables and a, b 2 R, then a�

1

+ bi�
2

is a complex Gaussian random variable
if and only if a = b. For this reason the complex version of the central limit
theorem has an additional condition on the ⇠n.

Theorem E.2.16 (Central limit theorem, complex case). Let (⇠n)n>1

be a sequence of independent, identically distributed, and square integrable
Cd-valued random variables such that and let qjk = E(⇠n,j⇠n,k) and E⇠n = 0.
Assume that for all n > 1 and all j, k 6 d,

(1) <(⇠n,j) and =(⇠n,j) are identically distributed;
(2) E(<(⇠nj)=(⇠nj)) = 0.

Then

lim
N!1

1p
N

N
X

n=1

⇠n = �

in distribution, where � is an Rd-valued Gaussian random variable with co-
variance matrix Q = (qjk).

The additional condition is satisfied for complex Rademacher random vari-
ables.

Proof. The proof is the same as in Step 2 of the Rd case. This time one has
E<(h⇠n, si)2 = (Qs|s) = E<(h�, si)2. ⇤

E.2.c The maximum of Gaussian variables

In this section we will prove some useful maximal inequalities for a sequence
of independent real Gaussian random variables which will be needed mostly
to construct various counterexamples. Similar maximal estimates for complex
Gaussians can be easily deduced from them.

We begin with some elementary one-sided inequality tail estimates. Here
the case of a standard complex Gaussian is much simpler. Using polar coor-
dinates we obtain

P(|�| > x) = 2

ˆ 1

x
re�r2 dr = e�x2

, x > 0. (E.8)

Lemma E.2.17. Let � be a standard real Gaussian variable.
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(1) For all x, y > 0, we have

P(� > x+ y) 6 e�y2/2P(� > x).

In particular, P(� > x) 6 1

2

e�x2/2.
(2) For all x 2 R,

P(� > x) > 1p
2⇡

2e�x2/2

x+ (x2 + 4)1/2
.

Proof. (1): Using a substitution and (t+ y)2 > t2 + y2, we obtain

P(� > x+ y) =
1p
2⇡

ˆ 1

x
e�(t+y)2/2 dt

6 e�y2/2

p
2⇡

ˆ 1

x
e�t2/2 dt = e�y2/2P(� > x).

Since P(� > 0) = 1/2, the other part follows as well.
(2): Let h : R ! R be given by

h(x) =
p
2⇡P(� > x)� 2e�x2/2

x+ (x2 + 4)1/2
.

We wish to show that h is non-negative on R. limx!1 h(x) = 0 it suffices to
show that h0(x) 6 0. It is elementary to check that

h0(x) =
x(x2 + 4)1/2 � x2 � 2

(x+ (x2 + 4)1/2)(x2 + 4)1/2
e�x2/2,

and the result follows from x(x2 + 4)1/2 6 x2 + 2. ⇤

As an immediate consequence we deduce the following inequalities.

Lemma E.2.18. Let � be a standard real Gaussian variable.

(1) For all x, y > 0, we have

P(|�| > x+ y) 6 e�y2/2P(|�| > x).

In particular, P(|�| > x) 6 e�x2/2.
(2) For all x > 0,

P(|�| > x) >
r

2

⇡

e�x2/2

1 + x
.

(3) For all x >
p
3,

P(|�| > x) > e�x2

.
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Proof. By symmetry we have P(|�| > x) = 2P(� > x) for all x > 0. Therefore,
(1) is immediate from Lemma E.2.17(1). Similarly, (2) follows from Lemma
E.2.17(2) by noting that x+ (x2 + 4)1/2 6 2(x+ 1).

Concerning (3), by (2) it suffices to show that �(x) := ex
2/2/(1 + x) >

p

⇡/2 for x >
p
3. We check that �0(x) = ex

2/2(x2 + x � 1)/(x + 1)2 > 0

for x > 1

2

(
p
5 � 1), so in particular for x >

p
3 > 1

2

(
p
5 � 1). Thus, we have

�(x) > �(
p
3) = e3/2/(1 +

p
3) >

p

⇡/2 for all x >
p
3, as required. ⇤

Lemma E.2.19. Let ⇠
1

, . . . , ⇠N : ⌦ ! R be independent real-valued random
variables. Then for all t > 0 such that P(⇠?N 6 t) > 0 one has

N
X

n=1

P(⇠n > t) 6 P(⇠?N > t)

P(⇠?N 6 t)
,

where ⇠?N = max
16n6N

|⇠n|.

Proof. Let f(t) =
PN

n=1

P(⇠n > t). Since 1� x 6 e�x for x > 0, we find that

P(⇠?N 6 t) =
N
Y

n=1

(1� P(|⇠n| > t)) 6 e�f(t).

Moreover, as 1� e�x > xe�x for x 2 R,

P(⇠?N > t) > 1� e�f(t) > f(t)e�f(t).

The required estimate follows upon dividing both estimates. ⇤

Proposition E.2.20. Let (�n)n>1

be a sequence of independent standard real
Gaussian variables. For all N > 1 and real numbers x

1

, . . . , xN ,

E max
16n6N

|�nxn| >
⇣1

5

logN

N

N
X

n=1

x2

n

⌘

1/2
.

In particular,

E max
16n6N

|�n| >
r

1

5
logN. (E.9)

The constants in the above estimates are not optimal: in the proof below we
actually prove a slightly sharper estimate.

Proof. It suffices to consider the case N > 2. By homogeneity we may assume
that Emax

16n6N |�nxn| = 1 and xn > 0 for all n. In view of E|�| =
p

2/⇡,
this implies that 0 < xn 6

p

⇡/2 for all n. Since P(max
16n6N |�nxn| > t) 6

1/t, it follows from Lemma E.2.19 that, for all t > 1,
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N
X

n=1

P(|�nxn| > t) 6 P(max
16j6N |�nxn| > t)

P(max
16j6N |�nxn| 6 t)

6 1

t� 1
.

By a direct computation of the second derivative, one verifies the convexity
of the function ⇥(y) := P(|�| > 1/

p
y) for y 2 (0, 1

3

]. Thus for t >
p

3⇡/2 we
find, with yn := xn/t (so that y2n 6 1

3

), we have

⇥(s) := ⇥
⇣ 1

N

N
X

n=1

y2n

⌘

6 1

N

N
X

n=1

⇥(y2n) 6
1

N(t� 1)
.

By Lemma E.2.18(3), with z = 1/
p
s >

p
3, we have

⇥(s) = P(|�| > z) > e�z2

= e�1/s.

From the previous two estimates, we get

1

N

N
X

n=1

x2

n

t2
= s 6 1

log
�

N(t� 1))
.

Hence, with t :=
p

3⇡/2 so that t� 1 > 1, we have

2

3⇡

logN

N

N
X

n=1

x2

n 6 1 =
⇣

E sup
16n6N

|�nxn|
⌘

2

,

and the result follows, since 2/3⇡ > 1/5. ⇤

By Hölder’s inequality, (E.9) implies

E max
16i6n

|�i|p > 1

5p/2
(log(n))p/2. (E.10)

The next result shows that for p = 2 this estimate is optimal up to numerical
constants. (The analogous estimate for other values of p can be deduced from
the Kahane–Khintchine inequality 6.2.6 applied to the `1N -valued Gaussian
sum

PN
n=1

�nen, where en are the standard unit vectors.)

Proposition E.2.21. Let (�n)n>1

be a sequence of independent standard real
Gaussian variables. For all N > 1,

E
�

max
16n6N

|�n|2
�

6 2 log(2N). (E.11)

Proof. Let ⇠ = maxn6N |�n| and let h : [0,1) ! [1,1) be given by h(t) =
cosh(t1/2). It is easily checked that h is convex and strictly increasing, and
from h(t) > 1

2

exp(t1/2) we see that the inverse function satisfies h�1(s) 6
log(2s)2. Hence by Jensen’s inequality, for all t > 0 we have
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E⇠2 = t�2Eh�1(cosh(t⇠)) 6 t�2h�1(E cosh(t⇠)) 6 t�2

⇥

log(2E cosh(t⇠))
⇤

2

.

Moreover,

E cosh(t⇠) = Emax
n6N

cosh(t�n) 6
N
X

n=1

E cosh(t�n) 6 NE exp(t�
1

) = Net
2/2.

Combining both estimates gives that E⇠2 6 (t�1 log(2N) + t/2)2, and the
lemma follows by taking t =

p

2 log(2N). ⇤

E.3 Notes

A general reference for the material presented in this appendix is Kallenberg
[2002].

Section E.1

Thorough treatments of probability theory in metric spaces are presented in
Billingsley [1999] and Parthasarathy [1967].

Section E.2

A survey on tail estimates for Gaussian distributions can be found in Duem-
bgen [2010].
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Banach lattices

Throughout this appendix we work over the real scalar field.

F.1 Definitions and basic properties

Definition F.1.1. A partially ordered real Banach space (X,6) is called a
Banach lattice provided the following hold for all x, y, z 2 X and scalars
a 2 R:

(i) if x 6 y, then x+ z 6 y + z;
(ii) if x 6 y and c > 0, then cx 6 cy;
(iii) x and y have a least upper bound with respect to 6;
(iv) if 0 6 x 6 y, then kxk 6 kyk.

The least upper bound of x and y is denoted by x _ y. By definition, it has
the property that whenever x 6 z and y 6 z, then x _ y 6 z; it is clear that
there can be at most one such element. We can use (iii) to see that x and y
also have a greatest lower bound, which is given by x ^ y = �((�x) _ (�y)).
It is this is the unique element in X such that whenever x > z an y > z, then
x ^ y > z.

An element x 2 X is called positive if x > 0. Every x 2 X admits a
decomposition x = x+ � x� with x+ := x _ 0 and x� := (�x) _ 0. The
modulus of an element x 2 X is the positive element

|x| := x _ (�x) = x+ + x�.

It satisfies
�

�|x|
�

� = kxk.

The dual X⇤ of any Banach lattice X is a Banach lattice with respect to the
partial order obtained by declaring x⇤ 6 y⇤ if hx, x⇤i 6 hx, y⇤i for all x > 0.
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Example F.1.2. The classical spaces C(K), with K a compact Hausdorff space,
and Lp(S), with (S,A , µ) a measure spaces and 1 6 p 6 1, are Banach
lattices with respect to pointwise order, and so are the sequence spaces c

0

and
`p, 1 6 p 6 1. In all these cases x _ y is given by taking pointwise maxima.

Let X and Y be Banach lattices.

Definition F.1.3. A bounded operator T 2 L (X,Y ) is said to be:

• positive, if x > 0 implies Tx > 0;
• a lattice homomorphism if T (x

1

_ x
2

) = Tx
1

_ Tx
2

for all x
1

, x
2

2 X.

We write T > 0 when T is positive. For such an operator we have |Tx| 6 T |x|
for all x 2 X. Every lattice homomorphism is positive and satisfies |Tx| = T |x|
for all x 2 X, and x

1

6 x
2

implies Tx
1

6 Tx
2

.
The Banach lattices X and Y are said to be lattice isomorphic (lattice

isometric) if there is a lattice homomorphism T : X ! Y which is an isomor-
phism (isometric isomorphism). The following elementary fact will be used
below: If T : X ! Y is a lattice isomorphism, then T�1 is a lattice isomor-
phism as well.

F.2 The Krivine calculus

At various occasion throughout this volume it will be necessary to handle
expressions such as

⇣

N
X

n=1

|xn|p
⌘

1/p

for x
1

. . . , xN 2 X. In classical Banach lattices such as C(K) and Lp(µ), such
expressions are well defined in a pointwise sense. In a general Banach lattice,
we use the fact that principal ideals are lattice isomorphic to C(K)-spaces; in
C(K), the expressions can be defined in the pointwise sense. We shall explain
this procedure, which is known as the Krivine calculus in more detail below.
Readers who are unfamiliar with Banach lattices may skip this discussion and
consider only the special case of Banach function spaces.

The Krivine calculus is based on the following version of Kakutani’s rep-
resentation theorem. For its statement we need the following terminology. An
ideal in a Banach lattice X is a linear subspace I of X with the property that
if x 2 I and y 2 X are such that |y| 6 |x|, then y 2 I. An ideal is called a prin-
cipal ideal if there exists an element x > 0 such that I = Ix, the smallest ideal
in X containing x; explicitly, Ix = {y 2 X : there exists � > 0 such that |y| 6
�|x|}. An element x > 0 is called an order unit of X if Ix = X.

Theorem F.2.1 (Kakutani). Let X be a Banach lattice. For x 2 X \ {0}
put
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Ix := {y 2 X : there exists � 2 (0,1) such that |y| 6 �|x|}

and define, for y 2 Ix,

kykI
x

:= inf{� > 0 : |y| 6 �|x|}.

Then Ix is a Banach lattice. Moreover, there exists a compact Hausdorff space
K such that Ix is lattice isometric to C(K).

For the reader’s convenience, we give a sketch of the proof.

Proof of Theorem F.2.1, sketch. Writing I := Ix for brevity, we first show
that kyk 6 kykI for all y 2 I. If � > 0 is such that |y| 6 �|x|, then kyk 6 �kxk.
Therefore, if we take the infimum over all such � we obtain kyk 6 kykIkxk.
It is clear that kxkI = 1.

We first show that I is complete. Indeed, let (yn)n>1

be a Cauchy se-
quence in I. The completeness of X together the above estimate implies that
the sequence (yn)n>1

converges to some y 2 X. We claim that y 2 I and
limn!1 yn = y in I. Select a subsequence (ni)i>1

such that kyn
i+1�yn

i

kI < 1

2

i

for all i > 1. It follows that

|yn
i+1 � yn

i

| 6 1

2i
|x|.

Therefore, for all l > k,

|yn
l+1 � yn

k

| 6
l

X

i=k

|yn
i+1 � yn

i

| 6
l

X

i=k

1

2i
|x|.

Using that the modulus | · | is continuous with respect to the norm of X, it
follows that upon letting l ! 1 we find, for all k > 1,

|y � yn
k

| 6 1

2k�1

|x|.

This implies that
ky � yn

k

kI 6 1

2k�1

.

Since yn
k

2 I, this shows that y 2 I and limk!1 yn
k

= y in I. By a standard
argument this implies y = limn!1 yn in I. This proves the completeness of I
with respect to the norm k · kI .

For all y, z 2 I, one shows next that ky _ zkI = kykI _ kzkI and I has an
order unit |x|/kxk. Banach lattices with this structure are known to be lattice
isomorphic to a C(K)-space. ⇤

Corollary F.2.2. Let X be a Banach lattice, let 1 6 p < 1 and 1

p + 1

p0 = 1.
The following assertions hold:
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(1) for each finite sequence x
1

, . . . , xN 2 X, the set

A :=
n

N
X

n=1

anxn :
⇣

N
X

n=1

|an|p
0
⌘

1/p0

6 1
o

has a least upper bound, which we denote (
PN

n=1

|xn|p)1/p := supA.

(2) if, for some x 2 X, we have x
1

, . . . , xN 2 Ix, then (
PN

n=1

|xn|p)1/p 2 Ix.
(3) if S : Ix ' C(K) is the lattice isometry provided by Kakutani’s Theorem

F.2.1, then

S
⇣

N
X

n=1

|xn|p
⌘

1/p
=
⇣

N
X

n=1

|Sxn|p
⌘

1/p
. (F.1)

Proof. Let x
1

, . . . , xN 2 Ix for some x 2 X. (Such elements always exist, for
instance x =

PN
n=1

|xn| will do). It is easy to check that the set A defined in
(1) is contained in Ix. Set fn := Sxn 2 C(K), n = 1, . . . , N . The set

B :=
n

N
X

n=1

anfn :
⇣

N
X

n=1

|an|p
0
⌘

1/p0

6 1
o

is bounded above in C(K) and in fact we have supB = (
PN

n=1

|fn|p)1/p, where
the right-hand side is defined in the pointwise sense. Let f := supB denote
this least upper bound. We claim that y = S�1f 2 X is the least upper bound
for A in X. This will show in particular that y does not depend on the choice
of K and S.

Since S is a lattice isomorphism, for any
PN

n=1

anxn 2 A we have

N
X

n=1

anxn = S�1

⇣

N
X

n=1

anfn
⌘

6 S�1f = y,

and therefore y is an upper bound for A. On the other hand, if z 2 X is any
upper bound for A, then g = Sz is an upper bound for B since S is a lattice
isomorphism. Since f is the least upper bound for B, this implies f 6 g.
Applying S�1 on both sides gives y 6 z. ⇤

F.3 Lorentz spaces

We begin by introducing a class of Banach lattices whose elements are func-
tions on a given measure space and whose partial order is derived from the
pointwise order.

Definition F.3.1. Let (S,A , µ) be a measure space. A Banach function norm
(over (S,A , µ)) is a mapping n : L0(S) ! [0,1] that satisfies, for all f, g 2
L0(S) and scalars a 2 R,
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(i) n(f + g) 6 n(f) + n(g);
(ii) n(af) = an(f) for all scalars a > 0;
(iii) 0 6 f 6 g µ-almost everywhere implies n(f) 6 n(g);
(iv) n(f) = 0 if and only if f = 0 µ-almost everywhere.

Condition (iii) implies n(f) = n(|f |) and therefore, for all a 2 R, n(af) =
n(|af |) = |a|n(|f |) = |a|n(f). It follows that kfk := n(f) defines a norm on
the real vector space

X = {f 2 L0(S) : n(f) < 1},

which has the properties (i)–(iv) of Definition F.1.1. If X is complete (i.e., if X
is a Banach space), then X is called a Banach function space (over (S,A , µ)).

The familiar spaces Lp(µ) and `p, 1 6 p 6 1, and c
0

are Banach function
spaces. The space C[0, 1]) is a Banach lattice, but not a Banach function
space. Indeed, if n : L0(0, 1) ! [0,1] has the four properties listed above,
then n(1) < 1 implies n(1

[0, 12 ]
) < 1, but 1

[0, 12 ]
does not belong to C[0, 1].

Let (S,A , µ) be a measure space and p, q 2 (0,1].

Definition F.3.2. The Lorentz space Lp,q(S) is defined as the space of all
measurable functions f : S ! K for which

kfkLp,q

(S)

:=
�

�t 7! t1/pf⇤(t)
�

�

Lq

(R+, dt

t

)

is finite, where

f⇤(t) := inf{� > 0 : µ(|f | > �) 6 t}, t 2 [0,1),

is the non-increasing rearrangement of f .

Example F.3.3. Let f =
PN

n=1

an1A
n

be a µ-simple function, represented in
such a way that |a

1

| > |a
2

| > . . . > |aN | > 0 with A
1

, . . . , AN disjoint. For
p, q 2 (0,1), the following holds:

kfkLp,q

(S)

=
⇣p

q

N
X

n=1

|an|q(tq/pn � tq/pn�1

)
⌘

1/q
, (F.2)

where t
0

:= 0 and tn :=
Pn

i=1

µ(Ai) for n = 1, . . . , N . This is a straightforward
consequence of the identity f⇤ =

PN
n=1

|an|1
[t

n�1,tn).

It is elementary to check that f⇤(t) > r if and only if µ(|f | > r) > t}. This
implies

µ(|f | > r) = |{f⇤ > r}|, r 2 [0,1),

which shows that |f | and f⇤ are identically distributed. In particular,

kfkLp

(S)

= kf⇤kLp

(R+)

= kfkLp,p

(S)

, p 2 (0,1]. (F.3)
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Lemma F.3.4. For all 0 < p 6 1 and 0 < q < 1 the following identity for
the Lorentz norm holds:

kfkLp,q

(S)

= p1/q
�

�t 7! t(µ(|f | > t))1/p
�

�

Lq

(R+, dt

t

)

. (F.4)

In the case q = 1 the above definition of Lp,1(S) coincides with the one of
Section 2.2.b.

Proof. We fist observe that f⇤(t) > r if and only if µ(|f | > r) > t}.
For 0 < q < 1, the identity follows by comparing the two iterated integrals

of rq�1tq/p�1 over the subset {f⇤(t) > r} = {µ(|f | > r) > t} of (0,1)⇥(0,1).
For q = 1, let r > 0 and 0 < " < µ(|f | > r) be arbitrary. Taking

t = t
0

= µ(|f | > r)� " in the above observation gives f⇤(t
0

) > r. Therefore,

kfkLp,1
(S)

> t1/p
0

f⇤(t
0

) > t1/p
0

r =
⇣

µ(|f | > r)� "
⌘

1/p
r.

The inequality ‘>’ in (F.4) is obtained by first letting " # 0 and then taking
the supremum over r > 0. To prove the inequality ‘6’, let t > 0 and 0 <
" < f⇤(t) be arbitrary. Setting r

0

= f⇤(t) � " in the above observation gives
µ(|f | > r

0

) > t. Thus

sup
r>0

rµ(|f | > r)1/p > r
0

µ(|f | > r
0

)1/p > r
0

t1/p = (f⇤(t)� ")t1/p.

First letting " # 0 and then taking the supremum over all t > 0 gives the
remaining estimate. ⇤

The following identity for a µ-measurable function f : S ! K and r > 0 is
simple to verify

k |f |r kLp,q

(S)

= kfkrLpp,qr

(S)

. (F.5)

The Lorentz spaces are ordered in the following way.

Lemma F.3.5. Let p 2 (0,1). For 0 < q < r 6 1, we have Lp,q(S) ,!
Lp,r(S) with constant (q/p)(r�q)/qr.

Proof. We first consider the case r = 1. Using that f⇤ is non-increasing we
can estimate

t1/pf⇤(t) =
⇣q

p

ˆ t

0

(s1/pf⇤(t))q
ds

s

⌘

1/q

6
⇣q

p

ˆ t

0

(s1/pf⇤(s))q
ds

s

⌘

1/q
6
⇣q

p

⌘

1/q
kfkLp,q

(S)

.

Taking the supremum over all t > 0, we find kfkLp,1
(S)

6 ( qp )
1/qkfkLp,q

(S)

.
For r < 1, using the previous case we find

kfkrLp,r

(S)

=

ˆ 1

0

(s1/pf⇤(s))r�q+q ds

s
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6 kfkr�q
Lp,1

(S)

kfkqLp,q

(S)

6
⇣q

p

⌘

(r�q)/q
kfkrLp,q

(S)

and the result follows with constant
� q
p

�

(r�q)/qr. ⇤

Lemma F.3.6. Let p 2 (1,1). For all f 2 L1(S) \ L1(S),

kfkLp,1
(S)

6 pkfk1/pL1
(S)

kfk1/p
0

L1
(S)

.

Proof. By density it suffices to consider simple functions f . By homogeneity
we may assume that kfkL1

(S)

= 1. If we let f be represented as in (F.2), then
a
1

= 1. Put sn = t1/pn for n = 0, . . . , N and aN+1

:= 0. By a summation by
parts and Jensen’s inequality (applied with the probability measure ⌫({n}) =
|an|� |an+1

| on {1, . . . , N}),

kfkLp,1
(S)

= p
N
X

n=1

|an|(sn � sn�1

) = p
N
X

n=1

(|an|� |an+1

|)sn

6 p
⇣

N
X

n=1

(|an|� |an+1

|)spn
⌘

1/p
= p

⇣

N
X

n=1

(|an|� |an+1

|)tn
⌘

1/p

= p
⇣

N
X

n=1

|an|(tn � tn�1

)
⌘

1/p
= pkfk1/pL1

(S)

.

⇤

F.4 Notes

Standard references on the theory of Banach lattices include Aliprantis and
Burkinshaw [2006], Meyer-Nieberg [1991], Schaefer [1974]. An excellent expo-
sition of the Krivine calculus is presented in Lindenstrauss and Tzafriri [1979].
A complete proof of Kakutani’s representation theorem F.2.1 can be found in
Aliprantis and Burkinshaw [2006, Theorems 4.21 and 4.29]. Detailed accounts
on Lorentz spaces can be found in Grafakos [2008], Lindenstrauss and Tzafriri
[1979].





G

Semigroups of linear operators

G.1 Unbounded linear operators

By a linear operator in X we understand a pair (A,D(A)), where D(A) is a
linear subspace of X and A : D(A) ! X is linear. If no confusion is likely to
arise will just write A instead of (A,D(A)). The space D(A) is referred to as
the domain of A. The range and null space of A will be denoted by R(A) and
N(A), respectively.

We begin our discussion with some generalities on spectra and resolvents
of linear operators. The resolvent set %(A) of a linear operator A on a Banach
space X is the set of all � 2 C for which � � A has a two-sided bounded
inverse. More precisely, there should exist a (necessarily unique) bounded
linear operator B on X such that

(i) B(��A)x = x for all x 2 D(A);
(ii) Bx 2 D(A) and (��A)Bx = x for all x 2 X.

In this situation we write B =: R(�, A) =: (� � A)�1 and call this operator
the resolvent of A at the point � 2 %(A). The spectrum of A is the complement
�(A) := C \ %(A). We recall the resolvent identity

R(�, A)�R(µ,A) = (µ� �)R(�, A)R(µ,A), �, µ 2 %(A).

As in the case of a bounded operator one proves that %(A) is an open set.
More precisely:

Lemma G.1.1. If � 2 %(A), then B(�, r) ✓ %(A) with r = 1/kR(�, A)k.
Moreover, if |�� µ| 6 �r with 0 6 � < 1, then

kR(µ,A)k 6 �

1� �
kR(�, A)k.

Proof. Set B := � � A. If T 2 L (X) has norm kTk 6 �r with 0 6 � < 1
and r = 1/kB�1k, then kB�1Tk 6 � < 1 and therefore the linear operator
B � T = B(I �B�1T ) is boundedly invertible. By the Neumann series,
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k(B � T )�1 �B�1k 6 kB�1kk(I �B�1T )�1 � Ik

= kB�1k
�

�

�

X

n>1

(B�1T )n
�

�

�

6 1

r

�

1� �
.

Taking T = (�� µ)I gives the result. ⇤

This lemma has a number of easy consequences we shall explore next.

Lemma G.1.2. The function � 7! R(�, A) is holomorphic on %(A).

Proof. By letting � # 0, the estimate in the proof of the previous lemma shows
that the function � 7! R(�, A) is continuous on %(A). To prove its holomorphy,
we use the resolvent identity and the continuity just proved to obtain

lim
µ!�

R(�, A)�R(µ,A)

�� µ
= � lim

µ!�
R(�, A)R(µ,A) = �R(�, A)2.

⇤

The norms of the resolvent operators blow up near the boundary of the resol-
vent set:

Lemma G.1.3. If �n ! � in C, with each �n 2 %(A) and � 2 @%(A), then
limn!1 kR(�n, A)k = 1.

Proof. If not, then along a subsequence the norms of the resolvent operators
R(�n

k

, A) would remain bounded, say by constant M . By the estimate of
Lemma G.1.1, this would imply that the balls B(�n

k

, 1/M) are contained in
%(A). For large k, however, these balls contain � as an interior point, and this
contradicts the assumption � 2 @%(A). ⇤

The following lemma will also be very useful.

Lemma G.1.4. If the open half-line (0,1) is contained in %(A) and

sup
�>0

k�R(�, A)k =: M < 1,

then M > 1, the open sector ⌃ :=
�

� 2 C : | arg(�)| < arcsin(1/M)
 

is
contained in %(A), and

sup
�2⌃

k�R(�, A)k 6 M

1�M arcsin(1/M)
.

The argument is always taken in the interval (�⇡,⇡).
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Proof. For x 2 D(A) we have �R(�, A)x = x + R(�, A)Ax ! x as � ! 1,
from which it follows that M > 1.

Lemma G.1.1 shows that for each µ > 0 the open ball with radius
1/kR(µ,A)k is contained in %(A). The union of these balls is a sector; we
shall now verify that the sine of its angle equals at least 1/M .

Let ' 2 (0, arcsin(1/M)) ✓ (0, 1

2

⇡). Fix � 2 ⌃' and let µ > 0 be deter-
mined by the requirement that the triangle spanned by 0, �, µ has a right
angle at � (thus, by Pythagoras, |� � µ|2 + |�|2 = |µ|2, so µ = �|�|2/|<�|).
Let ✓ denote the angle of � with the positive axis. See Figure G.1. Then

µ

✓ '

�

Fig. G.1: The proof of Lemma G.1.4

|�� µ|/|µ| = sin ✓ < sin' < 1/M , so |�� µ| < |µ|/M 6 1/kR(µ,A)|||. Hence
� 2 %(A) and by the estimate for the Neumann series in Lemma G.1.1

kR(�, A)k 6 kR(µ,A)k
1
X

n=0

|�� µ|n

|µ|n kµR(µ,A)kn

6 M

|µ|

1
X

n=0

(sin')nMn 6 M

1�M sin'
· 1

|�| .

⇤

Duality

Let X
1

and X
2

be Banach spaces and consider a linear operator (A,D(A))
acting from X

1

to X
2

. If A is densely defined, i.e., if D(A) is dense, we may
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define a linear operator (A⇤,D(A⇤)) from X⇤
2

to X⇤
1

in the following way. We
define D(A⇤) to be the set of all x⇤

2

2 X⇤
2

with the property that there exists
an element x⇤

1

2 X⇤
1

such that

hx, x⇤
1

i = hAx, x⇤
2

i, x 2 D(A).

Since D(A) is dense in X
1

, the element x⇤
1

2 X⇤
1

(if it exists) is unique and we
set

A⇤x⇤
2

:= x⇤
1

, x⇤
2

2 D(A⇤).

Definition G.1.5. Let A be a densely defined linear operator. The operator
A⇤ is called the adjoint of A.

We recall that the weak⇤-topology of a dual Banach space X is the coarsest
topology on X⇤ which renders the mappings x⇤ 7! hx, x⇤i continuous. From
this it is immediate that the annihilator of a non-empty subset V of X, i.e.,
the set

V ? := {x⇤ 2 X⇤ : hv, x⇤i = 0 for all v 2 V }

is weak⇤-closed.

Proposition G.1.6. Let X
1

and X
2

be Banach spaces and let A be a densely
defined linear operator from X

1

to X
2

. The following assertions hold:

(1) the adjoint A⇤ is weak⇤-closed from X⇤
2

to X⇤
1

, that is, the graph of A⇤ is
weak⇤-closed in X⇤

2

⇥X⇤
1

;
(2) if A is also closed, then A⇤ is weak⇤-densely defined, i.e., the domain of

A⇤ is weak⇤-dense in X⇤
2

.

Proof. We start with the preliminary remark that if X and Y are Banach
spaces, then the pairing

h(x, y), (x⇤, y⇤)i := hx, x⇤i+ hy, y⇤i

allows us to identify X⇤ ⇥ Y ⇤ with the dual of X ⇥ Y .
(1): Let G(A⇤) = {(x⇤

1

, A⇤x⇤
1

) : x⇤
1

2 D(A⇤)} be the graph of A⇤ in
X⇤

2

⇥X⇤
1

. By definition of D(A⇤) we have (x⇤
2

, x⇤
1

) 2 G(A⇤) if and only if

h(�Ax
1

, x
1

), (x⇤
2

, x⇤
1

)i = 0, x
1

2 D(A).

In other words, G(A⇤) is the annihilator of ⇢(G(A)), where ⇢ : X
1

⇥ X
2

!
X

2

⇥ X
1

is defined by ⇢(x
1

, x
2

) = (�x
2

, x
1

), and therefore G(A⇤) is weak⇤-
closed. This proves that A⇤ is weak⇤-closed.

(2): Now assume that (A,D(A)) is also closed. We will show that D(A⇤)
separates the points of X

2

. Suppose x
2

6= y
2

in X
2

. Then (0, x
2

�y
2

) is a non-
zero element of X

1

⇥X
2

which does not belong to G(A). Since G(A) is closed,
by the Hahn-Banach theorem there exists an element (x⇤

1

, x⇤
2

) 2 (G(A))? such
that
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h(0, x
2

� y
2

), (x⇤
1

, x⇤
2

)i = hx
2

� y
2

, x⇤
2

i 6= 0.

To finish the proof we check that x⇤
2

2 D(A⇤). For all x
1

2 D(A) we have
(x

1

, Ax
1

) 2 G(A) and therefore

0 = h(x
1

, Ax
1

), (x⇤
1

, x⇤
2

)i = hx
1

, x⇤
1

i+ hAx
1

, x⇤
2

i.

But this means that x⇤
2

2 D(A⇤) and A⇤x⇤
2

= �x⇤
1

. ⇤

The following simple result ‘dualises’ the definition of D(A⇤).

Proposition G.1.7. Let (A,D(A)) be a closed and densely defined linear op-
erator from X

1

to X
2

. If x
1

2 X
1

and x
2

2 X
2

are such that hx
2

, x⇤
2

i =
hx

1

, A⇤x⇤
2

i for all x⇤
2

2 D(A⇤), then x
1

2 D(A) and Ax
1

= x
2

.

Proof. We must prove that (x
1

, x
2

) 2 G(A). Since G(A) is closed in X
1

⇥X
2

,
by the Hahn-Banach theorem it suffices to check that h(x

1

, x
2

), (x⇤
1

, x⇤
2

)i = 0
for all (x⇤

1

, x⇤
2

) 2 (G(A))?.
Fix an arbitrary (x⇤

1

, x⇤
2

) 2 (G(A))?. As in the second part of the previous
proof we have x⇤

2

2 D(A⇤) and A⇤x⇤
2

= �x⇤
1

. Hence,

h(x
1

, x
2

), (x⇤
1

, x⇤
2

)i = hx
1

,�A⇤x⇤
2

i+ hx
2

, x⇤
2

i = 0.

⇤

G.2 C0-semigroups

Linear equations of mathematical physics can often be cast in the abstract
form

(

u0(t) = Gu(t), t 2 [0, T ],

u(0) = x,
(ACP)

where (G,D(G)) is a linear operator in some Banach space X. Typically, X is
a Banach space of functions suited for the particular problem at hand and G
is a partial differential operator. The abstract initial value problem (ACP) is
referred to as the abstract Cauchy problem associated with G. A “solution” of
the problem (ACP) is a function u : [0, T ] ! X which satisfies the equation
in some suitable sense. We will consider various solution concepts shortly.

Let us first take a look at the much simpler case where G is a bounded
operator. In that case, the unique solution of (ACP) is given by

u(t) = etGu
0

, t 2 [0, T ],

where

etG :=

1
X

n=0

1

n!
tnGn.

The operators etG may be thought of as ‘solution operators’ mapping the
initial value u

0

to the solution etGu
0

at time t. Clearly, e0G = I, etGesG =
e(t+s)G, and t 7! etG is continuous. We generalise these properties as follows.
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Definition G.2.1. A family S = {S(t)}t>0

of bounded linear operators acting
on a Banach space X is called a C

0

-semigroup if the following three properties
are satisfied:

(S1) S(0) = I;
(S2) S(t)S(s) = S(t+ s) for all t, s > 0;
(S3) limt#0 kS(t)x� xk = 0 for all x 2 X.

It is sometimes convenient to call a family of operators that satisfies (S1)
and (S2) a semigroup. The third property is usually referred to as the strong
continuity of the semigroup, and indeed the terms ‘C

0

-semigroup’ and ‘strongly
continuous semigroup’ are used synonymously in the literature.

The infinitesimal generator, or briefly the generator, of (S(t))t>0

is the
linear operator (G,D(G)) defined by

D(G) := {x 2 X : lim
t#0

1

t
(S(t)x� x) exists in X},

Gx := lim
t#0

1

t
(S(t)x� x), x 2 D(G).

A C
0

-group (of operators) is defined similarly, by replacing the index set {t >
0} by {t 2 R}.

We shall frequently use the trivial observation that if G generates the C
0

-
semigroup (S(t))t>0

, then G � µ generates the C
0

-semigroup (e�µtS(t))t>0

.
The next two propositions collect some elementary properties of C

0

-semigroups
and their generators.

Proposition G.2.2. Let (S(t))t>0

be a C
0

-semigroup on X. There exist con-
stants M > 1 and ! 2 R such that kS(t)k 6 Me!t for all t > 0.

Proof. There exists a number � > 0 such that supt2[0,�] kS(t)k =: � < 1.
Indeed, otherwise we could find a sequence tn # 0 such that limn!1 kS(tn)k =
1. By the uniform boundedness theorem, this implies the existence of an
x 2 X such that supn>1

kS(tn)xk = 1, contradicting the strong continuity
assumption (S3). This proves the claim. By the semigroup property (S2), for
t 2 [(k � 1)�, k�] it follows that kS(t)k 6 �k 6 �1+t/�, where the second
inequality uses that � > 1 by (S1). This proves the proposition, with M = �
and ! = (1/�) log �. ⇤

Proposition G.2.3. Let (S(t))t>0

be a C
0

-semigroup on X with generator
G. The following assertions hold:

(1) for all x 2 X the orbit t 7! S(t)x is continuous for t > 0;
(2) for all x 2 D(G) and t > 0 we have S(t)x 2 D(G) and GS(t)x = S(t)Gx;
(3) for all x 2 X we have

´ t
0

S(s)x ds 2 D(G) and

G

ˆ t

0

S(s)x ds = S(t)x� x,
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and if x 2 D(G), then both sides are equal to
´ t
0

S(s)Gx ds;
(4) the generator G is a closed and densely defined operator;
(5) for all x 2 D(G) the orbit t 7! S(t)x is continuously differentiable for

t > 0 and
d

dt
S(t)x = GS(t)x = S(t)Gx, t > 0.

Proof. (1): The right continuity of t 7! S(t)x follows from the right continuity
at t = 0 (S3) and the semigroup property (S2). For the left continuity, observe
that for t > h > 0,

kS(t)x� S(t� h)xk 6 kS(t� h)kkS(h)x� xk 6 sup
s2[0,t]

kS(s)kkS(h)x� xk,

where the supremum is finite by Proposition G.2.2.
(2): By the semigroup property

lim
h#0

1

h
(S(h)S(t)x� S(t)x) = S(t) lim

h#0

1

h
(S(h)x� x) = S(t)Gx.

This shows that S(t)x 2 D(G) and GS(t)x = S(r)Gx.
(3): The first identity follows from

lim
h#0

1

h
(S(h)� I)

ˆ t

0

S(s)x ds = lim
h#0

1

h

⇣

ˆ t

0

S(s+ h)x ds�
ˆ t

0

S(s)x ds
⌘

= lim
h#0

1

h

⇣

ˆ t+h

t
S(s)x ds�

ˆ h

0

S(s)x ds
⌘

= S(t)x� x,

where we used the continuity of t 7! S(t)x. The identity for x 2 D(G) will
follow from the second part of the proof of (4).

(4): Density of D(G) follows from the first part of (3), since by (1) we
have limt#0

1

t

´ t
0

S(s)x ds = x.
To prove that G is closed we must check that the graph G(G) = {(x,Gx) :

x 2 D(G)} is closed in X ⇥X. Suppose that (xn)n>1

is a sequence in D(G)
such that limn!1 xn = x and limn!1 Gxn = y in X. Then

1

h
(S(h)x� x) = lim

n!1

1

h
(S(h)xn � xn)

= lim
n!1

1

h

ˆ h

0

S(s)Gxn ds =
1

h

ˆ h

0

S(s)y ds.

Passing to the limit for h # 0, this gives x 2 D(G) and Gx = y. The above
identities also prove the second part of (3).

(5): This follows from (1), (2), and the definition of G. ⇤
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By considering repeated integrals, (3) self-improves to the assertion that
D(Gn) is dense for all n > 1.

As a first application let us prove that a C
0

-semigroup is determined by its
generator. Suppose G generates the C

0

-semigroups (S(t))t>0

and (T (t))t>0

.
For x 2 D(G), differentiating the function f : [0, t] ! X, f(s) := S(t�s)T (s)x,
with respect to s, we obtain f 0(s) = �GS(t� s)T (s)x+ S(t� s)GT (s)x = 0,
and therefore f is constant. Hence S(t)x = f(0) = f(t) = T (t)x. Since this is
true for all x 2 D(G), and D(G) is dense in X, this proves the result.

For initial values x 2 D(G), Proposition G.2.3(5) proves that t 7! u(t) =
S(t)x is a classical solution in the sense that it belongs to C([0, T ];D(G)) \
C1([0, T ];X) and solves the equation pointwise in t 2 [0, T ]. This classical
solution is unique. Indeed, suppose t 7! v(t) is another classical solution. The
function s 7! S(t�s)v(s) is continuous on [0, t] and continuously differentiable
on (0, t), with derivative

d

ds
S(t� s)v(s) = �GS(t� s)v(s) + S(t� s)v0(s) = 0

since v0(t) = Gv(s). Thus, s 7! S(t�s)v(s) is constant on every interval [0, t].
Since v(0) = x it follows that v(t) = S(t�t)v(t) = S(t�0)v(0) = S(t)x = u(t).
This proves uniqueness. Hence if u is a classical solution, then the initial value
x belongs to D(G) and u(t) = S(t)x.

Although classical solutions exist only for initial values x 2 D(G), the
mapping u(t) := S(t)x is well defined for all x 2 X and may therefore be
considered as a generalised solution to (ACP).

We have seen in Proposition G.2.3 that the generator of a C
0

-semigroup
is always densely defined and closed. As a consequence, D(G) is a Banach
space with respect to its graph norm. In various applications it is of interest
to know when a given dense subspace Y of X, contained in D(G), is dense
as a subspace of D(G). If this is the case, Y is called a core for G. The next
result gives a simple sufficient condition for this.

Proposition G.2.4. Let (S(t))t>0

be a C
0

-semigroup with generator G. If Y
is a linear subspace of D(G) which is dense in Y and invariant under each
operator S(t), then Y is dense in D(G).

Proof. By the exponential boundedness of (S(t))t>0

, upon replacing G by
G� � for sufficiently large � > 0 we may assume that limn!1 kS(t)k = 0.

Fix x 2 D(G) and choose a sequence (yn)n>1

in Y such that limn!1 yn =
Gx in X. Fix t > 0. Then

lim
n!1

ˆ t

0

S(s)yn ds =

ˆ t

0

S(s)Gx ds = S(t)x� x

in X and

lim
n!1

G

ˆ t

0

S(s)yn ds = lim
n!1

S(t)yn � yn = S(t)Gx�Gx.
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It follow that

lim
n!1

ˆ t

0

S(s)yn ds = S(t)x� x in D(G).

Since the restriction of (S(t))t>0

to D(G) is strongly continuous on D(G) we
may approximate the integrals by Riemann sums in the norm of D(G). By the
invariance of Y under (S(t))t>0

, these Riemann sums belong to Y . It follows
that for each t > 0 and " > 0 there is a yt," 2 Y such that

k(S(t)x� x)� yt,"kD(G)

< ".

As t ! 1, kS(t)xkD(G)

= kS(t)xk + kS(t)Gxk ! 0 and therefore, for large
enough t > 0,

kyt," � xkD(G)

6 "+ kS(t)xkD(G)

< 2".

This shows that x can be approximated in D(G) by elements of Y . ⇤

We continue with two results which show that the semigroup property self-
improves in several ways.

A family op bounded linear operators (S(t))t>0

on X is said to be a weakly
continuous semigroup if (S1) and (S2) hold and for all x 2 X and x⇤ 2 X⇤

one has limt#0hS(t)x, x⇤i = hx, x⇤i.

Proposition G.2.5. Every weakly continuous semigroup is strongly continu-
ous.

Proof. Suppose (S(t))t>0

is a weakly continuous semigroup on the Banach
space X. Let

X
0

:=
�

x 2 X : lim
t#0

kS(t)x� xk = 0
 

be the subspace of all elements in X on which (S(t))t>0

acts in a strongly
continuous way. We must show that X

0

= X.
Repeating the argument in the proof of Proposition G.2.2, t 7! kS(t)k is

bounded on some non-trivial interval [0, �]. By a standard "/3-argument, this
implies that X

0

is a closed subspace of X. Also, by the semigroup property, it
follows that t 7! kS(t)k is bounded on every bounded sub-interval in [0,1).

Next, because of its weak continuity at t = 0 combined with the semigroup
property, the range of each orbit t 7! S(t)x is weakly separable, hence sep-
arable by a corollary to the Hahn–Banach theorem. Again by the semigroup
property, the orbits are also weakly right-continuous, hence weakly measur-
able. Therefore, by the Pettis measurability theorem, they are strongly mea-
surable. In particular the Bochner integrals

y(t, x) :=
1

t

ˆ t

0

S(r)x dr

exist for all x 2 X and t > 0. Fix x 2 X and 0 < t < 1. For 0 < s < t,
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kS(s)y(t, x)� y(t, x)k =
1

t

�

�

�

ˆ t

0

S(s+ r)x dr �
ˆ t

0

S(r)x dr
�

�

�

=
1

t

�

�

�

ˆ t+s

t
S(r)x dr �

ˆ s

0

S(r)x dr
�

�

�

6 2s · 1
t

⇣

sup
06r62

kS(r)k
⌘

kxk

shows that y(t, x) 2 X
0

. But then

lim
t#0

hy(t, x), x⇤i = lim
t#0

1

t

ˆ t

0

hS(r)x, x⇤i dr = hx, x⇤i.

This shows that x belongs to the weak closure of X
0

, and hence to X
0

. ⇤
Corollary G.2.6. Let (S(t))t>0

be a C
0

-semigroup on a Banach space X.
If X is reflexive, then the family (S⇤(t))t>0

of adjoint operators is a C
0

-
semigroup on X⇤.

Proof. The only thing that needs attention is strong continuity. It is evident
that (S⇤(t))t>0

is weak⇤-continuous, and if X is reflexive this is the same thing
as weakly continuous. Now the result follows from Proposition G.2.5. ⇤

A family of operators (S(t))t>0

on X is said to be strongly measurable if for
all x 2 X the orbit t 7! S(t)x is strongly measurable on [0,1), and strongly
continuous for t > 0 (briefly, C>0

) if for all x 2 X the orbit t 7! S(t)x is
continuous for t > 0.

Proposition G.2.7. Every strongly measurable semigroup of operators is
C>0

.

Proof. The proof is divided into two steps.
Step 1 – First we prove that kS(t)k is bounded on each interval [↵,�] with

0 < ↵ < � < 1. Assuming the contrary, let 0 < a < b < 1 be such that
kS(t)k is unbounded on [↵,�]. By the uniform boundedness theorem there
exists a sequence (⇠n) ✓ [↵,�] and an x 2 X of norm one such that ⇠n ! ⇠
and kS(⇠n)xk > n. On the other hand, because t 7! kS(t)xk is measurable,
there exists a constant M and a measurable subset F ✓ [0, ⇠] of measure
|F | > ⇠/2 such that kS(t)xk 6 M on F . The sets

En := {⇠n � t : t 2 F \ [0, ⇠n]}

are measurable, and for n large enough we have |En| > ⇠/2. For t 2 F \ [0, ⇠n]
we have

n 6 kS(⇠n)xk 6 kS(⇠n � t)k kS(t)xk 6 MkS(⇠n � t)

and therefore kS(⌘)k > n/M for all ⌘ 2 En. Let E :=
T

n

S

k>n Ek. Since
S

k>n Ek # E and |
S

k>n Ek| > |En| > ⇠/2� |⇠n � ⇠|, we have |E| > ⇠/2. For
⌘ 2 E it follows that kS(⌘)k = 1, a contradiction.
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Step 2 – Fix x 2 X and ⇠ > 0 and choose numbers 0 < ↵ < � < ⇠. For all
⌘ > 0,

(� � ↵) [S(⇠ + ⌘)� S(⇠)]x =

ˆ �

↵
S(⌧)[S(⇠ + ⌘ � ⌧)� S(⇠ � ⌧)]x d⌧.

If kS(t)k 6 M for all t 2 [↵,�], then the norm of the integrand does not
exceed Mk[S(⇠+ ⌘� ⌧)�S(⇠� ⌧)]xk, which is a measurable function of ⌧ on
[↵,�]. For ⌘ ! 0 this gives

(� � ↵) k
�

S(⇠ + ⌘)� S(⇠)
�

xk 6 M

ˆ ⇠�↵

⇠��
kS(� + ⌘)x� S(�)xk d� ! 0,

the convergence being a consequence of the strong continuity of translations
in L1(R;X). ⇤

The adjoint semigroup

Let (S(t))t>0

be a C
0

-semigroup on X. The adjoint semigroup (S⇤(t))t>0

consisting of the adjoint operators S⇤(t) := (S(t))⇤ generally fails to be
strongly continuous. For example, the adjoint of the semigroup (S(t))t>0

of
left-translations on L1(R) is the semigroup (S⇤(t))t>0

of right-translations
on L1(R), and for a given f 2 L1(R) the mapping t 7! S⇤(t)f is continu-
ous if and only if f is uniformly continuous. Replacing L1(R) by C

0

(R) and
L1(R) by M(R), the space of bounded Borel measures on R, then for a given
µ 2 M(R) the mapping t 7! S⇤(t)µ is continuous if and only if µ is absolutely
continuous with respect to the Lebesgue measure.

These examples show that it is natural to define

X� := {x⇤ 2 X⇤ : lim
t#0

kS⇤(t)x⇤ � x⇤k = 0}.

It follows trivially from this definition that X� is S⇤(t)-invariant, i.e., for all
t > 0 we have S⇤(t)X� ✓ X�. Also, since S(t) is locally bounded, X� is a
closed subspace of X⇤.

Proposition G.2.8. The space X� is a closed, weak⇤-dense, S⇤(t)-invariant
linear subspace of X⇤. Moreover X� = D(G⇤).

Proof. We have already seen that X� is closed and S⇤(t)-invariant. Weak⇤-
density of X� follows from the weak⇤-density of D(G⇤) and X� = D(G⇤),
which will be proved next.

Let x⇤ 2 D(G⇤). Dualising the identity of Proposition G.2.3(3),

kS⇤(t)x⇤ � x⇤k = sup
kxk61

�

�

�

ˆ t

0

hx, S⇤(s)G⇤x⇤i ds
�

�

�

6 t
⇣

sup
06s6t

kS(s)k
⌘

kG⇤x⇤k.
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This shows that D(G⇤) ✓ X�. Since X� is closed, also the norm closure
D(G⇤) belongs to X�.

For the converse inclusion let x� 2 X�. Then
�

�

�

1

t

ˆ t

0

S⇤(s)x� ds� x�
�

�

�

6 1

t

ˆ t

0

kS⇤(s)x� � x�k ds ! 0 as t # 0

since x� 2 X�, the first integral being understood in the weak⇤-sense (cf.
the discussion in Section 1.2.c). To complete the proof we will show that
1

t

´ t
0

S⇤(s)x� ds 2 D(G⇤). For x 2 D(G) we have, again by dualising Proposi-
tion G.2.3(3),

D

Gx,

ˆ t

0

S⇤(s)x⇤ ds
E

= hx, S⇤(t)x⇤ � x⇤i.

It follows that
´ t
0

S⇤(s)x⇤ ds 2 D(G⇤) and G⇤ ´ t
0

S⇤(s)x⇤ ds = S⇤(t)x⇤�x⇤. ⇤
Let S�(t) denote the restriction of S⇤(t) to the invariant subspace X�. Since
X� is closed, X� is a Banach space and it is clear from the definition of X�

that S�(t) is a strongly continuous semigroup on X�. We will call (S�(t))t>0

the strongly continuous adjoint of (S(t))t>0

. Let its generator be G�. The
following proposition gives a precise description of G� in terms of G⇤.

If B is a linear operator on a Banach space Y and Z is a linear subspace of
Y containing its domain D(B), then the part of B in Z is the linear operator
BZ defined by

D(BZ) := {y 2 D(B) : By 2 Z},
BZ y := By, y 2 D(BZ).

Proposition G.2.9. G� is the part of G⇤ in X�.
Proof. Let B be the part of G⇤ in X�. If x� 2 D(G�), then

lim
t#0

1

t

�

S⇤(t)x� � x�� = lim
t#0

1

t

�

S�(t)x� � x�) = G�x�,

where the limits are in the strong sense. Hence these limits exist also in the
weak⇤-sense, so x� 2 D(G⇤) and G⇤x� = G�x� 2 X�. This proves that
G� ✓ B.

To prove the converse inclusion, let x⇤ 2 D(B). This means that x⇤ 2
D(G⇤) and G⇤x⇤ 2 X�. But this implies that

1

t

�

S�(t)x⇤ � x⇤� =
1

t

�

S⇤(t)x⇤ � x⇤� =
1

t

ˆ t

0

S⇤(s)G⇤x⇤ ds.

The integrand of the last integral being continuous since G⇤x⇤ 2 X�, letting
t # 0 gives limt#0

1

t

�

S�(t)x⇤ � x⇤� = G⇤x⇤. This shows that x⇤ 2 D(G�) and
G�x⇤ = G⇤x⇤, that is, B ✓ G�. ⇤
As a special case, if X is reflexive and G is the generator of a (S(t))t>0

is
a C

0

-semigroup on X, then the adjoint operator G⇤ is the generator of the
adjoint C

0

-semigroup (S⇤(t))t>0

on X⇤.
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G.3 The inhomogeneous abstract Cauchy problem

We now take a look at the inhomogeneous abstract Cauchy problem
(

u0(t) = Gu(t) + f(t), t 2 [0, T ],

u(0) = x
(G.1)

with initial value x 2 X. We assume that G generates a C
0

-semigroup
(S(t))t>0

on X and take f 2 L1(0, T ;X). The results of this subsection for
f = 0 will be used in the Section G.5; the reason for presenting them in the
present generality is that the inhomogeneous abstract Cauchy problem is tied
up with the notion of maximal Lp-regularity which will be studied extensively
in Volume III.

Definition G.3.1. A weak solution of (G.1) is a function u 2 L1(0, T ;X)
such that for all t 2 [0, T ] and x⇤ 2 D(G⇤) we have

hu(t), x⇤i = hx, x⇤i+
ˆ t

0

hu(s), G⇤x⇤i ds+
ˆ t

0

hf(s), x⇤i ds.

We have the following existence and uniqueness result for weak solutions.

Theorem G.3.2. The problem (G.1) admits a unique weak solution u. It is
given by the convolution formula

u(t) = S(t)x+

ˆ t

0

S(t� s)f(s) ds. (G.2)

If f 2 Lp(0, T ;X) with 1 6 p 6 1, then u 2 Lp(0, T ;X).

Proof. We begin with the existence part. It is an easy consequence of Propo-
sition G.2.3 (3) that u is a weak solution corresponding to the initial value x
if and only if t 7! u(t)� S(t)x is a weak solution corresponding to the initial
value 0. Therefore, without loss of generality we may assume that x = 0.

Let u be given by (G.2). Then u 2 L1(0, T ;X); if f 2 Lp(0, T ;X), then
u 2 Lp(0, T ;X). By Fubini’s theorem and Proposition G.2.3 (3), for all t 2
[0, T ] and x⇤ 2 D(G⇤) we have

ˆ t

0

hu(s), G⇤x⇤i ds =
ˆ t

0

ˆ s

0

hf(r), S⇤(s� r)G⇤x⇤i dr ds

=

ˆ t

0

ˆ t

r
hf(r), S⇤(s� r)G⇤x⇤i ds dr

=

ˆ t

0

hf(r), S⇤(t� r)x⇤ � x⇤i dr

= hu(t), x⇤i �
ˆ t

0

hf(r), x⇤i dr.
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This shows that u is a weak solution.
To prove uniqueness, suppose that u and eu are weak solutions of (G.1).

Then v := u � eu is integrable and satisfies hv(t), x⇤i =
´ t
0

hv(s), G⇤x⇤i ds for
all x⇤ 2 D(G⇤) and t 2 [0, T ]. Put

w(t) :=

ˆ t

0

ˆ s

0

v(r) dr ds.

By the fundamental theorem of calculus, w is continuously differentiable on
[0, T ] and

hw0(t), x⇤i =
ˆ t

0

hv(s), xi ds =
ˆ t

0

ˆ s

0

hv(r), G⇤x⇤i dr ds = hw(t), G⇤x⇤i.

For all x⇤ 2 D(G�) and t 2 (0, T ] the function s 7! gx⇤(s) := hS(t �
s)w(s), x⇤i is continuously differentiable on [0, t] with derivative

g0x⇤(s) =
d

ds
hw(s), S⇤(t� s)x⇤i = hw(s), G�x⇤i+ hw0(s), S⇤(t� s)x⇤i = 0,

using that x⇤ 2 D(G⇤) and G⇤x⇤ = G�x⇤. It follows that gx⇤ is constant on
[0, t]. Hence

hw(t), x⇤i = gx⇤(t) = gx⇤(0) = hS(t)w(0), x⇤i = 0.

We have shown that
´ t
0

´ s
0

hv(r), x⇤i dr ds = 0 for all t 2 [0, T ]. It follows that
hv, x⇤i = 0 almost everywhere for all x⇤ 2 D(G�). Since D(G�) is weak⇤-dense
(it is a dense subspace of the weak⇤-dense subspace X�) it follows that v = 0
almost everywhere by Proposition 1.1.25. ⇤

G.4 The Hille–Yosida theorem

In the remainder of this appendix the Banach space X will always be taken
to be complex. The real case can be treated by complexification.

The following proposition identifies the resolvent of the generator of a
C

0

-semigroup s the Laplace transform of the semigroup:

Proposition G.4.1. Suppose that G is the generator of a C
0

-semigroup
(S(t))t>0

on a Banach space X, and fix constants M > 1 and ! 2 R such
that kS(t)k 6 Me!t for all t > 0. Then {� 2 C : <� > !} ✓ %(G), and on
this set the resolvent of G is given as the Laplace transform of (S(t))t>0

:

R(�, G)x =

ˆ 1

0

e��tS(t)x dt, x 2 X.

As a consequence, for <� > ! we have

kR(�, G)k 6 M

<�� !
.
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Proof. Fix x 2 X and define R�x :=
´1
0

e��tS(t)x dt. From the semigroup
property we obtain

1

h
(S(h)� I)R�x =

1

h

ˆ 1

0

e��t(S(t+ h)� S(t))x dt

=
1

h

⇣

e�h
ˆ 1

h
e��sS(s)x ds�

ˆ 1

0

e��tS(t)x dt
⌘

=
1

h
(e�h � 1)

ˆ 1

h
e��tS(t)x dt� 1

h

ˆ h

0

e��tS(t)x dt

and hence
lim
h#0

1

h
(S(h)� I)R�x = �R�x� x.

It follows that R�x 2 D(G) and GR�x = �R�x � x. This shows that the
bounded operator R� is a right inverse for ��G.

Integrating by parts and using that d

dtS(t)x = S(t)Gx for x 2 D(G) we
obtain

�

ˆ T

0

e��tS(t)x dt = x� e��TS(T )x+

ˆ T

0

e��tS(t)Gx dt.

Since <� > !, sending T ! 1 gives �R�x = x+R�Gx. This shows that R�
is also a left inverse. It follows that � 2 %(G) and R(�, G) = R�.

The estimate for the resolvent follows from
�

�

�

ˆ 1

0

e��tS(t)x dt
�

�

�

6
ˆ 1

0

e�<�tkS(t)xk dt

6 Mkxk
ˆ 1

0

e(!�<�)t =
M

<�� !
kxk.

⇤

We continue with a useful approximation result.

Proposition G.4.2. Let G be a closed and densely defined operator in X,
and suppose that for some ! 2 R we have {<� > !} ✓ %(G) and

kR(�, G)k 6 M

<�� !
, <� > !.

Then for all x 2 X we have

lim
�!1

�R(�, G)x = x.

Proof. First let x 2 D(G) and fix an arbitrary µ 2 %(G). Then x = R(µ,G)y
for y := (µ�G)x. Using the resolvent identity and the estimate on the resol-
vent to get
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lim
�!1

�R(�, G)x = lim
�!1

�R(�, G)R(µ,G)y

= lim
�!1

�

�� µ
(R(µ,G)�R(�, G))y = R(µ,G)y = x.

For general x 2 X the claim then follows by approximation with elements
from D(G), using the uniform boundedness of the resolvent for <� > ! + 1.
⇤

The main generation theorem for C
0

-semigroups is the Hille–Yosida the-
orem, which gives necessary and sufficient conditions for a linear operator to
be the generator of a C

0

-semigroup in terms of resolvent growth. We will only
need the version for contraction semigroups which is somewhat easier to state
and prove. Its extension to general C

0

-semigroups can be reduced to this case
by first rescaling G (to reduce to bounded semigroups) and then renorming
X (to reduce to contraction semigroups); this will be discussed in the Notes.

Theorem G.4.3 (Hille–Yosida). For a densely defined linear operator G
in X the following assertions are equivalent:

(1) G generates a C
0

-contraction semigroup on X;
(2) {� 2 C : <� > 0} ✓ %(G) and

kR(�, G)k 6 1

<� , <� > 0.

Proof. The implication (1))(2) follows from Proposition G.4.2.
In the converse direction, assume that (2) holds. We introduce the Yosida

approximations Gn := nGR(n,G) = n2R(n,G)� nI, n > 1. These operators
are bounded, and Proposition G.4.2 implies limn!1 Gnx = Gx for all x 2
D(G). Also,

ketGnk 6 en
2kR(n,G)kte�nt 6 ente�nt = 1. (G.3)

Fix x 2 D(G) and t > 0. The identity

etGnx� etGm

x =

ˆ t

0

d

ds
[e(t�s)G

mesGnx] ds

=

ˆ t

0

e(t�s)G
mesGn(Gnx�Gmx) ds

and (G.3) imply that

ketGnx� etGm

xk 6 tkGnx�Gmxk.

Therefore (etGnx)n>1

is Cauchy in X for all x 2 D(G) and the limit
S(t)x := limn!1 etGnx exists for all x 2 D(G), uniformly on compact time
intervals in [0,1). Using (G.3), this limit in fact exists for all x 2 X, uni-
formly on compact time intervals in [0,1). Moreover, for each t > 0 the
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resulting mapping x 7! S(t)x is linear and contractive. It remains to verify
that the contractions S(t), t > 0, form a C

0

-semigroup on X and that G is
its generator.

It is clear that S(0) = I. The semigroup property follows from

S(t)S(s)x = lim
n!1

etGnesGnx = lim
n!1

e(t+s)G
nx = S(t+ s)x,

using the uniform boundedness of the sequence (etGn)n>1

in the first identity
and that the properties of the power series of the exponential function in the
second.

Next we prove the strong continuity. For x 2 D(G) we have

S(t)x� x = lim
n!1

etGnx� x = lim
n!1

ˆ t

0

esGnGnx ds =

ˆ t

0

S(s)Gx ds,

where we used that

kesGnGnx� S(s)Gxk 6 kesGn(Gnx�Gx)k+ k(esGn � S(s))Gxk
6 kGnx�Gxk+ k(esGn � S(s))Gxk ! 0.

Therefore, still for x 2 D(G),

lim
t#0

S(t)x� x = lim
t#0

ˆ t

0

S(s)Gx ds = 0,

uniformly for s 2 [0, t]. Once again the strong continuity for general x 2 X
follows from this by approximation.

It remains to check that G is the generator of (S(t))t>0

. Let us call this
generator B. By what we have already proved, for x 2 D(G) we have

lim
t#0

1

t
(S(t)x� x) = lim

t#0

1

t

ˆ t

0

S(s)Gx ds = Gx,

so x 2 D(B) and Bx = Gx. Since both G and B are closed and share the
open right-half plane in their resolvent sets, this implies G = B (use that for
� 2 %(G) \ %(B), ��G is surjective and ��B is injective). ⇤

Example G.4.4. Consider the first derivative Gf = �f 0 with domain D(G) =
W 1,p(R;X). we will check that G is the generator of the translation group
S(t)f(s) = f(s � t) on Lp(R;X), which can be checked to be strongly con-
tinuous and isometric on Lp(R;X) for all p 2 [1,1). For the moment, denote
this generator by B. By routine estimates it follows that C1

c

(R;X) ✓ D(B)
and Bf = �f 0 = Gf . Since C1

c

(R;X) is dense in Lp(R;X) and invariant
under translations, C1

c

(R;X) is dense in D(B) by Lemma G.2.4. By Lemma
2.5.5, C1

c

(R;X) is also dense in W 1,p(R;X) = D(G). Since both G and B are
closed operators (the latter since semigroup generators are always closed), it
follows that D(B) = D(G) and hence B = G.
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Corollary G.4.5. Let G be a densely defined operator on a Hilbert space H.
The following assertions are equivalent:

(1) G generates a C
0

-semigroup of contractions on H;
(2) µ�G has dense range for some µ > 0 and �<(Gh|h) > 0 for all h 2 D(G).

Proof. (1): For all µ > 0 we have µ 2 %(A) and therefore the range of µ�A
equals all of H.

Since kS(t)k > 1 for all t > 0, for all h 2 H the function fh(t) :=
kS(t)hk2 = (S(t)h|S(t)h) is non-increasing. If h 2 D(G), the fh is contin-
uously differentiable with derivative f 0

h(t) 6 0, so

f 0
h(t) = (GS(t)h|S(t)h) + (S(t)h|GS(t)h) = 2<(AS(t)h|S(t)h) 6 0.

For t = 0 this gives <(Gh|h) 6 0.

(2): There is no loss of generality in assuming that µ = 1. By assumption,
for all � > 0 and non-zero h 2 D(G) we have �khk2 6 <((� � G)h|h) 6
k(��G)hkkhk, so

k(��G)hk > �khk. (G.4)

In particular ��G is injective. Taking � = 1 we find that I �G is invertible.
Now suppose, for a contradiction, that �

1

� G fails to be invertible for
some �

1

> 0. Set �t := (1 � t) + t�
0

. Then �t > 0 for all t 2 [0, 1]. Let
t
0

:= inf{t 2 [0, 1] : �t 2 �(G)}. Then t
0

2 (0, 1] (since �
0

= 1 and 1 2 %(G))
and limt"t0 kR(�t, G)k = 1 since resolvent norms diverge as we approach the
boundary of the spectrum by Lemma G.1.3. But this clearly contradicts (G.4),
which tells us that kR(�t, G)k 6 1/�t 6 1/min{1,�

1

} for all t 2 [0, t
0

).
It follows that for all � > 0 we have � 2 %(G) and, by (G.4), implies

that kR(�, G)k 6 1/�. Therefore G is the generator of a C
0

-semigroup of
contractions by the Hille–Yosida theorem. ⇤

G.5 Analytic semigroups

For ! 2 (0,⇡) consider the open sector

⌃! := {z 2 C \ {0} : | arg(z)| < !},

where the argument is taken in (�⇡,⇡).

Definition G.5.1. A C
0

-semigroup (S(t))t>0

on a Banach space X is called
analytic on ⌃! if for all x 2 X the function t 7! S(t)x extends analytically to
⌃! and satisfies

lim
z2⌃

!

, z!0

S(z)x = x.

We call (S(t))t>0

an analytic C
0

-semigroup if (S(t))t>0

is analytic on ⌃! for
some ! 2 (0,⇡).
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If (S(t))t>0

is analytic on ⌃!, then for all z
1

, z
2

2 ⌃! we have

S(z
1

)S(z
2

) = S(z
1

+ z
2

).

Indeed, for each x 2 X the functions z
1

7! S(z
1

)S(t)x and S(z
1

+ t)x are
analytic extensions of s 7! S(s + t)x and are therefore equal. Repeating this
argument, the functions z

2

7! S(z
1

)S(z
2

)x and S(z
1

+ z
2

)x are analytic ex-
tensions of t 7! S(z

1

+ t)x and are therefore equal.
As in the proof of Proposition G.2.2, the uniform boundedness theorem

implies that if (S(t))t>0

is analytic on⌃!, then (S(t))t>0

is uniformly bounded
on ⌃!0 \ B(0, r) for all 0 < !0 < ! and r > 0. The same argument as in
Proposition G.2.2 then gives exponential boundedness on ⌃!0 for all 0 < !0 <
!, in the sense that there are constants M > 1 and c0 = c!0 2 R such that

kS(ei⌫t)k 6 Mec
0t, |⌫| 6 !0, t > 0.

We say that (S(t))t>0

a bounded analytic C
0

-semigroup on ⌃! if (S(t))t>0

is
analytic and uniformly bounded on ⌃!. Analytic C

0

-contraction semigroups
on ⌃! are defined similarly. There is a rather subtle point here: the bound-
edness and contractivity is imposed on a sector, not just on the positive real
line. That this makes a difference is shown by simple example of the rotation
group on H = C2, given by

S(t) =

✓

cos t � sin t
sin t cos t

◆

.

For each t 2 R we have kS(t)k = 1. Upon replacing t by a complex parameter z
the group extends analytically to the entire complex plane, but it is unbounded
on every sector ⌃✓. It may even happen that a bounded analytic C

0

-semigroup
is contractive on the positive real line, yet fails to be an analytic C

0

-contraction
semigroup; an example is discussed in the Notes.

Theorem G.5.2. For a closed and densely defined operator G on a Banach
space X the following assertions are equivalent:

(1) there exists ⌘ 2 (0, 1

2

⇡) such that G generates a bounded analytic C
0

-
semigroup on ⌃⌘;

(2) there exists ✓ 2 ( 1
2

⇡,⇡) such that ⌃✓ ✓ %(G) and

sup
�2⌃

✓

k�R(�, G)k < 1.

Denoting the suprema of all admissible ⌘ and ✓ in (1) and (2) by !
holo

(G)
and !

res

(G) respectively, we have

!
res

(G) =
1

2
⇡ + !

holo

(G).

Under the equivalent conditions (1) and (2) we have the inverse Laplace trans-
form representation
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S(t)x =
1

2⇡i

ˆ
�
eztR(z,G)x dz, t > 0, x 2 X,

where � = �✓0,B is the upwards oriented boundary of ⌃✓0 \ B, for any ✓0 2
( 1
2

⇡, ✓) and any closed ball B centred at the origin.

Proof. By Cauchy’s theorem, if the integral representation holds for some
choice of ✓0 2 ( 1

2

⇡, ✓) and a closed ball B centred at the origin, then it holds
for any such ✓0 and B.

(1))(2): We start with the preliminary observation that by Proposition
G.4.1, if a linear operator eG generates a uniformly bounded C

0

-semigroup
(eS(t))t>0

on a Banach space X, then, by Proposition G.4.1, the open right
half-plane C

+

= {<� > 0} is contained in the resolvent set of G and we have
the bound kR(�, eG)k 6 M/<� for all � 2 C

+

. Moreover, for all ✓ 2 (0, 1

2

⇡)
we have <� > |�| cos(✓) and therefore

sup
�2⌃

✓

k�R(�, eG)k 6 M

cos ✓
.

Now if G generates a C
0

-semigroup which is bounded on a sector ⌃⌘ with
⌘ 2 (0, 1

2

⇡], say by a constant M , we can apply the above reasoning to the
bounded semigroups S(ei✓

0
t), with ⌘0 2 (0, ⌘), and (after passing to the limit

⌘0 ! ⌘) obtain that for all ✓ 2 (0, 1

2

⇡ + ⌘),

sup
�2⌃

✓

k�R(�, G)k 6 M

cos(✓ � ⌘)
.

This gives (2). Optimising the various choices of angles, this also gives the
inequality !

res

(G) 6 1

2

⇡ + !
holo

(G).

(2))(1): The proof proceeds in two steps. First we prove the integral
representation for S(t)x, for any contour � given by ✓0 2 ( 1

2

⇡, ✓) and a ball
B centre at the origin as described in the statement of the theorem. Once we
have this, it is fairly straightforward to deduce (1) with ⌘ = ✓00 � 1

2

⇡ for any
1

2

< ✓00 < ✓0; this is done in the second step.
Step 1 – Fix a arbitrary ✓0 2 ( 1

2

⇡, ✓) and let � be the boundary of ⌃✓0 \B.
See Figure G.2.

Fix t > 0 and x 2 X. For µ > 0 such that µ 62 B define

vµ(t)x =
1

2⇡i

ˆ
�
ezt(µ� z)�1R(z,G)x dz.

Our aim is to show that vµ(t)x = S(t)R(µ,G)x. Then,

S(t)x = lim
µ!1

S(t)µR(µ,G)x = lim
µ!1

µvµ(t)x =
1

2⇡i

ˆ
�
eztR(z,G)x dz,

where the first equality follows from Proposition G.4.2 and the second is ob-
tained by splitting � = �r,1 [ �r,2 with �r,1 = {z 2 � : kzk 6 r} and
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✓0

✓

�

Fig. G.2: The contour �

�r,2 = {z 2 � : kzk > r}: for large fixed r, the integral over �r,2 is less
than ", uniformly with respect to µ > 2r, while the integral over �r,1 tends
to 1

2⇡i

´
�
r,1

eztR(z,G)x dz by dominated convergence. Now pass to the limit
r ! 1.

The strategy is to prove that t 7! vµ(t)x is a weak solution of the Cauchy
problem

(

u0(t) = Gu(t), t 2 [0, T ],

u(0) = R(µ,G)x.

The uniqueness part of Theorem G.3.2 (with f = 0) then implies vµ(t)x =
S(t)R(µ,G)x.

It is easily checked that t 7! vµ(t) is integrable on [0, T ] (even continuous),
and for all x⇤ 2 D(G⇤) we obtain
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ˆ t

0

hvµ(s), G⇤x⇤i ds =
ˆ t

0

1

2⇡i

ˆ
�
ezs(µ� z)�1hR(z,G)x,G⇤x⇤i dz ds

=

ˆ t

0

1

2⇡i

ˆ
�
ezs(µ� z)�1hzR(z,G)x� x, x⇤i dz ds

(1)

=

ˆ t

0

1

2⇡i

ˆ
�
ezs(µ� z)�1hzR(z,G)x, x⇤i dz ds

=
1

2⇡i

ˆ
�
(ezt � 1)(µ� z)�1hR(z,G)x, x⇤i dz

(2)

=
1

2⇡i

ˆ
�
ezt(µ� z)�1hR(z,G)x, x⇤i dz � hR(µ,G)x, x⇤i

= hvµ(t), x⇤i.

Here the equality (1) follows from the observation that by Cauchy’s theorem
we have

1

2⇡i

ˆ
�
ezs(µ� z)�1 dz = 0,

since µ 62 B is on the right of � . The equality (2) follows from

1

2⇡i

ˆ
�
(µ� z)�1hR(z,G)x, x⇤i dz = hR(µ,G)x, x⇤i

by the analyticity of the resolvent and Cauchy’s theorem.
Step 2 – By now we have shown that

S(t)x =
1

2⇡i

ˆ
�
eztR(z,G)x dz, t > 0, x 2 X,

with � as in Step 1. This integral converges absolutely for all t > 0 and
x 2 X, and extends to a bounded analytic function on the sector ⌃⌘0 , where
⌘0 = ✓0 � 1

2

⇡, given by

S(⇣)x =
1

2⇡i

ˆ
�
ez⇣R(z,G)x dz, ⇣ 2 ⌃⌘0 , x 2 X.

To estimate the norm of S(⇣), by Cauchy’s theorem we may take � = �✓0,B
r

with Br = B(0, r) the ball of radius r and centre 0; the choice of r will be
made shortly.

Put M := sup�2⌃
✓

k�R(�, G)k and fix ⇣ 2 ⌃⌘0 . The arc {|z| = r, | arg(z)| 6
✓} contributes at most

1

2⇡
· 2✓r · exp(r|⇣|)M

r
=
✓M

⇡
exp(r|⇣|),

while each of the rays {|z| > r, arg(z) = ±✓} contributes at most

1

2⇡
· M
r

ˆ 1

r
exp(�⇢|⇣|| cos(✓)|) d⇢ 6 1

2⇡
· M

|⇣|| cos(✓)| .
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It follows that

kS(⇣)k 6 M

⇡

⇣

✓ exp(r|⇣|) + 1

r|⇣|| cos(✓)|

⌘

.

Taking r = 1/|⇣| and keeping in mind that the estimate holds for all ✓0 2
( 1
2

⇡, ✓), we obtain the uniform bound

kS(⇣)k 6 M

⇡

⇣

✓e+
1

| cos(✓)|

⌘

, z 2 ⌃⌘, ⌘ :=
1

2
⇡ � ✓. (G.5)

It remains to prove strong continuity on each of the sectors ⌃✓00� 1
2⇡

with
1

2

< ✓00 < ✓0. First let x 2 D(G). Fix ⇣ 2 ⌃✓00� 1
2⇡

and write x = R(µ,G)y

with µ 2 ⌃✓0 \ ⌃✓00 . Inserting this in the integral expression for S(⇣)x, using
the resolvent identity to rewrite R(z,G)R(µ)y = (R(z,G)�R(µ,G))/(µ� z).
Arguing as in Step 1, the integral corresponding to the term with R(µ,G)
vanishes by Cauchy’s theorem and the choice of µ, and we obtain

S(⇣)x =
1

2⇡i

ˆ
�
ez⇣(µ� z)�1R(z,G)y dz.

Letting ⇣ ! 0 inside ⌃✓00� 1
2⇡

, we see that S(⇣)x converges to 1

2⇡i

´
� (µ �

z)�1R(z,G)y d = R(µ,G)y = x by dominated convergence.
This proves the convergence S(⇣)x ! x for x 2 D(G). In view of the

uniform boundedness of S(⇣) on ⌃✓00� 1
2⇡

, the convergence for general x 2 X

follows from this. By the choices of ✓0 and ✓00, this also proves the inequality
!
res

(G) > 1

2

⇡ + !
holo

(G). ⇤

The following result characterises analytic C
0

-semigroups directly in terms of
the semigroup and its generator, without reference to the resolvent.

Theorem G.5.3. Let G be the generator of a C
0

-semigroup (S(t))t>0

on a
Banach space X. The following assertions are equivalent:

(1) (S(t))t>0

is bounded analytic;
(2) S(t)x 2 D(G) for all x 2 X and t > 0, and

sup
t>0

tkGS(t)k < 1.

Proof. (1))(2): Fix t > 0 and x 2 X. Since

M := sup
z2�

kGR(z,G)k = sup
z2�

kzR(z,G)� Ik

is finite, the integral 1

2⇡i

´
� etzR(z,G)Gx dz converges absolutely. From Hille’s

theorem we deduce that S(t)x 2 D(G) and

GS(t)x =
1

2⇡i

ˆ
�
etzR(z,G)Gx dz.
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By estimating this integral and letting the radius of the ball B in the definition
of � tend to 0, it follows moreover that

tkGS(t)xk 6 M

⇡
kxk
ˆ 1

0

te⇢t cos ✓
0
d⇢ =

M

⇡| cos ✓0|kxk.

(2))(1): For all x 2 D(Gn), t 7! S(t)x is n times continuously differ-
entiable and S(n)(t)x = GnS(t)x = (GS(t/n))nx. Since D(Gn) is dense, the
boundedness of GS(t/n) and closedness of the nth derivative in C([0, T ];X)
together imply that the same conclusion holds for x 2 X. Moreover,

kS(n)(t)xk 6 Cnnn

tn
kxk,

where C is the supremum in (2). From n! > nn/en we obtain that for each
t > 0 the series

S(z)x :=

1
X

n=0

1

n!
(z � t)nS(n)(t)x

converges absolutely on the ball B(t, rt/eC) for all 0 < r < 1 and defines
an analytic function there. The union of these balls is the sector ⌃⌘ with
sin ⌘ = 1/eC. We shall complete the proof by showing that S(z) is uniformly
bounded and satisfies limz!0

S(z)x = x in ⌃⌘0 for each 0 < ⌘0 < ⌘. To this
end we fix 0 < r < 1. For z 2 B(t, rt/eC) we have

kS(z)xk 6
1
X

n=0

1

n!
rn(t/eC)n

Cnnn

tn
kxk 6

1
X

n=0

rnkxk.

This proves uniform boundedness on the sectors ⌃⌘0 . To prove strong continu-
ity it then suffices to consider x 2 D(G), for which it follows from estimating
the identity

S(z)x� x = ei✓
ˆ r

0

S(sei✓)Gx ds

where z = rei✓. ⇤

Remark G.5.4. Condition (2) gives a ‘real’ characterisation of analyticity. In
the context of semigroups on real Banach spaces this condition could be taken
as the definition for analyticity. This has the advantage of avoiding the digres-
sions through complexified spaces. In concrete examples, however, it is often
easier to check analyticity using Definition G.5.1 or condition (2) of Theorem
G.5.2.

By a rescaling argument we obtain:

Corollary G.5.5. If G generates an analytic C
0

-semigroup (S(t))t>0

on X,
then

lim sup
t#0

tkGS(t)k < 1.
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Example G.5.6 (Laplacian on Rd). Consider the Laplacian � =
Pd

j=1

@2

@x2
j

on Lp(Rd;X), p 2 [1,1), with domain D(�) = H2,p(R;X), the space of
all f 2 Lp(Rd;X) admitting a weak Laplacian in Lp(Rd;X) in the sense of
Section 5.5.

We show that � is the generator of the heat semigroup (H(t))t>0

on
Lp(Rd) given by H(0) = I and

H(t)f := kt ⇤ f, t > 0,

where kt(x) = (4⇡t)�d/2e�|x|2/(4t) is the heat kernel. By Young’s inequal-
ity, kH(t)k 6 kktkL1

(Rd

)

= 1 (see Example 8.2.5) and hence each H(t) is a
contraction.

Let for the moment B denote the generator of this semigroup. Taking
Fourier transforms, for t > 0 and Schwartz functions f 2 S (Rd;X) we have

F
⇣H(t)f � f

t

⌘

=
e�4t⇡2|·|2 � 1

t
Ff.

As t # 0 the right-hand side tends to �4⇡2| · |2Ff = F (�f) in S (Rd;X).
Therefore, by the continuity of F (see Proposition 2.4.22), limt#0

1

t (H(t)f �
f) ! �f in S (Rd;X) and hence in Lp(Rd;X). It follows that f 2 D(B) and
Bf = �f . By repeating the density argument of the preceding example, this
time using Lemma 5.5.5, the domain of the generator of H(t) is seen to equal
H2,p(R;X), and therefore B = � with equality of domains.

We claim that for z 2 C with <z > 0, the complex heat kernel kz still be-
longs to L1(Rd), and the function z 7! kz is holomorphic as an L1(Rd)-valued
function. To check this let t = <z and note that, with c(z) := cos(arg z),
|z| = t/c(z) and <(1/z) = <z̄/|z|2 = t�1c2(z). Hence we find that

ˆ
Rd

|kz(x)| dx = c�d/2(z)

ˆ
Rd

kt/c2(z)(x) dx 6 1

cosd/2 ✓
.

It follows that the heat semigroup extends analytically to {z 2 C : <z > 0}
by the formula

H(z)f = kz ⇤ f, <z > 0.

Moreover, H(z) is uniformly bounded and strongly continuous on every sector
⌃! with 0 < ! < 1

2

⇡.
Finally let us mention that if p 2 (1,1) and X is a UMD space, then

D(�) = H2,p(Rd;X) = W 2,p(Rd;X) by Theorem 5.6.11.

G.6 Stone’s theorem

In this final section we prove a celebrated result due to Stone which asserts
that a linear operator A with dense domain D(A) in a complex Hilbert space
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H is self-adjoint if and only if iA generates a strongly continuous group of
unitary operators on H.

When A is a densely defined linear operator on a Hilbert space H, upon
identifying H with its dual H⇤ via the Riesz representation theorem the ad-
joint operator A⇤ on H⇤ induces an operator on H, which we shall denote by
A?. Thus, by definition, D(A?) consists of all h 2 H with the property that
there exists an element h0 2 H such that

(h|h0) = (Ax|h), x 2 D(A),

and in this case A?h := h0. Thus, by definition, we have the identity

(Ah|h0) = (h|A?h0), h 2 D(A), h0 2 D(A?).

A densely defined operator A on a Hilbert space is called self-adjoint if D(A) =
D(A?) and Ah = A?h for all h 2 D(A) = D(A?). We need the following
standard fact about the spectra of self-adjoint operators.

Proposition G.6.1. If A is a self-adjoint operator on a Hilbert space H, then
�(A) ✓ R and

kR(�, A)k 6 1

|=�| , � 2 C \ R.

Proof. Let � = ↵ + i� with � 6= 0. For all x 2 D(A) we have (Ax|x) =
(x|Ax) = (Ax|x) and therefore (Ax|x) 2 R. Then,

k(��A)xkkxk > |((��A)x|x)| =
�

�↵(x|x)� (Ax|x) + i�(x|x)
�

� > |�|kxk2.

This implies that k(� � A)xk > �kxk and therefore � � A is injective and
has closed range. The same argument can be applied to � and allows us to
conclude that ��A is injective and has closed range.

We claim that �� A has dense range. If this were not the case, we could
pick a non-zero x orthogonal to the range of ��A. Then for all y 2 D(A) we
have (x|(� � A)y) = 0, implying that x 2 D(A?) = D(A) and (� � A)x|y) =
(x|(� � A)y) = 0 for all y 2 D(A). Since D(A) is dense (this is part of
the definition of a self-adjoint operator), it follows that (� � A)x = 0. This
contradicts the injectivity of ��A.

It follows that ��A is bijective, hence invertible, and the inequality k(��
A)xk > �kxk implies kR(�, A)k 6 1/|�|. ⇤

Theorem G.6.2 (Stone). For a densely defined operator (A,D(A)) in H,
the following assertions are equivalent:

(1) A is self-adjoint;
(2) iA is the generator of a C

0

-group of unitary operators.
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Proof. (1))(2): Suppose first that A is self-adjoint. We could use the
spectral theorem for (possibly unbounded) self-adjoint operators to define
U(t) = exp(itA), t 2 R, and proceed by showing that this defines a unitary
C

0

-group, but for reasons of self-containedness we will follow a more elemen-
tary approach.

By Proposition G.6.1, the spectrum of A is contained in the real line and for
all � 2 C\R we have k(��A)�1k 6 1/|=�|. Hence by the Hille–Yosida theorem
(Theorem G.4.3) ±iA generate C

0

-contraction semigroups, say (S±(t))t>0

.
For x 2 D(A), differentiating f(t) := S�(t)S+

(t)x gives f 0(t) = �iAf(t) +
iAf(t) = 0, so f is constant, and since f(0) = x it follows that S�(t)S+

(t)x =
x for all x 2 D(A). By boundedness this extends to all x 2 X and therefore
S�(t)S+

(t) = I. The same argument proves that also S
+

(t)Si(t) = I. Also,
since (iA)? = �iA? = �iA, we have S�(t) = S?

+

(t) and vice versa. Setting
U(t) := S

+

(t) and U(�t) := S�(t), it follows that the operators U(±t) are
unitary. The verification of the group property U(r + s) = U(r)U(s) is now
clear, and so is the strong continuity. Thus (U(t))t2R is a C

0

-group, and its
generator equals iA.

(2))(1): Suppose iA generates the unitary C
0

-group (U(t))t2R. From
U(�t) = (U(t))�1 = U?(t) we see that (U?(t))t2R is a strongly continuous
group as well. To determine its generator, which we call B for the moment,
suppose that x 2 D(A) and h 2 D(B). Then

(x|Bh) = lim
t!0

1

t
(x|U?(t)h� h) = lim

t!0

1

t
(U(t)x� x|h) = (iAx|h).

This shows that h 2 D(A?) and �iA? = (iA)?h = Bh. In the converse
direction, if h 2 D(A?), then for all x 2 D(A) we have

(x|� iA?h) = (iAx|h) = lim
t!0

1

t
(U(t)x�x|h) = lim

t!0

1

t
(x|U?(t)h�h) = (x|Bh).

This shows that h 2 D(B) and Bh = �iA?h. We conclude that B = �iA?

with equal domains. But then the identity

1

t
(U(�t)x� x) =

1

t
(U?(t)x� x)

shows that x 2 D(A) if and only if x 2 D(A⇤) and �iAx = Bx = �iA?x. ⇤

G.7 Notes

Section G.1

The material of this section is entirely standard and can be found in most
textbooks on Functional Analysis.
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Section G.2

Excellent introductions to the theory of C
0

-semigroups include the mono-
graphs Davies [1980], Engel and Nagel [2000], Goldstein [1985], Pazy [1983],
Tanabe [1979]. The monumental 1957 treatise of Hille and Phillips [1957]
is freely available on-line (http://www.ams.org/ online_bks/coll31/). A
fair amount of semigroup theory can be understood from the point of view of
Laplace transforms; this aspect is highlighted in Arendt, Batty, Hieber, and
Neubrander [2011].

Propositions G.2.5 and G.2.7 are due to Phillips [1955] and Phillips [1951],
respectively; the proof of the latter presented here is from Miyadera [1951].
See also Hille and Phillips [1957], where further references are given. Corollary
G.2.6 admits a partial extension to a larger class of Banach spaces: it was
observed in Van Neerven [1990] that if X⇤ has the RNP, then the adjoint
semigroup (S⇤(t))t>0

is C>0

. In particular, the adjoint of a C
0

-group on a
Banach space whose dual has the RNP is a C

0

-group again.
The material on adjoint semigroups is taken from Van Neerven [1992].

Section G.3

General references on evolution equations include Amann [1995], Lunardi
[1995], Prüss and Simonett [2016], Tanabe [1979, 1997], Yagi [2010].

Theorem G.3.2 is due to Ball [1977], who also proved the following con-
verse: if (G.1) admits a unique weak solution for all f 2 L1(0, T ;X) and initial
values x 2 X, then G is the generator of a C

0

-semigroup on X.
The convolution formula (G.2) is often taken as the definition of a mild

solution. Typical questions then revolve around proving regularity properties
of mild solutions in terms of properties of the forcing function f and the
semigroup (S(t))t>0

. We refer to [Pazy, 1983, Chapter 4] for some elementary
results in this direction. For the treatment of certain classes of non-linear
Cauchy problems it is of particular importance to know whether the mild
solutions have maximal Lp-regularity, meaning that for all f 2 Lp(0, T ;X) the
solution u belongs to W 1,p(0, T ;X) \ Lp(0, T ;D(A)). A necessary condition
for this is that (S(t))t>0

be analytic; it is a classical result that this condition
is also sufficient in Hilbert spaces. For analytic C

0

-semigroups on Banach
spaces the maximal Lp-regularity problem, which asks if the converse holds, has
recently be settled by Kalton and Lancien [2000] (who gave a counterexample
in an Lp-space) and Weis [2001b] (where necessary and sufficient conditions
were obtained for maximal Lp-regularity in UMD Banach spaces). We take
up this topic in more detail in the third volume.

Section G.4

The Hille–Yosida theorem (Theorem G.4.3) can be generalised to arbitrary C
0

-
semigroups in two steps. First, if (S(t))t>0

is uniformly bounded, the version
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presented in the text may be applied in the Banach space (X, ||| · |||), where
|||x||| := supt>0

kS(t)xk. With respect to this equivalent norm, (S(t))t>0

is
contractive. Secondly, if (S(t))t>0

is arbitrary and satisfies kS(t)k 6 Me!t for
all t > 0, the previous version of the theorem may be applied to the semigroup
(e�!tS(t))t>0

which is uniformly bounded. Upon going through the details one
arrives at the following result.

Theorem G.7.1 (Hille–Yosida). For a densely defined operator G on a
Banach space X and constants M > 1 and ! 2 R, the following assertions
are equivalent:

(1) G generates a C
0

-semigroup on X satisfying kS(t)k 6 Me!t for all t > 0;
(2) {� 2 C : � > !} ✓ %(A) and k(R(�, A))kk 6 M/(�� !)k for all � > !

and k = 1, 2, . . . ;
(3) {� 2 C : <� > !} ✓ %(A) and k(R(�, A))�1)kk 6 M/(<�� !)k for all

<� > ! and k = 1, 2, . . . .

Theorem G.7.1, in the form stated, was obtained independently and simul-
taneously by Hille [1948] and Yosida [1948]; the above extension to arbitrary
C

0

-semigroups was found independently by Feller [1953], Miyadera [1952], and
Phillips [1953].

Section G.5

A comprehensive treatment of analytic semigroups and their applications to
evolution equations is given in Lunardi [1995].

An example of a bounded analytic C
0

-semigroup on C2 that is contractive
on the positive real line but not on any larger sector was given by Fuhrman
[1995] where it was studied for different purposes; that it has the properties
just mentioned here was shown in Goldys and Van Neerven [2003].

Section G.6

Theorem G.6.2 is from Stone [1932].
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Hardy spaces of holomorphic functions

Holomorphic functions on the sectors

⌃# = {z 2 C \ {0} : | arg(z)| < #},

play an important role in this volume. Here, and everywhere else in this book,
it is implicit that 0 < # < ⇡ and arguments are taken in (�⇡,⇡). The sector
⌃# is the bi-holomorphic image under exponential function exp(z) of the strip

S# := {z 2 C : |=z| < #}.

Although we are primarily interested in holomorphic functions on sectors,
we shall study holomorphic functions on strips first, and later transfer their
properties to sectors. The advantage of this is that the proofs for the strip are
notationally a bit easier.

H.1 Hardy spaces on a strip

Fix a real number # > 0.

Definition H.1.1 (The Hardy spaces Hp(S#)). For 1 6 p 6 1, Hp(S#)
is the Banach space of all holomorphic functions f : S# ! C for which

kfkHp

(S
#

)

:= sup
|y|<#

kt 7! f(t+ iy)kLp

(R) < 1.

Proposition H.1.2. Let 1 6 p 6 1. If f 2 Hp(S#), then

sup
x2R

�

�n 7! f(x+ n)
�

�

`p(Z) 6
⇣ 4

⇡
_ 2

⇡#

�

1/pkfkHp

(S
#

)

Proof. We will give the proof for 1 6 p < 1, the case p = 1 being easier.
For each fixed x 2 R, the discs Dn = {z 2 C : |z � (x+ n)| < 1

2

^ #}, n 2 Z,
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are disjoint and contained in S 1
2^#

. By the mean value theorem, Jensen’s
inequality, and Fubini’s theorem,
X

n2Z
|f(x+ n)|p =

X

n2Z

�

�

�

1

|Dn|

ˆ
D

n

f(t+ iy) dt dy
�

�

�

p

6
X

n2Z

1

|Dn|

ˆ
D

n

|f(t+ iy)|p dt dy

6 1

⇡( 1
2

^ #)2

ˆ
{|=z|< 1

2^#}
|f(t+ iy)|p dt dy

6 2

⇡( 1
2

^ #)
sup
|y|<#

�

�t 7! f(t+ iy)
�

�

p

Lp

(R) 6 (
4

⇡
_ 2

⇡#
)kfkpHp

(S
#

)

.

⇤

Proposition H.1.3. Let 1 6 p 6 1. If f 2 Hp(S#), then for all 0 < ⌘ < #
we have f 2 H1(S⌘) and

kfkH1
(S

⌘

)

6
⇣ 2

⇡(#� ⌘)

⌘

1/p
kfkHp

(S
#

)

.

Proof. Fix 0 < ⌘ < # and z 2 S⌘. Let � = #�⌘ and D = {w 2 C : |z�w| < �}
By the mean value theorem, Jensen’s inequality, and Fubini’s theorem,

|f(z)|p 6 1

|D|

ˆ
D
|f(t+ iy)|p dt dy

6 1

⇡�2

ˆ
{|y|<�}

kt 7! f(t+ iy)kpLp

(R) dy 6 2

⇡�
kfkpHp

(S
#

)

.

⇤

The following convergence result will be needed.

Lemma H.1.4. Let f 2 H1(S#). Then for all 0 < ⌘ < #,

lim
|x|!1

sup
|y|6⌘

|f(x+ iy)| = 0.

Proof. First observe that
ˆ #

�#

ˆ
R
|f(u+ iv)| du dv 6 2#kfkH1

(S
#

)

.

Fix x 2 R and |y| 6 ⌘, put � := (# � ⌘)/2, and consider the disc D := {z 2
C : |z � x � iy| < �} and the rectangle R := {u + iv 2 C : |u| < �, |v| < #}.
By the mean value theorem,

|f(x+ iy)| 6 1

|D|

ˆ
D
|f(u+ iv)| d(u, v) 6 1

⇡�2

ˆ
R+x

|f(u+ iv)| d(u, v).
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Therefore,

lim
|x|!1

sup
|y|6⌘

|f(x+ iy)| 6 lim
|x|!1

1

⇡�2

ˆ
R+x

|f(u+ iv)| d(u, v) = 0

by the dominated convergence theorem. ⇤

The following Lp-version of the classical three lines lemma (Lemma 2.2.2)
holds:

Proposition H.1.5 (Three lines lemma, Lp-version for the strip). Let
1 6 p 6 1. If f 2 Hp(S#), then for all �# < a < c < b < # we have

kt 7! f(t+ ic)kp 6 kt 7! f(t+ ia)k
c�a

b�a

p kt 7! f(t+ ib)k
b�c

b�a

p .

Proof. By Proposition H.1.3, f is bounded on S⌘ for all 0 < ⌘ < #, so in
particular f is bounded on {a 6 |=z| 6 b}. There is no loss of generality in
assuming that a = 0, b = 1, and c = ✓. We apply Lemma C.2.10 (which we
rotate over 1

2

⇡ for this purpose). We then find

|f(s+ i✓)| 6
⇣

(|f(·)| ⇤ p
0

(✓, ·))(�s)
⌘

1�✓⇣
(|f(·+ i)| ⇤ p

1

(✓, ·))(�s)
⌘✓

,

where p
0

(✓, t) and p
1

(✓, t) are the L1-normalised functions obtained by rotat-
ing the functions fP

0

(✓, t) = P
0

(✓, t)/(1�✓) and fP
1

(✓, t) = P
1

(✓, t)/✓ appearing
in the Poisson formula for the strip. Taking Lp-norms and using Hölder’s in-
equality with exponents 1

1�✓ and 1

✓ , it follows that

ks 7! f(s+ i✓)kp 6
⇣

�

�|f(·)| ⇤ p
0

(✓, ·)
�

�

p

⌘

1�✓⇣
�

�|f(·+ i)| ⇤ p
1

(✓, ·)
�

�

p

⌘✓

6 kf(·)k1�✓p kf(·+ i)k✓p,

where in the last step we applied Young’s inequality. ⇤

We continue with an interpolation result. It (or rather, its sectorial version
given below) will only be needed once, namely in the proof of Proposition
10.2.28.

Proposition H.1.6 (Interpolating sequences for the strip). For all real
numbers a > 0 the sequence aZ is an interpolating sequence for S#, i.e., for
all bounded sequences (cn)n2Z there exists f 2 H1(S#) such that

f(an) = cn for all n 2 Z.

Moreover, there is a constant M = Ma such that for any given sequence
(cn)n2Z 2 `1(Z) an interpolating function can be found of norm

kfkH1
(S

#

)

6 Mkck`1(Z).
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Proof. By scaling it suffices to consider the case # = 1. The function
i exp( 1

2

⇡z) maps the unit strip S conformally onto the right half-plane C
+

=
{=z > 0}. On C

+

, a classical theorem due to Carleson asserts that a necessary
and sufficient condition for a sequence (⇣n)n2Z to be an interpolating sequence
is that

inf
k2Z

Y

j2Z\{k}

�

�

�

⇣k � ⇣j
⇣k � ⇣j

�

�

�

> 0.

Let us now consider the sequence aZ in S with a > 0. With b := e
1
2⇡a this

corresponds to the sequence ⇣n = (ibn)n2Z in C
+

. Then

Y

j2Z\{k}

�

�

�

⇣k � ⇣j
⇣k � ⇣j

�

�

�

=
Y

j2Z\{k}

�

�

�

bk � bj

bk + bj

�

�

�

=
Y

n 6=0

�

�

�

bn � 1

bn + 1

�

�

�

.

Now
� :=

Y

n6�1

�

�

�

bn � 1

bn + 1

�

�

�

=
Y

n>1

�

�

�

bn � 1

bn + 1

�

�

�

=
Y

n>1

⇣

1� 2

bn + 1

⌘

> 0

since
P

n>1

2

bn+1

< 1 (note that b > 1), and therefore Carleson’s criterion is
satisfied and we find the existence of f 2 H1(C

+

) with kfkH1
(C+)

6 C�. ⇤

H.2 Hardy spaces on a sector

As we have already observed, for 0 < # < ⇡ the function z 7! exp(z) maps
the strip S# bi-holomorphically onto the sector ⌃#. Under this mapping, the
lines {=z = r} are mapped to the rays {arg(z) = r}. Furthermore, the image
measure of the Lebesgue measure dt on these lines is the measure dt/t along
the rays. Either by using these observations or by redoing the proofs, most of
the results proved in the preceding sections can be transferred to sectors.

Throughout the discussion we fix 0 < # < ⇡.

Definition H.2.1 (The Hardy spaces Hp(⌃#)). For 1 6 p 6 1, Hp(⌃#)
is the Banach space of all holomorphic functions f : ⌃# ! C for which

kfkHp

(⌃
#

)

:= sup
|⌫|<#

kt 7! f(ei⌫t)kLp

(R+, dt

t

)

< 1.

Remark H.2.2. A subtle point arises for # = 1

2

⇡: in that case S 1
2⇡

= C
+

is the
open right-half plane and the spaces Hp(S 1

2⇡
) introduced here should not be

confused with the Hardy spaces obtained by imposing that

sup
s>0

�

�t 7! f(s+ it)
�

�

Lp

(R)

be finite.
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We will need the sectorial versions of the results in the previous sections. For
referencing purposes we document them here.

Proposition H.2.3. Let 1 6 p 6 1. If f 2 Hp(⌃#), then

sup
t>0

�

�n 7! f(2nt)
�

�

`p(Z) 6 K1/p
# kfkHp

(⌃
#

)

,

where K# = 4

⇡ log(2)

_ 2

⇡# .

Proof. Let #0 = #/ log(2) and define g : S#0 ! C by g(z) = f(2z) =
f(ez log(2)). Fix t > 0 and s = log(t)/ log(2). Then by Proposition H.1.2

X

n2Z
|f(2nt)|p =

X

n2Z
|g(s+ n)|p 6

⇣ 4

⇡
_ 2

⇡#0

⌘

kgkpHp

(S
#

0 )

= K# log(2)kgkpHp

(S
#

0 )
= K#kfkpHp

(⌃
#

)

.

⇤

Proposition H.2.4. Let 1 6 p 6 1. If f 2 Hp(⌃#), then for all 0 < ⌘ < #
we have f 2 H1(⌃⌘) and

kfkH1
(⌃

⌘

)

6
⇣ 2

⇡(✓ � ⌘)

⌘

1/p
kfkHp

(⌃
#

)

.

Proposition H.2.5. Let f 2 H1(S#). Then for all 0 < ⌘ < #,

sup
|y|6⌘

|f(reiy)| ! 0 as r ! 1 or r # 0.

Proposition H.2.6 (Three lines lemma, Lp-version for the sector).
Let 1 6 p 6 1. If f 2 Hp(⌃#), then for all �# < ⌫ < � < ⌘ < # we have

kt 7! f(tei�)kLp

(R+, dt

t

)

6 kt 7! f(tei⌫)k
��⌫

⌘�⌫

Lp

(R+, dt

t

)

kt 7! f(tei⌘)k
⌘��

⌘�⌫

Lp

(R+, dt

t

)

.

Proposition H.2.7 (Interpolating sequences for the sector). For all
real b > 1 and all 0 < # < ⇡ the sequence (bn)n2Z is an interpolating sequence
for ⌃#. Moreover, there is a constant Mb such that for any given sequence
(cn)n2Z 2 `1(Z) an interpolating function can be found of norm

kfkH1
(⌃

#

)

6 Mbkck`1(Z).

H.3 The Franks–McIntosh decomposition

We continue with a useful decomposition for vector-valued H1-functions.
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Theorem H.3.1 (Franks–McIntosh). Given the angles 0 < µ < ⌫ < ⇡,
there exist sequences (fn)n>1

, (gn)n>1

in H1(⌃µ) such that the following two
assertions hold:

(i) for all z 2 ⌃µ we have
X

n>1

|fn(z)| 6 1 and
X

n>1

|gn(z)| 6 1;

(ii) every function F 2 H1(⌃⌫ ;X), where X is any Banach space, can be
represented on ⌃µ as a pointwise convergent sum

F (z) =
X

n>1

fn(z)gn(z)xn, z 2 ⌃µ,

with coefficients xn 2 X satisfying

sup
n>1

kxnk .µ,⌫ kFkH1
(⌃

⌫

;X)

.

For the proof of this theorem we need to introduce some notation. Choose
⇢ > 1 so that

⇢� 1 =
1

2
dist(ei� ,⌃µ

�

=
1

2
sin(

1

2
(⌫ � µ)), (H.1)

where � := 1

2

(µ+ ⌫). See Figure (H.1). For k 2 Z we define the line segments
I+k and I�k by

I±k := {re±i� : ⇢k 6 r 6 ⇢k+1}.

The union of these segments is @⌃� \ {0}. For � 2 {+,�} let (e�j,0)j>0

be
the orthonormal basis for L2(I�

0

, |dz|/|z|) obtained by a Gram–Schmidt or-
thogonalisation procedure applied to the sequence (zj)j>0

. Thus each e�j,0 is
a polynomial of degree j which satisfies

ˆ
I�

0

zle�j,0(z)
|dz|
|z| = 0, l = 0, 1, . . . , j � 1. (H.2)

For z 2 I�k and k 2 Z set

e�j,k(z) := e�j,0(⇢
�kz). (H.3)

Then (e�j,k)j>0

is an orthonormal basis for L2(I�k , |dz|/|z|). Extending these
functions identically zero on ⌃� \ I�k , we obtain an orthonormal basis for
L2(@⌃� , |dz|/|z|).

For z, ⇣ 2 ⌃� , z 6= ⇣, set

K(z, ⇣) :=
z1/2⇣1/2

z � ⇣
. (H.4)
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µ � ⌫

1

ei�

⇢� 1

Fig. H.1: The definition of ⇢

By Cauchy’s theorem, for all g 2 H1(⌃�) and | arg(⇣)| < �0 < � we have

g(⇣) = ⇣1/2 · 1

2⇡i

ˆ
@⌃

�

0

z�1/2g(z)

z � ⇣
dz =

1

2⇡i

ˆ
@⌃

�

0

g(z)K(z, ⇣)
dz

z
. (H.5)

Motivated by this formula we define the holomorphic functions ��j,k : ⌃� ! C,

��j,k(⇣) :=
1

2⇡i

ˆ
@⌃

�

0

e�j,k(z)K(z, ⇣)
dz

z
, (H.6)

where �0 = �0(⇣) is as before. By (H.3),

��j,k(⇣) = ��j,0(⇢
�k⇣), ⌘ 2 ⌃� .

For these functions we have the following decay estimate.

Lemma H.3.2. There is a constant C > 0, depending only on ⇢, such that if
⇣ 2 ⌃µ and n 2 Z are such that ⇢n < |⇣| 6 ⇢n+1, then

|��j,k(⇣)| 6 C⇢�
1
2 |k�n|2�j , � 2 {+,�}, j > 0, k 2 Z.
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As a consequence, for all p > 0 there is a constant cp such that

sup
⇣2⌃

µ

X

�2{+,�}

X

j>0

X

k2Z
|��j,k(⇣)|p 6 cp.

Proof. Fix ⇣ 2 ⌃µ and let n 2 Z be such that ⇢n < |⇣| 6 ⇢n+1. Let B�
k denote

the ball of radius ⇢k+1 � ⇢k centred at z�k := 1

2

(⇢k+1 � ⇢k)e�i� . By (H.1) this
ball does not intersect ⌃µ or @⌃⌫ .

Suppose z 2 B�
k . Using (H.4) and (H.1) we see the following (see Figure

H.2):

• if n > k + 2, then |z � ⇣| > ⇢n � ⇢k+1 > ⇢n�1(⇢� 1);
• if k � 1 6 n 6 k + 1, then |z � ⇣| > ⇢k � ⇢k�1 = ⇢k�1(⇢� 1);
• if n 6 k � 2, then |z � ⇣| > ⇢k � ⇢n+1 > ⇢k � ⇢k�1 > ⇢k�1(⇢� 1).

In all three cases we have |z � ⇣| > ⇢max{n,k}⇢�2(⇢� 1). As a consequence,

sup
z2B�

k

|K(z, ⇣)| = sup
z2B�

k

�

�

�

z1/2⇣1/2

z � ⇣

�

�

�

6 ⇢2(⇢� 1)�1⇢�max{k,n} sup
z2B�

k

|z1/2⇣1/2|

6 ⇢2(⇢� 1)�1⇢�max{k,n}⇢(k+1)/2⇢(n+1)/2 = c⇢�|k�n|/2,

where c = ⇢3(⇢� 1)�1 only depends on ⇢ (and hence on µ and ⌫). Let

K(z, ⇣) =
X

m>0

b�m,k(⇣)
⇣ z � z�k
⇢k+1 � ⇢k

⌘m

be the power series of K(·, ⇣) on B�
k in the variable (z � z�k )/(⇢

k+1 � ⇢k).
Then

⇣

X

m>0

|b�m,k(⇣)|2
⌘

1/2
=
⇣

ˆ
@B�

k

|K(z, ⇣)|2 |dz|
2⇡(⇢k+1 � ⇢k)

⌘

1/2
6 c⇢�

1
2 |k�n|.

The interval I�k is contained in a closed ball of half the radius of B�
k . Thus,

by the Cauchy–Schwarz inequality, for z 2 I�k and j 2 Z we obtain

1
X

m=j

�

�

�

b�m,k(⇣)
⇣ z � z�k
⇢k+1 � ⇢k

⌘m�
�

�

6
⇣

1
X

m=j

|b�m,k(⇣)|2
⌘

1/2⇣ 1
X

m=j

1

22m

⌘

1/2

6 c⇢�
1
2 |k�n|2�j+ 1

2 .

Finally, by (H.2), e�j,k is orthogonal to (z � z�k )
l for 0 6 l 6 j � 1, and since

e�j,k is supported in I�k we obtain

|��j,k(⇣)| =
�

�

�

1

2⇡i

ˆ
@⌃

�

e�j,k(z)K(z, ⇣)
dz

z

�

�

�
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ei�

µ� ⌫

11 ⇢ ⇢2 ⇢3 ⇢4 ⇢5

z2

z

⇣1

⇣2

Fig. H.2: |z � ⇣| > ⇢n � ⇢k+1 for n > k + 2 and |z � ⇣| > ⇢k � ⇢k�1 for
k � 1 6 n 6 k + 1.

=
�

�

�

1

2⇡i

ˆ
I�

k

e�j,k(z)
1
X

m=j

b�m,k(⇣)
⇣ z � z�k
⇢k+1 � ⇢k

⌘m dz

z

�

�

�

6 1

2⇡

ˆ
I�

k

|e�j,k(z)|
1
X

m=j

�

�

�

b�m,k(⇣)
⇣ z � z�k
⇢k+1 � ⇢k

⌘m�
�

�

|dz|
|z|

6 log1/2(⇢)

2⇡
c⇢�

1
2 |k�n|2�j+ 1

2 .

⇤

Proof of Theorem H.3.1. Fix F 2 H1(⌃⌫ ;X).
Step 1 – In this step we show that F can be represented as
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F (⇣) =
X

�2{+,�}

X

j>0

X

k2Z
��j,k ⌦ x�j,k, ⇣ 2 ⌃µ, (H.7)

where
x�j,k :=

ˆ
I�

k

F (z)e�j,k(z)
|dz|
|z| .

We begin by noting that

kx�j,kk2 6
ˆ
I�

k

|F (z)|2 |dz|
|z| 6 log(⇢)kFk2H1

(⌃
⌫

)

.

For fixed ⇣ 2 ⌃µ we have K(·, ⇣) 2 L1(@⌃� , |dz|/|z|), and (H.5) and (H.6)
give

F (⇣) = lim
n!1

X

�2{+,�}

X

|k|6n

ˆ
I�

k

F (z)K(z, ⇣)
|dz|
|z|

= lim
n!1

X

�2{+,�}

X

|k|6n

ˆ
I�

k

X

j

e�j,k(z)(z)K(z, ⇣)x�j,k
|dz|
|z|

= lim
n!1

X

�2{+,�}

X

|k|6n

��j,k(⇣)x
�
j,k

=
X

�2{+,�}

X

j>0

X

k2Z
��j,k ⌦ x�j,k,

using Lemma H.3.2 to justify the convergence in the last step. This completes
the proof of (H.7).

Step 2 – We now derive the decomposition of the theorem from the repre-
sentation given in Step 1. First, (�n)n>1

and (xn)n>1

be compatible enumer-
ations of the countable families ��j,k and x�j,k, so that (H.7) takes the form

F (⇣) =
X

n>1

�n(⇣)⌦ xn.

Next, let ⇥(z) := ( 1�z
1+z )

2µ/⇡ be a bi-holomorphic mapping of the unit disk D
onto ⌃µ, and note that it is also a continuous bijection of D \ {�1,+1} onto
⌃µ \ {0}. Then each �n := �n � ⇥ belongs to H1(D) and thereby has an
inner-outer factorisation �n = ◆n!n, where the inner function ◆n has radial
limits |◆n(z)| = 1 for z 2 @D, while the outer function !n has a holomorphic
root p

!n 2 H1(D), which can be represented as the Poisson integral of its
radial boundary values on @D:

p

!n(z) =
1

2⇡

ˆ ⇡

�⇡
P (z, eit)

p

!n(eit) dt,

where the Poisson kernel P satisfies P > 1 and 1

2⇡

´ ⇡
�⇡ P (z, eit) dt = 1 for all

z 2 D.
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Since |�n(z)| = |◆n(z)!n(z)| = |!n(z)| for z 2 @D, we have

X

n>1

|
p

!n(z)| 6
1

2⇡

ˆ ⇡

�⇡
P (z, eit)

X

n>1

|�n(e
it)|1/2 dt

=
1

2⇡

ˆ ⇡

�⇡
P (z, eit)

X

n>1

|�n(⇥(eit))|1/2 dt

6 1

2⇡

ˆ ⇡

�⇡
P (z, eit)c

1/2 dt = c
1/2,

where c
1/2 is the constant from Lemma H.3.2 when p = 1/2; we used this

lemma at ⇣ = ⇥(eit) 2 @⌃µ, noting that the functions �n, an enumeration of
the ��j,k, are holomorphic in a bigger sector; hence in particular continuous
up to the boundary @⌃µ.

Now it remains to set fn := c�1

1/2(◆n!
1/2
n ) �⇥�1 and gn := c�1

1/2!
1/2
n �⇥�1.

Since the inner function satisfies |◆n(z)| 6 1, we have
X

n>1

|fn(⇣)| 6
X

n>1

|gn(⇣)| = c�1

1/2

X

n>1

|
p

!n(⇥�1(⇣))| 6 1,

whereas
X

n>1

fn(⇣)gn(⇣)xn =
X

n>1

c�2

1/2(◆n!n)(⇥
�1⇣)xn = c�2

1/2

X

n>1

�n(⇥
�1⇣)xn

= c�2

1/2

X

n>1

�n(⇥
�1⇣)xn = c�2

1/2F (⇣).

Replacing xn by c2
1/2xn, we obtain the claimed representation of F (⇣) for all

⇣ 2 ⌃µ. ⇤

H.4 Notes

Excellent treatments of Hardy spaces include Duren [1970], Garnett [2007],
and Hoffman [1962]. These references also contain proofs of Carleson’s crite-
rion used in the proof of Proposition H.1.6.

Section H.1

Hardy spaces on a strip can be defined in various non-equivalent ways. Be-
sides the approach taken here, one could alternatively map the unit disc bi-
holomorphically onto the strip S

1

= {|=z| < 1} by means on the conformal
mapping  : S

1

! D,  (z) = tanh( 1
4

⇡z), and then introduce the norm

kfk eHp

(S1) := kf �  �1kHp

(D)



560 H Hardy spaces of holomorphic functions

where
kgkHp

(D) = sup
0<r<1

k✓ 7! g(rei✓)kLp

(T).

The case of a general strip can be handled similarly. The relation between the
spaces Hp(S

1

) and eHp(S
1

) is studied in detail in Bakan and Kaijser [2007],
where it is shown that for 1 6 p < 1, a holomorphic function f : S

1

!
C belongs to Hp(S

1

) if and only if the function w1/pf belongs to eHp(S
1

),
where w(z) = cosh2( 1

4

⇡z), and this correspondence sets up an isomorphism
of Banach spaces.

Section H.2

Hardy spaces on the half-plane based on the norm mentioned in Remark H.2.2
are studied in detail in Hoffman [1962].

Section H.3

Theorem H.3.1 and its proof are taken from Franks and McIntosh [1998]. More
on the inner-outer factorisation used in the proof can be found in Rudin [1987,
Chapter 17].
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Akcoglu’s theory of positive contractions on Lp

This appendix reviews some classical results on positive contractions T 2
L (Lp(S)) which play a role in establishing the boundedness of the H1-
functional calculus of several classes of sectorial operators in Chapter 10. Our
discussion is tailored for the needs of these applications and splits into two
topics: dilation theory and a maximal ergodic theorem.

I.1 Isometric dilations

The main object of interest in this section is defined as follows:

Definition I.1.1 (Dilations). Let X and Y be Banach spaces and T 2
L (X) and U 2 L (Y ). Then U is called a dilation of T if there exist an
isometric embedding J : X ! Y and a contractive projection P in Y onto
R(J) such that

JT k = PUkJ, for all k = 0, 1, 2, . . .

The equation can also be expressed by saying that the following ‘diagram
commutes’:

X
Tk

����! X

J

?

?

y

x

?

?J�1P

Y
Uk

����! Y
Obviously, T itself is its own dilation with Y = X and J = P = IX . The
main interest in dilations is that they may be required to possess additional
properties compared to the original operator T . The following main result of
this section is a prime example of this phenomenon: clearly being an invertible
isometry is a much stronger property than just being contractive. While the
class of finite-dimensional spaces `pn-spaces considered in the theorem might
appear somewhat restricted at first, it provides a good model for general Lp-
spaces by means of approximation arguments.
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Theorem I.1.2 (Akcoglu–Sucheston). Let T be a positive contraction on
`pn, where 1 < p < 1 and n 2 Z

+

. Then T has a dilation U 2 L (Lp(D)) on
some measurable subset D ✓ R2, such that U is a positive invertible isometry.

Here we think of D as a measure space equipped with the Lebesgue measure
inherited from R2 by restriction.

Theorem I.1.2 is a special case of a more general Akcoglu–Sucheston the-
orem, which asserts that every positive contraction on a space Lp(S) has a
positive isometric dilation to a space Lp(T ), for some measure space (T,B, ⌫).
This result can be deduced from Theorem I.1.2 using ultrapower techniques.
Since we will not need this more general version, we defer a discussion of it
to the Notes at the end of the chapter.

Before turning to the proof of Theorem I.1.2 we note that it suffices to
prove the theorem for the case where all spaces are real. Indeed, if T is a
positive contraction on the space `pn(C) = `p({1, 2, . . . , n};C), then it restricts
to a positive contraction on its real subspace `pn(R) = `p({1, 2, . . . , n};R).
Let us denote this restriction by TR. If U is a positive isometric extension
of TR to the real space Lp(D;R) for some measurable set D ✓ R2, then its
complexification UC provides the desires isometric extension of T = (TR)C (all
steps in this procedure are isometric; cf. Section B.4).

Thanks to this reduction we may, and shall, assume that all spaces are real.
We fix the exponent 1 < p < 1 and assume that T is a positive contraction
on the space E := `pn. The dual space of E will be denoted by E⇤ = (`pn)

⇤ =
`p

0

n , and the positive cones in E and E⇤ will be denoted by E
+

and E⇤
+

,
respectively.

We will treat a the vectors x 2 E as functions x : {1, . . . , n} ! R and,
accordingly, interpret all usual algebra like exponentiation and inequalities in
the pointwise (component-wise) sense. In particular, for x 2 E

+

, the vector
xp�1 2 E⇤

+

satisfies
kxkpp = kxp�1kp

0

p0 = hx, xp�1i (I.1)

We define the (non-linear) mapping MT : E
+

! E⇤
+

by

MTx := T ⇤((Tx)p�1).

Our first aim is to establish the following:

Lemma I.1.3. There exists a vector x 2 E
+

with strictly positive coordinates
such that

MTx 6 xp�1.

The proof of the lemma proceeds in several steps.

Lemma I.1.4. If x 2 E
+

satisfies kTxkp = kTkkxkp, then

MTx = kTkpxp�1.
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Proof. By (I.1) we have

kMTxkp0 6 kT ⇤kk(Tx)p�1kp0 = kTkkTxkp�1

p = kTkpkxkp�1

p .

Also, by Hölder’s inequality,

kxkpkMTxkp0 > hx,MTxi = hTx, (Tx)p�1i = kTxkpp = kTkpkxkpp.

Combining these inequalities we find that kMTxkp0 = kTkpkxkp�1

p , which
means that we had equality throughout. In particular we have equality in
Hölder’s inequality, i.e., kxkpkMTxkp0 = hx,MTxi. This is only possible if
MTx = �xp�1 for some constant � > 0. But then hx,�xp�1i = kTkpkxkpp
shows that � = kTkp. ⇤

For any subset I of {1, . . . , n} we denote by TI the positive contraction on E
defined by

TIx := T (1Ix), x 2 E.

The support of an element x 2 E is defined as supp(x) := {i 2 {1, . . . , n} :
xi 6= 0}. For subsets I ✓ {1, . . . , n} let

EI = {x 2 E : supp(x) ✓ I}

be the subspace of elements with support contained in I. By E
+

(I) = {x 2
EI : x > 0} we denote its positive cone. It is immediate to check that the
adjoint of TI is given by T ⇤

I = 1IT ⇤.

Lemma I.1.5. If x 2 E
+

(I) satisfies kTxkp = kTIkkxkp, then

1IMTx = kTIkpxp�1.

Proof. By the previous lemma applied to TI ,

1IMTx = 1IT
⇤(Tx)p�1 = T ⇤

I (Tx)
p�1 = T ⇤

I (TIx)
p�1 = MT

I

x = kTIkpxp�1.

⇤

Lemma I.1.6. Let x, y 2 E
+

have disjoint supports. If MTx 6 xp�1, then
the supports of x and MT y are disjoint and MT (x+ y) = MTx+MT y.

Proof. Using the positivity of T and assumptions we have 0 6 hTy, (Tx)p�1i =
hy,MTxi 6 hy, xp�1i = 0. It follows that hTy, (Tx)p�1i = 0. Therefore Ty
and (Tx)p�1 must have disjoint supports, and this implies that Ty and Tx
have disjoint supports. But then 0 = hTx, (Ty)p�1i = hx,MT yi, from which
we infer that x and MT y have disjoint supports.

Using again that Tx and Ty have disjoint supports, we find that (T (x +
y))p�1 = (Tx)p�1 + (Ty)p�1. Applying T ⇤ to both sides of this identity gives
MT (x+ y) = MTx+MT y. ⇤
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The attentive reader will have noticed that, in the preceding lemmas, the role
of E = `pn could be taken over by any Lp-space, provided we replace I by a
general measurable set. In the next proof, however, the finite-dimensionality
of `pn is decisive:

Proof of Lemma I.1.3. We claim that if x 2 E
+

has support strictly contained
in {1, . . . , n} and satisfies MTx 6 xp�1, then there exists x0 2 E

+

with support
strictly larger than the support of x and satisfying MTx0 6 (x0)p�1.

Once we have convinced ourselves of the truth of this claim, we may prove
the lemma by starting with x = 0 and repeatedly applying the claim until we
arrive, in finitely many steps, at a positive element x 2 E

+

of full support
satisfying MTx 6 xp�1.

To prove the claim let x 2 E
+

have support I strictly contained in
{1, . . . , n} and satisfy MTx 6 xp�1. Let J := {I. Since EJ is non-zero and
finite-dimensional there exists y 2 EJ such that kyk = 1 and

kTyk = kTJyk = kTJk.

Therefore by Lemma I.1.5 and the contractivity of TJ ,

1JMT y = kTJkpyp�1 6 yp�1.

Since by assumption MTx 6 xp�1, by Lemma I.1.6 the supports of x and
MT y are disjoint and we have MT (x + y) = MTx +MT y. Since the support
of x equals I, the disjointness of x and MT y implies that the support of MT y
is contained in J , so 1JMT y = MT y. Then the latter implies

MT (x+ y) = MTx+MT y = MTx+ 1JMT y 6 xp�1 + yp�1 = (x+ y)p�1,

where we used that the supports of x and y are disjoint. The element x + y
has the desired properties. ⇤

We are now ready for:

Proof of Theorem I.1.2. As before we write E = `pn. By Lemma I.1.3 there
exists a vector x 2 E

+

, with all coordinates strictly positive, satisfying MTx 6
xp�1. Let y := Tx. Let

I := {1, . . . , n} and J := {j 2 I : yj 6= 0} (I.2)

be the supports of x an y, respectively. Representing T = (tij)ni,j=1

as a matrix
with respect to the standard basis of E, we set

⇠ij := tji
xi

yj
, (i, j) 2 I ⇥ J,

⌘ij := tji
�yj
xi

�p�1

, (i, j) 2 I ⇥ I.

Then for all j 2 J we have
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n
X

i=1

⇠ij =
1

yj

n
X

i=1

tjixi =
(Tx)j
yj

=
yj
yj

= 1

and similarly, for all i 2 I,

X

j2J

⌘ij =
n
X

j=1

⌘ij =
1

xp�1

i

n
X

j=1

tji(Tx)
p�1

j

=
(T ⇤(Tx)p�1)i

xp�1

i

=
(MTx)i

xp�1

i

6 xp�1

i

xp�1

i

= 1.

(I.3)

We will now describe the construction of the new measure space, which
will arise as a union of (axes-parallel) rectangles in R2. We say that subsets of
A,B ✓ R2 are strongly disjoint if their projections into both coordinate axes
are disjoint, i.e., if (x, y) 2 A, then {x} ⇥ R and R ⇥ {y} are both disjoint
from B.

We choose disjoint intervals Ii, i 2 I, of length one and set Ni := Ii ⇥ Ii;
these are strongly disjoint. For each i 2 I, we choose disjoint subintervals
Jij ✓ Ii, j 2 J , of length ⌘ij , and denote

Ji :=
[

j2J

Jij ✓ Ii, |Ji| =
X

j2J

|Jij |
X

j2J

⌘ij =
n
X

j=1

⌘ij 6 1.

Also, for each j 2 J we partition

Ij =
[

i2I

Iij , |Iij | = ⇠ij .

For (i, j) 2 I ⇥ J we now set

Ni := Ii ⇥ Ii, Rij := Ii ⇥ Jij ✓ Ii ⇥ Ji ✓ Ni, Sij := Iij ⇥ Ij ✓ Nj

and

R :=
[

(i,j)2I⇥J

Rij =
[

i2I

Ii ⇥ Ji, S :=
[

(i,j)2I⇥J

Sij =
[

j2J

Nj .

Let further D
0

:=

n
[

i=1

Ni and observe that

D
0

\R =
[

i2I

Ii ⇥ (Ii \ Ji), D
0

\ S =
[

i2I\J
i

Ni

are certain unions of rectangles. We then define Dk, k > 1, to consist of
strongly disjoint translates of D

0

\R, and Dk, k 6 �1, to consist of strongly
disjoint translates of D

0

\ S. Let finally D :=
S

k2Z Dk.
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Given two rectangles A = A
1

⇥ A
2

, B = B
1

⇥ B
2

✓ R2, we define the
special affine transform of A onto B as the unique ⌧ : A ! B of the form
⌧(u, v) = (⌧

1

(u), ⌧
2

(v)), where ⌧i(t) = ai1t+ai2 is the unique increasing affine
bijection of the interval Ai ✓ R onto the interval Bi ✓ R for both i = 1, 2.
While this precise form of ⌧ is somewhat irrelevant, it is important for later
considerations that we choose our mapping to act independently in the first
and the second coordinate.

We next construct a bijection of D onto itself.
Step 1 (action on R) – We define ⌧ : R ! S by ⌧ = ⌧ij on Rij , where ⌧ij

is the special affine transform of Rij onto Sij .
Step 2 (action on D

0

\ R and
S

k>1

Dk) – If R = D
0

, then we define ⌧ as
the identity mapping on

S

k>1

Dk; otherwise we define ⌧ to be the translation
of D

0

\R onto D
1

, and of Dk onto Dk+1

for each k > 1.
Step 3 (action on

S

k>1

D�k) – If S = D
0

, then define ⌧ as the identity
mapping on

S

k>1

D�k; otherwise we define ⌧ to be the translation of D�1

onto D
0

\ S, and of D�k�1

onto D�k for k > 1.
On D we consider the image measure µ := ��⌧�1, where � is the restriction

of the Lebesgue measure to D. The measure µ is absolutely continuous with
respect to �. Denoting the Radon–Nikodým derivative of µ with respect to �
by ⇢, for (i, j) 2 I ⇥ J and (u, v) 2 Sij we have

⇢(u, v) =
dµ

d�
(u, v) =

�(⌧�1(Sij))

�(Sij)
=
�(Rij)

�(Sij)
=
⌘ij
⇠ij

=
tji(

y
j

x
j

)p�1

tji(
x
i

y
j

)
=
�yj
xi

�p
.

Consider the positive operator U : f 7! Uf defined by

Uf(u, v) := ⇢(u, v)1/pf(⌧�1(u, v)), (u, v) 2 D.

This operator is an invertible isometry of Lp(D,�): invertibility is clear and
it is an isometry since

ˆ
D
|Uf |p d� =

ˆ
D
⇢|f � ⌧�1|p d�

=

ˆ
D
|f � ⌧�1|p d(� � ⌧�1) =

ˆ
D
|f |p d�.

To conclude the proof of Theorem I.1.2 we will now show that U is a positive
isometric dilation of T . More precisely, we will show that

HT k = PUkH, k = 0, 1, . . . , (I.4)

where H : E ! Lp(D,�) is the isometric embedding given by

H⇠ =
n
X

i=1

⇠i1N
i

, ⇠ 2 E = `pn,
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N1 \R1

R12

R11

⌘12

⌘11

N2 \R2

R22

R21

⌘22

⌘21

N3 \R3

R32

R31

⌘32

⌘31

S11 S21 S31

⇠11 ⇠21 ⇠31

S12 S22 S32

⇠12 ⇠22 ⇠32

D0 \ S

D�1

. . .

D13

D12

D13

Fig. I.1: The case I = {1, 2, 3} and J = {1, 2}. The action of ⌧ is indicated with
dashed arrows. The rectangles Rij are mapped on Sij ; D0

\R =
S

3

i=1

Ni \Ri

is mapped to D
1

=
S

3

i=1

D
1i; D1

to D
2

; D�1

is mapped to D
0

\ S, D�2

to
D�1

, etc.
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and P is the contractive projection in Lp(D,�) onto the range of H, given as
the averaging operator over the sets Ni:

Pf(u, v) :=

8

<

:

1

�(Ni)

ˆ
N

i

f d� =

ˆ
N

i

f d�, if (u, v) 2 Ni for some i 2 I;

0 otherwise.
(I.5)

The proof of (I.4) will be split into several lemmas.

Lemma I.1.7. If f, g 2 Lp(D,�) are two functions supported in D
0

[
S

k>1

Dk

which depend only on the first coordinate, then Pf = Pg implies PUf = PUg.
Furthermore, PUf and PUg have their supports in D

0

[
S

k>1

Dk again.

Proof. If f : D ! R, (u, v) 7! f(u, v), depends only on the u-coordinate we
may define F (u) := f(u, v) for (u, v) 2 D. For j 2 J we then have

ˆ
N

j

Uf d� =
X

i2I

ˆ
S
ij

⇢1/pf(⌧�1

ij ) d� =
X

i2I

ˆ
S
ij

⇢1/p⇢�1f(⌧�1

ij ) dµ

=
X

i2I

�yj
xi

�

1�p
ˆ
R

ij

f d� =
X

i2I

�yj
xi

�

1�p
ˆ
R

ij

F (u) du dv

=
X

i2I

�yj
xi

�

1�p
⌘ij

ˆ
I
i

F (u) du =
X

i2I

tji

ˆ
N

i

f d�,

keeping in mind that |Ni| = 1 in the last step. If j 2 I \ J then Nj ✓ D
0

\ S
and ⌧�1(Nj) ✓ D�1

. It follows that PUf = 0 on Nj whenever f = 0 on D�1

.
Hence,

PUf =
X

j2J

X

i2I

tji

ˆ
N

i

f d� 1N
j

. (I.6)

Now, if Pf = Pg and f, g are both supported in D
0

[
S

k>1

Dk, then for
all j 2 J we have

´
N

j

f d� =
´
N

j

g d� and hence PUf = PUg by (I.6). ⇤

Lemma I.1.8. For all ⇠ 2 E and k 2 Z
+

we have

PUk
⇣

X

i2I

⇠i1N
i

⌘

=
X

j2J

(T k⇠)j1N
j

.

Proof. We prove the lemma by induction on k. For k = 0 the assertion follows
from P1N

i

= 1N
i

if i 2 J and P1N
i

= 0 if i 62 J . The case k = 1 follows from
(I.6) since

PU
⇣

X

i2I

⇠i1N
i

⌘

=
X

j2J

X

m2I

tjm

ˆ
N

m

X

i2I

⇠i1N
i

d� 1N
j

=
X

j2J

X

m2I

tjm⇠m 1N
j

=
X

j2J

(T ⇠)j1N
j

.
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For the induction step, suppose the lemma has been shown for the indices
0, 1, . . . , k. Since f =

P

i2I ⇠i1N
i

depends only on the u-coordinate, the same
is true for Uf , since ⌧ is piecewise affine and the Radon–Nikodým deriva-
tive ⇢ depends only on the u-coordinate. Hence Ukf depends only on the
u-coordinate. Since, trivially,

P
⇣

Uk
⇣

X

i2I

⇠i1N
i

⌘⌘

= P
⇣

PUk
X

i2I

⇠i1N
i

⌘

,

by Lemma I.1.7 we obtain

PUk+1

⇣

X

i2I

⇠i1N
i

⌘

= PU
⇣

Uk
⇣

X

i2I

⇠i1N
i

⌘⌘

= PU
⇣

PUk
X

i2I

⇠i1N
i

⌘

= PU
⇣

X

i2I

(T k⇠)i1N
i

⌘

(I.6)
=

X

j2J

X

m2I

tjm

ˆ
N

m

⇣

X

i2I

(T k⇠)i1N
i

⌘

d� 1N
j

=
X

j2J

X

i2I

tji(T
k⇠)i 1N

j

=
X

j2J

(T k+1⇠)j1N
j

.

This concludes the induction step. ⇤

Combining the preceding lemmas we obtain JTn = PUnJ for all n = 0, 1, . . . .
As we have already pointed out, this concludes the proof of Theorem I.1.2. ⇤
Remark I.1.9. In some applications, notably the proof of Theorem I.2.1 below,
it suffices to consider the special case where tij > 0 for all 1 6 i, j 6 n and
kTk = 1. Under these conditions we have J = I = {1, . . . , n} in (I.2) and
P

j2J ⌘ij =
Pn

j=1

⌘ij = 1 in (I.3), the reason for the latter being that we now
have equality MTx = xp�1 in Lemma I.1.4. The action of ⌧ becomes trivial
on the sets Dk for k 6= 0 and they can be omitted from the construction; they
were introduced only to accommodate the possibility that

P

j2J ⌘ij < 1.

I.2 Maximal ergodic averages

The main result of this section is the following maximal theorem which, besides
its independent interest, also illustrates the application of Theorem I.1.2.

Theorem I.2.1 (Akcoglu). Let (S,A , µ) be a measure space, 1 < p < 1,
and T be a positive contraction on Lp(S). Then, for each f 2 Lp(S),

�

�

�

�

sup
n>1

�

�

�

1

n

n�1

X

m=0

Tmf
�

�

�

�

�

�

�

p

6 p0kfkp.
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We begin by establishing an important special case:

Lemma I.2.2 (Hardy and Littlewood). Theorem I.2.1 holds for S = Z
and the forward shift Tf(x) := f(x+ 1).

Proof. In this case

sup
n>1

|n�1

n�1

X

m=0

Tmf(x)| =: Mf(x)

is a one-sided Hardy–Littlewood maximal function. Consider the set

{x 2 Z : Mf(x) > �} \ [�N,1).

If it is non-empty, let x
1

be its smallest element, and let y
1

> x
1

be the
smallest integer such that

1

y
1

� x
1

y1
X

k=x1

|f(k)| > �.

Assuming that x
1

< y
1

6 x
2

< y
2

6 . . . 6 xm�1

< ym�1

are already
chosen, let xm > ym�1

be the smallest integer such that Mf(xm) > �, and
let ym > xm be the smallest integer such that

1

ym � xm

y
m

X

k=x
m

|f(k)| > �.

Continuing this way we find that every x > �N such that Mf(x) > � is
contained in some Im := [xm, ym) \ Z such that

1

#Im

X

k2I
m

|f(k)| > �,

and these intervals are disjoint. Hence

#{x > �N : Mf(x) > �} 6
1
X

m=1

#Im 6 1

�

1
X

m=1

X

k2I
m

|f(k)| 6 1

�
kfk`1(Z).

Taking the limit N ! 1 we see that

kMfk`1,1(Z) 6 kfk`1(Z).

Now the estimate in `p(Z) follows by the Marcinkiewicz interpolation theorem
(Corollary 2.2.4) from the established weak `1 bound and a trivial `1 bound,
both of which have constant 1. ⇤

We proceed to a somewhat more general special case of the theorem:
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Lemma I.2.3. Theorem I.2.1 holds for positive invertible isometries.

Proof. The proof consists of a reduction to the previous Lemma I.2.2.
For 0 6 g 2 Lp(S) and N > 1 define

MNg := max
16n6N

1

n

n�1

X

m=0

Tmg, Mg := sup
n>1

1

n

n�1

X

m=0

Tmg,

where the maximum and supremum are take pointwise with respect to S.
In view of the inequality |Tmf | 6 Tm|f |, to prove the lemma it suffices

to consider positive functions f > 0. We fix such a function and keep N > 1
fixed for the moment. For k = 1, . . . , N and j 2 Z let

Aj,k :=
n

s 2 S : MN (T jf) =
1

k

k�1

X

m=0

T j+mf
o

be the set of all s 2 S where the maximum in the definition of MN (T jf) is
taken at index n = k. On Aj,k we have the pointwise inequality

MN (T jf) = T j
⇣1

k

k�1

X

m=0

Tmf
⌘

6 T j
⇣

max
16n6N

1

n

n�1

X

m=0

Tmf
⌘

= T j(MNf)

using the positivity of T in the middle step. Since S = Aj,1 [ · · · [ Aj,N , it
follows that (M(T jf))N 6 T j(MNf) on S, and taking Lp-norms gives

kMN (T jf)kp 6 kT j(MNf)kp.

Applying this to T�jf in place of f and using that T is a contraction, we
obtain

kMNfkp 6 kT j(MN (T�jf))kp 6 kMN (T�jf)kp.
Averaging over �k 6 j 6 k, this implies

kMNfkpp 6 1

2k + 1

k
X

j=�k

ˆ
S
|MN (T jf)|p dµ

=
1

2k + 1

ˆ
S

k
X

j=�k

⇣

max
16n6N

1

n

n�1

X

m=0

T j+mf
⌘p

dµ

6 1

2k + 1

ˆ
S

X

j2Z

⇣

max
16n6N

1

n

n�1

X

m=0

1

[�k,k+N�1]

(j +m)T j+mf
⌘p

dµ.

By Lemma I.2.2, applied to ⇠j = 1

[�k�N,k+N ]

(j)T jf(s) with s 2 S,

X

j2Z

⇣

max
16n6N

1

n

n�1

X

m=0

1

[�k,k+N�1]

(j +m)T j+mf(s)
⌘p
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6 (p0)p
X

j2Z
|1

[�k,k+N�1]

(j)T jf(s)|p = (p0)p
k+N�1

X

j=�k

|T jf(s)|p.

Putting things together and using that T is a contraction, this gives

kMNfkpp 6 (p0)p
1

2k + 1

k+N�1

X

j=�k

ˆ
S
|T jf |p dµ

6 (p0)p
1

2k + 1

k+N�1

X

j=�k

kfkpp = (p0)p
2k +N

2k + 1
kfkpp.

Letting k ! 1 gives kMNfkp 6 p0kfkp, and letting N ! 1 we finally obtain
kMfkp 6 p0kfkp. ⇤

In order to deduce the general case from this lemma, we also need:

Lemma I.2.4. For positive functions f
1

, g
1

, . . . , fk, gk in Lp(S), we have
�

�

�

max
16j6k

fj � max
16j6k

gj
�

�

�

p
6 k1/p max

16j6k
kfj � gjkp.

Proof. Starting with the reverse triangle inequality |kxk � kyk| 6 kx� yk in
`1k , we have
�

�

�

max
16j6k

fj � max
16j6k

gj
�

�

�

p
6
�

�

�

max
16j6k

|fj � gj |
�

�

�

p
6
�

�

�

⇣

X

16j6k

|fj � gj |p
⌘

1/p�
�

�

p

=
⇣

X

16j6k

�

�

�

fj � gj
�

�

�

p

p

⌘

1/p
6 k1/p max

16j6k
kfj � gjkp.

⇤

Proof of Theorem I.2.1. It suffices to consider positive functions f > 0. The
proof is divided into a number of steps.

Step 1 – First we will prove the theorem for positive contractions T =
(tij)ni,j=1

on `pn Let ⇠ > 0 be a positive element in `pn and set

⇠j := sup
M>1

1

M

M�1

X

m=0

(Tm⇠)j , j = 1, . . . , n.

Let U be a positive, invertible isometry of Lp(D) dilating T , as provided by
Theorem I.1.2, and let f =

Pn
i=1

⇠i1N
i

be a simple function in Lp(D), with
the sets Ni as before. Set

f := sup
M>1

1

M

M�1

X

m=0

Umf.
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Then kfkp = k⇠kp and, by Lemma I.2.3,

kfkp 6 p0kfkp = p0k⇠kp.

Denote by P the positive projection associated with the dilation of T , given
by (I.5). Since P is positive we have

sup
M>1

1

M

M�1

X

m=0

PUmf 6 Pf.

But

sup
M>1

1

M

M�1

X

m=0

PUmf = sup
M>1

1

M

M�1

X

m=0

X

j2J

(Tm⇠)j1N
j

=

n
X

j=1

⇠j1N
j

,

where the last equality uses the disjointness of the Nj . Therefore

�

�

�

sup
M>1

1

M

M�1

X

m=0

Tm⇠
�

�

�

p
= k⇠kp =

�

�

�

n
X

j=1

⇠j1N
j

�

�

�

p
6 kPfkp 6 p0k⇠kp,

using that P is contractive in the last step.
Step 2 – The general case of a positive contraction on Lp(S) will be handled

by approximation. If ⇡ := {S
1

, . . . , Sn} is a finite partition of S, we define the
positive contraction E⇡ on Lp(S) by E⇡f =

Pn
i=1

ci1S
i

, where

ci =

8

<

:

1

µ(Si)

ˆ
S
i

f dµ if µ(Si) < 1;

0 otherwise.

This operator is a close relative, but in general not strictly an instance, of the
conditional expectations considered in Chapter 2, when µ(Si) = 1 for some i.
Below we shall use the following simple observation: Given an " > 0 and any
finite sequence f

1

, . . . , fk in Lp(S), by a simple approximation argument it is
possible to find a partition ⇡ of S such that kfj�E⇡fjkp < " for all 1 6 j 6 k.

We claim that if " > 0, f 2 Lp(S), and an integer k > 1 are given, we can
find a partition ⇡ of S such that

kT jf � (E⇡T )jE⇡fkp < ", j = 0, 1, . . . , k � 1. (I.7)

Indeed, choose ⇡ so that kT jf � E⇡T jfkp < "/k for j = 0, 1, . . . , k. By
induction on j we will show that

kT jf � (E⇡T )jE⇡fkp < "(j + 1)/k for j = 0, 1, . . . , k � 1.

The result is true for j = 0. If it is true for j, then
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kT j+1f � (E⇡T )j+1E⇡fkp
6 kT j+1f � E⇡T j+1fkp + kE⇡TkkT jf � (E⇡T )jE⇡fkp < "/k + "(j + 1)/k

by the choice of ⇡, the contractivity of E⇡ and T , and the induction hypothesis.
This proves the claim (I.7) by induction.

Step 3 – To finish the proof, we observe by Step 1 that

�

�

�

sup
N>1

1

N

N�1

X

m=0

(E⇡T )mE⇡f
�

�

�

p
6 p0kE⇡fkp 6 p0kfkp,

since E⇡f lives in the Lp-space over a measure space generated by the finitely
many elements of ⇡ = {S

1

, . . . , Sn} of finite measure, which can be identified
with `pn1

for some n
1

6 n, and E⇡T is a positive contraction on this same
space. On the other hand, by Lemma I.2.4, we have

�

�

�

max
16N6k

1

N

N�1

X

m=0

Tmf � max
16N6k

1

N

N�1

X

m=0

(E⇡T )mE⇡f
�

�

�

p

6 k1/p max
16N6k

�

�

�

1

N

N�1

X

m=0

Tmf �
N�1

X

m=0

(E⇡T )mE⇡f
�

�

�

p

6 k1/p max
06m6k�1

�

�

�

Tmf � (E⇡T )mE⇡f
�

�

�

p
,

where the right side can be made arbitrarily small by the choice of ⇡, according
to Step 3. Thus

�

�

�

max
16N6k

1

N

N�1

X

m=0

Tmf
�

�

�

p
6 p0kfkp,

and passing to the limit k ! 1, the theorem is proved. ⇤

I.3 Notes

Section I.1

The proof of Theorem I.1.2 follows the original argument of Akcoglu and
Sucheston [1977] as presented in Fendler [1998]. The simpler case when T has
norm one and strictly positive matrix elements, had been established before
in Akcoglu [1975]; these additional assumptions could be avoided in Akcoglu
and Sucheston [1977] thanks to Lemma I.1.3, which is from the same paper.
In its most general form, the Akcoglu–Sucheston theorem can be formulated
as follows.

Theorem I.3.1 (Akcoglu–Sucheston, Peller). Let (S,A , µ) be a measure
space and let 1 < p < 1. For a bounded operator T on Lp(S) the following
assertions are equivalent:
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(1) there exists a measure space (T,B, ⌫) such that T has a positive isometric
dilation Lp(T );

(2) there exists a positive contraction eT on Lp(S) such that for all f 2 Lp(S)
we have |Tf | 6 eT |f | µ-almost everywhere.

The special case of the implication (2))(1) for positive operators T is due
to Akcoglu and Sucheston [1977] and is usually referred to as the Akcoglu–
Sucheston theorem. Its extension to bounded operators dominated by a posi-
tive contraction, as well as the converse implication (1))(2), is due to Peller
[1983]. We refer to Peller [1983], Fendler [1998] for an extensive discussion of
this theorem and its various ramifications and extension. The proofs in these
references heavily rely on ultrapower techniques.

An alternative proof of the Akcoglu–Sucheston theorem based on Banach
lattice arguments is due to Nagel and Palm [1982]; see also Kern, Nagel, and
Palm [1977]. It also takes Lemma I.1.3 as it starting point, but the actual
construction of the dilation is less elementary. Its main feature is that D is
taken to be an infinite product rather than a union of infinitely many disjoint
sets; the isometric extension is then obtained essentially by a shift on the
indices.

A systematic ‘toolkit’ for producing isometric dilations is due to Fackler
and Glück [2017]. Among other things, it includes general mechanisms to
obtain simultaneous dilations and dilations of convex combinations.

Section I.2

Theorem I.2.1 is from Akcoglu [1975], whose proof we follow, except for a
minor simplification: the original proof of Akcoglu [1975] was based on a
special case of Theorem I.1.2 proved in the same paper, and required an
additional step of reduction, which could be avoided with the full force of
Theorem I.1.2 — this result of Akcoglu and Sucheston [1977] only became
available slightly later. Lemma I.2.3, which establishes the special case of
Theorem I.2.1 for positive invertible isometries, is due to Ionescu Tulcea [1964];
we present the simple proof due to De la Torre [1976].

Theorem I.2.1 is a substantial elaboration of the classical maximal ergodic
theorem from Dunford and Schwartz [1958], based on earlier work of Hopf
[1954], which achieves a similar conclusion as Theorem I.2.1 under the as-
sumption that T is simultaneously contractive on Lp(S) for all p 2 [1,1],
whereas Theorem I.2.1 needs the assumption only for a fixed p 2 (1,1) in
order to get the conclusion for this same p. We refer the reader to the notes
of Dunford and Schwartz [1958] for the early history of such results. Stein
[1970b, p. 48] refers to the Hopf–Dunford–Schwartz ergodic theorem as “one
of the most powerful results in abstract analysis”.

An extension of Theorem I.2.1 to contractions acting on Bochner spaces
of UMD lattice-valued functions in due to Xu [2015].





J

Muckenhoupt weights

A function w 2 L1

loc

(Rd) is called a weight if w(x) 2 (0,1) almost everywhere.
For p 2 (1,1) the Muckenhoupt Ap characteristic of a weight is defined by

[w]A
p

:= sup
Q

⇣

�
ˆ
Q
w(x) dx

⌘⇣

�
ˆ
Q
w1�p0

(x) dx
⌘p�1

, (J.1)

where the supremum is over all (axes-parallel) cubes Q ✓ Rd. We say that w
is an Ap weight if [w]A

p

< 1.

J.1 Weighted boundedness of the maximal operator

We recall the Hardy–Littlewood maximal operator

Mf(x) := sup
Q3x

�
ˆ
Q
|f(y)| dy,

where the supremum is over all axes-parallel cubes Q containing x. The dyadic
maximal operator Md is defined similarly by restricting the supremum to
dyadic cubes only. For a weight w, we define the weighted maximal operator

Mwf(x) := sup
Q3x

1

w(Q)

ˆ
Q
|f(y)|w(y) dy, w(Q) :=

ˆ
Q
w(y) dy

and its dyadic version Md
w by restricting to dyadic cubes only.

A key property of Md
w is the ‘universal’ bound for p 2 (1,1)

kMd
wfkLp

(w)

6 p0kfkLp

(w)

, (J.2)

where the constant is in particular independent of the particular weight w.
This is simply a statement of Doob’s maximal inequality (Theorem 3.2.2) on
the measure space (Rd, w(y) dy) equipped with the filtration generated by the
dyadic cubes.
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In (J.2), both the operator and the space is adapted to the weight w. Often
we are concerned with a situation, where only the space but not the operator
is modified, and it is in this case that the Ap weights make their appearance:

Theorem J.1.1 (Buckley, Muckenhoupt). For each p 2 (1,1),

kMfkLp

(w)

6 cdp
0[w]1/(p�1)

A
p

kfkLp

(w)

.

We prove this theorem via the following pointwise inequality:

Lemma J.1.2 (Lerner). For w 2 Ap and � := w�1/(p�1), we have

(Mdf)
p�1 6 [w]A

p

Md
w[(M

d
�(f�

�1))p�1w�1].

Proof.
⇣ 1

|Q|

ˆ
Q
f
⌘p�1

=
w(Q)

|Q|

⇣�(Q)

|Q|

⌘p�1 |Q|
w(Q)

⇣ 1

�(Q)

ˆ
Q
f��1�

⌘p�1

6 [w]A
p

|Q|
w(Q)

inf
Q
[Md

�(f�
�1)]p�1

6 [w]A
p

1

w(Q)

ˆ
Q
[Md

�(f�
�1)]p�1w�1w.

Taking the supremum over all dyadic Q 3 x gives the assertion. ⇤

Proof of Theorem J.1.1. By Lemma J.1.2 and two applications of (J.2) (first
with p0 in place of p, and then with � in place of w), we have

kMdfkLp

(w)

= k(Mdf)
p�1k1/(p�1)

Lp

0
(w)

6 [w]1/(p�1)

A
p

kMd
w[(M

d
�(f�

�1))p�1w�1]k1/(p�1)

Lp

0
(w)

6 [w]1/(p�1)

A
p

�

p · k(Md
�(f�

�1))p�1w�1kLp

0
(w)

�

1/(p�1)

= [w]1/(p�1)

A
p

p1/(p�1)kMd
�(f�

�1)kLp

(�)

6 [w]1/(p�1)

A
p

p1/(p�1) · p0 · kf��1kLp

(�)

= p1/(p�1) · p0 · [w]1/(p�1)

A
p

kfkLp

(w)

A standard calculus optimisation shows that p1/(p�1) 6 e, so altogether

kMdfkLp

(w)

6 e · p0 · [w]1/(p�1)

A
p

kfkLp

(w)

.

The case of the Hardy–Littlewood maximal operator follows from the point-
wise domination of Mf by a sum of 3d versions of the dyadic maximal operator
(see (3.36)). ⇤
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J.2 Rubio de Francia’s weighted extrapolation theorem

The following extrapolation result is one of the most useful tools in the theory
of Ap weights:

Theorem J.2.1. Let (f, h) be a pair of functions and r 2 (1,1). Suppose
that

khkLr

(w)

6 �r([w]A
r

)kfkLr

(w)

(J.3)

for all w 2 Ar, where �r is a non-negative increasing function. Then

khkLp

(w)

6 �pr([w]A
p

)kfkLp

(w)

for all p 2 (1,1) and w 2 Ap, where each �pr is a non-negative increasing
function. In particular, if �r(t) = crt⌧ , then �pr(t) 6 cprt

⌧ max{ r�1
p�1 ,1}.

The proof naturally splits into two cases, p 2 (1, r) and p 2 (r,1). We first
give the beginning of the proof, which motivates a certain auxiliary construc-
tion that is needed to complete it.

Proof of Theorem J.2.1, case p 2 (1, r), beginning

In order to use the assumed Lr inequality, we apply Hölder, after dividing
and multiplying by an auxiliary function  , yet to be chosen:

khkLp

(w)

=
⇣

ˆ
Rd

⇣ |h|
 

⌘p
·  pw

⌘

1/p

6
⇣

ˆ
Rd

⇣ |h|
 

⌘r
·  pw

⌘

1/r⇣
ˆ
Rd

 pw
⌘

1/p�1/r
.

Now, we would like to apply (J.3) to the first factor, which would require that
 �r/pw 2 Ar, and we would like to estimate the second factor by kfkLp

(w)

.
We try to achieve this by some  = Rf . Thus, we would get

khkLp

(w)

6
⇣

ˆ
Rd

|h|r(Rf)p�rw
⌘

1/r⇣
ˆ
Rd

(Rf)pw
⌘

1/p�1/r

6 �r

�

[(Rf)p�rw]A
r

�

⇣

ˆ
Rd

|f |r(Rf)p�rw
⌘

1/r

⇥ kRk1�p/r
Lp

(w)!Lp

(w)

⇣

ˆ
Rd

|f |pw
⌘

1/p�1/r

6 �r

�

[(Rf)p�rw]A
r

�

kRk1�p/r
Lp

(w)!Lp

(w)

⇣

ˆ
Rd

|f |pw
⌘

1/p
,

(J.4)

provided that Rf > |f |, so that (Rf)p�r 6 |f |p�r in the last step.
Altogether, we would like to have an operator R such that: Rf > |f |

pointwise, R is bounded on Lp(w), and (Rf)p�rw 2 Ar for all w 2 Ap. Such
an operator is constructed next:
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The Rubio de Francia algorithm

The following general construction is the key to our problem. It has many
other applications as well.

Proposition J.2.2 (Rubio de Francia algorithm). For ✏ > 0, consider
the operator

Rg = R✏g :=

1
X

k=0

✏kMkg,

where M0g := |g|, M1g := Mg is the maximal function of g, and Mkg :=
M(Mk�1g) is the k-fold iteration of M acting on g. Then this satisfies

(i) |g| 6 Rg,

(ii) kRgkLp

(w)

6
⇣

1
X

k=0

✏kkMkkLp

(w)!Lp

(w)

⌘

kgkLp

(w)

,

(iii) M(Rg) 6 ✏�1Rg.

In particular, if ✏ = ✏(p, w) := 1

2

kMk�1

Lp

(w)!Lp

(w)

, then

(a) kRgkLp

(w)

6 2kgkLp

(w)

(b) M(Rg) 6 2kMkLp

(w)!Lp

(w)

Rg 6 cp[w]
1/(p�1)

A
p

Rg.

Here (i) says that Rg is bigger than g, but not too much bigger by (ii) or
especially (a). The whole point of the construction is (iii) (or (b)), which
shows that Rg is essentially invariant under the maximal operator.

Proof. (i) is clear, since Rg is a sum of non-negative terms, and the zeroth
term is |g|. (ii) follows from the triangle inequality in Lp(w) and iteration of
the estimate

kMkgkLp

(w)

6 kMkLp

(w)!Lp

(w)

kMk�1gkLp

(w)

.

Finally, by the sublinearity of M , we have

M(Rg) 6
1
X

k=0

✏kMk+1g = ✏�1

1
X

k=0

✏k+1Mk+1g = ✏�1

1
X

k=1

✏kMkg 6 ✏�1Rg,

which proves (iii). ⇤

Remark J.2.3. In applications of the Rubio de Francia algorithm, the following
consequence of (iii) is often handy: for x 2 Q, we have

Rg(x) > ✏M(Rg)(x) > ✏hRgiQ, x 2 Q. (J.5)

Lemma J.2.4. Let 1 < p < r < 1. Let w 2 Ap, f 2 Lp(w) and let ✏ =
✏(p, w) := 1

2

kMk�1

Lp

(w)!Lp

(w)

. Then W := (Rf)p�rw = (R✏f)p�rw satisfies

[W ]A
r

6 cr�p
p [w](r�1)/(p�1)

A
p

.
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Substituting Lemma J.2.4 into (J.4), we obtain

khkLp

(w)

6 �r

�

cr�p
p [w](r�1)/(p�1)

A
p

�

· 21�p/r · kfkLp

(w)

,

which completes the proof of Theorem J.2.1 in the case p 2 (1, r).

Proof of the Lemma. By (J.5), since r � p > 0, we have

hW iQ = h(Rf)p�rwiQ 6 ✏p�rhRfip�r
Q hwiQ,

whereas by Hölder’s inequality, the second factor is

hW�1/(r�1)ir�1

Q = h(Rf)(r�p)/(r�1)w�1/(r�1)ir�1

Q

6 hRfir�p
Q hw�1/(p�1)ip�1

Q .

Forming the product, the factors involving hRfiQ cancel out to give

hW iQhW�1/(r�1)ir�1

Q 6 ✏p�rhwiQhw�1/(p�1)ip�1

Q

6 (cp[w]
1/p�1

A
p

)r�p[w]A
p

= cr�p
p [w](r�1)/(p�1)

A
p

.

⇤

Proof of Theorem J.2.1, case p 2 (r,1)

In the attempt to argue by Hölder’s inequality as before, we face the problem
that “Hölder increases the exponent”, while we now would like to use infor-
mation about the smaller exponent r to get bounds for p > r. We circumvent
this problem by duality:

khkLp

(w)

= sup
n

ˆ
Rd

|h| · g : kgkLp

0
(�) 6 1

o

, � = w�1/(p�1).

Here it is useful to observe that

[w]1/pA
p

= [�]1/p
0

A
p

0 . (J.6)

We use the Rubio de Francia algorithm R = R✏ with ✏ = ✏(p0,�) defined by

✏�1 := 2kMkLp

0
(�)!Lp

0
(�) 6 cp0 [�]1/(p

0�1)

A
p

0 = cp0 [w]A
p

, (J.7)

and estimateˆ
Rd

|h| · g 6
ˆ
Rd

|h| ·Rg =

ˆ
Rd

|h| · Rg

w
· w =

ˆ
Rd

|h| · (Rg

w
)1�u · (Rg

w
)u · w

6
⇣

ˆ
Rd

|h|r(Rg

w
)(1�u)rw

⌘

1/r⇣
ˆ
Rd

(
Rg

w
)ur

0
w
⌘

1/r0

.
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We demand that ur0 = p0, so that u = p0/r0 and

(1� u)r = (1� p0

r0
)r = r � p

p� 1
(r � 1) =

r(p� 1)� p(r � 1)

p� 1
=

p� r

p� 1
.

Thusˆ
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p�1wr/pw
r�p

p(p�1)
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�
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⌘
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ˆ
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0
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⌘
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0
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p�1

⌘
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2p
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[W ]A
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�

kfkLp

(w)

,

(J.8)

where W := (Rg)
p�r

p�1w
r�1
p�1 . The proof of Theorem J.2.1 is then completed by

the following Lemma:

Lemma J.2.5. Let 1 < r < p < 1, let w 2 Ap, g 2 Lp0
(w1�p0

) and R = R✏

with ✏ = ✏(p0, w1�p0
). Then W := (Rg)

p�r

p�1w
r�1
p�1 2 Ar, and [W ]A

r

6 cpr[w]A
p

.

Proof. We estimate hW iQ by Hölder’s inequality:

hW iQ 6 hRgi(p�r)/(p�1)

Q hwi(r�1)/(p�1)

Q ,

and hW�1/(r�1)ir�1

Q with the help of (J.5):

hW�1/(r�1)ir�1

Q = h(Rg)�
p�r

(p�1)(r�1)w� 1
p�1 ir�1

Q

6 "�
p�r

p�1 hRgi�(p�r)/(p�1)

Q hw�1/(p�1)ir�1

Q .

Forming the product, observing that terms with hRgiQ cancel out, and esti-
mating ✏�1 by (J.7), we are left with

hW iQhW�1/(r�1)ir�1

Q 6 [Rg](p�r)/(p�1)

A1

�

hwiQhw�1/(p�1)ip�1

Q

�

(r�1)/(p�1)

6 (cp0 [w]A
p

)(p�r)/(p�1)[w](r�1)/(p�1)

A
p

= c(p�r)/(p�1)

p0 [w]A
p

,

which is what we wanted. ⇤

It is useful to extract the following additional information provided by the
above argument:

Corollary J.2.6. Let 1 < p, r < 1. Suppose that f 2 Lp(w) for some w 2
Ap. Then f 2 Lr(W ) for some W 2 Ar.

Proof. The conclusion is clear if p = r.
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Case 1 < p < r : Let W := (Rf)p�rw, where R = R" and " = "(p, w) are as
in Proposition J.2.2. Then W 2 Ar by Lemma J.2.4 and

ˆ
Rd

|f |rW =

ˆ
Rd

|f |r(Rf)p�rw 6
ˆ
Rd

(Rf)pw 6 2p
ˆ
Rd

|f |pw

by the properties of R guaranteed by Proposition J.2.2; thus f 2 Lr(W ).

Case r < p < 1 : Take any non-zero function g 2 Lp0
(w1�p0

), and let W :=

(Rg)
p�r

p�1w
r�1
p�1 , where R = R✏ and ✏ = ✏(p0, w1�p0

). Then W 2 Ar by Lemma
J.2.5 and kfkLr

(W )

6 2p
0
(1/r�1/p)kfkLp

(w)

by a computation contained in
(J.8). ⇤

J.3 Notes

In its qualitative form, Theorem J.1.1 is a classical result of Muckenhoupt
[1972]. The (sharp) quantitative bound of the operator norm in terms of
[w]A

p

is due to Buckley [1993]. We have presented the simple approach to
this theorem found by Lerner [2008].

The Extrapolation Theorem J.2.1, first in a qualitative form, was found
by Rubio de Francia [1984], and shortly after (so soon that it was published
earlier) another proof was given by García-Cuerva [1983]. The quantitative
form given here is from Dragičević, Grafakos, Pereyra, and Petermichl [2005].
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