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Abstract

High-energy physics studies collisions of particles traveling near the speed of

light. For statistically significant results, physicists need to analyze a huge

number of such events. One analysis job can take days and process tens of

millions of collisions. Today the experiments of the large hadron collider (LHC)

create 10 GB of data per second and a future upgrade will cause a ten-fold

increase in data. The data analysis requires not only massive hardware but

also a lot of electricity. In this article, we discuss energy efficiency in scientific

computing and review a set of intermixed approaches we have developed in

our Green Big Data project to improve energy efficiency of CERN computing.

These approaches include making energy consumption visible to developers and

users, architectural improvements, smarter management of computing jobs, and

benefits of cloud technologies. The open and innovative environment at CERN

is an excellent playground for different energy efficiency ideas which can later

find use in mainstream computing.
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1. Introduction1

The Large Hadron Collider (LHC), which was used to discover the famous2

Higgs boson, started to run at CERN in 2010. During the first run, the CERN3

computing center stored up to 6 GB of data per second. The total need of4
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computing resources was around 200,000 CPUs and 40 PB disk space. The5

second run of LHC started in June 2015. During this run, data is stored at6

a maximum rate of 10 GB per second and CERN alone has allocated 140 PB7

disk space divided between its data centers in Switzerland and Hungary [1].8

The required computing resources for LHC data analysis are divided among 119

tier-1 and 155 tier-2 globally distributed computing centers by using the grid10

computing paradigm [2]. Efficient management of these computing resources is11

vital for the success of the project, which is foreseen to be active for the next12

20 years.13

From the physicist point of view computational speed is of prime impor-14

tance to efficiently analyze the data and to enable progress on particle physics.15

It is therefore important to consider both user needs and cost-efficient use of16

resources when managing the computing infrastructure and training and en-17

couraging users.18

The energy efficiency of computing is receiving increasing attention (see e.g.,19

[3] for a survey). For example, Van Heddeghem et al. [4] reported that data20

centers worldwide consumed 270 TWh of energy in 2012 and this consumption21

had a Compound Annual Growth Rate (CAGR) of 4.4% from 2007 to 2012. Be-22

sides the expenses related to the data center energy consumption, environmental23

aspects are also relevant. Therefore, the reduction of electricity consumption24

for computing is important both from cost and environmental point of view.25

The increased computational speed enabled by Moore’s law has for a long26

time contributed to increased energy efficiency. If the same task can be com-27

pleted faster and the power consumption remains unchanged, this obviously28

results into energy savings. However, we are now in a situation where the com-29

putational speed will no longer increase. While Moore’s law still increases the30

number of transistors on chips, the computational speed of individual cores has31

stopped growing [5]. As a result developers need to be able to better distribute32

their workloads to take advantage of the increasing number of cores in net-33

worked systems. However, according to Amdahl’s law [6] the distribution is not34

a panacea, because the speed improvement of parallelism is limited by the parts35
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of the software that cannot be parallelized. Normally this has a negative effect36

on energy efficiency but in some cases, due to the dynamic voltage and fre-37

quency scaling (DVFS) [7], increased parallelism can even have a positive effect38

on energy efficiency [8]. One conclusion of this is that instead of simply trying39

to make the software run faster, and, as a result, become more energy-efficient,40

we need to consider other ways to run the software in a more energy-efficient41

fashion.42

In this article, we take a holistic view of energy efficiency by introducing43

three main roles, which can be recognized in the value-chain of scientific com-44

puting: user, software developer, and data center operator. These three groups45

are connected through the computing system they use/develop/operate even46

though their aims and goals are often quite different and orthogonal. This47

also naturally affects energy consumption. Therefore, we look at energy effi-48

ciency from these three perspectives and form a holistic view of the scientific49

computing ecosystem. We do this by combining the roles with a set of in-50

termixed approaches, which we have studied in our Green Big Data project51

(https://twiki.cern.ch/twiki/bin/view/Main/GreenBigData) to improve52

the energy efficiency of CERN computing. Philosophically, we can say that53

our research methodology is based on decomposing the whole system into in-54

dependent subsystems, which can be optimized separately [9]. The result of55

optimization is usually Pareto optimal, meaning that improving the system56

from the view point of one role, would reduce its optimality for another role.57

For example, allowing longer queueing times can make it possible to improve58

the energy efficiency of the data center but it also reduces the service level of59

the user.60

The rest of this article is organized as follows: First, we give a review of61

related work in energy efficiency in Section 2 and then introduce the reader62

to scientific computing by reviewing the CERN computing problem (Section63

3). In Section 4 we introduce the three roles/stakeholder groups in computing64

and present possible technology solutions to improve energy efficiency related65

to the functions of these groups. In Section 5, we discuss future possibilities66
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and identify potential targets for future research. Finally, conclusions are given67

in Section 6.68

2. Related Work69

A large part of research in energy efficiency has focused on cloud data cen-70

ters. For example, Dayarathna et al. [10] give a large survey of state-of-art71

techniques in energy consumption modeling and prediction for Internet data72

centers, and Shuja et al. [11] present several case studies demonstrating meth-73

ods and techniques for sustainable data centers. Moreover, Mazumdar and74

Pranzo [12] study server consolidation in cloud data centers by proposing a for-75

mal formulation for the server consolidation problem and showing that using76

a snapshot-based method it is possible to find efficiently near optimal server77

allocations.78

Another significant part of research focuses on hardware. For example Kar-79

powichz et al. [13] study on energy-aware design in hardware, middleware and80

software layers. They note that to get benefit on hardware development, a81

holistic view to the whole system must be taken. This includes, for example,82

developing power consumption models, measuring methods for energy efficiency,83

modeling computing and network dynamics, multi-level control systems, energy-84

aware scheduling and software development techniques.85

There are also many studies on energy efficiency in high-performance com-86

puting. For example, Rong et al. [14] review energy optimization technologies87

in high-performance computing and propose a set of strategies to maximize88

the efficiency and minimize the impact for environment. Further, Zakarya and89

Gilliam [15] focus on energy efficiency on scientific computing systems. They90

key findings are: 1) using system level technologies may actually increase en-91

ergy consumption in clusters; 2) optimizing scheduling and resource allocation92

in clouds can offer better results than consolidation using migrations; and 3)93

turning off idle resources works well in clusters but may cause performance94

issues in cloud when demands fluctuates.95
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There are also many other studies on resource management and scheduling96

in scientific computing. Uddin et al. [16] evaluate three scheduling algorithms97

to find the most energy-efficient one. The algorithms were implemented using98

the CloudSim software to simulate IaaS cloud infrastructure. The results indi-99

cates that the two phases power convergence (TPPC) algorithm [17] is the most100

energy-efficient of the tested algorithms. Zhao et al. [18] propose an energy and101

deadline aware scheduling method for data intensive applications. The method102

is based on the idea of modeling data sets as a binary tree based on correlations103

among them. This helps reducing data transmission. The second step of the104

method is based on energy-aware scheduling minimizing the number of active105

servers. Finally, Madni et al. [19] study resource allocation methods in their106

review article. Their conclusion is that not all important parameters are taken107

into account in current methods and improvements would be needed.108

Energy-aware algorithms have been received a lot of attention during the109

last years. Many of these algorithms aim at optimizing resource selection or110

scheduling problems [20, 21, 22], while others focus on cloud computing [23, 24,111

25] or networking [26, 27, 28].112

Although most of the research on energy efficiency have focused on hard-113

ware, infrastructure, or algorithms there are many studies on software devel-114

opment, too. For example, Jagroep et al. [29] study how to make software115

developers aware on energy efficiency. In their case study they followed two116

software development projects and gave feed back to the developers on energy117

and performance issues. The results indicate that increased awareness makes118

the developers consider more on energy efficiency.119

Energy-efficient operation is naturally highly important for major cloud ser-120

vice providers (e.g. [30] for Google,[31] for Facebook). Although there are121

commonalities, the key difference between big cloud operators and scientific122

computing community is that in cloud providers are hosting services which often123

require low latency to keep the interactive users happy. In scientific computing124

single jobs can run for hours or even days and thus high throughput is often far125

more important than shorter runtime. Therefore the architectural concepts are126

5



not directly transferable between the two camps but a lot of the learnings can127

still be beneficial for both.128

Moreover, scientific computing has been slow in adopting virtualization, con-129

tainers, and other techniques which form the basis of commercial cloud services.130

One reason for the slow adoption has been the belief that all kinds of additional131

layers waste computing resources. However, some studies indicate that the per-132

formance difference especially with container technology is not very significant133

[32]. Moreover, the resource isolation of containers allows new ways to manage134

the computation and the possibility to store the entire computational environ-135

ment in the container provides new opportunities for reproducible research [33].136

Therefore it is likely that we see increasing adoption of container technologies137

in the future in scientific computing following the initial steps already taken138

[34, 35, 36].139

3. Computing Challenge at CERN140

In the 27 km long LHC ring particles are accelerated close to the speed of141

light. Two particle beams traveling in opposite directions collide at the detec-142

tors of experiments. There are three main experiments at LHC: CMS [37], Atlas143

[38], and LHCb [39]. Each experiment has a custom made particle detector con-144

sisting of multiple layers of different sensors, which measure speed, charge, and145

other characteristics of the particles that are created in the collisions. While146

the number of monitored collisions is large, only some of them are selected for147

further studies. The first selection is made in real time by dedicated trigger148

hardware [40] in the experiment and the second filtering using a cluster of pow-149

erful computing servers [41]. The data from the selected events is permanently150

stored on the computing center. The raw event data is processed and converted151

into a reconstructed event, which is more compact and more suitable for anal-152

ysis. The actual analysis phase then selects a set of events matching according153

to some criteria with the simulated events, which, based on theoretical models,154

try to anticipate what should be happening in the collisions. In order to under-155
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stand physics phenomena and get statistically significant results a huge number156

of measured events must be compared with simulated events.157

A single high-energy physics analysis job processes millions of events. The158

work can be parallelized easily because each event can be analyzed indepen-159

dently. Normally, each analysis job starts around 600 - 1,000 separate processes160

each of which analyzes a subset of total events. Physics events are stored in161

database like repositories called ROOT files [1]. A typical ROOT file is about162

100 - 300 MB in size and contains 700 - 2,000 events. An average analysis job163

would pass through 15 million events that are stored in 35,000 files.164

Originally, the huge computing needs of LHC were handled by the grid com-165

puting model (see e.g., [42] for an overview). For this purpose, large R&D166

projects were launched in early 2000 [43, 44]. Initially, achieving the required167

computing power was the only target and the importance of minimizing en-168

ergy consumption was not understood yet. Some years later, however, offering169

enough power started to limit the number of servers that could be installed in170

the CERN data center. Outsourcing a part of capacity to another data center171

to Hungary using cloud technologies was found as a working solution. Moving172

from grid to cloud offers new possibilities for energy optimization such as con-173

solidation of computing [45] either automatically or through human expertise.174

So far the increasing need for computing power has been satisfied by purchas-175

ing more hardware and by performance improvements. Moreover the computing176

has been distributed to multiple locations with grid and cloud technologies. Un-177

til recently Moores law has handled the increasing computing needs quite well178

and the power efficiency has improved at least at the same rate as comput-179

ing power. But as computational needs continue to grow and keeping up with180

Moores law is increasingly difficult, new ideas and technologies are needed.181

Scientific computing at CERN is an interesting case since the problems are182

real, the amount of data massive, and the atmosphere at CERN like in the183

science community in general, is receptive to new ideas. An idea tested in the184

challenging environment of CERN has a good possibility of being useful else-185

where. The most known example of this is the World Wide Web [46], which186
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has its roots in CERN. However, it is important to keep in mind that there187

are differences between scientific and general computing environments. For in-188

stance, power proportional computing is useful in many areas in the computing189

industry [47], but its impact on scientific computing at CERN is small since190

there are enough computing tasks to keep the batch processing queues full and191

the servers busy all the time. Obviously, this does not alone mean that CPU192

utilisation would be 100%, since there can be latencies, for example, because of193

waiting for I/O. However, high CPU utilisation can be guaranteed by slightly194

over committing CPU resources [48]. Moreover, long computing times spanning195

hours or days are a norm in scientific computing while interactive applications196

naturally require rapid responses.197

4. Three Roles in Energy Efficiency198

Generally, green computing has been seen as a technical solution and there199

are plenty of methodologies and technologies for improving the energy efficiency200

of super computing clusters [49, 50]. However, in many cases, the motivation for201

investing in energy efficient technologies remains quite low. For example, quite202

often hosting charges in data centers are based on the amount of electricity used.203

This clearly demotivates the company running the data center in the effort to204

save energy in its computing infrastructure. However, improving other parts of205

the infrastructure such as cooling still makes sense. Partially for this reason,206

the PUE index [51] is a commonly used key performance indicator for energy207

efficiency. Or, in some other organizations, the electricity bill for computing is208

still very small compared to other costs such as rent, personnel, etc. Optimizing209

computing systems for energy efficiency can also increase risks in operational210

failures or make those risks more pronounced. For example, a hardware failure211

of a virtualized server running several services can have a negative impact for212

many customers.213

In scientific computing, like at CERN, we can recognize three different groups214

of actors: 1) Users, that is, scientists solving their problems by running scientific215
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software packages on computing clusters, 2) Developers of scientific software216

packages, and 3) Operators of the computing clusters and the data center. Based217

on this classification, we can form three different and mostly orthogonal views218

of energy efficiency:219

End user view How can a scientist using computational methods in his/her220

research improve energy efficiency and avoid wasting resources or energy221

(Section 4.1)?222

Software developer view How can energy-efficient software be written for223

complex multi-core-multi-user systems? What can the software developer224

do to improve the energy-efficiency of the code (Section 4.2.2) and what225

kind of tool support would help in this (Section 4.2.1)?226

Data center management view How can resources be managed in an opti-227

mal but still fair way? How can we influence energy spending by better228

scheduling and allocating work loads in a data center locally (Section 4.3),229

and also globally by dividing the work between multiple data centers in230

an energy optimal way (Section 4.4)?231

A way to study the efficiency of scientific computing is to look at the ra-232

tio between computing outcomes and expenses. Computing expenses can be233

classified into hardware, electricity, and personnel costs, as well as the impact234

on the environment. While the three first costs are easy to measure, the en-235

vironmental impact is a more hidden factor. Fortunately, through electricity236

pricing the common objectives of minimizing energy expenses and minimizing237

the environmental impact have strong synergies.238

The outcomes of computing are more difficult to measure than its costs.239

Obviously computing is done for a goal but quantifying the value of computing240

results is difficult as well as comparing the values of different computing out-241

comes. Therefore it is difficult to come up with useful measures of efficiency242

by simply dividing the value of computing output with the computing costs.243

CPU time is often used as a substitute measure of computing output although244
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it does not indicate how efficiently the implemented algorithms work and use245

the available resources. There are also a lot of trade-offs: for example, between246

the computing speed and the cost (i.e., electricity or CO2 emissions).247

Keeping in mind the limitations that arise from the difficulties of exact248

metering, in the following subsections we study how different solutions can help249

the actors in the roles of end users, developers, and data center managers to250

improve the energy efficiency in the parts of the computing system they can251

influence.252

4.1. User View for Energy Efficiency253

While technical solutions in computing hardware form the basis of energy254

efficiency, the way computers are used also plays an important role in energy255

efficiency. Efficiency, meaning optimal usage of available resources and avoid-256

ing generating waste, is a widely-studied topic in operations and production257

management [52] but it is usually understood in a narrower sense in scientific258

computing, where the main target is optimising the computing speed. One259

particular challenge is to motivate users to write and run their programs in an260

energy-efficient way. The users are focused on getting the results they need and261

not on looking at the bigger picture. For example, creative ways to greedily262

use the computing resources for gaining an advantage over other users, such as263

running multiple parallel tasks for solving an optimization problem and picking-264

up the best solution, or bypassing the cluster’s scheduling system by using so265

called pilot jobs [53] for reserving resources [54], are clearly not be the most266

energy-efficient way.267

It is however natural for a single user to minimize both the set-up and run268

time of his/her own application. However, this seldom results into the best269

total (energy) efficiency for the whole user community. If every user behaves270

in this way, everyone has less resources available. In closed communities, such271

as among CERN scientists, these issues could be alleviated by better training272

and also by introducing tools giving feed-back to the users on the energy and273

computational efficiency of their applications. Usually people want to reduce274
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the environmental impact if it is not too difficult or costly for them [55].275

How can the users be motivated to save energy? The following could possibly276

provide some incentives:277

• Moving to energy based accounting and billing.278

• Offering benefits to energy-efficient users. For example allocating higher279

priority for their jobs or giving them the most powerful hardware.280

• Promoting environmental awareness and making it possible to schedule281

jobs based on the availability of green electricity.282

4.2. Software Developers View283

For the software developers we can identify at least two methodologies for284

improving energy efficiency: 1) making energy consumption visible and 2) ad-285

vising them to use optimal methods for the architecture at hand. These are286

studied in the following sub sections.287

4.2.1. Energy Profiling288

As far back as in the 19th century Lord Kelvin observed that ”...when you289

can measure what you are speaking about, and express it in numbers, you know290

something about it; but when you cannot measure it, when you cannot express291

it in numbers, your knowledge is of a meagre and unsatisfactory kind” [56]. Tom292

DeMarco applied this to software development by famously stating that ”You293

cannot control what you cannot measure” [57].294

The observation also applies well to the energy consumption. Most develop-295

ers do not have any idea how much electricity it takes to run their application.296

In comparison to computing speed, the energy-spending of computing is hard297

to detect. In mobile devices consumers are sensitive to power consumption,298

because of the frequent need to recharge influences the comfort of using the299

device. However, in data centers this is not the case and therefore, the energy300

consumption of computing is generally beyond the interest of a typical software301
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developer or end user. Obviously the electricity bill of the data center is in the302

interest of the IT managers, but the link to the developer is typically weak.303

An obvious way to make developers consider the energy efficiency of their304

code is to make energy spending visible. There are multiple ways to achieve this.305

First, tools like RAPL (Intel technology for programmatic access to counters306

giving the energy spending of the processor chip [58]) or smart power sources307

allow programmatic access to counters that keep track of spent electricity [59].308

In this way we can easily monitor the electricity consumption of the computing309

server (or even some smaller units like CPU or memory) but it is hard to know310

the share of a single job’s electricity consumption relative to the overall energy311

consumption of the computing facility. Furthermore it is difficult to identify312

how different parts of the software use the energy.313

Figure 1: An example of measurements taken by the performance and energy profiling tool.

[60]

To make the energy usage more visible to the software developers, we im-314

plemented an energy profiling functionality to IGProf [60]. IGProf is an open315

source profiler developed initially at CERN [61]. With its energy profiling fea-316

tures, it is able to report the amount of energy consumed in each function [62] in317

addition to the processing time. The essence of the energy profiler is the RAPL318

measurements, which tell how much energy has been consumed between con-319

secutive readings, and a mechanism to allocate the energy reading to different320

functions.321
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While the energy profiler is operational and the concept works, it still has322

two main challenges. First, the granularity of energy measurements is rather323

coarse, around 1 ms. Therefore, it is difficult to allocate the spent energy to the324

proper functions because a program typically executes thousands of function325

calls before RAPL updates the energy counters. An option used by Hähnel326

et al. [63] is to artificially spend time in a function until the next reading327

is available. However, this has the drawback of making the execution of the328

software extremely slow. An alternative option is to rely on statistics: if the329

same code is executed multiple times, the energy readings should over time330

accumulate to those functions that are responsible for the consumption.331

The second problem with energy profiling concerns the value of separate332

energy readings. In many cases there is a very strong correlation between energy-333

spending and processing time and therefore it is reasonable to ask what is the334

added value of energy profiling. However, while the correlation is strong we335

can still see cases where the time and energy do not exactly correlate. In those336

cases the energy profiler is able to give additional insight beyond the regular337

performance profiles.338

In summary, there is still no way to accurately estimate the energy consump-339

tion of each function or line of code. The present trade-off between accuracy340

of energy estimation and the effect on the execution time needs to be replaced341

with a viable solution. Furthermore, accurate energy estimates are also difficult342

to achieve because the energy consumption depends on what other applications343

are running at the same time. Also, another program competing for the same344

memory and cache resources will influence the energy consumption. However,345

even indicative estimates are likely to be helpful.346

4.2.2. Software architecture implications on energy-efficiency347

The key to computational efficiency is the quality of used algorithms. How-348

ever, even with an optimal algorithm, its implementation must follow the con-349

straints of the run-time environment to maximize performance and energy ef-350

ficiency. Especially, the way in which the software accesses data stored in the351
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memory has a significant impact on performance and energy spending.352

At the core level, the processor executes calculations on values stored in its353

registers. Fetching a value from the RAM to a register takes approximately 100354

clock cycles. Therefore multiple levels of faster cache memory are utilized to355

prefetch data from the slow RAM to a faster cache, so that the register load356

can happen in only around 10 clock cycles. To produce this speed-up, cache357

prefetching algorithms must correctly predict future data access needs. If a358

value that is not in cache is needed, the cache needs to prefetch the contents359

of memory in the accessed region and the processor will stall waiting for the360

memory load to complete.361

The speed disparity between registers, cache, and RAM has a major effect362

on the computing speed, and, through speed, on energy consumption. While the363

effect of object-oriented programming to memory use has already been investi-364

gated and well understood in the 1990s [64], the problem is becoming even more365

visible today, since the difference between the computing speed and memory ac-366

cess speed is significantly larger in modern processors than it was previously.367

Therefore, the efficient use of the cache is even more important today [65].368

Optimizing cache prefetching involves designing data layout in memory to369

match processor cache design. When a cache miss occurs, the cache controller370

fetches a block of memory around the accessed location. The size and alignment371

of the block, called a cache line, depends on the processor. A typical cache line372

is 32 words, or full register sized data items, starting from the preceding memory373

location whose address is divisible by the cache line size. Data layout in memory374

should therefore be consecutive words, packaged in cache line size sequences that375

are also referenced with high locality by the functional instructions in temporal376

proximity.377

To quantify the importance of proper order of accessing memory, we per-378

formed a simple test with a large table of C++ instances [66]. When we ac-379

cessed the instances (to perform a XOR operation) in the same order as they380

were created, the speed was around 4x faster than if we accessed the same in-381

stances in a random order. Accessing the instances in exactly the reverse order382
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from their creation fell between these two extremes.383

To further minimize computing effort, we notice that some functional in-384

structions are more efficient than others, but these instructions can only be385

used when data is in specific registers and in a specific format. For example, a386

matrix multiplication can be implemented using traditional looping over a two-387

dimensional array, or by preloading the array to suitable registers and using388

a single-instruction-multiple-data (SIMD) instruction. Compared to classical389

looping over array, SIMD instructions have some set-up cost as multiple data390

items need to be loaded in suitable registers, but their execution can be an order391

of magnitude more efficient both in time and energy consumed. When data is392

suitably prepared so that SIMD instructions can be utilized, multiple results393

can be calculated per clock cycle.394

There are also some special challenges related to scientific computing. For395

example, a problem with floating point numeric computing is that the results396

can be different depending on compiler version and operating system. For in-397

stance, Baloolan [67] compared codes for electromagnetic wave simulation and398

found code compiled with the same compiler produced different results when399

running in Windows and Linux environments or in different Windows XP ver-400

sions. The underlying reason is the floating point calculations way they have401

been implemented [68]. Even if there are standards for floating point encodings402

and functionality [69] subtly differences in e.g. computation order or processor403

use can still cause different numeric results from the same computing [70]. Hayes404

et al. noticed a similar problem when running the same simulation software in405

two different hardware [71]. The unfortunate consequence of this is that taking406

into use newer, more optimal compilers is not possible. The big investment407

over the years to ensure that the physics computing codes produce the cor-408

rect answers would be partially wasted and the results of the new calculations409

could not be trusted without extensive analysis and verification. Therefore the410

key physics software is stuck with the old compiler versions which are not able411

to take advantage of advanced possibilities of modern processor architectures.412

This is one instance of risk avoidance, which is also visible in other software413
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improvement actions. The threshold is high to modify old, thoroughly tested414

and validated code only for better performance.415

In the CERN case, a lot of the code is old and developed at a time when416

the processor architecture did not support the features of modern processors417

described above. In a typical use case, the data in ROOT format files is used to418

construct C++ objects in RAM [72]. The object oriented design of the low-level419

data manipulation software enables high-level abstractions in application code,420

provides clear interfaces between components, and thereby supports coopera-421

tive work. Unfortunately, it also distributes the data items in non-consecutive422

locations in memory, in a format that is not directly suitable for use by SIMD423

instructions. The data items are not packed in cache-efficient blocks and, due424

to the data hiding pattern, the algorithm implementations can not consider lo-425

cality of reference for data item accesses. The unfortunate result is that the426

processor spends a lot of time waiting for memory accesses and efficient SIMD427

instructions can not be used. The challenge is to write the software providing428

a high-level abstraction interface for the users, while still handling data effi-429

ciently in memory, and adapting the handling to the type of processor where it430

is scheduled to run.431

It is well understood that software tends to increase in complexity as a result432

of late-lifecycle changes making it harder to modify and forcing an architectural433

restructuring over time. Williams et al. [73] review the work on this phenom-434

ena sometimes called code decay, software aging, or architectural degeneration.435

Most of the work deals with how new and changing functional requirements436

cause code complexity to increase. In early and influential work on software437

evolution Lehman [74] observes that hardware change is one of the reasons for438

code decay. However, hardware change and how to develop software which is439

able to improve efficiency by using the novel opportunities of new hardware440

technologies has received less attention that changes arising from functional re-441

quirements. The study by Kuusela [75] is an attempt to consider how to create442

an architecture that is adaptive to hardware changes. However, in most cases443

the adaptation to hardware is seen as a way to make the system work in another444
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hardware platform.445

Our observation is that bringing the software to work on a new platform446

can sometimes be easy but more work is needed to get the software work effi-447

ciently with the opportunities and characteristics of new hardware platforms.448

Therefore, an ideal architecture should be resilient both to new functional re-449

quirements as well as to new hardware opportunities. Brown at al. [76] discuss450

how changes done for improvements in one dimension create an architectural451

debt in other dimensions. The debt, as seen in additional complexity or non-452

optimal performance, has to be ”paid back” as a later development step. We453

think that this theory applies well to the CERN case where the functional and454

other requirements lead the development. The performance problems initially455

felt to be secondary but as time goes by they become more visible. The same is456

even more true for the energy spending of the software. It is only recently that457

the electricity spending has become a bottleneck.458

In conclusion, an energy efficient software architecture must provide the459

interfaces that users need to define their application level logic, while providing460

an efficient data manipulation and processing layer underneath the high-level461

interface. This data manipulation layer either needs to be sufficiently adaptable462

to runtime environment, or variants of the layer needs to be available for a smart463

scheduler that is able to choose the correct software version for the current464

runtime environment.465

In the case of CERN, adapting the current software towards a more energy466

efficient architecture is a major challenge because of the large amount of code467

and the long legacy in software development. Even if we understand what468

the energy-optimal architecture would be, reaching that goal is a slow process.469

From the software design perspective the direction of the required changes is470

clear, but from a software engineering perspective it is not obvious how the task471

could be achieved. Although software re-engineering has been widely studied,472

for example in several EU funded projects such as [77], it is a time consuming473

and complex process. Empirical study of industrial software refactoring [78]474

indicates that developers tend to fix concrete coding issues and improve the475
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maintainability of their code. Because energy-efficiency is largely invisible to476

the developers, it is unlikely that it would be considered in ordinary refactoring.477

Explicit targets and resources for its improvement would therefore be needed.478

4.3. Data Center Management View479

In this section, we change our perspective beyond the efficiency of a single480

piece of software and investigate the problem of how to process a large set of481

jobs efficiently. While most of the existing work on high performance computing482

focuses on optimizing the processing time of individual computing jobs, we now483

try to optimize the energy consumption and the total processing time of the set484

of jobs by choosing an optimal scheduling policy. In what follows, we assume485

that jobs (the programs to be executed) can be treated as black boxes without486

detailed understanding of the internals of them. This means we also change the487

perspective from what software developer can do, to ideas, which can be applied488

by the workload management at the data center.489

The computing clusters can be seen as production resources processing jobs490

consisting of numerous tasks [79]. The tasks can be processed by different491

resources, and finally the jobs are assembled together to be delivered back to the492

cluster customers. Operating such a cluster has its own cost structure related493

to capital invested, energy consumed, maintenance work, and facility related494

costs. Based on this, we can apply operations management principles used in495

manufacturing such as minimizing the lead time, waste, and inventory, and496

maximizing the utilization and output to improve productivity and minimize497

the energy consumption.498

Following the operations management approach [52], the efficient manage-499

ment of computing resources is based on the following principles:500

1. Modeling the computing system as a manufacturing unit applying well-501

known operations management theory (e.g. [80, 79]).502

2. Measuring performance using meaningful indicators (e.g. [81]).503

3. Managing the resources in a way that maximizes the energy efficiency and504

output (e.g. [48, 82]).505
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In the following sub sections, we discuss these principles in more detailed.506

4.3.1. Modeling Energy Efficiency of Scientific Data Center507

Since a data center or a cluster closely resembles an industrial production508

unit, we can apply operations management principles, such as minimizing the509

lead time, waste, and inventory and maximizing the utilization and output, used510

in manufacturing to improve computing cluster productivity and minimize its511

energy consumption. However, not all principles from manufacturing directly512

fit in computing clusters. For example the law of variation, stating that all513

variability reduces efficiency, is not actually true in computing [79].514

In practice, our approach is based on collecting and analyzing log data on515

a computing cluster at CERN [79]. When analyzing the data, we noticed, for516

example, that wall clock processing times of jobs are 15 to 50% longer than517

the actual CPU times. Since the cluster configuration was set to process one518

job per CPU core, this means that there is a bottleneck slowing down the519

computing process. The most obvious bottleneck is I/O access to the disk or520

network. Furthermore, the memory utilization of jobs was only about half of521

the CPU utilization rate. One reason for this is an irregular memory utilization522

curve of particle physics jobs. Based on this observation, we assumed that523

reasonable overloading can help and throughput can be improved and electricity524

consumption reduced by increased multitasking, i.e. processing more than one525

task per CPU core in parallel, and mixing heterogeneous tasks in parallel while526

multitasking.527

4.3.2. Technologies for Measuring Energy Efficiency528

There are several indicators for measuring the (energy) efficiency of data529

centers [83, 84]. Probably the most commonly used is the Power Usage Ef-530

fectiveness (PUE), measuring the ratio of power consumed by ICT equipment531

compared to the total power of the data center [85]. It measures the energy effi-532

ciency of the overall infrastructure, but it does not indicate whether ICT services533

run efficiently. Therefore, other performance indicators have been suggested, for534
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example for measuring useful work per unit of energy [86].535

Since all components of the computer use energy even when idle, and they536

also have an optimal utilization rate, the optimal case would be using all com-537

ponents in their energy-optimal rate all the time. For most of the components538

the highest energy efficiency is reached when utilization is high but not too close539

to 100%. For this purpose we [81] have developed the energy-efficient utilization540

indicator (EEUI). This indicator gives a weighted average of energy efficiency for541

all components of a computing unit (single server to data center). Using EEUI542

as a guide to run computing resources optimizes both throughput and energy543

efficiency. However, a challenge using the EEUI indicator is the need for power544

measurements in a server or even server component level. Fortunately, measur-545

ing, or estimating, power values is becoming possible through technologies such546

as RAPL [87], which was discussed more thoroughly in Section 4.2.1.547

4.3.3. Technologies for Energy-efficient Management of Computing Resources548

This final step in our approach is probably the most difficult one answering549

to the following question: How should workloads be scheduled for different550

computing servers so that the processing remains energy-efficient and gives the551

optimal throughput? Good allocation involves several practical issues. For552

example, the number of parallel tasks in a server is limited by physical resources,553

especially by the main memory. Another challenge is that the workload is not554

stable but constantly changes. Thus, static scheduling would lead to a non-555

optimal solution [82, 48].556

For scheduling, we can use the following criteria: 1) a task uses a minimal557

amount of energy, and 2) the total throughput is maximal. These goals can be558

contradictory but usually the maximal or near maximal throughput also gives559

the minimal energy consumption per processed task. As far as the clusters are560

concerned, the problem can be divided into two independent steps assuming561

that cluster nodes are homogeneous:562

1. Finding the optimal load combination for the computing node.563
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2. Scheduling jobs to the computing nodes in such a way that all computing564

nodes are as close as possible to the optimum state.565

Figure 2: An example how the number of parallel jobs affects throughput and energy efficiency

[48].

The efficiency and energy consumption of computing servers depends on the566

load level as illustrated in Figure 2 when CMS data analysis application [88]567

was run. If the workload is heavy enough to keep all servers busy, the optimal568

number of parallel jobs running on a computing server can be estimated, for569

example, by the fuzzy logic-based algorithm [82]. The algorithm dynamically570

adapts the memory threshold for submission of jobs based on the overall load. In571

this way, it is possible to keep memory consumption stable with different work-572

loads while achieving significantly higher throughput and energy-efficiency than573

using traditional fixed number of jobs or fixed memory threshold approaches.574

The test results showed that at best, the memory-based scheduling with fuzzy575

tuning improved throughput by over 150% and reduced energy consumption576

around 50% compared to one job per CPU core scheduling. Mixing CPU and577

I/O intensive jobs improved both throughput by 10-20% and energy efficiency578

by 5-10% compared to running single types of jobs only.579

For situations where the intensity of the workload fluctuates a lot, we can580

apply dynamic workload management, meaning that the allocation of computing581

tasks running on virtual machines (VM), to servers can be changed during582

processing. For this purpose, we developed a methodology and prototype system583
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for the load based management of virtual machines in an OpenStack cluster584

[89]. The novelty of this load balancer is to use specialized, energy-efficient585

servers (park servers) for storing idle virtual machines in addition to the active586

monitoring of resources and the load based active management of VMs in the587

physical cluster. Since the park server is used to store idle VMs its over-commit588

ratio can be high while actual computing servers used by active VMs have one-589

to-one mapping of virtual to physical resources. The load balancing algorithm is590

based on live migrated VMs as follows: 1) move idle VMs to the park server; 2)591

move a VM from the park server to a computing node when it becomes active;592

3) consolidate active VMs within the cluster to minimize the number of active593

servers. Our tests with real hardware indicated potential energy savings of 9%594

to 48% and the simulation results showed that in large installations the energy595

efficiency could be improved by up to 40%. Naturally, the energy savings of the596

active management greatly depend on the workload and its fluctuations.597

4.4. From Energy Saving to Proper Timing of Energy Use598

An important observation in energy-efficient computing is that saving energy599

is not the only goal. Often it is more important to use the energy at the right600

time in the right place. Demand management [90] is a hot topic in the electricity601

sector and scientific computing could be a component that brings additional602

elasticity to the demand. In electricity grids the supply and demand have to603

meet at each time point and scientific computing could be one way to very604

rapidly react to imbalances in supply and demand.605

Especially with renewable energy sources the energy supply and price can606

vary a lot. There have been extreme cases for example in Germany and Denmark607

where the price of electricity has been negative. The obvious but not very useful608

way to take advantage of this is to time the computing so that it is done when the609

electricity is free or cheap. The problem with this approach is that scientists are610

eager to get results and therefore they are not willing to tolerate very long wait611

times. Moreover, it is questionable whether an investment in computer hardware612

that is only used when cheap energy is available, makes enough economic sense613
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these days when the electricity price is generally low.614

A set of more interesting ideas is based on the observation that often it is615

easier to move computing tasks than to move electricity. Therefore the goal616

could be to move the computing tasks to places which have abundant energy.617

Researchers have already explored cases of optimally moving the computing to618

different countries or regions depending on the variable electricity prices (see619

e.g. [91, 92, 93]).620

In our own work, we have studied the idea of spending the spare energy of621

a house equipped with renewable energy sources for computing as described in622

[94]. The development is based on the fact that it is not straightforward to623

decide what to do with the extra energy generated, for example by solar panels.624

This issue can exist for example on a sunny day when the home is empty. The625

conventional possible alternatives include selling spare energy to an electricity626

company, storing it locally, or in the extreme, wasting it completely. However,627

all of these have they shortcomings. Therefore, we have developed a computing628

server which uses the spare electricity in a home to perform computing. This629

allows the homeowner to earn money by selling computing services instead of630

selling electricity back to the grid. Scientific computing workloads could be631

excellent candidates for such calculations since they can often tolerate the delays632

that arise because of the unpredictable availability of the computing services.633

5. Towards a More Energy-Efficient Future634

In this section we discuss ideas and observations for improving energy effi-635

ciency in scientific computing and computing in general. First, it is important636

to have a holistic view. Different actors, as we have described in this paper,637

have different viewpoints and different sets of options to influence the energy-638

efficiency of computing. In addition to focusing on improving a single perspec-639

tive it is essential to understand how the different views coexists and influence640

each other. It is also essential to analyze the computing system as a whole and641

to find the most promising opportunities to be implemented. Taking advantage642
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of expected benefits requires work: it includes making changes to the existing643

legacy systems, developing new ways of working, and inventing new methods644

to manage computing. A large part of this work can be done in parallel. Only645

through gradual progress on multiple frontiers, we can gain concrete advances,646

since any single breakthrough alone is unlikely to have a dramatic effect but647

accumulating the effects of several improvements will be important.648

In this paper, we introduced three groups of methods for improving energy649

efficiency of scientific computing presented in Section 4: 1) promoting green val-650

ues to the users, 2) offering tools such as energy profiling and energy-aware ar-651

chitectures for developers, and 3) monitoring and optimizing tools and methods652

for data center operators. Although these methods have similarities to proven653

techniques used in traditional manufacturing such as the continuous improve-654

ment paradigm [95] emphasizing visual control and the theory of constraints655

focusing on process bottlenecks [96],our examples also show that a scientific656

computing system should not be managed as an automated factory but it is657

an interactive system among the shareholders. For example by providing the658

user with feedback on the resource usage and energy consumption along with659

the yield (processed jobs in time per available processing time) may change660

user behavior towards a more resource intensive and energy efficient use of the661

facility. At the same time, a developer who realizes through visual reporting662

which functions of the software are most used, may direct his efforts to further663

develop those key functions to be more efficient and faster. This follows closely664

the bottleneck approach, which aims to remove process constraints to reach a665

swift, even flow [97] in the value adding process. Moreover, data center man-666

agement could be directed, for example, by showing key performance indicators667

on resource utilization. According to operations management principles, the668

practical version of the law of utilization indicates that lead times and work in669

process will increase radically when a threshold level is passed [52].670

On the other hand, we must remember that, as operational entities, data671

centers radically differ from the traditional supplier-customer relationships in672

manufacturing and service industries. In these industries partnerships are crit-673
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ical to success, meaning that in supply chains suppliers and customers share674

information, plans and the additional business environment related knowledge675

to improve efficiency and responsiveness. In the computing center context the676

triangle of stakeholders, namely the users, developers, and data center opera-677

tors seldom discuss with each other. This can reduce efficiency, since scientific678

computing systems are often custom-made systems which would benefit infor-679

mation sharing among the stakeholders. There is no genuine partnership or680

unity, which would on its own improve the situation like in supplier-customer681

quality circles [98], where different parties systematically and with objective682

methodology improve the overall system performance.683

As we have discussed above there are still many open issues in the quest684

for greater energy efficiency. While our work and that of other scientists in the685

area is touching some of these issues, a fair number of unsolved problems exist.686

One important outcome of our work in this area is a clearer understanding687

of important research problems to tackle. We have collected the major open688

technical challenges covered in this article in Table 1. The first column of the689

table describes the challenge, the second one explains its importance, the third690

one indicates possible difficulties and the last one gives examples on studies691

towards possible solutions.692

Besides the somewhat well understood possibilities there are naturally a mul-693

titude of other future possibilities such as photonic, biomolecular, and quantum694

computing (see e.g. [116, 117, 118]).695

While each of the ideas discussed in this article works separately the best696

results can of course be attained if they would be used in an integrated fashion.697

However, this is very challenging to achieve in practice. The massive amount of698

legacy software would need to be adapted to the new environment. Considering699

the different aspects would make software development harder, and in scientific700

computing most of the software is developed by scientists who are experts in701

physics but not necessarily in software development. Furthermore, considering702

the amount of time that is needed to develop and deploy integrated solutions703

the world may change and new, unanticipated options, may become available.704
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Therefore a perfect future solution is an illusion. It is good to have a vision and705

take steps in that direction but at the same time admit that in real-life reaching706

the ideal target may be challenging.707

6. Conclusions708

Improving the energy efficiency of computing systems is becoming more and709

more difficult since simple technical solutions and replacing the computing hard-710

ware with next generation models does not offer as much improvement it used711

to. Therefore, other solutions are needed and, for example, optimizing parts712

other than hardware of computing systems still offer a large potential for im-713

provement. In this paper, we studied how the computing system can be seen as714

a value chain of three main roles: users, software developers, and data center715

administrators. Using this grouping, we introduced a set of potential technolo-716

gies and methodologies for improving the energy efficiency of each of these roles.717

This makes it possible to recognize the bottlenecks of the system and focus on718

removing those bottlenecks.719

The high energy physics community is a global family of researchers and720

experts working on the experiments to detect new particles generated by the721

colliding beams in the LHC. To reveal the elementary levels of matter from these722

collisions requires massive computing infrastructure and multitude of skills to723

master. Therefore, information technology has always played an essential role724

[119]. The community works in distributed manner through globally spread725

institutes, which all share their own political and computational habits, but726

still striving towards common scientific goals. The spirit is similar to open727

source societies, where transparency and rough consensus drives the collabo-728

ration. Complex system development requires architectural control, which is729

balanced by technological memorandum of understanding to which developers730

commit and which is continuously scrutinized through a social network and fre-731

quent collaboration meetings. This facilitates also global and fast dissemination732

of different results produced by the community.733
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