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It is well known that proper scaling can increase the efficiency of computational problems. In this paper, we define

and show that a balancing technique can substantially improve the computational efficiency of optimal-control

algorithms.We also show that noncanonical scaling and balancing proceduresmay be used quite effectively to reduce

the computational difficulty of some hard problems. These results have been used successfully for several flight and

field operations atNASAand theU.S.Department ofDefense. A surprising aspect of our analysis shows that itmay be

inadvisable to use autoscaling procedures employed in some software packages. The new results are agnostic to the

specifics of the computational method; hence, they can be used to enhance the utility of any existing algorithm or

software.

I. Introduction

I N MANY practical optimal-control problems, the decision
variables range wildly in several orders of magnitude [1]. For

instance, in a space trajectory optimization problem [2,3], a position
variable can vary from a fewmeters towell over a million kilometers.
The conventional wisdom to manage the associated computational
problems is to use canonical units. Many space trajectory
optimizations fare well when canonical units are used [2,3]. For
instance, for low-Earth-orbiting spacecraft, one may choose the
radius of the Earth R� as a unit of distance and circular speed
(at R�) as the unit of velocity. For interplanetary spacecraft,
astronomical units provide a set of canonical units for scaling
trajectory optimization problems. In this paper, we show that it is
possible to define and use arbitrary and inconsistent units for faster
trajectory optimization. For example, wemay choosemeters as a unit
of distance along the x direction while concurrently using feet for
distance units along the y direction. Furthermore, we show that it is
not necessary to choose a consistent (or canonical) unit of velocity in
the x direction to be equal to meters per second (or feet per second for
velocity in the y direction). Thus, for example, one may arbitrarily
choose yards per day as the unit of the x velocity while insisting that
the x position be measured in meters. The purpose of using such
unusual or designer units [4], i.e., highly customized units that do not
necessarily conform to standardized units, is to liberate ourselves
from using well-established canonical/consistent units so that we
may scale an optimal-control problem for faster computational
results. This liberation allows us to radically alter what we mean by

scaling optimal-control problems and consequently solve some
apparently hard problems with more ease than ever before.
A second aspect of our paper is the impact of scaling on dual

variables. From the Hahn–Banach theorem [5], dual variables exist
for all computational optimal-control problems even when they are
not used. To illustrate this consequential theorem, consider the
ordinary differential equation

_x � f�x� (1)

where x ∈ RNx and f : x ↦ RNx . The formal adjoint to the variation
of Eq. (1) is defined by

_λ � −�∂xf �Tλ (2)

where ∂xf is the Jacobian of f with respect to x. In other words,
Eq. (2) exists from the mere fact that Eq. (1) exists; hence, when a
differential equation in a computational optimal-control problem is
scaled, it automatically affects the adjoint equation, even if it (i.e., the
adjoint equation) is not used. In this paper,we show that the equations
in a computational optimal-control problem must be scaled in such a
way that they do not unscale the adjoint variable even if the adjoint
equation is never used in the algorithm. We call this type of scaling
balancing.
In most algorithms, including the ones in which derivatives are not

used (e.g., genetic algorithms), the information content in the
Jacobian forms a key ingredient in the recipe that connects the
sequence of iterations [6–8]. Consequently, the scales used in an
optimal-control problem must be balanced even if the adjoint
equation is never used because it represents the information content
contained in a Jacobian by way of Eq. (2). In other words, there is no
escape from considering the adjoint equations. This is a fundamental
result traceable to the Hahn–Banach theorem. An alternative
explanation for the no-escape clause is that the adjoint equations are
part of the necessary conditions for optimality. By definition,
necessary conditions are indeed necessary; hence, it should not be
entirely surprising that balancing is also necessary.
Our analysis also reveals another surprising result: if scaling is

performed at the discrete level, it inadvertently introduces new terms
in the dynamical equations with possible feedback effects that may
destabilize the search algorithm.Consequently, automatic techniques
that scale the problem at the discrete level may be more harmful than
useful. The simple remedy is to scale and balance the equations at the
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optimal-control level and choose algorithms that do not scale the
equations at the discrete level. This simple trick has been used many
times before by NASA [9–16] and the U.S. Department of Defense
[17–22] to solve and implement on-orbit and fielded solutions. Note,
however, that scaling andbalancingwerenot at the forefront inmanyof
these applications because their main contributions far outweighed
such discussions. For instance, the focal point of [9] was the flight
implementation of the optimal propellant maneuver onboard the
International Space Station rather than the employment of scaling and
balancing techniques. Similarly, [11,12]were focused on the first flight
implementations of a historic zero-propellantmaneuverwhile [15]was
focused on the feasibility of arcsecond slews for precision pointing of
the Kepler spacecraft. In the same spirit, the main contribution of [18]
was the flight implementation of a shortest-time maneuver and not on
the specifics or the importance of scaling and balancing that were
necessary to accomplish the on-orbit demonstration.
In this paper, we generalize the application-specific procedures of

the past successes by laying down the mathematical foundations for
scaling and balancing of generic optimal-control algorithms. In doing
so, we also demonstrate the fallacies of some scaling techniques that
are currently in practice.

II. General Problem Formulation

A generic optimal-control problem can be formulated as follows:

X�RNx U�RNu

x� �x1; : : : ; xNx
� u� �u1; : : : ;uNu

�

9=
; �preamble�

�B�
z}|{problem

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

Minimize

J�x�⋅�;u�⋅�; t0; tf�≔
E�x0;xf; t0; tf��

R tf
t0 F�x�t�;u�t�; t�dt

9=
; �cost�

Subject to

_x� f�x�t�;u�t�; t�
�
�dynamics�

eL ≤ e�x0;xf; t0; tf�≤ eU
�
�events�

hL ≤ h�x�t�;u�t�; t�≤ hU

�
�path�

Although the symbols used in problem B are fairly standard
(see, for example, [4]), we note the following for the purposes of
completeness:
1) X and U are Nx- and Nu-dimensional real-valued state and

control spaces, respectively. We assume Nx ∈ N� and Nu ∈ N�.
2) J is the scalar cost function. The arguments of J are the

optimization variables.
3) The optimization variables are the Nx-dimensional state

trajectory x�⋅�, the Nu-dimensional control trajectory u�⋅�, the initial
clock time t0, and the final clock time tf.
4)E is the scalar endpoint cost function. The arguments ofE are the

endpoints. In the classical literature, E is known as the Mayer cost
function.
5) The endpoints are the initial state x0 ≡ x�t0�, the final state

xf ≡ x�tf�, the initial time t0, and the final time tf.
6)F is the scalar running cost function. The arguments ofF are the

instantaneous value of the state variable x�t�, the instantaneous value
of the control variable u�t�, and time t.
7) f is the Nx-dimensional dynamics function, or, more

appropriately, the right-hand side of the dynamics equation. The
arguments of f are exactly the same as the arguments of F.
8) e is the Ne-dimensional endpoint constraint function. The

arguments of e are exactly the same as that of E.
9) eL and eU are the Ne-dimensional lower and upper bounds on

the values of e.
10) h is the Nh-dimensional path constraint function. The

arguments of h are exactly the same as that of F.

11) hL and hU are theNh-dimensional lower and upper bounds on
the values of h.
The five functions, E, F, f , e, and h are collectively known as the

data functions (for problem B).
Regardless of any type of method used to solve problem B,

including the so-called direct methods, a solution to the problem
must at least satisfy the necessary conditions of optimality because
they are indeed necessary. The necessary conditions for problem B
are generated by an application of Pontryagin’s principle [4,23,24].
This results in the following boundary value problem (BVP), which
we denote as problem Bλ:

�Bλ�

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

_x�t�−∂λ �H�μ�t�;λ�t�;x�t�;u�t�; t�� 0 �state equations�
_λ�t��∂x �H�μ�t�;λ�t�;x�t�;u�t�; t�� 0 �costate equations�

hL ≤h�x�t�;u�t�; t�≤hU �path constraint�
∂u �H�μ�t�;λ�t�;x�t�;u�t�; t�� 0 �Hamiltonian

μh minimization�
eL ≤ e�x0;xf; t0; tf�≤ eU �endpoint equations�

λ�t0��∂x0 �E�ν;x0;xf; t0; tf�� 0 �initial and
λ�tf�−∂xf �E�ν;x0;xf; t0; tf�� 0 final transversality

νe conditions�
H�@t0�−∂t0 �E�ν;x0;xf; t0; tf�� 0 �Hamiltonian

H�@tf��∂tf �E�ν;x0;xf; t0; tf�� 0 value conditons�

In problem Bλ, the unknowns are as follows:
1) The system trajectory is t ↦ �x; u� ∈ RNx × RNu .
2) The adjoint covector function is t ↦ λ ∈ RNx .
3) The path covector function is t ↦ μ ∈ RNh .
4) The endpoint covector is ν ∈ RNe .
5) The initial and final clock times are t0 ∈ R and tf ∈ R.
The quantity �H is the Lagrangian of the Hamiltonian given by

�H�μ; λ; x; u; t� ≔ H�λ; x;u; t� � μTh�x; u; t�

where H is the usual Pontryagin Hamiltonian,

H�λ; x;u; t� ≔ F�x; u; t� � λTf�x; u; t�

and H is the lower or minimized Hamiltonian,

H�λ; x; t� ≔ min
u

H�λ; x; u; t�

The symbolH�@t� is a shorthand forH�λ�t�; x�t�; t�. The quantity
�E is the endpoint Lagrangian given by

�E�ν; x0; xf; t0; tf� ≔ E�x0; xf; t0; tf� � νTe�x0; xf; t0; tf�

The † notation used in defining problem Bλ denotes
complementarity conditions [4]. For instance, ν†e is a shorthand
for the conditions

νi

8>>><
>>>:
≤ 0 if ei�x0; xf; t0; tf� � eLi
� 0 if eLi < ei�x0; xf; t0; tf� < eUi
≥ 0 if ei�x0; xf; t0; tf� � eUi
unrestricted if eLi � eUi

(3)

with μ†h defined similarly (for each t).

III. Scaling the Primal Problem

We change the coordinates of the unknownvariables of problemB
according to the affine transformations,

x ≔ Px ~x� qx (4a)
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u ≔ Pu ~u� qu (4b)

t ≔ pt ~t� qt (4c)

where the uppercase letter P�⋅� denotes an invertible square matrix of
appropriate dimensions and the lower case letter p�⋅� is a scalar.
Similarly, q�⋅� is a vector of appropriate dimension, and q�⋅� is a scalar.
The tilded (∼) variables are the transformed variables. In a similar
fashion, we scale the cost functional J, the endpoint constraint
function e, and the path constraint function h according to

J ≔ pJ
~J � qJ (5a)

e ≔ Pe ~e� qe (5b)

h ≔ Ph
~h� qh (5c)

where pJ > 0 and Pe and Ph are positive definite diagonal matrices.
Let problem ~B denote the transformation of problemB resulting from
Eqs. (4) and (5). This problem can be explicitly obtained as follows.
First, the transformation of J to ~J can be constructed using Eq. (4) as

J�x�⋅�;u�⋅�; t0; tf�� J
h
Px ~x�⋅��qx;Pu ~u�⋅��qu;pt ~t0�qt;pt ~tf�qt

i
≔pJ

~J
h
~x�⋅�; ~u�⋅�; ~t0; ~tf

i
�qJ (6)

where the last equality in Eq. (6) follows fromEq. (5). Hence, the cost
functional transforms according to

~J
h
~x�⋅�; ~u�⋅�; ~t0; ~tf

i
≔ −

qJ
pJ

� 1

pJ

J
h
Px ~x�⋅� � qx;Pu ~u�⋅� � qu; pt ~t0 � qt; pt ~tf � qt

i
� −

qJ
pJ

� 1

pJ

E
�
Px ~x0 � qx;Px ~xf � qx; pt ~t0 � qt; pt ~tf � qt

�
� pt

pJ

Z
~tf

~t0

F
�
Px ~x�t� � qx;Pu ~u�t� � qu; pt ~t� qt

�
d~t (7)

where t in the integrand in Eq. (7) is to be understood as �pt ~t� qt�.
The transformation of the dynamics is given by

dx

dt
� Px

pt

d ~x

d~t
� f

�
Px ~x�t� � qx;Pu ~u�t� � qu; pt ~t� qt

�
Hence, the dynamical equations transform according to

d ~x

d~t
� ~f

�
~x�t�; ~u�t�; ~t

�
≔ ptP

−1
x f

�
Px ~x�t� � qx;Pu ~u�t� � qu; pt ~t� qt

�
(8)

where we have once again used t in Eq. (8) to mean �pt ~t� qt�.
By using similar procedures, it follows that the endpoint and path

constraint functions transform according to

~e
�
~x0; ~xf; ~t0; ~tf

�
� P−1

e

h
e
�
Px ~x0 � qx;Px ~xf � qx; pt ~t0

� qt; pt ~tf � qt

�
− qe

i
(9)

~h
�
~x�~t �; ~u�~t �; ~t

�
�P−1

h

h
h
�
Px ~x�t��qx;Pu ~u�t��qu;pt ~t�qt

�
−qh

i
(10)

The corresponding lower and upper bounds are given by

~eL � P−1
e

�
eL − qe

�
; ~eU � P−1

e

�
eU − qe

�
(11)

~hL � P−1
h �hL − qh�; ~hU � P−1

h �hU − qh� (12)

Equations (7–12) constitute problem ~B.

IV. Necessary Conditions for the Scaled Problem

Let ~λ, ~μ, and ~ν be the adjoint, path, and endpoint covectors,

respectively, associated with the necessary conditions for problem ~B.
Then, it follows that the Hamiltonian, the Lagrangian of the

Hamiltonian, and the endpoint Lagrangian for problem ~B are given
by [4] the following:
1) The Hamiltonian ~H is

~H
�
~λ; ~x; ~u; ~t

�
≔

pt

pJ

F
�
Px ~x�t� � qx;Pu ~u�t� � qu; pt ~t� qt

�
� pt

~λTP−1
x f

�
Px ~x�t� � qx;Pu ~u�t� � qu; pt ~t� qt

�
(13)

2) The Lagrangian of the Hamiltonian
�~H is

�~H
�
~μ; ~λ; ~x; ~u; ~t

�
≔ ~H

�
~λ; ~x; ~u; ~t

�
� ~μTP−1

h

h
h
�
Px ~x�t� � qx;Pu ~u�t� � qu; pt ~t� qt

�
− qh

i
(14)

3) The endpoint Lagrangian
�~E is

�~E
�
~ν; ~x0; ~xf; ~t0; ~tf

�
≔

1

pJ

E
�
Px ~x0 � qx;Px ~xf � qx; pt ~t0 � qt; pt ~tf � qt

�
� ~νTP−1

e

h
e
�
Px ~x0 � qx;Px ~xf � qx; pt ~t0 � qt; pt ~tf � qt

�
− qe

i
(15)

The adjoint equation for problem ~B is given by

−
d~λ
d~t

� ∂ �~H
∂ ~x

(16)

Evaluating the right-hand side of Eq. (16) using Eq. (14), we get

−
d ~λ
d~t

� pt

pJ

PT
x

�
∂F
∂x

�
� pt

�
P−1
x

∂f
∂x

Px

�
T
~λ�

�
P−1
h

∂h
∂x

Px

�
T

~μ (17)

Following the same process for the stationarity condition
associated with the Hamiltonian minimization condition for problem
~B, we get

∂ �~H
∂ ~u

� pt

pJ

PT
u

	
∂F
∂u



� ptP

T
u

	
∂f
∂u



T

�P−1
x �T ~λ� PT

u

	
∂h
∂u



T

�P−1
h �T ~μ

� 0 (18)

Likewise, the initial and final transversality conditions are given by

− ~λ�~t0� �
∂ �~E
∂ ~x0

� PT
x

pJ

∂E
∂x0

�
�
P−1
e

∂e
∂x0

Px

�
T

~ν (19a)

~λ�~tf� �
∂ �~E
∂ ~xf

� PT
x

pJ

∂E
∂xf

�
�
P−1
e

∂e
∂xf

Px

�
T

~ν (19b)

Finally, the complementarity conditions are given by ~μ† ~h and ~ν† ~e.
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V. Balancing Conditions

Proposition A: Let ~x	�⋅�, ~u	�⋅�, ~t	0 , and ~t	f be an extremal solution

to the scaled problem ~B. Let ~λ	�⋅�, ~μ	�⋅�, and ~ν	 be a multiplier triple
associated with this extremal solution. Let Pλ, Pμ, and Pν be

invertible matrices defined according to

Pλ ≔ pJ �P−1
x �T (20a)

Pμ ≔
pJ

pt

�P−1
h �T (20b)

Pν ≔ pJ �P−1
e �T (20c)

Then, an extremal solution to the unscaled problem B exists and is
given by

x	�⋅� ≔ Px ~x
	�⋅� � qx (21a)

u	�⋅� ≔ Pu ~u
	�⋅� � qu (21b)

t ≔ pt ~t� qt (21c)

λ	�⋅� ≔ Pλ
~λ	�⋅� (21d)

μ	�⋅� ≔ Pμ ~μ	�⋅� (21e)

ν	 ≔ Pν ~ν	 (21f)

Proof: The proof of Eqs. (21a–21c) follows quite simply by
construction. The proof (21d–21f) follows by substituting Eq. (21) in
problemBλ and usingEq. (20) to show that the resulting equations are
the same as the necessary conditions for the scaled problemderived in
the previous section.

A. Remark 1

Once Px, Ph, and Pe are chosen to scale the primal variables and
constraints, then, according to Proposition A, there exist dual
variables λ	�⋅�, μ	�⋅�, and ν	 that get scaled automatically in
compliance with Eq. (21). Consequently, balancing can now be
defined more precisely as choosing Px, Ph and Pe along with pJ and
pt such that the values of the covectors λ	�⋅�, μ	�⋅�, and ν	 are of
similar orders of magnitude as their corresponding vectors. In
contrast, scaling is choosingPx,Ph andPe such that the values of the
corresponding vectors (as well as their components) are of similar
magnitude relative to each other. When both requirements are met,
the problem is said to be scaled and balanced.

B. Remark 2

Substituting Eq. (20) in Eq. (13), it is clear that the value of the
Hamiltonian transforms according to

H�λ; x; u; t� �
	
pJ

pt



~H
�
~λ; ~x; ~u; ~t

�
(22)

C. Remark 3

A natural choice for Px, Ph, and Pe is diagonal matrices. For these
choices, Pλ, Pμ, and Pν are also diagonal matrices. In this situation,
each component of a vector is independently related to each
component of its corresponding covector. This fact can be used in a
numerical setting for a simple algorithmic technique for scaling and
balancing.

D. Remark 4

Let the units of x, h, and e be given according to

x ≔

2
6664

x1
x2
..
.

xNx

3
7775

x1 units
x2 units

..

.

xNx
units

(23a)

h ≔

2
6664

h1�x; u; t�
h2�x; u; t�

..

.

hNh
�x; u; t�

3
7775

h1 units
h2 units

..

.

hNh
units

(23b)

e�x0; xf; t0; tf� ≔

2
6664

e1�x0; xf; t0; tf�
e2�x0; xf; t0; tf�

..

.

eNe
�x0; xf; t0; tf�

3
7775

e1 units
e2 units

..

.

eNe
units

(23c)

Note that no assumption is made on any of the units in Eq. (23).
Thus, for example, x1 units may be meters, and x2 units may be feet,
even if the pair �x1; x2� is the position coordinate of the same point
mass. Obviously, the Euclidian norm of the numbers given by x1 and
x2 has no physical meaning. In the same spirit, x3 units may be yards
per day, even if the variable x3 is the time-rate change of x1. Despite
such arbitrary choices, it is still possible to measure a length of a
vector through the use of a covector. To this end,we letPx,Ph, andPe

be diagonalmatrices. Then, it follows fromEqs. (20) and (21) that the
covectors have units given by

λ ≔

2
6664

λ1
λ2
..
.

λNx

3
7775

CU∕x1 units
CU∕x2 units

..

.

CU∕xNx
units

(24a)

μ ≔

2
66666664

μ1

μ2

..

.

μNh

3
77777775

CU∕TU
h1 units

CU∕TU
h2 units

..

.

CU∕TU
hNh

units

(24b)

ν ≔

2
666664

ν1
ν2

..

.

νNe

3
777775

CU∕e1 units
CU∕e2 units

..

.

CU∕eNe
units

(24c)

where CU is the cost unit and TU is the time unit. Equation (24) was
first introduced in [4] as part of the definition of a covector associated
with the relevant vector. Note also from Eq. (24) that a covector
always has some unit of frequency; i.e., it is always given in terms of
some common unit per some unit. The common unit in Eqs. (24a) and
(24c) is the cost unit, but the common unit in Eq. (24b) is the cost unit
per time unit. Consequently, we can now measure the length of a
vector by an appropriate covector. For instance, xTλ generates a
scalar in terms of CUs despite that its Euclidean norm might not be
computable due to the disparity in units of the constituents of x.
See [4], Sec. 2.2, for further details.
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E. Remark 5

As a consequence of Eqs. (23) and (24), scaling may be conceived
as simply changing units. Consequently, nondimensionalization is
also changing units and should not be construed as eliminating units.

F. Remark 6

TheHamiltonian is not dimensionless. The unit of theHamiltonian
is the cost unit per time unit. This follows from Eq. (24). When the
cost unit is the same as the time unit (e.g., time optimality), then, and
only then, is the Hamiltonian truly dimensionless.

G. Remark 7

Using Eq. (8), we can write

∂ ~f
∂ ~x

� ptP
−1
x

	
∂f
∂x



Px (25)

Because of the similarity transformation on the right-hand side of
Eq. (25), the spectral radii of the Jacobians are related by

ρ�∂ ~x
~f� � ptρ�∂xf� (26)

where ρ�⋅� is the spectral radius of �⋅�. Rewriting pt as �tf − t0�∕
�~tf − ~t0� and substituting in Eq. (26), we get an invariance equation,

�~tf − ~t0�ρ�∂ ~x
~f� � �tf − t0�ρ�∂xf� (27)

Because the product of the spectral radius and the time horizon is a
key sensitivity factor (see [4], Sec. 2.9), it follows from Eq. (27) that
the curse of sensitivity cannot be mitigated by scaling.

VI. Example Illustrating Designer Units, Scaling,
and Balancing

Although the concepts of designer units, scaling, and balancing
have been used for more than a decade to generate successful flight
and field operations [9–12,14,17,20], the process has largely been ad
hoc until recently. Because the flight problems are too involved for
illustrating the procedures, we design a far simpler problem that
typifies the systematic process of scaling and balancing. To this end,
consider the well-known Brachistochrone problem. Instead of using
well-scaled numbers as is customarily discussed in many textbooks,
we purposefully choose the final-time condition on the position
coordinates �x; y� to bewidely disparate and given by (1000,1)m; see
Fig. 1. This results in a badly scaled or bad Brachistochrone problem
that can be formulated as [4]

X � R3 U � R

x � �x; y; v� u � θ

)
�preamble�

�BR�

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Minimize J�x�⋅�; u�⋅�; tf� � tf

o
�cost�

Subject to

_x � v sin θ

_y � v cos θ

_v � g cos θ

9>>=
>>; �dynamics�

�t0; x0; y0; v0� � �0; 0; 0; 0�
�xf; yf� � �1000; 1�

)
�endpoints�

where g � 9.8 m∕s2. See Fig. 1 for a physical definition of the
variables.

A. Illustrating the Process for Choosing Designer Units

As a consequence of Eq. (23a), we can write

x ≔

2
4 x
y
v

3
5 x units
y units
v units

(28)

Because the cost unit is the same as the time unit, the adjoint
covector is defined by

λ ≔

2
4 λx
λy
λv

3
5 t units∕x units
t units∕y units
t units∕v units

(29)

As a result, the Hamiltonian

H�λ; x; u� � λxv sin θ� λyv cos θ� λvg cos θ (30)

is dimensionless.
Applying the Hamiltonian minimization condition, we get

λx�t�v�t� cos θ�t� − λy�t�v�t� sin θ�t� − λv�t�g sin θ�t� � 0

�∀ t ∈ �t0; tf�� (31)

The adjoint equations,

_λx � 0

_λy � 0

_λv � −λx sin θ − λy cos θ (32)

indicate that λx and λy are constants. In addition, the transversality
condition,

λv�tf� � 0 (33)

and the Hamiltonian value condition,

H�@tf� ≔ λx�tf�v�tf� sin θ�tf� � λy�tf�v�tf� cos θ�tf�
� λv�tf�g cos θ�tf� � −1 (34)

complete the computational set of conditions that define the
boundary value problem. These equations can also be used as part of
the totality of a verification and validation of a candidate optimal
solution obtained by any computational method.
To perform initial scaling, we simply take the given numerical data

as a starting point. For the numerics given in problemBR, we expect x
to satisfy

0 ≤ x ≤ 1000 (35)

x

y

(0, 0)

m g

N

v

θ

θ

(1000, 1)

Fig. 1 Schematic for the bad Brachistochrone problem. Figure is not to

scale.
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In the absence of further analysis, we can assume y to take on a
similar range of values. Furthermore, because the x distance is
relatively large, we expect the time of travel to be relatively large
(in terms of seconds). Based on these heuristics, we choose an initial
set of scaling factors according to

x � Px ~x � 100 ~x

y � Py ~y � 20 ~y

v � Pv ~v � 10 ~v

θ � Pθ
~θ � ~θ

t � pt ~t � 10~t

(36)

As a result of Eq. (36), the large variation in x indicated by Eq. (35)
is tempered by ~x according to

0 ≤ ~x ≤ 10

Note that the numbers given in Eq. (36) imply a unit of distance
along the x axis that is completely different from the unit of distance
along the y axis. In fact, these numbers constitute a specific system of
units that do not conformwith themetric systemor anyother set of the
standard units; hence, these are designer units. The conversion
between the designer units of Eq. (36) and themetric units is given by

1 ~x unit � 1 unit of distance along x axis � 100 m

1 ~y unit � 1 unit of distance along y axis � 20 m

1 ~v unit � 1 unit of speed � 10 m∕s

1~t unit � 1 unit of time � 10 s (37)

It is important to note that the velocity unit is completely
independent of any of the x, y, or t units. Consequently, these
designer units are not consistent in the sense that

d ~y

d~t
≠ ~v cos ~θ

Todrive home this point, we note thatwe can no longer expressg in
terms of distance units per the square of time units. For instance, in the
metric system, the unit of g is given by meters per second squared.
Because we chose distance units along the x and y directions to be
independent of each other, it is clear that we cannot regard g in terms
of distance units per the square of time units. The proper unit for g is
obtained by considering d ~v∕d~t. This implies that we may regard the
gravitational acceleration as being transformed according to

~g �
	
pt

Pv



g � 9.8 ~v unit∕~t unit (38)

That is, ~g ≠ 1 numerically, which is a typical number for canonical
units [3]. That ~g � g numerically in Eq. (38) is simply coincidental
and is a result of choosing pt � Pv in Eq. (36).
Using the scaling units of Eq. (36), the endpoint conditions can be

written as

~t0 � 0 �in ~t units�
~x�~t0� � 0 ~x�~tf� � 10 �in ~x units�
~y�~t0� � 0 ~y�~tf� � 0.05 �in ~y units�

~v0 � 0 �in ~v units�

(39)

Imposing the endpoint conditions according to Eq. (39) is
tantamount to choosing Pe according to

Pe � diag�10; 100; 100; 20; 20; 10� (40)

This follows as a direct consequence of Eq. (36). Finally, we scale
the cost functional using pJ � 10 so that we can write

~J
h
~x�⋅�; ~u�⋅�; ~t0; ~tf

i
� ~tf

At this juncture, we wish to emphasize that the purpose of initial
scaling is not necessarily to generate the best set of designer units;
rather, it is largely directed at producing a work flow for balancing. As
will be apparent shortly, once an initial numerical result is obtained,
balancing can usually be performed in just about two iterations. One
situation in which initial scaling becomes critical to the work flow is
when no numerical result is achieved simply because of poor scaling.
The detection andmitigation of this problem are open areas of research.

B. Illustrating the Process of Descaling Covectors

For the purposes of clarity of the discussions to follow, we use the
following terminology:
1)Unscaled refers to all numbers and variables associated with the

original (or unscaled) problem.
2) Scaled refers to all numbers and variables associated with the

affinely transformed (or scaled) problem.
3) Descaled refers to all numbers and variables that are purported

solutions to the unscaled problemobtained via Eq. (21) and a solution
to the scaled problem.
Applying Eq. (21) to descale the adjoint covector, we get

λx � ~λx

	
pJ

Px



�

~λx
10

�s∕m�

λy � ~λy

	
pJ

Py



�

~λy
2

�s∕m�

λv � ~λv

	
pJ

Pv



� ~λv �s2∕m� (41)

Similarly, from Eqs. (40) and (20), we have

Pν � 10
h
P−1
e

i
T
⇒

�
νt0 ; νx0 ; νxf ; νy0 ; νyf ; νv0

�
�

	
~νt0 ;

~νx0
10

;
~νxf
10

;
~νy0
2

;
~νyf
2

; ~νv0



(42)

where ν and ~ν with the appropriate subscripts are the endpoint
multipliers associatedwith the initial- and final-time conditions.Note
that these endpoint multipliers also have units similar to those
identified in Eq. (41).

C. Illustrating the Numerical Process of Scaling and Balancing

All of the analysis so far has been agnostic to the specific choice of
a numerical method or software. To demonstrate the numerical
process, any appropriate mathematical software may be used. We
begin by choosing DIDO©, a MATLAB® toolbox for solving
optimal-control problems [4]. DIDO is the same tool that was used in
all of the flight applications noted earlier. It is based on the spectral
algorithm [25–30] for pseudospectral optimal control and does not
require any guess of the solution to solve the problem. Furthermore,
DIDO automatically generates all of the covectors associated with a
generic optimal-control problem (see problemBλ presented in Sec. II
of this paper) through an implementation of the covector mapping
principle [4,20,30]. That is, DIDO generates a guess-free candidate
solution to the BVP while only requiring the data functions for
problemB. This is why the spectral algorithm and its implementation
in DIDO do not belong to the class of direct or indirect methods. In
fact, these ideas effectively obviate the need for such a classification;
see Sec. 2.9.2 of [4].

1. Initial Scaling and Descaling

A candidate primal-dual solution (generated by DIDO) is shown in
Fig. 2.Bydefinition, these are simply candidate solutions to the scaled
problem. They have not yet been validated. Because it is frequently
more meaningful to validate results in physical units, we first descale
the primal variables using Eq. (36). The descaled candidate control
trajectory is then used to propagate the initial conditions,
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x�0� � 0; y�0� � 0; v�0� � 0

using linear interpolation for the controls and ode45 in MATLAB®.
The propagated state trajectory is shown in Fig. 3. The propagated
values of x�tf� and y�tf� satisfy the final-time conditions to the
following precision:

jx�tf� − 1000j � 3.6 × 10−3 m; jy�tf� − 1j � 1.9 × 10−4 m

Thus, the descaled solution is verifiably feasible. In flight
applications, such an independent verification of feasibility is critical
to a successful preflight checkout [12,14,20].
To validate the extremality of the feasible solution, we use

Eqs. (41) and (22) to descale the adjoint covectors and the evolution
of the Hamiltonian, respectively. The results are shown in Fig. 4. It is
apparent that λx�t� and λy�t� are constants as required byEq. (32). It is
also apparent that the Hamiltonian is nearly a constant and equal to
−1 as required by Eq. (34) and the first integral. Thus, the theoretical
necessary conditions are satisfied up to the indicated approxima-
tions.¶ These indicators of optimality validate that the solution
presented in Fig. 2 is at least an extremal.

2. Illustrating Universality of Proposition A

To illustrate that Proposition A is indeed universal (and not merely
specific to DIDO), we construct a shooting algorithm using ode45
and fsolve from the MATLAB® optimization toolbox. The objective
of ode45 is to generate the vector function,

S:
�
λx0 ; λy0 ; λv0 ; tf

�
↦

�
xf; yf; vf;Hf

�
(43)

by integrating the six state-costate equations using the initial
conditions (at t0 � 0),

x�t0� � 0; y�t0� � 0; v�t0� � 0;

λx�t0� � λx0 ; λy�t0� � λy0 ; λv�t0� � λv0

The quantity Hf in Eq. (43) is the final value of the Hamiltonian
evaluated using the results of the integration and Eq. (30). The
objective of fsolve is to solve for the zeros of the residual vector
function r: R4 → R4 defined by

r
�
λx0 ; λy0 ; λv0 ; tf

�
≔ S�λx0 ; λy0 ; λv0 ; tf� −

0
BB@
1000

1

0

−1

1
CCA (44)

Because a shooting algorithm is fundamentally doomed by the
curse of sensitivity [4], we choose the values of the guess to be almost
exactly equal to the expected solution,

λx0 � −0.013; λy0 � 0.225; λv0 � −0.113; tf � 24.0 (45)

For the purposes of brevity, we limit our discussions to only
the costate trajectories. Shown in Fig. 5 are both the unscaled and
scaled costates trajectories obtained by the shooting algorithm. The
scaled costates were obtained by using the scaled equations and
replacing the numerical value of the 4-vector in Eq. (44) by its scaled
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scaled time
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Fig. 2 Guess-free primal (left) and dual (right) solutions to the badly scaled Brachistochrone problem.
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Fig. 3 Primal feasible solution to the badly scaled Brachistochrone problem indicating variations in three orders of magnitude (MKS, metre, kilogram,

and/or second).

¶Although the spectral algorithm can theoretically generate very accurate
solutions [4,20,28,30], the Hamiltonian evolution equation is satisfied only
weakly [36]; hence, the Hamiltonian is not expected to be equal to −1 in the
strong L∞ norm in Fig. 4. In addition, because no Jacobian information was
provided in the generation of Fig. 4, the accuracy in the computation of the
dual variables is expected to be lower than that of the primal solution. Note
also that dual (or primal) tolerances cannot be set to arbitrarily small numbers
(e.g., 10−6 or 10−8) to attain higher accuracy because they may violate
consistency conditions [31]. See [32] for details and [33] for a unified
framework.
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counterpart [see Eq. (39)]. It is apparent that the unscaled costates
match the descaled costates (see Fig. 4) and the scaled costates match
the DIDO result shown in Fig. 2 to numerical precision. In other
words, we have demonstrated that Proposition A is independent of
the numerical algorithm or software.

3. Illustrating a Process for Better Balancing

As a final point of illustration, we now demonstrate that it is
possible to achieve a more balanced computational optimal control
problem. First, note from the range of values of the ordinates in Fig. 2
that the computational problem is not perfectly balanced. This is
precisely what happens in solving many flight application problems;
that is, it is frequently not possible to choose designer units that
achieve well-balanced equations at the first attempt. Nonetheless,
after further analysis of the type illustrated in the preceding
paragraphs, it is possible to achieve a better balanced computational
problem by merely inspecting the results. Based on the range of
values indicated in Fig. 2, we now rescale the primal problem using
the following units:

x � Px ~x � 1000 ~x ⇒ 1 distance unit along x axis � 1000 m

y � Py ~y � 160 ~y ⇒ 1 distance unit along y axis � 160 m

v � Pv ~v � 20 ~v ⇒ 1 speed unit � 20 m∕s (46)

All other choices of units are the same as before; see Eq. (36).

Clearly,
����������������
~x2 � ~y2

p
is meaningless. Note also that the numerical

choice of these scaling factors furthers the disparity between the new
set of designer units and the original physical units. For instance, the
gravitational acceleration transforms according to

~g �
	
pt

Pv



g � 4.9 ~v unit∕~t unit (47)

The primal and dual trajectories for the rescaled problem are shown
in Fig. 6. By inspection, it is clear that the problem is reasonably well
balanced with all variables contained in the range �−4; 4�.
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Fig. 4 Descaled costates and the evolution of the Hamiltonian for the badly scaled Brachistochrone problem.
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Fig. 5 Unscaled and scaled costates obtained by a shooting method for the badly scaled Brachistochrone problem (TUs, time unit).
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Fig. 6 Rescaled solution to the badly scaled Brachistochrone problem obtained by using the better-balanced set of designer units given by Eq. (46).
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4. Illustrating the Fallacy of Balancing on a Unit Interval

Supposewe scale the primal problem using the following designer
units:

x � Px ~x � 1000 ~x
y � Py ~y � 320 ~y
v � Pv ~v � 80 ~v

(48)

A quick examination of Fig. 3 shows that Eq. 48 will force all the
state variables to lie on the unit interval �0; 1�. That this is indeed the
case is shown in Fig. 7. Also shown in Fig. 7 are the corresponding
costates. As expected (by Proposition A and by inspection of Fig. 4)
the dual variables now lie in the range �−200; 100�. In this particular
situation, the range �−200; 100� is only about twoorders ofmagnitude
away from the desirable interval of �−1; 1�; hence, it is no cause for
serious alarm. Nonetheless, it is apparent that the imbalance may be
greater in other applications.
In certain applications, the state variables may be naturally

constrained to lie on the unit interval (e.g., quaternion parameter-
ization). If the costates (e.g., coquaternions) are imbalanced, it is still
possible to balance the state-costate pair by scaling the states to lie on
a nonunit interval through a proper selection of Px in Proposition A.
In other words, there is no real reason to be constrained on a unit
interval. In stronger terms, the conventional wisdom of scaling on a
unit interval is not necessarily the best approach to balancing optimal-
control problems.

VII. Adjunct Consequences of Scaling and Balancing

The consequences of scaling and balancing go far beyond faster
computation of optimal trajectories. When the pseudospectral
optimal-control method of the early days [34–40] (circa 1995–2005)
is applied to solve the bad Brachistochrone problem; i.e., without
using proper scaling or spectral techniques [25,28,30], the approach
fails to produce the correct solution. In general, the same is true of
Runge–Kutta collocation methods; see [31,41]. If an algorithm does
not generate a feasible solution to a problem with a known solution,
such as the Brachistochrone problem, then it is a clear failure of the
algorithm. Frequently, we use optimal-control techniques to solve
hard problems in which we do not know in advance if a solution
exists. In such practical situations, it is important to know if the lack
of a feasible solution is due to a failure of the algorithm or a genuine
nonexistence of a solution. Consequently, over the last decade,
proper scaling and balancing have been fundamentally intertwined
with the theory and practice of optimal control [1,4,9,11,13,14].

A. Feasibility via Optimization

In many practical applications, there is a need to simply generate
feasible solutions. Consequently, scaling and balancing techniques
are critical not only for faster optimization but also to answer themore
fundamental and difficult theoretical question [23] of the existence of
a solution.
As a means to illustrate this aspect of the intertwining between

theory and practice, consider the optimal propellant maneuver (OPM)
that is actively used [9] in current flight operations of the International

Space Station (ISS). The OPM saves NASA 90% propellant in
momentum management at a savings of approximately $1 million per
maneuver [9,10,12]. This maneuver was designed by Bedrossian after
his discovery of the zero propellant maneuver (ZPM) that saves all
100% of propellant [11]. Before Bedrossian’s discovery, it was
generally thought that itwas impossible to dumpall of the accumulated
momentumwithout anypropellant consumption [42]. Inotherwords, a
feasible solution (for 100% propellant savings) was believed to be
nonexistent. When the unscaled values of the ISS angular momentum
h, the control torque u, and angular velocity ω are used for dynamic
optimization, all prior methods investigated by Bedrossian et al.
consistently failed to generate a feasible solution. These variables vary
as [11]

−104 ≤ h ≤ 104 lb ⋅ ft ⋅ s

−102 ≤ u ≤ 102 lb ⋅ ft

−10−4 ≤ ω ≤ 10−4 rad ⋅ s−1

Consequently, a failure to find a feasible zero-propellant solution
was consistent with the pre-ZPM belief of physics. Were it not for
proper scaling and balancing, the ZPMmight have gone undiscovered.
More specifically, when the variables were transformed according to

h � 1000 ~h lb ⋅ ft ⋅ s

u � 10 ~u lb ⋅ ft

t � 1000~t s (49)

not only were Bedrossian et al. [11] able to find a feasible solution but
also several different solutions. In other words, a special choice of
designer units converted a hard problem to an easy one. The rest is
history [10].
The lessons learned from such successes and similar ones that

followed [9,14–17] are codified in the scaling and balancing
techniques presented in the preceding sections.More specifically, the
last decade has witnessed the use of theoretical optimization
principles to determine the practical feasibility of innovative concepts
as opposed to the more conventional use of algorithms to optimize a
feasible design. In other words, optimal-control theory has been used
as a tool to innovate and not merely to optimize.

B. Nonuniqueness of the Costates

Note that Proposition A only asserts the existence of linearly
descaled covectors; it does not imply uniqueness. Using the same
arguments as that of Proposition A, it is relatively straightforward to
show that the costates in an optimal-control problem are not
necessarily unique. This is achieved by replacing the linear equations
(21d–21f) with their affine counterparts:

λ	�⋅� ≔ Pλ
~λ	�⋅� � qλ�⋅� (50a)

μ	�⋅� ≔ Pμ ~μ	�⋅� � qμ�⋅� (50b)

Fig. 7 Primal-normalized solution to the badly scaled Brachistochrone problem obtained by using the set of designer units given by Eq. (48).
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ν	 ≔ Pν ~ν	 � qν (50c)

where qλ�⋅�: t ↦ RNx , qμ�⋅�: t ↦ RNh , and qν ∈ RNe . Obviously,
qλ�⋅� ≡ 0, qμ�⋅� ≡ 0, and qν � 0 recover Proposition A; however, by
substituting Eq. (50) in problemBλ, it is straightforward to show that it
is not necessary for the q multipliers to be trivial. That Lagrange
multipliers are not unique is well known in nonlinear programming
[43,44]; hence, it seems apparent that thismust also be true in optimal-
control programming. However, unlike the static case, the possibility
of nonunique costates in optimal control is limited by the Lipschitz
continuity of ∂xf . Despite this limitation, the conditions for
nonuniqueness are relatively mild; see [4], Sec. 4.9, for a complete
worked-out example pertaining to the optimal steering of a rigid body.

C. Fallacy of Discrete Scaling

In Eqs. (4) and (5), we deliberately used affine scaling with
constant coefficients. Suppose we choose time-varying scaling
coefficients; then, the state variable transformation can be written as

x�t� � Px�t� ~x�t� � qx�t� (51)

Differentiating Eq. (51) and substituting the unscaled dynamics in
the resulting equation generates

d ~x

d~t
� ptP

−1
x �t�

�
_x�t� − _Px�t� ~x�t� − _qx�t�

�
� ptP

−1
x �t�f�x�t�; u�t�; t� − ptP

−1
x �t�

�
_Px�t� ~x�t� � _qx�t�

�
|������������������������{z������������������������}

additional dynamics

(52)

That is, the transformed state dynamics contain additional
dynamics. Consequently, it generates the following questions:
1) Howdowe choose _Px�t� and _qx�t�? That is, what is the rationale

for choosing these functions?
2) Because our objective is to generate a theory for generic

problems (e.g., generic dynamics), how can we choose universal
functions _Px�t� and _qx�t�?
3) Even if we were to severely limit time-varying scaling to a

specific dynamical system, how dowe choose _Px�t� and _qx�t�whose
properties remain valid for all feasible control functions u�⋅�?
4) How do we ensure that the additional dynamics indicated in

Eq. (52) does not create new numerical problems over the space of all
differentiable functions f?
From these basic considerations, it is clear that time-varying affine

scaling generates more questions than answers.
Interestingly, time-varying scales are implicit in many software

packages and algorithms. To appreciate this point, consider the
discretization of a one-dimensional state trajectory, t ↦ x ∈ R. For
k � 0; : : : ; N, the discretized variables xk represent the samples of
the state trajectory; hence, we can write2

6664
x0
x1
..
.

xN

3
7775 �

2
6664
x�t0�
x�t1�
..
.

x�tN�

3
7775 (53)

If the discretized variables are scaled by, say, a diagonal matrix
with entries P0; : : : ; PN , then Eq. (53) transforms according to2

6664
x0
x1
..
.

xN

3
7775 ≔

2
6664

P0 ~x0
P1 ~x1
..
.

PN ~xN

3
7775 �

2
6664
x�t0�
x�t1�
..
.

x�tN�

3
7775 (54)

Let P�t� be any function such that P�tk� � Pk, k � 0; : : : ; N;
then, we can write Eq. (54) as

2
6664
x0
x1
..
.

xN

3
7775 ≔

2
6664

P0 ~x0
P1 ~x1
..
.

PN ~xN

3
7775 ≔

2
6664

P�t0� ~x�t0�
P�t1� ~x�t1�

..

.

P�tN� ~x�tN�

3
7775 �

2
6664
x�t0�
x�t1�
..
.

x�tN�

3
7775 (55)

Hence, it follows that scaling the discretized variables is equivalent
to discretizing the continuous-time trajectory according to

x�t� � P�t� ~x�t� (56)

Consequently, any algorithm or software package that scales the
variables at the discrete level is implicitly using time-varying scales at
the optimal-control level. Given this fact, it is critical that the
additional dynamics noted in Eq. (52) be automatically incorporated
at the discrete level in the algorithm or software package. To
understand how this can be done, let Δk be any discrete derivative.
Because the additional dynamics in Eq. (52) is a consequence of the
product rule of continuous calculus, the equivalent discrete product
rule,

Δkxk ≔ Pk�Δk ~xk� � �ΔkPk� ~xk; k � 0; : : : ; N (57)

must be naturally incorporated in the algorithm or software package.
If Δk is a forward difference operator, then

Δk�P ⋅ ~x�k ≔ Pk�1 ~xk�1 − Pk ~xk

It is quite straightforward to show thatΔk�P ⋅ ~x�k ≠ Δkxk and that

Δkxk − Δk�P ⋅ ~x�k � �ΔkPk��Δk ~xk� (58)

The right-hand side of Eq. (58) is not necessarily a second-order
effect unless the scaling algorithm renders j�ΔkPk��Δk ~xk�j small.
Recall that Pk is a scaling factor at the discretized level and not
necessarily connected to some continuous function P�t�with a small
Lipschitz constant; see Eq. (54). Consequently, if j�ΔkPk��Δk ~xk�j is
not small, then the algorithm- any algorithm- is attempting to solve
for the wrong dynamics. The implications of this insight are far
reaching:
1) If the algorithmic iterations do not converge and/or are

expensive (i.e., take a long computational time), it is quite possible
the original optimal control problem might have been easy but
rendered hard because of scaling at the discretized level.
2) The situation might be made even worse with more

sophisticated scaling like adaptive scaling. In such schemes, the scale
factors P0; P1; : : : ; PN [see Eq. (55)] are not constants over the
course of the iteration but change adaptively based on the current
iterate. In following the same process that led to Eq. (56), adaptive
scaling implies that in continuous time the state variable is scaled
according to some feedback process,

x�t� � P�t; x� ~x�t� (59)

over the course of the iterations. Ignoring the possible stability issues
resulting from this feedback process, it is clear that this may beworse
than time-varying scaling because we now have additional dynamics
associated with _P,

dP

dt
� ∂P

∂t
� ∂P

∂x
dx

dt
(60)

These continuous-time dynamics are not necessarily incorporated in
adaptive scaling because the chain rule (of continuous calculus) must
also be incorporated at the discrete level (in addition to the
product rule).
3) From the preceding point, it is also clear that nonlinear scaling

also has the samedrawbacks of adaptive scaling (at the discrete level).
4) In an optimistic scenario, is quite possible that j�ΔkPk��Δk ~xk�j is

small either by an implicit/explicit result of a scaling algorithm or by
accident. Even under this fortuitous case, the error in the satisfaction of
the dynamical equations is higher than the computational tolerances
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enforced unless of course j�ΔkPk��Δk ~xk�j � 0 for k � 0; : : : ; N.
This is yet another reason why an independent verification of
feasibility as highlighted in Sec. VI.C is crucial for validating
numerical accuracy.
5) In the best-case scenario, j�ΔkPk��Δk ~xk�j � 0 for

k � 0; : : : ; N. In this case, an algorithm is solving for the correct
but transformed dynamics given by Eq. (52). In the absence of new
analysis, there is no apparent reason why the transformed dynamics
is universally better for optimization than the original dynamics.
The preceding analysis explains why autoscaling done at the

discrete level without explicit consideration of the dynamics of the
optimal control problem may be harmful to the accuracy and
convergence of the algorithm. A simple remedy for this problem is to
perform scaling and balancing at the optimal control level and turn off
any autoscaling options of software packages that are based on
scaling the discretized Jacobian that does not incorporate the
additional dynamics presented in Eq. (52).

VIII. Conclusions

Some of the ideas and parts of the process presented in this paper
have been used for well over a decade, albeit in an application-
specific manner, to generate successful flight implementations. In
this paper, we have generalized previous concepts and provided a
clear mathematical framework leading to a more unified procedure.
More specifically, we have shown that the concept of designer units is
fundamentally liberating. If necessary, it even allows one to choose
radically different units of measurement along the x and y directions.
As a consequence of this liberation, the physical concept of a vector
as a quantity with magnitude and direction must be abandoned.
Avector is simply a stack of scalar variables in any units. A covector
is a measurement conversion device that connects the disparate units
of a vector to some common unit. In an optimal control problem,
the Lagrange multipliers are covectors, and the common unit of
measurement is the cost unit or the cost unit per time unit. The
numerical values of a covector have a seesaw effect on the values of
the associated vector. The seesaw effect can be used to balance the
primal and dual variables for computational efficiency.
It is not necessary to scale and balance the variables on a unit

interval; in fact, it may not even be feasible. Even in situations in
which the state variables are naturally constrained to the unit interval,
it is possible to scale them beyond their physical bounds to achieve
better balancing.
Scaling an optimal control problem at the nonlinear-programming

level is likely to induce unwanted dynamics that may render an easy
problem hard. Therefore, great caution must be exercised in using
software packages that simply patch discretization methods to
nonlinear programming solvers. In contrast, when scaling and
balancing are done at the optimal control level, it can be used quite
powerfully to innovate by solving hard problems easily.
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