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DISSERTATION ABSTRACT 
 

Atsushi Kikumoto 

Doctor of Philosophy 

Department of Psychology 

January 2020 

Title: Conjunctive Representations in Dynamic Action Control 
 
 

In the present work, I examine the functional role of highly integrated, 

conjunctive representations of basic task features during dynamic action control. People 

can use abstract action rules to flexibly configure and select actions for specific situations. 

Yet, how exactly rules shape actions towards specific sensory and/or motor requirements 

remains unclear. One theoretical possibility is that rules become integrated with 

sensory/response features in a nonlinear, conjunctive manner during action selection (i.e., 

event files). Such conjunctive representations in turn are a precursor of successful action. 

To test this hypothesis, it is necessary to dynamically track neural representation of 

multiple action features that become active concurrently during action selection. We 

applied multivariate decoding analysis to the time-resolved EEG signal at the level of 

single-trials, while participants selected actions based on varying action rules. In Chapter II, 

we provide initial evidence that conjunctive representations can be tracked during action 

selection. Specifically, we show that these representations emerged throughout the entire 

response selection period and that they were robust and unique predictors of the variability 

in trial-to-trial performance. Moreover, they were related to a theoretically important, 

behavioral indicator of event files—the partial-overlap priming effects. In Chapter III, we 

tested how conjunctive representations contribute to stopping of planned actions. Because 
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the formation of conjunctive representations is theorized as a necessary stage of successful 

actions, we hypothesized conjunctions should be the primary target of stopping-related 

activity. Indeed, using the stop-signal paradigm, we found (a) that conjunctions were 

selectively suppressed on stop trials, and (b) that stopping became particularly difficult 

when the conjunctive representations of to-be-stopped actions prior to the stop-signal. In 

Chapter IV, we discuss implications of the findings and propose ideas for future directions. 

Specifically, I propose further experiments to characterize key processes or properties 

associated with conjunctive representations, such how they are actively maintained in 

working memory, how they are functionally related to the dimensionality of neural 

responses, or how effects of actions are integrated in such representations. The work 

presented in this dissertation confirms that conjunctive representations are functionally 

independent of the constituent features and play a critical role in action control. It also 

provides broad insights to how we can study cognitive control functions in humans by 

directly decoding goal-relevant information. Chapter II and III are co-authored materials 

with Ulrich Mayr. 
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CHAPTER I. 

INTRODUCTION 

Every situation we experience is unique, and yet we are able to usually act 

appropriately by applying relevant knowledge or rules that is useful across different 

events. For example, we can solve new jigsaw puzzles that we have never touched before 

or drive a rented car in a foreign land or by applying the general knowledge associated 

with the task (e.g., “find all the edge pieces” or “slow down at the corner”). Such flexible, 

goal-directed actions rely on abstract, generalizable rules that can configure behavior to a 

range of specific circumstances. Even for a simple action such as joining puzzle pieces 

together, various task-relevant features––the shape and color of pieces, the location of 

missing puzzles, as well as abstract rules and strategies––need to be adequately 

represented and integrated to accomplish the overarching goal. Thus, action selection 

entails cognitive control processes that enable us to adapt perceptual and response 

selection processes to guide thoughts and actions in accordance with internal goals1–7. 

In task spaces that are relatively consistent over time, it would be adaptive to 

acquire or use action rules that summarize possible stimulus-response functions, 

discarding non-critical aspect of the task that are specific to situations. For instance, for 

the rule of “finding all the edge pieces” to be effective for many puzzles, the irrelevant 

properties of the task (e.g., the shape of pieces) should be detached from the action rule. 

Past studies have indicated humans can learn8–10 or be instructed11–13 abstract action rules 

or task sets to link external inputs to specific responses (i.e., stimulus-response mapping). 

Though, critically, because abstract representations are detached from the specific 

contexts, action rules need to be “translated” to the specific conditions for the current 

goal. Yet, surprisingly, we currently know little about how exactly abstract action rules 
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are adapted towards specific sensory and/or motor requirements, as goal-directed actions 

are planned and executed. Such translation processes determine how abstract action rules 

become usable to enable specific actions, thus efficiency in configuration of action rules 

could undermine their values. 

One class of dominant theories of action control suggests that action rules prompt 

specific stimulus and/or response settings in a strictly feedforward and stage-specific 

manner14,15. Here, action selection is considered as a hierarchically nested process, where 

the higher-level action rule representation constrain selection at the subordinate level 

10,16–20. For example, Kleinsorge and Heuer (1999) proposed a model to explain the 

pattern of priming costs during action transition that further incorporates an “update” 

signal propagating down from the higher to lower hierarchical levels in a unidirectional 

manner16–20. Critically, in these models, hierarchical selection recruits level-specific 

action representations in a relatively independent manner, thus action rules remain 

functionally separable from other relevant features. These notions are consistent with 

findings indicating localized cortical functions with hierarchical structures16,21–23. 

An alternative view is that action selection requires a common representational 

space in which task-relevant features (e.g., sensory, motor, and even abstract action rules) 

are combined into highly integrated, cross-modal, conjunctive representations, sometimes 

referred to as event files or task files24–28. Essentially, conjunctive representations 

instantaneously store the entire profile of action control that enables specific actions29,30: 

a set of bindings that temporarily connect representations of the relevant or salient 

features of the perceptual event, the accompanying action, and the task setting. This class 

of theories suggest that the integration of task-relevant features is the critical precursor of 

successful action control. Consistent with such a view, recent evidence in non-human 
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primates studies indicated that a majority of neurons are tuned to the mixture of task 

features in a nonlinear manner, encoding the conjunctive information of goal-relevant 

features that produce unique functional and computational properties31–35. 

Behavioral studies in humans have provided some evidence supporting event-file 

theory. For instance, the theory predicts that during the lifetime of an event-file for 

specific actions, an encounter with one (or more) of the bounded features causes the 

automatic retrieval of the whole event-file. This in turn produces a characteristic, partial- 

overlap priming pattern (further discussed in Chapter II), which has been considered as 

the key indicator of event files. Mayr and Bryck (2005) showed that also abstract action 

rules can become part of event files. In the same vein, several studies have reported the 

interaction of repetition priming effect (e.g., response-repetition) with other task 

parameters36–38, which could be parsimoniously explained by binding process of action 

features. However, because these priming effects occur as an aftereffect of event-file 

formation, they alone provide no information about how the conjunctive representations 

emerge during action selection. Because there has been no viable method to directly track 

the formation of nonlinear, conjunctive representations in humans, which is expected to 

occur at a subsecond scale, it has been unclear how action rules representations make 

contract to other representations of sensory and/or response features during action 

selection. 

To this end, in the current work, we applied a time-resolved, decoding approach 

to EEG while participants performed a rule-based action selection task26 by capitalizing 

on the multivariate analysis techniques recently applied to the diverse neural activity in 

humans39–43. This allowed us to directly track multiple action representations, including 

potential conjunctions that integrate action features in a nonlinear manner. Our method 
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allowed us to flexibly establish multiple action-relevant dimensions without explicitly 

demanding subjects to bind action features. It further allowed us to characterize dynamic 

control of task representations of both basic (e.g., stimuli, responses and action rules) and 

conjunctive features in a temporally precise manner, and to relate the quality of these 

representations to the theory-relevant behavioral outcomes on the level of single trials. 

Overall, in a series of studies, we found robust evidence supporting that the conjunctive 

representations are a critical driver of goal-directed actions. 
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CHAPTER II. 
 

ACTION SELECTION AND TRANSITION 
 
 

Introduction 
 

Flexible, goal-directed action requires the use of abstract rules that can be applied 

to a range of specific situations. However, we know little about how abstract rule 

representations connect with lower-level sensory or response representations, as a 

specific action is planned and executed. In traditional stage-based processing models, 

information flows from sensory to response in a cascade of relatively independent 

representations1-5, that are specified by the relevant action rule6. An alternative view is 

the idea of a common representational space in which all action-relevant features (e.g., 

sensory, motor, and even abstract action rules) are combined into highly integrated, 

conjunctive representations, sometimes referred to as event files or task files7-10. By tying 

all relevant features together into a common, integrated representation, a specific action 

becomes executable. Therefore, these representations are a critical condition for 

successful action control and selection. 

Once formed, however, an event file can also get in the way of subsequent actions, 

as indicated by a characteristic pattern of priming effects11. Specifically, when 

consecutive trials require event files that share either all or none of the constituent 

features, actions are executed relatively fast. However, when only some, but not all 

features overlap across trials, then response-times or errors increase, a pattern that event- 

file theory explains as the cost of “unbinding” the overlapping features from the no- 

longer needed event file. Such partial-overlap costs emerge even when complete S-R 

associations repeat across trials while the abstract rule changes, indicating that just like 

any sensory or response features, rules can become part of event files10. 
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The partial-overlap pattern is currently the key empirical indicator of event files. 
 

However, because it is an aftereffect of event-file formation, this pattern provides no 

information about how conjunctive representations behave during response selection and 

whether or not they are indeed a critical precursor of successful action. Moreover, partial- 

overlap costs can also be explained by alternative models that do not assume integration 

between different codes during action selection. For example, Kleinsorge & Heuer12, 13 

proposed a strict hierarchical separation between the level of rules and the level of 

stimulus/response selection. The pattern of partial-overlap costs arises from the 

assumption that a switch of action codes on the highest level (i.e., rules) propagates down 

to the lower levels (i.e., stimulus-response codes). As a result, when only the rule changes, 

but the response stays constant, the now inappropriate lower-level specification will have 

to be reverted, leading to performance costs. 

To test the event file model against accounts that do not assume integration of 

action-relevant features as a critical step during action selection, it is important to directly 

track the multiple representations that could concurrently become active during action 

selection––including potential conjunctions between stimuli, responses, and even action 

rules. In the current study, we used the EEG signal to decode information about action- 

relevant representations in a time-resolved manner14-16 via representational similarity 

analysis (RSA)17-19 as participants selected responses to location stimuli on the basis of 

randomly cued, spatial transformation rules (Fig.1ab)10. Experiment 1 allowed us to 

decode conjunctions that were specific for particular rules, but without differentiating 

between S-R conjunctions and conjunctions that also integrated abstract rules (i.e., rule- 

S-R conjunctions). In Experiment 2, we replicated all major results from Experiment 1, 

but also used an expanded task space that allowed us to test whether or not abstract rules 
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can become integrated into conjunction representations. Across both experiments, we 

found strong evidence for conjunctive representations—including rule-S-R conjunction in 

Experiment 2. Consistent with predictions from event-file theory, conjunctions were 

robust and unique predictors of variability in performance, and were related to the pattern 

of partial-overlap priming costs. 

Fig. 1. a, Sequence of trial events in the rule-selection task for both Experiment 1 and 2. 
b, Spatial translation rules mapping specific stimuli to responses in Experiment 1. Two 
different cue words were used for each rule. c, Schematic steps of the representational 
similarity analysis. The raw EEG signal was decomposed into frequency-band specific 
activity via time-frequency analysis (see EEG recordings and preprocessing and Time- 
Frequency Analysis). For each sample time (t), a scalp-distributed pattern of EEG power 
was used to decode the specific rule/stimulus/response configuration of a given trial, 
producing a set of classification probabilities for each of the possible configurations. The 
profile of classification probabilities reflects the similarity structure of the underlying 
representations, where similar action constellations are more likely to be confused. The 
idealized profile of classification probabilities shows an example where a unique 
conjunction and rule information is expressed (peak at the correct S-R mappingi and 
confusion to other instances with the same rule). For each trial and timepoint, the profile 
of classification probabilities is simultaneously regressed onto model vectors as 
predictors that reflect the different, possible representations. In each matrix of model 
vectors, the x-axis corresponds to the correct constellation for the decoder to pick, and 
the y-axis shows all possible constellation. The shading of squares indicates the 
predicted classification probabilities (darker shading means higher probabilities). The 
coefficients associated with each predictor (i.e., t-values) reflect the unique variance 
explained by each of the constituent features and their conjunction. 
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Results 
 

Experiment 1 
 

Behavior 
 

For all analyses, error-trials, post-error trials, and trials in which RTs were larger 

than 99.5 percentile of the RT distribution were excluded. Consistent with previous 

work10, we observed partial-overlap costs in RTs and errors as a function of the different 

trial-to-trial transitions (Fig. 2): When the rule, the stimulus, and thus also the response 

repeated or when all changed, responses were fast and accurate, whereas costs emerged 

in the case of partial updates of either rules or stimuli/responses (for statistical analysis, 

see Supplementary Table 1). 

 

Fig. 2. Mean response times (RTs) and errors for Experiment 1 as a function of rule 
repetition/change factor and the stimulus-response repetition/change factor. Error bars 
specify 95% within-subject confidence intervals. 

 
Tracking Representational Dynamics 

While the pattern of RTs and errors is consistent with predictions from the event- 

file model, by itself it is not sufficient to draw strong inferences about the role of 
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conjunctive representations during action selection. Fig. 3a shows the results of the time- 

resolved RSA performed on the level of single trials. Consistent with previous results, the 

cascade of decoded representations unfolds in a manner that is consistent with the 

expected flow of information: The rule is activated during the pre-stimulus phase, 

followed by a strong expression of the stimulus, and finally by the response14,16. 

Critically, the conjunctive representation can be decoded during the entire post-stimulus 

period (Fig. 3a), and clearly peaks before response representations fully develops 

(Supplementary Fig. 7). These effects were significant even though we accounted for 

subject-specific differences in RTs between action constellations and therefore cannot be 

explained in terms of unspecific difficulty differences between action constellations 

(Supplementary Fig. 1). 

To test the prediction from event-file theory that conjunction representations are 

critical for action selection, we regressed trial-to-trial variation in RTs onto the strength 

of each expressed representation. Using multilevel modeling, we performed these 

analyses for each time-point and with all predictors entered simultaneously. The resulting 

“impact-trajectories” are shown in Fig. 3b; statistical results for a-priori selected time 

intervals are summarized in Table 1. Note that negative t-values indicating that stronger 

representations lead to faster responding. Consistent with the prediction from event-file 

theory, the conjunctive representation was the most dominant predictor of performance. 

Combined, these results indicate that conjunctive representations emerge during 

response-selection, concurrently with the representations of constituent features, and 

predict upcoming behavior over and above the influence of the constituent 

representations. 



24  

 
Fig 3. a, Average, single-trial t-values associated with each of the basic features and 
their conjunction derived from the RSA analysis (see Fig. 1c). Shaded regions specify 
the standard error around the mean. The colored squares at the bottom of the figure 
denote the significant time points using a non-parametric permutation test. The insert 
shows RSA fit scores when the conjunction was not included as predictor in the analysis. 
b, Time-course of t values from multilevel, linear models predicting the variability in trial- 
to-trial RTs (the “impact” of representations on behavior), using RSA scores of all 
features as simultaneous predictors. 

 
Table 1. 
Predicting trial-by-trial RTs using the strength of decoded representations for Exp. 1 

 

Pre-stimulus Early Post-stimulus Late Post-stimulus 
Variable b (se) t b (se) t b (se) t 
Rule -.021 (.005) -3.89 -.004 (.007) -5.71 -.037 (.007) -4.97 
Conjunction   -.061 (.008) -7.23 -.093 (.011) -8.07 
Stimulus   -.014 (.008) -1.82 -.041 (.012) -3.49 
Response   -.027 (.006) -4.12 -.068 (.012) -5.81  
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Conjunctive Representations and Partial-Overlap Costs 
 

In order to directly connect the EEG-decoded conjunctive representations with 

event-files, we examined whether and how these representations relate to the partial- 

overlap priming pattern. As Fig. 4a shows, the strength of decoded conjunctions 

expresses the partial-overlap pattern. Conjunctive representations were particularly strong 

exactly in those transitions in which RTs were fast (i.e., when either everything repeats or 

everything changes, see Fig. 2). Conjunctive representations showed the partial-overlap 

pattern in the correct direction during early post-stimulus phase, b=-.024, SE=.010, 

t(20)=-2.58, but not in the late post-stimulus phase, b=-.004, SE=.010, t(20)=-.39, and 

none of the constituent features showed the critical interaction pattern, all t(20)>-.21. 

Another important prediction that can be derived from the event-file model is that 

strong conjunctions should be particularly difficult to “unbind” on the following trial. 

Thus, the strength of conjunctions on trial n-1 should predict partial-overlap costs on trial 
 

n. Our results, shown in Fig. 4b, confirm this prediction: A stronger conjunctive 

representation in n-1 trial, late in the selection period led to a greater RT partial-overlap 

costs on the next trial, b=-.025, SE=.011, t(20)=-2.25. Again, this pattern was unique for 

conjunction representations. None of the constituent features had comparable effects on 

next-trial performance, all t(20)>-.05. Taken together, the behavior of decoded 

conjunctive representations is highly consistent with predictions from the event-file 

model. 
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Fig. 4. a, Average RSA scores of the conjunction model as a function of rule 
repetition/change and the stimulus-response repetition/change factors for two the early 
(0-300 ms) and the late (300-600 ms) periods in the post-stimulus interval b, Modulation 
of partial-overlap costs on RTs in trial n as a function of the strength of conjunction 
codes (median split) in trial n -1. Error bars specify 95% within-subject confidence 
intervals. 

 
Experiment 2 

 
The results in Experiment 1 suggest that action selection recruits conjunctive 

representations and that the strength of these representations is predictive of trial-to-trial 
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performance, as postulated by the event file perspective8, 11, 14. Yet, because each action 

rule specified a unique set of S-R links, the observed conjunctive representations could 

consist of any combinations of the rule and/or stimulus/response features—leaving it 

ambiguous to what degree abstract rules were integrated into conjunctive representations. 

Thus, in Experiment 2, we attempted to tease apart two different types of conjunctions: 

(1) rule-independent conjunctions between stimuli and responses (S-R conjunctions) and 
 

(2) rule-specific (rule-S-R) conjunctions that integrate abstract action rules with S-R links. 
 

To this end, we introduced four action rules (i.e., vertical, horizontal, clockwise, and a 

counterclockwise; Fig. 5a), which allowed S-R conjunctions that shared the same S-R 

links, but different abstract rules (e.g., a dot at the top-left corner requires a bottom-left 

response using either the vertical rule or the counterclockwise rule)10. The inclusion of 

such same-S-R pairs allows dissociating conjunctions that did integrate rules (rule-S-R) 

from rule-unspecific conjunctions (S-R). 

 
Fig. 5. a, Spatial translation rules mapping specific stimuli to responses in Experiment 2. 
Either words or symbols were used as cues for each rule. S-R mappings were divided 
into two groups: G1 group (cases where a dot appeared at the top-left or bottom-right 
corner) and G2 group (cases where a dot appeared at the top-right or bottom-left corner) 
for the decoding analysis. b, Models for representational similarity analysis (RSA) in 
Experiment 2. The S-R conjunction model assumes a similar pattern for the specific 
combination of the stimulus and response irrespective of rules. The rule-S-R conjunction 
model expects a unique pattern for the configuration of each rule/stimulus/response 
combination. To completely orthogonalize action features, RSA was performed 
separately for G1 and G2 subsets of S-R mappings, requiring identical 8 x 8 model 
matrixes for each group. Analyses were performed separately within each subset and 
coefficients were averaged within subjects. 
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Behavior 
 

The same trial-exclusion criteria as in Experiment 1 were used for all analyses in 

Experiment 2. We replicate the partial-overlap costs on RTs and errors from Experiment 

1 and a previous report using the same paradigm10 (Fig. 6): Critically, repetition of rule- 

S-SR settings produced RT and error benefits, whereas any partial updates (including S-R 

repetitions) generated costs. We focused on trials in which both stimulus and response- 

features covary (i.e., complete S-R changes or repeats) as a function of switching of rules 

because they provide a direct test for potential differences in the rule-specific and rule- 

independent conjunctions (for statistical analysis, see Supplementary Table 2). 

 

 
Fig. 6. Mean RTs and errors for Experiments 2 as a function of the rule 
repetition/change, stimulus repetition/change, and the response repetition/change 
factors. Note that, in rule-repeat trials, partial updates of S-R settings (e.g., S change + 
R repeat) are not possible. Error bars specify 95% within-subject confidence intervals. 

 
Decoupling Rule-specific and Rule-independent Conjunctions 

 
We used the same analysis approach as in Experiment 1, only that here we 

included RSA models for both rule-specific (rule S-R) conjunctions and rule-independent 
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(S-R) conjunctions. We found evidence that both types of conjunctions emerged over and 

above the constituent features (Fig. 7a). The rule-S-R conjunctions became active right 

after stimulus onset and were sustained robustly during the selection period. Again, 

activation of these representations preceded the emergence of response information 

(Supplementary Fig. 7). In contrast, the rule-independent, S-R conjunctions appeared 

immediately after rule-S-R conjunctions, but remained relatively weak compared to other 

action representations. We also replicated the pattern of results from Experiment 1 for the 

constituent features, with the exception that the rule representations diminished after 

stimulus onset (Fig. 7a). Excluding conjunction models restored the post-stimulus rule 

representation, suggesting that the rule S-R conjunction model captures the same variance 

as the rule model explains in this phase of action selection (Fig. 7a inset). 

Table 2. 
Predicting trial-by-trial RTs using the strength of decoded representations for Exp. 2  

Pre-stimulus Early Post-stimulus Late Post-stimulus 
Decoded Variable b (se) t b (se) t b (se) t 
Rule -.019 (.005) -3.80 -.017 (.013) -1.34 -.007 (.003) -2.54 
Rule S-R Conj.   -.061 (.012) -5.00 -.019 (.002) -8.70 
S-R Conj.   -.053 (.014) -3.87 -.022 (.003) -7.32 
Stimulus   -.010 (.007) -1.42 -.008 (.002) -3.94 
Response   -.037 (.014) -2.57 -.016 (.002) -6.60  

 
 

Next, we examined again, which representations were the main driver of action 

selection. As shown in Fig. 7b, both rue-S-R conjunctions and S-R conjunctions 

explained substantial, and independent variability in trial-to-trial RTs, over and above the 

variance explained by the constituent features (Table 2 for the statistical results and 

Supplementary Fig. 4 for results from standard decoding analyses). These results 

replicate the findings from Experiment 1 that conjunctions are indeed critical of efficient 

action selection. In addition, they clarify that both rule-independent and rule-specific 
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conjunctions are about equally important in predicting behavior, with possibly a slight 

edge for the rule-specific conjunctions. 

 
 
 

 
Fig. 7. a, Average, single-trial t-values associated with each of the basic features and 
their conjunctions, derived from the RSA analysis (see Fig. 1c and 5). Shaded regions 
show the standard error around the mean. The colored squares at the bottom of the 
figure denote the significant time points using a non-parametric permutation test. The 
insert shows the same RSA fit scores when the conjunctions (i.e., rule S-R conjunction 
model and S-R conjunction model) were not included as predictors in the RSA analysis. 
b, Time-course of t values from multilevel, linear models predicting the variability in trial- 
to-trial RTs (the “impact” of representations on behavior), using RSA scores of all 
features as the simultaneous predictors. RSA model vectors for stimulus, response, rule, 
and conjunction representations. RSAs were performed separately within a subset of 
action constellations (i.e., G1 and G2) to orthogonalize all features (see the Method and 
Fig. 5ab for details). 
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Fig. 8. a, Average RSA scores of the rule-S-R conjunction as a function of the rule 
repetition/change and the stimulus-response repetition/change factors for early (0-300 
ms) and late (300-600 ms) periods in the post-stimulus interval. b, Modulation of partial- 
overlap priming patterns in trial n as a function of the strength of the rule S-R conjunction 
in trial n -1 (median split). Error bars specify 95% within-subject confidence intervals. 

 
Conjunctive Representations and Partial-Overlap Costs 

 
As in Experiment 1, we also examined the relationship between conjunction codes 

and behavioral partial-overlap costs. We found that only the strength of rule-S-R 
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conjunctions showed the partial-overlap costs, b=-.021, SE=.009, t(21)=-2.22, for the 

early selection phase; b=-.021, SE=.009, t(21)=-2.24, for the late selection phase (Fig. 8a). 

None of the constituent features, t(21)>-.72), or S-R conjunctions showed such an effect, 

b=-.012, SE=.009, t(21)=1.27 for the early selection phase; b=-.007, SE=.010, t(21)=-.72, 

for the late selection phase. In addition, the strength of late rule-S-R conjunctions on the 

previous trial again significantly modulated RT partial-overlap costs on the next trail (Fig. 

8b), b=.031, SE=.011, t(20)=2.81. This pattern was absent for constituent features, all 

t(21)<.38, and S-R conjunctions, b=-.009, SE=.011, t(21)=-.85. Thus, only the 

conjunctions that integrate rule information show a tight relation with the main 

behavioral indicator of event files, the partial-overlap cost. 
 

Discussion 
 

We tested whether integrated, conjunctive representations between task-relevant 

features emerge during action selection, as postulated by event-file theory7, 8. In our 

paradigm action settings had to be updated flexibly for each trial, creating unique 

constellations between rules, stimuli and responses. We combined a standard, linear 

decoding approach with a subsequent, time-resolved RSA in order to track the emergence 

of conjunctive representations and their constituent features over time, and for each 

individual trial. In Experiment 1, conjunctions could entail any pairwise, or complete 

combination of rule, stimulus, or response features; in Experiment 2, we were further able 

to dissociate between rule-S-R conjunctions, and rule-independent S-R conjunctions. 

The time course of decoded information showed a highly plausible cascade of 

action representations (rule, stimulus, and then response), and most critically, we found 

robust evidence for conjunctive representations—emerging shortly after stimulus onset 

and then persisting until response execution. Analyses with response-locked EEG data 
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fully confirmed this pattern of results (Supplementary Fig. 7). The fact that conjunctive 

representations are continuously present from stimulus processing to response execution 

is consistent with their role in translating perceptual codes into response codes based on 

the current task rules. Even though the strength of conjunctive representations was on 

average much weaker than that of the constituent features, they were highly robust and 

consistent within individuals (Fig. 3 and Fig. 7 and Supplementary Fig. 9). Even more 

importantly, conjunctive representations were strong and unique predictors of trial-by- 

trial variability in RTs, over and above other constituent features. These results are 

difficult to reconcile with traditional stage theories1-5, where information flows in a 

strictly feed-forward manner and therefore does not allow the emergence of integrated 

representations. These results are also inconsistent with hierarchical control models that 

assume independent selection processes on different hierarchical levels12, 13. Instead, our 

results indicate that action selection is established by tying together disparate, task- 

relevant features from the entire selection event into a common representation. 

The fact that in Experiment 2 rule-S-R conjunctions and rule-independent, S-R 

conjunctions emerged is an important result in its own right. It suggests that integrated 

representations that match the contingencies in the environment can develop in parallel, 

and on different levels of abstraction. This combination of both highly specific and rule- 

general representations can account for the fact that S-R associations learned within one 

rule can transfer to another rule, albeit in a limited manner10, 21. It is also consistent with 

the proposal that event files themselves can possess an internal, hierarchical organization9. 

A key behavioral indicator of event files is the partial-overlap priming pattern, 

which entails benefits when all action features either repeat or change and costs when 

there is partial overlap of features across trials10, 11. In both experiments, we found that 
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this pattern not only in RTs and errors (Fig. 2 and Fig. 6), but also in the strength of 

conjunctions (Fig. 4a and Fig. 8a). Even more importantly, the strength of conjunctions 

on trial n, predicts the size of partial overlap costs on trial n+1 (Fig. 4b and Fig.8b), 

suggesting the stronger action features are tied together into conjunctions, the harder it is 

to “unbind” them on the following trial in order to integrate them into a new conjunction. 

Recent behavioral studies have raised questions about whether the strength of partial- 

overlap costs is explained by the strength of the initial binding, or instead by difficulty of 

selectively retrieving integrated, action-relevant features8. While the present results do 

not rule out the contribution of retrieval-related effects, they do point to the “binding 

strength” of the original conjunction as a critical factor that determines partial-overlap 

costs. 

It is particularly important that the tight relationship with the partial-overlap 

pattern was only found for conjunctions (i.e., rule-S-R conjunction in Experiment 2), thus 

functionally dissociating conjunctions from their constituent codes. Moreover, the results 

in Experiment 2 also indicated that only rule-specific S-R conjunctions were related to 

the partial-overlap cost, not however the rule-independent S-R conjunctions. As noted, 

for Experiment 1, the task design did not allow firm conclusions about whether or not 

conjunctions contained rule-specific information. However, the conjunctions in 

Experiment 1 showed a similar priming pattern as the rule-S-R conjunctions in 

Experiment 2, suggesting integration of not just stimuli and responses, but also of rules in 

both experiments. 

While our results indicate with high resolution when representations of specific 

features and feature combinations are activated, they provide no neuroanatomical 

information (see Supplementary Results). Cell-physiological work with monkeys and 
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human, neuroimaging work indicates that the representation of task-relevant features, 

including rules, is distributed across large areas frontal and parietal cortex22, 23. From 

animal models, there is substantial evidence that the hippocampus and the frontal cortex 

are particularly important for representing conjunctive information24, 25. Human 

neuroimaging work also mainly implicates the hippocampus 26, 27; attempts to decode task 

representations in the frontal areas have proven more challenging28, but have also seen 

some recent success29, 30. 

In nonhuman primates, single cell recordings have also shown that while basic 

task features (cues, rules, stimuli, and responses) are encoded across various frontal and 

parietal areas during rule-based action selection22, 31, a substantial proportion of recorded 

neurons are tuned to the mixture of multiple features in a non-linear manner24, 32. Such 

heterogeneous, neural responses allow both efficient, linear read-out of information to 

downstream neurons and can also code high-dimensional, conjunctive information33. 

An important finding from this research is that the degree of conjunctive 

information coded in recorded neurons is functionally distinct from the representation of 

linear features. For example, high-dimensional, non-linear information was found to be 

highly robust on correct trial, but was largely missing on error trials, whereas low- 

dimensional information is equally strong on correct and error trials24. This pattern is 

consistent with our finding that the strength of conjunctive representations uniquely 

predicts trial-by-trial performance, beyond the predictive strength of constituent, simple 

features (Fig. 3b and Fig. 7b). Further evidence for a functional dissociation comes the 

finding that conjunctive representations express trial-to-trial transitions (i.e., the partial- 

overlap priming pattern) in a qualitatively different manner than the constituent feature 

representations (see Fig. 4 and Fig. 8). 
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These results about the relevance of conjunctions for efficient action selection and 

the mismatch priming pattern also directly confirm predictions from event-file theory. 

Therefore, they provide an important, missing link between two, so-far distinct lines of 

research: The relatively abstract, event-file theory, designed to explain the architecture of 

human action selection, and the recent advances from animal research about the neural 

implementation of high-dimensional, non-linear representations. Beyond the current 

demonstration of the role of conjunctive representation in human action control, there is a 

range of important, open questions. For example, we do not know how these 

representations are constrained by capacity limitations34, to what degree they allow 

integration of action outcomes or goals35, or how they change through experience (see 

Supplemental Fig. 9)10. The decoding approach used here, promises answers to these and 

related questions. 

Method 
 

Participants 
 

A total of 44 people participated after signing informed consent following the 

protocol approved by the University of Oregon’s Human Subjects Committee in 

exchange for the compensation of $10 per hour and the additional performance-based 

incentive. Participants with excessive amount of EEG artifacts (more than 35% of trials) 

were removed from further analysis. As a result, we retained 20 out of 22 participants for 

Experiment 1 and 21 out of 22 for Experiment 2. 

Stimuli, Tasks and Procedure 
 

Participants performed a cued rule-selection task, in which one of the pre- 

instructed action rules, on trial-by-trial basis, was randomly selected to determine 

possible S-R mappings10; Fig. 1b). Based on the cued rule, participants responded to the 
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location of a circle (1.32° in radius) that randomly appeared in the corner of a white 

frame (6.6° in one side) by selecting one of the four response keys that were arranged in 2 

x 2 matrix. Each action rule specified four S-R mappings using a simple spatial 

transformation rule. For instance, the vertical rule mapped the left-top circle to the 

bottom-left response as a correct response and vice versa. We used two cues for each rule 

(a pair of verbal cues in Experiment 1 and symbol/word pair in Experiment 2) that 

appeared in either even or odd trials to prevent immediate cue repetitions. Thus, cues, 

rules, responses, and stimuli were orthogonalized, and the combination of these features 

generated unique action constellations. 

In Experiment 1,”vertical”, “horizontal” and “diagonal” rules were randomly cued 

(i.e., 66.6% switch rate). In Experiment 2, ”vertical”, ”horizontal”, “clockwise” and 

“counterclockwise” rules were used (i.e., 75% switch rate; Fig. 2c). Here, half of S-R 

links were shared across rules (e.g., a left-top circle leads to a left-bottom response in 

both the vertical and the counterclockwise rule). This allowed us to generate transitions 

between trials with rule changes but repetitions of S-R links (Fig. 1c). 

There were two practice blocks and 200 experimental blocks in both studies. 
 

Participants were instructed to respond as fast and accurately as possible to complete as 

many trials as possible within each 16-second block. Trials that began within the 16 

seconds were allowed to complete. Participants were given a performance-based 

incentive for trials with RTs faster than the 75th percentile of correct responses in the 

preceding blocks when 1) the overall accuracy was above 90 percent and 2) there were 

more than 7 completed trials in a given block. While performing the task, participants 

were asked to rest the index finger of their dominant hand in the center of the four keys in 

matrix and to hit the correct key. All stimuli were created in Matlab (Mathworks) using 
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the Psychophysics Toolbox 36, 37 and were presented on a 17-inch CRT monitor (refresh 

rate: 60 Hz) at a viewing distance of 100 cm. 

EEG recordings and preprocessing 
 

EEG data was first epoched by 18 second intervals to include all trials within a 

block (see the Appendix A. EEG RECORDING AND PREPROCESSING). After time- 

frequency decomposition was performed (see the Appendix B. TIME-FREQUENCY 

ANALYSIS), these epochs were further segmented into trial-to-trial epochs (-600 ms to 

600 ms intervals for Experiment 1 and -800 ms and 600 ms intervals for Experiment 2, 

relative to the onset of a stimulus). These trial-to-trial epochs including blinks (>80 μv, 

window size = 200 ms, window step = 50 ms), large eye movements (>1°, window size = 

200 ms, window step = 10 ms), blocking of signals (range = -0.01 μv to 0.01 μv, window 

size = 200 ms) were excluded from subsequent analyses. For all EEG analyses, error 

trials, post-error trials and trials with exceedingly slow RTs (i.e., slower than 99.5% of all 

responses) were excluded to be consistent with behavioral analyses. 

Representational Similarity Analysis 
 

Our goal was to obtain information about the strength of each feature and 

conjunction on the level of individual trials and timepoints within trials. This required a 

two-step procedure. First, we performed a linear decoding analysis to discriminate 

between all 12 different action constellations in Experiment 1, or 16 constellations in 

Experiment 2. Specifically, we performed a penalized linear discriminant analysis using 

the caret package in R39-41. At every time sample point, the power of rhythmic EEG 

activity was averaged within the predefined ranges of frequency values (1-3 Hz for the 

delta-band, 4-7 Hz for the theta-band, 8-12 Hz for the alpha-band, 13-30 Hz for the beta- 

band, 31-35 Hz for the gamma-band), generating 100 features (5 frequency-bands X 20 
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electrodes) to train decoders. Within individuals, these data points were z-transformed 

across electrodes at every sample to remove the effects that uniformly influenced all 

electrodes. We used a k-fold repeated cross-validation procedure to evaluate the decoding 

results42, by randomly partitioning single-trial EEG data into four independent folds. The 

number of observations of each action constellation was kept equal within and across 

folds by dropping trials randomly. Three folds served as a training set and the remaining 

fold was used as a test set; this step was repeated until each fold served as a test set. Each 

cross-validation cycle was repeated eight times, in which each step generated a new set of 

randomized folds. Resulting classification probabilities (i.e., evidence estimated for each 

case of S-R mapping) were averaged across all cross-validated results with the best tuned 

penalty parameters. This decoding step yielded a vector of “confusion profiles” of 

classification probabilities for both the correct and all possible incorrect classifications 

and for each time point and trial (Fig. 1c). 

As a second step, we then applied RSAs17 to each profile of classification 

probabilities in order to determine their underlying similarity structure for each time point 

and trial. Specifically, we regressed the confusion vector onto model vectors as predictors, 

which were derived from a set of representational similarity model matrixes. Each model 

matrix uniquely represents a potential, underlying representation (e.g., rules, stimuli, 

responses and conjunctions; Fig. 1c and Fig. 5b). For example, the rule model predicts 

neural responses to be similar (i.e., more confusable) among instances of the same rule, 

but dissimilar across different rules. To estimate the unique variance explained by 

competing models, we regressed all model vectors simultaneously. Thus, we obtained 

coefficients for each of the four model vectors (e.g., rule, stimulus, response, conjunction 

for Experiment 1). These coefficients (i.e., their corresponding t-values) allowed us to 
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relate the dynamics of action representations to trial-to-trial variability in behavior (see 

Multilevel Modeling section for details). In all RSAs, we logit-transformed classification 

probabilities and further included a subject-specific “conjunction RT” model (i.e., a 

vector of z-scored, RTs, averaged for each subject and action constellation) as a nuisance 

predictor to reduce potential biases in decoding due to idiosyncratic differences in RTs 

among action constellations. We excluded resulting t-values that exceeded 5 SDs from 

means for each sample point, which excluded 0.12% and 1.32% of the entire samples 

Experiments 1 and 2 respectively. Resulting t-values were averaged within in 12 ms non- 

overlapping time samples. 

 

Supplementary Fig. 1. Mean RTs of individual subjects for all action constellations in 
Experiment 1. Subjects-specific RT vectors were included as a nuisance predictor during 
RSA fitting. 
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Supplementary Fig. 2. Mean RTs of individual subjects for all action constellations in 
Experiment 2. Participants responded slowly for trials with the non-symmetric translation 
(clockwise and counterclockwise rules) compared to the symmetric rules (vertical and 
horizontal rules) as reported previously7. Subjects-specific RT vectors were included as 
a nuisance predictor during RSA fitting. 

 
In Experiment 1, we constructed RSA models for the rules, stimuli, responses, 

and conjunctions (Fig. 1c). In Experiment 2, the conjunction model was separated for the 

rule-specific S-R conjunction model (rule-S-R conjunction) and the rule-independent S-R 

conjunction model (S-R conjunction; Fig. 5b). Complete orthogonalization of features 

could be established within each of two equal-sized subspaces of the entire space of 

action constellations, but not across the entire space. Therefore, we performed the RSA 

within each of these subspaces independently and subsequently averaged the results. 

Specifically, one subspace (G1 in Fig. 5) contained constellations with stimuli at the top- 

left or bottom-right corner (leading to a bottom-left or bottom-right response for all rules), 

whereas the second subspace (G2 in Fig. 5) contained trials with stimuli at the left- 

bottom or top-right corner (leading to a top-left or bottom-right response). Within each 

subspace, conjunctions were defined by the combination of four rules (vertical, horizontal, 

clockwise, and counterclockwise), two stimulus positions, and two responses, ensuring 

that each S-R link could occur in the context of two different action rules. 
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Non-Parametric Permutation Test 
 

To test statistical significance of all time-resolved decoding results (Fig. 3a and 

Fig. 7a and Supplementary Fig. 3 and Supplementary Fig. 4) while accounting for 

multiple comparisons, we carried out nonparametric permutation tests using the single- 

threshold method43. For each feature, we computed permutation distributions of the 

maximum statistic for every sample point from -200 ms prior to the onset of the cue to 

600 ms after the onset of the stimulus. Specifically, we first obtained classification results 

(and performed RSA for Fig. 3a and Fig. 7a) by decoding of data with randomly shuffled 

condition labels. We then performed a series of t-tests for every sample against the null 

level (i.e., the chance level). For the RSA results, the null level was 0 for t-values. Out of 

the series of t-test results, we retained the maximum t-value. We repeated this process 

10000 times by randomly drawing samples from all possible permutations of labels, 

thereby generating the permutation distributions of the maximum statistics. This 

approach allowed us to identify statistically significant time points by comparing scores 

from the correct labels to the critical threshold, which was defined as the 99th (i.e., alpha 

=.01) of the largest member of maximum statistics in the permutation distribution of the 

corresponding variable. 

Multilevel Modeling 
 

We used multilevel linear modeling to analyze trial-by-trial variability in decoded 

representations and their relationship to RTs. The models estimated fixed effects of 

predictors as well as subject specific intercepts and slopes as random effects. For all 

statistical tests, the dependent variable (e.g., RSA scores or RTs) was prewhitened by the 

linear and quadratic trends of experimental trials and blocks. RTs were further log- 

transformed before the fitting. We performed statistical tests for a-priori selected time 
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intervals: cue-to-stimulus period from the onset of the cue to the onset of the stimulus (- 

300 to 0 ms for Experiment 1 and -500 to 0 ms for Experiment 2), early post-stimulus 

period (0 to 300 ms of the post-stimulus segment for both studies), and late post-stimulus 

period (300 to 600 ms of the post-stimulus segment for both studies). We predicted trial- 

to-trial RTs/RSA scores in the current trials with EEG signals from pre-stimulus and 

early post-stimulus periods in hopes of capturing processing prior to response execution 

(see also Supplementary Fig. 7 for results using signals aligned to the response onsets). 

The late post-stimulus interval was used to assess how partial-overlap costs are 

modulated by the strength of action representations developed during selection in n-1 

trials. In addition, we separately performed a series of regressions to visualize changes in 

RT predictability—”impact” of moment-to-moment strength of decoded feature—by 

fitting models at each sample point without random slopes (Fig. 3b and Fig. 7b). 

Supplementary Results 
 

Behavioral Effects 
 

Supplementary Table 1 and Supplementary Table 2 contain the results of Anovas 

of the RT and error effects as a function of the rule change/repeat factor and the response 

repeat/change factor in Experiment 1, and of the rule change/repeat factor and the S-R 

repeat/change factor in Experiment 2. 

 
Supplementary Table 1. 
Anovas of RTs/errors with the factors of rule or S-R repeat/change for Exp. 1  

RT Error 
F(1,19) P η2 F(1,19) P η2 

Rule repeat/change (A) 3.34 .083 .149 .01 .933 <.001 
Resp. repeat/change (B) 5.54 .029 .225 2.72 .116 .125 
(A) x (B)    67.07 <.001 .779 21.41 <.001 .530  
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Supplementary Table 2. 
Anovas of RTs/errors with the factors of rule or S-R repeat/change for Exp. 2  

RT Error 
F(1,20) P η2 F(1,19) P η2 

Rule repeat/change (A) 5.08 .036 .202 .07 .791 .003 
S-R repeat/change (B) 42.28 <.001 .679 1.72 .204 .079 
(A) x (B)    25.56 <.001 .561 6.91 .002 .257  

 

Decoding of basic, constituent features without RSA 
 

In the main paper, we used RSA analyses to distinguish conjunction 

representations from the representation of constituent features. In order to compare these 

results with a standard decoding approach, we also performed standard multivariate 

decoding analyses for each constituent feature independently. The analysis procedure (i.e., 

cross-validation, non-parametric permutation test, and subsequent multilevel modeling 

predicting trial-to-trial RTs) was identical to the method for RSA except for the following 

points: 1) final outputs of decoding analysis were classification probabilities (then logit- 

transformed) rather than RSA fit score, and 2) individuals-specific mean RTs of all action 

constellations were included as a control predictor in multilevel models of RTs. 

Supplementary Fig. 3 and Supplementary Fig. 4 show the trajectories of 

classification probabilities of constituent features (rules, stimuli and responses) and their 

impact on trial-to-trial variability in RTs (see the inserts of Fig. 3a and Fig. 6a for the 

corresponding RSA results). The results were overall consistent with RSA results, when 

excluding the conjunction models (i.e., see inserts for Fig. 2a and Fig. 4a). The rule was 

activated during the pre-stimulus phase, followed by a strong expression of the stimulus, 

and finally by the response. This pattern directly replicates results using a more standard 

task-switching paradigm. These results also confirmed that our RSA approach produced 
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qualitatively similar results to the standard time-resolved decoding analysis for 

constituent features (when the conjunction model was excluded). 

 
 
 

Supplementary Fig. 3. a, Average decoding accuracy of constituent features over time, 
derived from a standard decoding analysis in Experiment 1. Shaded regions specify the 
standard error around the mean. Squares below lines denote the significant time points 
correcting for multiple comparison using a non-parametric permutation test. b, Time- 
course of t values from multilevel, linear models predicting the variability in trial-to-trial 
RTs, using single-trial classification probability of each feature as predictors 
simultaneously. 
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Supplementary Fig. 4. a, Average decoding accuracy of constituent features over time, 
derived from a standard decoding analysis in Experiment 2. Shaded regions specify the 
standard error around the mean. Squares below lines denote the significant time points 
correcting for multiple comparison using a non-parametric permutation test. b, Time- 
course of t values from multilevel, linear models predicting the variability in trial-to-trial 
RTs, using single-trial classification probability of each feature as predictors 
simultaneously. 

 
RSA using frequency-specific EEG activity 

 
Previous studies showed that specific control representations are encoded in the 

frequency-specific, rhythmic EEG activity (e.g., the ordinal position codes in the theta- 

band (4-7 Hz)45. As an exploratory analysis, we analyzed how different frequency-bands 

contribute to the decoding of both conjunctions and constituent features. For this, we 

replicated the combination of decoding and RSA analyses separately for the delta (1-3 
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Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma (31-35 Hz) frequency 

bands. To reduce the influence of temporal smearing, which could differ across 

frequency-bands38, we averaged data over a-priori selected time intervals (i.e., pre- 

stimulus, early and late post-stimulus phase) prior to the training of decoders. Other steps 

in the analysis were identical to the one described in Representational Similarity Analysis 

section. 

Supplementary Fig. 5 and Supplementary Fig. 6 summarize RSA scores of 

different action features among individuals for each time interval, compared to the results 

using all five frequency-bands. Overall, participants exhibited considerable variability in 

terms of the frequency-bands in which specific information was expressed. However, the 

following points seem to be consistent across individuals: 1) stimulus positions in early 

post-stimulus interval were coded in the theta and the alpha-band, a finding that is 

consistent with earlier decoding results 14, and 2) conjunctions (i.e., rule-S-R 

conjunctions in Experiment 2) tended to be expressed most strongly in the delta band. 

The fact that the neighboring theta-band activity only weakly contributed to the 

conjunctions emphasizes the special role of delta-band activity. We had no a-priori 

predictions about frequency-specific effects. However, we note that there are recent 

reports suggesting that delta-band frequencies carry information about abstract decision 

variables 47. Using a similar “search-light” method across electrodes (instead of 

frequency-space), we also checked for relative contribution of local scalp regions for 

expression of representations that are more localize consistent across 

individuals. However, we found the patterns with which representations were expressed 

to be highly idiosyncratic (see Kikumoto and Mayr 45 for similar results in hierarchical 

serial-control task). 
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Supplementary Fig. 5. Experiment 1: RSA scores when decoding EEG signals in 
specific frequency ranges (1-3 Hz for the delta-band, 4-7 Hz for the theta-band, 8-12 Hz 
for the alpha-band, 13-30 Hz for the beta-band, 31-35 Hz for the gamma-band, and 1-35 
Hz for all). EEG signals were averaged over pre-stimulus (-300 to 0 ms), early post- 
stimulus (0 to 300 ms) and late post-stimulus (300 to 600 ms) time intervals before the 
decoding analysis. 
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Supplementary Fig. 6. Experiment 2: RSA scores when decoding EEG signals in 
specific frequency ranges (1-3 Hz for the delta-band, 4-7 Hz for the theta-band, 8-12 Hz 
for the alpha-band, 13-30 Hz for the beta-band, 31-35 Hz for the gamma-band, and 1-35 
Hz for all). EEG signals were averaged over pre-stimulus (-300 to 0 ms), early post- 
stimulus (0 to 300 ms) and late post-stimulus (300 to 600 ms) time intervals before the 
decoding analysis. 

 
 

RSA time-aligned to responses 
 

The trajectory of RSA fit scores, summarized in Fig. 3a and Fig. 6a, revealed how 

action-relevant representations unfold in reference to the onset of a stimulus. However, 

these decoding results contain a limited number of samples which responses were 

executed during the post-stimulus interval (average RT: M = 490 ms, SD = 1.46 ms in 
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Experiment 1; M = 490 ms, SD = 1.67 ms in Experiment 2). To ensure that our stimulus- 

locked decoding results are not affected by such early responses, and to provide 

information about how representations unfold relative to responses, we performed an 

additional RSA using EEG data that are aligned to the onset of each trial’s response. 

Supplementary Fig. 7 shows the corresponding time-course of RSA scores for 

Experiments 1 and 2. These results are highly consistent with stimulus-locked results in 

showing early peaks for rule, followed by stimulus, then conjunction, and finally 

response representations, which peaked just before responses were executed. 

Supplementary Fig. 7. Average, single-trial RSA scores for each representation, using 
EEG signals aligned to the onset of trial-to-trial response events. Shaded regions specify 
standard error of the mean. 

 
Cross-session RSA 

 
Currently, we know relatively little about within-subject consistency of EEG- 

decoded, complex action representations across longer temporal intervals. In particular, 

given that the neural patterns that we decoded were highly idiosyncratic (see Section 

RSA using frequency-specific EEG activity), it is important to explicitly test the stability 

of such patterns within individuals. We were able to recruit 9 out of the 20 participants 

from Experiment 1 for a second session, 6 months after the first session. 
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Supplementary Fig. 8. Individuals’ mean RTs and group average RTs (black) between 
the first session and the second session at least 6 months later (n = 9) for Experiment 1. 
Error bars specify 95% within-subject confidence intervals. 

 
Participants responded significantly faster in the second session than in the first 

session, RTs: F(1,8) = 29.05, MSE = 735.54, p < .001, ηp2 = .78; errors: F(1,8) = .40, 

MSE < .001, p = .54, ηp2 = .05 (Supplementary Fig. 8). In order to perform cross-session 

RSAs we trained decoders using data within each session separately. Supplementary Fig. 

9 (left column) summarizes differences in RSA scores of each representation across 

sessions. Both the pre-stimulus rule representation and the conjunction in the stimulus-to- 

response phase were enhanced in the later session. Then, decoders that were trained 

separately within sessions were applied to EEG data of the other session at matching time 

points. As shown in Supplementary Fig. 9 (right column), all features, including the 

conjunctive representation, showed robust generalizability across sessions. This pattern 

indicates that the neural representation of action-relevant representations is remarkably 

stable. An important implication of this result is that in future research such techniques 
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can be applied to analyze how action-relevant representations are shaped through 

experience or consolidation48. 

Supplementary Fig. 9. Average, single-trial RSA fit scores for conjunctions and 
constituent features across sessions (n = 9). Left panels: Time-course of RSA scores 
training decoders. Right panels: RSA scores from cross-decoding across sessions. 
Decoders are trained with EEG data from the session 1 (shown in red) or session 2 
(shown in black) and applied on data from the counterpart session to test their 
generalizability. Shaded regions specify 95% within-subject confidence intervals. 
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CHAPTER III. 

ACTION STOPPING 

Introduction 
 

Even for a simple goal-directed action, such as kicking a soccer ball to a team- 

mate, various sensorimotor features––the location of the ball, the presence of opponent 

players and teammates, as well as the abstract action rules (e.g., “kick softly when the 

grass is wet”)––need to be adequately represented. Prominent theories of action control 

suggest that rather than being handled independently, action-relevant features are 

integrated within a common representational space during selection. Specifically, event- 

file theory1,2 posits that an action becomes executable only once all task-relevant features 

are integrated within conjunctive representations (i.e., event files). 

If conjunctive representations are necessary, and maybe even sufficient precursors 

of successful action, it follows that the pathway to controlling a given action needs to 

lead through these representations. For example, when an opponent defender suddenly 

blocks the targeted teammate, the kicking action needs to be canceled. Action inhibition, 

including its neural underpinnings, has been well characterized using variants of the stop- 

signal paradigm3–9. Yet, it is currently an open question how the stopping affects different 

representations for the planned action—which of these action codes are targeted by the 

stopping process. In theory, the stopping process might occur simply by suppressing the 

response representations that directly map onto at various levels of motor control 

pathways10–13. However, assuming conjunctive representations are indeed critical for 

action control, the cancellation of an initiated action should require the suppression of the 

corresponding conjunction—the integrated, holistic representation of the action plan 

binding even abstract cognitive features. 



54  

Kikumoto and Mayr (2019) recently applied a time-resolved representational 

similarity analysis (RSA)14 to the EEG signal in order to track the presence of 

conjunctive and constituent feature representations during action selection, on the level of 

individual trials. These analyses indeed revealed conjunctive representations that 

integrated action rules to specific sensory/motor settings throughout the entire selection 

period. Moreover, conjunction strength was a robust predictor of trial-to-trial variability 

in RTs even compared to the constituent (but task-relevant) rule, stimulus, or response 

representations––as one would expect if conjunctive representations are necessary and 

sufficient conditions for action execution. 

To directly test the hypothesis that cancelling conjunctive representations is the 

pathway to action inhibition, in the current work, we combined a rule-based action 

selection task (Fig. 1ab)15,16 with an occasional stop signal3,17,18. As in Kikumoto and 

Mayr (2019), we used RSA to track action-relevant representations. In Experiment 1, the 

stop signal was presented 100 ms after the stimulus onset, which is early enough for 

successful stopping on most trials. This allowed us to determine which action 

representations are suppressed in a reactive manner on stop-trials, relative to go-trials. In 

Experiment 2, stop-signal timing was adjusted via staircase-tracking procedure4 based on 

participants’ trial-to-trial stopping accuracy18. This allowed us to replicate and extend the 

results of Experiment 1 by relating the strength of decoded representations to the 

accuracy of stopping on a trial-by-trial basis. Across both experiments, we found strong 

evidence that stopping selectively suppresses conjunctive representations. In Experiment 

2, we also found that the strength of conjunctive representations at the time the stop- 

signal arrives, is a unique predictor of stopping success. 
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Fig. 1. a, Sequence of trial events in the rule-selection task combined with the stop- 
signal task for both Experiment 1 and 2. b, Spatial translation rules mapping specific 
stimuli to responses. Two different cue words were used for each rule. c, Schematic 
steps of the representational similarity analysis. The raw EEG signal was decomposed 
into frequency-band specific activity via time-frequency analysis (see EEG recordings 
and preprocessing and Time-Frequency Analysis). For each sample time (t), a scalp- 
distributed pattern of EEG power was used to decode the specific rule/stimulus/response 
configuration of a given trial, producing a set of classification probabilities for each of the 
possible configurations. The profile of classification probabilities reflects the similarity 
structure of the underlying representations, where similar action constellations are more 
likely to be confused. The example of profile of classification probabilities shows the 
case where a unique conjunction and rule information is expressed (peak at the correct 
S-R mappingi and confusion to other instances with the same rule). For each trial and 
timepoint, the profile of classification probabilities is simultaneously regressed onto 
model vectors as predictors that reflect the different, possible representations. In each 
matrix of model vectors, the x-axis corresponds to the correct constellation for the 
decoder to pick, and the y-axis shows all possible constellation. The shading of squares 
indicates the predicted classification probabilities (darker shading means higher 
probabilities). The coefficients associated with each predictor (i.e., t-values) reflect the 
unique variance explained by each of the constituent features and their conjunction. 

 
 

Result 
 

Experiment 1 
 

Behavior 

Behavioral performance in go-/stop-trials are summarized in Table 1. Average 

RTs and errors in go-trials were similar to the previous results using a paradigm with no 
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stopping requirements (Exp.1 in Kikumoto & Mayr, 2019). The probability of stopping 

failures—incorrectly executing responses in the presence of the stop signal (i.e., 

p(respond|signal))—was low because of the early presentation of stop-signal at the fixed 

timing (100 ms after the stimulus onset), which allowed us to estimate the time-course of 

suppression of action representations from the fixed starting point. 

Table 1. 
Average behavioral performance in go and stop-trials 

RT 
(Go) 

Error 
(Go) 

 
p(respond|signal) 

 
Failed Stop RT 

Error 
(Stop) 

 
SSD 

 
SSRT 

504 3.24   2.36   

Exp.1 (62.5) (1.77) 11.6 (8.85) 405 (32.2) (2.66)   
676 3.55   2.83 327 272 

Exp.2 (139) (3.64) 44.1 (4.84) 552 (91) (2.28) (103) (54.8) 
 
 

Action Representations in Go-trials and Stop-trials 
 

Fig. 2 shows the time-course of RSA scores estimated on the level of single trials 

for each of the basic features (i.e., rules, stimuli, and responses) and the conjunction, and 

for both go- and stop-trials. For go-trials, the flow of activated representations was highly 

consistent with our previous results: rule information appeared in the pre-stimulus period, 

and shortly after stimulus information peaked, response information emerged15,19. 

Importantly, conjunctive information was present throughout the entire response- 

selection period15. We also replicated our findings that trial-to-trial variability in the 

conjunctive representations robustly predicted go-trial RTs (Supplementary Table 1), 

over and above other representations of constituent features, indicating the critical role of 

integrated representations for the execution of goal-directed actions. 
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Fig 2. Average, single-trial t-values derived from the RSA (see Fig. 1c) for each of the 
basic features (rule, stimulus, and response) and the conjunction, separately for go- 
(black) and stop-trials (red). Shaded regions specify the 95% within-subject confidence 
intervals. The vertical, red dashed line marks the onset of the stop-signal at 100 ms after 
the stimulus onset. 

Our main goal in Experiment 1 was to test the prediction that conjunctive 

representations are suppressed on stop-trials relative to go-trials. Indeed, we found 

stopping of actions markedly reduced the strength of conjunctive representations right 

after the onset of the stop-signal (Fig. 2). Not surprisingly, the response representation 

was also suppressed, whereas we found no effect on the rule representation and only a 
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relatively late, and small effect for the stimulus representation. Importantly, suppression 

of the conjunction occurred at the same time, or even slightly before suppression of the 

response representation. This suggests the suppression effect on conjunction is not just an 

aftereffect of response suppression. Rather, it supports the notion that the conjunctive 

representation is a direct target of the stopping activity. 

When we do not explicitly model the conjunctive representations, the suppression 

effect on the basic features was substantially conflated (Supplementary Fig. 3), 

highlighting the importance of including the conjunction model to understand action 

control (see also Kikumoto & Mayr, 2019). Thus, overall, these results are consistent 

with the prediction of event-file theory: conjunctive representations drive action selection 

and serve as the key target of the stopping process of planned actions. 

Experiment 2 
 

The results of Experiment 1 are consistent with the hypothesis that conjunctive 

representations are a primary target of the stopping process. Yet, in principle, such a 

suppression effect could simply be an epiphenomenon of stopping-related events, such as 

the surprise from an unexpected stop-signal. Therefore, it would be important to establish 

a functional relationship between the suppression effect on the conjunctive 

representations and stopping behavior. In Experiment 2, we therefore attempted to link 

trial-to-trial stopping success to the variability in action representations by using the 

standard, stop-signal paradigm with an adaptive staircase algorithm. By adjusting the 

stop-signal delay within-subjects, we achieved approximately equal numbers of 

successful and failed stopping in the presence of the stop-signal (see Stimuli, Tasks and 

Procedure and Stop-signal reaction time (SSRT) section for details). 

Behavior 
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Behavioral performance is summarized in Table 1. Most participants (33 out of 36 

participants) exhibited p(stop|signal) in the range of .40 - .65 (individuals with the 

stopping accuracy higher than 75% were excluded from further analyses)18. The average 

RTs in go-trials were longer than the RT in failed stop-trials for all participants, 

indicating the validity of the race model to estimate individuals’ stop-signal reaction time 

(Fig. 3a). The probability of stopping errors (i.e., inhibition functions) covaried with the 

increase of SSDs, indicating the efficacy of the SSD staircase algorithm (Fig. 3b). 

a b 
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Fig. 3. a, Vincentized mean response times (RTs) for go-trials and failed stop-trials. b, 
Mean stopping failures as a function of changes in stop-signal delays (i.e., inhibition 
functions). Error bars specify 95% within-subject confidence intervals. 

 
 

Action Representations in Go-trials, Failed Stop-trials, and Successful Stop-trials 
 

Fig. 4 shows RSA scores for the individual features and the conjunction that are 

aligned to the onset of the stimulus (left column) and the stop-signal (right column), 

differentiating between go-trials, failed stop-trials and successful stop-trials. Replicating 

the results in Experiment 1, the strength of conjunctive representations was the most 

robust predictor of trial-to-trial RTs in go-trials (Supplementary Table 1). We again 

found that rule and stimulus representations showed little effects of stopping (excluding 

the conjunction model also yielded similar results to Exp.1; Supplementary Fig. 4). In 
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contrast, we found that conjunctive representations, and late response representations, 

were selectively suppressed in successful stop-trials relative to go-trials and failed stop- 

trials. For the conjunctive representations, the divergence seemed to occur even before 

the onset of the stop-signal (see individuals’ average SSDs in Fig. 4 left column), 

suggesting stopping was particularly impaired when the conjunctive representations 

developed strongly in the early response selection phase. Indeed, when RSA scores are 

replotted relative to trial-to-trial SSDs, differences in successful and failed stop-trials 

emerged clearly before the average SSRT (M = 272 ms) and even slightly before the 

stop-signal. No other action features showed the suppression effects in the pre-stop-signal 

period (t < .13), and a typical, post-stop-signal effects was detected only on the response 

representation when the conjunction model was excluded, b = -.010, SE = .004, t(33) = 

2.34. This result is consistent with the prediction that the strength of the conjunction 

when the stop process is initiated determines stopping success. 
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Fig 4. Average, single-trial t-values associated with each of the basic features (rule, 
stimulus, and response) and their conjunction derived from the RSA, separately for go- 
(black), successful stop-trials (red), and failed stop-trials (blue). The left panels show the 
results that are aligned to the stimulus onset and the right panels correspond to the 
results that are aligned to the stop-signal onset. Shaded regions specify the 95% within- 
subject confidence intervals. Tick marks on the x-axis mark individuals’ average stop- 
signal delay. 

 
 

Predicting Successful Stopping by Decoded Representations 
 

Results so far indicate that the state of conjunctive representations prior to the 

onset of the stop-signal determines the success of stopping. This pre-stop-signal effect 

needs to be further confirmed by establishing its robustness against the influence of other 
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action representations, potential third-variables that covary with the development of 

conjunctions (e.g., trial-to-trial SSDs), and autocorrelation of signals due to slow 

oscillations. To this end, we performed multilevel logistic regressions to predict single- 

trial stopping failures using decoded action features and SSDs as simultaneous predictors. 

Critically, we found that the state of conjunctive representations, over and above other 

features, strongly predict single-trial stopping failures prior to the onset of the stop-signal 

(Fig. 5). These results were robust when we account for 1) the trial-to-trial SSDs (Fig. 5) 

and 2) the premature responses that occurred before the stop-signal onset (Table 2). In 

addition, the conjunctive representations in the pre-stop-signal phase (-200 to 0 ms) and 

the post-stop-signal phase (0 to 200 ms) uniquely predicted stopping success when both 

effects were included in the same model (Table 3). Together, these results indicate that 

the conjunctive representations are a critical determinant of successful stopping of 

actions: the integrated representations of action features strongly drive actions, which in 

turn makes the stopping of actions more challenging. 

Fig. 5. Time-course of z values from multilevel, logistic regression models predicting the 
variability in trial-to-trial stopping failures in the stop-trials (the “impact” of 
representations on stopping behavior), using RSA scores of all features and trial-to-trial 
SSDs as the simultaneous predictors. Negative z-value indicates more stopping failures 
as the strength of decoded representations increase. The left panel shows the result that 
is aligned to the stimulus onset and the right panel was based on the data aligned to the 
stop-signal onset. 
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Table 2. 
Predicting trial-by-trial stopping accuracy using the strength of decoded representations.  

Pre-Stop-Signal Post-Stop-Signal 
 

 
Model 

Decoded 
variable   b (se) t value b (se) t value  

 

SSD control Rule -.077 (.033) -2.38 -.012 (.024) -0.49 
 Stimulus -.083 (.033) -2.50 -.060 (.020) -3.11 
 Response -.081 (.034) -2.41 -.062 (.020) -3.11 
 
Exclude early 

Conjunction -.193 (.041) -4.70 -.151 (.029) -5.23 

responses Rule -.050 (.020) -2.43 -.019 (.025) -0.76 
 Stimulus -.036 (.017) -2.19 -.057 (.020) -2.89 
 Response -.039 (.021) -1.86 -.054 (.020) -2.70 

Conjunction  -.136 (.029) -4.78 -.155 (.029) -5.31  
 

Table 3. 
Predicting trial-by-trial stopping accuracy using the strength of decoded representations, 
using both pre-stop-signal and post-stop-signal intervals.  

Time Decoded variable   b (se) t value  
Pre-stop Rule -.084 (.036) -2.31 
 Stimulus -.035 (.036) -0.93 
 Response -.038 (.040) -0.97 
 Conjunction -.126 (.049) -2.60 
Post-stop Rule .016 (.044) 0.36 
 Stimulus -.104 (.041) -2.53 
 Response -.093 (.041) -2.30 

Conjunction  -.194 (.049) -3.93  
 
 

Discussion 
 

Goal-directed actions usually rely on multiple feature dimensions of the current 

task environment. Event-file theory proposes that these different action features come 

together within conjunctive representations to guide actions1,20. In our previous work15, 

we had reported direct, EEG-decoding evidence for representations that behave like event 

files. In the current work, we tested the hypothesis that because such representations are 

critical for action control, they should also be intricately involved in the stopping of a 

planned or initiated action. Specifically, we predicted that conjunctive representations are 
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the main target of the stopping process and that the strength of conjunctive 

representations at the time the stopping process kicks in, inversely predicts stopping 

success. Our results fully confirmed these predictions: Conjunctive representations were 

selectively suppressed in response to the stop-signal (Fig. 2), and stopping became more 

challenging on trials with strong conjunctive representations, before the arrival of the 

stop-signal (Fig. 4 and Fig. 5). 

Studies of action inhibition typically compare the “go” and successful/failed 

“stop” processes in an aggregated manner. This leaves the question which action-related 

representations are influenced by stopping. Theoretically, stopping of actions may require 

suppression of all task-relevant representations simultaneously. Alternatively, only those 

representations directly involved with the motor control might be targeted. Instead, our 

results suggest that the conjunctive representation is the primary target of suppression, 

followed, not surprisingly, by the response representation (Fig. 2, Fig. 4, and Fig. 5). 

Other representations (e.g., rule and stimulus information) remained intact or showed 

very minor suppression only after the completion of the stopping process, as indicated by 

the SSRT (Fig. 4 and Supplementary Fig. 4). In particular, the representation of the rule 

remained unaffected by the stopping process. A potential functional benefit of selective 

suppression could be that by retaining the abstract rule information of the initiated action, 

actions can be easily re-implemented, once the reason for stopping the initial action has 

been removed. 

Conjunctive representations that integrate disparate features, including abstract 

rule information, must be situated on a more central level than representations that 

directly control motor output. The fact that conjunctive representations were targeted by 

the stopping process, is consistent with recent results indicating that inhibition of actions 
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and inhibition of thoughts or memories are handled by a shared process21–25. For example, 

using the Think/No-think paradigm, studies found that the same right lateral prefrontal 

area that is typically involved in stopping of motor responses, was also critical in 

suppressing involuntary intrusions of retrieved thoughts. An interesting question for 

future research is whether the fact that conjunctions seem to be the main target of 

inhibition has implications for the suppression-induced, long-term memory effects (e.g., 

Anderson and Green, 200126). In principle, conjunctive representations provide 

contextual specificity to more abstract feature codes for a given task. Thus, as the main 

target of inhibitory control they may help constrain the otherwise, unmitigated spread of 

inhibition beyond the current context. 

Our results showed that the pre-stop-signal state of the conjunctive representation 

uniquely predicts the success of subsequent stopping, over and above the effect of a 

reactive inhibition process (Table 2 and 3). This pattern strongly suggests that the 

strength of conjunctive representations is a necessary, key driver of the efficiency and 

success of the action––and therefore also of the ability to stop that action. However, our 

results by themselves do not identify the mechanisms that modulate the state of the 

conjunctive representation prior to the stop signal. One possibility is that conjunction 

strength depends on endogenous fluctuations of attention across trials. A strong emphasis 

on initiating action, accompanied by a strong conjunction, may cause the failures to 

trigger the stop process altogether4,27,28. The fact that conjunctive representations in 

failed-stop trials, prior to the arrival of stop-signal, were even stronger than on go-trials, 

is consistent with such an attentional fluctuation account. As another possibility, there is 

evidence that variations in strategic, proactive inhibition affect the state of the 

conjunction29,30. On trials in which subjects anticipate stopping, proactive inhibition may 
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keep conjunctive representations from fully developing. Such proactive control processes 

could be directly tested, by cuing the stop probability on a trial-by-trial basis31,32. In any 

case, our results clearly indicate the pre-stop-signal state of action representations must 

be taken into account to fully understand subsequent reactive inhibition and stopping. 

In conclusion, the results we report here build on our previous work suggesting 

that conjunctive, event-file type representations can be tracked with high temporal 

resolution through EEG-decoding techniques and can be shown to be highly relevant for 

trial-to-trial variation in behavior. Specifically, our results are consistent with the 

hypothesis that such conjunctive representations are a prime target of a putative action 

inhibition process, exactly because they are a main driver of successful action 

implementation. 

Method 
 

Participants 
 

A total of 64 people participated after signing informed consent following a 

protocol approved by the University of Oregon’s Human Subjects Committee in 

exchange for the compensation of $10 per hour and additional performance-based 

incentives. Participants with excessive amount of EEG artifacts (i.e., more than 35% of 

trials; see EEG recordings and preprocessing for detail) were removed from further 

analysis. As a result, we retained 24 out of 26 participants for Experiment 1 and 36 out of 

38 for Experiment 2. In Experiment 2, 3 participants were further excluded because of 

failures to stop in excess of 75% 18. 

Stimuli, Tasks and Procedure 
 

The task combined a variant of rule-based action task16 with the stop-signal 

paradigm3,17,18. Participants were randomly cued on a trial-by-trial basis to execute one of 
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the three possible actions rules (Fig. 1a). Based on the cued rule, participants responded 

to the location of a circle (1.32° in radius) that randomly appeared in the corner of a white 

frame (6.6° in one side) by selecting one of the four response keys that were arranged in 2 

x 2 matrix (4, 5, 1, and 2 on the number pad). For example, the vertical rule mapped the 

left-top dot to the bottom-left response as a correct response. Two different cue words 

(e.g., vertical and updown) were used for each rule (i.e., 66.6% switch rate). 

In 33.3% of trials, the stop-signal (i.e., a yellow frame; Fig. 1a) indicated to 

participants that the planned action had to be cancelled. Stop-trials were counted as 

successful when participants did not make any responses within 800 ms time-window 

following the stop-signal onset. In Experiment 1, the stop-signal appeared 100 ms after 

the stimulus onset. In Experiment 2, the interval between the stimulus and stop-signal 

onset (i.e., the stop-signal delay or SSD) was adjusted using an adaptive staircase 

(tracking) method based on participants’ trial-to-trial stopping success. Specifically, 

individuals’ SSDs varied between 0 ms to 800 ms counting from the onset of the 

stimulus, starting from 100 ms of SSD at the beginning of session. Correct/incorrect stop 

trials increased/decreased SSDs by the step size that was randomly selected from 11.8 

ms , 23.5 ms, or 35.3 ms for each trial. Go trials lasted until either the response was 

executed; stop trials lasted either until the 800 ms response window expired, or until 

(incorrect) response was emitted. 

There were 2 practice blocks and 200 and 250 experimental blocks for Exp. 1 and 

2 respectively. Each block consisted of a 16 seconds-interval within which participants 

were instructed to complete as many trials as possible; trials that were initiated began 

within the 16 second block duration were allowed to complete. The average number of 

go-trials and stop-trials were 1378 (SD = 91) and 685 (SD = 33) for Experiment 1, and 
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1576 (SD = 162) and 773 (SD = 75) for Experiment 2. Throughout the experimental 

session, participants were reminded to make responses as accurate and fast as possible 

and not to “wait for” the stop-signal. In Experiment 2, participants were instructed that 

the tracking procedure would make it easier to stop on some trials and more challenging 

others. Participants were given a performance-based incentive for trials with RTs on go- 

trials faster than the 75th percentile of correct responses in the preceding blocks when 1) 

the overall accuracy in go-trials was above 90 percent and 2) there were more than 5 

completed trials in a given block. While performing the task, participants were asked to 

rest the index finger in the center of the four response keys at the start of each trial (i.e., 

no lateralization of response sides). At the end of each trial, feedback (a green or red 

fixation cross) was presented based on the accuracy of responses in go-trials or on correct 

stopping in stop-trial. At the end of each block, the number of completed tests, the 

number of correct responses in go-/stop-trials, and the amount of earned incentive, which 

reflects the speed of responses in go-trials, were presented as a feedback. All stimuli were 

created in Matlab (Mathworks) using the Psychophysics Toolbox (Brainard 1997; Pelli 

1997) and were presented on a 17-inch CRT monitor (refresh rate: 60 Hz) at a viewing 

distance of 100 cm. 

Stop-signal reaction time (SSRT) 
 

In Experiment 2, we computed individuals’ stop-signal reaction time (SSRT), 

which estimates the latent process of stopping, with the integration method 17. First, for 

each quantile bin of SSDs (Fig. 3b), the mean SSDs and the proportion of successful stop 

trials (p(respond|signal)) were calculated. Then, the matching go RTs were defined in 

each SSD bin by taking the nth RT in the rank ordered go-trial RTs (including all go- 

trials), where n is defined by multiplying the number of RTs in the distribution by the 
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probability of responding, p(respond|signal) or unsuccessful stopping, for each SSD bin. 

Within each SSD bin, SSRT was calculated by subtracting the corresponding SSD from 

the matching go RT, then scores from 6 SSD bins were averaged within individuals to 

obtain a single metric of SSRT for each individual. For all participants, failed-stop RTs 

were faster than correct go RTs. 

EEG recordings and preprocessing 
 

EEG data was first segmented by 18.5 second intervals to include all trials within 

a block (see the Appendix A. EEG RECORDING AND PREPROCESSING). After time- 

frequency decomposition was performed (see the Appendix B. TIME-FREQUENCY 

ANALYSIS), these epochs were further segmented into trial-to-trial epochs (the time 

interval of -600 to 800 ms relative to the onset of the stimulus for both experiments). 

These trial-to-trial epochs including blinks (>80 μv, window size = 200 ms, window step 
 

= 50 ms), large eye movements (>1°, window size = 200 ms, window step = 10 ms), 

blocking of signals (range = -0.01 μv to 0.01 μv, window size = 200 ms) were excluded 

from subsequent analyses. 
 

Representational Similarity Analysis 
 

The decoding analysis in the current study follows Kikumoto and Mayr (2019): 

We used a two-step procedure to obtain information about the strength of each action 

feature and conjunction on the level of individual trials and time samples within trials. 

First, we performed a linear decoding analysis to discriminate between all 12 different 

action constellations. Specifically, we performed a penalized linear discriminant analysis 

using the caret package in R 34. At every time sample point, the instantaneous power of 

rhythmic EEG activity was averaged within the predefined ranges of frequency values (1- 

3 Hz for the delta-band, 4-7 Hz for the theta-band, 8-12 Hz for the alpha-band, 13-30 Hz 
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for the beta-band, 31-35 Hz for the gamma-band), generating 100 features (5 frequency- 

bands X 20 electrodes) to train decoders. Within individuals, these data points were z- 

transformed across electrodes at every sample to remove the effects that uniformly 

influenced all electrodes. We used a k-fold repeated cross-validation procedure to 

evaluate the decoding results36, by randomly partitioning single-trial EEG data into four 

independent folds. All trials except incorrect go-trials were used as the training sets in 

both experiments. The number of observations of each action constellation was kept 

equal within and across folds by dropping trials randomly. Three folds served as a 

training set and the remaining fold was used as a test set; this step was repeated until each 

fold served as a test set. Each cross-validation cycle was repeated eight times, in which 

each step generated a new set of randomized folds. Resulting classification probabilities 

(i.e., evidence estimated for each case of S-R mapping) were averaged across all cross- 

validated results with the best tuned penalty parameter. This decoding step yielded a 

vector of “confusion profiles” of classification probabilities for both the correct and all 

possible incorrect classifications and for each time point and trial (Fig. 1c). 

As a second step, we then applied time-resolved RSAs to each profile of 

classification probabilities in order to determine their underlying similarity structure. 

Specifically, we regressed the confusion vector onto model vectors as predictors, which 

were derived from a set of representational similarity model matrices (Fig. 1c). Each 

model matrix uniquely represents a potential, underlying representation (e.g., rules, 

stimuli, responses and conjunctions). For example, the rule model predicts neural 

responses to be similar (i.e., more confusable) among instances of the same rule, but 

dissimilar across different rules. To estimate the unique variance explained by competing 

models, we regressed all model vectors simultaneously, which generated coefficients for 
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each of the four model vectors. These coefficients (i.e., their corresponding t-values) 

allowed us to relate the dynamics of action representations to trial-to-trial variability in 

behavior in go- and stop-trials (see Multilevel Modeling section for details). In all RSAs, 

we logit-transformed classification probabilities and further included subject-specific 

“conjunction RT and stopping accuracy” models (i.e., two vectors that each contained z- 

scored average RTs and stopping accuracy) as nuisance predictors to reduce potential 

biases in decoding due to idiosyncratic differences in performance among action 

constellations (Supplementary Fig. 1 and 2). 

Supplementary Fig. 1. Mean RTs and stopping error individual subjects for all action 
constellations in three different rules. To control potential differences covarying with 
average RTs/stopping errors, subjects-specific RTs/errors vectors were included as a 
nuisance predictor during RSA fitting. 
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Supplementary Fig. 2. Mean RTs and stopping error individual subjects for all action 
constellations in three different rules. To control potential differences covarying with 
average RTs/stopping errors, subjects-specific RTs/errors vectors were included as a 
nuisance predictor during RSA fitting. 

 
In both experiments, decoders were trained with the stimulus-aligned EEG signal. 

In Experiment 2, we further computed RSA scores that were re-epoched in reference to 

the onset of the stop-signal for every stop-trials with the variable SSDs (the right column 

of Fig. 4 and Supplementary Fig. 4). Matching go-trial results were calculated by 

referencing the most updated SSDs for given trials that could have been used if the stop- 

signal appeared in those trials. We excluded resulting t-values that exceeded 5 SDs from 

means for each sample point, which excluded less than 1% of the entire samples in both 

experiments. Resulting t-values were averaged within 20 ms non-overlapping time 

samples. For decoding analyses and subsequent RSA with EEG, error-trials in go-trials 

were excluded. 
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Estimating Timing of Stop-induced Suppression 
 

In Experiment 1, we used nonparametric permutation tests with a single- 

threshold method 35 to identify the earliest time sample at which statistically significant 

differences between go-trials and stop-trials emerged. Specifically, for each action feature, 

we computed permutation distributions of the maximum statistic for every sample point 

from the stop-signal onset (fixed at 100 ms after the stimulus onset) to the end of 800 ms 

of the hold period. First, we obtained RSA results by decoding data with randomly 

shuffled condition labels (i.e., of action constellations). We then performed a series of t- 

tests, testing the differences in RSA scores between go- and stop-trials, for every sample 

against the null level (i.e., 0 for t-values). Out of the series of t-test results, we retained 

the maximum t-value. We repeated this process 10000 times by randomly drawing 

samples from all possible permutations of labels, thereby generating the permutation 

distributions of the maximum statistics. This approach allowed us to identify statistically 

significant, individual time points by comparing scores from the correct labels to the 

critical threshold, which was defined as the 95th (i.e., alpha =.05) of the largest member 

of maximum statistics in the permutation distribution of the corresponding variable. 

Multilevel Modeling 
 

In Experiment 2, to analyze predictors of trial-by-trial variability in stopping 

success, we used multilevel logistic regression models. Specifically, we estimated for 

stop trials a model predicting stopping success on a given trial using the RSA-derived t- 

values for basic action features (i.e., rule, stimulus, and response) and the conjunction as 

predictors. In addition, we also included each trial’s log-transformed SSD as a covariate 

to account for the possibility that SSDs affect both action representations and stopping 

success as a third-variable. For statistical tests, we used EEG data averaged over two a- 
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priori selected, symmetric time intervals: the pre-stop-signal period (-200 to 0 ms) and 

the post-stop-signal period (0 ms to 200 ms), in reference to the onset of the stop signal in 

each trial. Both time intervals clearly precede the average SSRT across individuals (M = 

272 ms). We also performed additional control analyses, where we excluded trials with 

early responses (i.e., responses occurred after the stimulus onset and before stop-signal in 

unsuccessful-stop trials) and where we included decoded representations from both pre- 

/post-stop signal simultaneously (Table 2 and 3). In addition, to visualize changes in 

predictability of stopping success, we separately performed a series of logistic regression 

analyses by fitting models at each sample point in reference to the onset of the stimulus 

and the stop-signal (Fig. 5). To assess how action representations contributed to action 

selection in go-trials, we also report for both experiments results from multilevel models 

to assess which action representations predict trial-to-trial RTs on go trials 

(Supplementary Table 1). Here, RTs were log-transformed and trials with response errors 

were excluded. 

Supplementary Results 
 

Predicting Single-trial Go Responses 
 

Supplementary Table 1 contain the results of multilevel modeling of single-trial 

RTs in go-trials, using all constituent feature and conjunctive representations as 

simultaneous predictors (see Multilevel modeling section for detail). 
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Supplementary Table 1. 
Predicting trial-by-trial RTs in go-trials using the strength of decoded representations. 

 
 

 
Decoded 

Exp.1 Exp.2 
 

t t 
variable   b (se) value b (se) value  
Rule -.025 (.012) -2.15 -.013 (.006) -2.08 
Stimulus -.015 (.009) -1.59 -.038 (.009) -4.12 
Response -.016 (.009) -1.85 -.032 (.009) -3.55 
Conjunction  -.042 (.012) -3.61 -.057 (.010) -5.69  

 
 

RSA without the conjunction model 
 

Supplementary Fig. 3 and Fig. 4 show the RSA results excluding the conjunction 

model. The same decoding procedures and subsequent results (as shown in the Fig. 2 and 

Fig. 4) were used to perform RSA for comparison. In general, a pattern of results is 

similar to the earlier results (Chapter II. Fig.3 inset, Supplementary Fig. 3, and 

Supplementary Fig. 4). However, the suppression effect that is in fact driven by the 

conjunctive representations appear on the rule and stimulus information. Note if there is 

no conjunctive representations, addition of the conjunctive model should not change the 

results. 
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Supplementary Fig. 3. Average, single-trial t-values from RSA associated with each of 
the basic features (rule, stimulus, and response) without the conjunction model, 
separately for go-(black) and stop-trials(red). Shaded regions specify the 95% within- 
subject confidence intervals. The vertical, red dashed line marks the onset of the stop 
signal at 100 ms after the stimulus onset. 
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Supplementary Fig. 4. Average, single-trial t-values from RSA associated with each of 
the basic features (rule, stimulus, and response) without the conjunction model, 
separately for go-(black), successful stop-trials (red), and failed stop-trials (blue). The left 
panels show the results that are aligned to the stimulus onset and the right panels 
correspond to the results that are aligned to the stop-signal onset. Shaded regions 
specify the 95% within-subject confidence intervals. Tick marks on the x-axis mark 
individuals’ average stop-signal delay. 
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CHAPTER IV. 

FUTURE DIRECTIONS 

Across four experiments, we characterized the unique functional role of nonlinear, 

conjunctive representations during action control. Our results are generally consistent 

with an “integration account” of action selection1–5. In principle, conjunctive 

representations can guide a variety of goal-directed behavior by combining more basic 

(i.e., generalizable) task representations. Integration of action features allows our 

neurocognitive system to be efficient and flexible at the same time, because abstract 

representations that are detached from the specific action contexts can be configured on 

ad hoc basis for different goals. Thus, the formation of integrated representations could 

be one of the canonical functions in encoding of task representations in humans. I had 

discussed issues that were specific to the individual chapters in the corresponding 

Discussion sections. In the remainder of this chapter, I present three avenues for future 

research, where EEG-based decoding techniques hold promise for significant theoretical 

progress. 

Active maintenance and population coding 
 

In many real-world situations we need to plan an action and maintain it in an 

active state until we can actually execute it. Often this also requires the need to exclude 

potentially interfering information that is not relevant for the current action plan. 

Evidence suggests that task sets for upcoming actions are temporarily held in working 

memory (WM)6–8, which is theorized to allow direct access to a limited amount of goal- 

relevant information9–11. In addition to active maintenance, the WM system provides a 

platform to allow flexible selection of information for upcoming behavior via attention. 

In all of our experiments so far, participants were able to select and integrate arbitrary, 
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action features into the conjunctive representations “on the fly”. To form goal-compatible, 

conjunctive representations for each action, subjects likely used top-down attention to 

select relevant action features held in WM. In fact, while forming conjunctive 

representations, subjects spontaneously selected critical action features over other 

features that are redundant to specify a given action (e.g., cue words for each rule: 

“vertical” or “updown”). In addition, in an ongoing follow-up study (n = 26), we 

explicitly manipulated the relevance of action features on a trial-by-trial basis (Fig. 1a). 

Out of two possible action rules for each block, one rule was randomly selected to be 

relevant and another one became irrelevant. The relevant rule further specified the target 

and the distractor stimulus position, which defined the required action for a given trial 

(Fig. 1a). This paradigm allowed us to test whether people could flexibly select now- 

relevant features to form the conjunctive representations of the required action over 

currently irrelevant features. Results showed that subjects were able to selectively attend 

to the relevant features to form the conjunctive representations of the required action, 

albeit in an imperfect manner (Fig. 1b). These observations raise the question of 

underlying neural mechanisms of top-down attentional control over the selection of 

action features in WM and potential capacity constraints. 
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Fig 1. a, Trial events in the rule-selection task that demands attentional selection of the 
relevant rule/stimulus-feature over the irrelevant ones on a trial-by-trial basis (n = 26). 
Two randomly selected action rules were assigned either a red or green color at the 
beginning of each block. The relevant rule was randomly cued by the color of the fixation 
cross for each trial. Subjects applied the rule to the bar in a corresponding color (e.g., 
use the vertical rule to the red bar location as the starting point). Other procedures are 
identical to Exp.2 in Chapter II. b, Average, single-trial t-values for rule-S-R conjunction 
derived from the RSA analysis (see Representational similarity analysis in Chapter II). 
Shaded regions specify the standard error around the mean. Four different conjunctive 
representations were independently estimated: a target conjunction where both rule and 
stimulus are relevant (rule(r)-stim.(r), two “misbinding” conjunctions where either rule or 
stimulus feature is irrelevant (rule(r)-stim.(ir) or rule(ir)-stim.(r): “r” stands for relevant and 
“ir” denotes irrelevant feature), and a distractor conjunction where both features are 
irrelevant (rule(ir)-stim.(ir)). 

 
One possibility is that conjunctive representations are maintained in WM by 

population-level neural ensembles that adjust response properties based on the relevance 

to the current goal12,13. Adaptive coding theory of cognitive control suggests, in prefrontal 

cortex (PFC), task parameters directly shape the tuning properties of neurons that are not 

inherently “fixed” to specific features but rather adapt to whatever task-relevant 

information needs to be represented on an ad hoc basis14–17. Such a coding scheme 
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enables computation in a context-dependent manner, and thereby could form the 

backbone of WM and cognitive control. Yet, the fact that prefrontal neurons are 

organized in terms of goal-relevance, rather than in a spatially-homogeneous manner, 

makes it challenging to detect localized effects18. When combined with the population- 

level neural dynamics, the adaptive coding mechanism allows the system to flexibly 

preserve goal-relevant information even without sustained, delay activity of individual 

neurons with fixed tuning profiles12,19–21. For example, information could be held or 

“relayed” by the cascade of firing patterns of unique populations of neurons, or by 

effective connectivity in the network such as through short-term synaptic plasticity22,23 

and/or synchronous oscillations24. One way to test the stability of population-codes is 

applying decoders trained at one time sample to other time samples, and test if the pattern 

generalizes over time (i.e., temporal generalization method)25,26. The functional 

properties of stable vs. dynamic population-codes are still activity debated. On the one 

hand, the stationary responses provide constant mapping between information and the 

patterns, which establish straightforward readout by downstream neurons. On the other 

hand, dynamic patterns may code additional information (e.g., elapsed time) related to 

maintenance or make representations less prone to interference from external inputs20. 

Yet, representations in WM often exhibit dynamic, non-stationary patterns that gradually 

become stationary19–21. Consistently, our results also showed the underlying neural 

responses encoding conjunctions was temporally dynamic: Different patterns of EEG 

relayed the conjunctive information for every moment, and the pattern became more 

stable only later in the trial (Fig. 2). Yet, strikingly, when we focus on the individual 

moments of the pattern, such dynamic and highly idiosyncratic neural responses were 

consistent within individuals over several months (Supplementary Fig. 9 in Chapter II). 
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Together, these observations suggest that the dynamic nature of neural responses is 

inherent to action selection. This further raises the question of how the dynamic 

population-coding scheme that is common to WM representations contribute to the 

formation and maintenance of conjunctions. 

 
Fig 2. Cross-temporal generalization analysis of the conjunctive representation (using 
data from Exp.1 in Chapter II). Decoders trained at specific time points were tested on all 
other time samples in the trial-interval, which generated a matrix of decoding results (Y- 
axis: time points where decoders were generalized to; X-axis: time points where 
decoders were trained). Then, the conjunctive representation was estimated via RSA 
(see Representational similarity analysis in Chapter II) in all decoding outputs in the 
matrix. Thus, the height (color) of on-diagonal cells correspond the time-resolved RSA 
result (Fig. 3a in Chapter II), and the off-diagonal cells show generalization to other time 
samples. In the early response selection phase, underlying population dynamics is not 
stationary (i.e., a unique EEG pattern relays information over time), and it gradually 
becomes more stable over time (i.e., more generalizable to other time samples). 

 
As indicated, maintaining conjunctive representations likely recruits WM and 

relies on dynamic and goal-contingent population-coding27,28. In particular, as further 

discussed below, the population dynamics of neurons with nonlinear, mixed selectivity 
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(i.e., tuning to the mixture of task aspects) is proposed to be critical for active 

maintenance of goal-relevant information29,30. Parthasarathy and colleagues (2017) 

showed that mixed-selectivity neurons generate “morphed” population dynamics in 

response to a distractor by rapidly adapting their tuning properties. Higher degree of 

morphing predicted less information loss by a distractor, suggesting representations were 

sustained at the level of the population-codes while underlying neural responses changed 

before/after the distractor onset. This property of shifting population dynamics was 

unique to nonlinear, mixed-selectivity neurons unlike neurons with classical selectivity 

(i.e., tuning to a particular value of feature like red color). By extending our paradigm, we 

could test active maintenance of the goal-compatible conjunctive representations against 

irrelevant information (Fig. 3ab). Subjects would be instructed to prepare and maintain 

specific actions while ignoring irrelevant distractors. This allows us to investigate how 

the population ensembles encoding conjunctive representations change to preserve 

information against a distractor. We predict that the relevant conjunctive code is 

maintained actively even in the presence of the distractor (and no conjunctions that 

integrate the distractor information will be formed). However, the conjunctive 

representation should be preserved in a morphed state that induces a non-generalizable 

pattern over delay periods (Fig. 3b). Negative effects of distractors on behavior and the 

conjunctive representations (i.e., loss of information) should be dependent on the degree 

of morphing of the pattern. Such an experiment would test constraints in active 

maintenance of conjunctive representations as well as the nature of underlying population 

codes, which are important to further advance our understanding of flexible action 

control. 
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Fig 3 a, Trial events in the rule-based selection task with a distractor during 
maintenance. Participants will be instructed to prepare and maintain the cued action until 
“Go” phase (with the adaptive cutoff times to encourage maintenance). During the 
retention period, three possible events occur: a task-irrelevant distractor appearing at 
possible target locations (“Distractor” condition), a neutral object appearing at the fixed 
non-target position (“Neutral” condition), or a new target appearing (“Update” condition) 
in 10% of trials. Update trials will not be analyzed. Other procedures are identical to the 
Exp.2 in Chapter II. b, Predicted patterns of cross-temporal generalization of conjunctive 
representations (see also Fig.2). If the distractor interferes with the maintained 
conjunctive representation, information should become undetectable in the second delay 
period (“Lost”). Alternatively, if the conjunctive representation can be maintained against 
a distractor, information should be retained in the second delay either in temporally 
generalizable manner (“Stationary”) or in altered population dynamics (“Morphing”). 

 
Mixed selectivity and high-dimensional neural responses 

 
Action-specific conjunctive representations, so far, have been characterized in 

terms of the representational “content” rather than the “format” of the underlying neural 

responses. Our analysis extracted nonlinear, neural responses that were unique to the 

mixture of action-features, over and above other constituent features. Similarly, recent 

studies have highlighted the importance of neurons with mixed selectivity that show 
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diverse, nonlinear, and complicated tuning for the combination of multiple task features 

during goal-directed behavior30–32. Mixed selectivity neurons are hypothesized to play a 

central computational role in cognitive control by shaping the “format” of representations, 

in particular the dimensionality of neural responses. The dimensionality of information is 

fundamentally related to linear separability (i.e., readout) of patterns33, that is the 

accessibility of information to downstream receiving neurons. Here, I discuss how we 

might use our approach to get at the computational foundations of the neural responses 

that are critical for the formation of conjunctive representations. 

Computational theories have proposed that the dimensionality of neural responses 

could control a trade-off between flexibility and efficiency of representations. High- 

dimensional formats allow the system to flexibly encode diverse combinations of input- 

output functions in separable patterns of firing. This exponentially expands the number of 

possible linear readout of information to downstream neurons31,32,34,35. In contrast, low- 

dimensional formats discard information along irrelevant dimensions, thus efficiently 

coding information that is more generalizable and robust to variance. The flexibility 

enabled by a high-dimensional format may be particularly important for cognitive control 

functions, which require representations that reflect arbitrary contingencies of the current 

task context. 

Recent studies of single-neuron electrophysiology in non-human primates showed 

that the majority of neurons, in particular in frontal and parietal cortices that are known to 

support rule-guided actions36, exhibit nonlinear, mixed selectivity to the combination of 

task aspects (cues, rules, stimuli, and responses)30,32,37–40. These neurons show the unique 

property of upregulating the dimensionality of neural responses at the population-level. In 

contrast, neurons with classical or linear mixed selectivity (i.e., tuning to one or few 
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instances of features in a linearly additive manner) do not increase the dimensionality 

effectively. Computationally, the increase of dimensionality is known to make low- 

dimensional features entailed in the mixed tuning profiles easily separable by 

downstream receiver neurons. Importantly, high-dimensional activity selectivity 

diminishes prior to response errors, which parallels the notion of conjunctive 

representations being critical for successful actions, as event-file theory suggests. A 

similar coding scheme has been identified in the recurrent networks models with random 

and sparse connections (sometimes referred to as “reservoir computing”), which 

resembles the empirical cortical connectivity in PFC32,35,41. Artificial neurons that are 

trained to perform a variety of cognitive tasks in these recurrent networks are also known 

to spontaneously encode information using mixed selectivity, which generates high- 

dimensional dynamics at the population-level42. Together, the current evidence suggests 

that mixed selectivity of neurons is the computational basis of conjunctive neural 

representations: They provide the high-dimensional format of population activity that 

would implement a substantial number of input-readout functions such that downstream 

neurons could separate task-relevant information efficiently. 

The nonlinear nature of the conjunctive representations implies that mixed 

selectivity neurons may contribute feature integration and control the dimensionality of 

neural responses during action selection. Specifically, high-dimensional formats should 

enhance the strength and readability of conjunctive representations, which could be 

up/downregulated according to the demand of the current goal. An accurate estimation of 

the dimensionality in noisy neural responses is challenging. However, recently new 

methods have been proposed to directly link the dimensionality to behavior in both non- 

human primates and humans43–4546,4743–45. For example, Rigotti et al (2000) suggests that 
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by computing the number of implementable binary classifications between experimental 

conditions over noise, one can estimate the dimensionality of neural responses. The 

neural activity in N units (e.g., neurons or EEG electrodes) could be represented as a 

point in N-dimensional space for C different experimental conditions, where its 

dimensionality D equals to the rank of N x C matrix in noiseless cases. When the 

dimensionality is at maximum, neural responses are linearly independent (i.e., full rank), 

which allows a linear decoder to read out all possible binary separations (2C conditions) 

between conditions perfectly. Critically, the estimated dimensionality scales based on the 

tuning properties or selectivity of the underlying neural responses. Only if neural 

responses exhibit nonlinear, mixed selectivity the dimensionality can be higher than the 

level that other simpler tuning profiles could implement. 

If high degrees of dimensionality in neural responses and conjunctive 

representations actually reflect the same underlying mechanism (i.e., neurons with 

nonlinear mixed selectivity), then we should find them to be related across conditions and 

individuals. For example, Fig. 4ab shows an experiment that would contrast action 

selection in either a low- or a high-dimensional action space. This experiment would 

allow us to combine the binary-classification method with the time-resolved RSA in 

order to analyze both dimensionality and the presence of conjunctive representations side 

by side. Specifically, subjects perform the rule-based selection task (similar to the 

paradigm for the Exp.1 in Chapter II), where all (4-rules blocks) or one (1-rule blocks) of 

the action rules becomes relevant for a given block. We can test here whether (a) subjects 

flexibly adjusts the dimensionality of neural responses according to the changes in the 

number of relevant cases in the action space (Fig. 4b) and (b) the dimensionality 

modulates the strength of conjunctive representations (i.e., contents). The maximum 
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dimensions that spans action constellations (4 rules x 4 stimuli/responses) are 16, which 

allows (2^16) -2 (i.e., 65534, excluding 2 cases out of 2^16 that assign the same label) 

possible ways to classify binary cases. If the observed neural responses only reflect 

classical or pure selectivity (e.g., tuning to one instance, such as the vertical rule), the 

maximum possible dimension reduces to (rule: 4 - 1= 3) + (stimulus: 4 - 1 = 3) + 

(response: 4 - 1 = 3) + 1 (additional degrees of freedom given by the displacement of the 

patterns of activity from the origin) = 10, which leads to 2^10 (1024) binary cases. Based 

on the computational role of neurons with mixed selectivity, the dimensionality and 

conjunctive representations should covary in the same direction according to the size of 

the action space. Specifically, as the number of possible actions increases (e.g., 4-rule 

blocks), the dimensionality should be scaled up to implement more separable patterns 

that differentiate unique action scenarios––and also enable conjunctive representations. 

High dimensional formats should be particularly important to implement higher-order 

conjunctions (e.g., rule-S-R conjunctions) compared to rule-independent S-R 

conjunctions, where heightened separability among action constellations is more useful. 

In addition, the observed, robust relationship between the quality of conjunctive 

representations and trial-to-trial performance may be mediated by changes in 

dimensionality. Such an experiment would be an important next step to connect our 

current findings and theories of action control in humans to mixed selectivity neurons 

that has been exclusively studied in non-human animals, which enables systematic 

comparisons across species and between computational models. 
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Fig 4 a, Trial events in the rule-based selection task with the reduced action space by 
reducing a number of relevant action rules. Across blocks, the full or reduced action 
space changes the number of relevant action constellations (the relevant rule is 
randomly selected in 1-rule blocks). Other procedures are identical to the Exp.2 in 
Chapter II. b, Schematic diagrams of the space of action constellations in 4-rule blocks 
and 1-rule blocks. The same action (e.g., a vertical translation of a dot at the left-top 
corner) occur in different action contexts with different number of potential scenarios that 
need to be distinguished during action selection. 

 
Effect integration and representation learning 

 
Actions are executed to produce specific, goal-compatible consequences. Action 

features should be weighted more heavily if they are compatible with an anticipated goal 

(e.g., how you hold chopsticks is less important to taste food, but it becomes relevant to 

eat fast). In this sense, voluntary action control relies on the knowledge of causal 

structures (i.e., what factors lead to the intended action outcomes) of the task at hand. Yet, 

computationally, learning the values of all possible associations between actions, 

outcomes, and goals would be daunting and slow48,49. The complex, multidimensional 

nature of the world necessitates us to learn how to parse and choose relevant action 

features in resource-rational manner50. Modern theories of reinforcement learning suggest 

that the integration of action outcomes depends on building the knowledge of structures 
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in the task space—learning how agents should cluster observations and construct efficient 

task representations to guide actions51–55—termed as representation learning. By 

evaluating action outcomes people can infer the causal structures and guide selective 

attention during action control, which ultimately constrains how we generalize actions in 

future. The fact that our results indicate that action selections rely on conjunctive 

representations raises the question: how such integrated representations contribute to the 

integration of action outcomes and how they change over the course of learning the 

causal structures of a task? 

In our paradigm so far, action outcomes were not distinguishable from the states 

associated with making responses (e.g., the somatosensory experience associated with a 

particular button press). Therefore, action consequences were always stable and 

predictable as long as actions were accurate. In this sense, how conjunctive 

representations reflect the anticipated outcomes is unclear, which leaves the intriguing 

possibility that action outcomes (rather than just responses as outcomes) were integrated 

as a part of conjunctive representations. Indeed, some theories of action control explicitly 

suggest that voluntary actions are triggered by automatically activating anticipated 

consequences, which could become a part of the event file56–58. By observing the co- 

occurrence of action (e.g., turning on a room light) and outcome (i.e., a room gets 

brighter), the consequence of actions become integrated and automatically activated 

during action selection. For instance, Kunde (2001) demonstrated that after people have 

been repeatedly exposed to arbitrary events (e.g., a loud or soft tone) with independent S- 

R selection (e.g., pressing a response button strongly or softly based on a color of 

stimulus), the compatibility between the outcomes (a loud vs. soft tone) and the irrelevant 

responses (strong vs. soft button pressing) induces cross-modal compatibility costs. This 
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suggests people have an automatic tendency to use action outcomes to guide selection. 

Yet, this poses a fundamental challenge: how do agents know what action representations 

to assign the credit of action outcomes? As in our studies showing that both constituent 

features and these conjunctions were all predictive of performance (Fig. 3 and 7 in 

Chapter II, Fig. 5 in Chapter III and Fig 1 in Chapter IV), any everyday goal-directed 

actions are likely to be guided by multiple action representations. If agents do not 

distinguish between the causal representations and the simply available/activated 

representations (e.g., attributing the taste of food to the way you hold chopsticks), 

resulting incorrect credit assignment59,60 would lead to suboptimal action control in future. 

To assign the values of actions appropriately, agents must learn the connections 

between experiences and outcomes. Traditionally, causal learning has been studied in 

variants of associative learning paradigms61,62. Using a variety of discrimination tasks, 

these studies confirmed that, when confronted with multiple features in the environment, 

humans could flexibly solve associative learning problems in both an elemental 

(attaching the values to each variable individually) or a configural manner (assigning the 

values to the specific combination of variables selectively). Numerous factors (e.g., prior 

knowledge and experiment instruction) that influence the choice of strategies were 

identified63,64. In functional neuroimaging studies, the hippocampus was found to play a 

critical role in representing information in separable “units” that values could be assigned 

to (in particular for configural learning), which is consistent with its theorized 

computational role in pattern separation in memory formation65–69. In addition, recent 

advancements in theories of reinforcement learning also highlighted the importance of 

structure learning and attention in causal inference51,52,54,70,71. When humans integrate 

(reward) outcomes to guide actions, we spontaneously form efficient, low-dimensional, 
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latent structures that represent causal associations in clusters, rather than in individual 

links between stimuli and feedback, as task-states representations. Efficient task 

representations, in turn, enable us to selectively attend to determinant features that cause 

action outcomes, which predicate future generalization of learned actions in new 

situations by facilitating attentional selection of features based on the hypothesized 

structure of the task space. One example of such a process is the use of feature-based 

attention as a heuristic solution during reinforcement learning72,73. In dynamic multi- 

dimensional environments, particularly during early learning phase, humans show a 

strong bias to assign credits to multiple generalizable features (i.e., colors) in parallel, 

then construct values of actions by combining these features. A configural solution is 

used only after a substantial amount of learning has taken place in low-dimensional 

environments72. These studies highlight the fact that we can flexibly adjust the strategies 

in integration of action outcomes, reflecting the knowledge of higher-order structures of 

the task space. 

Our results so far suggest that both constituent and conjunctive representations of 

action features are highly active concurrently during action selection. One possible 

function of conjunctive representations could be to provide an efficient framework to 

integrate the outcome of actions to build the causal structure of the tasks. The conjunctive 

representations integrate a minimal set of attended, goal-relevant features, which are 

sufficient to elicit (or cause) the planned actions (see Fig. 3 and Fig. 7 in Chapter I, Fig. 5 

in Chapter II, and Fig.1 in this chapter). 

Encoding a complete episode of actions into integrated representations may 

reduce the number of targeted neural activity to efficiently assign credits of action 

outcomes. In other words, conjunctive representations serve as a starting point for post- 
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action evaluation to build (and reduce if possible) the latent causal structures of actions. 

Whenever the causal structures of actions can be reduced to the constituent features (e.g., 

a missed shot in soccer due to poor leg control, when no other factors, such as ground 

conditions indeed mattered), low-dimensional representations (e.g., a motor 

representation for using a leg) could be extracted and reactivated from the complete, 

conjunctive representation. After learning, effects of actions in turn become integrated to 

the conjunctions of other determinant action features (e.g., rule-S-R conjunctions in our 

experiments), which forms a higher-level conjunctive representation. Hierarchically 

organized conjunctive representations (e.g., S-R conjunctions) may exist to link different 

contingencies in action outcomes for future generalization that require different degrees 

of abstraction (Fig .5 in Chapter II). 

To test these notions, we need a paradigm that allows us 1) to model learning of 

latent causal structures in a multidimensional feature space, 2) to separate processing for 

action selection and  outcome evaluation (e.g., reactivation), and 3) to decode 

determinant action features and the conjunction (Fig. 5). Subjects will perform a variant 

of the rule-based selection task where different action features (or conjunctions) 

consistently lead to different outcomes. Because the value of the first action partially 

depends on the quality of the subsequent action, subjects are encouraged to anticipate the 

effect of the original action. The causal structures of action outcomes are mapped onto 

the entire action space, which could be inferred via elemental or configural, feature-based 

attention (Fig. 5b). In the elemental condition, the use of the specific constituent feature 

(e.g., a vertical rule) increases the probability of a specific action outcome (e.g., a fumble 

ball at the right top corner, which requires a quick right-top key press). Thus, the latent 

causal structures correspond to one of the constituent features dimensions (i.e., rule, 
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stimulus, or response-dimension). In contrast, in the configural condition, subjects cannot 

reduce the causal structure to the level of one constituent feature, which would encourage 

them to learn action outcomes for each action scenario individually (i.e., based on 

conjunctions). During learning, we predict subjects form the minimal latent causal 

structures that link the executed actions and the observed effects. Learning should be 

more efficient in elemental than configural causal structures70,71. The second-order 

responses (i.e., fumble detection) should improve as action outcomes of the first 

responses become more anticipated. Among multiple candidate models that explained 

learning of values in a multi-dimensional environment, a class of models that capture 

attentional selection that weights specific feature-dimensions should explain the 

variability in the second-order responses in the elemental condition. In addition, the 

conjunctive representation of the original action should be reactivated (or maintained) 

during the outcome presentation, which in turn predicts reactivation of the constituent 

feature corresponding to the latent causal structure. This relationship should be positively 

correlated with attentional weights estimated from performance in the second-order 

responses. After learning, subjects should begin to integrate the anticipated effects as a 

part of the conjunctive representations during selection of the first response even before 

the presentation of outcomes. Taken together, our studies so far demonstrated that high- 

dimensional, conjunctive representations are formed for specific actions, which contain a 

complete profile of to-be-executed actions, yet do not easily generalize to other situations. 

Understanding the role of conjunctive representations in integration of action outcomes 

could shed light on how we balance generalizability and specificity of representations 

during action control. 
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Fig 5 a, Trial events in the rule-based selection task that promotes the integration of 
action outcomes on the basis of a causal structures. Participants will be instructed a 
cover story of being a player in the Oregon Ducks football team. For every trial, the 
combination of a movement tactic and a starting position specifies the required action 
(e.g., run vertically from let-top corner), which is identical to the task in previous 
experiments, where the conjunctive representations were observed. The correct 
response leads two possible outcomes: the “touchdown” condition (denoted by a football 
with a letter S) where no further responses are required (i.e., correct rejection) or the 
“fumble” condition (denoted by a football with a latter F) which shows the football at one 
of the four corners based on the assigned probabilities. In the fumble condition, 
participants need to press the spatially compatible key to the fumbled football (i.e., hit). 
Scores in the touchdown condition and the “recovered” plays in the fumble condition will 
be added to the total incentives. Other procedures are identical to Exp.1 in Chapter II. b, 
Possible causal structures to be learned that are mapped on to the entire action 
constellations. Actions denoted by the football will lead to the fumble condition (note the 
football could appear at any of the four corners). In the rule-, stimulus-, response-feature 
condition (i.e., the elemental condition), latent causal structures directly correspond to 
one of the constituent action features. In the configural condition (note one example of 
the configural condition is shown), the causal structures cannot be reduced to lower 
dimensions, and thus, learned outcomes (values) of each action cannot be generalized 
along the feature dimensions. 
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actions. A data-driven, time-resolved decoding approach provided unbiased trajectories 

of multiple action representations with high temporal resolution and revealed how these 

representations impacted the variability in behavior at the level of single trials. With these 

methods, we provided a direct test of an important cognitive theories of action control 

(event-file theory). This is also the first step towards connecting such theories to results 

about population-coding dynamics of neurons with nonlinear mixed-selectivity in non- 

human animals using single-cell electrophysiology. In this final chapter, I have presented 

a few examples that can extend our work towards a better understanding of the functional 

role and neural underpinnings of conjunctive representations. 
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APPENDICES 
 

A. EEG RECORDING AND PREPROCESSING 

Electroencephalographic (EEG) activities were recorded from 20 tin electrodes 

held in place by an elastic cap (Electrocap International) using the International 10/20 

system. The 10/20 sites F3, Fz, F4, T3, C3, CZ, C4, T4, P3, PZ, P4, T5, T6, O1, and O2 

were used along with five nonstandard sites: OL halfway between T5 and O1; OR 

halfway between T6 and O2; PO3 halfway between P3 and OL; PO4 halfway between P4 

and OR; and POz halfway between PO3 and PO4. Electrodes placed ~1cm to the left and 

right of the external canthi of each eye recorded horizontal electrooculogram (EOG) to 

measure horizontal saccades. To detect blinks, vertical EOG was recorded from an 

electrode placed beneath the left eye and reference to the left mastoid. The left-mastoid 

was used as reference for all recording sites, and data were re-referenced off-line to the 

average of all scalp electrodes. The EEG and EOG were amplified with an SA 

Instrumentation amplifier with a bandpass of 0.01–80 Hz and were digitized at 250 Hz in 

LabView 6.1 running on a PC. 
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B. TIME-FREQUENCY ANALYSIS 
 

Temporal-spectral profiles of single-trial EEG data were obtained via complex 

wavelet analysis by applying time-frequency analysis to preprocessed EEG data 

segmented for each block (>18 seconds to exclude the edge artifacts). The power 

spectrum was convolved with a series of complex Morlet wavelets ( ), 

where t is time, f is frequency increased from 1 to 35 Hz in 35 logarithmically spaced 

steps, and σ defines the width of each frequency band, set according to n/2f, where n 

increased from 3 to 10. The logarithmic scaling was used to keep the width across 

frequency band approximately equal, and the incremental number of wavelet cycles was 

used to balance temporal and frequency precision as a function of frequency of the 

wavelet. After convolution was performed in the frequency-domain, we took an inverse 

of the Fourier transform, resulting in complex signals in the time-domain. A frequency 

band-specific estimate at each sample point was defined as the squared magnitude of the 

convolved signal Z(real([z(t)]2 + imag[z(t)]2) for instantaneous power. 
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