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THESIS ABSTRACT

Kristi Belcher

Master of Science

Department of Computer and Information Science

June 2020

Title: Efficient Parallel Particle Advection Via Targeting Devices

Particle advection is a fundamental operation for a wide range of flow

visualization algorithms. Particle advection execution times can vary based on

many factors, including the number of particles, duration of advection, and the

underlying architecture. In this study, we introduce a new algorithm for parallel

particle advection which improves execution time by targeting devices, i.e.,

adapting to use the CPU or GPU based on the current work. This algorithm is

motivated by the observation that CPUs are sometimes able to better perform

part of the overall computation since CPUs operate at a faster rate when the

threads of a GPU can not be fully utilized. To evaluate our algorithm, we ran 162

experiments and compared our algorithm to traditional GPU-only and CPU-only

approaches. Our results show that our algorithm adapts to match the performance

of the faster of CPU-only and GPU-only approaches.
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CHAPTER I

INTRODUCTION

Particle advection is a fundamental operation for flow analysis and

visualization, used for techniques such as streamlines, pathlines, stream surfaces,

and Finite-Time Lyapunov Exponents (FTLE). Particle advection is used to

determine the trajectory a particle follows after being placed at some starting

point (i.e., seed location). The particle locations are calculated using an underlying

vector field. Additionally, since particle behavior is based on some vector field

(i.e. velocity), a particle moves depending on the data set and its trajectory is not

known a priori. The particle advection calculation is an iterative operation that

results in a particle location moving along the domain (this advancement is referred

to as an advection step). The total number of steps that will be calculated depends

on the number of particles and the duration of particle advancement.

Implementing an efficient large-scale parallel particle advection operation

remains a challenge. Particle advection is a computationally heavy, data-dependent

operation where the amount of work involved varies by workload. Depending on

the number of total particles in the workload, there could be millions if not billions

of total advection steps. Thus, efficiently using resources and coordinating those

resources is key for good performance.

Additionally, as data sets become larger and larger, they can no longer fit

into the memory of just a single computer. To address this limitation, large-scale

particle advection simulations are run on modern supercomputers so that efficient

results, even on the most computationally heavy workloads, can be obtained in a

reasonable amount of time.
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Modern supercomputers have varied hardware architectures, ranging from

modest computational power (CPUs) to very high computational power (GPUs)

[11]. For particle advection, the device architecture plays a significant role in overall

performance. While previous approaches have focused on a single architecture

(i.e., supporting only CPU or only GPU), this research considers utilizing both

architectures. For many workloads, there may not be enough work to fully load,

and therefore take full advantage of, the GPU. For other kinds of workloads, there

may be an overwhelming amount of work for the CPU. Therefore, it may be better

to target one device during certain stages of the particle advection calculation,

then switch to the other device for the remaining stages. Our new algorithm uses

this idea and continually targets a device (CPU or GPU) as the parallel particle

advection work evolves.

This study contributes a new hybrid algorithm that efficiently performs a

particle advection calculation via targeting the appropriate device. Our algorithm

is motivated by the observation that sometimes the workload cannot take full

advantage of GPU threads, making it slower than just using the CPU. In such

cases, leaving the data on the CPU to be computed would perform better. At

other times, the workload may be much more able to fully load the GPU and

thus take advantage of its hardware capability. These observations are reinforced

by our results, which show that when running workloads that typically perform

better using CPU-only or GPU-only, our algorithm targets the appropriate device

and performs similarly. In some cases, our algorithm performs better than either

device because it can target and switch to the better device as the algorithm runs.

Overall, our work explores two related research questions on the role of device

targeting for parallel particle advection: (1) Can device targeting be used to
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match the best performing single-architecture algorithm? (2) Can it be

used to exceed both single-architecture implementations? If so, by how

much?

Important contributions of this paper include:

– A new parallel particle advection algorithm that determines whether the CPU

or the GPU can best handle the current work, targeting that particular device

in order to achieve a more performant result.

– An analysis of how certain conditions of the workload can be used to

determine the appropriate device to target.

– A comparison of our results and findings with other implementations which

use CPU-only or GPU-only and an analysis of our results to provide insight

for visualization scientists who are studying particle advection and other flow

visualization algorithms.

The remainder of the thesis is organized as follows. Chapter II discusses the

background of our design and related previous works. Next, chapters III, IV, and V

describe our algorithm, experiments, and results, respectively. Finally, chapter VI

summarizes our findings and discusses future work.
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CHAPTER II

BACKGROUND AND RELATED WORK

This chapter discusses the relevant background for this study. Section 2.1

describes the particle advection calculation and other pertinent background of the

particle advection calculation, followed by a discussion of relevant parallelization

paradigms. Next, section 2.2 discusses related works that focus on using

accelerators or distributed memory environments for parallelization. Lastly, section

2.3 concludes with an explanation of hardware agnostic environments and their role

in this study.

The closest work to my own is the study done by Camp et al. [8] (discussed

in section 2.2). Camp et al. determined what workloads should be run on the CPU

and what workloads should be run on the GPU. Our work expands on this idea

to perform device targeting throughout execution. Explicitly, the key difference

is that while the Camp et al. study determines one device to run the entirety of

the algorithm on, our study can use either device or both depending on the work

remaining.

2.1 Parallel Particle Advection

Because particle advection is a data-dependent and computationally heavy

operation, it is important to understand how it works. Section 2.1.1 explains the

particle advection operation in more detail. Next, section 2.1.2 gives an overview

of several different parallelization paradigms used to implement parallel particle

advection.

2.1.1 Particle Advection Algorithm. Particle advection starts by

displacing a particle for a short distance in a vector field (e.g., velocity). This

displacement is also known as an advection step. That particle will be advected
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from one location to another nearby. Particles typically advect and evolve through

the problem domain, giving information about what is happening in the data. The

sequence of advection steps from the initial location to the terminal location is

referred to as the particle’s integral curve. The integral curve shows the trajectory

along which the particle travels. Because the advection steps must be calculated

sequentially, advecting particles is a data dependent problem. In other words,

calculating a particle’s N th location requires knowing its (N − 1)th location.

Additionally, the number of advection steps for any given particle varies, adding

more complexity to the problem. For example, the particle could advect into a sink,

go outside the problem domain, or meet some other kind of termination criteria.

Thus, particle advection requires variable computational resources to successfully

trace the particle trajectory.

2.1.2 Parallelization Paradigms. Because processing integral curves

has remained a key computation for vector field visualization [15], much work has

explored how to make this calculation fast and efficient. As data sets become very

large, fitting all the relevant data into memory becomes challenging, and so the

data has to be divided into blocks. Previous work has introduced two fundamental

approaches to calculating the integral curves for vector field visualization [19, 13,

6]. First, Parallelize-over-Particles (POP) involves distributing the particle seeds

across nodes to be processed independent of each other. Figure 1 shows a visual

representation of the two parallelization paradigms used to implement particle

advection, inspired by Camp et al. [6]. The right side of figure 1 demonstrates how

three processors would parallelize three particles with the POP approach. POP

often does not scale very well because of redundant I/O operations. For example,

following the blue particle on the right side of figure 1 involves crossing over four
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Figure 1. A diagram of the two major parallelization approaches for particle
advection. The colors represent different processors, while the dots with arrows
represent particles and where they advect.

boundary lines. This means that there will be four blocks that need to be loaded

from disk. On a large scale, this kind of I/O-heavy approach could be detrimental

to overall performance.

This leads to the second approach, Parallelize-over-Data (POD), where each

node is assigned a data block of the whole domain to process. The node assigned

to a particular data block is in charge of calculating traces for any particles that

enter its block. The left side of figure 1 demonstrates how three processors would

parallelize the three particles with the POD approach instead. Still, it is easy to see

how load balancing will become a problem for this approach as not all pieces of the

domain have a proportional amount of work. For example, from the depiction of

POD in figure 1, Processor 0 (blue) will have less work than the other Processors

since one of its blocks is untouched by particles. Therefore, it is common to use

6



some kind of combination of both of these approaches to increase performance

and alleviate the potential downfalls of each approach by itself. The next section

explores the previous works which have studied solutions to that exact issue.

2.2 Distributed Memory and Accelerator Environments

There are many different ways to implement a parallel particle advection

operation, each with performance benefits and drawbacks. This section analyzes

previous works that have focused on distributed memory and/or accelerator

parallelization for parallel particle advection.

Pugmire et al. [9] explored particle advection in a distributed memory

parallel environment. Camp et al. [7] proposed a MPI and OpenMP based solution

where MPI is used to parallelize across multiple nodes, and OpenMP is used to

parallelize local advection calculations. They proposed a scheduling approach to

manage how these two APIs interact. Then, in a separate work by Camp et al.

[8], they proposed a similar schedule with CUDA implementations substituted for

OpenMP. Here they analyzed the performance impact between the two.

Other previous work focuses on optimizing the POD approach. Yu et al.

[25] proposed a data-aware POD approach. Similarly, Nouanesengsy et al. [22] used

a statistical strategy to calculate the propagation probability of particles across

blocks. They predicted the movement of particles to more efficiently partition

blocks across nodes. In their work, they explored the POD approach and found a

unique way to optimize it. Additionally, Nouanesengsy et al. [18] also used time

intervals as a way of optimizing how blocks get assigned to the different nodes.

With this strategy, they can more efficiently compute the Finite Time Lyapunov

Exponent (FTLE) by distributing different time intervals to nodes and generating

pathlines accordingly.
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Many previous works focused on optimizing POP and POD approaches

by incorporating load balancing or work-requesting between nodes. Müller et al.

[17] proposed a work-requesting scheduling scheme which alleviated much of the

load imbalance problem of POP for streamlines. In their approach, data blocks are

assigned to nodes and when one node runs out of work to do on its assigned block,

it sends a message to a neighboring block requesting half of its remaining work.

In this way, most of the load imbalance problem is solved unless there are other

imbalance issues in other areas of the problem. Similarly, Lu et al. [14] proposed

a scheduling scheme, Random Scheduling Method (RSM), for stream surfaces that

was designed to minimize idle time by optimizing how nodes communicate with

each other when requesting work. Binyahib et al. [3] proposed a Lifeline Scheduling

Method (LSM) that improves upon RSM [5] by optimizing how nodes request and

receive work from other nodes.

2.3 Hardware Agnostic Environments

This section discusses the use of software frameworks which can abstract

away the specifics of using any one particular hardware device for parallelization.

This is important background because this study builds off of a hardware agnostic

framework. Although there are many such frameworks (i.e., Kokkos [10] and Raja

[1]), VTK-m is the framework used in this study.

VTK-m [16] is a parallel visualization framework used heavily within the

scientific visualization community. Pugmire et al. [20] used VTK-m to parallelize

particle advection with MPI communication. Similarly, this study uses VTK-m

as the backbone for which our new algorithm was built upon. Thus, this section

briefly explains VTK-m and some of its key features that made our new algorithm

possible.
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In 1990, Blelloch proposed a model focusing around Data Parallel Primitives

(DPPs), where specific operations could be carried out on vectors of size N in

O(log(N)) time in the worst case [4]. This worked inspired the use of DPPs such

as Scan, Scatter, Map, Reduce, and Gather used in libraries like NVIDIA’s Thrust

[2] library. Libraries that use DPPs can be compiled to work across a variety of

parallel architectures.

Performance-portable libraries such as VTK-m use DPPs as the basis for

its hardware agnostic framework. VTK-m is a hardware agnostic solution for

implementing key visualization algorithms across a wide range of platforms. The

VTK-m framework was created to address the growing concern that as modern

supercomputers are equipped with a wider range of hardware varieties, from

programmable graphics processors (GPUs) and many-core co-processors (Intel Xeon

Phi) to large multi-core CPUs, visualization software developers must still provide

optimized software that can be deployed on those hardware platforms. VTK-m

provides software developers with the ability to write a single implementation

of their code and have it run on a variety of architectures obtaining excellent

performance on each distinct platform. In short, VTK-m was created to provide the

same functionalities as VTK [21] (the Visualization ToolKit), while also achieving

portable performance across a variety of many-core and multi-core architectures.
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CHAPTER III

ALGORITHM

This section begins with a discussion of our parallel particle advection

algorithm. Namely, section 3.1 gives a line-by-line explanation of our algorithm.

The key component, the Oracle, is discussed in more detail in section 3.2.

3.1 Algorithm Overview

In this study, our particle advection algorithm uses a POD approach. Our

algorithm is designed for data that is so large that it must be broken into sub-

domains. We handle this by partitioning the sub-domains across MPI ranks.

Conceptually, our algorithm can easily support the case where there are M sub-

domains and N ranks, with M > N . That said, our current implementation

assumes that the number of MPI ranks and sub-domains are the same, i.e.,

M = N . Thus, each MPI rank will operate over those particles that are located

within the bounds of its sub-domain.

Algorithm 1 shows our implementation which is performed by each MPI

rank on its corresponding sub-domain. Line 1 calls the Oracle() which is explained

further by algorithm 2. This call will determine what device to target given the

current work remaining. At this point in the code, the work remaining is the entire

workload.

Line 2 starts by initiating a while loop which iterates throughout the

progression of this algorithm. By the time this while loop is finished, all particles

will have been processed and the algorithm will be complete. Line 3 calls a function

which advects any currently active particles (i.e., those particles which can be

processed immediately) until they either terminate or go out of bounds. The

AdvectParticles() function produces updated particle trajectories. The particles
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Algorithm 1 Advect a List of Particles

1: Oracle()
2: while true do
3: AdvectParticles()
4: if !InParticles.Empty() then
5: Oracle()
6: end if
7: if !OutParticles.Empty() then
8: CommunicateParticles()
9: Oracle()
10: end if
11: if !TermParticles.Empty() then
12: totalNumTerm += numTerm
13: if totalNumTerm == totalNumParticles then
14: break
15: end if
16: end if
17: end while

could be leaving the current MPI rank’s sub-domain and thus be outgoing, some

particles may be done advecting and therefore be terminated, or still other particles

from another MPI rank could be entering the current rank’s sub-domain and be

incoming. Lines 4-14 check for and handle these three possible states.

Specifically, Line 4 checks if there are any incoming particles. If there are,

the Oracle() function is called again because those incoming particles must be

assigned a device to run on. If not, it continues on to Line 7 where it checks if

there are any outgoing particles. If there are outgoing particles, they must be

communicated (Line 8) to the corresponding MPI rank which is in charge of the

sub-domain those particles have entered in to. Otherwise, it moves on to Line 11

where it checks for any terminating particles. If particles have terminated, then

a counter variable, totalNumTerm, is incremented (Line 12) by the amount of

particles that have terminated.
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Once all particles across all MPI ranks have terminated, the algorithm will

exit the while loop (Lines 13 and 14). If instead there are still more particles that

need to be advected, then it loops back to Line 2. From there it will again process

those newly active particles with AdvectParticles() and continue checking the

resulting particle statuses. As the program progresses, the particles travel through

the sub-domains, creating their trajectories.

3.2 Oracle

A key contribution of this algorithm is the Oracle design, along with the

insight and benefits it provides to overall performance. The Oracle uses the amount

of work left to do in order to determine whether the newly active particles are best

suited for the GPU or not. The work is a function of the current particles already

assigned to the GPU and any newly active particles.

In other words, if the Oracle determines that the GPU can still be fully

loaded (i.e. there is still sufficient work to do), then the Oracle returns true to

target the GPU to process those particles. Otherwise, the Oracle returns false and

the CPU is targeted for execution instead. The goal here is to take advantage of

the GPU’s compute capability when there is sufficient work, but the same time,

also taking advantage of the CPU’s better latency handling to advect the last few,

straggling particles (if any) that still need to be advected before becoming inactive

or terminating.

Algorithm 2 Oracle

1: if work > threshold then
2: UseGPU()
3: else
4: UseCPU()
5: end if

12



Algorithm 2 is a simplified representation of the Oracle logic. Line 1 consists

of an if statement that determines if the current work is sufficient for the GPU

or not by using a threshold. The threshold value in this algorithm is based off

preliminary experiments that determined where a cross-over point exists between

those workloads that performed better on the CPU to those that performed better

on the GPU. If the current work is sufficient for the GPU, then it will process

the newly active particles (Line 2). Otherwise, on Line 4, the CPU is used to

process them instead. Although this piece of logic is relatively simple, it allows

the algorithm to target the appropriate device to run the current work left to do.
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CHAPTER IV

STUDY OVERVIEW

The purpose of this chapter is to describe the details of the experiments

conducted to evaluate our new algorithm described in the previous chapter. Section

4.1 describes the different configuration parameters of our experiments. Next,

sections 4.2, 4.3, and 4.4 discuss the other important details of our experiments

including hardware/software environments, the threshold value, and performance

measurements, respectively. Lastly, limitations of the study are addressed in section

4.5 and additional miscellaneous details are covered in section 4.6.

4.1 Algorithm Comparison Factors

To study the effect of adaptively selecting the target device during a particle

advection computation, we conducted various experiments over a range of carefully

tuned parameters. Our experiments varied over 3 main factors:

– Data Set (2 options)

– Number of Particles (9 options)

– Number of Steps (3 options)

Our experiments consisted of each of the different particle sizes, p, with each of

the step counts, s, and for both data sets, d. These experiments also varied over

implementation: CPU-only, GPU-only, and Oracle. Thus, there were a total of

3(p ∗ s ∗ d) = 162 experiments1 which were run on the Summit supercomputer at

Oak Ridge National Laboratory [11]. The remainder of this section describes each

of these three components in more detail.

1Each of the experiments was also ran three times for completeness. See section 4.6
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(a) NIMROD Fusion simulation. (b) NEK5000 Fish Tank simulation.

Figure 2. Example visualizations of both data sets used in this study. These images
are courtesy of Binyahib et al. [3].

4.1.1 Data Set. This study used different simulation codes that were

used to thoroughly test the new algorithm. The goal was to test how the Oracle

worked on different data sets that behave differently from each other.

Our simulations included:

– Fusion: The Fusion data set comes from the NIMROD [23] simulation code.

In this particular simulation, a magnetically confined fusion reaction in a

tokamak device causes the magnetic field to travel in a helical fashion around

the torus to achieve stable equilibrium. The particles behave in a highly

circular way as they traverse the torus-shaped vector field repeatedly.

– Fish Tank : This data set is from a thermal hydraulics simulation with the

NEK5000 code [12]. Twin inlets pump water of differing temperatures into a

box, creating mixing behavior and fluctuating water temperatures. In other

words, the vector field of this simulation reflects fluid flow within a box, or

tank.
15



Figures 2a and 2b show an example visualization of the simulations [3]. Using

different data sets to test our new algorithm gives insight in to how it will perform

across varying data. In section V, results for both data sets are shown.

4.1.2 Number of Particles. Testing a wide range of particles is crucial

for finding important and interesting results. The number of particles varied from

8, 216, 1000, 4096, 8000, 27000, 512000, 1000000, to 8000000 in our experiments.

This range of numbers includes some that should better run with a CPU

(smaller numbers), some that are better run with a GPU (very large numbers), and

some in between that the Oracle should excel at. These numbers are given by 1, 3,

5, 8, 10, 15, 40, 50, and 100 (respectively), cubing that number, and multiplying by

8. The cube of the numbers is used because this works well with how the data is

arranged in memory. Additionally, the numbers are multiplied by 8 since there are

8 MPI ranks.

4.1.3 Number of Steps. Our experiments used 100, 1000, and 10000

steps. The step size remained constant at 0.001. This way we could also see how

varying our steps would effects the decisions of the Oracle.

4.2 Hardware and Software Used

As mentioned above, these experiments were run on the Summit

supercomputer at Oak Ridge National Laboratory. Summit has 4608 nodes where

each node has two IBM Power9 CPUs and six NVIDIA Volta GPUs [24]. Each

experiment was run over two such nodes.

As described in section 2.3, all experiments used the VTK-m framework.

VTK-m provides a particle advection operation which, for this study, has been
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partitioned over eight MPI ranks for all experiments. Each MPI rank made use of

one GPU and one CPU core.2

4.3 Threshold Values

Preliminary experiments were performed to inform a cross-over point. The

cross-over point describes the workload at the point where the CPU stops being the

better performing single-device implementation and the GPU takes over. In this

paper, the amount of work at the cross-over point is referred to as the threshold

value. The threshold is discussed further in chapter III. For the experiments

done in this study, the value 100 was used as the threshold. Again, note that the

threshold is calculated in terms of units of work.

Previous work suggested the cross-over point should be around 1000

particles (discussed in chapter II). Since this value is data-dependent, the threshold

was evaluated for each data set.

4.4 Performance Measurement

The performance of the new algorithm was given by the total time the

particle advection work took to complete. This runtime includes the advection

time, sleep time, communication time, etc for all MPI ranks. However, it does not

include I/O times to load domains from disk. Excluding this time is consistent

with previous studies, especially because supercomputer I/O performance can be

inconsistent.

4.5 Limitations

An important limitation of our study to take in to consideration is that

while the GPU is parallelized with CUDA, the CPU in our study is running

serially. Although MPI provides some kind of distributed memory parallelism

2See section 4.5 for more on this.
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across nodes, more parallelism, and potentially better performance, could be had

if the CPU was also parallelized with OpenMP. A solution to this limitation is

currently under development.

4.6 Additional Information

The goal of this section is to provide other important miscellaneous

information about our study. First, in order to verify that the correctness of

the program was maintained throughout all our various code modifications, the

resulting particle trajectories were saved out and reviewed. Secondly, for the

purpose of minimizing “OS-Jitter”, each of our experiments, across both data sets,

was repeated three times. In total, we ran (3 ∗ 162) = 486 experiments. The lowest

runtime of the three was included in the reported results of chapter V. Those

runtimes have been normalized using a log10 scale to make the charts and figures

of results more readable.

18



CHAPTER V

RESULTS

Our results show that when there is a workload that is best suited for a

CPU, our Oracle is similar to that runtime. When there is a workload that is

better suited for a GPU, our Oracle instead is similar to that runtime. In effect, in

most cases our Oracle runtime, O, can be reflected by a formula (O ≈ min (Gt, Ct)),

where Gt represents the runtime for the GPU-only implementation and Ct

represents the runtime for the CPU-only approach. There is also a subset of

workloads which exist in a sweet-spot range where O is better than both Gt and

Ct. For both data set results, the Oracle implementation had the fastest runtime a

majority of the time. This behavior was caused by the Oracle’s ability to target the

appropriate device according to the current work remaining. Usually, in the cases

where the Oracle did not have the fastest time, it was slower by just a fraction of a

second. The remainder of this section describes these Oracle results in more detail.

5.1 Big Picture Performance

For the Fusion data set, the Oracle performed very well across all of our

experiments. Although the Oracle did well at 100 steps, it did even better at 1000

or 10000 steps. Generally, for experiments with less than or equal to 1000 particles,

the CPU had the winning single-device runtime. At 4096 and greater particles,

the GPU started to have the winning single-device runtime. In most cases, the

Oracle exceeds the faster single-device performance since it is able to target the

appropriate device for the work remaining. Additionally, in most of the cases

where the Oracle does not have the fastest performance, it is just slightly slower

than the fastest single-device implementation. In the best case, the Oracle had a

19



Figure 3. Execution times for all experiments with the Fish Tank data set. Dotted
lines and circular glyphs correspond to 10000 steps, dashed lines and diamond
glyphs correspond to 1000 steps, and solid lines with square glyphs correspond to
100 steps. Blue denotes the CPU-only tests, red denotes the GPU-only tests, and
green denotes the Oracle tests.

10% speedup over the GPU (the winning single-device implementation) and 63%

speedup over the CPU.

Figures 3 and 4 show the performance of the CPU-only (blue), GPU-only

(red), and Oracle (green) implementations with the Fusion data set for 10000

(dotted lines with circular glyphs) steps, 1000 (dashed lines with diamond glyphs)

steps, and 100 (solid lines with square glyphs) steps experiments. In regard to all

figures presented in this chapter, the x-axis is the number of particles, while the

y-axis is the runtime. Again, note that the y-axis is on a log10 scale to make the

figures more readable.

Both figures show that the GPU-only version has much slower performance

than the Oracle or CPU-only implementations for the small numbers of particles.
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Figure 4. Execution times for all experiments with the Fusion data set. Dotted
lines and circular glyphs correspond to 10000 steps, dashed lines and diamond
glyphs correspond to 1000 steps, and solid lines with square glyphs correspond to
100 steps. Blue denotes the CPU-only tests, red denotes the GPU-only tests, and
green denotes the Oracle tests.

As the number of particles increases, the GPU-only performance increases until

there is a cross-over point where the CPU-only version starts to perform worse.

Meanwhile, the Oracle implementation performs similarly to the CPU-only version

when the number of particles is small, but starts performing more similarly to the

GPU-only version once that cross-over point happens. Although the trend in both

figure 3 and figure 4 is similar, for the Fish Tank data set, the Oracle does not give

as much of a performance boost as it did with the Fusion data set. In other words,

the Oracle has a greater speedup over both the single-device implementations

for the Fusion data set experiments than with the Fish Tank data set. Thus, the

amount of added performance is dependent on the data set.
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Figure 5. Execution times for the Fusion data set with 10000 steps.

Figure 6. Execution times for the Fusion data set with 1000 steps.
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Figure 7. Execution times for the Fish Tank data set with 10000 steps.

To study this trend more closely, figures 5 and 6 show the performance of

the Fusion data set with 10000 and 1000 steps, respectively. These experiments

were shown separately because they more clearly show the performance trends of

the Oracle.

In all experiments with the Fusion data set, there is a similar trend of the

CPU starting with better performance than the GPU, and eventually the GPU

having better performance once the problem size gets large enough. The Oracle

tries to mimic the performance of the faster single-device implementation. In all

three figures, the Oracle starts by targeting the CPU for the smaller problem

sizes. As the workload increases, the Oracle targets the GPU more and more.

All the while, the performance of the Oracle is closest to the best single-device

performance.
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Figure 8. Execution times for the Fish Tank data set with 1000 steps.

Additionally, figures 7 and 8 show the performance of the Fish Tank data

set with 10000 and 1000 steps, respectively. Just like the results for the Fusion data

set, these results also show a trend where the CPU starts with better performance,

but as the problem size increases, the GPU performs better and better. Again, the

Oracle tries to mimic the performance of the faster single-device implementation,

starting with targeting the CPU and eventually targeting the GPU more and more

as the problem size increases.

In both sets of experiments, there is a sweet-spot range where the Oracle

clearly does better than both. This range will be discussed in more detail below.

5.2 Sweet-Spot Performance

There were a couple workloads that were particularly bad for the GPU

hardware (namely, those with a small amount of particles, yet had to advect over

many steps). With our POD approach, this means that the performance of the
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Figure 9. A zoomed-in chart showing the Fusion “sweet-spot” range with 10000
steps.

Figure 10. A zoomed-in chart showing the Fish Tank “sweet-spot” range with
10000 steps.
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GPU threads will suffer due to latency. For these cases, the Oracle was able to

determine that the CPU was better equipped to handle this kind of work, and

targeted that device. The “sweet-spot” range refers to the subset of workloads

where the Oracle consistently has better performance than either of the other

implementations.

Since the Oracle can target the CPU to work on those particles that would

have taken longer to be done on the GPU and can also target the GPU to work

on those particles that would take longer to be done on the CPU, the Oracle’s

overall performance can beat both the GPU-only and the CPU-only performance.

Figures 9 and 10 show these specific workloads at a close-up view. In figure 9, the

“sweet-spot” range is seen mostly after 216 particles, but before 8,000 particles for

the Fusion data set. However, for the Fisk Tank data set, the “sweet-spot” range

is seen mostly after 1000 particles, but before 27,000 particles (shown in Figure

10). The difference in the “sweet-spot” ranges is a symptom of the data-dependent

nature of particle advection.

Our results demonstrate that our Oracle was overall successful in deciding

which device to run the current workload on. The most crucial criteria for our

Oracle is a tuned parameter for a threshold that describes whether or not the

workload could fully load the GPU or not. In most experiments, our Oracle was

able to determine when the workload was better suited for the GPU or if it could

instead benefit more from a CPU. This result leads to the conclusion that although

the Oracle algorithm had some added overhead, it was not significant enough to

affect overall performance.
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CHAPTER VI

CONCLUSION

Our study shows the results of a new algorithm that targets the appropriate

device to perform particle advection operations. By analyzing the current work

remaining and targeting the appropriate device, our Oracle can achieve similar

or better performance over the traditional single-device alternatives. The results

show that there is a “sweet-spot” for the Oracle where it can best outperform

the other devices. For workloads that are not in this sweet spot range, the Oracle

approximately matches the performance of the device that is best suited for the

workload. Thus, our study shows the results of a new algorithm that targets the

appropriate device to perform particle advection operations, which in turn answers

our research questions.

In most of these cases, the Oracle gets a small speedup, but in a few cases

the Oracle is outperformed by the other implementation. The results suggest that

the Oracle gets better as the numbers of steps increases. When there are small

numbers of steps, the Oracle was outperformed the most, although overall, it

performed best. Most importantly, the overall trend seen across the step counts

is that first, the Oracle is matching the CPU performance for the small workload

sizes. Next, there is a “sweet spot” range where the Oracle is actually getting better

performance than both the GPU alone and the CPU alone. Then, the Oracle starts

matching the GPU performance for the larger workload sizes. In other words, our

Oracle targets the device which will perform better given the current work to do

and the work remaining. Our other findings include:
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– With relatively little added effort, a hybrid VTK-m implementation can

be created that will determine, during the execution of the program, which

device to use for the current work remaining.

– VTK-m has the functionality to target multiple devices within the same

program, a capability that is very new and still needs more testing.

The results of this study will help inform the scientific visualization

community about those architectures that give optimal performance at certain

stages of the simulation run. The findings described in this paper highlight the

performance benefits of using an Oracle approach to target the appropriate device.

Although, these insights are specifically for the particle advection operation, they

could be extrapolated to other algorithms as well.

For future work of this study, solving the limitation mentioned earlier is

top priority. Having an implementation that uses as much parallelization within

VTK-m as possible (i.e., using OpenMP for the CPU parallelization, CUDA for

GPU parallelization) is optimal to get a more in-depth analysis of the Oracle.

Additionally, it would be beneficial to see how this idea could be extended to other

scientific visualization algorithms. For example, how will the performance change

for other algorithms with an Oracle implementation? What about algorithms which

have more irregular control flows or memory access patterns? There are several

interesting research questions that can be explored by extending this idea to other

kinds of problems. All in all, we feel this study is a good starting point for more

evaluation and performance analysis of device targeting and the Oracle approach.

Further, the impact of this topic can be high, since modern supercomputers often

have both architectures. Finally, another topic of future work is to use both CPU
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and GPU simultaneously. This direction may be more effort-intensive, i.e., require

significantly more complex algorithmic approaches.
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