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DISSERTATION ABSTRACT

Alexis J. Kiessling

Doctor of Philosophy

Department of Chemistry and Biochemistry

June 2020

Title: Time-Dependent Approaches and Their Utility: Dynamical Formulations of
Two-Dimensional Electronic Spectroscopy Signals and Electronic Structure Theory

We present time-dependent reframings of the theory of two-dimensional

electronic spectroscopy signals and of electronic structure theory. The dynamical

formulation of spectroscopic signals, in particular of two-dimensional wave-packet

interferometry (WPI), is used to calculate and interpret signals from a spatially

oriented energy transfer dimer. A general study of the detection of electronic

energy transfer using WPI is carried out. The signals are interpreted using a

semiclassical analysis that considers the paths taken by wave packets through phase

space and the conditions required for their phase-space overlap. The dimer is also

used to propose a WPI experiment capable of observing electronic intersite and

interexciton coherence. Weak-coupling (intersite) and strong-coupling (interexciton)

cases are studied, with a variety of systems differing in number of vibrational

modes and in excited-state energies of the monomers. The time-dependent framing

of electronic structure theory is a spectral filtering technique, where the Fourier

transform of the time evolution of an antisymmetrized wave packet to the frequency

domain reveals eigenstates and eigenenergies. Direct numerical integration of

the time-dependent Schrödinger equation and semiclassical parametrizations are

presented and compared as methods of obtaining the time evolution. The method
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is found to be accurate, and has some benefits; spectral filtering allows for many

eigenstates to be obtained at once and includes electron correlation automatically.

Future prospects for each of these works are discussed.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

Time dependent formulations of quantum mechanics are insightful because

they connect a strange set of phenomena to our physical intuitions about the world.

These intuitions, of course, come from our daily experiences of classical mechanics,

and at the heart of these experiences is the movement of objects. Thinking about

quantum mechanics from a dynamical perspective is thinking about the movement

of wave packets, which often move in a way that is consistent with our classically-

informed physical intuition. The works presented in this dissertation are united

by this theme of dynamics, consisting of theoretical frameworks of ultrafast

spectroscopy and electronic structure theory centered on time evolution.

Chapter II reframes the theory of two-dimensional electronic spectroscopy,

particularly two-dimensional wave-packet interferometry (WPI), to highlight the

dynamics underlying the signals. Expressions for general signals are derived in

terms of the time-dependent wave functions - wave packets - generated by the

action of the ultrashort laser pulses used in these experiments. The overlap of

these wave packets with each other gives rise to the fluorescence-detected signal

in a WPI experiment, and bringing the focus of the theory to the dynamics allows

for insightful physical interpretation.

This chapter also introduces a model energy transfer dimer and makes

use of this model to elucidate the manifestation of electronic energy transfer in

WPI signals. The dimer is oriented such that controlling the polarizations of the

pulses allows for the selection of individual monomers. An energy offset between

monomer electronic states provides interesting dynamical consequences. The

overlaps contributing to the WPI signal are analyzed semiclassically through the
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phase-space trajectories of the wave packets. Additionally, the influence of an

exciton shift, a lowering in the energy of excited states when both monomers are

excited, on the overall signal is studied.

Chapter II was previously published in Coherent Multidimensional

Spectroscopy, a book published by Springer Nature and edited by Minhaeng Cho.

It was initiated by Jeffrey Cina. Both Jeffrey Cina and Alexis Kiessling derived the

expressions and computed the signals appearing in the chapter. Jeffrey Cina was

the principal investigator during this work.

Chapter III extends on the work of Chapter II. The same spatially-oriented

dimer is used to both demonstrate the appearance of electronic coherence in WPI

signals and propose an experimental strategy for observing the coherence. WPI

experiments make use of two pairs of phase-locked pulses, and the coherence is

found to live in the portion of WPI data where the intrapulse-pair delays are

zero. The remaining interpulse-pair delay is used to track the time-development

of the coherence. The proposed experiment requires a fixed spatial orientation,

as the coherence detection relies on a pulse polarization scheme where the first

three pulses probe only the “donor” state and the fourth pulse probes only the

“acceptor” state. These states depend on the strength of the coupling; in the weak-

coupling regime, the coherence is between site states, and in the strong-coupling

regime, the coherence is between excitons. Both cases are explored in this chapter.

This chapter nicely illustrates the utility of a dynamical framework of

thinking. The coherence of interest is shown to be the overlap between two

particular wave packets. A theoretical framework which is primarily concerned

with the motion of wave packets, combined with the knowledge that the electronic
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coherence is simply a particular overlap of two wave packets, makes consideration of

the experiment proposed in this chapter readily available.

Chapter III has been submitted for publication in the Journal of Chemical

Physics, authored by Alexis Kiessling and Jeffrey Cina. Both Jeffrey Cina and

Alexis Kiessling derived the expressions and computed the signals appearing in

the chapter. Jeffrey Cina was the principal investigator during this work.

Chapter IV changes the focus from ultrafast spectroscopy to electronic

structure theory, though it still shares the theme of dynamics. An initial

exploration of a spectral filtering approach to numerically approximating

solutions to the time-independent Schrödinger equation is carried out. Fourier

transformation of the time evolution of an arbitrary antisymmetrized wave

packet results in resonance at frequencies proportional to eigenenergies of the

system Hamiltonian, while the Fourier coefficients approximate the corresponding

eigenfunctions. Spectral filtering is applied to a model two-particle system using

both direct numerical integration of the Schrödinger equation and a semiclassical

parametrization. This simple model consists of harmonic oscillator potentials, and

serves as a proof of concept. In direct numerical integration, a discrete position

basis describes the time-evolution operator, which is then repeatedly applied

to an antisymmetrized wave packet to obtain the packet’s time evolution. The

accuracy of the approach is considered through the eigenstate fidelities as a

function of propagation time; the fidelity of a numerically determined eigenstate

calculated with respect to the analytical solution increases with propagation time

and approaches unity. In the semiclassical parametrization, equations of motion for

the parameters are obtained from the Dirac-Frenkel-McLachlan functional [1, 2, 3].

Parametrization is applied both to the two-particle, harmonic-potential model
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and to a single-particle system that contains a regularized Coulomb potential.

The semiclassical approach requires less memory and accurately obtains the

eigenspectrum, and for the two-particle system, the fidelities of the semiclassically

determined eigenstates match the fidelities of the eigenstates determined by the

direct numerical approach.

Chapter IV is a joint work between Alexis Kiessling and Jeffrey Cina being

prepared for resubmission to Molecular Physics. Alexis Kiessling derived the

expressions and computed the signals appearing in the chapter.

This dissertation is arranged as follows: Chapter II presents previously

published work on two-dimensional wave-packet interferometry that elucidates the

manifestation of electronic energy transfer in WPI signals. Chapter III presents

work in press in Journal of Chemical Physics on the detection of electronic

coherence through a specialized WPI experiment. Chapter IV discusses a

dynamical approach to the stationary wave functions that make up electronic

structure. Chapter V ends with a discussion of these works and possible future

directions. Appendix A provides a derivation of a pump-probe experiment that

has the same coherence-detecting ability as the WPI experiment in Chapter III,

and Appendix B derives expressions for the same WPI experiment in the strong-

coupling case. Appendices C and D provide expressions for the matrix elements

that compose the equations of motion used to employ two different parametrized

ansatzes for spectral filtering.
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CHAPTER II

NUCLEAR WAVE-PACKET DYNAMICS IN TWO-DIMENSIONAL

INTERFEROGRAMS OF EXCITATION-TRANSFER SYSTEMS

This work was previously published in Coherent Multidimensional

Spectroscopy, a book published by Springer Nature and edited by Minhaeng Cho.

Both Jeffrey Cina and Alexis Kiessling derived the expressions and computed the

signals appearing in the chapter. Jeffrey Cina wrote the paper with assistance from

Alexis Kiessling. Jeffrey Cina was the principle investigator during this work.

2.1 Introduction

Optically phase-coherent two-dimensional electronic spectroscopy has proved

itself in recent years as an effective technique for revealing unprecedentedly detailed

information on electronic excitation transfer (EET) within chromophore arrays [4,

5]. Because the molecular systems under study often comprise several participating

excitation sites and a large number of interacting vibrational modes, all present

in a variety of overall orientations with respect to the polarization of the incident

light pulses, their signals’ simulation and interpretation can become rather involved

[6, 7, 8].

Here, for the sake of sharpening our thinking about some basic aspects of

the information content of multi-dimensional spectroscopy and its interpretation

in terms of the underlying, entangled electronic and nuclear dynamics, we

undertake an exercise of reframing the basic theory with an emphasis on the role of

nonstationary nuclear wave functions under the influence of laser pulse- and energy

transfer-driven transitions among relevant site, adiabatic, or spatially-extended

exciton states. While our treatment conforms in its physical content with those

based on nonlinear optical response functions, its set-up differs from conventional
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approaches in reversing the order of quantum-mechanical averaging and temporal

integration over the external fields. It performs the latter operation first, with the

interpretive and computational advantages that the analysis then turns on the

dynamics of the nonstationary molecular states actually prepared and probed by

phase-coherent, short-pulse optical spectroscopy.

This work expands on a previous study by Cina, Kilin, and Humble [9],

who investigated two-dimensional signals from model systems similar to that

used for illustration here, but made some additional simplifying assumptions.

The model used here consists of a dimer that interacts with four identically

shaped laser pulses resonant with the bare electronic transition frequency of the

constituent chromophores. The total time-dependent wave function is expressed

as a sum of nuclear wave packets evolving in different electronic states that have

various different interactions with the pulses. The quantum mechanical overlaps of

these wave packets give rise to the 2D ES signal. The dynamics of an individual

wave packet is determined by its episodes of motion under the relevant vibronic

Hamiltonians describing both evolution on a particular electronic potential energy

surface and energy-transfer and/or nonadiabatic transitions between surfaces,

interspersed with pulse actions that shape it and also effect its inter-surface

transfer. The resulting spectra, plotted with respect to combinations of pulse-to-

pulse delay times, are interpreted in terms of these dynamics.

In addition to the prior analysis of Cina, Kilin, and Humble, other works

somewhat similar in spirit include that carried out by Tiwari, Peters, and Jonas

[10] to explore the origin of oscillating peaks in 2D ES spectra and a theoretical

study of the transfer and trapping of coherent vibrational motion in EET by

Cina and Fleming [11]. The latter provided an explanation for the behavior
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of vibrational quantum beats observed in time-resolved polarized fluorescence

up-conversion measurements of LH-1 by Bradforth et al. [12], and the analysis

of Tiwari et al. endeavored to illuminate the roles of coherent electronic and

vibrational dynamics in producing signal oscillations from EET systems. Both of

those reports make use of models similar to the one studied here. Butkus et al. [13]

explored similar questions, comparing calculated signals from a monomer model

with only vibronic coupling and a dimer model with only electronic coupling. Biggs

and Cina investigated the influence that preparing nonstationary states of nuclear

motion can exert on EET after subsequent electronic excitation [14, 15, 16].

In a four-wave mixing (FWM) rendition of 2D ES, the experiments detect

the interference between a laser pulse that serves as a local oscillator and a signal

beam emitted by the oscillating third-order dipole moments induced in the sample

by the other three pulses [17]. While it is possible to describe this kind of signal

using a wave-packet framework, we restrict ourselves for the present to wave-packet

interferometry (WPI) by fluorescence detection. Two-dimensional fluorescence

spectroscopy measurements employing optical phase modulation came into

prominence with the works of Tekavec, Lott, and Marcus [18] and Lott et al [19].

With certain differences due to fluorescence-yield weighting of contributions from

singly- versus doubly-excited electronic states, phase-modulated WPI signals effect

an isolation of sum- and difference-phased overlap combinations that is similar

to the separation in FWM approaches between different wave-vector-matched

directions.

This chapter continues by describing an EET dimer model consisting of

interacting chromophores whose states of electronic excitation are coupled to a

collection of intra-complex or environmental vibrational degrees of freedom. Basic
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expressions are derived for the fluorescence-detected wave-packet interferometry

signal resulting from the dimer’s interaction with two optically phase-controlled

ultrashort laser pulse-pairs. Contributions to the 2D WPI signal are calculated

for the exemplary case of a spatially-oriented pair of weakly-coupled monomers

with perpendicular electronic transition moments, each possessing a single Franck-

Condon-active internal vibrational mode.

2.2 Energy-Transfer Dimer

We start by describing a molecular dimer model comprising four site states,

|ḡg〉, |ēg〉, |ḡe〉, and |ēe〉, in which neither, one, or both of the monomers are

electronically excited.1 Such a complex can exhibit electronic energy (or excitation)

transfer between the two singly excited states. The dimer Hamiltonian is H =

T + Hel(Q̂), where T is the nuclear kinetic energy. The electronic Hamiltonian in

the site basis is

Hel(Q) = |ḡg〉Vḡg(Q)〈ḡg|+ |ēg〉Vēg(Q)〈ēg|+ |ḡe〉Vḡe(Q)〈ḡe|

+ |ēe〉Vēe(Q)〈ēe|+ J(Q)(|ēg〉〈ḡe|+ |ḡe〉〈ēg|) . (2.1)

Q stands for the full collection of intramolecular and intermolecular nuclear

coordinates, including those of any surrounding medium. Alternatively, the

electronic Hamiltonian can be expressed in terms of the adiabatic electronic states

as

Hel(Q) = |0〉E0(Q)〈0|+ |1̄(Q)〉E1̄(Q)〈1̄(Q)|

+ |1(Q)〉E1(Q)〈1(Q)|+ |2〉E2(Q)〈2| . (2.2)

1The monomers may be the same or different. Our model neglects states such as |ē′g〉 or |ē′e′′〉
in which one or both of the molecules occupy higher-lying electronic excited states.
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It is easy to specify the relationship between these two representations. Let

Pone = |ēg〉〈ēg|+ |ḡe〉〈ḡe| , (2.3)

σx = |ēg〉〈ḡe|+ |ḡe〉〈ēg| , (2.4)

σy = −i|ēg〉〈ḡe|+ i|ḡe〉〈ēg| , (2.5)

and

σz = |ēg〉〈ēg| − |ḡe〉〈ḡe| . (2.6)

Introducing the following functions of nuclear coordinates,

K(Q) =
1

2

(
Vēg(Q)− Vḡe(Q)

)
, (2.7)

L(Q) =
1

2

(
Vēg(Q) + Vḡe(Q)

)
, (2.8)

M(Q) =
√
J2(Q) +K2(Q) , (2.9)

and

θ(Q) = arctan

(
J(Q)

K(Q)

)
, (2.10)

as illustrated in Fig. 1, allows us to rewrite Eq. (2.1) as

Hel(Q) = |ḡg〉〈ḡg|Vḡg(Q) + σxJ(Q) + σzK(Q) + PoneL(Q) + |ēe〉〈ēe|Vēe(Q)

= |ḡg〉〈ḡg|Vḡg(Q) + PoneL(Q)

+ e−iσyθ(Q)/2σze
iσyθ(Q)/2M(Q) + |ēe〉〈ēe|Vēe(Q) . (2.11)

The adiabatic eigenenergies appearing in Eq. (2.2) can be seen from Eq.

(2.11) to be

E0(Q) = Vḡg(Q) , (2.12)

E1̄(Q) = L(Q) +M(Q) , (2.13)
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Figure 1. Parameters of the electronic Hamiltonian. J(Q) is the energy-transfer
coupling at nuclear configuration Q. K(Q) is half the local site-energy difference.
M(Q) is half the resultant energy difference between adiabatic singly-excited
electronic states.

E1(Q) = L(Q)−M(Q) , (2.14)

and

E2(Q) = Vēe(Q) . (2.15)

The ground and doubly-excited adiabatic eigenstates of the model dimer, |0〉 = |ḡg〉

and |2〉 = |ēe〉, respectively, remain unchanged from the site basis. The singly-

excited adiabatic states can be defined as

|1̄(Q)〉 = e−iσyθ(Q)/2|ēg〉 , (2.16)

and

|1(Q)〉 = e−iσyθ(Q)/2|ḡe〉 . (2.17)

The electronic Hamiltonian for this dimer has been diagonalized by a Q-

dependent unitary transformation. But the remaining contribution to the full

Hamiltonian, the nuclear kinetic-energy operator T, may couple the adiabatic

electronic states of the single-excitation manifold in the presence of sufficiently

rapid nuclear motion. We shall see shortly that the dipole moment operator

connecting single-excitation states to the electronic ground state or to the doubly
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excited state become Q-dependent in the basis of adiabatic electronic states. This

feature can complicate the description (using pulse propagators, as described

below) of short-pulse-driven electronic transitions. Such complications do not arise

in the site basis, with its nuclear coordinate-independent electronic states.

Another popular basis featuring Q-independent electronic states is the

exciton basis. It consists of the four eigenstates of the electronic Hamiltonian

evaluated at the equilibrium nuclear configuration of the electronic ground state

Hel(Q = 0): |0〉, |1〉 ≡ |1(0)〉, |1̄〉 ≡ |1̄(0)〉, and |2〉. The matrix elements of the

electronic Hamiltonian in this basis are readily obtained. For example,

〈1̄|Hel(Q)|1̄〉 = 〈1̄|1̄(Q)〉〈1̄(Q)|1̄〉E1̄(Q) + 〈1̄|1(Q)〉〈1(Q)|1̄〉E1(Q)

= 〈ēg|e−i δθ(Q)
2

σy |ēg〉〈ēg|ei δθ(Q)
2

σy |ēg〉E1̄(Q)

+ 〈ēg|e−i δθ(Q)
2

σy |ḡe〉〈ḡe|ei δθ(Q)
2

σy |ēg〉E1(Q) , (2.18)

with δθ(Q) = θ(Q)− θ(0) ≡ θ(Q)− θ. Simplification leads to

〈1̄|Hel(Q)|1̄〉 = L(Q) +M(Q) cos δθ(Q) . (2.19)

By similar analyses,

〈1|Hel(Q)|1〉 = L(Q)−M(Q) cos δθ(Q) , (2.20)

and

〈1|Hel(Q)|1̄〉 = 〈1̄|Hel(Q)|1〉 = M(Q) sin δθ(Q) . (2.21)

Using the definition of δθ(Q), we easily find

cos δθ(Q) =
K(Q)K + J(Q)J

M(Q)M
, (2.22)
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and

sin δθ(Q) =
J(Q)K −K(Q)J

M(Q)M
. (2.23)

Combining these results and introducing the definitions δJ(Q) = J(Q) − J and

δK(Q) = K(Q)−K, we arrive at the expression

Hel(Q) = |0〉〈0|E0(Q) + |1̄〉〈1̄|
{
L(Q) +M +

KδK(Q) + JδJ(Q)

M

}
+ |1〉〈1|

{
L(Q)−M − KδK(Q) + JδJ(Q)

M

}
+ (|1̄〉〈1|+ |1〉〈1̄|)

{KδJ(Q)− JδK(Q)

M

}
+ |2〉〈2|E2(Q) , (2.24)

for the electronic Hamiltonian in the exciton basis.

In order to choose between the two nuclear coordinate-independent

electronic bases in a given instance, we can compare the respective ratios of the

off-diagonal matrix elements of their Hamiltonians to the difference between the

two diagonal matrix elements within the singly-excited manifold. The site basis is

seen to be favored by small values of the quantity∣∣∣ J(Q)

Vēg(Q)− Vḡe(Q)

∣∣∣ =
1

2

∣∣∣ J(Q)

K(Q)

∣∣∣ . (2.25)

On the other hand, small values of∣∣∣∣∣KδJ(Q)− JδK(Q)

M

1

2
(
M + KδK(Q)+JδJ(Q)

M

)∣∣∣∣∣ =
1

2

∣∣∣ KδJ(Q)− JδK(Q)

M2 +KδK(Q) + JδJ(Q)

∣∣∣ (2.26)

support a choice of the exciton basis. These criteria indicate that the site (exciton)

basis is preferred under conditions of weak (strong) energy-transfer coupling.

2.3 Whoopee Signal

2.3.1 Interaction Hamiltonian

Next, we develop basic formulas for the fluorescence-detected WPI signal

from the dimer complex. In order to carry out this derivation, we add to the

Hamiltonian a time-dependent perturbation accounting for the dimer’s interaction
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with a sequence of four ultrashort laser pulses,

V (t) =
∑

I=A,B,C,D

VI(t) , (2.27)

with

VI(t) = −m̂ · EI(t) . (2.28)

The electric fields are

EI(t) = eIEIfI (t− tI(r)) cos [Ω(t− tI (r)) + ϕI ] . (2.29)

The quantity eI in Eq. (2.29) is the polarization unit vector (assumed to be real)

and tI(r) = tI + nI · r/c is the arrival time of the pulse at the molecular location,

with tI being the arrival time at some origin (r = 0) within the sample and nI

being a unit vector in the direction of the laser beam’s spatial propagation. We

are specializing to the common situation in which the optical phase differences

ϕBA ≡ ϕB − ϕA and ϕDC ≡ ϕD − ϕC are under experimental control even though

the individual ϕI may vary randomly on successive laser shots due to mechanical

jitter in the optical setup. As illustrated in Fig. 2, the pulse sequence comprises

two phase-controlled pulse-pairs. The variable intrapulse-pair delays tBA ≡ tB − tA
and tDC ≡ tD − tC , or their conjugate frequency variables, are the two “dimensions”

of a 2D WPI experiment. The pulse arrivals at the sample origin obey tA ≤ tB,

tC ≤ tD, and tA + tB ≤ tC + tD (as explained on p. 18).

Figure 2. Electric field envelopes in a 2D WPI experiment are shown schematically,
along with their arrival times and controlled intrapulse-pair optical phase shifts.
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The dipole operator is

m̂ = ma (|ēg〉〈ḡg|+ |ēe〉〈ḡe|) + mb (|ḡe〉〈ḡg|+ |ēe〉〈ēg|) + H.c. (2.30)

We can find this operator in the adiabatic electronic basis by calculating its matrix

elements,

〈1̄(Q)|m̂|0〉 = ma〈1̄(Q)|ēg〉+ mb〈1̄(Q)|ḡe〉

= ma cos
θ(Q)

2
+ mb sin

θ(Q)

2
, (2.31)

〈1(Q)|m̂|0〉 = −ma sin
θ(Q)

2
+ mb cos

θ(Q)

2
, (2.32)

〈2|m̂|1̄(Q)〉 = ma sin
θ(Q)

2
+ mb cos

θ(Q)

2
, (2.33)

and

〈2|m̂|1(Q)〉 = ma cos
θ(Q)

2
−mb sin

θ(Q)

2
. (2.34)

From these we obtain

m̂ = |1̄(Q)〉〈0|
{
ma cos

θ(Q)

2
+ mb sin

θ(Q)

2

}
+ |1(Q)〉〈0|

{
−ma sin

θ(Q)

2
+ mb cos

θ(Q)

2

}
+ |2〉〈1̄(Q)|

{
ma sin

θ(Q)

2
+ mb cos

θ(Q)

2

}
+ |2〉〈1(Q)|

{
ma cos

θ(Q)

2
−mb sin

θ(Q)

2

}
+ H.c. (2.35)

Setting Q = 0 in Eq. (2.35) yields the dipole operator in the exciton basis:

m̂ = |1̄〉〈0|
{
ma cos

θ

2
+ mb sin

θ

2

}
+ |1〉〈0|

{
−ma sin

θ

2
+ mb cos

θ

2

}
+ |2〉〈1̄|

{
ma sin

θ

2
+ mb cos

θ

2

}
+ |2〉〈1|

{
ma cos

θ

2
−mb sin

θ

2

}
+ H.c. (2.36)

2.3.2 2D Signal

The two-dimensional whoopee signal S depends on the quadrilinear

contributions (proportional to EAEBECED) to the population of each of the several

14



electronic excited states. For a sample having uniform dimer density ρ throughout

an illuminated volume V, it can be written

S = ρ

∫
V

d3r
{
QēePēe(r) +QēgPēg(r) +QḡePḡe(r)

}
= ρ

∫
V

d3r
{
Q2P2(r) +Q1̄P1̄(r) +Q1P1(r)

}
, (2.37)

where Pξ(r) is the quadrilinear portion of the ξ-state population of a dimer

at position r and Qξ is the fluorescence quantum yield in that state.2 The r-

dependence of the quadrilinear populations would become important if we wished

to describe a set-up in which the four incident laser beams were noncollinear;

in that case, wave-vector-matching conditions among the nI would play a role

analagous to or in concert with optical phase cycling in helping to isolate a

particular quadrilinear contribution to the signal (i.e. one having a sum or

difference optical phase combination, ϕDC + ϕBA or ϕDC − ϕBA, respectively). In

order to simplify subsequent formulas, we shall omit the r-dependence from here on

out, but it could easily be restored. The resulting formulas will apply as they are in

the case of four collinear beams or in the in-principle-possible case of experiments

on a single molecule, with the spatial integrals of Eq. (2.37) also being omitted in

the latter instance.

2.3.2.1 Singly excited-state populations

We focus first on the contributions to Eq. (2.37) arising from the population

of singly-excited electronic states. Among the 48 quadrilinear overlaps contributing

(along with their complex conjugates) to the population of a given singly-excited

state, we may omit the sixteen overlaps carrying an uncontrolled optical phase

factor of the form exp{±i(ϕA + ϕB)± i(ϕC + ϕD)}, as these average to negligibility

2We do not include an average over any possible orientational distribution of the dimer at a
given location, regarding this as being implicitly included in the spatial distribution of population.
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over the many laser shots needed to accumulate a WPI signal. The remaining,

phase-stable contributions to Pξ can be broken into separately measurable sum-

and difference-phased components (see Section 2.3.2.3). Thus Pξ = P
(s)
ξ + P

(d)
ξ ,

where

P
(s)
ξ = 2Re

{
〈↑A↓B↑C |ξ〉〈ξ| ↑D〉+ 〈↑A↓D↑C |ξ〉〈ξ| ↑B〉+ 〈↑C |ξ〉〈ξ| ↑B↓A↑D〉

+ 〈↑A |ξ〉〈ξ| ↑B↓C↑D〉+ 〈↑C↓B↑A |ξ〉〈ξ| ↑D〉+ 〈↑C↓D↑A |ξ〉〈ξ| ↑B〉

+ 〈↑C |ξ〉〈ξ| ↑D↓A↑B〉+ 〈↑A |ξ〉〈ξ| ↑D↓C↑B〉

+ 〈↑A↑C↓B |ξ〉〈ξ| ↑D〉+ 〈↑A↑C↓D |ξ〉〈ξ| ↑B〉+ 〈↑C |ξ〉〈ξ| ↑B↑D↓A〉

+ 〈↑A |ξ〉〈ξ| ↑B↑D↓C〉+ 〈↑C↑A↓B |ξ〉〈ξ| ↑D〉+ 〈↑C↑A↓D |ξ〉〈ξ| ↑B〉

+ 〈↑C |ξ〉〈ξ| ↑D↑B↓A〉+ 〈↑A |ξ〉〈ξ| ↑D↑B↓C〉
}
, (2.38)

and (by swapping C s and Ds throughout)

P
(d)
ξ = 2Re

{
〈↑A↓B↑D |ξ〉〈ξ| ↑C〉+ 〈↑A↓C↑D |ξ〉〈ξ| ↑B〉+ 〈↑D |ξ〉〈ξ| ↑B↓A↑C〉

+ 〈↑A |ξ〉〈ξ| ↑B↓D↑C〉+ 〈↑D↓B↑A |ξ〉〈ξ| ↑C〉+ 〈↑C↓D↑A |ξ〉〈ξ| ↑B〉

+ 〈↑D |ξ〉〈ξ| ↑C↓A↑B〉+ 〈↑A |ξ〉〈ξ| ↑C↓D↑B〉

+ 〈↑A↑D↓B |ξ〉〈ξ| ↑C〉+ 〈↑A↑D↓C |ξ〉〈ξ| ↑B〉+ 〈↑D |ξ〉〈ξ| ↑B↑C↓A〉

+ 〈↑A |ξ〉〈ξ| ↑B↑C↓D〉+ 〈↑D↑A↓B |ξ〉〈ξ| ↑C〉+ 〈↑D↑A↓C |ξ〉〈ξ| ↑B〉

+ 〈↑D |ξ〉〈ξ| ↑C↑B↓A〉+ 〈↑A |ξ〉〈ξ| ↑C↑B↓D〉
}
. (2.39)

Reading from left to right within any bra or ket, the pulses must act on the dimer

in the order listed, irrespective of their order of temporal arrival, driving upward

(absorptive) or downward (emissive) electronic transitions. Explicit expressions

for the contributing multi-pulse amplitudes are developed subsequently. We have

written the various quadrilinear populations so the displayed overlaps have phase

signature e−iϕBA−iϕDC and e−iϕBA+iϕDC in P
(s)
ξ and P

(d)
ξ , respectively. The first eight
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overlaps in each of the quadrilinear ξ-state populations do not access the doubly

excited electronic state at any stage in the amplitude-transfer process described by

the three-pulse bra or ket. In the last eight overlaps of P
(s)
ξ and P

(d)
ξ , amplitude

is generated in the doubly excited state by the action of the second pulse of the

three-pulse bra or ket.

If we make the reasonable assumption that the quantum yields for

fluorescence (or other action-spectroscopy signal) following excitation of the ēg-

and ḡe-states are equal, Qēg = Qḡe = Qone, then the total quadrilinear population of

both singly-excited site states P
(s/d)
one = P

(s/d)
ēg +P

(s/d)
ḡe is all that matters. Expressions

for P
(s)
one and P

(d)
one could be obtained from Eqs. (2.38) and (2.39), respectively by

replacing |ξ〉〈ξ| with Pone = |ēg〉〈ēg| + |ḡe〉〈ḡe|. But all the one- and three-pulse

bras and kets appearing there generate amplitude only in the singly electronically-

excited manifold. So the operator |ξ〉〈ξ| can simply be removed to give P
(s/d)
one . The

same sort of argument of course applies in the exciton basis.

The various quadrilinear overlaps differ in their dependence on the interpulse

delays, and it is through this delay dependence that WPI data provide information

on the dynamics of the energy-transfer system. For bookkeeping purposes—and

without any sacrifice of experimental data—we require that tA ≤ tB, tC ≤ tD, and

(tA + tB)/2 ≤ (tC + tD)/2. Assuming that all four pulses have identical envelopes,

any data obtained with tB less than tA would coincide with those within the

prescribed range having tA and tB interchanged and ϕBA changed in sign; a similar

statement holds for data with tD less than tC . Data with the midpoint of tC and tD

less than that of tA and tB exist in the prescribed range with tA interchanged with

tC , tB interchanged with tD, and ϕBA swapped with ϕDC . An exhaustive range of

interpulse delays thus spans a three-dimensional space {tBA, tDC , tCB} with tBA and
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tDC greater than or equal to zero and tCB greater than or equal to −(tDC + tBA)/2.

Notice that under these restrictions, tB can be before, between, or after tC and tD,

and tA can come before or after tC , provided tDC + 2tCB + tBA remains nonnegative.

Because the pulses have short durations that sometimes preclude their

acting in the required order, each of the wave-packet overlaps in Eqs. (2.38)

and (2.39) is restricted in the range of interpulse delays for which it can make a

contribution to the WPI signal. Let’s identify the three-dimensional regions of the

“delay space” within which each of the overlaps participating in P
(d)
one may be active.

First we consider 〈↑A↓B↑D | ↑C〉, which is responsible for bleaching the

electronic ground state. Since the D pulse acts after the B pulse in this term, the

overlap vanishes if tD precedes tB by more than approximately the pulse duration,

whence tD − tB > −σ, or tDC + tCB + σ > 0. Together with the general restriction

that tDC + 2tCB + tBA be nonnegative, this condition confines the overlap to the 3D

temporal region plotted in Fig. 3. A similar argument for the stimulated-emission

overlap, 〈↑A↓C↑D | ↑B〉, shows that it can only exist within the 3D region where

tCB + tBA + σ > 0 and tDC + 2tCB + tBA > 0, which corresponds to the mirror image

of the volume shown in Fig. 3 through the vertical plane tDC = tBA, containing the

tCB axis.

There are also fully three-dimensional regions of interpulse delays where the

overlaps 〈↑A | ↑C↓D↑B〉 and 〈↑D | ↑C↓A↑B〉 may be nonnegligible. Since pulse D

acts before pulse B in the first of these, its arrival times must obey tD − tB < σ,

and 〈↑A | ↑C↓D↑B〉 is therefore confined to the shared range of tDC + tCB < σ and

tDC + 2tCB + tBA > 0 plotted in Fig. 4. For 〈↑D | ↑C↓A↑B〉 on the other hand,

pulse C must act before pulse A, whence tC − tA < σ. This overlap can make a

nonvanishing contribution to P
(d)
one when tCB + tBA < σ and tDC + 2tCB + tBA > 0.
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Figure 3. Three-dimensional region of time-delay parameter space in which the
ground-state-bleach contribution to the difference-phased 2D-WPI signal may be
nonvanishing. The region shown is to be extended to arbitrarily large, positive
values of tBA and tDC , and to arbitrarily large positive and negative values of tCB
(while maintaining tCB greater than both −(tDC + tBA)/2 and −σ − tDC). The
stimulated-emission overlap may be nonzero in the temporal region generated from
that depicted here by reflection through the tDC = tBA plane.
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Figure 4. Delay region in which the contribution of 〈↑A | ↑C↓D↑B〉 to the difference-
phased 2D-WPI signal may not vanish. The pictured volume is to be extended
to arbitrarily large, positive values of tBA and tDC , while maintaining tCB greater
than −(tDC + tBA)/2 and less than σ − tDC . The region of possibly nonvanishing
〈↑D | ↑C↓A↑B〉 is the mirror image of this one through the vertical tDC = tBA plane.

This region mirrors the volume shown in Fig. 4 through the tDC = tBA plane.

Note that the delay-range regions where both of these overlaps may contribute are

largely limited to negative tCB.

In 〈↑A | ↑B↓D↑C〉, the D pulse acts before the C pulse, despite the fact that

by definition the arrival time tD follows tC ; tDC < σ. Since the B pulse also acts

before the C pulse in this overlap, but tC can precede tB in the specified range of

unique interpulse delays, tB − tC has to be less than the pulse length, so tCB > −σ

is required as well. Together with tDC + 2tCB + tBA > 0, these conditions restrict

〈↑A | ↑B↓D↑C〉 to the quasi-2D time-delay region illustrated in Fig. 5. The delay

region for 〈↑D | ↑B↓A↑C〉 is obtained by reflecting this slab in the tDC = tBA plane.

The two remaining overlaps in P
(d)
one which do not access the doubly-excited

state are limited to quasi zero-dimensional delay regions. Since pulse B and D both

act before pulse A in 〈↑D↓B↑A | ↑C〉, this overlap cannot contribute unless tBA and
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Figure 5. Quasi-2D time-delay region in which the overlap 〈↑A | ↑B↓D↑C〉 may
contribute to the 2D-WPI signal; it is to be extended to arbitrarily large, positive
values of tBA and tCB. Reflection in the plane tDC = tBA yields the slab within
which 〈↑D | ↑B↓A↑C〉 may take nonzero values.

tD− tA = tDC + tCB+ tBA are less than about σ. These conditions, together with the

restriction to nonnegative tDC + 2tCB + tBA, limit this overlap to the region shown

in Fig. 6. The mirror image of this region through tDC = tBA similarly confines

〈↑D↓C↑A | ↑B〉.

It is apposite to recall that—despite their differing phase signatures, pulse

orderings, and confining regions of time-delay space—the first eight overlaps

appearing in each of Eqs. (2.38) and (2.39) are essentially the same from the

dimer’s point of view; each term records a contribution to the population of

the one-exciton manifold resulting from the interference between an amplitude

generated by the action of a single resonant electric-field interaction and another

generated by an excitation-deexcitation-reexcitation process driven by three

sequential interactions with resonant fields. The pulse labels attached to the

participating fields don’t evince themselves in a single population-generation
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Figure 6. Delay region where 〈↑D↓B↑A | ↑C〉 may take nonnegligible values. This
region is quasi zero-dimensional because it shrinks towards nonexistence in all three
directions as the pulses become shorter. The overlap 〈↑D↓C↑A | ↑B〉 may exist only
inside a region mirroring this one through the tDC = tBA plane.

process, but only in the way the measured quadrilinear contribution to the singly-

excited population varies with the experimentally specified pulse polarizations,

intrapulse-pair phase shifts, and interpulse delays. The same is true among the

second set of eight overlaps in Eqs. (2.38) and (2.39); each of these represents

the interference population between a singly-excited wave packet generated by

the action of one pulse and another driven by a three-pulse process of excitation-

excitation-deexcitation.

Each of the last eight overlaps in Eqs. (2.38) and (2.39), those involving a

three-pulse bra or ket whose amplitude visits the doubly-excited electronic state

between the second- and third-acting pulse, can also be confined to a specified

region of {tBA, tDC , tCB}. Here we identify the delay-space volumes for the last

eight quadrilinear overlaps contributing to P
(d)
one.

The overlap 〈↑A↑D↓B | ↑C〉 is confined to negative or very short positive tCB.

Because it depends on pulse D acting before B, tDC + tCB can be no larger than the
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pulse duration σ. The data-organizational requirement that the temporal midpoint

of C and D follow that of A and B is the only other restriction, so this overlap’s

admissible delay range is the quasi-3D region displayed in Fig. 7.

Figure 7. Region of interpulse delays where the effects of the order of pulse action
alone do not prevent 〈↑A↑D↓B | ↑C〉 from taking significant values. This delay
volume extends to arbitrarily large positive tBA and tDC , and arbitrarily large
negative tCB.

The signal contribution from 〈↑A↑D↓C | ↑B〉 can only be sizable in the quasi-

2D delay region shown in Fig. 8. For tDC must be less than σ and, as usual, 2tCB +

tBA + tDC > 0. The condition tC − tA = tCB + tBA > −σ imposes no additional

restriction.

The three-pulse wave packet participating in 〈↑D | ↑B↑C↓A〉 can only be

formed under the stringent conditions tBA < σ, tCB > −σ, and tCB + tBA < σ,

along with 2tCB + tBA + tDC > 0. These requirements restrict its nonnegligible

contributions to the quasi one-dimensional tDC range plotted in Fig. 9.

Contributions to the P
(d)
one WPI signal from 〈↑A | ↑B↑C↓D〉 can arise whenever

tCB > −σ. The condition 2tCB + tBA + tDC > 0 has an impact only at very small

intrapulse-pair delays. This important overlap may therefore exist anywhere within

the 3D delay volume portrayed in Fig. 10.
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Figure 8. Delay region where 〈↑A↑D↓C | ↑B〉 may be nonzero. This pulse-duration-
thick slab extends to arbitrarily large positive tBA and tCB, and to tCB ≈ −tBA/2.

Figure 9. Narrow region of delay-space to which nonnegligible contributions from
〈↑D |↑B↑C↓A〉 are confined.

Figure 10. Volume in {tBA, tDC , tCB}, extending to indefinitely large values of all
three delays, where 〈↑A |↑B↑C↓D〉 can in principle make a signal contribution.
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Because pulse D acts before A in its bra, 〈↑D↑A↓B | ↑C〉 can only exist for

very small values of all three interpulse delays. Thus tD − tA = tDC + tCB + tBA < σ

combined with 2tCB + tBA + tDC > 0 confines nonnegligible values of this overlap

to the quasi-1D region illustrated in Fig. 11. The overlap 〈↑D↑A↓C | ↑B〉 is restricted

to the same region: tD − tA must again be less than the pulse duration, and the

condition tC − tA = tCB + tBA < σ proves to be redundant.

Figure 11. The small delay-range region within which the overlaps 〈↑D↑A↓B | ↑C〉
and 〈↑D↑A↓C |↑B〉 are expected to contribute to P

(d)
one.

.

The ket in 〈↑D | ↑C↑B↓A〉 vanishes unless both tC − tA = tCB + tBA and tBA

alone are less than the pulse duration. Along with 2tCB + tBA + tDC > 0, these lead

to the delay region of significance sketched in Fig. 12.

Figure 12. Interpulse-delay region, extending to arbitrarily large positive tDC and
negative tCB, where 〈↑D |↑C↑B↓A〉 may give rise to significant signal.

.

25



It is worth recalling that outside its prescribed interpulse-delay region, a

particular overlap vanishes simply because the delay combinations are inconsistent

with the required order of pulse action in the participating three-pulse bra or ket.

But criteria specific to the dimer’s Hamiltonian, including internal molecular and

host-medium nuclear degrees of freedom, will sometimes diminish the overlaps for

certain delay combinations inside these regions. In multimode systems for instance,

electronic dephasing driven by electronic-nuclear coupling will often severely limit

the maximal intrapulse-pair delays tBA and tDC over which the electronic coherence

on which a nonvanishing 2D-WPI signal depends can be effectively maintained.

Because the B - and C -pulses are not phase-locked, signal contributions tend to be

less susceptible to dynamical truncation along tCB.

2.3.2.2 Doubly excited-state population

As indicated in Eq. (2.37), the quadrilinear portion of the population of the

doubly-excited electronic state contributes to the 2D-WPI signal with a certain

quantum yield Qēe = Q2 ≡ Qtwo. Eliminating as unmeasured the four overlaps

appearing in the doubly-excited population whose optical phases are uncontrolled

allows us to write Ptwo as a sum of two experimentally isolable portions,

P
(s)
two = 2Re

{
〈↑A↑C |↑B↑D〉+〈↑A↑C |↑D↑B〉+〈↑C↑A |↑B↑D〉+〈↑C↑A |↑D↑B〉

}
, (2.40)

and (by interchanging C s and Ds)

P
(d)
two = 2Re

{
〈↑A↑D |↑B↑C〉+〈↑A↑D |↑C↑B〉+〈↑D↑A |↑B↑C〉+〈↑D↑A |↑C↑B〉

}
. (2.41)

Let’s work out the region of {tBA, tDC , tCB} to which each of the difference-

phased quadrilinear contributions to the population of the doubly-excited state,

seen in Eq. (2.41), is exclusively confined. In 〈↑A↑D | ↑B↑C〉, the pulses act in their

nominal order (A before D and B before C ), so the overlap can be nonnegligible in
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a three-dimensional region of delay-space. More specifically, tC must exceed tB − σ,

or the B -pulse could not act before C ; hence tCB > −σ. But the bookkeeping

restriction tD + tC > tB + tA also requires tCB > −1
2
(tDC + tBA), which is slightly

more restrictive for tiny intrapulse-pair delays. All three interpulses delays can

take arbitrarily large positive values. These are the same restrictions as apply to

〈↑A |↑B↑C↓D〉, so the relevant delay volume is identical to Fig. 10.

In the ket of 〈↑A↑D | ↑C↑B〉, C -pulse action precedes B -pulse action. In order

that this overlap not vanish, tCB must therefore be shorter than σ. As the general

condition tCB > −1
2
(tDC + tBA) also applies, nonvanishing values can only reside in

the delay region plotted in Fig. 13.

Figure 13. Region of interpulse delays where 〈↑A↑D |↑C↑B〉 can be nonzero.

The overlap 〈↑D↑A | ↑B↑C〉 can only be nonnegligible when tD − tA = tDC +

tCB + tBA is less than the pulse duration. But tCB must exceed −1
2
(tBA + tDC),

so this contribution to P
(d)
two can exist only in a quasi zero-dimensional region of

very short interpulse delays. The same restrictions apply to 〈↑D↑A | ↑C↑B〉, for

nonnegligibility of this overlap again requires tDC + tCB + tBA < σ. The weaker
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condition tCB < σ adds no additional constraint. The resulting common delay

region coincides with that illustrated in Fig. 11 for 〈↑D↑A↓B |↑C〉 and 〈↑D↑A↓C |↑B〉.

2.3.2.3 Signal isolation

As we have mentioned, it is possible to separate experimentally the sum-

phased signal arising from Eqs. (2.38) and (2.40), on one hand, and the difference-

phased signal from Eqs. (2.39) and (2.41), on the other. This is accomplished by

combining WPI measurements S(ϕBA, ϕDC) having different combinations of the

optical phase shifts ϕBA and ϕDC . In fact, the same “phase-cycling” methods

enable the isolation of the quantum yield-weighted sum of the complex-valued

quantities inside the braces of the first two or the second two of those expressions.

We can illustrate the basic strategy with a simple example; more complicated

schemes may have advantages in practice.

Writing the signal with particular phase shifts as

S(ϕBA, ϕDC) = 2Re{e−iϕBA−iϕDCξs + e−iϕBA+iϕDCξd} , (2.42)

and denoting ξs/d = ξ′s/d + iξ′′s/d, leads to distinct combinations such as

S(0, 0) = 2(ξ′s + ξ′d) , (2.43)

S(π
2
, 0) = 2(ξ′′s + ξ′′d) , (2.44)

S(0, π
2
) = 2(ξ′′s − ξ′′d) , (2.45)

and

S(π
2
, π

2
) = 2(−ξ′s + ξ′d) . (2.46)

From these we can reconstruct the sought-after quantities

ξs = 1
4
{S(0, 0)− S(π

2
, π

2
) + iS(π

2
, 0) + iS(0, π

2
)} , (2.47)

28



and

ξd = 1
4
{S(0, 0) + S(π

2
, π

2
) + iS(π

2
, 0)− iS(0, π

2
)} . (2.48)

2.3.3 One-, two-, and three-pulse kets

Using time-dependent perturbation theory, we now seek explicit expressions

for the various multi-pulse bras and kets whose overlaps determine the 2D-WPI

signal from an EET complex. Under the dimer Hamiltonian H = T + Hel(Q̂) (see

Eq. (2.1)) and the interaction potential V (t), given in Eq. (2.27) with the pulse

arrival times reckoned at r = 0, the quantum mechanical state obeys

i~
∂

∂t
|Ψ(t)〉 =

(
H + V (t)

)
|Ψ(t)〉 . (2.49)

The initial condition is taken to be |Ψ(t � tA)〉 = [t − tA]|ḡg〉|ψ0〉 (using the

notation [t] ≡ exp{−iHt/~}), where |ψ0〉 is some eigenket of the ground-state

nuclear Hamiltonian, T + 〈ḡg|Hel(Q)|ḡg〉. In the interaction picture, Eq. (2.49)

becomes

i~
∂

∂t
|Ψ̃(t)〉 = Ṽ (t)

)
|Ψ̃(t)〉 , (2.50)

with Ṽ (t) = [−t+ tA]V (t)[t− tA] and |Ψ̃(t� tA)〉 = |ḡg〉|ψ0〉.

Since the quadrilinear signal contributions all take the form of an overlap

between a two-pulse bra and a two-pulse ket, or between a one-pulse bra and a

three-pulse ket, it is enough to solve Eq. (2.50) through third order in the external

fields:

|Ψ̃(t)〉 ∼=
{

1 +
1

i~

∫ t

−∞
dτ Ṽ (τ) +

(
1

i~

)2∫ t

−∞
dτ

∫ τ

−∞
dτ̄ Ṽ (τ)Ṽ (τ̄)

+

(
1

i~

)3∫ t

−∞
dτ

∫ τ

−∞
dτ̄

∫ τ̄

−∞
d¯̄τ Ṽ (τ)Ṽ (τ̄)Ṽ (¯̄τ)

}
|ḡg〉|ψ0〉 . (2.51)

This perturbative solution can be rewritten in terms of pulse propagators which

encapsulate the effect of each finite-duration laser pulse in the instantaneous
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action of a single quantum mechanical operator. Upon reversion to the Schrödinger

picture, this reframing results in an equivalent solution,

|Ψ(t)〉 =
{

[t− tA] + i
∑

I=A,B,C,D

[t− tI ]PI(t− tI ; τ)[tIA]

+ i 2
∑
IJ

[t− tJ ]PJ(t− tJ ; τ)[tJI ]PI(τ + tJI ; τ̄)[tIA]

+ i 3
∑
IJK

[t− tK ]PK(t− tK ; τ)[tKJ ]PJ(τ + tKJ ; τ̄)[tJI ]

× PI(τ̄ + tJI ; ¯̄τ)[tIA]
}
|ḡg〉|ψ0〉 , (2.52)

in which the I th pulse propagator is

PI(t; τ) =
EI
~

∫ t

−∞
dτ fI(τ) cos(Ωτ + ϕI) [−τ ] eI · m̂ [ τ ] . (2.53)

The first argument of a pulse propagator is the upper integration limit and the

second designates the variable of integration.

By extracting terms from Eq. (2.52) we can develop formulas for the wave-

packet overlaps contributing to the 2D-WPI signal using any electronic basis.

Portions of the two- and three-pulse sums in this expression of quadratic or cubic

order in the field-strength of an individual pulse are of course irrelevant. We bypass

the adiabatic electronic basis in favor of the two fixed bases, letting |ξ〉 denote

either a site or an exciton state. Electronic matrix elements of the pulse propagator

(2.53) can be conveniently expressed in terms of reduced pulse propagators,

p
(ξξ̄)
I (t; τ) =

∫ t

−∞

dτ

σ
fI(τ)e∓iΩτ [−τ ]ξξ[τ ]ξ̄ξ̄ , (2.54)

by making a rotating-wave approximation and invoking one of the forms (2.30)

or (2.36) for the dipole operator. We have written 〈ξ|[τ ]|ξ̄〉 = [τ ]ξξ̄ and made a

significant simplification by assuming that electronic transitions between different

singly excited states in the appropriate basis can be neglected on the timescale of
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the pulse duration. The upper (lower) sign in Eq. (2.54) applies in the case of an

absorptive (emissive) transition ξ ← ξ̄ (ξ̄ → ξ). With the same approximations and

conventions, the nonvanishing elements of the overall pulse propagator (2.53) can

be written as

〈ξ|PI(t; τ)|ξ̄〉 = iF
(ξξ̄)
I e∓iϕIp

(ξξ̄)
I (t; τ) , (2.55)

where F
(ξξ̄)
I ≡ FI〈ξ|m̂ · eI |ξ̄〉 with FI = EIσ/2~.3

2.4 Illustrative Calculations

2.4.1 Overlaps

The stage is set for a variety of calculations of WPI signals from EET

dimers and their interpretation in terms of the underlying nuclear wave-packet

and energy-transfer dynamics. For illustration, we drastically pare the vast range

of possible molecular parameters expressible in terms of the electronic Hamiltonian

(2.1) and experimental choices by investigating the difference-phased fluorescence-

detected signal from a space-fixed dimer with perpendicularly oriented monomer

transition dipoles, ma = max̂ and mb = mbŷ.4 We restrict attention to the

situation in which the A, B, C, and D pulses arrive in their nominal order and

are short enough that temporal pulse overlap can be neglected.5 Consulting the

relevant delay regions shown in Sections 2.3.2.1 and 2.3.2.2 confirms inspection of

Eqs. (2.39) and (2.41) in showing that, under these circumstances, the quadrilinear

3Note that any polarization dependence of a 2D-WPI signal enters through the F
(ξξ̄)
I .

4The net signal from an isotropic sample of dimers with a certain internal geometry would be a
weighted sum of signals from a handful of representative space-fixed orientations.

5Specifically, these assumptions mean that tCB is positive and greater than the pulse duration.
In addition, since tBA and tDC are defined to be positive, they also mean that pulse-overlap
effects will be ignored when either is very short.
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singly- and doubly-excited populations simplify to

P (d)
one = 2Re

{
〈↑A↓B↑D | ↑C〉+ 〈↑A↓C↑D | ↑B〉+ 〈↑A | ↑B↑C↓D〉

}
, (2.56)

and

P
(d)
two = 2Re

{
〈↑A↑D | ↑B↑C〉

}
. (2.57)

We assume that the electronic excitation-transfer coupling is sufficiently

weak that the site states are an appropriate electronic basis. Provided the

interpulse delays are not too long, the condition |JtIK |/~� 1 then ensures that the

WPI signal will be at most of first order in J. It is easy to show that if all four laser

pulses have the same (x or y) polarization, then first-order EET cannot contribute

to the signal. To see this, we can arrange the site-state labels as in Fig. 14, so the

Figure 14. Site-state labels arranged so that each pair is separated in the direction
of the monomer transition moment that connects them.

directions between them are those of the connecting transition moments. Four x -

polarized pulses combined with a single EET-driven amplitude transfer can then

be seen to generate one- and three-pulse wave packets in different electronic states,

as illustrated in Fig. 15; their overlaps vanish and hence make no contribution to

Pone. Four x -pulses are similarly unable to contribute to Ptwo linearly in J, as Fig.

16 reveals.

As an example of a polarization combination that produces a nonzero

difference-phased interference signal of first order in J from our oriented model

dimer (and no signal in the absence of energy transfer), we consider the case
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Figure 15. Three combinations of one- and three-pulse states formed by all x -
polarized pulses, with one state or the other being linear in J. Each of the three
pairs forms a vanishing wave-packet overlap.

Figure 16. Illustration that a pair of two-pulse wave packets, one of them linear in
J, formed by four x -polarized pulses produce a vanishing overlap.

eA = ŷ, eB = eC = eD = x̂. The sequences of pulse- and EET-driven electronic

transitions making up the quadrilinear overlaps of P
(d)
one are sketched in Fig. 17,

while those responsible for P
(d)
two are illustrated in Fig. 18.6

Figure 17. Sequence of electronic transitions under AyBxCxDx polarization in each

pair of states whose overlap contributes to P
(d)
one at first order in J.

62D interferograms from 〈↑A | ↑B↑C↓D〉 alone in model dimers akin to that considered here,
under the same polarization conditions—but with arbitrarily abrupt laser pulses—were the
subject of earlier work by Cina, Kilin, and Humble [9].
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Figure 18. Electronic transitions under AyBxCxDx polarization in the two states

whose overlap determines P
(d)
two at first order in J.

In the simple version of the dimer Hamiltonian (2.1) used here, each

monomer will be assigned a single internal vibrational mode, so the kinetic energy

is

T =
p2
a

2m
+

p2
b

2m
, (2.58)

and the site-state potential functions are

Vḡg(qa, qb) =
mω2

2
(q2
a + q2

b ) , (2.59)

Vēg(qa, qb) = εēg +
mω2

2

(
(qa − d)2 + q2

b

)
, (2.60)

Vḡe(qa, qb) = εḡe +
mω2

2

(
q2
a + (qb − d)2

)
, (2.61)

and

Vēe(qa, qb) = εēe +
mω2

2

(
(qa − d)2 + (qb − d)2

)
. (2.62)

We focus on a case of “downhill” energy transfer with εēg − εḡe = mω2d2, so the

intersection line between the singly-excited site-state potentials passes through the

minimum point (qa, qb) = (d, 0) of the higher-energy, “donor-state” potential, as

shown in Fig. 19. We pick a moderate Franck-Condon displacement d = qrms,

where qrms =
√

~/2mω. The condition (2.25) for weak energy-transfer coupling

underlying our choice of the site basis here implies |J | � mω2d2 = ~ω/2. We treat

J as a constant, dismissing any nuclear-coordinate dependence.
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Figure 19. Plot of Vēg and Vḡe with their minima labeled. Dashed diagonal is the
line of intersection between Vēg and Vḡe for the chosen bare site-energy difference.
Minimum points of Vḡg and Vēe are also shown.

The weak-coupling condition just invoked ensures |JtIK/~| � ωtIK/2 in

the present instance. So the effect of energy transfer is small and can be treated

perturbatively through first order in J, as we wish to do, over interpulse delays up

to several vibrational periods in length. Other than assuming that weak coupling

is operative and stating the sign of J, we need not specify it any more precisely. In

the WPI signal calculations presented below the sign of J is taken positive; all the

interferograms would change sign if it were instead made negative.

From Eq. (2.52) we extract formulas for each of the wave packets appearing

in Eqs. (2.56) and (2.57). We find, for instance,

| ↑C〉 = ie−iϕC
∑

ξ,ξ1=ēg,ḡe

|ξ〉F (ξ1 ḡg)
C [t− tC ]ξ ξ1 p

(ξ1 ḡg)
C [tCA]ḡg ḡg|ψ0〉 , (2.63)

and

| ↑A↓B↑D〉 = −ieiϕBA−iϕD
∑

ξ,ξ2,ξ3,ξ4=ēg,ḡe

|ξ〉F (ξ2 ḡg)
D F

(ḡg ξ3)
B F

(ξ4 ḡg)
A

× [t− tD]ξ ξ2 p
(ξ2 ḡg)
D [tDB]ḡg ḡg p

(ḡg ξ3)
B [tBA]ξ3 ξ4 p

(ξ4 ḡg)
A |ψ0〉 . (2.64)
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Because temporal pulse overlap is being neglected, we have replaced the first

argument of each reduced pulse propagator by infinity and written p
(ξξ̄)
I (∞; τ) =

p
(ξξ̄)
I .

The “observation time” t disappears when we take the inner product

between the wave packets (2.63) and (2.64) and sum over the state index ξ. Since

unitary evolution of both wave packets, including subsequent energy transfer, does

not affect their contribution to the singly-excited population, the resulting overlap

can be formally evalutated at t = tD:

〈↑A↓B↑D | ↑C〉 = −e−iϕBA+iϕDC
∑

ξ1 ξ2 ξ3 ξ4

F
(ḡg ξ4)
A F

(ξ3 ḡg)
B F

(ḡg ξ2)
D F

(ξ1 ḡg)
C 〈ψ0| (2.65)

× p(ḡgξ4)
A [−tBA]ξ4ξ3p

(ξ3ḡg)
B [−tDB]ḡg ḡgp

(ḡgξ2)
D [tDC ]ξ2ξ1p

(ξ1ḡg)
C [tCA]ḡg ḡg|ψ0〉.

The overlap (2.65) serves as a template for the others appearing in Eqs. (2.56) and

(2.57), which can be written out directly:

〈↑A↓C↑D | ↑B〉 = −e−iϕBA+iϕDC
∑

ξ1 ξ2 ξ3 ξ4

F
(ḡg ξ4)
A F

(ξ3 ḡg)
C F

(ḡg ξ2)
D F

(ξ1 ḡg)
B 〈ψ0| (2.66)

× p(ḡgξ4)
A [−tCA]ξ4ξ3p

(ξ3ḡg)
C [−tDC ]ḡg ḡgp

(ḡgξ2)
D [tDB]ξ2ξ1p

(ξ1ḡg)
B [tBA]ḡg ḡg|ψ0〉 ,

〈↑A | ↑B↑C↓D〉 = −e−iϕBA+iϕDC
∑

ξ1 ξ2 ξ3 ξ4

F
(ḡg ξ1)
A F

(ξ2 ēe)
D F

(ēe ξ3)
C F

(ξ4 ḡg)
B 〈ψ0| (2.67)

× p(ḡg ξ1)
A [−tDA]ξ1ξ2 p

(ξ2 ēe)
D [tDC ]ēe ēe p

(ēe ξ3)
C [tCB]ξ3ξ4 p

(ξ4 ḡg)
B [tBA]ḡg ḡg|ψ0〉 ,

and

〈↑A↑D | ↑B↑C〉 = e−iϕBA+iϕDC
∑

ξ1 ξ2 ξ3 ξ4

F
(ḡg ξ1)
A F

(ξ2 ēe)
D F

(ēe ξ3)
C F

(ξ4 ḡg)
B 〈ψ0| (2.68)

× p(ḡg ξ1)
A [−tDA]ξ1ξ2 p

(ξ2 ēe)
D [tDC ]ēe ēe p

(ēe ξ3)
C [tCB]ξ3ξ4 p

(ξ4 ḡg)
B [tBA]ḡg ḡg|ψ0〉 .

It is to be noted that 〈↑A↑D | ↑B↑C〉, which describes excited-state absorption from

the singly- to the doubly-excited electronic manifold, equals minus 〈↑A | ↑B↑C↓D〉,
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which accounts for “bleaching” of the singly-excited states in the same process.

The degree to which the contributions of these overlaps cancel in the WPI signal

depends on the relative fluorescence quantum yield following double and single

excitation.

Each of the overlaps (2.65) - (2.68) contains two periods of free molecular

evolution in the singly-excited manifold of the form [tKL]ξ ξ̄ during which site-to-

site electronic excitation transfer may not or must occur, according to whether ξ

is or isn’t equal to ξ̄; these free molecular-evolution operators consist exclusively

of terms of even or odd powers of J , respectively. Thus, an expansion of the signal

through first order in J could be found by collecting terms of zeroth and first order

in Eqs. (2.65) - (2.68). But the task is simplified when we consider the chosen

dimer orientation and the polarization directions. For the y-polarized A-pulse we

have

F
(ḡg ēg)
A = 0 ;

F
(ḡg ḡe)
A = mbFA (2.69)

(see below Eq. (2.55)). For I = B,C, andD, which are x -polarized,

F
(ḡg ξ)
I = δξ ēgmaFI ,

F
(ēg ξ)
I = δξ ḡgmaFI ,

F
(ḡe ξ)
I = δξ ēemaFI ,

F
(ēe ξ)
I = δξ ḡemaFI . (2.70)

Under these circumstances, net transfer occurs during one particular evolution

interval in each of the contributing overlaps. All of them vanish at zeroth order
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in J, and the sought-after first-order overlaps reduce to

〈↑A↓B↑D | ↑C〉 = −e−iϕBA+iϕDCF〈ψ0|p(ḡg ḡe)
A [−tBA]

(1)
ḡe ēg p

(ēg ḡg)
B

× [−tDB]ḡg ḡg p
(ḡg ēg)
D [tDC ]

(0)
ēg ēg p

(ēg ḡg)
C [tCA]ḡg ḡg|ψ0〉 , (2.71)

〈↑A↓C↑D | ↑B〉 = −e−iϕBA+iϕDCF〈ψ0|p(ḡg ḡe)
A [−tCA]

(1)
ḡe ēg p

(ēg ḡg)
C

× [−tDC ]ḡg ḡg p
(ḡg ēg)
D [tDB]

(0)
ēg ēg p

(ēg ḡg)
B [tBA]ḡg ḡg|ψ0〉 , (2.72)

〈↑A | ↑B↑C↓D〉 = −e−iϕBA+iϕDCF〈ψ0|p(ḡg ḡe)
A [−tDA]

(0)
ḡe ḡe p

(ḡe ēe)
D

× [tDC ]ēe ēe p
(ēe ḡe)
C [tCB]

(1)
ḡe ēg p

(ēg ḡg)
B [tBA]ḡg ḡg|ψ0〉 , (2.73)

and

〈↑A↑D | ↑B↑C〉 = e−iϕBA+iϕDCF〈ψ0|p(ḡg ḡe)
A [−tDA]

(0)
ḡe ḡe p

(ḡe ēe)
D

× [tDC ]ēe ēe p
(ēe ḡe)
C [tCB]

(1)
ḡe ēg p

(ēg ḡg)
B [tBA]ḡg ḡg|ψ0〉 , (2.74)

where F = m3
ambFAFBFCFD. Free-evolution operators of zeroth and first order in

J within the singly excited manifold are marked with superscripts. More explicitly,

[t] ∼= [t](0) + [t](1), where [t](0) = exp
{
{−iH(0)t/~}

}
(with H(0) being T + Hel(Q) in

which J is set to zero) and, by first-order time-dependent perturbation theory,

[t](1) = −iJ
~

∫ t

0

dτ [t− τ ](0)
(
|ēg〉〈ḡe|+ |ḡe〉〈ēg|

)
[τ ](0) . (2.75)

In the calculated interferograms shown here, the common envelope function

for all four pulses is taken to be f(t) = exp{−t2/2σ2} with σ = 0.09(2π/ω) ≡

0.09τv. From Eq. (2.54), the reduced pulse propagators,

p(ξξ̄) =

∫ ∞
−∞

dτ

σ
e−τ

2/2σ2

e∓iΩτ [−τ ]
(0)
ξξ [τ ]

(0)

ξ̄ξ̄
, (2.76)

are seen to become proportional to Fourier components of the envelope evaluated at

the offset between Ω and the ξ̄-to-ξ vibronic transition frequency.
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In order to calculate the WPI signal from the excited-state populations, we

have to specify the relative fluorescence quantum yield from the singly- and doubly-

excited manifolds. We set Qone = 1 and illustrate several possibilities by taking

Qtwo = 0, 1, or 2. The first choice would be appropriate if some rapid, nonradiative

process were to shut off fluorescence from doubly-excited dimers; the second applies

if the dimer obeys “Kasha’s rule” by undergoing quick internal conversion to

the singly-excited manifold prior to radiative decay; and the last value would be

applicable if simultaneously excited monomers within a dimer decay by emitting

one photon each.

We have not yet stated a value for the bare electronic energy εēe seen in Eq.

(2.62). One could imagine that it is simply the sum of the individual excitation

energies, εēg and εḡe, and some of our calculations will make this assumption. It’s

also possible, however, that an “exciton shift” alters the excitation energy for one

monomer when the other is already excited, perhaps lowering it due to stronger

dispersion interactions between two excited monomers than between one excited

and another unexcited species. We’ll entertain the possible effect of a nonvanishing

exciton shift by considering a particular choice, εēe = εēg + εḡe − ~ω/2. Due

to the phase-sensitive nature of 2D WPI, even this small shift will be seen to

influence nonnegligibly the form of the calculated interferograms. A significantly

stronger exciton shift might even move singly-to-doubly-excited transitions outside

the power spectrum of the laser pulses, driving the relevant matrix elements of

p
(ēe ḡe)
C and p

(ḡe ēe)
D effectively to zero in Eqs. (2.73) and (2.74) and eliminating

contributions from those overlaps. This consequence of a strong exciton shift could

be similar to that of a Kasha’s-rule cancelation between the same two overlaps.
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Shown below are the real part and the absolute value of each of the

contributing overlaps as well as those of the quantum yield-weighted sum of

overlaps ξd determining the measured 2D signal (see Sect. 2.3.2.3), calculated

under the conditions just described. All the time-evolution operators and pulse

propagators are represented as matrices in a two-dimensional harmonic oscillator

basis. The waiting time is set to half a vibrational period (tCB = τv/2) to

allow optically generated excited-state wave packets at most one pass through

the Vēg = Vḡe intersection during this interval. The overlaps are multiplied by

exp{iΩ(tDC − tBA)} to eliminate optical-frequency oscillations and by exp{iϕBA −

iϕDC} to specify the ϕBA = ϕDC = 0 case. All overlaps and signals are plotted in

units of |J |/~ω times m3
ambFAFBFCFD.

Figure 20 plots 〈↑A↓B↑D | ↑C〉 and 〈↑A↓C↑D | ↑B〉, which appear in P
(d)
one. Since

the three-pulse bra in each of these overlaps does not access the doubly excited

state, they would be impervious to the presence of an exciton shift. In Fig. 21 is

seen the overlap 〈↑A | ↑B↑C↓D〉, also appearing in P
(d)
one, whose three-pulse ket

involves ēe-state wave-packet dynamics between tC and tD. This overlap will be

recalculated below with an exciton shift included. It is not necessary to make a

separate plot for the overlap 〈↑A↑D | ↑B↑C〉 determining P
(d)
two, as it equals minus

〈↑A | ↑B↑C↓D〉 without or with an exciton shift.

For the model dimer under study, it is possible to understand many key

features of the delay dependence of the overlaps shown in Figs. 20 and 21 in terms

of the underlying energy-transfer and nuclear wave-packet dynamics. The vanishing

of 〈↑A↓B↑D | ↑C〉 for tBA = 2nτv is a striking consequence of the half-quantum offset

between εēg and εḡe. We see from Eq. (2.71) that first-order energy transfer must

occur during tBA for this overlap to be nonzero. When tBA = 2nτv, this EET event
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Figure 20. The two upper panels are the real part (left) and absolute value (right)
of 〈↑A↓B↑D | ↑C〉. Intrapulse-pair delays are in vibrational periods τv = 2π/ω, and
the waiting time is fixed at tCB = τv/2. Lower panels are for 〈↑A↓C↑D | ↑B〉. Neither
of these overlaps would be affected by an “exciton shift” in the singly-to-doubly-
excited transition energy.

41



0 1 2 3 4 5 6
tBA/τv

0

1

2

3

4

5

6

t D
C
/τ

v

−80

−60

−40

−20

0

20

40

60

80

(a)

0 1 2 3 4 5 6
tBA/τv

0

1

2

3

4

5

6

t D
C
/τ

v

35

45

55

65

75

85

(b)

Figure 21. The left panel gives Re{〈↑A | ↑B↑C↓D〉} (or −Re{〈↑A↑D | ↑B↑C〉}) for
the model dimer without an exciton shift, and the right panel shows its absolute
value.

could take place during any 2τv-long interval, so we can write

[−2nτv]
(1)
ḡe ēg = [−2τv]

(1)
ḡe ēg [−2(n− 1)τv]

(0)
ēg ēg

+ [−2τv]
(0)
ḡe ḡe [−2τv]

(1)
ḡe ēg [−2(n− 2)τv]

(0)
ēg ēg

+ · · ·+ [−2(n− 1)τv]
(0)
ḡe ḡe [−2τv]

(1)
ḡe ēg . (2.77)

We can break up the first order factors as

[−2τv]
(1)
ḡe ēg = −iJ

~

∫ −2τv

0

dτ [−2τv − τ ]
(0)
ḡe ḡe [τ ]

(0)
ēg ēg

= −iJ
~

∫ −τv
0

dτ [−2τv − τ ]
(0)
ḡe ḡe [τ ]

(0)
ēg ēg

− iJ

~

∫ −2τv

−τv
dτ [−2τv − τ ]

(0)
ḡe ḡe [τ ]

(0)
ēg ēg

= −iJ
~

∫ −τv
0

dτ [−2τv − τ ]
(0)
ḡe ḡe [τ ]

(0)
ēg ēg

− iJ

~
ei
τv
~ (εēg−εḡe)

∫ −τv
0

dτ̄ [−2τv − τ̄ ]
(0)
ḡe ḡe [τ̄ ]

(0)
ēg ēg = 0 ; (2.78)
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Figure 22. The upper two panels show approximate phase-space paths for | ↑C〉
while the lower two show those for | ↑A↓B↑D〉, in the case tCB = τv/2.

the nuclear wave packet generated in the ēg-state by EET during the second half

of each 2τv-interval is opposite in sign from that formed during the first half, giving

rise to complete destructive interference and no net amplitude transfer. The first-

order evolution operator in Eq. (2.77) therefore vanishes entirely.

A necessary condition for 〈↑A↓B↑D | ↑C〉 to have a sizable value is that the

overlapped one- and three-pulse wave packets reside in similar regions of phase

space. That is to say, the expectation values of their coordinate and momentum

must nearly coincide, for both a and b modes. Schematic diagrams for both modes

of both wave packets are sketched in Fig. 22. The A pulse excites the dimer to the

ḡe state, where b-mode motion ensues. The local splitting between the two site-

states becomes larger than its Franck-Condon value of ~ω/2 at positive qb, so the

most likely elapsed times before an energy-transfer transition to ēg, denoted by tJA,

will be integer multiples of τv. The condition for a-mode coincidence can then be
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written

ωd
(
1− e−iωtDC

)
= ωd

(
1− e−iωtBJ

)
e−iωtDB

≈ ωd
(
1− e−iωtBA

)
e−iωtDC−iω

τv
2 , (2.79)

which reduces to tDC + tBA = mτv and rationalizes the slanted form of the peaks in

the upper right panel of Fig. 20. The b-mode coincidence requirement 0 = ωd(1 −

exp{−iωtJA}) simply reinforces the condition tJA ≈ nτv.

The exciton shift affects the two contributing overlaps which involve wave-

packet motion in the doubly excited electronic state. 〈↑A | ↑B↑C↓D〉 with the chosen

exciton shift (see p. 39) is illustrated in Fig. 23. 〈↑A↑D | ↑B↑C〉 has the opposite

sign. The complex-valued overlap itself changes drastically between Fig. 21 and

Fig. 23, illustrating the sensitivity of the overlaps determining the 2D-WPI signal

to small changes in the relative phase of the interfering wave packets. The absolute

value of the overlap changes only slightly as a result of this small shift, reflecting

minute changes in the location of the dimer’s singly-to-doubly-excited vibronic

transition energies within the power spectrum of the pulses.

The bra and ket trajectories whose final-point coincidence determines the

delay combinations of maximal overlap visible in the right panels of Figs. 21 and

23 are drawn schematically in Fig. 24. The requirement for agreement between the

two a-mode ending points can be written

0 = ωd
[(

1− e−iωtJB
)
e−iω(tCB−tJB) − 1

]
e−iωtDC + ωd , (2.80)

where tCB = τv/2 and tJB estimates the delay between B -pulse arrival and

amplitude transfer by EET from ēg to ḡe. This requirement reduces to tDC =

kτv + tJB. The corresponding condition for the b-mode is

ωd
(
1− e−iωtDA

)
= ωd

(
1− e−iωtDJ

)
, (2.81)
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Figure 23. The left panel shows Re{〈↑A | ↑B↑C↓D〉} (or −Re{〈↑A↑D | ↑B↑C〉}) for
the model dimer with an exciton shift, and the right panel plots its absolute value.

or tBA = lτv − tJB. Since tJB ≈ τv/4 in the present situation, the coincidence

requirements predict peaks at (tBA, tDC) ≈ (l − 1
4
, k + 1

4
)τv, just as seen in the

absolute-value plots.

It is interesting that, in the weak EET-coupling situation illustrated here,

purely classical descriptions of intramolecular nuclear motion provide reliable

explanations for the delay-dependence of 2D WPI signal intensity despite the fact

that the spatial range of motion is similar to the width of the nuclear wave packets.

Despite the close similarity between the right-hand panels of Figs. 21 and

23, the phase dependence exhibited on the left is quite different. The residual
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Figure 24. The top (bottom) panels show momentum-versus-position expectation-
value trajectories for the bra (ket) of 〈↑A | ↑B↑C↓D〉. Coincidence between the
endpoints of these phase-space paths is a prerequisite for this overlap to be large.

electronic phase factor of the aliased overlap is

eiΩ(tDC−tBA)〈↑A | ↑B↑C↓D〉 ∼ exp

{
i

~

(
εḡe +

∆ε

2

)(
tDC − tBA

)
+
i

~
εḡe

(
tDC+

τv
2

+tBA

)
− i

~
(
2εeg+∆ε+δε

)
tDC

+
i

~
εḡe

(
tJB −

τv
2

)
− i

~
(
εēg + ∆ε

)
tJB

}
= exp

{
− i

~
∆ε

(
tDC + tBA

2
+ tJB

)
− i

~
δε tDC

}
(2.82)

(see p. 38), where ∆ε = εēg − εḡe = ~ω/2 is the site-energy offset and δε = 0,−~ω/2

is the exciton shift. In the absence of the latter,

eiΩ(tDC−tBA)〈↑A | ↑B↑C↓D〉 ∼ exp

{
− iω

(
tDC + tBA

4
+
tJB
2

)}
, (2.83)

while in its presence,

eiΩ(tDC−tBA)〈↑A | ↑B↑C↓D〉 ∼ exp

{
iω

(
tDC − tBA

4
− tJB

2

)}
. (2.84)

Equations (2.83) and (2.84) account for the constant phase of the overlap along

lines of constant tDC + tBA and tDC − tBA seen in Figs. 21 and 23, respectively.
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2.4.2 Signals

While the delay dependence of the individual overlaps is relatively easy to

analyze in terms of wave-packet dynamics, the 2D-WPI signal (2.37) comprises

a quantum-yield-weighted sum of the several contributing overlaps. Under the

assumptions described on p. 17, the difference-phased whoopee signal from our

model dimer becomes

S(d) ∝ QoneP
(d)
one +QtwoP

(d)
two = 2Re{e−iϕBA+iϕDCξd} , (2.85)

where the relevant quadrilinear populations are given by Eqs. (2.56) and (2.57).

Since one of the equal-and-opposite overlaps involving access to the doubly excited

state contributes to P
(d)
one and the other determines P

(d)
two, their degree of cancellation

will depend on the relative quantum yield from populations in the singly- and

doubly-excited manifolds. As described on p. 39, we shall examine calculated

signals for Qtwo/Qone = 0, 1, and 2.

Figure 25 presents the 2D interferogram determined by the calculated

overlaps in the case Qtwo/Qone = 0. In the top (bottom) row are the real part and

absolute value of ξd without (with) an exciton shift. Although 〈↑A↑D | ↑B↑C〉 fails

to contribute in this case, the interferogram remains sensitive to the exciton shift

through

〈↑A | ↑B↑C↓D〉; both complex-valued and absolute interferograms differ

markedly in the two cases.

If Qtwo/Qone = 1, the case of equal fluorescence yields from the singly- and

doubly-excited manifolds, then 〈↑A | ↑B↑C↓D〉 and 〈↑A↑D | ↑B↑C〉 cancel each other

exactly; the interference signal becomes independent of any exciton shift. The 2D

WPI signal, illustrated in Fig. 26, is now determined by the two remaining overlaps

contributing to P
(d)
one.

47



0 1 2 3 4 5 6
tBA/τv

0

1

2

3

4

5

6

t D
C
/τ

v

−160

−120

−80

−40

0

40

80

120

160

(a)

0 1 2 3 4 5 6
tBA/τv

0

1

2

3

4

5

6

t D
C
/τ

v

0

20

40

60

80

100

120

140

160

180

(b)

0 1 2 3 4 5 6
tBA/τv

0

1

2

3

4

5

6

t D
C
/τ

v

−120

−90

−60

−30

0

30

60

90

120

(c)

0 1 2 3 4 5 6
tBA/τv

0

1

2

3

4

5

6

t D
C
/τ

v

0

30

60

90

120

150

180

210

(d)

Figure 25. The top two panels exhibit Re{ξd} = ξ′d and |ξd| for the EET dimer with
Qtwo/Qone = 0 in the absence of an exciton shift. Their forms in the presence of a
small, negative shift are shown in the bottom row.
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Figure 26. The real part and absolute value of the WPI signal for Qtwo/Qone = 1,
which is not affected by an exciton shift.

Sensitivity to the exciton shift returns when Qtwo/Qone = 2, meaning that

the doubly-excited state is twice as productive of fluorescent photons as a singly-

excited state. Here, the contribution from 〈↑A↑D | ↑B↑C〉 outweighs that from 〈↑A
|↑B↑C↓D〉. ξd for the EET dimer for this yield ratio is shown in Fig. 27.

The calculations presented in this section illustrate the physical

information content and dynamical interpretation of two-dimensional wave-

packet interferometry signals from an energy-transfer dimer for a specific set

of molecular features and experimental parameters. Many elaborations and

generalizations remain to be investigated. While the present illustrative calculations

yield interferograms of undiminished signal intensity with increasing tBA and tDC ,

more realistic simulations including (perhaps weak) electronic-nuclear coupling for

a large number of intra- and intermolecular modes would of course exhibit “optical

dephasing.” As a result, increasing intrapulse-pair delays would be accompanied by

decreasing signal size [6].
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Figure 27. The top panels show ξd with Qtwo/Qone = 2 and no exciton shift. The
bottom two include a small down-shift for singly-to-doubly excited transitions.
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2.5 Conclusion

This chapter spells out a straightforward, general framework for calculating

and interpreting multidimensional electronic spectroscopy signals in terms of the

wave-packet-shaping, amplitude-transferring effects of femtosecond laser pulses

on time-dependent molecular states. It sets up the basic expressions for two-

dimensional wave-packet interferometry experiments on an energy-transfer system

as a quantum yield-weighted sum of contributing overlaps between multi-pulse wave

packets, and identifies the ranges of interpulse delay within which each overlap is

not excluded by its order of pulse action from contributing to the WPI signal.

Example calculations are presented for a spatially oriented, weakly coupled

EET dimer for whose individual overlaps physical interpretations are readily found

using semiclassical analyses of the necessary conditions for phase-space coincidence

between the bra and ket, the dynamical consequences of a site-energy difference

between to two chromophores, and the sensitivity of contributions accessing or

originating from doubly electronically excited states of the dimer to the possible

presence of an exciton shift.

The version of the model used for illustration is among the simplest

conceivable for basic examination of the information content of 2D ES in the

context of electronic excitation transfer, and many possibilities exist for increasing

its complexity. One possible change would be to incorporate electronic decoherence

by adding site-state-dependent electronic-nuclear coupling to a multiplicity of

intra- and intermolecular modes of various frequencies [6]. Another natural step

is to increase the number of participating monomers. For example, a tetramer

of chromophores arranged in a square geometry could give rise to a conical

intersection between single-exciton states, which would in principle generate
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geometric-phase effects in the EET dynamics. In addition, the occurrence of

excitation transfer to more than one neighboring chromophore could result in

spatial interference akin to that seen in double-slit experiments. For instance,

excitation could transfer from an individual chromophore to the non-adjacent

one by taking more than one pathway. Of interest would be the extent to which

electronic-nuclear coupling suppresses the resulting interference in excitation

transfer by “observing” through which of the neighboring chromophores the

excitation was passed. Possibilities may also exist for altering the interference by

prior preparation of nuclear motion in the electronic ground state via impulsive

stimulated Raman excitation.

2.6 Bridge

This chapter has introduced a general framework for the calculation of two-

dimensional wave-packet interferometry signals. This framework puts the dynamics

of the system at the forefront of the theory, highlighting the motion of the wave

packets prepared by the laser pulses. Also introduced in this chapter is a spatially-

oriented, energy transfer dimer. This model is used to study the appearance of

electronic energy transfer in WPI signals. The following chapter expands on this

work, making use of both the same theoretical framework and the same model

dimer to devise an experiment that allows for the direct observation of electronic

coherence.
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CHAPTER III

MONITORING THE EVOLUTION OF INTERSITE AND INTEREXCITON

COHERENCE IN ELECTRONIC EXCITATION TRANSFER VIA

WAVE-PACKET INTERFEROMETRY

This work is currently in press in the Journal of Chemical Physics. Both

Jeffrey Cina and Alexis Kiessling derived the expressions, computed the signals

appearing in the chapter, and wrote the paper. Jeffrey Cina was the principal

investigator during this work.

3.1 Introduction

The linear optical spectroscopy of oriented molecular samples is widely

practiced and highly informative [20]. Although ultrafast nonlinear optical

spectroscopy with variably polarized pulse sequences has been very effectively

applied to many complex isotropic samples [21, 22, 23, 24], experiments on

ensembles of oriented chromophores, such as macromolecular single crystals, are

rare [25]. This remains the case despite the fact that in measurements of that kind,

individual pulses can be made to address specific chromophores based on their

transition-dipole moment direction [26, 27]. By contrast, multi-pulse femtosecond

polarization spectroscopy experiments in isotropic media “burn” at least one pulse

in rendering the sample anisotropic, yet fail to fully fix the spatial orientations in

the optically activated ensemble [28, 29].

Here we explore a general situation in which ultrafast polarization

spectroscopy experiments on oriented samples could directly access a key feature

of widespread interest in chemical dynamics, namely the time development of

electronic coherence in electronic excitation transfer (EET). The manifestations

of electronic, vibrational, and vibronic coherence in two-dimensional electronic
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and other ultrafast spectroscopy signals from multi-chromophore complexes and

their significance for excitation transport have been the subject of extensive recent

consideration [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45].1 Using a

wave-packet interferometry (WPI) approach, we investigate 2D spectroscopy signals

for a spatially oriented EET dimer with nonparallel site transition-dipole moments.

We find that it is possible to isolate from 2D-WPI signals of certain polarizations

the time-evolving intersite or interexciton electronic coherence.

The present study builds on previous work by Cina and Kiessling [27], which

put forward a general framework for calculating and interpreting 2D-WPI signals

with an emphasis on the entanglement of electronic and nuclear dynamics.2 We

consider measurements carried out on an oriented EET dimer of the same kind

considered previously and show where salient information on electronic coherence

“lives” within a 2D data set. The basic approach is found to be viable under both

weak and strong EET coupling. It enables the tracking of electronic coherence

1The issue of long-lived signal oscillations from the Fenna-Matthews-Olson complex, in
particular, has recently been incisively addressed by Scholes and co-workers.[33] They reported
broadband pump-probe spectroscopy data from wild-type FMO complexes as well as complexes
perturbed by site-directed mutagenesis. In all cases, oscillatory contributions to the signal traces
at selected probe wavelengths exhibited contributions from common frequencies of about 160
and 199 cm-1. These signal oscillations were shown to be predominantly vibrational in nature.
Specifically, they make a similar appearance throughout the broadband probe spectrum in signals
generated with a spectrally narrowed pump pulse providing access only to the red-most edge of
the electronic absorption spectrum; this arrangement should preclude the preparation of a time-
zero superposition between different excitonic levels.

2Equation (39) in Cina and Kiessling’s book chapter [27] is incorrect. The sixth term in
braces on the right-hand side of that equation should be 〈↑D↓C↑A |ξ〉〈ξ| ↑B〉, rather than
〈↑C↓D↑A |ξ〉〈ξ| ↑B〉. This error does not affect any of the calculations presented in the chapter,
because the term vanishes when pulses C and D follow A and B by a delay longer than the
pulse duration, as they are assumed to do in the WPI signals presented there. In addition, the
(ω〈qb〉, 〈pb〉) trajectory shown in the lower right panel of Fig. 22 in that chapter is incomplete. It
should continue by circling clockwise about the phase-space origin for a time tDJ , with the correct
final phase-point being given by ωde−iωtDJ (1 − e−iωtJA). This correction does not alter the stated
b-mode coincidence requirement. Finally, Eq. (10) of the chapter would be better replaced by
sin θ(Q) = J(Q)/M(Q) and cos θ(Q) = K(Q)/M(Q).
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using the preferred description in each case—intersite for weak coupling and

interexcitonic for strong.

The paper continues by introducing the Hamiltonian for the oriented EET

dimer and its interaction with a WPI sequence of four femtosecond laser pulses.

Physical motivation is provided for the choice of pulse polarizations and timings

in the weak- and strong-coupling cases, explaining their capacity to reveal the

generation and evolution of intersite and interexcitonic coherence, respectively.

Specific Hamiltonian parameters are chosen for illustrative signal calculations

on dimers with various numbers of vibrational degrees of freedom. The resulting

signals are then presented, and the time-course of the observed electronic coherence

is discussed in each case. Various practical approaches to WPI coherence-detection

experiments are then considered, and comparisons are made to related theoretical

and experimental work. The last section concludes with a summary of our findings

and worthwhile questions for future investigation.

3.2 Energy-Transfer Dimer

We can illustrate our strategy for electronic coherence tracking by treating a

model molecular dimer whose Hamiltonian is given by

H = T +Hel(Q) , (3.1)

where T is the nuclear kinetic energy and Hel(Q) is the electronic Hamiltonian,

parametrized by a collection Q of intramonomer, intermonomer, and bath-mode

nuclear coordinate operators. In a basis of site-excited states in which neither, one

or the other, or both of the chromophores are excited, the electronic Hamiltonian
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may be written as

Hel(Q) = |gg〉Vgg(Q) 〈gg|+ |eg〉Veg(Q) 〈eg|+ |ge〉Vge(Q) 〈ge|

+ J (|eg〉〈ge|+ |ge〉〈eg|) + |ee〉Vee(Q) 〈ee| . (3.2)

Here, the diabatic potential energy surface for the electronic ground state (gg)

is Vgg, those for the singly excited states eg and ge are Veg and Vge, respectively,

and that for the doubly excited ee state is Vee. We regard the excitation-transfer

coupling J as being independent of nuclear coordinates, but this need not be true

in general. In a WPI experiment, this dimer is subject to four ultrashort laser

pulses comprising two phase-locked pulse-pairs, with which it interacts via the

perturbation

V (t) =
∑

I=A,B,C,D

VI(t) , (3.3)

where

VI(t) = −m̂ · EI(t) . (3.4)

For the purpose of intersite coherence observation, it is essential that it be possible

to separately address the two monomers by the choice of laser polarization. They

must therefore have nonparallel molecular transition dipole moments whose

orientations are fixed. Here we treat the simplest case, in which the two transition

moments are mutually perpendicular, and accordingly take the complete dipole

moment operator to be

m̂ = ma (|eg〉〈gg|+ |ee〉〈ge|) + mb (|ge〉〈gg|+ |ee〉〈eg|) +H.c. , (3.5)

where ma = mx̂ and mb = mŷ. The electric fields associated with the pulses take

the form

EI(t) = eIEIf(t− tI) cos [Ω(t− tI) + ϕI ] , (3.6)
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where eI is the polarization, EI is the field strength, f(t) is the common pulse

envelope, Ω is the common carrier frequency, tI is the arrival time of the pulse at

the target dimer, and ϕI is the optical phase.

The site basis is a convenient choice for a dimer with weak energy-transfer

coupling; that is, one whose EET coupling J is small in size compared to the

difference between the site energies Veg(Q) and Vge(Q) for most relevant values

of the nuclear coordinates. When J is large by this criterion, the exciton basis,

defined as the eigenstates of Hel(Q) for the equilibrium configuration of nuclei

Q = 0, provides a better zeroth-order description. Making use of the functions

K(Q) =
1

2
(Veg(Q)− Vge(Q)) , (3.7)

L(Q) =
1

2
(Veg(Q) + Vge(Q)) , (3.8)

and

M(Q) =
√
J2 +K2(Q) , (3.9)

the Hamiltonian of Eq. (3.2) becomes

Hel(Q) = |0〉〈0|Vgg(Q) + |1̄〉〈1̄|
{
L(Q) +M +

K

M
[K(Q)−K]

}
+ |1〉〈1|

{
L(Q)−M − K

M
[K(Q)−K]

}
− (|1̄〉〈1|+ |1〉〈1̄|) J

M
[K(Q)−K]

+ |2〉〈2|Vee(Q) , (3.10)

where K = K(0) and M = M(0). The exciton states appearing in Eq. (3.10) are

|0〉 = |gg〉 , (3.11)

|1̄〉 =
1√
2

[
|eg〉

√
1 +

K

M
+ |ge〉 sign(J)

√
1− K

M

]
, (3.12)

|1〉 =
1√
2

[
|ge〉

√
1 +

K

M
− |eg〉 sign(J)

√
1− K

M

]
, (3.13)
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and

|2〉 = |ee〉 . (3.14)

The dipole operator in the exciton basis is

m̂ = |1̄〉〈0| 1√
2

[
ma

√
1 +

K

M
+ mb sign(J)

√
1− K

M

]

+ |1〉〈0| 1√
2

[
−ma sign(J)

√
1− K

M
+ mb

√
1 +

K

M

]

+ |2〉〈1̄| 1√
2

[
ma sign(J)

√
1− K

M
+ mb

√
1 +

K

M

]

+ |2〉〈1| 1√
2

[
ma

√
1 +

K

M
−mb sign(J)

√
1− K

M

]
+ H.c. . (3.15)

In order that it be possible to selectively address the 1̄ ← 0 and

1 ← 0 electronic transitions of the spatially oriented dimer by a choice of laser

polarization, it is necessary that 〈1̄| m̂ |0〉 and 〈1| m̂ |0〉 be nonparallel. In the case

of perpendicular site-transition moments ma = mx̂ and mb = mŷ, we see that

absorptive transitions to the single-exciton states are also perpendicularly polarized.

We shall deal in a later section with a complication that arises in seeking to track

interexciton coherence, namely that the transition moments 〈2| m̂ |1̄〉 and 〈2| m̂ |1〉

for excited-state absorption, though again mutually perpendicular in the simple

case at hand, do not generally lie along the same directions as those for absorption

from the electronic ground state.

3.3 Electronic Coherence

In seeking to follow the time-evolution of electronic coherence in an

excitation-transfer complex, it is important to emphasize that we wish to make

measurements of the off-diagonal elements of the reduced electronic density matrix

in the singly-excited subspace. It is essential to be specific concerning the basis
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with respect to which the density matrix is to be represented; coherences in one

basis contribute to populations (diagonal matrix elements) in another basis, and

vice versa.

Consider first the coherence between singly-excited site states. The portion

of the dimer’s state that is linear in EA and independent of the other fields can be

written as

|↑A (t)〉 = |eg〉 |φ(A)
eg (t)〉+ |ge〉 |φ(A)

ge (t)〉 . (3.16)

This ket gives the amplitude in the singly excited manifold that would be generated

by linear absorption were the A pulse unaccompanied by the B, C, and D pulses;

the nuclear wave packets |φ(A)
eg (t)〉 and |φ(A)

ge (t)〉 could be calculated by time-

dependent perturbation theory of first order in EA. Under weak EET coupling

(small J) and sufficiently short t − tA, the nuclear wave packet |φ(A)
eg (t)〉 describing

the amplitude in, say, an initially excited eg-state will be of zeroth order in J ,

while the wave packet |φ(A)
ge (t)〉 in the ge-state will be first order in J . The reduced

electronic density operator corresponding to the state-ket (3.16) is

ρ
(A)
el (t) = Trnuc [ |↑A (t)〉〈↑A (t)|]

= |eg〉 〈φ(A)
eg (t)|φ(A)

eg (t)〉 〈eg|+ |eg〉 〈φ(A)
ge (t)|φ(A)

eg (t)〉 〈ge|

+ |ge〉 〈φ(A)
eg (t)|φ(A)

ge (t)〉 〈eg|+ |ge〉 〈φ(A)
ge (t)|φ(A)

ge (t)〉 〈ge| . (3.17)

The intersite electronic coherence at a certain time is given by either of the

(complex conjugate) off-diagonal elements of ρ
(A)
el . Thus,

〈ge|ρ(A)
el (t)|eg〉 = 〈↑A (t)| eg〉〈ge |↑A (t)〉 = 〈φ(A)

eg (t)|φ(A)
ge (t)〉 (3.18)

quantifies the overlap, or lack thereof, between the nuclear wave packet prepared in

the “donor” state by short-pulse excitation and that generated in the “acceptor”

state by excitation transfer. For given donor and acceptor populations, larger
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or smaller magnitudes of this coherence herald lesser or greater entanglement,

respectively, between the electronic site states and the nuclear “environment.”

In the strong EET-coupling case, the coherence between the single-exciton

states |1̄〉 and |1〉 is more convenient to prepare and monitor. The physical

significance of this quantity,

〈1|ρ(A)
el (t)|1̄〉 = 〈↑A (t)|1̄〉〈1| ↑A (t)〉 = 〈φ(A)

1̄
(t)|φ(A)

1 (t)〉 , (3.19)

with respect to the exciton basis states and their nuclear environment is entirely

analogous to that of the intersite coherence with respect to the site states. At short

enough times t − tA, this coherence will be linear in the interexciton coupling (see

Eq. (3.10)). Once constructed in a particular basis, the reduced electronic density

matrix can readily be converted to another basis by a unitary transformation.

3.4 WPI Signal

3.4.1 Setup

Let us find out where information on the electronic coherence (3.18) or

(3.19) resides in the data from a 2D-WPI experiment on the spatially oriented

dimer, investigate the physical basis for its contribution to signal formation, and

determine whether and to what extent these evolving, complex-valued coherences

can be reliably isolated. The measured quantity in such an experiment is the

portion of the time- and frequency-integrated fluorescence proportional to a

quantum-yield-weighted sum of quadrilinear electronic state populations (i.e.,

those parts proportional to EAEBECED). The intrapulse-pair optical phase shifts

ϕBA = ϕB − ϕA and ϕDC = ϕD − ϕC are assumed to be under experimental

control (see Eq. (3.6)), while the interpulse-pair shifts, such as ϕC − ϕB, vary

“randomly” from shot to shot over the many realizations of the pulse sequence

required to accumulate a single data-point.
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A “two-dimensional” dataset contains the quadrilinear fluorescence signal as

a function of the two intrapulse-pair delays tBA and tDC , for a range in waiting

times tCB[27]. The sum- and difference-phased components, proportional to

e−iϕBA−iϕDC and e−iϕBA+iϕDC , respectively, can be collected and analyzed separately

[46, 47, 18, 48]. Here it is sufficient to examine the dimer’s difference-phased 2D-

WPI signal, using the notation of Cina and Kiessling [27]. In the situation where

tA and tB precede tC and tD by more than the pulse duration, it takes the stripped-

down form

Sd = 2QoneRe
{
〈↑A↓B↑D | ↑C〉+ 〈↑A↓C↑D | ↑B〉+ 〈↑D | ↑B↓A↑C〉

+ 〈↑A | ↑B↓D↑C〉+ 〈↑A↑D↓C | ↑B〉+ 〈↑A | ↑B↑C↓D〉
}

+ 2QtwoRe
{
〈↑A↑D | ↑B↑C〉

}
, (3.20)

where Qone (Qtwo) is the quantum yield of the singly-excited (doubly-excited)

manifold.

We will show that a sequence of “zero-dimensional” data-points

extracted from the 2D signal (3.20)—a pump-probe sequence in which the

delay tCB is scanned while the two pulses in each phase-locked pair are made

contemporaneous—houses the sought-after coherences. Physical motivation for this

notion can be provided by considering the contributing overlap 〈↑A↓C↑D | ↑B〉 when

tA = tB = 0 and tC = tD ≡ t under weak EET coupling. For this small-J case,

we choose eA = eB = eC = x̂ and eD = ŷ, so that A, B, and C address the donor

chromophore, while D addresses the acceptor.

The B -pulse, now identical to the A-pulse except for phase, copies the

ground-state nuclear wave packet from the gg-state to the donor-excited eg-state.

Figure 28 illustrates this wave function prior to electronic excitation for a simple

situation in which each monomer has just one Franck-Condon-active vibrational
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mode (Sec. 3.5 specifies the relevant model Hamiltonian). This nuclear distribution

is shown in the top panel of Fig. 29 after it has accompanied the pulse-induced

change in electronic state. Following a certain delay (here, three quarters of a

vibrational period), most of the evolving amplitude, shown in the middle frame,

remains on the donor-excited surface. The small amplitude resulting from energy

transfer to the acceptor-excited ge-state is illustrated in the bottom panel. It is

the overlap between the nuclear wave packets appearing in the bottom and middle

panels of Fig. 29 that we want to measure; but because both of these are linear

in EB and because, in any case, they reside on different electronic surfaces, their

overlap does not contribute directly to the whoopee signal.

Figure 28. The stationary nuclear wave function φ0(qa, qb) in the electronic ground
state of a model dimer is shown in white contours and the gg-potential surface—
both monomers unexcited—is rendered in color. Distance is reckoned in units of
2qrms = 2

√
~/2ω, where ω is the vibrational frequency.

Instead, the bra in 〈↑A↓C↑D | ↑B〉 acts as a surrogate for the propagated

eg-state wave packet in the middle of Fig. 29. As shown in Fig. 30, it is prepared

by the A-pulse and reproduced in the ge-state by a Raman-like process driven by

the C and D pulses. The resulting quadrilinear overlap manifests the quantum

mechanical interference between this reference wave packet and the target packet

which results from excitation transfer, as pictured in Fig. 31.
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Figure 29. Nuclear wave packets associated with | ↑B〉. An x -polarized B -pulse of
duration σ = 0.09τv prepares the time-zero eg-state packet shown in the top panel,
where τv = 2π/ω is the vibrational period. Middle panel portrays the amplitude
remaining on the eg-surface at t = 0.75τv. Bottom panel shows the nuclear wave
packet generated by energy transfer on the acceptor-excited ge-surface as it appears
at this same time.
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Figure 30. Nuclear wave packets associated with | ↑A↓C↑D〉. The top panel depicts
the packet prepared by the short, x -polarized A pulse and 0.75τv of eg-state
evolution. It is identical within a phase-factor to that shown in the middle panel of
Fig. 29. The middle panel shows this wave packet after it has been dumped to the
gg-state by the x -polarized C -pulse. The bottom frame displays the copy prepared
in ge upon re-excitation by the simultaneous, y-polarized D-pulse. Although the
final ge-state wave packet would actually be produced by the nested action of the C
and D pulses, the bottom frame shows one that would be generated by separately
occurring de- and reexcitation processes, with a neglect of temporal pulse overlap.
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Figure 31. The eg-state target (white) and reference (red) wave packets whose
quantum mechanical overlap determines the value of 〈↑A↓C↑D | ↑B〉. This overlap
contributes to the 2D-WPI signal and quantifies the intersite electronic coherence
at t = 0.75τv.

Under strong EET coupling (J larger than the total Franck-Condon energy),

a similar argument demonstrates that 〈↑A↓C↑D | ↑B〉 reveals the interexciton

coherence. In this case, we align the polarization of pulses A, B, and C with

〈1̄| m̂ |0〉 and that of pulse D with 〈1| m̂ |0〉, as explained below Eq. (3.15).

Now the target wave packet resides in state-1, having been prepared by B -pulse

excitation to state-1̄ followed by first-order interexciton amplitude transfer. The

three-pulse reference wave packet generated by A-pulse excitation to |1̄〉 and

Raman-transfer to |1〉 through the combined action of the perpendicularly polarized

C and D pulses mimics the B -pulse amplitude left behind in the 1̄ state.

Two of the contributing overlaps become negligible along the tBA = tDC = 0

slice of the 2D signal (3.20). We shall assume that in the small-J case, the

pulse durations are very short on the timescale h/|J | of energy transfer. In the

large-J case, they will be assumed short on the timescale hM/|J [K(Q)−K] |

of interexciton amplitude transfer. With the polarization combinations we are

choosing, the overlaps 〈↑A↓B↑D | ↑C〉 and 〈↑D | ↑B↓A↑C〉 both vanish, because

they require energy transfer (or an interexciton transition) during the simultaneous
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C and D pulses. In addition, we can make use of two identities,

〈↑A | ↑B↓D↑C〉+ 〈↑A↓C↑D | ↑B〉 = −〈↑A↓C | ↑B↓D〉 , (3.21)

and

〈↑A↑D↓C | ↑B〉+ 〈↑A | ↑B↑C↓D〉 = −〈↑A↑D | ↑B↑C〉 . (3.22)

Eqs. (3.21) and (3.22) record the fact that population of one manifold in a given

process leads to equal depopulation of another (and can be proved directly using

explicit formulas for the overlaps of the kind to be developed shortly). We arrive at

a simplified working expression for the 2D-WPI signal along the pump-probe slice

on which we wish to focus:

Sd(t) = 2Re
{(
Qtwo −Qone

)
〈↑A↑D | ↑B↑C〉 −Qone〈↑A↓C | ↑B↓D〉

}
. (3.23)

3.4.2 Explicit Overlaps

3.4.2.1 Weak EET Coupling

The next task is to obtain explicit expressions for the overlaps appearing in

Eq. (3.23). We consider first the weak EET-coupling case in which polarizations

eA = eB = eC = x̂ and eD = ŷ are to be adopted. In this situation, both | ↑A↑D〉

and | ↑A↓C〉 can be regarded as zeroth-order in J , while | ↑B↑C〉 and | ↑B↓D〉 are

first order. Accordingly, we may use

| ↑A↑D〉(0) = −|ee〉e−iϕA−iϕDm2FAFDp
(ee eg)[t](0)

eg eg p
(eg gg)|φ0〉 , (3.24)

and

| ↑A↓C〉(0) = −|gg〉e−iϕA+iϕCm2FAFCp
(gg eg)[t](0)

eg eg p
(eg gg)|φ0〉 , (3.25)

as well as

| ↑B↑C〉(1) = −|ee〉e−iϕB−iϕCm2FBFCp
(ee ge)[t](1)

ge eg p
(eg gg)|φ0〉 , (3.26)
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and

| ↑B↓D〉(1) = −|gg〉e−iϕB+iϕDm2FBFDp
(gg ge)[t](1)

ge eg p
(eg gg)|φ0〉 ; (3.27)

here, |φ0〉 is the initial vibrational state in |gg〉 and FI = EIσ/2~ (where σ is the

pulse-duration parameter). These formulas also employ reduced pulse propagators

p(ξ̄ ξ) =
1

σ

∫ ∞
−∞

dτf(τ)e∓iΩτ [−τ ]
(0)

ξ̄ ξ̄
[τ ]

(0)
ξ ξ , (3.28)

in which the upper (lower) sign is to be used for an absorptive (emissive) transition

ξ̄ ← ξ (ξ → ξ̄), along with the portions of the free-evolution operators [t]ξ̄ ξ =

〈ξ̄|[t]|ξ〉 ≡ 〈ξ̄| exp{−itH/~}|ξ〉 which are zeroth- or first-order with respect to the

EET coupling.

Substituting Eqs. (3.24) through (3.27) in Eq. (3.23) yields

Sd(t) = 2m4FAFBFCFDRe
{
e−iϕBA+iϕDC

×
[
(Qtwo −Qone)〈φ0|p(gg eg)[−t](0)

eg eg p
(eg ee)p(ee ge)[t](1)

ge eg p
(eg gg)|φ0〉

−Qone〈φ0|p(gg eg)[−t](0)
eg eg p

(eg gg)p(gg ge)[t](1)
ge eg p

(eg gg)|φ0〉
]}

; (3.29)

this is the formula by which the signal is actually calculated in weak EET-

coupling cases. But mFAe
−iϕA [t]

(0)
eg eg p(eg gg)|φ0〉 = −i〈eg| ↑A (t)〉 and

mFBe
−iϕB [t]

(1)
ge eg p(eg gg)|φ0〉

= −i〈ge| ↑B (t)〉 = −i(FB/FA)e−iϕBA〈ge| ↑A (t)〉, so Eq. (3.29) can be

re-expressed as

Sd(t) = 2m2FB
FA

FCFDRe
{
e−iϕBA+iϕDC

× 〈↑A (t)|eg〉
[
(Qtwo −Qone)p

(eg ee)p(ee ge) −Qonep
(eg gg)p(gg ge)

]
〈ge| ↑A (t)〉

}
.

(3.30)

The square-bracketed quantity in Eq. (3.30) differs from a scalar only to the

extent that the pulse duration σ—though assumed to be abrupt compared to
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energy transfer—may not turn out to be brief on the shorter timescale of nuclear

dynamics. Within this small limitation, this expression reveals that the 2D-WPI

signal allows the direct experimental isolation of the complex-valued intersite

electronic coherence 〈↑A (t)|eg〉〈ge| ↑A (t)〉.

3.4.2.2 Strong EET Coupling

In the case of strong EET coupling, we can again work from the starting

formula (3.23) to obtain an explicit expression for the pump-probe slice of the WPI

signal. Now we take eA = eB = eC = 1√
2

[
x̂
√

1 + K
M

+ ŷ sign(J)
√

1− K
M

]
, parallel

to 〈1̄|m̂|0〉, and eD = 1√
2

[
−x̂ sign(J)

√
1− K

M
+ ŷ

√
1 + K

M

]
, parallel to 〈1|m̂|0〉.

One of the contributing overlaps takes the simple form

〈↑A↓C | ↑B↓D〉 = m2FCFDe
iϕDC 〈↑A (t)|1̄〉 p(1̄0)p(01)〈1| ↑B (t)〉 , (3.31)

where | ↑A (t)〉 = i[t]|1̄〉mFAe−iϕAp(1̄0)|φ0〉 and | ↑B (t)〉 = (FB/FA)e−iϕBA| ↑A
(t)〉. In the signal calculation, 〈↑A (t)|1̄〉 is to be evaluated at zeroth order in the

interexciton coupling, and 〈1| ↑B (t)〉 at first order.

The other overlap is more complicated due to the fact that 〈2|m̂|1̄〉 and

〈2|m̂|1〉 may not be aligned with the laser polarizations:

〈↑A↑D | ↑B↑C〉 = m2FCFDe
iϕDC

×
{
JK
M2 〈↑A (t)|1̄〉 p(1̄2)p(21̄)〈1̄| ↑B (t)〉+ K2

M2 〈↑A (t)|1̄〉 p(1̄2)p(21)〈1| ↑B (t)〉

− J2

M2 〈↑A (t)|1〉 p(12)p(21̄)〈1̄| ↑B (t)〉 − JK
M2 〈↑A (t)|1〉 p(12)p(21)〈1| ↑B (t)〉

}
, (3.32)

in which the nuclear wave packets in the 1̄- and 1-states are to be evaluated at

zeroth and first order, respectively, with respect to the interexciton coupling. Since

K is assumed to be smaller in size than J , we see that the overlap (3.32) gives less

weight to the desired |1̄〉〈1| coherence than to the populations |1̄〉〈1̄| and |1〉〈1|, and

still less than to the conjugate coherence |1〉〈1̄|.
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Substitution in Eq. (3.23) gives the large-J signal

Sd(t) = 2m2FB
FA

FCFDRe
{
e−iϕBA+iϕDC

× 〈↑A (t)|
[(
Qtwo −Qone

)(JK
M2
|1̄〉 p(1̄2)p(21̄)〈1̄|+ K2

M2
|1̄〉 p(1̄2)p(21)〈1|

− J2

M2
|1〉 p(12)p(21̄)〈1̄| − JK

M2
|1〉 p(12)p(21)〈1|

)
−Qone|1̄〉 p(1̄0)p(01)〈1|

]
| ↑A (t)〉

}
. (3.33)

In the plausible situation where Qtwo ≈ Qone, as happens when internal

conversion from the doubly to the singly excited manifold occurs more rapidly

than fluorescence (or any competing process by which population might leak

from the doubly excited manifold), Sd(t) becomes an unobscured measure of the

|1̄〉〈1| coherence (with greater fidelity to the degree that the pulse duration beats

the energy-transfer timescale in addition to the slower timescale of interexciton

amplitude transfer, and the reduced pulse propagators become scalars). In more

general cases of unequal Qtwo and Qone, one could explore the possibility of

combining signals with several different polarizations and hence different weightings

of the contributing populations and coherences.

3.5 Illustrative Calculations

In this section we calculate WPI signals revealing the intersite and

interexciton electronic coherence for several realizations of our spatially oriented

EET dimer. As tests of the efficacy of the proposed strategy, these signals are

compared to the actual coherence that develops and evolves between site or exciton

states following short-pulse excitation to the dimer’s singly excited manifold.
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For an EET dimer with N identical internal vibrational modes for each of

the monomers a and b, the site-state potential energies appearing in Eq. (3.2) are

Vgg(Q) =
N∑
i=1

ω2
i

2

(
q2
ai + q2

bi

)
, (3.34)

Veg(Q) = εeg +
N∑
i=1

ω2
i

2

[
(qai − di)2 + q2

bi

]
, (3.35)

Vge(Q) = εge +
N∑
i=1

ω2
i

2

[
q2
ai + (qbi − di)2] , (3.36)

Vee(Q) = εee +
N∑
i=1

ω2
i

2

[
(qai − di)2 + (qbi − di)2] ; (3.37)

we use mass-weighted coordinates and momenta qai, qbi, pai, and pbi. In cases of

multiple modes per monomer (N > 1), the vibrational frequency ωi is taken to

decrease with increasing index i. The period of the highest frequency vibration

τv = 2π/ω1 serves as the unit of time in this section. The offset in bare electronic

transition energy between “donor” and “acceptor” is usually assigned a value ∆ε =

εeg − εge = ~ω1/2, equal to half a quantum in the highest frequency vibration, but

it is given other values in particular instances. We arbitrarily divide a fixed total

Franck-Condon energy ~ω1/4 equally among the N modes in each monomer, so

that ω2
i d

2
i /2 = ~ω1/4N or di =

√
~ω1/2Nω2

i .

In all signal and coherence calculations, the pulse envelope takes the

Gaussian form f(t) = exp{−t2/2σ2} for some pulse duration σ, and the carrier

frequency is set to the average of the bare site-excitation frequencies, i.e., ~Ω =

(εeg + εge)/2 ≡ ε̄. Additionally, we assign an arbitrary, nonzero quantum yield Qone

to the singly excited manifold, while making the physically reasonable assumption

Qtwo = Qone. The latter assumption simplifies the calculations by eliminating the

contribution of the overlap 〈↑A↑D | ↑B↑C〉 to the WPI signal (3.23).
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In tracking electronic coherence within the singly excited manifold, we want

to eliminate contributions due to the electric field strength of the laser pulses and

to find the coherence that would result from a normalized initial wave packet. To

accomplish this task in the small-J case, we abstract from the measured signal of

Eq. (3.23) an “observed intersite coherence”

− Sd(t;ϕBA−ϕDC =0) + iSd(t;ϕBA−ϕDC = π
2
)

2Qonem2 FB
FA
FCFD|p(eg gg)

σ=0 p
(gg ge)
σ=0 |〈↑A (t)|↑A (t)〉

=
〈↑A (t)|eg〉p(eg gg)p(gg ge)〈ge|↑A (t)〉
|p(eg gg)
σ=0 p

(gg ge)
σ=0 |〈↑A (t)|↑A (t)〉

,

(3.38)

noting that the reduced pulse propagators become scalars in the σ = 0 limit and

that 〈↑A (t)| ↑A (t)〉 is the population of the singly excited manifold generated

by the A-pulse. In the large-J case, we correspondingly monitor the “observed

interexciton coherence”

− Sd(t;ϕBA−ϕDC =0) + iSd(t;ϕBA−ϕDC = π
2
)

2Qonem2 FB
FA
FCFD|p(1̄0)

σ=0 p
(01)
σ=0|〈↑A (t)|↑A (t)〉

=
〈↑A (t)|1̄〉 p(1̄0)p(01) 〈1|↑A (t)〉
|p(1̄0)
σ=0 p

(01)
σ=0|〈↑A (t)|↑A (t)〉

.

(3.39)

In the small-J case, we compare the observed coherence (3.38) to the “actual

intersite coherence” 〈↑A (t)|eg〉〈ge| ↑A (t)〉/〈↑A (t)| ↑A (t)〉. For large J, we

compare (3.39) to the actual interexciton coherence 〈↑A (t)|1̄〉〈1| ↑A (t)〉/〈↑A
(t)| ↑A (t)〉. These actual coherences serve as points of reference unaffected

by the fidelity of the WPI coherence-detection process. The magnitudes of the

observed and actual coherences are further compared with the maximum value√
〈↑A (t)|ge〉〈ge| ↑A (t)〉/〈↑A (t)| ↑A (t)〉 or

√
〈↑A (t)|1〉〈1| ↑A (t)〉/〈↑A (t)| ↑A (t)〉

consistent with the positive-definite nature of the reduced electronic density matrix.

3.5.1 Weak EET Coupling

In the weak EET-coupling case, the WPI signal is first-order in J , so we

need not specify its value other than to require that it be smaller than ~ω1/4. The

weak-EET plots in this subsection therefore display the normalized WPI-detected,
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actual, and maximum coherences described above additionally divided by J/~ω1 in

order to remove dependence on the small, but otherwise unspecified J -value.

In the limit of arbitrarily short laser pulses, the A- and B-pulses faithfully

copy the ground-state vibrational wave function into the eg-state, and the inverse

Raman process later driven by C and D transfers a perfect copy of the propagated

eg-state wave packet to ge. As an initial illustration, we therefore consider the

WPI signal from our oriented EET model, which coincides exactly with the actual

intersite coherence, in the simple instance where each monomer has just one

Franck-Condon displaced vibrational mode.

It is possible to derive a semi-analytic expression for the WPI signal/actual

coherence in this limiting case. With a change to center-of-mass and relative

vibrational coordinates Q = (qb + qa)/
√

2 and q = (qb − qa)/
√

2 and their

corresponding momenta, we see that the forms of the site potentials Veg and

Vge differ only along the energy-transfer “reaction coordinate” q. The first-order

approximation to the normalized overlap extracted from the whoopee signal (3.29)

reduces to

〈φeg(t)|φge(t)〉 = −iJ
~

∫ t

0

dτ 〈φ0|[−t](0)
eg eg[t− τ ](0)

ge ge[τ ](0)
eg eg|φ0〉 (3.40)

= −iJ
~

∫ t

0

dτ e
i∆ε
~ (t−τ)〈0gg|e−β(a†−a)e2β(eiωta†−e−iωta)e−2β(eiωτa†−e−iωτa)eβ(a†−a)|0gg〉

= −iJ
~

∫ t

0

dτ exp
{i∆ε

~
(t− τ) + 4β2

(
i sinωt− i sinωτ + e−iω(t−τ) − 1

)}
,

where |0gg〉 is the relative vibrational-mode ground state; a† and a are the relative-

mode creation and annihilation operators, respectively; β ≡ d
2

√
ω
~ is a dimensionless

displacement parameter in the relative coordinate; and we let ω and d stand for ω1

and d1, respectively. The reduction to one dimension of relevant nuclear dynamics

occurs only in the short-pulse limit. For example, since the Veg − Vgg difference

72



potential is a function of qa alone, a nonzero-duration laser pulse produces an eg-

state nuclear distribution in which the q and Q degrees of freedom are correlated.

Figure 32 depicts the absolute value and real and imaginary parts of the

intersite coherence given by Eq. (3.40). That the coherence vanishes at even

multiples of the vibrational period is a consequence of ∆ε’s half-quantum value.

For

〈φeg(2τv)|φge(2τv)〉 = −iJ
~

∫ 2τv

0

dτ exp
{
− iωτ

2
+ 4β2(−i sinωτ + eiωτ − 1)

}
(3.41)

= −iJ
~

∫ τv

0

dτ exp
{
− iωτ

2
+ 4β2(−i sinωτ + eiωτ − 1)

}
− iJ

~
e−i

ω
2
τv

∫ τv

0

dτ̄ exp
{
− iωτ̄

2
+ 4β2(−i sinωτ̄ + eiωτ̄ − 1)

}
;

because e−i
ω
2
τv = −1, the ge-state wave packet generated by energy transfer during

the second τv interval cancels that generated during the first.

Figure 32. Short-pulse limit of WPI signal for weakly coupled EET model with
one vibrational degree of freedom per monomer, coinciding with the actual intersite
electronic coherence. Shown are the absolute value (blue), real part (gold), and
imaginary part (green) of the overlap (3.40) divided by J/~ω1.

Next we look into the viability of our intersite coherence-detection technique

using more realistic, nonzero-duration pulses which remain abrupt compared to

h/|J |, but are a longer-than-minuscule fraction of a vibrational period. Fig. 33
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shows the absolute values of the “normalized” WPI signal, the actual coherence,

and the maximum coherence for the model with one vibrational mode per monomer

and a pulse length σ = 0.09τv. Not only is the WPI signal different from that

Figure 33. Absolute value of intersite coherence signal (blue), actual coherence
(orange), and maximum possible coherence (green) from oriented, weak EET-
coupling model with pulse durations σ = 0.09τv.

Figure 34. Intersite coherence signal (blue), actual coherence (orange), and
maximum possible coherence (green) from oriented, weak EET-coupling model
with pulse durations σ = 0.27τv.

seen in Fig. 32, but the actual coherence generated by the A-pulse is changed as

well because of the wave-packet-shaping effects of a nonzero-duration electronic

excitation. The slight disparity between these two curves reflects imperfect
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coherence detection due to the finite bandwidth of pulses C and D. Both of these

absolute values are significantly smaller than the maximum size consistent with the

positive-definiteness of the reduced electronic density matrix; this is a manifestation

of intersite electronic decoherence born of differing wave-packet dynamics on the

eg- and ge-surfaces. Fig. 34 further demonstrates the effects of pulse duration

on the measurement. In this calculation with σ = 0.27τv—a sizable fraction of

the vibrational period—the signal becomes a less accurate measure of the actual

intersite electronic coherence.

The presence of additional Franck-Condon-active vibrational degrees of

freedom is expected to affect the evolution of intersite coherence. Cases of two

and three modes per monomer, with the reorganization energy apportioned as

described above and σ = 0.09τv, are plotted in Figs. 35 and 36, respectively. In

the N = 2 case of Fig. 35, for which ω2 = ω1/5, the signal remains reminiscent

of the N = 1 case of Fig. 33 at short delays. But the scale is larger, because

the higher-frequency vibration now carries less of the Franck-Condon energy. A

complete period of motion in the lower-frequency mode occurs after 5τv. At twice

this value, t = 10τv, the signals vanish, as they did at t = 2τv for the single-mode-

per-monomer case. The explanation for this vanishing is analogous to that for the

N = 1 case. Figure 36 displays the results with N = 3, ω2 = ω1/5, and ω3 = ω1/11,

up to the overall vibrational recurrence time 5 × 11τv. After this time, all the

plotted quantities diminish symmetrically with their earlier values and vanish at

t = 110τv (not shown). At delay times shorter than its period of 11τv, the presence

of the Franck-Condon displaced lowest frequency mode can be regarded as a stand-

in for inhomogeneous broadening. By comparing Figs. 33, 35, and 36, we see that

the highest value of the observed and actual intersite coherence increases as the
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Figure 35. Intersite coherence signal, actual coherence, and maximum possible
coherence from oriented, weak EET-coupling model with N = 2 modes per
monomer and pulse durations σ = 0.09τv. Color conventions are as in Figs. 33
and 34.

Figure 36. Intersite coherence signal, actual coherence, and maximum possible
coherence from small-J model with N = 3 and the common pulse duration
σ = 0.09τv. Color conventions are those used previously.
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Franck-Condon energy is divided among a larger number of vibrational modes; but

these also become a smaller fraction of the highest value taken by the maximum

coherence consistent with a positive-definite density matrix and the given intersite

population transfer.

In light of recent interest in the effects of vibronic resonance on energy-

transfer dynamics [49, 50], we return briefly to the simplest, one-mode-per-

monomer case and consider alternative values, ∆ε = 0 and ~ω, for the site-

energy difference. In the first, equal-energies case, any difference-mode eigenstate

in the donor well with vibrational quantum number neg is degenerate with the

corresponding state in the acceptor well having nge = neg. When ∆ε = ~ω, on

the other hand, the vibronic resonance is between corresponding states obeying

nge = neg + 1. Figure 37 reports semi-analytic calculations of the absolute value

of the coherence signals for each of these cases with N = 1 and arbitrarily short

pulses. In contrast with what is seen for the preceding ∆ε = ~ω/2 cases, both of

these oscillatory intersite coherence signals exhibit steady cycle-averaged growth,

with the ∆ε = 0 coherence increasing roughly three times as fast as the one with

∆ε = ~ω. In the presence of vibronic resonance, the first-order perturbative

treatment underlying Eq. (3.40) would, however, become insufficient beyond some

time inversely proportional to the actual size of the coupling constant J .

Qualitative semiclassical consideration of the dynamics of the eg and ge

wave packets, whose overlap determines the coherence, provides some insight

into the differences between the two signals in Fig. 37. Figure 38 shows phase-

space trajectories for the donor- and acceptor-state wave packets in both cases.

We consider only the difference mode, as this vibration mediates energy transfer.

Ignoring the nonzero (in fact, quite sizeable) spatial widths of the wave packets,
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Figure 37. Short-pulse intersite coherence signal from small-J model with N = 1
for the cases of equal site energies (blue) and ∆ε = ~ω (gold).

energy transfer would be expected to occur when the center of the eg wave packet

is near the crossing seam between the eg and ge potentials. This point on the eg

trajectories, marked by a red dot in each panel, is also the semiclassical point of

origin of the EET-born ge trajectory. The crossing seam lies at q = 0 for ∆ε = 0

and at q = −
√

2d for ∆ε = ~ω.

In the case of equal site energies, the donor trajectory (ω〈q〉eg, 〈p〉eg) circles

the point (− ωd√
2
, 0) in clockwise fashion, while (ω〈q〉ge, 〈p〉ge) circles clockwise about

( ωd√
2
, 0). The crossing region is indicated by a grey swath of (perhaps exaggerated)

width ωd√
2

straddling the ωq = 0 line in the left panel of Fig. 38. At the edges of

this stripe, the site potentials differ by plus or minus ω2d2/2 = ~ω/4, a splitting

more than large enough to preclude EET under weak coupling. In the ∆ε = ~ω

situation, both trajectories still circulate in the same sense about the same centers.

But with the crossing seam now at ωq = −ω
√

2d, the phase-space path of the ge

wave packet has a radius three times larger than the eg wave packet’s.

Considering the limiting case of a phase-space path of radius r and a

crossing stripe of much smaller width w, a trignometric argument shows that,
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after passing the crossing point, the phase point remains in the resonance region

for a time 1
ω

√
w
r
. We therefore expect an amplitude increment on the acceptor

potential to remain accessible for constructive accumulation with subsequent or

prior increments for a time that is about
√

3 longer in the ∆ε = 0 case than when

∆ε = ~ω. This reasoning is at least qualitatively consistent with the faster cycle-

averaged growth of intersite coherence in the former instance.

<p>	 <p>	

ω<q>	 ω<q>	- ωd/√2 ωd/√2ωd/√2- ωd/√2

ge 

ge 

eg 
eg 

Figure 38. Qualitative difference-mode phase-space trajectories for the wave
packets |φeg〉 and |φge〉 which underlie the signals in Fig. 37. In the left plot,
∆ε = 0, while ∆ε = ~ω on the right. Red dots mark the points on these trajectories
at which Veg = Vge, where energy transfer is most facile. The shaded regions
are those within which potential-energy difference may be small enough to allow
energy transfer. Difference coordinates at the potential minima are indicated by
tick marks.

It is seen in Fig. 37 that the change in the absolute value of the intersite

coherence signal between successive local minima in the ∆ε = 0 case also exceeds

that between successive minima for ∆ε = ~ω. Successive minima occur at t ≈

(n − 1
2
)τv and (n + 1

2
)τv in the first instance and at t ≈ nτv and (n + 1)τv in the

second. Straightforward calculations starting from Eq. (3.40) show that for our

weakly coupled ∆ε = 0 dimer, we have〈
φeg
(
(n+ 1

2
)τv
)∣∣φge((n+ 1

2
)τv
)〉
−
〈
φeg
(
(n− 1

2

)
τv)
∣∣φge((n− 1

2
)τv
)〉

= −iJ
~

∫ (n+ 1
2

)τv

(n− 1
2

)τv

dτ exp
{
−4β2(1 + eiωτ + i sinωτ)

}
= −2iJ

~ω

∫ π

0

dθ e−
1
2

(1+cos θ) cos(sin θ) ∼= − iJ~ω3.129 , (3.42)
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while for the dimer with ∆ε = ~ω, we find〈
φeg
(
(n+ 1)τv

)∣∣φge((n+ 1)τv
)〉
−
〈
φeg(nτv)

∣∣φge(nτv)〉
= −iJ

~

∫ (n+1)τv

nτv

dτ exp
{
−iωτ + 4β2(cosωτ − 1)

}
=

2iJ

~ω

∫ π

0

dθ e−
1
2

(1+cos θ) cos θ ∼= iJ

~ω
0.9828 . (3.43)

The difference in magnitude between the last members of Eqs. (3.42) and (3.43) is

accounted for by the fact that sin θ < θ for θ between zero and π, an interval on

which cos θ is a monotonically decreasing function.

3.5.2 Strong EET Coupling

We now consider a situation in which the energy-transfer coupling is larger

than the electronic-vibrational interaction. Specifically, we keep the other molecular

parameters the same as before (including ∆ε = ~ω1/2), but set J =
√

3
2
~ω1.

The pulse polarizations are different for the large-J case, in order to target the

single-exciton electronic states. For the chosen ∆ε and J , the polarizations become

eA = eB = eC =
√

3
5
x̂ +

√
2
5
ŷ, aligned with m1̄0, and eD = −

√
2
5
x̂ +

√
3
5
ŷ, aligned

with m10 (see Section 3.2). The singly-to-doubly-excited transition moments m21̄ =√
2
5
x̂ +

√
3
5
ŷ and m21 =

√
3
5
x̂ −

√
2
5
ŷ are mutually perpendicular, but do not

coincide with the ground-to-singly-excited moments.

Appendix B spells out a perturbation theory treatment of the strong-

coupling case. We calculate the WPI-coherence signal at first order in the coupling

between the 1̄ and 1 excitonic states (see Eq. (3.10)). In the short-pulse limit, the

observed interexciton coherence (3.39) following initial excitation of the 1̄-state
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coincides with the actual coherence. In this limit, the signal becomes,

〈φ0|p(01̄)[−t](0)

1̄1̄
[t]

(1)

11̄
p(1̄0)|φ0〉

〈φ0|p(01̄)p(1̄0)|φ0〉
= 〈φ0|[−t](0)

1̄1̄
[t]

(1)

11̄
|φ0〉

= i
J

M

N∑
j=1

βj
ωjdj

2

√
ωj
~

∫ t

0

dτe
2iM
~ (t−τ)

(
eiωjτ − 2e−iωj(t−τ) + e−iωjτ

)
×

N∏
k=1

e4β2
k(e−iωk(t−τ)+i sinωkt−i sinωkτ−1) , (3.44)

where |φ0〉 is the N -dimensional vibrational ground state, and βj = K
M

dj
2

√
ωj
~ .

The coherence signal (3.44) is plotted in Fig. 39 for the case in which each

monomer has a single vibrational mode. The interexciton coherence vanishes at

Figure 39. Interexciton coherence signal from a dimer with one internal vibrational
mode per monomer in the case of arbitrarily abrupt laser pulses. Shown are the
absolute value (purple), the real part (cyan), and the imaginary part (brown) of the
electronic coherence following excitation of the 1̄-state at t = 0.

integer multiples of 2τv for a different reason than in the weak-coupling case. With

the chosen values of J and ∆ε, the interexciton splitting works out to 2M = 5~ω/2

(we let ω stand for ω1 in the rest of this subsection). Since the difference-mode

displacement parameter takes the small value β = 1/10
√

2, we can approximate Eq.
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(3.44) at first order in β and carry out the τ -integration, finding

〈φ0|[−t](0)

1̄1̄
[t]

(1)

11̄
|φ0〉 ∼= −

J

M
βd

√
ω

~
ei

5
2
ωt
{

1
3

(
e−i

3
2
ωt − 1

)(
1− 2e−iωt

)
+ 1

7

(
e−i

7
2
ωt − 1

)}
.

(3.45)

The splitting 2M between the excitonic states happens to be a half-odd multiple

of ~ω, and the interexciton coupling is linear in a† + a (see Appendix B). The

electronic nutation process [51] that governs interexciton amplitude transfer

also involves the gain or loss of a vibrational quantum in the difference-mode,

occurring here at frequencies 5
2
ω ± ω. Contributions at both of these frequencies

simultaneously complete nutation cycles at t = 2nτv; both terms in curly brackets

in Eq. (3.45) vanish at these times, corresponding to no net transfer of amplitude.

Figure 40 shows the absolute value of the coherence signal for the same

system as it would be prepared by photoexcitation of the 1̄-state and observed

using pulses of duration σ = 0.05τv. Also plotted is the maximum value the

interexciton coherence could take at as a function of time, consistent with a

positive-definite reduced electronic density matrix and the population that has been

transferred from the 1̄- to the 1-state. Both are calculated numerically using the

methods of Appendix B. It is seen that the coherence signal observed with finite-

duration pulses offers an accurate account of that which would be prepared and

measured ideally with much shorter pulses.

Figure 41 explores the effects on the observed interexciton coherence of

additional vibrational modes. Plotted there is the magnitude of the coherence

signal for cases with one, two, and three vibrational modes per monomer, as it

would be measured with arbitrarily short pulses. Each monomer’s total Franck-

Condon energy is partitioned equally among its modes by the same prescription

as described above for the weak-coupling case, and again the mode frequencies
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Figure 40. Calculated interexciton coherence signal from the dimer with one mode
per monomer, as it would be generated and observed in wave-packet interferometry
experiments with laser pulses of duration σ = 0.05τv. The absolute value of the
coherence signal and the corresponding maximum coherence consistent with a
positive-definite reduced electronic density matrix are plotted as cyan and brown
lines, respectively. The purple curve (coinciding with that shown in Fig. 39) is the
coherence signal generated with arbitrarily short pulses; the corresponding maximal
coherence (not shown) is almost indistinguishable from the brown line.

are ω1 = ω, ω2 = ω/5, and ω3 = ω/11. When equally dividing the Franck-

Condon energy among the modes, the prefactors βj
ωjdj

2

√
ωj
~ = K

M
ω

8N
in Eq. (3.44)

become uniform. Adding the lower frequency modes introduces new electronic

nutation frequencies 5
2
ω ± ωj which are closer but not equal to the exciton splitting

2M/~ = 5ω/2; the periodic disappearance of interexciton coherence observed in the

one-mode-per-monomer case is extinguished. In the case of two vibrational modes

per monomer, for instance, the interexciton coherence signal (giving rise to the cyan

trace in Fig. 41) can be approximated at first order in β1 and β2 as

〈φ0|[−t](0)

1̄1̄
[t]

(1)

11̄
|φ0〉 = − J

80M
ei

5
2
ωt

[
e−i

3
2
ωt − 1

3/2

(
1− 2e−iωt

)
+
e−i

7
2
ωt − 1

7/2

+
e−i

23
10
ωt − 1

23/10

(
1− 2e−

i
5
ωt
)

+
e−i

27
10
ωt − 1

27/10

]
. (3.46)

A similar approximate expression can be worked out for the N = 3 situation.
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Figure 41. The magnitude of the interexciton coherence signal in a dimer with
three (brown), two (cyan), and one (dashed purple) internal vibrational mode(s)
equally sharing a fixed total Franck-Condon energy. All pulses are taken to be
arbitrarily short.

The special case of monomers with equal site energy proves to be

an interesting one under strong EET coupling. Without changing the other

parameters, we set ∆ε = 0. The interexciton transition moments now become

m1̄0 = m21̄ = m√
2
(x̂ + ŷ) and m10 = −m21 = m√

2
(−x̂ + ŷ). We align

eA, eB, and eC with the former and eD with the latter. Figure 42 displays semi-

analytic calculations for dimers with one, two, and three vibrational modes in each

monomer. Although amplitude transfer from 1̄ to 1 occurs via electronic nutation,

as manifested in the nonzero maximum-coherence traces, no interexciton coherence

develops, regardless of the number of vibrational modes. This behavior is predicted

by Eq. (3.44), where it is seen that any contribution to the coherence must be

proportional to one of the βj; these in turn are proportional to K = ∆ε/2, which

vanishes when the site energies are equal.

A more physical picture follows from the analysis in Appendix B: Equation

(B.3) shows that when the site energies are equal (K = 0), the diabatic potential

surfaces in the 1̄- and 1-states have the same form and are not displaced from
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the electronic ground-state potential along the difference-mode coordinates qj.

Since every contribution to the interexciton coupling Hamiltonian of Eq. (B.4)

is linear in one of the qj, amplitude transfer between the exciton states is always

accompanied by a change in vibrational quantum number in the equal site-energies

case. Amplitude transferred from one exciton state to the othere is therefore “born

completely entangled” with the vibrational environment and cannot give rise to

interexcitonic coherence.

Figure 42. Flat green line shows the vanishing interexciton coherence, regardless of
the number of vibrational modes, for the case of equal site energies. The maximum
amount of interexciton coherence that would be consistent with the interexciton
population transfer and a positive-definite reduced electronic density matrix is
plotted in purple, cyan, and brown for dimers with one, two, and three vibrational
mode(s) per monomer, respectively. All pulses are arbitrarily short.

The physical dynamics of interexciton amplitude transfer and coherence

generation, elaborated here and in Appendix B, are qualitatively different from

those of intersite amplitude transfer and coherence illustrated in Section 3.5.1. The

upper and lower exciton states under consideration in the strong EET-coupling

case are well separated in energy compared to the size of the interexciton coupling

(see Eq. (3.10)), and interexciton amplitude transfer is therefore electronically

nonresonant and occurs by a nutation process. On the other hand, the site states
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used as an electronic basis in the case of weak EET coupling are energetically well

separated for most nuclear coordinate values (see Eq. (3.2)), but the intersection

seam between the site-excited potential energy surfaces is the location of the

most efficient, resonant intersite amplitude transfer. In addition, whereas the

interexciton amplitude-transfer coupling is linear in each of the nuclear coordinate

operators, the intersite coupling operator has a leading zeroth order component.

These differences account, in particular, for the differing trends observed in the

dependence of the maximum possible coherence on the number of Franck-Condon

active vibrations in each monomer. In the strong EET-coupling case seen in Fig.

41, the maximum interexciton coherence tends to decrease with an increasing

number of vibrational modes. In the weak-coupling cases of Figs. 33, 35, and 36,

the maximum intersite coherence increases with an increasing number of modes.

3.6 Discussion

The preceding sections outline a strategy for observing the off-diagonal

elements of the reduced electronic density matrix within the singly excited manifold

of a spatially oriented EET dimer. Electronic coherence detection in either the

site or the exciton basis would support reconstruction of the time-evolving reduced

electronic density matrix; determination of the corresponding diagonal elements—

site-state or excitonic populations—can be accomplished using time-resolved pump-

probe or fluorescence up-conversion spectroscopy [52, 53, 28].

It emerged from our analysis that the sought-after intersite or interexciton

coherences reside in the pump-probe slice through a 2D-WPI data set, the tBA =

tDC = 0 trace within a collection of signals spanning {tBA, tCB, tDC}. But revealing

the reduced electronic density matrix in the singly excited manifold is not the be-all

and end-all of ultrafast spectroscopy on energy-transfer systems; much additional
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information on the nuclear dynamics accompanying EET is to be gained from

the full 2D-WPI signal over variable ranges in all three interpulse delays. Several

interesting patterns are seen in our signal calculations, but these are meant to

illustrate the capabilities of electronic coherence detection; the dimer models are

simple, and the calculated signals are not likely to accurately portray those from

more realistic systems.

An oriented ensemble of EET multimers could consist of the visible light-

absorbing chromophores in a single crystal of macromolecular light-harvesting

antennas from a photosynthetic organism [54] or an inorganic crystal dyed with

synthetic organic dimers or higher multimers [55, 56, 57]. With the advent of

fluorescence-detected single-molecule multidimensional electronic spectroscopy [58],3

it should also become possible to perform measurements of the kind advocated here

on individual EET dimers embedded in a solid medium. In the related context of

inverting pump-probe data to effect quantum-state tomography (see below), Hoyer

and Whaley have investigated how the absence of inhomogeneous broadening in a

single-molecule experiment can improve the fidelity of the reconstruction compared

with oriented or isotropic macroscopic ensembles [59].

If experiments of the kind proposed are to be carried out on macroscopic

ensembles, inhomogeneities in the site-energies and intermonomer coupling would

likely come into play. Both forms of inhomogeneity would be expected generally

to diminish the size and limit the longevity of either intersite or interexciton

coherence. These issues are addressed only obliquely here (in Section 3.5.1) and

deserve further detailed investigation.

3Andy Marcus, private communication.

87



As is detailed above, it is preferable to track electronic coherence in

the site-excited basis when the EET coupling is smaller in size than the local

difference in site-state energies over most of the dynamically accessed range of

nuclear motion. An excitonic description is more appropriate when the inter-

exciton splitting (roughly twice the EET coupling) exceeds the magnitude of

the interexciton couplng (which is itself similar in size the electronic-vibrational

interaction). In the intermediate regime where neither criterion applies, it would

be about equally practical to monitor the electronic coherence in either of these

two nuclear coordinate-independent bases. In this case, however, amplitude transfer

between the singly excited electronic states in either basis would have to be treated

nonperturbatively, as it could not be accurately accounted for with low-order time-

dependent perturbation theory.

Experimental determination of either the intersite or interexciton coherence,

along with the corresponding electronic state populations, as envisaged here, can be

compared with various techniques for quantum process tomography [60, 61, 62].

Both undertakings make use of optically phase-coherent ultrafast spectroscopy

data to follow the open-system dynamics in the singly excited manifold of an

energy-transfer system. Under consideration in the present study is the design

of experiments to monitor as directly as possible the elements of the evolving

reduced electronic density matrix. We wish to mobilize procedures for molecular

state determination, akin to those originally developed for isolated systems [63, 64],

to apply to an open quantum “subsystem” comprising the singly excited states

of an energy-transfer complex embedded in the “environment” of the its intra-

and intermolecular nuclear degrees of freedom. In contrast, quantum process

tomography outlines a procedure for inverting polarization and pulse-spectrum
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dependent multidimensional electronic or other ultrafast spectroscopy data to

obtain a completely positive, trace-preserving map for the one-exciton manifold.

The underlying theory has been worked out in several spectroscopic contexts. This

procedure has been successfully implemented using transient-grating data from

organic double-walled nanotubes [65]. The description of the nuclear dynamics

underlying the observed optical signals as well as the treatment of pulsed-laser

excitation remain somewhat idealized in existing treatments. Datta and co-workers

have investigated the possibility of implementing a simplified test for the role

of interexciton coherence in energy transfer based on partial quantum process

tomography [66].

The assumed existence in quantum process tomography of a map χ

specifying the reduced electronic density matrix ρel(t) = χ(t)ρel(0) depends on

the preparation of an initially photo-excited state ρtotal(0) = ρel(0) ⊗ ρnuc(0) in

which the electronic and nuclear degrees of freedom are uncorrelated. It applies

only to arbitrary ρel(0) accompanied by the same particular nuclear distribution

ρnuc(0). In practice, the preparation of such an uncorrelated initial state would

appear to require excitation pulses of duration short enough to “freeze” nuclear

motion entirely. In comparison, although the fidelity of the coherence-detection

procedure presented here relies on the brevity of the detection pulses C and D, it

should function as desired regardless of the spectral and temporal properties of the

pulses which create the initial electronically excited state.

Apart from its intrinsic interest, reconstruction of the reduced electronic

density matrix would enable evaluation of a variety of correlation functions that

enter the so-called Leggett-Garg parameters [67]. These quantities obey certain

inequalities under the postulates of macroscopic realism; their violation would
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signify the presence of intrinsically quantum mechanical behavior in energy

transfer. Recent simulations of Leggett-Garg parameters for the Fenna-Matthews-

Olson light-harvesting complex predict some violations of the requisite inequalities

even at room temperature [67]. These simulations made a number of dynamical

assumptions, including Markovian behavior in energy transport. In addition, this

work did not adduce a specific experimental strategy for evaluating the simulated

Leggett-Garg parameters.

Interestingly, account has been taken of xxxy-polarized two-dimensional

electronic spectroscopy signals from a chiral light-harvesting multimer [68, 69].

In simulations of an isotropic ensemble of Fenna-Matthews-Olson complexes, this

polarization was included along with several other chirally-induced contributions to

2D interferograms. The authors employed a genetic algorithm in a successful search

for combinations of differently polarized signals which emphasize peaks associated

with selected energy-transfer pathways and de-emphasize others. Better spectral

resolution was achieved than with the nonchiral xxxx polarization combination

alone, but no discussion was given of the possible use of xxxy or other polarizations

on spatially oriented, not necessarily chiral complexes to track the evolution of

intersite or interexciton electronic coherence.

3.7 Conclusions

In the theoretical study reported here, we identify an experimental strategy

for isolating the off-diagonal elements of an energy-transfer dimer’s reduced

electronic density matrix in the singly excited subspace. We show that with

appropriately chosen polarizations, the pump-probe limit of the two-dimensional

wave-packet interferometry signal from a spatially oriented ensemble or an

individual dimer with nonparallel site-transition moments faithfully tracks either

90



the intersite coherence—in the case of weak energy-transfer coupling—or the

interexciton coherence—under strong coupling. Although the model dimer used

for illustrative signal calculations is a simple one, the signals exhibited interesting

and interpretable dependence on the number and frequencies of the vibrational

modes coupled to each site-transition, the difference in monomer site energies, and

the energy-transfer coupling strength.

Signal calculations based on the electronic potential energy surfaces

and transition dipole moments determined via an ab initio electronic structure

treatment of an experimentally targeted species would be a natural next step for

theoretical development. Another question of interest for future investigation might

be the discernibility of intersite and interexciton electronic coherence from isotropic

samples of chiral energy-transfer systems.

3.8 Bridge

This chapter has provided a wave-packet interferometry experiment

that allows for the detection of electronic coherence. The utility of dynamical

approaches to the calculation of spectroscopic signals is highlighted by this work;

devising an experiment to detect the coherence follows naturally from framing the

theory on the dynamics of wave packets and realizing that the electronic coherence

is simply the overlap of particular wave packets. The next chapter, though

no longer focused on spectroscopy, provides a dynamical framing of electronic

structure theory, a subject that is traditionally considered from the point of view

of stationary wave functions.
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CHAPTER IV

EXPLORING A SPECTRAL-FILTERING APPROACH TO ELECTRONIC

STRUCTURE CALCULATIONS

This work is currently unpublished with a manuscript in preparation.

Alexis Kiessling derived the expressions, performed the calculations, and wrote the

manuscript; Jeffrey Cina provided much help with all aspects of the work. Jeffrey

Cina was the principal investigator for this work.

4.1 Introduction

The electronic structure of a molecule holds useful information and is

capable of providing a great deal of chemical insight. This structure is a spectrum

of eigenstates of the molecule’s electronic Hamiltonian, and though this structure

is static in nature, it can be used to gain insight into dynamical phenomena. For

example, electronic structure can help provide interpretations of such observable

quantities as absorption spectra or reaction products [70, 71]. Solving for these

eigenstates analytically is essentially impossible except for one-electron systems,

and an enormous effort has been made over the past eighty years to develop

approximate numerical solutions [72, 73]. One of the earliest approximations, the

Hartree-Fock approximation (HF) [74], is still used today. HF uses a set of basis

functions to find the single Slater determinant with a minimum energy, calculated

as the determinant’s expectation value of the Hamiltonian. Taking advantage of the

variational principle, the determinant is iteratively improved to approximate the

ground-state wave function [75].

HF serves as the starting point for many calculations; some examples

include configuration interaction calculations and coupled cluster theory [72]. These

calculations use many configurations of the “excited” form of the HF ground-state
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Slater determinant to better approximate the ground state. In some sense, these

methods are biased towards the ground state, starting from the best HF ground

state to further the approximation. Additionally, for many-electron systems, these

methods require combining a large number of terms. While the success of these

techniques in calculating observables is apparent [76], requiring so many corrections

suggests that it remains worthwhile to investigate alternative approaches. There

are already several methods that do not start from a HF ground state, such as

Quantum Monte Carlo (QMC) and Density Functional Theory (DFT) [77, 78].

These methods face some challenges as well, however. Similarly to HF-based

methods, DFT must attempt to approximate electron correlation [78], and QMC

methods require modifications to retrieve excited states [79, 80]. Ultimately,

the effectiveness of these tools relative to each other depends on many practical

considerations. Here, we explore another potential tool to numerically approximate

eigenstates of an electronic Hamiltonian.

We attempt to build upon an idea originally proposed by Heller in the

context of semiclassically-propagated nuclear wave packets [81, 82]. Though the

focus of that work was dynamics, Heller noted that one could obtain eigenstates

from a wave packet’s time evolution by Fourier transformation from the time

domain to the frequency domain. This approach could be thought of as a spectral

filtering technique. In the following, we apply this technique to fermionic systems,

which follow antisymmetry rules. The requirement of antisymmetry can be easily

imposed in spectral filtering; as long as the initial wave packet is antisymmetric

(that is, for example, a Slater determinant), the resulting eigenstates will have the

correct antisymmetry. What is more, the dynamical approach automatically fully

incorporates the effects of electron correlation without its separate consideration.
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Initially approximating the electron-electron interaction as an interaction with an

averaged field, as is done in methods based on HF, is unnecessary. This approach

lends itself to semiclassical approaches to time evolution (or other strategies based

on approximate trial wave functions defined by time-dependent parameters), and

we compare the simplest such possibility to an exact approach.

This paper is outlined as follows: Section 4.2 presents a brief theoretical

background on this technique and the example system to be explored; Section

4.3 describes a direct numerical integration approach and its results; Section

4.4 implements a semiclassical implementation; Section 4.5 compares the results

obtained from a simple Hartree-Fock calculation to those obtained by direct

numerical integration; Section 4.6 considers the simplest application of Section

4.4’s semiclassical implementation to a Coulomb potential; and Section 4.7 ends the

paper with a discussion of the possible merits of this approach and its limitations.

4.2 Theory

The general strategy of the approach is to approximate the unnormalized

kets |Ψ̃(ω)〉, which are given by

|Ψ̃(ω)〉 ≡
∫ ∞
−∞

dt eiωt |Ψ(t)〉 . (4.1)

If the time evolution of |Ψ(t)〉 is governed by a time-independent Hamiltonian, then

|Ψ̃(ω)〉 = 2π
∑
n

cnδ(ω − ωn) |n〉 , (4.2)

where cn ≡ 〈n|Ψ(0)〉 and the eigenstates |n〉 obey H |n〉 = En |n〉 = ωn |n〉;

~ = 1 throughout. If no degenerate eigenstates exist, the Fourier coefficients

each correspond to a single eigenstate |n〉 and eigenenergy En, and a portion of

the eigenspectrum of H is given by |Ψ̃(ω)〉. The cns determine whether or not a

given eigenstate is recovered by the Fourier transformation.
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In practice, we numerically approximate |Ψ̃(ω)〉 using the Riemann sum

|Ψ̃(ω)〉 ∼=
Nt∑

k=−Nt

δt eiωtkg(tk) |Ψ(tk)〉 , (4.3)

where t±Nt = ±T and δt = ti − ti−1. The window function, g(t), converges the sum

between t = −T and t = T . There are many possible choices of window function;

here, we set g(t) = γ cos πt
2T

Θ(T + t)Θ(T − t), where Θ(t) denotes the Heaviside step

function and γ = 1√
2πT

ensures that∫ ∞
−∞

dω 〈Ψ̃(ω)|Ψ̃(ω)〉 = 1. (4.4)

The function f̃(ω), given by

f̃(ω) ≡ 〈Ψ̃(ω)|Ψ̃(ω)〉 , (4.5)

is reminiscent of a power spectrum. This ‘power spectrum’ provides information

concerning the resonance of |Ψ(t)〉 with the frequency ω. For a given g(t),

f̃(ω) =
∑
n

|cn g̃(ω − ωn)|2 . (4.6)

The Fourier transform of the window function, g̃(ω), is peaked at ω = 0. f̃(ω),

then, is peaked at frequencies that equal any ωn, provided that cn 6= 0. Eigenstates

are found by finding f̃(ω) using Eq. 4.5, searching f̃(ω) for peaks, and taking the

corresponding kets |Ψ̃(ω)〉 to be the unnormalized eigenstates. Wave packets for

which many cn are nonzero lead to more eigenstates, as illustrated by Fig. 43.

To specialize the strategy to electronic structure problems, we simply

restrict the choice of |Ψ(0)〉 to wave packets that are antisymmetric with respect

to interchange of any two electrons. This is easily done with a Slater determinant,

but the determinant need not be built from Fock orbitals.

We use a model Hamiltonian representing two spinless, charged fermions

in a harmonic well. The repulsion between the two fermions is simplified to be
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harmonic. Similar models have been used to explore alternative approaches to

electronic structure [83]. The Hamiltonian is

H =
1

2
{p2

1 + p2
2 + Ω2(q2

1 + q2
2)− ω2(q1 − q2)2} , (4.7)

where qi and pi are the coordinate and momentum of fermion i, and the mass is

taken to be the mass of an electron, set to 1. The Hamiltonian is separable, and

may be written in the normal coordinates q = 1√
2
(q1 + q2) and q̄ = 1√

2
(q1 − q2) as

H = h+ h̄ =
1

2
(p2 + p̄2 + Ω2q2 + ξ2q̄2). (4.8)

The normal mode frequency associated with h̄ is ξ =
√

Ω2 − 2ω2. We set Ω = 2π

fs−1 and ω = π fs−1, leading to ξ =
√

2 π fs−1; the eigenstates |n, n̄〉 obey

h |n, n̄〉 = Ω(
1

2
+ n) |n, n̄〉 and

h̄ |n, n̄〉 = ξ(
1

2
+ n̄) |n, n̄〉 .

(4.9)

To find the electronic eigenstates of this system using the described strategy,

we will obtain the Fourier transform of the time evolution of the Slater determinant

given by

〈q1, q2|Ψ(0)〉 = N(〈q1, q2|φ〉 − 〈q2, q1|φ〉) , (4.10)

where N = (2− 2e−
ξ
2

(δqrms)2
)−

1
2 normalizes |Ψ(0)〉 and

〈q1, q2|φ〉 = 〈q1, q2| e−iδ qrmsp1 |0, 0〉 ; (4.11)

qrms ≡
√
〈0, 0| q2

1 |0, 0〉 =
√
〈0, 0| q2

2 |0, 0〉 and δ ≈ 3.59849 (δ qrms =
√

10× 120 pm).

The potential energy surface and 〈q1, q2|Ψ(0)〉 are shown in Fig. 44.

The fidelity of a state |Ψ̃(ω)〉 taken with respect to an eigenstate |n, n̄〉

gives a measure of the accuracy of the spectral filtering strategy. The fidelity is

given by

F (ω, n, n̄) ≡ |dnn̄(ω)|2
f̃(ω)

; (4.12)
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dnn̄(ω) ≡ 〈n, n̄|Ψ̃(ω)〉. In the case of the model system characterized by the

Hamiltonian in Eq. 4.7, both f̃(ω) and F (ω, n, n̄) have analytical expressions.

Noting that f̃(ω) =
∑

nn̄ |dn,n̄(ω)|2, we have

dnn̄(ω) = cnn̄g̃(ω − ωn − ωn̄) , (4.13)

where

g̃(ω) = γT{sinc(
ωT

π
+

1

2
) + sinc(

ωT

π
− 1

2
)} , (4.14)

and

cnn̄ ≡ 〈n, n̄|Ψ(0)〉 = Ne−
(δ qrms)2

8
(Ω+ξ)(

δ qrms
2

)n+n̄

√
Ωnξn̄

n!n̄!
(1− (−1)n̄) . (4.15)

The sinc function in the expression for g̃(ω) is the normalized one: sinc(x) =

sin(πx)/πx. Equation 4.15 is related to the familiar expression for a Glauber

coherent state in the eigenbasis.

4.3 Direct Numerical Integration

We use a discrete position basis to determine |Ψ(tk)〉 by direct numerical

integration of the Schrödinger equation using the Riemann sum given by

〈q1i , q2j |Ψ(tk)〉 = 〈q1i , q2j | e−iHtk |Ψ(0)〉

∼=
Nq∑

m=−Nq

Nq∑
n=−Nq

δq2 〈q1i , q2j |e−iHtk |q1m , q2n〉〈q1m , q2n|Ψ(0)〉
(4.16)

δq = q1i − q1i−1
= q2j − q2j−1

and 〈q1i , q2j |Ψ(tk)〉 has its conventional meaning. The

summation limits are chosen so that 〈q1±Nq
, q2±Nq

|Ψ(tk)〉 ∼= 0 for all tk.

The approximate completeness relation

Nq∑
m=−Nq

Nq∑
n=−Nq

δq2 |q1m , q2n〉〈q1m , q2n| = 1 (4.17)

leads to expressions for the p2
i and qi operators. The expressions are

〈q1i , q2j | p2
1 |q1m , q2n〉 ∼= −δq−4(δm,i+1 − 2δmi + δm,i−1)δnj (4.18)
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Table 1. Calculated energies of eigenstates in Figure 46 and the analytical energies.

State Calculated Energy (eV) Analytical Energy (eV) Percent Error

|Ψ̃(ω0,1)〉 6.4522 6.4544 0.035

|Ψ̃(ω1,1)〉 10.5841 10.5900 0.056

|Ψ̃(ω0,3)〉 12.2961 12.3031 0.057

|Ψ̃(ω2,1)〉 14.7146 14.7257 0.075

|Ψ̃(ω1,3)〉 16.4244 16.4388 0.086

and

〈q1i , q2j | q1 |q1m , q2n〉 ∼= δq−2q1iδimδjn . (4.19)

Analogous expressions hold for p2
2 and q2. These formulas in turn lead to an

expression for the matrix elements of the model Hamiltonian in Eq. 4.7. That is,

〈q1i , q2j |H |q1m , q2n〉 ∼=
1

2
{δq−2[ (q1iΩ)2 + (q2jω)2] δimδjn−

δq−4[ (δm,i+1 − 2δmi + δm,i−1)δnj +

(δn,j+1 − 2δnj + δn,j−1)δmi] } .

(4.20)

We may therefore approximate 〈q1i , q2j | e−iHtk |q1m , q2n〉 and calculate the necessary

|Ψ(tk)〉s.

We set T = 22τ and δt = 10−3τ , where τ = 2π/Ω is the period of the one-

dimensional oscillator described by h (Eq. 4.8). The resulting ‘power spectrum’ is

shown in Fig. 45.

Due to the antisymmetry of |Ψ(0)〉 with respect to reflection across q, cnn̄ is

nonzero only for odd values of n̄ (see Eq. 4.15), and the determined eigenstates

have the antisymmetry necessary for electronic states. The five lowest-energy

eigenstates are shown in Fig. 46. The energies of these states are displayed in Table

1 along with the analytical values.
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To investigate the accuracy of the spectral filtering approach, the same five

eigenstates were found for various different values of T to determine their fidelity

(Eq. 4.12) as a function of T . The fidelities were numerically approximated by a

Riemann sum using the analytical eigenstates and are plotted in Fig. 47. When

T ≈ 0, larger fidelity corresponds to larger cnn̄. This trend is seen in f̃(ω) as

well. As T increases, each fidelity begins to increase, but at different rates. The

rate of fidelity increase depends both on cnn̄ and on the proximity of state |n, n̄〉

to other eigenkets. As seen in Fig. 45, states |1, 1〉 and |2, 1〉 make the largest

contributions to |Ψ(0)〉. These two states are closest in energy to |0, 3〉 and |1, 3〉,

respectively (Table 1). This proximity dampens the fidelity growth rate of |Ψ̃(ω0,3)〉

and |Ψ̃(ω1,3)〉; their fidelities require 2T ≈ 3τ before reaching at least 0.9. In

contrast, the antisymmetric ground state, |Ψ̃(ω0,1)〉 reaches a high fidelity after

2T ≈ 1.5τ .

Through these fidelities, we have illustrated a key feature of this approach.

To obtain accurate eigenfunctions, 2T must be long compared to the inverse of the

eigenfrequency spacing, as expected from the time-energy uncertainty principle.

4.4 Semiclassical treatment

Due to its computational demands for memory, direct numerical integration

of the Schrödinger equation would be a challenging route to finding the set of

|Ψ̃(ω)〉s, even for small systems. Parametrization of the initial wave packet may

be helpful in reducing this demand. Instead of storing an amplitude for each basis

ket as required by direct numerical integration, parametrization requires storing

only a small number of parameters. One possible parametrization is a semiclassical

approach, in which the time evolution of some of the parameters resemble classical

trajectories.
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We use a semiclassical approach derived from the Dirac-Frenkel-McLachlan

functional [1, 2, 3], given by

F [ |Ψ̇〉] = (i 〈Ψ̇|+ 〈Ψ|H)(H |Ψ〉 − i |Ψ̇〉). (4.21)

In this approach, which was pioneered by Heller [84, 85] in the calculation of

nuclear dynamics underlying absorption spectra and adapted by Kovac and Cina

[86] to a system-bath framework, we express |Ψ(0)〉 as a function of a set of real,

time-dependent parameters λi(t). Minimization of the DFM functional leads to

parameter equations of motion specified by

λ̇ = M−1 · χ, (4.22)

where λ̇ is a vector of parameter time derivatives, Mij = Re 〈 ∂ψ
∂λi
| ∂ψ
∂λj
〉, and χi =

Im 〈 ∂ψ
∂λi
|H |ψ〉; | ∂ψ

∂λi
〉 satisfies 〈q| ∂ψ

∂λi
〉 = ∂

∂λi
〈q|ψ〉. The expressions for the elements

of M and χ are given in Appendix C.

The initial state used is a sum of Gaussians (see equation 4.10), and may be

parametrized using

〈q|φ〉 = Ze(q−q0)·(ia′−a′′)·(q−q0)+ip·(q−q0)+iγ, (4.23)

where q, q0, p are n-dimensional vectors, a′ and a′′ are n × n symmetric matrices,

and γ and z are scalars. All components of the matrices and vectors are real, as are

the scalars. The state is assumed to be expressible by Eq. 4.23 for all time, which

is rigorously true for |Ψ(0)〉. Equations of motion are found for the parameters Z,

q0, a′, a′′, p, and γ according to Eq. 4.22, and are integrated using a fourth-order

Runge-Kutta algorithm [87]. As expected for this system, f̃(ω) and F (ω, n, n̄),

calculated with δt = 10−5τ , are indiscernible from those calculated analytically. The

energies of the first five eigenstates determined semiclassically are identical to those

determined analytically in Table 1 to four decimal places.
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4.5 Comparison to Hartree-Fock

To compare this approach to more traditional electronic structure

calculations, we calculate the HF ground state using the steps outlined in Szabo

and Ostlund [72]. The basis set used for the calculation is the same discrete-

position basis used during direct numerical integration. The fidelity of the HF

ground state with respect to the analytical ground state gives a measure of the

accuracy of the calculation, and is found to be about 0.997. The energy of the

HF ground state is found to be 6.4744 eV, which is within 0.31% of the analytical

energy. Applying the spectral filtering method using the HF ground state as |Ψ(0)〉

reveals |1, 1〉’s small contribution to the HF answer. The HF ground state and its

spectrum are shown in Fig. 48.

For the model system, the HF approach works well, and more quickly than

the spectral filtering approach explored here. However, the spectral filtering method

retrieves a more accurate ground state with a fidelity of 0.999. As shown in Table

1, spectral filtering also determined a more accurate ground state energy, with an

error of 0.035%.

4.6 Semiclassical treatment with a regularized Coulomb potential

Up to this point, as a proof of concept, we have made use of a simple model

involving only harmonic potentials. While this model was useful in demonstrating

how a spectral filtering technique could account for the antisymmetry required of

electronic wave functions, electronic structure calculations are of course concerned

with Coulombic interactions, not harmonic ones. In this section, we explore the

possibility of a simple ansatz that could be used in the application of spectral

filtering to systems with Coulombic potentials. As a first step, we consider the

simplest case by limiting the system to only one dimension, which removes the
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requirement of antisymmetry. We further simplify matters by considering a

regularized Coulomb potential.

The Hamiltonian, in atomic units, is

H =
p2

2
− 1

|q|+ ε
; (4.24)

we set ε = 0.2a0, where a0 is the Bohr radius. In anticipation of the kinds of

integrals required to solve the parameter equations of motion derived from the

Dirac-Frenkel-McLachlan variational principle, we fit the regularized Coulomb

potential to a sum of three Gaussians,

− 1

|q|+ ε
∼=

3∑
i=1

Cie
−ciq2

(4.25)

and substitute that potential into the Hamiltonian. The regularized Coulomb

potential and its Gaussian fit are shown in Fig. 49.

We make use of an ansatz of the form

ψ(q) =
N∑
n=0

(Anq
n)eαq

2+βq+iγ , (4.26)

where N is the order of the ansatz. Expressed in the real λi of Eq. 4.22, the

parameters are

A0 = λ0 , (4.27)

An 6=0 = λ2n−1 + iλ2n , (4.28)

γ = λ2N+1 , (4.29)

β = λ2N+2 + iλ2N+3 , (4.30)

and

α = λ2N+4 + iλ2N+5 . (4.31)

The following results are obtained from the time evolution of a ninth-order

ansatz, again using a fourth-order Runge-Kutta algorithm but now with a variable
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time step. The initial values of the parameters are determined by fitting a fifth-

order ansatz to the superposition

〈q|ψ〉 =
√

0.9 〈q|0〉+
√

0.1 〈q|1〉 , (4.32)

where |0〉 and |1〉 are the ground and first-excited states of the Hamiltonian,

determined by diagonalization in a discrete position representation, respectively.

Despite the accuracy of the initial fit, and in contrast to the ansatz used in Section

4.4, the state is found to not be expressible by a fifth-order ansatz for all time. To

compensate, the order of the ansatz is increased to N = 9, setting parameters not

involved in the fifth-order fit to initial values of 0. Figure 50 shows the difference in

accuracy of the solutions to the equations of motion between the two wave packets,

using position as a diagnostic, for T = 10τ̄ and δt ≤ 10−3τ̄ , where τ̄ is the period of

motion determined by the energetic difference between |0〉 and |1〉.

The parameters of the normalized ansatz at t = 0 are shown in Table 2, and

as before, the expressions for the elements of M and χ for the ansatz defined in Eq.

4.26 are shown in Appendix D.

For these calculations, regularization of M is required for its inversion.

Instead of inverting M, we invert M + ε̄ exp
{
−M

ε̄

}
, in a manner similar to the

regularization of a density matrix in multi-configuration time-dependent Hartree

calculations [88]. Here, the regularization parameter ε̄, not to be confused with

the ε of Eq. 4.24, is set to 10−8 × TrM. To get a sense of the influence of this

regularization, Figure 51 plots the trace of the regularization matrix, exp
{
−M

ε̄

}
,

for the length of the calculation. This trace roughly corresponds to the number

of eigenvalues of M influenced by the regularization; if an eigenvalue of M is

positive and sufficiently smaller than ε̄, the corresponding eigenvalue of exp
{
−M

ε̄

}
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Table 2. Parameters of the initial, normalized ansatz.

Parameter Value

A0 0.8371 a
− 1

2
0

A1 −0.4670 a
− 3

2
0

A2 −0.3507 a
− 5

2
0

A3 0.1175 a
− 7

2
0

A4 0.1067 a
− 9

2
0

A5 −0.04185 a
− 11

2
0

A6 0
A7 0
A8 0
A9 0
γ 0
β 0.3074a−1

0

α −0.4535a−2
0

approaches unity.1 Considering that, for a ninth-order ansatz, there are a total

of 24 eigenvalues, few eigenvalues are influenced by the regularization matrix at

any given time. The number of affected eigenvalues frequently reduces to zero

throughout the calculation, though it begins steadily climbing as t nears T .

f̃(ω) is shown in Fig. 52, and the two recovered eigenstates are shown in

Fig. 53. The resulting eigenenergies, in units of Hartree, are shown in Table 3, and

are compared to the eigenenergies determined via diagonalization. Table 3 also

1M is not necessarily a positive definite or positive semi-definite matrix. With the
regularization scheme used here, a negative eigenvalue could cause an unintentional regularization.
One possible solution is to instead make use of the equation λ̇ = (MTM)−1MT · χ, which follows
directly from equation 4.22. The product MTM = M2 is positive semi-definite, so it removes
the issue of negative eigenvalues and may be regularized and inverted in place of M. However,
it has a larger condition number than M, which, if too large, could be a problem for accuracy
due to the calculation of a matrix exponential. In each calculation presented here, we encounter
only one negative eigenvalue, which is much smaller in magnitude than ε̄. Therefore, M2 is never
inverted in place of M, and accurate eigenstates and eigenenergies are still obtained. The small
magnitudes of the negative eigenvalues actually seen suggest the possibility that these eigenvalues
are really zero, but appear negative due to round-off error. This possibility, however, remains to
be demonstrated.
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Table 3. Spectral filtration results for Coulomb potential

State
Eigenenergy via
diagonalization (Eh)

Eigenenergy via
spectral filtration (Eh)

Eigenstate fidelity

|Ψ̃(ω0)〉 −1.687 −1.670 0.999

|Ψ̃(ω1)〉 −0.317 −0.298 0.973

shows the fidelities of the eigenstates determined by spectral filtration, calculated

with respect to the same eigenstates determined by diagonalization. In obtaining

these results, the window function defined above Eq. 4.4 is again used during the

Fourier transform. We note that the resulting fidelities might seem to suggest the

presence of the same ground state bias that we wish to remove. However, this bias

is a consequence of the chosen initial wave packet, not a feature of the method

itself.

The fact that a low-order ansatz is capable of obtaining these results is

promising. In a multi-dimensional problem, the overall order may not need to

increase to handle the extra dimensions, providing good scaling with dimensions;

in particular, less than the exponential scaling of direct numeric integration.

4.7 Concluding discussion

Expressing the time evolution emanating from an initial, non-stationary

Slater determinant as a Fourier series yields properly antisymmetrized eigenstates

and their associated energies. The fidelity of the numerically determined states

tends to unity with increasing T , though short propagations can give a reasonably

high fidelity in some instances. This approach successfully recovers antisymmetric

solutions to the time-independent Schrödinger equation for our simple, two-particle

Hamiltonian.

The scaling of this approach with system size in the straightforward

implementation using direct numerical integration is exponential. The |Ψ(tk)〉s
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are found by repeated multiplication of a matrix and a vector, which scales as

O(n2), where n is the size of the vector. The size of the vector, in turn, is the size

of the basis set used. For a position grid of b position kets, n = bN , where N is the

number of degrees of freedom. Therefore, this approach has exponential scaling in

N , O(b2N). This scaling is quite a bit worse than the scaling of methods like DFT

and QMC, which scale by a power law in N [77].

Exponential scaling may not be as bad as it seems at first glance, however.

We have not attempted any optimizations in the choice of basis. For example,

the position grids used are evenly spaced and are not truncated based on

total potential energy. Improvement in the efficiency of the spatial grid can be

straightforwardly made, particularly in areas of the grid where the potential is

high. In these areas, the de Broglie wavelength is large, and a wider grid spacing

may recover the same salient information as a finer spacing. Steps towards

optimization can be accomplished using a discrete variable representation [89].

These representations can be made manually if one knows where the grid spacing

need not be fine. A more systematic approach to obtaining a discrete variable

representation involves selecting a set of basis functions, perhaps harmonic

oscillator eigenstates, and diagonalizing the position operator in that basis. The

eigenkets of the position operator form the new discrete position basis.

A semiclassical method, or another approach based on a parametrized trial

wave function, also holds promise. The memory requirements for the method

described in Section 4.4 are much smaller than those of the direct numerical

integration approach. The a matrix, the parameter requiring the most memory,

scales as a power law in the number of particles. For N particles, a contains

(dN)2 entries, where d is the number of dimensions. As shown in Section 4.6,
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parametrized wave packets are also capable of handling the simplest Coulombic

potentials, though a more complex parametrization than Gaussian is necessary.

The parametrization used here is reminiscent of Hagedorn wave packets [90], which

also consist of polynomials multiplied by Gaussians. Spectral filtration of a more

realistic Coulomb interaction remains to be demonstrated.

An issue remains in that semiclassical approaches tend to deviate from

the true answer at longer times. Since the accuracy of eigenstates determined via

the Fourier transformation increases with evolution time, finding an appropriate

evolution time for a semiclassical approach may prove to be a central challenge

to the spectral filtration methodology. Chapman, Cheng, and Cina used a related

semiclassical approach to replace exponential scaling with power-law scaling when

propagating Gaussian wave packets for bath states attached to fixed quantum-

mechanical subsystem states [91]. The fidelities of the wave packets remained high

after several periods, and the parameters determined by the approximation agreed

with the exact solution for long times as well. While carrying out the calculations

in Section 4.6 however, we encountered this problem. Even the ninth-order ansatz

begins to fail beyond T = 10τ̄ . Finding an appropriate evolution time will likely

prove challenging in applying spectral filtering to a system where comparison to an

accurate diagnostic is not available, as it was to us through the use of a discrete

position basis. Perhaps parametrizations that do not include Gaussians will prove

to be better suited for Coulombic potentials.

Another issue with spectral filtering is the possible occurrence of

degeneracies and close-spaced eigenenergies. According to the time-energy

uncertainty principle, greater propagation times are needed to resolve closely

spaced levels. In their development of the filter-diagonalization method, Neuhauser
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and Wall [92, 93] make note of this issue, and this is where the diagonalization

piece of the filter-diagonalization method comes into play [92]. Instead of taking

|Ψ̃(ω)〉 to be the eigenstates, a set of |Ψ̃(ω)〉s is found in a given energy range and

used to form a matrix that can be diagonalized. Wang, Carrington, and Corey

further investigated the influence of the time-energy uncertainty principle on the

accuracy of filter diagonalization [94].

Determining eigenstates through the time evolution of wave packets offers

some benefits. First, as mentioned in the introduction, this method completely

removes the ground-state bias that HF-based methods experience. Second,

correlation is accounted for automatically; there is no need to begin by representing

an electron’s interactions with other electrons as an interaction with an averaged

field. Third, a single calculation is capable of revealing many eigenstates, depending

on the choice of initial wave packet. Fourth, eigenenergy accuracy is controlled

through propagation time. Finally, if a parametrized wave function is used, the

memory scaling of the parameters could make spectral filtering an interesting

avenue of exploration for larger systems [86].

The spectral filtering approach presented in Section 4.4 is thematically

related to work by Meyer and Beck, who combined filter-diagonalization with a

multi-configuration time-dependent Hartree methodology to obtain rovibrational

spectra [95]. Our approach is also related to a combination of filter-diagonalization

and time-dependent Hartree-Fock [96], where a Slater determinant is propagated in

time with a time-dependent Hamiltonian. Differences to the present case include

the application to the stationary states of a time-independent Hamiltonian as

opposed to dynamics, as well as the lack of HF orbitals. The analogy to TDHF

provides another avenue for improvement: an improved spectral filtering approach
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could take advantage of TDHF or improved versions, such as multi-configuration

time-dependent Hartree-Fock [97, 98]. Many other real-time methods exist for

propagating electronic wave functions [99], which could provide increases in

efficiency. However, electron correlation may need to be accounted for in an

approximate way, sacrificing one of the advantages of the formulation presented

here.

There seems to be merit in approaching the problem of electronic structure

determination through time evolution of wave packets. Future work will focus

on generating more efficient spatial grids and developing parametrized trial wave

functions to lower the formidable scaling barrier and better handle Coulombic pair

potentials.
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Figure 43. Demonstration of the effect of wave packet choice on f̃(ω), using a
simple harmonic oscillator. The potential (a) is V = 1

2
Ω2q2 with Ω = 2π fs−1 and

m = 1, and the initial wave packets are shown in (b). The initial wave packets have
the form ψ(q;n, σ) = Nn,σexp{−( q−δq

2σ qrms
)2n}; n = σ = 1 for the orange wave packet,

forming a Glauber coherent state, and n = 5 and σ = 2 for the blue wave packet,
forming a squarish wave packet. We take the displacement to be δq = 10qrms. Nn,σ

is the normalization constant for the state parameterized by n and σ. The power
spectrum (equation 4.5) of the blue wave packet’s evolution in (c) shows resonance
with more states than the spectrum of the orange wave packet’s evolution in (d),
as the square packet is a superposition of more eigenfunctions. The power spectra
shown in (c) and (d) were calculated using T = 1 fs.
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Figure 44. Contour plot of the potential surface associated the model Hamiltonian
(a). The contours show potential energy in eV. A contour plot of the initial Slater
determinant (equation 4.10) is shown in (b). The contours show 〈q1, q2|Ψ(0)〉 in
units of pm−1.
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Figure 45. The ‘power spectrum’ determined for T = 22τ , found both by direct
numerical integration using a spatial grid (red) and analytically (blue, offset by 1.5
fs).
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Figure 46. Contour plots of the normalized eigenstates determined using T = 22τ
and δt = 10−3τ . The contours are in units of pm−1. The states are |Ψ̃(ω0,1)〉
(a), |Ψ̃(ω1,1)〉 (b), |Ψ̃(ω2,1)〉 (c), |Ψ̃(ω0,3)〉 (d), and |Ψ̃(ω1,3)〉 (e). Note the
antisymmetry of each state with respect to reflection through the line q1 = q2.
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Figure 47. Fidelities of the five eigenstates shown in Figure 46, as determined by
both direct numerical integration and analytically (offset by 1). Lines are included
as guides to the eye.
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Figure 48. The approximate ground state of the system as calculated by SCF-
HF (a) (contours in units of pm−1) and the ‘power spectrum’ of this state’s time
evolution (b), for which values of f̃(ω) have been scaled by a factor of 50 for ω > 20
fs−1. The power spectrum is strongly peaked at the frequency of the true ground
state, reflecting the high fidelity of the HF ground state with the true ground state
of the system. The spectrum is also peaked at the frequency of the third excited
state.

Figure 49. Gaussian-sum fit (blue) to the regularized Coulomb potential (dotted
orange). Though the fit does not capture the gradual upward slope beginning
around ±2.5a0, the steeper well is well described. The potentials are shown in
energies of Hartree (Eh), with position in units of Bohr radii (a0).
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Figure 50. The expectation value of q as a function of evolution time for the fitted
fifth-order ansatz (blue) and the same wave packet evolving under a ninth-order
ansatz (orange) as described in the text. The dotted, green line shows 〈q〉 for the
same wave packet but calculated using basis-set methods. The fifth-order ansatz
is not capable of accurately solving the equations of motion, though increasing the
order greatly increases the accuracy.

Figure 51. The trace of the regularization matrix, given by e−M/ε̄, at different
points in the ansatz’s time evolution.
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Figure 52. ‘Power spectrum’ resulting from the Fourier transform of the time
evolution of the ansatz defined by the parameters listed in Table 2. The spectrum
consists of two peaks, corresponding to the ground and first-excited states of the
system. The lower-energy peak is the higher of the two, consistent with the ansatz’s
larger ground-state amplitude (see equation 4.32).

(a) (b)

Figure 53. The ground (a) and first-excited (b) states corresponding to the peaks
in f̃(ω) in Figure 52. Though the fidelity of the state shown in (b) is high at 0.973,
the state is visibly not quite antisymmetric. More accurate propagation of the
equations of motion for longer times (larger T ) may resolve this issue.
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CHAPTER V

DISCUSSION

We have presented a dynamical approach to the calculation of two-

dimensional electronic spectroscopy signals, observed the appearance of electronic

energy transfer on said signals, seen where electronic coherence between singly-

excited states appears in a WPI experiment, and presented a dynamical approach

to electronic structure calculations. These works all make use of dynamics to

develop theories and carry out calculations, whether they be for spectroscopic

signals or for stationary electronic states.

Chapter II of this dissertation presents an exercise in reframing the basic

theory of two-dimensional electronic spectroscopy with a focus on the wave

packets set in motion by femtosecond laser pulses. The resulting signal expressions

contain multi-pulse wave-packet overlaps, which are determined by a series of pulse

propagators that describe the effects of the pulses on the wave packets. The wave

packets also undergo intermittent periods of free evolution on various potential

energy surfaces. Time-delay regions for which the various possible overlaps may

make a contribution to the signal are determined, and the knowledge of these

regions, along with pulse polarizations of yxxx and a spatially oriented model, is

used to set up experimental conditions that dramatically reduce the number of

contributing overlaps. This chapter introduces a model energy transfer dimer and

presents calculations that help us understand the appearance of energy transfer in

two-dimensional wave-packet interferometry signals. These signals are interpreted

in terms of the underlying wave-packet dynamics using a semiclassical approach,

considering phase-space diagrams to obtain time-delay conditions for large overlap

between wave packets.
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Chapter III takes the spatially oriented model dimer from the previous

chapter and uses it to present a WPI experiment that can directly observe

electronic coherence between site states and excitonic states in the singly-excited

manifold. This experiment makes use of a different polarization scheme than that

in Chapter II, namely xxxy instead of yxxx, which, combined with the fixed spatial

orientation of the dimer model, allows for the probing of individual monomers. The

nature of electronic coherence as overlaps between wave packets is shown, and the

proposed experiment works by overlapping a wave packet that has moved to an

“acceptor” state via energy transfer with a copy of the wave packet remaining on

the “donor” state. This obtains the desired overlap. The decrease of the accuracy

of the method with increasing pulse duration is shown. The influences both of

multiple nuclear modes and of differing site-energy offsets on the time-development

of the coherence are explored for both weak coupling (intersite coherence) and

strong coupling (interexciton coherence).

A natural direction to take these works is increasing the complexity of

the model, possibly by adding more monomers. A triangular trimer or square

tetramer, for example, could be particularly interesting in that the symmetries of

the systems could promote degeneracies in electronic states, which in turn allow

for the observation of a geometric phase, also called a Berry phase, by inducing a

pseudorotation [100]. Additionally, such systems could allow for the observation

of which-path interference akin to double-slit experiments. In an energy transfer

tetramer, for example, an electronic excitation generated at one monomer may

take two paths to arrive at the monomer on the opposite corner. Vibrations in

the multimer could change the length of the two paths, changing the interference.
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Observing either which-path interference or geometric phases in two-dimensional

electronic spectroscopy signals would be very exciting!

Chapter IV presents a spectral filtering approach to the calculation of

electronic structure. This work adapts an idea presented by Heller in the context

of nuclear dynamics to electronic states, which obey antisymmetry conditions. At

the heart of the theory is the Fourier transformation of the time evolution of an

arbitrary, antisymmetrized wave packet. Two different methods of time evolution

are presented. The first is direct numeric integration using a discrete position

basis. While obtaining good results, this approach is prohibitively expensive for

many degrees of freedom. The second is a semiclassical parametrization, which

performs just as well as the direct numerical integration in the model two-particle

Hamiltonian studied there, but with the added benefit of power law scaling. The

spectral filtering method allows for the recovery of many states at once, removes

the ground-state bias of Hartree-Fock-based methods, accounts for electron

correlation automatically, and allows for accuracy control via propagation time.

Both of these methods are applied to a two-particle model Hamiltonian

that consists of harmonic potentials and harmonic interactions. To test the

method on the Coulombic interactions of molecular Hamiltonians, parametrization

of a slightly more complex ansatz, consisting of a product of a gaussian and a

polynomial, is applied to the simplest Coulombic case. The ansatz is capable of

accurate time evolution for long enough to obtain high fidelities at a low order,

but accuracy suffers as the length of time evolution is increased. However, like

the semiclasscal parametrization applied to harmonic potentials, this ansatz may

not scale exponentially with the number of degrees of freedom, leaving open

the possibility of its application to real molecules. Future work should focus on
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improvement of parametrization for Coulombic potentials and application to atoms

and molecules.
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APPENDIX A

RELATIONSHIP BETWEEN POLARIZED PUMP-PROBE AND WPI SIGNALS

We have sought to isolate the electronic coherence within the singly excited

manifold from the two-dimensional electronic spectroscopy signal of an energy-

transfer dimer with non-parallel site transition moments. Eq. (3.30) for the 2D

signal of a weakly coupled dimer with simultaneous A and B pulses, as well as

simultaneous C and D pulses, provides the intersite electronic coherence as a

function of tCB. The equivalent formula of Eq. (3.29) is seen not to involve any

nesting of the A and B or C and D reduced pulse propagators. These features

suggest a direct examination of the fluorescence-detected pump-probe signal

with an x -polarized pump pulse and a probe pulse with variously phased, equal-

amplitude components of the electric field along the x and y axes.

A pump-probe signal of this kind is bi-quadratic in the incident fields

Eu(t) = Euf(t− tu)x̂ cos[Ω(t− tu) + ϕu] , (A.1)

and

Er(t) = Erf(t− tr)
1√
2

{
x̂ cos[Ω(t− tr) + ϕr] + ŷ cos[Ω(t− tr) + ϕr + χ]

}
, (A.2)

of the pump and probe pulses, respectively. We shall assume that tr − tu

comfortably exceeds the pulse duration. If the laser pulses are assumed to travel

in the positive z -direction, then the choices of 0 and π for χ correspond to probe

polarization at plus and minus 45o with respect to the x -polarization of the pump

pulse, respectively, while χ = π/2 and χ = −π/2 correspond to a left and right

circularly polarized probe, respectively.

Under fluorescence detection, one need only consider first- through third-

order contributions to the singly- and doubly-excited amplitudes. The relevant
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portion of the time-dependent molecular state can then be written

|Ψ〉 = | ↑u〉+ | ↑r〉+ | ↑u↑u〉+ | ↑u↑r〉+ | ↑r↑r〉

+ | ↑u↓u↑r〉+ | ↑u↓r↑r〉+ | ↑u↑u↓r〉+ | ↑u↑r↓r〉 . (A.3)

The underlined amplitudes would make optically phase-unstable contributions to

the bi-quadratic signal and will subsequently be ignored. The pump-probe signal is

S = QonePone +QtwoPtwo, where the singly- and doubly-excited populations are

Pone = 2Re
{
〈↑u | ↑u↓r↑r〉+ 〈↑u | ↑u↑r↓r〉+ 〈↑u↓u↑r | ↑r〉

}
, (A.4)

and

Ptwo = 〈↑u↑r | ↑u↑r〉 , (A.5)

respectively (compare Eq. (3.20)).

We explicitly identify the contributions of the x - and y-components of the

probe pulse to each of the overlaps in Eqs. (A.4) and (A.5) and make use of a

rotating-wave approximation in the probe-pulse propagators to obtain

〈↑u | ↑u↓r↑r〉 ∼= 1
2

[
〈↑u | ↑u↓x↑x〉(0) + 〈↑u | ↑u↓x↑y〉(1)e−iχ

+ 〈↑u | ↑u↓y↑x〉(1)eiχ + 〈↑u | ↑u↓y↑y〉(2)
]
, (A.6)

〈↑u | ↑u↑r↓r〉 ∼= 1
2

[
〈↑u | ↑u↑x↓x〉(2) + 〈↑u | ↑u↑x↓y〉(1)eiχ

+ 〈↑u | ↑u↑y↓x〉(1)e−iχ + 〈↑u | ↑u↑y↓y〉(0)
]
, (A.7)

〈↑u↓u↑r | ↑r〉 ∼= 1
2

[
〈↑u↓u↑x | ↑x〉(0) + 〈↑u↓u↑x | ↑y〉(1)e−iχ

+ 〈↑u↓u↑y | ↑x〉(1)eiχ + 〈↑u↓u↑y | ↑y〉(0)
]
, (A.8)

and

〈↑u↑r | ↑u↑r〉 ∼= 1
2

[
〈↑u↑x | ↑u↑x〉(2) + 〈↑u↑x | ↑u↑y〉(1)e−iχ

+ 〈↑u↑y | ↑u↑x〉(1)eiχ + 〈↑u↑y | ↑u↑y〉(0)
]
. (A.9)
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The individual overlaps have been labeled according to the lowest order in J at

which they do not vanish. In the weak EET-coupling regime considered here, we

shall retain signal contributions only through first order in J .

Inserting Eqs. (A.6) - (A.9) in the signal expression gives

S(χ) = QoneRe
{
〈↑u | ↑u↓x↑x〉(0) + 〈↑u | ↑u↑y↓y〉(0) + 〈↑u↓u↑x | ↑x〉(0) + 〈↑u↓u↑y | ↑y〉(0)

+ e−iχ
[
〈↑u | ↑u↓x↑y〉(1) + 〈↑u↓y↑x | ↑u〉(1) + 〈↑u | ↑u↑y↓x〉(1)

+ 〈↑u↑x↓y | ↑u〉(1) + 〈↑u↓u↑x | ↑y〉(1) + 〈↑x | ↑u↓u↑y〉(1)
]}

+
Qtwo

2
〈↑u↑y | ↑u↑y〉(0) +QtwoRe

{
e−iχ〈↑u↑x | ↑u↑y〉(1)

}
. (A.10)

The difference between signals with plus- and minus-45o linearly polarized probe

pulses is

S(0)−S(π) = 2QoneRe
{
〈↑u | ↑u↓x↑y〉(1) + 〈↑u↓y↑x | ↑u〉(1) + 〈↑u | ↑u↑y↓x〉(1) + 〈↑u↑x↓y | ↑u〉(1)

+ 〈↑u↓u↑x | ↑y〉(1) + 〈↑x | ↑u↓u↑y〉(1)
}

+ 2QtwoRe
{
〈↑u↑x | ↑u↑y〉(1)

}
;

(A.11)

the difference S(π/2)−S(−π/2) between signals with left and right circularly-

polarized probes is just the same, but with Re replaced by Im. Hence we see

that the pump-probe difference signals S(0)−S(π) and S(π/2)−S(−π/2) from

the weakly coupled dimer provide the same information on the dynamics of the

intersite electronic coherence as the 2D-WPI signal (3.20) with −ϕBA + ϕDC = 0

and −π/2, respectively.
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APPENDIX B

PERTURBATION THEORY FOR THE STRONG EET-COUPLING CASE

Here we detail our treatment of the WPI-signal expression (3.33) for the

dimer with large J by means of time-dependent perturbation theory through first

order in the interexciton coupling. It is useful to define center-of-mass and relative

vibrational coordinates and momenta whose components combine the corresponding

internal coordinates and momenta of the two monomers:

Q =
qb + qa√

2
, q =

qb − qa√
2

; (B.1)

and

P =
pb + pa√

2
, p =

pb − pa√
2

. (B.2)

Using these operators, we can write H = H(0) + H(1), where H(0) = T + H
(0)
el (Q,q)

with T =
∑N

i=1
1
2
(P 2

i + p2
i ). Referring to Eq. (3.10) gives

H
(0)
el (Q,q) = |0〉Vgg(Q,q)〈0|+ |1̄〉

[
L(Q,q) +M +

K

M
(K(q)−K)

]
〈1̄|

+ |1〉
[
L(Q,q)−M − K

M
(K(q)−K)

]
〈1|+ |2〉Vee(Q,q)〈2| , (B.3)

and

H(1) = − J

M
(K(q)−K)

(
|1̄〉〈1|+ |1〉〈1̄|

)
. (B.4)

Equations (B.3) and (B.4) feature

K(q) =
∆ε

2
+
∑
i

ω2
i di√
2
qi , (B.5)

for the model dimer, with ∆ε = εeg − εge;

L(Q,q) = ε̄+
∑
i

ω2
i

2

[(
Qi −

di√
2

)2

+ q2
i +

d2
i

2

]
, (B.6)

with ε̄ = (εeg + εge)/2; and

M(q) =
√
J2 +K2(q) . (B.7)
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We adopt the conventions K = K(0), L = L(0,0), and M = M(0).

Because more explicit evaluations yield

L(Q,q)±M ± K

M
(K(q)−K) (B.8)

= ε̄±M +
∑
i

ω2
i

2

[(
Qi −

di√
2

)2

+
(
qi ±

K

M

di√
2

)2

+
J2

M2

d2
i

2

]
,

and

− J

M
(K(q)−K) = − J

M

∑
i

ω2
i di√
2
qi , (B.9)

as these quantities appear in Eqs. (B.3) and (B.4), respectively, we see that the

nuclear dynamics is separable between center-of-mass and relative degrees of

freedom. The center-of-mass dynamics is the same in the 1̄- and 1-states, and

the interexciton coupling coefficient (B.9) depends only on the relative nuclear

coordinates. These features significantly simplify the calculation of the interexciton-

coherence signals.

A perturbative formula for the WPI-observed interexciton coherence can

now be obtained from Eq. (3.39) in the form

〈↑A (t)|1̄〉 p(1̄0)p(01) 〈1|↑A (t)〉
|p(1̄0)
σ=0 p

(01)
σ=0| 〈↑A (t)|↑A (t)〉

=
〈φ0|p(01̄)[−t](0)

1̄1̄
p(1̄0)p(01)[t]

(1)

11̄
p(1̄0)|φ0〉

|p(1̄0)
σ=0 p

(01)
σ=0| 〈φ0|p(01̄)p(1̄0)|φ0〉

. (B.10)

The actual interexciton coherence is given perturbatively by

〈↑A (t)|1̄〉〈1| ↑A (t)〉
〈↑A (t)| ↑A (t)〉 =

〈φ0|p(01̄)[−t](0)

1̄1̄
[t]

(1)

11̄
p(1̄0)|φ0〉

〈φ0|p(01̄)p(1̄0)|φ0〉
, (B.11)

and the maximum coherence becomes√
〈↑A (t)|1〉〈1| ↑A (t)〉
〈↑A (t)| ↑A (t)〉 =

√
〈φ0|p(01̄)[−t](1)

1̄1
[t]

(1)

11̄
p(1̄0)|φ0〉

〈φ0|p(01̄)p(1̄0)|φ0〉
. (B.12)

The superscripts (0) and (1) in Eqs. (B.10), (B.11), and (B.12) refer to the order

of perturbation theory with respect to the interexciton coupling (B.4). It can

be verified formally that the RHS of Eq. (B.12) is greater than or equal to the

absolute value of the RHS of Eq. (B.11).
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In order to calculate these quantities, it is convenient to switch from

coordinates and momenta to creation and annihilation operators, in terms of which

Qj =

√
~

2ωj

(
A†j + Aj

)
and Pj =

√
~ωj
2
i
(
A†j − Aj

)
, (B.13)

along with

qj =

√
~

2ωj
(a†j + aj) and pj =

√
~ωj
2
i(a†j − aj) . (B.14)

Making use of displacement parameters

Bj ≡
dj
2

√
ωj
~
, (B.15)

and

βj ≡
K

M
Bj , (B.16)

for the center-of-mass and relative degrees of freedom, respectively, we have

[t]
(0)

1̄1̄
= e−

it
~ ε1̄

N∏
j=1

eBj(A
†
j−Aj)e−iωjt

(
A†jAj+

1
2

)
e−Bj(A

†
j−Aj)

× e−βj(a†j−aj)e−iωjt
(
a†jaj+

1
2

)
eβj(a

†
j−aj) , (B.17)

and

[t]
(0)
11 = e−

it
~ ε1

N∏
j=1

eBj(A
†
j−Aj)e−iωjt

(
A†jAj+

1
2

)
e−Bj(A

†
j−Aj)

× eβj(a†j−aj)e−iωjt
(
a†jaj+

1
2

)
e−βj(a

†
j−aj) . (B.18)

Here, ε1̄ = ε̄+M + J2

M2

∑N
i=1

ω2
i d

2
i

4
and ε1 = ε̄−M + J2

M2

∑N
i=1

ω2
i d

2
i

4
. As expected, both

zeroth-order evolution operators are direct products of commuting center-of-mass

and relative factors, with dynamics under the former being identical in the 1̄- and

1-states.

125



The time-evolution operator of first order in the interexciton amplitude

transfer can be determined from

[t]
(1)

11̄
= − i

~
[t]

(0)
11

∫ t

0

dτ [−τ ]
(0)
11 〈1|H(1)|1̄〉 [τ ]

(0)

1̄1̄
, (B.19)

where 〈1|H(1)|1̄〉 = − J
2M

∑N
j=1 ωjdi

√
~ωj(a†j + aj). We find

[t]
(1)

11̄
= [t]

(0)
11

iJ

2M

∑
j

ωjdj

√
ωj
~

∫ t

0

dτ e−
2iτ
~ M

N∏
k=1

eβk(a†k−ak)eiωkτa
†
kake−βk(a†k−ak)

× (a†j + aj)
N∏
l=1

e−βl(a
†
l−al)e−iωlτa

†
l aleβl(a

†
l−al) . (B.20)

Eq. (B.20) is once again a direct product of center-of-mass and relative factors, and

the latter are solely responsible for the deviations from zeroth-order nuclear wave-

packet dynamics.

The dynamical and signal calculations of the kind presented in Section

3.5.2 can be carried out using matrix representations of the zeroth- and first-

order time-evolution operators in a basis of 0-state vibrational eigenkets {|N;n〉 =

|N1, . . . , NN ;n1, . . . , nN〉}; the matrix elements of these operators can be obtained

from Eqs. (B.17), (B.18), and (B.20), and—upon expanding the spatial translation

operators (e±β(a†−a) for example) in power-series—consist of sums of one-

dimensional integrals of scalar functions which are readily evaluated numerically.

The necessary reduced pulse propagators can be found by similar means

from Eq. (3.28). We find

p(1̄0) =

∫ ∞
−∞

dτ

σ
f(τ) e

iτ
~ (ε1̄−~Ω)

N∏
j=1

eBj(A
†
j−Aj)eiωjτA

†
jAje−Bj(A

†
j−Aj)e−iωjτA

†
jAj

× e−βj(a†j−aj)eiωjτa†jajeβj(a†j−aj)e−iωjτa†jaj , (B.21)
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and

p(10) =

∫ ∞
−∞

dτ

σ
f(τ) e

iτ
~ (ε1−~Ω)

N∏
j=1

eBj(A
†
j−Aj)eiωjτA

†
jAje−Bj(A

†
j−Aj)e−iωjτA

†
jAj

× eβj(a†j−aj)eiωjτa†jaje−βj(a†j−aj)e−iωjτa†jaj . (B.22)

Unlike the zeroth- and first-order free evolution operators, the reduced pulse

propagators are not direct products of center-of-mass and relative factors, except

in the limit of arbitrarily short pulses. Although it is accurate to state that the

relative-mode factor in Eq. (B.20) governs interexciton amplitude transfer, this

factor becomes inextricably correlated with motion in the center-of-mass coordinate

under realistic conditions of photo-excitation and photo-detection.

Equations (B.17) - (B.22) may be inserted in the overlap expressions

(B.10) through (B.12) to obtain formulas for WPI-observed interexciton coherence

which can be evaluated numerically. Alternatively, these formulas can be further

simplified using basic rules of operator algebra, systematically moving a†’s to the

left and a’s to the right to develop semi-analytic expressions which require only

the numerical integration of scalar-valued functions. In the short-pulse limit, this

procedure becomes especially straightforward, and Section 3.5.2 quotes and makes

use of some of the resulting expressions.
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APPENDIX C

ELEMENTS OF M AND χ FOR THE ANSATZ APPLIED TO HARMONIC

POTENTIALS

In writing the elements of M , it is useful to find the overlaps

I(0) ≡ 〈ψ|ψ〉 = Z2

√
(
π

2
)n

1

det a′′
, (C.1)

I(2)
ij ≡ 〈ψ| (q− q0)i(q− q0)j |ψ〉 =

1

4
I(0)a′′

−1
ij , (C.2)

and

I(4)
ijkl ≡ 〈ψ| (q− q0)i(q− q0)j(q− q0)k(q− q0)l |ψ〉

=
1

16
I(0)(a′′

−1
ij a

′′−1
kl + a′′

−1
ik a

′′−1
jl + a′′

−1
jk a

′′−1
il ). (C.3)

The elements of M can then be expressed as
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Ma′ija
′
kl

= (2− δij)(2− δkl)I(4)
ijkl (C.4)

Ma′ija
′′
kl

= 0 (C.5)

Ma′ijpk
= 0 (C.6)

Ma′ijqk
= −(2− δij)pkI(2)

ij (C.7)

Ma′ijγ
= (2− δij)I(2)

ij (C.8)

Ma′ijZ
= 0 (C.9)

Ma′′ija
′′
kl

= Ma′ija
′
kl

(C.10)

Ma′′ijpk
= 0 (C.11)

Ma′′ijqk
= 0 (C.12)

Ma′′ijγ
= 0 (C.13)

Ma′′ijZ
= − 1

Z
(2− δij)I(2)

ij (C.14)

Mpipj = I(2)
ij (C.15)

Mpiqj = −2(I(2) · a′)ij (C.16)

Mpiγ = 0 (C.17)

MpiZ = 0 (C.18)

Mqiqj = −I(0)((a′ · a′′−1 · a′)ij + a′′ij + pipj) (C.19)

Mqiγ = −piI(0) (C.20)

MqiZ = 0 (C.21)

Mγγ = I(0) (C.22)

MγZ = 0 (C.23)

Mγγ =
I(0)

Z2
(C.24)

(C.25)
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For writing χ, we use the overlaps

X
(1)
i ≡ 〈ψ| qi |ψ〉 = qiI

(0) , (C.26)

X
(2)
ij ≡ 〈ψ| qiqj |ψ〉 = I

(2)
ij + qiqjI

(0) , (C.27)

X
(3)
ijk ≡ 〈ψ| qiqjqk |ψ〉

= qkI
(2)
ij + qjI

(2)
ik + qiI

(2)
jk + qiqjqkI

(0) , (C.28)

X
(4)
ijkl ≡ 〈ψ| qiqjqkql |ψ〉 = I

(4)
ijkl + qkqlI

(2)
ij +

qjqlI
(2)
ik + qjqkI

(2)
il + qiqlI

(2)
jk + qiqkI

(2)
ik +

qiqjI
(2)
jk + qiqjqkqlI

(0) , (C.29)

(C.30)

and

〈ψ| (q− q0)i(q− q0)j p̂
2
n |ψ〉 ≡ ξ′ijn + iξ′′ijn , (C.31)

where

ξ′ijn = (2a′′nn + p2
n)I

(2)
ij + 4(a′ · I(4)

ij · a′)nn − 4(a′′ · I(4)
ij · a′′)nn , (C.32)

and

ξ′′ijn = −2a′nnI
(2)
ij + 8(a′ · I(4)

ij · a′′)nn . (C.33)

For a system with a potential given by

V (q) =
∑
i

∑
j>i

V
(2)
ij qiqj +

∑
i

V
(1)
i qi + V 0 , (C.34)

130



such as the harmonic oscillator potentials used by the two-particle model

Hamiltonian, the elements of χ are

χa′ij = −(2− δij){
∑
n

ξ′ijn
2

+

∑
n

∑
m>n

V (2)
nm(X

(4)
ijnm − qiX(3)

jnm − qjX(3)
inm + qiqjX

(2)
nm)+

∑
n

V (1)
n (X

(3)
ijn − qiX(2)

jn − qjX(2)
in + qiqjX

(1)
n ) + V0I

(2)
ij } , (C.35)

χa′′ij = −(2− δij)
∑
n

ξ′′ijn
2

, (C.36)

χpi = −{
∑
n

1

2
pnI

(0)(a′′
−1 · a′)in+

∑
n

∑
m>n

V (2)
nm(X

(3)
inm − qiX(2)

nm)+

∑
n

V (1)
n (X

(2)
in − qiX(1)

n )} , (C.37)

χqi = piE − 2(a′ · χp)i + I(0)(a′′ · p)i , (C.38)

where E = 〈Ψ|H |Ψ〉,

χγ = −E , (C.39)

and

χZ = 0 . (C.40)
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APPENDIX D

ELEMENTS OF M AND χ FOR THE ANSATZ APPLIED TO COULOMBIC

POTENTIALS

For the Nth-order ansatz introduced in Eq. 4.26, the elements of M may

be split into three regions. Region 1 contains elements Mmn for which both m ≤

2N and n ≤ 2N hold. Region 2 contains elements Mmn for which m ≤ 2N but

n > 2N . Finally, Region 3 contains elements where both m and n are greater than

2N . Note that we are now using the subscripts of M to refer to the subscripts of

corresponding λi, as opposed to the names of the variables as used in Appendix C.

Region 1 contains

M00 = I0 , (D.1)

M0,n 6=0 =


In+1

2
, if n is odd

0, if n is even

(D.2)

and

Mm6=0,n 6=0 =



In+m+2
2

, if n and m are both odd

In+m
2
, if n and m are both even

0, otherwise

. (D.3)

Here, unlike in the previous appendix though similarly motivated,

Im ≡
∫
dq qmg∗(q)g(q), with

Im 6=0 =
1

2m
∂m

∂β′m
I0 (D.4)

and

I0 = e−
β′2

2α′

√
π

−2α′
. (D.5)
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In defining Im, we have introduced g(q) = eαq
2+βq+iγ. Together with

f(q) =
∑N

n=0(Anq
n), we may write the ansatz as ψ(q) = f(q)g(q).

Region 2 contains

M0n =


−Θ′′n−2N−1

2

, if odd n

Θ′n−2N
2

, if even n

(D.6)

and

Mm6=0,n =



−Θ′′m+n−2N
2

, if odd m and odd n

Θ′m+n−2N+1
2

, if odd m and even n

Θ′m+n−2N−1
2

, if even m and odd n

Θ′′m+n−2N
2

, if even m and even n

. (D.7)

In the above we have introduced Θm = Θ′m + iΘ′′m ≡
∫
dq qmg∗(q)ψ(q), with

Θ′m = λ0I0 +
N∑
n=1

λ2n−1In+m (D.8)

and

Θ′′m =
N∑
n=1

λ2nIn+m . (D.9)

Region 3 consists of

Mmn =



ξm+n−4N−2
2

, if n and m are both odd

ξm+n−4N
2

, if n and m are both even

0, otherwise ,

(D.10)

where

ξm ≡
∫
dq qmψ∗(q)ψ(q) =

N∑
n=0

a∗nanIm+2N + 2 Re
N∑
n=0

N∑
n̄=n+1

a∗nan̄Im+n+n̄ . (D.11)
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Like M, we may split χ into regions. Region 1 consists of the elements

χm≤2N and Region 2 of χm>2N . We begin with Region 1, which consists of

χ0 = Im

{
ζ0 −

1

2

[
N∑
n=1

nan ((n− 1)In−2 + 4αIn + 2βIn−1) +

4α2Θ2 + 4αβΘ1 + (β2 + 2α)Θ0

]}
(D.12)

and

χm =



Im
{
ζm+1

2
− 1

2

[∑N
n=1 nan

(
(n− 1)In−2+m+1

2
+

4αIn+m+1
2

+ 2βIn−1+m+1
2

)
+

4α2Θm+5
2

+ 4αβΘm+3
2

+ (β2 + 2α)Θm+1
2

]}
, if odd m

Re
{

1
2

[∑N
n=1 nan

(
(n− 1)In−2+m

2
+ 4αIn+m

2
+ 2βIn−1+m

2

)
+

4α2Θm+4
2

+ 4αβΘm+2
2

+ (β2 + 2α)Θm
2

]
− ζm

2

}
, if even m

,

(D.13)

where ζm ≡
∫
dq qmV (q)g∗(q)ψ(q). Region 2 contains

χm =



Re
{

1
2

[∑N
n=1 nan

(
(n− 1)Θ∗

n−2+m−2N−1
2

+

4αΘ∗
n+m−2N−1

2

+ 2βΘ∗
n−1+m−2N−1

2

)
+

4α2ξm−2N−1
2

+2 + 4αβξm−2N−1
2

+1 + (β2 + 2α)ξm−2N−1
2

]
−

Vm−2N−1
2

}
, for odd m

Im
{
Vm−2N

2
− 1

2

[∑N
n=1 nan(

(n− 1)Θ∗
n−2+m−2N

2

+ 4αΘ∗
n+m−2N

2

+ 2βΘ∗
n−1+m−2N

2

)
+

4α2ξm−2N
2

+2 + 4αβξm−2N
2

+1 + (β2 + 2α)ξm−2N
2

]}
, for even m

,

(D.14)
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where

Vm ≡
∫
dq qmV (q)ψ∗(q)ψ(q) . (D.15)

In Section 4.6, we fit the regularized Coulomb potential to a sum of

Gaussians to make solving necessary integrals easier. The integrals ζm and Vm are

those integrals. Substituting in the Gaussian fit from Eq. 4.25, we obtain

ζm =
3∑
i=1

Ci

∫
dq qme−ciq

2

g∗(q)ψ(q) (D.16)

=
3∑
i=1

Ci

∫
dq qmḡ∗i (q)ψ(q) , (D.17)

where writing ḡi(q) = e(α−ci)q2+βq+iγ makes the connection between ζm and Θm

more obvious. The ζms have expressions analogous to those of the Θms, though the

parameters used to calculate analogous Ims include the cis. Similarly, we obtain

Vm =
3∑
i=1

Ci

∫
dq qmψ̄∗i (q)ψ(q) , (D.18)

with ψ̄i(q) = f(q)ḡi(q); Vm may be calculated analogously to ξm.
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