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Abstract:

Im Zentrum von schwarzen Löchern bricht die allgemeine Relativitätstheorie

zusammen. Diese Singularitäten könnten durch eine Theorie der Quantengravita-

tion aufgelöst werden. In dieser Arbeit untersuchen wir Tensormodelle für Quan-

tengravitation und beleuchten mögliche Gemeinsamkeiten mit anderen Theorien

der Quantengravitation, zum Beispiel mit der asymptotisch sicheren Quanten-

gravitation. Von besonder Bedeutung in diesem Zusammenhang ist die Existenz

eines universellen Kontinuumslimes. Auch wenn die allgemeine Relativitätsthe-

orie bei kleinen Längenskalen nicht konsistent ist, so ist sie auf makrosopischen

Skalen äuÿerst erfolgreich. Wir werden untersuchen wie eine der Vorhersagen

der allgemeinen Relativitätstheorie, Gravitationswellen, neue Physik implizieren

kann.



Abstrakt:

At the center of black holes, the theory of general relativity breaks down. The

resolution of such singularities could require a theory of quantum gravity which

describes the fundamental nature of space-time at shortest distances. In this the-

sis, we explore the tensor model approach to quantum gravity and inspect its

relation to other theories of quantum gravity, such as, e.g., asymptotic safety,

through a universal continuum limit. Even though at microscopic distances, gen-

eral relativity breaks down, at large distances this theory is highly successful. We

will inspect how one of the predictions of general relativity, gravitational waves,

can help us to learn more about new physics beyond the Standard Model.
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1 Introduction

Gravity is a topic that has fascinated humankind for centuries. Our current insight
into the gravitational force is summarized by the theory of general relativity (GR),
where space-time is dynamical and the interaction between masses leads to a curv-
ing of space-time: Matter dictates how space-time is bent while space-time describes
how matter moves. This intuitive understanding of gravity brings an incredibly rich
set of consequences with it. Examples are the prediction of the existence of grav-
itational waves, detected by LIGO [4], or the appearance of a black hole shadow,
which has been recently observed by the EHT Collaboration [5, 6, 7]. These two
predictions are just the most recently veri�ed ones in a long history of testing obser-
vational consequences of GR. Exploring further implications of the theory of general
relativity and its interplay with matter might help us to not only better understand
the gravitational force, but also learn more about the fundamental properties of
matter and the matter content of our universe.
The detection of a stochastic background of gravitational waves in the frequency
range of future space-based interferometers LISA and DECIGO, for instance, can
result from a �rst-order phase transition in the early universe. While phase transi-
tions in the Standard Model are only cross-overs, a �rst order phase transition is a
prediction of many beyond the Standard Model scenarios, e.g., in order to attempt
to provide a mechanism to generate the observed matter-antimatter asymmetry. To
realize such an asymmetry, a deviation from thermal equilibrium is required. A
possible way to achieve a departure from thermal equilibrium is by means of a �rst-
order phase transition at the electroweak scale at around 102 GeV, where the Higgs
particle acquires an expectation value, thus giving mass to particles.
Gravitational waves o�er not only a way to probe new physics in the matter sector,
but also allow to constrain the theory of general relativity. The detection of gravita-
tional waves in 2015 by the LIGO collaboration has cemented GR as the theory of
gravity, putting tight constraints on any modi�cations. An analysis of the �rst mea-
surement showed that the merger of two black holes with masses M1 = (36± 6)M�
and M2 = (29 ± 4)M� had been the source of the signal. While the detection of
gravitational waves is fully consistent with Einsteins theory of general relativity, the
astrophysical objects producing them are not fully described by GR: The center of a
black hole cannot be described by general relativity, as the theory breaks down due
to a singularity. Hence, even though GR in the classical regime is well-understood
with a plethora of exciting repercussions that will allow us to learn more about
the matter content of our universe, gravity itself features internal inconsistencies at
shortest distances. The resolution of these inconsistencies could require a theory of
quantum gravity that will o�er fascinating insight into the fundamental nature of
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space-time in the quantum regime.
A predictive theory of Quantum Gravity is not yet formulated as the naive way
to quantize gravity, which was so successful to quantize all other forces in nature,
fails. Part of the challenge of establishing a theory of quantum gravity is also due
to the fact that the Planck scale mp at which quantum gravity e�ects are expected
to become important is mp ≈ 1019 GeV, which makes it very challenging to design
experimental tests. The LHC, for instance, was operating at 1.3 × 104 GeV before
its operation was stopped in order to set-up the next high luminosity run, expected
to launch in 2027. Hence, it is important to explore a diverse number of quantum
gravity approaches, which feature di�erent strengths and weaknesses. Exploring
distinct approaches to quantum gravity can contribute to the development of new
ideas and viewpoints.
What a number of quantum gravity approaches have in common is that discreteness
is introduced in order to make sense of the path-integral for quantum gravity. The
spirit is very similar to lattice gauge theories, where discreteness allows to truncate
the number of degrees of freedom and serves as a regularization of the theory.
Continuum space-time is then discretized by little building blocks. In the contin-
uum limit, which corresponds to a second-order phase transition, the e�ects of the
discretization can be removed in order to recover a continuum space-time. Univer-
sality, which is a key property of second-order phase transitions, guarantees that
the physics that emerges in the continuum is independent of the exact shape of the
building blocks. In a broader sense, universality also has powerful implications, as
it potentially allows to relate microscopic descriptions which lead to the same con-
tinuum limit. It may thus be that seemingly di�erent theories of quantum gravity
turn out to be related when taking the continuum limit.
While exploring some very fascinating questions related to new physics with and in
gravity we will be covering a wide range of �elds of physics spanning from mathe-
matical physics to phenomenology.
Our journey through these di�erent �elds begins in Ch. 2, where we introduce the
necessary technical tools that will allow us to study the continuum limit in quantum
gravity. This will be the topic of Ch. 3, where we will review the status of the
continuum limit in di�erent approaches to quantum gravity and highlight potential
relationships between some of those approaches and Ch. 4, where we will inspect
the continuum limit in tensors models, one approach to quantum gravity, in more
detail. Finally, Ch. 5 will be devoted to the study of how gravity, in particular the
production of gravitational waves in the early universe, can help us to learn more
about the fundamental properties of matter.
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2 The Philosophy of Coarse-Graining

In order to discuss the relevance and subtleties of the continuum limit in quantum
gravity, it is necessary to equip the reader with the necessary concepts and tools. The
renormalization group o�ers a framework to study the continuum limit. We will in-
troduce the idea of the renormalization group by providing an intuitive understanding
through the so-called block spin approach. From there, we will discuss a more mod-
ern understanding of renormalization by introducing the functional renormalization
group, which will allow us to study the continuum limit in the tensor-model approach
to quantum gravity.
As a physicist one is always eager to make things as simple yet precise as possible.
While it should certainly be possible to derive the physical properties of a water
molecule from some fundamental action of our universe, such an approach would be
very cumbersome. It would be equally cumbersome to derive the �ow of a river from
the microscopic interactions of each individual water molecule. The clever physicist
will therefore try to �nd some e�ective degrees of freedom appropriate to study the
problem at hand. The �ow of a river, for instance, is well-described by its velocity,
its pressure, its density and its dynamic viscosity, variables whose dynamics are de-
scribed by the Navier Stokes equations.
Nonetheless, one would expect that the di�erent e�ective degrees of freedom that
are useful to study each phenomenon mentioned above are related in some way. The
concept behind the idea that a system with many degrees of freedom, such as the
river that consists of many water molecules, can also be expressed in terms of fewer,
more suited variables, is called coarse-graining. It is not only of relevance in physics
but also, e.g., in the social sciences. Economists for instance use aggregate variables
like the unemployment rate or the gross domestic product (GDP) to describe the
state of an economy rather than analyzing the complicated individual interactions
of all parties making up that economy. Coarse-graining describes a way to relate
the di�erent variables at each scale.
One of the very �rst historical examples of coarse-graining is the block spin ap-
proach originally introduced by Leo Kadano� in the 1950's in order to study the
Ising model [8]. Kadano� considered a two-dimensional lattice of spins pointing
either up (s = 1) or down (s = −1). The original idea of coarse-graining consists
in choosing a local patch of spins and average over them. This is precisely what is
called a block spin transformation. For instance, one could compare the number of
up-spins in a patch to the number of down-spins and assign a collective spin s′ = +1
or s′ = −1 depending on which con�guration is more prevalent. Finally, the lattice
spacing is rescaled to its initial size. This will result in a lattice made up of the
e�ective spins assigned to the di�erent patches in the original set-up. The current
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discussion on coarse-graining is very qualitative but it sets the conceptual basis for
the further discussions on the renormalization group. In order to equip the reader
with the technical knowledge to follow the discussion on a the renormalization group,
we will brie�y review the relevant �eld-theoretical concepts.

2.1 Generating Functionals

The central object in �eld theory is the generating functional that allows for the
derivation of all correlation functions of all degrees of freedom to all orders. Having
total knowledge of the correlation functions of a system is equivalent to knowing the
exact form of the generating functional and implies that the underlying theory is
fully understood. One such generating functional is the partition function Z de�ned
as

Z =

∫
Dϕe−S[ϕ]+

∫
dDxJ(x)ϕ(x), (2.1)

where J is a source-term. The real-time, Minkowski version of the above path-
integral is assumed to be de�ned through a Wick-rotation of its Euclidean avatar
given by Eq. 2.1. In particular, it is assumed that Euclidean correlation functions can
be analytically continued back to real time, while preserving their pole structure in
order to get Minkowski correlation functions1. In this sense, quantum and statistical
mechanics can be regarded as very closely related.
It is straightforward to check that correlations functions are obtained as follows

〈ϕ(x1)...ϕ(xn)〉 =
1

Z[0]

∂nZ[J ]

∂J(x1)...∂J(xn)
=

∫
Dϕϕ(x1)...ϕ(xn)e−S[ϕ]+Jϕ

Z[0]
. (2.2)

The above generating functional Z[J ] allows to obtain all correlation functions,
however, it is not very e�ective as both connected and non-connected correlation
functions are generated even though we are mostly interested in connected corre-
lation functions for physical processes. One example is the derivation of scattering
amplitudes through the LSZ formalism, which only requires connected correlation
functions. A more e�cient generating functional from which only connected corre-
lation functions are derived is the Schwinger functional W [J ] = −i~ lnZ[J ]. This
generating functional is also closely related to the free energy F , well-known from
statistical mechanics with the di�erence that the free energy F corresponds to a
thermodynamic potential which is also re�ected in its de�nition, F = kBT lnZ[T ],
where kB is the Boltzmann factor and T the temperature. This slight di�erence
in prefactors, i.e. −i~ vs. kBT , re�ects the di�erent underlying physical systems
described byW [J ] and F [T ] and also relates to the previous point that a Minkowski
theory can be de�ned through its Euclidean version by means of a Wick-rotation.

1Technically, this can for instance be done by means of a Padé approximation [9].
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In quantum gravity, Wick rotation is non-trivial. We will therefore neglect these as-
pects for now and comment on them later on. Probabilities of expectation values on
the statistical mechanics side correspond to amplitudes on the quantum mechanical
side.
Connected correlation functions are obtained by di�erentiating W [J ] with respect
to the source J . For instance, applying functional derivatives twice gives

δ2W [J ]

δJ(x)δJ(y)
= 〈ϕ(x)ϕ(y)〉c = 〈ϕ(x)ϕ(y)〉 − φ(x)φ(y), (2.3)

where we introduced the notation φ(x) ≡ 〈ϕ(x)〉. For most practical purposes, it
will, however, turn out to be bene�cial to introduce yet another generating function
Γ[φ], which stores the same physical information as W [J ] in a yet more e�cient way
and is also more accessible from a physical point of view due to its exactness at tree
level. Tree-level exactness implies that the e�ective action allows one to derive full
quantum corrected propagators and vertices which in turn allow to determine phys-
ical parameters like masses. As a matter of fact, the masses and interaction terms
appearing in the e�ective action Γ are also those that are measured in experiment.
The e�ective action Γ[φ] is de�ned via a Legendre transform of W [J ],

Γ[φ] = sup
J

(∫
dDx J(x)φ(x)−W [J ]

)
, (2.4)

and physically corresponds to the full quantum action which takes into account all
quantum corrections of a given theory. This becomes apparent as the de�nition of
Γ entails the following quantum equation of motion

δΓ[φ(x)]

δφ(y)
= J(y), (2.5)

which is analogous to the classical equation of motion

δS[ϕ(x)]

δϕ(y)
= 0. (2.6)

Since φ accounts for all �uctuations ϕ, it becomes evident that the above equation of
motion is truly a full quantum one. When no quantum �uctuations are considered,
the e�ective action Γ is just the microscopic action S. As useful as it is to have
full knowledge of the e�ective action Γ, it is hard to access in practice. This can be
seen by considering the de�nition of Γ via the Legendre transform of the Schwinger
functionalW [J ] provided by Eq. 2.4 and plugging in the explicit form ofW [J ] given
by W [J ] = −i~ lnZ[J ]. The resulting expression

e−Γ[φ] =

∫

Λ

Dϕ exp

(
−S[φ+ ϕ] +

∫
δΓ[φ]

δφ
ϕ

)
, (2.7)

is a complicated integro-di�erential equation for φ that is di�cult to solve exactly.
In the above expression Λ is an ultraviolet cut-o� that regularizes the measure and
ϕ can be regarded as a quantum mechanical �uctuation around some background
�eld φ.
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2.2 Universality

Universality is a key concept that is associated to second and higher-order phase
transitions. In the 50's and 60's, second order phase transitions in gas-liquid sys-
tems and magnets were studied in great detail. Researchers observed that the scale-
dependence of certain observables followed a power-law, when approaching a con-
tinuous phase transition. Intriguingly, the scaling exponents of these operators are
universal, meaning that they are independent of the exact nature of the material
undergoing the phase transition. The spontaneous magnetization for instance was
found to have the following scaling

M(T ) ∝ (T − Tc)β, (2.8)

where T is the temperature, Tc the critical temperature at which the phase transition
takes place and β is a universal quantity. A universality class is characterized by a set
of universal critical exponents that describe the scaling of observables near a critical
point. Seemingly unrelated physical systems belonging to the same universality class
feature quantitatively similar large-scale behavior characterized by the same set of
critical exponents. An example of a well-studied universality class is the 3d Ising
universality class, which describes both the liquid-gas phase transition as well as
the ferromagnetic-paramagnetic phase transition. This highlights, that systems that
may be completely di�erent in terms of chemical and physical properties may feature
similar behavior close to a critical point at which a second-order phase transition
takes place. Phrased di�erently, universality corresponds to the statement that in
order to describe the large-scale physics of a continuous phase transition only a few
number of parameters are relevant. In particular, the microscopic details, such as
the exact chemical composition of a system, are washed out.
In a �eld theoretical language, the concept of universality was put on �rm ground
by Wilson in the 1970's [10, 11]. Most QFTs of physical interest lead to unphysical
UV divergences that have to be properly tamed. This can be achieved by the
introduction of a cut-o� Λ, which can be thought of as introducing a minimal length
1/Λ or an energy scale Λ up to which the theory is well-de�ned. Since physics should
not be a�ected by the length scale at which this unphysical cut-o� is introduced, the
physics at di�erent cut-o� scales Λ should be related in some way. Building on the
previous discussion on generating functionals, which are the standard way to de�ne
physical theories, this implies the following relationship between two generating
functionals Z describing the same theory de�ned up to di�erent cut-o�s Λ and Λ′,

∫ Λ

0

Dφe−S0[φ] =

∫ Λ′

0

Dφ′e−S′e�[φ′], (2.9)

which exactly expresses the fact that low-energy physics should remain independent
of the scale at which the cut-o� is introduced. Remember that physical observables
are derived as derivatives from either the right or left hand side of the above equation.
The fact that both expressions are identical, implies that gauge-invariant quantities
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derived from either one of the expressions will be the same. The fact that physics
at di�erent cut-o�s has to be related implies the existence of an RG-scale Λ′, which
allows one to interpolate between physics at di�erent cut-o�s Λ. We will refer to
Λ′ as either the RG scale or the '�oating' cut-o�. The basis of the interpolation
consists in splitting the degrees of freedom φ of the theory into 'low-energy' (or
low-momentum) and 'high-energy' (or high-momentum) degrees of freedom, φ` and
φh as follows

φ`(p) =

{
φ(p), if p < Λ′

0, otherwise,
(2.10)

and

φh(p) =

{
φ(p), if Λ′ < p ≤ Λ

0, otherwise,
(2.11)

where p corresponds to the momentum of the mode φ. The above de�nition guar-
antees that φ(p) = φ`(p) + φh(p). The key to relate the same physics de�ned at two
di�erent cut-o� scales Λ and Λ′ is to integrate out the high-momentum modes φh
as follows

ZΛ ≡
∫ Λ′

0

Dφ`
∫ Λ

Λ′
Dφhe−S0[φ`+φh] = ZΛ′

∫ Λ′

0

Dφ′e−S′e�[φ′], (2.12)

where we have relabeled φ` as φ′ in order to make contact with the right hand side
of Eq. (2.9). In order to compensate for the fact that the high-momentum degrees of
freedom have been integrated out, the couplings have to be rescaled. The rescaling
of couplings re�ects the coarse-graining nature of Wilson's approach. Similar to the
Block-spin approach, where the variables need to be rescaled according to new scale
of the lattice after a block spin transformation has been performed, the action in
the path-integral Se� is now expressed in terms of e�ective couplings.
The mode φ′ may also be split once again into low- and high-momentum modes
in order to relate ZΛ′ to some ZΛ′′ in a similar way as we just related ZΛ to ZΛ′ .
Successively integrating out the high-energy modes leads to a constant change or
�ow of the action Se�[φ] as a function of the RG-scale in order to satisfy the condition
ZΛ = Z ′Λ for any Λ and Λ′. The re-scaling dependence of the action S on the RG-
scale is typically characterized in terms of β functions of the dimensionless couplings.
Beta functions describe the scale dependence of the individual couplings, referred
to as the running of couplings. They are de�ned as

βgi ≡ k∂kgi, (2.13)

where k denotes the RG scale and have the following generic form

βgi = −∆igi + quantum corrections, (2.14)
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where ∆i is the canonical scaling2 of the coupling gi. The dependence of the cou-
plings on the '�oating' cut-o� scale k as well as the generic form of the beta functions
follows from the assumption that the action S may be expanded in terms of all �eld
monomials O that respect the underlying symmetry of the theory such that

Sk =
∑

i

ḡi(k)Oi(∂, ϕ), (2.15)

where the dimensionful coupling constants ḡi with mass dimension ∆i can be ex-
pressed in terms of dimensionless couplings3 gi as

gi ≡ ḡik
−∆i . (2.17)

The so-called theory space is spanned by all essential couplings4 g that are compat-
ible with the symmetries of the theory and is typically in�nite-dimensional. The
running of couplings can be shown to lead to divergences of physical observables
unless it is possible to identify �xed points gi∗ of the renormalization group �ow at
which either the IR or the UV limit can be taken. A �xed point has the de�ning
property that all couplings in theory space loose their scale-dependence, i.e.,

βgi(gj = gj∗) = 0 ∀i, j. (2.18)

Thus, the requirement posed on any fundamental theory is that the renormalization
group trajectory emanate from a UV �xed point at which the dimensionless couplings
do not change under in�nitesimal changes of the RG scale k. This allows to take
the limit k2 → Λ → ∞, as we will discuss in a brief moment. It is possible to
distinguish between two types of �xed points. The Gaussian �xed point, which
always exists, where all couplings vanish trivially at the �xed point and non-Gaussian
�xed points where some couplings take �xed point values di�erent from zero. If the
theory departs from a Gaussian �xed point at high energies, this scenario is called
asymptotic freedom. On the other hand, if the theory starts at an interacting �xed
2The canonical dimension or scaling of a coupling characterizes the rescaling properties of that
coupling under space-time dilations x → λx, where λ is a constant. The canonical dimension
of the mass for instance is one.

3Dimensionless coupling constants are used because physical observables such as cross sections
can be rewritten in terms of dimensionless couplings. Any dimensionful observable 〈Ō〉 can be
expressed as

〈O(ḡi)〉 = f (gi(k), X)E∆, (2.16)

where f is a function of the dimensionless couplings gi and X, which describes any other
possible dimensionless dependencies of 〈Ō(ḡi)〉. ∆ is the canonical dimensionality of O and E
the energy scale at which the observable is measured. Since E is �nite, O will not diverge as
long as its dimensionless version is �nite at any �nite E. In turn, this poses a requirement on
the dimenionless couplings to not diverge.

4Essential couplings are those that cannot be removed by a �eld rede�nition. The wave function
renormalization Zk for instance is an inessential parameter, as it can be removed by a �eld
re-de�nition.
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point at high energies, it is referred to as asymptotic safety.
A �xed point can further be characterized in terms of the behavior close to the �xed
point of the couplings spanning the in�nite-dimensional theory space. It is therefore
instructive to linearize the �ow close to some �xed point g∗,

gi = gi∗ + δgi, (2.19)

where δgi corresponds to a small perturbation away from the �xed point. The scale-
dependence of the perturbed couplings gi close to the �xed point are described by
the following series-expansion of the beta functions

βi(g) = βi(g∗)−
∑

j

Mij(g∗)δgj +O
(
(δg)2

)
, (2.20)

where Mij denotes the entries of the typically non-diagonal stability matrix M de-
�ned as

Mij = −∂βi
∂gj

(2.21)

Here, we are interested in the physics close to the �xed point and therefore the
linearized behavior of the �ow is su�cient for our analysis. Since the �xed point
criterion is precisely that βi(g∗) = 0, the �rst term vanishes and to linear order the
�ow close to the �xed point g∗ is completely described by the stability matrix M ,
since

βi(g) = −
∑

j

Mij(g∗)δgj +O
(
δg2
)
. (2.22)

The above equation can be solved by rotating into a basis of theory space in which
the stability matrix is diagonal. In that case the linearized solution reads

gi(k) ≈ g∗i +
∑

I

CIV
I
i

(
k

k0

)−θI
, (2.23)

where θI are the critical exponents corresponding to the eigenvalues of the stability
matrix M . The index I labels the couplings g′ = S−1g in a basis that diagonalizes
the stability matrix, the CI are constants of integration and are free parameters
of the theory, the V I are the eigendirections corresponding to the di�erent critical
exponents and k0 is a reference scale. Lowering k/k0 corresponds to �owing towards
the IR. The above equation Eq. 2.23 describes the RG trajectory of a theory in
coupling space, once the linearized regime, where Eq. 2.23 holds, is entered. In
principle, one has to determine all free parameters CI in order to fully �x the RG
trajectory. However, the critical exponents θI allow for the notion of relevant and
irrelevant directions in theory space. If the real part <(θI) of the critical exponent θI
satis�es <(θI) > 0, then the corresponding eigendirection is repulsed from the �xed

19



b

b

b

S1Λ

S1Λ′

g2

g1

b
S2Λ

FP

b S3Λ

Figure 2.1: The above �gure illustrates the concept of universality. Di�erent actions
S1, S2 and S3 serve as initial conditions of renormalization group tra-
jectories that reach the same �xed point FP for Λ→ 0 with the arrows
pointing towards the IR. The di�erent physically realized renormaliza-
tion group trajectories are functions of the relevant couplings g1 and
g2. Moreover, we also depict the concept of Wilsonian renormalization
by explicitly showing that one given renormalization group trajectory
connects an action S1 de�ned at di�erent cut-o�s Λ.

point towards the IR. The coupling5 g′i(k) will grow towards the IR and consequently
the IR values of relevant couplings will depend on the constants CI . Eigendirections
along which the �ow emanates from a �xed point towards the IR are therefore called
relevant directions because they are directions, the value of which is relevant for the
IR. On the other hand <(θI) < 0 will drive the �ow towards the �xed point in the
limit k/k0 → 0. Hence, the value of CI will not be relevant for the IR value of the
coupling associated to the irrelevant eigendirection. Hence, a multitude of di�erent
initial conditions will lead to that �xed point. This corresponds to the idea of uni-
versality in �eld theory, where the same IR �xed point can be reached by di�erent
microscopic actions Si. This is depicted in Fig. 2.1. Moreover, one may also ask
whether an RG trajectory is UV complete, i.e. whether it starts at k → ∞. In
order for an RG trajectory to be UV-complete, the constant CI has to be set to
zero for the irrelevant directions such that there is only one allowed RG trajectory
for an irrelevant direction, which in turn implies that the value of the correspond-
ing coupling is �xed by the �xed point requirement. If the stability matrix also
features zero eigenvalues, <(θi) = 0, the behavior of these marginally (ir)relevant
directions is determined by the next order in the linearized �ow. An eigendirection

5Note that strictly speaking g′i no longer has to correspond to the original set of couplings in-
troduced to describe the e�ective action since in order to solve the linearized �ow equation
we rotated to a basis in coupling space that diagonalizes the stability matrix M . Hence, the
coupling g′i could well be a linear combination of the original couplings.

20



g1

g2

g3

b

Irrelevant

Relevant

g1

g2

g3

b

S1Λ

S2Λ

Figure 2.2: The left panel of the above �gure depicts a truncated theory space with
two relevant couplings which span a two-dimensional critical hypersur-
face, which contains all RG trajectories that emanate in the �xed point,
illustrated in red. The coupling g1 corresponds to an irrelevant direc-
tion, illustrated by the blue dashed line and is therefore �xed by the
�xed point condition. The relevant directions sketched in green are at-
tracted. The right panel of the �gure depicts a truncated theory space
with two relevant couplings which span a two-dimensional critical hy-
persurface. The hypersurface contains all trajectories that emanate in
the �xed point FP. The coupling g3 is irrelevant and is therefore �xed
by the �xed point condition.

is truly marginal if it is marginal to all orders6. The classi�cation of the �ow of Sk
in terms of relevant and irrelevant directions leads to the concept of the UV critical
hypersurface, which can be associated to a �xed point in the ultraviolet. The UV
critical hypersurface is spanned by all trajectories that emanate from a �xed point
towards the IR. Since irrelevant directions are driven towards the �xed point, the
critical hypersurface will have the dimensionality of the number of eigendirections
with positive critical exponents <(θi > 0). A sketch of the critical hypersurface is
shown in Fig. 2.2.
In the previous section we have introduced the e�ective action Γ as a convenient

way to store physical information. Here, universality follows from a �xed point of
a renormalization group trajectory. At a �xed point, the details of the microscopic
physics have been integrated out with the macroscopic physics being described by
only a small number of relevant parameters or fully �xed if there are no free param-
eters.
As a little toy example to illustrate the concepts related to the characterization of

6An example of a theory that is truly marginal to all orders is the non-commutative φ4 model
[12, 13].
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�xed points, we may consider the following dynamical system

∂tx = αx− βxy
∂ty = δxy − γy. (2.24)

One may think of ∂tx and ∂ty as corresponding to a system of β functions but
it does not have to. As a matter of fact the above toy-model is also known as
the predator-prey or Lotka-Volterra model [14] and describes the dynamics of two
population groups, predators and their prey that 'interact' with each other. The
Lotka-Volterra model features a Gaussian �xed point with one relevant and one
irrelevant direction, see Fig. 2.3, which can be understood as follows: The above set
of coupled non-linear di�erential equations describe how the predator population y
increases if there is enough prey x. In the absence of prey, i.e., x = 0, the time
evolution of the predator population is dominated by an exponential decay term.
On the other hand, the prey population of course decreases if there are a lot of
predators around. This is re�ected by the −βxy term. In the absence of predators,
the prey population increases exponentially. Note have that in the predator-prey
example the notion of IR or UV �xed point does not exist. This way of classifying
dynamical systems goes back to Liapunov [15].
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Figure 2.3: Phase diagram of a particular Lotka-Volterra model with parameters
α = 2, β = 3, γ = 4 and δ = 1. The model exhibits a Gaussian
�xed point corresponding to an equilibrium state with a stable and an
unstable direction. This is physically very intuitive. The time evolu-
tion of the predator population consists of two competing terms. On
the one hand, there is a term δxy, which accounts for the fact that the
predator populations rises if there is enough prey. On the other hand,
there is an exponential decay term −γy, which is related to the fact that
predators die if there is no prey to eat. Conversely, the prey population
experiences an exponential growth in the absence of predators. The as-
sumption is that the prey has an in�nite food supply (they may be for
instance herbivores). The observation that in the absence of prey the
predator population extinguishes is also illustrated in the above �gure:
If we are placed at x = 0, i.e., there is no prey around, the 'time-�ow'
naturally brings us to the Gaussian �xed point (x = 0, y = 0) where
the predators have died out due to a lack of food supply. The critical
exponent associated to that eigendirection is consequently negative. Al-
ternatively, assuming that for some reason there are no predators around
(i.e., y = 0), the prey population starts to increase in an unconstrained
way. This example also illustrates nicely that a �xed is a priory not a UV
or an IR �xed point, but that this distinction depends on the choice of
trajectory. To make contact with our discussion about UV and IR �xed
points, one can think of the time t as being related to the RG scale k:
t = 0 corresponds to k →∞, while t� 1 is related to k → 0. Moreover,
the �gure also displays a so-called limiting cycle, indicating a recurrent
pattern, where the predator and prey population increases and decreases
in time-periods: If there is enough prey available, the predator popula-
tion will increase, consequently leading to a more substantial decrease of
prey population, which in turn will also a�ect the predator population.
With less predators around, the prey population can grow again and the
cycle restarts. In the context of QFTs limiting cycles are more exotic.
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2.3 The FRG

In short, the functional renormalization group acts like a mathematical microscope
that allows one to zoom into the microscopic properties of a theory.
This is achieved by interpolating between the bare action S0 in the UV and the
e�ective action Γ, as de�ned in Eq. 2.4, in the IR, which, as we have explained before
in Sec. 2.1, includes all quantum corrections. The interpolation is realized with a
scale-dependent action Γk, which can be shown to satisfy the following interpolation
equation [16, 17, 18]

k∂kΓk[φ] =
1

2
Tr
((

Γ
(2)
k [φ] +Rk(p)

)−1

k∂kRk(p)

)
, (2.25)

where k denotes the RG-scale and Rk acts as both, an infrared and a UV regulator
satisfying a set of conditions that we will discuss below. The �rst term in the brackets(

Γ
(2)
k [φ] +Rk(p)

)−1

corresponds to the �eld-dependant non-perturbative regularized

propagator, where Γ
(2)
k [φ] is de�ned as the second functional derivative with respect

to the �eld φ. The above equation is also known as the functional renormalization
group equation and its conceptual idea is depicted in Fig. 2.4. The derivation of
Γk follows along similar lines as the derivation of the full quantum e�ective action
Γ with the sole di�erence that the action S which is used to de�ne the generating
functional Z in Eq. (2.1) now includes an additional regulator term ∆Sk, which is
given as

∆Sk =
1

2

∫
ddp

(2π)d
φ(p)Rk(p

2)φ(−p). (2.26)

This term is chosen such that modes with modes with momentum p < k are sup-
pressed at the level of the path-integral and only those with p > k can be integrated
out. The derivation of Γk and the functional renormalization group are provided in
the appendix. Since the FRG involves the trace of a propagator, it has a one-loop
structure and therefore can also be written in the following diagrammatic form

∂tΓk[φ] =
1

2
, (2.27)

where the crossed circle corresponds to the regulator insertion k∂kRk, while the
closed loop corresponds to the traced propagator with the regulator insertion. Let
us now comment on the so far unspeci�ed regulator term Rk(p). The regulator term
has to be chosen such that on the one hand it acts as an IR regulator by providing
a mass term to the low-energy and massless modes with p < k. This implies the
following condition

lim
p2/k2→0

Rk(p
2) > 0. (2.28)
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Figure 2.4: Graphical depiction of the philosophy behind the FRG. The scale-
dependent e�ective action Γk interpolates between the microscopic ac-
tion S in the UV and the full quantum-e�ective action Γ in the IR as
the RG scale goes to zero.

Moreover, we want the FRG to interpolate between the microscopic action S, when
k2 → Λ→∞ and the quantum e�ective action Γ, de�ned by Eq. 2.4, when k → 0.
See Fig. 2.4 for a graphical depiction of the general idea. This property is only
guaranteed if on the one hand

Rk(p
2)→ 0 for k2 → 0, (2.29)

which implies that Γk approaches Γ as k goes to zero and

Rk(p
2)→∞ for k2 → Λ, (2.30)

which ensures that the microscopic action S is recovered7 in the limit k2 → Λ→∞,
limit in which the path-integral is dominated by the stationary point of the action
Γk in that limit. This permits to use a saddle-point approximation which selects
the classical �eld con�guration and the bare action Γk2→Λ = S+ const. A regulator,
often employed in the FRG literature, is the Litim regulator [21, 22]

Rk(p) = (k2 − p2)θ(k2 − p2). (2.31)

There exist also other possible choices of regulators. We refer to [23] for a discussion
on possible choices of regulators. Solving the FRG in Eq. 2.25 would yield an
expression for the full e�ective action, which alternatively could also be derived
from the path-integral formalism. Note, however, that the de�nition of Γk provided
by the FRG does not make any reference to a path-integral even if its derivation
involved one. Hence, the FRG can be viewed as an alternative way to de�ne a QFT.
As an example that the two de�nitions of the e�ective action agree, it is possible to

7Reconstructing the correct bare action S from the e�ective action Γk, at some �nite k, is chal-
lenging as the RG procedure is only de�ned for �ows to lower values of k. This is because
lowering k is related to having integrated out massive degrees of freedom. Increasing k is there-
fore non-trivial as one does not have knowledge about the degrees of freedom that could have
been integrated out. Obtaining the microscopic action S from the e�ective action Γk is known
as the reconstruction problem and has been addressed in [19, 20].
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derive the perturbative one-loop e�ective action from the functional RG. Assuming
that the full e�ective action admits the following perturbative expansion

Γk[φ] = S[φ] +
∞∑

n=1

Γn,k[φ], (2.32)

it is possible to identify

∂tΓ1,k =
1

2
Tr
(

∂tRk

S(2) +Rk

)
=

1

2
∂tTr ln (S(2) +Rk), (2.33)

due to the one-loop character of the e�ective action. Solving this equation and
taking the k → 0 limit gives the well-known perturbative one-loop result for the
e�ective action

Γ1-loop[φ] = S[φ] +
1

2
Tr ln (S(2)[φ]) + const, (2.34)

where const is a constant of integration that follows from Eq. 2.33. Accessing the
full non-perturbative Γ in the k → 0 limit requires solving Eq. 2.25. Since the
FRG is a partial di�erential equation, solving it requires the speci�cation of an
initial boundary condition at some scale k2 = Λ. In practice, the FRG cannot be
solved exactly. Gaining insight about non-perturbative physics by solving the �ow
equation therefore requires an approximation scheme. A standard approximation
scheme involves expanding Γk in a basis of local �eld monomials Oi allowed by
symmetries such that

Γk =
∑

i

gi(k)Oi, (2.35)

where the couplings gi span the full in�nite-dimensional theory space. To perform
practical computations with the FRG, the in�nite-dimensional theory space is trun-
cated to a �nite number of couplings and corresponding �eld monomials. This
implies that the �ow of Γk can be written as

∂tΓk =
n∑

i=1

βgiOi, (2.36)

where βgi is just the beta function of the coupling gi. The sum over operators giOi
is truncated at some �nite n. The only two ingredients required to perform practical
computations with the FRG are thus the regulator Rk that has to be chosen such
that it satis�es the three criteria mentioned above and a truncation of the e�ective
action Γk. The beta functions of the individual couplings are isolated by employing
some projection scheme such as ∂/∂Oi. The projection scheme is also applied to
the right hand side of the FRG in Eq. (2.25), which can be expanded in a basis of
�eld monomials Oi, as can be for instance seen by expanding the �eld-dependent
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propagator term
(

Γ
(2)
k [φ] +Rk(p)

)
in powers of the �elds.

Approximating the full Γk by a �nite set of local �eld monomials introduces spurious
truncation artifacts. Consequently, one has to be careful when searching for �xed
points where βgi = 0. Not all zeros of the beta functions will also be physical �xed
points. In order to distinguish between physical �xed points, which imply universal-
ity and a set of critical exponents, and truncation artifacts, a set of necessary but not
su�cient criteria can be put in place. For instance, the critical exponents associated
to a physical �xed point should display apparent convergence when expanding the
truncation. Enlarging the truncation should, thus, not induce new relevant direc-
tions.
We will discuss these details more carefully when applying the FRG in practice in
a later section. Note also that the renormalization techniques developed in this
section heavily relied on the existence of a background with respect to which it was
possible to de�ne a scale. In the case of quantum gravity, which is supposed to be a
theory of space-time the notion of a background has to be absent. This makes the
application of renormalization group techniques highly non-trivial as we will also
discuss later on. In case the reader is interested in further details on the FRG, he
or she may consult [24, 25, 26, 23, 27, 28, 29]
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3 The continuum limit in Quantum

Gravity

A theory of quantum gravity is expected to resolve the inconsistencies of GR such
as the existence of black hole singularities or the big bang singularity. The naive
way to quantize gravity fails, however. In order to tame the divergences that result
from the naive quantization, a number of quantum gravity approaches introduce a
discreteness scale, which is either fundamental or merely introduced as a technical
way to deal with the divergent path-integral. The path-integral then simpli�es to a
sum over discrete con�gurations. In the following we are going to sharpen these
general points by providing an overview of the standard problems encountered when
quantizing gravity and argue that discreteness at the level of con�gurations that are
summed over in the path-integral does not necessarily imply discreteness at the level
of the resulting geometry. We are going to provide a brief summary of some of the
arguments put forward to motivate a fundamentally discrete quantum space-time.

3.1 A general overview

The Standard Model of particle physics o�ers a very successful framework to unify
three of the four fundamental forces in nature, the weak force, the strong force and
the electromagnetic force. The quantum formulation of the fourth known force,
gravity, has so far stayed elusive. While there is no proof that the gravitational
force is indeed quantized at very short distances, there exist a number of heuristic
arguments as to why this has to be the case. The appearance of singularities inside
of black holes as well as the big bang singularity are often named as standard ex-
amples to motivate the need for a theory of quantum gravity, that can ultimately
resolve these shortcomings of classical General Relativity. First attempts to formu-
late a theory of quantum gravity using the same strategies that were so successful
when formulating the Standard Model failed. Mainly, this is due to the fact that
Einstein gravity is perturbatively non-renormalizable and hence the introduction of
new counterterms at every loop order in order to remove divergences renders the
theory unpredictive. Indeed, while 't Hooft and Veltman where able to show that
gravity coupled to scalar matter already features divergences at one-loop, in the pure
gravity case some miraculous cancellations led to an on-shell one-loop �niteness of
Einstein quantum gravity [30]. Ultimately, Goro� and Sagnotti showed that pure
gravity is two-loop divergent [31]1. The quest for a predictive theory of Quantum

1In principle some miraculous cancellations can still occur at higher-loop orders. A full proof that
in�nitely many counterterms are required to cancel divergences is still missing.
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Gravity has sparked a very intense research program focusing on di�erent attempts
to make sense of the quantization of the gravitational �eld. The di�erent potential
theories for Quantum Gravity can be partitioned into two sets. On the one hand
there are those theories that assume that gravity at shortest scales is fundamentally
discrete and on the other hand there are those that assume a continuum space-time
at shortest distance scales.
It is possible to identify two main motivations as to why space-time at very short
distances might be fundamentally discrete. One argument is of technical nature and
is related to the fact that the absence of a UV cut-o� in a path-integral approach
to Quantum Gravity leads to divergences. Introducing a scale at which space-time
is fundamentally discrete, is one possibility to get rid of the usual divergences ap-
pearing in local QFTs. Another motivation to consider a fundamentally discrete
theory comes from black-hole entropy arguments. Since works by Bekenstein and
Hawking in the 70's sparked the �eld of black-hole thermodynamics [32, 33, 34, 35],
it is known that it is possible to associate an entropy to a black hole by dividing the
area of a black hole horizon by the Planck length squared, i.e.,

SBH =
A

`2
p

=
c3A

4G~
, (3.1)

where the subscript is due to the fact that this entropy has been labeled Bekenstein-
Hawking entropy. At �rst, the above relation was only interpreted as an analogy
to the concept of entropy appearing in classical thermodynamics, even though intu-
itively it makes sense to assign an entropy to black holes. Typically entropy refers to
the lack of information one has about a system, which is indeed of relevance to black
holes, where information inside the black hole is screened to external observers by
the horizon. With the discovery by Hawking that black holes radiate and it is pos-
sible to assign a temperature to these systems [36], black-hole thermodynamics was
�nally put on a �rm ground [37]. Since then, a plethora of di�erent interpretations
of black-hole entropy have been investigated. One interpretation is to understand
the Bekenstein-Hawking entropy in terms of small bits of information carried by
Planck-sized patches of the horizon. For a black hole with a horizon of size A there
are consequently 2A/`

2
p microstate con�gurations. The associated entropy is then

expressed as S = log2 (2A/`
2
p) = A/`2

p. From the fact that the horizon area is discrete
one also is led to the conclusion that space-time itself is discrete. Alternatively, it
also possible to understand black-hole entropy in terms of so-called entanglement
entropy. See [38] for a review. The idea behind associating the Bekenstein-Hawking
entropy with entanglement entropy is that since a black hole is created by the col-
lapse of some form of matter, the degrees of freedom within the black-hole horizon
must be correlated with the degrees of freedom outside the horizon. An observer,
however, can only access information about the degrees of freedom outside the hori-
zon. The entanglement entropy is obtained by tracing out the internal degrees of
freedom of a black hole, which are not accessible to an external observer. It turns out
that the entanglement entropy is proportional to the area of the black-hole horizon
with a coe�cient that is UV-divergent if no appropriate UV-cuto� is introduced.
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This divergence can either be absorbed in the Newton coupling G [39] or tamed by
introducing a space-time that is fundamentally discrete.
Nonetheless, fundamentally discrete theories face a series of challenges. One consists
in recovering di�eomorphism invariance at low energies. Another one lies in the fact
that from an EFT point of view, close to the cut-o� scale one would expect a loss
of predictivity: Physics in the IR is described by only a few interactions, as most
interactions are suppressed by the cut-o� scale. In the UV, however, all in�nitely
many couplings allowed by symmetries contribute to the dynamics [40]. As a con-
sequence, some mechanism is required in order to relate these couplings to render
the theory predictive by only having a �nite number of free parameters left to �x.
These aspects can be remedied if discreteness is merely introduced as a technical
tool. In that case the physics results from taking the continuum limit. Building on
the notions introduced in the previous section, the continuum limit corresponds to
a �xed point of a renormalization group �ow. Not only may di�eomorphism invari-
ance be recovered2 by the fact that the cut-o� is removed, but an RG �xed point
also features universality, thus introducing in�nitely many relations between the
couplings and leaving only a �nite number of relevant parameters to be measured.
The question of whether the continuum limit in quantum gravity is of relevance or
not is a highly-debated one.

3.2 Background Independence and the

Renormalization Group

One of the great di�culties associated to a continuum limit in Quantum Gravity is
the fact that unlike the gauge forces described by the Standard Model, gravity is a
force describing the dynamics of space-time itself. Hence, background-independence
should be a crucial ingredient of any theory of quantum gravity. This requirement
comes with a baggage of di�culties. In the absence of a background, setting up a
renormalization group �ow becomes very challenging, as the absence of a background
also implies the lack of scales. The notion of scales and being able to hierarchically
organize degrees of freedom in terms of these scales is, however, at the heart of the
renormalization-group approach. Setting up a renormalization group �ow, which al-
lows one to connect a given UV theory to the IR, becomes di�cult. When discussing
the continuum limit in di�erent theories of quantum gravity in the following, we will
discuss di�erent strategies to circumvent these issues.

2Note that this does not necessarily have to be the case. The continuum limit could for instance
also correspond to Horava-Lifshitz gravity, a continuum theory of quantum gravity which ex-
plicitly breaks di�eomorphism invariance in the UV.
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3.3 The path integral and sum over histories

So far we have discussed that the standard way to quantize gravity fails and an
appropriate regulator that tames the divergences has to be introduced. Let us now
shortly review the expression that several theories of quantum gravity attempt to
make sense of.
A number of approaches to Quantum Gravity build on the path-integral formalism
corresponding to a sum over histories. The quantum gravitational path-integral is
schematically given as

ZQG =
∑

topologies

∫
Dg eiSGravity , (3.2)

where the topologies might or might not �uctuate and the integration is performed
over all physical four-geometries 3. SGravity is supposed to be the fundamental action
of space-time and could denote the Einstein-Hilbert action SEH but doesn't have
to. In principle one could replace the Einstein-Hilbert action by a di�erent action
possibly even including gravitational degrees of freedom di�erent from the metric, as
long as the low-energy e�ective theory is given by the Einstein-Hilbert action4. The
debate of what exactly �uctuates due to gravitational �uctuations is still ongoing,
for instance there is also no clear reason as to why the deep-UV dimension of space-
time should be �xed to four. The transition amplitude from a state s characterizing
a space-time manifoldM equipped with a metric g to a state s′ describing a space-
time manifoldM′ with metric g′ is then computed in standard fashion as

〈s|s′〉 =
∑

topologies

∫ g′(M′)

g(M)

Dg eiSGravity , (3.3)

where the integral is performed over all four-geometries connecting the two boundary
manifoldsM andM′, making the sum-over-histories interpretation more evident.
While the path-integral approach to quantum gravity is conceptually intriguing since
it allows for a clear interpretation of gravitational �uctuations as a sum-over-all
histories, it is an ill-de�ned expression when using standard perturbative techniques.
One of the reasons is that the measure term is an ill-de�ned quantity leading to the
standard UV divergences of QFT. A number of di�erent approaches to quantum
gravity provide di�erent solutions to remedy the problems related to the naive path-
integral approach to Quantum Gravity, relying on a non-perturbative treatment

3One could argue, however, that the path-integral should be performed over all four-geometries,
or maybe even over all geometries of any dimension and that the gravitational action should be
such that these unphysical geometries interfere destructively with each other. This is exactly
the stand-point taken by causal set theory, as we will see later on.

4In that regard, it is important to mention that even if ZQG is not UV-complete, one can still
make sense of it from an EFT point of view. For a review on general relativity as an e�ective
�eld theory the reader may consult [41, 42]. One notable prediction is the derivation of quantum
gravity corrections to the Newtonian potential [43].
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of the Einstein-Hilbert action. Ultimately, a consistency test that any theory of
quantum gravity has to pass is that it has to feature a continuum limit that allows
one to recover the well known IR physics described by the Einstein Hilbert action. In
the following, we will introduce the continuum limit and the associated challenges in
obtaining it in a number of di�erent quantum gravity approaches. This discussion
will also allow to highlight the di�erence between discreteness at the kinematical
level of con�gurations that enter the path-integral

3.4 Asymptotically Safe Quantum Gravity

Arguably, the most conservative approach to quantize gravity is provided by the
asymptotic safety scenario of quantum gravity, as it does not require the inclu-
sion of new degrees of freedom or the introduction of physical discreteness at short
distance scales. Here, the underlying assumption is that, even though quantum
gravity is perturbatively non-renormalizable it might be non-perturbatively renor-
malizable. As such, asymptotic safety is a generalization of asymptotic freedom,
where couplings attain a vanishing �xed point value at high-energies. The concept
of asymptotic safety is, therefore, not only limited to quantum gravity but is much
more general5. Asymptotic safety corresponds to a realization of quantum scale
symmetry at the Planck scale, where quantum gravity e�ects are expected to be-
come relevant [45, 46]. Quantum scale symmetry is realized if the canonical scaling
and the quantum scaling of couplings are evened out. This implies that at least one
of the couplings of the theory attains a �nite �xed point value such that gravity
could be non-perturbatively renormalizable.
Physically, asymptotic safety predicts that beyond the Planck scale the equations
governing the fundamental nature of space-time remain the same at energy scales
beyond the Planck scale. Another way to interpret the scale invariance entailed by
asymptotic safety is that space-time at shortest distance scales becomes fractal-like
since couplings become independent of the scale at which they are probed as they
reach their �xed point values. Zooming in on space-time thus no longer changes its
fundamental description giving rise to a fractal-like space-time. In relation to this
point, it is also possible to argue that asymptotic safety features a minimal length
scale [47, 48]. Length scales below this scale cannot be probed as space-times 'looks'
the same. Thus, asymptotic safety can be regarded as a continuum theory that
nonetheless features elements of discreteness.
One of the key consequences of quantum scale symmetry is the enhanced predictivity
it entails for the underlying theory. Quantum scale symmetry can be regarded as an
additional imposed symmetry that restricts the number of free parameters to a �nite
one. This is related to the discussion on relevant and irrelevant parameters in the
previous chapter: The critical hypersurface introduced in Sec. 2 is �nite-dimensional
such that only a �nite number of parameters have to be �xed by experiment. Tech-

5As an example, in 2 < d < 4, O(N model have a non-trivial �xed point known as the Wilson-
Fisher �xed point [44].
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nically, evidence for the existence of a non-trivial UV �xed point at which quantum
scale invariance is realized is gathered with the FRG, also introduced in the previ-
ous section and has been initiated with the seminal paper [49]. Here, a UV �xed
point has been found in the so-called Einstein-Hilbert truncation that only includes
two couplings, the Newton constant GN and the cosmological constant Λ. Studies
with the FRG have collected evidence point towards the existence of a gravitational
universality class, which has been dubbed Reuter universality class, within di�erent
truncations of the full theory space [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. There
exists now an increasing consensus in the literature that the Reuter universality class
is characterized by three relevant directions, even though recently there has it has
also been claimed that the dimension of the critical hypersurface of asymptotically
safe quantum gravity could be four [61]. Another key challenge of Asymptotic Safety
concerns the unitarity of the theory at the �xed point. General relativity can be
shown to be renormalizable if an R2 term, where R is the Ricci scalar, is introduced.
However, the inclusion of such a term introduces a so-called ghost which renders the
theory non-unitary, violating a basic axiom of quantum mechanics, whereas proba-
bilities are conserved.
In Asymptotic Safety it is expected that higher-order curvature terms are turned
on, i.e., contribute to the dynamics of the theory at the �xed point. The appear-
ance of ghosts, which is related to the existence of additional poles, besides the pole
located at zero momentum corresponding to the massless graviton mode, in the
graviton propagator could, however, be avoided if the momentum-dependent inter-
actions causing the additional poles can be resummed to yield a non-local function.
Challenges related to unitarity can be addressed the study of so-called form factors,
which not only depend on the coarse-graining scale k but also on the momenta of
the �elds. For studies in this direction consider [62].
One of the strengths of the asymptotic safety program for quantum gravity is
that it is straightforwardly possible to study the interplay of gravity and matter
[63, 64, 65, 66] and derive potential phenomenological implications [67, 68, 69, 70,
71, 72, 73, 74, 75, 76]. Studying gravity-matter systems is also of interest as it
allows to put bounds on the matter content by demanding that the �xed point
be not destroyed by the inclusion of matter [63, 65]. As an example, in QCD,
asymptotic freedom is destroyed when too many quarks �avors are added. Studies
of gravity-matter systems have been performed in For a more detailed account of
Asymptotic Safety we advise the reader to consult the textbooks [77, 78] and the
reviews [79, 80, 81, 82, 66, 83, 84, 85, 86, 87, 88].
For the discussion on the relevance of the continuum limit in di�erent quantum
gravity approaches, the crucial take-away message for the reader is that even though
the con�gurations that enter the path-integral of asymptotically safe quantum gravity
are continuous four-geometries, the quantum scale invariance entailed by asymptotic
safety introduces a minimal length.

34



3.5 Euclidean Dynamical Triangulations

The EDT program of Quantum Gravity falls into the family of theories of Quantum
Gravity that aim to quantize the Einstein-Hilbert action non-perturbatively by in-
troducing a lattice, i.e., a minimal length scale which takes the role of a regulator
term. Thus the physical content of the theory is obtained by removing the regulator
by sending the lattice cut-o� to zero. The basic idea of EDT is that continuum GR
can be discretized in terms of equilateral four-simplices6 that are glued together in
order to form four-dimensional manifolds. As such it can be regarded as an attempt
to formulate a lattice version of quantum gravity, allowing for a full non-perturbative
treatment of the theory. As usual for theories de�ned on a lattice, the actual physics
emerges when taking a proper continuum limit, as the e�ects of the discretization
are washed out. The hope of this program is that the continuum limit corresponds
to a theory of continuum quantum gravity, which could well be Asymptotic Safety.
In two dimensions this program is fully successful [89, 90, 91, 92, 93, 94], reproduc-
ing results that are compatible with ones obtained via the quantization of gravity
in the continuum by means of the Liouville formalism, which will be presented in a
forthcoming section. The reason that gravity is solvable in two dimensions lies in
its topological nature in two dimensions. There are no local �uctuating degrees of
freedom.
The idea of triangulating space-time manifolds is borrowed from Regge calculus [95].
In contrast to Regge calculus, however, where the edge lengths of the triangles are
allowed to �uctuate, EDT posits equilateral triangles of edge length a, in the case of
two-dimensional quantum gravity. We refer to [96, 97] for an introduction to Regge
calculus.
A triangulation consisting of N4 four-simplices7 that are glued together in such a
way that said triangulation consists of N0 vertices, is weighted with the exponential
of the following action

S[T ] = −κ0N0(T ) + κ4N4(T ), (3.4)

where κ0 is related to the inverse bare Newton coupling while κ4 is a function of
both, the bare cosmological constant and the continuum Newton coupling. Vertices
correspond to 'meeting points' of four-simplices. Intuitively, a triangulation T1 with
a given number of four-simplices N ′4 and vertices N ′0 will have a larger overall degree
of local curvature than a triangulation T2 with the same number of four-simplices
N ′4 but with a larger number of vertices N ′′0 > N ′0. This intuition is made clear
by introducing the so-called de�cit angle. In the absence of matter, we would thus
expect the former triangulation T1 to be less favorable than the latter con�guration
T2, as T2 is closer to the classical solution corresponding to a �at space-time. This
expectation is indeed re�ected by the above action, where a triangulation with a large

6A four-simplex can be thought of as being a four-dimensional triangle. A three-simplex for
instance corresponds to a tetrahedron, while a two-simplex is a triangle.

7A four-simplex can be regarded as a four-dimensional generalization of a triangle.
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Figure 3.1: The principle behind the continuum limit in dynamical triangulations:
In the �gure above, a three-volume is approximated by building blocks
with a certain edge length a. The edge length of the buildings is con-
tinuously taken to be smaller, while demanding that the overall volume
remains invariant under these rescalings. In particular, the continuum
limit allows to completely remove the discretization e�ects by rescal-
ing the building blocks to have vanishing edge length. The picture of
Einstein's head on the right, for instance, already resembles that of a
continuum head. The �gure on the left is credited to Getty Images.The
Einstein head on the right can be found at Legoland Florida.

number of vertices will be ultimately favored in the path integral since triangulations
are weighted as follows

Z =
∑

random triangulations

1

s(T )
exp {− (−κ0N0(T ) + κ4N4(T ))}, (3.5)

where s(T ) is a symmetry factor accounting for the fact that there are distinct
ways of gluing four-simplices while obtaining the same triangulation T . In other
words, one can relabel the simplices and still end up with the same triangulation.
The fact that con�gurations with larger overall curvature tend to be suppressed in
the path-integral is also analogous to what happens in the continuum path-integral
formulation of Euclidean Quantum Gravity.
Having argued [95, 98] that the action S[T ] in Eq. (3.4) is indeed a discretized
version of the Einstein-Hilbert action, it is important to stress once again that the
discretization introduced by the lattice is of a merely technical nature as, ultimately,
one is interested in the continuum limit, where the lattice spacing can be removed,
as is usual for lattice theories in general. Concretely, the continuum limit is of
interest because it allows to rescale the four-simplices to have in�nitesimally small
edge length such that the discretization e�ects can be fully removed. To make this
point clear consider Fig. 3.1 which schematically shows how the continuum limit
allows to remove the discretization e�ects.
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Figure 3.2: Phase diagram of DT uncovered from Monte Carlo simulations. The
parameter κ4 needs to be tuned to a critical value in order �nd the
continuum limit.

In EDT the in�nite volume limit is obtained by tuning κ4 to the critical line κc4(κ2)8.
When κ4 approaches the critical line from above it can be shown that the discrete
four-volume grows as [99]

〈V 〉 ∼ ad

κ4 − κc4
, (3.6)

diverging at exactly the critical line. In order to keep the physical four-volume 〈V 〉
�xed, the cut-o� a has to be removed. We will discuss dynamical triangualations in
more detail in an upcoming section, where we will also illustrate why tuning κ4 to
the critical line κc4(κ2) gives access to the continuum limit. For now it is su�cient to
just note that κ4 is send to a critical line leaving κ2 as the only tuneable parameter to
�nd an interesting continuum phase resembling Einstein-Hilbert gravity. The phase
space of euclidean dynamical triangulations has been explored in [100, 101] and the
phase diagram depicted in Fig. 3.2 has emerged from these studies, where a critical
point (κc2, κ

c
4) separates two phases by means of a �rst order phase transition. The

di�erent phases can be quanti�ed in terms of di�erent observables that allow for
comparisions with the continuum. One such observable is the Hausdor� dimension
dH . The Hausdor� dimension de�nes how the volume of a sphere r scales with the
volume V . In the case of a four-dimensional continuum space-time the Hausdor�
dimension agrees with the topological dimension. Hence, a good indication for a
continuum phase of gravity is to �nd dH = 4. However, none of the two phases
identi�ed by euclidean dynamical triangulations have turned out to be related to
8κc4(κ2) corresponds to a critical line as κ2 is a free parameter that can be tuned freely. The
in�nite volume limit is independent of the value that κ2 takes.

37



a four-dimensional continuum gravity phase [102, 103, 104, 105]. At small values
of κ2 < κc2 the lattice continuum limit corresponds to a so-called crumpled phase
with no extended space, characterized by an in�nitely large Hausdor� dimension,
while at large values of κ2 > κc2, the continuum phase resembles branched polymers
with an associated Hausdor� dimension of dH = 2. Moreover, the phase transition
between the two phases was found to be �rst-order [106, 107] making the existence
of a continuum limit improbable. The failure to �nd an interesting continuum limit
from the discretized Einstein-Hilbert action Eq. (3.4) has given rise to the causal
dynamical triangulations program, which we will introduce in a brief moment.
Nonetheless, some recent studies suggest that an appropriate measure term needs to
be taken into account to compensate for the breaking of di�eomorphism invariance
due to the discretization introduced by the lattice [108, 109, 110, 111]. This then
results in a critical surface κc4(κ2, β) with two tuneable parameters β and κ2, where
β is the additional measure term that is introduced.
Dynamical triangulations is an approach to quantum gravity that tries to make sense
of the path-integral of quantum gravity by following a discrete strategy. Ultimately,
however, one in interested in the continuum limit, where the discretization e�ects
can be removed.

3.6 Causal Dynamical Triangulations

The failure to �nd evidence for a second order phase transition in four dimensions
in (Euclidean) dynamical triangulations has given rise to the causal dynamical tri-
angulations program [112, 113, 114, 115, 116, 117]. For reviews on CDT we refer to
[118, 119, 120]. The causal dynamical triangulation approach continues to follow the
same methodological line as the dynamical triangulations framework in the sense
that one is still interested in a UV �xed point where the lattice cut-o� a can be
removed giving rise to a continuum theory. As an update to the dynamical trian-
gulations program, a global time foliation is introduced, which can be viewed as a
lattice version of global hyperbolicity in general relativity, which allows to uniquely
evolve a spatial hypersurface in time 9. In particular, unlike in EDT, simplices are no
longer equilateral, but are characterized in terms of space-like edge lengths, `2

p = a2
p,

and time-like edge lengths with `2
p = −αa2

p. This distinction allows to construct two
di�erent types of four-simplices, which we will denote (4, 1) and (3, 2). The former
contains four vertices in a time slice t and one vertex in the neighboring time slice
t − 1 or t + 1, while the latter contains three vertices in a time slice t and two in
the time slice t − 1 or t + 1. Thus, CDT can be viewed as a theory of triangula-
tions of Lorentzian geometries. As such, it is possible to analytically continue CDT
triangulations to Euclidean signature and the discretized action of CDT satis�es
iS[LG] = −S[EG], where ′LG′ denotes triangulations of Lorentzian geometries and
′EG′ corresponds to triangulations of the rotated Euclidean geometries. The action
for causal dynamical triangulations is more involved than the one for dynamical
9This is closely related to the ADM decomposition of GR.
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triangulations introduced before. It is given by [118]

S[T ] = −(κ0 + 6∆)N0(T ) + κ4 (N4,1(T ) +N3,2(T )) + ∆N4,1(T ) (3.7)

and introduces an additional coupling parameter ∆ related to the anistropy pa-
rameter α. As a reminder, just as in EDT, κ0 is related to the bare Newton cou-
pling and κ4 corresponds to the bare cosmological constant. The coupling space
of CDT is therefore larger than the one of EDT and correspondingly also o�ers
a richer phase diagram. The original DT action is recovered for ∆ = 0. It is,
however, worth emphasizing that the con�guration space is still di�erent, so the
phase diagrams of EDT and CDT will di�er even though the actions agree. The
key characteristics of the CDT parameter space have by now been largely revealed
[117, 116, 121, 122, 123, 124, 125, 126], showing a phase diagram with four phases
depicted in Fig. 3.3. Phase A is the oscillating phase, where the universe �uctuates
quickly and adjacent slices are not correlated. Phase B is characterized by the CDT
'building blocks' being concentrated into a minimal number of time slices. Neither
phase A nor phase B correspond to our universe. The phase CdS is of most in-
terest, as it exhibits a semi-classical geometry that resembles Euclidean de Sitter
space in four dimensions [116, 117, 122]. For larger κ0, one observes a �rst-order
phase transition from CdS to A, while for lower values of the asymmetry parameter
∆, a second- or higher-order phase transition to the bifurcation phase Cb, which
is characterized by the emergence of local geometry around some vertices of the
triangulation, is observed [127, 128, 125]. Moreover, for even lower values of ∆, the
bifurcation phase Cb and the phase B are also separated by second- or higher-order
phase transition [129]. Of particular interest is the behavior of the model close to the
phase boundary of continuous phase transitions, as it is of direct relevance for the
de�nition of a physical large-volume limit. In this limit, the lattice volume diverges
such that the discretization e�ects of the simplices can be removed 10.
Hence, the current goal of the CDT program is to have a renormalization group
�ow via the de Sitter phase CdS in the space of bare couplings towards an UV �xed
point, which characterizes a second-order phase transition, while keeping observable
quantities �xed. The existence of such a UV �xed point allows for the edge-length of
the simplices to be sent to zero such that the discretization e�ects can be removed,

10This applies to lattice theories in general. For instance, in lattice �eld theory, the 'physical',
renormalized mass mR is extracted from the decay of the two-point function

〈φ(x)φ(y)〉 ∝ exp (−mR|x− y|) = exp

( |x− y|
ξ

)
, (3.8)

where ξ is the correlation length. On the lattice, it is only possible to measure dimensionless
quantities such that one can only measure the dimensionless combination amR = 1

ξa , whereas

the distance |x− y| can only be measured in lattice units. Taking the continuum limit a→ 0,
while keepingmR constant, drives the correlation length measured in lattice units ξ/a to diverge.
This is only the case if the phase transition is of second order or higher. To make contact with
the discussion above, the correlation length measured in lattice units in our example corresponds
to the lattice volume N4.
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Figure 3.3: Phase diagram of CDT uncovered from Monte Carlo simulations. The
parameter κ4 needs to be tuned to a critical value in order �nd the in�-
nite volume limit, which allows the edge lengths to be sent to zero, while
physical quantities remain �nite. This leaves a two-dimensional parame-
ter space, that allows for the phase diagram depicted above. Four phases
A,B, CdS and Cb have been identi�ed. Phase A is the oscillating phase,
the three volume of the universe �uctuates quickly and adjacent slices are
not correlated. In Phase B the simplices are all concentrated at one time
slice, in which the Hausdor� dimension is large. This is similar to the
crumpled phase in DT. The most interesting of the three phases is phase
C. Phase C can be split into two subphases. In phase C, the average
three-volume of the universe can be described by an e�ective minisuper-
space action. This minisuperspace action describes a Euclidean de Sitter
cosmology. The Hausdor� dimension of this geometry is 4. Figure taken
from [130].

while demanding that physical observables, such as N
1/4
4 a, stay �nite. Evidence for

a second-order phase transition has been found and the current studies focus on
exploring the geometry underlying that phase transition.

3.7 Matrix & Tensor Models

The philosophy of the tensor-model approach [131, 132, 133, 134] to Quantum Grav-
ity coincides with the one of dynamical triangulations. Discretization of a continuum
space-time is imposed as a technical way to introduce a regularization, which allows
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to treat the UV-divergences that appear in a continuum path-integral approach to
Quantum Gravity. The key of tensor models is that they generate Feynman dia-
grams which are dual to random triangulations of space-time, see Fig. 3.4. In order
to triangulate a four-dimensional surface a tensor with four indices having certain
symmetry properties, which we will not specify at this point, is assumed, where, in
simpli�ed words, each index corresponds to one dimension. Uncovering a continuum
limit corresponding to a phase of quantum gravity phase in tensor models is still
ongoing research. The key, however, is that there exists a relationship between the
continuum path-integral of Quantum Gravity and a, yet unknown, path-integral of
tensor models

∑

topologies

∫
Dg e−SGravity[g]−SMatter[φ] ∼ ln

(∫
DTe−Stensor[T ]

)
, (3.9)

where SGravity[g] corresponds to a fundamental gravitational action, which does not
have to be the Einstein-Hilbert action and Smatter encodes the matter degrees of free-
dom of our universe. The question of whether topological �uctuations are actually
allowed is still an ongoing research question. The motivation to study tensor models
to solve the four-dimensional path-integral for gravity follows from the success of
matrix models in two dimensions. In matrix models, which generate Feynman dia-
grams that are dual to triangulations of two-dimensional manifolds, the question of
the continuum limit has already been answered by explicitly comparing for instance
critical exponents characterizing the singular behavior of observables that have also
been obtained by continuum methods. The generating functional for matrix models
is given as

FMM[M ] = ln

(∫
DMe−tr(M

2)+gtr(M3)

)
. (3.10)

In matrix models the continuum limit corresponds to the so-called double-scaling
limit, which we will also explore in more detail in a later section. In short, the double-
scaling limit is taken by sending the matrix coupling g to some critical value gc, while
simultaneously assuming the matrix size N to be very large, i.e., N → ∞. The
success of matrix models in recovering two-dimensional Quantum Gravity therefore
also provides the motivation to study tensor models in the �rst place. Indeed, matrix
and tensor models generate Feynman diagrams that are dual to two-dimensional and
higher-dimensional random triangulations of space-time, respectively. Therefore,
matrix and tensor models can be seen as an alternative formulation of Euclidean
Dynamical Triangulations. For a review of the connection between matrix models
and two-dimensional quantum gravity we advise the reader to consult [135].
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Figure 3.4: Depiction of the duality between the Feynman graph expansion of the
free energy of a matrix model and a random triangulation. The vertices
in the matrix model correspond to triangles and the propagators to edges
of the triangles. The thickened structure of the lines is due to the fact
that matrices carry two indices.

3.8 Causal Sets Quantum Gravity

The Causal Sets approach to Quantum Gravity posits the causal nature of space-
time as fundamental [136]. For a more detailed account of causal sets quantum
gravity, the reader is advised to consult [137, 138, 139, 140, 141, 142, 143] The
minimalistic idea is that space-time geometry can be fully described in terms of
the causal structure of a manifold and the speci�cation of a local volume element,
known as the conformal mode [136]. As such the assumption is that the space-time
structure is described by a partially order, locally �nite set of events. The causal
structure of a manifold is realized by introducing a partial order relation ≺, which
implies the following two conditions

Transitivity : (∀x, y, z ∈ C)(x ≺ y ≺ z =⇒ x ≺ z) (3.11)
Acyclicity : (∀x ∈ C)(x ⊀ x). (3.12)

The transitivity condition enforces the usual continuum idea of causal relation, while
the acyclicity condition forbids causal loops, which would allow travelling back in
'time'11 These two conditions are intrinsically Lorentzian given that in a Euclidean
setting there exists no notion of causal order as space-time points are only space-
like separated. The above conditions are not enough to completely �x the causal
structure of space-time. It is still necessary to introduce a scale. Otherwise, it is just

11An example of a causal loop would be x ≺ y ≺ z ≺ x.
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possible to make relative statements about lengths and volumes but to de�nite ones.
For that reason it is also necessary to set a unit-volume and associate a scale to the
theory12. Hence the causal structure is not enough to fully specify the metric degrees
of freedom but it is necessary to provide a notion of scale or volume information.
This is done by introducing the local �niteness condition:

Local �niteness : (x, z ∈ C)(card{x ≺ y ≺ z|y ∈ C} <∞). (3.15)

The �niteness condition implies that there is only a �nite number of causal points
between any two elements of a casual set. It thus introduces a notion of discreteness.
There exist two philosophies to interpret the discreteness condition: One is to assume
that the discreteness is merely a tool to regularize the continuum path integral
of quantum gravity, just as was the case for dynamical triangulations and tensor
models, while the other interpretation is to postulate that space-time at the Planck
scale is fundamentally discrete13. Following the latter line of interpretation, which
is the most prevalent in the causal sets community, the Planck length is postulated
as the fundamental length scale and continuum physics is emergent in a coarse-
graining sense, where the metric is just an e�ective degree of freedom at scales
below the Planck scale. The number of elements of a causal set then corresponds to
the space-time volume.Broadly speaking the following interpretation of causal set
is set to hold

Order + Number = Geometry. (3.16)

This slogan was originally coined by Rafael Sorkin.
Going back to the interpretation of the discreteness condition in Causal Sets, de-
pending on which point of view is taken, one is interested in the continuum limit
or not. If the discreteness is seen as a technical tool to regularize the path integral
for gravity, like a type of random lattice, physics only appears in the continuum
limit. Here, we will be mostly concerned with this interpretation. There are sev-
eral challenges associated to the continuum limit in causal sets quantum gravity.
Schematically, the continuum limit implies the following relation

∑
DCeiS[C] →

∫
Dgµν eiS[gµν ], (3.17)

12A metric g can be rescaled in the following way

gµν(x)→ g̃µν(x) = Ω(x)2gµν(x) (3.13)

such that the line element is given by

ds2 → ds̃2 = Ω(x)2ds2. (3.14)

Such a rescaling leaves the causal structure invariant (ds2 = 0), independently of Ω(x).
13Note that the fact that space-time at the Planck scale is fundamentally discrete is an additional

assumption which does not just follow from local �niteness.
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where the causal set path integral is performed over all causal sets C that satisfy
the transitivity, acyclicity and �niteness condition. This already brings us to the
�rst challenge: What is the con�guration space of Causal Sets? That is, what are
the causal sets C that enter the path-integral? It turns out that most causal sets
are actually not manifoldlike. A manifoldlike causal set, is de�ned as causal set that
could have arisen through a random selection of a set of point from a manifold.
This selection process should be such that the volume is locally conserved under
Lorentz transformations. This selection process is referred to as sprinkling in the
causal set literature and space-time points are selected using a Poisson distribution.
Given that most causal sets are not manifoldlike the hope is that the manifoldlike
causal sets interfere destructively. Alternatively, the con�guration space could also
be restricted to just the causal sets that follow from a sprinkling process.
As an additional challenge, the causal set approach of quantum gravity also only
allows to make statements about the kinematics, dictated by the three conditions
Eq. (3.11), Eq. (3.12) and Eq. (3.15). It could therefore well be that non-manifoldlike
causal sets are kinematically allowed but dynamically forbidden. This raises the
question on the dynamics of causal sets: What exactly is the action S[C]? Assuming
that regularization is a technical tool, the action S[C] is ultimately determined by
the continuum physics, for instance by the Asymptotic Safety conjecture. Following
that line of thought, the schematic continuum limit introduced in Eq. (3.17) could
take the following form

∑
DCspe

iS[Csp] →
∫
DgµνeiSAS[gµν ], (3.18)

where SAS corresponds to the microscopic asymptotic safety action. There exist
two possibilities to search for a continuum limit: Either by Monte-Carlo simulations
or using the functional renormalization group introduced in the previous section
[143]. Both methods are not suited for Lorentzian studies and hence an additional
parameter that allows for an analytical continuation has to be introduced. We refer
to [143] for technical details.

3.9 Spin Foams

The spin foam approach to Quantum Gravity aims to provide a framework that is
intrinsically background-independent and non-perturbative with no reference to a
background geometry at all. The idea is to interpret the sum over all space-time
histories as a sum over all boundary con�gurations obtained in terms of so-called
spin networks. Spin networks are kinematical states describing the discrete quantum
geometry of space in terms of combinatorial and group-theoretical data and are
derived in loop quantum gravity. Spin foams provide a framework to study the
dynamical evolution of spin networks with the spin foam amplitudes describing the
transition probability between two given spin network states s and s′. For a more
detailed account of spin foams, we refer the reader to [144, 145, 146] More generally,
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spin foams can be regarded as a lattice gauge theory: Space-time is described as
a quantum superposition of geometries weighted by some appropriate amplitude.
Hereby, a lattice is introduced in order to deal with the in�nite number of degrees of
freedom that describe the evolution of a spin network14 by truncating them using the
discretization provided by the lattice. The sum over geometries and topologies then
consists in summing over discrete building blocks of space-time. This is very similar
to the tensor model approach to quantum gravity, in the sense that spin foams
are de�ned as graphs carrying vertices, edges and faces. The di�erence, however,
is that in spin foams the building blocks also carry group-theoretical data related
to the Lorentz group by carrying spins of the unitary irreducible representation of
SU(2), which can intuitively be thought of as being related to the area of a building
block and intertwiners assigned to the edges and nodes of a spin foam respectively,
which carry information about the shape of the building block. Hence, compared to
tensor models the building blocks already carry some amount information about the
continuum space-time. The question of the continuum limit is highly debated in the
spin foams community. One of the early successes of spin foams is the derivation of
a semi-classical limit for one spin foam building block corresponding to the Regge
action, a discretized version of the Einstein-Hilbert action. The question of how to
take the continuum limit in order to recover four-dimensional manifolds, however,
is still open for debate. There exist di�erent proposals as to how to make sense of
a spin foam path-integral. One possibility would be to sum over all possible foams,
that is over all allowed dynamics of spin networks. This way of interpreting the
path-integral is the philosophy adopted by the group �eld theory approach that is
discussed below.
Alternatively, a spin foam can be regarded as a regulator. The continuum limit
can then be established in the following way: A truncation of �ne hypercuboids
is considered. Similar to a coarse-graining procedure, the �ne hypercuboids are
replaced by fewer more coarse and e�ective ones. The non-trivial aspect of this
coarse-graining procedure concerns the mapping of the boundary data, i.e., the
spins and intertwiners, to the �ne building blocks. This relation is provided by
so-called embedding maps, mapping states on the coarse boundary to states on
the �ne boundary. The exact choice of an embedding map is highly non-trivial
[147, 148, 149, 150]. Evidence for a phase transition in spin foams has been reported
in [151]. Nonetheless, given the conceptual points mentioned above, we would like
to reemphasize, The continuum limit in spin foams is one of the open challenges:
While it is possible to obtain discrete GR as a semi-classical limit for large quantum
numbers, it is not clear how to obtain a continuum geometry in limit of large lattices.
See [152] a recent review on coarse-graining and renormalization in spin foam models.

14The degrees of freedom in spin-foams are spins and intertwiners.
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3.10 Group Field Theory

Group �eld theories (GFTs) are closely related to tensor models, spin foams and the
simplicial quantum gravity models like EDT and CDT. The idea behind GFTs is
that a continuum geometry can be recovered from physically discrete atoms of space.
Space-time is ultimately recovered by considering large collections of building blocks.
In simple words, the picture that GFT proposes is that the universe can be regarded
as a quantum �uid, where the microscopic building blocks form a condensate [153],
analogous to Bose-Einstein condensation. That is, a continuum space is recovered
for a very large number of very small quanta of space-time close to equilibrium,
where the equilibrium state corresponds to a yet to be determined many-particles
vacuum state. Recovering continuum spaces of physical relevance is still one of the
challenges of GFTs. However, using a certain set of simpli�cations a Friedmann
equation with quantum gravity corrections can be recovered from the hydrodynam-
ics of a GFT condensate [154], which replaces the classical cosmological singularity
with a quantum bounce. In more technical words GFT is motivated as follows: In
the Loop Quantum Gravity formalism space at the quantum level is described by
combinatorial graphs, equipped with algebraic data related to the group represen-
tation, which for four dimensional quantum gravity models is typically SO(3,1) (or
SL(2,C)) in the Lorentzian case and SO(4) in the Riemannian case. The graphs
carrying algebraic and combinatorial data are called spin networks. Spin networks
states can be shown to correspond to many-body states in a second-quantized Fock
space, where the quanta making up this Fock space correspond to building blocks of
spacetime. The Fock space made up by the discrete building blocks of space is the
Hilbert space that underlies GFTs [155]. For a more detailed account of GFTs and
its relation to other approaches of quantum gravity, we advise the reader to consult
[156].
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4 Tensor Models

In the previous section, we have discussed the relevance of the continuum limit as
well as its challenges for di�erent approaches to quantum gravity. We have argued
that there exists a di�erence between discreteness at the kinematical level, before the
continuum is taken, and discreteness at the dynamical level, after the continuum
limit has been taken. Crucially these two realizations of discreteness do not have to
imply each other. The path-integral may consist in summing over discrete con�gu-
rations but the emerging geometry might be continuous
Dynamical triangulations and the tensor model approach to quantum gravity, for
instance, exploit the discretization of space-time as a technical way to regularize
the divergent path-integral of quantum gravity where the actual physics is found by
taking the continuum limit. In that regard, we have also discussed some key points
related to the continuum limit in asymptotic safety, dynamical triangulations and
tensor models, and how these three approaches are or might be related to each other.
Here, we will attempt to make these points more precise and clear, paying particular
attention to the tensor model approach to quantum gravity. We will start by dis-
cussing the conceptual commonalities of dynamical triangulations, matrix models 1

and continuum quantum gravity in two dimensions. Their relationship is displayed
in Fig. 4.1. The idea of the relationships depicted in Fig. 4.1 is the following: A
continuum surface can be discretized in terms of small polygons, whose exact shape
does not matter. For instance, the surface can be triangulated or discretized in
terms of squares. The continuum limit, where the e�ects of the polygonization can
be removed, then corresponds to two dimensional quantum gravity. The dynamical
triangulations approach hinges mostly on numerical methods as computations are
performed on the lattice. The matrix model formulation of quantum gravity o�ers
analytical insights into the theory of random triangulations as its Feynman diagram
expansion can be shown to be dual to polygonizations of two-dimensional surfaces.
Matrix models, hence, provide an analytical way to access the continuum limit. Un-
derstanding the relationships depicted in Fig. 4.1 will set the stage to discuss higher
space-time dimensions, in particular four. Whether the relationships depicted in
Fig. 4.1 actually also hold in higher dimensions is still an open research question.
Gravity in two dimensions is special, as we will see below, and therefore it is highly
non-trivial that a relationship between tensor models, dynamical triangulations and
continuum gravity could also persist in higher dimensions. In any case, the discus-
sion on two-dimensional quantum gravity will provide us with a toolbox to discuss
higher-dimensions, also shining light on possible subtleties related to the inclusion
of topological �uctuations in the path-integral of quantum gravity. Equipped with

1Here, matrices can just be regarded as tensors with two indices.
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Figure 4.1: General idea of how matrix models relate to Dynamical Triangulations
and 2d Quantum Gravity.

the toolbox that we acquired from studying two-dimensional quantum gravity, we
will explore the possibility of a continuum limit in tensor models in three and four
dimensions that might provide insight into a phase of quantum gravity, potentially
corresponding to Asymptotic Safety. The technical tool that we will employ to ex-
plore this possibility will be the functional renormalization group introduced in Ch.
2. As already discussed in the previous chapter, the fact that a theory of quantum
gravity has to be a theory of space-time rather than a theory on space-time implies
the absence of a notion of a background, which is a crucial ingredient in the usual
Wilsonian RG approach introduced in Ch. 2. We will overcome these conceptual
di�culties by setting up a renormalization group �ow in terms of the tensor size
N , which counts the number of degrees of freedom. While the tensor size N no
longer corresponds to a local scale, taking N to be the RG scale makes contact with
the coarse-graining approach, where the philosophy is to replace many fundamental
variables by a few more e�ective ones. Equivalently, taking the tensor size N as a
scale, we will replace large tensors with many entries by more e�ective tensors with
fewer degrees of freedom.
We will, thus, pay particular attention to these conceptual points in the following
when discussing the continuum limit in tensor models.
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2D Quantum Gravity in the continuum

Our quest to explore tensor models for four-dimensional quantum gravity begins in
two dimensions, where gravity is special, allowing us to introduce a set of tools that
will be also of relevance for higher-dimensions.
The fact that two-dimensional gravity is special, is already apparent at the clas-
sical level, as the classical equations of motion are trivially satis�ed. As a conse-
quence, gravity is, on the one hand, purely topological and on the other hand not
only di�eomorphism-invariant but also Weyl-invariant, which greatly restricts the
physical metric degrees of freedom. This can be seen by considering the Riemann
curvature tensor Rµνρσ, which respects the following set of symmetries

Rµνρσ = −Rνµρσ = −Rµνσρ, (4.1)

Rµνρσ = Rρσµν , (4.2)

Rµνρσ +Rµσνρ +Rµρσν = 0. (4.3)

In any space-time dimension d, the Riemann tensor can be shown to have

C =
1

12
d2(d2 − 1) (4.4)

independent components. This implies in particular, that in two dimensions the
Riemann tensor only admits C = 1 independent components.
Gaining a deeper understanding about the Einstein equations in two dimensions
allows to better understand why two-dimensional gravity is special. It is therefore of
interest to have knowledge not only about the number of independent components of
the Riemann tensor but also about its exact form. For this reason, it is instructive
to consider a maximally symmetric space-time, that is a space-time that is both
homogeneous and isotropic. For such a space-time, it is possible to show that the
Riemann tensor only admits one independent component, corresponding to the Ricci
scalar R. Indeed it can be shown that Rµνρσ can be written as

Rµνρσ =
R

d(d− 1)
(gµρgνσ − gµσgνρ) , (4.5)

which after contraction with gρσ also yields the Ricci tensor

Rµν =
R

d
gµν (4.6)

for a maximally symmetric space-time. Similarly, as already pointed out, in two
dimensions the Riemann tensor admits C = 1 independent components. Therefore,
the Ricci tensor of two-dimensional gravity will have the same form as Eq. 4.6, with
the exception that in two dimensions R can depend on the space-time position unlike
in the maximally symmetric case where R is constant. Since now, in two dimensions

Rµν =
R

2
gµν (4.7)
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it follows that the Einstein tensor

Gµν = Rµν −
1

2
gµνR = 0 (4.8)

vanishes trivially, independent of the space-time considered. This is a consequence
of the fact that two-dimensional gravity is topological, i.e.,

∫
d2x
√
gR = χ, (4.9)

where χ is the Euler character. In two dimensions the Euler character can be
expressed in terms of the number of handles h of the underlying space-time, i.e.
χ = 2 − 2h. Hence, there are no local but only topological degrees of freedom in
two-dimensional classical gravity.
The fact that the Einstein tensor vanishes identically implies that the two-dimensional
cosmological constant also has to vanish in the case of pure gravity. As a result, the
classical theory is not only invariant under di�eomorphisms but also possesses an
additional conformal symmetry since the classical action is invariant under

gµν = e2ω(xµ)g′µν , (4.10)

where ω(x) is a space-time dependent parameter. The fact that two dimensional
gravity possesses an additional symmetry besides coordinate reparametrization in-
variance will turn out to have interesting far reaching implications for the quantum
theory.

Liouville Gravity

In two dimensions, classical gravity is not only di�eomorphism invariant but also
classically conformal. At the quantum level, however, conformal invariance is broken
due to the path-integral measure term not being invariant under conformal trans-
formations. In order to restore conformal invariance, one is led to introduce the
so-called Liouville action, which renders two-dimensional quantum gravity coupled
to conformal matter non-trivial by introducing an additional gravitational interac-
tion on top of the ones included by the Einstein-Hilbert action. The conformal
anomaly introduces an additional interaction that has the structure of the Liouville
action

SL(σ) =

∫
d2ξ
√
g

(
1

2
gµν∂µσ∂νσ +Rσ + γeσ

)
, (4.11)

up to some di�erent prefactors. The above action introduces an interaction term
Rσ, rendering the quantum theory of two-dimensional gravity non-trivial. Here, σ
is the Liouville �eld corresponding to the conformal mode.
A standard quantity that allows to compare Liouville gravity to dynamical triangu-
lations and matrix models is the so-called string susceptibility, which describes how
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the partition function scales for �xed large areas. The area can be �xed by including
a delta constraint in the path-integral such that

Z(A) =

∫
DχDge−S δ

(∫
d2ξ
√
ĝeαφ − A

)
, (4.12)

where the measure Dχ describes the integration over matter �elds and Dg the
integration over conformal metrics. Here, ĝ denotes the background metric in the
conformal gauge gab = eφĝab. For large areas, the scaling of the partition function
can be expressed as

lim
A→∞

Z(A) ∼ A(γ−2)χ
2
−1, (4.13)

which also serves as a de�nition for the string susceptibility γ. The string suscepti-
bility γ can be determined by a scaling argument presented in the appendix. From
that scaling argument it follows that γ is given as

γ =
1

12

(
(D − 1)−

√
(D − 25)(D − 1)

)
. (4.14)

Here, D corresponds to the so-called central charge which can be expressed as D =
1− 6/m(m+ 1), where m is an integer m ≥ 2 indexing the unitary discrete series of
conformal �eld theories. D has been normalized such that the theory with one free
boson has central charge D = 1. Pure gravity then corresponds to a theory with
central charge D = 0. To make contact with matrix models, we replace the central
charge D by m such that the string susceptibility is given as

γ = − 1

m
. (4.15)

For pure gravity, D = 0 such that m = 2. In that case the string susceptibility
corresponds to γ = −1/2. A theory coupled to a conformal 1/2-boson or a fermion
can be shown to have a central charge of D = 1/2 such that m = 3. Such a theory
is known as the two-dimensional critical Ising model and has a string susceptibility
of γ = −1/3. The string susceptibility is historically the �rst indication for a cor-
respondence between matrix models, dynamical triangulations and two-dimensional
continuum gravity. Further evidence in favour of this correspondence has been
gathered by studying the scaling of observables close to the critical point that is
approached in order to take the continuum limit.
Let us �nally close the discussion on Liouville gravity by pointing out that it only
allows to derive the area scaling for �xed topology given by Eq. (4.13). As an out-
look, matrix models for two-dimensional gravity can be solved for both �xed and
�uctuating topologies. When the topology is held �xed, the string susceptibility
will agree with the one of Liouville gravity. Two-dimensional quantum gravity with
�uctuating topology is de�ned through the matrix model formulation. It is, how-
ever, still an open research question whether topological �uctuations actually have
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Z ∼
∑

topologies

∫
[Dg][Dχ]eSGravity+SMatter

Figure 4.2: The gravitational path-integral including gravitational, matter and topo-
logical �uctuations.

to be taken into account. If topological �uctuations are considered, one then �nds
the following schematic description in two dimensions

Z ∼
∑

topologies

∫
Dg e−SEH [g] =

∑

h

∫
Dg e−βA−γχ, (4.16)

where β is the two-dimensional cosmological constant which is coupled to the area
A =

∫ √
det g and γ is related to the two-dimensional Newton coupling and linked

to the Euler character which is given by

χ =
1

4π

∫ √
det g R = 2− 2h, (4.17)

where we made use of the Gauss-Bonnet theorem, which states that in two dimen-
sions

∫ √
det g R is topological and replaced the sum over topologies by a sum over

handles h, which in two dimensions denotes the number of holes of a given topology
as depicted in Fig. 4.2

Dynamical Triangulations and Quantum Gravity

So far, we have remained in the realm of continuum gravity. We have shown that
classical two-dimensional gravity is trivial. At the classical level, 2d gravity is not
only di�eomorphism invariant but also Weyl invariant. The latter symmetry is
broken at the quantum level and the restoration of the symmetry, by including a
Liouville-like action, renders the theory non-trivial. We showed that for �xed topol-
ogy it is derive a set of critical exponents that describe how the partition func-
tion of Liouville gravity scales for �xed large areas. In the following, we will be
also interested in considering topological �uctuations. This challenge can be ad-
dressed in the matrix model framework. We will see that for �xed topologies, the
string susceptibility derived for Liouville gravity can also be recovered in matrix mod-
els
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Matrix models o�er an alternative formulation of two-dimensional quantum gravity2.
In an attempt to make the relationship between matrix models and quantum gravity
clear we will �rst understand how two-dimensional space-times can be discretized
in order to deal with the usual divergences appearing in quantum �eld theory. This
is the cornerstone of not only dynamical triangulations but also Regge calculus, an
alternative, and historically, the �rst way to discretize the path-integral of quantum
gravity. The second step will consist in understanding how these discretized surfaces
can be naturally generated via a certain family of matrix models. Finally, we will
show how to remove the e�ects of the discretization and take the continuum limit,
which encodes all the physical content and argue why the continuum limit corre-
sponds to two-dimensional quantum gravity. En route we will highlight the power
of matrix models, which are easier to access analytically compared to dynamical
triangulations. As a reminder for the reader to not get lost at this stage, the big
picture of how all these aspects are related is encoded in Fig. 4.1. The following
subsections will be devoted to understanding the di�erent relationships depicted in
Fig. 4.1.

Discretizing 2d Quantum Gravity

It is an open question, whether topological �uctuations have to be taken into account
in the gravitational path-integral3. If topological �uctuations are considered, the
path-integral in two dimensions also contains a sum over h, where h denotes the
number of handles. Liouville gravity with �uctuating topology has not been solved
as we discussed in the previous section. A framework that allows to study the
two-dimensional gravitational path-integral with �uctuating topology is, however,
provided by the theory of dynamical triangulations and matrix models, which we
will inspect in more detail, foreseeing the relevance of these two frameworks for
further discussions on higher dimensions.
The main obstacle in order to solve the path-integral for quantum gravity is that∫
Dg is not clearly de�ned and leads to divergences. One strategy to overcome this

obstacle is to discretize the path-integral by replacing the sum over topologies and
space-times by a sum over random discrete triangulations. Ultimately, the physics
content of the theory is accessed in the continuum limit, where the e�ects of the
discretization are removed. In a �eld theoretical language this suggests the following
replacement

∑

h

∫
Dg →

∑

random triangulations

. (4.18)

2In the context of quantum gravity, matrix models have actually emerged in two distinct ways:
On the one hand matrix models were successful as a way to solve two dimensional Liouville
Quantum Gravity. On the other hand matrix models also found use in 0-dimensional String
Theory, which can be regarded as a theory of surfaces with no coupling to matter.

3Note that even though topological �uctuations might be allowed kinematically at the level of
con�gurations that are summed over in the path-integral it is not clear whether they can appear
from a dynamical point of view.
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α1

α2
α3

εi

Figure 4.3: Graphical depiction of the de�cit angle εi, which is a way to quantify local
curvature in a discrete setting. If εi = 0, six equilateral triangles meet
a vertex. This corresponds to a locally �at triangulation. In the above
�gure εi > 0, which implies that in order to connect the triangles at the
two extremes, it is necessary to 'cut the page' and the local curvature
will be positive. Conversely, εi < 0 describes negative curvature.

In this context the use of matrix models as a tool to solve two-dimensional quantum
gravity will also become more apparent. In order to justify the line of argument pro-
posed by Eq. 4.18, where the gravitational path-integral is discretized, we will �rst
convince ourselves that is indeed possible to rewrite geometric continuum quantities
in a discrete way. This will provide some heuristic evidence that random triangu-
lations and matrix models are indeed a way to describe two-dimensional quantum
gravity and that Eq. 4.18 is valid way to tackle the challenges associated to the
path-integral of quantum gravity. In that spirit, to support our line of argument
that dynamical triangulations provides a way to solve two-dimensional quantum
gravity, we will understand how the Ricci scalar can be rewritten in a discrete form
in a dynamical triangulations setting. While showing that such an equivalence holds
is not su�cient in order to prove that dynamical triangulations in 2D corresponds to
two-dimensional quantum gravity as we remain agnostic to the dynamics of dynam-
ical triangulations and quantum �uctuations might spoil this duality, it will provide
some motivation in favor of Eq. 4.18. We will address these issues later on.
The space-time volume term in two dimensions can be shown to be discretized as

∫

M

√
det g ←→ 1

3

∑

i

Ni

√
3a2

4
, (4.19)

where Ni denotes the number of triangles at each vertex i and
√

3a2/4 is the area
of an equilateral triangle of edge length a and is typically set to one by convention
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such that the area element in a discrete setting reads

σi =
1

3

∑

i

Ni. (4.20)

In simple words, the quantity on the right hand side represents the total number of
triangles. The factor 1/3 accounts for the fact that we are overcounting the number
of triangles as we are summing over all vertices i and each triangle is part of three
vertices, as each triangle has three corners.
In order to rewrite the curvature term in a discrete setting it is necessary to introduce
a notion of local curvature. One way to do so is via the so-called de�cit angle, which
intuitively measures the departure from �atness, see Fig. 4.3, and is given by

εi = 2π −
∑

t∈i
αi(t), (4.21)

where αi(t) is the angle of a triangle at a vertex i. In a �at triangulation, the angles
of all triangles meeting at a vertex i will add up to 2π, such that εi = 0. If εi < 0
(εi < 0), the curvature will be negative (positive). Assuming equilateral triangles,
this expression can be rewritten as

εi = 2π −Ni
π

3
, (4.22)

where π/3, the angle of an equilateral triangle, is multiplied with the number of
incident triangles at a vertex i. The curvature can then be discretized in terms of
the de�cit angle as

∫

M

√
det gR←→ 2

∑

i

V ol(ith − vertex) εi ≡ 2
∑

i

εi, (4.23)

where V ol(ith − vertex) is the volume of a vertex and is set to one by convention,
such that the total curvature can be expressed as a sum over de�cit angles. Note
that the above relationship only holds in two dimensions, where

∫ √
det gR is a

topological invariant. Indeed, the above equality is �xed by demanding that both,
the discrete as well as the continuum version give the Euler character, as we will
show in a moment.
Plugging εi given by Eq. (4.22) into the above expression we obtain

∫ √
det gR←→

∑

i

4π

(
1− Ni

6

)
, (4.24)

such that the generating functional Z is given by

Z ∼
∑

oriented triangulations

exp

(
−1/3

∑

i

Ni −
∑

i

4π

(
1− Ni

6

))
. (4.25)
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Let us recall that the discrete version of the area element
√

det g is expressed as the
total number of triangles which can be written in terms of Eq. (4.19). Combining
this with the above equation, it is evident that the Ricci scalar admits the following
discrete formulation

Ri =
2π(6−Ni)

Ni

, (4.26)

where Ni denotes the number of incident triangles at a vertex i. The reader can
indeed check that σiRi yields Eq. (4.24). The dependence of the discrete Ricci
scalar on the number of incident triangles captures its local nature. For Ni = 6 the
triangulation is locally �at at the vertex i, while for Ni > 6 (Ni < 6) the curvature
is negative (positive). Using some identities relating the total number of vertices,
edges and faces, which are non-local quantities to the number of incident triangles
at each vertex i it is possible to rewrite the discrete Einstein-Hilbert action in a
more convenient form. Rewriting the discretized Einstein-Hilbert action in terms of
vertices, edges and faces has the bene�t that they can be related to the topological
Euler character, something which is not evident from the current form, where we
have expressed the Einstein-Hilbert action in terms of local properties at the incident
vertices.
The �rst step in the derivation consists in realizing that each edge is shared by two
triangles such that we can relate the total number of edges to the number of incident
triangles in the following way

2E =
∑

i

Ni. (4.27)

Another way to understand the above expression is by multiplying the total number
of triangles by three, which is the number of edges of each triangle. As argued above
the total number of triangles is given by 1/3

∑
iNi.

Discrete Quantum Gravity

Having hopefully convinced the reader that it is possible to rewrite geometrical
quantities in the continuum in a local setting, we will now explore the relation-
ship between dynamical triangulations and two-dimensional quantum gravity. The
generating functional for dynamical triangulations takes the following form [157]

Z =
∑

oriented triangulations

1

s(T )
ea0N0+a N +a∆N∆ , (4.28)

where N0, N and N∆ are respectively the number of vertices, links and trian-
gles and a0, a , a∆ are free parameters and s(T ) is a symmetry factor, which
follows from the fact that there are several ways to obtain the same triangula-
tion, just by permuting the vertices, edges and faces of the triangles. The vertices
v, edges e and faces f used to built the surface are taken from the labeled sets
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v = {v1, ..., vN0}, e = {e1, ..., e } and f = {f1, ..., f∆} ; for this reason the symmetry
factor is given by s(T ) = N0!N !N∆!. Relabeling of the triangulation can be seen
as a discrete version of di�eomorphism-invariance in the continuum. The con�g-
uration space over which one is summing contains only oriented triangulations in
order to forbid non-Riemannian manifolds such as the Möbius strip. Moreover, the
edge length is kept �xed, in contrast to Regge calculus, where the edge length is
allowed to �uctuate [97]. The above path-integral can be understood intuitively as
one adds all the ingredients required to build a triangulation with a discrete notion
of local curvature. It is, however, clear that these ingredients (the vertices, links and
triangles) cannot be independent from each other as a triangle is constructed from
vertices, links and edges. This is also what one expects from trying to make contact
with the continuum formulation of the Einstein-Hilbert theory of quantum gravity,
which only contains two free parameters, the Newton coupling and the cosmological
constant. Indeed, the following identity relates the number of links to the number
of triangles

3N∆ = 2N , (4.29)

which can be understood from the observation that each face of a triangle contains
three edges that are each shared by two triangles. Taking also into account the
discrete version of the Euler character χ = N0 − N + N∆, one can recast the
generating functional of dynamical triangulations into the following form

Z =
∑

oriented triangulations

1

s(T )
e−λN∆+γχ, (4.30)

with λ and γ being given as

λ = −
(
a0

2
+

3a

2
+ a∆

)
(4.31)

and

γ = a0. (4.32)

It is straightforward to see that λ and γ are related to the cosmological constant and
the Newton coupling, respectively. The exact relation between λ and γ on the one
hand and the Newton coupling and the cosmological constant on the other hand is
given as

λ = Λ +
1

16G
(4.33)

and

γ =
1

8G
, (4.34)
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where we set the area of an equilateral triangle to be one. Note that even though λ
does depend on the Newton coupling G it is often somewhat inaccurately also just
referred to as the cosmological constant in the literature. From the generating func-
tional Eq. (4.30) it is possible to generate dynamical triangulations via a Feynman
graph expansion. Note that the previous conceptual discussion on the discretization
of continuum quantum gravity does not require triangulations. We could equally
well have considered any type of polygonizations. The discreteness is merely a tech-
nical tool and the dependence on the form of discretization should disappear when
taking the continuum limit.
The remaining question is now how to obtain the continuum formulation. This
question can be approached following two related line of thoughts.
The �rst one being that from an intuitive point of view, we expect the continuum
limit to be the limit where the average number of triangles diverges, while physical
quantities such as the total space-time volume or the renormalized cosmological con-
stant are kept �xed as shown in Fig. 4.4. Following this line of argument we would
see (as we will also discuss in the following), that the size of the triangles would have
to go to zero. Alternatively, one could also reverse the order of the previous argu-
ment and demand that the continuum limit must correspond to the limit where the
size of the triangles a, which acts as a cut-o�, is sent to zero. Indeed, in the contin-
uum limit all information on the discretization should be lost, as the discretization
is assumed to be merely technical rather than a physical feature of the theory. A
continuum limit at a �nite a, however, suggests that the shape of the polygon that
is used to discretize the surface is actually relevant. This feature is only avoided in
the limit a → 0. Again, just as in the former line of argument, physical quantities
should be �nite in order to be observable. Paired with the fact that we sent a→ 0,
this implies that the average number of triangles 〈N∆〉 has to diverge 4. In short,
the continuum limit corresponds to the limit where a → 0 and 〈N∆〉 → ∞, while
physical quantities are kept constant. Let us �x for now the topology. In order to
have the average number of triangles diverge, the partition function Z needs to be
singular. This can be easily understood as correlation functions are computed by
taking derivatives of the partition function with respect to the discrete avatar of the
cosmological constant, λ, as

〈Nn
∆〉h = (−1)n

∂n

∂λn
lnZh. (4.35)

and only diverge if Zh is singular. Typically, these divergences occur in a power-law
fashion. Given also that the two-dimensional theory depends only on one parameter
λ, it is therefore safe to assume the following singular behavior, where we �x the

4Note that even though 〈N∆〉 and is therefore strictly speaking an observable it does not cor-
responds to a physical quantity. The average number of triangles is a mere artifact of the
discretization. The unphysical nature of the average number of triangles becomes very obvious
if one thinks about discretizing a given surface. Depending on the size of the triangles the
average number will di�er even though the physical quantity, the area of the surface, remains
constant.
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Figure 4.4: Continuum Limit in the dynamical triangulations approach. The average
number of triangles is increased while the volume of the triangulation
is kept �nite. The continuum limit corresponds to the limit where the
average number of triangles diverges.

topology

Z0[g] ∝ (λ− λc)−α + less singular terms. (4.36)

The coe�cient α captures the way in which the singularity is approached and is
related to the critical exponent at the �xed point. The average number of triangles
is then given as

〈N∆〉h = − ∂

∂λ
lnZh =

α

λ− λc
+ less singular terms. (4.37)

One observes that the limit where 〈N∆〉 tends to in�nity implies that λ is sent
to some critical value λc. All higher-order moments, such as e.g. 〈N∆N∆〉, can
be also shown to diverge. Physically, this means that the system no longer has a
characteristic scale. Indeed, an alternative way of phrasing the continuum limit is
that one is interested in a critical point where scale invariance is observed5. As
discussed in Ch. 2 scale invariance implies a second order phase-transition, which is
characterized by diverging observables. The diverging behavior allows one to remove
the cut-o�.
Let us stress once again that the continuum limit corresponds to the limit, where
the average number of triangles diverges while the size of the triangles a, which
acts as a cut-o�, is sent to zero in such a way that physical quantities such as the
volume or the dimensionful cosmological constant are kept �xed and �nite. Note
however, that the cosmological constant or the space-time volume of individual
con�gurations can di�er and are therefore �uctuating. It is only the volume and
the cosmological constant averaged over all space-time con�gurations that are kept
�xed. The dimensionful cosmological constant in two dimensions is given as

Λ = λ/a2. (4.38)

5In two dimensions it can be shown that scale invariance also implies conformal invariance, which
puts even more constraints on the theory. Whether this also extends to higher dimensions is a
current research topic.

59



It is then possible to de�ne a renormalized cosmological constant as

ΛR = (λ− λc)/a2, (4.39)

such that the unphysical cut-o� a can be removed if λ is tuned to some critical value
λc in such a way that ΛR is kept �xed and �nite.
As a consistency check to see that all physical quantities do indeed remain �nite if
ΛR is kept �nite, it is worthwhile to have a closer look at the physical volume. In
two dimensions this simply corresponds to the total average area, which is given via

〈A〉 = a2〈N∆〉

= α
a2

λ− λc
∝ 1

ΛR

. (4.40)

We see that the requirement that ΛR be �nite also implies �niteness of the physical
area. It is straightforward to check that also the higher moments 〈An〉 are �nite.
Let us remark that this previous analysis is not a proof that the continuum limit
actually is equivalent to the continuum theory de�ned according to Eq. (4.16). In
the previous analysis we have assumed �xed topology. The question on the existence
of a continuum limit when topological �uctuations are allowed can also be asked and
is best addressed in the framework of random matrices. The surfaces of di�erent
topology that one is summing over can be approximated by unphysical discrete
polygonizations. It turns out that these polygonizations can be generated by matrix
models by making use of a duality between the Feynman graphs of the following
matrix model with an n-valent interaction term g and the polygonized surfaces. The
bene�t of using matrix models rather than staying in the framework of triangulations
is that matrix models can be tackled analytically as we will also see in some later
section.

2D Gravity from matrix models

As already touched upon, matrix models are dual to dynamical triangulations and
therefore o�er an alternative road to solving two-dimensional Quantum Gravity.
The bene�t of matrix models is that they can be accessed in an analytical way. The
generating functional for matrix models is

eZ =

∫
dM e

− 1
2
trM2+ g

Nk/2−1
trMk

, (4.41)

where M is a hermitian matrix and N is the size of the matrix. The logarithm of
the above expression corresponds to the free energy of the theory. The particular
scaling in N is required in order to relate matrix models to dynamical triangulations
as in that case each Feynman diagram is weighted by a factor Nχ, where χ denotes
the Euler character. This allows to recast the sum over Feynman diagrams in a
matrix model in terms of a sum over topologies. The above expression generates
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AB

C

Figure 4.5: Part of a random triangulation. At A and C the triangulation is locally
�at as six equilateral triangles are meeting at one vertex. At B the
triangulation is curved, as there are less than six triangles meeting at
one vertex.

both connected as well as non-connected correlation functions, which is the reason
why the logarithm of the above expression, which is the free energy, will correspond
to the path integral of two-dimensional quantum gravity in the continuum limit.
In that case the non-connected diagrams, which are dual to non-connected patches
of space-time, are removed. A more naive approach to generate 2d surfaces would
involve a scalar φn theory. However, the generated Feynman diagrams will not
have enough structure to only reproduce Riemann surfaces. This is remedied by
Hermitian matrix models, which generate so-called ribbon graphs with orientable
loops, thus avoiding non-orientable surfaces like the Möbius strip.
Using a tri-valent interaction term, i.e. k = 3, will lead to Feynman diagrams that
are dual to triangulations of the surface. It is, however, important to stress that the
way in which the surface is tessellated plays no role, as the discretization is just a tool
to make sense of the path-integral and one is ultimately interested in the continuum
limit, where the e�ects of the discretization will disappear. The key concept here
is universality, which wipes o� any details of the discretization. Having motivated
why it is interesting to consider matrix models to solve 2d Quantum Gravity, we
will now explain in more detail how matrix Models connect to 2d gravity. The key
is to relate the inverse Newton coupling γ and the cosmological constant β to the
characteristic quantities of the matrix model, namely the coupling g and the size of
the matrix N . We will leave the technical details of the exact identi�cation for the
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appendix. For now it will su�ce to note that the above-mentioned quantities are
related in the following way

g ∼ ec1β/γ & N ∼ ec2γ, (4.42)

where c1 and c2 are constants larger than zero. These relations can be understood
through a series expansion of the path integral.

The continuum limit in matrix models

In order to learn about the continuum limit in the matrix model scenario, it is useful
to perform the following rescaling of the matrix M

M →M
√
N, (4.43)

where N denotes the size of the matrix, which allows one to pull out an overall
factor of N in the matrix model action, such that one gets

eZ =

∫
dM eN(− 1

2
trM2+g trMk). (4.44)

The bene�t of this rescaling is that it is easier to keep track of the powers of N
appearing in the amplitudes of a Feynman expansion: Each propagator will con-
tribute with a power of N−1, each vertex with a power of N and each loop will also
contribute with a power of N , due to the contraction of delta functions coming from
the propagators. The series expansion of eZ can be reorganized in a 1/N expansion
in the following way

eZ =
∑

h

N2−2hZh, (4.45)

where h is the number of handles re�ecting the underlying topology. Taking the
naive large-N limit leads to a domination of planar topologies (h = 0). On the
other hand, it is possible to rewrite the 2d continuum action in a similar way as

Z =
∑

h

∫
Dg e−βA+γχ =

∑

h

(eγ)2−2h Zh, (4.46)

where the series expansion is indexed in terms of the number of handles of a given
Feynman diagram which allows to immediately identify N ∼ eγ. The perturbative
series Zh in the coupling g can be shown to, asymptotically for large number of
vertices n, behave as

Zh[g] ≈
∑

n

ah n
(2−γstr)χ/2−1

(
g

gc

)n
≈ ah (gc − g)(2−γstr)(1−h) , (4.47)

where we replaced χ by χ = 2 − 2h, which holds in two dimensions and ah is a
constant.
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In order to compare with continuum results we need to identify a notion of 'area'
in matrix models. This can be done as follows: If we restrict ourselves to spherical
topology, h = 0 and express Zh in terms of a perturbative series in the coupling g,
we �nd that

Zh ∼
∑

n

nγ−3

(
g

gc

)n
. (4.48)

The average area of all triangulations 〈A〉 = 〈n〉 corresponds to

〈A〉 = 〈n〉 ∼ 1

gc − g
=

∂

∂g
lnZh. (4.49)

The critical exponent γstr is called the string susceptibility for historical reasons and
γstr = −1/2 for pure gravity and γstr = −1/3 for gravity coupled to the Ising model.
Assuming a matrix model potential such as the one introduced in the free energy
Eq. (4.44) with one interaction parameter, it is possible to show that there exists
a critical point at which the continuum limit can be taken for which γstr = −1/2.
Assuming a more complicated potential with additional couplings to tune, it is
possible to recover so-called multi-critical points. These multi-critical points can be
shown to be characterized by the critical exponents of gravity plus conformal matter
[158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169], as derived from Liouville
gravity coupled to conformal matter. One can think of the new parameters as being
related to additional degrees of freedom, as now, additional distinct geometrical
forms are introduced in the dual picture. For instance a potential of the form

V (M) =
1

2
tr(M2) + tr(M3) + tr(M4), (4.50)

will lead to Feynman graph expansion which in the dual picture mixes triangles and
squares. Again, the exact geometrical form does not matter, as it is a mere technical
tool to discretize the continuum path integral. What matters is the property of
having two distinct interactions that can be understood as being related to two
distinct degrees of freedom. For γstr < 2 topological �uctuations are enhanced as g
approaches the critical value gc. This raises the question whether it is possible to
compensate the suppression of topological �uctuations in the large-N limit by an
enhancement of them as g approaches gc. As we will see in a forthcoming section,
it turns out that it is indeed possible to consider all topologies when taking the
so-called double-scaling limit.

Analytical Results of matrix models

One of the main advantages of matrix models compared to dynamical triangulations
is that it is easier to get an analytical handle of matrix models.
The �rst indications pointing at the equivalence of 2d quantum gravity and matrix
models in the continuum limit relied on comparing critical exponents on both sides.
The critical exponents of matrix models in the simple large-N limit can be derived
analytically using standard matrix-model techniques.
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Saddle Point Approximation

One of the main advantages of matrix models compared to dynamical triangulations
is that it is easier to get an analytical handle of matrix models.
The �rst indications pointing at the equivalence of 2d quantum gravity and matrix
models in the continuum limit relied on comparing critical exponents on both sides.
The critical exponents of matrix models in the simple large-N limit can be derived
analytically using standard matrix model techniques. The key is to rewrite the
hermitian matrix model in Eq. (4.44) in terms of an integration over eigenvalues
and it is therefore crucial that the matrix be a square matrix. Decomposing the
matrix in Eq. (4.44) in terms of its eigenvalues gives

eZ =

∫
dMe−(N/g)trV (M) =

∫ N∏

i=1

dλi∆
2(λ)e−(N/g)

∑
V (λi), (4.51)

where we renormalized the potential in order to pull out the coupling constant g and
∆(λ) is the Vandermonde determinant corresponding to the jacobian that follows
from reducing the measure dM to an integration over eigenvalues. The Vandermonde
determinant is de�ned as

∆(λ) =
∏

i<j

(λj − λi) (4.52)

and can be interpreted as a repulsive force pushing the eigenvalues away from each
other. This e�ect competes with the potential V that acts as an attractive force
which in itself would be minimized if all the eigenvalues lied together at some con-
stant value. For the potential we are considering here this constant value would be
zero. Interestingly, this mechanism of balancing the repulsive nature of the Van-
dermonde determinant and the attractive nature of the potential allows to model a
number of phenomena in nature, e.g., the distance between cars parked in a street or
birds perching on an electric wire [170, 171]. This can be understood in the following
way: On the one hand, the wire is limited in its size and hence acts as a constraining
potential. On the other hand the birds cannot occupy the same space, pushing their
neighbors mildly to the sides. This leads to a repulsion that can be modeled by
the Vandermonde determinant. The reader may consult [170] to see that the gap
distribution of eigenvalues of a Gaussian matrix model at large-N indeed �ts the
distribution of spacing between perched birds or parked cars.
In the large-N limit, it is possible to perform a saddle-point expansion in order to
solve the path integral. The saddle point equation is then derived from

∂

∂λk

(
eln(∆2(λ))−(N/g)

∑
V (λi)

)
= 0, (4.53)

where we exponentiated the Vandermonde determinant in order to make its contri-
bution to the total potential more apparent. Performing the derivative leads to

2

N

∑

j 6=i

1

λi − λj
=

1

g
V ′(λi), (4.54)
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where the e�ect of the Vandermonde determinant is illustrated very clearly as
the minimum of the total potential is shifted by a contribution proportional to
−1/

∑
j 6=i(λi − λj). Solving the above equation is quite cumbersome and we refer

the reader to [172]. Having found a solution to the classical equations of motion, one
then proceeds to evaluate the partition function in the saddle-point approximation
approaching some critical point where the continuum limit can be taken and the
partition function becomes singular. It turns out that near the singular point gc the
partition functions behaves as

Z(g) ∼ − 4

15

N2

g5/2
(gc − g)5/2 . (4.55)

The singular behaviour of Z near its critical point is then compared to the singular
behaviour in the Liouville case which is given by

Z(A) ∼ A(γstr−2)χ
2
−1 (4.56)

and may be compared to the scaling of Z(g).

Orthogonal Polynomial Method

The saddle point method introduced in the previous section was historically the �rst
approach to solve matrix models. It is however limited to �xed genus g. A more
powerful method that also allows to solve the partition function of matrix models of
relevance for quantum gravity with �uctuating genus is the orthogonal polynomial
method. We will illustrate the conceptual steps and refer to [172] for the details.
The starting point is again the decomposition of the matrix in terms of its Eigen-
values such that

eZ =

∫
dMe−trV (M) =

∫ N∏

i=1

dλi∆
2(λ)e−

∑
i V (λi). (4.57)

The orthogonal polynomial method now consists in introducing a set of polynomials
that are orthogonal with respect to the measure of the matrix model such that

∫ ∞

−∞
dλe−V (λ)Pn(λ)Pm(λ) = snδnm, (4.58)

where sn are normalization coe�cients that are �xed such that the polynomial Pn
has the form Pn = λn + ..., which explains the appearance of the constant sn on the
right-hand side of the above equation.
The free energy of the matrix model can then be rewritten as

F = eZ = N !
N−1∏

i=0

si = N !
N−1∏

k=0

fN−kk , (4.59)

where fk ≡ sk/sk−1. Solving the matrix model therefore comes back to �nding the
normalizations sn or equivalently their ratios. We refer the reader to [172] for details
on how this is done.
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The Double-Scaling Limit

In the previous section we have discussed how to take the continuum limit at �xed
topology h. This led to a domination of planar diagrams which tessellate the two-
dimensional sphere S2. In the following, we will also consider topological �uctua-
tions, which in the so-called double-scaling limit are enhanced such that manifolds
of all topologies contribute in the continuum limit. In the large-N limit, where N
denotes the size of the matrix, and for large number of vertices n in the Feynman
graph expansion, it is straightforward to rewrite the free energy of a Hermitian
matrix model with a tri-valent interaction as

eZ ∼
∑

h

(
N (gc − g)(2−γstr)/2

)2−2h

ah (4.60)

using the �ndings of the previous section. Topological �uctuations will only be
retained, if the expression inside the brackets approaches a �nite value. That is N
approaches in�nity, while g is tuned to its critical value gc in such a way that

N (gc − g)(γstr−2)/2 = cst, (4.61)

is kept �xed at some constant. This is exactly the double-scaling limit. We will come
back to this limit later on when thinking about how to set up a renormalization group
�ow for matrix and tensor models.

What about higher dimensions?

In higher dimensions the argument to write down the path-integral and search for
a continuum limit would go along similar lines. That is once again we can keep
Fig. 4.1 in the back of our mind. The generating functional for higher-dimensional
dynamical triangulations will now take the more general form

Z =
∑

oriented triangulations

1

s(T )
exp

(
a0N0 + a N + a∆N∆ +

D∑

i=3

aiNi

)
, (4.62)

where the Ni are i-simplices. We include all i-simplices up to the space-time dimen-
sion D. Just like in the two-dimensional case the di�erent i-simplices are not in-
dependent from each other. The constraints given through the Euler character and
the relation between edges and faces in the previously discussed two-dimensional
case are updated by higher-dimensional versions [173]. These higher-dimensional
constraints are the so-called Dehn-Sommerville relations [174, 175]. To construct a
simplicial manifold T one must therefore satisfy

χ(T ) =
D∑

i=0

(−1)iNi(T ), (4.63)

66



where χ(T ) is the Euler character and

D∑

i=2k−1

(−1)i
(i+ 1)!

(i− 2k + 2)!(2k − 1)!
Ni(T ) = 0 (4.64)

where k is an integer satisfying 1 ≤ k ≤ D/2 if D is even or

D∑

i=2k

(−1)i
(i+ 1)!

(i− 2k + 1)!(2k)!
Ni(T ) = 0 (4.65)

where k is an integer ranges from 1 ≤ k ≤ (D − 1)/2 if D is odd.
Let us take a closer look at the four-dimensional case where the Dehn-Sommerville
conditions imply the following set of constraints:

N0 −N1 +N2 −N3 +N4 = χ, (4.66)
2N1 − 3N2 + 4N3 − 5N4 = 0, (4.67)

5N4 = 2N3. (4.68)

Combining the above expressions with Eq. 4.62 leads to a path-integral formulation
with two independent couplings, which in turn means that the theory space of
couplings consists of two tuneable parameters to identify an interesting continuum
limit. In particular, the partition function is given by

Z =
∑

oriented triangulations

1

s(T )
e−knNn(T )+kn−2Nn−2(T ), (4.69)

where the couplings kn and kn−2 can be associated with the Newton coupling G and
the cosmological constant Λ as follows

kn = Λvol(σn) +
1

2
(n+ 1)n

arccos( 1
n
)

16πG
vol(σn−2) (4.70)

and

kn−2 =
vol(σn−2)

8G
, (4.71)

where the former is a linear combination of the cosmological constant Λ and 1/16πG,
while the latter is inversely proportional to 1/16πG.
It is possible to explore the continuum limit following the same line of argument as
in the previously discussed two-dimensional case. Physical quantities are demanded
to remain �nite, while the lattice cut-o� a is removed.
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What about higher-curvature terms

The Asymptotic Safety scenario of quantum gravity suggests that it might be in-
teresting to also consider discrete versions of higher-order curvature terms. In par-
ticular, there are hints that some linear combination of R2 and RµνR

µν might be a
relevant direction [55, 56, 57, 58, 59, 60]. This would imply that one would have
to tune an additional parameter in the discrete setting in order to �nd a physically
interesting continuum limit. From the previous discussion we know that we can
identify

Ri =
2π(6−Ni)

Ni

(4.72)

which in turn implies that we can generalize this to obtain a discrete expression for
R2 by simply squaring the previous expression [176]

R2
i =

(
2π(6−Ni)

Ni

)2

. (4.73)

A much less obvious question, which is still an open research question is how to
discretize RµνR

µν . Proposals in that direction have been put forward in [177, 178,
179].

4.1 Tensor Models

The previous sections were devoted to gain an understanding of how matrix mod-
els, dynamical triangulations and two-dimensional quantum gravity are related. In
particular, we showed that a Feynman graph expansion of the free energy is dual
to dynamical triangulations. The power of matrix models is that they can be ac-
cessed analytically which allowed us to study their relationship to two-dimensional
Quantum Gravity. The success of matrix models as a way to solve two-dimensional
Quantum Gravity, naturally motivated physicists in the 90's to consider a gener-
alization of matrix models to higher-dimensions, in particular to three and four
dimensions [180, 181, 182, 183]. This led to the consideration of tensor models. The
simple idea behind studying tensor models is that it is possible to construct dual
building blocks of space-time from a tensor interaction such that a Feynman expan-
sion of the free energy of a tensor model corresponds to a gluing of these building
blocks.
In two dimensions, the duality between matrix models and dynamical triangulation
hinged on the fact that vertices corresponded to two-simplices while propagators
were associated to edge pairings. Tensor models allow to extend this duality to
higher dimensions d by relating vertices to d-simplices and propagators to gluings of
faces of co-dimension 1. Each index of a rank-D tensor can be associated with the
D− 1 face of a D dimensional polyhedron. The rank of a tensor which corresponds
to the number of indices of a tensor is then related to the space-time dimension d.
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The standard techniques that allowed to solve matrix models, such as for instance
the orthogonal polynomial method that we discussed previously, were, however, not
available for tensor models. Ultimately, the �rst tensor models were discarded be-
cause they did not admit a 1/N expansion of the free energy as matrix models did,
where the 1/N expansion could be recast into a topological expansion, indexed by
the genus.
In 2009 and thereafter, the so-called (un)colored tensor models [184, 185, 186, 187],
were introduced and shown to admit a 1/N -expansion of the free energy labeled
by the so-called Gurau degree [188, 189, 190]. This non-negative integer, unlike the
genus is, not a topological quantity, but depends on both the topology and the de-
tails of the triangulation. This new class of colored tensor models was characterized
by more constraining symmetries, making the diagrammatics of the Feynman graph
expansion more tractable compared to the original tensor models studied in the
90's, which were taken to be completely symmetric under permutation of indices. In
two dimensions, the leading diagrams in the 1/N expansion of the free energy are
the planar ones, which correspond to triangulations of the sphere. Hence, taking
the continuum limit (without enhancing topological �uctuations) was shown to lead
to planar diagrams. The equivalent of planar diagrams in tensor models are the
so-called melonic diagrams which are characterized by a Gurau degree ω = 0 and
dominate the 1/N expansion of the free energy.
While tensor models were introduced as a way to generalize the success of matrix
models in solving two-dimensional quantum gravity to higher-dimensions, they have
also found applications in a wide range of di�erent �elds. It is possible to devise two
lines of thoughts where tensor models have found applications. One line of research
attempts to explore the relationship between tensor models and random surfaces
[191], which is the line of research followed in this thesis, while the other line of
thought is dedicated to the study of strongly-coupled QFTs.
For theories with a large number of �elds N , a perturbative series in terms of 1/N
exists that allows to treat the couplings non-perturbatively. This is of interest in the
study of holographic dualities, where, recently, tensor models have been considered
in the context of the AdS/CFT conjecture after a reformulation of the Sachdev-Ye-
Kitaev (SYK) model [192, 193]. The SYK model is a toy model that allows to study
the AdS/CFT conjecture, employing real fermionic tensor �elds without quenched
disorder and was put forward in [194, 195, 196, 197]. In contrast to the tensor
models that are of interest to quantum gravity, the tensor models that are studied
in the context of the SYK model are space-time dependent. The link between the
SYK model and tensor models has, thus, sparked intense research of so-called tensor
�eld theories in one or more dimensions [198, 199, 200, 201, 202, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 215]. More generally, tensor �eld theories are
also of interest due to their generic properties in the melonic large-N limit6. For
instance, in [195, 201] a non-trivial conformal �eld theory (CFT) has been found in

6As a reminder, the large-N limit of tensor �eld theories is dominated by so-called melonic
diagrams.
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the infrared. The motivation behind studying such CFTs is on the one hand to im-
prove the theoretical understanding of CFTs in higher dimensions and on the other
the potential relation to the AdS/CFT conjecture. For a review on melonic CFTs
we refer the reader to [216]. As a side remark, it is worth mentioning that more
recently, tensor models have also being studied in the context of machine learning
[217, 218].

Complex tensor models

The �rst uncolored tensor models studied in the tensor model literature were the
complex tensor models.
A complex rank-D tensor model is a model that is invariant under independent
rotations of each tensor index under the unitary group U(N), where N denotes the
size of the tensor, that is

Tb1 b2...bD ⇒ T ′a1 a2...aD
=

∑

b1,b2,...,bD

U
(1)
a1 b1

U
(2)
a2 b2

...U
(D)
aD bD

Tb1 b2...bD , (4.74)

where the matrix U is unitary. As a consequence, tensor invariants, invariant under
of U , are always built from complex conjugate pairs of tensors where the �rst index
of one tensor T is contracted with the �rst index of another complex conjugate
tensor T̄ . Finding tensor invariants at a given interaction order therefore amounts
to a combinatorial problem.
A valid tensor invariant could for instance take the following form

f(T ) =
∑

ai,bi

Ta1a2a3T̄a1a2b3Tb1b2a3T̄b1b2b3 , (4.75)

It is straightforward to show that the above expression is invariant under actions of
the U(N) group on each tensor index.
In the following we will drop the sum and summation over indices will always be
implied.
It is standard in the literature to associate colors to the distinct indices in order
to keep track of the contraction pattern. These colors however are not related to
colored tensor models introduced before.
The tensor invariants of a complex tensor model admit a graphic representation in
terms of edge-colored bipartite graphs.

Real tensor models

Real rank-D tensor models were shown to also admit a large-N limit [219]. They
are de�ned as being invariant under independent actions of the O(N) group on each
tensor index. More explicitly, one has

Tb1,b2,...,bD ⇒ T ′a1,a2,...,aD
=

∑

b1,b2,...,bD

O
(1)
a1 b1

O
(2)
a2 b2

...O
(D)
aD bD

Tb1,b2,...,bD . (4.76)
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The property of O entails that invariants are built from pairs of real tensors, where
just like in the complex case, the index of some tensor at some position i is contracted
with the ith index of some other tensor. The interactions of the complex model also
exist in the real model in the sense that in the real model T̄ = T . However, compared
to the complex tensor model, the real tensor model has an extended and therefore
richer set of interactions. Of particular importance is the so-called cross interaction
of a rank-3 real tensor model

C(T ) = Ta1a2a3Ta1b2b3Tb1a2b3Tb1b2a3 , (4.77)

where each tensor is contacted to all the other tensors in the invariant. The name of
this interaction stems from the fact that tensor invariants can also be represented as
edge-colored graphs. In order to do so, indices of a tensor are associated to edges of
a graph and tensors are represented by vertices. The contraction pattern of a given
tensor invariant is then captured in the speci�c way that vertices are connected
by edges. As an example, the above introduced interaction admits the following
graphical representation.

C(T ) = Ta1a2a3Ta1b2b3Tb1a2b3Tb1b2a3 =

b

bb

b bbcbc

bc

bcb

bbb bb

b

, (4.78)

where the edges correspond to indices and lines correspond to contractions between
them. The colouring of the line indicates the position of the index in the tensor. In
the graphical representation Fig. 4.78 it becomes evident why C(T ) is referred to as
the cross interaction.

Multi-orientable models

It is also possible to consider invariants constructed from both real and complex
tensor. Such models are called multi-orientable models and were introduced in
[220, 221, 222, 223]. See [224] for a review. They were originally introduced as an
update to colored tensor models by allowing for a larger class of invariants, while
still admitting a large-N expansion.

4.2 RG �ows for Matrix and Tensor Models

Let us summarize our discussion on tensor models so far. In two dimensions there
exists a relationship between continuum quantum gravity and matrix models. This
relationship provides the motivation to study tensor models as a way to discretize
higher-dimensional gravity. First attempts to bridge the gap between tensor models
and continuum quantum gravity were already undertaken in the 90's. Unlike matrix
models, where the Feynman diagram expansion of the free energy could be organized
in a 1/N expansion in terms of the genus, the tensor models considered at that time

71



were not 1/N-expandable. Almost 20 years later a new class of colored tensor models
was proposed, which was shown to admit a 1/N expansion of the free energy indexed
by the so-called Gurau degree. This resparked the original idea of tensor models to
provide a way to analytically access a discretized path-integral for four dimensional
quantum gravity. The physics emerges when taking the continuum limit. In the fol-
lowing we are going to discuss how the continuum limit can be studied in the context
of tensor models and highlight how a renormalization group �ow can be set up for
tensor models. The continuum limit then corresponds to a �xed point of this RG
�ow.
Typically one is used to thinking about the RG in terms of a shell-wise integration
of momenta. This approach allows one to clearly de�ne the UV and the IR in terms
of high and low momenta, respectively. The existence of a UV and an IR regime
requires the existence of a background, which describes the underlying space-time.
In a theory of Quantum Gravity, however, space-time itself is also �uctuating. As
a consequence, a theory of Quantum Gravity is expected to be background inde-
pendent as the singling out of a special background would contradict our intuition
about GR.The absence of a �xed background geometry in turn implies the absence
of any characteristic length or scale in general, which is a crucial ingredient in the
Wilsonian renormalization group approach. It is therefore a highly non-trivial ques-
tion how one can set up an RG �ow to search for �xed points of that �ow.
It is, however, possible to circumvent these issues by setting up an RG �ow in such
a way that the outermost layers of indices are integrated out. The size of the matrix
or the tensor can then be interpreted as the RG scale. This way to set up an RG �ow
is actually very intuitive as it is very much related to the fundamental philosophy
of coarse-graining as a way to describe a system with many degrees of freedom in
terms of fewer, more e�ective, degrees of freedom, where one thinks of the matrix
or tensor size N as counting the number of degrees of freedom of a matrix or tensor
model. Successively integrating out rows and columns in a matrix model for instance
corresponds to decreasing the matrix size N and reducing the number of degrees of
freedom [135]. To make this analogy more solid, it is necessary to recall the discus-
sion on the continuum limit in matrix models for two-dimensional quantum gravity,
where it was shown that the so-called double-scaling limit can be taken in order
to recover a two-dimensional quantum gravity phase characterized by an associated
critical exponent. As a reminder, the double-scaling limit is characterized by the
coupling g in Eq. (4.41) approaching its critical value gc, while the matrix size N
tends to in�nity in such a way that the expression

(g − gc)
1
θ N = N0 (4.79)

is kept at a constant value N0. It is possible to rewrite this expression in a more
familiar way, where

g = gc +

(
N

N0

)−θ
. (4.80)
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Rewritten in this way, the above equation resembles the linearization of the �ow
around a �xed point, as discussed in Ch.2 at gc where θ denotes the critical exponent
and N sets the RG-scale. The existence of a double-scaling limit in matrix models
can therefore be shown to be analogous to the existence of a �xed point characterized
by one relevant direction.

4.2.1 FRG for Matrix and Tensor Models

Given that the double-scaling limit of matrix models can be interpreted as an RG
�ow in terms of the matrix size N , it is possible to also set up a functional RG
to study non-perturbative phenomena along the lines of the derivation presented in
section Ch.2. Given a matrix model or a tensor model it is possible to derive a �ow
equation for the e�ective action ΓN , given as

∂tΓN =
1

2
Tr
((

Γ
(2)
N +RN

)−1

∂tRN

)
, (4.81)

where RN is a regulator that satis�es the criteria mentioned in Ch.2 such that it
acts as both an IR and a UV regulator. The FRG for matrix and tensor models
was �rst derived in [225, 226]. Since the FRG cannot be solved exactly and one has
to rely on a truncation of the e�ective action ΓN . In a local QFT, a truncation is
typically set-up in terms of local operators and the notion of a background allows
one to de�ne a canonical mass dimension for these operators, which then implies a
canonical scaling dimension which is a crucial ingredient when building truncations,
as otherwise the canonical guiding principle, discussed in Ch.2 becomes nonsensical.
The absence of a background in matrix and tensor models, however, makes the
scaling properties of operators with the RG scale N a non-trivial question. We will
show that it is, nonetheless, possible to give matrix and tensor operators a canonical
scaling dimension without making reference to a background.

Large-N scaling for Tensor Models with the FRG

The de�nition of units of length or energy (GeV) only make sense when speci�ed
in reference to a background, as one can for instance see from the standard def-
inition of the line element ds2 = gµνdx

µdxν , which requires the speci�cation of a
background geometry equipped with a metric g. The existence of a background and
the possibility to de�ne units imply the notion of a canonical mass dimension. The
canonical scaling dimension is then derived from the assumption that a re-scaling of
units, such as GeV→ λGeV, where λ is an arbitrary constant, should be unphysical
and therefore not a�ect the theory. In a local coarse-graining procedure the scaling
dimension thus accounts for the response of operators to a re-scaling of lengths and
momenta and the canonical mass dimension therefore implies the canonical scaling
dimension. In order for the re-scaling of units to not a�ect the theory, the action
has to be remain dimensionless and the dimensionful operators need to be rescaled
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accordingly. A simple example to determine the scaling dimension of an operator
can be given in the framework of a free scalar �eld theory with the action

S[φ] =

∫
d4xm2φ2. (4.82)

Rescaling the units of energy as GeV→ λGeV and performing a dimensional anal-
ysis, requires to rede�ne φ → λφ, which implies that the operator

∫
d4xφ2 has

canonical scaling dimension −2. Contrary to standard QFT, tensor models, how-
ever, do not make any reference to a background and therefore it is no longer possible
to de�ne a notion of length or momentum. The de�nition of a canonical dimension
seems to be therefore, a priori, not possible or an ill-de�ned problem, and it is
therefore also no longer possible to analyze the response of a tensor operator to a re-
scaling of some fundamental length scale. There exists, however, an alternative way
to de�ne the canonical scaling dimension in a local QFT, which relies on the beta
functions becoming autonomous, i.e., independent of the RG scale. This method
allows one to recover a scaling dimension that still agrees with the mass dimension,
as one would expect for a local and therefore background-dependent theory. This
second way of determining the scaling dimension, by requiring the beta function to
become autonomous is also more suited for tensor models, where we will require the
beta functions to loose their explicit dependence on N in the large-N limit. Phrased
di�erently, the beta functions have to admit a 1/N -expansion with non-trivial 1/N0

terms. This requirement will be shown to set upper bounds on the scaling dimension
of couplings. If the upper bound is satis�ed the scaling dimension of the couplings
is called enhanced [227, 228, 229, 230, 231].
Ultimately, the scaling has to be �xed uniquely by making contact with the geo-
metric interpretation of matrix or tensor models. We already discussed that in two
dimensions matrix models can be shown to be dual to dynamical triangulations.
This observation relied on the fact that it is possible to identify the free energy of a
matrix model with the partition function of dynamical triangulations. Demanding
this identi�cation allowed us to relate the two di�erent approaches. In tensor models
the sum over Feynman diagrams are weighted by the Gurau index ω in contrast to
the Euler character χ in two dimensions [188]. While there is so far no analogue of
the Gurau index in higher-dimensional dynamical triangulations, one would expect
that for the duality between tensor models and dynamical triangulations to make
sense, it should be possible to also introduce a Gurau index in dynamical triangula-
tions and to perform a similar analysis to the one done in order to show that matrix
models and dynamical triangulations in two dimensions are dual.

Benchmarking FRG results

The FRG for matrix models was �rst derived in [225]. Here, the FRG was applied to
both a truncation of single-trace matrix operators as well as one with both single-
trace and double-trace operators. The double-scaling limit of matrix models was
shown to imply the interpretation of a renormalization group �ow in the couplings
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in terms of the matrix size N in [135]. Since the FRG for discrete models has
been derived in [225, 232], di�erent continuum limits have been charted with these
tools, not only in tensor models but also in the closely related group �eld theories
[233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 1, 247].

4.2.2 An algorithm for Tensor Models

In the last sections, we have been showing how it is possible to set up an RG �ow for
tensor models in terms of the tensor size N , which allows to search for continuum
limits that are of possible interest for quantum gravity. Crucially, the absence of a
background implied that it is not possible to assign a canonical mass dimension to
operators and couplings in order to study their behavior under rescalings of the mass
dimension. This posed some additional complications in setting up an RG �ow. We
circumvented these issues by arguing that an alternative way to assign a notion of
canonical scaling dimension is by insisting that the beta functions do not explicitly
depend on the RG scale N . For local QFTs, this way of �xing the scaling exactly
yielded the canonical mass dimension. The reader is now equipped with the necessary
tools and aware of the subtleties related to a renormalization group �ow in tensor
models.
Deriving the running in the tensor size N for all couplings up to interaction order
T 8 is no longer feasible by hand within the lifetime of a PhD. For that purpose it
is unavoidable to rely on a computer code which is able to derive all beta functions
with as little input as possible. In the following we will present an algorithm which
only requires the T 4 interactions of a given tensor model as initial input in order
to derive the beta functions of any rank at any interaction order in principle. The
practical implementation is done in Mathematica and requires the xAct and xTensor
packages [248]. In practice, however, computing higher-order beta functions becomes
very expensive with increasing order of the truncation.
The derivation of beta functions with the FRG requires in practice the speci�cation
of a truncation of the e�ective action. In order to set up a momentum-independent
truncation it is therefore necessary to construct and identify all invariants at a given
interaction order. A bottom up approach to construct all possible invariant of an
arbitrary tensor model is the following

• Provide all T 4 interactions. This is the only input needed.

• Compute the two-point functions of all T 4 interactions. Derivatives are de�ned
in accordance with the symmetry of the underlying model. As an example,
tensor derivatives in the O(N)3 model are de�ned as

∂Ta1a2a3

∂Tb1b2b3
= δa1b1δa2b2δa3b3 , (4.83)

while a symmetric tensor model, where tensors are invariant under permuta-

75



tions of all their indices, has the property that

∂Ta1a2a3

∂Tb1b2b3
=

1

3!
(δa1b1δa2b2δa3b3 + δa1b2δa2b1δa3b3 + δa1b3δa2b2δa3b1

+δa1b1δa2b3δa3b2 + δa1b2δa2b3δa3b2 + δa1b3δa2b1δa3b2) . (4.84)

• From the T 4 two-point functions we can construct all T 2n interactions, with
n ∈ N and n ≥ 2 by simply contracting the di�erent two-point functions with
delta functions.

The method will be illustrated with the real rank-3 tensor model, although it is im-
portant to stress that the algorithm is model independent and therefore the method
will go through for any tensor model, independently of the symmetry.
Let us consider one representative of each color-symmetric family, which we de�ne
to be the class of interactions that are invariant under color permutation. We there-
fore consider

b

bb

b bbcbc

bc

bcb

bbb bb

b
,

b

bb

b bbcbc

bc

bcb

bbb bb

b
and

bbbcbbb bb

bbbcbbb bb
. The two-point function of the so-called melonic

interaction7, for instance, can be written diagrammatically as

∂2

∂T{αi}∂T{βi} b

bb

b bbcbc

bc

bcb

bbb bb

b

= 4
bbbcbb

+ 4
b bb

+ 4 b b , (4.85)

where we introduced the notation {αi} to represent the three indices α1, α2 and α3.
Using the graphical notation introduced previously in Eq. (4.78), vertices correspond
to tensors, edges between vertices are linked to contracted indices and open lines
going out of a vertex represent uncontracted, open indices. Single lines are delta
functions.
The above graphical expression for the two-point function can be then understood
as follows: Acting with the second derivative on a tensor invariant is equivalent to
opening up a graph by removing two vertices. There are distinct ways of removing
two vertices which in the case above results in three di�erent tensorial building
blocks. The prefactors in front of the distinct tensorial pieces of the two-point
function are of combinatorial nature and count the number of possibilities one has to
remove two vertices while generating the same opened graph. In the above example
the prefactor of four can be understood as 4 = 2 × 2; The two-point function
is symmetric under permutation of the order of derivation. This accounts for an
overall factor of two. The other factor of two in front of each of the pieces of the
two-point function accounts for the symmetries of the invariant when represented as
a graph. Note that it is a peculiarity of T 4 that this symmetry factor is the same for
all contributions to the two-point function. At higher orders in T this is no longer
the case. Each of the three pieces in the above two-point function of

b

bb

b bbcbc

bc

bcb

bbb bb

b
represents

7Alternatively, we will also call refer to
b

bb

b bbcbc

bc

bcb

bbb bb

b

as pillow interaction, as is also common in the

literature.
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a building block to construct higher-order tensor invariants.
The remaining building blocks are obtained from the color-symmetric siblings of

b

bb

b bbcbc

bc

bcb

bbb bb

b
,

as well as from the cross interaction and the multi-trace invariant. The two-point
function of the cross-interaction reads

∂2

∂T{αi}∂T{βi} b

bb

b bbcbc

bc

bcb

bbb bb

b

= 4
b bb

+ 4
b bb

+ 4
b bb

, (4.86)

while the two-point function of the multi-trace interaction is given by

∂2

∂T{αi}∂T{βi}

bbbcbbb bb

bbbcbbb bb
= 4

bbbcbbb bb

+ 4 b b . (4.87)

Interactions of a given order are built by combining all building blocks obtained
from the two-point functions of the T 4 interactions in all possible ways and tracing
over them. Up to degeneracies, this procedure allows to generate all interactions of
a given order. As an example, a T 6 interaction of a rank-3 O(N) model can be built
from combining the following three building blocks

Tr

(
b bb

b

bbbcbb bbbcbb
)

= N ·

b

bbbcb

b

b

bc

b

bc

bc

b

b b

b

bc

b

bc

bc

b

b

b

, (4.88)

where the prefactor of N follows from contracting the delta functions associated to
the red indices. In order to determine all possible invariants we do not care about
this prefactor and therefore drop it, only keeping the tensor invariant. The above
generated T 6 interactions corresponds to Ta1a2a3Ta1a2b3Tb1b2b3Tb1b2c3Tc1c2c3Tc1c2a3 in
the Einstein convention. Since distinct building blocks can generate the same in-
variants, one has to get rid of such degeneracies. In Mathematica, this can be prac-
tically done with the ToCanonical function of the xTensor package. Implementing
the described algorithm and removing degenerate invariants we �nd the following
number of interactions for the O(N)3 model at interaction order T 2,T 4,T 6, T 8 and
T 10 respectively

1, 5, 16, 86, 448. (4.89)

while we �nd the following number of rank-4 O(N) interactions at interaction order
T 2,T 4,T 6 and T 8, respectively

1, 14, 132, 4154. (4.90)

As a cross-check of our method we �nd that these numbers are in exact agreement
with those found by the authors of [249, 250]. Similarly, we also recover the same
number of invariants for the rank-3 U(N) model as the authors of [251]. Having
identi�ed all possible invariants of a given model up to a certain order, there are
two possible ways to continue to set up the truncation:
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1 The most general theory space is considered by assigning a coupling to every
tensor interaction.

2 A color-symmetric theory space is set-up, which collects the di�erent tensor
interactions in terms of combinatorial families. Each interaction belonging to
the same color symmetric equivalence class gets assigned the same coupling.

Possibility (1), where a distinct coupling is assigned to every interaction, is signi�-
cantly easier to deal with than alternative (2) as one does not have to �nd a feasible
prescription to collect interactions belonging to the same combinatorial family. On
the other hand the theory space in option (1) will be signi�cantly larger, conse-
quently leading to a larger number of beta functions to be derived.
Let us analyze scenario (2) and explain how one can collect all tensor interactions
belonging to the same combinatorial family. More explicitly we are interested in
setting up a truncation of the following kind

ΓN ∼ g

(

b

bb

b bbcbc

bc

bcb

bbb bb

b

+
b

bb

b bbcbc

bc

bcb

bbb bb

b

+
b

bb

b bbcbc

bc

bcb

bbb bb

b

)
. (4.91)

This is a non-trivial question as Mathematica generates output in the Einstein no-
tation, that is, e.g., as Ta1a2a3Ta1a2b3Tb1b2b3Tb1b2a3 . To deal with this challenge, a
novel combinatorial object, which we shall call the indicator, that allows to assign
interactions to a unique combinatorial family is introduced. The indicator of depth
k can be de�ned as follows

De�nition 4.1. Let Ti1i2...Id ≡ TI be a tensor of rank d transforming under some
arbitrary symmetry. Let On(T ) =

∑
`,I`

TI1TI2 ...TInK(I1, I2, ..., In) be a tensor ob-
servable, where the kernel K is a product of Kroneckers implementing the con-
traction of indices in a particular pattern. The indicator of depth k of a tensor
observable of tensors of rank d ≥ 2 is a set of pairs of numbers derived from
Tr( δk

δTa1,...,ad
...δTa1,...,ad

Tr(T n)). To determine the indicator of depth k, with k ≤ n,
the combinatorial prefactors resulting from the derivatives acting on the tensor ob-
servable as well as the power in the tensor size N multiplying each newly generated
tensor invariant are collected to form a couple.

In the following we will refer to the indicator of depth k = 2 as simply the indicator
given that this will be the quantity that we will be using in order to identify color-
symmetric families. An example of how to derive the indicator of a given tensor
invariant will be provided below. In simple words the indicator of depth k = 2 of
any interaction is computed as follows:

S.1 Compute the second variation of a tensor invariant, respecting its symmetries.

S.2 Take the trace of the obtained object. This will result in a sum of terms
involving a product between a tensor interaction, a prefactor p ∈ N and the
tensor size N to some power x, where 0 ≤ x ≤ d and d is the rank of the
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tensor. The number of elements in the sum is a way to measure the amount
of symmetry of a given interaction. Broadly speaking: The more symmetry a
given tensor interaction has, the less terms there are in the sum.

S.3 We collect all the prefactors p as well as the powers in N , that we denote by
x. This gives a list of pairs of numbers (p and x) whose length equals the
number of terms in the sum that one obtained in the previous step. We call
this object the indicator.

As an illustrative example, let us consider again the real rank-3 tensor model and
compute the indicator for the pillow interaction

b

bb

b bbcbc

bc

bcb

bbb bb

b
. Invoking the de�nition of the

indicator, the computational steps are the following

Tr
∂2

∂T{αi}∂T{βi} b

bb

b bbcbc

bc

bcb

bbb bb

b

= Tr

(
4

bbbcbb

+ 4
b bb

+ 4 b b

)

= 4
bbbcbbb bb

+ 4
bbbcbbb bb

+ 4
bbbcbbb bb

bbbcbbb bb

⇒ {(4, 2), (4, 1), (4, 0)} (4.92)

The idea is to compute the indicator for every interaction in order to �nally compare
the indicators of the di�erent invariants to each other. Using the fact that interac-
tions belonging to the same combinatorial family have the same indicator, we can
then assign a single coupling to all interactions belonging to the same family. This
step completes the construction of the truncated e�ective action in the case that the
same coupling is assigned to all interactions of a given-symmetric family. Crucially,
we have assumed that the following conjecture holds:

Conjecture 1. There is a one-to-one corresponce between a given indicator and a
tensor invariant.

If the above conjecture did not hold, it could be that invariants belonging to
di�erent color-symmetric families could share the same indicator. We have not
found any evidence that the conjecture does not hold. Having set up a truncated
e�ective action in the case where the same coupling is assigned to all interactions of
a given color-symmetric family, it is possible to proceed with the derivation of the
beta functions using the functional RG. The following steps apply again to both,
scenario (1) and (2). In order to evaluate the �ow of the truncated e�ective action
ΓN it is necessary to evaluate the right hand side of the FRG equation Eq. (4.81).
One option to proceed with the practical computations is to use the so-called P−1F
expansion. The �ow equation can then be expressed as

∂tΓN =
1

2
Tr
[
(∂tRN)P−1

]
+

1

2

∞∑

n=1

(−1)nTr
[
(∂tRN)P−1

(
P−1F

)n] (4.93)
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with

P = Γ
(2)
N

∣∣
T=0

+RN (4.94)

and

F = Γ
(2)
N − Γ

(2)
N

∣∣
T=0

. (4.95)

The P−1F expansion is an expansion in powers of tensors. The trace in equation
Eq. (4.93) involves summing over all indices and �elds. Tracing over the contraction
of delta functions appearing in P due to the �eld-independent part of the second
variation of the e�ective action ΓN with the open indices arising from the �eld-
dependent part of the second variation (e.g. as illustrated in Eq. (4.87), where the
second variation of the multi-trace melonic invariant opens up indices by "removing"
two vertices), generates new interactions. Hereby, the mechanism is very similar to
the one illustrated in Eq. (4.88), where we were setting up the truncation by tracing
over contractions of di�erent building blocks of the two-point functions of the T 4

invariants. In contrast to this procedure, however, it is now also necessary to take
into account the presence of the regulator RN in the de�nition of the inverse prop-
agator P and its scale-derivative ∂tRN . The combinatorics of a particular invariant
resulting at order n = 3 constructed through the P−1F expansion can therefore be
illustrated pedagogically using the following diagrammatic notation

Tr
[
(∂tRN)P−1

(
P−1F

)3
]

= Tr

(
(∂tRN)

b bb

b

bbbcbb bbbcbb
)

≡
⊗
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bc

b

bc

bc

b

b

b

, (4.96)

where the single lines represent delta functions and the scale derivative of the regu-
lator RN was replaced by a cross. Lines of same color running through the regulator
are contracted. This allows to identify the generated invariant. Note that the above
expression only describes the combinatorics as we dropped for instance the couplings
and prefactors.
We will discuss the details of the P−1F expansion when studying the real rank-3
tensor model and in Appendix B. For now it is su�cient to bear in mind that the
�ow generates symmetry-breaking (index-dependent) terms of the following form
through the P−1F expansion

∑

n

Tr
(
P−1(∂tRN)

(
P−1F

)n)
=

=
∑

I,ai,bi

H (ai, bi; gj)× Invariant(I)(T k; al, bj), (4.97)
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where k counts the number of tensors that constitute the invariant and H is a
threshold function that includes index-dependent terms coming from the presence
of the regulator multiplied with the couplings associated to the invariants entering
a given term of the P−1F expansion. In general H will have the following generic
form

H (ai , bi ; gj ) =

=fg(gj)× F (ai, bi)×
×Degeneracy of couplings× Prefactors of two-point function, (4.98)

where fg(gj) is a function that depends on the couplings only and F (ai, bi) is a
function that depends on the indices. The degeneracy of couplings follows from the
fact that the P−1F expansion at order n generates n!/deg(gi)! terms, where deg(gi)
counts the degeneracy of the coupling gi, as one can see more clearly using a little
example. For that purpose, we consider the following explicit form of a part of the
P−1F expansion

(P−1F)n = P−1F · ... · P−1F . (4.99)

Invoking the de�nition of F in Eq. 4.95, it is clear that there exist n!/deg(gi)! ways
to generate the same invariant as each individual F will be a function of the form

F =
∑

i

giO
(2)
i (T k, k > 2). (4.100)

For instance, we may consider again the example provided in Eq. (4.96), this time
making the dependence on the couplings explicit. In that case

(
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)3
=
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4,1 ·
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4,1 ·

bbbcbb

× g2,1
4,1 ·

bbbcbb
)

=
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=
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. (4.101)

A proper treatment of the symmetry-breaking due to the regulator requires to con-
sider modi�ed Ward Identities. This in turn necessitates to extend the theory space
by terms that explicitly break the symmetry of the model. The truncated theory
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spaces that we consider in this work will not include index-dependent terms and
therefore we will set indices that appear simultaneously in the function F and as a
contraction in the invariant InvariantI(T k; al, bj) to zero as they are not part of the
truncations that we will consider here. Ward identities in the context of the FRG
applied to tensor models have been considered in [252, 253, 254, 255]. See [256] for a
review on the current status. Setting the indices that appear in both the threshold
function F and the tensor invariant to zero allows one to perform the threshold sums

Imn =
∑

am

F (am), (4.102)

that appear in the computation of the �ow of ΓN , for instance in Eq. 4.97. Here,
am denotes the m ≤ D, where D is the rank of the tensor model, indices that are
non-zero and n labels the order of the P−1F expansion. Hereby, Imn is a function
of the anomalous dimension η, the parameter r introduced in the Litim-regulator
and the scale N introduced by the regulator. The threshold functions for the real
rank-3 tensor model assuming a Litim-type regulator are provided in Eq (B.19) in
Appendix B. We will leave the technical details for a forthcoming section on the
real rank-3 tensor model.
The steps S.1-S.3 of the algorithm have allowed us to derive the function fg(gj), the
threshold function Fai,bi and the prefactors of the two-point function which enter
the function H in Eq. 4.97. In order to read o� the beta functions of the individual
dimensionful couplings, the expressions resulting from the evaluation of the right
hand side of the FRGE, structurally given by Eq. (4.97), need to be compared with
the expressions resulting from the right hand side, which have the following structure

∑

I

(∂tgI)× InvariantI(T k) (4.103)

The beta functions can therefore be read o� by comparing the invariants appearing
in the terms given by Eq. (4.97), that have been generated on the right hand side
of Eq. (4.93) through the P−1F expansion with those coming from ∂tΓN given
by Eq. (4.103). In Mathematica the comparision between the invariants generated
through the P−1F expansion with those in ∂tΓN involves the following steps S:

S.4 The previous steps S.1-S.3 yield terms that involve numerical prefactors, cou-
plings and tensor invariants.

S.5 Compute the di�erence between an invariant Tg generated through the P−1F
expansion and an invariant Ti appearing in the e�ective action. If this dif-
ference is equal to zero then the prefunction F associated to the generated
interaction Tg contribute to the beta function of the coupling linked to Ti.

S.6 Do this comparison between all interactions of a given interaction order 2n
that can be generated through a P−1F expansion and all interactions of order
2n de�ning our e�ective action. As before, whenever this di�erence is zero, an
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P−1F -generated interaction contributes to the beta function of the interaction
we are comparing to. If a coupling is assigned to every invariant the speed of
this comparision can be accelerated.

S.7 Keep track of the symmetry factors appearing due to the degeneracies of cou-
plings, as well as the 1/2 prefactors coming from the �ow equation.

S.8 Add the contributions from the threshold functions.

S.9 Add the contribution from the canonical scaling dimension.

This allows us to �nd the dimensionful beta functions. The dimensionless beta
functions are determined by insisting on a well de�ned large-N limit where the
beta functions become autonomous. They will in general have the following generic
form The beta functions that one derives for tensor models will always the following
generic form

βgk = (−[gk] + 2η) gk +
∑

j

Nnimn fj,m,n

(∏

C

gC

)
N−[ḡ]k+

∑
C [ḡC ], (4.104)

where the functions fj are functions of (products of) couplings gC , where C indexes
the couplings associated to interactions that generate the invariant linked to gk by
means of the P−1F expansion. The imn are the threshold functions introduced in
Eq. (B.19), where the power in N has been factored out. They depend on the
anomalous dimension η and the parameter r introduced in the de�nition of the
modi�ed Litim-regulator in Eq. (4.111). Herein, m counts the order at which the
P−1F expansion has been performed in order to generate the invariant linked to
gk and n counts the number indices running freely through the regulator as delta
functions.
Let us summarize this rather technical part of the thesis. Our goal is to study the
continuum limit of tensor models for four-dimensional quantum gravity. The tool
that we are using in order to search for �xed points of a renormalization group
�ow in the tensor size N is the FRG. The bene�t of the FRG is that it allows to
perform practical computations and is thus a very convenient way to explore new
universality classes. The FRG cannot be solved exactly and therefore we have to
rely on truncations of a scale-dependent e�ective action ΓN . We then search for
�xed points within these truncations. To do so, we have to derive the running of
the couplings that span the truncation. The number of tensor invariants at each
interaction order grows very quickly and hence a derivation of the beta functions by
hand becomes unfeasible.

4.3 Understanding 3D

As a �rst stepping stone towards four-dimensional Quantum Gravity we are going
to study three dimensions.
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Figure 4.6: Geometrical interpretation of the cross-interaction: The tensor is re-
placed by the face of a triangle, while its indices are represented by the
edges of that triangle. With this identi�cation in mind, the cross in-
teraction Ta1a2a3Ta1b2b3Tb1b2a3Tb1a2b3 , which can be diagrammatically rep-
resented as shown in Eq. 4.78, is dual to a tetrahedron. One therefore
expects that such an invariant might be of relevance for a possible three-
dimensional quantum gravity phase.

Even though ultimately one is interested in 3+1 dimensions, in this work we will only
focus on purely Euclidean models since the implementation of causality conditions
is not yet understood in higher-dimensional quantum gravity. For this purpose we
will consider a tensor model of rank-3.
In particular, we will study a real tensor model featuring an O(N)×O(N)×O(N)
symmetry such that a tensor transforms under three distinct copies of the O(N)
group as

Ta1a2a3 = O
(1)
a1b1

O
(2)
a2b2

O
(3)
a3b3

Tb1b2b3 (4.105)

leaving the action invariant. The three-dimensional case will also allow us to illus-
trate the intricacies of the FRG applied to tensor models that we discussed previ-
ously. We look for a continuum limit using the FRG. The Feynman diagrams gener-
ated by tensor models are dual to dynamical triangulations and therefore studying
tensor models in three dimensions is an alternative to probing the continuum limit
in three dimensional dynamical triangulations. The bene�t of the FRG is that it
is computationally less costly than the computer simulations that are run in order
to �nd a tentative continuum limit in the dynamical triangulations setting. Rank-3
Tensor Models have been studied before using Large-N techniques as well as the
FRG [233, 235, 238, 239]. Compared to previous tensor models studied within the
FRG, the real tensor model provides an extended theory space and therefore a po-
tentially interesting continuum limit. In particular, the O(N)3 model allows for a
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so-called tetrahedral invariant, Ta1a2a3Ta1b2b3Tb1a2b3Tb1b2a3 , which is forbidden in the
complex tensor model case. On the one hand such a type of interaction extends the
theory space and therefore o�ers a richer set of possibility of potential continuum
limits. On the other hand one can associate a dual geometrical meaning if one as-
sociates to each tensor a triangle, with the edges denoting the indices of said tensor
and then glues the edges of the triangle together following the contraction pattern
of the interaction, as depicted in Fig. 4.6. As a matter of fact, using this prescrip-
tion it is possible to construct a geometric dual for all allowed tensor interactions.
Naively, one can then think of the Feynman expansion of a tensor model as gluing
together these microscopic geometric entities, such as the tetrahedra depicted in
Fig. 4.6. It is, however, important to stress again that ultimately the physics in the
continuum limit should be independent of the way that the space-time is discretized
and one should therefore not associate any physical meaning to the shape of these
microscopic building blocks and only think about them in an intuitive way. The key
notion is universality, which implies the independence of the emergent physics from
the microscopic details. We will search for candidate �xed points for the �owing
e�ective action ΓN , which allows for a universal continuum limit, using the FRG

∂tΓN [T ] = N∂NΓN [T ] =
1

2
Tr
[(

Γ
(2)
N +RN

)−1

∂tRN

]
, (4.106)

where, for now, we leave the regulator RN unspeci�ed. As we have discussed in
previous chapters, the �ow equation cannot be solved exactly and we therefore need
to specify a truncation of the �owing e�ective action ΓN [N ]. In continuum FRG
computations truncations are typically set up following the assumption that the
canonical dimension is a reliable estimate to tell whether a coupling is relevant or
irrelevant. This so-called canonical guiding principle therefore implies that increas-
ing a truncation should not induce new relevant directions. In the tensor model
language there is however no notion of background and therefore one can also not
associate a canonical dimension to a coupling. We have discussed in the previous
section how it is nonetheless possible to associate a scaling in the tensor size N to
a tensor model coupling by insisting on the large-N limit. We will assume that
increasing the order of interaction leads to lower scaling dimensions and is therefore
an appropriate way to increase a truncation, just like in standard local quantum
�eld theory. In the following, we will therefore study a truncation of the average
e�ective action ΓN up to order T 6, i.e.,

ΓN = ΓN,2 + ΓN,4 + ΓN,6, (4.107)

with

ΓN,2 =
ZN
2
Ta1a2a3Ta1a2a3 , (4.108)
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where ZN denotes the wave function renormalization,

ΓN, 4 = ḡ2,1
4,1 Ta1a2a3Tb1a2a3Tb1b2b3Ta1b2b3

+ ḡ2,2
4,1 Ta1a2a3Ta1b2a3Tb1b2b3Tb1a2b3

+ ḡ2,3
4,1 Ta1a2a3Ta1a2b3Tb1b2b3Tb1b2a3

+ ḡ0
4,1 Ta1a2a3Tb1a2b3Tb1b2a3Ta1b2b3

+ ḡ2
4,2 Ta1a2a3Ta1a2a3Tb1b2b3Tb1b2b3 , (4.109)

and

ΓN, 6 = ḡ3,1
6,1 Ta1a2a3Tb1a2a3Tb1b2b3Tc1b2b3Tc1c2c3Ta1c2c3

+ ḡ3,2
6,1 Ta1a2a3Ta1b2a3Tb1b2b3Tb1c2b3Tc1c2c3Tc1a2c3

+ ḡ3,3
6,1 Ta1a2a3Ta1a2b3Tb1b2b3Tb1b2c3Tc1c2c3Tc1c2a3

+ ḡ2,1
6,1 Ta1a2a3Ta1b2a3Tb1b2b3Tc1c2b3Tc1c2c3Tb1a2c3

+ ḡ2,2
6,1 Ta1a2a3Tb1a2a3Tb1b2b3Tc1c2b3Tc1c2c3Ta1b2c3

+ ḡ2,3
6,1 Ta1a2a3Tb1a2a3Tb1b2b3Tc1b2c3Tc1c2c3Ta1c2b3

+ ḡ1,1
6,1 Ta1a2a3Ta1b2b3Tb1b2a3Tb1c2c3Tc1c2c3Tc1a2b3

+ ḡ1,2
6,1 Ta1a2a3Tb1a2b3Tb1b2a3Tc1b2c3Tc1c2c3Ta1c2b3

+ ḡ1,3
6,1 Ta1a2a3Tb1b2a3Ta1b2b3Tc1c2b3Tc1c2c3Tb1a2c3

+ ḡ0,np
6,1 Ta1a2a3Tb1a2b3Tb1c2c3Tc1c2a3Tc1b2b3Ta1b2c3

+ ḡ0,p
6,1 Ta1a2a3Tb1a2b3Tb1b2c3Tc1b2b3Tc1c2a3Ta1c2c3

+ ḡ3,1
6,2 Ta1a2a3Tb1a2a3Tb1b2b3Ta1b2b3Tc1c2c3Tc1c2c3

+ ḡ3,2
6,2 Ta1a2a3Ta1b2a3Tb1b2b3Tb1a2b3Tc1c2c3Tc1c2c3

+ ḡ3,3
6,2 Ta1a2a3Ta1a2b3Tb1b2b3Tb1b2a3Tc1c2c3Tc1c2c3

+ ḡ1
6,2 Ta1a2a3Tb1a2b3Tb1b2a3Ta1b2b3Tc1c2c3Tc1c2c3

+ ḡ3
6,2 Ta1a2a3Ta1a2a3Tb1b2b3Tb1b2b3Tc1c2c3Tc1c2c3 .

(4.110)

The studied truncation in the graphical representation for the di�erent interactions
is depicted in Fig. 4.7. Herein, the subscripts associated to the di�erent couplings
gi,jk,l have to be understood as follows: i denotes the number of sub-melons, i.e. the
number of times pairs of indices of two tensors are contracted; j denotes the posi-
tion of a distinct index of a tensor invariant; k denotes the order of the interaction
and l denotes the number of connected tensor components. Additionally, we also
introduced the superscripts p and np which indicate whether the graph associated to
that interaction is planar or non-planar. It is worthwhile to discuss the appearance
of invariants with more than one connected components, i.e. l > 1. These invariants
can be represented as disconnected graphs and the analogous versions of these terms
in background-dependent QFT,

(∫
d4x1L1(x1)

)
...
(∫

d4x2Ln(xn)
)
, are typically not
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ḡ
3,3
6,1

bbbb b

bbbbbbbbḡ
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Figure 4.7: Depicted above is the truncation of ΓN for the real rank-3 model studied
in this work using the graphical representation introduced in Eq. (4.78)
for the invariants.

considered as they are suppressed with the space-time volume. Physically, such
interactions also seem weird in a local setting as they necessitate the notion of a dis-
connected space-time and would violate the notion of causality as �elds in di�erent
disconnected space-times could interact with each other. In a background inde-
pendent setting, however, where the notion of space-time does not appear, these
disconnected interactions are not associated to disconnected space-times but are
typically obtained as disconnected boundaries of a connected space-time which are
sometimes just referred to as baby universes. Unlike in the local case where non-local
interactions of the form described above are space-time suppressed, the correspond-
ing non-local interactions, such as Tα1α2α3Tα1α2α3 , in tensor models are generated
by the RG �ow. We will show this explicitly when discussing the β functions of
the real rank-3 tensor model. It is therefore not possible to discard these kind of
interactions as they directly contribute to the anomalous dimension and the critical
exponents characterizing the �xed point. It is also not possible to suppress these
interactions through the assignment of an appropriate scaling. One route one might
take, however, is to �nd mechanism that dynamically realizes a vanishing �xed point
value g2

4,2
∗

= 0 for g2
4,2. We will show later on in the discussion of the beta func-

tions that this can be realized if no symmetry between colors is assumed, that is if

87



g2,1
4,1 = g2,2

4,1 = g2,3
4,1 is violated.

Compared to the U(N)3 model which has previously been studied in the literature
using the FRG up to a T 6 truncation, we have to consider the additional interactions,
associated to the couplings g0

4,1, g
3,i
6,1, g

0,p
6,1 and g1

6,2.

Applying the FRG

In order to study the above truncation with the functional RG, we have to specify a
regulator that ful�lls the set of conditions given by Eq. 2.28, Eq. 2.29 and Eq. 2.30.
Di�erent choices of regulators exist and we will use the Litim regulator

RN({ai, bi}) = ZNδa1b1δa2b2δa3b3

(
N r

a1 + a2 + a3

− 1

)
θ

(
N r

a1 + a2 + a3

− 1

)
,

(4.111)

where N refers to the size of the tensor and we have introduced the parameter r,
which for the standard Litim regulator, commonly employed in local FRG compu-
tations, has to be one by arguments of dimensionality. To make this point clearer,
let us discuss why r = 1 in local quantum �eld theory. Typically, in a Wilsonian RG
setting in momentum space one splits the �elds into light modes and heavy modes
according φ = φ`(p) + φh(p), where

φ`(p) =

{
φ(p), if p < k

0, otherwise,
(4.112)

and

φh(p) =

{
φ(p), if k < p ≤ Λ

0, otherwise,
(4.113)

A �ow in the couplings follows from integrating out the heavy modes and demanding
the path-integral to remain unchanged. The distinction between light modes and
heavy modes is based on the existence of a notion of momentum scale, which neces-
sitates a background in order to be de�ned, since

√
p2 =

√
gµνpµpν . The existence

of a background and the associated notion of momentum thus also �xes the ratio
between the mass dimension of k and the mass dimension of p to be one in order for
the distinction between light and heavy modes to make sense from a dimensional
point of view, and therefore r = 1. In the tensor model RG language the distinction
between what would be the analogue of the light and heavy modes in local quan-
tum �eld theory is based on the number of tensor entries. The larger indices of a
tensor are associated to the UV modes, while lower indices are related to the IR.
More concretely, in a tensor model language one could make the following analogue
distinction to the local QFT-on-a-background case

T `ai =

{
Tai , if

∑
i ai < N

0, otherwise,
(4.114)
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and

T hai =

{
Tai , if N <

∑
i ai ≤ N ′

0, otherwise,
(4.115)

where N ′ denotes the total number of tensor indices and is the analogue of the
UV-cuto� Λ in the local QFT-on-a-background scenario. The crucial di�erence to a
QFT de�ned on a background is now that the distinction between light and heavy
modes is made in terms of the magnitude of the indices, which are numbers without
any reference to a background and therefore it is also not possible to associate any
notion of mass dimension to these tensor indices. In turn, this means that the power
of the �oating cut-o� N can be chosen freely such that more generally one may make
the following distinction

T `ai =

{
Tai , if

∑
i ai < N r

0, otherwise,
(4.116)

and

T hai =

{
Tai , if N r <

∑
i ai ≤ N ′

0, otherwise,
(4.117)

which explains why the appearance of the parameter r in the Litim regulator de�ned
previously is an allowed peculiarity of background-independent models. Nonetheless,
r cannot be chosen at random but has to be larger than zero: In the limit N →
N ′ →∞ no 'heavy' modes should have been integrated out. In that case Eq. 4.116
should always be satis�ed. If r < 0, however, the role of N is reversed. The limit
N → 0 corresponds to the UV limit where no modes have been integrated out,
while N → ∞ corresponds to the IR. The case r = 0 is also forbidden because in
that case the '�oating' cut-o� N completely disappears by becoming constant and
continuously integrating out heavy modes of freedom is no longer possible because N
cannot be varied. In the following search for �xed points that allow for a potentially
interesting continuum limit that leads to a three-dimensional quantum gravity phase,
we are, however, going to restrain ourselves to the r = 1 case, although ultimately r
is �xed by trying to make contact with the actual physics that one is interested in.
Choosing a di�erent r has an immediate in�uence on the scaling dimension of the
individual couplings. We will discuss this point in more detail later on. The r 6= 1
case has been discussed in [257].

Derivation of beta functions

Beta functions can be obtained from the Wetterich equation. The P−1F expansion
allows one to then carry out practical computations with the FRG and to derive beta
functions. We will now build on the previous discussion on the derivation of beta
functions and try to make the technical steps avoided in the previous discussion on
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the P−1F expansion clearer and more concrete. The reader who is more interested
in the physics of tensor models rather than in the technical details may therefore
skip this section.
Practical computations with the FRG require two ingredients. First a truncation,
that we already speci�ed in Eq. (4.107) and second a regulator RN , which is given
by Eq. (4.111). For r = 1 this regulator entails that its scale-derivative is given by

∂tRN = ZN

3∏

i=1

δaibiθ

(
N

a1 + a2 + a3

− 1

)(
(1− η)

N

a1 + a2 + a3

+ η

)
,

(4.118)

where the anomalous dimension η is de�ned as η = −∂tZN/ZN . Hence, the trun-
cation and the regulator RN are all the ingredients that are needed in order to
perform practical computations with the P−1F expansion of the FRG introduced in
Eq. (4.93). As already discussed, the regulator introduces an index-dependence that
only vanishes in the limit N → 0 and which breaks the original O(N ′) × O(N ′) ×
O(N ′) symmetry of the model. Accordingly, it is necessary to introduce a projection
prescription that di�erentiates between symmetric and symmetry-breaking terms.
This is done by setting indices that appear simultaneously in the regulator and as
indices in tensors to zero. A simple example that arises in the computations is the
following

Tr
(
∂tRN P−1

(
P−1F

)3
)

∼
∑

Ii

1

2
× 3!

2!
ḡ0

4,1(ḡ2,1
4,1)2N

1

Z3
N

(
a1 + a2 + a3

N

)2(
(1− η)

N

a1 + a2 + a3

+ η

)

× 1

1−
(

N
e1+a2+a3

− 1
)

Θ(e1, a2, a3)

1

1−
(

N
g1+a2+a3

− 1
)

Θ(g1, a2, a3)

× Ta1a2α3Te1a2α3Te1β2β3Tg1β2β3Tg1γ2γ3Ta1γ2γ3 , (4.119)

where Ii denotes the set of indices Ii = {{ai}, e1, g1, α2, α3, β2, β3, γ2, γ3} and Θ is
de�ned as Θ(i1, i2, i3) ≡ θ(N − i1 − i2 − i3). The factor of 1/2 is the prefactor that
appears on the right hand side of the de�nition of the FRG. The factor 3!/2! is of
combinatorial nature and counts the degeneracy of couplings. The factor of N arises
from the contraction of free delta functions.
The above expression can be compared to the one given by Eq. (4.97). Hereby, the
function F is given by F = F (a1, a2, a3, e1, g1). The indices e1, a1, g1 and a2 occur
as both, overall prefactors and as tensor indices and need therefore to be set to zero
in order to recover the original underlying symmetry of the model. The index a3

does not appear as a tensor index and consequently also does not break the original
symmetry of the real model. Thus, in order to project out non-symmetric terms one
considers the function F = F (0, 0, a3, 0, 0). This allows for the calculation of the
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spectral sums
∑

ai
F (ai) as the sum does no longer involve a summation over indices

that appear simultaneously in the threshold function F and the tensor invariant. In
the thermodynamic large-N limit the threshold sums become threshold integrals.
The detailed computational steps are performed in Appendix B. Therefore without
loss of generality we may write in the large-N limit

Tr
(
∂tRN P−1

(
P−1F

)3
)

= 96
1

Z3
N

I1
3

(
ḡ0

4,1

) (
ḡ2,1

4,1

)2
(4.120)

Note that at most R indices, where R is the rank of the tensor, can be non-zero.
In that case the P−1F expansion involves only terms of the two-point function of
multi-trace invariants of the type Tα1α2α3Tα1α2α3Tr(T

n), where n is an even integer,
that have no opened lines, e.g.

∂2

∂T{αi}∂T{βi}

bbbcbbb bb

bbbcbbb bb
∼ 4

bbbcbbb bb

. (4.121)

The combinatorics of the resulting invariant constructed through the P−1F expan-
sion in the above example in Eq. (4.119) can be illustrated pedagogically using the
diagrammatic notation

Tr
[
(∂tRN)P−1

(
P−1F

)3
]

= Tr

(
(∂tRN)

b bb

b

bbbcbb bbbcbb
)

≡
⊗

b

b
b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

∼

b

bbbcb

b

b

bc

b

bc

bc

b

b b

b

bc

b

bc

bc

b

b

b

, (4.122)

where the single lines represent delta functions and the scale derivative of the regu-
lator RN was replaced by a cross. Lines of same color running through the regulator
are contracted. This allows to identify the generated invariant. Note that the above
expression only keeps track of the combinatorics and not of the spectral sums that
need to be performed.

Scaling Dimension in rank-3 Tensor Models

We have already discussed in detail that as a consequence of the background inde-
pendence of tensor models the scaling dimension has to �xed after having derived
the beta functions by demanding the beta functions to become autonomous, i.e.
loose their explicit dependence on N , in the large-N limit. The beta functions that
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one derives for tensor models will always the following generic form

βgk = (−[gk] + 2η) gk +
∑

j

Nnimn fj,m,n

(∏

C

gC

)
N−[ḡ]k+

∑
C [ḡC ], (4.123)

where the functions fj are functions of (products of) couplings gC , where C in-
dexes the couplings associated to interactions that generate the invariant linked to
gk by means of the P−1F expansion. The imn are the threshold functions introduced
in Eq. (B.19), where the power in N has been factored out. They depend on the
anomalous dimension η and the parameter r introduced in the de�nition of the mod-
i�ed Litim-regulator in Eq. (4.111). Herein, m counts the order at which the P−1F
expansion has been performed in order to generate the invariant linked to gk and n
counts the number indices running freely through the regulator as delta functions.
The requirement of having a well-de�ned large-N limit implies the following set of
inequalities

n− [ḡk] +
∑

C

[ḡC ] ≤ 0. (4.124)

Sticking for instance to the example of Eq. (4.119), this entails the following in-
equality for r = 1

1− 2[ḡ2,1
4,1]− [ḡ0

4,1] + [ḡ3,1
6,1] ≤ 0. (4.125)

Every term contributing to every beta function will therefore entail an inequality
such as the one above. These inequalities will, however, not be su�cient in order to
uniquely �x the scaling. Ultimately, the scaling has to be �xed by comparing with
the continuum side.
The derived beta functions are presented in the appendix.

Search for universality classes

We may now look for universality classes in the large-N limit. The theory spaces
that we consider in this thesis are rather large and solving

βgi = 0 (4.126)

will yield a zoo of zeros of the set of beta functions. This, however, does not mean
that the solutions found to this set of equations are actual physical �xed points.
In order to distinguish spurious zeros of the beta functions that arise as truncation
artifacts from physical �xed points we consider the following set of criteria that need
to be satis�ed

C.1 Stability of results under successive extension of the truncation.

C.2 Regulator bound η < r.
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C.3 Canonical guiding principle.

The �rst criterion implies that a �xed point should already be apparent at low order
in the truncation. In detail this implies that we consider �xed points that already
appear at T 4 for η = 0 or in special cases, as we will see later on for a perturbative
approximation of the anomalous dimension. We track those �xed points through
successive extensions of the truncation by considering di�erent approximations of
the anomalous dimension as well as increasing the order of the invariants taken
into account. Therefore, the scheme where η = 0 and only T 4 interactions are
taken into account is the simplest one. Next, a perturbative approximation of the
anomalous dimension is considered. This implies that, whenever the anomalous
dimension follows from the scale-derivative of the regulator it is set to zero. This
way only the 'canonical' η's that follow from the wave function renormalization
of the couplings are taken into account. The name originates from the fact that
the universal one-loop beta functions for the dimensionless couplings are derived
within such an approximation from the FRG. Finally, taking into account the full
non-polynomial form of the anomalous dimension corresponds to resumming higher-
order couplings. This same scheme is then applied at the next higher interaction
order. This allows us to track the �xed point going from η = 0 at T 4 to the full non-
polynomial anomalous dimension at order T 6. The change of the critical exponents
should hereby not be larger that O(1). This implies that the number of relevant or
conversely irrelevant directions should only change if |θi| < 1. The second criterion
follows from the consistency of the regulator. In the limit, where the '�oating' cut-o�
N tends towards the UV -cuto� N ′ which tends towards in�nity the e�ective action
ΓN becomes the microscopic action S. For this to occur the regulator has to diverge,
i.e, 8

lim
N→N ′→∞

RN = lim
N→N ′→∞

ZN

(
N r

∑D
i=1 ai

− 1

)
θ(N −

D∑

i=1

ai) −→∞. (4.127)

Note that ZN has an explicit dependence on N . In order to analyze the conditions
that need to be satis�ed for the regulator to diverge, we are therefore interested in
the particular scaling in N of ZN , which follows from solving the di�erential equation

−∂tZN
ZN

= η. (4.128)

It follows that

ZN ∼ Nη. (4.129)

8In the UV , where the regulator cut-o� N tends towards the UV cut-o� N ′ which itself is sent to
in�nity, one wants to recover the bare microscopic action S from the e�ective action ΓN . The
regulator term in the path-integral exp

(
−T{αi}RN ({αi, βi})T{βi}

)
has to therefore decouple in

that limit, which sets the requirement that RN diverges in the limit, where N ′ → N →∞. This
also justi�es the use of a saddle point approximation that singles out the microscopic action S.
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In turn this implies that in the UV the Litim regulator has the following scaling in
N

lim
N→N ′→∞

RN = lim
N→N ′→∞

Nη

(
N r

∑D
i=1 ai

− 1

)
θ(N −

D∑

i=1

ai)

∼ lim
N→N ′→∞

Nη+r →∞, (4.130)

where the regulator only diverges if η < r. This explains the regulator bound
introduced as the second criterion C.2 that we require a �xed point to satisfy. Finally,
the third criterion is the canonical guiding principle. It implies that enlarging a
truncation should not induce new relevant directions. Phrased di�erently, it means
that the �xed point should not be too non-perturbative such that the classical scaling
of an operator is still a reliable estimate of whether that given operator is relevant
or irrelevant at an interacting �xed point. In standard, local QFT, the canonical
guiding principle implies that standard power counting of operators is a reliable way
to set up truncations.
In more quantitative terms, the canonical guiding principle sets a bound on the
largest allowed critical exponent by demanding that the inclusion of new operators
in a truncation that has been set up through power counting of operators, should not
induce new relevant directions once the new couplings that are added are su�ciently
irrelevant in the canonical counting.. Therefore, the maximal shift between the
largest critical exponent max(θ) and the scaling dimension max(d[ḡ]) of the coupling
with the largest canonical scaling should not exceed the value of the jump that
is required to make the coupling with the largest scaling dimension outside of the
truncation max(d[ḡ]out

) marginal. This sets the following bound

max(θ)−max(d[ḡ]) ≤ 0−max(d[ḡ]out
). (4.131)

Note that not satisfying the above bound does not necessarily imply that the can-
didate �xed point does not exist. It rather means that larger truncations have to
be studied in order to reliably establish its existence or a di�erent way of setting-up
the truncation than the near-canonical guiding principle has to be considered.

Universality classes in 3d tensor models

We �nd �ve candidate �xed points that can be separated into two di�erent families
of �xed points: The family of dimensionally-reduced �xed points and the family of
�xed point candidates for three-dimensional quantum gravity. By dimensionally-
reduced �xed points we mean �xed points at which all the invariants that have
non-zero �xed points values exhibit an enhanced symmetry. These invariants are
characterized by the fact that certain indices are always contracted in multiplets.
As a consequence, these multiplets of indices can be 'merged' to form a super in-
dex. An example of dimensional reduction is illustrated in Fig. 4.8. On the other
hand, the candidate �xed points for three-dimensional quantum gravity cannot be
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dimensionally reduced by merging the same set of multiplets. An example of an
invariant that cannot be dimensionally reduced is the cross interaction

b

bb

b bbcbc

bc

bcb

bbb bb

b
where all

indices are distinct. Indeed, the cross-diagram allows for a dual 'geometric' interpre-
tation as a tetrahedron, as illustrated in Fig. 4.6. The three-dimensional character
of the cross-interaction therefore suggests that it might be of relevance in describing
a three-dimensional quantum gravity phase and one would therefore expect that a
�xed point describing a continuum limit where one recovers three-dimensional quan-
tum gravity features a non-zero value for the tetrahedral coupling. Let us analyze
which generic types of �xed points may appear at a quartic truncation just from un-
derstanding the structure of the quartic beta functions. We will �rst focus on �xed
points that can be dimensionally reduced and afterwards study the ones that might
be of potential interest for a 3d quantum gravity phase. The quartic beta functions
are given as follows. The running of the coupling associated to the invariant

bbbcbbb bb

bbbcbbb bb
has

the following form

βg2
4,2

= (3 + 2η)g2
4,2 +

4

5
(5− η) g2

4,2

(
g2,1

4,1 + g2,2
4,1 + g2,3

4,1

)

+
4

3
(4− η)

(
g2,1

4,1g
2,2
4,1 + g2,1

4,1g
2,3
4,1 + g2,2

4,1g
2,3
4,1

)
+

2

5
(6− η)

(
g2

4,2

)2 (4.132)

The beta functions up to order T 4 associated to
b

bb

b bbcbc

bc

bcb

bbb bb

b
(and color-symmetric permu-

tations thereof) are given via

βg2,i
4,1

= (2 + 2η) g2,i
4,1 +

2

5
(5− η)

(
g2,i

4,1

)2
+

2

3
(4− η)

(
g0

4,1

)2
. (4.133)

Note that the above beta functions are invariant under g2,1
4,1 ↔ g2,2

4,1 ↔ g2,3
4,1. This

simply re�ects the fact that the pillow diagrams have the same combinatorial form
and only di�er through their preferred color. Finally, at quartic order, the running
of the coupling of the cross-interaction

b

bb

b bbcbc

bc

bcb

bbb bb

b
is captured via

βg0
4,1

=

(
3

2
+ 2η

)
g0

4,1, (4.134)

where we have chosen the enhanced scaling, that is the upper bounds derived through
the requirement of obtaining autonomous beta functions in the large-N limit are sat-
urated. This implies that g2

4,2 has scaling dimension −3, the couplings of the pillow
interactions g2,i

4,1 have scaling dimension −2 and the coupling linked to the cross in-
teraction has a scaling in N of −3/2. Let us analyze the type of �xed points that
can be found.
The cross interaction coupling g0

4,1 may be consistently set to zero. In that case its
beta function vanishes identically. There now exist di�erent mechanisms in order to
also make the βg2,i

4,2
and βg2

4,2
vanish.

Let us focus on the case that is related to the original reason that we introduced
di�erent couplings for the di�erent pillow interactions, namely the dynamical de-
coupling of g2

4,2 which was argued to be related to the emergence of connected
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Figure 4.8: The 'pillow' invariant depicted above features an enhanced O(N ′) ×
O(N ′2) symmetry compared to the original O(N ′) × O(N ′) × O(N ′)
symmetry of the underlying model. This enhanced symmetry can be
understood from the fact that two indices always appear in pairs. As a
consequence it is possible to merge these pairs of indices to a super-index.
The resulting invariant in its diagrammatic form is shown above on the
right and represents the rank-2 tensor operatorMa1A2Ma1B2Ma2A1Ma2B2 ,
where capital indices run from 1 to (N ′)2. While rank-3 tensor models
generate Feynman diagrams that are dual to triangulations of three-
dimensional pseudo-manifolds, the Feynman diagrams of rank-2 tensor
models (or simply matrix models) are dual to two-dimensional triangu-
lations. This explains the term dimensional reduction when referring to
�xed points where all invariants feature the same enhanced symmetry
and pairs or triplets of indices can be 'collected' to form a super-index.

space-times with disconnected boundaries. Such kind of topological �uctuations
are deemed unphysical as they are associated with an in�nite burst of energy when
the space-time splits into baby-universes. Setting the multi-trace interaction

bbbcbbb bb

bbbcbbb bb
to

zero implies that its beta function takes the following preliminary form

βg2
4,2

=
4

3
(4− η)

(
g2,1

4,1g
2,2
4,1 + g2,1

4,1g
2,3
4,1 + g2,2

4,1g
2,3
4,1

)
. (4.135)

The above part of the beta function vanishes if all pillow couplings vanish, this
corresponds to the Gaussian �xed point, or if one pillow coupling is non-vanishing
while two are. If all pillow couplings are zero than also their beta functions vanish
identically. Let us analyze the case in which one of the pillow couplings is non-
zero. In that case one of the pillow beta functions, say βg2,1

4,1
will have the following

preliminary form, with g0
4,1 = g2

4,2 = g2,2
4,1 = g2,3

4,1 = 0, namely

βg2,1
4,1

= (2 + 2η)g2,1
4,1 +

2

5
(5− η)

(
g2,1

4,1

)2
. (4.136)

A non-trivial zero is found if the canonical term (2+2η) is balanced with 2
5

(5− η) g2,1
4,1.

In particular this implies that g2,1
4,1 has the following non-trivial �xed point solution
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for a quartic truncation

g2,1
4,1

∗
= −5

2
· 2 + 2η

5− η . (4.137)

We call a �xed point where g0
4,1
∗

= g2
4,2
∗

= g2,2
4,1

∗
= g2,3

4,1

∗
= 0 while g2,1

4,1

∗
are non-trivial

(or permutations thereof) a cyclic-melonic single trace �xed point. We see that it
is indeed possible to dynamically decouple the multi-trace interaction.
The second �xed point that we expect is one where only g2

4,2 is turned on. One

reason for this expectation is that the multi-trace invariant
bbbcbbb bb

bbbcbbb bb
exhibits an enhanced

O(N ′3) symmetry and there is a folk theorem that the �ow protects the symmetry.
Alternatively, it is straightforward to see that g0

4,1 = g2,1
4,1 = g2,2

4,1 = g2,3
4,1 = 0 implies

vanishing beta functions for all those couplings, while the running of g2
4,2 has the

following remaining contribution

βg2
4,2

= (3 + 2η) g2
4,2 +

2

15
(6− η)

(
g2

4,2

)2
. (4.138)

The beta function vanishes either trivially if g2
4,2 = 0, which corresponds to the

Gaussian �xed point or non-trivially if the two contributions to the running of g2
4,2

are properly balanced such that

g2
4,2
∗

= −15

2
· 3 + 2η

6− η . (4.139)

We call such a type of �xed point a multi-trace melonic �xed point.
Moreover, we expect �xed points where g2

4,2 takes non-trivial values and either one,
two or all pillow interactions are also turned on. The underlying reason for this is
the fact that the di�erent colours don't mix. That is the running of g2,i

4,1 only features
contributions from couplings that have no preferred colour or have preferred colour
i. The only scenario out of these three featuring dimensional reduction is the one
where g2

4,2 6= and one of the pillow couplings is non-vanishing. Since g2
4,2 does

not contribute directly to the running of the cyclic-single trace couplings g2,i
4,1, the

balancing mechanism applicable to generate a non-trivial �xed point for g2,i
4,1 that

worked previously for the cyclic-melonic single-trace �xed point also applies here.
The running of g2

4,2 then takes the following form

βg2
4,2

= (3 + 2η)g2
4,2 +

4

5
g2

4,2

(
g2,k

4,1

∗)
+

4

3
(4− η)

(
g2,k

4,1

∗)
, . (4.140)

This equation can then be solved for g2
4,2 in order to have βg̃2

4,2
= 0. We dub such a

�xed point a cyclic-melonic multitrace �xed point. It is always possible to make any
beta function of a pillow interaction with preferred color i vanish by having either
g0

4,1
∗

= 0 and g2,i
4,1

∗
= 0 or g0

4,1
∗

= 0 and g2,i
4,1

∗
given by Eq. (4.137) which follows

from balancing the di�erent remaining contributions after g0
4,1 = 0 to the running

of g2,i
4,1. The fact that the pillows invariants are combinatorially identical, implies
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that the beta functions of all pillow interactions have the same form and therefore
if the balancing mechanism works for one pillow interaction it works for any. As
a consequence, in the case were one pillow coupling vanishes while the �xed point
values of the two others are given non-trivially by Eq. (4.137) the running of g2

4,2

takes the following form

βg2
4,2

= (3 + 2η)g2
4,2 +

4

5
g2

4,2

(
g2,k

4,1

∗
+ g2,j

4,1

∗)
+

4

3
(4− η)

(
g2,j

4,1

∗
g2,k

4,1

∗)
, (4.141)

where i 6= j 6= k. The �xed point values of g2,j
4,1 and g

2,k
4,1 are determined via the same

balancing mechanism that already applied in Eq. 4.136, i.e.

g2,1
4,1

∗
= g2,2

4,1

∗
= −5

2
· 2 + 2η

5− η . (4.142)

Plugging the �xed point value obtained via the balancing mechanism at quartic
order given by Eq. 4.137 into Eq. 4.141 it is straightforward to �nd two possible
�xed point values for g2

4,2. Namely, they are given by solving the quadratic equation
that follows from the �xed point requirement βg2

4,2
= 0. The �xed point solutions

for g2
4,2 take a rather involved form. For η = 0, however, the �xed solutions found

are complex and are given as

g2
4,2
∗

=
1

24

(
25± i

√
655
)

(4.143)

This artifact also persists when the full anomalous dimension is taken into account
at quartic order. The picture changes, however, for the hexic truncation, where all
�xed point values are real. Interestingly, this �xed point features no dimensional
reduction, that is it is not possible to 'merge' the same pairs of indices in order to
obtain a single matrix model.
Yet another �xed point that we expect from the combinatorial structure of the
beta functions which features no dimensional reduction involving multi-trace and
single-trace melonic interactions is the so-called isocolored melonic �xed point. The
isocolored melonic �xed point characterized by g2

4,2 and all single-trace couplings
g2,i

4,1 being non-zero. The �xed point mechanism is similar to the one that also
applied for the cyclic-melonic single-trace, the cyclic-melonic multitrace and the
double cyclic-melonic multitrace �xed points: Non-trivial �xed point values for the
pillow couplings are generated via a balancing mechanism derived from Eq. (4.136)
such that the pillow couplings g2,i

4,1 are given by Eq. (4.137). This �xed point will
turn out to have complex �xed point values at quartic and at hexic order in the
truncation.
Lastly, while the running of the cross coupling g0

4,1 seems rather trivial; it is given
by

βg0
4,1

= (
3

2
+ 2η)g0

4,1 (4.144)
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it is actually possible to generate a �xed point for g0
4,1 within a quartic truncation

by demanding that η = −3/4. In that case the canonical prefactor of g0
4,1 vanishes

identically and g0
4,1 can take non-trivial �xed point values. The set of allowed �xed

point values for g2,i
4,1

∗
and g2

4,2
∗ is thereby constrained by the beta functions vanishing

and η = −3/4. This also sets a restriction on possible �xed point values that g0
4,1 can

take, even though its running is identically zero due to η = −3/4. As a consequence
of the fact that g0

4,1 has a quadratic contribution to the pillow couplings it turns out
that there will be two possible �xed points resulting from the constraint η = −3/4.

Dimensionally reduced �xed points

This section reports on the dimensionally reduced �xed points that we �nd and
expect from the previous discussion. They are not candidates for three-dimensional
quantum gravity, but are related to either branched polymers or two-dimensional
quantum gravity. As a reminder, from the structure of the quartic β functions we
expect to �nd the following �xed point candidates

• A cyclic-melonic single-trace �xed point where only g2,1
4,1 and g

3,1
6,1 as introduced

in Fig. 4.7 are non-zero (and color permutations thereof).

• A multi-trace bubble �xed point, where only g2
4,2 and g3

6,3 are non-zero.

• A cyclic-melonic multi-trace �xed point, where g2,1
4,1, g

3,1
6,1, g

3,1
6,2, g

2
4,2 and g

3
6,3 are

non-zero (and color permutations thereof).

Let us discuss these �xed points in more detail and understand the mechanisms
behind their 'generation', potentially also at hexic order.

Cyclic-Melonic Single-Trace �xed point

The fact that at the cyclic-melonic single-trace �xed point only the couplings g2,1
4,1

and g3,1
6,1 are non-trivial implies an enhanced symmetry. The values of the coupling

constants at the �xed point as well as the associated critical exponents are reported
in Tab. 4.1 for the quartic truncation and in Tab. 4.2 for the hexic truncation. At
the �xed point, one has

S∗FP =
(
g2,1

4,1

)∗
Ta1a2a3Tb1a2a3Ta1b2b3Tb1b2b3

+
(
g3,1

6,1

)∗
Ta1a2a3Tb1a2a3Tb1b2b3Tc1b2b3Tc1c2c3Ta1c2c3 , (4.145)

or in the diagrammatic form

S∗FP =
(
g2,1

4,1

)∗
b

bb

b bbcbc

bc

bcb

bbb bb

b

+
(
g3,1

6,1

)∗
b

bbbcb

b

b

bc

b

bc

bc

b

b b

b

bc

b

bc

bc

b

b

b

. (4.146)
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that is the last two indices are always contracted in pairs. Therefore, as also illus-
trated in Fig. 4.8, we may merge these two indices to form a new 'super-index'. The
resulting rewritten �xed point action is then

S∗FP =
(
g2,1

4,1

)∗
Ta1A2Tb1A2Ta1B2Tb1B2

+
(
g3,1

6,1

)∗
Ta1A2Tb1A2Tb1B2Tc1B2Tc1C2Ta1C2 (4.147)

or in the diagrammatic form

S∗FP =
(
g2,1

4,1

)∗
b

bb

b bbb

b

bb

bbb bb

b

+
(
g3,1

6,1

)∗
b

bbbcb

b

b

bc

b

bc

bc

b

b b

b

bc

b

bc

bc

b

b

b

. (4.148)

The double lines indicate that this index runs from 1 to N ′2. At quartic order in

scheme g0
4,1
∗

g2,1
4,1

∗
g2,2

4,1

∗
g2,3

4,1

∗
g2

4,2
∗

full 0 -0.38 0 0 0
pert 0 -0.43 0 0 0
η = 0 0 -1 0 0 0
scheme θ1 θ2 θ3 θ4 θ5 η
full 2.27 -0.16 -0.34 -0.84 -0.84 -0.58
pert 2 -0.14 -0.36 -0.86 -0.86 -0.57
η = 0 2 1 -1.5 -2 -2 -

Table 4.1: The cyclic-melonic single-trace �xed point features one relevant direction
in the quartic truncation.

the truncation we observe one relevant direction as the anomalous dimension η is
taken into account in in the perturbative scheme and in the full non-polynomial one.
There exists a degeneracy between two critical exponents, which is a consequence of
the existing symmetry of the system of β-functions under the exchange of g2,2

4,1 and
g2,3

4,1. At order T
4, the system of β-functions and the critical exponents can be solved

exactly as the stability matrix takes a block diagonal form. The stability matrix
re�ects the fact that the β functions of g2,2

4,1 and g
2,3
4,1 only have contributions through

their canonical scaling term (2 + 2η)g2,i
4,1 as all other contributions are quadratic in

the couplings and all couplings except g2,2
4,1 vanish at the �xed point. The fact that

the β functions are invariant under the exchange of g2,2
4,1 and g2,3

4,1 and have at most a
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scheme g2,1
4,1

∗
g3,1

6,1

∗

full -0.28 -0.15
pert -0.30 -0.18
η = 0 -0.46 -0.50
scheme θ1 θ2 θ3 θ4,5 θ6 θ7,8 θ9 θ10

full 2.19 -0.03 -0.69 -1.19 -1.68 -1.78 -2.08 -2.15
pert 2 -0.03 -0.70 -1.20 -1.69 -1.79 -2.09 -2.17
η = 0 2 0.53 -1.5 -2 -2.58 -3 -2.66 -3.25
scheme θ11,12 θ13,14 θ15,16,17 θ18 θ19 θ20,21 η
full -2.18 -2.28 -2.78 -2.94 -2.98 -3.18 -0.41
pert -2.19 -2.29 -2.79 -2.94 -2.98 -3.19 -0.40
η = 0 -3.08 -3.5 -4 -3.41 -3.94 -4.08 -

Table 4.2: The cyclic-melonic single-trace �xed point only features cyclic melonic
couplings and one associated relevant direction in the truncation to sixth
order. Given the systematic error of the truncation and the small value
θ2 = −0.03, a second positive critical exponent might exist at higher
orders in the truncation.

linear dependence in the coupling allows us to easily read o� the critical exponents

θ1 = − (2 + 2η)− 4

5
(5− η)

(
g2,1

4,1

)∗

θ2 = −
(

3

2
+ 2η

)

θ3 = −(3 + 2η)− 4

5
(5− η)(g2,1

4,1)∗

θ4,5 = −(2 + 2η). (4.149)

Multitrace bubble �xed point

The multitrace bubble �xed point is characterized by only the multitrace invariant
with the most non-connected components being non-zero. That is gn/2n,n/2, where n is
the order of the interaction is interacting at the �xed point. For a hexic truncation

this implies that the couplings associated to
bbbcbbb bb

bbbcbbb bb
and

bbbbbb bb

bbbbbb bb

bbbbbb bb

are non-trivial. This

�xed point features an enhanced O(N ′3) symmetry, which follows from the fact
that indices are always contracted as triplets. It is therefore possible to 'merge' this
indices in order to a single one. The resulting model is a vector model. A peculiarity
of the multitrace bubble �xed point is the simplicity of the involved combinatorics,
which makes it very easy to include higher-order terms in the truncation and track
it deep into theory space. At hexic order the only non-trivial beta functions, i.e.,
those that are not trivially vanishing after setting all couplings except g2

4,2 and g3
6,3
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to zero are precisely those related to these two couplings, i.e.,

βg2
4,2

= (3 + 2η)g2
4,2 + 4 · I3

2 · (g2
4,2)2 + 6 · I3

1 · g3
6,3 (4.150)

and

βg3
6,3

= (6 + 3η)g3
6,3 + 43 · I3

3 ·
(
g2

4,2

)3
+

3!

2!
· (4 · 6) · I3

2 ·
(
g3

6,3

) (
g2

4,2

)3
. (4.151)

Each term contributing to a tensor model beta function consists of a prefactor
that follows from the permutativity of couplings, a prefactor that follows from the
computation of the two-point function, a threshold function I and a product of
couplings. In the case of multi-trace couplings of the form gn2n,n, where 2n denotes
the order of the invariant, the prefactors that follow from the computation of the
two-point function are straightforward to identify. Namely, they are exactly given by
the numbers of tensors 2n, which follows from the fact that each multitrace invariant
related to couplings of the form gn2n,n consists of n products of tensor contractions
of the form Tα1α2α3Tα1α2α3 . Since derivatives commute each such pair of tensor
contractions gives an overall factor of two. Given that the invariant associated
to gn2n,n has n such pairs of tensor contractions this results in an overall factor of
2n. This knowledge allows one to systematically write down the beta functions for
higher-order invariants. Since at the multi-trace bubble �xed point all interactions
except those of the type gn2n,n are turned on, it is possible to extend the T

6 truncation
by just including multi-trace interactions of the form gn2n,n without generating terms
outside the truncation, or more precisely the terms that are generated outside the
truncation would be vanishing at this �xed point. This is a consequence of the
enhanced O(N ′3) symmetry featured by the �xed point. Including for instance g4

8,4

results in the following additional beta function

βg4
8,4

= (9 + 4η)g4
8,4 + 44 · I3

4 ·
(
g2

4,2

)4
+

3!

2!
· (6 · 42) · I3

3 ·
(
g3

6,3

) (
g2

4,2

)2

+ 62 · I3
2 ·
(
g3

6,3

)2
+

3!

2!
· (8 · 4) · I3

2 ·
(
g4

8,4

) (
g2

4,2

)
(4.152)

and having to take into account an additional contribution of g4
8,4 to the running of

g3
6,3. The �xed point values and critical exponents that we �nd for each successive
scheme are reported in Table 4.3 for the quartic truncation and Table 4.4 for the
hexic truncation. The critical exponents associated to this �xed point are in agree-
ment with the ones found in the complex model [226]. However, due to a larger
theory space a second relevant direction is picked up in the quartic truncation. The
systematic error associated to regulator and truncation dependence is expected to be
larger than the second relevant critical exponent, which in the scheme where the full
anomalous dimension is taken into account, is θ2 = 0.18. We therefore caution that
the quartic truncation is not su�cient to make statements on the number of relevant
directions associated to the multitrace bubble �xed point. As a matter of fact, the
hexic truncation features only one relevant direction. In order to test, whether this
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picture persists at higher truncations we extend our truncation by g4
8,4 as discussed

above. The additional beta function is given by Eq. (4.152). We observe that un-
der an extension of the truncation in this form, the number of relevant directions
remains stable. Indeed for η = 0 we �nd that θ1 = 3 while θ2 = −1.5. Enlarging the
truncation with a perturbative approximation of the anomalous dimension yields
θ1 = 3 and θ2 = −0.65. Finally, taking into account the full non-polynomial form of
η results in θ1 = 3.24 and θ2 = −0.64, while ηfull = −0.43.

scheme g0
4,1
∗

g2,1
4,1

∗
g2,2

4,1

∗
g2,3

4,1

∗
g2

4,2
∗

full 0 0 0 0 -1.44
pert 0 0 0 0 -1.67
η = 0 0 0 0 0 -3.75
scheme θ1 θ2 θ3 θ4 θ5 η
full 3.47 0.18 -0.32 -0.32 -0.32 -0.84
pert 3 0.17 -0.33 -0.33 -0.33 -0.83

(η = 0) 3 -1.5 -2 -2 -2 -

Table 4.3: The multitrace-bubble �xed point features two relevant directions in the
truncation to quartic order, with one of the positive critical exponents
rather close to zero, calling for an extension of the truncation to con�rm
its relevance.

sch. g0
4,1
∗

g2,i
4,1

∗
g2

4,2
∗

g0,np
6,1

∗
g0,p

6,1

∗
g1,i

6,1

∗
g2,i

6,1

∗
g3,i

6,1

∗
g3,i

6,2

∗
g1

6,2
∗

g3
6,3
∗

full 0 0 -1.05 0 0 0 0 0 0 0 -2.27
pert 0 0 -1.16 0 0 0 0 0 0 0 -2.82
η = 0 0 0 -1.73 0 0 0 0 0 0 0 -7.45
sch. θ1 θ2 θ3,4,5 θ6,7 θ8,9,10 θ11 θ12,13,14,15,16,17 θ18,19,20 θ21 η
full 3.32 -0.33 -0.83 -1.24 -1.74 -1.82 -2.24 -2.32 -3.28 -0.59
pert 3 -0.34 -0.84 -1.26 -1.76 -1.83 -2.26 -2.33 -3.30 -0.58
η = 0 3 -1.5 -2 -3 -3.5 -3.12 -4 -3.62 -5.08 -

Table 4.4: Results for the multitrace-bubble �xed point at order T 6 in the truncation.
The leading critical exponent is close to our bound θ < 3.5, yet the explicit
extension to T 8 shows the �xed point persists.

Cyclic-melonic multitrace �xed point

The last �xed point belonging to the family of dimensionally reduced �xed points
and expected from the combinatorial structure of the quartic beta functions is the
cyclic-melonic multitrace �xed point. At quartic order this �xed point is charac-
terized by one non-vanishing pillow interaction

b

bb

b bbcbc

bc

bcb

bbb bb

b
with coupling g2,i

4,1 and a non-

vanishing multitrace interaction
bbbcbbb bb

bbbcbbb bb
with coupling g2

4,2. This �xed point has also

103



been explored in the complex model, featuring two relevant directions in both, the
real and the complex model. At quartic order, the critical exponents of the real
and the complex model agree. At hexic order, however, the critical exponents re-
ported in this work di�er from those found in the complex model [226]. The reason
for this deviation, which is 15% for the most relevant critical exponent in the full
non-polynomial approximation, is that in the study of the complex model, the up-
per scaling bounds of g2,i

6,1 were not satis�ed. The fact that in this work the upper
bounds are satis�ed also explains the reported three-fold degeneracy in a subset of
the critical exponents in Table. 4.6, which was not observed in the complex case.
The degeneracy follows from the fact that if the upper bound is satis�ed for g2,i

6,1 is
has the same scaling as the hexic cyclic single-trace melonic couplings g3,i

6,1. In that
case, the couplings g2,1

6,1, g
3,2
6,1 and g3,3

6,1 have the same diagonal contribution −(4 + 3η)
to the stability matrix, which turns out to then be block-diagonal in these entries.
The three-degeneracy follows from there.
This �xed features an enhancedO(N ′)×O(N ′2) symmetry, just like the cyclic-melonic
single-trace �xed point, whereby the �xed point action can be rewritten a single ma-
trix model

S∗FP =g2,1
4,1

∗

b

bb

b bbb

b

bb

bbb bb

b

+ g2
4,2
∗ bbbbbb bb

bbbbbb bb
+ g3,1

6,1

∗

b

bbbcb

b

b

bc

b

bc

bc

b

b b

b

bc

b

bc

bc

b

b

b

+ g3
6,3
∗

bbbbbb bb

bbbbbb bb

bbbbbb bb

+ g3,1
6,2

∗
bbbbbb bb

b

bb

b bbb

b

bb

bbb bb

b

. (4.153)

Note that in principle the indices of the multi-trace invariants could be merged
even further, as the new 'super-index' and the 'green' index still appear in pairs.
This would result in a matrix-vector model since the melonic interactions cannot
be further dimensionally reduced. Consequently, one would still expect of such
a �xed point to be associated to the triangulation of a two-dimensional surface.
Interestingly, it has been observed that taking into account multi-trace invariants in
matrix models allows one to correctly derive the precise critical exponents describing
two-dimensional quantum gravity coupled to conformal matter. Intuitively, this
could follow from the fact that the multi-trace In that context, one would expect
that the cyclic-melonic multitrace invariant M of the form

M = Tα1α2α3Tα1β2β3Tβ1β2β3Tβ1α2α3Tγ1γ2γ3Tγ1γ2γ3 =

bbbbbb bb

b

bb

b bbcbc

bc

bcb

bbb bb

b

(4.154)
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might be important, as it mixes vector and matrix degrees of freedom when dimen-
sionally reduced as follows

M = (VAVA)Tr
(
M4
)

=

bbbbbb bb

b

bb

b bbb

b

bb

bbb bb

b

. (4.155)

It is evident that the above invariant mixes vector and matrix degrees of freedom,
which could tentatively be interpreted as an interaction between matter and two-
dimensional gravitational degrees of freedom on the continuum side.

scheme g0
4,1
∗

g2,1
4,1

∗
g2,2

4,1

∗
g2,3

4,1

∗
g2

4,2
∗

full 0 -0.29 0 0 -0.38
pert. 0 -0.35 0 0 -0.38
η=0 0 -1 0 0 1.25

scheme θ1 θ2 θ3 θ4,5 η
full 2.57 0.11 -0.16 -0.66 -0.67
pert. 2.20 0.10 -0.19 -0.69 -0.65
η=0 2 -1 -1.5 -2 0

Table 4.5: At quartic order the �xed point possesses two relevant directions. Com-
pared to the complex model, one �nds a new irrelevant direction (θ3)
which is associated to the�tetrahedral" interaction. There is good agree-
ment between the complex and the real model at quartic level.

sch. g2,1
4,1

∗
g

2,(2,3)
4,1

∗
g2

4,2
∗

g2,i
6,1

∗
g3,1

6,1

∗
g

3,(2,3)
6,1

∗
g3,1

6,2

∗
g

3,(2,3)
6,2

∗
g3

6,3
∗

full -0.27 0 -0.05 0 -0.13 0 -0.05 0 -0.01
pert -0.30 0 -0.04 0 -0.17 0 -0.05 0 -0.01
η = 0 -0.46 0 0 0 -0.50 0 0 0 0
sch. θ1 θ2 θ3 θ4,5 θ6 θ7,8 θ9 θ10

full 2.23 0.03 -0.66 -1.16 -1.66 -1.74 -2.04 -2.12
pert. 2.03 0.03 -0.67 -1.17 -1.67 -1.76 -2.05 -2.14
η = 0 2 0.53 -1.5 -2 -2.58 -3 -2.66 -3.25
- θ11,12 θ13,14 θ15 θ16,17,18 θ19 θ20,21 η
full -2.16 -2.24 -2.73 -2.74 -3.10 -3.12 -0.42 -
pert. -2.17 -2.26 -2.77 -2.76 -3.10 -3.14 -0.41 -
η = 0 -3.08 -3.5 -3.41 -4 -3.94 -4.08 - -

Table 4.6: Fixed-point values of the cyclic melonic couplings and critical exponents
in the truncation to sixth order for the cyclic-melonic multitrace �xed
point. The couplings not displayed are all vanishing at the �xed point.
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Candidate for 3D Quantum Gravity

From the analysis of the quartic beta functions, we expect three classes of �xed
points that feature no dimensional reduction. These �xed point candidates are

• a double cyclic-melonic single-trace �xed point where only the multi-trace
couplings g2

4,2 and g3
6,3 as well as two of the three cyclic-melonic single-trace

couplings are non-zero (and color permutations thereof).

• an isocolored melonic �xed point, where all single-trace melonic interactions
as well as the bubble interactions are interacting.

• an isocolored �xed point with tetrahedral interaction, where g2,1
4,1, g

3,1
6,1, g

3,1
6,2, g

2
4,2

and g3
6,3 are non-zero (and color permutations thereof).

We will mostly focus on the latter one of these three �xed points, the isocolored
�xed point with tetrahedral interaction.
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Isocolored �xed point with tetrahedral interaction

The name of the �xed point stems from the fact that the 'geometric' interaction
g0

4,1 is non-trivial, where 'geometric' refers to the fact that the corresponding cross-
interaction admits a dual interpretation, as depicted in Fig. 4.6, where the cross-
invariant corresponding to

C(T ) = Ta1a2a3Ta1b2b3Tb1a2b3Tb1b2a3 =

b

bb

b bbcbc

bc

bcb

bbb bb

b

(4.156)

is identi�ed with a tetrahedron. The identi�cation is based on the fact that each
tensor can be represented by the face of a triangle, while each index of a tensor corre-
sponds to an edge of that triangle. One would expect that such an interaction plays
a crucial role, when trying to unravel a continuum limit with a three-dimensional ge-
ometric interpretation. As a reminder, within a quartic truncation it was possible to
generate a non-trivial �xed point for g0

4,1 by having η = −3/4. At sixth order, how-
ever, this requirement is no longer needed as the running of g0

4,1 obtains an additional
contribution from g1

6,2. As a consequence the interpretation of Tab. 4.7 and Tab. 4.8
should be treated with the remark that the mechanism for the �xed point generation
in the quartic truncation and the one in the hexic truncation are rather distinct and
our criterion C.1 is in fact violated. The fact that the sixth order truncation is the
�rst order in the truncation where the requirement η = −3/4 is no longer needed in
order to generate a non-trivial �xed point for g0

4,1 explains the signi�cant shift in the
critical exponents and in the anomalous dimension when enlarging the truncation
from quartic to hexic order. To obtain a glance on whether the isocolored �xed point
with tetrahedral interaction has any relation to three-dimensional quantum gravity a
�rst step is to compare critical exponents on the discrete tensor model side with crit-
ical exponents derived on the continuum side. Ultimately, however, to draw stronger
conclusions it is necessary to �nd more evidence for instance by comparing the scal-
ing of geometric observables on both sides or by computing dimensional estimators
such as the spectral dimension or the Hausdor� dimension. This is beyond the scope
of this work and we will for now attempt to only compare critical exponents. On the
continuum site, critical exponents associate to a scale-invariant UV regime haven
been computed under the assumption of the Asymptotic Safety scenario. In three
dimensions, using Euclidean signature, and assuming a Einstein-Hilbert truncation,
a non-trivial �xed point with two relevant directions θ1 ≈ 2.5 and θ ≈ 0.8 has been
reported [258], while the discretized Wheeler-de-Witt equation yields a leading crit-
ical exponent of θ1 = 11/6 [259]. In order to make the comparision between the
critical exponents sharper it is necessary to discuss the associated error resulting
from truncating. The leading critical exponent in the scheme where the full anoma-
lous dimension is considered at quartic order deviates from the one at hexic order by
δ ≈ 1.6. It is therefore necessary to study larger truncations in order to make more
precise statements about the numerical values of the critical exponents. The way
to proceed by comparing critical exponents, however, is a sensible way to compare
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the discrete and the continuum side. The idea of such an approach is identical to
the one undertaken when studying the duality between matrix models, dynamical
triangulations and continuum two-dimensional quantum gravity.

scheme g0
4,1
∗

g2,1
4,1

∗
g2,2

4,1

∗
g2,3

4,1

∗
g2

4,2
∗

full ± 0.07 -0.04 -0.04 -0.04 -0.93
pert. ± 0.09 -0.05 -0.05 -0.05 -1.12
scheme θ1 θ2 θ3 θ4 θ5 η
full 2.98 -0.28 - i 0.22 -0.28 + i 0.22 -0.29 -0.29 -0.75
pert. 2.60 -0.27- i 0.21 -0.27 + i 0.21 -0.31 -0.31 -0.75

Table 4.7: The isocolored �xed point with tetrahedral interaction g0
4,1 features an

anomalous dimension of η = −0.75, as discussed in Sec. ??. It is clear
then that for η = 0 no such �xed point exists. The sign of g0 ∗

4,1 is not
determined by the �xed-point conditions, i.e., there are two �xed points.

scheme g0
4,1
∗

g2,i
4,1

∗
g2

4,2
∗

g0,np
6,1

∗
g0,p

6,1

∗

full ± 0.42 -0.50 3.43 0 0
pert. ± 0.46 -0.54 3.68 0 0
η = 0 ± 0.60 -0.71 5.09 0 0
scheme θ1,2 θ3,4 θ5,6 θ7,8 θ9,10

full 1.35 ± 1.56 i 0.13 -0.02 ± 5.10 i -0.08 ± 5.35 i -0.08± 5.35 i
pert. 1.46 ± 1.39 i 0.15 -0.11 ± 4.83 i -0.10 ± 5.42 i -0.10 ± i 5.42
η = 0 1.95 ± 0.69 i 0.38 -0.03 ± 5.96 i -0.29 ± 7.06 i -0.29 ± 7.06 i

scheme g2,i
6,1

∗
g3,i

6,1

∗
g1

6,2
∗

g3,i
6,2

∗
g3

6,3
∗

full -5.33 4.19 ± 2.65 -2.26 35.27
pert. -6.33 4.96 ± 3.18 -2.56 39.82
η = 0 -10.67 8.20 ± 7.16 -4.35 67.32
scheme θ11,12 θ13,14 θ15,16,17 θ18,19 θ20 θ21 η
full -0.88 ± 1.33i -1.40 -1.43 -2.00 -3.04 -4.80 -0.33
pert. -0.99 ± 1.34i -1.41 -1.46 -2.04 -2.95 -5.36 -0.32
η = 0 −1.74 -1.89 ± 2.72i -2.07 -3 -5.70 + 1.57i -5.70 - 1.57i 0

Table 4.8: Fixed-point values and critical exponents at sixth order in the truncation
for the isocolored �xed point with tetrahedral interaction.
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scheme g0
4,1
∗

g2,i
4,1

∗
g2,j

4,1

∗
g2,k

4,1

∗
g2

4,2
∗

full 0 -0.24 ± 0.06 i -0.24 ± 0.06 i 0 0.05 ∓ 0.42 i
pert. 0 -0.28 ± 0.07 i -0.28 ± 0.07 i 0 0.07 ∓ 0.48 i
η=0 0 1.04 ± 1.07 i 1.04 ± 1.07 i 0 -1

scheme θ1 θ2 θ3 θ4 θ5

full 2.57 0.11 -0.16 -0.66 -0.67
pert. 1.82 ± 0.11 i 0.56 ∓ 0.13 i 0.53 ± 1.80 i -0.06 ± 0.13 i -0.56 ± 0.13 i
η=0 2 2 0 ± 5.12 i -1.5 -2

Table 4.9: There exists a pair of families of �xed points at which two representatives
of g2,i

4,1 are turned on. At quartic order the �xed point possesses two rele-
vant directions, while in the scheme where η = 0 there is also one marginal
direction. When taking into account the anomalous dimension in either
the perturbative or the full scheme, all couplings taking non-trivial �xed
point values are complex. Note that it is not clear, whether having com-
plex couplings is actually problematic in a background-independent set-
ting where there is no notion of space-time as there is no metric and
hence also not a notion of signature. The action might therefore also
be allowed to be complex. Moreover, the plus-minus sign indicates that
there are two possible �xed points with complex-conjugate �xed point
values for the couplings. The two �xed points are characterized by criti-
cal exponents whose real parts agree but with a di�erent sign in front of
the complex part of the critical exponents.

Double Cyclic-Melonic Single-Trace Fixed Point

The structure of the quartic beta functions also allows for a second family of �xed
points9 at which interactions cannot be dimensionally reduced, which also persists
once the truncation is extended by including hexic interactions. This �xed point
has not been reported so far in the literature.
At quartic order the �xed point is characterized by two cyclic-melonic interactions,
g2,i

4,1 and g
2,i
4,1, and the multitrace interaction being turned on. For any given value of

i and j, with i 6= j, there exists a pair of �xed points with complex conjugate �xed
point values. When the truncation is extended by including hexic interactions the
couplings take real �xed point values.

9By �xed point family, we mean that there exists a collection of �xed points for which g2,i
4,1 =

g2,j
4,1 6= 0, ∀i 6= j.
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sch. g2,i
4,1

∗
g

2,(j,k)
4,1

∗
g2

4,2
∗

g3,1
6,1

∗
g

3,(2,3)
6,1

∗
g3,1

6,i

∗
g

3,(j,k)
6,2

∗
g3

6,3
∗

full 0 -0.13 -0.37 0 -0.01 0 -0.40 1.93
pert 0 -0.15 -0.37 0 -0.02 0 -0.05 2.37
η = 0 0 -0.45 -0.06 0 -0.43 0 -0.51 4.76
sch. θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

full 2.67 0.34 0.18 -0.31 -0.81 -1.27 -1.54 -1.66 -1.72
pert. 2.42 0.41 0.25 -0.32 -0.82 -1.23 -1.52 -1.64 -1.73(6)
η = 0 3.65 2.10 1.89 -0.87 -0.89 -1.5 -1.90 -2 -2.21
- θ10,11 θ12,13 θ14 θ15,16 θ17 θ18 θ19,20 θ21 η
full -1.22 -1.44 -1.73 -1.94 -2.01 -2.22 -2.41 ± 0.55 i -2.33 -0.59
pert. -1.24 -1.44 -1.73(7) -1.94 -1.97 -2.24 -2.41 ± 0.51 i -2.34 -0.58
η = 0 -2.61 -3 -3.10 -3.11 -3.16 -3.5 -3.69 ± 0.52 i -4 -

Table 4.10: Fixed-point values of the cyclic melonic couplings and critical exponents
in the truncation to sixth order for the cyclic-melonic multitrace �xed
point. The couplings not displayed are all vanishing at the �xed point.

4.4 Towards four-dimensional Quantum Gravity

Having explained the technicalities associated to the FRG and to the FRG for tensor
models in particular, we have set the stage to study the case that is of upmost inter-
est to us: A tensor model for four-dimensional quantum gravity. Naively, one would
think that in analogy to the duality between matrix models and two-dimensional
quantum gravity, a rank-4 tensor model would be an appropriate choice to inves-
tigate the possibility of uncovering a continuum limit that gives four-dimensional
quantum gravity. We will therefore study a rank-4 O(N ′)4 tensor model. Tensors
then transform as

Ta1a2a3a4 =
∑

bi

Oa1b1Oa2b2Oa3b3Oa4b4Tb1b2b3b4 . (4.157)

Just like in the rank-3 case invariants are built by contracting an index ai of one
tensor with the index a′i of another tensor, where i denotes the position of the index in
the tensor. The number of invariants at each interaction order is signi�cantly larger
in the rank-4 case. As a reminder at order T 4, T 6 and T 8 there are respectively

14, 132, 4154

invariants. Using the same strategy as in the rank-3 case would therefore imply that
studying a T 6 tensor model required us to derive 156 beta functions and consequently
solve 156 coupled non-polynomial equations in order to identify �xed points. We
will therefore study a truncation that assigns the same coupling to all members of a
combinatorial family, that is invariants that are symmetric under color-exchange. In
order to proceed that way, we will make use of the indicator, which was introduced
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Figure 4.9: We are studying a real rank-4 tensor model. The full truncation is de-
picted above. We include all interactions up to order T 6 and additionally
melonic T 8 interactions.

in De�nition 4.1. Using the indicator, it turns out that there are

4, 20, 188

combinatorial families at order T 4, T 6 and T 8. These numbers are in agreement
with the ones found by the authors of [250].
In the following we will consider a complete truncation up to order T 6 plus melonic
T 8 invariants. In total we therefore take into account 170 invariants belonging to 31
combinatorial families implying the need to derive 31 beta functions. Given the size
of the truncation, we will restrain from providing the diagrammatic or the Einstein
summation representation of the full truncation. We will, however, provide a glance
at the truncation by providing the kinetic term as well as the T 4 part as illustrated
in Fig. 4.9.

Derivation of Beta Functions

The general algorithm for the derivation of the beta functions for the real rank-4
tensor model is the same as the one discussed previously for the rank-3 model. There
is, however, a subtlety in the derivation of the combinatorial factors that contribute
to the prefactor of the beta functions and a di�erence in the projection procedure
onto the �ow of the individual couplings. In the rank-3 model every invariant had
a distinct coupling. Here, one same coupling is assigned to all members of the same
color-symmetric family. This makes it slightly less obvious to track the degeneracies
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of the pillow couplings due to the P−1F -expansion. As a little example in the
rank-3 model the running of the multi-trace interaction had a contribution from
a combination of pillow couplings g2,i

4,1g
2,j
4,1 with i 6= j. The prefactor was given by

4 × 4 × 2! × 1/2, where the factors of four came from the two-point function, the
factor of 1/2 was the prefactor of the �ow equation and importantly the factor of 2
followed from the fact the P−1F expansion generated 2! terms, one g2,i

4,1g
2,j
4,1 and one

g2,j
4,1g

2,i
4,1. The fact that the couplings were di�erent made it rather easy to track these

degeneracies that resulted from the P−1F expansion. In the rank-4 case, where we
assign the same coupling to each invariant of a combinatorial family these factors are
still there, as can be understood from the following example, where we are interested
in the second order of the P−1F expansion in order to determine the contribution
of the quartic pillow couplings to the quartic multitrace coupling

∂tg
2
4,2




b bb

b bb


 ∼ g2
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δTδT




b bb bb
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+ other terms. (4.158)

Note that in the second line we only kept the combination of invariants that actually
contribute to the running of the multitrace coupling.
To summarize, it is important to be aware of this subtlety, which actually also
has e�ects on the speed of the Mathematica algorithm. If distinct couplings are
assumed for every invariant, the step 4.2.2 does not have to be performed for every
combination of invariants.
Keeping in mind these additional subtleties due to the fact one couplings has been
assigned for all invariants of a color-symmetric family, the derived quartic beta
functions for the real rank-4 tensor model are the running of the pillow coupling g2,i

4,1

∂tg
2,i
4,1 = (3 + 2η) g2,i

4,1 + 48 · 4− η
12

(
g

0,(1,i)
4,1

)2

+ 96 · 4− η
12

(
g

0,(1,i)
4,1 · g0,(i,j)

4,1

)

+ 72 · 4− η
12

(
g

0,(i,j)
4,1

)2

+ 48 · 5− η
20

(
g

0,(i,j)
4,1 · g2,i

4,1

)

+ 48 · 5− η
20

(
g

0,(1,i)
4,1 · g2,i

4,1

)
+ 8 · 6− η

60

(
g2,i

4,1

)2
(4.159)
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which has a contribution from every possible combination of pairs of couplings except
(g2

4,2)2, the running of the multitrace invariant g2
4,2

∂tg
2
4,2 = (4 + 2η) g2

4,2 + 8 · 7− η
252

(
g2

4,2

)2
+ 64 · 6− η

60

(
g2

4,2 · g2,i
4,1

)
+ 96 · 5− η

20

(
g2,i

4,1

)2

+ 96 · 5− η
20

(
g2

4,2 · g0,(i,j)
4,1

)
+ 96 · 5− η

20

(
g2

4,2 · g0,(1,i)
4,1

)

+ 192 · 4− η
12

(
g

0,(1,i)
4,1 · g2,i

4,1

)
+ 192 · 4− η

12

(
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0,(i,j)
4,1 · g2,i

4,1

)

(4.160)

the running of the so-called necklace coupling g0,(1,i)
4,1

∂tg
0,(1,i)
4,1 = (2 + 2η) g

0,(1,i)
4,1 + 16 · 5− η

20

(
g

0,(1,i)
4,1

)2

+ 16 · 5− η
20

(
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0,(i,j)
4,1

)2

(4.161)

and the running of the cross coupling g0,(i,j)
4,1

∂tg
0,(i,j)
4,1 = (2 + 2η) g

0,(i,j)
4,1 + 16 · 5− η

20

(
g

0,(1,i)
4,1 · g0,(i,j)

4,1

)
. (4.162)

Of particular interest for us are those structurally allowed �xed points that feature
no dimensional reduction. As a consequence, either the pillow coupling g2,i

4,1, the
necklace coupling g1,(1,i)

4,1 or the cross coupling g1,(i,j)
4,1 have to be turned on. Let us

explore those possibilities. We will start by discussing the non-melonic sector, i.e.
the one involving the necklace and the cross-interaction. The non-melonic sector
is decoupled from the melonic one, in the sense that melonic couplings do not feed
into the running of the non-melonic ones. The following discussion on �xed point
mechanisms in the non-melonic sector will therefore be entirely independent of the
melonic sector.
A priori, one can think of four possibilities for β

g
0,(1,i)
4,1

and β
g

0,(i,j)
4,1

to vanish. Either

both g0,(1,i)
4,1 and g0,(i,j)

4,1 vanish, either they are both non-trivial or one vanishes while
the other doesn't. Let us go through each of these scenarios. The case where
both β

g
0,(1,i)
4,1

and β
g

0,(i,j)
4,1

are zero makes their running vanish identically. This is
not surprising as we expect the Gaussian �xed point to be a trivial solution of the
entire set of beta functions. Next, let us study the possibility of having a vanishing
necklace coupling, while the cross coupling is non-trivial. The running of g0,(1,i)

4,1 with
g

0,(1,i)
4,1 = 0 is given by

β
g

0,(i,j)
4,1

∼
(
g

0,(i,j)
4,1

)2

. (4.163)

It is therefore not possible to have a �xed point where the necklace coupling vanishes
while the cross coupling doesn't.
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Similarly, it is also not possible to have both, the necklace and the cross coupling
vanish. In order to understand why, let us have a closer look at the running of
g

0,(i,j)
4,1 . As can be seen from Eq. 4.162 the condition g0,(1,i)

4,1 6= 0 puts a constraint on
the �xed point solution of g0,(1,i)

4,1 , namely g0,(1,i)
4,1 has to be given as

g
0,(1,i)
4,1

∗
= −2 + 2η

c1

, (4.164)

where c1 is the prefactor associated to
(
g

0,(1,i)
4,1 · g0,(i,j)

4,1

)
in Eq. 4.162 given by c1 =

(16/20)(5− η). Under the above assumption, g0,(i,j)
4,1 only stops running if

−(2 + 2η)2

c1

+ c2
(2 + 2η)2

(c1)2
+ c3

(
g

0,(i,j)
4,1

)2

= 0 (4.165)

is satis�ed. Hereby, the constants c2 and c3 are the overall prefactors associated

to
(
g

0,(1,i)
4,1

)2

and
(
g

0,(i,j)
4,1

)2

in Eq. 4.161. Crucially, c2 = c1, which is a non-trivial
combinatorial coincidence which implies that the �rst two terms in the above equa-
tion cancel each other out, thus resulting in g0,(i,j)

4,1 = 0. This completes our analysis
of the non-melonic sector. To summarize, there exist two possibilities for potential
�xed points: One, where both, the necklace and the cross coupling vanish and one,
where the cross coupling is zero while the necklace interaction is non-trivial.

Finding a continuum limit

The goal is to �nd a �xed point that cannot be dimensionally reduced by 'merging'
speci�c groupings of indices. This would already provide a �rst hint that such a
�xed point might be of potential interest for a phase of four-dimensional quantum
gravity. A requirement that needs to be ful�lled in that case is that the �xed point
necessarily has to feature a non-trivial �xed point value for the couplings other than
the multi-trace interactions.
From studying the structure of the beta functions, we expect a �xed point where
the entire melonic sector, in particular the cyclic-melonic sector, is fully interacting.
This expectation is con�rmed by the numerics: We identify a �xed point with a
complex pair of two relevant directions, given by

θ1,2 = 2.79± 1.48i (4.166)

in the perturbative scheme for the anomalous dimension. At this �xed point all
melonic invariants are interacting. Let us point out that when taking into account
the full non-perturbative anomalous dimension we did not �nd a real extension of the
�xed point. This could be a consequence of the additional zeros of the beta functions
due to their non-polynomial character, thus leading to �xed point collisions. To fully
settle this question further extensions of the truncation are necessary. We leave this
as open work for the future given that the derivation of beta functions and the
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trunc. g2
4,2 g2

4,1 g3
6,3 g3

6,1 g2
6,2 g4

8,4 g4
8,3 g4

8,1 g4
8,2 g4

8,2,s g4
8,2,m

T 4 11.3 -1.61 - - - - - - - - -
T 6 5.36 -0.98 230.1 -1.42 -12.43 - - - - - -
T 8 3.50 -0.73 219.6 -1.68 -12.29 -300.2 272.8 -2.4 -19.0 -23.6 -6.1

Table 4.11: We �nd a �xed point characterized by two relevant directions. Shown
above are all non-zero couplings.

posterior �xed point search become technically very involved.
We will discuss the implications our result in a brief moment. First, however, we
will try to quantify the systematic error that is induced by the regulator and by
truncating the full theory space allowed by symmetries. Hereby, it is assumed that
the guiding principle introduced in C.3, whereby the inclusion of new operators
with lower canonical scaling dimension should not induce new relevant directions,
holds. This criterion is indeed satis�ed within our truncation. While extending the
truncation by including higher-order operators is therefore not expected to introduce
new relevant directions, higher-order couplings directly feed into the running of
lower order ones and thus also contribute to the stability matrix, thereby ultimately
a�ecting the critical exponents. Indeed, one may attempt to quantify the systematic
error associated to the largest irrelevant critical exponent θ3 in term of its change as
the truncation is increased. As the truncation is enlarged from fourth order to sixth
order and from sixth order to eight order, the change of θ3 is roughly |∆θ3| ≈ 0.5.
It is therefore not possible to entirely discard the possibility of a third relevant
direction, given that within our truncation θ3 = −0.28.
Keeping in mind that a third relevant direction cannot be entirely discarded, let us
discuss the implications of our results. As pointed out before, the �xed point action
consists of only melonic diagrams. In [229] it has been discussed that taking the
simple large-N ′ limit in a melonic model leads to a branched polymer phase, as also
found in dynamical triangulations. Here, we argue that one needs to go beyond this
simple limit and consider �xed points with additional relevant directions in order to
escape the branched polymer phase. For the dynamical triangulations simulations,
this could imply that more tuneable couplings have to be taken into account in order
to reach a sensible continuum limit. Let us also remark that in matrix models the
multitrace invariants actually correspond to higher-order curvature operators. Their
inclusion might therefore be crucial in order to escape the branched polymer phase.
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trunc. η θ1,2 θ3 θ4

T 4 0.86 2.996 ± i 1.227 -0.288 -0.288
T 6 -0.62 2.984 ± i 1.369 -0.752 -0.752
T 8 -0.49 2.793 ± i 1.478 -0.21 -1.01

Table 4.12: We �nd a �xed point characterized by two relevant directions. Within
the estimated systematic error it appears possible that the third critical
exponent, θ3, could become positive under extensions of the truncation.
Our notation for the couplings follows that used in [143, 1]: The �rst
lower index denotes the number of tensors in the interaction, e.g., g4

denotes all quartic interactions. The second lower index denotes the
number of connected components of an interaction. The upper index
indicates the number of �melonic" parts it includes. Additional lower
indices denote distinct characteristics of an interaction structure. All
other couplings that exist at quartic, hexic and octic order in tensors
vanish exactly at the �xed point we explore here.

Solving multi-rectangular-matrix models

The �xed point found using functional RG methods in the real rank-4 matrix model
only includes non-zero values for the single-trace melonic diagrams. This implies that
the truncated �xed point action can be rewritten in terms of a multi-non-squared-
matrix model. The kinetic term in the real rank-4 tensor model Ta1a2a3a4Ta1a2a3a4 ,
for instance, can be decomposed as follows

Ta1a2a3a4Ta1a2a3a4 =
4∑

i=1

1

4
MiaiAMiaiA, (4.167)

where the Mi are matrices. Research in random matrix theory has established
a powerful machinery to solve certain matrix models exactly. It is therefore an
intriguing question whether it is possible to also solve the multi-matrix model that
results from the �xed point action of the real rank-4 tensor model. A question that
needs to be addressed in that regard is how square-matrix model techniques can
be carried over to non-square-matrix models. The key di�culty is that one of the
crucial steps in solving matrix model relies on the fact that square matrices can be
decomposed in terms of their eigenvalues. This is no longer the case for non-square
matrices. There exists however the method of singular value decomposition.
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5 Gravitational Waves from an

Electroweak Phase Transition

In the past chapters we have devoted our attention to the internal inconsistencies
of general relativity and argued that these can be resolved by a theory of quantum
gravity, which will allows us to zoom into the fundamental nature of space-time at
shortest distances. At large scales, however, gravity is well-understood and highly
successful with a rich variety of physical implications. One of these is the existence
of gravitational waves. In the following, we are going to see how gravitational waves
can allow us to learn new aspects about the matter content of our universe.
In the recent past, the Standard Model has been successfully con�rmed as an ef-
fective theory for low-energy particle interactions at least up to the TeV scale, by
the discovery of the Higgs at the LHC in 2012 [260]. Nonetheless, the Standard
Model has some shortcomings, such as failing to provide a Dark Matter candidate,
lacking a mechanism for the generation of neutrino masses or an explanation for the
matter-antimatter asymmetry of the universe. Experimental con�rmation of the-
oretical models attempting to address some of these shortcomings is still missing.
This motivates the search for new experimental windows.
The �eld of Gravitational Wave astronomy has opened new promising ways to not
only test the theory of General Relativity but also probe particle physics models.
A cross-fertilization between gravitational-wave astronomy and particle detectors
might therefore be just what is necessary in order to learn more about the open
problems that the Standard Model fails to address.
The reason that gravitational waves might help to shine new light1 on new physics
is that many beyond the Standard Model scenarios predict a �rst order phase tran-
sition in the early universe, where the universe transitions from a metastable but
initially stable phase to an energetically more favored one by means of a process of
bubble nucleation, growth and merger [261, 262, 263, 264]. This transition leads to
the release of latent heat, which acts as a source for gravitational waves [265, 266].
If the phase transition is strong enough, future space-based gravitational wave de-
tectors such as LISA [267], expected to launch in 2030, or DECIGO might be able
to detect these gravitational waves.
Phase transitions are quite common in the Standard Model. Examples are the elec-
troweak phase transition or the QCD phase transition. However, assuming just the
Standard Model, one �nds that these phase transitions are cross-overs [268], where
the universe smoothly transitions to its ground state at T = 0 without releasing
latent heat, rather than �rst-order phase transitions. The detection of gravitational

1Actually gravitational waves do not shine light. This is only meant in a metaphorical sense.
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waves in the frequency range of LISA or DECIGO would therefore be an indication
of additional physics not described by the Standard Model. Adding new matter
content to provide an explanation for Dark Matter, for instance, can lead to �rst-
order phase transitions. Gravitational Waves from phase transitions in a dark sector
have been studied in [269, 270, 271]. Moreover, a departure from thermal equilib-
rium, which can be realized by a �rst-order phase transition, is one of the necessary
requirements in order to generate a matter-antimatter asymmetry in our universe.
Enlarging the Higgs-potential by a φ6 operator, for example, which can be motivated
from an e�ective �eld theory point of view as resulting from having integrated out
some heavy particles, already leads to a �rst-order phase transition [272, 273, 274].
In the following we will set the stage to understand the concepts behind the gen-
eration of gravitational waves from �rst-order phase transitions by taking a closer
look at phase transitions in the Standard Model and beyond. We will explain why
the Standard Model only predicts cross-overs and how certain minimal extensions
lead to �rst-order phase transitions, and consequently to the production of gravita-
tional waves. Of particular interest to us will be the electroweak phase transition,
which can be of relevance when addressing the matter-antimatter asymmetry in our
universe [275]. We will explain how a �rst-order phase transition proceeds via the
nucleation of bubbles of the symmetry-broken phase.
Having equipped the reader with the necessary background knowledge, we will con-
sider three di�erent extensions of the Standard Model Higgs potential, which are all
motivated from an e�ective �eld theory point of view where heavy degrees of freedom
of some unknown UV-theory have been integrated out. Those extensions will be the
inclusion of a φ6 operator, a Coleman-Weinberg inspired logarithmic contribution
and a non-perturbative exponential term. An extension of the Higgs-potential is
linked to a modi�cation of the triple- and quartic Standard Model Higgs couplings,
which could potentially be measured at the next LHC high-luminosity run [276].
The detection of gravitational waves provides an additional testing arm to probe
the aforementioned extensions of the Standard Model Higgs potential. Thus, an
interplay of collider experiments and gravitational wave astronomy will allow us to
learn more about exciting new physics.

5.1 Phase Transitions in the Standard Model and

Beyond

In the introduction we have learned that a �rst-order phase transition can lead to
the generation of gravitational waves, whose detection provides an indication for new
physics beyond the Standard Model. In the following, we are going to discuss one
reason why the existence of a matter-antimatter asymmetry in our universe requires
modi�cations of the Standard Model.
The Standard Model predicts a so-called cross-over, given the value of the Higgs self-
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interaction λ where the universe smoothly transitions from a metastable symmetric
ground state (〈h〉 = 0) to a global one at which the Higgs boson h acquires a
vacuum expectation value (〈h〉 = 246 GeV), thus giving mass to the Standard Model
particles. A schematic example comparing a �rst order phase transition to a cross-
over is provided in Fig. 5.1. In order to determine the order of the electroweak phase
transition in the Standard Model, numerical methods such as lattice simulations
or resummation techniques have to be employed, as it turns out that the naive
assumption of weak coupling which would allow to employ standard perturbation
theory breaks down2. Lattice simulations [268, 277, 278, 279, 280] have uncovered
a two-dimensional phase diagram in terms of the temperature T and the ratio of
the Higgs mass at zero temperature to a gauge boson mass. If the Higgs mass mH

is small with mH < 75 GeV, the electroweak phase transition is of �rst order and
a perturbative treatment of the Standard Model including thermal corrections is
valid. For larger Higgs masses, the strength of the phase transition, quanti�ed for
instance in terms of the released latent heat, decreases and ultimately goes to zero
as a critical point is reached where the electroweak phase transition in the Standard
Model is of second order. Beyond this critical value, the phase transition is a cross-
over and the system smoothly transitions from a metastable thermal ground state
to its true ground state without releasing any latent heat3. Since the Higgs mass
has been measured by the LHC to be mH ≈ 125 GeV, the renormalizable Standard
Model exhibits a cross-over phase transition. Nonetheless, there exist a number of
reasons to extend the renormalizable Standard Model. One reason is that a �rst-
order phase transition leads to a departure from thermal equilibrium, which is one
of the requirements that need to be satis�ed to address the question of why there is

2This can be understood, e.g., by studying a scalar �eld with a φ4 interaction term, whose
Hamiltonian is given by HI = g2

∫
d3x φ̂4. Applying thermal �eld theory, it turns out that the

correct expansion parameter is not g2 but rather ε = g2f(~k), where f(~k) is the phase space

density f(~k) = 1/(eβω~k − 1), with ω~k = ~k2 + m2 and β = 1/T . The phase space density

f(~k) approaches T/ω~k in the limit where ω~k � T . In that case, for k . g2T , the expansion
parameter ε becomes of order unity and in particular diverges in the case of massless particles
in the infrared where |~k| → 0. This picture is not yet complete, as massless particles also receive
a mass via thermal corrections. One distinguishes between the electric mass, a thermal mass
for the timelike components of the gauge boson and the magnetic mass, a thermal mass for
the spacelike components. While the electric mass turns out to behave like a scalar mass with
m2(T ) = m2

0 +cg2T 2, where m0 is the mass at vanishing temperature (in this case m0 = 0) and
c is a theory-dependent constant, the magnetic mass vanishes, causing the expansion parameter
ε to diverge in the infrared limit. While this is not a problem for the Standard Model photon
as it has no self-interaction terms, it is a problem for all other Standard Model gauge bosons
and the application of perturbation theory consequently breaks down.

3To get a better understanding of second order phase transitions and cross-overs one can take
the liquid-vapour phase transition of water as an illustrative example. At high pressure, the
density of water smoothly decreases with temperature rather than exhibiting a sharp jump as
the liquid-vapour phase transition takes place. At exactly the critical point, at T = 374◦C
and p = 218 atm, the correlation length of the density �uctuations diverges, leading to the
phenomenon of critical opalescence where water acquires a milky appearance as the entire
spectrum of visible light is scattered.
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Figure 5.1: Assuming a simple toy model, the above examples show why the inclu-
sion of additional polynomial terms beyond a quartic potential modi�es
the character of the phase transition. If just a quartic potential is as-
sumed the system will just continuously roll down into the new minimum.
Indeed, the possibility where the quadratic coe�cient is positive while
the quartic one is also positive only allows for a saddle-point at x = 0,
while if the quadratic term is negative a non-trivial minimum develops
while the minimum at x = 0 becomes unstable, as can be easily checked.
On the other hand including a hexic term, allows for the possibility of
two minima, a metastable (local) one and a stable (global) one.

more matter than anti-matter in our universe.

Electroweak Baryogenesis

The mechanism behind producing an asymmetry between baryons and anti-baryons
from an initially balanced state is called baryogenesis. The name originates from
the fact that the asymmetry η can be described in terms of the net baryon num-
ber of the universe as η = (nB − nB̄)/nγ, where nB and nB̄ refer to the baryon
and anti-baryon number density, respectively and nγ denotes the number density
of cosmic background radiation photons. The baryon asymmetry parameter today
is η ∼ 10−10. For a review on the observational evidence of the matter-antimatter
asymmetry in the early universe, we refer the reader to [281]. Several models intro-
ducing distinct new physics exist, but most of them satisfy the so-called Sakharov
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criteria [282], which are

• Violation of baryon number conservation.

• C and CP violation.

• Departure from thermodynamic equilibrium.

The reasons behind these three requirements are the following: Baryon number
needs to be violated because otherwise the universe cannot evolve from an initial
state of baryon-antibaryon symmetry, where η = 0, to an asymmetric state with
η > 0. In electroweak baryogenesis, baryon number is violated through sphaleron
processes. C and CP symmetry need to be broken because otherwise any process
leading to an excess of baryons has a counter-process compensating for that excess
by leading to an increase of antibaryons. Finally, thermal equilibrium needs to be
violated as otherwise any process A→ B leading to an excess of baryons allows for a
process B → A that compensates for this excess. The �rst two Sakharov conditions
are model-speci�c and can be probed by precision measurements of the given model.
The third condition, departure from thermal equilibrium, can be realized by means of
a strong �rst-order phase transition, for instance at the electroweak scale [275, 283].
As discussed previously, a �rst-order phase transition is associated with a release
of latent heat. For strong enough �rst-order phase transitions, the release of latent
heat due to the transition from a metastable thermal ground state to a stable one
leads to the production of gravitational waves that could be detectable by future
space-based laser interferometers such as LISA or DECIGO. We will come to the
production of gravitational waves after having introduced extensions of the Higgs
potential that lead to a �rst-order phase transition.

Modifying the Higgs Potential

An interest in extending the Higgs-potential in the Standard Model can arise for at
least two reasons. On the one hand, depending on the exact value of the top mass,
the Higgs potential is metastable, even though the decay time of the metastable
vacuum is much larger than the age of the universe. On the other hand several
models for baryogenesis, as explained above, require a �rst-order electroweak phase
transition, which can be triggered by small extension of the Higgs potential. We
will follow [276] where new physics is parametrized by three di�erent extensions of
the Higgs potential de�ned at some cut-o� scale Λ. These extensions are

Vk=Λ =
µ2

2
H2 +

λ4

4
H4 + ∆V, (5.1)

with ∆V describing three di�erent extensions of the Higgs potential where

∆Vλ6 =
λ6

Λ2
H6, (5.2)
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can be motivated as being the leading contribution of new physics in an e�ective-�eld
theory expansion,

∆Vλln,2
= −λln,2

φ2Λ2

100
ln

(
φ2

2Λ2

)
, (5.3)

has the form of a Coleman-Weinberg e�ective potential, which follows from inte-
grating out heavy fermions or scalars and

∆Vλexp,4 = λexp,4φ
4 exp

(−2Λ2

φ2

)
, (5.4)

which is inspired from non-perturbative e�ects. As we introduce new physics by
modifying the Standard Model Higgs potential we are still required to recover IR
observables like the Higgs mass mH ≈ 125GeV or the electroweak vacuum expecta-
tion value (vev) v = 246GeV. If no new physics is assumed the quartic coupling λ4

is �xed exactly by demanding that the correct Higgs mass mH and the electroweak
vev v are recovered in the IR. Indeed, an easy check, where we assume the broken
phase of the renormalizable Standard Model Higgs potential and ignore Goldstone
modes such that

V =
µ2

2
(v +H)2 +

λ4

4
(v +H)4 , (5.5)

allows to derive the minimum v of the broken Higgs potential which is given by

v =

√
−µ2

λ4

= 246GeV. (5.6)

as well as the Higgs mass

mH =
√

2λ4v ≈ 125GeV. (5.7)

The Higgs mass and the vev have been measured at the LHC with their experimental
values shown above and thus �x the quartic coupling λ4 and the mass parameter µ.
Expanding Eq. (5.5) in powers of H and trading µ and λ4 with the physical Higgs
mass mH and the vev v, it is also possible to obtain the Standard Model predictions
for the physical triple and quartic Higgs couplings, which are given as

λH3,0 =
3m2

H

v
(5.8)

and

λH4,0 =
3m2

H

v2
(5.9)

If, however, the Higgs potential has corrections as the ones introduced before, in
order to modify the potential such that it accounts for a �rst order phase transition,
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the quartic coupling is no longer �xed. Rather, the additionally introduced couplings
that now also enter the Higgs mass and the electroweak vev and λ4 have to be
adjusted such that the correct IR physics is recovered at T = 0, i.e. such that
observables still keep their corresponding experimental values. As an example, one
may consider the e�ect of an H6 operator. The Higgs mass, which has been already
measured as well as the triple and the quartic Higgs couplings are now given as

mH =
√

2λv

(
1 + 12

λ6v
2

λ4Λ2

)
≈ 125GeV, (5.10)

λH3 =
3m2

H

v

(
1 +

16λ6v
4

m2
HΛ2

)
, (5.11)

λH4 =
3m2

H

v

(
1 +

96λ6v
4

m2
HΛ2

)
, (5.12)

where the λH3 and λH4 couplings will potentially be measured at the next high lu-
minosity run at the LHC via Higgs pair production through gluon fusion. See [3]
for a pedagogical review. Comparing the new form of the Higgs mass to the one
derived from the renormalizable Standard Model in Eq. (5.7) it becomes apparent
that the bare coupling λ4 is no longer �xed by the experimental value of the Higgs
mass. Rather, the Higgs mass is now a function of the bare quartic coupling λ4,
the bare hexic coupling λ6 and the cut-o� scale Λ at which new physics is assumed.
The exponential and logarithmic potentials will have similar e�ects in the sense that
their couplings also enter the de�nition of the di�erent physical observables.
The strength of the phase transition at the critical temperature Tc can be quanti-
�ed by φc/Tc, where φc ≡ 〈φ〉c is the expectation value of the Higgs at the critical
temperature Tc. At the critical temperature the e�ective potential V (φ) develops
two degenerate minima at φ = 0 and φ 6= 0. Below the critical temperature, the
non-trivial minimum becomes a global one and in the limit T → 0, the �eld value
at the minimum approaches the measured vev v = 246GeV. The �eld expectation
value at the critical temperature, φc, is an order parameter: If φc 6= 0, the phase
transition is a �rst order one4. In order for to e�ciently generate an asymmetry be-
tween baryons and anti-baryons, the phase transition has to be a strong �rst-order
phase transition, characterized by φc/Tc & 1, since otherwise the baryon asymmetry
is not explained [283].
In order to make the physical implications derived from a modi�cation of the Higgs
potential as precise as possible, a general set-up that has been discussed and in-
troduced in [284] in order to discuss stability properties of the Higgs potential, is
employed with the di�erence that the set-up includes the full modi�ed Higgs poten-
tial with quantum and thermal corrections, the top-Yukawa-sector and its coupling
4As a reminder for the reader, a �rst-order phase transition is characterized by the fact that
at some critical temperature Tc the potential features two degenerate minima in contrast to
a cross-over or a higher-order phase transition, which only feature one minimum φc = 0 that
is continuously evolving with temperature. Hence, the fact that φc 6= 0 is characteristic of a
�rst-order phase transition.
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yt, a �ducial coupling gF that mimics the SU(2) and the U(1) sectors as well as the
SU(3) gauge coupling g3. The IR values of the top-Yukawa-coupling yt, µ2 and λ
will be �xed by the observational values of the top mass mt, the Higgs mass mH

and the electroweak vev v

mt = 173GeV mH = 125GeV and v = 246GeV, (5.13)

for any given pair of either λ6, λln,2 or λexp,4 and Λ. Moreover, the SU(3) gauge
coupling is �xed by the requirement that

g( 1GeV ) = 1.06, (5.14)

while its running will be the standard QCD running which allows for Asymptotic
Freedom. The �ducial couplings gF = {g, g′} describing the electroweak sector can
be assumed to be approximately constant with respect to the RG scale and hence
also the temperature T .
The running of the full Higgs potential and the top-Yukawa coupling have been
derived with the FRG at �nite temperature. The FRG is well suited in order to
study non-perturbative phenomena, while allowing to follow the separate depen-
dence of the potentials on the three di�erent relevant energy scales, the RG scale k,
the temperature T and the value of the �eld φ. Here, the temperature T is an ex-
ternal energy scale of the system while φ can be regarded as an internal energy scale5.

The running of the couplings and the full Higgs potential represent a coupled set
of partial di�erential equations that are solved numerically with a grid code, which
transforms them into a large system of ordinary di�erential equations. The numer-
ical background of the gridcode has been introduced in [285]. Besides specifying a
truncation, that is described by the set-up that we have introduced above, the FRG
requires a regulator. For technical reasons it is bene�cial to introduce a regulator
that only regularizes the spatial momenta leaving the temperature una�ected, which
is compacti�ed anyways. Such a regulator has also been discussed in the context of
the quark-meson model [286]. A regulator allowing for a covariant treatment of the
temperature and the spatial directions has been considered in [287]. The threshold
functions derived from the FRG in that case are rather cumbersome.

5.2 Dynamics of Phase Transitions

The type of extensions introduced feature a �rst-order phase transition, which, if
strong enough, can source Gravitational Waves that could be detectable by future
5The existence of an external energy scale T and an internal energy scale φ can be understood as
follows: The temperature is related to the average translational kinetic energy of the system
of interacting particles. As long as T > Tc, the particles are in the symmetric phase. When
T < Tc, the entire system of interacting particles transitions to a new equilibrium state, which
is characterized by the value of the �eld φ in the broken phase. At this point there will be two
distinct energy scales φ and T .
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Symmetric Phase
〈φ〉 = 0

Higgs Phase
〈φ〉 = φb

Symmetric Phase
〈φ〉 = 0

〈φ〉 = φb

Higgs Phase

Higgs Phase
〈φ〉 = φb

Figure 5.2: Thermal �uctuation lead to the nucleation of bubbles, where the Higgs
is in a stable ground state. These bubbles expand into the regions where
the Higgs persists in its metastable ground state. At early times, the
bubbles do not overlap. Later, however, they merge until the entire �uid
of Standard Model particles is in the stable ground state.

space-based GW inteferometers such as LISA or DECIGO. In order to properly
understand how gravitational waves are sourced one has to �rst understand the
dynamics of a �rst-order phase transition. A �rst-order phase transition can be
described via the nucleation of bubbles of the true ground state φ = φb due to
quantum or thermal �uctuations. If the temperature of the universe drops below a
critical temperature, these bubbles begin to expand and interact with one another
and a plasma of particles until the entire universe is covered by bubbles, the phase
transition is completed and the universe has transitioned to its true equilibrium
state. See Fig. 5.2 for a sketch of the process. Describing the exact dynamics of the
phase transition and the resulting stochastic gravitational wave spectrum is very
involved. It requires solving the equations of motion of the combined �eld-plasma
system using lattice simulations. A review on the details of the nucleation of bubbles
and their dynamics is provided in the appendix. While describing the entire process
from the onset of the phase transition, when bubbles start to nucleate, to the �nal
stages when a stochastic gravitational wave background is emitted is challenging,
it is, however, possible to describe the stochastic background of gravitational waves
resulting from the phase transition in terms of a few key quantities: These key
quantities are

• the speed vw at which the phase boundary is expanding,

• the available energy budget of the phase transition, which we will quantify by
a parameter α,

• the mean bubble separation R which can be linked to the inverse phase tran-
sition duration β,
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• a set of characteristic temperatures describing the evolution of the phase tran-
sition. Those temperatures are the critical temperature Tc at which the two
minima of the potential become degenerate, the nucleation temperature Tn,
which describes the onset of bubble nucleation and the percolation tempera-
ture Tp which characterizes the �nal stages of the phase transition. Close to
the percolation temperature the nucleation rate grows as the exponential of
an exponential.

We will introduce these key quantities as we proceed in describing the general pic-
ture, that is the following: Bubbles of the broken phase at time t nucleate with a
certain probability density Γ(t) that depends on the shape of the potential V (t) at
time t. This probability is commonly quanti�ed as

Γ(t) = A(t)e−S(t), (5.15)

where A(t) is a time-dependent prefactor and S(t) is the action. For later purposes it
is bene�cial to describe the history of the universe in terms of its thermal evolution.
The temporal expansion history of the universe can be expressed in terms of its
thermal history via

dT

dt
= −H(T )T, (5.16)

which depends on the �eld content of the universe through the Hubble parameter
H, that is related to the energy density of the universe by the Friedmann equation

H(T ) =

√
ρrad + ρvac

3MPl

, (5.17)

where MPl denotes the reduced Planck mass with MPl =
√

1/8πG = 2.435 ×
1018 GeV. The energy density of radiation is given as

ρrad = ge�
π2

30
T 4, (5.18)

where the relativistic degrees of freedom are quanti�ed by ge�, which follows from

ge� =
∑

i=boson

gi

(
Ti
T

)4

+
7

8

∑

i=fermion

gi

(
Ti
T

)4

. (5.19)

Here, gi and Ti are the degrees of freedom and the temperature of the particle i,
respectively. In the Standard Model, the number of e�ective relativistic degrees of
freedom is ge� = 106.75 before the electroweak phase transition has taken place.
Hence, in the following we will be treating ge� as constant. The vacuum energy
density ρvac is de�ned as

ρvac = ∆Ve� = − [Ve�(φ = 〈φ〉T , T )− Ve�(φ = 0, T )] , (5.20)
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where 〈φ〉T denotes the �eld value at the true equilibrium state. Eq. 5.16 allows
to express quantities in terms of their temperature dependence. In particular, the
probability to nucleate a bubble at temperature T can be shown to be given as
[288, 289]

Γ(T ) = T 4

(
S3(T )

2πT

)3/2

exp (−S3(T )/T ), (5.21)

where S3(T ) is the three-dimensional euclidean action. The three-dimensional eu-
clidean action is minimized by spherically-symmetric �eld con�gurations of φ, which
entails that S3(T ) is given as

S3(T ) = 4π

∫ ∞

0

dr r2

(
1

2

(
dφ
dr

)
+ Ve�(φ, T )

)
, (5.22)

where r =
√
x2 + y2 + z2 denotes the radial coordinate. The spherical symmetry

of the �eld con�gurations of φ is at the origin modeling the phase transition by the
nucleation of bubbles of the symmetry-broken phase, where φ 6= 0. The process of
bubble nucleation, growth and merger until the phase transition is completed, will
not be instantaneous but rather the universe will cool down from the temperature
Tc, where the potential develops two degenerate minima, to some temperature T ,
where the universe has fully transitioned to its true equilibrium state. The entire
history of the phase transition can be described in terms of some key temperatures
that we will introduce now. At the critical temperature Tc the potential develops
two degenerate minima, that is

Ve�(φ = 0, Tc) = Ve�(φ = 〈φ〉Tc , Tc), (5.23)

where 〈φ〉Tc is the expectation value of the �eld in the broken phase at the critical
temperature. First bubbles of the true equilibrium phase start to nucleate at a
temperature Tn. In order to determine the nucleation temperature Tn, the decay
rate Γ(T ) of the false vacuum is compared to the Hubble rate H(T ), which describes
the expansion of the universe. Typically, the nucleation temperature is de�ned as
the temperature at which one bubble N is nucleated per Hubble horizon on average.
This implies the following relation

N(Tn) =

∫ Tc

Tn

dT
T

Γ(T )

H(T )4
= 1. (5.24)

For fast phase transitions, as discussed in the appendix in order to equip the reader
with more detailed knowledge, the integrand dominates at T ≈ Tn. In that case

N(Tn) =
Γ(Tn)

H(Tn)4
≈ 1. (5.25)

In the following we will be using the former de�nition of the nucleation temperature
Tn. While the nucleation temperature denotes the onset of the phase transition, the
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end is commonly marked by another key temperature, the percolation temperature
Tp at which roughly 30% of the comoving volume have been converted to the true
equilibrium state [290]. The decay rate Γ(t) increases as the exponential of an
exponential, as can be seen for instance by considering Eq. 5.22 and hence Tp can
also be considered as marking the end of the phase transition. The average fractional
volume in the metastable phase, where overlaps between bubbles are taken into
account, is given by

P (t) = e−I(t) (5.26)

with

I(t) =
4π

3

∫ t

tc

dt′ Γ(t′)
a(t′)3

a(t)3
r(t′, t)3, (5.27)

where P (t) and I(t) are expressed as functions of time. I(t) denotes the probability
of �nding a bubble of size

V (t, t′) =
4π

3

a(t)3

a(t)3
r(t′, t), (5.28)

nucleated at time t′(T ′) with a probability Γ(t′), at time t(T ). Hereby, r(t, t′) denotes
the comoving radius of the bubble given as

r(t, t′) =

∫ t

t′
dt̃
vw(t̃) a(t)

a(t̃)
, (5.29)

where vw denotes the wall speed of the expanding bubble. In principle, vw follows
from the dynamics of the �eld-�uid system. Determining vw is, however, rather
cumbersome and typically the wall speed is provided as an input parameter of the
model when discussing the production of gravitational waves. A larger value of vw
increases the chances of detecting a stochastic background of gravitational waves
although the e�ciency with which baryon asymmetry is generated decreases [291].
For a more detailed description on vw we advise the reader to have a look at the
appendix. In the limit t − tc → 0, I(t) approaches zero as there will be no contri-
bution from the decay rate Γ(t), such that P (t) = 1, i.e. the probability to �nd the
universe in the false vacuum is one. Conversely, in the limit t → ∞, P (t) goes to
zero, which implies that the universe has fully transitioned to its true equilibrium
state. Note that the exponential in Eq. 5.26 indicates that overlaps between bubbles
are taken into account. In the case, where no overlaps are considered, the fractional
volume in the metastable phase admits the intuitive form

P (t) = 1− I(t), (5.30)

where we remind the reader that I(t) denotes the probability to �nd a bubble of
size V (t, t′) at time t which has been nucleated at time t′ with probability Γ(t′). To
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deduce the percolation temperature indicating the onset of bubble percolation when
30% of the universe are covered by bubbles of the true equilibrium state [290] one
needs to express P (t) and therefore I(t) in terms of its temperature dependence.
The temperature dependence of I(t) is given via

I(T ) =
4π

3

∫ T

Tc

dT ′
Γ(T ′)

H(T ′)T ′4

(∫ T ′

T

dT ′′
vw(T ′′)

H(T ′′)

)3

. (5.31)

The percolation of bubbles begins when I(Tp) = 0.34 such that the probability P (Tp)
of �nding a point in the false vacuum is P (Tp) ≈ 0.7. To summarize our discussion
so far, we have introduced three characteristic temperature that describe the phase
transition. Those are

• the critical temperature Tc, where two minima of the potential become degen-
erate,

• the nucleation temperature Tn at which one bubble is nucleated per Hubble
horizon on average,

• and the percolation temperature Tp when approximately 30% of the universe
has transitioned to the stable phase.

We will further introduce a fourth characteristic temperature later on, when dis-
cussing very slow phase transitions.

Mean bubble separation

Instead of directly considering the decay rate, an alternative way to keep track of
the phase transition is to analyze the evolution of the number density of bubbles
that can be quanti�ed via [292, 293]

nbubbles(t) =

∫
dt′

a(t′)3

a(t)3
Γ(t′)P (t′), (5.32)

where we are multiplying the nucleation rate Γ with the fractional volume P because
bubbles can only nucleate in the metastable phase. At late times, it can be shown
that the number density can be expressed as

nbubbles(t) ≡
1

R3
∗
, (5.33)

where we have introduced the mean bubble separation R∗ that describes the distance
between the centers of two nucleated bubbles. The mean bubble separation will be
a relevant length scale when discussing the generation of gravitational waves.
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Energy budget of the phase transition

Moreover, the distribution of the energy budget is also of particular interest in
quantifying the gravitational wave spectra. The energy released during the phase
transition is typically quanti�ed in terms of a quantity that is denoted by α. Roughly,
α denotes the strength of the phase transition. Providing an expression for α is still
open research [294]. Most studies employ the so-called bag model where the entire
�eld-�uid system is separated in two subsystems [295]: One subsystem is the interior
of a bubble and the other one corresponds to the exterior. The �uid is assumed to
be perfect and relativistic. The bag constant ε denotes the change in energy and
pressure across the boundary of the two systems and enters the de�nition of α as
follows

α =
ε

a+T 4
. (5.34)

where a+ is given as a+ = π2ge�/30. The challenge consists in establishing how a
given particle-physics model can be mapped to the bag model. The currently most
commonly applied map relates the bag constant ε to the change of the trace of the
energy-momentum tensor θ = (e+ 3p)/4, where the energy density e is given by the
(0, 0)−component of the stress-energy tensor, while the pressure p is captured by
the spatial components of the stress-energy tensor p = Tii, with i = 1, 2, 3 and no
summation implied. Following this de�nition of the bag constant, α is speci�ed as

α =
3

4

θ+ − θ−
a+T 4

∣∣∣∣
T=Tp

, (5.35)

where θ+ and θ− denote the trace of the energy-momentum tensor outside and inside
the bubble, respectively. The energy density and the pressure can be derived from
the e�ective potential as

e+/− = Ve� − T
∂Ve�
∂T

(5.36)

and

p+/− = −Ve�. (5.37)

This allows us to express α in terms of the e�ective potential

α =
1

ρrad

(
ρvac −

T

4

∂ρvac
∂T

)∣∣∣∣
T=Tp

=
30

π2ge�T 4

(
∆Ve� −

T

4

∂∆Ve�
∂T

)∣∣∣∣
T=Tp

,

(5.38)

where the radiation energy density ρrad and the vacuum energy density ρvac are
given by Eq. 5.18 and Eq. 5.20, respectively. The physical interpretation of α is
that it measures the latent heat released during the phase transition normalized by

130



the radiation energy and is therefore of direct importance for the gravitational wave
spectrum. It is possible to identify two regimes: For fast phase transitions with
weak supercooling, i.e., Tp . Tc, the vacuum energy density ρvac is negligible. For
slow phase transitions which are associated to signi�cant supercooling, i.e. the per-
colation temperature is signi�cantly smaller than the critical temperature, Tp � Tc,
the vacuum energy density becomes dominant6.
To recap, so far we have introduced a set of important temperatures that describe
the thermal evolution of the phase transition. Hereby, the nucleation temperature
Tn was de�ned as the temperature at which one bubble of the Higgs phase is nu-
cleated per Hubble horizon. The nucleation temperature marks the onset of the
phase transition. We also introduced the percolation temperature which sets the
end of the phase transition. To discuss the spectrum of gravitational waves later
on, we introduced a parameter α that quanti�es the available energy budget of the
phase transition while taking into account the interaction between the bubbles and
the plasma of Standard Model particles by means of an approximation known as
the bag model. So far, however, we have remained agnostic about other important
physical quantities such as the mean number density of nucleated bubbles or the du-
ration of the phase transition. We expect these quantities to be of direct relevance
for the stochastic gravitational wave spectrum.
Let us therefore study the time scale of the phase transition a little bit closer. To
do so, we will distinguish between phase transitions with mild supercooling, where
the characteristic temperatures of the phase transition are very similar and phase
transitions with strong supercooling, where there is a clear hierarchy between the
critical temperature, the nucleation temperature and the percolation temperature.
The exact distinction will become more apparent as we discuss the two possibilities
in more detail. We will show that the (inverse) duration of the phase transition and
the mean number density of bubbles at percolation time are actually related and
can therefore be described by a single parameter β as long as the phase transition
does not feature very strong supercooling.

First-order phase transition without strong supercooling

On an even more fundamental level the duration of the phase transition as well as
the mean number density of bubbles follow from the nucleation rate Γ(t). For fast
enough phase transitions, the nucleation rate Γ can be approximated as

Γ ≈ Γ0(t0)eβ(t−t0), (5.40)

6An alternative way to express the energy budget of the phase transition is given by

α =
3

4

e+ − e−
a+T 4

, (5.39)

where the bag model constant is related to the di�erence in energy between the broken and the
symmetric phase.

131



where t0 is a reference time typically equated with the percolation time tp. The
transition rate parameter β that has been introduced above is related to the inverse
duration of the phase transition and de�ned as

β = − d
dt
S3(T (t))

T (t)

∣∣∣∣
t=t0

. (5.41)

and evaluated at the reference time t0. Eq. 5.16 permits to express the inverse
duration of the phase transition in terms of its temperature dependence

β̃ :=
β

H(T )
= T

d(S3/T )

dT

∣∣∣∣
T=T0

. (5.42)

To understand how the duration of the phase transition and the mean number
density are related let us recall that in Eq. 5.32 we expressed the mean number
density nbubbles in terms of the probability P (Γ(t), t) of �nding a point in the false
vacuum, see Eq. 5.26, and the decay rate Γ(t). In particular, the probability of
�nding a point in the false vacuum is related to the decay rate. Assuming that
the decay rate takes the approximated form of Eq.5.40, it can be shown that the
probability of �nding a point in the false vacuum for a fast phase transition is

P (t) = exp (−eβ(t−t0)) (5.43)

such that the number density nbubbles in Eq. 5.32 is

nB(t) =
β3

8πv3
w

(1− P (t)) , (5.44)

where vw denotes the wall-speed of the bubble. For t & tp, the phase transition
completes very fast, see Eq. 5.43, such that P (t & tp) ≈ 0. Thus, the mean bubble
number density is simply

nB(t) =
β3

8πv3
w

. (5.45)

It is standard in the gravitational wave literature to interchange the mean number
density by the mean bubble separation which are related by Eq. 5.33. Thus, the
mean bubble separation is given by

R∗ = (8π)1/3 vwβ
−1
∣∣∣
T=Tp

(5.46)

and evaluated at the percolation temperature.

First-order phase transition with strong supercooling

In the case that the universe undergoes through a su�ciently long enough period
of supercooling until the phase transition completes, the linear approximation of
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the nucleation rate Γ given in Eq. 5.40 breaks down. In particular, the weight of
the nucleation rate, S3(T )/T , no longer decreases monotonically with decreasing
temperature but actually features a minimum at a minimization temperature Tm.
Since the parameter β is directly related to the change of S3(T )/T as a function
of the temperature, see Eq. 5.42, β vanishes at the minimization temperature and
can even become negative for temperatures below the minimization temperature.
Thus, the linear approximation of the nucleation rate, Eq. 5.40, is no longer valid
[296, 297, 298]. For a more appropriate approximation it is necessary to also consider
the quadratic term in the expansion of the action S(T ) = S3(T )/T such that the
nucleation rate can be approximated as

Γ ∝ exp (−S3/T ) = exp

(
1

2
β2
V (t− tm)2 + ...

)
, (5.47)

where the reference time tm is associated to the minimization temperature Tm. In
the above expansion, we used that the fact close to the reference time tm, β → 0.
Hence, the timescale of the phase transition is now determined by βV

βV ≡
√
− d2

dt2

(
S3(T )

T

)∣∣∣∣∣∣
t=tm

= H(T )T

√
d2

dT 2

(
S3(T )

T

)∣∣∣∣∣∣
T=Tm

(5.48)

In the following, we will introduce a common parameter β̃ that refers to β/H in
the scenario with mild supercooling and to βV /H in the case of strong supercooling.
The initial number density when the probability to �nd a point in the false vacuum
is one is given by [296]

nB(t) = nmax

1 + erf
[
βV (t− tm)/

√
2
]

2
exp

(
−3H(t− tm) +

(
3√
2

H

βV

)2
)

(5.49)

in the case of strong supercooling. Hereby, nmax is nmax =
√

2πΓtm and erf(x) de-
notes the error function. Crucially, the derivation of the above equation assumes a
constant Hubble parameter, which is valid assumption in the case of strong super-
cooling, where the vacuum energy ρvac is approximately temperature-independent
and dominates over the radiation energy ρrad, which is negligible. Of particular in-
terest for the estimation of the gravitational wave spectra is the number density at
the end of the phase transition which is evaluated at t− tm ∼

√
2β−1

V [299]. In that
case

nmax =

√
2πΓ(Tm)

βV
, (5.50)

where Γ(Tm) is the nucleation rate at the minimization temperature. The above
number density entails the following mean bubble separation in the strong super-
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cooling regime

R∗ ≡ (nmax)
−1/3 =

[√
2πΓ(Tm)

βV

]−1/3

. (5.51)

5.2.1 Gravitational Waves from a Phase Transition

The �eld of gravitational waves from phase transitions is still evolving and there are
many challenges and open questions to be tackled. In the following we will attempt
to provide a short summary of the state-of-the art, highlighting open questions where
they occur.
A �rst-order phase transition is characterized by the release of latent heat that
contributes to the energy-momentum tensor of the �eld-�uid system. A strong
enough phase transition can therefore act as a source for the production of detectable
gravitational waves. A crucial aspect that is relevant in this discussion, is the redshift
that the peak-frequency of the gravitational waves experiences due to the cosmic
expansion of the universe. Hence, in order to relate the gravitational wave spectrum
with a peak-frequency today fpeak to the one at the time of emission with a peak-
frequency f ∗peak the expansion of the universe has to be taken into account. Assuming
that the universe has entered the era of radiation-domination right after the phase
transition and has henceforth expanded adiabatically, the two peak frequencies are
related as

fpeak =
h∗
H∗

f ∗peaj = 1.65× 10−5 Hz
( g∗

100

)1/6
(

Treh
100GeV

)
f ∗peak
H∗

, (5.52)

where we have introduced the temperature at reheating Treh, H∗ denotes the Hubble
rate at the time of production and h∗ = (a∗/a0)H∗ is the Hubble rate redshifted until
the present time by the scale factors a∗ at the time of emission and a0 today. As a
reminder g∗ refers to the relativistic degrees of freedom. The reheating temperature
follows from energy conservation a3

rehρrad(Treh) = a3
∗ (ρrad(Tp) + ∆V ), such that [300]

Treh ' Tp (1 + α(Tp))
1/4 . (5.53)

Accessing the production of gravitational waves during a �rst-order phase transition
is rather involved and requires a numerical approach. Simulations of thermal phase
transitions have established the following picture: Gravitational waves are sourced
in three di�erent stages. At �rst the bubbles of the broken phase collide and merge
with each other, giving a contribution ĥ2Ωcoll to the total power spectrum. This
stage, however, is of short duration and the contribution of bubble collisions to the
total gravitational wave spectrum turns out to be subdominant for most realistic
scenarios 7. The collision of bubbles is followed by the generation of sound waves,
7A scenario characterized by the dominant contribution to the total power spectrum coming from
bubble collisions is referred to as runaway scenario. In order to realize such a scenario the phase
transition has to release a huge amount of energy which can be quanti�ed in terms of α being
of the order of 1012 [301]. Most values of α in the literature, however, tend to be typically of
up to O(1).

134



which turns out to be the most powerful source of gravitational waves as the phase
transition takes place. One can think of the expansion of bubbles as an explosion
where the resulting compression wave expands in the relativistic Standard Model
�uid as a sound wave once the bubbles have completely merged. The overlap of
di�erent sound waves then acts as a source of gravitational waves, characterized
by a power spectrum ĥ2Ωsw. Finally, the last source of gravitational waves comes
from a turbulent regime, sourced by the non-linear behavior of the �ow as it decays,
creating vorticity and turbulence. The resulting power spectrum is given by ĥ2Ωturb

Hence, the total power spectrum in a linearized approximation is just the sum of
the power spectra generated during each of the stages8, i.e.,

ĥ2ΩGW(f) = ĥ2Ωcoll(f) + ĥ2Ωsw(f) + ĥ2Ωturb(f). (5.54)

The frequency dependence of the power spectra is determined from numerical sim-
ulations. Those simulations hint towards the fact that it is possible to quantify
ĥ2ΩGW in terms of a few key parameters related to the released energy during the
phase transition and the time-scale of the phase transition. From our previous dis-
cussions, we know that α provides a measure of the latent heat released during the
phase transition, while the mean bubble separation R and the Hubble constant H
set the timescale of the phase transition. It is therefore not unexpected that H∗R
sets the peak frequency of the gravitational wave signal, as we will see in a moment,
while the energy content of the phase transition, as measured by α and H∗R, will
set the amplitude of the signal.
In line with [302, 303, 304], the gravitational wave power spectra, which have been
derived in the so-called envelope approximation, where colliding bubble walls imme-
diately loose their energy [305, 306], can be �tted to admit the following frequency
dependence

ĥ2Ωcoll(f) = ĥ2Ωpeak
coll

3.8(f/f collpeak)
2.8

1 + 2.8(f/f collpeak)
3.8
, (5.55a)

ĥ2Ωsw(f) = ĥ2Ωpeak
sw

(
f

f swpeak

)3

4

7
+

3

7

(
f

f swpeak

)2


− 7

2

, (5.55b)

ĥ2Ωturb(f) =
ĥ2Ωpeak

turb

(1 + 8πf/h∗)

(
f

f turbpeak

)3 [
1 +

(
f

f turbpeak

)]− 11
3

, (5.55c)

8It is still an open research question whether the sound wave regime and the turbulent regime
can actually be considered separately.
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where the peak frequencies read

f collpeak ' 1.65 · 10−5 Hz
( g∗

100

) 1
6

(
Treh

100GeV

)(
(8π)

1
3

H∗R

)(
0.62vw

1.8− 0.1vw + v2
w

)
,

(5.56a)

f swpeak ' 1.9 · 10−5 Hz
( g∗

100

) 1
6

(
Treh

100GeV

)(
(8π)

1
3

H∗R

)
, (5.56b)

f turbpeak ' 2.7 · 10−5 Hz
( g∗

100

) 1
6

(
Treh

100GeV

)(
(8π)

1
3

H∗R

)
. (5.56c)

and are given in terms of the mean bubble separation R at percolation temperature,
the bubble wall speed vw, the reheating temperature Treh and the Hubble rate at
percolation temperatureH∗. In the following computations of the gravitational wave
spectra we will set the wall speed to one, i.e., vw = 1 unless otherwise speci�ed.
Moreover, the peak amplitudes of the power spectra are given as

ĥ2Ωpeak
coll ' 1.67 · 10−5

(
H∗R

(8π)
1
3

)2(
κcollα

1 + α

)2(
100

g∗

) 1
3 0.11vw

0.42 + v2
w

, (5.57a)

ĥ2Ωpeak
sw ' 2.65 · 10−6

(
H∗R

(8π)
1
3

)(
κswα

1 + α

)2(
100

g∗

) 1
3

, (5.57b)

ĥ2Ωpeak
turb ' 3.35 · 10−4

(
H∗R

(8π)
1
3

)(
κturbα

1 + α

) 3
2
(

100

g∗

) 1
3

, (5.57c)

where κcoll, κsw and κturb are the e�ciency factors that describe how much α, i.e.
roughly speaking how much latent heat, is converted into the energy of the bubble
wall and the bulk motion of bubbles. Since the e�ciency factors indicate fractions
of converted latent heat their values are smaller than one. These e�ciency factors
depend on the wall speed vw and the strength of the phase transition α and are
provided in the appendix. They are also determined from numerical simulations.
For most common physical scenarios κcoll is found to be negligibly small such that
bubble collisions have a subdominant contribution to the total gravitational wave
power spectrum. This is due to the fact that the plasma of Standard Model particles
acts as a friction term reducing the transfer of kinetic energy stored in the bubble
walls into the production of gravitational waves. A de�nition for κcoll, given by
Eq. (H.3), as well as a discussion on the relevant physics that enter are provided
in the appendix. As a side remark it is also not yet settled whether the envelop
approximation in fact also fully holds in the non-runaway case, where the bubble
wall-speed reaches a constant terminal velocity. The �eld of gravitational waves from
phase transitions is still evolving and there is no clear consensus on how to quantify
the di�erent e�ciency factors. Two measures are, however, standard in the literature
and it turns out that they agree with each to high precision except at very strong
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supercooling, where α � 1. One common way to quantify the e�ciency factors
κsw and κturb that quantify the distribution of the energy budget still available after
bubbles have collided and merged to produce sound waves and a turbulent regime,
respectively gives

κsw = κν , (5.58)

while κturb can be given as

κturb = εκν , (5.59)

where ε ≈ 0.05 − 0.1 and the e�ciency factor κν depends on the velocity of the
bubble wall vw. For the speci�c case where vw = 1, one obtains

κv =
αe�
α

αe�
0.73 + 0.083

√
αe� + αe�

, (5.60)

where we have introduced αe�, which is a measure of the still available energy after
bubbles have collided and merged, hence αe� = (1− κcoll)α.
Recent studies, however, have shown that Eq. (5.58) and Eq. (5.59) underestimates
the e�ects of turbulence when the production of sound waves falls down in less
than a Hubble time. In that case the power spectrum of sound waves is reduced
and the gravitational wave amplitude from turbulence becomes more signi�cant
instead. Overall, the total amplitude also decreases. A more careful analysis allows
the e�ciency factor κsw, describing the total available energy budget converted to
sound waves, to be approximated as

κsw = (H∗τsw)1/2 κν , (5.61)

while the fraction converted to turbulence can be quanti�ed via

κturb = (1−H∗τsw)2/3 κν . (5.62)

Hereby, the factor H∗τsw gives an estimate of the relevance of the sound wave regime
with τsw indicating the duration of the sound wave stage. In this thesis we will make
use of this more recent de�nition of the e�ciency factors κsw and κturb.
The duration of the sound wave period is limited by τsw = 1/H∗ due to the fact that
the universe expands, thus reducing the e�ective power of the source of gravitational
waves from sound waves and washing out the non-linearities of the �uid that are
at the root of the sound wave regime. The Hubble constant H∗ is evaluated at
the percolation temperature Tp. This is a reasonable identi�cation since at the
percolation temperature, which can be regarded as marking the onset of the phase
transition, a signi�cant amount of bubbles of the broken phase have nucleated and
merged. Thus, the percolation temperature can be considered to be the relevant
temperature in order to describe the lifetime of sound waves.
From a dimensional point of view the duration of the sound wave period should be
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given as Lf/Ūf , where Lf is a characteristic length scale of the �uid �ow, while Ūf
is a characteristic velocity. As we have argued in preceding sections, the bubble
dynamics is expected to be fully expressable in terms of a few key quantities such as
the mean bubble separation R, the wall velocity vw and α. It thus seems reasonable
to identify the mean bubble separation R∗ with the characteristic length scale of the
�uid �ow Lf . More precisely, as explained above, this quantity has to be evaluated
at the percolation temperature Tp. The characteristic velocity of the �uid �ow can
be expressed in terms of the root-mean-square �uid velocity

Ū2
f =

3

vw(1 + α)

∫ vw

cs

dξ ξ2 v(ξ)2

1− v(ξ)2
' 3

4

αe�
1 + αe�

κv, (5.63)

which is a function of the speed of sound cs = 1/
√

3, the characteristic speed for
sound waves, the wall speed vw, α and v(ξ) is the velocity pro�le of the plasma.
Moreover, we have assumed vw ' 1 in the second equality and introduced an e�ective
value of α, αe�, which is a measure of the still available energy after bubbles have
collided and merged, hence αe� = (1 − κcoll)α. The e�ciency factor κν is the same
e�ciency factor that has also been introduced in Eq. (5.61) and Eq. (5.62) and for
vw = 1 is given by Eq. (5.60). So far, however, we have not factored in the expansion
of the universe in the discussion of τsw. The age of the universe at the percolation
time 1/H∗ acts as a limiting time for the sound wave period as the e�ective power
of the source of gravitational waves is e�ectively reduced as the universe expands.
Phrased di�erently, the expansion of the universe washes out the energy budget of
the phase transition. Hence, if the lifetime of the sound wave phase , τsw = R∗/Ūf ,
is not shorter than the time that the universe takes to reduce the available e�ective
power due to its expansion, the sound wave phase will e�ectively end at a time 1/H∗.
In turn, this also implies that there will be no more latent heat left to generate
turbulence and the non-linearities of the �ow, causing the turbulent regime, will fall
o� very quickly. This is indeed re�ected in the de�nition of the e�ciency factor
κturb, which vanishes if τsw = 1/H∗. Hence, in general, the duration of the sound
wave period can be estimated as

τsw = min
[

1

H∗
,
R∗
Ūf

]
, (5.64)

where R∗ is the mean bubble separation and Ūf is the root-mean-square �uid veloc-
ity. The above de�nition re�ects the fact that the Hubble time 1/H∗ sets a maximum
time scale on the duration of the sound wave regime. At this point, we may also
understand the de�nitions of κsw and κturb from a more physical point of view if we
introduce the lifetime of the universe at percolation temperature, τuniv = 1/H∗. In
that case, the e�ciency factors of the sound wave and the turbulent phase admit
the following form

κsw =

(
τsw
τuniv

)1/2

κν (5.65)
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and

κturb =

(
1− τsw

τuniv

)2/3

κν , (5.66)

respectively. The fraction τsw/τuniv simply re�ects the fact that the duration of the
sound wave regime competes with the expansion of the universe which distributes
away the e�ective energy, that is in principle available to produce additional sound
waves and turbulence, in a time τuniv. We can see clearly that if the universe expands
fast enough, e�ectively stopping the further production of sound waves, κturb = 0
and no turbulent �uid �ow is generated.

5.3 Results

The gravitational wave spectra are computed in terms of the model-dependent pa-
rameters α and β̃ ≡ β/H, which are related to the release of latent heat and the
duration of the phase transition, respectively. Thus, a knowledge of α and β̃ allows
to capture the e�ects of new physics on the gravitational wave spectrum resulting
from a �rst-order phase transition. Varying the potentials freely leads to a scatter
plot of (α, β̃)-pairs [303]. Intriguingly, in our analysis of the modi�ed Higgs poten-
tials introduced previously, we �nd that this scatter reduces to a narrow band of
allowed (α, β̃)-pairs, see Fig. 5.3. This means that a wide range of BSM scenar-
ios, described by our e�ective potentials, imply a relationship between the released
energy during the phase transition and the inverse phase transition duration and,
hence, predict a similar gravitational wave signal. The universal behavior displayed
in Fig. 5.3 follows from equally universal curves for α and β̃ as functions of the
vacuum expectation value φc/Tc, see Fig. 5.4. The strength of the phase transition
is quanti�ed by φc/Tc. With increasing φc/Tc, we observe that α increases while β̃
decreases. This is not surprising: α measures the release of latent heat during the
phase transition and hence one would expect that it is also a measure of the strength
of the phase transition. In particular, α takes into account the di�erence between
the two phases of the potential, see Eq. 5.38. Hence, a larger value of α implies that
the phase transition has undergone an extended period of supercooling where ∆V
increases. Consequently, with an increasing period of supercooling, the duration of
the phase transition will increase. This explains the fact that as the strength of
the phase transition φc/Tc is increased, the inverse duration of the phase transition
decreases. Conversely, this means that a stronger phase transition, as encoded in
φc/Tc, takes more time to complete.
Overall, the φc/Tc dependence of α and β̃ shows an approximately universal behav-
ior for the di�erent types of potentials. In particular, for small φc/Tc ≤ 1− 2, both
logα and log β̃ display a linear dependence on log (φc/Tc), pointing towards a uni-
versal power-law behavior. For larger values of φc/Tc ≥ 1− 2, no simple power-law
can be established. Universality, however, still holds true.
Thus, generic BSM physics, as introduced by the di�erent modi�cations of the
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Figure 5.3: Displayed above are the pairs of β̃ and α values that can be accessed
from the three modi�cations of the e�ective Higgs potential that we are
considering. A nearly universal behavior between β̃ and α can be ob-
served for all potentials. In particular, at small α we �nd an asymptotic
power-law behavior with β̃ = 0.5 · α−1.9. The analysis of a simple φ4

model allows us to obtain analytical results for β̃ and α as a function
of φc/Tc, which can be combined to give a relation between β̃ and α as
depicted above. Crucially, this derivation relies on the thin-wall approx-
imation for which Tc − T/T � 1 and is, in particular, valid for weakly
supercooled phase transitions, i.e., small α.

Higgs potential in Eq. 5.2, Eq. 5.3 and Eq. 5.4, lead to a universal relation between
the energy released during the phase transition and the (inverse) duration of the
phase transition. Currently, we do not have an exact explanation as to why this is
the case. A possible argument to explain the universal behavior is that it arises as
a standard consequence of the properties of RG �ows, as also discussed in Ch. 2,
when introducing the concept of universality: The speci�c details of the new physics
introduced at some UV scale MNP are washed out by thermal and quantum �uctua-
tions below the UV scale. This intuition is, however, not con�rmed, as the di�erent
�nite-temperature potentials exhibit clear di�erences between the three classes of
potentials. See for instance Fig.4 in [276]. Gaining a deeper understanding of the
roots behind the universality observed in Fig. 5.3 and Fig. 5.4 is left for future work.
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Figure 5.4: We show α (left panel) and β̃ (right panel) as a function of the order
parameter φc/Tc for all classes of potentials. An almost universal relation
between α,β̃ and φc/Tc is found for all modi�cations. The red area marks
the strong supercooling regime. At small φc/Tc, we �nd asymptotic
power-law behaviours with α = 0.0026 · (φc/Tc)

1.97 and β̃ = 48800 ·
(φc/Tc)

−3.77.

Gravitational Wave Spectra

The gravitational wave spectra for the three classes of potentials can be compared
to the LISA and DECIGO sensitivity curves. We �nd that for strong enough phase
transitions, a gravitational wave signal could be detected by both LISA and DE-
CIGO, see Fig. 5.5. Phase transition with φc/Tc ≈ 2− 2.7 lie outside the sensitivity
range of LISA. Detecting the gravitational wave signal emitted by phase transitions
with smaller φc/Tc would require instruments that operate at higher frequencies and
increased sensitivity, such as for example DECIGO. Alternative experiment set-ups
such as AION or AEDGE, which rely on atom interferometry, might also be able to
reach sensitivities of interest for electroweak phase transitions at lower φc/Tc [307].
In general, a stronger phase transition leads to a shift towards lower peak frequen-
cies and a growth in the amplitude of the signal. The same pattern has also been
reported for the class of φ6 potentials [308]. From the universality of α(β̃) discussed
above, it is expected that this pattern is shared by all three classes of potentials, see
Fig. 5.5. This explains why the peak-frequencies of the gravitational wave spectra
lie in the exterior areas of the sensitivity curves of LISA and DECIGO.
The gravitational wave spectra are characterized by a number of key parameters,
besides α and β̃, such as the e�ciency factors that quantify how much energy is
converted into the di�erent sources of gravitational waves or the wall speed of the
expanding bubbles. We have already touched upon ambiguities concerning the dis-
tribution of the energy budget of the phase transition. Nonetheless, it is established
that the sound wave period acts as the dominant source of gravitational waves dur-
ing a �rst-order phase transition. This is also con�rmed by our results, see Fig. 5.6.
Moreover, we have also tested the impact of the wall speed on the gravitational wave
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Figure 5.5: We depict the total GW power spectra of all three classes of modi�ed
Higgs potentials for di�erent values of φc/Tc. The dashed lines in the
�gures indicate the strong supercooling regime at which the linearization
of the action in order to determine β breaks down.

spectrum. The gravitational wave spectra depicted in Fig. 5.5 have been determined
assuming bubbles expanding at the speed of light, i.e., vw = 1.
Slower expanding bubbles lead to a smaller amplitude at peak frequency. The dif-
ference between vw = 0.5 and vw = 1 can be nearly half an order of magnitude.
As such, our choice of vw = 1 that we use throughout this thesis to determined the
gravitational wave spectra is a less conservative choice.
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Figure 5.6: We show the contributions of sound waves and turbulence to the power
spectrum using Eq. 5.61 and Eq. 5.62 for the polynomial modi�cation of
the Higgs potential for φc/Tc = 2.84.
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Figure 5.7: We compare the e�ect of di�erent wall speeds on the gravitational wave
spectrum for a representative value of φc/Tc of the polynomial φ6 mod-
i�cation of the Standard Model Higgs potential. As the wall speed in-
creases, the spectra are shifted towards larger amplitudes at smaller
smaller peak frequencies.
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Collider-signatures and GW-signatures

Let us now understand how a combined e�ort through collider physics and gravitational-
waves astronomy can foster understanding about new physics. For that reason we
will pay particular attention to universality and how it is possible to pinpoint dif-
ferent physics contributions.
The relevant quantity that informs about the detectability of a gravitational wave
signal is the signal-to-noise ratio (SNR) [309, 310] which can be determined from
the gravitational wave spectrum ĥ2ΩGW(f), the sensitivity curve of the detector
ĥ2Ωsens(f) and the observation time T that follows from the duration of the mission
times the duty cycle, as in [311] where

SNR =

√
T
s

∫ fmax

fmin

df
ĥ2ΩGW

ĥ2Ωsens

. (5.67)

For LISA, an observation time of 4 years is assumed, with a duty cycle of 75% such
that T = 12π × 107 s [303]. Establishing a threshold SNR value is non-trivial as
the detectability of a signal is subject to di�erent aspects such as, for instance, the
availability of matched �ltering techniques which typically improve the signal. In
our case as the spectrum is known these techniques can be applied. Furthermore,
galactic binaries contribute to a stochastic background signal that needs to be taken
into account [312, 313].
We �nd a SNR above 1 for cases where the peak amplitude at peak frequency of
the gravitational wave signal lies in the LISA sensitivity range. The new physics
leading to a �rst-order phase transition and consequently a GW signal also impacts
observable properties of the Higgs-potential, namely the triple- and quartic-Higgs
couplings. As we discussed in the introduction to the topic of gravitational waves
from phase transition, both couplings are enhanced compared to the Standard Model
prediction [276]. This allows us to compare the LHC observables to the SNR for
the gravitational wave spectra of all three potentials. Strong enough phase transi-
tion can lead to a detectable signal by LISA as well as a measurable LHC signal.
Thus, an interplay of collider physics and gravitational-wave astronomy could be
used as a cross-check of the two signals. In particular, an enhancement of the triple-
and quartic-Higgs couplings could also come from di�erent new physics which pre-
serves the cross-over at the electroweak scale and does not provide a mechanism for
baryogenesis. Hence, an observation of gravitational waves by LISA or DECIGO
would strengthen the case for a �rst-order phase transition at the electroweak scale.
Moreover, even amongst those scenarios with electroweak baryogenesis, a symbiosis
of the GW signal with the LHC signature could allow to learn more about the de-
tails of the new physics. Fig. 5.8 depicts how at a given SNR, the three di�erent
classes of potentials that we studied lead to di�erent modi�cations of the triple- and
quartic-Higgs couplings.
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Figure 5.8: An interplay of collider physics and gravitational-wave astronomy could
be used as a way to pinpoint new physics. On the left panel, we depict
the pairs of SNR and triple-Higgs couplings that could be realized by
each of the three classes of potentials. On the right panel, we show that
for a given SNR, the di�erent potentials predict di�erent corrections to
the quartic-Higgs coupling.
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6 Conclusion & Outlook

There is still much to be learned about the wonders of our universe. What is the
fundamental nature of space-time? What are the fundamental particles in our uni-
verse? What is the origin of mass? These are very deep and fundamental questions
that will fascinate many generations of scientists to come. We have attempted to
provide new perspectives to some of these questions.
At shortest scales, gravity breaks down and it is argued that a theory of quantum
gravity is required to describe space-time in the quantum regime. A crucial aspect
is whether space-time is fundamentally discrete or not. In that regard, we have
discussed the subtleties associated to the notion of discreteness in quantum grav-
ity. We have argued that in theories which motivate a physically discrete picture
of space-time at shortest distances, one can also take a di�erent standpoint, where
discreteness is actually viewed as a way to regularize the theory and the actual
physics follows from taking the continuum limit. Crucially, the continuum limit
does not necessarily have to imply that the resulting physics turns out to be con-
tinuous. Asymptotic safety, for instance, is a continuum theory of quantum gravity
that features elements of discreteness, such as, e.g., a minimal length.
One of the properties of a continuum limit is that it entails universality, whereas
di�erent microscopic formulations can provide access to the same physics. This
opens the door to explore possible relationships between di�erent approaches to
quantum gravity and exploit their di�erent strengths. Progress in learning about
the fundamental nature of space-time will greatly bene�t from a diversity of ideas
and approaches.
This conviction has served as our inspiration to pursue a discrete strategy to make
sense of the path-integral for quantum gravity, where the idea is to discretize the
path-integral in terms of small buildings blocks of space-time, which allow to con-
struct a discrete approximation to random geometries. Discreteness is introduced
as a regulator taming the divergences that are associated to a naive quantization of
GR. These building blocks of space-time are not considered to be physical or �fun-
damental� but can be viewed as auxiliary, unphysical objects, allowing to de�ne a
regularized path integral. Ultimately, the e�ects associated to this discretization are
removed in the continuum limit which is characterized by a second-order phase tran-
sition. Universality then implies that the microscopic details, in particular the exact
shape of the building blocks, do not matter. This strategy is the underlying pillar of
dynamical triangulations and tensor models. In two dimensions, there exists a di-
rect correspondence between the two approaches and continuous Liouville quantum
gravity. Revealing whether this correspondence also holds in higher dimensions and
understand if the continuum limits of dynamical triangulations and tensor models
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potentially belong to the universality class of asymptotically safe quantum gravity
will require progress on all sides.
In that spirit, we have undertaken �rst steps to systematically explore the continuum
limit of tensor models in three and four dimensions using a background-independent
formulation of the functional renormalization group. In four dimensions we have
found intriguing evidence that there exists a universality class for tensor models
that is not incompatible with the Reuter universality class of asymptotic safety.
This begs the question whether dynamical triangulations, tensor models and asymp-
totic safety might actually be three sides of the same triangle. Exploring this ques-
tion will be the engine of future work and will require more knowledge about the
geometry that underpins the �xed point that we have identi�ed in four dimensional
tensor models. Steps in that direction are the comparison of the scaling of geomet-
ric operators between the di�erent approaches. This will require systematic studies
of composite operators on the tensor model side following the same spirit as the
works [314, 315, 316, 317] performed to study the scaling of geometric operators in
asymptotic safety. In the same vein, dimensional estimators such as the spectral di-
mension or the Hausdor� dimension are also of interest in order to learn more about
the physical properties of the continuum limit. Understanding these dimensional
estimators in the context of tensor models is therefore one important direction of
future work. A route to access the spectral dimension could go through the Feynman
graph structure at the �xed point. A di�usion process set up on that graph could
give access to the spectral dimension [318]. Such steps will be crucial in order to
learn more about the geometry that underlies the continuum limit of tensor models.
The �xed point action associated to the �xed point that we have identi�ed as a
potential candidate for four-dimensional quantum gravity can be rewritten as a
rectangular multi-matrix model. The standard matrix-model techniques that we
reviewed in this thesis are only applicable to square-matrices as they crucially rely
on the ability to diagonalize a matrix in terms of its eigenvalues. It is, however,
possible to study rectangular matrices in the large-N limit by decomposing the ma-
trices through a singular value decomposition [319]. Being able to solve these models
exactly could potentially provide access to precise and regulator-independent values
of the critical exponents associated to the candidate-�xed point for four-dimensional
quantum gravity allowing to make powerful statements about its universality class.
On the technical side, we have made substantial progress in understanding the nu-
ances associated to renormalization group �ows in background-independent settings.
We have developed and put in practice a generic strategy that allows to systemat-
ically study the renormalization group �ow of tensor models invariant under any
symmetry of choice using the functional renormalization group.
The �rst step of the strategy consists in specifying the truncation of the scale-
dependent e�ective action, which is constructed from bottom up using a straight-
forward algorithm; the only input being invariants of interaction-order four. One
crucial question in setting up the truncation concerns the assignment of couplings
to the invariants. This can be done in two distinct ways: Either one coupling is
associated to each tensor invariant or the same coupling is assigned to all invariants

148



belonging to the same color-symmetric family. In order realize the latter way of
assigning couplings, we have introduced a novel combinatorial object, the indicator,
which allows to collect graphs that are invariant under permutations of their color.
While so far all evidence hints towards the fact that this is indeed the case, an
open question concerning the indicator is whether it uniquely speci�es a family of
color-symmetric graphs. Closely related to this point, the indicator could also be
of interest from a purely mathematical standpoint due to its potential relation to
the reconstruction conjecture [320, 321], which states that every graph with more
than two vertices is uniquely reconstructable from its deck, which is obtained by
removing one vertex from the graph. Studying the properties of the indicator in
more detail would, thus, be certainly interesting.
The studies performed in this work have focussed on analyzing truncations that in-
clude all invariants up to a certain interaction order. The combinatorial properties of
single- and multi-trace melonic interactions, however, allow in principle to resum the
melonic sectors of the theory space. An interesting possible direction of future work
could consist in considering complete truncations up to a certain interaction-order,
while simultaneously taking into account extensions of the truncation in certain sec-
tors.
On a more general note, progress in understanding tensor models and their wide
range of applications could also be fostered by understanding the links between re-
sults derived from the functional renormalization group and studies performed using
the Dyson-Schwinger equations.
Tackling the open questions pointed out above will lead to a deeper understanding
of the continuum limit of tensor models and its connection to other approaches of
quantum gravity, such as dynamical triangulations or asymptotic safety, with the
�nal objective of learning more about the fundamental nature of space-time. Each
of the di�erent approaches comes with a set of advantages. The asymptotic safety
approach to quantum gravity, e.g., quantizes degrees of freedom that are already
well-known and thus, allows to connect microscopic UV physics to the IR-world
that we live in. Crucially, however, computations in Asymptotic Safety introduce
an auxiliary background. The strength of the tensor model approach is that it makes
no reference to a background. If it turns out that these approaches belong to the
same universality class, exploring the strengths of the two approaches would allow to
make even stronger statements about the existence of a gravitational UV �xed point
implying that space-time at shortest distances might have a fractal-like structure.
We motivated the need for a theory of quantum gravity from the existence of singu-
larities, for example, in the center of black holes. The macroscopic physics of black
holes is much better understood. The merger of two black holes, for examples, has
led to the production of gravitational waves whose waveform was found to be in
agreement with the predictions of GR.
While the gravitational waves detected so far were sourced by the merger of astro-
physical objects such as black holes [4] or neutron starts [322], they can also be
produced in di�erent ways, allowing to learn new things about the matter content
of our universe and its fundamental properties and the mechanism of mass gener-
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ation. In the Standard Model of particle physics, particles acquire their mass by
electroweak and chiral symmetry breaking. In the Standard Model these phase-
transition are cross-overs. New physics, e.g., in order to explain the origin of the
matter-antimatter asymmetry in our universe, can lead to �rst-order phase transi-
tions that source a stochastic background of gravitational waves. For strong enough
�rst-order phase transitions, this stochastic background could lie in the sensitivity
range of future space-based laser interferometers LISA and DECIGO.
In this thesis, we have explored new physics at the TeV-scale parametrized by three
di�erent higher-order operators in the Higgs potential which all lead to �rst-order
electroweak phase transitions. These extensions predict modi�cations of the triple-
and quartic-Higgs couplings. The next high-luminosity run at the LHC will allow for
a detection of modi�cations of the Standard Model prediction for the triple-Higgs
coupling λH3,SM of λH3/λH3,SM > 1.7 at a con�dence level of 68%. Measuring a mod-
i�cation of the triple-Higgs coupling is therefore an indirect hint pointing towards
the existence of a �rst-order phase transition in the early universe. However, in order
to uniquely �x the shape of the Higgs potential more experimental information is
needed. A synergy between collider physics and gravitational wave astronomy could
allow to bridge this gap. This served as our motivation to study the gravitational
wave spectrum of di�erent modi�cations of the Higgs potential.
From the �nite-temperature e�ective Higgs potential, derived in [276], we extracted
key parameters that describe the gravitational wave signal sourced by a �rst-order
phase transition. In particular, the energy released by the phase-transition, mea-
sured by α, and the duration of the phase transition parametrized by β̃, show a
universal dependence on the strength of the phase-transition, φc/Tc. As a result,
we found that β̃(α) displays a clustering behavior around a common curve. This is
a non-trivial result that is not a priori expected, given that the e�ective potentials
resulting from the classes of new-physics contributions di�er. Future work will be
devoted towards understanding the roots of this qualitative universality in more de-
tail. In particular, it will be highly interesting to understand in how far this universal
behavior also persists for potentials that predict a lower scale of new physics. Our
current intuition is that in that case a larger parameter space in the (α, β̃)−plane is
available when the parameters of the model are varied. If indeed, universality also
turns out to apply to an even broader range of classes of new-physics contributions,
this could put ad-hoc modi�cations of the e�ective potential under scrutiny since
such potentials might not be available for a new-physics scale high enough to have
avoided direct detection to date. Tackling this question will require the analysis of
new physics contributions at lower cut-o� scales.
Another interesting route that one could take in the future, is to use gravitational
waves as a way to constrain Dark Matter models. In particular, within the framework
of asymptotic safety, one could study models of Dark Matter that are UV-complete,
e.g., as done in [323]. This could provide an interesting window to reveal possible
imprints of Dark Matter and asymptotic safety.
To conclude, in this thesis we have explored the fascinating implications of grav-
ity. One of the alluring consequences of a dynamical space-time, the existence of
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gravitational waves, was initially even doubted by Einstein himself. Today we know
that these ripples of space-time are very much real. They not only allow to test the
theory of general relativity but also open new exciting ways to learn more about the
fundamental particles of our universe and their interactions. As successful as GR
is, at shortest distances the theory breaks down, which points towards the need of
new gravitational e�ects at these distances. Including quantum gravitational e�ects
could be a way to resolve the singularities of GR. In that spirit, we have studied the
continuum limit of a particular approach to quantum gravity, tensor models, and
discussed its connection to other approaches of quantum gravity in the hope that
establishing links between di�erent theories of quantum gravity will foster a deeper
understanding of the fundamental nature of space-time.

151





Part II

Appendix

153





A Liouville

Liouville Gravity

The reader might think that two-dimensional quantum gravity might seem trivial:
We have just argued that the classical equations of motion are always satis�ed
independently of the underlying space-time as a consequence of two-dimensional
gravity being purely topological, i.e.,

∫
d2x
√
gR = χ (A.1)

is a mere constant given by the Euler character χ, which is a topological quantity.
However, in two dimensions, classical gravity can be shown to not only be di�eomor-
phism invariant but also to be classically conformal. This observation is crucial for
the quantum picture given that conformal invariance is broken at the quantum level
due to the measure term not being invariant under conformal transformations. In
order to restore conformal invariance one is led to introduce the so-called Liouville
action which renders two-dimensional quantum gravity non-trivial by introducing an
additional gravitational interaction on top of the ones due to the Einstein-Hilbert
action. In order to discuss these points in detail, consider the path-integral for
two-dimensional quantum gravity coupled to conformal matter

Z =

∫ Dg
V ol(di�)

Dχ exp

(
−β0

∫
R− γ0A− SM [χ]

)
, (A.2)

where S[χ] is an action describing conformal matter χ, i.e.

SM [χ] =

∫
d2ζ
√
g gµν∂µχ∂νχ, (A.3)

β0 is related to the inverse bare Newton coupling, γ0 is the bare cosmological con-
stant and A is the space-time area given by A =

∫
d2x
√
g. As discussed previously,

classical two-dimensional gravity is trivial as there are no local degrees of freedom
but only global ones related to the topology of space-time. The quantum theory,
however, is non-trivial. This is due to the conformal anomaly. At the classical level,
Weyl invariance is a symmetry of the action. At the quantum level, however, it turns
out that the measures Dχ and Dg transform non-trivially under Weyl transforma-
tions gµν → eσgµν , with σ denoting the conformal mode. Indeed, Dχ transforms,
for instance, as

Deσgχ = exp

(
D

48π
SL(σ)

)
Dgχ, (A.4)
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where SL(σ) is the Liouville action

SL(σ) =

∫
d2ξ
√
g

(
1

2
gµν∂µσ∂νσ +Rσ + γeσ

)
. (A.5)

The above action introduces an interaction term Rσ, rendering the quantum theory
of two-dimensional gravity non-trivial.
In Eq. (A.2), we have introduced the volume of the di�eomorphism group, V ol(di�),
in order to emphasize that the path-integral consists of a sum over families of an
in�nite number of equivalent metric con�gurations that need to be removed. In order
to get rid of this spurious redundancy it is necessary to �x a gauge. In the path-
integral approach to QFT this requires the introduction of Faddeev-Popov ghosts.
We will defer from going through the detailed steps and instead just provide the
resulting partition function that follows from Eq. (A.2),

Z =

∫
[dτ ]DgσDg(gh)Dgχ exp

(
−SM [χ]− Sgh −

γ0

2π

∫
d2ξ
√
g

)
, (A.6)

where [dτ ] corresponds to the integration over moduli 1, Dσ corresponds to the
measure of the conformal mode, the ghost �elds are collected by the measure term
D(gh) = DaDāDbDb̄ and Dχ is the measure of the conformal matter �eld. The
measure terms are invariant under di�eomorphisms but not under conformal trans-
formations gµν → eσgµν . Indeed, the overall measure will transform as

DeφĝDeφĝ(gh)Deφĝχ = J(φ, ĝ)DĝφDĝ(gh)Dĝχ, (A.7)

where the Jacobian J(φ, ĝ) is assumed to be given as

J(φ, ĝ) = exp

(∫
d2ξ
√
ĝ
(
ãĝµν∂µφ∂νφ+ b̃R̂φ+ γec̃φ

))
. (A.8)

which is the exponential of a Liouville-like action. To obtain a normalized kinetic
term for φ, we perform the additional rescaling φ→

√
12

25−Dφ.
In that case, two-dimensional Liouville gravity takes the following form

Z =

∫
[dτ ]DĝφDĝ(gh)Dĝχe−SM (χ,ĝ)−Sgh(b,c,b̄,c̄;ĝ)

exp

(∫
d2ξ
√
ĝ

(
1

8π
ĝµν∂µφ∂νφ+

Q

8π
R̂φ+ γeαφ

))
. (A.9)

1The moduli space Mh is the �nite dimensional compact space of metrics obtained after gauge
�xing, that is the space of metrics modulo di�eomophisms and Weyl transformations. For each
element τ ∈Mh it is possible to choose a representative metric ĝ. The orbits that follow from
acting with the di�eomorphism and the Weyl group on ĝ then span the full space of metrics:
Given a slice ĝ(τ), the full space of metrics g is generated by f∗g = eσ ĝ, where f represents
the action of di�eomorphism and Weyl transformations are accounted by the term eσ, where σ
is the conformal mode.
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where the coe�cients Q and α are given as

Q =
25−D

3
and α =

1√
12

(√
25−D −

√
1−D

)
. (A.10)

such that the expression in Eq. (A.9) can be shown to remain invariant under in-
�nitesimal di�eomorphisms. To make contact with the dynamical triangulations
and matrix models discussion, we are interested in the so-called string susceptibil-
ity, which describes how the partition function scales for �xed large areas. The area
can be �xed by including a delta constraint in the path-integral such that

Z(A) =

∫
DχDgeS δ

(∫
d2ξ
√
ĝeαφ − A

)
, (A.11)

where the integration over ghost �elds and moduli has been collected into the mea-
sure Dχ. For large areas, the scaling of the partition function can be expressed
as

lim
A→∞

∼ A(γ−2)χ
2
−1 (A.12)

and also serves as a de�nition for the string susceptibility γ. In order to determine
γ, we can use a scaling argument. The starting point is to consider the rescaling
φ→ φ+ρ/α, for some constant ρ. The measure is left invariant under this rescaling,
while the action only receives a non-trivial modi�cation from2

∫
d2ξ

Q

8π
R̂φ→

∫
d2ξ

Q

8π
R̂φ+

∫
d2ξ

ρ

α

Q

8π
R̂. (A.13)

The second term, however, can be expressed in terms of the Euler character χ using
the fact that

∫ √
gR = 4πχ. Moreover, the delta function can be rewritten as

δ

(∫
d2ξ
√
ĝeαφ − A

) ∣∣∣∣∣
φ→φ+ρ/α

= e−ρ δ

(∫
d2ξ
√
ĝeαφ − e−ρA

)
(A.14)

using the identity δ(λx) = 1/|λ|δ(x). We may thus write

Z(A) = exp

(
−Qρχ

2α
− ρ
)
Z(e−ρA). (A.15)

We may now choose A = eρ, in which case

Z(A) = A−
Qχ
2α
−1Z(1). (A.16)

To determine the string susceptibility, we may compare the above scaling of Z(A)
with A with the scaling given by Eq. (A.12) in order to read o�

γ = 2− Q

α
=

1

12

(
(D − 1)−

√
(D − 25)(D − 1)

)
. (A.17)

2The e−αφ term receives an additional constant modi�cation e−ρ.
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To make contact with matrix models, we introduce the notation D = 1 − 6
m(m+1)

such that the string susceptibility is given as

γ = − 1

m
. (A.18)

158



B Computations with the FRG

This appendix tries to give a detailed account of how to perform technical compu-
tations using the FRG for tensor models. In particular, we will show how to derive
a particular contribution to the running of the coupling g3,1

6,1 associated to
b

bbbcb

b

b

bc

b

bc

bc

b

b b

b

bc

b

bc

bc

b

b

b

. The
example-model to be used is the real rank-3 tensor model.
The starting point is the FRGE

∂tΓN =
1

2
Tr
((

Γ
(2)
N +RN

)−1

∂tRN

)
(B.1)

which can be re-expressed through the P−1F expansion as

∂tΓN =
1

2
Tr (∂tRN)P−1 +

1

2

∞∑

n=1

(−1)nTr
[
(∂tRN)P−1

(
P−1F

)n] (B.2)

with

P = Γ
(2)
N

∣∣
T=0

+RN (B.3)

and

F = Γ
(2)
N − Γ

(2)
N

∣∣
T=0

. (B.4)

A concrete piece that appears in the computation of the running g3,1
6,1 is

Tr
(
∂tRNP−1

(
P−1F

)3
)

∼
∑

{Ii}

1

2
× 3!

2!
× g0

4,1

(
g2,1

4,1

)2
ZN

(
(1− η)

N

a1 + a2 + a3

+ η

) 3∏

i=1

δaibi

× 1

ZN

∏3
i=1 δbici(

1− N
b1+b2+b3

)
Θ(b1, b2, b3)

× 1

ZN

∏3
i=1 δcidi(

1− N
c1+c2+c3

)
Θ(c1, c2, c3)

×
(
4g0

4,1Td1d2α3Te1e2α3δd3e3

)

× 1

ZN

∏3
i=1 δeifi(

1− N
e1+e2+e3

)
Θ(e1, e2, e3)

(
4g2,1

4,1 Tf1β2β3Tg1β2β3δf2g2δf3g3

)

× 1

ZN

∏3
i=1 δgihi(

1− N
g1+g2+g3

)
Θ(g1, g2, g3)

(
4g2,1

4,1 Th1γ2γ3Ta1γ2γ3δh2a2δh3a3

)
, (B.5)
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where Ii denotes the set of indices Ii = {ai, bi, ci, di, ei, fi, gi} and greek indices indi-
cate internal contractions between two tensors while latin indices point to contrac-
tions between di�erent pieces of the P−1F expansion. Performing the contractions
with the delta functions the above expression can be simpli�ed to give

Tr
(
∂tRN P−1

(
P−1F

)3
)

∼ 96 g0
4,1(g2,1

4,1)2N
1

Z3
N

(
a1 + a2 + a3

N

)2(
(1− η)

N

a1 + a2 + a3

+ η

)
Θ(a1, a2, a3)

× 1

1−
(

N
e1+a2+a3

− 1
)

Θ(e1, a2, a3)

1

1−
(

N
g1+a2+a3

− 1
)

Θ(g1, a2, a3)

× Ta1a2α3Te1a2α3Te1β2β3Tg1β2β3Tg1γ2γ3Ta1γ2γ3 , (B.6)

where only the third index i3 can be contracted freely through the delta functions.
The projection prescription requires to set indices that appear simultaneously in the
threshold function F and in the tensors to zero. This leaves us with the following
expression

Tr
(
∂tRN P−1

(
P−1F

)3
)

∼
∑

a3

96 g0
4,1(g2,1

4,1)2N
1

Z3
N

(a3

N

)2

Θ(a3)

(
(1− η)

N

a3

+ η

)

× 1

1−
(
N
a3
− 1
)

Θ(a3)

1

1−
(
N
a3
− 1
)

Θ(a3)

b

bbbcb

b

b

bc

b

bc

bc

b

b b

b

bc

b

bc

bc

b

b

b

, (B.7)

where we make the sum over the threshold index a3 explicit. The step functions
in the denominator are always ful�lled due to the step function also appearing in
the nominator. We can therefore further simplify the above expression in order to
obtain

Tr
(
∂tRN P−1

(
P−1F

)3
)

∼
∑

a3

96 g0
4,1(g2,1

4,1)2N
1

Z3
N

(a3

N

)4

Θ(a3)

(
(1− η)

N

a3

+ η

)
b

bbbcb

b

b

bc

b

bc

bc

b

b b

b

bc

b

bc

bc

b

b

b

. (B.8)

We are ultimately interested in the large-N limit, where the threshold sums trans-
form into threshold integrals according to

R∑

i=1

N∑

ai=1

ai
N

=
R∑

i=1

1∑

∆xi=0

∆xi −→
R∏

i=1

∫ 1

0

dxi =
R∏

i=1

∫ N

0

dai
N
, (B.9)
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where we performed the change of variable ai/N = ∆xi and R denotes the number
of indices that are not set to zero can range between 1 and the rank of the tensor
model depending on the combinatorics. In the large-N limit one is therefore led to
perform the following sum

Tr
(
∂tRN P−1

(
P−1F

)3
)

∼
∫ N

0

da3 96
g0

4,1

ZN

(
g2,1

4,1

ZN

)2

Θ(a3)

(
(1− η)

(a3

N

)3

+ η
(a3

N

)4
)

b

bbbcb

b

b

bc

b

bc

bc

b

b b

b

bc

b

bc

bc

b

b

b

= 96 I1
3

g0
4,1

ZN

(
g2,1

4,1

ZN

)2

b

bbbcb

b

b

bc

b

bc

bc

b

b b

b

bc

b

bc

bc

b

b

b

(B.10)

The above computation can be straightforwardly carried out for summations over
more indices. The resulting threshold integrals are given by

I1
1 =

1

3
η N r +

1

2
N r(r − η), (B.11)

I2
1 =

1

4
η N2r +

1

3
N2r(r − η), (B.12)

I3
1 =

1

10
η N3r +

1

8
N3r(r − η), (B.13)

I1
2 =

1

4
η N r +

1

3
N r(r − η), (B.14)

I2
2 =

1

5
η N2r +

1

4
N2r(r − η), (B.15)

I3
2 =

1

12
η N3r +

1

10
N3r(r − η), (B.16)

I1
3 =

1

5
η N r +

1

4
N r(r − η), (B.17)

I2
3 =

1

6
η N2r +

1

5
N2r(r − η), (B.18)

I3
3 =

1

14
η N3r +

1

12
N3r(r − η), (B.19)

for the real rank-3 tensor model assuming the modi�ed Litim-regulator of Eq. (4.111).
Hereby, the lower index counts the order of the P−1F expression, while the upper
index counts the number of indices over the integration is performed.
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C Mathematica for Models

To make progress in the tensor model program for quantum gravity with the FRG,
it is necessary to study large truncations in order to make more de�nite statements
about convergence of critical exponents that allow for comparisons with continuum
approaches, e.g., with the Asymptotic Safety program. Calculations can be greatly
simpli�ed if they are performed numerically. A general algorithm that allows to
derive beta functions to all interaction orders has been introduced in Sec. 4. Here,
we provide the Mathematica code in order to implement the algorithm.
To this end the xAct1 packages xTensor, xPert and xTras are required. To set the
stage, it is necessary to make some preliminary de�nitions on the symmetry of the
tensors and the contraction pattern of indices. The command DefManifold de�nes
the manifold by taking the dimension of the manifold and the set of indices that
will be used canonically as arguments. Moreover, DefMetric de�nes the metric.
In tensor models there is of course no physical metric but nonetheless one needs an
object that implements the contractions of indices, e.g., by means of delta functions.
Of great important is also the speci�cation of the symmetry of the tensor, which is
provided by DefTensor.
A concrete example of how the initialization of the code could look like would be

DefManifold[Σ, d, {ai}];
DefMetric[1, g[-a, -b],CD, {";", "∇"},FlatMetric→ True];
DefTensor[φ[−a,−b,−c],Σ]; (C.1)

The above example initializes a real rank-3 tensor model and can be straightfor-
wardly rewritten for di�erent tensor models: A symmetric rank-3 tensor model is
initialized by having DefTensor[φ[−a,−b,−c],Σ, Symmetric[{−a,−b,−c}];, while
a complex rank-3 tensor model can be set-up by introducing, for instance, two rank-
3 tensors φ1 and φ2.
Once the code is initialized, we can introduce the invariants of interaction order four,
which as discussed in the section on the general set-up of the algorithm, are the only
input needed once the symmetry of the tensor model has been given. For the real
rank-3 tensor model with no color symmetry between the couplings, for instance,

1xAct is a family of packages that allows for index manipulations in the Wolfram Language.
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one will have

QI[1] = g2
4,2φ[−a1,−b1,−c1]φ[a1, b1, c1]φ[−a2,−b2,−c2]φ[a2, b2, c2]//ContractMetric;

QI[2] = g2,1
4,1φ[−a1,−b1,−c1]φ[a2, b1, c1]φ[−a2,−b2,−c2]φ[a1, b2, c2]//ContractMetric;

QI[2] = g2,2
4,1φ[−a1,−b1,−c1]φ[a1, b2, c1]φ[−a2,−b2,−c2]φ[a2, b1, c2]//ContractMetric;

QI[3] = g2,2
4,1φ[−a1,−b1,−c1]φ[a1, b1, c2]φ[−a2,−b2,−c2]φ[a2, b2, c1]//ContractMetric;

QI[4] = g0
4,1φ[−a1,−b1,−c1]φ[a1, b2, c2]φ[−a2, b1,−c2]φ[a2,−b2, c1]//ContractMetric;

The next steps consists in implementing a way to compute the two-point function
of any invariant. To that end, we introduce a function TP[a1, a2, a3, b1, b2, b3] which
is de�ned as

TP[a1_, a2_, a3_, b1_, b2_, b3_] := VarD[φ[b1, b2, b3]][#]&@VarD[φ[a1, a2, a3]][#]&.

Given that the symmetries of the tensor φ have already been speci�ed it is not
necessary to additionally take care of this in the de�nition of the two-point function.
The two-point function allows to construct higher-order invariants via the P−1F -
expansion explained in the main text. The construction of φ6 invariants can be
implemented in the following way in Mathematica

HexicInvariants =

(Table[(TP[−a1,−a2, a3,−b1, b2, b3]@QI[i]//CollectTensors)∗
(TP[b1, b2, b3,−c1,−c2,−c3]@QI[j]//CollectTensors)∗
(TP[c1, c2, c3, a1, a2, a3]@QI[k]//CollectTensors)//ContractMetric//ToCanonical
, {i, 1,Length[QI]}, {j, 1,Length[QI]}, {k, 1,Length[QI]}]; (C.2)

For practical purposes, it is bene�cial to split the computation for all i,j and k into
small steps.
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D β-functions of the real rank-3 tensor

model

We list the explicit forms of the beta functions for the O(N)3 model. To show the
explicit forms, we de�ne the threshold functions, which rely on a parameter r de�ned
in the regulator:

I1
1 =

1

3
η N r +

1

2
N r(r − η), (D.1)

I2
1 =

1

4
η N2r +

1

3
N2r(r − η), (D.2)

I3
1 =

1

10
η N3r +

1

8
N3r(r − η), (D.3)

I1
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1

4
η N r +

1

3
N r(r − η), (D.4)

I2
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1

5
η N2r +
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N2r(r − η), (D.5)
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1
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N2r(r − η), (D.8)

I3
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1
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η N3r +

1

12
N3r(r − η), (D.9)

where the lower index denotes the order in the P−1F expansion and the upper index
refers to the number of indices that are integrated over. The anomalous dimension
η is given by

η = 4 I3
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2
4,2N
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)
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4,1] (D.10)

The beta function of the quartic cross interaction g̃0
4,1 is
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=
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The beta function for the coupling g̃2,i
4,1 associated to the cyclic melon with prefered

color i is

β̃g̃2,i
4,1

=
(
−[g2,i

4,1] + 2η
)
g̃2,i

4,1 + 8I1
2

(
g̃0

4,1

)2
N2[g0

4,1]−[g2,i
4,1] + 16 I1

2

(
g̃2,i

4,1 g̃
0
4,1

)
N [g0

4,1]

+ 8 I2
2

(
g̃2,i

4,1

)2
N [g2,i

4,1] − 5 I1
1 g̃

1,i
6,1N

[g1,i
6,1]−[g2,i

4,1] − I3
1 g̃

3,i
6,2N

[g3,i
6,2]−[g2,i

4,1]

− 3 I2
1 g̃

3,i
6,1N

[g3,i
6,1]−[g2,i

4,1] − 3 I1
1 g̃

0,np
6,1 N [g0,np

6,1 ]−[g2,i
4,1]

− 2 I2
1 g̃

2,i
6,1N

[g2,i
6,1]−[g2,i

4,1] − I1
1 g̃

0,p
6,1N

[g0,p
6,1 ]−[g2,i

4,1]. (D.12)

The beta function of the coupling g̃2
4,2 related to the disconnected melonic interaction

reads
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The running of the cyclic melons is encapsulated in the following expression
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The �Cat Diagram�, i.e. g1,i
6,1, runs as follows
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The coupling g̃1
6,2 exhibits the following scale-dependence
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The running of the hexic cross diagram, g̃0,np
6,1 is given by
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The beta function associated to the triple disconnected melon is given by
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The anti-cyclic melons run as follows
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Finally, g̃3,i
6,2 exhibits the following running
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The planar diagram with no sub-melons beta function
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E Bubble Nucleation

In the following we will discuss the process of bubble nucleation in more detail.
Already from an intuitive point of view it is clear that there are two competing
factors determining the nucleation and growth of bubbles: On the one hand the
nucleation rate of these bubbles driving the phase transition and on the other hand
the expansion of the universe.
In the following we assume a potential with two minima, one local one and one global
one. We will discuss the process of bubble nucleation in an analytical way. This
requires a set of simpli�cations but will be useful in order to set up the formalism
to discuss more realistic scenarios. In particular we will assume that the phase
transition happens very fast.
In the path integral formalism one writes

Z =

∫
dπdφe−βH (E.1)

where the Hamiltonian H reads

H =

∫
d3x

(
1

2
π2 +

1

2

(
~∇φ
)2

+ VT (φ)

)
, (E.2)

with π denoting the conjugate momentum of the �eld φ. From the path-integral
one can infer the transition rate to tunnel from the false to the true vacuum. At
�nite temperature T it is possible to de�ne the transition rate by considering a
Boltzmann distribution of particles on the left side of the barrier where the false
vacuum is located. One can then relate Γ/V with the probability current per unit
volume through the barrier as follows

Γ

V
=

1

Z

∫
dπdφ(2π~)−1

(
exp(−β(

1

2
π2 + V (φ)))

)
δ(φ− φm)p θ(p), (E.3)

where the step function forbids particles coming from the right, that is there is only
�ux towards increasing �eld values, while the delta function selects the saddle point
at the barrier as we are ultimately interested in computing the probability of �nding
a particle on top of the barrier 1. A saddle point approximation yields the nucleation
rate per unit volume (See some review for the details)

Γ

V
∼ T 4

(
S3

2πT

)3/2

exp (−S3/T ), (E.4)

1The non-trivial saddle point is also referred to as instanton.
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where S3 denotes the three dimensional Euclidean action, also known as the in-
stanton action due to the fact that the dominant contribution to Γ/V comes from
a non-trivial saddle point solution. The dimensional reduction results as a conse-
quence of the fact that at �nite temperature the Euclidean time, given by β = 1/T ,
is no longer a relevant scale and the system is dimensionally reduced: At low tem-
peratures T → 0 such that β = 1/T → ∞ and β can essentially be treated like
an additional spatial direction. At higher temperatures, β decreases and the four-
volume is compressed until a point is reached where the solutions to the equation
of motion of φ no longer respect the four-dimensional rotational symmetry featured
at low temperatures but a three-dimensional rotational symmetry.
In that case the dynamics of φ becomes independent of T and one may rewrite the
Euclidean action

SE[φ] = β

∫

x

LE ≡ βS3d[φ], (E.5)

where the integration over the euclidean time could be easily performed yielding the
factor β.
The 3d Euclidean action is de�ned as

S3d = 4π

∫ ∞

0

dr r2

(
1

2

(
dφ

dr

)2

+ V (φ(r))

)
, (E.6)

where r denotes the radial coordinate given that we assumed spherical �eld con-
�gurations as they minimize S3. The spherical symmetry suggests to refer to such
�eld con�gurations as bubbles. At the stationary point, they satisfy the following
equation of motion

d2φ

dr2
+

2

r

dφ

dr
=
dV

dφ
, (E.7)

with the boundary conditions

dφ

dr

∣∣∣∣
r=0

= 0 and lim
r→∞

φ(r) = 0, (E.8)

where the last condition implies that the metastable minimum sits at φ = 0. The
above equation admits an intuitive interpretation if we assume for a moment that
r → t, φ→ x and V → −U . In that case one is led to study a well known classical
problem of a particle in a valley with a friction term. The idea is that the particle
starts at t = 0 near the top of the upper hill and rolls towards the top of the other,
lower hill. Due to the friction term the particle has to be placed at t = 0 somewhere
above the hill that it is rolling towards. Back to the problem of the decay of a
metastable vacuum due to thermal �uctuations, this means conversely that the true
vacuum has to be lower than the metastable one, which in turn implies that the
universe will not transition at the critical temperature Tc, where both minima are
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Figure E.1: Pro�le of the critical bubble, characterized by Eq. (E.10) using Rc = 10
and `w = 1. For values r < Rc, the bubble φ(r) = φb, while for larger
values, φ(r), motivating to refer to these con�gurations as bubbles.

degenerate but will �rst supercool to some lower temperature Tn before transitioning
to the true vacuum. The equation of motion Eq. (E.7) admits the trivial solution
φ = 0. In order to determine the non-trivial instanton solution one usually employs
the so-called shooting method 2 is sometimes also referred to as the critical bubble .
Let us assume in the following a quartic potential such as the one given by the high-
temperature expansion of the Higgs-potential in Eq. ??. Such a potential admits a
non-trivial analytical solution for the equation of motion of the �eld φ. To see this
it is convenient to rescale the potential in the following form

V (φ) =
λ

4
φ2 (φ− φb)2 . (E.9)

for which the Eq. E.7 admits the following analytical solution

φ =
φb
2

(
1− tanh

(
r −Rc(T )

`w

))
, (E.10)

where the radius of the critical bubble, Rc, carries the temperature dependence of
φ and is de�ned as the radius of the bubble that extremizes S3, and `w = 1/M(Tc).
Indeed, assuming the so-called thin-wall approximation, where Rc � `w, it is pos-
sible to check that for r < Rc, φ ≈ φb, while for r > Rc, φ → 0. Fig. E.1 shows a
typical behaviour of φ(r). Let us stress that the above scenario is over-simpli�ed. In
particular, we have neglected the expansion of the universe in order to determine the

2Alternatively, the non-trivial solution of Eq. (E.7).
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dynamics of φ. This corresponds to the assumption that the duration of the phase
transition is much shorter than a Hubble time H−1

n , where the Hubble parameter
captures the expansion of the universe. In simple words, the phase transition is over
before the universe has had signi�cant time to expand. 3 For more realistic scenar-
ios one has to employ the so-called shooting method in order to solve the instanton
equation of motion Eq. (E.7).

3For slow phase transitions where the expansion of the universe is relevant, we can already expect
that the expansion of the universe will further slow down the phase transition.
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F Hydrodynamics of expanding bubbles

for fast PTs

A �rst-order phase transition proceeds through the process of bubble nucleation.
Here, we explain how bubbles nucleate and expand in a plasma of particles.
We expect bubbles of the broken phase to grow as this phase is energetically favored
and we therefore naively expect that at some temperature Tn the universe should be
covered by bubbles of the true phase for the phase transition to �nalize. Ultimately,
we will therefore be interested in determining the fraction of the universe covered
by bubbles of the true phase at a given point in time. Crucially, this will rely not
only on the rate of bubble nucleation but also on their growth. This section will
therefore be devoted to the growth of bubbles taking into account interactions with
Standard Model particles. Before jumping into the details let us �rst think about the
concepts that might be relevant to discuss such dynamics. As a reminder, to simplify
things, we are for now focussing on fast phase transition, where the expansion of
the universe can be neglected. In order for a bubble to expand, the pressure exerted
on the interior of the bubble has to exceed the pressure exerted on the exterior of
that bubble. The di�erence in pressure is caused by the fact that the stable phase
"carried" by the bubbles is energetically favored and one can therefore expect that
this will cause the bubble to grow in order to complete the phase transition. Indeed,
we can approximate the total pressure by

p =
π2

90
ge�T

4 − VT (φ4). (F.1)

As expected, we have two contributions, one due to the relativistic plasma of par-
ticles which is modeled as radiation and the other one due to the potential. We
also see that in order for the bubble to expand, the potential value at the broken
phase V (φb) has to be smaller than the one at the metastable phase V (φ = 0), as
expected. The e�ective number of relativistic degrees of freedom is determined as

ge� =
∑

i=boson

gi

(
Ti
T

)4

+
7

8

∑

i=fermion

gi

(
Ti
T

)4

, (F.2)

where gi and Ti are the degrees of freedom and the temperature of the particle i,
respectively. Assuming that the full energy-momentum tensor of the scalar �eld φ
driving the phase transition and the plasma is conserved one can derive

�φ+ V ′T (φ) = −ηT (φ)uµ∂µφ, (F.3)
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which describes the interaction of φ with a plasma of Standard Model particles,
which is assumed to be initially in equilibrium and Boltzmann distributed, before
bubbles start nucleating and growing. The above equation of motion resembles the
standard Klein-Gordon equation with a friction term ηT (φ)uµ∂µφ caused by the
plasma of particles that increases with the velocity of the bubble wall. Initially the
bubble expands in an accelerated manner until an equilibrium is reached between
the expanding bubble wall and the plasma such that the wall keeps growing in
a steady-state at a constant terminal velocity in the so-called non-runaway case.
Alternatively, it is also possible that the bubble runs away and not reach a constant
terminal velocity. This possibility is known as run-away scenario. Hereby, ηT =
η dm(φ)2/dφ, where η is some proportionality factor which might depend on the
�eld value φ, the temperature T and the �uid γ factor, measures the departure
from equilibrium of the Standard Model plasma due to its interaction with the
bubbles. There are two common choices for ηT employed in numerical simulations,
ηT ≈ const. [324] and ηT ≈ η̂φ2/T , where η̂ is a dimensionless constant. Moreover,
uµ denotes the four-velocity which in the rest frame of the universe and assuming
the bubbles to be macroscopic objects such that their walls can be approximated to
be planar is given by

uµ = γw(1, 0, 0,−vw), (F.4)

where additionally we assumed the wall to be moving in the z-direction at constant
speed. The equation of motion Eq. (F.3) then takes the following form

−∂2
zφ(t, z)− V ′T (φ) = −ηT (φ)γwvw∂zφ. (F.5)

In order to determine the fraction of the universe that is covered by bubbles, we
are, as already mentioned, not only interested in the nucleation rate of an individual
bubble but also in their size. The size will necessarily depend on the wall speed,
i.e. the speed at which the radius of the bubble is growing. Concretely, assuming
perfect spherical symmetry the volume of an individual bubble at time t nucleated
at time t′ is given by

V(t− t′) =
4π

3
v3
w(t− t′)3, (F.6)

where the wall speed vw is set by Eq. (F.5). Let us stress again that we are assuming
a fast phase transition, such that the scale factor of the universe remains roughly
constant. Our objective is to solve Eq. (F.5) in order to determine the wall speed
vw. The above di�erential equation can be rewritten by multiplying both sides with
∂zφ and integrating over z such that

∫
dz

(
1

2
∂z(∂zφ)2 − dVT

dφ
∂zφ

)
=

∫
dz ηT (φ)γwvw(∂zφ)2. (F.7)

Performing the integral over z yields

VT (z = +∞)− VT (z = −∞) ≡ ∆VT ≈ γwvw

∫
dzηT (φ)(∂zφ)2, (F.8)
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where we have crucially assumed that the temperature across the wall is constant,
i.e. there is no z-dependence on the temperature. This assumption, which is valid
for weak phase transitions, allows us to recast dVT (φ)/dφ∂zφ as dVT (φ)/dz. An
implicit dependence of the potential on z via the temperature T would have led
to an additional term (dVT (φ)/dT )∂zT that one has to consider. Note that the
condition that the temperature remains approximately constant across the wall is
a necessary condition for the wall speed to be constant. The boundaries at z = ∞
and z = −∞ correspond to the thin-wall approximation. In order to determine vw
to compute the size of a bubble to �nally access the fraction of the universe in the
stable phase one has to solve Eq. (F.8), where one assumes that the pro�le of φ is
given by solving the critical bubble equation Eq. (E.7). Strictly, speaking one would
have to solve the complete set of coupled di�erential equations that one can derive
from the energy-momentum tensor for the �uid-�eld system. This is, however, very
challenging in practice [325, 326].The fractional volume of the universe in the stable
phase at time t′+ dt′ is given by the number of bubbles nucleated in a time-interval
[t′, t′+ dt′] times the volume of a bubble nucleated at time t′. One can also think of
the fractional volume as the probability P (t) for a point in space to remain in the
false vacuum. As the universe is large the probability is an accurate description for
the actual volume of the universe in the metastable phase. We therefore have for
the fractional volume of the universe in the metastable phase

h(t) = 1−
∫ t

tc

dt′
4π

3
v3
w(t− t′)3 Γ(t′)

V , (F.9)

when no overlaps between bubbles are taken into account. For the more complicated
case where overlaps are taken into account one �nds

h(t) = exp

(
−
∫ t

tc

dt′
4π

3
v3
w(t− t′)3 Γ(t′)

V

)
. (F.10)

At early times one can taylor expand the exponential in order to arrive at Eq. (F.9),
which is what one would expect as bubbles have not yet had su�cient time to grow
and collide with each other. Furthermore, in the late-time limit t → ∞, h(t) → 0,
which indicates that the universe has fully transitioned to its true vacuum. To
compute h(t) one would need to solve vw from the �eld-�uid dynamics and insert
Eq. (E.4). In practice, however, vw is assumed to be an additional input parameter
that needs to be �xed by hand. The above integral can be solved using a steepest
descent method. Physically, this means that h(t) changes so rapidly that only values
of S(t′) = S3(t′)/T (t′) near t′ = t contribute such that we may expand S(t′) in
powers of t− t′. Assuming further that the time evolution of the nucleation rate is
dominated by the exponential we may then write

Γ(t) = ΓN exp (−S(tN)− S ′(tH)(t− tN)), (F.11)

where tN is the nucleation time and is de�ned as the instant in time where one
bubble is nucleated per Hubble horizon, i.e.

ΓN = H4 (F.12)
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and

e−S(tN ) = 1. (F.13)

One can think of the nucleation time as the onset of the phase transition 1.
Another relevant time, which sets the end of the phase transition, is the time at
which

h(tf ) =
1

e
. (F.14)

This means that at this reference time roughly 34% of the universe is still in the
metastable phase. Using tf as a reference time we can write the fractional volume
in the metastable phase as

h(t) = exp
(
eβ(t−tf )

)
, (F.15)

where we introduced the phase transition rate parameter β de�ned as

β = −dS(t)

dt

∣∣∣
t=tf

. (F.16)

The fractional volume of the universe in the metastable phase decreases as the
exponential of an exponential and therefore the reference time tf is a valid time to
mark the end of the phase transition. The reference time tf also admits a di�erent
interpretation besides being the time at which 66% of the universe is covered by
bubbles: It also marks the time when the rate of the change of h(t) has a maximum
that is

d

dt

(
dh(t)

dt

) ∣∣∣
t=tf

= 0, (F.17)

which can be easily checked by using Eq. (F.15). The relevant length scale in
quantifying the gravitational wave spectrum produced during a phase transition is
set my the mean bubble separation, which can be derived from the bubble number
density. The total number of bubbles can be quanti�ed via

Nbubbles(t) = V
∫
dt′

Γ(t′)

V h(t′), (F.18)

1A more accurate de�nition of the nucleation time with its associated nucleation temperature is
given by the integral condition

∫ tn

tc

Γ/V

H3
= 1.

For fast phase transitions Eq. F.12 is an accurate approximation, however for slow phase transi-
tions, that typically tend to be stronger and therefore have a higher chance to source detectable
gravitational waves, the above condition has to be taken into account
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where we are multiplying the nucleation rate Γ with the fractional volume h because
bubbles can only nucleate in the metastable phase. Close to the end of the phase
transition, we have argued that Eq. (F.15) is a reliable estimate of the fractional
volume. Moreover, we may assume that the time evolution of the nucleation is
dominated by the exponential decay term similarly to Eq. (F.11). In that case the
total number of bubbles simpli�es to

Nbubbles(t) =

∫ t

dt′ Γ(tf )e
−S(tf )+β(t−tf )h(t′) = Γ(tf )

e−S(tf )

β

∫ t

dt′
dh(t′)

dt′

(F.19)

= Γ(tf )e
−S(tf ) 1

β
(1− h(t)) . (F.20)

At late times, at the end of the phase transition h(t) tends to zero, such that the
�nal number density is given by

nbubbles =
Nbubbles

V =
Γ(tf )e

−S(tf )

V
1

β
(F.21)

The above relation can be further simpli�ed by making use of the de�nition of the
reference time tf which implies the following relationship

Γ(tf )

V e−S(tf ) =
β4

3!

3

4π

1

v3
w

. (F.22)

The number density of bubbles towards the end of the phase transition then takes
the following form

nbubbles =
β3

8πv3
w

≡ 1

R3
∗
, (F.23)

where we introduced the mean bubble separation R∗, which we will show later is
relevant in setting the peak frequency of the gravitational wave spectrum.
So far we have introduced two reference times, the nucleation time tN and the time
tf at which roughly 34% of the vacuum is still in the metastable phase. It is,
however, common to introduce a third time, the so-called percolation time, which
lies very close to the reference time tf and can therefore also be used as an estimate
for the end of the phase transition. The percolation time is also commonly used
in the literature to quantify the spectrum of gravitational waves that follow from a
�rst-order phase transition.
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G Gravitational Waves - A primer

Gravitational Waves are perturbations of space-time around some background which
justi�es the common statement that they can be interpreted as ripples of space-
time. These perturbations can be shown to satisfy a wave equation, hence the name
gravitational wave. For this purpose consider a �at background metric η and some
small perturbation on top of it such that the actual space-time metric g is given by

gµν = ηµν + hµν , (G.1)

with hµν � 1. Assuming such a background it is possible to derive a wave equation
for the components of h that satis�es

�hµν = −16πT µν , (G.2)

where the perturbations are transverse, ∂µhµν = 0, and traceless hµµ = 0 as a result
of the freedom one has in choosing a coordinate system 1. The gauge constraints
following from the transverse and the tracelessness condition reduce the number of
degree of freedom of the metric to two physical propagating ones, typically referred
to as 'plus' (+) and 'cross' polarizations (×), corresponding to a contraction of
space in one direction and an expansion in the other one. The global space-time of
our universe is well approximated by the FLRW metric. Let us therefore focus on
small perturbations of such a space-time. Of particular interest is the observation
that gravitational waves carry away radiation and therefore are a source of energy-
momentum described by

TGW
µν =

1

32πG
〈∂µhij∂νhij〉 (G.3)

As observers on earth we are interested in the frequency-dependent power spectrum
of the energy density of gravitational waves. The power spectrum quanti�es the dis-
tribution of the energy density carried by gravitational waves per unit time in terms
of the frequency components contributing to the total gravitational wave signal. The
total energy density is then found by integrating over all spectral components.
As a �rst step in determining the power spectrum of a gravitational wave signal we
determine the energy density of a gravitational wave given by

ρGW =
1

32πG
〈ḣ2

ij〉, (G.4)

1In more technical words the traceless-transverse condition follows from choosing the Lorentz
Gauge, which is actually a class of gauges (i.e. one still has some "additional" class of freedom
when choosing the Lorentz gauge). See [327] for details.
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which follows from the µ = ν = 0 component of the energy-momentum tensor. A
spatial Fourier transform of the metric allows to quantify the contribution of a given
frequency interval df to the total energy density ρGW . It is, however, more standard
in the gravitational waves literature, to give the spectrum of the energy density per
logarithm of the frequency f , i.e.,

dρGW
d ln f

=
π

4G
f 3Sh(f), (G.5)

where Sh(f) is the one-sided strain power spectral density de�ned for positive fre-
quencies f > 0. Knowledge of Sh(f) allows to derive another key quantity of interest,
the amplitude h(f) of a gravitational wave spectrum at a given frequency f , by sim-
ply considering the square root of the strain power spectral density, h(f) =

√
Sh(f).

Rather than working with the gravitational wave energy density, it is more conve-
nient to introduce the fractional energy density

Ω =
ρGW
ρtot

(G.6)

of the gravitational wave signal with respect to the total energy density of the
universe. The spectral density related to the fractional energy density is given by

dΩGW

d ln f
=

1

ρtot

dρGW
d ln f

=
2π2

3H2
f 3Sh(f), (G.7)

where H is the Hubble constant of the universe which parametrizes its total energy
content as follows

H2 =
8πGρtot

3
. (G.8)

The spectral fractional energy density introduced in Eq. (G.7) is also referred to as
the gravitational wave power spectrum. In the following we are going to use the
following notation to refer to the power spectrum

dΩGW

d ln f
≡ ĥ2ΩGW, (G.9)

where ΩGW should not be confused with the fractional energy density Ω and ĥ de-
notes the dimensionless Hubble constant de�ned as ĥ = H/100km/(s·Mpc). Finally,
when studying the gravitational wave power spectrum in an expanding Friedmann-
Lemaître-Robertson-Walker (FLRW) universe the frequencies of the gravitational
wave spectrum are redshifted due to the expansion of the universe. In particular,
the peak frequencies today are related to the peak frequencies at emission via

fpeak =
a∗
a
f ∗peak, (G.10)

where a∗ and a are the scale factor of the universe at the time of emission and today,
respectively. Hence, given a speci�c expansion history of the universe fpeak and f ∗peak
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can be calculated.
Of interest to us in this thesis is the electroweak epoch. If one assumes that the
universe transitioned into radiation-domination right after the phase transition and
has continuously expanded, one obtains

fpeak =
h∗
H∗

f ∗peak = 1.65× 10−5 Hz
( g∗

100

)1/6
(

Treh
100GeV

)
f ∗peak
H∗

, (G.11)

where g∗ denotes the relativistic degrees of freedom at the time of production and
Treh is the reheating temperature, which can be determined from energy conservation
a3
rehρrad(Treh) = a3

∗ (ρrad(Tp) + ∆V ), such that

Treh =

(
a∗
areh

)3/4(
30ρrad(Tp)

g∗π2

(
1 +

∆V

ρrad(Tp)

))1/4

' Tp (1 + α(Tp))
1/4 ,

(G.12)

where Tp is the percolation temperature that marks the end of the cosmological
phase transition, ρrad(Tp) is the radiation energy density evaluated at percolation
temperature, ∆V denotes the vacuum energy at percolation temperature.
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H E�ciencies of gravitational wave

production processes

The gravitational wave spectra depend on e�ciency factors that describe the frac-
tions of vacuum energy transferred into the dynamics of bubbles. κcoll denotes the
fraction stored in the bubble wall, while the energy converted into bulk motion of the
�uid are characterized by κsw and κturb. In this appendix, we specify these factors.
To do so, we introduce the quantities, denoted by α∞ and αeq, analogous to α,

α∞ =
∆PLO
ρrad

=
∆m2T 2

24ρrad
, αeq =

∆PNLO
ρrad

=
g2∆mV T

3

24ρrad
. (H.1)

Here ∆m2 =
∑

i ciNi∆m
2
i is the squared mass di�erence between the symmetric

and broken phases, weighted by Ni the number of degrees of freedom for particle
species i and factors ci = 1 for a boson and ci = 1/2 for a fermion, while g2∆mV =∑

i g
2
iNi∆mi is the mass di�erence weighted by the gauge coupling constant gi.

∆PLO and ∆PLO correspond to the leading and the next-to-leading order friction
forces from the plasma around the bubbles [328]. For the SM particle content, these
quantities yield

α∞ ' 4.8 · 10−3

(
φ∗
T∗

)2

, αeq ' 7.3 · 10−4

(
φ∗
T∗

)
. (H.2)

The e�ciency factor κcoll is the fraction of the energy stored in the bubble wall,
namely it is de�ned by κcoll = Ewall/EV , where Ewall is the energy of the bubble wall
and EV is that of the vacuum energy. More speci�cally, κcoll can be expressed as

κcoll =





γeq
γ∗

[
1− α∞

α

(
γeq
γ∗

)2
]

γ∗ > γeq

1− α∞
α

γ∗ ≤ γeq

, (H.3)

where γeq and γ∗ stand for the Lorentz factors for the terminal velocity of the wall
and

γeq =
α− α∞
αeq

, γ∗ =
2

3

R∗
R0

. (H.4)

Here, r0 is the initial bubble radius which is given by

r0 =

[
3S3

4πρvac

] 1
3

. (H.5)
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The remnant αe� = α(1 − κcoll) is transferred into the bulk motion of bubbles
which produces gravitational waves from sound wave and turbulence. Note that for
a large α, κcoll tends to be unity and then αe� ' 0, so that gravitational waves from
the bulk motion of bubbles are suppressed.
The e�ciency factor κv is de�ned by [295]

κv(α, vw) =
3

ρvacv3
w

∫ vw

cs

w(ξ) ξ2 v(ξ)2

1− v(ξ)2
dξ, (H.6)

where cs = 1/
√

3 is the speed of sound and w(ξ) is the plasma enthalpy pro�le,

w(ξ) = w0 exp

[
(1− c−2

s )

∫ v(ξ)

v0

dv′
µ(ξ, v′)

1− v′2

]
. (H.7)

Here, we de�ned the Lorentz boost factor

µ(ξ, v) =
ξ − v
1− ξv , (H.8)

and the plasma velocity pro�le v(ξ) which is obtained from the di�erential equation

2v

ξ
=

1− ξv
1− v2

[
c−2
s µ(ξ, v)− 1

] ∂v
∂ξ
. (H.9)

Depending on the initial conditions, the solutions to (H.9) are classi�ed into three
di�erent types [295]: (i) de�agrations, (ii) detonations and (iii) hybrids. (i): The
bubble-wall velocity is subsonic, i.e., vw < cs. There is the �uid with non-zero
velocity outside the bubble wall. The static �uid does not collide with the wall. In
such a case, the gravitational wave signal from sound waves tends to be suppressed [?
]. (ii): The bubble wall velocity is supersonic (vw > cs). The active �uid is inside
the wall, while the wall hits the �uid at rest. Hence, the strong gravitational waves
from sound waves and turbulence could be produced. (iii): The bubble wall moves
at a supersonic speed, but smaller than the Chapman-Jouguet detonation velocity
vJ which is de�ned by

vJ =

√
2αe�/3 + α2

e� +
√

1/3

1 + αe�
. (H.10)

This case is a combination of the two cases (i) and (ii), namely the wall is inside the
active �uid.
The �tting analysis to the numerically evaluated e�ciency factor tells us that for
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the three di�erent cases, (H.6) can be well described by the following formula [295]:

κv(αe�, vw) =
αe�
α

×





c
11/5
s κAκB

(c
11/5
s −v11/5

w )κB+vwc
6/5
s κA

for vw <∼ cs

κB + (vw − cs)δκ+ (vw−cs)3

(vJ−cs)3 [κC − κB − (vJ − cs)δκ] for cs < vw < vJ

(vJ−1)3v
5/2
J v

−5/2
w κCκD

[(vJ−1)3−(vw−1)3]v
5/2
J κC+(vw−1)3κD

for vJ <∼ vw

,

(H.11)

where the e�ciency factors for di�erent wall-velocity regions read

κA '
6.9αe�

1.36− 0.037
√
αe� + αe�

v6/5
w (vw � cs), (H.12)

κB '
α

2/5
e�

0.017 + (0.997 + αe�)2/5
(vw = cs), (H.13)

κC '
√
αe�

0.135 +
√

0.98 + αe�
(vw = vJ), (H.14)

κD '
αe�

0.73 + 0.083
√
αe� + αe�

(vw = 1). (H.15)

In (H.11) for cs <∼ vw < vJ , the e�ciency factor κv depends on δκ which is the
derivative of κv with respect to vw at vw = cs, approximately given by

δκ ' −0.9 log

( √
αe�

1 +
√
αe�

)
. (H.16)
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I Result tables for the gravitational wave spectra

λ6 φc/Tc α β̃ R·GeV H(Tp)/GeV Tc/GeV Tn/GeV Tp/GeV Treh/GeV SNR λH3/λH3,0 λH4/λH4,0

58 1.02 0.00274 46400 3.40 · 109 1.86 · 10−14 116 115 115 115 1.97 · 10−20 1.67 5.05
64 1.26 0.00436 19200 8.91 · 109 1.71 · 10−14 112 111 110 111 6.37 · 10−15 1.73 5.43
72 1.50 0.00655 8950 2.12 · 1010 1.54 · 10−14 107 105 105 105 2.33 · 10−12 1.81 5.88
82 1.83 0.0110 4260 5.63 · 1010 1.22 · 10−14 97.8 93.6 93.2 93.5 4.06 · 10−10 1.90 6.42
93 2.03 0.0156 2520 1.05 · 1011 1.11 · 10−14 96.1 89.5 88.9 89.3 9.84 · 10−8 2.01 7.02
101 2.20 0.0215 1670 1.82 · 1011 9.61 · 10−15 92.4 83.4 82.6 83.0 3.66 · 10−6 2.08 7.41
104 2.27 0.0251 1400 2.35 · 1011 8.92 · 10−15 90.7 80.4 79.5 80.0 0.0000714 2.11 7.58
112 2.42 0.0365 917 4.27 · 1011 7.48 · 10−15 87.5 73.8 72.6 73.3 0.000267 2.17 7.93
124 2.68 0.0846 394 1.49 · 1012 4.98 · 10−15 82.1 60.6 58.7 59.9 0.00541 2.27 8.49
130 2.84 0.232 127 7.24 · 1012 3.18 · 10−15 78.9 48.6 45.6 48.0 1.40 2.32 8.79
132 2.87 0.344 67.0 1.61 · 1013 2.72 · 10−15 78.4 44.5 41.2 44.3 126 2.33 8.85
132.2 2.89 0.518 21.7 5.69 · 1013 2.37 · 10−15 78.0 41.8 37.3 41.4 379 2.33 8.88
132.6 2.90 0.817 19.3 1.22 · 1014 2.07 · 10−15 77.8 39.1 33.3 38.6 675 2.34 8.90
132.9 2.90 0.966 19.3 1.74 · 1014 1.99 · 10−15 77.8 38.2 32.0 37.9 811 2.34 8.90

Table I.1: Summary of results for the φ6 modi�cation of the potential.
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λln φc/Tc α β̃ R·GeV H(Tp)/GeV Tc/GeV Tn/GeV Tp/GeV Treh/GeV SNR λH3/λH3,0 λH4/λH4,0

0.36 1.03 0.00286 37400 4.13 · 109 1.90 · 10−14 117 116 116 116 2.05 · 10−14 1.58 4.19
0.4 1.27 0.00450 16400 1.03 · 1010 1.74 · 10−14 113 111 111 111 5.51 · 10−12 1.65 4.53
0.51 1.76 0.0102 4290 5.08 · 1010 1.35 · 10−14 103 98.3 97.8 98.1 6.63 · 10−8 1.82 5.43
0.58 2.03 0.0164 2210 1.20 · 1011 1.10 · 10−14 96.5 89.2 88.5 88.8 7.75 · 10−6 1.92 5.99
0.64 2.25 0.0259 1280 2.58 · 1011 8.90 · 10−15 91.6 80.3 79.4 79.9 0.000429 2.01 6.44
0.65 2.27 0.0273 1200 2.80 · 1011 8.70 · 10−15 91.0 79.5 78.5 79.0 0.0640 2.02 6.51
0.66 2.32 0.0304 1070 3.33 · 1011 8.26 · 10−15 89.9 77.5 76.4 76.4 0.00159 2.04 6.60
0.71 2.51 0.0503 628 7.20 · 1011 6.47 · 10−15 85.9 68.9 67.4 68.2 0.064 2.11 6.97
0.735 2.59 0.0680 464 1.13 · 1012 5.61 · 10−15 84.2 64.3 62.5 63.6 0.448 2.14 7.13
0.76 2.67 0.100 313 2.00 · 1012 4.69 · 10−15 82.5 58.9 56.8 58.2 4.04 2.17 7.30
0.765 2.70 0.116 269 2.49 · 1012 4.38 · 10−15 81.9 57.0 54.7 56.2 8.42 2.18 7.34
0.7825 2.77 0.196 147 5.72 · 1012 3.48 · 10−15 80.4 50.8 48.0 50.2 75.8 2.20 7.47
0.8 2.85 1.53 19.8 3.48 · 1014 1.83 · 10−15 78.8 36.3 28.8 36.4 383 2.23 7.61

Table I.2: Summary of results for the logarithmic modi�cation of the potential.
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λexp/1010 φc/Tc α β̃ R·GeV H(Tp)/GeV Tc/GeV Tn/GeV Tp/GeV Treh/GeV SNR λH3/λH3,0 λH4/λH4,0

1.3 1.05 0.00292 65200 2.67 · 109 1.68 · 10−14 110 110 109 110 1.62 · 10−15 2.00 8.72
1.5 1.17 0.00362 44500 4.00 · 109 1.65 · 10−14 109 108 108 108 2.14 · 10−14 2.02 8.86
1.6 1.24 0.00406 35400 5.12 · 109 1.62 · 10−14 108 107 107 107 9.80 · 10−14 2.04 8.96
2.3 1.51 0.00630 14900 1.33 · 1010 1.48 · 10−14 104 103 103 103 3.11 · 10−11 2.11 9.44
3.5 1.76 0.00889 9470 2.34 · 1010 1.32 · 10−14 99.9 97.3 97.0 97.3 9.46 · 10−10 2.19 9.97
5.4 1.99 0.0129 4180 6.03 · 1010 1.16 · 10−14 95.7 91.3 90.9 91.2 1.83 · 10−7 2.27 10.5
8.2 2.21 0.0184 2490 1.18 · 1011 9.97 · 10−15 91.4 84.7 84.1 84.5 7.28 · 10−6 2.36 11.1
14.5 2.51 0.0330 1230 3.15 · 1011 7.58 · 10−15 85.6 74.1 73.2 73.8 0.00121 2.48 11.9
23.8 2.78 0.0703 573 9.74 · 1011 5.25 · 10−15 80.3 61.9 60.5 61.5 0.259 2.58 12.6
33 2.95 0.161 258 3.16 · 1012 3.59 · 10−15 77.1 51.3 49.1 51.0 21.0 2.65 13.0
33.8 2.97 0.191 213 4.14 · 1012 3.33 · 10−15 76.1 49.3 47.0 49.1 44.2 2.65 13.0
35.4 3.00 0.248 161 6.09 · 1012 2.99 · 10−15 75.2 46.6 44.0 46.5 112 2.66 13.1
39 3.05 0.553 45.8 2.86 · 1013 2.24 · 10−15 74.8 39.8 36.1 40.3 846 2.68 13.2
40.2 3.07 1.34 18.5 2.25 · 1014 1.77 · 10−15 76.6 34.6 28.9 35.8 787 2.69 13.2

Table I.3: Summary of results for the exponential modi�cation of the potential.
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