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0. How big can a separable ideal of the algebra of (regular Borel)
measures on the locally compact group G be? The question can be put more
generally. Let @ be a normed space on which the locally compact group G
has a semi-continuous representation (as isometries). Suppose that ¥ is a G-
invariant subspace of ®. How big is ¥? A fairly elementary arguments shows
that if ¥ is separable, then ¥ consists only of elements of ® on which the
operation of G is norm-continuous. A more complicated argument shows
that if ¥ contains an element on which the operation of G is not norm-
continuous, then ¥ has dimension at least c¢. In the case of abelian G and ¥
an ideal in the algebra of regular Borel measures on G, the analogous
conclusion holds with “measure norm” replaced by “spectral radius norm”: if
¥ is not contained in the radical of the absolutely continuous measures, then
¥ has dimension at least ¢ in spectral radius norm. Related results for the
Fourier-Stieltjes algebra B(G) of a non-abelian group G are given.

1. Introduction and discussion of results. Let G be a locally compact
group and let T be a lower semi-continuous representation of G on the
normed space ®, that is, the mapping x + T(x) is a representation of G as
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isometric linear mappings from @ into @ such that, for each ue® and ¢ > 0,
the set

{xeG: ||T(x)u—pll > &}

is open. We denote by &, the set of ue® such that x —T(x)p is a
continuous mapping from G to @, where @ has the norm topology. Then @,
is a closed invariant subspace of @. We prove in this note that @, contains
all elements pe @ such that the orbit {T(x)u: xeG} is separable. Further-
more, for each ued®, either pe®, or the orbit generates a subspace of
topological dimension at least ¢. Those two results are established in Sec-
tion 2.

Our method is applied to the space M (G) of regular Borel measures on
G with the total variation norm in Section 3, where we improve upon a
result of Larsen [14] and Tam [18] (see also Glicksberg [8]). Our proof is
different (in that we do not use measure theory). In Section 3 we also give
two analogous results for the abelian case, using the norms of (i) the
supremum of the Fourier—Stieltjes transform as norm and (ii) the spectral
radius norm.

In Section 4, we consider translation-invariant subspaces of L*(G). In
Section 5, we show how our main Lemma 2.1 can be sharpened in the case
of @ = M(G) and apply that sharper version to prove the spectral radius
result mentioned above. In Section 6 we consider the algebra B(G), when G
is a non-abelian group, and give related results.

The result of Larsen and Tam implies that separable ideals of M (G) are
contained in ! (G). That suggests the following version of the problem: what
subalgebras of M (G) have separable ideals that are not contained in L!'(G)?
The answer for some classes of algebras is “none”. Examples of such classes
are (1) algebras generated by all Riesz products based on a fixed dissociate
set and (2) algebras generated by measures on a compact independent set.
For background information relating to those two situations see, e.g., [10],
Chapter 7 (for Riesz products), and [10], Chapter 6 (for measures on an
independent set). We do not know what the situation is for algebras
generated by appropriate sets of infinite convolutions.

The question “Must a translation-invariant subspace of M(G) have
dimension ¢?” was raised by Professor Ryll-Nardzewski and communicated
to us by Professor Hartman. We are grateful to them both. We are also
grateful to Professor E. E. Granirer for bringing to our attention what we
have called Lemma 6.2 and to Professor Hartman again for his careful
reading of our manuscript and his helpful comments.

Since the groups involved in this note are not, necessarily abelian, group
operations will generally be written multiplicatively.
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2. Lower semi-continuous representations. The principal tool in this
section is the following observation:

LemMA 2.1. Let G be a locally compact group and let T be a lower semi-
continuous representation of G on the normed space ®. Let pue ® be such that
x +— T (x)p is not norm-continuous. Then there exists ¢ > 0 such that

H = {x: [IT(x)p—pll > &}

is an open dense subset of G.

Proof. That H is an open set follows from the definition of semi-
continuity. Since x +— T (x)u is not continuous, there exists 6 > 0 such that
limsup || T (x) u—pyl| > 6.

x =0
Let ¢ =/3. Fix yeG. If || T(y) p—pl| > ¢, there is nothing to prove. Thus
suppose that ||T(y)u—pu|| <e. Let U be a neighborhood of y. Let V be a
neighborhood of the identity such that y¥ = U. Then there exists xe V such
that ||T(x)u—pl| > 0. Since T maps G onto isometries of &, we have

IT(yx) =T () pll = 1T (x) p— .

Therefore

ITx)p—pll ZITGX) p=TE) pll =T p—pll = 6—e >e.
That H is dense follows at once. That completes the proof of Lemma 2.1.

Remarks 2.2. (i) A stronger version of Lemma 2.1 can be established
using measure theory: there exists ¢ > 0 such that H is open and such that
the complement of H is locally null.

(i) Suppose that S is a continuous anti-representation of G on a Banach
space X as linear isometries of X, that is, for each xe X the mapping
g—3S(g)x is a continuous mapping of G into X when X has the norm
topology. Then the mapping g +— T(g) = S*(g) is a semi-continuous represen-
tation of G on @ = X* That follows because for each ue® the mapping
g —lIT(g)p—ull is a supremum of continuous functions, the functions being

g —|<u, S(g)x>—<u, x|,
and the supremum being taken over elements xe X of norm one.

(1)) In the case where X = C,(G), the continuous complex-valued func-
tions on G that vanish at infinity with the supremum norm, and S(x) =1,
where t, f(y) = f(xy), feCo(G), x, yeG, it is then true that T(x)u =d, *pu
for each ue M(G) = C,(G)*, and M(G), = L (G).

We now give our more general version of the result of Larsen [14] and
Tam [18].
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TueoreM 2.3. Let G be a non-discrete locally compact group, T a lower
semi-continuous representation of G as linear isometries on the normed space @,
and ¥ a G-invariant subspace of ®. If W is separable, then ¥ < ®,.

Proof. Suppose that ¥ ¢ &.. Then there exists pe ¥ \®,. We claim that
there exist ¢ > 0 and a non-countable set E = G such that x, yeE, x #y
imply || T (x) u— T (y) ¢| > &. The non-separability of ¥ will follow immediate-
ly from that claim.

To prove the claim, let ¢ > 0 be given by Lemma 2.1. Let C be the set of
all subsets E of G such that x, yeE, x # y imply ||T(x)u— T (y) y| > ¢. We
order C by inclusion and use Zorn’s Lemma to choose a maximal chain in
C. Clearly, the union, E, of,the sets in that chain is again a (maximal)
element of C. Suppose that E were countable. We shall show in that case
that E is not maximal, a contradiction. We apply Lemma 2.1 to each of the
sets yH, H as in the statement of Lemma 2.1 (as y runs through E) to
conclude that the set

2 NT@Qu=TOH ul <e&, yeEj

is of first category in G, and that therefore there exists z such that ||T(z)u
—T(y) | > ¢ for all ye E. Therefore E U {z} is a set in C, and the chain was
not maximal. That completes the proof of Theorem 2.3.

Theorem 2.3 did not need the full strength of Lemma 2.1. The next
result does.

THEOREM 2.4. Let G be a non-discrete locally compact group, T a lower
semi-continuous representation of G as linear isometries on the normed space ®,
and ¥ a G-invariant subspace of ®. If ¥ & @, then ¥ has dimension at least ¢
in the norm topology.

Proof. Suppose that ¥ & &.. Let pe ¥\®,. Let ¢ and H be given by
Lemma 2.1. We shall use the standard Cantor set construction to exhibit a
set C of cardinality at least ¢ such that x, ye C, x # y imply x~ ' ye H. Then
IT (x) u— T(y) pll > ¢ for all such x, y, and the conclusion of Theorem 2.4 will
follow. It remains to find C.

By Lemma 2.1, there exist distinct elements x(1, 1) and x(1,2) in G
such. that (1) T x(I B for 1'< 75 k'= 2" Foi I < j = 2 et IS )be
compact disjoint neighborhoods of x(1,j) such that

U, j) U1, ksH for 1<j#k<2.

That starts the induction. At the n-th stage we have elements x(n, k) and
compact, pairwise disjoint sets U (n, k) such that U(n, k) is a neighborhood
of x(n, k) and such that both

Ui U, Bi=l ol
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and
B ek L2y S ) Yo TP s "2 and < k=
hold.

We now use Lemma 2.1 (the density of H) to choose, in the interior of
each set U(n, k), distinct elements x(n+ 1, 2k) and x(n+1, 2k+ 1) such that
sl )nironne sl e Ly fory lis g 4 ki 2780
Since H is open, for each j there exists a compact neighborhood U (n+1, j)

of x(n+1, j) such that
() T S 2o e T N 10 il e s
Of course, the neighborhood U (n+1, j) can be chosen so that
Uh(pss 1827 — 1) Olli(n-t 1 29 = U (n ) for gli < i< 0",

We now set

E e h Uiny) ndinCl Smc,.
Jj n

For each sequence ¢ = {¢,} of 0’'s and 1’s, define a sequence j(n) as follows:
j(© =1 and j(n+1) = 2j(n)—1+e,. Then the set U, = \U(n, j(n)) is non-
empty, and if ¢ is a sequence distinct from ¢, then U, nU, = @. For each
¢, choose one x,eU(¢) and let C be the resulting set of x.’s. Then
|T(x)u—T(y)ul| > e if x, y are distinct elements of C. That completes the

proof of Theorem 24.
3. Applications to M (G).

CoroLLARY 3.1. Let G be a non-discrete locally compact group and ¥ a

translation-invariant subspace of M(G). If ¥ & I}(G), then ¥ has dimension
at least «c.

The proof is immediate from Theorem 2.4 and Remarks 2.2.

Let G be a locally compact abelian group and let ||u||, denote the
supremum of the Fourier-Stieltjes transform of ue M(G). Let M,(G) denote
all ue M(G) whose Fourier-Stieltjes transform vanishes at infinity.

CoroLLARY 3.2. Let G be a non-discrete locally compact abelian group and
¥ a translation-invariant subspace of M(G). If ¥ $M0(G) then ¥ has
dimension at least c in the ||*||,-norm topology.

Proof. We represent G as isometries on (M(G), ||I'llo)) by T(x)u
=06(x)*u, ue M(G), xeG. Then for each ue M(G), xeG,

116 () % p1— pllo = sup (|8 (x) % p—p, xDI: x €G}
= sup {(x(0)—1) <, 1)|: 1€G},

which is lower semi-continuous, being the supremum of continuous functions.
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A result of Goldberg and Simon [9], Theorem B, asserts that
x 0 (x) * p is continuous in the ||-||o-norm topology if and only if pe M, (G).
The corollary now follows from Theorem 24.

Remark 3.3. Here is a sketch of a proof of the direction we use of the
cited assertion [9].

We reduce to the case where G is compact. [We first find a discrete
closed subgroup H of G such that G/H has a compact-open subgroup. Then
the image nu of p in M (G/H) is not in M,(G/H) if u is not. We may assume
that that image is concentrated on that compact-open subgroup of G/H. It is
easy to see that if x —d(x)*mu is not continuous in the ||*||o-norm topology
on M (G/H), then x—d(x)*u is not continuous in the ||*||,-norm topology
on M(G).]

Now choose any sequence 7,€G going to infinity such that
|fi(y,)) > € >0 for all n. By passing to a subsequence, we may assume that
{ya) is a (1/3)-Kronecker set, so that for any neighborhood U of the identity
of G and any function f: (y,) —» {+1} there is xe U such that, except for a
finite number of n,

I<X, yn>—'f(yn)l = 1/3

It now follows that x 0 (x) * u is not continuous in the [|||o-norm topology.

Before we can state the last result of this section, we need a definition.
By Rad L!(G) is meant the intersection of all maximal ideals of M (G) that
are not contained in the (set of ideals identified with the) dual group G of G.
That is, a measure u belongs to Rad ['(G) if and only if its Gelfand
transform vanishes off G. (That is, Rad L!(G) is the inverse image of the
radical of M(G)/L'(G) under the quotient map.)

THEOREM 3.4. Let G be a non-discrete locally compact abelian group, and
¥ a translation-invariant subspace of M(G). If ¥ & Rad L'(G), then ¥ has
dimension at least ¢ in the spectral radius norm topology.

Remark. We could apply Theorem 2.4 if we but knew that x 4 (x) * 1
were lower semi-continuous in the spectral radius norm topology. [First, let
u be a measure in ¥ that is not in Rad L' (G). The set of ye AM(G)\G such
that

1) X (0() 1) () =8(x) (0 A

is discontinuous is dense in AM(G)\(GU/T‘(Q)) (see [10], 8.3.5). By the
definition of Rad L! (G), there exists y eAM (G)\G sucll that fi(y) # 0. By the
density, there exists y eAM(G) \G such that x 38 (x) (x)i(x) is discontinu-
ous. Therefore (1) is discontinuous in the spectral radius norm topology.
An application of Theorem 2.4 would complete the proof.] Since we do not
know that the mapping in question is lower semi-continuous, we put off the
proof of Theorem 3.4 until Section 5, where we give a stronger version of
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Lemma 2.1, a version valid only for M (G), and the use of which enables us
to avoid having to show the semi-continuity of x 9 (x) * p.

4. Applications to subspaces of L*(G). Let LUC(G) denote the space of
bounded left uniformly continuous functions on the locally compact group G,
that is, all feCB(G) such that the mapping x ¢, f (left translation by Xx)
from G into (CB(G), ||"||l») is continuous, where |||, is the supremum norm
on CB(G). We shall write |||, for the essential supremum norm on L*(G).
Note that ||*||, and |||, agree on CB(G). Also, if x>t f is continuous in
the essential supremum norm topology, then there exists ge LUC(G) such
that g = f almost everywhere, since f can be approximated in ||-||,-norm by
convolutions k * f (which are necessarily in LUC(G) for integrable k) and
LUC(G) is complete..

CoRrOLLARY 4.1. Let G be a non-discrete locally compact group, and ¥ a
left translation-invariant subspace of L*(G). If ¥ € LUC(G), then ¥ has
dimension at least c.

Proof. If ¥ € LUC(G), then ¥ contains a function for which transla-
tion is discontinuous in the essential supremum norm. The result follows
then from Theorem 24.

Remark 4.2. In many situations, measurability is related to continuity.
For example, Theorem 3.4 of [6] (see also [S], Corollary 2.2) implies that if
G is a locally compact group and fis a bounded Haar measurable function
on G such that the left orbit {t, f: xe G} is sup norm separable, then fis in
LUC(G). That also follows from Corollary 4.1 above.

S. Stronger versions of Lemma 2.1 when @ = M(G). The following
Lemma 5.1 is a variant of the well-known result of [10], 8.3.2 and 8.3.3, the
novelty here being in the assertion of “a countable union of compact sets” in
place of “Borel”. Lemma 5.1 was also what suggested Lemma 2.1 to us.

LEMMA 5.1. Let v be a singular measure on the locally compact group G.
Then H = {xeG: 6(x)*v Lv) is a countable union of compact sets of zero
Haar measure.

Proof. That H is a Borel set of zero Haar measure can be proved like
the assertion of [10], 8.3.3. We show that H is a countable union of compact
sets of zero Haar measure. We may assume that v is a probability measure.

We note that 6(x)*v Lv if and only if ||§(x)*v—v|| <2. The set H is the
union of the sets

H;={xeG: |l6(x)xv—y|| <2-1/j}, 1<j<oo.

It will suffice to show that each H; is compact. Fix j > 1. Of course, the set
H; is closed, since its complement is open. It remains to show that H LIS
compact. We shall show that H; is contained in a compact set. We choose a
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compact set F of G such that v(F) > 1—1/(8j). Then the set C = FF ! is
such that if x¢C, then F nxF = @. It follows that for such x

16 () #v—vl| > 2(1—=1/8j))—2- 1/(8j) > 2—1/j.

Therefore H; = C, so H; is compact. That completes the proof of Lemma 5.1.
We can establish variants of the idea used in the proof of Theorem 2.4
also in this context.

LemMA 5.2. Let v be a singular measure on the locally compact group G
and let H = \xeG: 0(x)xv Lv]. Then there exists a set C of cardinality at
least ¢ such that x~'y¢ H whenever x and y are distinct elements oy C.

Proof. By Lemma 5.1, H = () H;, where the H’s are compact sets of
zero Haar measure. Let x(1, 1) and x(1, 2) be distinct elements in G such
that 'we(l, o tx(@, ke H for 1 <=k <2 For =1 2" Hets U1 -bc™a
compact neighborhood of x(1, /) such that

(L) U, kol =@ for 1= j-ci <08

Use the compactness of H, and an inductive argument similar to that of the
proof of Theorem 2.4 to find elements x(n, k) and compact pairwise disjoint
sets U (n, j) such that U(n, j) is a neighborhood of x(n, j) and such that both

L, 07 il i, = O
holds for 1.<j # k < 2" and
Uk+1,2j—1)uU(k+1, 2j) c<U(k,))

holdsifon lLi=wj.<s2 andyl <ia= m fiet
C = U@mp axl = C"=NC,.
j

Choose C as in the proof of 24. That completes the proof of Lemma 5.2.
Proof of Theorem 3.4. First, let u be a measure in ¥ that is not in

Rad L' (G). Let y¢G be a multiplicative linear functional such that fi(y) # O.
Since the function of the complex variable z defined by

h(z) = aCx [x*/1x)

is analytic, there is a purely imaginary value of z such that h(z) # 0. We may
therefore assume that [y,| =1 a.e. du. A singular measure v is defined by v
= exp(|xul). Then |y,| =1 ae. dv. It is easy to see that H, the set given by
Lemma 5.1 (see [10], 8.3.5, for details) is a group; that uses the fact that v?
and v are mutually absolutely continuous. Lemma 5.2 shows that G/H has
cardinality at least ¢ Therefore, there exists a set C =G such that {x+ H:
x€C) is an independent subset of G/H having cardinality ¢ We will
use that fact shortly.
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Let ¢ be a character of the (discrete) group G/H, thought also as a
character of G whose kernel includes H. We define a multiplicative linear
functional f©@ on the L-subalgebra B of M (G) that v and the discrete
measures generate as follows. (For undefined notation and terms and for
results used here, see [10].) For xXeG, set

f@, 8(x) x> = 0(%) [ (2)dw(z) for weM(G), w <<v.

It is easy to see that that does define a multiplicative linear functional on B
(see [10], 8.3.5, for a related argument). Since y, has modulus one a.e. dv,
|f@ =1 ae. do for all measures o, and therefore f© is an element of the
Silov boundary of B (see [10], 5.1.3), so f©@ extends to a multiplicative linear
functional on all of M(G). For a multiplicative linear functional 1 on M (G),
we denote by A(x) the character defined by

Xl f Ao (1) do (x) y

and apply that notation to y and f@. For each pair of distinct elements
x, ye C, there exists (by the independence cited at the end of the preceding

paragraph) ¢ such that ¢(x) = 1, ¢ is one on H, and the real part of ¢(y) is at
most 272, Then

6 * 1) (F—(80) * 1) (f@) = 120011 —27112).

It follows at once that ¥ has dimension at least ¢ in the spectral radius
norm. That completes the proof of Theorem 3.4.

6. On B(G) when G is non-abelian. Let G be a locally compact group. By
A(G) and B(G) we will mean the Fourier algebra and Fourier—Stieltjes
algebra of G, respectively (see [7]). A locally compact group is an [IN] group
if its identity has a compact neighborhood that is invariant under all inner
automorphisms. A locally compact group G is almost connected if G/G, is
compact, where G, is the connected component of the identity ([11], p. 52).
A locally compact group G is an [AU] group if every unitary representation
is atomic, that is, the direct sum of irreducible unitary representations. By G
we denote the space of equivalence classes of irreducible unitary representa-
tions of the locally compact group G. We collect in the next theorem some
observations about B(G); they are restatements of results of Taylor [19].

THEOREM 6.1. (i) Let G be either an [IN] group or almost connected. If
B(G) is separable in the norm topology, then G is compact.

(i) There exist non-compact locally compact groups G such that B(G) is
separable.

(i) If B(G) is separable, then G contains a compact open subgroup.

Before proving Theorem 6.1, we state and prove a lemma.
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Lemma 6.2. Let G be a separable locally compact group. Then the
following are equivalent:

(i) G is countable.

(i) B(G) is separable.

(i) B(G) has the Radon—Nikodym property.

(iv) G is [AU].

Proof. (i) «>(iii). Let X be any separable Banach space. By [5], Corol-
lary, X* has the Radon-Nikodym property if and only if X* is separable.
Since B(G) is the dual space of a separable space, (ii) <>(iii) follows.

(1) =(iv) is 4.5 of [19].

(i) <= (iv) is 4.2 of [19].

Proof of Theorem 6.1. (i) By Lemma 6.1, G is [AU]. Suppose that G
is [IN]. The assertion of [19], 4.7, is that a group is compact if and only if it
is both [AU] and [IN]. Suppose that G is almost connected. The assertion
of [19], 4.11, is that an almost connected [AU] group is compact. That
proves (i).

(i) The Fell group ([1], 4.5) is non-compact and has a countable dual.
By Lemma 6.1, it has the required properties.

(i) By Lemma 6.2, G is [AU]. The assertion of [19], 4.9, is that
separable [AU] groups have open subgroups. That proves (iii).

Let E denote the weak* closure of the extreme points of P,(G), where
P, (G) consists of all positive definite ¢ € B(G) such that ¢(e) < 1. Then, when
G is abelian, E\{0} corresponds exactly to the characters on G. A subset @
of B(G) is invariant if ¢f e @ for all pe E and all f e ®. Clearly, every ideal is
invariant.

Let H = tueB(G): Jule L i = u). where (o= ulx )sulticn Hiss
weak* compact and convex. One easily shows that

extr H = (extr Py U —extr Po)\{0}.
Let E5 be the weak* closure of extr H. We have
By O = O

We say that the group G has property (Q) if there is a net |u,| in A(G) with
luallpay < C and u, =1 weak* (in o(L™, L'). We may assume i, = u,
(consider (u, +i,)/2). Here ||*|[y4) denotes the operator norm of a multiplier
on A(G). All amenable groups have (Q,) as well as many others too (e.g,
SL(2, R) and all free groups; see [2]). If G has (Q.) but not necessarily (Q,),
the following theorem holds with E replaced by CE, and similarly for
Theorem 6.5.

THEOREM 6.3. Let G be a locally compact group with property (Q,). Let @
be an invariant separable subspace of B(G). If ¢e® and ¢ # 0, then there
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exists f €E such that ¢f € A(G) and @f # 0. In particular, if G is abelian, then
@ < A(G). In general, however, ® £ A(G) (see Theorem 6.11).

Since Ey < E U —E, it suffices to prove the assertion with Ej instead
ofttE)]

Proof. For pe®, ¢ # 0, let

B e el AR B = e By

Then K, is weak* compact and convex and E, is a weak* compact subset of
K, whose weak* closed convex hull is K,,. By the converse of the Krein—
Milman Theorem, E, contains the extreme points extr(K,) of K,,. By Lemma

6.4 below (with ¥* = B(G)), Znextr(K,) is a weak* dense subset of
extr(K,), where Z is the set of all continuity points of the identity map

Lot (K, weak®) = (K, [I°]).

Consequently, there exists y € Ey such that u = y¢ # 0, and the identity map
I, is continuous at u. By assumption, there exists a net {¢,] = A(G) such
that, for all a, [|@,llmaec) < 1 and @, = ¢, and such that {¢,} converges to the
constant function 1 in the weak* topology. In particular, the net {¢,u}
converges to u in the weak* topology and lies in K,. Consequently, the net
{@,u} in A(G) must converge to u in norm. Therefore, ue A(G).

If G is abelian, E\ {0} = G. Hence, if u = ype A(G) and y€E, y # 0, then
Y@ = @ € A(G); that is, @ = A(G). That completes the proof of Theorem 6.3.

LEmmA 64. Let ¥ be a Banach space and K a weak* compact convex
subset of W*. Let D denote the weak* closure of ext(K) and let Z be the set of
all points of continuity of the identity map (K, weak*) — (K, ||*||). If D is norm-
separable, then Z mext(K) is a dense Gg-subset of (ext(K), weak*).

Proof. The assertion is a version of a result of Namioka [16], Theorem
2.2. The proof is the same as Namioka’s.

THEOREM 6.5. Let @ be a separable invariant subspace of (B(G), |||l ),
where ||*|| denotes the supremum norm on B(G). If G has property (Q,), then
for each pe®, ¢ # 0, there exists ye E such that yp # 0 and ype Cy(G). In
case that G is abelian, that implies that ® = Cy(G). In general, ® & C,(G),
however (see Theorem 6.7 below).

~ Proof. As in Theorem 6.3 it suffices to prove the assertion with Ey
instead of E. Let o ® and K, = {f¢: feEy}. Note that a ||*||g,-bounded
weak* closed subset of B(G) is g (L*(G), L' (G))-closed in L*(G) and that the
topologies ¢ (B(G), C*(G)) and o(L*(G), L'(G)) coincide on such a set.
Therefore, as in the proof of Theorem 6.3 (using Lemma 64 with ¥*
= L*(G)), there is yeEy such that u=y¢ #0 and a net {p,} with
@,ue A(G) and such that oy u—ull, — 0. Hence ue C,(G).

If G is abelian, then each non-zero element y €E\ {0} = G has a multipli-
cative inverse, so @ €C,(G). That completes the proof of Theorem 6.5.
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A locally compact group is [Moore] if each of its irreducible unitary
representations is finite dimensional. All [ Moore] groups are amenable ([17],
p. 698).

THEOREM 6.6. Suppose that G is a [Moore] group and that (B(G), ||*||,.) is
separable. Then G is compact.

Proof. Let K = Py(G). An argument similar to that used to prove
Theorem 6.3 shows that if Z is the set of all continuity points of the identity
map

(K, weak™) = (K, [|]| ),

then Z next(K) is a dense Gs-subset of (ext(K), weak*). As in the proof of
Theorem 6.5, each element of Z is an element of C,(G), since [Moore]
groups are amenable. Since each irreducible representation of G is finite
dimensional, functions in ext(K) are in AP(G). But AP(G) nCy(G) = {0},
unless G is compact. That completes the proof of Theorem 6.6.

THEOREM 6.7. If G is either the Euclidean motion group or SL(2, R), then
(B(G), |I'llw) is separable.

Proof. If G is the motion group, then
WAP(G) = AP(G) ® Co(G) and AP(G) = C(T),

where Tis the circle group (see [4] and [15]). Hence WAP(G) is separable.
Therefore, (B(G), ||'|l,) is separable.

If G is SL(2, R), then WAP(G) = C @ C,(G) by [4]. Hence WAP(G) is
separable. Therefore, (B(G), ||'||,) is separable.

Lemma 6.8. Let G be a locally compact group. If (A(G), |||l ) is separable,
then G is separable.

Proof. ‘et f, ! be @ dense sequence ans A(G). Let

V, = {x: £ > 1/2}.

Each V, is an open subset of G. Let x be an element of G and U be a
neighborhood of x. Let f be a compactly supported element of 4(G) such
that f(x) = 1 and supp f < U. Since {f,} is ||-||,-dense, there exists f, such
that ||f — fullo < 1/4. Then xeV,, and V, = U. Hence {V,} is a basis for the
neighborhood system of x. The lemma is proved.

CoROLLARY 6.9. The following are equivalent:

(i) A(G) is separable;

(ii) (A(G), II'llo) is separable;

(1) G is separable.

TueorREM 6.10. Suppose that G is discrete and G contains an infinite
abelian subgroup H. Then B(G) is not separable.

Proof. Since H is an infinite discrete abelian group, there exists an
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uncountable subset {f;] of elements of B(H), all of norm 1, such that if
o= Btthen || f,— fill = 2. Let, T: B,(H)—.B,(G) be defined by

7 it eeElEl

0 otherwise.

Tf(X)={

We now show that T is well-defined and isometric. Let g be a finitely
supported function on G with ||g|lc,) < 1, where ||gllc, ) denotes the oper-
ator norm of ¢ acting on [?(G) by convolution. Then

(Tf, 9> =) f(Dg(x) = S, glu)-

xeG

But
Hg|HHCv(Hi < “g“c\((;) = 1.

Therefore ”TfHBQ(G) < Hf”BQ(H)~

In particular, T is well-defined and ||T|| < 1. Of course, T is an isometry,
because, by choosing g to be supported on H, we infer that

e
It follows that the set {Tﬁ,} i1s a non-separable subset of B,(G).

THeOREM 6.11. The “ax+b” group contains a separable ideal ¥ = B(G)
such that ¥ € A(G).

Proof. By [13],
B(G) = A(G) @ B,(G),
wiherel BH(G)i—iBl(R&) oy & and, wjsnisedefineds s by i(a.:b) = a.= et (kK
= B(R*%)|;, 2;0J, that is the elements that come from those supported in the

interval [1, 2]. Since B(R%)|;, 2y = A(R*)|;, 5 is separable, K is separable.
Therefore ¥ = A(G) ® K is separable. But

B(G)-¥ < A(G)+B(G)'K = A(G)+B,(G)-K < A(G)+K = V.

Hence ¥ is an ideal. Obviously, ¥ ¢ A(G). That completes the proof of
Theorem 6.11. j

We say that a group G has property S if every separable ideal of B(G) is
contained in 4(G). Theorem 6.11 shows that the “ax+b” group does not have
property S.

TueEOREM 6.12. If the locally compact group G has an open subgroup H of
finite index that has property S, then G has property S.

Proof. Let ¥ be a separable ideal of B(G). Let y, denote the charac-
teristic function of H. Since

i SBGHN wamdedt Do) & ypt=11

xeG
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(only a finite sum is involved), we have

P'=" (065 P

xeG

Since the restriction to (cosets of) H reduces B-norms, the space T = y, ¥
= Y|y is norm-separable in B(H). Since any element of B(H) extends to an
element of B(G) (see [12], 32.43), T is an ideal in B(H). Since H has prop-
EhLY ST

TeA(H) o gu¥ =A(G)

To show that (6(x) * x4) ¥ < A(G), xeG, it will suffice (by the invariance of
A(G) under translation) to show that

©) (BN *®) < A(G).

But §(x~ ')+ ¥ is again a separable ideal (because translation is an isometric
automorphism of B(G)). Hence (2) holds. That completes the proof of
Theorem 6.12.

Remark 6.13. Theorem 3.4 shows that abelian groups have property S.
Hence finite extensions of abelian groups have property S.
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