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WITH RESPECT AND THANKS

0. How big can a separable ideal of the algebra of (regular Borel) 

measures on the locally compact group G be? The question can be put more 

generally. Let $ be a normed space on which the locally compact group G 

has a semi-continuous representation (as isometries). Suppose that T is a G- 

invariant subspace of <P. How big is ’F? A fairly elementary arguments shows 

that if T is separable, then T consists only of elements of T> on which the 

operation of G is norm-continuous. A more complicated argument shows 

that if *F  contains an element on which the operation of G is not norm- 

continuous, then T has dimension at least c. In the case of abelian G and T 

an ideal in the algebra of regular Borel measures on G, the analogous 

conclusion holds with “measure norm” replaced by “spectral radius norm”: if 

T is not contained in the radical of the absolutely continuous measures, then 

T has dimension at least c in spectral radius norm. Related results for the 

Fourier-Stieltjes algebra B(G) of a non-abelian group G are given.

1. Introduction and discussion of results. Let G be a locally compact 

group and let T be a lower semi-continuous representation of G on the 

normed space <P, that is, the mapping xf->T(jc) is a representation of G as
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isometric linear mappings from <t> into 0 such that, for each /zg0 and e > 0, 

the set

{xgG: \\T(x)ii-/i\\ > e}

is open. We denote by <PC the set of /re0 such that x^T(x)^ is a 

continuous mapping from G to 0, where 0 has the norm topology. Then <PC 

is a closed invariant subspace of 0. We prove in this note that 0C contains 

all elements /ze0 such that the orbit {T(x)/z: xeG} is separable. Further­

more, for each ue0, either p.G<Pc or the orbit generates a subspace of 

topological dimension at least c. Those two results are established in Sec­

tion 2.

Our method is applied to the space M(G) of regular Borel measures on 

G with the total variation norm in Section 3, where we improve upon a 

result of Larsen [14] and Tam [18] (see also Glicksberg [8]). Our proof is 

different (in that we do not use measure theory). In Section 3 we also give 

two analogous results for the abelian case, using the norms of (i) the 

supremum of the Fourier-Stieltjes transform as norm and (ii) the spectral 

radius norm.

In Section 4, we consider translation-invariant subspaces of L°°(G). In 

Section 5, we show how our main Lemma 2.1 can be sharpened in the case 

of 0 = M(G) and apply that sharper version to prove the spectral radius 

result mentioned above. In Section 6 we consider the algebra B(G), when G 

is a non-abelian group, and give related results.

The result of Larsen and Tam implies that separable ideals of M(G) are 

contained in L1 (G). That suggests the following version of the problem: what 

subalgebras of M(G) have separable ideals that are not contained in L1 (G)? 

The answer for some classes of algebras is “none”. Examples of such classes 

are (1) algebras generated by all Riesz products based on a fixed dissociate 

set and (2) algebras generated by measures on a compact independent set. 

For background information relating to those two situations see, e.g., [10], 

Chapter 7 (for Riesz products), and [10], Chapter 6 (for measures on an 

independent set). We do not know what the situation is for algebras 

generated by appropriate sets of infinite convolutions.

The question “Must a translation-invariant subspace of M(G) have 

dimension c?” was raised by Professor Ryll-Nardzewski and communicated 

to us by Professor Hartman. We are grateful to them both. We are also 

grateful to Professor E. E. Granirer for bringing to our attention what we 

have called Lemma 6.2 and to Professor Hartman again for his careful 

reading of our manuscript and his helpful comments.

Since the groups involved in this note are not. necessarily abelian, group 

operations will generally be written multiplicatively.
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2. Lower semi-continuous representations. The principal tool in this 

section is the following observation:

Lemma 2.1. Let G be a locally compact group and let T be a lower semi- 

continuous representation of G on the normed space <P. Let ped> be such that 

x^Tixpi is not norm-continuous. Then there exists £>0 such that

H = {x: \\T.(x)p-p\\ > e}

is an open dense subset of G.

Proof. That H is an open set follows from the definition of semi­

continuity. Since x^Tixf is not continuous, there exists <5 > 0 such that

limsup||T(x)^ —/z|| > b.

x-^0

Let £ = <5/3- Fix yeG. If ||T(y)/z —/z|| > £, there is nothing to prove. Thus 

suppose that ||T(y)/z —^|| £. Let U be a neighborhood of y. Let V be a

neighborhood of the identity such that yV c U. Then there exists xgV such 

that ||T(x)/z —/z|| > <5. Since T maps G onto isometries of <£>, we have

\\T(yx)p-T(y)p\\^\\T(x)p-p\\.

Therefore

||T(yx)^-/z|| > \\T(yx)p-T(y) p\\-\\T(y) p-p\\ b-e > e.

That H is dense follows at once. That completes the proof of Lemma 2.1.

Remarks 2.2. (i) A stronger version of Lemma 2.1 can be established 

using measure theory: there exists £ > 0 such that H is open and such that 

the complement of H is locally null.

(ii) Suppose that S is a continuous anti-representation of G on a Banach

space X as linear isometries of X, that is, for each xeX the mapping 

g^S(g)x is a continuous mapping of G into X when X has the norm 

topology. Then the mapping g v->T(g) = S*(g)  is a semi-continuous represen­

tation of G on <P = X*.  That follows because for each pe<P the mapping 

9 — p\\ is a supremum of continuous functions, the functions being

g h->|</z, S(g)x>- </z, x>|,

and the supremum being taken over elements xeX of norm one.

(iii) In the case where X = C0(G), the continuous complex-valued func­

tions on G that vanish at infinity with the supremum norm, and S(x) = tx, 

where txf(y) = f (xy), f eCq(G), x,yeG, it is then true that T(x)p = bx  p 

for each peM(G) = C0(G),  and M(G)C = L1 (G).

*

*

We now give our more general version of the result of Larsen [14] and 

Tam [18],
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Theorem 2.3. Let G be a non-discrete locally compact group, T a lower 

semi-continuous representation of G as linear isometries on the normed space <P, 

and W a G-invariant subspace of d>. If T is separable, then Y

Proof. Suppose that T $ <PC. Then there exists pe ¥\<I>C. We claim that 

there exist £ > 0 and a non-countable set E c G such that x, yeE, xL y 

imply ||T(x)/i— T(y)ju|| > £. The non-separability of will follow immediate­

ly from that claim.

To prove the claim, let e > 0 be given by Lemma 2.1. Let C be the set of 

all subsets E of G such that x, yeE, x y imply ||T(x)/z — T(y)//|| > £. We 

order C by inclusion and use Zorn’s Lemma to choose a maximal chain in 

C. Clearly, the union, E, of. the sets in that chain is again a (maximal) 

element of C. Suppose that E were countable. We shall show in that case 

that E is not maximal, a contradiction. We apply Lemma 2.1 to each of the 

sets yH, H as in the statement of Lemma 2.1 (as y runs through E) to 

conclude that the set

{z: HT(z)p—T(y) pH < £, yeE}

is of first category in G, and that therefore there exists z such that ||T(z)/z 

— T(y) p\\ > £ for all yeE. Therefore E u {z} is a set in C, and the chain was 

not maximal. That completes the proof of Theorem 2.3.

Theorem 2.3 did not need the full strength of Lemma 2.1. The next 

result does.

Theorem 2.4. Let G be a non-discrete locally compact group, T a lower 

semi-continuous representation of G as linear isometries on the normed space <I>, 

and a G-invariant subspace of <I>. If P $ $c, then has dimension at least c 

in the norm topology.

Proof. Suppose that V $ 0C. Let peT\<Pc. Let £ and H be given by 

Lemma 2.1. We shall use the standard Cantor set construction to exhibit a 

set C of cardinality at least c such that x, yeC, x y imply x~ 1 yeH. Then 

|| T(x) p — T(y) /i|| > £ for all such x, y, and the conclusion of Theorem 2.4 will 

follow. It remains to find C.

By Lemma 2.1, there exist distinct elements x(l, 1) and x(l, 2) in G 

such that x(l, j)-1 x(l,k)eH for 1 < j k < 2. For 1 2 let U(1, j) be

compact disjoint neighborhoods of x(l,j) such that

[/(I,;)"1 1/(1, k) for l*Q-/fc<2.

That starts the induction. At the n-th stage we have elements x(n, k) and 

compact, pairwise disjoint sets U (n, k) such that U (n, k) is a neighborhood 

of x(n, k) and such that both

U(n,j)~l U (n, k) for 1 <j/ k T
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and

U(k+ 1, 2j- 1) u U(k + 1, 2j) U(k,j) for 1 < j 2k and 1 < k C n

hold.

We now use Lemma 2.1 (the density of H) to choose, in the interior of 

each set U (n, k), distinct elements x(n+l, 2k) and x(n+l, 2k +1) such that 

x(n+ljrrx(n+l,k)EH for l^j^k^2n+l.

Since H is open, for each j there exists a compact neighborhood 

of x(n+l,j) such that

Utn+ljy1 U(n+1, k) for l<j^k^2"+1.

Of course, the neighborhood U (n +1, j) can be chosen so that

U(n+ 1, 2j — 1) u U(n+ 1, 2jj U(n, j) for 1 < j C 2".

We now set

C„ = U^("J) and C' = AC„. 

j n

For each sequence s = ,£„} of 0’s and l’s, define a sequence j(ri) as follows: 

j(0) = 1 and j(n+l) = 2j(n) — l+s„. Then the set Ue — Q (J (n, jfif) is non­

empty, and if s' is a sequence distinct from s, then Ue r\U£ = 0. For each 

s, choose one xbeU(s) and let C be the resulting set of x£’s. Then 

||T(x)p — T(y)/z|| > s if x, y are distinct elements of C. That completes the 

proof of Theorem 2.4.

3. Applications to M(G).

Corollary 3.1. Let G be a non-discrete locally compact group and a 

translation-invariant subspace of M(G). If *P  $ L1 (G), then T has dimension 

at least c.

The proof is immediate from Theorem 2.4 and Remarks 2.2.

Let G be a locally compact abelian group and let ||/z||0 denote the 

supremum of the Fourier-Stieltjes transform of /zeM(G). Let M0(G) denote 

all peM(G) whose Fourier-Stieltjes transform vanishes at infinity.

Corollary 3.2. Let G be a non-discrete locally compact abelian group and 

’P a translation-invariant subspace of M(G). If T^M0(G), then has 

dimension at least c in the ||-\\Q-norm topology.

Proof. We represent G as isometries on (M(G), ||-|lo) by T(x)p 

= <5(x)*jz,  /ieAf(G), xeG. Then for each yeM{G), xeG,

||<5(x)*p-^lo = sup [\<d(x)*p-p,  z>|: /eG}

= sup {|(x(x)-l) </i, x>|:.zeG},

which is lower semi-continuous, being the supremum of continuous functions.
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A result of Goldberg and Simon [9], Theorem B, asserts that 

xh-*d(x)*pi  is continuous in the ||-Hp-norm topology if and only if ^eM0(G). 

The corollary now follows from Theorem 2.4.

Remark 3.3. Here is a sketch of a proof of the direction we use of the 

cited assertion [9].

We reduce to the case where G is compact. [We first find a discrete 

closed subgroup H of G such that G/H has a compact-open subgroup. Then 

the image tt/z of p in M(G/H) is not in M0(G/H) if p is not. We may assume 

that that image is concentrated on that compact-open subgroup of G/H. It is 

easy to see that if x i—><5(x) * 771/ is not continuous in the ||-Ho-norm topology 

on M(G/H\ then is not continuous in the ||’llo-norm topology

on M(G).]

Now choose any sequence y„eG going to infinity such that 

\p (y„)| > e > 0 for all n. By passing to a subsequence, we may assume that 

{y„] is a (l/3)-Kronecker set, so that for any neighborhood U of the identity 

of G and any function f: (yn)-> {±1} there is xeU such that, except for a 

finite number of n,

l<x, y„>-/(yn)l < 1/3.

It now follows that x h-+<5(x) * p is not continuous in the ||’||o‘norm topology.

Before we can state the last result of this section, we need a definition. 

By Rad Ll (G) is meant the intersection of all maximal ideals of Af(G) that 

are not contained in the (set of ideals identified with the) dual group G of G. 

That is, a measure /z belongs to Rad L1 (G) if and only if its Gelfand 

transform vanishes off G. (That is, Rad L1 (G) is the inverse image of the 

radical of M(G)/L/(G) under the quotient map.)

Theorem 3.4. Let G be a non-discrete locally compact abelian group, and 

•P a translation-invariant subspace of M(G). If V $ Rad L1 (G), then T has 

dimension at least c in the spectral radius norm topology.

Remark. We could apply Theorem 2.4 if we but knew that x * p 

were lower semi-continuous in the spectral radius norm topology. [First, let 

p be a measure in ’F that is not in Rad Z?(G). The set of /ez!M(G)\G such 

that

(1) (z)=<5(x) (z)/z(z)

is discontinuous is dense in AM(G)\(G v p 1 (0)) (see [10], 8.3.5). By the 

definition of Rad L1 (G), there exists % eAM(G)\G such that /z(z) # 0. By the 

density, there exists z eAM(G)\G such that x^<5(x) (z)£(z) is discontinu­

ous. Therefore (1) is discontinuous in the spectral radius norm topology. 

An application of Theorem 2.4 would complete the proof.] Since we do not 

know that the mapping in question is lower semi-continuous, we put off the 

proof of Theorem 3.4 until Section 5, where we give a stronger version of 
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Lemma 2.1, a version valid only for M(G), and the use of which enables us 

to avoid having to show the semi-continuity of x * p.

4. Applications to subspaces of LfG).  Let LUC(G) denote the space of 

bounded left uniformly continuous functions on the locally compact group G, 

that is, all f eCB(G) such that the mapping xv->txf (left translation by x) 

from G into (CB(G), H’lloo) is continuous, where [[•lloo is the supremum norm 

on CB(G). We shall write ||-||u for the essential supremum norm on LT(G). 

Note that ||-||Q0 and ||’llu agree on CB(G). Also, if xi->txf is continuous in 

the essential supremum norm topology, then there exists geLUC(G) such 

that g = f almost everywhere, since f can be approximated in ||-||M-norm by 

convolutions kf  (which are necessarily in LUC(G) for integrable k) and 

LUC(G) is complete.

*

*

Corollary 4.1. Let G be a non-discrete locally compact group, and T a 

left translation-invariant subspace of LX (G). If 7/^LUC(G), then T has 

dimension at least c.

Proof. If T $LUC(G), then T contains a function for which transla­

tion is discontinuous in the essential supremum norm. The result follows 

then from Theorem 2.4.

Remark 4.2. In many situations, measurability is related to continuity. 

For example, Theorem 3.4 of [6] (see also [5], Corollary 2.2) implies that if 

G is a locally compact group and f is a bounded Haar measurable function 

on G such that the left orbit [txf: xeG} is sup norm separable, then f is in 

LUC(G). That also follows from Corollary 4.1 above.

5. Stronger versions of Lemma 2.1 when 0 = M (G). The following 

Lemma 5.1 is a variant of the well-known result of [10], 8.3.2 and 8.3.3, the 

novelty here being in the assertion of “a countable union of compact sets” in 

place of “Borel”. Lemma 5.1 was also what suggested Lemma 2.1 to us.

Lemma 5.1. Let v be a singular measure on the locally compact group G. 

Then H = {xeG: <5(x)* v/_v} is a countable union of compact sets of zero 

Haar measure.

Proof. That H is a Borel set of zero Haar measure can be proved like 

the assertion of [10], 8.3.3. We show that H is a countable union of compact 

sets of zero Haar measure. We may assume that v is a probability measure. 

We note that <5(x)*v,Lv  if and only if ||<5(x) * v —v|| <2. The set H is the 

union of the sets

Hj = {xeG: ||<5(x) ♦ v —v|| 2 — 1//}, 1 < oo.

It will suffice to show that each Hj is compact. Fix j 1. Of course, the set 

Hj is closed, since its complement is open. It remains to show that Hj is 

compact. We shall show that Hj is contained in a compact set. We choose a 
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compact set F of G such that v(F) > 1 — l/(8j). Then the set C = FF~{ is 

such that if xfC\ then FnxF = 0. It follows that for such x

11<5 (x) * v - v| | > 2 (1 - l/(8j)) - 2 ■ l/(8j) > 2 - 1/j.

Therefore Hj c C, so Hj is compact. That completes the proof of Lemma 5.1.

We can establish variants of the idea used in the proof of Theorem 2.4 

also in this context.

Lemma 5.2. Let v be a singular measure on the locally compact group G 

and let H — {xeG: <5(x)*v 7Lv}. Then there exists a set C of cardinality at 

least c such that x lyfH whenever x and y are distinct elements of C.

Proof. By Lemma 5.1, H = \JHj, where the Hfs are compact sets of 

zero Haar measure. Let x(l, 1) and x(l, 2) be distinct elements in G such 

that x(l,y)—1x(l, k)$H for 1 j # k < 2. For j = 1, 2, let U(l,j) be a 

compact neighborhood of x(l,j) such that

U(l,jrl U(l, k)oHl = 0 for 1 < j # k 2.

Use the compactness of Hn and an inductive argument similar to that of the 

proof of Theorem 2.4 to find elements x(n, Zc) and compact pairwise disjoint 

sets U(n,j) such that U(n,j) is a neighborhood of x(n,j) and such that both 

u\n,frlU(n, k)oHn = (D

holds for 1. j # /c 2” and

U(Zc+l, 2;-l)uU(/c+l, 2j)

holds for 1 U J2k and 1 < k < n. Let

C„ = (JU(n,j) and C' = p|C„.

j

Choose C as in the proof of 2.4. That completes the proof of Lemma 5.2.

Proof of Theorem 3.4. First, let p be a measure in •F that is not in 

Rad 12(6). Let yfG be a multiplicative linear functional such that p(%) / 0. 

Since the function of the complex variable z defined by

/i(z) = /2(z IzIVIzl)

is analytic, there is a purely imaginary value of z such that h(z) # 0. We may 

therefore assume that |xj = 1 a.e. dp. A singular measure v is defined by v 

= exp(|xA0. Then |xv| = 1 a.e. dv. It is easy to see that H, the set given by 

Lemma 5.1 (see [10], 8.3.5, for details) is a group; that uses the fact that v2 

and v are mutually absolutely continuous. Lemma 5.2 shows that G/H has 

cardinality at least c. Therefore, there exists a set C <^G such that {x + H: 

xgC] is an independent subset of G/H having cardinality c. We will 

use that fact shortly.
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Let q be a character of the (discrete) group G/H, thought also as a 

character of G whose kernel includes H. We define a multiplicative linear 

functional /(e) on the L-subalgebra B of M(G) that v and the discrete 

measures generate as follows. (For undefined notation and terms and for 

results used here, see [10].) For xeG, set

(f{8}, d(x) *cd} = q(x) ((z) dm (z) for meAf(G), co«v.

It is easy to see that that does define a multiplicative linear functional on B 

(see [10], 8.3.5, for a related argument). Since yv has modulus one a.e. dv, 

I/*/]  = 1 a.e. d(j for all measures cr, and therefore /(e) is an element of the 

Silov boundary of B (see [10], 5.1.3), so /(4?) extends to a multiplicative linear 

functional on all of M(G). For a multiplicative linear functional A on M(G), 

we denote by 2(x) the character defined by

and apply that notation to / and /(e). For each pair of distinct elements 

x, ycC, there exists (by the independence cited at the end of the preceding 

paragraph) q such that £(x) — 1, q is one on H, and the real part of p(y) is at 

most 2-1/2. Then

|(^W* b) (/(eVRy)*pf  (/<e))| > |/i(x)|(l-2"1/2).

It follows at once that T has dimension at least c in the spectral radius 

norm. That completes the proof of Theorem 3.4.

6. On B(G) when G is non-abelian. Let G be a locally compact group. By 

A(G) and B(G) we will mean the Fourier algebra and Fourier-Stieltjes 

algebra of G, respectively (see [7]). A locally compact group is an [/N] group 

if its identity has a compact neighborhood that is invariant under all inner 

automorphisms. A locally compact group G is almost connected if G/Go is 

compact, where Go is the connected component of the identity ([11], p. 52). 

A locally compact group G is an [AL] group if every unitary representation 

is atomic, that is, the direct sum of irreducible unitary representations. By G 

we denote the space of equivalence classes of irreducible unitary representa­

tions of the locally compact group G. We collect in the next theorem some 

observations about B(G); they are restatements of results of Taylor [19].

Theorem 6.1. (i) Let G be either an [/N] group or almost connected. If 

B(G) is separable in the norm topology, then G is compact.

(ii) There exist non-compact locally compact groups G such that B(G) is 

separable.

(iii) If B(G) is separable, then G contains a compact open subgroup.

Before proving Theorem 6.1, we state and prove a lemma.
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Lemma 6.2. Let G be a separable locally compact group. Then the 

following are equivalent:

(i) G is countable.

(ii) B(G) is separable.

(iii) B(G) has the Radon-Nikodym property.

(iv) G is [XL],

Proof, (ii) <=>(iii). Let X be any separable Banach space. By [5], Corol­

lary, X*  has the Radon-Nikodym property if and only if X*  is separable. 

Since B(G) is the dual space of a separable space, (ii)o(iii) follows.

(i) o(iv) is 4.5 of [19],

(iii)o(iv) is 4.2 of [19].

Proof of Theorem 6.1. (i) By Lemma 6.1, G is [AU]. Suppose that G 

is [IN]. The assertion of [19], 4.7, is that a group is compact if and only if it 

is both [AU] and [IN]. Suppose that G is almost connected. The assertion 

of [19], 4.11, is that an almost connected [XL/] group is compact. That 

proves (i).

(ii) The Fell group ([1], 4.5) is non-compact and has a countable dual. 

By Lemma 6.1, it has the required properties.

(iii) By Lemma 6.2, G is [XL]. The assertion of [19], 4.9, is that 

separable [XL/] groups have open subgroups. That proves (iii).

Let E denote the weak*  closure of the extreme points of P0(G), where 

P0(G) consists of all positive definite <peB(G) such that <p(e) 1. Then, when

G is abelian, B\{0] corresponds exactly to the characters on G. A subset <P 

of B(G) is invariant if cpf e <P for all (pe E and all f e4>. Clearly, every ideal is 

invariant.

Let H = {ueB(G): |m|^1,m = m}, where u(x) = u(x-1). Then H is 

weak*  compact and convex. One easily shows that

extr H = (extr Po o — extr Po) \ {0}.

Let Eh be the weak*  closure of extrH. We have

Eh u {0} = E o —E.

We say that the group G has property (Qc) if there is a net \uf in X(G) with 

IHIma(G) C and ua — 1 weak*  (in ^(L00, L1)). We may assume ua = ua 

(consider (ua + i7a)/2). Here IHIwa(G) denotes the operator norm of a multiplier 

on X(G). All amenable groups have (QJ as well as many others too (e.g., 

SL(2, R) and all free groups; see [2]). If G has (Qc) but not necessarily (QJ, 

the following theorem holds with E replaced by CE, and similarly for 

Theorem 6.5.

Theorem 6.3. Let G be a locally compact group with property (QJ. Let <P 

be an invariant separable subspace of B(G). If (pE<P and (p # 0, then there 
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exists f eE such that epf eA(G) and epf # 0. In particular, if G is abelian, then 

ep glA(G). In general, however, <P £X(G) (see Theorem 6.11).

Since EH czE\j — E, it suffices to prove the assertion with EH instead 

of E.

Proof. For epE<P, ep 0, let

{ftp: f eH] and Ev = {fep: f eEh} .

Then is weak*  compact and convex and E^ is a weak*  compact subset of 

Kv whose weak*  closed convex hull is By the converse of the KreTn- 

Milman Theorem, Eq, contains the extreme points extr(K(p) of Kv. By Lemma 

6.4 below (with *F*  = B(G)), Znextr(K<p) is a weak*  dense subset of 

extr(K<p), where Z is the set of all continuity points of the identity map

if (Kq,, weak*)  ^(K(p, ||-||).

Consequently, there exists yEEH such that u = yep / 0, and the identity map 

iq, is continuous at u. By assumption, there exists a net \epf ^A(G) such 

that, for all a, II^IIm^g) 1 and <Pa — <Pa and such that {<Pa} converges to the 

constant function 1 in the weak*  topology. In particular, the net {epau} 

converges to u in the weak*  topology and lies in Kq,. Consequently, the net 

{<pau} in X(G) must converge to u in norm. Therefore, ueA(G).

If G is abelian, £\{0} = G. Hence, if u — yepEA(G) and yeE, y 0, then 

yyep = (pEA(G); that is, <P c X(G). That completes the proof of Theorem 6.3.

Lemma 6.4. Let T be a Banach space and K a weak*  compact convex 

subset of *P*.  Let D denote the weak*  closure of ext(K) and let Z be the set of 

all points of continuity of the identity map (K, weak*)  —>(K, ||-||). If D is norm- 

separable, then Znext(K) is a dense Gd-subset of (ext (K), weak*).

Proof. The assertion is a version of a result of Namioka [16], Theorem 

2.2. The proof is the same as Namioka’s.

Theorem 6.5. Let <P be a separable invariant subspace of (B(G), || 'HooX 

where Il'Hao denotes the supremum norm on B(G). If G has property (QJ, then 

for each epE<P, ep # 0, there exists yE E such that yep # 0 and yep e Co (G). In 

case that G is abelian, that implies that & ^C0(G). In general, $C0(G), 

however (see Theorem 6.7 below).

Proof. As in Theorem 6.3 it suffices to prove the assertion with EH 

instead of E. Let epE<P and = {fep: f eEh}. Note that a ||-||B(G)-bounded 

weak*  closed subset of B(G) is o-(LGO(G), L1 (G))-closed in LCO(G) and that the 

topologies cr(B(G), C*(G))  and ct(Lcc(G), L1 (G)) coincide on such a set. 

Therefore, as in the proof of Theorem 6.3 (using Lemma 6.4 with •£*  

= L (G)), there is ysEH such that u = yep # 0 and a net {epa} with 

epaUEA(G) and such that ||<pa w-wl^ - 0. Hence ueC0(G).

If G is abelian, then each non-zero element ye£\{0} = G has a multipli­

cative inverse, so <peC0(G). That completes the proof of Theorem 6.5.
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A locally compact group is [Moore] if each of its irreducible unitary 

representations is finite dimensional. All [Moore] groups are amenable ([17], 

p. 698).

Theorem 6.6. Suppose that G is a [Moore] group and that (B(G), ||]loo) 

separable. Then G is compact.

Proof. Let K = P0(G). An argument similar to that used to prove 

Theorem 6.3 shows that if Z is the set of all continuity points of the identity 

map

(K, weak*)  -(K, IHloo),

then Z next(K) is a dense G^-subset of (ext(K), weak*).  As in the proof of 

Theorem 6.5, each element of Z is an element of C0(G), since [Moore] 

groups are amenable. Since each irreducible representation of G is finite 

dimensional, functions in ext(K) are in AP(G). But AP(G)nC0(G)= [0], 

unless G is compact. That completes the proof of Theorem 6.6.

Theorem 6.7. If G is either the Euclidean motion group or SL(2, /?), then 

(B(G), H’lloo) is separable.

Proof. If G is the motion group, then

WAP(G) = AP(G)©C0(G) and AP(G) = C(T),

where T is the circle group (see [4] and [15]). Hence WAP(G) is separable. 

Therefore, (B(G), IHloo) is separable.

If G is SL(2, B). then WAP(G) = C©C0(G) by [4], Hence WAP(G) is 

separable. Therefore, (B(G), IHloo) is separable.

Lemma 6.8. Let G be a locally compact group. IffAfG), IHloo) zs separable, 

then G is separable.

Proof. Let {/„} be a dense sequence in 4(G). Let

K = {x: l/n(x)l > 1/2}.

Each Vn is an open subset of G. Let x be an element of G and L be a 

neighborhood of x. Let f be a compactly supported element of A (G) such 

that /(x) = 1 and supp/ £ U. Since {/„} is ||• ||x-dense, there exists fm such 

that < 1/4. Then xeVm and Vm £ U. Hence {Vn} is a basis for the

neighborhood system of x. The lemma is proved.

Corollary 6.9. The following are eguivalent:

(i) A(G) is separable;

(ii) (4(G), IHloo) is separable;

(iii) G is separable.

Theorem 6.10. Suppose that G is discrete and G contains an infinite 

abelian subgroup H. Then B(G) is not separable.

Proof. Since H is an infinite discrete abelian group, there exists an
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uncountable subset {/^} of elements of B(H), all of norm 1, such that if 

then ||/a -fp\\ = 2. Let T: Be(H)-BJG) be defined by

f (x) if xeH, 

0 otherwise.

We now show that T is well-defined and isometric. Let g be a finitely 

supported function on G with H^llcvto h where ||g||cv(G) denotes the oper­

ator norm of g acting on /2(G) by convolution. Then

<Tf, £> = £ /(x)^(x) = </, g\H>-

xeG

But

II^IhIIcv(H) ll^llcv(G) 1-

Therefore ||T/Hb^g) < II/IIb^h)-

In particular, T is well-defined and ||T|| < 1. Of course, T is an isometry, 

because, by choosing g to be supported on H, we infer that

It follows that the set {Tfp} is a non-separable subset of Be(G).

Theorem 6.11. The “ax + b” group contains a separable ideal T ~B(G) 

such that T £ A (G).

Proof. By [13],

B(G) = X(G)@BS(G), 

where BS(G) = B(/?*)  oj, and j is defined by j(a,b) = a. Let K 

= B(B*)| tl> 2] that is the elements that come from those supported in the 

interval [1,2]. Since B(/?^)|Uj 2] = 4(B*)| [lj 2] is separable, K is separable. 

Therefore T == A (G) © K is separable. But

B(G)*P  cA(G) + B(G)-K cd(G) + Bs(G)-K cX(G) + K = T.

Hence T is an ideal. Obviously, T $X(G). That completes the proof of 

Theorem 6.11.

We say that a group G has property S if every separable ideal of B(G) is 

contained in X(G). Theorem 6.11 shows that the “ax + b” group does not have 

property S.

Theorem 6.12. If the locally compact group G has an open subgroup H of 

finite index that has property S, then G has property S.

Proof. Let T be a separable ideal of B(G). Let denote the charac­

teristic function of H. Since

/HeB(G) and £<5(x)*/ H = l 

xeG

Tf (x) = j
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(only a finite sum is involved), we have

xeG

Since the restriction to (cosets of) H reduces B-norms, the space T = /H Y 

= T|H is norm-separable in B(H). Since any element of B(H) extends to an 

element of B(G) (see [12], 32.43), T is an ideal in B(H). Since H has prop­

erty S; ~

ToX(H) or Zh^U(G).

To show that (<5(x) * /H) — A(G), xeG, it will suffice (by the invariance of

X(G) under translation) to show that

(2) xH^W1)*'P)'=A(G).

But ^(x-1)*̂  is again a separable ideal (because translation is an isometric 

automorphism of B(G)). Hence (2) holds. That completes the proof of 

Theorem 6.12.

Remark 6.13. Theorem 3.4 shows that abelian groups have property S. 

Hence finite extensions of abelian groups have property S.
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