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A CONTRIBUTION TO SEGAL ALGEBRAS

Michael Leinert

Let A and B be Banach algebras. If B is an abstract Segal algebra in
A, we have a bijective correspondence between the strictly irreducible
representations of A and those of B. This gives a bijective
correspondence for maximal modular left ideals. If A and B have
approximate right units, we obtain a bijective correspondence for
right resp. two-sided ideals. For ftwo-sided ideals this correspondence
preserves the property of an ideal having approximate right units.
This generalizes a Theorem by H. Reiter.

Notation. For a subset | of a topological space X we denote by I
the closure of | in X. If B is a Banach algebra, Rad B is its radical
and B' is the space of all continuous linear functionals on B.

Two subsets D <. B and E < B' are called orthogonal (DL E), if

d(e) = O for all d e D, e € E. Throughout this note A and B will
denote Banach algebras. | should like to thank H. Behncke for

drawing my attention fto the paper [1] by B. A. Barnes.

1. Preliminaries

Definition. Let A be a Banach algebra with norm | IA and let B be
a dense left ideal in A such that
(1.1) B is a Banach algebra with respect to some norm | |B %)
(1.2) There is a constant K > O such that

IblA S IblB

e all b e B,

Then B is called an abstract Segal algebra in A.

#) It would be sufficient to require B to be a Banach space.
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2 LEINERT

In case that A is semi-simple, condition (1.2) in the above definition
may be omitted since it is fulfilled automatically. This is proved
as in L1] , Proposition 2.2, using the following modification of [1} y

Proposition 1.1:

Lemma (1.3). Let B be a dense left ideal in A and let M be a maximal

modular left ideal in A. Then

(i) B acts strictly irreducibly on A/M

(ii) BMM is a maximal modular left ideal in B.

Proof: (i) Since the left regular representation n of A on the
space A/M is continuous and B is dense in A, we have
flor Ele A/M,E + O

/M

BTG /o Sy B

This implies n(B)E # O. Since n(B)§ is n(A) - invariant,
we have n(B)E = A/M.

(ii) Let & = u + M, where u is a right identity for A
modulo M. Then M is the annihilator of & in A, and
BAM is the annihilator of £ in B, which is a maximal

modular left ideal of B by (i).

The proof given by B. A. Barnes ( [1] > Prepesiimiiont LN foEN e NiWes
sided ideal B is a purely algebraic one, however it seems that in

the case of a left ideal one has to use topology for (i).

If B is a left ideal in A and condition (1.2) holds, in particular
if B is an abstract Segal algebra in A, there is a number C > O such

that

() o 4b) IablB <€ IaIA IbIB

for all a € A, b € B (see [1] , proof of Theorem 2.3). Analogously,
i B s & wigiy lecal ln A e conditicn (2} helds, shere s

some C > O such that
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(1250 Ibal G bl #5 1]

R B

tforall ave A, b cpB (see[1] , proof of Theorem 2.3). This and the
proof of L1] , Proposition 2.1 give

Proposition (1.6) . Let A be semi-simple and B be a dense subalgebra

which is a Banach algebra under ifs own norm. Then B is a left
[righfj iidealidin "Aviif o and only -if (1:2) and (1.4) E(l.Z) and (1.5{]

hold. (Fon correctness suppose a.e€ B in (l.4) and (1.5)).

2. ldeals, Approximate units in ideals

Definition. A Banach algebra A has approximate left (right) units,
M e e every a e A.

Let B be an abstract Segal algebra in A.

(251 dlsfele iis ab cliosedilefid (right) .ideal lofigALl theni lk@ Bwisia
closed left (right) ideal of B.

@2 s iicniatelosed! et (right) ideal ofaBeithen jA iils a
closed left (right) ideal of A.

This is straightforward (for one part use (1.2), for the

other use density of B in A).

Theorem (2.3). Let B be an abstract Segal algebra in A and let A and

B have.approximate right units. Then the mapping Jré-jA is bijective
from the set of all closed right (two-sided) ideals in B onto the

set of all closed right (two-sided ideals in A. The inverse mapping
SIS RAaNBI

Part of this Theorem was proved by J. T. Burnham in [Z] 5 heorem il
Using this result, H. Reifer established the Theorem for pseudo-
symmetric Segal algebras over a locally compact group in [4] 5

§ 9, Theorem 1. His proof applies in fact to the general case.
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4 LEINERT

The statement for two-sided ideals follows from that for right ideals,
since the mappings J\~>3A and |+ | N\ B carry closed fwo-sided ideals
into closed two-sided ideals.

J. T. Burnham has given an example which shows that Theorem (2.3)

may fail in the absence of approximate units. A sufficient condition
for A and B to have approximate right units is for instance that

A has a bounded right approximate identity and B is a two-sided ideal
in A such that B-A is dense in B. Another sufficient condition ob-
vileus Iy liistihait Bthas | |A~bounded aoproximate right units. Approxim-
ate units are not needed, if we consider maximal modular left ideals

(see Theorem (3.7)).

Theorem (2.4). Let B be an abstract Segal algebra in A and let A
and B have approximate right units. Lefll be a two-sided closed ideal
in Aand J = | /\B be the corresponding two-sided closed ideal in B.
Then | has approximate right units if and only if J has approximate

ritghiEtumniis:

This Theorem has been proved by H. Reiter in the case of a Segal
algebra over a locally compact abelian group. We essentially follow
Reiter using a different condition to characterize the existence

of approximate units and avoiding the assumption of commutativity by

a small change in the proof+). The Theorem settles the question raised
by Reiter in [4] : Theorem 1 in [ﬂj , § 16 holds for general locally

compact groups if we suppose the Segal algebra to be pseudosymmetric.

The proof of the Theorem is done in several steps.
If D is a Banach algebra and D' is the space of all continuous linear
functionals on D, we define for e ¢ D and ¢ ¢ D' linear functionals

ep and ge € D' by

ep(g) = o(eg)

oe(g) = o(ge),
g eD. It is immediately checked that (ed)e = d(ep) and (e¢)d = e(od)
er @, @ e bend @ e BV,

) Meanwhile there is a short proof of this Theorem by Feichtinger.
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Lemma (2.5). |f B is an abstract Segal algebra in A and if b € B and
¢ € B', we have ¢b e A', by which we mean that ¢b is continuous with
respect tfo the norm | |A and so can be extended to a continuous

| inear functional on A.
Proof: For ¢ e B' and b,c ¢ B we have

lgb(c) | = lg(cb)l i_l@llcb!B §_C|¢!ICIA|bI

B
by (1.4).

Definition.
A subset M of a Banach algebra D satisfies condition (rD) L(ID)] ;

if formeMand ¢ ¢ D' with meiM [@m.L MJ we have ¢(m) = O.

Proposition (2.6). Let M be a subalgebra of a Banach algebra D.

Then M satisfies (rD) Y(ID)J if and only if M has approximate right
units [approximate left units

This is proved easily by means of the Hahn-Banach-Theorem.

Proposition (2.7). Let B be an abstract Segal algebra in A and let

A have approximate right unifts. Let | be a closed two-sided ideal in

Atand® llete s =% [FAaNE B HThen, it ') satisfiesicondition (r ), | satisfies

B

Broof:iileit U saiiisty (rB). llemuic e |iiand Soie "Alltbet stich: ihaid o=t
Since A has approximate right units and B is dense in A, we can
find a sequence {un} in B such that !iun = iIA + 0. We have
iun cRBEAEIRES Ly Siincer B lisialt e fdiideallyands |F i stal ri gl
ideal in A, and

G = un(i¢).l IS
since | is also a left ideal. So (iun)w.L J° slineat e 15
Condition (rB) for J implies w(iun) = 0, hence ¢(i) = 0. So

| satisfies condition (rA).

Proposition (2.8). Let B be an abstract Segal algebra in A and let

B have approximate right units. Let J be a closed right ideal in B

301



6 LEINERT

—A
and.lett & = d° . Then,s if | saitisfies (rA), J satisfies (rB).

Proof: Let | satisfy (r,). Let jeJ and pe¢B' be such that jo L J.
Since B has approximate right units, there is a sequence {u )}
n
in \B sueh sihat ljun % jIB->O; then
j(wun) = (J’cp)un o sl
since J is a right ideal in B. According to Lemma (2.5) we
have ou_ eA'. So, by continuity we get j(@un)J_ jA = |
Because of j € J € | and condition (rA) for | we obtain
w(jun> = wun(j) = 0, hence ¢(j) = 0. So J satisfies condition
(rB).
The proof of Theorem (2.4) follows from Proposition (2.6), Proposit-
ion (2.7) and Proposition (2.8). The reader will have noficed that
this proof does not work for right ideals since we used two-sidedness

infine ipreef oif Proposiitiion (2.7).

3. Strictly irreducible representations, Maximal modular left ideals

B. A. Barnes has shown in [1] that two Banach *-algebras A and B have
identical Hilbert space representation theory, if B is an abstract
Segal algebra in A. The corresponding statement holds for strictly

irreducible representations on |inear vector spaces:

Proposition (3.1). Let B be an abstract Segal algebra in A. The

restriction map n > niB establishes a bijective correspondence

between the strictly irreducible representations of A and those of B.

Proof: |f 1 is a strictly irreducible represenftation + O of A,
then nIB is a strictly irreducible representation # O of B

biya lEemmas @I i i is a strictly irreducible representation

+ Ol'of BYona linealr "space E andl i & e E,NE 10 Swe

define m by
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3 2) n(a) no(b)E = ﬁo(ab)E

for a e A, b € B. Then n is well defined: the annihilator N of &
in B is a maximal modular left ideal in B, in particular it is
closed in B. By (1.4) and density of B in A, N is a left ideal
in A which means that no(b)g = 0 implies no(ab)£ =0 Sonm s
well defined. By the way one easily checks that n does not

depend on the choice of & . |t is immediate that the mappings

T T
557

and
T > T[[B
are inverse to each other.

Corol lary. Rad B = (Rad A) N\ B .

Theorem (3.3). Let B be an abstract Segal algebra in A.
@Rl AT iist cemi=simple , 'so is B.

(ii) If B is semi-simple, then A is semi-simple if and only if A
satisfies the condition
(N) {a e Al aA = {0}} = {0}

Proof:

(i) follows from the Corollary above.

(ii) Suppose that B is semi-simple and A satisfies (N). Let a e Rad A.
ThenikaBice \B ™ Rad tA = RadiiB = {0} By densiity aA = {0} .. So
a = 0, which means that A is semi-simple. Conversely, if A
is semi-simple, then clearly condition (N) holds since we

always have

{ae A" [MaA = 0T e Rad AT,

By means of Proposition (3.1) we can establish a bijective correspond-

ence for maximal modular left ideals. To each maximal modular left
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8 LEINERT

ideal J of B we assign a maximal modular left ideal J of A by the
following method: Let T be a strictly irreducible representation # O
of B on some linear space E and let £ € E, £ 4 0, be a vector whose

annihilator
{b.c B.I Ho(b)E = 0}

is equal to J (for instance take LN to be the left regular represent-
ation of B on B/J and take £ = u + J where u is a right identity for
B modulo J). Consider the unique~exTension n of T to A according fo
Proposition (3.1) and denote by J the annihilator of & in A. Clearly

J is a maximal modular left ideal in A.

Proposition (3.4). Let B be an abstract Segal algebra in A. The map

Jaesil just defined is bijective from the set of all maximal modular
left ideals of B onto the set of all maximal modular left ideals

ef s Al

Proof: Let J be a maximal modular left ideal in B. We first show
that J does not depend on the choice of T, and £ in the above
construction. Let n, and =} be strictly irreducible
representations # O of B and let £ and &' be vectors # O of

the corresponding representation spaces E and E', such that
Je=iiiibic B no(b)i = O =R bl et Bl né(b)i' = 0}

Then the map
gL g — E!

no(b)g k}né(b)g'
is a well defined linear isomorphism by which T and né are
equivalent , as is easily checked. If n and n' are the
extensions of LS and Ké to A, these representations are also
equivalent by ¢ because of (3.2). So we have

(5.0 fa e Al w(@E = OF = fac A | wltalos =0

However ¢& = £': let e € B be such that no(e)g = g

Then we have for all b e B:
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né(b) (né(e)i' e né(be—b)g'
= ¢no(be-b)£
=0

So né(e)g' =uelv="10slihce “é is strictly irreducible # O. Hence

9& = @no(e)g = né(e)E' it
This and (3.5) show that J does not depend on the choice of L and g
Eremt Rropesition (3.1) it is clear that J,N\ B = J. Now let | be a
maximal modular left ideal of A. Applying Proposition (3.1) to the
left regular representation of A on A/l, we see that I\ B is a
maximal modular left ideal of B and that T?RJE =l

Proposition (3.6). We always have J UA 5

n

Proof: If J is a maximal modular left ideal in B, then clearly

jA:i I e prove the converse inclusion we consider T to be
the left regular representation of B on B/J and & to be the
class u + J where u is a right identity for B modulo J.

Since no(b)i =b +J for b e B, the extended representation

1 of A on B/J is given according to (3.2) by
@b el ) e =g h e

al euA, bee B, Now . lefra ¢, 0= {ce A | ¢ u e J}

Let {bn} be a sequence in B such that

Ibn i aIA == (O

We have bnu = bn € J which implies au - a € UA. Since by

: -A
assumption au € J, we have a € J .

Proposition (3.4) and Proposition (3.6) give

Theorem (3.7). Let B be an abstract Segal algebra in A. Then the
=R i :
map J=> J is bijective from the set of all maximal modular left

ideals in B onto the set of all maximal modular left ideals in A.
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For A commutative this was proved in [2] by i R BUENham Sl inistihe
general case, a partial result but which applies to all closed
modular left ideals was obtained by B. A. Barnes in [1]

Theorem 3.1
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