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 SUMMARY 

SUMMARY 

           ANKS3 is an Ank and SAM domain containing protein. It interacts with ciliopathy 

associated NPHP proteins as well as ANKS6 and the RNA binding protein BICC1 which 

cause polycystic kidney disease (PKD) when mutated in rodents. The ANKS3 SAM domain  

is capable of assembling homopolymers and forms large complexes with BICC1. This 

ANKS3 homopolymerisation is prevented by ANKS6-ANKS3-SAM domain binding. The 

PKD causing Anks6p.R823W mutation prevents ANKS6 from binding to ANKS3 which might 

result in increased ANKS3-SAM domain homopolymerisation. The function of ANKS3 in 

mammals is quite unresolved.  

This thesis aimed to clarify the role of Anks3 in rats and the pathophysiological role 

of ANKS3-SAM domain homopolymerisation in PKD. To this end, we generated novel rat 

models, using CRISPR/Cas9, carrying either an Anks3 knockout (Anks3KO), an ANKS3-

SAM domain deletion (Anks3ΔSAM) or a missense mutation in the SAM domain (Anks3KI) 

which prevents ANKS3-SAM domain homopolymerisation but not ANKS3-ANKS6 

binding. Furthermore, we crossed the Anks3KI rat into the Anks6p.R823W PKD rat (TGRAnks6) 

to study the effect of defective ANKS3-SAM domain homopolymerisation in PKD 

(TGRAnks6-Anks3KI/KI).  

We provide the following crucial results: 1. The spatial expression pattern of ANKS3 

and ANKS6 in the kidney is tightly regulated during development and is disturbed by the 

Anks6p.R823W mutation in PKD rats. The Anks6p.R823W mutation decreases aquaporin 2 (Aqp2) 

expression and urinary concentration ability while the defective ANKS3 

homopolymerisation in the Anks3KI/KI rats increases them, supporting a role of ANKS3 

homopolymerisation in water regulation in the kidney. 2. Defective ANKS3 polymerisation 

in TGRAnks6-Anks3KI/KI rats, retards cyst growth and reverses most pathways altered in 

TGRAnks6 PKD rats, including the key signalling pathways Hippo, Wnt and cAMP as well 

as metabolic pathways. In addition, all DNA replication and repair pathways were 

upregulated in TGRAnks6-Anks3KI/KI rats vs. TGRAnks6 and vs. wildtype rats. 3. We provide 

evidence that the ANKS3-SAM domain, but not ANKS3-SAM domain 

homopolymerisation, is required for proper morphogenesis in embryos. Both, Anks3 

knockout and ANKS3-SAM domain deletion, results in an embryonically lethal, ciliopathic 

phenotype including disturbances in organ morphogenesis and laterality defects. Cilia 

formation did not appear to be disturbed. Expression profiling in Anks3KO/KO embryos 

revealed a significant downregulation of DNA replication and repair pathways vs. wildtype 

embryos, indicating a significant role of ANKS3 in DNA damage response and repair, which 

becomes crucial during periods of high proliferative stress, including embryogenesis and 

PKD. Unlike Anks6, the Anks3 mutations did not cause a PKD phenotype.   

Altogether, in the course of this thesis we provided three novel mutated Anks3 rat 

models which, for the first time, allow the in vivo study of Anks3 function in mammals and 

will contribute to further elucidate the molecular pathways of PKD and other ciliopathies, 

and their interactions. 
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 ZUSAMMENFASSUNG 

ZUSAMMENFASSUNG 

ANKS3 ist ein Ank und SAM Domänen enthaltenes Protein das sowohl mit  Ziliopathien 

assoziierten NPHP Porteinen interagiert als auch mittels seiner SAM Domäne mit  ANKS6 

und dem RNA Bindungsprotein BICC1, deren Mutanten in Ratten bzw. Mäusen eine 

Polyzystische Nierenerkrankung (PKD) induzieren. Die ANKS3-SAM Domäne kann 

homopolymerisieren und mit BICC1 große Komplexe bilden. Die Bindung der ANKS6-

ANKS3-SAM Domänen blockiert die ANKS3 Homopolymerisation. Diese ANKS6-

ANKS3 Bindung wird durch die Anks6p.R823W Mutation verhindert, die in Ratten PKD 

verursacht und demzufolge eine ANKS3 Hyper-Homopolymerisation verursachen könnte. 

Die Funktion von ANKS3 in Säugetieren ist ungeklärt.  

Das Ziel der Doktorarbeit bestand daher darin, die in vivo Funktion von Anks3 und 

die pathophysiologische Relevanz der Homopolymerisation der ANKS3-SAM Domäne in 

der PKD zu untersuchen. Dazu generierten wir mittels CRISPR/Cas9 drei neue 

Rattenmodelle, die entweder einen Anks3 knockout (Anks3KO), eine ANKS3-SAM 

Domänendeletion (Anks3ΔSAM) oder eine Punktmutation in der SAM Domäne hatten 

(Anks3KI), die die ANKS3-SAM Domänen-Homopolymerisation blockierte, die ANKS6 

Bindung jedoch erlaubte. Diese Anks3KI Ratten kreuzten wir homozygot in die zuvor 

generierte Anks6p.R823W PKD Ratten (TGRAnks6) zur Erzeuging der TGRAnks6) 

(TGRAnks6-Anks3KI/KI).  

Folgende wesentlich neue Ergebnisse konnten gewonnen werden: 1. Das renale 

Expressionsmuster von Anks3 und Anks6 ist entwicklungsabhängig reguliert und durch die 

Anks6p.R823W Mutation in der TGRAnks6 PKD Ratte gestört. Die Anks6p.R823W Mutation 

hemmt und die defektive ANKS3 Homopolymerisation infolge der Anks3KI Mutation 

steigert die Aqp2 expression und letztere auch die Fähigkeit zur Urinkonzentration, was auf 

eine Rolle der ANKS3-Homopolymerisation bei der renalen Flussigkeitsregulation deutet. 

2. Die defective ANKS3 SAM Domänen-Homopolymerisation  in TGRAnks6-Anks3KI/KI 

Ratten reduziert das Zystenwachstum und  normalisiert mehr als 100  in der TGRAnks6 PKD 

Ratte veränderte Signalwege, darunter die Schlüsselsignalwege für Ziliopathien: Hippo, Wnt 

and cAMP wie auch zahlreiche metabolische Reaktionswege. Ausserdem sind im Vergleich 

zu TGRAnks6 als auch zu Wildtyp-Ratten in der TGRAnks6-Anks3KI/KI Ratte alle DNA 

Damage Response und Reparatur Reaktionswege signifikant verstärkt exprimiert  3. Sowohl 

ANKS3 als auch seine SAM Domäne, jedoch nicht die SAM Domänenhomopolymerisation 

sind essentiell für die korrekte Morphogenese während der Embryonalemtwicklung. Beide 

Mutanten Anks3KO und Anks3ΔSAM  sind embryonal letal und zeigen für Ziliopathien typische 

Defekte einschliesslich Lateralisationsdefekte, wobei die Zilienformation nicht 

beeintrachtigt ist. Das Expressionsprofil der Anks3KO/KO Embryonen zeigte im Vergleich zu 

Wildtypembryonen eine starke Herunterregulation von Pathways, die zur DNA Damage 

Response und Reparatur gehören.  

Zusammenfassend wurden im Rahmen dieser Arbeit  neue Anks3-Rattenmutanten 

generiert, die erstmalig die Untersuchung der Anks3 Funktionen in Säugern ermöglichte, und 

völlig neue Erkenntnisse zur Rolle und Funktion von Anks3 gewonnen. . 
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 ABBREVIATIONS 

ABBREVIATIONS 

 

AC6- Adenylate cyclase 6 

ADPKD- Autosomal dominant polycystic kidney disease 

Ank- Ankyrin 

ANKS3- Ankyrin repeat and SAM domain containing protein 3 

Anks3KI- Anks3-SAMp.I35E 

ANKS6- Ankyrin repeat and SAM domain containing protein 6 

AQP2- Aquaporin 2 

Ca2+- Calcium 

cAMP- Cyclic adenosine monophosphate 

BBS- Bardet-Biedl syndrome  

BICC1- Bicaudal C1 

CHD- Congenital heart disease 

CFTR- Cystic fibrosis transmembrane conductance regulator 

CVH- Cerebellar vermis hypoplasia 

EDTA- Ethylenedinitrilotetraacetic acid 

ER- Endoplasmic reticulum 

ESRD- End stage renal disease 

FFPE- Formalin-fixed, paraffin-embedded 

GFR- Glomerular filtration rate  

GSEA- Gene set enrichment analysis  

H&E- Haematoxylin and eosin 

HNF1β- Hepatocyte nuclear factor 1β  

IFT- Intraflagellar transport 

IMCD- Inner medullary collecting duct 

INSP3R- Inositol triphosphate receptor 
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 ABBREVIATIONS 

JS- Joubert syndrome 

JSRD- Joubert syndrome related disease 

KH- K-homology 

LCA- Leber congenital amaurosis  

MKS- Meckel-Gruber syndrome 

MTS- Molar tooth sign 

NPHP- Nephronophthisis 

OFD- Oral-facial-digital syndrome 

P-bodies- RNA processing bodies 

PBS- Phosphate buffered saline 

PC1- Polycystin-1 

PC2- Polycystin-2 

PCD- Primary ciliary dyskinesia 

PDE- Phosphodiesterase 

PFA- Paraformaldehyde 

PKD- Polycystic kidney disease 

RYR2- Ryanodine receptor 2  

SAM- Sterile alpha motif 

SHH- Sonic hedgehog 

SLS- Senior-Løken syndrome 

TGR- Transgenic rat 

TGRAnks6- TGRhCMV/Anks6p.R823W 

YAP- Yes-associated protein 
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 1- INTRODUCTION 

1- INTRODUCTION 

1.1- Cilia structure and function 

Cilia are hair-like organelles found on nearly every cell type in vertebrates and have a 

number of physiological roles. The basic structure of a cilium is an extracellular extension 

of the cell, containing a microtubule core called the axoneme, generated by the interaction 

of a basal body with the plasma membrane. The axoneme contains nine peripheral 

microtubule doublets, each consisting of an A and B strand, and either no core (a 9+0 

structure) or a central pair of microtubules (a 9+2 structure). Cilia can also be divided into 

those with dynein arms connecting the microtubule pairs called motile cilia and those 

without dynein arms called primary or non-motile cilia. Both motile and primary cilia can 

exist with or without a microtubule core depending on their function. Primary cilia act as 

antennae, regulating organ function and homeostasis, or as sensory organelles in the eyes, 

ears and nose. Motile cilia act as motors used in cell locomotion, including spermatozoa 

during sexual reproduction, or fluid propulsion. Both types are also involved in embryonic 

development (figure 1) (1). 

 

Figure 1- Functions of motile and primary cilia with 9+0 and 9+2 axonemes (1). 

In addition to the microtubule doublets, a cilium contains the ciliary gate located around the 

base of the cilium which regulates the entry of proteins into the cilium and directs their 
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localisation within. The ciliary gate consists of the basal body outside the cilium and the 

transition zone, located within the cilium (2). The basal body derives from a mother centriole 

and organises primary cilia during cell quiescence. On cell cycle entry the basal body 

migrates to the nucleus and organises the centrosomes. Studies also indicate that  

localisation of the basal body may be involved in relating changes from planar cell polarity 

to cell division. This illustrates the close link between cilia and the cell cycle. The basal body 

consists of the basal feet, which are anchored to cytoplasmic microtubules and are necessary 

for polarised alignment of the cilium, and transition fibers that originate from the appendages 

of the mother centriole. The transition fibres are important in importing parts of the 

intraflagellar transport (IFT) system (3). The basal body contains several key proteins 

including sodium channel and clathrin linker 1, CEP164, CEP89, CEP83, fas binding factor 

1 and numerous other proteins which give rise to ciliopathic diseases when mutated. The 

transition zone is characterised by Y-shaped link fibers. One end of the link fiber attaches to 

a microtubule doublet of the axoneme and the other two bind to the ciliary necklace. The 

ciliary necklace consists of 3 strands of membrane particles which form rings around the 

cilium (4). The transition zone also contains two key protein complexes vital to its function; 

the nephronophthisis (NPHP) complex, consisting of NPHP1, NPHP4 and NPHP8, and the 

Meckel-Gruber syndrome (MKS) complex, consisting of Tctn proteins, B9 domain proteins, 

coiled-coil proteins and Tmem proteins (5). The transition zone works with the transition 

fibres in regulating the flow of proteins and other factors into the cilia and may play a role 

in loading cargo onto the IFT (6). There are two IFT protein complexes; IFT-B transports 

cargo from the ciliary gate towards the tip of the cilium, mediated by the kinesin-2 motor 

and the IFT-A protein complex is driven by the cytoplasmic dynein-2 motor and transports 

cargo from the tip of the cilium to the ciliary gate (figure 2) (2).  
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Figure 2- Structure of the primary cilium. Diagram shows the basal body, transition zone and IFT (2). 

During early development, motile and primary cilia, both with 9+0 axoneme cores, work 

together to determine left-right asymmetry. At the embryonic node, centrally placed motile 

cilia generate a leftward flow of the surrounding fluid which is detected by peripheral 

primary cilia. This in turn activates Nodal signalling on the left side of the node via calcium 

(Ca2+) signalling. Nodal signalling is the key determinant in correct left-right organ 

patterning (7). The primary cilia have a key role in ventral neural tube patterning during 

embryonic development. Neural tube patterning is controlled by a gradient of sonic 

hedgehog (SHH) protein, with low expression at the dorsal end to high expression at the 

ventral end. Shh signalling is the most important factor in regulating the fates of progenitor 

cells at the ventral end while Wnt and bone morphogenetic protein signalling are the key 

regulators at the dorsal end (6). The primary cilia are the focal points of the Shh signalling 

pathway as hedgehog signalling requires the IFT system to activate its targets via Gli 

transcription factors (8).  
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In addition to these specific roles in development, the primary cilia have general roles in cell 

division and migration that are also important in adults. During cell mitosis cilia must 

disassemble at the S/G2 phases to make the basal body centriole available for mitotic spindle 

assembly. Progression through the cell cycle is at least partially controlled by competition 

between proteins promoting either ciliogenesis or disassembly of the cilia. IFT27 and IFT88 

promote and inhibit cell cycle progression respectively, (9, 10) while trichoplein inhibits 

primary cilium assembly and aurora A kinase promotes disassembly of the cilium (11). It is 

known that a link between cell migration and the primary cilia exists though the exact 

mechanisms have not been clarified yet. The RhoGTPases are known to be vital in a number 

of processes including migration and have been shown to localise to the basal body. The 

primary cilia are also thought to regulate Na+/H+ exchange protein 1 expression and its 

localisation within the plasma membrane in the direction of travel during migration. This is 

mediated via Pdgfrα signalling which in turn regulates AKT and MEK/ERK signalling (6). 

1.2- Ciliopathies 

Ciliopathies are a group of diseases which occur due to defects in either the motile or primary 

cilia. Due to the ubiquitous nature of cilia, ciliopathies can affect every major organ in a 

range of ways including developmental defects and cystic phenotypes. 

Autosomal Dominant Polycystic Kidney Disease (ADPKD) 

ADPKD is primarily characterised by the development of large, fluid filled cysts in both 

kidneys, typically developing into end stage renal disease (ESRD) between the sixth and 

eighth decade of life. The cysts arise along the length of the tubules and collecting ducts with 

the majority originating in the distal region in humans. The cysts arise as the epithelium has 

increased proliferation (leading to fusiform dilation of the tubule), aberrant fluid secretion 

(filling the cyst) and increased extracellular matrix formation. These fusiform dilations 

typically detach from the tubule, creating the cysts which continue to grow and be filled by 

transepithelial secretion, resulting in the compression of nearby structures. Cyst formation 

is also accompanied by a number of inflammatory events including increased cytokine 

production, increased formation of inflammatory cells (particularly macrophages) and the 

formation of interstitial fibrosis which becomes severe by the point of ESRD. Renal cysts 

can be accompanied by the formation of cysts in other organs, mostly in the liver (arising 

from the biliary epithelium) but also the pancreas, seminal vesicles and arachnoid 

membrane. Additionally, cardiovascular abnormalities are common in ADPKD patients, 
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including arterial hypertension with secondary left ventricular hypertrophy, cardiac valve 

defects, intracranial aneurysms in around 8 % of patients and other arterial dissections in 

some rare cases (12).   

Estimates of ADPKD incidence are between 1:400 and 1:1,000 (13, 14) with the majority of 

cases due to mutations in two genes, PKD1 and PKD2, which account for around 80 % and 

15 % of cases respectively. PKD1 encodes the polycystin-1 (PC1) protein which integrates 

with the plasma membrane at the primary cilia and cell junctions. It consists of a large 

extracellular domain at the N-terminus, eleven transmembrane domains and a small 

intracellular tail at the C-terminus. The extracellular domain has several predicted motifs 

thought to interact with extracellular proteins and carbohydrates. The transmembrane 

domains form a binding domain for an unknown ligand. Autoproteolytic cleavage of the 

extracellular N-terminus domain creates a large product which remains non-covalently 

bound to the transmembrane domains.  The last 200 amino acids of the intracellular tail are 

also cleaved to create a product (PC1-P200) that localises to the nucleus and mitochondria. 

In the nucleus it interacts with transcriptional regulators of many signalling pathways. In the 

mitochondria the fragment is reported to have roles in the shape of the mitochondrial 

network and metabolic flux. The PC1 C-terminus tail also contains a G-protein activation 

domain specific to heteromeric Gi/GO and a coiled-coil motif which binds to polycystin-2 

(PC2). Furthermore, it interacts with Na+/K+-ATPase and increases its activity. At the cell 

junctions, PC1 provides a link between the extracellular matrix and the intracellular actin 

cytoskeleton by interacting with actin-binding proteins, focal adhesion proteins and cell 

adherent junction proteins. The loss of these interactions is thought to cause the formation 

of aneurysms in ADPKD patients (15).  

The PKD2 gene encodes PC2 which has six transmembrane domains and intracellular C- 

and N-terminus domains. PC2 also harbours an endoplasmic reticulum (ER) retention signal 

at its C-terminus and a ciliary localisation signal at the N-terminus. This results in PC2 

mainly localising to the ER, but it is also found at the primary cilium and plasma membrane. 

PC2 assembles a homotetrameric Ca2+-selective transient ion channel. The formation of this 

channel is mediated by an EF-hand motif and a coiled-coil domain on the C-terminus tail 

and an oligomerisation signal on the N-terminus tail. PC2 interacts with PC1 via the C-

terminus coiled-coil domains on each protein. This interaction is important for the 

localisation of PC1 and PC2, PC2 Ca2+ channel function and for the activation of Gi/GO 

proteins by PC1. Additionally, PC2 interacts with cytoskeleton proteins, including actin-
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binding proteins and tropomyosin, and mDia1, a protein with roles in microtubule 

stabilisation and Ca2+ homeostasis (15). Patients with mutations in PC2 typically have a later 

onset of ESRD than those with mutations in PC1.  

In addition to PKD1 and PKD2, rare mutations in a few other genes are thought to cause 

ADPKD. The most common of these is hepatocyte nuclear factor 1β (HNF1β). HNF1β 

upregulates distinct polycystic kidney disease (PKD) associated proteins, including PC1 and 

PC2, neutral α-glucosidase AB (protein folding) and DNAJB11 (a chaperone protein). 

Mutations in a number of genes which are primarily involved in autosomal dominant 

polycystic liver disease can also lead to an ADPKD phenotype. This includes SEC63 

(required for protein transport across the ER membrane) and PRKCSH (a subunit of 

glycosidase 2 which has a role in protein folding) (12). 

While the pathogenesis of ADPKD is not fully understood, several key cellular functions 

and pathways are known to be altered. One of the most important is intracellular and ciliary 

Ca2+ homeostasis which is disrupted by mutations in either PKD1 or PKD2. This occurs due 

to loss of PC2 channel function or loss of its regulation by PC1, loss of regulation of the 

inositol triphosphate receptor (INSP3R), ryanodine receptor 2 (RYR2) and piezo1 channel, 

and changes in Ca2+ storage in the ER (15). Ciliary Ca2+ concentrations are maintained 

independently from the rest of the cell and are generally thought to be regulated by the ciliary 

PC2/PC1 mechanosensitive receptor complex allowing the entry of Ca2+ (16). However, at 

least one study has questioned this (17). PC1 and PC2 act on INSP3R induced Ca2+ release 

from the ER in a competitive manner; PC2 promotes and PC1 inhibits INSP3R. PC2 binds 

to RYR2 (found in cardiac tissue) when the channel is open, resulting in inhibition of its 

function, and to the Piezo1 channel (found in renal tubular epithelial cells) decreasing its 

ability to respond to stretching mechanical stimuli. In addition, PC2 can form channels with 

either TRPV4, creating a divalent cation channel responsive to thermal and mechanical 

stimulation of the cilia and epidermal growth factor signalling, or TRPC1, creating a Ca2+ 

permeable channel which localises to the cilia and plasma membrane. The final way that 

PC1 regulates Ca2+ homeostasis is through the large fragment cleaved at its C-terminus. This 

fragment interacts with the Ca2+-sensor stromal interaction molecule 1 (STIM1), which 

detects a reduction in ER Ca2+ stores. The PC1 fragment inhibits the localisation of STIM1 

to the plasma membrane where it would normally activate Orai1 Ca2+ channels to replenish 

lost Ca2+. All of these factors mean that loss of PC1 or PC2 results in decreased Ca2+ 

signalling (15).  
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Perhaps the most important effect of decreased Ca2+ signalling in ADPKD is an increase in 

cyclic adenosine monophosphate (cAMP) levels. Synthesis of cAMP by adenylate cyclase 

6 (AC6) is inhibited by Ca2+ and stimulated by vasopressin V2 receptor activity, while cAMP 

degradation by phosphodiesterases (PDEs) is Ca2+/calmodulin-dependent. Thus, decreases 

in Ca2+ levels results in increased cAMP levels. Increased cAMP levels in turn leads to 

increased cell proliferation and changes in fluid secretion. cAMP regulates cell proliferation 

by phosphorylation of the B-Raf protein in the ERK pathway. Phosphorylation activates B-

Raf, which also has reduced inhibition by AKT due to the lowered Ca2+ levels. cAMP 

regulates fluid secretion via protein kinase A which affects two main channels: aquaporin 2 

(AQP2) and the cystic fibrosis transmembrane conductance regulator (CFTR). Increased 

cAMP levels activates AQP2 by phosphorylation which also causes its incorporation into 

the apical plasma membrane. The CFTR channel is hyper activated by cAMP, causing 

chlorine ions to flow into the lumen. This creates an electrical potential gradient across the 

membrane, leading to the outflow of sodium followed by water. cAMP activation of the 

potassium channels Kir6.2 and Kca3.1 in the apical membrane is also necessary for creating 

this electrical gradient (18).  

In addition to ERK there are a number of other pathways dysregulated in ADPKD including 

Wnt, JAK/STAT, Hippo, JNK and mTOR. The Wnt pathway is essential for normal 

embryogenesis and is important in adult tissue homeostasis. PC1 and PC2 affect all three 

Wnt pathways; the canonical, which regulates gene transcription via nuclear accumulation 

of β-catenin, the non-canonical planar cell polarity and the non-canonical Wnt/Ca2+ pathway. 

The PC1-P200 fragment inhibits the β-catenin destruction complex (GSK3/APC/Axin) in 

the cytoplasm, resulting in β-catenin accumulation in the cytoplasm and nucleus where it 

activates, in complex with TCF/LEF, transcription of genes which stimulate proliferation. 

However, inhibitory effects of the PC1-P200 fragment on Wnt/β-catenin signalling have also 

been shown. By binding to β-catenin in the nucleus it inhibits TCF dependent gene 

transcription (15). In ADPKD patients, increased levels of PC1 C-terminal fragments are 

found in the nuclei, which leads to over-activation of the JAK-STAT pathway. These 

fragments directly activate STAT3 and STAT6 as well as increasing transcriptional activity 

of STAT1 and STAT3 via phosphorylation of JAK2. The Hippo pathway is dysregulated in 

ADPKD patients due to increased localisation of Yes-associated protein (YAP) to the 

nucleus and inactivation of cytoplasmic YAP by cAMP-induced phosphorylation. JNK 

signalling is thought to be a principal cause of apoptosis in cyst-lining cells due to 

dysregulation of the transcription factors c-Jun and AP-1. This is a result of either a loss of 
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PC1 regulation through Gα and Gβ subunits or loss of PC2 activation of JNK1 and p38 via 

PKCε. PC1 regulates the mTOR pathway by preventing tuberous sclerosis protein 2 from 

being degraded and retaining it at the membrane. This inhibits its phosphorylation by AKT, 

thus reducing mTOR activity. Consequently, in ADPKD patients, the mTOR pathway is 

overactive (15).  Some altered pathways may contribute to the abnormal metabolic features 

of cells involved in ADPKD. In vitro studies showed that cells lacking PC1 exhibit a 

Warburg-like metabolic profile with a shift away from oxidative phosphorylation to aerobic 

glycolysis, as seen in cancer cells, primarily through changes in AMPK, mTOR and sirtuin 

1 (19).  

Treatment of ADPKD has typically been management of secondary effects including 

hypertension and pain due to enlarged kidneys. Management of ADPKD can include 

pharmacological agents or surgical reduction of cysts through fenestration or sclerosis, 

followed by renal transplant when the patient reaches ESRD. There are some 

pharmacological agents being developed to slow disease progression. The most heavily 

investigated class of agents so far has been the vasopressin V2 receptor antagonists. Of these, 

tolvaptan has been the most studied in ADPKD patients. Tolvaptan aims to lower 

intracellular cAMP levels in ADPKD patients by specifically inhibiting the vasopressin V2 

receptors in the kidney collecting ducts. Patients in a phase IV clinical trial of tolvaptan 

showed only a 2.8 % increase in cyst volume per year if on tolvaptan, compared to 5.5 % in 

the placebo group, as well as a significantly slower decline in kidney function. In 2014 it 

was approved for use in ADPKD patients in Japan, Canada and the European Union. The 

US approved its use in 2018 after further trials studying its effectiveness in the late stages of 

the disease and its liver toxicity (20). The somatostatin analogs, octreotide and lanreotide, 

are also being trialled as possible means of reducing cyst growth by targeting cAMP levels. 

These act on five Gi proteins which subsequently reduce cAMP production (21).  

In addition to pharmacological treatments, dietary interventions have been investigated for 

reducing cyst growth or glomerular filtration rate (GFR) decline. A small caloric restriction 

in ADPKD patients has been suggested as a way to target the Warburg-like metabolic 

phenotype of cystic cells, which should make them more sensitive to energy scarcities. 

However, while obesity is associated with increased total kidney volume and GFR decline 

in ADPKD (22) and caloric restriction in animal models of PKD reduces cyst growth (23), 

studies of caloric reduction in humans have not been conducted. A moderate reduction in 

sodium intake has been associated with improvements in both GFR decline and total kidney 
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volume increase (24). The relationship of ADPKD to potassium remains unclear, though 

studies have suggested a general reduction in chronic kidney disease with increased 

potassium intake. Increased water intake was theorised to reduce cyst growth via reduced 

vasopressin concentrations. While initial studies in a rat model of PKD were promising, 

concurrent studies showed no improvement in a mouse model of ADPKD. The largest study 

in humans, the CKD WIT trial, showed no significant differences between the groups after 

a year (25).  

Autosomal Recessive Polycystic Kidney Disease (ARPKD) 

ARPKD is primarily characterised by enlarged kidneys with fluid-filled cysts and interstitial 

fibrosis, and ductal plate malformation in the liver. These factors typically develop in utero 

leading the disease to be diagnosed at or shortly before birth. Between 30 % and 50 % of 

patients die shortly after birth due to pulmonary hypoplasia causing respiratory 

insufficiency. Of the survivors, 80 % develop high blood pressure which is resistant to 

treatment (26). ARPKD has an incidence of 1:20,000-1:40,000 (27) with mutations in the 

PKHD1 gene accounting for 80 % of cases (28). This gene encodes fibrocystin, a 

transmembrane protein which is mostly expressed in the kidney, and to a lesser extent in the 

liver, in both foetuses and adults. The protein localises to the cilium and basal body (29) 

where its role is not yet defined though it may play a role in microtubule organisation or 

sensory functions. It is thought to regulate intercellular adhesion and proliferation by acting 

as a membrane-bound receptor (30). The severity of the disease correlates with the type of 

mutation. The disease is often perinatally lethal in patients with two truncating mutations in 

the gene and more mild in those with missense mutations (31). However, in some cases 

missense mutations can be as severe as truncating mutations and in around 20 % of families 

there is a high degree of variability between individuals (32). In addition to PKHD1, 

mutations in the DZIP1L gene have been proposed as a cause of ARPKD. The DZIP1L 

protein localises to the transition zone of the cilium and interacts with proteins involved in 

maintaining the periciliary diffusion barrier. Patients with mutations in this gene may have 

a milder phenotype than those with mutations in PKHD1 as truncating mutations did not 

result in perinatal lethality (33).  

NPHP 

NPHP is an autosomal recessive disease with a reported incidence of between 1:50,000 in 

Finland and 1:1,000,000 in the USA (34). It is primarily characterised by cystic and fibrotic 

kidneys and is divided into three main subtypes based on the age of onset of ESRD: infantile, 
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juvenile and adolescent. Juvenile NPHP is the most common form of the disease with 

symptoms arising from the age of 6 and ESRD occurring at a median age of 13 (35). In 

juvenile NPHP the first changes seen in the kidney are interstitial fibrosis with very little 

inflammation, atrophic tubules with thickening of the tubular basement membrane, 

protrusions in the distal tubules and occasional periglomerular fibrosis. At the later stages of 

the disease the thickening and atrophy of the tubule basement membrane progresses, as does 

the glomerular fibrosis which can lead to glomerular collapse. This is accompanied by an 

increase in inflammation and the presence of small corticomedullary cysts which are 

associated with dedifferentiation of the tubules in this region. However, unlike ADPKD, 

these cysts do not cause enlargement of the kidneys (36). These factors manifest clinically 

as increased urine production (with proteinuria at the late stages), progressively severe 

anaemia and growth retardation secondary to ESRD (34). Adolescent NPHP, with a mean 

age of 19 for ESRD, has very similar clinical and pathological features to the juvenile form. 

Infantile NPHP results in ESRD before the age of 4 and is the rarest of the three subtypes 

(35). The progression of the disease is both faster and more severe with the kidneys enlarged 

due to large corticomedullary cysts. In some cases there is associated congenital heart 

disease (CHD) and situs inversus. In addition to the three widely accepted subtypes, a fourth 

subtype, adult onset, has been proposed to describe four families with onset of ESRD 

between 27 and 56 years of age. In around 20 % of NPHP cases there are additional extra-

renal manifestations associated with other ciliopathic syndromes, including retinitis 

pigmentosa from Senior-Løken syndrome (SLS) and the molar tooth sign (MTS) from 

Joubert syndrome (JS) (36). 

There are over 20 genes known to cause NPHP with mutations in NPHP1 causing around 

20 % of cases. The other genes account for a further 15 % of cases, leaving the cause of 

around two thirds of cases unresolved. NPHP1 encodes nephrocystin-1 which acts as part of 

the NPHP1-4-8 complex in the ciliary transition zone. Nephrocystin-1 also interacts with 

proteins involved in cell-cell adhesion and cell signalling. Of note among the others are 

NPHP3, INVS (NPHP2), NEK8 (NPHP9) and CEP83 (NPHP18) which can cause the severe 

infantile form of the disease. NPHP3, INVS/NPHP2 and NEK8/NPHP9 act together as the 

NPHP2-3-9 complex in the inversin compartment of the cilium. There, the complex has roles 

in intercellular adhesion, planar cell polarity and switching between the canonical and non-

canonical Wnt pathways (36). CEP83 is a centriolar distal-appendage protein involved in 

centriole to membrane docking which is required for cilia initiation (37). Other NPHP-

causing genes are associated with specific extra-renal manifestations. Mutations in IQCB1 
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(NPHP5) are associated with NPHP with retinitis pigmentosa as the protein localises to the 

transition zone of the primary cilia in kidneys and calmodulin and a GTPase regulator in the 

retinal connecting cilia. TMEM67 (NPHP11), which encodes a protein localised to the 

transition zone and is required for ciliogenesis, is commonly associated with liver fibrosis, 

the MTS and perinatal lethality. CEP290 (NPHP6) encodes a centrosomal protein which 

interacts with TMEM67 and CC2D2A and has roles in ciliogenesis, cell signalling, DNA 

damage response and cyst formation. Mutations in the CEP290 gene are linked to NPHP 

with the MTS and retinitis pigmentosa (36).  

The pathogenesis of NPHP has not been fully elucidated however it is generally agreed that 

the primary cilium is the key player. Nearly all of the known causative genes encode proteins 

which localise to the cilia, basal body or centrosome. Many NPHP proteins localise to the 

same areas as other PKD causing proteins, including PC1 and PC2. These proteins may have 

similar functions even though NPHP and ADPKD have quite distinct pathologies. NPHP 

has less fluid secretion into the cysts but a much greater degree of fibrosis. Additionally, the 

pathways involved in the 2 diseases seem to have a high degree of overlap including cAMP, 

planar cell polarity, DNA damage and ciliary dysfunction. Loss of planar cell polarity in 

NPHP causes tubule dilation leading to the development of cysts. It is thought to be due to 

dysregulation of the canonical Wnt pathway which is regulated by INVS/NPHP2. As a 

result, mutations in this protein and its partners in the NPHP2-3-9 complex are implicated in 

cystogenesis. Additionally, loss of DCDC2 (NPHP19) leads to activation of Wnt signalling 

in vitro. CEP164 (NPHP15) interacts with disheveled protein 3, a key component of the Wnt 

pathway and regulates the switch between canonical and non-canonical Wnt signalling. 

Loss of NPHP3, NPHP6 and RPGRIP1L (NPHP8) is linked to dysregulation of the cAMP 

pathway in vitro which results in increased proliferation. The primary cilium is thought to 

regulate mTOR signalling through its mechanosensing of flow, resulting in altered cell 

growth and proliferation. In addition to mTOR, the primary cilium regulates the Shh pathway 

via translocation of Smoothened protein. As such, dysregulation of the primary cilium may 

result in altered expression of these pathways. Shh signalling is thought to be particularly 

closely linked to the transition zone where many NPHP proteins localise, including NPHP1, 

RPGRIP1L/NPHP8, NPHP4 and CEP290, as well as Smoothened. Several NPHP proteins, 

including NEK8/NPHP9, CEP164, ZNF423 (NPHP14), SDCCAG8 (NPHP10) and 

CEP290, can localise to the nucleus and have been implicated in the DNA damage repair 

pathway. This is most important in times of high proliferation, such as embryonic 
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development, which is thought to be a reason that complete loss of certain NPHP proteins 

can result in additional extra-renal developmental manifestations and the severe infantile 

form of NPHP, while hypomorphic mutations in the same proteins can result in a milder 

phenotype (36).  

Treatment of NPHP currently consists of managing the symptoms, particularly hypertension, 

followed by renal transplant, after which the disease does not reoccur. Several 

pharmacological compounds have been tested in animal models of renal cystic disease as 

possible treatments for NPHP. There is a large overlap of drugs tested for ADPKD and 

NPHP. These include tolvaptan (a vasopressin V2 receptor antagonist), rapamycin (mTOR 

antagonist), roscovitine (cyclin-dependent kinases antagonist), purmorphamine (Shh 

signalling pathway agonist) and FR167653 (p38 MAPK pathway antagonist). To date none 

of these have been approved for use in NPHP patients and none are curative but they could 

delay progression in order to allow time to find a suitable donor kidney (34). 

Other Ciliopathies 

JS is an autosomal recessive disease with an incidence of approximately 1:100,000 in the 

general population. The primary characteristic of the disease is a mid-hindbrain 

malformation called the MTS. This is a result of three defects- cerebellar vermis hypo-

dysplasia, horizontalised, thickened and elongated superior cerebellar peduncles and 

deepening of the interpeduncular fossa in the isthmus and upper pons. The MTS causes a 

number of clinical manifestations including hypotonia, unusual eye movements, 

developmental delays and ataxia. JS is also associated with polydactyly, facial dysmorphism 

and defects in other organs including the retina (from Leber’s congenital amaurosis (LCA) 

to progressive retinopathy), kidney (NPHP or cystic dysplastic kidneys) and liver (congenital 

fibrosis). The variability of phenotypes has resulted in several diseases with the MTS being 

described which are collectively termed JS related diseases (JSRD) (38). JS has been 

associated with mutations in at least 35 genes, many of which are also found to be mutated 

in other ciliopathies (figure 3) (2).  

MKS is a lethal autosomal recessive disease with the primary clinical features of posterior 

fossa abnormailites, bilateral enlarged cystic kidneys and developmental defects of the liver. 

Secondary characteristics include polydactyly, bending of the long bones, CHD, craniofacial 

defects (including cleft palate) and microcephaly or anencephaly. The incidence has been 

estimated at 1:135,000 with 14 genes accounting for 50-60 % of cases. The remaining cases 

do not have a defined cause, though five further genes have been identified as possible 
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candidates in some families. There is a high degree of allelism with other ciliopathies 

including the TMEM67, RPGRIP1L/NPHP8 and CEP290 genes (figure 3) (39).  

Bardet-Biedl Syndrome (BBS) is an autosomal recessive disease with an incidence of 

around 1:100,000 in North America and Europe (40). The primary clinical features are 

highly variable but include rod-cone dystrophy, postaxial polydactyly, obesity, mental 

retardation, hypogonadism and a variety of renal abnormalities. Secondary characteristics of 

the disease include anosmia, decreased peripheral sensation and mild facial dysmorphism 

(41-43). 80 % of cases can be linked to mutations in one of 21 genes, with BBS1 and BBS10 

accounting for 51 % and 20 % of these cases respectively. There is an overlap of several of 

these genes with other ciliopathies including MKK5, MKS1 and CEP290, though a large 

number are unique to BBS (figure 3) (40).  

COACH syndrome is an autosomal recessive disorder with a combination of cerebellar 

vermis hypoplasia (CVH), oligophrenia, ataxia, colobomas, hepatic fibrosis and the MTS 

(44, 45). As COACH syndrome is a JSRD, with additional hepatic manifestations, patients 

exhibit many of the neurological features found in JS. Secondary features include renal cysts 

and dysmorphic facial features in some cases. As of 2010 around 40 cases had been reported, 

making it one of the rarest ciliopathies. Mutations in three genes have been identified in 

these cases: 82 % of families had TMEM67 mutations (compared to 1 % of JSRD patients 

without hepatic manifestations), 9 % had mutations in CC2D2A and 4 % had mutations in 

RPGRIP1L/NPHP8 (45).  

Oral-facial-digital syndrome (OFD) is associated with 16 genes and has the primary 

clinical features of facial dysmorphism, oral defects and polydactyly. OFD has 13 subtypes 

with secondary features depending on the subtype (46). The most common form is OFDI 

which is a dominant X-linked disorder caused by a mutation in the OFD1 gene and has an 

incidence of around 1:50,000. Its defining features are polycystic kidneys and complete or 

partial absence of the corpus callosum and is typically lethal in males before birth (47). The 

other subtypes are autosomal recessive disorders which exhibit a wide array of defects 

including retinopathy in OFDIX, absence of the tibia in OFDIV and the MTS in OFDVI 

(46). 

SLS has the primary clinical characteristics of retinal lesions (ranging from LCA at the 

severe end to the milder retinitis pigmentosa) with NPHP (48). There have been reported 

cases of SLS associated with the MTS which could place it on the spectrum of JSRD (49). 
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It is one of the rarest ciliopathies with an incidence of around 1:1,000,000 and 7 associated 

genes (48).  

 

 

Figure 3– Overlap in genes associated with various ciliopathies (2). 

Primary ciliary dyskinesia (PCD), also known as Kartagener’s syndrome, occurs due to a 

defect in the motile cilia. This is unlike the other ciliopathies described here which occur 

due to defects in the primary cilia. The primary clinical manifestations of the disease are 

upper and lower respiratory symptoms, including neonatal respiratory distress, due to the 

inability of the motile cilia to clear mucus from the lungs. This is also accompanied by 

infertility in all males and asymmetry defects. This includes 6 % of patients with heterotaxy, 

which is strongly associated with CHD. It has an incidence of 1:10,000-1:20,000 and is 

associated with 33 genes, mainly genes involved in the dynein arms of the cilia (50).  

1.3- Ankyrin repeat and SAM domain containing protein 6 (ANKS6) 

1.3.1- ANKS6 structure 

Also referred to as PKDR1, NPHP16 and SamCystin in the literature, ANKS6 is conserved 

in animals including mammals, birds, amphibians and fish (table 1). In both humans and 

rats, the protein contains 10 ankyrin (Ank) repeats at the N-terminus and a sterile alpha motif 

(SAM) at the C-terminus with a linking region in between (51). The Ank repeats and SAM 

domains of these species are highly homologous. SAM domains consist of approximately 
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70 amino acids formed into five alpha helices arranged in a globular confirmation, and are 

present in over 1000 proteins across eukaryotes and bacteria. These proteins have a diverse 

range of functions including protein scaffolding, kinases and regulation of transcription and 

translation. The range of functions is explained by the SAM domain’s ability to form homo- 

and hetero-SAM domain interactions, which can result in either dimers or polymers, and the 

ability to bind RNA, with some SAM domains capable of both (52). Ank repeats are another 

commonly conserved motif consisting of 33 amino acids in 2 alpha helices folded together 

with a β-hairpin or long loop. They have been predicted in approximately 4000 proteins 

across all forms of life. Like the SAM domain, Ank repeats have been identified in proteins 

with a wide range of functions including transport, development, cell-cell signalling and 

transcriptional regulation. Ank domains function by facilitating protein-protein interactions 

(53).  

Table 1- ANKS6 mRNA transcripts and proteins across animal species.  

(there are two validated isoforms of Anks6 in the house mouse, data is shown for isoform 1). 

Organism 

mRNA 

transcript 

length (bp) 

Exons 
Protein 

length (aa) 

Amino Acid Homology 

(compared to human) 

Homo sapiens 

(Human)** 
7190 15 871 100 % identical 

Rattus norvegicus 

(Norway Rat)* 
4367 16 885 

85.7 %- identical 

89.4 %- positive 

Mus musculus (House 

Mouse)*** 
3798 15 883 

85.6 %- identical 

89.5 %- positive 

Xenopus tropicalis 

(Tropical Clawed Frog)* 
4214 16 903 

63.2 %- identical 

75.5 %- positive 

Gallus gallus (Chicken) 4031 17 932 
66.5 %- identical 

76.7 %- positive 

Nothobranchius furzeri 

(Turquoise Killifish) 
3495 18 918 

60.7 %- identical 

73.4 %- positive 

*data is provisional, ** data reviewed, *** data validated, other data is predicted 

1.3.2- Mutant ANKS6 animal models 

In 1989 a spontaneous ADPKD-like phenotype developed in an outbred rat line, named 

Han:SPRD(cy/+). The line was first established when some ill six month old male rats were 

dissected and found to have bilateral polycystic kidneys (figure 4). It was also established 

through further breeding that the phenotype was inherited in an autosomal dominant manner 

(54). The line was then inbred to allow linkage studies to be performed. This inbred line was 

called the PKD/Mhm(cy/+) line and was used for further characterisation of the phenotype. 

In heterozygous animals, cysts develop within four weeks of birth, and 50 % of males die of 
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uremia between the ages of 12 and 21 months (55). No heterozygous females have been 

observed to die due to uremia, though some old ones did develop azotemia (55, 56). 

Homozygous animals died of uremia within three to four weeks after birth (55).  

In the two month old heterozygous animals, cysts mainly develop in the inner cortex where 

75 % of cysts originate from the proximal tubules. Additional cysts can be found in the outer 

cortex and some tubule dilation occurs in the outer medulla. At the later stages of the disease 

when the rats are 12 months old, all tubular segments are dilated or cystic. Initial cyst 

formation is associated with increased proliferation of the epithelial cells and the formation 

of patches of dedifferentiated epithelial cells. Dedifferentiation is seen by a loss of the brush 

border and basolateral interdigitations, and a reduction in lysosomes and reabsorptive 

vesicles. This progresses to reduced differentiation of the entire epithelium in the latter 

stages of the disease. These patches of dedifferentiated cells are associated with 

accumulation of collagen IV and laminin in the extracellular matrix resulting in its 

thickening (figure 5). Interstitial fibrosis and increased inflammatory cells in the pericystic 

interstitium are also observed in the heterozygotes (55).  

 

Figure 4- Phenotype observed in the Han:SPRD(cy/+) rat. A- polycystic kidneys, B- osteodystrophia and C- 

calcification of heart muscle fibres (54).  

Extrarenal manifestations observed in the six month heterozygous males include renal 

secondary hyperparathyroidism, osteodystrophia fibrosa of the skull and femur, and 

calcification of the kidney, heart, stomach and large arteries (figure 4) (54). Liver and 

pancreatic cysts were observed in the very old, 21 months of age, female rats at rates of 42 

% and 69 % respectively. The liver cysts were similar to those found in human ADPKD 

patients in the age of occurrence and in their origin in the biliary epithelium. The extra renal 

cysts also had similar extracellular matrix changes to the renal cysts in the rats (56). 
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Several differences have been observed between the phenotype in PKD/Mhm(cy/+) rats and 

human ADPKD. The two key differences are earlier manifestation of the disease in the rats 

and the origin of the cysts being in the proximal tubules in rats and distal tubules in humans 

(54).  In addition, the rat model does not develop hypertension, has no change in the spatial 

expression of the Na+/K+-ATPase and has a decrease in renin levels, however in human 

patients renin is increased (55). 

 

Figure 5– Changes in the tubular epithelium of the PKD/Mhm(cy/+) rat. A- Patches of dedifferentiated cells 

in the epithelium of Han:SPRD(cy/+) rats showing loss of the brush border, increased basement membrane 

thickness and loss of basolateral interdigitations (left) and the patches of dedifferentiated cells under a 

scanning electron micrograph (right). B- Focal accumulation of collagen IV and laminin in the tubules (55).    

The PKD/Mhm(cy/+) rat was the only available rat model for human ADPKD. Although the 

genotype was extensively investigated, the disease causing gene mutation was unresolved 

for 16 years. Using linkage studies, the gene was determined to be on the rat chromosome 5 

and was thus neither Pkd1 or Pkd2, so was originally termed Pkdr1 (56). This was then 

further refined by sequencing, to an arginine to tryptophan missense mutation in the SAM 

domain at the 823rd position of the ANKS6 protein, termed SamCystin at the time. Its low 

homology to known proteins  meant that its physiological role could not be predicted. 

However, the presence of both Ank and SAM domains indicated a possible role in 

scaffolding (57). After the Anks6 gene and p.R823W mutation were identified, the causal 

link between the mutation and disease was established by the creation of a transgenic rat 

(TGR) strain which overexpressed the mutant ANKS6p.R823W protein in the tubular 
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epithelium. It has been shown that this overexpressed mutant protein acts in a dominant 

negative and dose dependent fashion. The rats carrying the transgene develop similar 

polycystic kidneys to the PKD/Mhm(cy/+) rat. The first cysts arise in the proximal tubules 

of the inner cortex, as in the PKD/Mhm(cy/+) rat, at the age of 10 days. Cyst growth was 

associated with dedifferentiation of the epithelium as well as increased proliferation and 

apoptosis. These increases were linked to changes in c-Myc and p21 expression which, after 

kidney development is complete, should decrease and increase expression respectively. This 

developmental shift did not occur in the Anks6p.R823W overexpressing rats (58). 

Further studies of ANKS6 in different animal models have been performed, the first being a 

knockdown of anks6 mRNA in zebrafish and Xenopus. In the zebrafish this resulted in 

pronephric cysts and laterality defects. In Xenopus, knockdown resulted in simplification of 

the pronephros convolute and gross body oedema, typical for defects in renal excretion and 

seen in nphp3 and invs/nphp2 depletion (59).  

Furthermore, two mouse models derived from N-ethyl-N-nitrosourea libraries with missense 

mutations in Anks6 develop phenotypes associated with ciliopathies. The first of these carries 

an isoleucine to asparagine mutation in the SAM domain at the 747th position (Anks6p.I747N). 

This is only six residues away from the amino acid homologous to the Anks6p.R823W mutation 

in rats, however the phenotypes of the two mutants are significantly different. In the 

Anks6p.I747N mice, renal cysts were only observed in homozygous mutant animals and the 

disease progression was slower than in the heterozygous PKD/Mhm(cy/+) rats, with an 

average life expectancy of around 18 months (figure 6). Both tubular and glomerular cysts 

were observed and the cysts were found to originate predominantly in the collecting ducts 

and thick ascending limb segment of Henle’s loop. Cysts never originated in the proximal 

tubules, unlike the PKD/Mhm(cy/+) rats where the proximal tubule is the principal origin of 

cysts (60).  

The second mouse model, called Anks6Streaker, carries a methionine to lysine mutation at 

amino acid 187, a highly conserved position within the Ank repeats. The phenotype is 

recessive and has three primary features: left-right asymmetry (with around 50 % of 

homozygotes exhibiting heterotaxy and 25 % situs inversus totalis), complex CHD and 

cystic kidneys. CHD was strongly linked to heterotaxy, with all homozygotes with 

heterotaxy dying perinatally due to heart defects. Those animals with situs solitus or situs 

inversus totalis had long term survival without cardiovascular issues in most cases. The CHD 

found in the heterotaxy animals mostly consisted of atrioventricular septal defects and 
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transposition of the aorta and pulmonary artery, in several cases both great arteries were 

attached to the right ventricle. In a few cases right atrial isomerism, muscular or 

perimembranous ventricular septal defects and inversion or duplication of the inferior vena 

cava were also observed. In new born animals, renal cysts were extensive in the glomeruli 

and were accompanied by cystic dilation of the tubules in the juxtamedullary region. This 

progressed to large corticomedullary cysts and occupation of most of the renal parenchyma 

with glomerular cysts in 9-10 month old mice (figure 6). The cysts were also accompanied 

by secondary interstitial consolidation changes and inflammation.  Outside the heart and 

kidney, heterotaxy mutants often showed three or four lung lobes bilaterally and in 50 % of 

cases aberrant abdominal left-right patterning of the liver, spleen and stomach (61). 

 

Figure 6- Phenotype of homozygous Anks6p.I747N and Anks6Streaker mice. A- Progression of cyst development in 

homozygous Anks6p.I747N mice between birth and 1 year of age (60). B- Glomerluar cysts (Top) and tubule 

dilation in the corticomedullary region (bottom) in Anks6Streakermice. C- Situs inversus and heterotaxy in 

Anks6Streaker mice (61). 

The human ortholog of Anks6 was identified on chromosome 9 (57) and subsequent studies 

in human patients have found mutations in ANKS6 associated with NPHP-like phenotypes. 

In some cases the phenotype is similar to the Anks6Streaker mice and the Xenopus and 

zebrafish knockdowns. Cystic kidney and congenital heart defects have been identified in 

eight patients from six families (59), six members of a consanguineous Turkish family (62) 

and a Chinese boy (63). Due to the very limited sample sizes the molecular mechanisms 

have not been investigated in detail. 
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1.3.3- Interaction partners of ANKS6 

The interaction partners of ANKS6 can be broadly divided into those which interact with its 

SAM domain and those which interact with the Ank repeats. There are currently two known 

SAM domain interacting partners: Bicaudal C1 (BICC1) and Ank repeat and SAM domain 

containing protein 3 (ANKS3), which will be discussed later. The BICC1 protein, mutated 

in the bpk and jcpk mouse models of PKD, contains three K-homology (KH) domains, which 

are RNA-binding motifs, at the N-terminus and a SAM domain at the C-terminus. The jcpk 

mouse model was created in a chlorambucil mutagenesis screen and carries a truncating 

mutation in the first KH domain. In this model, homozygous mutants die at age 7 to 10 days 

after developing massive cystic kidneys. These cysts first arise in the corticomedullary 

region but by the time of death are in all parts of the kidney. The cysts are accompanied by 

tubule dilation in the bile and pancreatic ducts. Heterozygous animals over a year old 

developed some renal cysts in around 25 % of cases (64).  

The co-localisation and binding capabilities of BICC1 with ANKS6 were initially 

discovered in inner medullary collecting duct (IMCD) cells transfected with recombinant, 

tagged versions of the proteins. These were observed to co-immunoprecipitate each other 

and co-localise in the cytoplasm of these cells, though not in the cilia. Using truncated 

versions of each protein it was determined that the SAM domain of ANKS6 was necessary 

for the interaction but removal of the ankryin repeats or the Anks6p.R823W mutation did not 

affect it. For BICC1, the SAM domain was necessary for the interaction but it became 

significantly weaker if the KH domains or the RNA in solution were removed (51). The 

Anks6p.I747N mice provided evidence for the ANKS6-BICC1 interaction playing a significant 

role in cystic disease as BICC1 precipitated six times more ANKS6 in homozygous mutant 

animals than wildtype controls. This was associated with increased expression of DVL2 and 

decreased PC2 expression, both known to be regulated by BICC1 and indicative of defective 

BICC1 signalling. The data suggests that increased ANKS6 binding can sequester and 

inactivate BICC1 in these mice. Similarities in the cyst patterning of Anks6p.I747N and 

Bicc1jcpk mice also supports this (60). Additionally, in the Nphp3p.G2A mouse model, where 

ANKS6 is no longer phosphorylated, it was shown that BICC1 and ANKS6 binding 

significantly increased. These mice developed severely cystic kidneys by the age of three 

weeks, with glomerular cysts and tubule dilation in the early stages. It is unknown if this is 

related to the ANKS6-BICC1 interaction or the interaction of ANKS6 with proteins at the 

cilia (65). Further modelling of the interaction of ANKS6 with BICC1 and ANKS3 has been 

done which will be discussed later. 
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The interacting partners of the ANKS6 Ank repeats are cilia-related proteins. The first ciliary 

interaction partner of ANKS6 to be identified was NEK8/NPHP9. The interaction was 

discovered in a co-immunoprecipitation using NEK8/NPHP9 from HEK293T cells as bait 

with follow-up mass spectroscopy. ANKS6 was then found to localise to the proximal 

segment of the cilium, similar to INVS/NPHP2, NPHP3 and NEK8/NPHP9. Additionally, 

depletion of anks6 in Xenopus and zebrafish produced a similar phenotype to depletion of 

nek8/nphp9 or nphp3. These details, combined with similarities in NPHP patients with 

mutations in ANKS6, NEK8/NPHP9, INVS/NPHP2 and NPHP3, suggested that ANKS6 was 

recruited to the cilium as part of the NPHP2-3-9 complex. It was then established that 

ANKS6 links NPHP3 and INVS/NPHP2 to NEK8/NPHP9, with INVS/NPHP2 localising 

the complex to the cilium. The linking is strengthened by hydroxylation of ANKS6 by HIF1α 

(59). It was then demonstrated in IMCD cells that the ANKS6-NEK8/NPHP9 interaction 

requires the ANKS6-SAM domain and the NEK8/NPHP9 kinase domain and results in 

phosphorylation of both proteins. Transfection of the cells with a kinase dead form of 

NEK8/NPHP9 showed that the interaction is not dependant on phosphorylation (61). 

1.4- ANKS3 

1.4.1- ANKS3 structure 

The ANKS3 gene consists of 15 exons coding a 656 amino acid protein in humans. Similar 

to ANKS6, ANKS3 contains an Ank repeat domain (with six repeats in humans, rats and 

mice) at the N-terminus and a SAM domain at the C-terminus (figure 7 and table 2). In 

addition to the canonical sequence, four isoforms of ANKS3 have been validated in humans. 

These isoforms result in the partial or complete removal of the Ank domains. The other 

domains are preserved across all of the isoforms.  

 

Figure 7- Comparison of human ANKS3 and ANKS6 structures and amino acid numbers of the domains (66) 
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Figure 8- Formation of ANKS3 homopolymeric strands by SAM-SAM interactions. A- Interacting surfaces of 

the ANKS3-SAM domain (L52A mutation is to allow for crystallisation of the polymer). B- negGFP tagged 

ANKS3 forms short polymers (leftmost image) and larger polymer sheets when the negGFP is removed 

(remaining images) (66). 

ANKS3 was first identified as having the potential ability to form homopolymers by the mid 

loop of one ANKS3-SAM domain binding to the end helix of the next SAM domain (67). 

This is mediated by a four residue hydrophobic patch beside four negatively charged residues 

on the mid loop interacting with four positively charged residues and a phenylalanine on the 

end helix. The four charged residues form ionic bonds and the phenylalanine packs the 

hydrophobic patch. By removing the neg-GFP tag used in the original experiment, it was 

observed that ANKS3 could form large fibrous sheets in solution which then precipitated 

(figure 8) (66).  
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Table 2- ANKS3 mRNA transcripts and proteins across animal species. (There are five 

validated isoforms of ANKS3 in humans, data is shown for isoform 1). 

Organism 

mRNA 

transcript 

length (bp) 

Exons 
Protein 

length (aa) 

Amino Acid Homology 

(compared to human) 

Homo sapiens 

(Human)*** 
2664 15 656 100 %- identical 

Rattus norvegicus 

(Norway Rat)* 
2419 15 663 

83.8 %- identical 

87.9 %- positive 

Mus musculus (House 

Mouse)*** 
2483 15 655 

81.8 %- identical 

87.4 %- positive 

Xenopus tropicalis 

(Tropical Clawed Frog) 
2480 17 635 

58.9 %- identical 

73.7 %- positive 

Gallus gallus (Chicken) 4088 18 656 
68.1 %- identical 

79.5 %- positive 

Nothobranchius furzeri 

(Turquoise Killifish) 
2906 16 633 

55.5 %- identical 

67.9 %- positive 

 (*data is provisional, ** data reviewed, *** data validated, other data is predicted). 

1.4.2- Mutated ANKS3 animal models 

Knockdown of anks3 was first studied in zebrafish embryos using antisense morpholino 

oligonucleotides. These fish developed pronephric cysts, curvature defects, hydrocephalus 

and an increased rate of situs inversus, all consistent with an NPHP-like phenotype. It was 

observed that in these embryos, cilia were present but had reduced or no motility in most 

cases and beat in the wrong direction a few cases (68). This study was followed up with 

depletion of Anks3 mRNA in four day old mice for two weeks using injections of antisense 

constructs. These mice did not develop any pathological features associated with NPHP. 

However there was increased expression of Aqp1, Aqp2 and Aqp3 (indicating a possible role 

of ANKS3 in water excretion involving vasopressin), increased proliferation and apoptosis, 

and changes in the expression of mRNAs for proteins associated with the ciliary axoneme 

(downregulation of Gli2 and upregulation of Nek8/NPHP9) (69).  

In humans, a recessive mutation in ANKS3 has been reported in two children of a 

consanguineous Saudi Arabian family, who developed a severe disease associated with situs 

inversus totalis. The first child died when very young from complex CHD. The second child 

also had complex CHD: dextrocardia, a single unified atrium, mild narrowing of the aorta, 

several ventricular septum defects and an interruption of the inferior vena cava between the 

hepatic and renal veins. In addition, the second child also had mild hypoplasia of the corpus 

callosum and mild atrophy of the entire brain, resulting in global developmental delay. The 

mutation was identified as the exchange of a highly conserved histidine at position 147, 

within the Ank repeats, with an asparagine (ANKS3H147N). mRNA of the ANKS3H147N variant 
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did not rescue the anks3 knockdown phenotype in zebrafish, whereas wildtype ANKS3 

mRNA did (70). 

1.4.3- Interaction partners of ANKS3 

As with ANKS6, ANKS3 has different interacting partners for its Ank repeats and SAM 

domain. The first interacting partner described was ANKS6. Inactivating missense mutations 

in the mid loop and end helix of each protein’s SAM domain demonstrated that the 

interaction occurred through binding of the ANKS6 mid loop to the ANKS3 end helix. The 

ANKS6 mid loop contains a four residue hydrophobic region with five adjacent negatively 

charged residues which mediate binding to the ANKS3 end helix, in a similar manner to the 

ANKS3 mid loop (figure 9). As the extension of ANKS3 polymers requires the availability 

of both the end helix and mid loop, ANKS3-ANKS6 binding was hypothesised to disrupt 

formation of these polymers. This was demonstrated by the incubation of Anks6 with the 

insoluble ANKS3 polymers, which were resolubilised in a dose-dependent manner (figure 

9). This effect was completely abolished by the ANKS6p.R823W mutation. This mutation is 

not in the end helix or mid loop but was found to cause a loss of SAM domain stability and 

increased unfolding (66, 71). Further research showed that ANKS3 and ANKS6 can recruit 

the other protein’s Ank repeats in pulldown assays, indicating that the Ank repeats may also 

play a role in this interaction (72).  

The other ANKS3-SAM domain interacting partner is BICC1, which can also form 

homopolymers through its SAM domain. These BICC1 homopolymers have been shown to 

aggregate in vivo into cytoplasmic puncta. This stabilises the protein and is necessary for 

translational silencing of mRNA recruited by the KH domains (73). Studies using mutated 

BICC1- and ANKS3-SAM domains showed that the mid loop of either protein could bind 

to the end helix of the other, and vice versa, allowing the formation of co-polymers of the 

two proteins. The truncated BICC1-KH domains and ANKS3 Ank repeats were also shown 

to bind to full length ANKS3 and BICC1 proteins, though the truncated versions did not 

interact with each other. These studies also showed that the direct interaction between 

BICC1 and ANKS6 is extremely weak.  
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Figure 9- ANKS3-ANKS6-SAM domain interaction blocks ANKS3 homopolymer formation. A- Interacting 

surfaces of the ANKS6- and ANKS3-SAM domains. B- Resolubilisation of ANKS3-SAM domain polymers by 

the presence of the ANKS6-SAM domain. C- ANKS6-SAM domain with the p.R823W cystic mutation does not 

bind the ANKS3-SAM domain(66).  

Co-expression of ANKS3, ANKS6 and BICC1 in HeLa cells in different combinations 

showed that the three proteins can affect each other’s intracellular localisation. When 

expressed alone ANKS3 is diffusely expressed in the cytoplasm, BICC1 forms large 

cytoplasmic foci and ANKS6 is concentrated at cell protrusions and the cortex below the 

cell membrane. When ANKS3 was co-expressed with BICC1 or ANKS6 it co-localised with 

the other protein in cytoplasmic foci with the two proteins evenly distributed in the 

aggregate. The ANKS6-ANKS3 foci were large while the BICC1-ANKS3 foci were much 

smaller than those seen when BICC1 was expressed alone. When ANKS6 and BICC1 were 

co-expressed they did not co-localise. When all three proteins were co-expressed they 

formed cytoplasmic bodies, larger than any of the previously seen foci, with evenly 

distributed ANKS6 and BICC1, and ANKS3 concentrated at the periphery (figure 10). 

BICC1 without the SAM domain was unable to form foci when expressed alone but was 

partially able to do so when co-expressed with ANKS3 and ANKS6. This further indicates 

that the interaction is not purely SAM domain to SAM domain. Additionally, co-expression 
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of Ac6 mRNA rescued the formation of large BICC1 foci in the presence of ANKS3, with 

ANKS3 concentrated at the periphery of these foci.  

These experiments strongly support an interaction network of BICC1-ANKS3-ANKS6 

where BICC1 and ANKS6 bind directly to ANKS3 mainly via the SAM domains. The 

balance of ANKS3-ANKS6 binding then regulates the formation of BICC1 cytoplasmic foci. 

mRNA bound to the BICC1-KH domains and the Ank repeats of ANKS3 and ANKS6 also 

modulate the interaction. It is not initially clear as to what role the formation of these foci 

have. Initial experiments showed that BICC1 could downregulate AC6 expression with or 

without ANKS3 or ANKS6. There are indications that these foci are biologically important 

as though the BICC1bpk mutant protein still binds to ANKS3, it is only partially recruited to 

the ANKS3-ANKS6 foci with the rest remaining diffused in the cytoplasm (72). These 

results may be related to the previously observed relationship between BICC1 and RNA 

processing bodies (P-bodies). It was shown that BICC1 co-localises with P-bodies and the 

associated stress granules (74). Cytoplasmic clustering of BICC1 has been related to its 

ability to recruit and silence mRNA but not to its inhibition of DVL2 protein activity. 

Silencing of mRNA by binding to BICC1 is thought to occur through locally concentrating 

the mRNA, improving the thermodynamics for silencing factors to bind, or creating 

secondary RNA structures which present binding sites for miRNAs or proteins (73).          
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Figure 10– Formation of ANKS3-ANKS6-BICC1 cytoplasmic foci. A- Interacting surfaces of the BICC1 SAM 

forming homopolymers. B- Formation of large cytoplasmic foci with the co-expression of ANKS3, ANKS6 and 

BICC1, showing even distribution of BICC1 and ANKS6 and the concentration of ANKS3 in the periphery (72). 

In addition to ANKS6 and BICC1, ANKS3 interacts with the NPHP1-4-8 complex. The 

direct interaction appears to occur between NPHP1 and ANKS3 with the two proteins most 

strongly co-precipitating each other. Transfection of Xenopus embryos with GFP-tagged 

ANKS3 showed NPHP1 co-localising with ANKS3 in the basal body of the cilia with some 

small clusters of ANKS3 in the cytoplasm. However, when NPHP1 was depleted, 

localisation of ANKS3 to the basal body was partially lost and the cytoplasmic clusters, 

potentially the BICC1 foci, were significantly increased in size. NEK8/NPHP9, a partner of 
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ANKS6 in the NPHP2-3-9 complex, was also shown to be capable of associating with 

ANKS3, though the ANKS3-NPHP1 interaction is stronger. Whether the ANKS3-

NEK8/NPHP9 interaction is a direct connection or occurs via ANKS6 has not been 

established (68).  

ANKS3 also interacts with NEK7 via its Ank repeats. This interaction results in a significant 

increase in the molecular weight of ANKS3. The modification occurs even when bound to a 

kinase-dead NEK7 and after incubation with a phosphatase. This indicates that NEK7 is not 

directly responsible for the modification and may instead recruit other proteins. When NEK7 

was overexpressed alone it localised to the cytoplasm and nuclei, however when co-

expressed with Anks3 it was no longer found in the nuclei. Therefore this ANKS3-NEK7 

interaction may be related to the role of NEK7 in mitotic progression (75). 

HIF1AN has been shown to hydroxylate ANKS3 at residues in the Ank domain. The 

physiological role of this has not been investigated but may be similar to ANKS6 where the 

hydroxlation strengthens its interaction with the ciliary complex (68). 
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2- AIMS 

ANKS3 is still a poorly characterised protein. It interacts with ANKS6, which causes an 

ADPKD-like phenotype in rats through a missense mutation in its SAM domain, but also 

interacts and operates with NPHP protein complexes. The ANKS6-ANKS3 interaction via 

the SAM domain is disrupted in Anks6p.R823W PKD rats. Thus, we conclude that the ANKS3-

SAM domain and its interaction with ANKS6 might be involved in PKD disease. 

Additionally, previous experiments showed that ANKS6 prevents ANKS3 homopolymer 

formation. The Anks6p.R823W mutation blocks ANKS6 binding to ANKS3 and, consequently, 

should increase the ability of ANKS3 to form homopolymers. The in vivo role of ANKS3 

in mammals remains completely unknown. Thus, the present work aimed to investigate the 

following points: 

 

1. Spatio-temporal expression pattern of ANKS3 and ANKS6 in the kidneys of  

wildtype and PKD/Mhm cystic rats; an ANKS3-ANKS6 interaction can only have 

relevance in cells where they are co-expressed. 

2. The role of ANKS3-SAM domain polymerisation in the TGRAnks6 model of 

ADPKD. 

3. The effect of Anks3 knockout and Anks3-SAM domain deletion in vivo. 

 

We approached these aims by creating several new rat lines with mutations in the 

endogenous Anks3 gene. This included a total knockout of Anks3, deletion of the ANKS3-

SAM domain and a point mutation in the ANKS3-SAM domain to block ANKS3-SAM 

domain homopolymerisation.  
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3- MATERIALS AND METHODS 

3.1- Materials 

3.1.1- Reagents 

Table 3- List of reagents used. 

Reagent Company Order Number 

16 % Paraformaldehyde (PFA)  Solution Thermo Fischer 15710 

2,2'-Azobis[2-(2-imidazolin-2-yl) propane] 

Dihydrochloride (VA-044) 

FUJIFILM Wako 

Chemicals 
925-41020 - VA-044 

2 % Bisacrylamide Solution Bio-Rad 1610142 

40 % Acrylamide Solution Bio-Rad 1610140 

Acetic Acid (Glacial) 100 % Merck 1.00063.2511 

Aniline Blue Diammonium Salt Sigma Aldrich 415049-25G 

Aniline Oil ≥99.5 % Sigma Aldrich 3535395-100ML 

Agarose Biozym Art# 840004 

Bromophenol Blue Sigma Aldrich B0126-25G 

Bovine Serum Albumin (Heat Shock 

Fraction) ≥98 % 
Sigma Aldrich A9647-50G 

Chloroform Merck 1.02445.1000 

Ethylenedinitrilotetraacetic Acid (EDTA) Sigma Aldrich 1233508 USP 

UltraPure Ethidium Bromide, 10 mg/mL Invitrogen 15585011 

Ethanol ≥99.8 % Roth K928.4 

37 % Formaldehyde Merck K25344503 

Eosin Y Sigma Aldrich E4009-25G 

25 % Glutaraldehyde Roth 3778.1 

Hematoxylin Solution Merck 1051741000 

37 % Hydrochloric Acid J.T. Baker 6011 

Hydrogen Peroxide J.T. Baker 7047 

Isopropanol Roth 6752.1 

Mayer’s Haemalum Merck HX071163 

Methanol Roth 8388.6 

Orange G Sigma Aldrich O7252-25G 

PFA Sigma Aldrich P6148-1KG 

Phosphotungstic Acid Hydrate Merck 100582.01 

KH2PO4 J.T. Baker 0240 

Potassium Chloride Sigma Aldrich 60129-2504 

Protease Inhibitor Tablets Roth 12037300 

Na2HPO4 Merck F1099059 534 

Sodium Acetate Sigma Aldrich S2889 

Sodium Acrylate (97 %) Sigma Aldrich 408220-100G 

Sodium Chloride Sigma Aldrich S3014-1KG 

Sodium Dodecyl Sulphate Sigma Aldrich L4509-500G 

Sodium Hydroxide J.T. Baker 0288 

Sucrose Sigma Aldrich S0389-1KG 

Sytox Green Invitrogen 10768273 

Trisodiumcitrate-Dihydrate Merck A967048 905 

Triton X-100 J.T. Baker 2840 

Trizma Base Sigma Aldrich T6066-1KG 

Tween-20 J.T. Baker 7374 

Xylene J.T. Baker 3410 
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Table 4- List of antibodies used. 

Antibody Company Order Number 

GAPDH (FL-335) Santa Cruz Sc-25778 

ANKS3 (S-13) Santa Cruz Sc-138124 

ANKS6 (G-15) Santa Cruz Sc-162531 

AQP2 (C-17) Santa Cruz Sc-9882 

Acetylated Tubulin Sigma Aldrich T7451-200UL 

KI-67 Dako M7248 

goat anti-rabbit IgG-HRP Pierce 1858415 

donkey anti-goat IgG-HRP Santa Cruz Sc-2020 

goat anti-mouse IgG-HRP Santa Cruz Sc-2061 

AlexaFluor 647 chicken anti-mouse IgG Life Technologies A21463 

 

Table 5- List of enzymes and buffers used. 

Enyzme/Buffer Company Order Number 

RNase A Sigma Aldrich 10109142001 

Proteinase K Thermo Fisher AM2542 

SuperHotTaq DNA Polymerase Bioron 119010 

EcoRI Invitrogen 15202039 

10X Buffer H Invitrogen A4001A 

Superscript III Invitrogen P/N56575 

5x First Strand Buffer Invitrogen Y02321 

 

Table 6- List of kits used. 

Kit Company Order Number 

QIAquick Gel Extraction Kit Qiagen 28706 

RNeasy Mini Kit Qiagen 74106 

Platinum PCR Kit Invitrogen 13000013 

Peroxidase Substrate Kit DAB Vector SK-4100 

Vectastain ABC Kit Vector PK-6100 

Quantitect SYBR Green PCR Kit Qiagen 204143 

 

Table 7- List of consumables used. 

Item Company Order Number 

4-12 % Bis-Tris Acrylamide Gel Invitrogen NP0321BOX 

Immobilon-P Transfer (PDVF) Membrane Merck IPV1-100010 

ClariomTM D Array, Rat Thermo Fisher 902632 

GeneChip RaGene2.0 ST Array Thermo Fisher 902124 

Precision Plus Protein Dual Color 

Standards 
Bio-rad #161-0374 

100bp DNA Ladder Bioron 304005 

Random Primers Promega C118B 

RNasin Promega N211B 

0.1M DTT Invitrogen Y00147 
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3.1.2- Solutions 

Table 8- List of pre-prepared solutions used. 

Solution Company Order Number 

Pierce Protein-Free T20 Blocking Buffer Thermo Fischer 37573 

Bradford Reagent Bio-Rad 500-0006 

MES SDS Running Buffer Novex NP0002 

20X Transfer Buffer Novex NP0006-1 

Restore Western Blot Stripping Buffer Thermo Fisher 21059 

Western Blot Luminol Reagent Santa Cruz sc-2048 

NuPAGE Sample Reducing Agent Invitrogen NP0009 

NuPAGE 4x LDS Sample Buffer Invitrogen NP0007 

TRIzol Ambion 15596018 

RIPA Lysis and Extraction Buffer Thermo Fisher 89901 

 

Acetic Alcohol 

 10 ml acetic acid 

 Make up to 1 L with 96 % ethanol 

Acrylamide Hydrogel Solution 

 Make on ice and protect from light 

 25 ml 40 % acrylamide solution 

 1.25 ml 2 % bisacrylamide solution 

 12.5 ml 16 % PFA solution 

 5 g sodium acrylate 

 0.5 ml 10 % VA-044 in 1 x phosphate buffered saline (PBS) 

 5 ml 10 x PBS 

 Make up to 50 ml with ddH2O 

 Centrifuge for 3 min at 1000 g 

 Take upper transparent solution 

Aniline Alcohol 

 1 ml aniline oil 

 Make up to 1 L with 96 % ethanol 

Aniline Blue-Orange G Solution 

 5 g aniline blue 

 20 g orange G 

 800 ml ddH2O 

 80 ml acetic acid 

 Make up to 1 L with ddH2O 
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0.1 % Azocarmine G 

 1 g azocarmine G 

 800 ml ddH2O 

 Heat for 1 hour then cool to room temperature 

 6 ml glacial acetic acid 

 Make up to 1 L with ddH2O, filter 

10mM Citrate Buffer 

 2.94 g trisodiumcitrate-dihydrate 

 1 L of ddH2O 

 pH to 6.0-6.2 

Denaturing Solution (Expansion microscopy) 

 25 ml 10 % SDS solution 

 1.25 ml 5 M NaCl 

 12.5 ml 1 M Tris (pH 9.0)  

 5 ml 10 x PBS 

 Make up to 50ml with ddH2O 

10x DNA Loading Buffer 

 4 g sucrose 

 2.5 mg bromophenol blue 

 10 ml TE buffer 

0.5M EDTA (pH 8.0) 

 186.1 g EDTA 

 800 ml ddH2O 

 pH to 8.0 with NaOH 

 Make up to 1 L with ddH2O, autoclave 

Eosin Y Stock 

 1 g eosin Y 

 20 ml ddH2O  

 Mix until dissolved 

 80 ml 95 % ethanol 

 For working solution add 300 ml of 80 % ethanol and 2 ml of glacial acetic acid per 

100 ml of stock solution 
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Immunohistochemistry Blocking Solution 

 1 g BSA 

 5 0µl Triton X-100 

 Make up to 50 ml with PBS 

4 % PFA 

 40 g PFA 

 100 ml 10x PBS 

 700 ml ddH2O 

 Add 3-4 drops of concentrated NaOH 

 Heat with stirring until dissolved 

 pH to 7.4 with NaOH 

 Make up to 1 L with ddH2O, filter and store at -20°C 

10x PBS 

 80 g NaCl 

 2 g KCl 

 2.4 g KH2PO4 

 14.4 g Na2HPO4 

 Add 800 ml ddH2O 

 pH to 7.4 with HCl 

 Make up to 1 L with ddH2O, autoclave 

Phosphotungstic Acid 

 50 g phosphotungstic acid hydrate 

 Make up to 1 L with ddH2O 

Proteinase K 

 100 mg proteinase K 

 10 ml ddH2O, aliquot and store at -20°C 

RNase A 

 100 mg RNase A 

 10 ml 10mM sodium acetate 

 Heat to 100°C for 15 minutes, cool to room temperature 

 Adjust the pH to 7.4 with 1 M Tris-HCl 

 Aliquot and store at -20°C 
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18 % Sucrose 

 90 g sucrose 

 50 ml 10 x PBS 

 Make up to 450 ml with ddH2O 

50 x TAE Buffer 

 242 g trizma base 

 57.5 ml acetic acid 

 100 ml 0.5 M EDTA (pH 8.0) 

 Make up to 800 ml with ddH2O 

 pH to 8.5 with concentrated NaOH, make up to 1 L with ddH2O, autoclave 

Tail Buffer 

 50 ml 1 M Tris-HCl (ph 8.0) 

 200 ml 0.5 M EDTA 

 20 ml 5 M NaCl 

 100 ml 10 % SDS 

 Make up to 1 L with ddH2O, autoclave 

TBST Buffer 

 30 ml 5 M NaCl 

 10 ml 1 M Tris-HCl (pH 8.0) 

 1 ml Tween-20 

 Make up to 1 L with ddH2O 

TE Buffer 

 2 ml 0.5 M EDTA (pH 8.0) 

 10 ml 1 M Tris-HCl (pH 7.4) 

 Make up to 1 L with ddH2O, autoclave 

1 M Tris-HCl 

 121 g trizma base 

 800 ml ddH2O 

 Use concentrated HCl to get to desired pH 

 Make up to 1 L with ddH2O, autoclave  
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3.1.3- Apparatus 

Table 9- List of apparatus used. 

Item Company Order Number 

Axio Scan.Z1 Slide Scanner Zeiss Axio Scan.Z1 

Sp8 Confocal Microscope Leica Leica TCS SP8 

Dyad Peltier Thermal Cycler Bio-Rad PTC-220 

HistoCore MULTICUT - Semi-

Automated Rotary Microtome 
Leica 149MULTI0C1 

Multi-Functional Precision 

Balances 
A&D Medical APOLLO GF-A 

Semi-enclosed Benchtop Tissue 

Processor 
Leica TP1020 

Vibrating Blade Microtome Leica VT1200 S 

HistoCore Arcadia H- Heated 

Paraffin Embedding Station 
Leica 14039357258 

Cobas c 311 Analyzer 
Roche Diagnostics 

International Ltd. 
RS-232C 

Gel Electrophoresis System Thermo Scientific OW-D2BP 

GEL iX20 Imager Windows 

Version 
Intas 13414434 

Infinite® 200 PRO Plate Reader Tecan Trading AG Infinite M200 

XCell SureLock Mini-Cell Gel 

Running Tank 
Thermo Fisher EI0002 

XCell II™ Blot Module Thermo Fisher EI0002 

Centrifuge 5415R Eppendorf 
0075 425 112-

01/GB3/7T/0604/FEEL 

Fusion Solo 4M Vilber Lourmat 289109 

DFC 450 Camera Leica 0694944413 

Leica DMRE Microscope Leica 020-525-025 

LightCycler® 480 Roche 04729692001 

Nanodrop 2000c Thermo Fischer E112352 

 

3.2- Methods 

3.2.1- Animal methods 

All experiments were performed in genetically modified rats, either previously generated in 

our group/institute (TGRhCMV/Anks6p.R823W and PKD/Mhm rats) or which we received 

from the INSERM (France) and their wildtype littermates. We generated the new Anks3 

knockout rat line in our group. Rats were kept under controlled conditions at 22°C ± 1°C 

temperature, 60 % ± 10 % relative humidity and 12 hour alternate light and dark cycle with 

100 % fresh air exchange and standard rat diet (containing 19 % protein) and tap water ad 

libitum. All experiments were conducted in accordance with the German Animal Protection 
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Law and were approved by the local authority (Regierungspräsidium Karlsruhe, Germany) 

(No. G-213/16, G-19/18, I11/07, I19/08, I-15/10, I-17/21). 

Generation of Anks3 knockout rats 

Anks3 was knocked out using the CRISPR/Cas9 system. gRNAs directed against the second 

exon at aa5-12 : AGCGATGAAGCCAGCGAGCCGG of Anks3 were provided and tested 

by Sigma. We injected a mixture of gRNA coding plasmid and Cas9 mRNA into the 

pronucleus and cytoplasm of one-cell, fertilised oocytes of Sprague-Dawley rats as 

previously described (76). Among six progenies, two carried either a 5 bp or 8 bp deletion 

at the targetted region. 

Metabolic parameters 

24 hour metabolic cage: Metabolic cages were set up with unrestricted food and water and 

with the food, water, urine container and faeces container all pre-weighed. The rat was 

weighed and placed in the cage for 24 hours after which it was removed and reweighed. The 

food, water, urine container and faeces container were all reweighed. The urine was 

collected, centrifuged at 600 g for 5 minutes at 4°C before being aliquoted and stored at -

20°C. Urine parameters were then determined in the central facility with most parameters 

measured with a Hitachi Automatic Analyzer except the albumin (determined using a 

competitive ELISA with a HRP-conjugated rabbit anti-rat albumin antibody) and the 

osmolarity (determined using an osmometer). 

Retrobulbar blood sampling: Rats were anesthetised with isoflurane after which a capillary 

was used to puncture the retrobulbar venous plexus and the blood collected in a tube 

containing lithium-heparin. This was centrifuged at 3000 g for 5 minutes at 4°C then the 

clear upper phase was transferred to a fresh tube and stored at -20°C. Plasma parameters 

were then determined in the central facility using a Hitachi Automatic Analyzer. 

Section of animals  

Animals to be perfused were sedated by an intraperitoneal injection of 87.5 mg/kg of 

ketamine and 12.5 mg/kg xylazine. Once sedation was confirmed the animals were fixed in 

position and opened. The blood vessels serving the left kidney were clamped and the left 

kidney was removed and snap frozen for protein or RNA isolation.  Perfusion was then 

carried out using 2 % PFA with 0.05 % glutaraldehyde for 3 minutes at 220 mbar of pressure. 

Histology samples were incubated in 2 % PFA with 0.05 % glutaraldehyde for 2 hours at 

4°C. Animals not to be perfused were sacrificed by CO2 or cervical dislocation if adult or 
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decapitation if newborn. Samples for histology were incubated in 2 % PFA with 0.05 % 

glutaraldehyde for 24 hours at 4°C.   

Histology samples to be formalin fixed and paraffin embedded (FFPE) were placed in an 

autotechnican which moved through the following solutions with 90 minute incubations at 

each step- twice in 4 % formalin, 70 % ethanol, 80 % ethanol, 96 % ethanol, twice in 99 % 

ethanol, twice in xylene and 3 times in paraffin. Afterwards they were embedded in paraffin 

and stored at room temperature.        

3.2.2- Genotyping 

Isopropanol DNA extraction 

0.5cm of rat tail was lysed overnight in 700 µl tail buffer and 35 µl of proteinase K at 55°C 

with shaking. The lysate was cooled for 10 minutes on ice then 300 µl of 5 M NaCl was 

added and mixed then incubated on ice for a further 5 minutes. The mixture was centrifuged 

at 16,000 g, 4°C for 10 minutes. The supernatant was moved to a fresh tube and 2µl of 

10mg/ml RNase A was added and incubated at 37°C for 15 minutes. 1 ml of isopropanol 

was added and mixed until the DNA precipitated. This was centrifuged at 16,000 g, 4°C for 

30 minutes. The supernatant was discarded and the pellet was resuspended in 1ml of 75 % 

ethanol. This was centrifuged at 16,000 g, 4°C for 10 minutes. The supernatant was 

discarded and the pellet air dried for 30 minutes at room temperature after which it was 

dissolved in 100-200 µl of ddH2O, measured in a nanodrop and an aliquot of the stock was 

diluted to 20 ng/µl.  

NaOH DNA extraction 

2 mm of rat tail, or an ear clipping from the rat, was mixed with 75 µl of 25 mM NaOH/0.2 

mM EDTA and incubated at 98°C for 1 hour then cooled to room temperature. 75 µl of 40 

mM Tris-HCl (pH 5.5) was added and the mixture centrifuged at 4,000 g for 3 minutes.  
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PCR 

Table 10- List of primers used for genotyping the Anks3 rat lines. 

Line 
Forward Primer Reverse Primer 

Processing 
Name Sequence Name Sequence 

Anks3KO 597fw ctccataggtgtttctgtcc 597rv accacctcatactggccaat Sequencing 

Anks3∆SAM A84 ggcagaaatggaaactggaa A97 ttctccccagcctgttgtag Image on gel 

Anks3KI A84 ggcagaaatggaaactggaa A85 caaaggtccagcatacagca EcoRI digest  

 

With the Bioran HotStart Taq kit, a master mix was made containing 5 µl of 10 x PCR buffer, 

1 µl of 10 mM dNTPs, 2.5 µl of each primer (100 µM), 0.1 µl of HotStart Taq and either 

36.9 µl of ddH2O for NaOH extracted DNA or 33.9 µl of ddH2O for isopropanol extracted 

DNA per sample. With the Platinum PCR kit, a master mix was made containing 25 µl 2 x 

platinum PCR master mix, 1 µl of each primer and either 21 µl of ddH2O for NaOH extracted 

DNA or 18 µl of ddH2O for isopropanol extracted DNA per sample. 2 µl of NaOH extracted 

DNA or 5 µl of 20 ng/µl isopropanol extracted DNA was then made up to 50 µl with the 

master mix. The specific primers used for each line are noted in table 10. The mix was then 

placed in a thermocycler and the appropriate program run (table 11).  

Table 11- PCR cycle parameters for genotyping the Anks3 rat lines. 

Line Anks3KO Anks3ΔSAM Anks3KI 

Preincubation 
Temperature (°C) 94 94 94 

Time (s) 300 300 300 

Denaturation 
Temperature (°C) 94 94 94 

Time (s) 45 45 45 

Annealing 
Temperature (°C) 56 60 60 

Time (s) 45 45 45 

Extension 
Temperature (°C) 72 72 72 

Time (s) 60 60 60 

Number of cycles 40 40 40 

Final 

Extension 

Temperature (°C) 72 72 72 

Time (s) 300 300 300 

 

Depending on the line, the PCR products were visualised on a 1.5 % TAE-agarose gel, 

digested as described below then visualised on a 1.5 % TAE-agarose gel or seperated on a 

0.8 % TAE-agarose gel and the gel fragment containing the PCR product excised for 

sequencing as described below (table 10).  
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PCR product digestion 

Anks3KI mutation- 25 µl of PCR product was mixed with 2.5 µl of REact 3 buffer, 1 µl EcoRI 

and 21.5 µl ddH2O then incubated at 37°C for 1 hour and visualised on a 1.5 % TAE-agarose 

gel.  

Sequencing 

PCR products in excised gel fragments were cleaned up using the Qiagen Gel Extraction kit 

according to the protocol including the optional QG buffer wash, the 5 minute incubation 

with the PE buffer on the column and the 5 minute incubation with the EB buffer (pre-heated 

to 50°C) on the column. The elution was diluted to 5ng/µl with ddH2O in a total volume of 

15 µl after which 2 µl of the forward primer was added. Sequencing was then carried out by 

Eurofins Genomics.  

3.2.3- Histological methods 

Haematoxylin and eosin (H&E) stain 

3µm sections were cut from FFPE tissue and placed on silanised slides after which they were 

dried at 60°C for 1 hour then cooled for 10 minutes at room temperature. The sections were 

deparaffinised and rehydrated by incubating 3 times in xylene for 5 minutes and then in the 

following series of ethanol concentrations- 100 %, 96 %, 80 %, 70 % and ddH2O for 2 

minutes each. They were then stained by incubating for 4 minutes in haematoxylin, washing 

for 10 minutes in running tap water and incubating for 2 minutes in eosin. Finally the sections 

were dehydrated and cleared by incubating in ddH2O for 1 minute then in the following 

series of ethanol concentrations- 70 %, 80 %, 96 % and 3 times in 100 % ethanol for 2 

minutes each followed by three times in xylene for 5 minutes each.  

Azan stain 

3µm sections were cut from FFPE tissue and placed on silanised slides after which they were 

dried at 60°C for 1 hour then cooled for 10 minutes at room temperature. The sections were 

deparaffinised and rehydrated by incubating three times in xylene for 5 minutes and then in 

the following series of ethanol concentrations- 100 %, 96 %, 80 %, 70 % and ddH2O for 2 

minutes each. Staining was then carried out by incubating the sections in 0.1 % azocarmine 

G for 20 minutes at 56°C followed by washing in running tap water. The intensity of stain 

was controlled with three brief (5 seconds - 1 minute) incubations in aniline alcohol until the 

nucleus and cytoplasm were differentially stained after which the reaction was stopped by 

acetic alcohol. The collagen was then counter-stained by incubation in 5 % phosphotungstic 
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acid for 20 minutes, washing in running water and finally incubation in aniline blue-orange 

G solution. The sections were then dehydrated and cleared by washing once in ddH2O and 

twice in 96 % ethanol and then incubated twice in 100 % ethanol for 2 minutes and twice in 

xylene for 5 minutes. 

Fibrosis was quantified by digitally scanning the azan stained sections with Aperio CS2 

(Leica Biosystems). The pictures were then analysed with ilastik which distinguished the red 

stained non-fibrotic tissue from blue stained fibrotic tissue. Follow-up computations were 

done with Matlab. 

MRI imaging 

MRI images were performed in collaboration with Marc Pretze, Department Molecular 

Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, 

Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany. Embryos from 

developmental day 17.5 were immobilised in a 2 % agarose in ddH2O gel within a 15 ml 

falcon. The MRI scan was then performed in a 20 min, ICON™ (Avance III MRI) 1 Tesla 

cryogen-free, coil type: RF RES head coil; 45 mm, 30 mm outer and inner diameter (Bruker, 

Ettlingen, Germany) machine with the parameters described below (table 12). 

Table 12- Parameters used during MRI imaging. 

Measurement T2 RAREnav highres 3D 

Repetition time (ms) 4000 

Echo time (ms) 84.0 

Acquisition time 2h 50min 40sec 

Flip angle 90 

Slice 13.696 

Field of view (mm) 19.95x16.07x13.70 

Matrix 160x160x64 

Averages 2 

Repetitions 1 

Echo spacing (ms) 28 

Rare factor 8 

Resolution (mm) 0.125x0.1x0.214 

 

3.2.4- Protein analysis 

Immunohistochemistry 

3 µM sections were cut from FFPE tissue and placed on silanised slides (2 sections per slide) 

after which they were dried at 60°C for 1 hour then cooled for 10 minutes at room 

temperature. The sections were deparaffinised and rehydrated by incubating 3 times in 

xylene for 10 minutes and then in the following series of ethanol concentrations- 3 times in 
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100 %, 2 times in 96 %, 2 times in 80 % for 3 minutes each and once in 70 % for 5 minutes. 

Endogenous peroxidase activity was reduced by incubating the sections in 0.3 % hydrogen 

peroxide in methanol, after which sections were then washed 3 times in PBS. Antigen 

retrieval was carried out by incubating in 10 mM citrate buffer and heating in a steamer for 

20 minutes then leaving the sections to cool at room temperature for 30 minutes. The slides 

were then washed twice in PBS for 10 minutes after which they were dried and the sections 

drawn around with a PAP grease pen. 100 µl of blocking solution was added to each section 

which were then incubated in a humid chamber for 30 minutes-2 hours.  

Before dilution, the primary antibody stock solution was centrifuged at 13,500 g for 2 

minutes at 4°C after which it was diluted to the appropriate concentration in 2 % BSA in 

PBS. The blocking solution was then removed from each section and 60µl of either the 

diluted antibody or 2 % BSA in PBS (for the negative controls) was added and incubated for 

a minimum of 1 hour at room temperature, up to 2 hours at room temperature and overnight 

at 4°C in a humid chamber. The primary antibody solution was then removed and the 

sections washed 3 times with PBS for 5 minutes. The biotinylated secondary antibody was 

diluted in 2 % BSA in PBS and then centrifuged at 13,500 g for 2 minutes at 4°C. The PBS 

wash was then removed and the diluted secondary antibody added to each section and 

incubated for 1 hour at room temperature in a humid chamber. The ABC reagent was then 

prepared by mixing 1 drop of reagent A with 1 drop of reagent B in 2.5 ml of PBS and left 

to stand at room temperature for 30 minutes. The secondary antibody was then removed and 

the sections washed 3 times for 5 minutes in PBS. The PBS wash was then removed and 50 

µl of the ABC reagent was added to each section and incubated for 30 minutes in a humid 

chamber at room temperature. The ABC reagent was then removed and the sections washed 

3 times for 5 minutes in PBS. The DAB-substrate solution was prepared by mixing 1 drop 

of buffer stock solution, 2 drops of DAB solution and 1 drop of hydrogen peroxide in 2.5 ml 

ddH2O (1 drop of NiCl solution can be added to create a darker stain). The PBS wash was 

then removed and 50 µl of DAB-substrate solution added to each section. The incubation 

time was determined by monitoring the colour formation under a microscope (typically in 

the range of 2-5 minutes). The slides were then quickly washed in ddH2O and then washed 

for 5 minutes in PBS 3 times. 40 µl of 40 % glycerol in PBS was added per section and a 

coverslip placed on.    
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Expansion microscopy 

Embryos were fixed for 24 hours in 4 % PFA at 4°C. Embryos were then placed in 

acrylamide hydrogel solution for 3 days at 4°C with shaking. The hydrogel was then 

polymerised for 2-3 hours at 37°C in a humid chamber. The gel was trimmed as much as 

possible without damaging the sample and then washed in PBS for 2 hours. The samples 

were cut into 500 µm thick sagittal sections using a vibratome. The sections were placed in 

denaturing solution in a humid chamber at 70°C for 24 hours and then 95°C for 24 hours. 

The sections were washed for 4 hours in 1 x PBS with 0.1 % Triton X-100, with repeated 

changes of the wash solution after which the sections were blocked in 1 x PBS with 1 % 

Triton X-100 for 24 hours at 37°C. The primary antibody was diluted in 1 x PBS with 1 % 

Triton X-100 and incubated with the sections for 16-24 hours at 37°C. The sections were 

then washed 3 times for 2 hours in 1xPBS with 1 % Triton X-100. The secondary antibody 

was diluted in 1 x PBS with 1 % Triton X-100 and 50 nM sytox green and incubated with 

the sections for 16-24 hours at 37°C. The sections were then washed for 2 hours, 3 times in 

1 x PBS with 1 % Triton X-100. Sections could then be imaged using the confocal 

microscope or expanded further by incubating in ddH2O for 24 hours before imaging.  

Protein extraction 

100 mg of tissue was excised from snap frozen organs, finely minced and placed in 1 ml of 

RIPA buffer (1 tablet of proteinase inhibitor was dissolved in 50 ml RIPA buffer prior to 

this) in a hand homogeniser. The tissue was then homogenised and the homogenate 

centrifuged at 4°C, 13,500 g for 6 minutes. To quantify protein concentration in the samples, 

a standard curve was made with Bradford reagent (diluted 1 in 5 in ddH2O) and a stock BSA 

solution, after which the unknown samples were measured in triplicate. 

Western blot 

Samples were prepared for loading as follows- 40 µg of protein, 5 µl 4 x LDS sample buffer, 

2 µl reduction agent, made up to 20 µl with ddH2O and heated to 50°C for 10 minutes. The 

samples were then loaded on a 4-12 % bis-tris acrylamide gel along with a protein ladder 

and were run at 170-190 V until the dye reached the bottom of the gel. Prior to transfer, the 

PDVF membrane was activated in methanol for 30 seconds and washed in transfer buffer. 

The transfer chamber was assembled (all components of the assembly were soaked in 

transfer buffer) with the membrane between the gel and the positive plate, and filled with 

transfer buffer. The transfer was run at 30 V for 90 minutes. The membrane was washed 

twice in TBST for 10 minutes then incubated for 2 hours in blocking medium. The primary 
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antibody was diluted in blocking solution and incubated on the membrane for a minimum of 

1 hour at room temperature, up to 2 hours at room temperature and overnight at 4°C. The 

primary antibody was removed and the membrane washed 3 times for 5 minutes in TBST. 

The HRP-conjugated secondary antibody was diluted in blocking solution and incubated on 

the membrane for 1 hour at room temperature. The secondary antibody was removed and 

the membrane washed 5 times in TBST for 5 minutes. The imaging solution was prepared 

and incubated on the membrane for 1 minute then removed and the membrane imaged (using 

the Fusion Solo apparatus). If the membrane was to be reused it was incubated in stripping 

solution for 20 minutes, then washed 2 times in TBST for 10 minutes and incubated in 

blocking medium for 1 hour.       

3.2.5- RNA analysis 

Total RNA extraction  

50 mg of fresh, frozen tissue was removed from the stock and minced for no more than 10 

seconds then placed into 1 ml of Trizol on ice. A mechanical homogeniser was used in 20 

second bursts, with 40 second rests in between, until the sample was fully homogenised. The 

homogenate was then incubated at room temperature for 5 minutes and 200 µl of chloroform 

was added before the mixture was vortexed for 15 seconds and incubated at room 

temperature for 3 minutes. This was centrifuged at 12,000 g for 15 minutes at 4°C and the 

clear upper phase was transferred to a fresh tube. 1.5 volumes of 100 % ethanol was added 

to the upper phase and mixed by pipetting. 700 µl of this mixture was transferred to a RNeasy 

Mini Spin Column which was centrifuged at 8,000 g for 15 seconds at room temperature. 

The flow through was discarded and the previous step was repeated until all of the mixture 

was passed through the column. 700µl of Buffer RWT was added to the column then 

centrifuged at 8,000 g for 15 seconds at room temperature and the flow through discarded. 

500µl of Buffer RPE was added to the column and centrifuged at 8,000 g for 15 seconds at 

room temperature and the flow through discarded. 500µl of Buffer RPE was added to the 

column then centrifuged at 8,000 g for 2 minutes at room temperature. The column was 

moved to a new 2ml tube and centrifuged at 16,000g for 1 minute at room temperature. The 

column was then moved to a fresh 1.5 ml tube and 30 µl of RNase-free water was added to 

the centre of the column and centrifuged at 8,000g for 1 minute at room temperature. The 

column was moved to a fresh 1.5 ml tube and the flow through from the previous step was 

collected after which the previous step was repeated. The collected flow through was then 

measured on a nanodrop and the 28S and 18S rRNA bands analysed on a gel to check for 

degradation. 
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RT-qPCR 

A cDNA library was synthesised by mixing 2 µg of isolated RNA, diluted in a total volume 

of 12 µl with RNase free water, 1 µl of 50 ng/µl random primers and 1 µl of dNTP-mix. This 

was incubated at 65°C for 5 minutes then chilled on ice for 5 minutes. 4 µl 5 x first strand 

buffer, 2 µl 0.1 M DTT and 1 µl 40 U/µl RNasin were added and the mixture incubated for 

2 minutes at room temperature. 1 µl of 200 U/µl superscript reverse transcriptase was added 

to each experimental sample and 1 µl of RNase free water to each negative control. The 

mixture was incubated at the following conditions- 25°C for 10 minutes, 42°C for 50 minutes 

and 70°C for 15 minutes. The synthesised cDNA was diluted 1 in 10 in ddH2O, with 5 µl 

used per reaction. In addition to the experimental samples, 200 ng of Sprague-Dawley rat 

genomic DNA, reverse transcription negative and water controls were included. The reaction 

master mix was created with 10 µl QuantiTect SYBR Green PCR Master Mix, 1 µl 10 mM 

forward primer, 1 µl 10 mM reverse primer and 3 µl of ddH2O per sample, with 15 µl of the 

master mix added to each reaction well (primer sequences used are listed in table 13). The 

reaction was carried out in a Lightcycler 480, using the conditions specified in table 14, 

which also processed the data.    

Table 13- List of primers used in qPCR and RT-PCR. 

Gene Direction Sequence 

Aqp2 
Forward gctgtcaatgctctccacaa 

Reverse ggagcaaccggtgaaataga 

Anks3 

Exon 11 cactgttggaacagatcggc 

Exon 12 ctagggcatcactaggtggg 

Exon 13 ggatgtcctttcgggcacta 

Gapdh 
Forward tgcaccaccaactgctta 

Reverse ggatgcagggatgatgttc 
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Table 14- PCR cycle parameters for RT-PCR and qPCR of Anks3, Aqp2 and Gapdh from 

cDNA. 

Line Anks3 Aqp2 Gapdh 

Preincubation 
Temperature (°C) 95 95 95 

Time (s) 600 600 600 

Denaturation 
Temperature (°C) 95 95 95 

Time (s) 15 15 15 

Annealing 
Temperature (°C) 54 55 55 

Time (s) 30 25 25 

Extension 
Temperature (°C) 72 72 72 

Time (s) 30 25 25 

Number of cycles 40 40 40 

High 

Resolution 

Melting 

Temperature (°C) 95 95 95 

Time (s) 60 60 60 

Temperature (°C) 40 40 40 

Time (s) 60 60 60 

Temperature (°C) 65 65 65 

Time (s) 1 1 1 

Temperature (°C) 97 97 97 

Time (s) 1 1 1 

Microarrays 

Gene expression profiling was performed using arrays of rat RaGene-2.0-st-type  from 

Affymetrix and the Clariom D array from Thermo Fischer. Biotinylated antisense cDNA 

was then prepared according to the Affymetrix standard labelling protocol with the 

GeneChip® WT Plus Reagent. Both microarrays were hybridized using GeneChip® 

Hybridization, Wash and Stain Kit (both from Affymetrix, Santa Clara, USA) and chips 

remained overnight on a GeneChip Hybridization oven 640. The following day, they were 

dyed in the GeneChip Fluidics Station 450 and thereafter scanned with a GeneChip Scanner 

3000. All of the equipment used was from the Affymetrix-Company (Affymetrix, High 

Wycombe, UK).A Custom CDF Version 21 with ENTREZ based gene definitions was used 

to annotate the arrays. The raw fluorescence intensity values were normalised applying 

quantile normalisation and RMA background correction. OneWay-ANOVA was performed 

to identify differentially expressed genes using a commercial software package SAS JMP10 

Genomics, version 6, from SAS (SAS Institute, Cary, NC, USA). A false positive rate of 

a=0.05 with FDR correction was taken as the level of significance.Gene Set Enrichment 

Analysis (GSEA) was used to determine whether defined lists (or sets) of genes exhibit a 

statistically significant bias in their distribution within a ranked gene list using the software 

GSEA (77). Pathways belonging to various cell functions such as cell cycle or apoptosis 

were obtained from public external databases (KEGG, http://www.genome.jp/kegg). 



 

51 

 

 4- RESULTS 

4- RESULTS 

4.1- Renal spatial expression of ANKS3 and ANKS6 is tightly regulated and disturbed 

by the Anks6p.R823W mutation 

It has previously been shown that ANKS3 forms homopolymer complexes and binding of 

ANKS3 to ANKS6, via the SAM domain, prevents this polymerisation. The Anks6p.R823W 

mutation, which causes an ADPKD-like phenotype, disrupts the binding of ANKS6 to the 

ANKS3-SAM domain. Thus, we hypothesise that the loss of this interaction may play a role 

in the development of the ADPKD phenotype, possibly due to increased formation of Anks3 

homopolymers. As this interaction could only occur if the two proteins are concurrently 

expressed in the same cell, we investigated their spatial expression in PKD/Mhm and 

wildtype rats. As shown in figure 11, in adult wildtype rats ANKS3 and ANKS6 strongly 

co-localise in the distal tubules of the outer cortex. However, they do not co-localise in the 

juxtamedullary region. Here, ANKS6 expression is restricted to the S3 segment of the 

proximal tubule and ANKS3 expression to the distal tubules.  In adult heterozygous 

PKD/Mhm(cy/+) rats, ANKS3 and ANKS6 are strongly co-expressed in the cortex in non-

cystic tubules, but not in cystic tubules (figure 12). Next, we studied ANKS3 and ANKS6 

expression in the cortex and medulla of the developing (10 day old) and mature kidney (three 

to four weeks old) in both wildtype and PKD/Mhm(cy/cy) rats, in which ANKS6 is unable 

to bind to the ANKS3-SAM domain. Kidney development in the rat is completed around 

three weeks after birth. Homozygous PKD/Mhm(cy/cy) rats die around two to three weeks 

after birth and thus were sacrificed shortly before their life expectancy ended. AQP2 was 

used as a collecting duct marker. Figure 13 shows that in the immature kidneys of 10 day 

old wildtype rats, ANKS3 and ANKS6 expression is restricted to the renal cortex and they 

do not co-localise with each other or with AQP2. However, a completely different spatial 

expression pattern was found in the developing cystic kidneys of 10 day old 

PKD/Mhm(cy/cy) rats (figure 14). ANKS3 and ANKS6 were strongly expressed in both the 

cortex and medulla and co-localise with each other and AQP2. Of note, in the mature 

wildtype kidney we observed a switch in the spatial expression pattern of ANKS3 and 

ANKS6 (figure 15). Both ANKS3 and ANKS6 are now strongly expressed and co-localised 

with each other and with AQP2 in the epithelial cells of the medullary collecting ducts but 

not in the upper cortical parts of the collecting ducts. Furthermore, we found a strong co-

localisation of ANKS3 and ANKS6 in the convoluted distal tubular epithelium in the renal 

cortex, which is particularly involved in the concentration of urine. However, the two 
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proteins do not co-localise in the corticomedullary renal border. ANKS6 is expressed in the 

S3 segment of proximal tubules and ANKS3 in the distal tubules, as previously shown in 

eight week old wildtype rats (figure 11). In the adult homozygous PKD/Mhm(cy/cy) rats, 

ANKS6 and ANKS3 were co-expressed with AQP2 in the medullary collecting duct cells 

located between the cysts, similar to the pattern observed in the 10 day old homozygous 

PKD/Mhm(cy/cy) rats (figure 16).  Thus, in wildtype rats a developmental switch in the 

spatial expression of the ANKS6 and ANKS3 proteins occurred. In contrast, homozygous 

PKD/Mhm(cy/cy) rats displayed a dysregulated spatial expression pattern of ANKS6 and 

ANKS3 during renal development.  

 

Figure 11- Immunohistochemistry of ANKS3 and ANKS6 in 8 week old wildtype rat kidneys. Co-localisation 

of ANKS3 and ANKS6 is seen in the distal tubules of the outer cortex (star); arrow tip - S1 segment of proximal 

tubules (top). No co-localisation is seen in the juxtamedullary region, where ANKS6 is expressed in the S3 

segment of the proximal tubules and ANKS3 in the distal tubules (bottom).   
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Figure 12- Immunohistochemistry of ANKS3 and ANKS6 in 8 week old heterozygous PKD/Mhm(cy/+) rat 

kidneys. ANKS3 and ANKS6 co-localise in the non-cystic cortical tubules between large cysts. 

 

   

Figure 13- Immunohistochemistry of ANKS3, ANKS6 and AQP2 in 10 day old wildtype rat kidneys. ANKS6 

and ANKS3 are expressed only in the cortex (top) not in the medulla (bottom). In the cortex they do not co-

localise with each other or with AQP2.  Arrows: green- ANKS3 position, blue- ANKS6 position, red- AQP2 

position.   
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Figure 14- Immunohistochemistry of ANKS3, ANKS6 and AQP2 in 10 day old PKD/Mhm(cy/cy) rat kidneys. 

ANKS6 and ANKS3 are expressed in both the cortex (top) and medulla (bottom) and in both regions they co-

localise with each other and with AQP2 (arrows).  

 

 

Figure 15- Immunohistochemistry of ANKS3, ANKS6 and AQP2 in mature wildtype rat kidneys. ANKS6 and 

ANKS3 are expressed and co-localise in the cortical distal tubules (top) and with AQP2 only in the medulla 

(bottom, stars). Arrows: green- ANKS3 position, blue- ANKS6 position, red- AQP2 position.    
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Figure 16- Immunohistochemistry of ANKS3, ANKS6 and AQP2 in mature homozygous PKD/Mhm(cy/cy) rat 

kidneys. all 3 proteins are co-expressed in the medullary collecting ducts (stars)- a comparable pattern to the 

developing PKD/Mhm(cy/cy) rat kidneys.   

 

4.1.1- Aqp2 expression is downregulated in TGRAnks6p.R823W PKD rats 

AQP2 is a key therapeutic target currently being investigated for the treatment of ADPKD. 

We show that AQP2 co-localises with ANKS3 and ANKS6 in the mature, but not in the 

developing, wildtype kidney. By contrast, in the PKD/Mhm(cy/cy) rat kidneys all three 

components already co-localise in the 10 day old developing kidney, when cysts are 

beginning to develop. Since ANKS3 and ANKS6 work in complexes with BICC1, an RNA 

binding protein, we investigated whether Aqp2 expression levels are changed in the mutants. 

For this experiment 10 day old and eight week old TGR-hCMV/Anks6p.R823W rats (hereafter 

referred to as TGRAnks6), which were previously generated in our group (58), were used 

with wildtype comparisons. The qPCR data showed decreased expression of Aqp2 mRNA. 

Thus, in TGRAnks6 rat kidneys increased ANKS3-SAM polymerisation due to the loss of 

ANKS6-ANKS3-SAM domain binding may act in an inhibitory manner on Aqp2 mRNA 

levels (figure 17), which may in turn result in reduced water reabsorption in the kidney 

tubules. 
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Figure 17- Aqp2 expression in TGRAnks6 rat kidneys. qPCR data shows decreased expression of Aqp2 mRNA 

in both the developing and mature kidneys of TGRAnks6 rats (TGR) compared to wildtype controls (SD) 

(unpaired t-test- # p<0.05). 
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4.2- Generation of new mutant Anks3 rat lines 

In order to identify: a) the in vivo function of ANKS3, b) the role of ANKS3-SAM domain 

polymerisation and c) the role of the ANKS3-SAM domain, we generated three novel rat 

models with either a total ANKS3 knockout or different mutations in the ANKS3-SAM 

domain: 

a. Anks3 knockout rat (Anks3KO) 

b. Anks3-SAMp.I35E knockin rat (Anks3KI) 

c. Anks3ΔSAM rat (deletion between position I35 and F52 of the SAM domain) 

The positions of the mutations are indicated in figure 18. 

Since the function of Anks3 is not yet known in mammals we created the Anks3 knockout 

rat using CRISPR/Cas9 injected into fertilised one-cell rat eggs. The gRNA was targeted to 

exon 2 at aa5-12: AGCGATGAAGCCAGCGAGCCGG. 

Among 6 progenies, two founders were obtained with either a 5 or 8 bp deletion at the 

targetted position.  

Rat lines carrying the ANKS3-SAM mutations were generated at the INSERM (France) 

using the CRISPR/Cas9 system and suitable targets (78). The p.I35E mutation was 

introduced into the SAM domain in exon 11. This mutation has previously been shown to 

prevent the polymerisation of ANKS3, but has no effect on ANKS6 binding (66). In a third 

rat line, important parts of the SAM domain between positions I35 and F52 were deleted by 

simultaneous targeting of I35 and F52 using specific gRNAs. Thus, we would theoretically 

expect a loss of all ANKS3 function in the Anks3KO line, a loss of ANKS3 polymerisation 

while SAM domain binding to ANKS6 and Ank domain function would remain intact in the 

Anks3KI line and, in the Anks3ΔSAM rats, a total loss of SAM domain function with Ank 

domain function and the C-terminal end preserved.  



 

58 

 

 4- RESULTS 

 

Figure 18- The rat Anks3 gene and the location of the CRISPR gRNA targeting sites. 
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4.2.1- Genotyping 

Rats were genotyped at 3 weeks of age by sequencing and those carrying mutations of 

interest were then further bred to create the lines used. 

4.2.1.1- Anks3KO rat 

Both, the 5bp and  8bp deletion in the founders created a frameshift after aa10 or aa8 and a 

premature stop after aa 46 or aa 45, repectively (figure 19). 

 

 

Figure 19- Genotyping of in Anks3KO rats. Top: Sequencing results of the targeted position in 2nd exon from 

amino acid 5 to 12 in heterozygous and homozygous rats of two different Anks3KO lines with either 5 bp or 8 

bp deletion. Bottom: base pair and amino acid changes due to mutations in Anks3KO rats are shown. (base pair 

and amino acid changes noted in red). Both mutations result in a frame shift and truncation after 46 amino 

acids (5 bp deletion) or 45 amino acids (8 bp deletion).  
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4.2.1.2- Anks3-SAMp.I35E rat 

The Anks3KI rats were generated at the INSERM (France) by using a gRNA targetting the 

position I35 of the SAM domain, found in exon 11, and a suitable template DNA carrying 

the mutation and additional silent changes at the I35 site to create an EcoRI restriction site 

in the mutants. The EcoRI site simplified genotyping since only a PCR followed by an EcoRI 

digestion was required (78). We investigated the genotype of the Anks3KI rats in more detail 

and three additional mutations within intron 11, close to the splice site, among progeny 

carrying the Anks3KI mutation (figure 20 and 21). 

Inheritance of these intron 11 mutations revealed that the Anks3KI mutation was linked to 

one of the three intron 11 mutations in each case. Consequently we had to check the Anks3KI 

progenies for changes in splicing around exon 12. This was first investigated by RT-PCR 

using primer pairs between exon 11 and exon 12 to check for inclusion of exon 12 in the 

mature Anks3 mRNA, and exon 11 and exon 13, to check for exon skipping (p. 46, Mat. 

Meth). Figure 22 shows that no changes in splicing were seen. In addition to this, a whole 

exon screen of Anks3 was performed on homozygous adult Anks3KI/KI and wildtype rats and 

compared with embryonic day 17.5 Anks3KO/KO and wildtype rats as part of microarray 

experiments. No differences were observed between the mutants and their wildtype 

counterparts or between the adults and embryos, indicating that there were no differences in 

Anks3 splicing amoung these groups (figure 23). 
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Figure 20- Genotyping in Anks3KI rats. Sequencing of the Anks3KI mutation and the three mutations in intron 

11: The Anks3-SAMp.I35E was correctly inserted along with the EcoRI restriction site. This was coupled in each 

case with a 1 bp insertion, 4 bp insertion or 4 bp deletion within intron 11 immediately before the splice site 

with intron11/exon12. 

 

Figure 21- Nucleotide and amino acid sequences for the Anks3KI mutation and the three mutations in intron 11 

(base pair and amino acid changes noted in red). 
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Table 15- Expected changes in the length of RT-PCR transcripts in the different mutant lines. 

Mutation 
Expected Base 

Pair Change 

Exon 11-Exon 12 

transcript size 

Exon11-Exon 13 

transcript size 

Wildtype No Change 195bp 366bp 

Anks3KI No Change 195bp 366bp 

Anks3ΔSAM 45bp decrease 150bp 321bp 

 

 

 

 

 

Figure 22- RT-PCR of the Anks3KI and Anks3ΔSAM rats to check splicing of exon 12. RT-PCR of Anks3KI/KI rats 

showed no changes in the splicing of exon 12. Heterozygous Anks3ΔSAM/WT rats also showed no changes in 

splicing but had an additional lower band from the mutant allele as expected.  
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Figure 23- Anks3 exon intensity from RNA expression profiling (ClariomD array). There is no difference in 

the intensity of exons between adult Anks3KI/KI rats (Adult KI/KI), adult wildtype rats (Adult WT), Anks3KO/KO 

(Embryo KO/KO) and wildtype rat embryos (Embryo WT) indicating no changes in splicing.      
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4.2.1.3- Anks3ΔSAM rat 

The Anks3ΔSAM rats were generated by using two different gRNAs simultaneously targeting 

the position I35 in exon 11 and F52 in exon 12 to delete important parts of the SAM domain. 

We found 17 amino acids were deleted and two amino acids were inserted, partially from 

intron 11, so that the changes occurred in-frame (figure 24 and 25). As in the case of the 

Anks3KI lines, the exact effect of the Anks3ΔSAM mutation on splicing was unknown. Correct 

splicing was proven by RT-PCR of heterozygous animals. Figure 22 shows the expected 

bands for the two alleles in the heterozygous Anks3ΔSAM/WT rats (table 13).  

The Anks3ΔSAM mutation should destroy all functionality of the ANKS3-SAM domain as the 

deletion removed key amino acids from both the mid loop and end helix regions and would 

severely affect folding of the region. However, the functionality of the Ank domains and C-

terminal end should be conserved. 

 

 

Figure 24- Genotyping of Anks3ΔSAM rats indicating the in frame deletion. Sequencing results of the Anks3ΔSAM 

mutation with wildtype comparisons: part of exon 11 and almost all of intron 11 were removed and three new 

base pairs were randomly inserted.  

 



 

65 

 

 4- RESULTS 

 

Figure 25- Nucleotide and amino acid sequences for the in-frame Anks3ΔSAM mutation (base pair and amino 

acid changes noted in red). The deletion and insertions resulted in an in-frame mutation with seventeen amino 

acids deleted and two new amino acids inserted in the SAM domain. 

4.2.2- Phenotype of the Anks3KO and Anks3ΔSAM rats 

4.2.2.1- The Anks3KO and Anks3ΔSAM mutations are prenatally lethal in homozygotes  

Among the Anks3 lines only the Anks3KI rats were capable of producing homozygous 

offspring. The Anks3KO and Anks3ΔSAM lines only produced wildtype and heterozygous 

offspring when both parents were heterozygous. The frequency of wildtype and 

heterozygous genotypes in the offspring of these lines coincides with the expected 

frequencies if the homozygous genotype is prenatally lethal. Hence, the majority of further 

studies were done in the embryos of these lines with some heterozygous animals being 

aged up to check for any longer-term health problems (table 14). 

 

Table 16- Numbers and percentages of genotypes among the offspring in the new Anks3 rat 

lines and the expected rates with and without homozygous lethality. 

 
Total 

Number of 

Pups 

Wildtype Heterozygous Homozygous 

Number % Number % Number % 

Anks3KI 109 33 30.2 49 45.0 27 24.8 

Anks3KO 101 34 33.7 67 66.3 0 0.0 

Anks3ΔSAM 78 24 30.8 54 69.2 0 0.0 

        

Expected   25.0  50.0  25.0 

Expected if 

homozgous die 
  33.3  66.7  0.0 
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4.2.2.2- Homozygous Anks3KO and Anks3ΔSAM rat embryos display situs inversus and 

major disturbances in organ patterning 

Homozygous rats of the Anks3KO and Anks3ΔSAM lines died prenatally showing considerable 

phenotypic variability similar to other ciliopathic diseases. Though the homozygous 

embryos were smaller in size and weight than their wildtype or heterozygous littermates 

many had a normal outer appearance. Localised haemorrhages were the most common defect 

observed externally followed by obvious malformations of the craniofacial structure and 

oedema in some animals (figure 26 and 27). The internal anatomy of the homozygous 

embryos had several noticeable abnormalities including enlarged hearts, smaller kidneys 

and, in some cases, several pale organs (heart, lungs and intestines). These defects were seen 

in both lines, usually becoming visible between embryonic days 14.5 and 17.5 (figure 26). 

MRI imaging of Anks3KO embryos also revealed occasional instances of situs inversus of the 

liver and bladder as well as showing defects in the heart chambers (figure 28). MRI imaging 

was performed by Marc Pretze (Molecular Imaging and Radiochemistry, Department of 

Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg 

University, Mannheim, Germany).  
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Figure 26- Gross anatomical images of homozygous E17.5 Anks3KO/KO embryos: showing pale organs (top 

left), focal haemorrhage of the tail (top right), reduced kidney size, enlarged heart and smaller and malformed 

skull (bottom).  
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Figure 27- External manifestations in E17.5 homozygous Anks3KO/KO embryos: underdeveloped jaw and poorly 

formed skull (middle), and significantly retarded growth with oedema (bottom). 
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The Anks3KI mutation reversed important pathways which were upregulated in the 

TGRAnks6 rats such as Wnt, Hippo, HIF1 and cAMP signalling and cancer-associated 

pathways, which are known to be involved in cyst growth, returning them to normal. In the 

TGRAnks6 kidneys metabolic pathways related to mitochondrial function (TCA cycle, fatty 

acid degradation, carbohydrate, lipid and amino acid metabolism) were downregulated 

which was reversed by the Anks3KI mutation in the TGRAnks6-Anks3KI/KI rats (figure 43). 

However, 10 pathways were altered similarly in both the TGRAnks6 and TGRAnks6-

Anks3KI/KI kidneys indicating that the inability of the ANKS3-SAM domain to form 

homopolymers due to the Anks3KI mutation has no influence on these, in the context of PKD 

(figure 44). These pathways included ‘fatty acid metabolism’, ‘oxidative phosphorylation’ 

and ‘collecting duct acid secretion’, which were downregulated and ‘DNA replication’, 

‘PI3K-Akt signalling’ and ‘cell cycle’, which were upregulated in both genotypes.  
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Figure 28- MRI images of E17.5 Anks3KO/KO embryos showing instances of situs inversus of the liver and 

bladder, as well as abnormal cardiac structures. 
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Histological examination of the homozygous embryos revealed the defects in the heart, 

kidney and craniofacial structure in greater detail. In the heart, the atria were greatly dilated 

while the ventricle walls were thin (figure 29). Additionally, septum defects were often 

observed resulting in a single ventricle or atrium. In the craniofacial region there were 

defects in the development of the cortex and midbrain, cleft palates and underdeveloped 

mandibles. Additional defects were seen in skeletal and neuronal patterning and neural tube 

closure (figure 30). These defects were seen in both lines however the severity of each defect 

varied among individual homozygous offspring.  

 

Figure 29- Histology of hearts from E17.5 homozygous Anks3KO/KO embryos with dilated atria and thin, poorly 

formed ventricle walls.  
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Figure 30- Histology of E18.5 homozygous Anks3KO/KO embryos with the developmental defects indicated.  
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Histological evaluation of homozygous Anks3KO/KO embryos revealed poorly organised 

muscle tissue in the heart. The kidneys were often smaller and showed severe disturbances 

of renal glomerulogenesis and tubulogenesis and a reduced number of tubules (figure 31). 

Cystic kidneys, like those seen in Anks6 mutant rat embryos, were never observed. The 

histopathological evaluation was supported by Prof. Gröne (DKFZ, University Heidelberg) 

and Prof. Dobreva (Medical Faculty Mannheim, University Heidelberg)      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 Histology of heart and kidneys from E17.5 homozygous Anks3KO/KO embryos. Haematoxylin/eosin 

staining showes disturbances in glomerulogenesis and tubulogenesis (top) and poorly organised heart muscle 

tissue (bottom).  

The phenotype we observed in the homozygous Anks3KO/KO and Anks3ΔSAM rats had the 

typical features of a ciliopathic disorder. As such, we performed immunohistochemistry for 

acetylated  tubulin to stain the cilia. Figure 32 shows that cilia formation is not disturbed 

although they seem to be longer in Anks3KO/KO compared to wildtype embryos. However, 

we did not investigate whether cilia function is altered.   
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Figure 32- Immunohistochemistry of cilia in cleared Ank3KO/KO tissue using the expansion microscopy 

technique. Cilia, stained with an anti-acetylated tubulin antibody, were observed in both the wildtype and 
Anks3KO/KO embryos (green- nuclear stain with sytox green, red- acetylated tubulin).  
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4.2.2.3- Anks3KO upregulates proliferative pathways and downregulates DNA 

replication and repair pathways in embryonic kidneys 

Gene expression profiling was carried out on the embryonic kidneys of E17.5 day old  

Anks3KO/KO embryos and wildtype littermates using the ClariomTM D array for rats. The 

expression of 26 pathways were significantly different in the Anks3KO/KO kidneys vs. 

wildtype. Interestingly, a number of pathways related to DNA replication and damage 

response, including  ‘DNA Replication’, ‘Nucleotide Excision Repair’, ‘Mismatch Repair’ 

and ‘Proteasome’, (table 18) were significantly downregulated in Anks3KO/KO  kidneys. In 

contrast, pathways related to proliferation, including ‘Pathways in cancer’, ‘Proteoglycans 

in cancer’, ‘cAMP-’, ‘PI3K-Akt-’, ‘Ras-’ and ‘Ca2+ signalling’, were upregulated (figure 

33). These results fit well to the recently discovered association between cilia function and 

DNA damage response and proliferation.  Other important pathways in embryogenesis were 

also upregulated including Notch, Wnt and MAPK, but did not reach statistical significance.  
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Figure 33- Pathway expression changes in E17.5 Anks3KO/KO rats. Significantly  (p<0.05) changed pathways 

in E17.5 Anks3KO/KO rat embryos compared to wildtype embryos, showing downregulation of DNA damage 

response/ repsir pathways and upregulation of pathways involved in proliferation, cell-cell interactions and 

cancer 

4.2.2.3- Heterozygous Anks3KO/WT causes a mild NPHP-like phenotype in aged rats 

The heterozygous Anks3KO/WT rats developed normally and could only be distinguished from 

their wildtype rats, with regard to the kidney function and structure, by a slight decrease in 

plasma glucose levels up to an age of eight months, as shown in table 15. However, when 
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aged more than a year, Anks3KO/WT rats often developed thickening of the intertubular 

interstitium and narrowing of the tubular lumen in the renal medulla. Additionally, in some 

cases we found small medullary cysts and mild cortical fibrosis (figure 34).   

 

Table 17- Clinical data from 8 month old Anks3KO/WT and Anks3KI/KI rats with wildtype 

comparisons.  Urine parameters are designated with u- and plasma parameters designated 

with p-. 

Clinical Parameter  
Wildtype Anks3

KO/WT
 Anks3KI/KI 

Mean ± SD Mean ± SD Mean ± SD 

24 Hour Metabolic Cage    

Urine (ml) 30.5 ± 9.0 25.1 ± 10.2 18.6 ± 2.6 

Water Intake (ml) 47.8 ± 9.5 43.1 ± 14.0 33.9 ± 2.6 

Urinary Osmolarity (osmo/L) 1029 ± 283.7 1119.5 ± 336.1 1710 ± 370.6 

Urine    

u-Urea (mg/24 h) 855.1 ± 96.4 799.9 ± 151.8 970.9 ± 91.5 

u-Creatinine (mg/24 h) 20.3 ± 1.7 20.0 ± 2.8 19.2 ± 2.5 

u-Protein (mg/24 h) 9.3 ± 3.7 11.6 ± 4.0 27.9 ± 29.4 

u-Albumin (mg/24 h)  632 ± 689.9 303.1 ± 296.9 10894.3 ± 17221.8 

u-Glucose (mg/dl) 3.2 ± 2.9 6.4 ± 9.5 12.0 ± 10.5 

Blood Plasma    

p-Urea (mg/dl) 38.3 ± 1.2 33.9 ± 1.8 33.9 ± 4.1 

p-Creatinine (mg/dl) 0.38 ± 0.01 0.31 ± 0.03 0.32 ± 0.05 

p-Cholesterine (mg/dl) 94.0 ± 5.0 87.9 ± 11.0 123.1 ± 34.3 

p-Triglycerides (mg/dl) 140.2 ± 26.2 148.7 ± 24.5 144.3 ± 50.8 

p-Protein (mg/ml) 66.2 ± 2.6 58.9 ± 2.0 71.3 ± 5.4 

p-Glucose (mg/dl) 282.5 ± 37.0 173.9 ± 36.8 148.1 ± 9.0 
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Figure 34- Renal phenotype of aged Anks3KO/WT rats. A-C- H&E staining  of wildtype renal medulla (A) and 

Anks3KO/WT renal medulla showing thickening of the intertubular interstitium and narrowing of the tubular 

lumen of 8 month old rats (B) and small cysts in 16 month old rats (C). D,E- Immunohistochemistry showing 

ANKS3 expression in the collecting ducts but not in the cystic or dilated tubules. F- 8 month old Anks3KO/WT 

renal cortex showing mild fibrosis (Azan staining).  
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4.2.3- Phenotype of the Anks3-SAMp.I35E rats 

4.2.3.1- The Anks3-SAMp.I35E mutation is involved in urine concentration but does not 

result in renal disease  

Rats carrying the Anks3KI mutation develop normally, even in the homozygous state. Since 

the Anks3KI mutation in the SAM domain has been shown to prevent homopolymerisation 

but does not disturb binding to the ANKS6-SAM domain, we conclude that ANKS3 

homopolymerisation is not essential for embryonic development or kidney morphogenesis. 

To obtain metabolic data and clinical data from 24 hour urine we placed old male Anks3KI/KI 

rats and wildtype comparisons into metabolic cages for 24 hours. In addition, the clinical 

plasma parameters were determined (table 15). Of note, the Anks3KI/KI rats showed 

significantly decreased urine excretion along with increased urine osmolarity and decreased 

water intake. Urinary concentrations of urea and creatinine were increased, however, the 24 

hour excretion was unaffected. The urea and creatinine concentrations in the plasma were 

slightly decreased, which might be caused due to increased water reabsorption (table 15). In 

some cases in 12 month old animals urinary albumin was increased which is not unusual in 

these rats. 

In chapter 4.1 we showed that both ANKS3 and ANKS6 co-localise with AQP2 in renal 

collecting duct cells. As AQP2 is an important mediator of water reabsorption in renal 

tubules we investigated whether ANKS3 is involved in the regulation of AQP2 expression. 

As shown in figure 35 both the RNA and protein AQP2 levels were slightly increased in 

Anks3KI/KI rats when compared with wildtype littermates (figure 35). This could represent 

one mechanism by which urine concentration is affected in Anks3KI/KI rats. In this context it 

is noteworthy that Delestré et al. (69) found increased AQP2 expression when Anks3 was 

downregulated in 4 day old mice. Moreover, polyuria is an early sign of NPHP.   

Histological evaluation did not show any sign of renal defects, even when the rats were aged 

more than a year (figure 36 top). The percentage of fibrotic tissue in the kidney cortex was 

calculated and found to be unchanged in the Anks3KI/KI rats (figure 36 bottom). 
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Figure 35- Expression of Aqp2 mRNA and protein in Anks3KI/KI rats. Top- qPCR data showing a slight increase 

in Aqp2 mRNA expression in Anks3KI/KI rats.  Bottom- Western blot data showing slightly increased AQP2 

protein expression in Anks3KI/KI rats (4 animals per group).  



 

81 

 

 4- RESULTS 

 

Figure 36- Renal histology and fibrosis quantification in Anks3KI/KI rat kidneys. Top- Azan staining of Anks3KI/KI 

kidneys showed no  histological abnormalities (10x objective). Bottom- Percentage of fibrotic tissue in the 

kidney cortex with no difference between Anks3KI/KI animals and wildtype comparisons (6 animals per group). 
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4.2.3.2- The Anks3-SAMp.I35E mutation downregulates metabolic pathways and 

upregulates pathways associated with the cell cycle and cilia in adult rats 

We determined the mRNA expression profile of kidney tissue from eight month old 

Anks3KI/KI rats and wildtype controls using the ClariomTM D array for rats. It is obvious from 

the data that the Anks3KI mutation affects quite a different set of pathways in the adult rats 

than Anks3KO in the embryos. Unlike the Anks3KO/KO embryos, pathways related to ‘DNA 

replication’ and ‘DNA damage response’ and signalling pathways related to proliferation 

and survival are unchanged in the Anks3KI/KI rats (table 18). It is noteworthy that important 

pathways known to be related to cilia function and cell cycle regulation, such as Notch, 

Hippo and Wnt signalling, are significantly upregulated in the Anks3KI/KI rats. Additionally, 

the pathways ‘microRNA in cancer’ and ‘RNA transport’ are also upregulated. Moreover, 

many metabolic pathways related to mitochondria function are significantly downregulated 

as well as the pathway ‘collecting duct acid secretion’ (figure 37). Since we found ANKS3 

is expressed in the intercalated cells of the collecting duct, a possible role for ANKS3 in the 

regulation of collecting duct acid secretion is reasonable. However, since the altered 

pathways did not have pathological consequences, they seem to be well tolerated. 
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Figure 37- Pathway Expression Changes in Anks3KI/KI vs Wildtype Rats. Significantly  (p<0.05) changed 

patways in 8 month old Anks3KI/KI rats compared to wildtype rats showing downregulation preferently of 

metabolic pathways and upregulation of  key pathways involved in ciliopathies (Wnt, Hippo, Notch), RNA 

transport, cell cycle.  and cell-cell interactions. 
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4.2.3.3- The Anks3-SAMp.I35E mutation retards cyst growth in TGRAnks6  rats  

As shown previously, ANKS6 binding to the ANKS3-SAM domain inhibits ANKS3 

homopolymerisation. The Anks6p.R823W mutation prevents this binding, so increased 

homopolymerisation of ANKS3 might contribute to the ADPKD phenotype in the 

Anks6p.R823W rats. Hence, we aimed to study the effect of the Anks3KI mutation, which 

prevents ANKS3-SAM domain homopolymerisation, on the ADPKD phenotype of 

TGRAnks6 rats. To this end, we crossed the TGRAnks6 line with the Anks3KI line to generate 

rats with heterozygous Anks6p.R823W and homozygous Anks3KI/KI mutations. In these rats 

ANKS6 cannot bind to ANKS3 anymore and so cannot inhibit ANKS3 self-polymerisation. 

However, due to the presence of the homozygous Anks3KI/KI mutation, ANKS3 

polymerisation is prevented. Since the Anks3KI/KI rats did not display any pathological 

phenotype and showed increased water resorption in the renal tubules, we hypothesised that 

the Anks3KI mutation may have a protective effect  in the TGRAnks6  PKD model.  

The TGRAnks6-Anks3KI/KI double mutant rats were sacrificed at 11-12 days (developing 

kidney) and at four weeks (mature kidney) after birth. As shown in figure 38, we observed 

a remarkable protective effect of Anks3KI/KI on cyst growth. In developing TGRAnks6-

Anks3KI/KI kidneys the inability of ANKS3-SAM to self-polymerise prevented renal 

hypertrophy and cyst growth. TGRAnks6-Anks3KI/WT rats had a reduced degree of cystic 

disease (figure 38).  

The protective effect of homozygous Anks3KI/KI on cyst growth persisted even in the four 

week old kidney. In the TGRAnks6-Anks3KI/WT rats the heterozygous Anks3KI/WT mutation 

only slowed cyst growth but did not prevent it, which indicates a dose dependent effect 

(figure 39).   
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Figure 38- Anks3
KI

 mutation retards cyst growth in 11-day old  TGRAnks6-Anks3KI rats. H&E stained kidney 

sections showing dose dependently reduced cyst growth in the developing kidneys of TGRAnks6 rats also 

carrying the Anks3
KI

 mutation. 
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Figure 39- Anks3
KI

 mutation retards cyst growth in 4 week old TGRAnks6-Anks3KI rats. H&E stained kidney 

sections showing dose dependently reduced cyst growth in the mature TGRAnks6 rats also carrying the 

Anks3
KI

 mutation. 

As a parameter for renal hypertrophy the kidney/body weight (KW/BW) ratios were 

determined in addition to the cyst score as a parameter for disease severity. The cyst score 

was calculated by comparing the size of the cysts to the glomeruli (0=no cysts, 1= <2 

glomeruli, 2= 2-4 glomeruli, 3= 4-6 glomeruli, 4= >6 glomeruli). In agreement with the 

histology data, both KW/BW and cyst scores were significantly reduced due to Anks3KI/KI 

(figure 40). The data also demonstrated the remarkable dose effects of the ANKS3-SAM 

self-polymerisation on cyst growth when homozygous and heterozygous Anks3KI rats were 

compared.   
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Figure 40- Anks3KI mutation retards cyst score and renal hypertrophy.  Defective Anks3 homopolymerisation 

due to the Anks3KI mutation decreases kidney weight to body weight ratio and cyst scores in 12 day and 4 week 

old TGRAnks6-Anks3KI rats compared to the TGRAnks6rats. ***p<0,001 vs WT, ##p<0,01 vs. TGR.  
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Figure 41- Anks3KI mutation reduces cell proliferation in 4 week old TGRAnks6-Anks3KI/KI rats. 

Immunohistological staining for KI-67 in the kidneys of wildtype (WT), TGRAnks6 and TGRAnks6-Anks3KI/KI 

rats shows an increased number of proliferating cells in the TGRAnks6 rats compared to WT. Number of Ki-

67positive cells per visual field is significantly decreased in TGRAnks6-Anks3KI/KI rats vs. TGRAnks6. *** 

p<0.001 vs WT, ## p<0.01 vs TGRAnks6). 

Additionally, sections from four week old rats were stained for KI-67, a proliferation marker, 

and the number of positively stained cells per visual field were counted. As expected, the 

TGRAnks6 rats had a significant increase in the number of proliferating cells compared to 

wildtype rats. The TGRAnks6-Anks3KI/KI rats had a significant reduction compared to the 

TGRAnks6 rats, though there were still significantly more KI-67 positive cells than in 

wildtypes (figure 41). 
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4.2.3.4- The Anks3-SAMp.I35E mutation reverses the majority of pathways altered in the 

TGRAnks6 rats and upregulates DNA replication and repair pathways 

Gene expression profiling was performed on renal tissue from 11-12 day old rats TGRAnks6 

and TGRAnks6-Anks3KI/KI with wildtype controls using the RaGene 2.0 ST rat microarray. 

As shown in figure 42 the Anks3KI mutation reversed the majority of pathways which were 

altered by the Anks6p.R823W mutation. While in kidneys of TGRAnks6 rats expression of 131 

pathways is significantly different compared to wildtypes, in the TGRAnks6-Anks3KI/KI rat 

kidneys only 20 pathways are different from wildtypes.  

 

 

Figure 42- Venn diagram showing pathways up and downregulated in TGRAnks6 and TGRAnks6-Anks3KI/KI 

rats versus wildtype.  
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Figure 43- Pathways differently regulated in both TGRAnks6  vs wildtype (WT) and TGRAnks6-Anks3KI/KI  

rats vs TGRAnks6. 

TGRAnks6 vs WT TGRAnks6-Anks3KI/KI vs TGRAnks6 
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Figure 44- Pathways similarly up or downregulated in both TGRAnks6  and TGRAnks6-Anks3KI/KI  rats when 

compared to wildtype rats (WT). 

  

TGRAnks6 vs WT TGRAnks6-Anks3KI/KI vs WT 
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The Anks3KI mutation reversed important pathways which were upregulated in the 

TGRAnks6 rats such as Wnt, Hippo, HIF1 and cAMP signalling and cancer-associated 

pathways, which are known to be involved in cyst growth, returning them to normal. In the 

TGRAnks6 kidneys metabolic pathways related to mitochondrial function (TCA cycle, fatty 

acid degradation, carbohydrate, lipid and amino acid metabolism) were downregulated 

which was reversed by the Anks3KI mutation in the TGRAnks6-Anks3KI/KI rats (figure 43). 

However, 10 pathways were altered similarly in both the TGRAnks6 and TGRAnks6-

Anks3KI/KI kidneys indicating that the inability of the ANKS3-SAM domain to form 

homopolymers due to the Anks3KI mutation has no influence on these, in the context of PKD 

(figure 44). These pathways included ‘fatty acid metabolism’, ‘oxidative phosphorylation’ 

and ‘collecting duct acid secretion’, which were downregulated and ‘DNA replication’, 

‘PI3K-Akt signalling’ and ‘cell cycle’, which were upregulated in both genotypes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45- Pathway expression changes in TGRAnks6-Anks3KI/KI vs. wildtype rats. Pathways only upregulated 

in TGRAnks6-Anks3KI/KI not in TGRAnks6 rats when compared to wildtype rats. 

 

Pathway Expression Changes in  

TGRAnks6-Anks3KI/KI vs. Wildtype rats 
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Table 18- Comparison of changes in DNA damage response pathways between TGRAnks6, 

TGRAnks6-Anks3KI/KI, Anks3KI/KI and Anks3KO/KO with wildtype comparisons  

 

The 10 pathways altered only in the TGRAnks6-Anks3KI/KI rats included upregulation of 

‘starch and sucrose metabolism’ and interestingly ‘pyrimidine metabolism’, ‘purine 

metabolism’, ‘mismatch repair’ and ‘homologous recombination’ which belong to the DNA 

replication and repair machinery (figure 45 and table 18).   

  

 

Pathway  TGRAnks6  TGRAnks6/Anks3KIKI TGRAnks6/Anks3KIKI Anks3KIKI  Anks3KO/KO 

  vs WT vs WT vs TGRAnks6 
vs WT 
adult 

vs WT 
embryo 

DNA replication  1,88** 2,61** 1,69** 0,98 -2,09** 

Fanconi anemia pathway 1,31 1,92** 1,48** -0,9 -1,93** 

Nucleotide excision repair  1,25 1,5** 0,91 0,8 -2,04** 

Mismatch repair  1,16 2,32** 1,76** -0,81 -2,17* 

Homologous recombination  1,06 2,12** 1,77** 0,88 -1,77* 

Base excision repair  0,98 1,68** 1,14 0,86 -1,25 

Aminoacyl-tRNA biosynthesis  -1,21 1,69** 1,88** 0,82 0,82 

*p<0.05, **p<0.01 green – upregulated , red - downregulated 
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ANKS3, an Ank and SAM domain containing protein was first identified as a physical 

binding partner of the PKD associated proteins ANKS6 and BICC1 by Leettola et al. in 2014 

(66) by in vitro studies using isolated SAM domains of these three proteins. They also 

demonstrated that the ANKS3-SAM domain can self-polymerise forming large complexes. 

ANKS3 self-polymerisation was prevented by ANKS6 binding to the ANKS3-SAM 

domain. Furthermore, they demonstrated that the Anks6p.R823W mutation, which causes 

ADPKD in rats, prevents ANKS6 binding to ANKS3. This may may result in 

hyperpolymerisation of ANKS3. These findings were confirmed in both cellular and in vivo 

studies by Bakey et al. (60) and  Delestre et al. (69) in 2015. Around the same time the 

interaction of ANKS3 and ANKS6 with NPHP-associated proteins was reported (59, 61, 

68). The current information indicates that ANKS3 might be a player in both PKD and 

NPHP, however the in vivo function of ANKS3 in mammals is currently unresolved. 

The main aims of this thesis were to determine the in vivo function of Anks3 and its SAM 

domain in rats and the role of ANKS3-SAM domain self-polymerisation in the Anks6p.R823W 

model of ADPKD. We addressed the following questions in detail: 1. Which renal cells 

coexpress ANKS3 and ANKS6 in the developing and adult kidneys, of both wildtype and 

PKD/Mhm(cy/cy) rats? 2. What is the role of ANKS3-SAM domain polymerisation, in the 

TGRAnks6 model of ADPKD, previously generated in our group (58)? 3. What is the 

pathophysiological effect of Anks3 knockout? 

To this end we generated and characterised several Anks3 mutant rat lines using the 

CRISPR/Cas9 system.  

The present thesis, for the first time, provides the following evidence: 1) A renal spatial-

developmental expression pattern of ANKS3-ANKS6 co-expression in wildtype and 

PKD/Mhm(cy/cy) rats. 2) Blocking ANKS3-SAM domain self-polymerisation is protective 

in the TGRAnks6 rat model of ADPKD by normalising most of the pathways dysregulated 

in PKD, including Wnt, Hippo and cAMP as well as numerous metabolic pathways related 

to mitochondrial function. 3) ANKS3 and its SAM domain have an essential role in 

mammalian development, since the knockout causes embryonic lethality due to laterality 

and organ patterning defects which primarily involve the downregulation of DNA damage 

response pathways and the upregulation of pathways involved in cell proliferation. Cilia 

formation still occurs.  
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5.1- Defective ANKS3-SAM domain self-polymerisation retards cyst growth in 

TGRAnks6p.R823W PKD rats 

The Anks6p.R823W mutation changes the binding properties of ANKS6 to ANKS3. It is 

important to note that the Anks6p.R823W is the only mutation identified in this protein to cause 

an ADPKD-like phenotype (54). The other ANKS6 mutations identified in both human 

patients and animal models cause a NPHP phenotype (59-63). The NPHP phenotype is 

relatively clearly linked to the interaction of ANKS6 with other NPHP proteins at the cilia. 

While the exact pathways are not entirely elucidated, ANKS6 does fit well into the overall 

picture of NPHP proteins. However, the Anks6p.R823W mutation is one of only a very few 

mutations, outside of the classical PKD1 and PKD2 (79), to cause the distinctive large renal 

cysts and fibrosis of ADPKD. This makes the Anks6p.R823W mutation very interesting for 

studying a distinct role of ANKS6 outside of the NPHP2-3-9 complex. Additionally, it is 

useful to study the common molecular mechanisms the PKD/Mhm rat shares with the 

classical PKD1/PKD2 ADPKD.  

Whether the loss of ANKS6-ANKS3 binding in the PKD/Mhm rats had any role in cystic 

development was unknown. However, as ANKS3 and BICC1 are the only known binding 

partners of the ANKS6-SAM domain, and in vitro work showed that ANKS6 disrupts the 

formation of ANKS3 homopolymers (66), it was reasonable to hypothesise a role of ANKS3 

homopolymers in the Anks6p.R823W PKD rat phenotype. This raised the possibility that 

uncontrolled ANKS3 polymerisation may be a factor in the development of the PKD 

phenotype. Subsequent research released during this project showed that ANKS6, ANKS3 

and BICC1 form very large cytoplasmic clusters. In these clusters, a lack of ANKS6 results 

in increased ANKS3 polymerisation and downregulation of BICC1 RNA processing, which 

provides a likely pathological pathway (72). As BICC1, an RNA binding protein, has a 

known role in the regulation of PKD2 translation (74) and the Wnt and cAMP pathways (80, 

81), it was possible that this linked the Anks6p.R823W mutation and ADPKD. Several mouse 

models of PKD with mutations in Bicc1 exist. The jcpk mouse, with a truncated BICC1 

protein, develops a severe PKD phenotype with cysts along the entire tubule (64). A 

missense mutation in Bicc1 in bpk mice causes a large terminal extension which inhibits 

BICC1-SAM domain polymerisation and its localisation to the P-bodies, however the 

inhibitory effect of BICC1 on DVL2 is retained. The mutation results in the development of 

an ARPKD-like phenotype with massive cysts initially arising from the proximal tubules, 

similar to the PKD phenotype in Anks6p.R823W rats, and later also found in the collecting 
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ducts. Homozygous bpk mice die shortly after birth. This PKD phenotype is not related to 

defects in cilia formation (82). However, Bicc1 knockout is associated with randomisation 

of left-right asymmetry (83). Also Bicc1KO mice (Bicc1tm1Emdr) develop an ARPKD 

phenotype and survive for a few weeks (84).  

 

One of the initial points we wished to clarify was if any changes occured in the spatial or 

temporal expression pattern of ANKS6 or ANKS3 in the PKD/Mhm rats as well as looking 

for co-expression of the proteins. Of particular interest were any differences between the 

neonatal kidney, which in rats continues developing until the age of three weeks, and the 

fully developed adult kidney. In the wildtype kidneys we did indeed see a switch in the 

expression patterns of ANKS6 and ANKS3 between the developing and mature kidney. 

During renal development both proteins localised separately in the cortex and not at all in 

the medulla. In the adult kidney they strongly co-localise in the outer cortical distal tubules 

and medullary collecting ducts. However, in the corticomedullary region only ANKS6 is 

expressed in the S3 proximal tubule segment and only ANKS3 is expressed in the distal 

tubules. In the homozygous Anks6p.R823W PKD rats there is no difference in spatial expression 

between the developing and adult kidney. In the developing kidney ANKS6 and ANKS3 are 

already strongly co-expressed in the medullary collecting ducts and in cortical tubules 

similar to the adult kidney. As the PKD/Mhm rats do not exhibit developmental defects it 

would indicate that the function of the ANKS6 disrupted in these rats is not related to 

morphogenesis or other developmental processes. It is more likely to be related to the change 

in the balance of proliferation and apoptosis during kidney development.  

RNA expression profiling of renal tissue from 11-12 day old TGRAnks6 rats, the age at 

which cyst growth begins, revealed that numerous pathways were dysregulated. Important 

signalling pathways known to be involved in ciliopathies were upregulated including Wnt, 

Hippo and HIF-1 as well as pathways associated with increased proliferation such as cell 

cycle, PI3K-Akt, DNA replication and cancer associated pathways. Mitochondria associated 

pathways, including oxidative phosphorylation, TCA cycle, fatty acid metabolism and a 

large number of other metabolic pathways, were all downregulated. As it was recently shown 

that BICC1 is important in the regulation of metabolic processes, disturbances in BICC1 

function might be involved (85).  

Since we demonstrated that both proteins were not co-expressed in normal developing 

kidneys but strongly co-expressed in distal tubules and medullary collecting ducts in the 

adults, we assume that their interaction might not be necessary during renal development but 
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required in the mature kidney. However, in the homozygous Anks6p.R823W developing 

kidneys their expression is dysregulated by unknown mechanisms and both proteins are 

strongly co-expressed and co-localise with AQP2 in the medullary collecting ducts. Of note, 

BICC1 is also expressed in inner medullary collecting duct cells (86), indicating that they 

might act in a concerted fashion to control AQP2 via regulation of AC6. This will be 

dicussed later. In contrast to the healthy adult kidney where ANKS3 recruits ANKS6 to 

BICC1 clusters and large assemblies are formed (72), the ANKS6p.R823W-SAM domain 

cannot bind to the ANKS3-SAM domain and hyperpolymerisation of ANKS3 might reduce 

the size of BICC1 clusters and consequently BICC1 function. Of note, BICC1 controls PC2 

protein levels via miRNA and through modulation of DVL2 activity, the switch from the 

canonical Wnt pathway to the non-canonical planar cell polarity pathway, required for 

ciliogenesis. Moreover, BICC1 directly regulates the cAMP pathway and thus may affect 

AQP2 levels via AC6 therefore we hypothesised that hyperpolymerisation of ANKS3 could 

be a factor in the development of the ADPKD phenotype. Consequently we developed a 

knockin rat line expressing a mutant Anks3 protein which retains its ability to bind to 

ANKS6 via its SAM domain but loses its ability to form homopolymers. If it were the case 

that cyst formation was related to increased ANKS3 homopolymer formation, then rats co-

expressing this altered ANKS3 protein with the ANKS6p.R823W protein should have either a 

reduction in, or complete elimination of, cysts. The mutation chosen, Anks3-SAMp.I35E, was 

based on in vitro work performed by the group of Prof. James Bowie (66). They showed that 

missense mutations in any of three key residues in the mid-loop would result in the loss of 

ANKS3 polymer formation but leave the end-helix unaffected and able to bind ANKS6 (66). 

Of the three residues, we chose the one that seemed to be more efficient at reducing polymer 

formation than the other two. This was possibly due to it introducing steric overlap in the 

binding site whereas the others removed ionic interactions. 

Homozygous Anks3KI/KI rats did not develop any pathological features in the kidney or in 

other organs throughout life. This strongly indicates that ANKS3-SAM homopolymer 

formation does not play an essential role in the body, at least in rats. This is a very useful 

feature in a potential clinical target as any major side effects of inhibiting this function would 

not be dangerous, in theory. The only impressive and significant changes in renal function 

we observed in these rats was a decrease in urine excretion and water consumption, which 

correlated with an increased urine osmolarity and a slight decrease in the plasma 

concentration of clinical parameters. Further, we have shown a trend towards increased 

AQP2 expression in the Anks3KI/KI rats very similar to that seen in Anks3 knockdown mice 
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(69). Thus, we assume that increased water reabsorption by the renal tubules results in 

increased plasma volume leading to reduced water intake. This would be consistent with the 

decrease in Aqp2 expression seen in the TGRAnks6 rats. AQP2 is a water-channel protein 

found in connecting tubule cells and collecting duct principal cells. Arginine vasopressin, 

acting via the vasopressin V2 receptor, localises AQP2 from vesicles to the membrane and 

upregulates Aqp2 mRNA and protein expression in order to increase osmotic water 

permeability in these cells (87, 88). The importance of AQP2 for urine concentration and 

body water homeostasis is highlighted in Aqp2 knockout mice and in other clinical 

conditions in which upregulation or downregulation of AQP2 expression in kidneys is 

closely associated with water-balance disorders (89, 90). Increased AQP2 expression could 

be related to increased water reabsorption from the urine explaining the reduced urine 

excretion per day in the Anks3KI/KI rats. It has been shown that tolvaptan, a vasopressin V2 

receptor antagonist, slows progression of ADPKD by antagonising the vasopressin-cAMP 

axis and thus AQP2 (91). However, in the Anks3KI/KI rats neither the vasopressin pathway 

nor the cAMP pathway was altered vs. wildtype rats. It is thus interesting to note that both 

tolvaptan and the Anks3KI mutation inhibit cyst growth in PKD models while having opposite 

effects on AQP2 expression and thus water reabsorption. This may indicate that changes in 

renal water reabsorption is not the key factor in the therapeutic effect the Anks3KI mutation. 

Analysis of the TEMPO3:4 clincal trial of tolvaptan already indicated that while decreased 

water reuptake reduced total kidney volume in the short term of one to three weeks, the long 

term effect on disease progression over 2 or 3 years was consistant with inhibition of 

proliferation through correction of the cAMP pathway (92). Although no pathophysiological 

changes were observed in these rats, RNA expression profiling of the kidneys of adult 

Anks3KI/KI rats revealed significant changes in a number of pathways when compared to 

wildtype littermates. Pathways known to be related to PKD, including Wnt, Hippo, Notch 

and the cell cycle, were upregulated while numerous metabolic pathways related to 

mitochondrial function, including TCA cycle and oxidative phosphorylation pathways, were 

downregulated. This does not appear to be due to a switch to the Warburg-like phenotype of 

oxidative glycolysis seen in ADPKD (93), as there was no significant change in the 

expression of the associated glycolysis pathways, but appears to be part of an overall 

decrease in metabolic pathway activity. This does not appear to be detrimental to the animals 

carrying the mutation. Obviously, counterregulatory mechanisms were able to compensate 

these changes.  
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In order to test the effect of ANKS3-SAM domain homopolymerisation on PKD progression 

in the TGRAnks6 model we crossed Anks3KI rats with TGRAnks6 rats to obtain TGRAnks6-

Anks3KI/KI rats in the F2 generation which were compared to TGRAnks6 and wildtype 

littermates. Renal histology of TGRAnks6-Anks3KI rats revealed a remarkable, significant 

and dose dependent protective effect of the Anks3KI mutation on cyst growth. At the age of 

10 days, TGRAnks6 rats had already generated a large number of cysts, which correlated 

with renal hypertrophy and an increased number of KI67 positive cells indicating increased 

proliferation. In contrast, in the TGRAnks6-Anks3KI/KI rats, in which ANKS3 

homopolymerisation was blocked, only some dilated tubules were observed. Additionally, 

the kidney/body weight ratio and the number of KI67 positive cells were comparable to 

wildtype rats. TGRAnks6 rats with heterozygous Anks3KI/WT developed an intermediate 

phenotype. At the age of four weeks the protective effect of the Anks3KI/KI mutation was still 

present. However, we observed that the Anks3KI/KI mutation did not primarily affect the 

number of altered tubules but considerably reduced cyst growth. It is reasonable that this 

effect might be related to the urine concentration effect of the Anks3KI/KI mutation, which 

might reduce fluid accumulation in the tubules. Our data indicates that ANKS3-SAM 

domain homopolymerisation plays a role in cyst growth rather than cyst initiation.  

Although we cannot explore the underlying mechanisms yet, these results strongly support 

our hypothesis that increased ANKS3-SAM homopolymerisation, due to the inability of 

ANKS6 to bind to ANKS3, contributes to the cystic phenotype of the TGRAnks6 rats. This 

possibly occurs via unregulated inhibition of BICC1 function including its translational 

regulation of numerous proteins critical in PKD, such as PC2, DVL2, AC6 and MYC. 

Recently it has been shown that ANKS3 polymers can inhibit cytoplasmatic clustering of 

BICC1, via its C-terminal domain, in the absence of ANKS6 (72).  

We have to take into account that ANKS6-ANKS3-BICC1 complexes might still function 

to a certain extent, since the Ank domains also contribute to the formation of these 

complexes, so that the ANKS6 mediated scaffolding of BICC1-ANKS3 complexes is partly 

independent of SAM domain polymerisation (72). In addition, we cannot eliminate the 

possibility that the Anks3KI mutation is not as effective at disrupting polymerisation in vivo 

as it is in vitro. The Anks3KI mutation introduces a steric overlap with a charged residue in 

the hydrophobic region of the mid-loop binding region of the SAM domain (66). Given this, 

it does not seem likely that stable enough interactions could form between ANKS3 

molecules to allow the formation of polymer strands. However, the possibility remains that 
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under specific in vivo conditions this may occur. Another possibility is that the Anks6p.R823W 

mutation disrupts ANKS6 function outside the ANKS6-ANKS3-BICC1 complex. Given the 

nature of the phenotype and what is known of ANKS6, this could involve its role at the cilia. 

While it has been shown in vitro that the ANKS6-SAM domain is not required for its 

interaction with the NPHP2-3-9 complex at the cilia (61), ANKS3 also interacts with NPHP 

proteins at the cilia (68). If ANKS3 and ANKS6 interact at the cilia then the Anks6p.R823W 

mutation would still cause the loss of this interaction while the Anks3KI mutation would not 

recover it. While a direct ANKS6-ANKS3 interaction at the cilia has not been shown they 

have both been shown to localise there and interact with NEK8/NPHP9. The ANKS3-

NEK8/NPHP9 interaction was not demonstrated be a direct interaction and is weaker than 

either the ANKS3-NPHP1-4-8 or ANKS6-NEK8/NPHP9 interaction (68). As such ANKS3 

may interact with NEK8/NPHP9 via the ANKS6-SAM domain to modulate the function of 

the complex. This could explain the partial recovery caused by the Anks3KI mutation, without 

the need for a further unknown interacting partner of ANKS6. The final potential explanation 

for the phenotype is that ANKS3-ANKS6 binding not only inhibits ANKS3 polymer 

formation but also traps ANKS6 in a dimer with ANKS3. This dimer formation could inhibit 

ANKS6 function in other regions, such as the cilia, or change its localisation. Therefore, in 

the TGRAnks6-Anks3KI/KI rats, Anks6 may be overactive in other areas which would not be 

corrected by the Anks3KI mutation. 

We compared the RNA expression profile of kidneys from 11 day old TGRAnks6, 

TGRAnks6-Anks3KI/KI and wildtype rats. In TGRAnks6 rats we found 131 pathways 

differently expressed vs. wildtype rats. Many signal transduction pathways (including Wnt, 

Hippo and cAMP), apoptosis, cell cycle, immune system and cancer pathways were 

upregulated and the majority of metabolic pathways were downregulated. These changes are 

what would be expected in an ADPKD-like phenotype and are consistent with the previous 

literature on ADPKD. By contrast, in the TGRAnks6-Anks3KI/KI rat kidneys, only 20 

pathways were differently regulated compared to wildtype rat kidneys. Thus, most of the 

pathways altered in the TGRAnks6 rats were returned to normal by the Anks3KI/KI mutation.  

Importantly, even pathways in adult Anks3KI/KI rats which were upregulated and play an 

important role in ciliopathic diseases, such as Wnt and Hippo signalling and cellular 

senescence, or downregulated, including a vast number of metabolic pathways, were 

normalised in the TGRAnks6 rats by the Anks3KI/KI mutation. However, the underlying 

mechanisms are still to be defined. Although we studied the RNA expression profile at the 
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start of the disease, which of the altered pathways in the TGRAnks6 rats are drivers of the 

disease and which are secondary to the disease is unknown. Of note, seven pathways altered 

in the TGRAnks6 rats were not affected by the Anks3KI/KI mutation. This included pathways 

related to the mitochondrial function such as oxidative phosphorylation and fatty acid 

metabolism, as well as PI3K-Akt signalling, focal adhesion, cell cycle, DNA replication  and 

collecting duct acid secretion pathways. However, even if pathways such as the cell cycle 

are upregulated in both TGRAnks6 and TGRAnks6-Anks3KI/KI vs. wildtypes, there are 

important differences between both genotypes. The DNA damage checkpoints ATM/Chek2 

are downregulated in TGRAnks6 rats but upregulated in TGRAnks6-Anks3KI/KI rats. 

Moreover, pathways related to DNA damage response such as mismatch repair, homologous 

recombination and purine and pyrimidine metabolism were upregulated only in TGRAnks6-

Anks3KI/KI rats vs. TGRAnks6 and wildtype rats. Since these pathways were not affected in 

the Anks3KI/KI rats, it seems that both the loss of ANKS3-SAM domain homopolymerisation 

and the loss of ANKS6-ANKS3-SAM domain binding is required for the participation of 

Anks3 in DNA damage response. However, another possible explanation could be that Anks3 

only contributes to the DNA damage response during periods of high proliferative stress 

such as embryogenesis or certain disease conditions, such as PKD. It has recently been 

shown that ANKS3 also directly interacts with NEK7, resulting in post-translational 

modification of ANKS3. In addition, ANKS3 prevents NEK7 from localising to the nucleus 

(75). Nek7 has been characterised best for its role in cell cycle progression. Very recently it 

has been shown that Nek7 protects cells from excessive telomer damage under oxidative 

stress and its recruitment to telomeres is dependent on ATM and is increased in the G2/M 

phase (94). Whether Anks3 might be involved in these pathways is unclear. However, it may 

be speculated that diminished ANKS3-NEK7 interaction due to mutations might increase 

nuclear localisation of NEK7. Additionally, Nek8/Nphp9, another interaction partner of 

Anks3 and Anks6, is involved in the DNA damage response. Nek8/Nphp9 contributes to 

repairing many types of DNA damage including inter-strand crosslinks due to γ irradiation, 

mitomycin C mediated alkylation, and replication fork stalls caused by hydroxyurea (95). A 

possible involvement of Anks3 in DNA damage response is further supported by our findings 

that a number of DNA damage response related pathways are strongly downregulated in 

Anks3KO embryos, which will be discussed later. Consequently, it seems that preventing the 

ANKS3-SAM domain self-polymerisation and the loss of ANKS3-ANKS6-SAM domain 

interactions improves DNA damage and repair pathways in the TGRAnks6 PKD model, 

possibly via affecting ANKS3-NEK7/8 interactions. The close relation between cilia 
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function, genome stability, cell cycle control and mitochondrial function and their impact on 

ciliopathic disease progression has recently been established. It might be that DNA damage 

response represents a central defence mechanism in PKD.   

An important pathway which is corrected by the Anks3KI/KI mutation in the TGRAnks6 

ADPKD model is the Wnt pathway which plays an important role in switching the cell from 

proliferation to establishing planar cell polarity allowing cilia formation. BICC1 

downregulates the activity of DVL2, an important player in this process, and thus the 

canonical Wnt/β-catenin pathway related to increased proliferation (83). Loss of BICC1-

SAM domain function results in hyperactivation of the canonical Wnt pathway in both 

human patients and mouse models, with an associated cystic renal disease in both cases (81, 

83). The SAM domain dependent inhibition of DVL2 by BICC1 was not due to a direct 

interaction of the proteins but does involve recruitment of DVL2 into cytoplasmic puncta 

(83). As such, it is not unreasonable to believe that ANKS3 may be part of this regulation, 

possibly by sequestering BICC1 in different cytoplasmic foci away from DVL2. 

Furthermore, figure 47 (appendix) shows that in the canonical Wnt pathway the majority of 

effectors are downregulated, including MYC. 

Another pathway which is corrected by the Anks3KI/KI mutation is the cAMP signalling 

pathway, which is the target of the vasopressin V2 receptor antagonists and somatostatin 

analogs, as well as its associated MAPK and PI3K-Akt pathways. As the downregulation of 

cAMP production has been shown to be clinically effective in slowing cyst growth (92), the 

return of cAMP and its associated pathways towards normal seems a likely mechanistic 

explanation for the repression of cyst growth in these animals. It should also be noted at this 

stage that BICC1 has been shown to regulate cAMP production via silencing of AC6 mRNA 

through miRNA. In experimental models, knockout of BICC1 resulted in increased AC6, 

and thus cAMP, expression (80). As increased ANKS3 homopolymer formation was shown 

to repress BICC1 function in vivo it seems reasonable that this repression could occur in the 

TGRAnks6 rats which is then fixed by the introduction of the Anks3KI/KI mutation. As seen 

in figure 46 (appendix), AC6 mRNA levels are increased in the TGRAnks6-Anks3KI/KI rats 

compared to the TGRAnks6  rats. This could be due to miRNA silencing which does not lead 

to degradtion of the AC6 mRNA. Feedback loops triggered by a drop in cAMP levels could 

cause an increase in AC6 mRNA without a corresponding increase in AC6 protein. In the 

figure the inhibitory proteins GNAI3 and CAMK2B are downregulated while GNAS and 

CALM1 are upregulated, supporting the idea of silencing combined with a feedback loop. 
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This is further supported by a general downregulation of the downstream effects of cAMP 

via PRKACA. This protein regulates a large number of downstream effects including cell 

survival and hedgehog signalling.    

The first stage in determining whether targetting ANKS3 homopolymer formation could be 

a viable strategy in treating ADPKD would be to see if the effect could be replicated in 

experimental models with PKD1 and PKD2 mutations. Currently we are performing the 

experiment in rats which overexpress a mutant PC2 protein. If the loss of ANKS3 

polymerisation has a general anti-cystic effect we may see a reduction in cyst growth in these 

animals. Theoretically this could be the case through changes in BICC1 regulation of PKD1 

and PKD2 at the mRNA level or changes in the pathways described above. 

5.2- ANKS3-SAM domain loss is embryonically lethal due to ciliopathic-like 

developmental defects 

The ANKS6-ANKS3-SAM domain interaction was blocked by the Anks6p.R823W mutation, 

which causes an ADPKD like phenotype in rats (66). As such, it was expected that ANKS3, 

and specifically it’s SAM domain, could also be involved in PKD. However, during this 

thesis it had been shown that ANKS3, like ANKS6, interacts with NPHP associated proteins 

and knockout of anks3 in zebrafish causes ciliopathic-like developmental disturbances (68). 

However, the in vivo function of ANKS3 in mammals remained entirely unclear. To 

investigate this, we developed an Anks3KO rat, an Anks3 rat with a SAM domain deletion 

still harbouring the 3’ flanking C-terminal end (Anks3ΔSAM) and a rat carrying Anks3, 

truncated at position 453 in the SAM domain, thus lacking exons 11-16. It was highly 

interesting that all three lines developed a comparable phenotype which was lethal in the 

second half of pregnancy in homozygous embryos. Heterozygous rats occasionally 

displayed a very modest NPHP-like phenotype when aged. We never observed a PKD like 

phenotype in any of the lines. However, in contrast to the heterozygous Anks3KO/WT, the 

heterozygous Anks3ΔSAM rats showed some increase in urine concentration, similar to the 

Anks3KI rats. 

Hence we could show that ANKS3 has an essential function during embryogenesis which 

appears dependent on the SAM domain. The homozygous rats primarily died in the second 

half of pregnancy. The phenotype was variable and included cranio-facial defects, severe 

cardiac malformations, haemorrhages and defects in left-right asymmetry. The kidneys were 

often smaller and showed severe disturbances in glomerulo- and tubulogenesis. The presence 
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of cardiac and brain malformations and left-right asymmetry defects in the rats is consistent 

with the two reported human cases carrying Anks3 mutated at amino acid 147 (70). This 

suggests that the role of ANKS3 in development is relatively similar in both humans and 

rats. Thus, the data gathered during this research should be applicable in humans. The severe 

cardiac defects and pale organs in several homozygous embryos, indicates that cardiac 

insufficiency is the most likely cause of prenatal death in these embryos and is a possible 

reason for their smaller size. In other animal models of ciliopathy associated genes, such as 

the Anks6streaker mouse, cardiac defects are often related to heterotaxy resulting in a 50 % 

mortality rate due to heart failure in the homozygotes (61). In the Anks3KO/KO embryos the 

heart defects appear to be at least partially independent of left-right asymetry defects as they 

occur in all embryos investigated. The Anks3KO phenotype partially overlaps with the 

phenotype of Nek8/Nphp9KO and Invs/Nphp2KO mice which developed cardiac defects, 

including atrial/ventricular septal defects, independent of whether the embryo had aberrant 

or correct left-right patterning (96, 97). Thus, it seems likely that ANKS3 has a specific role 

in the development of the heart, though whether this is related to NEK8/NPHP9 or 

INVS/NPHP2 is unclear as the phenotypes are distinct.   

In human patients, the cardiac phenotype in the Anks3KO/KO rats seems to most resemble the 

dilated cardiomyopathy seen very rarely in BBS (41, 98) and commonly in Alström 

syndrome (99) (a very rare ciliopathy similar to BBS), though the phenotype in the rats is 

more severe. In human Alström patients, dilated cardiomyopathy frequently occurs within 

the first few weeks after birth and then resolves. It can then rapidly reoccur in later life, 

typically with a poor outcome for the patient. Unfortunately due to the rarity of the disease 

the exact molecular mechanisms behind the phenotype are unknown. However, it is known 

that the ALMS1 protein localises to the centrosome and basal body of the cilia. Of ANKS3’s 

known partners, mutations in ANKS6 and NPHP1 and NPHP3 have been associated with 

dilated or hypertrophic cardiomyopathy in very rare cases in humans (59, 100, 101). The 

specific cardiac phenotype in Anks3KO/KO embryos is distinct from those reported for the 

human patients with Anks3 mutations at amino acid 147 (70). This could be due to the human 

patients having only a single amino acid exchange rather than the complete knockout and 

they may therefore have a less severe disease. The Anks3 mutation in the human patients is 

located in the Ank domains which may also be the reason for the differences from our SAM 

domain knockout. It is also possible that due to the embryonicly lethal nature of the 

phenotype in Anks3KO/KO rats, that human foetuses with a similar mutation could miscarry 

and thus may go undetected.  
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The other most striking features of the Anks3KO phenotype were the craniofacial defects and 

brain malformations. The cleft palate and shortened jaw are both common features of MKS 

which is also associated with severe brain defects (39). Due to differences between rat and 

human brain anatomy and the highly variable nature of the MKS and Anks3KO  phenotypes, 

it is difficult to say whether the brain defects seen in our rats parallel those seen in human 

MKS. However, in the Anks3KO rats we did not observe occipital encephalocele (protrusion 

of the brain tissue or meninges through the unsealed skull) which is the most common 

neurological defect associated with MKS. This suggests that the 2 phenotypes are distinct 

though there may be some overlap with the other MKS abnormalities of microcephaly 

(reduced skull circumference) and anencephaly (missing parts of the brain or skull). Cleft 

palate, shortened jaw and brain abnormalities are also associated with OFD (102, 103). It is 

interesting to note that all of the genes which BBS and MKS share (Bbs2 and Bbs4, Mkks, 

Mks1 and Cep290), and the Alström syndrome 1 gene (Alms1), encode proteins which act at 

the centrosome or basal body at the cilia. This is consistent with the known localisation of 

the NPHP1-4-8 complex, ANKS3 is associated with (104). However, Mkks, Mks1 and 

Cep290 (105, 106) are required for ciliogenesis and Alms1 and, Bbs2 and Bbs4 knockouts 

result in stunted cilia (107, 108). This is in contrast to knockouts of Nphp1, Nphp4 or 

Rpgrip1l/Nphp8 and our Anks3KO rats which do not result in changes in ciliogenesis (104). 

This suggests that the underlying mechanisms of the Anks3KO cranio-facial and heart 

phenotypes are distinct from those seen in these human diseases and are more likely to 

involve its interaction with the NPHP1-4-8 complex and possibly NEK8/NPHP9.  

One of the interesting aspects of the Anks3KO phenotype is that a PKD-like renal phenotype 

was not observed. In very old heterozygous Anks3KO rats a few cysts were occasionally seen 

in the medulla and corticomedullary region. This is quite surprising as renal cysts are a 

common feature in mutated Anks3, Anks6 or Bicc1 animal models (mouse, rat or zebrafish) 

(54, 61, 68, 109-111). It also makes the Anks3KO phenotype distinct from many human 

ciliopathies including NPHP and MKS (35, 39). However, the lack of renal cysts is 

consistent with the phenotype of the two human patients with mutant ANKS3 (70). The 

reduced size of the kidneys occasionally observed in the homozygous Anks3KO/KO embryos 

is likely related to disturbances in renal development. Reduced kidney size is a feature of 

NPHP rather than PKD.  

Global oedema and focal haemorrhages frequently seen in homozygous Anks3KO/KO embryos 

is likely secondary to cardiac failure. Foetal oedema is an indicator of severe anaemia (112) 
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and thus, in this case, supports cardiac defects as the primary cause of death in these 

embryos. The haematomas, frequently seen in the Anks3KO and Anks3ΔSAM embryos, are 

likely due to changes in cell-cell and cell-matrix binding. Changes in the cell-matrix and 

cell-cell interactions as well as cilia function is hypothesised to  play a role in the increased 

cerebrovascular events seen in ADPKD (113). This also is consistent with a proposed role 

of NPHP1, NPHP4 and NPHP8 at the tight junctions (104) which could be altered by the 

loss of ANKS3. Of note, oedema and focal haemorrhages are also frequently seen in 

Nek8/Nphp9KO mice. Situs inversus is common in ciliopathic models and results from a loss 

of function of either the primary or motile cilia at the embryonic node (7). The occurance of 

situs inversus in our Anks3KO model points to an early role of ANKS3 in developement.   

Neither the Anks3KI nor the Anks6p.R823W mutation, which are assumed to decrease and 

increase ANKS3 polymer formation respectively, cause lethal developmental defects (55). 

This suggests that the Anks3KO phenotype is not related to the ANKS3-ANKS6-SAM 

domain interaction or the ability of ANKS3 for self-polymerisation. However since both the 

Anks3-SAM domain deletion with an intact C-terminal end and the Anks3 truncation, which 

lacks the SAM domain and a C-terminal end, cause a comparable embryonic phenotype to 

the Anks3KO/KO, it is very likely that these disturbances are primarily mediated via the SAM 

domain function. Of note, the knockout of Anks6 or Bicc1 does result in a developmental 

ciliopathy in animal models (59, 83), however in contrast to the Anks3 knockout, this was 

associated with cystic and enlarged kidneys. Bicc1 knockout resulted in 50 % embryonic 

lethality due to situs ambiguous and ventricular septal defects. The remaining knockouts 

died shortly after birth due to cystic kidneys (83). Anks6 knockdown models in zebrafish and 

Xenopus primarily showed renal and laterality defects (59). Point mutations in Bicc1 and 

Anks6 are also primarily associated with various cystic renal phenotypes. Neither Anks6 nor 

Bicc1 have been associated with the dilated cardiomyopathy, craniofacial defects or brain 

malformations seen in the Anks3KO rats, further supporting a distinct mechanism of action 

(55, 59, 61, 64, 83, 111). Both ANKS6 and BICC1 are directly or indirectly involved in 

ciliogenesis and cilia function. ANKS6 locates to the cilia and interacts with the NPHP2-3-

9 complex (59). BICC1 was only found in the cytoplasm and regulates the RNA and protein 

levels of important PKD associated proteins including PC2, which localise to the cilia (73, 

74). BICC1 also regulates DVL2, which has an important function in switching the cell from 

the proliferative canonical -catenin/Wnt pathway to the non-canonical planar cell polarity 

Wnt pathway, which is required for ciliogenesis (83). However, at least one paper also found 

BICC1 in the cilia (114).  
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The distinct embryonic phenotypes of Anks3KO, Anks6KO, and Bicc1KO animals suggests that 

the embryonic phenotype of AnksKO/KO is more likely to be associated with a loss of the 

ANKS3 interaction with the NPHP1-4-8 complex than with ANKS6 or BICC1 (68). Nphp1 

and Nphp4 are primarily associated with cystic renal phenotypes (mostly NPHP). However, 

NPHP1 and NPHP4 mutations have been associated with BBS in some rare cases (115, 116). 

The ANKS3 interaction partner with the greatest similarity in phenotype when knocked out 

is RPGRIP1L/NPHP8. Mice with a homozygous knockout of Rpgrip1l/Nphp8 develop thin 

ventricle walls very similar to the Anks3KO rats (117). They also display similar craniofacial 

defects to the Anks3KO, including shortened jaw and cleft palette, and severe brain 

malformations associated with MKS including exencephaly. Data shows that the 

neurological phenotype in the Rpgrip1l/Nphp8KO mice is related to the role of 

RPGRIP1L/NPHP8 in Shh signalling (118). Additionally, it is interesting to note that ShhKO 

mouse embryos develop enlarged atria very similar to those seen in our Anks3KO rat embryos 

(119). The overlap between these features in the Anks3KO and Rpgrip1l/Nphp8KO animals 

strongly suggests a common mechanism, possibly Shh signalling.  

The phenotype of the Anks3KO rats and those with in-frame deletions in the ANKS3-SAM 

domain is consistent with a loss of ANKS3 activity at the cilium. While this domain has only 

been shown to interact with ANKS6 and BICC1 (66, 72), it has not been established which 

ANKS3 domains are required for its interaction with the NPHP1-4-8 complex (68). As we 

already explored the effect of changes in ANKS3-ANKS6-BICC1 binding with the 

TGRAnks6 and Anks3KI/KI rats, loss of this interaction is unlikely to explain the phenotype. 

This, together with the strong overlap with the Rpgrip1l/Nphp8KO phenotype, suggest that 

the ANKS3-SAM domain is essential for its interaction with the NPHP1-4-8. This is unlike 

the interaction of ANKS6 with the NPHP2-3-9 where the ANKS6-Ank domains alone are 

apparently capable of binding NEK8/NPHP9 and stimulating its activity (61).  It is possible 

that the deletions result in the protein being unable to fold correctly causing it to be flagged 

for degradation and thus producing the same effect as the knockout. However, similarly 

truncated versions of ANKS3 have been expressed successfully in vitro (66). Another point 

worth considering is that ANKS3 has primarily been studied in the kidney and kidney cells. 

This is because ANKS3 has mainly been shown to interact with proteins associated with 

renal phenotypes. As such, there are potentially tissue specific partners in the heart, brain 

and other organs which have not been identified. However, the very strong phenotypic 

overlap with Rpgrip1l/Nphp8KO suggests that its interaction with ANKS3 is key. 
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Of interest, the pathways which are significantly differently expressed between the 

Anks3KO/KO and wildtype embryos differ considerably from those which are differently 

expressed between, TGRAnks6, Anks3KI/KI, TGRAnks6-Anks3KI/KI and wildtype rats. While 

in the TGRAnks6, Anks3KI/KI and TGRAnks6-Anks3KI/KI rats numerous metabolic pathways 

and pathways typically altered in PKD like Wnt, Hippo and HIF1 pathways (120-122) are 

affected, in the Anks3KO/KO embryos almost all aspects of the “Genetic Information 

Processing” category are differently expressed vs. wildtype. This is consistent with 

metabolic profiling in Anks3 depleted IMCD cells which showed increased DNA damage 

and reduced concentrations of nucleotides (123). In that study they were unable to determine 

if increased damage caused nucleotide depletion or vice versa. Our results show 

downregulation of the machinery for pyrimidine synthesis as well as all types of DNA repair, 

which strongly suggests impaired DNA damage response leads to increased DNA damage. 

Several ciliopathic genes have been linked to increased DNA damage including Nf423, 

Cep164, and, as previously discussed, the known Anks3 partners, Nek8/Nphp9 and Nek7. In 

addition, numerous pathways altered in the Anks3KO embryos were related to increased 

proliferation. These results support our hypothesis that Anks3 has important functions in 

DNA replication and damage response, which become critical under conditions of high 

proliferative stress such as embryonic development and specific disease conditions including 

PKD. Defective ANKS3-SAM domain polymerisation is protective in this context.  

Altogether, in the course of this thesis we provided the research community with three novel 

mutated Anks3 rat models, which, for the first time, allow the study of specific aspects of 

Anks3 function in vivo in a mammalian model and will contribute to further elucidation of 

the molecular pathways of PKD and other ciliopathies, and their interaction.  

Based on our studies we draw the following conclusions: 

1. Developmental regulated spatial ANKS3 and ANKS6 expression pattern in the 

kidney is altered due to the Anks6p.R823W mutation and is associated with ADPKD. Disruption 

of the ANKS6-ANKS3-SAM domain interaction in homozygous Anks6p.R823W rats is 

associated with significantly lower Aqp2 expression, which may promote diuresis in the 

developing kidney. 

2. Defective ANKS3 polymerisation retards cyst growth and reverses most of the 

altered pathways, including metabolic pathways and signalling pathways (Hippo, Wnt and 

cAMP), in the TGRAnks6 rat and is associated with increased AQP2 expression and urine 

concentration.  
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3. Anks3 has important functions in DNA replication and damage response, which 

become critical under conditions of high proliferation stress such as the embryonic state and 

specific disease conditions including PKD. Defective ANKS3-SAM domain polymerisation 

is protective in this context 

4. The ANKS3-SAM domain, but not ANKS3 polymerisation, is required for proper 

morphogenesis in embryos.  

5. Our Anks3 mutations never caused a PKD phenotype, unlike Anks6.   
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Figure 46– Changes in cellular senescence mRNA expression in TGRAnks6 vs wildtype rats. 

 

Figure 47– Changes in cellular senescence mRNA expression in TGRAnks6-Anks3KI/KI vs TGRAnks6 rats. 
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Figure 48- Changes in the cAMP signalling pathway mRNA expression in TGRAnks6 vs wildtype rats. 
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Figure 49- Changes in the cAMP signalling pathway mRNA expression in TGRAnks6-Anks3KI/KI vs TGRAnks6 
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Figure 50- Changes in the Hippo signalling pathway mRNA expression in TGRAnks6 vs wildtype rats. 
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Figure 51- Changes in the Hippo signalling pathway mRNA expression in TGRAnks6-Anks3KI/KI vs TGRAnks6 

rats. 
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Figure 52- Changes in the HIF-1 signalling pathway mRNA expression in TGRAnks6 vs wildtype rats. 

 

Figure 53- Changes in the HIF-1 signalling pathway mRNA expression in TGRAnks6-Anks3KI/KI vs TGRAnks6 

rats. 
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Figure 54- Changes in the Wnt signalling pathway mRNA expression in TGRAnks6 vs wildtype rats. 

 

Figure 55- Changes in the Wnt signalling pathway mRNA expression in TGRAnks6-Anks3KI/KI vs TGRAnks6 

rats. 
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Figure 56- Changes in mRNA expression of the DNA replication machinery in TGRAnks6 vs wildtype rats. 
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Figure 57- Changes in mRNA expression of the DNA replication machinery in TGRAnks6-Anks3KI/KI vs 

TGRAnks6 rats. 
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Figure 58- Changes in mRNA expression of the cell cycle machinery in TGRAnks6 vs wildtype rats. 
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Figure 59- Changes in mRNA expression of the cell cycle machinery in TGRAnks6-Anks3KI/KI vs TGRAnks6 

rats. 
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Figure 60- Changes in mRNA expression of the fanconi anaemia pathway in TGRAnks6-Anks3KI/KI vs wildtype 

rats. 
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Figure 61- Changes in mRNA expression of the homologous recombination machinery in TGRAnks6-Anks3KI/KI 

vs wildtype rats. 
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Figure 62- Changes in mRNA expression of the mismatch repair machinery in TGRAnks6-Anks3KI/KI vs wildtype 

rats. 
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Figure 63- Changes in mRNA expression of the pyrimidine metabolism machinery in TGRAnks6-Anks3KI/KI vs 

wildtype rats. 

 

Figure 64- Changes in mRNA expression of the purine metabolism machinery in TGRAnks6-Anks3KI/KI vs 

wildtype rats. 
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Figure 65- Changes in mRNA expression of the starch and sucrose metabolism machinery in TGRAnks6-

Anks3KI/KI vs wildtype rats. 
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