INTEGRATION WITH RESPECT TO A WEIGHT

MICHAEL LEINERT
Mathematics Department
University of Heidelberg
D-69 Heidelberg
West Germany

Received 5 July 1990

Abstract

A simple approach to non-commutative integration for weights is described, following the lines of [7] i.e., using a natural upper integral (which is in fact an integral) and interpolation. If \mathscr{A} is a von Neumann algebra on the Hilbert space H and φ is a faithful normal semifinite weight on \mathscr{A}, the space D of all φ-bounded vectors in H is contained in the domain of every closed positive form coming from a positive self-adjoint operator T affiliated to \mathscr{A} with finite upper integral $\bar{\varphi}(T)$. The (classes of) linear combinations of such forms constitute \mathscr{L}^{1}. In an obvious sense, \mathscr{A} consists of forms, too (bounded ones). \mathscr{L}^{p} is the complex interpolation space $\left[\mathscr{A}, \mathscr{L}^{1}\right]_{1 / p}$. It is checked that \mathscr{L}^{p} is isometrically isomorphic to V_{p} in [1兄], so \mathscr{L}^{p} is what it ought to be.

Preliminaries

Let H be a Hilbert space, \mathscr{A} a von Neumann algebra on H, and φ a faithful semifinite normal weight on \mathscr{A}. Let $n=\left\{T \in \mathscr{A} \mid \varphi\left(T^{*} T\right)<\infty\right\}$ and $m=\operatorname{Lin}\left\{A^{*} B \mid A, B \in n\right\}$ (where Lin denotes the linear span). Let H_{φ} denote the completion of n with respect to the scalar product $(A \mid B)=\varphi\left(B^{*} A\right)$ and let α be the inclusion map from n into H_{φ}. For $A \in \mathscr{A}$ denote by L_{A} the bounded operator on H_{φ} which on n is left multiplication by A. Let $J \Delta^{1 / 2}$ be the polar decomposition of the closure (as an operator on H_{φ}) of the involution operator $B \mapsto B^{*}$ on $n \cap n^{*}$. For $S, T \in n$ and $A \in \mathscr{A}$ define

$$
\begin{equation*}
\varphi_{S^{*} T}(A)=\left(\alpha(T) \mid J L_{A} J \alpha(S)\right) . \tag{1}
\end{equation*}
$$

Then $S^{*} T \mapsto \varphi_{S^{*} T}$ extends to a linear *-isomorphism preserving positivity from m onto its image in the predual \mathscr{A}_{*}. For $T=T^{*} \in m$ one has

$$
\begin{equation*}
\left\|\varphi_{T}\right\|=\inf \left\{\varphi(A)+\varphi(B) \mid T=A-B, A, B \in m^{+}\right\} \tag{2}
\end{equation*}
$$

(see [3] or [9]), where $\left\|\varphi_{T}\right\|$ is the norm of the functional φ_{T}.
The Space of φ-bounded Vectors and Sesquilinear Forms on this Space
Let $D=D(H, \varphi)$ be the linear space of φ-bounded vectors $\{\xi \in H \mid$ there is $C>0$ such that $\|A \xi\| \leq C\|\alpha(A)\|_{H_{\varphi}}$ for all $\left.A \in n\right\}$. The inequality involved is equivalent to $\omega_{\xi}\left(A^{*} A\right) \leq C^{\prime} \varphi\left(A^{*} A\right)$ i.e., to $\omega_{\xi} \leq C^{\prime} \varphi$ on $m^{+}\left(\right.$where $\left.\omega_{\xi}(B)=(B \xi \mid \xi)\right)$.
(3) Lemma. a) Let $I \subset H$ be such that $\varphi=\sum_{x \in I} \omega_{x}$ (such I exists by [3] and [2], p. 51). Then $I \subset D$.
b) Let $T \in m^{+}$and let $I_{T} \subset H$ be such that $\varphi_{T}=\sum_{x \in I_{T}} \omega_{x}$. Then $I_{T} \subset D$.

Proof. a) For $x \in I$ we have $\omega_{x} \leq \varphi$, so x is in D.
b) Let $x \in I_{T}$ and $B \in m^{+}$. Then $\omega_{x}(B) \leq \varphi_{T}(B)=\varphi_{B}(T) \leq\|T\| \varphi(B)$, so $\omega_{x} \leq\|T\| \cdot \varphi$ on m^{+}i.e., $x \in D$.

We shall see below that, for each $x \in D, \omega_{x}=\varphi_{T}$ for some $T \in m^{+}$.
As D is invariant under \mathscr{A}^{\prime}, the orthogonal projection p_{D} onto the closure of D is in $\mathscr{A}^{\prime \prime}=\mathscr{A}$. Letting $p_{D}^{\perp}=1-p_{D}$, by a) of the Lemma we have $\varphi\left(p_{D}^{\perp}\right)=0$, hence $p_{D}^{\perp}=0$, as φ is faithful. So D is dense in H.

Let X be the linear space of all sesquilinear forms on H whose domain contains $D \times D$. Equality on $D \times D$ (write $\overline{\bar{D}}$ for this) is an equivalene relation on X. The space ($X, \overline{\bar{D}}$) is given the topology of pointwise convergence on $D \times D$. By polarization, $A_{\mu} \rightarrow A$ in X if and only if $A_{\mu}(x, x) \rightarrow A(x, x)$ for all $x \in D$. Clearly $(X, \overline{\bar{D}})$ is a Hausdorff topological linear space. The canonical map from \mathscr{A} into X is injective and continuous.

Upper Integral and \mathscr{L}^{1}

Let T be a positive self-adjoint operator on H which is affiliated to \mathscr{A} (in symbols: $T \sim \mathscr{A}$). The closed positive form on H corresponding to T is again denoted by T. (It is the form $(x, y) \rightarrow\left(T^{1 / 2} x \mid T^{1 / 2} y\right)$. By abuse of notation we write $(T x \mid y)$ for $\left(T^{1 / 2} x \mid T^{1 / 2} y\right)$ whenever $x, y \in D\left(T^{1 / 2}\right)$ and $\operatorname{set}(T x \mid x)=\infty$ for $\left.x \notin D\left(T^{1 / 2}\right)\right)$. Define

$$
\bar{\varphi}(T)=\inf \left\{\sum_{1}^{\infty} \varphi\left(A_{n}\right) \mid A_{n} \in m^{+}, \sum_{1}^{\infty} A_{n} \geq T\right\}
$$

where $\sum A_{n} \geq T$ means $\sum\left(A_{n} x \mid x\right) \geq(T x \mid x)$ for all $x \in H$.
(4) If $\bar{\varphi}(T)<\infty$, then
a)

$$
D \subset D\left(T^{1 / 2}\right)
$$

b) There are $B_{n} \in m^{+}$with $T=\sum_{1}^{\infty} B_{n}$ (pointwise as forms) and $\bar{\varphi}(T)=\sum_{1}^{\infty} \varphi\left(B_{n}\right)$.

Proof. a) Let $x \in D$ and suppose $T \leq \sum_{1}^{\infty} A_{n}$ with $\sum_{1}^{\infty} \varphi\left(A_{n}\right)<\infty$. In order to obtain $x \in D\left(T^{1 / 2}\right)$, it suffices to show $\sum_{1}^{\infty}\left(A_{n} x \mid x\right)<\infty$. But this is clear, since $\omega_{x} \leq C \cdot \varphi$.
b) If $T=\int_{0}^{\infty} \lambda d e_{\lambda}$ is the spectral representation of T, let $B_{n}=\int_{n-1}^{n} \lambda d e_{\lambda}$. Then $T=$ $\sum_{1}^{\infty} B_{n}$ (as forms), so $\bar{\varphi}(T) \leq \sum_{1}^{\infty} \varphi\left(B_{n}\right)$. On the other hand, for $A_{n} \in \mathscr{A}^{+}$with $\sum_{1}^{\infty} A_{n} \geq T=$ $\sum_{1}^{\infty} B_{n}$, using that the weight can be written $\varphi=\sum_{x \in I} \omega_{x}$, we obtain $\sum_{1}^{\infty} \varphi\left(A_{n}\right) \geq \sum_{1}^{\infty} \varphi\left(B_{n}\right)$, so $\bar{\varphi}(T) \geq \sum_{1}^{\infty} \varphi\left(B_{n}\right)$. Hence equality holds.

In particular we see that $\bar{\varphi}(T)=\sum_{x \in I}(T x \mid x)$ and that $\bar{\varphi}(T)=\varphi(T)$ if T is in \mathscr{A}^{+}.
(5) Definition. Let $\mathscr{L}^{1}=\mathscr{L}^{1}(\mathscr{A}, \varphi)$ be the space of all (equivalence classes of) complex linear combinations of closed positive forms coming from positive self-adjoint operators $T \sim \mathscr{A}$ with $\bar{\varphi}(T)<\infty$. For $T \in \mathscr{L}_{h}^{1}$ (i.e., $T \in \mathscr{L}^{1}, T$ a Hermitian form) we set

$$
\|T\|_{1}=\inf \{\bar{\varphi}(A)+\bar{\varphi}(B) \mid A, B \sim \mathscr{A}, A, B \geq 0, T \overline{\bar{D}} A-B\} .
$$

Then $\left\|\|_{1}\right.$ is a semi-norm on \mathscr{L}_{h}^{1}, and $\| T \|_{1}=0$ implies $T \overline{\bar{D}} 0$ (use the definition of φ-bounded vectors and representations $A=\sum A_{n}, B=\sum B_{n}$ with $A_{n}, B_{n} \in m^{+}$), so \mathscr{L}_{h}^{1} with $\|\cdot\|_{1}$ is a normed linear space.

Summation of a sequence of positive bounded forms leads to a closed positive form, and affiliation to \mathscr{A} is preserved in this procedure. Using this one obtains that, for $T_{n} \in \mathscr{L}_{h}^{1}, \sum\left\|T_{n}\right\|_{1}<\infty$ implies convergence of $\sum T_{n}$ in \mathscr{L}_{h}^{1} (and pointwise convergence, too, on $D \times D$) so \mathscr{L}_{h}^{1} is complete. Thus \mathscr{L}_{h}^{1} is Banach, and so is \mathscr{L}^{1} in any norm equivalent to the sum norm (for the precise definition of $\left\|\|_{1}\right.$ on non-Hermitian elements see below).

The inclusion $\mathscr{L}^{1} \subset X$ is continuous, since for $x \in D$ and $T \geq 0$ one has " $\omega_{x}(T)$ " $=$ $(T x \mid x) \leq C \cdot \bar{\varphi}(T)$ (use $T=\sum A_{n}$ with $A_{n} \in m^{+}$).

\mathscr{L}^{1} as Predual of \mathscr{A}

(6) Proposition. Let $A_{n}, A \in m^{+}, \sum_{1}^{\infty} A_{n} \geq A$. Then $\sum \varphi_{A_{n}} \geq \varphi_{A}$ pointwise on m^{+}. If in addition $\sum \varphi_{A_{n}}$ converges in norm, the last inequality holds on all of \mathscr{A}^{+}.

Proof. Let $B \in m^{+}$. Since φ_{B} is normal, we have $\sum \varphi_{A_{n}}(B)=\sum \varphi_{B}\left(A_{n}\right) \geq \varphi_{B}(A)=$ $\varphi_{A}(B)$. If $\sum \varphi_{A_{n}}$ converges in norm, to $\psi \in \mathscr{A}_{*}$ say, we obtain $\psi \geq \varphi_{A}$ on \mathscr{A}^{+}, since m^{+} is ultraweakly dense in \mathscr{A}^{+}.
(7) Remark. a) The above Proposition holds for increasing nets (in the place of the sequence of partial sums) too.
b) In the Proposition we may use the weaker assumption $\sum A_{n} \underset{D}{\geq} A$ instead of $\sum_{n} A_{n} \geq A$, since by b) of Lemma (3) we have $\varphi_{B}=\sum_{x \in I_{B}} \omega_{x}$ with $I_{B} \subset D$, so $\sum_{n} \varphi_{B}\left(A_{n}\right)=$ $\sum_{n, x} \omega_{x}\left(A_{n}\right) \geq \sum_{x} \omega_{x}(A)=\varphi_{B}(A)$.
(8) Corollary. If $A_{n}, B_{n} \in \mathscr{A}^{+}$with $\sum A_{n} \overline{\bar{D}} \sum B_{n}$ and $\sum \varphi\left(A_{n}\right)\left(=\sum \varphi\left(B_{n}\right)\right)<\infty$, then $\sum \varphi_{A_{n}}=\sum \varphi_{B_{n}}\left(\in \mathscr{A}_{*}^{+}\right)$and the map $A=\sum A_{n} \mapsto \varphi_{A}=\sum \varphi_{A_{n}}$ is positive linear. So the map

$$
\begin{equation*}
A-B=\sum A_{n}-\sum B_{n} \mapsto \varphi_{A-B}=\sum \varphi_{A_{n}}-\sum \varphi_{B_{n}} \tag{9}
\end{equation*}
$$

from \mathscr{L}_{h}^{1} to $\left(\mathscr{A}_{*}\right)_{h}$ is well defined and real linear. It is norm-decreasing and is isometric on elements $A=\sum A_{n}$ with $A_{n} \in \mathscr{A}^{+}, \sum \varphi\left(A_{n}\right)<\infty$, as $\bar{\varphi}(A)=\sum \varphi\left(A_{n}\right)=\sum\left\|\varphi_{A_{n}}\right\|=$ $\left\|\sum \varphi_{A_{n}}\right\|$.

The map $\varphi_{T} \mapsto T \in \mathscr{L}_{h}^{1}$ (for $T \in m_{h}$) by (2) and the definition of $\left\|\|_{1}\right.$ is normdecreasing. It can be extended, since \mathscr{L}_{h}^{1} is complete, to a norm-decreasing map from $\left(\mathscr{A}_{*}\right)_{h}$ to \mathscr{L}_{h}^{1} and on $\left\{\varphi_{T} \mid T \in m_{h}\right\}$ it is the inverse of the map defined in (9). So (9) defines
an isometric isomorphism from \mathscr{L}_{h}^{1} onto $\left(\mathscr{A}_{*}\right)_{h}$. Extending C-linearly to \mathscr{L}^{1} we obtain an isomorphism from \mathscr{L}^{1} onto \mathscr{A}_{*}. Defining $\left\|\|_{1}\right.$ for non-Hermitian elements of \mathscr{L}^{1} according to this isomorphism we obtain
(10) Theorem. $\mathscr{L}^{1} \cong \mathscr{A}_{*}$ isometrically by the isomorphism which on \mathscr{L}_{h}^{1} is defined in (9).

Definition of \mathscr{L}^{p} and Proof that it is the Usual Space

\mathscr{L}^{1} and \mathscr{A} are continuously embedded in X, so interpolation theory applies. For $1<p<\infty$ we define \mathscr{L}^{p} to be the complex interpolation space $\left[\mathscr{A}, \mathscr{L}^{1}\right]_{1 / p}$. This is the usual \mathscr{L}^{p} space as we shall show. In order to establish an isometric isomorphism to Terp's \mathscr{L}^{p} space [9], we need some preparation.

As in [9], let $L=\left\{T \in \mathscr{A} \mid\right.$ there is $\psi \in \mathscr{A}_{*}$ with $\psi(y)=\varphi_{y}(T)$ for all $\left.y \in m\right\}$. The map $F: T \mapsto \psi$ is positive and a ${ }^{*}$-isomorphism from L onto its image in \mathscr{A}_{*}. For $T \in m$, one has $T \in L$ and $\psi=\varphi_{T}$. For $\psi, \psi^{\prime} \in \mathscr{A}_{*}$ corresponding to $T, T^{\prime} \in L$ the formula

$$
\begin{equation*}
\psi\left(T^{\prime}\right)=\psi^{\prime}(T) \tag{11}
\end{equation*}
$$

holds (see [9] p. 332).
(12) Lemma. For any $x \in D$, there is $T \in L^{+}$with $F(T)=\omega_{x}$.

Proof. Let $x \in D$. For $A, B \in m^{+}$we have $((A-B) x \mid x) \leq(A x \mid x)+(B x \mid x) \leq$ $C \bar{\varphi}(A)+C \bar{\varphi}(B)$, so $\left|\omega_{x}(A-B)\right| \leq C\|A-B\|_{1}$. Hence $\omega_{x} \in\left(\mathscr{L}^{1}\right)^{*}$, so by the theorem (10) there is $T \in \mathscr{A}$ with $\omega_{x}(A-B)=\varphi_{A-B}(T)$. Hence $\omega_{x}(y)=\varphi_{y}(T)$ for all $y \in m$, i.e., $T \in L$ and $F(T)=\omega_{x}$. Letting $y \geq 0$ we see that T is positive.
(13) Corollary. Let $A_{n}, B_{n} \in \mathscr{A}^{+}, \sum \varphi\left(A_{n}\right)<\infty, \sum \varphi\left(B_{n}\right)<\infty$ and $A=\sum A_{n}$, $B=\sum B_{n}$. Then $\varphi_{A-B} \geq 0$ if and only if $A-B \underset{D}{\geq} 0$.

Proof. a) Let $\varphi_{A-B} \geq 0$ and $x \in D$. Let $T \in L^{+}$with $\omega_{x}=F(T)$. We have

$$
((A-B) x \mid x)=\sum_{n} \omega_{x}\left(A_{n}-B_{n}\right)=\sum_{n} \varphi_{A_{n}-B_{n}}(T)=\varphi_{A-B}(T) \geq 0 .
$$

So $A-B \underset{D}{>} 0$.
b) Let $A-B \underset{D}{>} 0$ and $T \in m^{+}$. By b) of Lemma (3) we have

$$
\varphi_{T}=\sum_{x \in J} \omega_{x}
$$

with $J \subset D$. So $\varphi_{A-B}(T)=\sum_{n} \varphi_{A_{n}-B_{n}}(T)=\sum_{n} \varphi_{T}\left(A_{n}-B_{n}\right)=\sum_{n} \sum_{x \in J} \omega_{x}\left(A_{n}-B_{n}\right)=$ $\sum_{x \in J}((A-B) x \mid x) \geq 0$. So $\varphi_{A-B} \geq 0$. (The interchange of summations is permissible as the corresponding sum for $A+B$ is an absolutely converging majorant.)

Let us now establish the connection to Terp's \mathscr{L}^{p} spaces. We roughly have to show that the intersection $\mathscr{L}^{1} \cap \mathscr{L}^{\infty}$ is the same in both pictures. More precisely, using the
isomorphisms $\mathscr{L}^{1} \rightarrow \mathscr{A}_{*}$ of the Theorem (10) and id: $\mathscr{A} \rightarrow \mathscr{A}$, an element S of \mathscr{L}^{1} is equivalent $(\overline{\bar{D}})$ to $T \in \mathscr{A}$ if and only if the corresponding element $\psi=\varphi_{S} \in \mathscr{A}_{*}$ is identified in the sense of [9] with T (i.e., $F(T)=\psi$).
(14) Let $T \in L$ and $\psi \in A_{*}$ with $\psi(y)=\varphi_{y}(T)$ for all $y \in m$. Let $\psi=\varphi_{A-B}$ (we restrict to the Hermitian case, which we may). Then $T \overline{\bar{D}} A-B$.

Proof. Let $x \in D$. By Lemma (12) there is $S \in L^{+}$with $F(S)=\omega_{x}$. By (11) we have $\omega_{x}(T)=\psi(S)=\varphi_{A-B}(S)=\sum_{n} \varphi_{A_{n}-B_{n}}(S)=\sum_{n} \omega_{x}\left(A_{n}-B_{n}\right)=\omega_{x}(A-B)$. So $T \overline{\bar{D}} A-B$.

By the way, we now see that T in Lemma (12) is really in m^{+}: Using (14) we have $\varphi(T)=\sum_{x \in I} \omega_{x}(T)=\sum_{x \in I} \omega_{x}(A-B)=\bar{\varphi}(A)-\bar{\varphi}(B)<\infty$.
(15) Let $T \in \mathscr{A}, T \overline{\bar{D}} A-B, \bar{\varphi}(A)<\infty, \bar{\varphi}(B)<\infty$. Then $\varphi_{A-B}(y)=\varphi_{y}(T)$ for all $y \in m$.

Proof. It suffices to prove the assertion for $y \in m^{+}$. Then $\varphi_{y}=\sum_{x \in J} \omega_{x}$ with $J \subset D$ by b) of Lemma (3). We have

$$
\begin{aligned}
\varphi_{A-B}(y) & =\sum_{n} \varphi_{A_{n}-B_{n}}(y)=\sum_{n} \varphi_{y}\left(A_{n}-B_{n}\right)=\sum_{n} \sum_{x} \omega_{x}\left(A_{n}-B_{n}\right) \\
& =\sum_{x} \omega_{x}(A-B)=\sum_{x} \omega_{x}(T)=\varphi_{y}(T) .
\end{aligned}
$$

The interchange of summations is permissible as the corresponding series for $A+B$ instead of $A-B$ is a dominating absolutely converging series.
(14) and (15) together prove our assertion, so \mathscr{L}^{p} is isometrically isomorphic to V_{p} in [9].

Remark. \mathscr{L}^{2} is a Hilbert space (because of [9], [5], and [4]) and this together with (10) by complex interpolation implies $\left(\mathscr{L}^{p}\right)^{*}=\mathscr{L}^{q}$. Denoting the norm in $\mathscr{L}^{2}=\left[\mathscr{A}, \mathscr{L}^{1}\right]_{1 / 2}$ by $\left\|\|_{2}\right.$, for $T \in n \cap n^{*}$ we have

$$
\begin{equation*}
\|T\|_{2}=\left\|\Delta^{1 / 4} \alpha(T)\right\|_{H_{\varphi}} . \tag{16}
\end{equation*}
$$

In order to show that \mathscr{L}^{2} is a Hilbert space without referring to any other approach, it would be desirable to obtain (16) at least for T in a sufficiently large subspace of $n \cap n^{*}$ in a short direct way. The main point for this is the inequality $\|T\|_{2} \leq\left\|\Delta^{1 / 4} \alpha(T)\right\|_{H_{\varphi}}$, so one should write down a suitable analytic function on the strip $0 \leq \operatorname{Re} z \leq 1$, like $f(z)=u|T|^{2 z}$ in the trace case (see [7]). For instance, using $\alpha\left(\sigma_{z}(T)\right)=\Delta^{i z} \alpha(T)$ (see [8] p. 32), if $\left\|\Delta^{1 / 4} \alpha(T)\right\|_{H_{\varphi}}=1$, the function $f(z)=$ $\left|\sigma_{(2 z-1) / 4 i}\left(T^{*}\right)\right|^{z} \cdot u\left|\sigma_{(2 z-1) / 4 i}(T)\right|^{z}$ satisfies $f\left(\frac{1}{2}\right)=T$ and has the right estimates, namely 1 , on the line $\operatorname{Re} z=0$ (estimate in operator norm) and on the line $\operatorname{Re} z=1$ (estimate in functional norm: $\left\|\varphi_{f(z)}\right\|$, see (1)), but it is not analytic. On the other hand, quite a
few analytic functions which one might try do not seem to admit the desired estimates. From [9], p. 347 onwards, one can see that the function $f(z)=d^{-z / 2} u\left|d^{1 / 4} T d^{1 / 4}\right|^{2 z} d^{-z / 2}$ (where d is the spatial derivative of φ with respect to a semifinite faithful normal weight ψ on \mathscr{A}^{\prime} (in the sense of [1], p. 158) and u is the partial isometry in the polar decomposition of $d^{1 / 4} T d^{1 / 4}$) in principal does the job, however it seems difficult to see this directly. Like in the trace case there should be a function which is easily recognized as suitable for the purpose. I have tried myself and also asked a few experts. Nevertheless it may be easy once one looks at things in the right way.

References

1. A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Analysis 35 (1980), 153-164.
2. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, deuxième édition, GauthierVillars, 1969.
3. U. Haagerup, Normal weights on W^{*}-algebras, J. Funct. Analysis 19 (1975), 302-318.
4. U. Haagerup, L^{p}-spaces associated with an arbitrary von Neumann algebra, Colloques internationaux du CNRS 274, Éditions du CNRS, Paris 1979, pp. 175-184.
5. M. Hilsum, Les espaces L^{p} d'une algèbre de von Neumann définis par la dérivée spatiale, J. Funct. Anal. 40 (1981), 151-169.
6. T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, 1984.
7. M. Leinert, On integration with respect to a trace, in Aspects of Positivity in Functional Analysis, ed. Nagel et al., North Holland Mathematics Studies, vol. 122, 1986, pp. 231-239.
8. S. Stratila, Modular Theory in Operator Algebras, Abacus Press, 1981.
9. M. Terp, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory 8 (1982), 327-360.
