INTEGRATION WITH RESPECT TO A WEIGHT

MICHAEL LEINERT

Mathematics Department University of Heidelberg D-69 Heidelberg West Germany

Received 5 July 1990

9

1 8

A simple approach to non-commutative integration for weights is described, following the lines of [7] i.e., using a natural upper integral (which is in fact an integral) and interpolation.

If \mathscr{A} is a von Neumann algebra on the Hilbert space H and φ is a faithful normal semifinite weight on \mathscr{A} , the space D of all φ -bounded vectors in H is contained in the domain of every closed positive form coming from a positive self-adjoint operator T affiliated to \mathscr{A} with finite upper integral $\overline{\varphi}(T)$. The (classes of) linear combinations of such forms constitute \mathscr{L}^1 . In an obvious sense, \mathscr{A} consists of forms, too (bounded ones). \mathscr{L}^p is the complex interpolation space $[\mathscr{A}, \mathscr{L}^1]_{1/p}$. It is checked that \mathscr{L}^p is isometrically isomorphic to V_p in [19], so \mathscr{L}^p is what it ought to be.

Preliminaries

Let *H* be a Hilbert space, \mathscr{A} a von Neumann algebra on *H*, and φ a faithful semifinite normal weight on \mathscr{A} . Let $n = \{T \in \mathscr{A} | \varphi(T^*T) < \infty\}$ and $m = \text{Lin}\{A^*B | A, B \in n\}$ (where Lin denotes the linear span). Let H_{φ} denote the completion of *n* with respect to the scalar product $(A|B) = \varphi(B^*A)$ and let α be the inclusion map from *n* into H_{φ} . For $A \in \mathscr{A}$ denote by L_A the bounded operator on H_{φ} which on *n* is left multiplication by *A*. Let $J\Delta^{1/2}$ be the polar decomposition of the closure (as an operator on H_{φ}) of the involution operator $B \mapsto B^*$ on $n \cap n^*$. For *S*, $T \in n$ and $A \in \mathscr{A}$ define

$$\varphi_{S^*T}(A) = (\alpha(T)|JL_A J\alpha(S)). \tag{1}$$

Then $S^*T \mapsto \varphi_{S^*T}$ extends to a linear *-isomorphism preserving positivity from *m* onto its image in the predual \mathscr{A}_* . For $T = T^* \in m$ one has

$$\|\varphi_T\| = \inf\{\varphi(A) + \varphi(B) | T = A - B, A, B \in m^+\}$$
(2)

(see [3] or [9]), where $\|\varphi_T\|$ is the norm of the functional φ_T .

The Space of φ -bounded Vectors and Sesquilinear Forms on this Space

Let $D = D(H, \varphi)$ be the linear space of φ -bounded vectors $\{\xi \in H | \text{there is } C > 0 \text{ such that } \|A\xi\| \le C \|\alpha(A)\|_{H_{\varphi}}$ for all $A \in n\}$. The inequality involved is equivalent to $\omega_{\xi}(A^*A) \le C'\varphi(A^*A)$ i.e., to $\omega_{\xi} \le C'\varphi$ on m^+ (where $\omega_{\xi}(B) = (B\xi|\xi)$).

International Journal of Mathematics Vol 2 No 2 (1991) 177–182 © World Scientific Publishing Company

M. LEINERT

(3) **Lemma.** a) Let $I \subset H$ be such that $\varphi = \sum_{x \in I} \omega_x$ (such I exists by [3] and [2], p. 51). Then $I \subset D$.

b) Let $T \in m^+$ and let $I_T \subset H$ be such that $\varphi_T = \sum_{x \in I_T} \omega_x$. Then $I_T \subset D$.

Proof. a) For $x \in I$ we have $\omega_x \leq \varphi$, so x is in D.

b) Let $x \in I_T$ and $B \in m^+$. Then $\omega_x(B) \le \varphi_T(B) = \varphi_B(T) \le ||T|| \varphi(B)$, so $\omega_x \le ||T|| \cdot \varphi$ on m^+ i.e., $x \in D$.

We shall see below that, for each $x \in D$, $\omega_x = \varphi_T$ for some $T \in m^+$.

As *D* is invariant under \mathscr{A}' , the orthogonal projection p_D onto the closure of *D* is in $\mathscr{A}'' = \mathscr{A}$. Letting $p_D^{\perp} = 1 - p_D$, by a) of the Lemma we have $\varphi(p_D^{\perp}) = 0$, hence $p_D^{\perp} = 0$, as φ is faithful. So *D* is dense in *H*.

Let X be the linear space of all sesquilinear forms on H whose domain contains $D \times D$. Equality on $D \times D$ (write \overline{p} for this) is an equivalence relation on X. The space (X, \overline{p}) is given the topology of pointwise convergence on $D \times D$. By polarization, $A_{\mu} \to A$ in X if and only if $A_{\mu}(x, x) \to A(x, x)$ for all $x \in D$. Clearly (X, \overline{p}) is a Hausdorff topological linear space. The canonical map from \mathscr{A} into X is injective and continuous.

Upper Integral and \mathcal{L}^1

Let *T* be a positive self-adjoint operator on *H* which is affiliated to \mathscr{A} (in symbols: $T \sim \mathscr{A}$). The closed positive form on *H* corresponding to *T* is again denoted by *T*. (It is the form $(x, y) \rightarrow (T^{1/2}x|T^{1/2}y)$. By abuse of notation we write (Tx|y) for $(T^{1/2}x|T^{1/2}y)$ whenever $x, y \in D(T^{1/2})$ and set $(Tx|x) = \infty$ for $x \notin D(T^{1/2})$). Define

$$\overline{\varphi}(T) = \inf\left\{\sum_{1}^{\infty} \varphi(A_n) | A_n \in m^+, \sum_{1}^{\infty} A_n \ge T\right\}$$

where $\sum A_n \ge T$ means $\sum (A_n x | x) \ge (T x | x)$ for all $x \in H$.

- (4) If $\overline{\phi}(T) < \infty$, then
- a) $D \subset D(T^{1/2})$

b) There are $B_n \in m^+$ with $T = \sum_{1}^{\infty} B_n$ (pointwise as forms) and $\overline{\varphi}(T) = \sum_{1}^{\infty} \varphi(B_n)$.

Proof. a) Let $x \in D$ and suppose $T \leq \sum_{1}^{\infty} A_n$ with $\sum_{1}^{\infty} \varphi(A_n) < \infty$. In order to obtain $x \in D(T^{1/2})$, it suffices to show $\sum_{1}^{\infty} (A_n x | x) < \infty$. But this is clear, since $\omega_x \leq C \cdot \varphi$.

b) If $T = \int_0^\infty \lambda de_\lambda$ is the spectral representation of T, let $B_n = \int_{n-1}^n \lambda de_\lambda$. Then $T = \sum_{1}^\infty B_n$ (as forms), so $\overline{\varphi}(T) \le \sum_{1}^\infty \varphi(B_n)$. On the other hand, for $A_n \in \mathscr{A}^+$ with $\sum_{1}^\infty A_n \ge T = \sum_{1}^\infty B_n$, using that the weight can be written $\varphi = \sum_{x \in I} \omega_x$, we obtain $\sum_{1}^\infty \varphi(A_n) \ge \sum_{1}^\infty \varphi(B_n)$, so $\overline{\varphi}(T) \ge \sum_{1}^\infty \varphi(B_n)$. Hence equality holds.

In particular we see that $\overline{\varphi}(T) = \sum_{x \in I} (Tx|x)$ and that $\overline{\varphi}(T) = \varphi(T)$ if T is in \mathscr{A}^+ .

(5) **Definition.** Let $\mathscr{L}^1 = \mathscr{L}^1(\mathscr{A}, \varphi)$ be the space of all (equivalence classes of) complex linear combinations of closed positive forms coming from positive self-adjoint operators $T \sim \mathscr{A}$ with $\overline{\varphi}(T) < \infty$. For $T \in \mathscr{L}^1_h$ (i.e., $T \in \mathscr{L}^1$, T a Hermitian form) we set

$$\|T\|_{1} = \inf\{\overline{\varphi}(A) + \overline{\varphi}(B)|A, B \sim \mathcal{A}, A, B \ge 0, T \equiv A - B\}.$$

Then $|| \|_1$ is a semi-norm on \mathscr{L}_h^1 , and $||T||_1 = 0$ implies $T \equiv 0$ (use the definition of φ -bounded vectors and representations $A = \sum A_n, B = \sum B_n$ with $A_n, B_n \in m^+$), so \mathscr{L}_h^1 with $|| \|_1$ is a normed linear space.

Summation of a sequence of positive bounded forms leads to a closed positive form, and affiliation to \mathscr{A} is preserved in this procedure. Using this one obtains that, for $T_n \in \mathscr{L}_h^1, \sum ||T_n||_1 < \infty$ implies convergence of $\sum T_n$ in \mathscr{L}_h^1 (and pointwise convergence, too, on $D \times D$) so \mathscr{L}_h^1 is complete. Thus \mathscr{L}_h^1 is Banach, and so is \mathscr{L}^1 in any norm equivalent to the sum norm (for the precise definition of $|| ||_1$ on non-Hermitian elements see below).

The inclusion $\mathscr{L}^1 \subset X$ is continuous, since for $x \in D$ and $T \ge 0$ one has " $\omega_x(T)$ " = $(Tx|x) \le C \cdot \overline{\varphi}(T)$ (use $T = \sum A_n$ with $A_n \in m^+$).

 \mathcal{L}^1 as Predual of \mathscr{A}

(6) **Proposition.** Let A_n , $A \in m^+$, $\sum_{1}^{\infty} A_n \ge A$. Then $\sum \varphi_{A_n} \ge \varphi_A$ pointwise on m^+ . If in addition $\sum \varphi_{A_n}$ converges in norm, the last inequality holds on all of \mathscr{A}^+ .

Proof. Let $B \in m^+$. Since φ_B is normal, we have $\sum \varphi_{A_n}(B) = \sum \varphi_B(A_n) \ge \varphi_B(A) = \varphi_A(B)$. If $\sum \varphi_{A_n}$ converges in norm, to $\psi \in \mathscr{A}_*$ say, we obtain $\psi \ge \varphi_A$ on \mathscr{A}^+ , since m^+ is ultraweakly dense in \mathscr{A}^+ .

(7) **Remark.** a) The above Proposition holds for increasing nets (in the place of the sequence of partial sums) too.

b) In the Proposition we may use the weaker assumption $\sum A_n \ge A$ instead of $\sum A_n \ge A$, since by b) of Lemma (3) we have $\varphi_B = \sum_{x \in I_B} \omega_x$ with $I_B \subset D$, so $\sum_n \varphi_B(A_n) = \sum_{n,x} \omega_x(A_n) \ge \sum_x \omega_x(A) = \varphi_B(A)$.

(8) **Corollary.** If $A_n, B_n \in \mathscr{A}^+$ with $\sum A_n \equiv \sum B_n$ and $\sum \varphi(A_n) (= \sum \varphi(B_n)) < \infty$, then $\sum \varphi_{A_n} = \sum \varphi_{B_n} (\in \mathscr{A}^+_*)$ and the map $A = \sum A_n \mapsto \varphi_A = \sum \varphi_{A_n}$ is positive linear. So the map

$$A - B = \sum A_n - \sum B_n \mapsto \varphi_{A-B} = \sum \varphi_{A_n} - \sum \varphi_{B_n}$$
(9)

from \mathscr{L}_h^1 to $(\mathscr{A}_*)_h$ is well defined and real linear. It is norm-decreasing and is isometric on elements $A = \sum A_n$ with $A_n \in \mathscr{A}^+$, $\sum \varphi(A_n) < \infty$, as $\overline{\varphi}(A) = \sum \varphi(A_n) = \sum \|\varphi_{A_n}\| = \|\sum \varphi_{A_n}\|$.

The map $\varphi_T \mapsto T \in \mathscr{L}_h^1$ (for $T \in m_h$) by (2) and the definition of $\| \|_1$ is normdecreasing. It can be extended, since \mathscr{L}_h^1 is complete, to a norm-decreasing map from $(\mathscr{A}_*)_h$ to \mathscr{L}_h^1 and on $\{\varphi_T | T \in m_h\}$ it is the inverse of the map defined in (9). So (9) defines an isometric isomorphism from \mathscr{L}_h^1 onto $(\mathscr{A}_*)_h$. Extending *C*-linearly to \mathscr{L}^1 we obtain an isomorphism from \mathscr{L}^1 onto \mathscr{A}_* . Defining $\| \|_1$ for non-Hermitian elements of \mathscr{L}^1 according to this isomorphism we obtain

(10) **Theorem.** $\mathscr{L}^1 \cong \mathscr{A}_*$ isometrically by the isomorphism which on \mathscr{L}_h^1 is defined in (9).

Definition of \mathcal{L}^p and Proof that it is the Usual Space

 \mathscr{L}^1 and \mathscr{A} are continuously embedded in X, so interpolation theory applies. For $1 we define <math>\mathscr{L}^p$ to be the complex interpolation space $[\mathscr{A}, \mathscr{L}^1]_{1/p}$. This is the usual \mathscr{L}^p space as we shall show. In order to establish an isometric isomorphism to Terp's \mathscr{L}^p space [9], we need some preparation.

As in [9], let $L = \{T \in \mathscr{A} | \text{there is } \psi \in \mathscr{A}_* \text{ with } \psi(y) = \varphi_y(T) \text{ for all } y \in m\}$. The map $F: T \mapsto \psi$ is positive and a *-isomorphism from L onto its image in \mathscr{A}_* . For $T \in m$, one has $T \in L$ and $\psi = \varphi_T$. For $\psi, \psi' \in \mathscr{A}_*$ corresponding to $T, T' \in L$ the formula

$$\psi(T') = \psi'(T) \tag{11}$$

holds (see [9] p. 332).

(12) **Lemma.** For any $x \in D$, there is $T \in L^+$ with $F(T) = \omega_x$.

Proof. Let $x \in D$. For A, $B \in m^+$ we have $((A - B)x|x) \leq (Ax|x) + (Bx|x) \leq C\overline{\varphi}(A) + C\overline{\varphi}(B)$, so $|\omega_x(A - B)| \leq C||A - B||_1$. Hence $\omega_x \in (\mathscr{L}^1)^*$, so by the theorem (10) there is $T \in \mathscr{A}$ with $\omega_x(A - B) = \varphi_{A-B}(T)$. Hence $\omega_x(y) = \varphi_y(T)$ for all $y \in m$, i.e., $T \in L$ and $F(T) = \omega_x$. Letting $y \geq 0$ we see that T is positive.

(13) **Corollary.** Let A_n , $B_n \in \mathscr{A}^+$, $\sum \varphi(A_n) < \infty$, $\sum \varphi(B_n) < \infty$ and $A = \sum A_n$, $B = \sum B_n$. Then $\varphi_{A-B} \ge 0$ if and only if $A - B \ge 0$.

Proof. a) Let $\varphi_{A-B} \ge 0$ and $x \in D$. Let $T \in L^+$ with $\omega_x = F(T)$. We have

$$((A - B)x|x) = \sum_{n} \omega_{x}(A_{n} - B_{n}) = \sum_{n} \varphi_{A_{n} - B_{n}}(T) = \varphi_{A - B}(T) \ge 0.$$

So $A - B \ge 0$. b) Let $A - B \ge 0$ and $T \in m^+$. By b) of Lemma (3) we have

$$\varphi_T = \sum_{x \in J} \omega_x$$

with $J \subset D$. So $\varphi_{A-B}(T) = \sum_{n} \varphi_{A_n-B_n}(T) = \sum_{n} \varphi_T(A_n - B_n) = \sum_{n} \sum_{x \in J} \omega_x(A_n - B_n) = \sum_{x \in J} ((A - B)x|x) \ge 0$. So $\varphi_{A-B} \ge 0$. (The interchange of summations is permissible as the corresponding sum for A + B is an absolutely converging majorant.)

Let us now establish the connection to Terp's \mathscr{L}^p spaces. We roughly have to show that the intersection $\mathscr{L}^1 \cap \mathscr{L}^\infty$ is the same in both pictures. More precisely, using the

isomorphisms $\mathscr{L}^1 \to \mathscr{A}_*$ of the Theorem (10) and id : $\mathscr{A} \to \mathscr{A}$, an element S of \mathscr{L}^1 is equivalent (\overline{p}) to $T \in \mathscr{A}$ if and only if the corresponding element $\psi = \varphi_S \in \mathscr{A}_*$ is identified in the sense of [9] with T (i.e., $F(T) = \psi$).

(14) Let $T \in L$ and $\psi \in A_*$ with $\psi(y) = \varphi_y(T)$ for all $y \in m$. Let $\psi = \varphi_{A-B}$ (we restrict to the Hermitian case, which we may). Then $T \equiv A - B$.

Proof. Let $x \in D$. By Lemma (12) there is $S \in L^+$ with $F(S) = \omega_x$. By (11) we have $\omega_x(T) = \psi(S) = \varphi_{A-B}(S) = \sum_n \varphi_{A_n-B_n}(S) = \sum_n \omega_x(A_n - B_n) = \omega_x(A - B)$. So $T \equiv A - B$. By the way, we now see that T in Lemma (12) is really in m^+ : Using (14) we have

 $\varphi(T) = \sum_{x \in I} \omega_x(T) = \sum_{x \in I} \omega_x(A - B) = \overline{\varphi}(A) - \overline{\varphi}(B) < \infty.$

(15) Let $T \in \mathscr{A}$, $T \equiv A - B$, $\overline{\varphi}(A) < \infty$, $\overline{\varphi}(B) < \infty$. Then $\varphi_{A-B}(y) = \varphi_y(T)$ for all $y \in m$.

Proof. It suffices to prove the assertion for $y \in m^+$. Then $\varphi_y = \sum_{x \in J} \omega_x$ with $J \subset D$ by b) of Lemma (3). We have

$$\varphi_{A-B}(y) = \sum_{n} \varphi_{A_n-B_n}(y) = \sum_{n} \varphi_y(A_n - B_n) = \sum_{n} \sum_{x} \omega_x(A_n - B_n)$$
$$= \sum_{x} \omega_x(A - B) = \sum_{x} \omega_x(T) = \varphi_y(T).$$

The interchange of summations is permissible as the corresponding series for A + B instead of A - B is a dominating absolutely converging series.

(14) and (15) together prove our assertion, so \mathscr{L}^p is isometrically isomorphic to V_p in [9].

Remark. \mathscr{L}^2 is a Hilbert space (because of [9], [5], and [4]) and this together with (10) by complex interpolation implies $(\mathscr{L}^p)^* = \mathscr{L}^q$. Denoting the norm in $\mathscr{L}^2 = [\mathscr{A}, \mathscr{L}^1]_{1/2}$ by $|| ||_2$, for $T \in n \cap n^*$ we have

$$\|T\|_{2} = \|\Delta^{1/4}\alpha(T)\|_{H_{\alpha}}.$$
(16)

In order to show that \mathscr{L}^2 is a Hilbert space without referring to any other approach, it would be desirable to obtain (16) at least for T in a sufficiently large subspace of $n \cap n^*$ in a short direct way. The main point for this is the inequality $||T||_2 \le ||\Delta^{1/4}\alpha(T)||_{H_{\varphi}}$, so one should write down a suitable analytic function on the strip $0 \le \operatorname{Re} z \le 1$, like $f(z) = u|T|^{2z}$ in the trace case (see [7]). For instance, using $\alpha(\sigma_z(T)) = \Delta^{iz}\alpha(T)$ (see [8] p. 32), if $||\Delta^{1/4}\alpha(T)||_{H_{\varphi}} = 1$, the function $f(z) = |\sigma_{(2z-1)/4i}(T^*)|^z \cdot u|\sigma_{(2z-1)/4i}(T)|^z$ satisfies $f(\frac{1}{2}) = T$ and has the right estimates, namely 1, on the line $\operatorname{Re} z = 0$ (estimate in operator norm) and on the line $\operatorname{Re} z = 1$ (estimate in functional norm: $||\varphi_{f(z)}||$, see (1)), but it is not analytic. On the other hand, quite a

few analytic functions which one might try do not seem to admit the desired estimates. From [9], p. 347 onwards, one can see that the function $f(z) = d^{-z/2}u|d^{1/4}Td^{1/4}|^{2z}d^{-z/2}$ (where *d* is the spatial derivative of φ with respect to a semifinite faithful normal weight ψ on \mathscr{A}' (in the sense of [1], p. 158) and *u* is the partial isometry in the polar decomposition of $d^{1/4}Td^{1/4}$) in principal does the job, however it seems difficult to see this directly. Like in the trace case there should be a function which is easily recognized as suitable for the purpose. I have tried myself and also asked a few experts. Nevertheless it may be easy once one looks at things in the right way.

References

- 1. A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Analysis 35 (1980), 153-164.
- 2. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, deuxième édition, Gauthier-Villars, 1969.
- 3. U. Haagerup, Normal weights on W*-algebras, J. Funct. Analysis 19 (1975), 302-318.
- U. Haagerup, L^p-spaces associated with an arbitrary von Neumann algebra, Colloques internationaux du CNRS 274, Éditions du CNRS, Paris 1979, pp. 175–184.
- M. Hilsum, Les espaces L^p d'une algèbre de von Neumann définis par la dérivée spatiale, J. Funct. Anal. 40 (1981), 151–169.
- 6. T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, 1984.
- 7. M. Leinert, *On integration with respect to a trace*, in Aspects of Positivity in Functional Analysis, ed. Nagel et al., North Holland Mathematics Studies, vol. **122**, 1986, pp. 231–239.
- 8. S. Stratila, Modular Theory in Operator Algebras, Abacus Press, 1981.
- 9. M. Terp, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory 8 (1982), 327–360.