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A simple approach to non-commutative integration for weights is described, following the lines 

of [7] i.e., using a natural upper integral (which is in fact an integral) and interpolation.

If 33/ is a von Neumann algebra on the Hilbert space H and cp is a faithful normal semifinite 

weight on jaZ, the space D of all ^-bounded vectors in H is contained in the domain of every closed 

positive form coming from a positive self-adjoint operator T affiliated to jaZ with finite upper 

integral <p(T). The (classes of) linear combinations of such forms constitute Ji?1. In an obvious 

sense, aaZ consists of forms, too (bounded ones). ^>p is the complex interpolation space faZ, 2Z’1 ] 1/p.

It is checked that 8£p is isometrically isomorphic to Vp in [ W, so 8P>P is what it ought to be. Z.

Preliminaries

Let H be a Hilbert space, 3/ a von Neumann algebra on H, and (p a faithful semifinite 

normal weight on stf. Let n = [T e j/|<p(T*T) < 00} and m — Lin{4*B|4, B e n} 

(where Lin denotes the linear span). Let H(p denote the completion of n with respect 

to the scalar product (4|B) = <p(B*A) and let a be the inclusion map from n into Hv. 

For A e denote by LA the bounded operator on H(p which on n is left multiplication 

by A. Let JA1/2 be the polar decomposition of the closure (as an operator on H?) of 

the involution operator B1—> B* on n n n*. For S, T e n and A e stf define

(1)

Then S*Textends to a linear *-isomorphism preserving positivity from m 

onto its image in the predual 3/*. For T = T* e m one has

\\(pT\\ = inf{<p(A) + cp(B)\T = A — B, A, B e m+} (2)

(see [3] or [?]), where \\cpT\\ is the norm of the functional <pT. L 8

The Space of ip-bounded Vectors and Sesquilinear Forms on this Space

Let D = D(H,cp) be the linear space of tp-bounded vectors {£ e H\there is C > 0 

such that || A£|| < C|| a(4)|| for all A e n}. The inequality involved is equivalent to 

a>i=(A*A) < C'(p(A*A) i.e., to of < Cep on m+ (where o^(B) = (B£| £)).
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(3) Lemma, a) Let I c H be such that cp = E cox(suchl exists by [3] and [2], p. 51). 

ThenlcD. xeI

b) Let T em+ and let IT c H be such that cpT = E cox. Then IT c D.

xeIT

Proof, a) For x g I we have cox < (p, so x is in D.

b) Let x e IT and B g m+. Then a>x(B) < (pT(B) = (pB(T) < || T|| cp(JB), so a>x < || T\\ ■ cp 

on m+ i.e., x g D.

We shall see below that, for each x g D, a>x = cpT for some T g m+.

As D is invariant under jaZ', the orthogonal projection pD onto the closure of D is in 

jaZ" = jaZ. Letting p£ = 1 — pD, by a) of the Lemma we have <p(pp) = 0, hence p£ — 0, 

as cp is faithful. So D is dense in H.

Let X be the linear space of all sesquilinear forms on H whose domain contains 

D x D. Equality on D x D (write = for this) is an equivalene relation on X. The space 

(X, =) is given the topology of pointwise convergence on D x D. By polarization,

-> A in X if and only if A^(x, x) -> A(x, x) for all x e D. Clearly (X, =) is a Hausdorff 

topological linear space. The canonical map from ^Z into X is injective and continuous.

Upper Integral and

Let T be a positive self-adjoint operator on H which is affiliated to .oZ (in symbols: 

T ~ The closed positive form on H corresponding to T is again denoted by T. (It is 

the form (x,y) -> (T1/2x| T1/2y). By abuse of notation we write (Tx|y) for (T1/2x| T1/2y) 

whenever x, y g D(T1/2) and set (Tx|x) = co for x D(T1/2)). Define

{
CO CO 1

1 1 J

where E^n ? means EMnxlx) (Tx|x) for all x g H.

(4) If <p(T) < co, then

a) D cz £>(T1/2)

00 =0

b) There are Bn e m+ with T = EA (pointwise as forms) and (p(T) = E<p(B„).

i i

CO co

Proof, a) Let x e D and suppose T < E with E order to obtain

i i

x g D(T1/2), it suffices to show E(A„x|x) < co. But this is clear, since a>x < C• cp.

i

b) If T = f” AdeA is the spectral representation of T, let Bn = Adex. Then T = 

0° co “
E Bn (as forms), so <p(T) < E (p^n)- On the other hand, for e with \An> T = 

i i 1
00 00 00

E Bn, using that the weight can be written cp = E wx> we obtain E^CA) E^(^)’ 

1 xel 1 1

00

so (p(T) > E^C-SJ- Hence equality holds.

i

In particular we see that <p(T) = E (7AIX) and that <p(T) = </>(T) if T is in 32/ .

xe I
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(5) Definition. Let 1 = (p) be the space of all (equivalence classes of) com

plex linear combinations of closed positive forms coming from positive self-adjoint 

operators T ~ stf with <p(T) < oo. For T g (i.e., T g J2?1, T a Hermitian form) we set

|| T|| t = inf{(p(A) + <p(B)\A, B ~ jrf,A,B >Q,T = A - B}.

Then || || t is a semi-norm on , and || T\\ t = 0 implies T = 0 (use the definition of 

^-bounded vectors and representations A — y X„, B = ^Bn with An, Bn g m+), so 

with || ||! is a normed linear space.

Summation of a sequence of positive bounded forms leads to a closed positive form, 

and affiliation to j/ is preserved in this procedure. Using this one obtains that, for

< oo implies convergence of y Tn in (and pointwise convergence, 

too, on D x D) so is complete. Thus is Banach, and so is in any norm 

equivalent to the sum norm (for the precise definition of || || t on non-Hermitian 

elements see below).

The inclusion <= X is continuous, since for x g D and T > 0 one has “mx(T)” = 

(7x|x) < C- <p(T) (use T = y with An g m+).

as Predual of

oo

(6) Proposition. Let An, A g m +, y An > A. Then fjpA (Pa pointwise on m+. If

i

in addition y (pA„ converges in norm, the last inequality holds on all of .

Proof. Let B g m +. Since cpB is normal, we have y (pAJB) = y <pB(A„) > cpB(A) = 

(pA(B). If y cpAi converges in norm, to f g j/* say, we obtain f > tpA on j/+, since m+ 

is ultraweakly dense in v/+ .

(7) Remark, a) The above Proposition holds for increasing nets (in the place of the 

sequence of partial sums) too.

b) In the Proposition we may use the weaker assumption y An > A instead of 

X An > A, since by b) of Lemma (3) we have <pB = y cox with IB c D, so V <pB(X„) = 

£ wx(4„) > £ cox(X) = <pB(X). xeI,‘

n,x x

(8) Corollary. IfAn,Bne within = < co, then

E 7b „ = E <PB„ ) and the map A — y An r-+cpA = y cpA„ is positive linear. So the map

A - B = y An - YBn^(pA~B = ^<PAn - (9)

from to (3/*)h is well defined and real linear. It is norm-decreasing and is isometric 

on elements A = ^An with An g j</+, y <p(X„) < oo, as <p(A) = YMAn) = Z II^JI =

The map (pT\-*T (for T emh) by (2) and the definition of || || x is norm

decreasing. It can be extended, since is complete, to a norm-decreasing map from 

(^*)/> to and on {cpT\T emh} it is the inverse of the map defined in (9). So (9) defines 
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an isometric isomorphism from LFf onto (j/*)h. Extending C-linearly to we obtain 

an isomorphism from onto X*. Defining || || t for non-Hermitian elements of 

according to this isomorphism we obtain

(10) Theorem. =271 = X* isometrically by the isomorphism which on is defined 

in (9).

Definition of F£p and Proof that it is the Usual Space

J2?1 and X are continuously embedded in X, so interpolation theory applies. For 

1 < p < co we define FFP to be the complex interpolation space [X, This is 

the usual SFP space as we shall show. In order to establish an isometric isomorphism 

to Terp’s FFP space [9], we need some preparation.

As in [9], let L = {T e X|there is f g sF* with <//(y) = (py(T) for all y e m}. The map 

F: Ti—>1// is positive and a ^isomorphism from L onto its image in X*. For T g m, 

one has T e L and f = <pT. For f e X* corresponding to T, T' e L the formula

•Am = (in

holds (see [9] p. 332).

(12) Lemma. For any x g D, there is T e L+ with F(T) = a>x.

Proof. Let x e D. For A, Bem+ we have ((A — B)x\x] < (Ax|x) + (Bx|x) < 

C<p(A) + Ccp(B), so |a>x(A — B)| < C\\A — B\\ v Hence a>x e (^f1)*, so by the theorem 

(10) there is T g sL with a>x(A — B) = <pA_BfF\ Hence a>x(y) = <py(T) for all y Gm, i.e., 

T g L and F(T) — a>x. Letting y > 0 we see that T is positive.

(13) Corollary. Let An, Bned+, ^<p(An) < co, E<P(#J < 00 and A = X 

B = X Bn. Then cpA-B > 0 if and only if A — B > 0.

Proof, a) Let (pA_B > 0 and xgD. Let T g L+ with cox — F(T). We have

((A - B)x|x) = X U)x(An - B„) = £ (pAn-BfT) = (pA_B(T) > 0. 

n n

So A - B > 0.
D

b) Let A — B 0 and T g m+. By b) of Lemma (3) we have

(Pt = X Wx

xe J

with J C D. So (pA-BfT) = X ^„-B„(^) = X ~ Bn) = Y X "xMn - Bn) = 

n n n xeJ

X ((A — B)x|x) > 0. So cpA_B > 0. (The interchange of summations is permissible as 

x e J
the corresponding sum for A + B is an absolutely converging majorant.)

Let us now establish the connection to Terp’s FFP spaces. We roughly have to show 

that the intersection n is the same in both pictures. More precisely, using the
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isomorphisms of the Theorem (10) and id : -> X an element S of 1 is

equivalent ( = ) to Ted if and only if the corresponding element <// = cps e sd* is 

identified in the sense of [9] with T (i.e., F(T) = <//).

(14) Let T g L and i// g A* with i/<(y) = <py(T) for all y e m. Let i// = <p^_B (we restrict 

to the Hermitian case, which we may). Then T = A — B.

Proof. Let x e D. By Lemma (12) there is S e L+ with F(S) = cox. By (11) we have 

mx(T) = <A(S) = (pA_B(S) = E^„-b„(s) = E®A - = 0Jx(A - B). So T = A - B.

n n

By the way, we now see that T in Lemma (12) is really in m+ : Using (14) we have 

<?(T) = X = E o\(A - B) = »>(4) - <?(B) < co- 

xeI xeI

(15) Let T g X T = A — B, <p(A) < oo, <p(B) < co. Then ^_B(y) = <py(T) for all 

y e m.

Proof. It suffices to prove the assertion for y g m+. Then cpy — E with J c D 

xeJ

by b) of Lemma (3). We have

<pA-B(y) = E = E = EE wx(An - b„)
n n n x

= ^Wx(A ~ B)

The interchange of summations is permissible as the corresponding series for A + B 

instead of A — B is a dominating absolutely converging series.

(14) and (15) together prove our assertion, so is isometrically isomorphic to Vp 

m [9],

Remark. =$f2 is a Hilbert space (because of [9], [5], and [4]) and this together 

with (10) by complex interpolation implies (^p)* = 5£q. Denoting the norm in 

Jz?2 = [j/, by II II 2>f°r T g n n n* we have

||T||2 = ||A1'4«('T)B„ . (16)

In order to show that is a Hilbert space without referring to any other ap

proach, it would be desirable to obtain (16) at least for T in a sufficiently large sub

space of n n n* in a short direct way. The main point for this is the inequality 

||T||2 < ||A 1/4a(T)||Hv, so one should write down a suitable analytic function on 

the strip 0 < Rez < 1, like /(z) = u\T\2z in the trace case (see [7]). For instance, 

using a(az(T)) = Alza(F) (see [8] p. 32), if ||A1/4a(T)||= 1, the function f(z) = 

lcr(2z-i)/4i(B*)|z- «| o’(2Z-i)/4i(B)|z satisfies /(|) = T and has the right estimates, namely 

1, on the line Rez = 0 (estimate in operator norm) and on the line Rez = 1 (estimate 

in functional norm: ||<p/(z)||, see (1)), but it is not analytic. On the other hand, quite a 
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few analytic functions which one might try do not seem to admit the desired estimates. 

From [9], p. 347 onwards, one can see that the function/(z) = d-z/2u|d1/4Td1/4|2zd~z/2 

(where d is the spatial derivative of (p with respect to a semifmite faithful normal weight 

on j/' (in the sense of [1], p. 158) and u is the partial isometry in the polar 

decomposition of d1/47i71/4) in principal does the job, however it seems difficult to see 

this directly. Like in the trace case there should be a function which is easily recognized 

as suitable for the purpose. I have tried myself and also asked a few experts. Neverthe

less it may be easy once one looks at things in the right way.
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