
Michael Anders

Matriculation Number: 3292453

Comprehensive and Targeted Access to

and Visualization of Decision Knowledge

Master Thesis

Winter Semester 19/20 - Summer Semester 20

Supervisors: Prof. Dr. Barbara Paech, Anja Kleebaum

Faculty of Mathematics and Computer Science

Ruprecht-Karls-University Heidelberg

June 5, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/359888545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

[Context & Motivation] Developers need to document decisions and related decision
knowledge during the software development process. This ensures that future decisions
can be assessed in the right context and past decisions can be retraced and understood.
The documentation of decision knowledge encompasses all aspects that comprise a deci-
sion, including the problem, alternatives, arguments for and against these alternatives,
and the selected solution. Since the value of the documentation is not immediately
apparent, it is important to provide tools that allow easy documentation and coherent
visualization of the documented knowledge. It also demands maintenance of the docu-
mentation to ensure consistency and completeness.
[Contributions] This thesis provides a problem investigation, a treatment design, and
an evaluation concerning the management and visualization of documented decision
knowledge. The problem investigation was done in the form of a literature review on
current approaches towards the grouping of decision knowledge. The results of the re-
view show that decision grouping is often merely a small part of larger frameworks.
These frameworks either use prede�ned labels for their groups or allow the users to
freely select group names. The practical contributions in this thesis are the extension of
the Jira ConDec plug-in, which provides features for the documentation and visualiza-
tion of decision knowledge within Jira. In particular, a grouping possibility for decisions
as well as respective views and �lters were added to this plug-in. To keep the necessary
time spent on the documentation process as low as possible, it was decided to use a mix
of �xed groups, in the form of di�erent decision levels and custom groups, which the
user is free to assign. New views were implemented which allow users to see relation-
ships between source code and Jira issues and a dashboard is built, which can be used
to assess the completeness of decision knowledge within a Jira project. The implemen-
tation was preceded by a speci�cation of requirements and a design phase. Extensive
testing, including system and component tests, were part of the quality assurance phase.
Lastly, an evaluation was done by creating and analysing a gold standard of decision
knowledge documentation and a survey with developers who provided feedback on the
plug-in extension.
[Conclusions] The main focus of the thesis was to improve the visualization of relation-
ships between knowledge elements. The evaluation showed that especially those views,
creating connections between Jira elements and code classes were highly anticipated
by ConDec users, as support for this form of visualization did not exist. The newly
implemented features were almost uniformly evaluated positively. Some concerns were
expressed about a need for even more information to be displayed within the views.
This was a result of the compromise between a wealth of information and a possible
overload in individual views. Evaluation of the responsiveness and time behaviour of the
newly implemented features also showed that loading times were passable but require
more focus in future works to improve the user experience thoroughly.

Zusammenfassung

Umfassender und zielgerichteter Zugri� auf und Visualisierung von
Entscheidungswissen

[Kontext & Motivation] Entwickler müssen Entscheidungen und das damit verbun-
dene Entscheidungswissen während des Software-Entwicklungsprozesses dokumentieren.
Dadurch wird sichergestellt, dass zukünftige Entscheidungen im richtigen Kontext be-
wertet und vergangene Entscheidungen nachvollzogen und verstanden werden können.
Die Dokumentation von Entscheidungswissen umfasst alle Aspekte, die eine Entschei-
dung ausmachen, einschlieÿlich des Problems, der Alternativen, der Argumente für und
gegen diese Alternativen und der gewählten Lösung. Da der Wert der Dokumenta-
tion nicht unmittelbar ersichtlich ist, ist es wichtig, Werkzeuge bereitzustellen, die eine
einfache Dokumentation und kohärente Visualisierung des dokumentierten Wissens er-
möglichen.
[Beiträge] Diese Abschlussarbeit bietet eine Problemanalyse, ein Behandlungsdesign
und eine Bewertung hinsichtlich der Verwaltung und Visualisierung von dokumentiertem
Entscheidungswissen. Die Problemanalyse wurde in Form einer Literaturrecherche zu
aktuellen Ansätzen zur Gruppierung von Entscheidungswissen durchgeführt. Die Ergeb-
nisse der Recherche zeigen, dass die Gruppierung von Entscheidungswissen oft nur ein
kleiner Teil eines gröÿeren Frameworks ist. Diese Frameworks verwenden entweder
vorde�nierte Bezeichnungen für ihre Gruppen oder erlauben es den Benutzern, Grup-
pennamen frei zu wählen. Die praktischen Beiträge in dieser Arbeit sind die Erweiterung
des Jira ConDec-Plugins, das Funktionen für die Dokumentation und Visualisierung von
Entscheidungswissen innerhalb von Jira bereitstellt. Insbesondere wurde dieses Plug-In
um eine Gruppierungsmöglichkeit für Entscheidungen erweitert. Um den Zeitaufwand
für den Dokumentationsprozess so gering wie möglich zu halten, wurde eine Mischung
aus Gruppen in Form von Entscheidungs-Leveln und benutzerde�nierten Gruppen ver-
wendet. Es wurden neue Ansichten implementiert, die es den Benutzern ermöglichen,
Beziehungen zwischen Quellcode und Jira-Problemen zu erkennen, und es wurde ein
Dashboard erstellt, mit dessen Hilfe die Vollständigkeit des Entscheidungswissens be-
wertet werden kann. Der Implementierung gingen eine Spezi�kation der Anforderun-
gen und eine Entwurfsphase voraus. Umfangreiche Tests, einschlieÿlich System- und
Komponententests, waren Teil der Qualitätssicherungsphase. Schlieÿlich erfolgte eine
Evaluierung durch die Erstellung und Analyse eines Goldstandards für die Dokumen-
tation des Entscheidungswissens und eine Umfrage bei den Entwicklern, die Feedback
zur Plug-in-Erweiterung gaben.
[Schlussfolgerungen]Die Evaluation zeigt, dass insbesondere die Ansichten, die Verbin-
dungen zwischen Jira-Elementen und Code-Klassen herstellen, von den ConDec-Benut-
zern sehr positiv bewertet wurden, da es keine Unterstützung für diese Form der Vi-
sualisierung in Jira gab. Die neu implementierten Features wurden nahezu einheitlich
positiv bewertet. Es wurden einige Bedenken geäuÿert, die sich auf einen Wunsch nach
noch mehr Informationen in den Sichten richteten. Diese wurden gegen eine mögliche
Überladung der Sichten abgewogen. Die Evaluierung des Zeitverhaltens der neu imple-
mentierten Funktionen zeigte, dass die Ladezeiten passabel sind, aber bei künftigen Ar-
beiten mehr Aufmerksamkeit erfordern, um das Nutzererlebnis gründlich zu verbessern.

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Goals . 2
1.3 Overview . 3

2 Fundamentals 4

2.1 Continuous Software Development . 4
2.2 Rationale Management . 5
2.3 Decision Documentation Models . 5
2.4 ConDec . 7
2.5 Tagging . 9

3 Literature Review 10

3.1 Research Questions . 10
3.2 Methodology . 10

3.2.1 Criteria of Relevance . 10
3.2.2 Approach . 11

3.3 Review Results . 14
3.4 Synthesis . 23
3.5 Review Discussion . 25

4 Requirements 27

4.1 Initial Coarse Requirements . 27
4.2 Personae . 28
4.3 Domain Data . 29
4.4 Functional Requirements . 30

4.4.1 User Tasks . 30
4.4.2 System Functions and User Stories 31

4.5 Non-Functional Requirements . 38
4.5.1 Modi�ability . 38
4.5.2 Time behavior . 39
4.5.3 Attractiveness . 39

4.6 Workspaces . 39
4.7 Mock-ups . 41
4.8 Requirements Chapter Summary . 45

5 Design and Implementation 46

5.1 Overview of ConDec Architecture . 46

5.2 Requirements Dashboard . 47
5.2.1 Architecture . 47
5.2.2 Architectural Decisions . 49
5.2.3 System Function Related Decisions 51
5.2.4 Results . 54

5.3 Code To Work Item Relationship Visualization 54
5.3.1 Architecture . 55
5.3.2 Architectural Decisions . 57
5.3.3 System Function Related Decisions 58
5.3.4 Results . 59

5.4 Decision Grouping . 61
5.4.1 Architecture . 61
5.4.2 Architectural Decisions . 62
5.4.3 System Function Related Decisions 63
5.4.4 Results . 64

6 Quality Assurance 65

6.1 Test Concept . 65
6.2 Static Code Tests . 66
6.3 Component Tests . 67
6.4 System Tests . 68

7 Evaluation 79

7.1 Evaluation Goals . 79
7.2 Acceptance Evaluation . 80
7.3 Evaluation on real data . 86
7.4 Threats to Validity . 92

8 Conclusion 93

8.1 Summary . 93
8.2 Discussion & Future Work . 94

Bibliography 96

Glossary 101

Acronyms 103

List of Figures 104

List of Tables 106

1 Introduction

This chapter presents the motivation (Section 1.1) and overall goals (Section 1.2) of this
thesis. Additionally, it will outline the structure of the thesis (1.3).

1.1 Motivation

Developers make decisions during every step of the development process. These deci-
sions concern requirements, architectures, implementations, quality assurance and every
other aspect of the engineering cycle. While these decisions are often intrinsic or even
subconscious, they can have wide-ranging e�ects on the resulting software and its future
maintainability as well as other quality aspects [6]. As such, it is of great importance
to document the existing decision knowledge within a project to guarantee future un-
derstanding of the results, consequences and alternatives that every decision inherits
[27][30].
The more a software project is developed over time, the greater the spread of informa-
tion across di�erent tools. For example while requirements are going to be documented
in an Issue-Tracking-System (ITS) like Jira1, the code itself is handled by a Version-
Control-System (VCS) like Git2. To combat the spread of information, tools need to
be created, which support information compilation without being a burden on the de-
velopers. As with any task, providing users with adequate tools to ease the burden of
documentation and thus lower its inherent cost, can greatly increase the quantity and
quality of the documentation. Decisions are no di�erent in that matter [36]. Allowing
developers to easily document their decisions in whichever way they �nd appropriate
and convenient, makes that far more likely. However, to guarantee a future understand-
ing of the documentation, some guidelines and documentation rules have to be created.
These guidelines and rules allow automated tools to properly manage the data. They
also make it easier for developers to understand each other's documentation. The result
is a balancing act between presenting developers a low e�ort, low-cost method of doc-
umenting their decisions, while also maintaining a standard of quality for the resulting
documents. Thus, the goals of a rationale management tool are to minimize the intru-
siveness of the documentation process while maximizing the documentation quality.
Documenting decisions carries an additional problem. Any information that does not
o�er an immediate bene�t is often neglected and not properly documented, because it
appears to lack importance to the individual. It is only in future development that the
real value of properly documented decisions appears. Trying to comprehend decisions

1Jira: https://www.atlassian.com/software/jira (Last access: 05.06.2020)
2Github: https://github.com/ (Last access: 05.06.2020)

1

https://www.atlassian.com/software/jira
https://github.com/

and their e�ects, after the fact, can be a complex process. This is especially the case if
information has been lost over time. This problem comes back to presenting the easiest
way possible for developers to document their decisions so as not to discourage them
from the process.
Even under perfect circumstances, with immaculate documentation, evaluating the ef-
fects of decisions towards the software or even towards each other can be challenging
[15][40]. This di�culty is exacerbated as more decisions are made, as the interconnec-
tivity between them increases. As such, users need to be supported in understanding
the decisions and their e�ects as much as possible. O�ering di�erent visualizations be-
comes necessary in larger projects to make the knowledge comprehensible. However, in
order to o�er these visualizations a certain amount of consistency needs to be present
within the documentation. Because of this need, the role of the rationale manager is
introduced. Tasked with maintaining the consistency and completeness of the docu-
mented decision knowledge within software projects, this role becomes more and more
important the larger a project becomes. Because the rationale manager is tasked with
maintaining this consistency and overseeing the quality and coverage of the decision
documentation process, they need to be provided with tools that allow them to success-
fully and e�ciently complete this job.
The amount of decision knowledge grows during the development cycle of a software.
As such features need to be provided, that allow the management, sorting and �ltering
of the knowledge. Developers need to be able to quickly and e�ectively �nd related de-
cision knowledge, without being overwhelmed by the sheer amount of existing elements.
Sorting the decisions into relevant groups, according to features they support, the ef-
fects they have or any other measure, allows more targeted access to relevant decisions
at later dates. As such, tool support should also include such a grouping feature to aid
developers in their e�ective usage of decision knowledge.

1.2 Goals

Broadly stated, the task of this thesis is to implement new and refactor existing methods
and tools that aid developers as well as rationale managers in the creation, maintenance,
and analysis of decision knowledge within a software project. Thus, this thesis adds on
to the existing Jira ConDec3 plug-in which presents decision knowledge from di�erent
documentation locations like Jira issues, comments, Git commits, pull requests, etc.
in relation to other software artifacts. The collected knowledge builds up a knowledge
graph and is then visualized according to users' needs.
For the rationale manager a dashboard is to be added which allows a quicker overview
of the completeness and distribution of the decision knowledge across each project. Dif-
ferent metrics are shown here, which give indications about the status of the knowledge
within the project. From here it is made possible to easily navigate to issues of interest,
where consistency can be veri�ed more precisely.
Developers gain access to views that visualize the connection between documented deci-
sions and the code itself, as that relationship is often not easily apparent. This o�ers an

3ConDec on Git: https://github.com/cures-hub/cures-condec-jira (Last access: 05.06.2020)

2

https://github.com/cures-hub/cures-condec-jira

easier understanding of the e�ects di�erent decisions have and can simplify the process
of implementing new decisions within the code.
Additionally, a detailed literature review is conducted. It is aimed at �nding a possible
grouping scheme for documented decisions. The groups in turn highlight relationships
between the decisions and can o�er insights into their importance. The results from
the review are implemented into the plug-in and additional views are presented to o�er
management of this new feature.
All implemented views are equipped with relevant �lters, which allow further customiza-
tion of the views, in order to access more targeted knowledge. More precise �ltering
in general is an important goal of the thesis. Focus is put on maintaining a uniform
�ltering experience across the platform. This generates a more easily accessible and
user-friendly environment, where information can be accessed and recorded e�ciently.
The resulting plug-in is then tested and evaluated according to certain acceptance cri-
teria. To ensure a satisfying level of usability, usefulness, and di�culty of use, fellow
ConDec-developers are tasked with scenarios aimed at each aspect of the implemented
features. Relevant changes and improvements are implemented or discussed in detail.
The resulting plug-in should be an answer to some of the problems and challenges
discussed in the previous Section 1.1.

1.3 Overview

This thesis starts by introducing some fundamental techniques and tools in Chapter 2.
These provide the ground works for the research and implementations provided by this
thesis. The main research part is described in Chapter 3, in which a literature review
was conducted to provide answers for a number of prede�ned research questions. Next,
the requirements for the extensions of the ConDec plug-in are provided in Chapter
4. The design and implementation phase of the extension is described in Chapter
5. The chapter also provides an overview of the most important decisions during the
development process. Following this, the Quality Assurance Chapter 6 presents the
necessary tests to ensure proper function of the extended features. After this, Chapter
7 introduces the evaluation, including criteria, evaluation survey, and evaluation on real
data, the results of which are discussed in detail. Lastly, Chapter 8 summarizes the
work and provides an outlook on possible future improvements to the ConDec project.

3

2 Fundamentals

This chapter explains fundamental aspects and concepts used in this thesis. Section 2.1
de�nes the Continuous Software Development process. Afterwards Section 2.2 explains
the concept of rationale management. The following Section 2.3 introduces the models
used for documentation of decision knowledge. Section 2.4 then gives a short overview
over the ConDec project and its capabilities. Lastly, Section 2.5 explains the concept
of tagging and its connection to this thesis.

2.1 Continuous Software Development

Fitzgerald et al. [20] discuss the underlying disconnect between parts of the development
process, namely documentation and implementation. Due to the often short nature of
execution of these tasks, this disconnect is only exacerbated. Deadlines, expectations,
customer needs, and a desire to be reactive to ever-changing requirements are part of
the modern software industry. This however creates an environment in which parts
of the development process, that do not directly produce code, are often discouraged.
Their value is questioned in these short term production cycles as developers struggle
to see a direct bene�t.
In [35], it is discussed how software has to permanently adapt to an ever-changing
environment. Continuous Software Development is an agile process within software
engineering. Within the process, development teams are set up in a way that allows
them to quickly and precisely react to these changing environments. They aim for fast
deployment of their software product in regular cycles. For the fast deployment to func-
tion properly however, the quality of the software has to be on a high standard with
a constantly deployable software iteration. This is were the aforementioned disconnect
between documentation and implementation becomes a problem. Without proper doc-
umentation it becomes hard, if not impossible, to continuously develop software to a
high standard. There might simply not be enough information available to comprehend
the code of previous versions. The time needed to analyse every piece of legacy code
is simply not available in a fast-paced development cycle. The same problem exists for
decision documentation and management. Thus, continuous software development has
to �nd a compromise between rapid code production and thorough documentation to
guarantee that future development cycles can keep up with the high demand.
In [19], Fitzgerald et al. shift the focus away from merely focusing on continuous inte-
gration, towards a model which integrates every part of the development process. Not
just the integration and deployment need to be continuous, but rather the whole pro-
cess. This also includes continuous testing, continuous veri�cation, continuous run-time

4

monitoring and, in case of this thesis, continuous documentation. Figure 2.1 introduces
all these continuous steps in the context of the innovation process as a whole.

Fig. 2.1: Activities from Business, Development, Operations and Innovation [19]

2.2 Rationale Management

A decision encompasses more aspects than just the course of action that was chosen.
The issue itself, alternative courses of action, arguments for and against each aspect,
and the chosen course are all part of the knowledge created during the decision making
process. All these individual parts together form a rationale [16] [5]. Alternatively,
this collection is also called decision knowledge and is referred to in either way in this
thesis. Proper documentation requires completeness of the decision knowledge, as only
an encompassing overview over all aspects of a decision allows informed decisions to be
made [31].
The manual and tool-supported processing and creation of decision knowledge is in turn
referred to as rationale management. It is what allows developers to document and
later on analyse the information e�ectively. The role of rationale manager, previously
mentioned in Section 1.1, carries the main responsibility in ensuring the consistency of
the created decision knowledge.

2.3 Decision Documentation Models

As previously discussed, decision knowledge is often neglected when writing documen-
tation for a software as its bene�t is not an immediate one and often hard to foresee
[36]. Supporting developers in the documentation process increases the likelihood of

5

frequent, high-quality documentation. Introducing models that clearly de�ne the docu-
mentation process reduces the cost of later interpretation and understanding and thus
may increase the likelihood of proper documentation. The Issue-Based Information
System (IBIS) introduced by Kunz et al. [34] is one such model. It encompasses three
di�erent knowledge types, as can be seen in Figure 2.2.

Fig. 2.2: IBIS Model [34]

Issues are de�ned as the underlying decision problem for which answers are to be
found. Next, the Position is an opinion towards the connected decision problem. Lastly,
Argument de�nes either a pro or con reasoning towards an Issue or a Position.
The model used by Kleebaum et al. [31] for the ConDec project is based on a more
complex model by Hesse et al. [24]. The Hesse model introduces a lot more knowledge
elements than the three used by the IBIS model. Figure 2.3 gives an overview of
the seventeen elements that comprise a knowledge element in their model. It adds
participants, in the form of persons and their roles, to the model. It also expands
from mere arguments and positions to more detailed, interconnected components. The
very detailed model however carries the problem of its high complexity in real use case
scenarios.

6

Fig. 2.3: Decision Knowledge Documentation Model according to Hesse et al.[23]

The simpli�ed model by Kleebaum et al. [31], cuts the di�erent elements, within a deci-
sion, down to �ve, settling on a model consisting of the �ve elements issue, alternative,
pro, con and decision. Table 2.1 lists the model elements and their descriptions along
with possible phrasings which can indicate the element.

Table 2.1: Knowledge Elements according to Kleebaum et al. [31]

Element Description Indicating Phrase

Issue Describes the problem that is to be solved How should...
Alternative An option for solving the decision problem One option is...
Pro An argument for the connected alternative The advantage is...
Con An argument against the connected alternative The disadvantage is...
Decision The option chosen based on the give arguments The best option is...

2.4 ConDec

The CURES1 project is a joined project between the Technical University Munich and
the University of Heidelberg. It focuses on support for Continuous Software Develop-

1CURES: http://www.dfg-spp1593.de/cures/index.html(Last access: 05.06.2020)

7

http://www.dfg-spp1593.de/cures/index.html

ment by providing tools to handle, among other things, decision knowledge management
functionalities. The implemented requirements form the tools, which are collectively
named ConDec [32], for Continuous decision knowledge Management. ConDec uses the
documentation model previously discussed in Section 2.3.
The idea behind the ConDec Jira plug-in, which is extended upon in this thesis, is
to provide views and management capabilities for rationale management within the
Issue-Tracking-System (ITS) Jira. Traditionally ITS's like Jira contain very little to no
capabilities to create and review decision knowledge. By creating a user-focused plug-in
that is capable of providing these functionalities, developers are encouraged to pursue
proper documentation standards. The main underlying data structure for the docu-
mented decision knowledge comes in the form of a knowledge tree, similar to the one
introduced by Hesse et al. [24]. Knowledge is stored and displayed in these trees (Fig.
2.4), which allows interconnection between decisions and their elements. All knowledge
elements and their connecting links together form the knowledge graph. Within this
graph the elements form the nodes and the links the edges of the structure. ConDec
puts great focus on �ltering capabilities for all implemented views. This allows for
easier access to targeted knowledge and guarantees functionality even for larger, on-
going projects. The focus on continuous development tackles the challenges discussed
in Section 1.1 and makes the rationale management capabilities applicable to modern
software engineering projects.

Fig. 2.4: Decision Knowledge Tree

The knowledge visualization is supported by multiple views, including Jira issue mod-
ules, dashboards, reports, and graph visualizations. Figure 2.5 shows an example of the
graph visualizations. It displays the connections between related decision knowledge
artifacts in the Decision Knowledge Overview (WS3.1). The left section of the view
presents a list of all documented decision issues but can also be changed to a list of
any other decision artifact. The right section displays the immediate decision tree of
the selected element, displaying all related artifacts. The view presents additional �lter
elements including text search, link distance �lters, and the newly added group �lter.
ConDec o�ers di�erent capabilities of documenting decision knowledge. They di�er by
their documentation location. Users can create separate Jira issue of the type of decision
element they want, be that issue, decision, alternative, pro or con. This possibility car-
ries the advantage of o�ering the full capabilities that other Jira issues have, including
attachments, descriptions, comments and the Jira issue linking system. The e�ort of
documentation however is higher. As such, ConDec o�ers the documentation in other

8

locations such as Jira issue descriptions, comments, commits and code comments by
using an annotation for the desired decision element. Connections between the docu-
mented elements are created automatically and can easily be changed by the user using
simple drag and drop functionalities on the decision tree. These documented decisions
are handled using the Active Object functionalities provided by Jira, which allows the
processing and storing of databases containing the elements, links and all other related
artifacts in accessible tables.
Source code for the ConDec project is open source and available through GitHub 2.

Fig. 2.5: Decision Knowledge Overview (WS3.1)

2.5 Tagging

Among other features, this thesis introduces a grouping functionality for decision knowl-
edge elements. This is done by annotating (tagging) the di�erent elements within the
knowledge tree with a group in the form of a natural language identi�er. The general
idea behind using tags on software development artifacts is to provide additional in-
formation and express relationships between these elements. This approach is used in
many di�erent application scenarios.
For example, Seiler et al. [46], use feature tags on software artifacts in both Issue-
Tracking- and Version-Control-Systems to reduce the spread of information and create
deeper relationships and traceability between these two systems. By integrating tool
support in both, with the addition of a recommendation system, the tagging is further
simpli�ed for developers.
Gupta et al. [21] discuss part-of-speech (POS) tagging for program identi�ers. They
propose tagging as a means to improve automated tool accuracy, like software search
tools. By comparing multiple automated "traditional" POS taggers they propose im-
provements to increase the accuracy of the tagging process.
Additionally, the Literature Review of this thesis (Chapter 3) discusses multiple di�er-
ent approaches for grouping schemes using traditional tags and even some approaches
deviating from the traditional natural language tags.

2ConDec on GitHub: https://github.com/cures-hub/cures-condec-jira (Last access: 05.06.2020)

9

https://github.com/cures-hub/cures-condec-jira

3 Literature Review

This chapter answers a set of research questions, which were designed to aid in the
implementation of this thesis. Section 3.1 introduces the prede�ned research questions.
Section 3.2 shows the methodology used to �nd relevant works and which criteria were
used to prune search results. Section 3.3 then introduces the found works in detail before
the results are compared in Section 3.4. Lastly, Section 3.5 summarizes the chapter and
draws conclusions for this thesis from the extracted papers.

3.1 Research Questions

The main research question RQ1 tries to �nd e�cient ways to create a grouping scheme
for documented decisions. This scheme can then be used to provide developers with
more targeted access to the decision knowledge in a project. With the categorization of
groups, developers can narrow their search for prior decisions to a more relevant set. In
order to further specify the research questions several sub-questions were introduced.
The questions can be seen in Table 3.1.

Table 3.1: Research Questions for the Literature Review

Name Research Question

RQ1 How is the grouping of decision knowledge realised and used?
RSQ1 What grouping schemes are employed to categorize decisions?
RSQ2 How are groups of decisions documented?
RSQ3 How are these groups of decisions implemented ?
RSQ4 How is �ltering implemented and used in the presented techniques ?

3.2 Methodology

3.2.1 Criteria of Relevance

To extract those works, that are relevant to the researched topic discussed in Section
3.1 criteria of relevance are introduced (CoR4, CoR5, CoR6, CoR7). Additionally, these

10

criteria need to make sure that the approaches presented are properly researched and
scienti�cally sound (CoR3). Their accessibility (CoR2) and comprehensibility (CoR1)
needs to be guaranteed as well. As a result the criteria listed in Table 3.2 were developed.

Table 3.2: Criteria of Relevance

Designation Description

CoR1 The paper is written in either English or German
CoR2 The paper needs to be available for free or through the University's access
CoR3 The paper has been peer reviewed
CoR4 The paper is related to the software development domain
CoR5 The title shows relevance to the researched topic
CoR6 The presented approach needs to introduce a form of grouping for documented decisions
CoR7 The paper o�ers su�cient content towards the relevant research questions

CoR1 - CoR5 allow a quick evaluation of the topical relevance and the accessibility of the
found papers and as such were used to classify papers as initially relevant. Especially
CoR5 was important in assessing whether a paper had to be considered for further
evaluation. If the relevant search terms or related terms were not mentioned in the
title, it could be assumed that the paper would also not correspond to CoR6 and CoR7.
Only those works deemed to be initially relevant were then checked for CoR6 and CoR7
as these required a deeper look into the paper.

3.2.2 Approach

To guarantee an overview over the current state of research both a search term based
and a snowballing based approach were employed during the review process.
First the search term based approach was used on the digital libraries of both the Insti-
tute of Electrical and Electronics Engineers (IEEE) and the Association for Computing
Machinery (ACM). The search terms were designed to extract the relevant papers from
both databases while also removing as many unrelated papers as possible. These could
otherwise dilute the search results and thus risk overshadowing more related works.
Because the nomenclature in this �eld of research is quiet broad, a total of six di�erent
search terms had to be created to allow proper coverage over the existing works. This
however led to some overlapping in the created results. Additionally, decision docu-
mentation as a concept is not restricted to the software development domain. As such,
the more speci�ed term architectural decision was used in some of the searches. This
speci�cation proved to be quite important as a signi�cant amount of research on the
relevant topic focuses on these architectural decisions. In the end the following search
terms yielded proper results from the search engines:

11

� ST1: All: "Decision Knowledge" AND All: "Grouping" AND All: "Managing"

� ST2: All: "Framework" AND All: "Architectural Decisions" AND All: "Docu-
mentation"

� ST3: All: "Framework" AND All: "Decision Knowledge" AND All: "Documen-
tation"

� ST4: All: "Architectural Decision Knowledge" AND All: "Framework" AND All:
"Software"

� ST5: Publication Title: "Framework" AND Publication Title: "Architectural"
AND Publication Title: "Decision"

� ST6: All: "Software Development" AND Publication Title: "Decision" AND
Abstract: "Documentation" AND Abstract: "Framework"

The use of the very general term Framework within most of the search terms is due
to the fact that almost no papers exist, which focus solely on any form of grouping for
decision knowledge. All papers found use grouping in some bigger concept. Most of
them introduce a framework for decision documentation, which in turn has a grouping
scheme or tag as part of that framework. Searching for any form of grouping scheme
directly, rather than a more general framework, did not yield as many results as were
necessary to answer the research questions. This may in part be because there is no
speci�c naming convention for the process of grouping, as it is called in this thesis. Very
few papers use the same nomenclature for the consolidation of decisions into di�erent
groups. Using Framework had the adverse e�ect of yielding more irrelevant papers,
than more targeted searches. However, it allowed the �nding of works, which do not
follow the speci�c naming convention.
Table 3.3 shows the library used, found results and number of initially relevant works for
each term with the duplicates removed. As mentioned before, papers were considered
initially relevant if the met CoR1 - CoR5 as these could be evaluated more quickly than
the remaining two criteria of relevance.

Table 3.3: Search Term Based Research results

Library Term Results Initially Relevant References

IEEE ST1 13 1 [51]
IEEE ST2 18 5 [37], [10], [9], [14], [17]
IEEE ST3 41 2 [29], [2]
IEEE ST4 47 4 [43], [44], [18], [47]
ACM ST5 4 4 [42], [4], [8], [28]
ACM ST6 36 2 [11], [1]

12

Multiple problems related to the search term based approach for the underlying research
questions need to be discussed. Firstly, because of di�erences in the basic search engines
of IEEE and ACM the used search terms had to be adapted uniquely for both plat-
forms. Without speci�cation for publication titles or abstracts on ACM the amount of
results, which were in the thousands, was greater than could be evaluated for relevance.
This problem was not present on IEEE. However, IEEE o�ered a di�erent hindrance.
University access for IEEE was lost before the review could take place and as such
some found papers that were not accessible through other, free sources or did not show
enough relevance in title and abstract, could not be fully evaluated. This meant that
these works were lost in the process. Lastly, the search term based approach as such
o�ered a problem. Unfortunately, no papers could be found that focused on the group-
ing of decisions. Most rather used them as part of a bigger framework or only loosely
introduced them at all. This meant that a term based search did not o�er the promised
results and of the, initially relevant papers only three where deemed fully relevant.
These three papers allowed for the second phase, the snowballing process, to start.
Snowballing is the technique of checking both the references listed by the given papers
(Backward Snowballing), as well as the works that list the given papers as a reference
(Forward Snowballing) [50]. This can occur in multiple iterations, in that the papers
found during the snowballing process have their citations and references examined as
well. IEEE, ACM and multiple other digital libraries all o�er support for this technique,
making the process signi�cantly easier and improving the possibility of �nding relevant
works. Table 3.4 lists all papers found to be relevant in addition to their discovery
process. In the case of Snowballing the last column designates the paper from which
the work was found. Special note should be taken of the work by Shahin et al. [47].
Their paper collected a multitude of works related to the topic at hand and thus allowed
a number relevant papers to be found, which all contained a form of grouping for deci-
sions. All relevant papers extracted from Shahin et al.'s work are discussed individually
in the review. That is why the paper itself is not discussed in more detail within the
chapter.

13

Table 3.4: Results of Search Term Based Approach and Snowballing

Author Reference Title Process Snowb. Source

Bhat et al. [3] Automatic Extraction of design decisions from Issue
Management Systems: A Machine Learning Based
Approach

B. Snowballing [4]

Bhat et al.(2) [4] Towards a framework for managing architectural design
decisions

Search Term

Capilla et al. [7] Modeling and Documenting the Evolution of Architectural
Design Decisions

B. Snowballing [47]

Carriere et al. [8] A Cost-Bene�t Framework for Making Architectural
Decisions in a Business Context

Search Term

Dermevall et al. [13] STREAM-ADD - Supporting the Documentation of
Architectural Design Decisions in an Architecture
Derivation Process

F. Snowballing [47]

van Heesch et al. [22] A documentation framework for architecture decisions F. Snowballing [47]

Jansen et al. [26] Architectural design decisions B. Snowballing [3]

Kruchten et al. [33] An Ontology of Architectural Design Decisions in
Software-Intensive Systems

B. Snowballing [47]

Tyree et al. [48] Architecture Decisions: Demystifying Architecture B. Snowballing [47]

Shahin et al. [47] Architectural Design Decision: Existing Models and Tools Search Term

van der Ven et al. [49] Making the Right Decision: Supporting Architects with
Design Decision Data

B. Snowballing [3]

Zimmermann et al. [52] Reusable Architectural Decision Models for Enterprise
Application Development

B. Snowballing [53]

Zimmermann et al. (2) [53] Managing architectural decision models with dependency
relations, integrity constraints, and production rules

F. Snowballing [48]

3.3 Review Results

One of the most in�uential papers on the matter of grouping of decision knowledge is the
work published by Kruchten et al. [33]. This can be measured by the level of discussion
and citation in other relevant papers. Being referenced and positively discussed in
most the relevant works, Kruchten et al. introduce an ontology for architectural design
decisions, focusing on their attributes and relationships with one another. In their
model, decisions are turned into a �rst class entity, meaning that they are not subsumed
by other design artifacts but rather stand on their own. To create these �rst class entities
they introduce di�erent classi�cations of design decisions, suggest sets of attributes and
discuss possible relationships. The introduced groups show to be some of the most
promising for later implementation in this thesis. In total they identify three di�erent
major groups of design decisions with additional subgroups.

� Existence decisions (ontocrises)

� Structural decisions

14

� Behavioral decisions

� Ban / Non-Existence decisions (anticrises)

� Property decisions (diacrises)

� Executive decisions (pericrises)

Existence decisions concern those decisions that indicate some element or artifact
will exist in the system due to this decision. They can be divided into three subgroups.
Structural decisions are those that lead to the implementation of new components,
subsystems, partitions etc. Behavioral decisions however indicate more closely how el-
ements interact with one another and how they provide functionality or satisfy non
functional requirements. Lastly, Ban decisions or Non-Existence decisions are the op-
posite of normal existence decisions in that they state that a certain element will not
appear in the system. As such they are still categorized as a subgroup of existence de-
cisions. Kruchten et al. note that existence decisions are the least important to capture
as they are the most visible in a �nished system. They however argue that it is still
important to document them, as they can later be used to relate to other, less obvious
decisions or alternatives.
Property decisions contain traits or quality statements of the designed system. They
consider things such as design rules or general guidelines as well as design constraints.
They can be subdivided between positively expressed rules and guidelines and neg-
atively expressed constraints, this however is not expressly done by Kruchten et al.
Additionally, Kruchten et al. argue that these groups of decisions can be hard to trace
to speci�c elements because they are often cross-cutting concerns and e�ect too many
distinct elements. Without proper documentation the decision knowledge for these
types of decision stays implicit and often further design decisions are made without
being traced back to appropriate properties.
Executive Decisions are those decisions that do not directly relate to any design el-
ements or their underlying qualities. They are driven by the business environment, the
development process, education and training of sta�, organizational concerns and the
choices of technologies or tools that are used. Kruchten et al. argue that especially these
decisions are often left out of the development process because of their disconnect from
the software development itself. But because of the huge implications and constraints
created by these decisions their documentation seems all the more important to the
authors. This is especially the case because these executive decisions often constrain
existence and property decisions.
Next to the kinds of decisions introduced, Kruchten et al. also show possible Attributes
in their model. Attributes such as Epitome, Rational, Scope, State, History, Cost and
Risk. They also introduce a category attribute, which unlike the existence, property
and executive decision groups does not have pre-existing tags. The idea behind the cat-
egory is to introduce an open ended list of text-labels with which queries can be used to
trace and �nd related decisions. They name examples such as Usability, Security and
Politics as possible tags.
The relationships introduced by the model concern relationships between decisions as
well as with external artifacts and aim to create inter-connectivity between design ele-

15

ments. They contain relationships such as constrains, forbids, enables, subsumes etc.
While the model introduced by Kruchten et al. seems purely theoretical, with no studies
or implementations being shown, the underlying research shows a lot of promise to allow
proper documentation of decisions. Additionally, this paper is later often referenced by
other works which will be discussed in this chapter.
Van Heesch et al. [22] present a decision documentation framework which is derived
from the conventions of ISO/IEC/IEEE 42010. This model consists of four viewpoints
designed to address general documentation concerns. The Decision Detail Viewpoint
addresses those concerns related to the rationale behind the decisions. The Decision Re-
lationship Viewpoint focuses on the relationships between decisions. Next, the Decision
Stakeholder Involvement Viewpoint allows proper explication between Decisions and
Stakeholders and lastly the Decision Chronological Viewpoint was developed to address
temporal concerns in the decision process. Fig 3.1 presents the complete architectural
framework created by Heesch et al.

Fig. 3.1: Architecture Framework reproduced from ISO/IEC/IEEE 42010 [22]

As part of the Decision Detail Viewpoint Heesch et al. introduce description elements.
Most importantly for this thesis they introduce a Decision Group element. They state,
that in their model decisions can be part of one or multiple groups and state grouping
examples. Their ideas include grouping by architecture teams, where the team making
the decision is used as the respective group. They also suggest quality attributes as
possible groups, stating that their Decision Group element is equal to the categories
introduced by Kruchten et al. [33], without the explicit partitioning seen in Kruchten
et al.'s work.
The work presented by Tyree et al. [48] aims to simplify or "demystify" the decision
documentation process. They claim that some of the existing models and frameworks
are too complex to allow easy and simple documentation. This then leads developers to
determine that decision documentation is not worth the e�ort. In their opinion a simple
document describing key architecture decisions is su�cient in helping to understand past
and future system architectures. Deriving a template from IBM's e-Business Reference
Architecture Framework, they end up with a list of necessary attributes. Table 3.5
shows an adapted, excerpt list of attributes and their explanations.

16

Table 3.5: Architecture decision description template [48]

Attribute Explanation

Issue Describe the architectural design issue you're addressing, leaving no
questions about why you're addressing this issue now.

Decision Clearly state the architecture's direction.
Status The decision's status, such as pending, decided, or approved.
Group You can use a simple grouping�such as integration, presentation, data,

and so on�to help organize the set of decisions. You could also use a
more sophisticated architecture ontology, which includes more abstract
categories such as event, calendar, and location.

Assumptions Clearly describe the underlying assumptions in the environment in
which you're making the decision�cost, schedule, technology, and so
on.

Argument Outline why you selected a position, including items such as
implementation cost and required development resources' availability.

Related decisions It's obvious that many decisions are related; you can list them here.
Metamodels are useful for showing complex relationships
diagrammatically.

Related requirements To show accountability, explicitly map your decisions to the objectives
or requirements. You can enumerate these related requirements here.

Notes Because the decision-making process can take weeks, we've found it
useful to capture notes and issues that the team discusses.

For Tyree et al. the idea behind the grouping attribute is to allow for �ltering based
on the stakeholders' interests. As an example they use data architects reviewing prior
decisions by being able to �lter by a data group. Additionally, they mention a color-
coding idea where incomplete or controversial decisions could be highlighted by distinct
colors. This could in abstractions also be considered as a grouping mechanism where
instead of types of decision the status of the decision is considered as a group.
Capilla et al. [7] describe the Architecture Design Decision Support System (ADDSS),
a web-based tool aimed at recording and managing architectural design decisions. The
idea behind ADDSS is to store requirements of a target system, the decisions made
for requirements sets, and JPEG images that represent the architectural products gen-
erated in the architecting phase. The ADDSS tool generates PDF documents that
describe decisions, architectural products, and trace links. In the tool Capilla et al.
make the distinction between Mandatory attributes for the architectural design deci-
sions and Optional attributes. The group or as they call it "Category of Decision"
attribute is assigned to the optional attributes in their model. Similar to Tyree et al.,
they propose the group attribute as a way to support discovery processes. Additionally,
they propose that a variability management tool for example could in theory visualize
di�erent system con�gurations depending on the groups in which the decisions are split.
They however do not propose any concrete groups or types of decisions but rather see
the possible groups as part of the application domain. Their work is still important
because their approach is actually implemented in the ADDSS tool rather than being
a theoretical framework as is the case with most papers discussed in this chapter.

17

Bhat et al. [3] introduce an approach focused on a more automatic extraction of de-
sign decisions from Issue Management Systems (IMS) such as Jira. The two-phased,
machine-learning-based approach �rst detects design decisions from the issues in the
system and then in the second step classi�es these into di�erent groups. The groups
introduced are those discussed by Kruchten et al. [33] (see above), with the idea in
mind to create a knowledge base from which developers can learn from the decisions in
similar, past projects. Figure 3.2 again shows the used categories.

Fig. 3.2: Architecture Design Decision Groups [3]

Because of the necessity for Bhat et al. to manually annotate issues to create a dataset
and because the majority of design decisions are existence decision [39], they focus
their approach on the classi�cation into the existence decision group with its three sub-
groups. According to them, the approach could however be extended by creating a
labeled dataset for the remaining groups. Additionally, Bhat et al. present a framework
for architecture knowledge management (AKM) [4], which contains the same categories
as their automatic classi�cation approach. They introduce a machine learning pipeline
for this classi�cation approach. The results of their testing seem promising in allowing
for the implicit decision knowledge of issues to be extracted and explicitly captured in
existing decision groups.
The previously mentioned framework introduced by Bhat et al. in [4], focuses on ad-
dressing di�erent use cases. Among other components like an architectural element
annotator, an architectural solutions recommender, and a rational extractor, the frame-
work also contains a design classi�er like the one discussed here. They also discuss the
possibility of changing their classi�cation approach to use di�erent groups.
One of those possible other group strategies is the one introduced by Jansen et al. [26].
While not intended speci�cally as a grouping strategy for decisions, Jansen et al. intro-
duce a hierarchy based on the abstraction level of decision making. Figure 3.3 shows
the three dimensions of decision making.

18

Fig. 3.3: The funnel of decision making [26]

The �rst distinction is the one between the problem space on the left and the solution
space on the right. While the problem space contains all problems a system could ad-
dress, the solution space contains all the possible system solutions.
Next, the level of abstraction forms the second dimension. In both spaces, problem and
solution, the decisions can be of di�ering abstraction levels which are visualized on the
left and right side of Figure 3.3. Lastly, the scope of the decision is what creates the
funnel. The more abstract the decision is, the wider the scope becomes.
As mentioned before, this funnel model is not strictly aimed at creating groups of de-
cisions but rather describes the decision making process. One could however easily see
how the second dimension could be used to group decisions based on their abstraction
level. The possible labels for those groups could then be the di�erent stages of abstrac-
tion, namely, Requirements, Implementation, Detailed Design, Software Architecture,
and Architectural Signi�cant Requirements for example. This approach would allow the
developer to sort Decisions into the development step they in�uence the most and could
like other approaches presented in this chapter be used to investigate prior decisions
and thus help in�uence similar future decisions.
Dermeval et al. [13] introduce STREAM-ADD, for Strategy for Transition between
Requirements and ArchitecturalModels with Architectural Decisions Documentation.
STREAM itself is a model-driven approach to generate architecture models from exist-
ing requirements models. The contribution of Dermeval et al. [13] is the addition of
decision documentation support to the STREAM process. The idea behind the system-
atic documentation of decision is to aid in the re�nement of architecture models based
on prior decisions. Figure 3.4 shows an overview of the STREAM-ADD process intro-
duced by the paper. The �rst two activities are maintained from the original STREAM

19

process with the third one being the addition made by Dermeval et al.

Fig. 3.4: Overview of the STREAM-ADD process [13]

The decision documentation process is based on a template containing parameters such
as Requirements, Stakeholders, Design Fragment, Groups, Status, Consequences, De-
pendencies, etc. As such the template is used in the third step of the STREAM-ADD
process, Re�ne Architectural Model With Architectural Decisions. The template is �lled
in six steps.

1. Identify Requirements and Stakeholders Addressed by the Decision

2. Identify Architectural Alternatives

3. Perform Contribution Analysis of Alternatives

4. Perform Trade-o� Analysis of Alternatives

5. Specify Architectural Decision Design Fragment

6. Fill Additional Information

Part of the Additional Information in step six is the group �eld which is aimed at spec-
ifying the type of architectural decision made. Dermeval et al. focus this grouping on
the requirements group addressed by the architectural decision. This approach di�ers
from the ones presented earlier in this chapter. It requires a prior, if only implicit,
grouping of the requirements a system has. This then in turn would allow the decision
to be assigned to the requirements and their respective groups. This approach seems
to create domain-speci�c groups as requirements di�er wildly from system to system.
As such there are no proposals for group-tags made by Dermeval et al. However, the
approach of binding the decision to the requirement groups is a conceivable alternative
to having prede�ned groups of decisions. By basing the decision group on the related
requirements group, an automatic link is created between the decision and the require-
ments which in�uence them or which they themselves a�ect.
Zimmermann et al. [52] propose a conceptually similar decision documentation frame-
work to the ones introduced earlier in this chapter. Based on reusable decision templates
they aim to capture the knowledge gained on other projects with similar architectural
styles. They propose a model based on three conceptual steps, namely Decision Iden-
ti�cation, Decision Making and Decision Enforcement. In the �rst step, the Decision

20

Identi�cation, the initial decision model for a project team is instantiated from project-
speci�c requirements models and the reusable decision templates. The used decision
templates serve as a checklist for the architecture team, in the form of an early and
informal review of the architectural work done. The second step, the decision making,
uses the decision models created in the �rst step, in combination with a list of decision
drivers for each earlier decision. For each type of decision a supporting technique, such
as ADD, is selected. That allows the team to document each decision speci�c to its
needs rather than using the same technique across all decisions whether it applies or
not. This means that based on the model from the �rst step, the decision driver catalog
and the support technique, the Decision Outcome and Justi�cation can be created and
documented accordingly in a highly speci�ed way. Lastly, the decision enforcement step
makes sure that the Architectural Decision Outcomes �nd their way into the resulting
code. Techniques are employed at build and deployment time so that concepts such as
code aspects and con�guration policies can be used to express architectural intent. Ad-
ditionally, the approach supports machine-readable decision models which can in turn
be interpreted by model transformations and code generators to guarantee that made
decisions are actually implemented in the code.
Within the Framework, closely related architecture decisions (AD) are grouped into
so-called ADTopics. These can form hierarchies assigned to one of the three ADLevels
of abstraction, ConceptualLevel, TechnologyLevel, or AssetLevel. Like in Jansen et al.
[26] this grouping technique deals with abstraction levels of decisions, however on a
less �ne-grained level. These architecture decision levels could also be implemented
within the context of this thesis as three �xed groups of abstraction for all documented
decisions to be sorted under, as they are not necessarily limited to architectural deci-
sions. Zimmermann et al. however go into further detail with their interpretation of the
ADTopics. Introducing topics such as Executive Decisions (see Kruchten et al. [33]),
Enterprise Architecture Decisions, Process Realization Decisions, and Service Realiza-
tion Decisions, they discuss that theoretically the list of ADTopics is endless as long
as a consistent naming style is implemented and comparable factors exist between the
topics to guarantee proper assignment. In [53] Zimmermann et al. give a more detailed
list of possible decision types. Table 3.6 shows these types along with their respective
architecture design level.

Table 3.6: Decision types according to [53]

Decision Type ADLevel

Executive decisions, requirements analysis decisions Executive level
Pattern Selection Decisions (PSDs) Conceptual level
Pattern Adoption Decisions (PADs) Conceptual level
Technology Selection Decisions (TSDs) Technology level
Technology Pro�ling Decisions (TPDs) Technology level
Vendor Asset Selection Decisions (ASDs) Vendor asset level
Vendor Asset Con�guration Decisions (ACDs) Vendor asset level

21

While these decision types o�er a �ne level of detail for a possible grouping strategy, they
are not as well distinguished from another as the groups o�ered by other approaches
and such require increased e�ort from a documentation side. This in turn makes them
rather unattractive as a real live model because the e�ort linked with explicitly docu-
menting decisions could be a hindrance for developers. A problem which the automation
of decision knowledge creation and extraction tries to solve and not increase further.
Carriere et al. [8] introduce an approach that, while not necessarily applicable to this
thesis, has interesting implications on a more business-oriented context. They introduce
a framework for making architectural decisions based on cost-bene�t trade-o�s rather
than directly software-related aspects. Their motivation behind this approach is that
cost, especially in the case of refactoring operations, is often one of the deciding fac-
tors. It is however often neglected in decision making as it is di�cult for developers
to see their software from a more business-oriented side. Taking as input a set of prior
refactoring decisions documented as tickets, they build a company-speci�c model that
suggests the cost-bene�t of future related decisions. Their method focuses on extracting
the bene�ts of a decision made in the past since the cost is more easily calculated by the
e�ort expended. To achieve this, the components related to each ticket are extracted
and the coupling of said components is calculated. Carriere et al. hypothesize that
after refactoring the average coupling of the components would decrease thus indicating
the bene�t of the refactoring operation. Having established this cost-bene�t analysis
their approach allowed developers to receive an estimate of the cost-bene�t of a fu-
ture refactoring decision. To allow a more precise estimate, tickets were separated into
groups. While not directly decision groups, this more business-oriented grouping could
nonetheless be of potential interest as a decision grouping scheme. The categories were
Price Test, Price Data, Website UI, Tool, and Price Logic. While a group like Website
UI could be too speci�c to certain companies, the idea of using a business, cost-oriented
grouping scheme is nonetheless interesting. By sorting decisions into these types of
groups it could help to improve the availability especially for stakeholders, customers,
and the business end of software development companies. The results of Carriere et al.'s
model show a correlation between the coupling and a concrete organizational bene�t
but their results are too coarse to actually predict proposed refactoring decisions.
Lastly, van der Ven et al. [49] present their approach which analyses the version man-
agement data of large open-source repositories to help architects make design decisions.
Important for this thesis is their introduction of levels of decisions. They distinguish
High-Level Decisions, Medium-Level Decisions and Realization-Level decisions.
High-Level decisions are those that a�ect the product as a whole. They are often
a�ected by management or enterprise architects and people in general that are not in-
volved as much as the developers themselves. Medium-Level decisions are those that
in�uence speci�c components and frameworks and lastly, Realization-Level decisions
involve the structure of the code itself, for example which APIs to use. This level of
decision grouping o�ers an interesting alternative to the other grouping schemes dis-
cussed in this chapter. It is the �rst one to take the impact and the relative "size" of a
decision into context. Instead of binding the decision to requirements or other software
artifacts, this approach would capture the scope and magnitude a decision has on the
software project. This would allow developers to more easily judge how important a
decision is and how big the e�ects on the system could be.

22

3.4 Synthesis

Table 3.7 compares the relevant papers based on multiple criteria. The goal is to
evaluate the advantages and disadvantages of the approaches in order to �nd the most
applicable one for the work in this thesis and to summarize the �ndings of the review.
The criteria and their abbreviations in Table 3.7 are as follows:

� Is there a prototype or implementation of the approach? (Prototype)

� Is the approach evaluated? (Evaluated)

� Is a grouping scheme for decisions explicitly designed? (Speci�c design)

� How complex is the assignment of groups (i.e. are they clearly divided, are they
hard to understand, how much extra knowledge is needed to assign them)? (Com-
plexity)

� How relevant to the scope of this thesis is the grouping scheme? (Relevance)

The reasoning behind Prototype and Evaluated is the necessity to implement the group-
ing strategy in this thesis, thus an approach that is already implemented might have
an advantage over a purely theoretical approach. A lot of papers discussed here do not
o�er an explicit de�nition of the possible decision groups but rather make vague men-
tions of possible grouping schemes. This motivates the Speci�c design question because
an explicitly de�ned scheme would be preferable. Since decision documentation is in
and of itself an additional e�ort for the developer, the goal should be to minimize this
additional e�ort. Otherwise the documentation might not be carried out as carefully
or at all in order to save time. Thus the complexity of assigning the groups needs to
also be factored into the selection process, motivating the Complexity question. Some
approaches o�er interesting schemes that could �nd application in a business-related
context. However, since this thesis aims to expand upon a plug-in used in a university
context, some of these schemes might be out of scope. While ConDec is an open-source
project, the amount of data and experience for business-related aspects is limited. That
is why a Relevance criterion, which limits the selection to an assessable project scope,
is necessary.

23

Table 3.7: Synthesis of Literature Review

Ref Grouping Scheme Criteria Answers

[3] [4] Structural, Behavioral, Ban

Prototype
Evaluated
Speci�c design
Complexity
Relevance

ML-based Classi�er
Yes on self-created dataset
Explicitly designed for decision classi�cation
Assignment is fairly easy if familiar with the three basic groups
High relevance to the area of application

[7] Tags based on application domain

Prototype
Evaluated
Speci�c design
Complexity
Relevance

ADDSS
Modelling of real life system using ADDSS
No speci�c design but rather general group tag attribute
Not complex since no boundaries are given
Not speci�c enough to be relevant

[8] Grouping by monetary aspects (e.x.
Price Test, Price Data, Price Logic)

Prototype
Evaluated
Speci�c design
Complexity

Relevance

Model implemented and trained
Tested in real life project
Scheme not speci�cally designed for decisions but for tickets
Very complex since additional information about monetary
context is necessary
Not applicable to scope of project since no monetary
aspects are present

[13] Assign Decision to Requirements
group addressed by it

Prototype
Evaluated
Speci�c design

Complexity
Relevance

Part of Future Work
No evaluation only running example
No speci�c design but rather binding decisions to
requirements groups
Complex since prior grouping of requirements is necessary
No direct grouping so not applicable

[22] Multiple groups per decision such
as by architecture team and quality
attribute

Prototype

Evaluated
Speci�c design
Complexity

Relevance

Framework doesn't require implementation but viewpoints
are created in real software project
Case Study
No speci�c design only some examples
Complexity depends on number of groups per decision and
types of groups selected
Not speci�c enough to be relevant

[26] Abstraction based (Requirements,
Implementation, Detailed Design,
Software Architecture and
Architectural Signi�cant
Requirements)

Prototype
Evaluated
Speci�c design

Complexity

Relevance

No implementation
Not evaluated
Not speci�cally designed to group decisions but rather a
model of the decision making process
Low complexity since decisions only have to be assigned to
the relevant process step
High relevance as development process steps are universal

[33] Existence (Structural, Behavioral,
Ban/Non-Existence) , Property,
Executive Decisions

Prototype
Evaluated
Speci�c design
Complexity

Relevance

Theoretical Framework without Implementation
Part of Future Works
Speci�cally designed for Decision Grouping
Some Complexity in assigning subgroups of existence
decision and requires familiarization with prede�ned groups
Extremely relevant to the scope of this thesis

[48] Stakeholder based grouping

Prototype
Evaluated
Speci�c design
Complexity

Relevance

Theoretical Framework without Implementation
Only on own example
Speci�c grouping category without �xed tags
Higher complexity because of the need to identify
stakeholders and assign �tting tags
Not as relevant because of a lack of di�erent stakeholders in
the scope of ConDec

[49] High-, Medium and Realization
Level Decisions

Prototype
Evaluated
Speci�c design
Complexity

Relevance

Conceptual model only
Only proof of concept no proper evaluation
No speci�c grouping, only focusing on one level of Decision
Low complexity because of ease to understand and assign
categories
High relevance to scope of thesis

24

[52] Conceptual Level, Technology
Level, Asset Level

Prototype
Evaluated
Speci�c design
Complexity
Relevance

Conceptual Framework
Framework applied to enterprise application development
Explicitly designed to group decisions
Low complexity because of ease of assignment
High relevance to thesis

[53] Executive decisions, PSDs, PADs,
TSDs, TPDs, ASDs, ACDs

Prototype
Evaluated
Speci�c design
Complexity

Relevance

Tool Implementation: Architectural Decision Knowledge Wiki
Thorough evaluation by experiments and industrial case studies
Speci�c design for assignment of decision types
Highly complex grouping scheme with a need for the
knowledge of multiple stakeholders
Too complex for the scope of this thesis

3.5 Review Discussion

This chapter will summarize the answers to the proposed research question and draw
conclusions for the further implementation of this thesis.

RQ1: How is the grouping of decision knowledge realised and used?

RSQ1: What grouping schemes are employed to categorize decisions?
The used grouping schemes di�er vastly for the discussed approaches. RSQ1 is perhaps
best answered by the �rst column of Table 3.7. The following paragraph servers more
to highlight the overlap between the di�erent groups.
The scheme introduced by Kruchten et al. [33] is referenced and to some extend adapted
by a number of approaches [3][4], but there are some who employ very di�erent tech-
niques. Additionally, there is a di�erence between those that declare clear tags for their
grouping scheme [3][4][26][33][49][52][53] and those that merely introduce a general cat-
egory in which the relevant grouping tags should be created [7][13][13][22][48].

RSQ2: How are groups of decisions documented?
In general all approaches discussed in this chapter document their decision groups in the
form of clear text terms. These terms are either �xed groups presented by the authors
[4][3][33][49][52][53] or they are up to developers to create and use. In the latter case
there are little to no constraints made by any of the authors. Their general idea is to
create terms that explain the group and keep a consistent nomenclature across all of
the created categories.

RSQ3: How are these groups of decisions implemented ?
These group categories either serve as part of a decision documentation framework
[22][33][48][52], are used by tools to generate structures [7][8][53] or are more concep-
tual ideas extracted from works with a di�erent focus [13][26].

25

RSQ4: How is �ltering used in the presented techniques ?
Unfortunately none of the approaches o�ered any meaningful inside into �ltering. This
might be due to the fact that none of them strictly focus on the grouping of decisions
and as such not enough emphasis is put onto �ltering possibilities. Only Tyree et al.
[48] mention �ltering at all in this context.

As a result of the conducted research it has been shown that Kruchten et al. [33] is one
of the most prevalent approaches in the research �eld (Fig 3.2). This prevalence shows
good compatibility with the scope of this thesis. However, the still fairly high complex-
ity of assignment, leads to the conclusion that, while this grouping scheme would make
a �tting addition to the ConDec project, users should not be forced to choose from
these groups exclusively. Merely recommending them during group assignment, seems
more likely to motivate users to use the grouping system, as they can not be expected
to intrinsically understand the underlying de�nitions behind these groups.
Thus, support for custom decision groups should be implemented, which will allow the
grouping scheme introduced by Kruchten et al. to also be used. These custom groups
will not have a �xed naming scheme as they are supposed to be universally usable across
all types of projects. This will allow developers to sort decisions by more user-de�ned
categories. An example would be using a "Security" or a "Performance" label to �nd
all decisions related to those topics.
Additionally, the level of decision hierarchy presented by Ven et al. [49] is also imple-
mented. Grouping decisions by High-level, Medium level and Realization Level intro-
duces a clearer structure into the overall importance and e�ects of each decision. It also
carries a lower time e�ort to assign the levels and can thus be used as a baseline for
each decision.

26

4 Requirements

This chapter introduces the requirements for the extension of the ConDec plug-in dur-
ing this thesis. Section 4.1 introduces the initial roughly speci�ed requirements as a
general estimate of which features were required. Section 4.2 presents the personae for
di�erent roles present in the user base of the plug-in extension. Next, Section 4.3 gives
an overview over the domain data relevant to the thesis. Section 4.4 introduces the
functional requirements generated from the previously gained knowledge, after which
Section 4.5 introduces the relevant non-functional requirements. Section 4.6 shows the
workspaces which the plug-in introduces. Lastly, Section 4.7 presents mockups of the
new workspaces and features, followed by a summary of the chapter in Section 4.8.

4.1 Initial Coarse Requirements

The implementations created in this thesis follow the goal of supporting both rationale
manager as well as developers in maintaining and improving the consistency between
documented decisions and software artifacts such as code and requirements. To support
this, multiple views are either implemented or improved upon. Additionally, existing
�lters are improved and new ones implemented uniformly across the platforms relevant
views.
CR1: A dashboard is implemented which estimates the decision knowledge documen-
tation quality across a whole project. The dashboard must allow a rationale manager
to get a general overview of the project, including existing requirements, code classes,
issues, and decisions. Metrics are introduced, which analyse the rationale complete-
ness of the project, including metrics such as how many issues do not have decisions
connected and vice versa. The dashboard will allow the rationale manager to identify
incomplete decision documentation and navigate to the respective element quickly.
CR2: New views are implemented which allow an overview of the relationships be-
tween documented decision knowledge and their related code artifacts. The views visu-
alize the decision knowledge related to each individual code class, allow management of
the knowledge, and allow the users to group the decision knowledge via the use of tags.
For all views expandability is a big focus, using them as interfaces to access the un-
derlying data and designing them to be easily adaptable in the future. New �lters and
functionalities must be easy to add should the need arise.

27

4.2 Personae

The main concern of this thesis are the roles of the rationale manager described in
Table 4.1 and the developer described in Table 4.2. The ConDec extension provided by
this thesis aims to support these plug-in users. It focuses on providing them with the
tools needed to more e�ciently complete their tasks, without introducing any further
frustrations or complexity to their every-day usage. These Personae are used to allow
a better understanding of the user-base's needs. They help in the creation of features
and in�uence the user interface.

Table 4.1: Persona: Rationale Manager

Job Rationale Manager

Biography Aged 31, Master's degree in Computer Science, working for a big
software company. Has previously supervised projects and uses
ConDec to get an overview over all issues and decision knowledge
elements.

Knowledge 3 years of experience using Jira. Currently supervising multiple
projects at the same time.

Needs Assess the overall completeness of decision knowledge across a
project.

Frustrations Undocumented or incomplete decisions.
Having to manually check every element for documentation con-
sistency.

Ideal Features Visualization of metrics, which show the completeness of the doc-
umented decisions.
Direct navigation to incomplete decision knowledge elements.
Visualization of general progress within a project.
Con�guration of whether to include code repositories in metric cal-
culation.
Filters for decision knowledge related views.

28

Table 4.2: Persona: Developer

Job Developer

Biography Aged 22, educated software developer, working for a big software
company.

Knowledge Familiar with IntelliJ and Eclipse as IDE's, Git as VCS and Jira
as ITS. Experience in agile programming using CSE and familiar
with decision knowledge documentation.

Needs Wants to non-intrusively document decisions. Needs to
understand relationships between decisions and code.

Frustrations Documentation spread across di�erent tools, because it creates dif-
�culty in performing code reviews and change impact analyses.
Manual identi�cation of which task e�ected which code segments.
Being overloaded with decisions that are not related to the current
task.

Ideal Features Visualization of code e�ected by a task.
Visualization of relationship between all code classes and related
decisions.
Assignment possibility of groups for decisions to consolidate them.
Manage the decision groups in bulk.
Filters for decision knowledge related views.

4.3 Domain Data

Figure 4.1 presents the domain data model with the relevant relationships between the
decision knowledge and the code classes, as well as the grouping feature. Each Jira
issue contains an unspeci�ed amount of knowledge elements. Each knowledge element
is associated with a knowledge type and a documentation location. Depending on the
combination of both a knowledge element can either be classi�ed as a decision knowledge
element or a code class. A code class itself can not have a knowledge type, which is
associated with either of the �ve decision knowledge types and must have a commit
as the documentation location. Code classes are extracted through commits. This is
also where the connection between classes, Jira issues, and, in extension, the decision
knowledge elements is created. Commits are attached to the Jira issue, from where the
connection is extracted. All of these elements and their links between each other form
the knowledge graph. Within this graph the elements form the nodes and the links the
edges of the structure.
Additionally, the grouping tag is attached to the knowledge element speci�cally, allowing
grouping of all kinds of knowledge elements.

29

Fig. 4.1: Domain Data Model for Decision Knowledge and Code Class relationship within
ConDec

4.4 Functional Requirements

This section will provide details about the functionalities that the ConDec extension,
discussed in this thesis, provides. The extension supports two user tasks (4.4.1), one
for each of the relevant roles. They were extracted from the initial course requirements
(Section 4.1). As such, the �rst user task (UT1) is performed by the rationale man-
ager, whose broad requirements are sketched in BR1. The second user task (UT2) is
performed by developers, including roles close to the development itself, such as require-
ments engineers, testers, or software architects. The task originates in BR2. These user
tasks are divided into sub-task from which the system functions (4.4.2) are derived.

4.4.1 User Tasks

UT1: Rationale Management
The rationale manager is tasked with setting up the decision knowledge management
process within a project. This means deciding which issue and decision schemes are
used and which knowledge types are relevant to the project. The rationale manager
also has to achieve a general overview of the progress on the project and then analyse
and maintain the completeness and consistency of the documented decision knowledge.
ST1.1: Con�gure Rationale Management process
The rationale manager de�nes the rationale management process for each project in-
dependently and speci�es which schemes and knowledge types are relevant and thus
needed for the project. Additionally, the rationale manager decides whether knowledge
is to be extracted from Git repositories or not.

30

ST1.2: Analyse basic metrics of a project
During the lifespan of the project the rationale manager needs to assess the current sta-
tus of the project by analysing some general aspects about the complexity and progress
of the di�erent tasks. This is required to quickly assess the progress within the project,
as that in�uences the stringency of the required consistency.
ST1.3: Analyse quality of documented decision knowledge
The rationale manager checks and maintains the quality of the documented decision
knowledge. This guarantees high quality and consistency across each project.

UT2: Development of Software
Developers initially elicit software requirements. They then specify these requirements
and then implemented them. The decisions made during the development process are
documented by the relevant parties. They either document these decisions in Jira di-
rectly or by documenting the decisions in code comments or commit-messages. During
or between development cycles they perform change impact analyses and review the
documented knowledge to gain insight into the decision and their e�ects on the code.
ST2.1: Elicit and Manage the Requirements
Before the implementation phase begins the requirements engineers need to establish
the relevant requirements by analysing which features are desired by the customer.
During the development phase these requirements need to be managed and adapted to
changing needs.
ST2.2: Implement the code
Developers write the source code according to the elicited requirements and implement
the desired features.
ST2.3: Continuously document decision knowledge in Jira
The decisions being made by requirements engineers during the elicitation and adap-
tation of the requirements need to be documented in Jira. Developers also need to
document all decisions made during the implementation phase of the project. Their
decisions can be documented in Jira or in commit messages.
ST2.4: Perform a change impact analysis
Developers need to perform analyses on the impact of changes that are made to make
consistent decisions. This includes an analysis of the impact of past changes and their
e�ects on future implementations.
ST2.5: Review the documented knowledge of a development task
Developers need to see the knowledge, which is associated with their current or past
tasks. This knowledge includes code changes, documented decisions, commits, and con-
nections between decisions and code.

4.4.2 System Functions and User Stories

The system functions (SF) describe the tasks and features of the ConDec extension
from a system standpoint. They are de�ned by necessary inputs, outputs, exceptions,
and conditions. For each system function a relevant user story is given, which explains
the role and motivation of a user. Because of the size of the ConDec project, only those

31

system functions, which are relevant to this thesis are listed here. Additionally Figure
4.2 and Figure 4.3 show example charts to better visualize the metrics discussed in the
relevant system functions.

SF1: Show basic knowledge metrics for project progress

As rationale manager, I want to see basic metrics that assess the progress of
a project in order to analyse the work being done. Since managing multiple
projects at once makes it di�cult to keep up with all of them, these metrics
allow me to estimate the stringency of the required consistency.

Table 4.3: SF: Show basic knowledge metrics for project progress

Preconditions: Jira project exists and ConDec is activated/enabled
Input: WS1.1: Project key, Jira issue type
Postconditions: Nothing changed
Output: WS1.1: Metrics displaying the basic information
Exceptions: None
Rules: Metrics include box plots showing the...

...average number of comments per Jira issue

...average number of decisions per Jira issue

...average number of decision problems per Jira issue
Also include pie charts showing the...
...number of code classes and requirements in a project
...number of knowledge elements from di�erent documenta-
tion locations

Supports: Subtask ST1.2

Fig. 4.2: Example box plot for basic knowledge metrics

32

SF2: Show rationale completeness metrics within decision knowledge

As rationale manager, I want to see inconsistencies between decision knowl-
edge elements. This includes metrics that show issues without decisions or
arguments and decisions which do not have pro's and con's.

Table 4.4: SF: Show rationale completeness metrics within decision knowledge

Preconditions: Jira project exists and ConDec is activated/enabled
Decision knowledge elements exist

Input: WS1.1: All decision knowledge elements
Postconditions: Nothing changed
Output: WS1.1: Rationale completeness is visualized in plots
Exceptions: None
Rules Metrics include pie charts showing the...

...decision problems with and without linked decisions

...decisions with and without linked decision problems

...decisions and alternatives with and without pro's and con's

Supports: Subtask ST1.3

Fig. 4.3: Example pie chart for completeness metrics

33

SF3: Show completeness metrics of decision knowledge for requirements and
tasks

As rationale manager, I want to quickly get an overview over the complete-
ness of the documented decision knowledge within a Jira project.

Table 4.5: SF: Show completeness metrics of decision knowledge for requirements and tasks

Preconditions: Jira project exists and ConDec is activated/enabled
Jira issue(s) with relevant type exist

Input: WS1.1: Project key and Jira issue type
Postconditions: Nothing changed
Output: WS1.1: Plots that show completeness metrics of

decision knowledge for Jira issues with the chosen
type

Exceptions: If no repository is given completeness might not be
correctly calculated as connections between elements
are lost

Rules Metrics include pie charts showing the...
...Jira issue type items having a linked decision / decision
problem
...relevance of comments in Jira issues
...distribution of knowledge types in the issue type items

Supports: Subtask ST1.3

SF4: Navigate from plots in dashboard to respective knowledge element

As rationale manager, if I �nd inconsistencies in a Jira issue, by analysing
the metrics in the dashboard, I want to be able to navigate to that Jira issue
directly.

Table 4.6: SF: Navigate from plots in dashboard to respective knowledge element

Preconditions: Jira project exists and ConDec is activated/enabled
Input: WS1: A datapoint in the plot (e.g. in boxplot or pie chart)
Postconditions: Nothing changed
Output: WS2: The Jira issue page is shown
Exceptions: The Jira issue was deleted between the metric calculation

and the navigation

Supports: Subtask ST1.3

34

SF5: Con�gure decision knowledge extraction from Git

As a rationale manager, I want to con�gure whether knowledge is extracted
from a Git repository or not. I want to be able to do this for each project
individually.

Table 4.7: SF: Con�gure decision knowledge extraction from Git

Preconditions: Jira project exists and ConDec is activated/enabled
Git Repository exists

Input: Project key, enabled/disabled extraction from git,
URI of Git Repository

Postconditions: Updated project settings, Repository is cloned
Output: Success message that con�guration has changed
Exceptions: Repository cloning fails, Repo URI is invalid

Supports: Subtask ST1.1

SF6: List all code classes for a project

As a developer, I want to see all code classes with their linked Jira issues
and knowledge elements to see relationships and perform a change impact
analysis.

Table 4.8: SF: List all code classes for a project

Preconditions: Jira project exists and ConDec is activated/enabled
Git connection is con�gured

Input: WS3.6: Project Key, Git Repository and Knowledge Graph
Postconditions: Nothing changed
Output: WS3.6: List of all code classes
Exceptions: None

Supports: Subtasks ST2.4 and ST2.5

SF7: List all code classes connected to a Jira issue

As a developer, I want to see all code classes that were created or altered
during the course of a task.

35

Table 4.9: SF: List all code classes connected to a Jira issue

Preconditions: Jira project exists and ConDec is activated/enabled
Git connection is con�gured and one commit exists

Input: WS2.5: Jira issue, Related Commits
Postconditions: Nothing changed
Output: WS2.5: All related code classes
Exceptions: Git Repository could not be cloned

Supports: Subtask ST2.5

SF8: Group Knowledge Elements

As a developer, I want to be able to connect related decisions with a tag,
to establish a relationship between them and see which decisions might be
a�ected.

Table 4.10: SF: Group Knowledge Elements

Preconditions: Jira project exists and ConDec is activated/enabled
Knowledge elements exist

Input: WS2 & WS3: Knowledge Element, Group tag to assign, re-
name or delete

Postconditions: The group tag is assigned, renamed or deleted from
the knowledge element and the relevant database
entry is created

Output: WS2 & WS3: Con�rmation massage
Exceptions: None

Supports: Subtask ST2.3

SF9: Manage knowledge element groups

As a developer, I want to be able to do bulk changes to the group tags when
requirements change, to keep the knowledge up to date and consistent.

36

Table 4.11: SF: Manage knowledge element groups

Preconditions: Jira project exists and ConDec is activated/enabled
Knowledge elements exist and at least one group
exists

Input: WS3.7: The group to delete/rename, (the new group name)
Postconditions: The group is renamed/deleted and all relevant

database entries are completed
Output: WS3.7: Con�rmation message
Exceptions: None

Supports: Subtask ST2.3

SF10: Filter knowledge graph

As a ConDec user, I want to be able to customize which information is
shown to me in the decision knowledge views, to be able to see more speci�c
information.

Table 4.12: SF: Filter knowledge graph

Preconditions: Jira project exists and ConDec is activated/enabled
Knowledge graph with knowledge element(s)
(=nodes) and links (=edges) exists

Input: WS1, WS2 & WS3: Filter criteria, knowledge graph
Postconditions: Nothing changed
Output: WS1, WS2 & WS3: Knowledge elements and links that

match the �lter criteria
Exceptions: None
Rules: Filter criteria:

- Text search for summary of knowledge element
- Knowledge Type
- Creation date
- Resolution date
- Documentation Location
- Status
- Link distance in the knowledge graph
- Link type
- Group

Supports: Subtasks ST2.4, ST2.5, ST1.2 and ST1.3

37

4.5 Non-Functional Requirements

The non-functional requirements (NFR) describe underlying attributes that must be
present in the �nished software. These can include user-oriented attributes like pro-
viding simple accessibility to the user or more system focused properties, like security
measures that have to be in place. The ISO / IEC 25010 [25] quality model de�nes
eight general types of non-functional product quality requirements.

Fig. 4.4: ISO / IEC 25010 [25] Quality Model

As can be seen in Fig 4.4, these requirements are subdivided into multiple categories.
This allows further speci�cation of the requirements. The requirements highlighted in
blue, show the ones which ConDec focuses on achieving across the whole plug-in. Note
that Compatibility and Security are both important requirements. Security however
is handled mostly by Jira itself already and thus does not require special focus within
ConDec at this time. Compatibility in the case of a plug-in such as ConDec has a lot
of overlap with the portability requirement and can thus be considered as one joint
requirement in this case.
Sections 4.5.1, 4.5.2 and 4.5.3 detail the three NFR's this ConDec extension put its
focus on and the measures that were taken to ensure their ful�lment.

4.5.1 Modi�ability

A big focus of this thesis was to provide a plug-in extension that could, at a later
date, easily be extended upon. Especially the dashboard added in WS1.1 could become
subject to such an extension. The metrics used to measure decision documentation
completeness may change at any time. Additionally, new metrics could be required
as the plug-in increases in size and complexity. As such, providing a base from which
further extensions could be written became paramount. To provide this base generic
code must be provided which allows future metrics to be added without requiring the

38

creation of additional classes. Merely adding the desired metric to the dashboard and
providing its calculations must be enough to include it in the dashboard.

4.5.2 Time behavior

The ongoing development on ConDec and the fairly sizable Jira project, which now
exists for the plug-in, made a focus on the time behavior of the plug-ins views become
apparent. Loading times can be a big issue for complex projects with high amounts
of interconnectivity. As the data is processed to calculate metrics or provide decision
knowledge views, the user is forced to wait. The problems start when loading times
become unacceptably long for the users, who as a result may choose to no longer use
the a�ected views. The dashboard has a high risk of running into this problem, because
of the amounts of calculations and iterations necessary to compute the relevant metrics.
This problem is additionally exacerbated, because of the implemented �lter, which in
some cases requires completely new calculations. As a result boundary times were set
for all newly implemented views, which were considered reasonable. Views were not
allowed to surpass these loading times for the complex test project used. For further
details on speci�c values see Section 7.3.

4.5.3 Attractiveness

Attractiveness is in no way a vanity requirement. It has speci�c e�ects on the user and
their interest in the usage of the software [41]. Providing views which are both pleasing
to use and look at, while also being appropriate for the context in which they are used,
may encourage users to work with these functionalities. Also, by providing these views
in a styling which is similar to the environment in which they are used, allows them to
blend into this environment and thus also blend into the work�ow of its users. As this
thesis extends upon an existing plug-in, it was challenged with the task of providing
views that seamlessly blend into both the plug-in's existing views and the overall styling
of Jira. As such, focus was put on using the UI elements provided by Jira so as to blend
into the style of Jira and with that also blend into the work�ow of the user.

4.6 Workspaces

The workspaces (WS) de�ne all the relevant environments, views, and navigations pro-
vided by the software. This section highlights those, which are added by the ConDec
extensions provided by this thesis. The extension can be divided into roughly three dif-
ferent environments. First, the dashboard environment (WS1) which will be expanded
with a rationale completeness and general statics metrics dashboard (WS1.1). Second,
the Jira Issue Model View (WS2), which will feature a view for connected code classes

39

(WS2.4). Lastly, the decision knowledge page (WS3), which provides multiple decision
knowledge related views and will be extended by a code class view (WS3.6) and a de-
cision group management view (WS3.7). The UI-Structure diagrams in Figures 4.5,
4.6 and 4.7 show these new workspaces and which system functions are ful�lled by the
extensions.

Fig. 4.5: ConDec Workspace 1

Fig. 4.6: ConDec Workspace 2

40

Fig. 4.7: ConDec Workspace 3

4.7 Mock-ups

This section provides mock-ups for the four views introduced by the ConDec extension.
These are based on the previously designed workspaces 1.1, 2.5, 3.6 and 3.7 (Section
4.6).
WS1.1 introduces the Requirements Dashboard, a mock-up for which, can be seen in
Figure 4.8. At the top of the dashboard a project and issue type selection menu is added
to allow fast switching between these aspects. Below that, the metrics are implemented
in box plots for the general statistics and pie charts in the case of the completeness
metrics. By clicking on the slices in the pie charts a dialog is opened which allows the
navigation to the related issues. This navigation can be seen in Figure 4.9.

41

Fig. 4.8: ConDec Requirements Dashboard Mock-up

Fig. 4.9: ConDec Requirements Dashboard Navigation Mock-up

42

WS2.5 adds a connected code-classes view to the Jira Issue View, a mock-up for which,
can be seen in Figure 4.10. The view is added on to the existing Tree Visualization,
Graph Visualization, and Feature Branch(es) Views. It displays the issue itself con-
nected to all code classes that were created or altered because of the issue, as a tree.

Fig. 4.10: ConDec Jira Issue Code Class View Mock-up

WS3.6 introduces a code class view, which lists all code classes present in the connected
repositories and allows users, by clicking on the classes, to see the connected issues and
their documented decision knowledge. This tree is presented on the right side of the
class listing. Figure 4.11 presents a mock-up for this view.

43

Fig. 4.11: ConDec Code Class View Mock-up

Lastly, WS3.7 introduces the decision group management view. This view shows a
table that lists all decision groups present in a project together with the number of
issues assigned to that group. By right-clicking a group, the user is able to select from a
drop-down menu whether they want to delete the group or change its name, which will
be propagated to all assigned issues. The mock-up for this view is depicted in Figure
4.12.

Fig. 4.12: ConDec Decision Group View Mock-up

44

4.8 Requirements Chapter Summary

The ConDec extension implemented in this thesis was based on a set of broad re-
quirements for two roles of software stakeholders. Requirements were speci�ed for the
rationale manager, whose task it is to check and maintain consistency about all deci-
sion knowledge related documentation. These requirements specify a dashboard for the
rationale manager, which provides basic project-speci�c metrics and completeness met-
rics about all decision knowledge documentation in these projects. The requirements for
the second role, the developers, specify a comprehensive overview of the relationships
between decision knowledge and implemented code classes. They also support for the
grouping of documented decisions to create more connections between related decisions.
Another important requirement is the ability to �lter across all decision-related views
in order to provide more targeted access to the documented data. As a result of these
requirements, four new workspaces were elicited which provide the desired features. The
requirements phase precedes the design and implementation phase of the project.

45

5 Design and Implementation

This chapter introduces the architectural decisions and design decisions made during the
development of the ConDec extension both on functional and non-functional require-
ments. It also discusses challenges in the design and implementation phases. Section 5.1
introduces the overall architecture of the plug-in. Sections 5.2, 5.3 and 5.4 specify the
architecture and design of the extension. Additionally, they explain the implemented
views in detail.

5.1 Overview of ConDec Architecture

Figure 5.1 displays the overview class diagram for ConDec. The general structure of the
plug-in can be separated into �ve main packages. Note that this diagram only visualzies
the backend classes of the plug-in.
The model classes represent the domain data, i.e. di�erent entities present within the
plug-in. The decisions themselves are represented by the KnowledgeElement class which
carries attributes such as the DocumentationLocation, KnowledgeStatus and Knowled-
geType. As previously described in Section 2.4, documentation locations can include
Jira issues, comments, descriptions, commits, and code comments. The di�erent knowl-
edge types are de�ned by decision issues, decisions, alternatives, and pro or con argu-
ments. The knowledge status includes categories like discarded, rejected, or resolved.
Knowledge elements are connected via links de�ned by the Link class. These links are
directional and carry a LinkType. The KnowledgeGraph contains information about all
knowledge elements and their links and is used to access and display information. Ad-
ditionally, ConDec requires model classes for extracting and recognizing code changes
(Di�, ChangedFile) and for the extraction of knowledge elements from text within Jira
issues (PartOfJiraIssueText, TextSplitter).
Communication between frontend and backend is handled by REST-interfaces which al-
low the processing, accessing, and storing of the required data. The backend is written
in Java-code, while the frontend uses HTML and JavaScript to visualize and display
the decision knowledge. The Jira API allows the seamless blend-in of the plug-in into
Jira.
View classes are used for visualization of the decision knowledge. An example for this
visualization can be seen in Figure 2.5 in the Fundamentals Chapter 2. The TreeViewer
class provides the list of all decision knowledge which is then visualized in a tree struc-
ture by the Treant class. The VisGraph is used by WS3.3: Knowledge Graph View to
display all decision knowledge within a project in one complete graph, which is then
speci�able through �lters.

46

Persistence classes are used to access the settings and manage the databases of the
plug-in. These allow access to stored information or con�guration throughout the whole
plug-in, making it easier to customize the views according to a user's preferences.
Lastly, Con�g classes are used to con�gure the plug-in and manage the settings. Users
can edit the ConDec settings according to their needs. This includes features like de-
ciding whether to extract knowledge from connected Git repositories or not (SF5) or
editing the rationale model used for each project.

Fig. 5.1: Overview Class Diagram ConDec

The ConDec extension made by this thesis can be split into three sections. First the
creation of the requirements dashboard, then the visualization of Code-To-Work-Item
relationships and lastly the addition of the decision grouping feature. The following
Sections 5.2, 5.3 and 5.4 will discuss these additions in detail.

5.2 Requirements Dashboard

Section 5.2.1 introduces the architecture of the requirements dashboard, by describing
the relevant parts of the class diagram. The blue classes represented those implemented
by the extension, while the yellow classes are either interfaces or already existing classes
within the plug-in. Section 5.2.2 describes the most important architectural decisions
and Section 5.2.3 discusses decisions made in regard to the system functions introduced
in Section 4.4.2. Lastly, Section 5.2.4 introduces the resulting views.

5.2.1 Architecture

The goal of the Requirements Dashboard was to provide a view for the rationale man-
ager, which allowed a quick, encompassing overview of the completeness of the docu-

47

mented decision knowledge within a project. It is also supposed to provide a general
overview of the progress on each project, by providing some general statistics metrics,
like the amount of documented decision knowledge elements per Jira issue or the num-
ber of code classes and requirements speci�ed in each project. Figure 5.2 shows the
relevant parts of the class diagram. The RequirementsDashboardItem class provides the
context backend for this view. It generates the information, including project lists and
metric content, that is displayed on the Dashboard. The metrics are processed in the
MetricCalculator class which accesses the other necessary parts of the plug-in, includ-
ing the Git client, extraction classes, and the knowledge graph. The ChartCreator class
uses the processed metric data to create the box plot and pie chart objects which are
passed on to the frontend, to be displayed. The class separation allows easy modi�a-
bility (Section 4.5.1) in the future. To add additional metrics, developers only have to
pass the calculations to the chart creator and add them to the frontend HTML code.

Fig. 5.2: Class Diagram: Requirements Dashboard

48

5.2.2 Architectural Decisions

Tables 5.1, 5.2 and 5.3 reference the most important architectural decision problems
(DP). Table 5.1 weighs the general ideas behind using one single Dashboard to support
the rationale manager rather than splitting the requirements dashboard into multiple
smaller dashboards. Table 5.2 considers the implementation of the dashboard itself, as
that directly a�ects the architecture needed. Lastly, Table 5.3 discusses the split of the
MetricCalculator and ChartCreator class. Note, that decisions are also valued by their
contribution to the NFR's this thesis mainly focuses on (see Section 4.5).

Table 5.1: DP: Should the metrics be split into multiple Dashboards?

Type Description Modi-
�abi-
lity

Time
behav-
ior

Attrac-
tive-
ness

Decision Use a single Requirements Dashboard

Pros - Quick set up
- One cohesive dashboard for completeness

Cons - Longer loading times

Alternative Split into a general, a rationale complete-
ness and a Jira issue completeness dash-
board

Pros - Quicker loading times for each individual
dashboard

Cons - Increased spread of information
- Longer set up time

49

Table 5.2: DP: Implement the calculations in JavaScript or Java?

Type Description Modi-
�abi-
lity

Time
behav-
ior

Attrac-
tive-
ness

Decision Use Java for the backend and JavaScript
for the frontend

Pros - Approach similar to most ConDec fea-
tures
- More robust programming language
- API support

Cons - Slower reaction
- More complicated caching

Alternative Use JavaScript for the calculations as well

Pros - Can use existing caching methods
- Better reaction to �lters

Cons - Less robust
- Additional REST interface needed to ac-
cess data

Table 5.3: DP: Should metric calculation and chart creation be handled by one class?

Type Description Modi-
�abi-
lity

Time
behav-
ior

Attrac-
tive-
ness

Decision Split them into two classes

Pros - Less clutter
- Seperation between calculation and visu-
alization

Cons - Dependencies between classes harder to
�nd

Alternative Use one class for both

Pros - No additional class calls
- Easier change impact analysis

Cons - Class becomes to big
- More complicated use for other dash-
boards

50

5.2.3 System Function Related Decisions

SF1: Show basic knowledge metrics for project progress
The general metrics serve the rationale manager in quickly assessing the progress on a
project, by providing basic statistics. The issue was, which metrics to include in this
assessment. The decision was based on the broad requirements and a decision knowledge
report feature which already existed in ConDec. Thus, it was decided to include three
box plots showing the average number of comments, decisions, and decision issues per
Jira issue. Additionally, two pie charts were added, one showing the number of code
classes and requirements documented in the project and one showing the number of
knowledge elements from di�erent knowledge sources. These knowledge sources were
set to be knowledge elements from commits, Jira issues, code, and the issue content,
meaning Jira issue descriptions or comments.
For the box plots showing the average numbers, the issue came up of which Jira issue
types to include. The decision was made to include all issue types in the calculations
and not just the previously selected issue type. The reasoning behind this decision was
the fact that a rationale manager would require an overview of the whole project and
not just parts, in order to assess the progress. Rather, the selected issue type when
setting up the dashboard would just be used for the issue type completeness metrics
(see SF3).

SF2: Show rationale completeness metrics within decision knowledge
Similar to SF1, this system function required a decision about which metrics should
be included to show rationale completeness. As of the writing of this thesis, ConDec
contained no fully �eshed out de�nition of what constitutes rationale completeness. As
such, metrics were constrained to basic completeness measures while leaving room for
future expansion. A total of six pie chart metrics were added. They list decision issues
with and without connected decisions and vice versa, as well as alternatives and deci-
sions with and without pro and with and without con arguments.
Given the number of metrics it was an issue of how to uniformly present incompleteness.
Thus, it was decided to maintain a static coloring scheme for these box plots, showing
what were considered inconsistencies as red slices and complete knowledge elements as
blue slices.

SF3: Show completeness metrics of decision knowledge for requirements and
tasks
Again a decision had to be made about which metrics would be used to show complete-
ness for the requirements and tasks. Similar to SF2 no de�nition of what constitutes
completeness of the decision knowledge for the issue types existed yet. To see how
prevalent the decision documentation in a project is however, metrics were introduced
showing the selected issue types with and without decision issues and decisions. Addi-
tionally, an analysis of the relevance of the comments within the issue type was added.
The decision on what constitutes relevance was between two alternatives. The �rst
one being the relevance attribute of knowledge elements. This meant that all comments
which contained a knowledge element, that was marked as relevant, would be considered
relevant. The second one, which was then decided on, used the more basic measure of

51

whether the comment contained a decision knowledge element at all, to be considered
relevant.
Lastly, a metric was added which showed the distribution of the knowledge types within
the selected issue types. This would allow rationale managers to assess whether incom-
pleteness existed in the project if one type was disproportionately more prevalent than
another. For this metric a knowledge type could either be a decision issue, a decision,
an argument, or an alternative.
Given the number of issue types it was an issue of how to specify the displayed infor-
mation. Displaying all selected metrics for all issue types would prolong the calculation
time and possibly be overwhelming for a single dashboard. As such, it was decided to
prompt the user, to select an issue type from those available in the selected project,
prior to the calculation of the metrics.
Same as with SF2, it was also decided to keep the coloring scheme for the pie charts,
making possible inconsistencies red and complete element slices blue.

SF4: Navigate from plots in dashboard to respective knowledge element
The required navigation had the issue of how to implement this feature. The decision
was in part dictated by the already existing Feature Branch Rationale Quality Dash-
board. In order to maintain a uniform styling for the plug-in the same navigation was
maintained. By clicking the relevant slice in a pie chart or the relevant point in the box
plot an overlay listing all participating elements would be opened. Clicking the element
would load the related page in a new tab. This allows quick access to the desired ele-
ment without requiring the user to leave the dashboard.

SF5: Con�gure decision knowledge extraction from Git
Since knowledge elements can be documented in comments and code as well as in Jira,
some metrics require a connection to the related Git repository. The issue was deter-
mining how to handle projects without Git connection. It was decided to implement the
metrics in such a way, that these documentation locations would be ignored if no Git
connection was enabled. This allows a more universal use of the dashboard, even if no
repository is connected to the project. The dashboard metrics and layout are identical
for the user in both cases.

SF10: Filter knowledge graph
For a list of all �lter criteria see the de�nition of SF10 in Section 4.4.2. Implementing
�lters for the Dashboard, as with the other views described in Sections 5.3 and 5.4,
created the decision problem, on which �lters were relevant for the shown information.
Table 5.4 lists, which �lters were implemented and to which metrics they apply. While
ConDec aims to provide �lters as uniformly as possible for all views, restrictions had
to be made for a multitude of reasons. Some �lters were excluded due to irrelevance
to the given view. The complexity of Filtering as a topic, and the resulting time-cost
in relevance evaluation and implementation also created scenarios where not all desired
�lters could be implemented. However, ConDec in some cases o�ers these opportunities
in other views. For example, �ltering by documentation date is already o�ered in
another view (WS3.2), which diminishes the loss of the �lter.

52

Table 5.4: Requirements Dashboard Filters

Filter Description Relevant Metrics

Knowledge
Extraction from
Git

Checkbox on whether to ex-
tract knowledge elements from
Git or only consider those al-
ready in Jira

#Decisions per Jira issue
#Issues per Jira issue
#Elements from Decision Knowledge
Sources
Issue Type items having at least one issue
/ decision documented

Link Distance Steps from Jira issue to ele-
ment in the knowledge graph,
that should be considered for
a metric (ex. commits have a
distance of 1, code comments
of 2)

#Decisions per Jira issue
#Issues per Jira issue
Issue Type items having at least one issue
/ decision documented

Knowledge Type Speci�es for which Knowledge
Type (Issue, Decision, Ar-
gument, Alternative) metrics
should be calculated (stan-
dard is for all types)

#Decisions per Jira issue
#Issues per Jira issue
#Elements from Decision Knowledge
Sources
Issue Type items having at least one issue
/ decision documented
Relevant comments in Jira issues

Knowledge Status Only consider knowledge ele-
ments with a certain status,
for example idea, discarded,
rejected

#Decisions per Jira issue
#Issues per Jira issue
#Elements from Decision Knowledge
Sources
Issues / Decisions with and without Deci-
sions / Issues
Alternatives / Decisions with and without
pro / con arguments
Issue Type items having at least one issue
/ decision documented
Relevant comments in Jira issues
Distributions of knowledge types

Decision Group Only consider knowledge ele-
ments that are part of a cer-
tain decision group

#Decisions per Jira issue
#Issues per Jira issue
#Elements from Decision Knowledge
Sources
Issues / Decisions with and without Deci-
sions / Issues
Alternatives / Decisions with and without
pro / con arguments
Issue Type items having at least one issue
/ decision documented
Relevant comments in Jira issues
Distributions of knowledge types

53

5.2.4 Results

Figure 5.3 shows the result of the Requirements Dashboard (WS1.1) implementation
and can be compared to the mockup in Figure 4.8 in Section 4.7. At the top of the
dashboard the project selection is situated. By default only this section is shown until
a project has been selected. On selection, another drop-down menu is shown, which
allows the user to choose from all issue types present in the project. After the issue
type is chosen, the metrics are calculated and the resulting dashboard is displayed. The
dashboard is split into three sections according to the system functions SF1, SF2, and
SF3. The general metrics are situated at the top, followed by the rationale completeness
metrics, and lastly the selected issue type completeness metrics. The dashboard also
o�ers �lter capabilities in accordance with SF10, in order to specify the information for
the rationale managers needs. Additionally, by clicking on the pie slices of supported
metrics, users are shown a list of all relevant knowledge elements and can navigate to
them by clicking on the desired element. This feature is in accordance with SF4.

Fig. 5.3: Requirements Dashboard

5.3 Code To Work Item Relationship Visualization

Section 5.3.1 introduces the architecture of the requirements dashboard, by describing
the relevant parts of the class diagram. The blue classes represented those implemented
by the extension, while the yellow classes are either interfaces or already existing classes
within the plug-in. Section 5.3.2 discusses the most important architectural decisions
and Section 5.3.3 discusses decisions made in regard to the system functions introduced
in Section 4.4.2. Lastly, Section 5.3.4 introduces the resulting views.

54

5.3.1 Architecture

While ConDec already contains a code change summary feature, this extension adds
speci�c code class visualization features, in order to improve the connection between
the issues, their related knowledge elements, and the implemented code classes. Figure
5.4 represents the relevant class diagram for these code class features. The code classes
are stored in an active object database de�ned by the CodeClassInDatabase class (see
decision in Table 5.5). This is also, how knowledge elements and their links are stored in
Jira. The database and all related tasks including maintaining the classes and updating
the elements in case of new commits is handled by the CodeClassPersistenceManager.
The extraction of the classes itself from the commits and in extension to that, from
the code, is handled by the GitCodeClassExtractor. This class uses the Git-Blame
functionality to see which commit created which line of code and extracts the relevant
Jira issue keys from there. Links are then created between the class and the Jira issue.
The classes highlighted in green in Figure 5.4 are tasked with the visualization of this
knowledge. Similar to the view shown in the Decision Knowledge Overview in Figure 2.5
within the Fundamentals Chapter 2, the TreeViewer provides the list of all code classes
present in the project. The Treant displays a knowledge tree that shows the selected
code class, its connected issues, and all their decision knowledge elements. Additionally,
a view is provided in the Jira issue module, which displays all code classes related to
that issue, as a tree.

55

Fig. 5.4: Class Diagram: Code Class Storage and Visualization

56

5.3.2 Architectural Decisions

Tables 5.5 and 5.6 reference the most important architectural decision problems (DP).
Table 5.5 discusses the alternatives between the di�erent storage options for the code
classes in Jira and Table 5.6 weighs the di�erent visualization options for the code class
views. Note, that decisions are also valued by their contribution to the NFR's this thesis
mainly focuses on (see Section 4.5).

Table 5.5: DP: How should the code classes be stored in Jira?

Type Description Modi-
�abi-
lity

Time
behav-
ior

Attrac-
tive-
ness

Decision Store them in an Active Object Database

Pros - Fast queries
- API support

Cons - No further description or comment capa-
bilities for each class

Alternative Store the classes as Jira issues

Pros - Description and Comment capabilities
- Jira Link system can be used

Cons - Overloaded number of issues for big
project
- Slower access to all

Alternative Don't store the Classes at all

Pros - Requires less storage
- No database handling or managers re-
quired

Cons - Immense computation time to access
data

57

Table 5.6: DP: How should the visualization be implemented?

Type Description Modi-
�abi-
lity

Time
behav-
ior

Attrac-
tive-
ness

Decision Use TreeViewer and Treant for visualiza-
tion

Pros - Already present in Project
- Fleshed out libraries

Cons - More complex implementations

Alternative Use simple HTML elements

Pros - Easy to implement
Cons - Lower Attractiveness

- Lower clarity

5.3.3 System Function Related Decisions

SF6: List all code classes for a project
The �rst decision that was made regarding SF6, was based on the issue of how to extract
the code classes from the commits and maintain consistency. It was decided to extract
all existing classes on plug-in installation an maintain them by analysing the changes
of every new commit. Classes would be renamed, added and deleted according to the
changes implemented by new commits, every time the plug-in made a pull request onto
the repository.
As already mentioned in Table 5.6 the visualization was decided to be a list, which when
a selection was made, would show a knowledge tree connecting the class, the related
issue and all of its decision knowledge elements.
This also prompted the decision on the issue, which connections would be allowed in
the tree. It was decided not to allow knowledge elements to directly link to a class, as
deletions of classes could then result in knowledge becoming lost because of a loss of
connection to a Jira artifact. Instead, all connections between code classes and knowl-
edge elements would have to be through their connected issues. The handling of direct
connections would be to di�cult given the fact, that at its current state, the plug-in can
extract knowledge from Git but not add it. This results in connections being fragile,
with the constant moving, renaming, deleting and adding of classes.
Considering the grouping feature of SF8, a decision was made to allow users to also
attach groups to code class elements in Jira. This in turn could then be used to im-
plement the Group Filter (see SF10) to also work on code classes, allowing for more
targeted access to the knowledge elements.

SF7: List all code classes connected to a Jira issue
The very limited space available to the required view in the Jira issue module was
an issue and meant that a decision had to be made, on how much information could

58

be displayed in the view (WS2.5). Unfortunately, showing code classes and decision
knowledge related to the selected issue would result in either a very zoomed out display
of the knowledge tree or a view which could only show very limited parts of the tree.
The reason behind this being, that the view is very limited in available horizontal space.
As such, it was decided, that the views showing the related decision knowledge(WS2.2)
and the one showing the related code classes(WS2.5) would remain separate.

SF10: Filter knowledge graph
An issue that occurred when designing the �lters for the relevant views, was that space
was limited and as such the user could be overwhelmed by the amount of elements
shown. As such, it was decided to add a "Show test classes" �lter for the Jira issue
module Connected Code-Classes View(WS2.5), as the limited space could result in an
overload of displayed classes. The �lter will hide or show all classes considered to be
tests, rather then implementation.
Next, a �lter was added to the Code Classes View (WS3.5) allowing the user to hide
and show connected Jira issues that do not have any knowledge elements attached to
them. Similar to the previous decision this reduces clutter, if the information is not
necessary.
Both views previously mentioned were also given a �lter deciding whether to show code
classes based on a minimum and maximum of connected Jira issues. Code classes hav-
ing fewer connections than the minimum or more than the maximum would be hidden
from view.

5.3.4 Results

Figure 5.5 shows the result of the Code View (WS3.6) and can be compared to the
mockup in Figure 4.11 in Section 4.7. On the left the view presents a list of all code
classes extracted from the connected Git repositories. By clicking on these their knowl-
edge tree is shown on the right hand side. The classes are directly connected to Jira
issues. These issues have their decision knowledge elements connected to them. On
top of the view, the �lters can be seen. The text search, group and number of linked
elements �lter apply to the list on the left. The link distance and "show issues without
knowledge elements" �lter apply to the tree on the right. The tree also o�ers the Con-
Dec context menu feature. The context menu can be opened via right clicks and allows
editing, group assignment and other knowledge related features.

59

Fig. 5.5: Code Classes View

Figure 5.6 shows the results of the Connected Code-Classes View (WS2.5) implemen-
tation and can be compared to the mockup in Figure 4.10 in Section 4.7. The issue
model code class view shows all code classes that were created or edited as a result of
the connected Jira issue. As of right now, the code classes are limited to Java classes.
Connection is established if the class is present within a commit done in relation to
the Jira issue. This view also o�ers a text search and a "number of linked elements"
�lter. Additionally, a checkbox exists which allows users to decide whether to display
test classes or not.

Fig. 5.6: Connected Code-Classes view

60

5.4 Decision Grouping

Section 5.4.1 introduces the architecture of the requirements dashboard, by describing
the relevant parts of the class diagram. The blue classes represented those implemented
by the extension, while the yellow classes are either interfaces or already existing classes
within the plug-in. Section 5.4.2 discusses the most important architectural decisions
and Section 5.4.3 discusses decisions made in regard to the system functions introduced
in Section 4.4.2. Lastly, Section 5.4.4 introduces the resulting views.

5.4.1 Architecture

Introducing decision groups into the ConDec plug-in allows users to sort their doc-
umented decisions according to any criteria they desire. These clusters of grouped
decision can then easily be �ltered allowing more targeted access to related decisions.
This enables easier change impact analysis for the users, as related decisions are easier
to �nd, even if they are not documented within the same issue or follow the same nam-
ing scheme. Similar to the code classes, groups are stored as database entries using the
Active Object functionality of Jira. This database is de�ned by the DecisionGroupIn-
Database class. The DecisionGroupManager class handles all the deletions, insertions
and updates to the database. For visualization it is accessed by the Con�gRest and
KnowledgeRest REST interfaces which supply information to the frontend, allowing �l-
ters to be used and providing information to the Decision Group View (WS3.7). Figure
5.7 shows the relevant class diagram.

Fig. 5.7: Class Diagram: Decision Grouping

61

5.4.2 Architectural Decisions

Tables 5.7 and 5.8 reference the most important architectural decision problems (DP).
Table 5.7 discusses the storage of decision groups within Jira. Table 5.8 discusses
whether to implement a model class for decision groups. Note, that decisions are also
valued by their contribution to the NFR's this thesis mainly focuses on (see Section
4.5).

Table 5.7: DP: How should the groups be stored in Jira?

Type Description Modi-
�abi-
lity

Time
behav-
ior

Attrac-
tive-
ness

Decision Use a database of group entries

Pros - Fast access
- Storage handled mostly by Jira

Cons - New Database required
- Handler for Database required

Alternative Store them as attributes to knowledge ele-
ments

Pros - No new classes required
Cons - Slower access if all groups are extracted

- Storage dependent on knowledge ele-
ments

Table 5.8: DP: Should a new Group-Model-Class be created?

Type Description Modi-
�abi-
lity

Time
behav-
ior

Attrac-
tive-
ness

Decision Declare Groups as Strings

Pros - Simple and e�cient storage
- Less complication

Cons - No additional attributes can be added

Alternative Create a model class for Groups

Pros - Versatile
- Allows future expansion

Cons - Complex to handle

62

5.4.3 System Function Related Decisions

SF8: Group Knowledge Elements
As discussed in the Review Discussion (Section 3.5) the limited amount of predeter-
mined grouping schemes, increases the di�culty for the user to assign their decisions
correctly and with a low enough e�ort. As such, it was decided to only implement this
predetermination in a very limited manor. Users are required to select from one of three
decision levels (High, Medium and Realization Level) when assigning a group but are
otherwise free to assign groups with any name they desire. This allows some form of
uniformity across the project, while keeping the grouping process relatively simple. It
is also more versatile to assign custom groups for each project individually, rather then
predetermining them universally.
Another decision that had to be made was how the inheritance of groups between related
knowledge elements would work. Multiple alternatives existed for this. The �rst would
be to not implement any inheritance what so ever and assign each element individually.
This however would result in additional e�ort should a user require each related element
to be of the same group and could lead to a loss of connection between elements as they
would not automatically carry similar groups. The next alternative would be to imple-
ment universal inheritance. In this case, if one element of the knowledge tree was tagged
with a group, all others would automatically be equipped as well. The problem with
this approach however would be that, as individual elements are tagged with di�erent
groups, the tree could become overloaded with too many of them, reducing the value of
the grouping mechanism. The third alternative, which was chosen for the project, was
to implement a top-down inheritance scheme, in which all knowledge elements below
another in the tree would inherit the group from the one above but not the other way
around. This approach seemed to provide a good compromise between the other two
alternatives.

SF9: Manage knowledge element groups
The question of how to visualize the groups existing within a project was decided on
based on the tasks of the related view (WS3.7). Since the views main task was the bulk
deletion or renaming of existing groups, it was decided to provide a very simple clean
look. The view, tasked with implementing this system function, merely presents a table
listing the existing groups, with the connected decision knowledge elements and java
classes. The editing of the group is done via the custom context menu already existing
in ConDec.
Additionally, to keep the view as simple and clear as possible, instead of listing the
keys of all connected issues, the table simply lists the number of knowledge elements
and code classes connected to the group. This allows the users to easily assess how
many elements are e�ected by their changes. The functionality of seeing all elements
belonging to a group is still present in the Decision Knowledge Overview (WS3.1) and
the Code Classes View (WS3.6) by using the provided group �lter.

SF10: Filter knowledge graph
Lastly, the decision was made to allow the grouping �lter to be combinable. This means
that the user is able to search for a combination of groups at once. An example would

63

be all High level decision within the "Safety" group.

5.4.4 Results

Figure 5.8 shows the results of the Decision Group View (WS3.7) implementation and
can be compared to the mockup in Figure 4.12 in Section 4.7. The view presents a table
listing all decision groups that are currently assigned to at least one knowledge element.
On the right side it shows the number of assigned decision knowledge elements and also
the number of assigned Java classes. By right-clicking a group the user is presented
with the possibility of either renaming the group or deleting it completely. By choosing
these options, the change is automatically propagated to all assigned elements.

Fig. 5.8: Decision Group View

64

6 Quality Assurance

This chapter describes the quality assurance process for the ConDec extension. It
speci�es the planing, execution and analysis of all tests done in relation to the extension.
Section 6.1 speci�es the general planing and structure of the di�erent tests. Section 6.2
explains the static code testing that was part of the implementation. Next, Section
6.3 describes the component tests necessary for the ConDec extension. Lastly, Section
6.4 then introduces the system tests done in relation to the system functions of the
extension.

6.1 Test Concept

To guarantee that the software is in a deployable state, ConDec uses a branching concept
with the master branch being the mainline. Next to this branch, the development branch
is a second branch containing new feature developments. From this branch, developers
create individual feature branches. This means, that for every task tackled a developer
creates a new branch in the Git repository. The branch is based on the "develop"
default branch and commits are pushed to this branch instead of directly to the default
branch. This simpli�es the work for multiple developers working at the same time,
by preventing merge con�icts. Additionally it allows individual testing of the feature
branches by automated tools and code reviews, before they are merged into the develop
branch at the end of implementation. The testing done on the ConDec project after the
extensions implementation can be split into three groups. They consist of static code
tests, component tests and system tests.
The static code tests were automated using Codacy1, which is con�gured to run tests
on every commit in the Git repository. Static code testing analyses the source code
itself before any execution is done. This allows developers to �nd code smells and
possible problems during execution, by using a set of code standards. The goal is
to produce higher quality, more readable code and �x possible problems before more
complex component and system tests are executed.
Component tests are designed to test the methods that make up ConDec's backend. For
testing, JUnit2 is used in a local environment. The Atlassian SDK used for development
supports JUnit running at plug-in compilation time. Additionally, tests are executed
within the Git-Repository. On commit to the relevant branch, a TravisCI3 test runner
is used to conduct the component tests and report errors. The component tests will

1Codacy: https://www.codacy.com/ (Last access: 05.06.2020)
2JUnit: https://junit.org/junit4/ (Last access: 05.06.2020)
3TravisCI: https://travis-ci.org/ (Last access: 05.06.2020)

65

https://www.codacy.com/
https://junit.org/junit4/
 https://travis-ci.org/

be measured by their success as well as the test coverage across all relevant classes.
Currently, no frontend component tests are used within ConDec.
The system tests use prede�ned processes with �xed, expected results to assess proper
function of the software on a surface level. Using step-by-step instructions, these tests
are designed to arrive at a certain output. Any deviation from the expected output
is noteworthy and must be assessed further. Thus, system tests will be measured by
success or failure.
During this thesis, tests were conducted throughout the implementation process, mostly
at the end of the relevant implementation tasks. Failing tests resulted in bug reports.
These were resolved during the further implementation. Thus, all tests listed in this
chapter were successful by the end of the implementation phase.

6.2 Static Code Tests

Codacy breaks the possible code issues during the static code testing down into six
categories. Security issues can cause problems in the safety of the executed code. Error
Prone issues are those that may hide bugs or use language keywords that should not be
used. Code style issues do not follow the prede�ned styling rules designed to improve
readability and comprehendability of the code. Compatibility issues are mostly frontend
focused and consider problems like browser compatibility. Unused Code is dead code
that can't be reached or is never actually called by the program and Performance
issues concern drains on system resources. The most prevalent issues found during
development are by far the code style issues as they are easily made and do not create
problems with code execution. They are, however, also among the most easily �xed. In
addition to the automated testing another measure is included in the static code testing
in the form of a complexity value.
The complexity of a class can be a good indicator of the overall quality of the code.
Code that is too complex can lead to multiple problems, including di�culty in the
readability and thus analysability of code, as well as problems in the execution itself.
Additionally, complex code is much harder to debug because of its complex traceability.
This makes it important to measure the complexity of the source code. The tools used
during the development of the ConDec extension provide a value for the complexity of
the code in the form of the cyclomatic complexity. It is de�ned by McCabe et al. [38]
as the minimum number of paths that can, in combination, generate all possible paths
through a method. The more nested a method becomes, the higher its complexity value
becomes, as more paths exist to navigate through the method. Formally, the cyclomatic
complexity M of a method is based on the representation of the control �ow graph of
the piece of code in the form of a directed graph.

M = E −N + 2
E = Number of Edges
N = Number of Nodes

66

Additionally, the complexity value can serve as a measure, for how many test cases are
needed in the component test-phase (Section 6.3) to ensure proper code coverage. The
complexity calculation is automated by a tool called Codecov4, which is included into
the Git repository. Table 6.1 gives an overview over the lines of code and the complexity
value of relevant classes.

Table 6.1: Cyclomatic Code Complexity

Class Lines of Code Complexity

ChartCreator 49 1
CodeClassPersistenceManager 323 17
Data 104 7
DecisionGroupManager 294 8
GitClient 1069 12
GitCodeClassExtractor 198 9
KnowledgeElement 565 4
KnowledgeRest 496 25
MetricCalculator 419 16
RequirementsDashboardItem 179 11
Treant 213 18
TreeViewer 261 9
ViewRest 430 6

6.3 Component Tests

The automatic component tests conducted by the continuous integration server Travis
CI is con�gured to accept branches with a minimum test coverage delta of 65%. As
such, the ConDec extension provides JUnit tests, that exceed this minimum coverage
on all new classes. Additionally, it ensures that test coverage does not decrease on any
classes that were altered or extended upon. The coverage is calculated by the percentage
of code that the executed tests reach at least once. Like the complexity, the task of
calculating test coverage is calculated using Codecov. Table 6.2 lists the relevant classes,
the number of tests for each and their test coverage.

4Codecov: https://codecov.io/ (Last access: 05.06.2020)

67

 https://codecov.io/

Table 6.2: Component Test Coverage

Class # of Tests Coverage

ChartCreator 3 100%
CodeClassPersistenceManager 20 65.15%
Data 11 85.30%
DecisionGroupManager 28 82.84%
GitClient 31 68.35%
GitCodeClassExtractor 16 72.34%
KnowledgeElement 30 85.46%
KnowledgeRest 59 73.88%
MetricCalculator 9 65.24%
RequirementsDashboardItem 5 72.91%
Treant 23 84.62%
TreeViewer 19 82.76%
ViewRest 44 88.18%

6.4 System Tests

This section describes all system tests which relate to the system functions speci�ed
in Section 4.4.2. Please note, that in order to improve the readability of the Section,
certain details were omitted. The post-conditions for the system tests were not included
in the tables, as for almost all tests, these were unchanged. For more detailed condi-
tions and additional details see Section 4.4.2 where the system functions are detailed.
Additionally, for all test cases the precondition mandates, that at least one project has
to exist within Jira.

SF1: Show basic knowledge metrics for project progress

Table 6.3 describes the system tests for SF1, including the preconditions, the exact test
steps, and the expected result. These tests focus on the proper depiction of the basic
metrics as well as the correct results within the metrics. Note that postconditions were
omitted as nothing changes within the data in the presented visualizations.

68

Table 6.3: System Tests SF1: Show basic knowledge metrics for project progress

ID Preconditions Steps Expected Result

ST1.1 At least one Jira issue ex-
ists with one comment

1. Select the existing
Project
2. Select any issue type

The "# Comments per
Jira issue" metric is
shown and displays the
issue with the comment

ST1.2 At least one Jira issue ex-
ists with one decision doc-
umented

1. Select the existing
Project
2. Select any issue type

The "# Decisions per Jira
issue" metric is shown and
displays the issue with the
decision

ST1.3 At least one Jira issue ex-
ists with one decision is-
sue documented

1. Select the existing
Project
2. Select any issue type

The "# Issues per Jira is-
sue" metric is shown and
displays the issue with the
decision issue

ST1.4 At least one requirement
and one code class exist in
Jira

1. Select the existing
Project
2. Select any issue type

The "# Requirements
and Code Classes" metric
is shown and displays
both the requirement and
the code class

ST1.5 At least one knowledge
element exists from each
documentation location
(Commit, Jira issue,
Code and Jira issue
content)

1. Select the existing
Project
2. Select any issue type

The "# Elements from
Decision Knowledge
Sources" metric is shown
and displays the elements
in the correct slice for
their documentation
location

ST1.6 No issues or knowledge el-
ements exist

1. Select the existing
Project
2. Select any issue type

All metrics are displayed
with zero elements

69

SF2: Show rationale completeness metrics within decision knowledge

Table 6.4 describes the system tests for SF2, including the preconditions, the exact test
steps, and the expected result. These tests focus on the proper depiction of the rationale
completeness metrics as well as the correct results within the metrics.

Table 6.4: System Tests SF2: Show rationale completeness metrics within decision knowledge

ID Preconditions Steps Expected Result

ST2.1 Two decisions issues ex-
ist; One of them has a
decisions linked the other
doesn't

1. Select the existing
Project
2. Select any issue type

The "How many issues
are solved by a decision?"
metric displays the issue
with the decision and the
one without in blue and
red respectively

ST2.2 Two decisions exist; One
of them has an issue
linked the other doesn't

1. Select the existing
Project
2. Select any issue type

The "For how many de-
cisions is the issue docu-
mented?" metric displays
the decision with the is-
sue and the one without in
blue and red respectively

ST2.3 Two alternatives exist;
One of them has a con ar-
gument linked the other
doesn't

1. Select the existing
Project
2. Select any issue type

The "How many alterna-
tives have at least one con
argument documented"
metric displays the al-
ternative with the con
argument and the one
without in blue and red
respectively

ST2.4 Two decisions exist; One
of them has a con ar-
gument linked the other
doesn't

1. Select the existing
Project
2. Select any issue type

The "How many decisions
have at least one con
argument documented"
metric displays the
decision with the con
argument and the one
without in blue and red
respectively

70

ST2.5 Two alternatives exist;
One of them has a pro ar-
gument linked the other
doesn't

1. Select the existing
Project
2. Select any issue type

The "How many alterna-
tives have at least one pro
argument documented"
metric displays the al-
ternative with the pro
argument and the one
without in blue and red
respectively

ST2.6 Two decisions exist; One
of them has a pro ar-
gument linked the other
doesn't

1. Select the existing
Project
2. Select any issue type

The "How many decisions
have at least one pro argu-
ment documented" met-
ric displays the alterna-
tive with the pro argu-
ment and the one with-
out in blue and red re-
spectively

ST2.7 No issues or knowledge el-
ements exist

1. Select the existing
Project
2. Select any issue type

All metrics are displayed
with zero elements

SF3: Show completeness metrics of decision knowledge for requirements
and tasks

Table 6.5 describes the system tests for SF3, including the preconditions, the exact test
steps, and the expected result. These tests focus on the proper depiction of the selected
issue type completeness metrics as well as the correct results within the metrics.

Table 6.5: System Tests SF3: Show completeness metrics of decision knowledge for require-
ments and tasks

ID Preconditions Steps Expected Result

ST3.1 Two Work Item issues ex-
ist; One of them has
an issue linked the other
doesn't

1. Select the existing
Project
2. Select the Work Item
issue type

The "For how many Work
Item types is an issue
documented?" metric dis-
plays the Work Item with
the issue and the one
without in the blue and
red slice respectively

71

ST3.2 Two Work Item issues ex-
ist; One of them has a
decisions linked the other
doesn't

1. Select the existing
Project
2. Select the Work Item
issue type

The "For how many Work
Item types is a decision
documented?" metric dis-
plays the Work Item with
the decisions and the one
without in the blue and
red slice respectively

ST3.3 At least one Work Item
exists with two com-
ments; One comment
is a decision knowledge
element the other isn't

1. Select the existing
Project
2. Select the Work Item
issue type

The "Comments in JIRA
issues relevant to Decision
Knowledge" metric dis-
plays the Comment with
the decision knowledge el-
ement and the one with-
out in the blue and red
slice respectively

ST3.4 One Work Item exists
with a decision issue, a de-
cision, an alternative and
a pro or con argument
linked

1. Select the existing
Project
2. Select the Work Item
issue type

The "Distribution of
Knowledge Types" met-
ric displays the correct
amount of knowledge
elements for each type

ST3.5 No issues or knowledge el-
ements exist

1. Select the existing
Project
2. Select any issue type

All metrics are displayed
with zero elements

SF4: Navigate from plots in dashboard to respective knowledge element

Table 6.6 describes the system tests for SF4, including the preconditions, the exact test
steps, and the expected result. These tests focus on establishing whether the navigation
from both the box plots as well as the pie charts works as intended and leads to the
correct issues.

72

Table 6.6: System Tests SF4: Navigate from plots in dashboard to respective knowledge ele-
ment

ID Preconditions Steps Expected Result

ST4.1 At least one Jira issue ex-
ists with one comment

1. Select the existing
Project
2. Select any issue type
3. Click on the point
within the "# Comments
per Jira issue" metric
4. Click on the issue-key
in the overlay

The browser opens a new
tab with the issue module
view of the selected issue

ST4.2 Two decisions exist; One
of them has a con ar-
gument linked the other
doesn't

1. Select the existing
Project
2. Select any issue type
3. Click on one of the
slices within the "How
many decisions have at
least one con argument
documented" metric
4. Click on the knowledge
element key in the overlay

The browser opens a new
tab with the issue mod-
ule view of the issue con-
taining the knowledge el-
ement

ST4.3 No issues or knowledge el-
ements exist

1. Select the existing
Project
2. Select any issue type
3. Click on one of the
slices within any pie chart

No overlay is opened

SF5: Con�gure decision knowledge extraction from Git

Table 6.7 describes the system tests for SF5, including the preconditions, the exact test
steps, and the expected result. These tests focus on determining whether the metrics
produce the correct results, whether the Git extraction is enabled or not.

73

Table 6.7: System Tests SF5: Con�gure decision knowledge extraction from git

ID Preconditions Steps Expected Result
ST5.1 Two Work Items exist;

One has an issue docu-
mented in the issue con-
tent and the other in a
connected Git commit

1. Open the ConDec Git
Connection Settings
2. Enable the (Extract
from Git?) setting
3. Open the dashboard
4. Select the project and
Work Item issue type

The "For how many Work
Item types is an issue doc-
umented?" metric shows
the two issues Work Items
with an issue connected

ST5.2 Two Work Items exist;
One has an issue docu-
mented in the issue con-
tent and the other in a
connected Git commit

1. Open the ConDec Git
Connection Settings
2. Disable the (Extract
from Git?) setting
3. Open the dashboard
4. Select the project and
Work Item issue type

The "For how many Work
Item types is an issue doc-
umented?" metric shows
only the Work Item with
the issue in the issue con-
tent

ST5.3 Two Work Items exist;
One has an issue docu-
mented in the issue con-
tent and the other in a
connected Git commit

1. Open the ConDec Git
Connection Settings
2. Enter an erroneous Git
URI
3. Open the dashboard
4. Select the project and
Work Item issue type

The metrics are correctly
calculated as if the Git ex-
traction was disabled

SF6: List all code classes for a project

Table 6.8 describes the system tests for SF6, including the preconditions, the exact test
steps, and the expected result. These tests focus on the Code View (WS3.6) and the
proper depiction of the extracted code classes.

74

Table 6.8: System Tests SF6: List all code classes for a project

ID Preconditions Steps Expected Result

ST6.1 One code class exists and
is connected to at least
one Jira issue

1. Open the "Code
Classes" view
2. Click on the code class
on the left side of the view

The knowledge tree for
the code class is opened,
showing the connected is-
sue

ST6.2 One code class exists in
Jira and is connected to at
least one Jira issue

1. Open the "Code
Classes" view in the Con-
Dec Decision Knowledge
Page
2. Click on the code class
on the left side of the view
3. Right-Click the code
class element in the tree

The context menu opens
and shows only the assign
to decision group option

SF7: List all code classes connected to a Jira issue

Table 6.9 describes the system tests for SF7, including the preconditions, the exact test
steps, and the expected result. These tests focus on the Connected Code-Classes View
(WS2.5) and proper depiction of the extracted code classes in relation to the Jira issue.

Table 6.9: System Tests SF7: List all code classes connected to a Jira issue

ID Preconditions Steps Expected Result

ST7.1 Git extraction setting is
enabled
One code class exists in
Jira and is connected to at
least one Jira issue

1. Open the "Connected
Java-Classes" View

The code class is listed in
the tree beneath the Jira
issue

ST7.2 Git extraction setting is
enabled
One code class exists in
Jira and is connected to at
least one Jira issue

1. Open the "Connected
Java-Classes" View
2. Right-click the code
class in the tree

The context menu opens
and shows only the assign
to decision group option

75

SF8: Group Knowledge Elements

Table 6.10 describes the system tests for SF8, including the preconditions, the exact test
steps, and the expected result. These tests focus on the grouping functionality across
multiple views, making sure that the assignment and inheritance work as expected.

Table 6.10: System Tests SF8: Group Knowledge Elements

ID Preconditions Steps Expected Result

ST8.1 At least one decision is-
sue is documented with a
linked decision

1. Open the Decision
Knowledge Page
2. Click on the decision
issue
3. Right-Click the deci-
sion issue in the tree
4. Select "Assign to Deci-
sion Group"
5. Assign a Group

The group is assigned to
the decision issue and its
related decision

ST8.2 At least one decision issue
is documented and linked
to a Jira issue; The Jira is-
sue is connected to a code
class

1. Open the "Code
Classes" view in the De-
cision Knowledge Page
2. Click on the code class
3. Right-Click the Jira is-
sue in the tree
4. Select "Assign to Deci-
sion Group"
5. Assign a Group

The group is assigned to
the decision issue, the Jira
issue and the code class

ST8.3 At least one decision is-
sue is documented with a
linked Jira issue

1. Open the "Tree Visu-
alization" in the Jira issue
module
2. Right-Click the deci-
sion issue in the tree
3. Select "Assign to Deci-
sion Group"
4. Assign a Group

The group is assigned to
the decision issue

SF9: Manage knowledge element groups

Table 6.11 describes the system tests for SF9, including the preconditions, the exact
test steps, and the expected result. These tests focus on the management capabilities of
the Decision Groups View (WS3.7), namely the bulk renaming and deletion of groups.

76

Table 6.11: System Tests SF9: Manage knowledge element groups

ID Preconditions Steps Expected Result

ST9.1 A decision group is as-
signed to atleast one
knowledge element

1. Open the "Decision
Groups" view in the De-
cision Knowledge Page
2. Right-click the decision
group
3. Select the "Rename the
Decision Group" feature
4. Assign a new name to
the group and con�rm

The new Group name is
now displayed in the table
while the old is gone

ST9.2 A decision group is as-
signed to atleast one
knowledge element

1. Open the "Decision
Groups" view in the De-
cision Knowledge Page
2. Right-click the decision
group
3. Select the "Delete the
Decision Group" feature
Con�rm the deletion

The group is gone for ta-
ble and the knowledge ele-
ment is no longer assigned
to it

SF10: Filter knowledge graph

Table 6.12 describes the system tests for SF10, including the preconditions, the exact
test steps, and the expected result. These tests focus on the new �ltering capabilities
introduced by the ConDec extension across di�erent views. Note that for all �lters
tests with incorrect or invalid inputs were conducted. However, for special reasons and
because they are all handled by HTML itself, they were omitted from this listing.

77

Table 6.12: System Tests SF10: Filter knowledge graph

ID Preconditions Steps Expected Result

ST10.1 At least one code class ex-
ists that is assigned to two
decision groups and one
code class exists that has
just one of the groups

1. Open the "Code
Classes" View in the De-
cision Knowledge Page
2. Press on the "Select a
Group" �lter
3. Choose the groups that
the class is assigned to

The code class that is part
of both groups is shown
on the left. The other one
isn't

ST10.2 One code class exists that
is connected to two Jira
issues and one that is only
connected to one

1. Open the "Code
Classes" View in the De-
cision Knowledge Page
2. Set the "Linked Issue
Min:" �lter to 2

Only the code class with
2 connections is shown

ST10.3 One code class exists that
is connected to two Jira
issues and one that is only
connected to one

1. Open the "Code
Classes" View in the De-
cision Knowledge Page
2. Set the "Linked Issue
Max:" �lter to 1

Only the code class with
1 connection is shown

ST10.4 A code class exists with
two connected Jira issues;
One of the issues has
connected knowledge ele-
ments, the other doesn't

1. Open the "Code
Classes" View in the De-
cision Knowledge Page
2. Select the code class
3. Set the "Show Issues
without Knowledge Ele-
ments" �lter

Only the issue that has
knowledge elements con-
nected is shown in the tree

ST10.5 A Jira issue exists that
has a code class and a test
code class connected

1. Open the Connected
Java-Classes View in the
Jira issue module of the
relevant issue
2. Set the "Show Test-
Classes" �lter
3. Press "Filter"

After pressing the button
both classes are shown in
the tree

78

7 Evaluation

This section presents and discusses the evaluation of the ConDec extension. Section
7.1 speci�es the goals of the evaluation and explains its two separate parts, the survey
and the evaluation on real data. Section 7.2 details the survey with feedback by fellow
ConDec developers and Section 7.3 speci�es the manual gold standard creation and
subsequent evaluation on the created standard. Lastly, Section 7.4 discusses possible
threats to the validity of the evaluation.

7.1 Evaluation Goals

The two main goals of this chapter are the evaluation of the acceptance of features im-
plemented by the ConDec extension and the creation and evaluation of a gold standard,
in particular, in terms of its time behaviour.

G1: Feature Acceptance by ConDec Users
The �rst part of the evaluation targeted the acceptance of the newly implemented fea-
tures and views by ConDec users with di�erent levels of user experience. To assess this
acceptance a survey based on the Technology Acceptance Model (TAM) by Davis et al.
[12] was used. The model split the acceptance into three subcategories. The �rst part is
the Perceived Ease of Use of the software, which asks the user about the di�culty they
perceived in interacting with the relevant software features. The second part focuses
on the Perceived Usefulness, specifying how useful the feature was towards its intended
use. The third part is the Intention to Use, which asks the user how likely future use
of the feature is for them.

G2: Gold Standard Creation and Evaluation on real data
The second goal can be split into two di�erent aspects. The creation of a gold standard
dataset for the future evaluation of ConDec projects (G2a) and the evaluation of the
time behaviour of the implemented features using this complex dataset, to allow proper
evaluation (G2b).

G2a: Gold Standard Creation and Analysis
The gold standard creation serves two purposes. First, it is used to empirically deter-
mine the characteristics of a real project in terms of decision groups. The aim is to
analyse this gold standard and describe characteristics such as how many realization-

79

level, medium-level and high-level decisions were documented in the project. The proper
evaluation of time behaviour can only take place on a dataset that has a high enough
complexity to be relevant for any performance-related concerns. Secondly, it allows
future evaluations on the performance of possible features. By creating a dataset with
a high level of interconnection between elements, the real performance of a plug-in and
the way it handles bigger amounts of data is more realistically assessable.

G2b: Evaluation of Time Behaviour using real data
Using the dataset created by G2a the time behaviour of the implemented features and
views can be assessed relatively realistically. For the assessment, time boundaries are
speci�ed, which, while subjective for every user, should allow an evaluation of the per-
formance of the ConDec plug-in on larger datasets. Features meeting these criteria
could require future improvement as their use is hindered by an excessive amount of
loading time, thus possibly shying away developers from their use.

7.2 Acceptance Evaluation

In this section the acceptance of the ConDec extension's features are evaluated by fellow
ConDec developers. The methodology of the evaluation and the results are presented
and discussed. This ful�lls the �rst goal (G1) of the evaluation.

Methodology

The survey used for the evaluation was split into �ve parts, corresponding to the new
features implemented in the extension. The �rst part focused on the assignment of
decision groups within Jira. The second part then asked users to manage these groups
using the Decision Group View in WS3.7. Next users were asked to identify code classes
relevant to a certain issue using WS2.5. Afterward they were tasked with extracting
knowledge about code classes, in general, using the Code View WS3.6. Lastly, they
were asked to use the new requirements dashboard to answer another set of questions.
For all �ve categories users were asked questions according to the previously mentioned
TAM and its three categories, Perceived Ease of Use (EoU), Perceived Usefulness (PU)
and Intention to Use (ItU). For each TAM question answers had to be on a �ve scale
between "complete rejection" and "total agreement". Additionally, for each question a
�eld was provided to allow text input by the participants. This allowed them to give
further explanations, report problems, or give additional feedback. Table 7.1 again lists
the �ve categories of the survey and details the relevant tasks for the users.

80

Table 7.1: Evaluation Survey Categories and Tasks

ID Category Task

C1 Decision Group
Assignment

Use the Decision Knowledge View within a Jira issue or the
Decision Knowledge Page to assign groups and set a decision
level for decisions documented by you.

C2 Manage Decision
Groups

Use the Decision Group View to rename and delete at least
one group.

C3 Identify relevant
code classes

Use the Connected Java-Classes View and its �lters to an-
swer three questions about a Jira task.
Q1: How many Java classes were created or changed because
of the task ?
Q2: How many classes are tests ?
Q3: How many classes are connected to a maximum of two
Jira issues?

C4 Code classes re-
lated to Jira is-
sues

Use the Code Classes View to answer the following questions:
Q1: How many code classes are connected to at least 25 Jira
issues.
Q2: Which Jira issue, connected to the "GitClient" code
class, has no connected decision knowledge?

C5 Assess Complete-
ness of Decision
Knowledge

Use the Requirements Dashboard to answer the following
questions:
Q1: In which documentation location are most of the knowl-
edge element documented ?
Q2: How many decision issues are connected to a decision?
Q3: How many work items do not have decisions linked to
them ?

All evaluation questions that were part of the survey are listed in Table 7.2 with the
relevant category they belong to and the part of the TAM they seek to answer.

81

Table 7.2: Evaluation Survey Questions

ID Cat. TAM Question
EQ1 C1 EoU It is easy to assign decision groups to elements
EQ2 C1 PU The assigning of decision groups is useful
EQ3 C1 ItU I will continue to assign decision groups in the future
EQ4 C1 PU It is useful to force users to assign a decision level when

assigning groups

EQ5 C2 EoU It is easy to delete and rename groups
EQ6 C2 PU The bulk renaming and deleting of groups is useful when

working with decision groups
EQ7 C2 ItU I will continue to use the Decision Group View in the future

EQ8 C3 - Which of the questions were you able to answer without a
problem ?

EQ9 C3 EoU It is easy to �nd information about relevant code classes for
each Jira issue

EQ10 C3 PU The View is useful to visualize relationships between Jira
issues and code classes

EQ11 C3 ItU I will continue to use the view in the future

EQ12 C4 - Which of the questions were you able to answer without a
problem ?

EQ13 C4 PU The existing �lters su�ce to specify the shown decision
knowledge

EQ14 C4 EoU It is easy to use the �lters
EQ15 C4 EoU It is easy to gain information about code classes and their

related Jira issues and decision knowledge elements from this
view.

EQ16 C4 PU It is useful to visualize the relationships between Code, Jira
issues and Knowledge elements like this

EQ17 C4 ItU I will use this view in the future

EQ18 C5 - Which of the questions were you able to answer without a
problem ?

EQ19 C5 EoU It is easy to �nd incomplete decision knowledge by using the
dashboard

EQ20 C5 PU It is useful to have the incompleteness displayed like this
EQ21 C5 ItU I will continue to use the dashboard to �nd incomplete deci-

sion knowledge

82

Results and Discussion

The survey presented in the previous section was �lled out by a total of �ve experienced
ConDec developers over the span of a week. While an increased number of participants,
especially from inexperienced users, would of course have allowed for a more thorough
acceptance evaluation, the extend of the given feedback should su�ce to create a general
statement of the acceptance among people already familiar with the plug-in.
Figure 7.1 displays the levels of agreement to the TAM questions listed in Table 7.2.
As previously mentioned acceptance was measured on a �ve-point scale, with a score
of 1 implying total disagreement and 5 implying complete agreement with the given
statement.

1 2 3 4 5

EQ1
EQ2
EQ3
EQ4
EQ5
EQ6
EQ7
EQ9
EQ10
EQ11
EQ13
EQ14
EQ15
EQ16
EQ17
EQ19
EQ20
EQ21

Participants

Total Disagreement Disagree Neutral Agree Completely Agree

Fig. 7.1: Evaluation Survey Results

The following discussion will focus on the �ve di�erent categories individually and con-
sider the previously listed agreement scores as well as the manually written feedback by
the evaluators.

C1: Decision Group Assignment (EQ1-EQ4)
The ease of use of the group assignment feature saw a generally high level of accep-
tance. Problems described by the evaluators included a general misunderstanding of
the assignment dialogue context. The split between a text �eld, listing the currently

83

assigned decision groups, and a text �eld allowing new assignments seemed to not be
intuitive enough. On the other hand others seemed to prefer this split. An information
�eld next to the individual �elds could help alleviate these problems while maintaining
the split. Additionally, requests were made for features such as automatic substring
completion and decision group recommendations which would allow easier use of the
decision groups and increase consistency of the naming conventions across a project.
This feature is also discussed in Section 8.2.
The usefulness of the grouping feature also gained general acceptance. However, one
evaluator mentioned a possible constraint to the usefulness. Since groups can be as-
signed at will by developers, without any prede�ned groups, cases could occur in which
the number of groups present within a project could become too great to o�er any po-
tential gains. This would render the relevant �lters very complicated to use and thus
have diminishing returns. As such, teams may need to pre-de�ne some restraints for
the assignment of decision groups.
Similar to both categories before, remarks were made about the intent of use. As a
general idea the intention for future use seems to exist, however, as mentioned before,
teams may need to discuss the use of decision groups and their naming schemes when
multiple people are working at the same time in order to maintain consistency.
As discussed in Section 3.5 decision groups mandate the de�nition of a level ranging
from realization to high level decisions. The idea was, to allow users a quick assign-
ment of the level without forcing them to spend additional time looking up existing
or thinking of new groups. The feedback on this mandate seems to be split between
general agreement and uncertainty. It is no surprise, that a feature, which forces users
into action will have split opinions. However, from the feedback it can be assessed that
no strong opposition to the decision level mandate exists. As such, it is assumed that
its bene�ts outweigh the additional work.

C2: Manage Decision Groups (EQ5-EQ7)
The ease of use for the decision group management view gathered a high level of agree-
ment. This may in part be due to its intentionally simple design. However, some
improvements were requested mostly concerning �ltering options for projects with a
high number of groups. As of right now, the simple display of these groups within a
table should provide a certain level of clarity even with an increased amount of groups.
A text �lter however could guarantee that this clarity persists even as the number of
decision groups rises further.
The evaluators agreed with the usefulness of the view. The only issues seemed to cor-
respond to the group assignment feature (C1) in that recommendations for existing
groups were desired to allow more consistent naming across each project.
The intent of use on the other hand received a higher level of uncertainty. This may in
fact be the result of the roles developers take within a project. The view itself serves
more towards the role of the rationale manager, tasked with maintaining consistency
within the decision knowledge. Developers may experience a lack of interest in these
administrative tasks.
Generally a desire was expressed to expand the grouping feature towards the Jira issue
labels. Being able to assign groups by writing them into these labels or being able to
edit them directly in the issue view, could help expand the use of the grouping feature.

84

A problem however occurs when the labels are used by developers for other purposes.
This would require the use of pre�xes to denote decision groups, which can become prob-
lematic when handling these Strings, which is why the feature was not implemented this
way.

C3: Identify relevant code classes (EQ9-EQ11)
General feedback for the view in C3 was positive with some problems mostly concerning
the size of the presented tree. These problems are mainly due to the limited amount
of size available within the Jira issue module. As discussed before (Section 5.3.3), this
limitation leads to compromises in the number of features being implementable. Al-
lowing decision knowledge or other connected Jira issues to also be presented next to
the code classes would result in a view, which was overloaded and could thus not be
properly displayed. To address some of the requested features, including an expansion
of the �ltering system, and a general statistical overview (ex. listing the number of
connected classes), a new view could be implemented in the Decision Knowledge Page,
which would provide a complementary view to the already existing Code View. This
new view would list Jira issues and display their complete knowledge tree, including
connected issues, decision elements, and code classes. Such a feature may be part of
future works on the plug-in.
The ease of use su�ered from the spacial problems discussed before and as such received
more uncertainty. Additional information was requested for the view, which could be
presented in the possible new view discussed in the previous paragraph.
Both usefulness and intent to use received similarly high scores, despite the apparently
more complex ease of use. This indicates that a desire for the provided feature exists
as it provides information, that was previously missing from Jira and as such could �nd
more popularity with future feature expansion.

C4: Code classes related to Jira issues(EQ13-EQ17)
The general feedback for the Code View evaluated by this category again shows that
most problems with the previous category were a result of the limited size. Since a whole
page is available to the Code View it does not su�er from these feature limitations.
The acceptance of the existing �lters was generally high with an outlier in the ease
of use, which unfortunately was not explained with textual feedback and as such was
di�cult to retrace.
The ease of use for the view as a whole was entirely positive. The main problems did lie
in the desire for more �lters (ex. �ltering based on time), which is a valid concern across
all of ConDec. While the focus on providing adequate �lters is high, an expansion of
the sets of �lters provided could allow for even easier use and an increase in targeted
knowledge.
The comments towards usefulness praise the view for providing information, which was
previously not available within Jira, which is in line with the feedback given for C3.
The intent to use was constraint by two factors. The �rst being the necessity to use the
view only in cases were actual changes to the code are required, pending a code review.
The second constraint was a needed level of clarity within the view, as the used tree
structure is at risk of easily being overloaded. The provided �lters should help alleviate

85

this problem, however as discussed, expansion may be required.

C5: Assess Completeness of Decision Knowledge (EQ19-EQ21)
General feedback for the Requirements Dashboard talked about the excessive loading
times of the view. This problem is discussed in detail in the Evaluation Section 7.3. The
feedback regarding the asked questions (see Table 7.1), showed that a problem exists
with the transparency of the features provided by the view. The questions could in part
not be answered as users were unfamiliar with the features and information presented
by the view. Similar to C2 this could be a result of the unfamiliarity with the role of
the rationale manager. But information about available features could nonetheless be
provided to the users with the help of text boxes or introductions.
According to evaluators the ease of use could be improved by providing more textual
feedback on incompleteness in a project. A sort of backlog was recommended in which
the inconsistencies are documented without the pie charts currently used.
The usefulness was praised as the view is currently the only way to assess the complete-
ness across a whole project and as such provides information that was not previously
present in this form.
The intent to use was once again diminished by the excessive loading times that a
project as large as the used ConDec Jira Project brings for the number of calculations.
Again this issue is discussed in more detail below (Section 7.3).
Lastly, note that the decreased number of participants in this category was due to an
issue one of the evaluators experienced when using the dashboard for a certain type of
Jira project. The problem was subsequently investigated and easily resolved.

7.3 Evaluation on real data

First, the methodology of the evaluation is explained. Afterward, the gold standard
is analysed and described in detail, and experiences gained during the creation are
discussed. The time behaviour of the newly implemented features is then assessed,
using said gold standard.

Methodology

The evaluation on real data follows two steps. First a gold standard is created using
real data in the form of the existing Jira ConDec project. Then this data is used to
assess the time behaviour of the plug-ins new features.
The gold standard will use the existing ConDec Jira project as a basis. With a total of
577 Jira issues at the time of writing, the project should provide enough complexity to
allow proper performance assessment later on. The project also contains all decisions
documented, not only during this extension, but rather during all previous implementa-
tion phases by current and former ConDec developers. During the acceptance evaluation
and the implementation of the extension's features, some decision groups were already

86

assigned. However, in order to properly assess the grouping feature in particular, a
large amount of documented decisions will be equipped with a decision group, where
that is appropriate. Lastly, some of the existing documentation will be improved upon
in order to create the highest possible standard.
In order to assess the time behaviour of the newly implemented features, all views cre-
ated during the ConDec extension, as well as the newly improved or implemented �lters,
will be tested on the created gold standard. This should provide a relatively realistic
assessment of the runtime required during real, complex projects. Where appropriate,
time constraints are de�ned, which the views or �lters must not exceed. The results of
this evaluation will be analysed and where possible improvements will be made in order
to ensure high responsiveness of the existing views.

Gold Standard

Table 7.3 presents general statistics for the gold standard at the time of writing. These
statistics may vary over time as the ConDec project is still ongoing and updates are
being done constantly. However, the current state should su�ce to properly assess the
performance of the feature extensions. These statistics were extracted using di�erent
ConDec views, including the Requirements Dashboard, the Code View and the Decision
Knowledge Overview.

Table 7.3: Gold Standard Statistics

Metric Number

of Jira issues 577
of requirements 72
of code classes 348
of decision problems 187
of decisions 190
of knowledge elements Total 1171
of knowledge elements from commits 208
of knowledge elements from Jira issues 57
of knowledge elements from code comments 90
of knowledge elements from Jira issue content 816
of grouped knowledge elements 762
of decision groups 19

Table 7.4 provides a closer look at the decision groups and their distribution across
the knowledge elements. It is important to note that one knowledge element may be
assigned to an arbitrary number of decision groups but is only allowed to be part of one
decision level. As such, the total number of assigned decision knowledge elements can
be calculated from the sum of the decision levels. The Decision Groups View (WS3.7)
was invaluable for these statistics as the exact information wanted is presented there.

87

Table 7.4: Gold Standard Decision Groups

Group Name # of Decision Elements

High Level 30
Medium Level 284
Realization Level 448

ContextMenu 40
Dashboard 25
Database 25
Design 137
Feature 28
Git 160
KnowledgeLinking 52
Performance 67
REST 56
Security 21
Settings 16
SourceCode 58
Test 24
Treant 3
TreeViewer 25
Webhook 7

While creating the gold standards some additional experience was gained with the use
of grouping as a whole. For instance, it quickly became clear that some elements, while
not �tting into any existing groups, do not necessarily warrant their own group. These
mostly include decision problems that ask questions about how to implement certain
things. As such these could almost always be assigned to the Realization Level without
requiring a custom group. This solidi�ed the decision to implement the decision level
aspect of the grouping feature, as even small decision problems could be assigned to an
appropriate level without too much additional information being required. This could
allow developers to use the grouping feature without having to spend extra time on the
de�nition of groups when that is not necessarily warranted.
It was also almost uniquely the case that knowledge elements connected to a decision
problem were �tting to the group that the problem was assigned to. The only exception
to this rule were cases were the decisions for a problem were of a lower level than the
problem itself. Questions about how to handle certain scenarios for example could be of
a medium level with di�erent decisions on a realization level. This enforces the decision
to implement the top-down inheritance of groups (see decision in Section 5.4.3).
Experiments with using the grouping scheme by Kruchten et al., recommended in the
Literature Review (Section 3.5), quickly made it apparent that these groups were too
di�cult to assign on a large scale. Too much information was needed to properly dif-
ferentiate between the Property, Existence, or Executive Decisions. Information, that

88

was not easily obtainable by anyone but the original documenter. As such, the decision
level system allowed a much easier assignment, while at the same time o�ering roughly
the same sorting criteria. In order to use the Kruchten grouping scheme successfully,
developers would have to be required to read the detailed explanation for every group
and gather the information to assess which of the groups a knowledge element belongs
to.
At the beginning of the grouping process there was some di�culty in �nding appro-
priate names for the groups that were not too long but also self-explanatory. This
always became easier as more decisions of the same group occurred. The increase in
information allowed for more informed group names to be created and in this the bulk
renaming allowed by the Decision Groups View (WS3.7) became invaluable. It allowed
for multiple groups that were essentially the same to be merged more easily.
The main problem with the creation of groups was deciding whether a group was war-
ranted at all. An example of this would be the "Treant" group. The group only has
three attached knowledge elements, but since these elements are all part of the "Design"
group they needed another tag to be able to di�erentiate from the other design-related
decisions. Now, this could also be achieved by using the group �lter in combination
with the text �lter, but decisions related to the "Treant" might not have the word
speci�cally written down and would thus be lost. This struggle between �nding groups
that encompass enough decisions but also o�er enough customization to �nd speci�c
knowledge occurred multiple times. In a development cycle these groups should be
discussed as a team to �nd the proper balance between groups that are too large to be
useful, and groups that are too small to be warranted.

Time behaviour

The time behaviour evaluation of the ConDec extension was split according to the rel-
evant system functions and their related views. Each was run on the gold standard
created in the previous section. The necessary loading time is then evaluated and dis-
cussed in the context of the resulting usability of the feature. Note that SF1-3 were
combined as they are present in the same Dashboard and SF4 was omitted as the only
limiting factors are bandwidth and server responsiveness, while the navigation itself is
almost instantaneous.

Requirements Dashboard
SF1: Show basic knowledge metrics for project progress, SF2: Show rationale complete-
ness metrics within decision knowledge, SF3: Show completeness metrics of decision
knowledge for requirements and tasks
The original idea for the requirements dashboard was to set a �xed time, that the board
was not able to surpass when loading and calculating. However, the targeted time of
15 seconds, was almost immediately passed, when more than the general statistics met-
rics were implemented. Using the gold standard, the loading time across multiple tries
averaged to about 63 seconds. This time was only achieved after multiple iterations of
cost-cutting measures and e�ciency improvements. There are multiple problems with

89

the loading times of the dashboard. The sheer amount of Jira issues within the standard
and its high interconnectivity, with links between the issues, will necessarily result in
longer loading times for complex metrics. Additionally, the extraction of knowledge
elements from the Git repository requires a complex set of requests using the Git client,
which also increases loading times. The addition of the link distance �lter increases the
required complexity when calculating metrics by a signi�cant factor, as for every issue
within the project, an unspeci�ed amount of additional issues have to be considered.
As a result the link distance �lter had to be limited to metrics where this increase in
issue considerations would not result in loading times of multiple minutes. Multiple far-
reaching changes would need to be made to the storage of knowledge elements within
ConDec to facilitate a faster loading time. This includes the way information extracted
from Git is stored, additional information about the documentation location is captured,
and a more complex connection system between knowledge elements stored in di�erent
locations. Some attempts were made at reducing the loading times further. But caching
of dashboards causes new problems, including outdated information, changing settings
and an inability to store all �lter eventualities, since �ltering and calculation are done
at the backend of the plug-in. A frontend based complete rebuild of the dashboard
would be required without any guarantee of improvement, because of the additional
complexity of REST requests and JavaScript coding.

Requirements Dashboard without Git extraction
SF5: Con�gure decision knowledge extraction from Git
By disabling the Git knowledge extraction within ConDec the loading time of the dash-
board can be reduced signi�cantly to an average of about 41 seconds. This indicates,
that about a third of the loading time is required to extract all needed knowledge from
the Git repository. This ties in with the previous comments about a needed improve-
ment on the information about code-related knowledge elements being stored on the
Jira server.

Code Classes View
SF6: List all code classes for a project
The loading time of the Code Classes View is hard to assess by itself, as all views
within the Decision Knowledge Page are loaded when opening the page. That being
said, the loading time of the complete page averages to about 7 seconds. Since the code
classes are stored in a database on the server itself, loading times are expected to be
very short (between 1-2 seconds). Building of the visualized trees itself is also almost
instantaneous. The advantages of being able to switch between the seven di�erent views
within the Decision Knowledge Page should outweigh the cost of loading all pages at
the same time.

Connected Java-Classes View
SF7: List all code classes connected to a Jira issue
Similar to the previous paragraph, it is hard to estimate an exact loading time for the
Connected Java-Classes View within the Jira module, as all elements are loaded when
opening the page. However, the tree visualization, when opening the section takes about

90

1 second. A short loading time is expected, as knowledge elements are stored within the
RAM storage of the server, access to which, should be almost instantaneous, leaving
only the visualization to take up a noticeable amount of time.

Decision Grouping
SF8: Group Knowledge Elements
The grouping of knowledge elements requires about 6 seconds from the pressing of the
assign button until the view is completely usable again. This prolonged time, however,
is not due to the storage of the assignment, but rather because the relevant view is
reloaded afterwards to facilitate the changed grouping and keep the �lters up to date.
While normally this should not be an issue, during the creation of the gold standard this
refresh prolonged the needed time considerably, because hundreds of group assignments
had to be made. For cases like this, a setting would have been advantageous, which
allows a user to decide whether sites should refresh after an assignment or not.

Decision Groups View
SF9: Manage knowledge element groups
The bulk renaming and deletion of groups averages to about the same time, both re-
quiring on average 5 seconds. The size of the group seemed to present no discernible
di�erence in this case. A group with one knowledge element was renamed just as fast as
a group with 137 connected knowledge elements. 5 seconds seems an appropriate time
for a task which is normally not conducted all that often.

Filters within Views
SF10: Filter knowledge graph
Since �lters are uniformly implemented across ConDec, evaluation will take place in a
singular view. The Code Classes view provides 348 elements with di�ering tree com-
plexities and should thus provide the best basis for testing.
The Group �lter requires about 8 seconds on average to be applied, with the combina-
tion of groups reducing this time signi�cantly as fewer elements have to be considered
every time.
The "Linked Issues" �lter takes up a little less time, averaging to about 7 seconds, with-
out any di�erence to whether both min and max or only one of the two was changed.
Lastly, the "Show Issues without Knowledge Elements" �lter works similarly to the
previous �lter, taking about 7 seconds to apply. No di�erence was measured between
classes with few (0-1) and classes with many (10+) connected issues.
The �lters in general however feel unresponsive as the view freezes for the duration of
loading without any indication that work is being done in the background.

All in all, while, with the exception of the requirement dashboard, no view exceeds
loading times of 8 seconds, performance as a whole needs to be a bigger priority within
ConDec in general and this extension speci�cally. Future work should aim to not only
reduce these loading times but also make the features feel more responsive. An e�ort
needs to be made to inform the user that calculations are currently being done. As

91

of right now, in some scenarios, inexperienced users might feel like the site has frozen,
which creates frustrations when using the plug-in. Time behaviour as a whole seems
passable but not in any way admirable.

7.4 Threats to Validity

Possible threats to validity are identi�ed by using the guidelines put forward by Rune-
son et al. [45]. According to Runeson et al. a study must meet four criteria of validity.
To guarantee a high standard studies must meet construct validity, internal validity,
external validity, and reliability.

Construct Validity expresses the disparity between what the researcher has in mind
and what is really investigated according to the used research questions. In the case
of the ConDec extension, it represents how well the proposed survey questions provide
an assessment of the implemented features. To guarantee that this criterion is met, the
scienti�cally recognized Technology Acceptance Model was used to design the survey.

Internal Validity analyses how a researched element can be a�ected by other factors,
the existence or e�ect of which the researcher is not aware of. In the context of ConDec
this could for example be a di�ering level of knowledge of the evaluators during the
survey. To combat this, only experienced ConDec developers are used and the indi-
vidual tasks of the survey are explained in detail prior to execution. The downside of
using experienced users is that individual opinions can already be formed on which the
researcher has no in�uence or knowledge of.

External Validity considers to what extend third parties are interested in the �ndings
of the study and how well the results can be generalized. Considering the gold standard,
a possible threat could be the size of the provided data, because it might be dwarfed
by industrial-sized projects. This criterion might also a�ect the relatively small size of
participants in both the development of ConDec and the participation in the survey.

Reliability expresses how dependent the results of the study are on the researches
conducting it. Results should always be replicable by third parties at a later date.
The results in case of this thesis might be a�ected by two factors in this criterion.
First, the fact that the survey and evaluation are conducted by its own developer,
which could cause a bias towards a positive judgement. This is combated somewhat
by presenting the raw unaltered results of the survey. The second factor could be
that evaluators were exclusively people working or having previously worked within the
ConDec project, which might in�uence their objectivity. Unfortunately, this somewhat
stands in contrast with the Internal Validity as it requires a set of somewhat experienced
users, to guarantee the value of the posted answers.

92

8 Conclusion

Section 8.1 provides a summary of the work presented in this thesis and the achieved
results. Section 8.2 presents a discussion of the thesis results and provides possible
future improvements to the presented ConDec extension as well as recommendations
for new features.

8.1 Summary

Unfortunately, decision knowledge is often only documented informally resulting in a
loss of information as a software project is continuously developed. This thesis aimed
to provide adequate tool support for the explicit, formal documentation of decision
knowledge. In this it considers two roles within the software development process. The
rationale manager is tasked with maintaining consistency within the documented deci-
sion knowledge and managing the documentation process. Developers are tasked with
documenting all aspects of the decision-making process, including the decision problem,
alternatives, pro and con arguments, and alternatives.
To support these roles, the ConDec project o�ers, among other tools, a Jira plug-in.
The plug-in provides documentation possibilities within Jira in the form of Jira issues,
comments, descriptions, commit messages, and code comments. The focus of this thesis
was to provide new visualizations for decision knowledge relationships, in particular, by
grouping related knowledge elements and by integrating code classes into visualization.
A literature review �nds answers to the questions about how decision knowledge can be
grouped adequately and which grouping schemes are favourable for such a task. The
result of said review is that a decision level based grouping scheme in combination with
the creation of custom groups by developers at the time of documentation o�ers the
most �exibility and low time e�ort, while maintaining the advantages of group �ltering.
Implementation wise, the ConDec extension provided by this thesis o�ers new views,
which visualize the relationships between Jira issues, decision knowledge and code
classes, to support developers. Developers are also able to assign groups to knowledge
elements, bulk-manage these groups, and use �lters to specify their displayed decision
knowledge accordingly. The rationale managers are provided with a requirements dash-
board o�ering general overviews over project statistics, rationale completeness metrics,
and Jira issue type focused decision completeness metrics.
An evaluation of the implemented features in the form of a survey �lled out by fellow
ConDec developers and users, provided generally positive feedback in all categories of
the Technology Acceptance Model, ease of use, perceived usefulness and intention to
use.

93

During the course of the manual evaluation a gold standard was created, using the
ConDec Jira project as a basis. The gold standard contains 577 Jira issues with vary-
ing levels of interconnectivity and 1171 knowledge elements, 762 of which are equipped
with any of the 19 resulting decision groups. The evaluation of the time behaviour of
the provided features, on said gold standard, showed acceptable loading times and re-
sponsiveness, but also highlighted a need for more focus towards performance and user
experience within the ConDec plug-in.

8.2 Discussion & Future Work

While both the survey and manual evaluation o�er positive feedback, some problems
remain within the implementation provided by this thesis.
Evaluators expressed a desire for additional visualization of the connection between
decision knowledge and code classes, speci�cally within the Jira issue module view.
Problems arise here because of the limited horizontal space available to this view. The
used tree representation requires a lot of this space and increasing the amount of rep-
resented elements further could lead to an overloaded view, which reduces its usability.
Additionally, �lter opportunities could be increased even further as the number of el-
ements present in large scale projects can become confusing. Filters o�er users more
customizability but can in some cases have adverse e�ects on time behaviour as pages
need to be loaded multiple times and additional calculation can be required. Providing
even more �lters in all ConDec views should be part of the focus for future ConDec
developments, as the feedback has made a desire for these functionalities clear.
Concerning the grouping feature, improvements are pending, which could increase the
ease of use further by providing immediate quality of live improvements during the
assignment process. Text completion and drop-down menus providing lists of existing
groups could help with maintaining consistency across the project and make assign-
ments easier for developers, increasing the likelihood of thorough group assignment at
the time of documentation by each developer. Additionally, more complicated systems,
like automated group recommendations would also provide big improvements for usabil-
ity. By analysing the knowledge element and its connected elements, such an automated
system could extract possible group names and list these for the users to choose from.
Because of the ever-changing requirements during a software project's lifespan, deci-
sions are also evolving throughout the process. Decision knowledge documented at the
beginning of the development process can become outdated. Such knowledge has to be
modi�ed to stay relevant. However, during this transformation, knowledge about the
reasoning of past decisions might get lost. To trace the evolution of a decision through-
out the process, future work could implement an evolutionary view for these changes.
Comparing these di�erent versions, could �nd previous mistakes or retrace the results
of a change within the project.
Such a view would also help with another issue, that currently a�ects the decision doc-
umentation process. Whether through change or deletion of knowledge elements, in
particular of code classes, existing links between elements can become erroneous. These
links are hard to maintain manually and lead to possible wrong conclusions in future

94

analysations. Maintaining correctness within the links is another possible application
for ConDec, given proper feature support. This form of tangled change recognition is
currently not supported within Jira and has to be manually executed for all important
changes. A view that �nds possible tangled changes and wrong links between elements
by analysing changes within the project would provide much-needed aid for this project
maintenance task.
Overall a focus on the change impact analysis could provide a rich basis for future ex-
tensions of the ConDec project as decision documentation can and should become a
part of this process.

95

Bibliography

[1] M. J. Albers, Decision making: A missing facet of e�ective documentation, in
14th Annual International Conference on Systems Documentation: Marshaling
New Technological Forces: Building a Corporate, Academic, and User-Oriented
Triangle, ser. SIGDOC '96, Research Triangle Park, North Carolina, USA: ACM,
1996, pp. 57�65. doi: 10.1145/238215.238256.

[2] C. Baudin, C. Sivard, & M. Zweben, Recovering rationale for design changes: A
knowledge-based approach, in International Conference on Systems, Man, and
Cybernetics Conference Proceedings, IEEE, 1990, pp. 745�749. doi: 10.1109/
ICSMC.1990.142220.

[3] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, & F. Matthes, Automatic ex-
traction of design decisions from issue management systems: A machine learning
based approach, in Software Architecture, Cham: Springer International Publish-
ing, 2017, pp. 138�154. doi: 10.1007/978-3-319-65831-5_10.

[4] M. Bhat, K. Shumaiev, & F. Matthes, Towards a framework for managing archi-
tectural design decisions, in 11th European Conference on Software Architecture:
Companion Proceedings, Canterbury, United Kingdom: ACM, 2017, pp. 48�51.
doi: 10.1145/3129790.3129799.

[5] B. Bruegge & A. H. Dutoit, Object-Oriented Software Engineering Using UML,
Patterns, and Java, 3rd. USA: Prentice Hall Press, 2009. doi: 10.5555/1795808.

[6] J. E. Burge & D. C. Brown, Software engineering using rationale, Journal of
Systems and Software, vol. 81, no. 3, 395�413, ELSEVIER, 2008. doi: https:
//doi.org/10.1016/j.jss.2007.05.004.

[7] R. Capilla, F. Nava, & J. C. Duenas, Modeling and documenting the evolution
of architectural design decisions, in 2nd Workshop on Sharing and Reusing Archi-
tectural Knowledge Architecture, Rationale, and Design Intent, USA: IEEE, 2007,
p. 9. doi: 10.1109/SHARK-ADI.2007.9.

[8] J. Carriere, R. Kazman, & I. Ozkaya, A cost-bene�t framework for making archi-
tectural decisions in a business context, in 32nd ACM/IEEE International Con-
ference on Software Engineering - Volume 2, Cape Town, South Africa: ACM,
2010, pp. 149�157. doi: 10.1145/1810295.1810317.

[9] M. Che, An approach to documenting and evolving architectural design decisions,
in 35th International Conference on Software Engineering (ICSE), IEEE, 2013,
pp. 1373�1376. doi: 10.1109/ICSE.2013.6606720.

[10] M. Che & D. E. Perry, Scenario-based architectural design decisions documen-
tation and evolution, in 18th IEEE International Conference and Workshops on
Engineering of Computer-Based Systems, IEEE, 2011, pp. 216�225. doi: 10.1109/
ECBS.2011.16.

96

https://doi.org/10.1145/238215.238256
https://doi.org/10.1109/ICSMC.1990.142220
https://doi.org/10.1109/ICSMC.1990.142220
https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1145/3129790.3129799
https://doi.org/10.5555/1795808
https://doi.org/https://doi.org/10.1016/j.jss.2007.05.004
https://doi.org/https://doi.org/10.1016/j.jss.2007.05.004
https://doi.org/10.1109/SHARK-ADI.2007.9
https://doi.org/10.1145/1810295.1810317
https://doi.org/10.1109/ICSE.2013.6606720
https://doi.org/10.1109/ECBS.2011.16
https://doi.org/10.1109/ECBS.2011.16

[11] B. Dagenais & M. P. Robillard, Creating and evolving developer documentation:
Understanding the decisions of open source contributors, in ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, Santa Fe, New
Mexico, USA: ACM, 2010, pp. 127�136. doi: 10.1145/1882291.1882312.

[12] F. D. Davis, R. P. Bagozzi, & P. R. Warshaw, User acceptance of computer tech-
nology: A comparison of two theoretical models, Management Science, vol. 35,
no. 8, 982�1003, INFORMS, 1989. doi: 10.1287/mnsc.35.8.982.

[13] D. Dermeval, J. Pimentel, C. Silva, J. Castro, E. Santos, G. Guedes, M. Lucena, &
A. Finkelstein, STREAM-ADD - supporting the documentation of architectural
design decisions in an architecture derivation process, in 36th Annual Computer
Software and Applications Conference, IEEE, 2012, pp. 602�611. doi: 10.1109/
COMPSAC.2012.81.

[14] A. Dragomir, H. Lichter, & T. Budau, Systematic architectural decision manage-
ment, a process-based approach, in IEEE/IFIP Conference on Software Architec-
ture, IEEE, 2014, pp. 255�258. doi: 10.1109/WICSA.2014.39.

[15] Z. Durdik, A. Koziolek, & R. H. Reussner, How the understanding of the e�ects of
design decisions informs requirements engineering, in 2nd International Workshop
on the Twin Peaks of Requirements and Architecture, IEEE, 2013, pp. 14�18. doi:
10.1109/TwinPeaks.2013.6614718.

[16] A. H. Dutoit, R. McCall, I. Mistrík, & B. Paech, Rationale management in soft-
ware engineering: Concepts and techniques, in Rationale Management in Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1�48. doi:
10.1007/978-3-540-30998-7_1.

[17] K. D. Evensen, Reducing uncertainty in architectural decisions with AADL, in
44th Hawaii International Conference on System Sciences, IEEE, 2011, pp. 1�9.
doi: 10.1109/HICSS.2011.358.

[18] R. Farenhorst & H. van Vliet, Understanding how to support architects in sharing
knowledge, in ICSE Workshop on Sharing and Reusing Architectural Knowledge,
IEEE, 2009, pp. 17�24. doi: 10.1109/SHARK.2009.5069111.

[19] B. Fitzgerald & K.-J. Stol, Continuous software engineering and beyond: Trends
and challenges, in 1st International Workshop on Rapid Continuous Software
Engineering, Hyderabad, India: ACM, 2014, pp. 1�9. doi: 10.1145/2593812.
2593813.

[20] ��, Continuous software engineering: A roadmap and agenda, Journal of Sys-
tems and Software, vol. 123, 176�189, ELSEVIER, 2017. doi: https://doi.org/
10.1016/j.jss.2015.06.063.

[21] S. Gupta, S. Malik, L. Pollock, & K. Vijay-Shanker, Part-of-speech tagging of
program identi�ers for improved text-based software engineering tools, in 21st
International Conference on Program Comprehension (ICPC), IEEE, 2013, pp. 3�
12. doi: 10.1109/ICPC.2013.6613828.

[22] U. van Heesch, P. Avgeriou, & R. Hilliard, A documentation framework for ar-
chitecture decisions, Journal of Systems and Software, vol. 85, no. 4, 795�820,
ELSEVIER, 2012. doi: https://doi.org/10.1016/j.jss.2011.10.017.

97

https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1287/mnsc.35.8.982
https://doi.org/10.1109/COMPSAC.2012.81
https://doi.org/10.1109/COMPSAC.2012.81
https://doi.org/10.1109/WICSA.2014.39
https://doi.org/10.1109/TwinPeaks.2013.6614718
https://doi.org/10.1007/978-3-540-30998-7_1
https://doi.org/10.1109/HICSS.2011.358
https://doi.org/10.1109/SHARK.2009.5069111
https://doi.org/10.1145/2593812.2593813
https://doi.org/10.1145/2593812.2593813
https://doi.org/https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1109/ICPC.2013.6613828
https://doi.org/https://doi.org/10.1016/j.jss.2011.10.017

[23] T. Hesse & B. Paech, Supporting the collaborative development of requirements
and architecture documentation, in 3rd International Workshop on the Twin Peaks
of Requirements and Architecture, 2013, pp. 22�26. doi: 10.1109/TwinPeaks-
2.2013.6617355.

[24] T.-M. Hesse, A. Kuehlwein, B. Paech, T. Roehm, & B. Bruegge, Documenting
implementation decisions with code annotations, in SEKE, 2015, pp. 152�157.
doi: 10.18293/SEKE2015-084.

[25] ISO/IEC, �Iso/iec 25010 system and software quality models,� Tech. Rep., 2010.
doi: 10.3403/30215101.

[26] A. Jansen, �Architectural design decisions,� Ph.D. dissertation, University of Gronin-
gen, 2008.

[27] A. Jansen & J. Bosch, Software architecture as a set of architectural design deci-
sions, in 5th Working IEEE/IFIP Conference on Software Architecture (WICSA'05),
IEEE, 2005, pp. 109�120. doi: 10.1109/WICSA.2005.61.

[28] M. Jiménez, L. F. Rivera, N. M. Villegas, G. Tamura, H. A. Müller, & N. Ben-
como, An architectural framework for quality-driven adaptive continuous exper-
imentation, in Joint 4th International Workshop on Rapid Continuous Software
Engineering and 1st International Workshop on Data-Driven Decisions, Experi-
mentation and Evolution, Montreal, Quebec, Canada: IEEE, 2019, pp. 20�23. doi:
10.1109/RCoSE/DDrEE.2019.00012.

[29] R. A. Kamaludeen, Y. Cheah, & S. Sulaiman, Software maintenance expert base
decision support (soxdes) framework, in International Conference on Advanced
Computer Science Applications and Technologies, IEEE, 2013, pp. 25�30. doi:
10.1109/ACSAT.2013.13.

[30] A. Kleebaum, J. O. Johanssen, B. Paech, R. Alkadhi, & B. Bruegge, Decision
knowledge triggers in continuous software engineering, in 4th International Work-
shop on Rapid Continuous Software Engineering, Gothenburg, Sweden: ACM,
2018, pp. 23�26. doi: 10.1145/3194760.3194765.

[31] A. Kleebaum, J. O. Johanssen, B. Paech, & B. Bruegge, Teaching rationale man-
agement in agile project courses, 16. Workshop Software Engineering im Unter-
richt der Hochschulen (SEUH), CEUR�WS.org, 2019. doi: https://doi.org/
10.11588/heidok.00026358.

[32] ��, Continuous management of requirement decisions using the condec tools,
Co-Located Events of the 26th International Conference on Requirements Engi-
neering (REFSQ-JP'20), CEUR�WS.org, 2020. doi: 10.11588/HEIDOK.00028230.

[33] P. Kruchten, An ontology of architectural design decisions in software-intensive
systems, in 2nd Groningen workshop on software variability, University of Gronin-
gen, Johann Bernoulli Institute for Mathematics & Computer Science, 2004.

[34] Kunz & H. Rittel, Issues as elements of information systems, Working Paper 131,
Berkely: Institute of Urban & Regional Development, University of California,
1970.

[35] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, & W. M. Turski, Metrics
and laws of software evolution-the nineties view, in 4th International Software
Metrics Symposium, IEEE, 1997, pp. 20�32. doi: 10.1109/METRIC.1997.637156.

98

https://doi.org/10.1109/TwinPeaks-2.2013.6617355
https://doi.org/10.1109/TwinPeaks-2.2013.6617355
https://doi.org/10.18293/SEKE2015-084
https://doi.org/10.3403/30215101
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/RCoSE/DDrEE.2019.00012
https://doi.org/10.1109/ACSAT.2013.13
https://doi.org/10.1145/3194760.3194765
https://doi.org/https://doi.org/10.11588/heidok.00026358
https://doi.org/https://doi.org/10.11588/heidok.00026358
https://doi.org/10.11588/HEIDOK.00028230
https://doi.org/10.1109/METRIC.1997.637156

[36] R. Lougher & T. Rodden, Supporting long-term collaboration in software mainte-
nance, in Conference on Organizational Computing Systems, Milpitas, California,
USA: ACM, 1993, pp. 228�238. doi: 10.1145/168555.168581.

[37] C. Manteu�el, D. Tofan, H. Koziolek, T. Goldschmidt, & P. Avgeriou, Indus-
trial implementation of a documentation framework for architectural decisions, in
IEEE/IFIP Conference on Software Architecture, IEEE, 2014, pp. 225�234. doi:
10.1109/WICSA.2014.32.

[38] T. McCabe, Cyclomatic complexity and the year 2000, IEEE Software, vol. 13,
no. 3, 115�117, IEEE, 1996. doi: 10.1109/52.493032.

[39] C. Miesbauer & R. Weinreich, Classi�cation of design decisions � an expert survey
in practice, in Software Architecture, Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 130�145. doi: 10.1007/978-3-642-39031-9_12.

[40] J. A. Miller, R. Ferrari, & N. H. Madhavji, An exploratory study of architectural
e�ects on requirements decisions, Journal of Systems and Software, vol. 83, no. 12,
2441�2455, ELSEVIER, 2010. doi: 10.1016/j.jss.2010.07.006.

[41] N. Ngadiman, S. Sulaiman, & W. M. N. Wan Kadir, A systematic literature
review on attractiveness and learnability factors in web applications, in IEEE
Conference on Open Systems (ICOS), IEEE, 2015, pp. 22�27. doi: 10.1109/
ICOS.2015.7377272.

[42] P. Petrov, R. L. Nord, & U. Buy, Probabilistic macro-architectural decision frame-
work, in 2014 European Conference on Software Architecture Workshops, ser. EC-
SAW '14, Vienna, Austria: ACM, 2014. doi: 10.1145/2642803.2642830.

[43] N. A. Prasetyo & Y. Bandung, A design of software requirement engineering
framework based on knowledge management and service-oriented architecture de-
cision (soad) modeling framework, in International Conference on Information
Technology Systems and Innovation (ICITSI), IEEE, November 2015, pp. 1�6.
doi: 10.1109/ICITSI.2015.7437708.

[44] R. Raman & M. D'Souza, Learning framework for maturing architecture design
decisions for evolving complex sos, in 13th Annual Conference on System of Sys-
tems Engineering (SoSE), IEEE, 2018, pp. 350�357. doi: 10.1109/SYSOSE.2018.
8428733.

[45] P. Runeson, M. Host, A. Rainer, & B. Regnell, Case Study Research in Software
Engineering: Guidelines and Examples. Wiley Publishing, 2012. doi: 10.5555/
2361717.

[46] M. Seiler & B. Paech, Documenting and exploiting software feature knowledge
through tags, in 31st International Conference on Software Engineering and Knowl-
edge Engineering, KSI Research Inc. & Knowledge Systems Institute Graduate
School, 2019. doi: 10.18293/seke2019-109.

[47] M. Shahin, P. Liang, & M. R. Khayyambashi, Architectural design decision: Ex-
isting models and tools, in Joint Working IEEE/IFIP Conference on Software
Architecture European Conference on Software Architecture, IEEE, 2009, pp. 293�
296. doi: 10.1109/WICSA.2009.5290823.

[48] J. Tyree & A. Akerman, Architecture decisions: Demystifying architecture, IEEE
Software, vol. 22, no. 2, 19�27, IEEE, 2005. doi: 10.1109/MS.2005.27.

99

https://doi.org/10.1145/168555.168581
https://doi.org/10.1109/WICSA.2014.32
https://doi.org/10.1109/52.493032
https://doi.org/10.1007/978-3-642-39031-9_12
https://doi.org/10.1016/j.jss.2010.07.006
https://doi.org/10.1109/ICOS.2015.7377272
https://doi.org/10.1109/ICOS.2015.7377272
https://doi.org/10.1145/2642803.2642830
https://doi.org/10.1109/ICITSI.2015.7437708
https://doi.org/10.1109/SYSOSE.2018.8428733
https://doi.org/10.1109/SYSOSE.2018.8428733
https://doi.org/10.5555/2361717
https://doi.org/10.5555/2361717
https://doi.org/10.18293/seke2019-109
https://doi.org/10.1109/WICSA.2009.5290823
https://doi.org/10.1109/MS.2005.27

[49] J. S. van der Ven & J. Bosch, Making the right decision: Supporting architects
with design decision data, in Software Architecture, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 176�183. doi: 10.1007/978-3-642-39031-9_15.

[50] J. Webster & R. T. Watson, Analyzing the past to prepare for the future: Writing
a literature review, MIS Quarterly, vol. 26, no. 2, xiii�xxiii, Management Infor-
mation Systems Research Center, University of Minnesota, 2002. doi: 10.2307/
4132319.

[51] Zhe Huang & Yun-Quan Hu, Applying ai technology and rough set theory to mine
association rules for supporting knowledge management, in International Confer-
ence on Machine Learning and Cybernetics (IEEE Cat. No.03EX693), vol. 3,
IEEE, 2003, 1820�1825 Vol.3. doi: 10.1109/ICMLC.2003.1259792.

[52] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, & N. Schuster, Reusable
architectural decision models for enterprise application development, in Software
Architectures, Components, and Applications, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 15�32. doi: 10.1007/978-3-540-77619-2_2.

[53] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, & N. Schuster, Managing ar-
chitectural decision models with dependency relations, integrity constraints, and
production rules, Journal of Systems and Software, vol. 82, 1249�1267, ELSE-
VIER, 2009. doi: 10.1016/j.jss.2009.01.039.

100

https://doi.org/10.1007/978-3-642-39031-9_15
https://doi.org/10.2307/4132319
https://doi.org/10.2307/4132319
https://doi.org/10.1109/ICMLC.2003.1259792
https://doi.org/10.1007/978-3-540-77619-2_2
https://doi.org/10.1016/j.jss.2009.01.039

Glossary

Alternative A proposed possible solution for a decision problem. 3, 7, 8, 47

Architectural Decision Decision made regarding the underlying architecture of the
software. 11, 47, 48, 55, 62

Backend Aspects of the software that concern calculations and server-side processes.
47, 49, 91

Backward Snowballing Using the references of a given paper to �nd older, related
articles. 13

Bug Defect within the code, causing unwanted behaviour. 67

Code Smell Characteristic within source code indicating a deeper problem or �aw. 66

Commit Used here in the context of Git. Individual change to a �le or set of �les. First
occurrence on p. 2

Continuous Software Development Software development process designed to deliver
functional products in short development cylces with high integration of user
feedback. 4, 7

Decision Knowledge All existing knowledge related to a decision problem. Includes al-
ternatives, pro and contra arguments and the decision itself. Also called Rationale
in this context. 1, 3�5, 10, 27, 47, 94

Decision Problem The problem for which a decision has to be made by weighing the
pros and cons of each alternative. Alternatively called Decision Issue. 6, 7, 50,
58, 63, 89, 94

Design Decision Decision made regarding the general design of the software. 14, 47

Forward Snowballing Identifying related articles that cite a reviewed paper in their
references. 13

Frontend Aspects of the software that concern elements seen and used by the user
directly, like the user interface. 47, 49, 62, 67, 91

101

Knowledge Element A piece of documented information. In most cases in this the-
sis refers to either a decision problem, alternative, decision, pro-argument, con-
argument or code class. First occurrence on p. 3

Knowledge Graph Encompasses all knowledge elements (as nodes) and their connect-
ing links (as edges, relationships). 8, 29, 49

Rationale Manager Developer tasked with maintaining consistency and completeness
of the documented decision knowledge. 2, 5, 27, 28, 30, 33, 46, 48, 52, 87, 94

REST Representational state transfer. System designed to allow interoperability be-
tween computers/servers on the Internet. Here it is used to connect backend and
frontend of the plug-in by allowing client-server communication. 47, 51, 62, 91

Software Artifact A tangible element produced during the development of a software,
i.e. source code, requirements, design documents etc. 2, 9, 22, 27

102

Acronyms

CSE Continuous Software Engineering. 29

DP Decision Problem. 50, 51, 58, 59, 63, 106

EoU Perceived Ease of Use. 81, 83

IDE Integrated Development Environment. 29

ITS Issue Tracking System. 1, 8, 29

ItU Intention to Use. 81, 83

NFR Non-Functional Requirements. 39, 50, 58, 63

POS Part of Speech. 9

PU Perceived Usefulness. 81, 83

SF System Function. 31

TAM Technology Acceptance Model. 80�82, 84

UI User Interface. 22, 40

URI Uniform Resource Identi�er. 75

VCS Version Control System. 1, 29

WS Workspace. 40

103

List of Figures

2.1 Activities from Business, Development, Operations and Innovation [19] . 5
2.2 IBIS Model [34] . 6
2.3 Decision Knowledge Documentation Model according to Hesse et al.[23] 7
2.4 Decision Knowledge Tree . 8
2.5 Decision Knowledge Overview (WS3.1) 9

3.1 Architecture Framework reproduced from ISO/IEC/IEEE 42010 [22] . . 16
3.2 Architecture Design Decision Groups [3] 18
3.3 The funnel of decision making [26] . 19
3.4 Overview of the STREAM-ADD process [13] 20

4.1 Domain Data Model for Decision Knowledge and Code Class relationship
within ConDec . 30

4.2 Example box plot for basic knowledge metrics 32
4.3 Example pie chart for completeness metrics 33
4.4 ISO / IEC 25010 [25] Quality Model . 38
4.5 ConDec Workspace 1 . 40
4.6 ConDec Workspace 2 . 40
4.7 ConDec Workspace 3 . 41
4.8 ConDec Requirements Dashboard Mock-up 42
4.9 ConDec Requirements Dashboard Navigation Mock-up 42
4.10 ConDec Jira Issue Code Class View Mock-up 43
4.11 ConDec Code Class View Mock-up . 44
4.12 ConDec Decision Group View Mock-up 44

5.1 Overview Class Diagram ConDec . 47
5.2 Class Diagram: Requirements Dashboard 48
5.3 Requirements Dashboard . 54
5.4 Class Diagram: Code Class Storage and Visualization 56
5.5 Code Classes View . 60
5.6 Connected Code-Classes view . 60
5.7 Class Diagram: Decision Grouping . 61
5.8 Decision Group View . 64

7.1 Evaluation Survey Results . 83

104

List of Tables

2.1 Knowledge Elements according to Kleebaum et al. [31] 7

3.1 Research Questions for the Literature Review 10
3.2 Criteria of Relevance . 11
3.3 Search Term Based Research results . 12
3.4 Results of Search Term Based Approach and Snowballing 14
3.5 Architecture decision description template [48] 17
3.6 Decision types according to [53] . 21
3.7 Synthesis of Literature Review . 24

4.1 Persona: Rationale Manager . 28
4.2 Persona: Developer . 29
4.3 SF: Show basic knowledge metrics for project progress 32
4.4 SF: Show rationale completeness metrics within decision knowledge . . . 33
4.5 SF: Show completeness metrics of decision knowledge for requirements

and tasks . 34
4.6 SF: Navigate from plots in dashboard to respective knowledge element . 34
4.7 SF: Con�gure decision knowledge extraction from Git 35
4.8 SF: List all code classes for a project . 35
4.9 SF: List all code classes connected to a Jira issue 36
4.10 SF: Group Knowledge Elements . 36
4.11 SF: Manage knowledge element groups 37
4.12 SF: Filter knowledge graph . 37

5.1 DP: Should the metrics be split into multiple Dashboards? 49
5.2 DP: Implement the calculations in JavaScript or Java? 50
5.3 DP: Should metric calculation and chart creation be handled by one class? 50
5.4 Requirements Dashboard Filters . 53
5.5 DP: How should the code classes be stored in Jira? 57
5.6 DP: How should the visualization be implemented? 58
5.7 DP: How should the groups be stored in Jira? 62
5.8 DP: Should a new Group-Model-Class be created? 62

6.1 Cyclomatic Code Complexity . 67
6.2 Component Test Coverage . 68
6.3 System Tests SF1: Show basic knowledge metrics for project progress . . 69
6.4 System Tests SF2: Show rationale completeness metrics within decision

knowledge . 70

105

6.5 System Tests SF3: Show completeness metrics of decision knowledge for
requirements and tasks . 71

6.6 System Tests SF4: Navigate from plots in dashboard to respective knowl-
edge element . 73

6.7 System Tests SF5: Con�gure decision knowledge extraction from git . . 74
6.8 System Tests SF6: List all code classes for a project 75
6.9 System Tests SF7: List all code classes connected to a Jira issue 75
6.10 System Tests SF8: Group Knowledge Elements 76
6.11 System Tests SF9: Manage knowledge element groups 77
6.12 System Tests SF10: Filter knowledge graph 78

7.1 Evaluation Survey Categories and Tasks 81
7.2 Evaluation Survey Questions . 82
7.3 Gold Standard Statistics . 87
7.4 Gold Standard Decision Groups . 88

106

Eidesstaatliche Erklärung zur Masterarbeit

Hiermit erkläre ich, dass ich diese Masterarbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt und die aus fremden Quellen direkt
oder indirekt übernommenen Gedanken als solche kenntlich gemacht habe.

Ich habe die Grundsätze und Empfehlungen �Verantwortung in der Wissenschaft� der
Universität Heidelberg gelesen und befolgt.

Die Arbeit habe ich bisher keinem anderen Prüfungsamt in gleicher oder vergleichbarer
Form vorgelegt. Sie wurde bisher nicht verö�entlicht.

Heidelberg, den .

107

	Introduction
	Motivation
	Goals
	Overview

	Fundamentals
	Continuous Software Development
	Rationale Management
	Decision Documentation Models
	ConDec
	Tagging

	Literature Review
	Research Questions
	Methodology
	Criteria of Relevance
	Approach

	Review Results
	Synthesis
	Review Discussion

	Requirements
	Initial Coarse Requirements
	Personae
	Domain Data
	Functional Requirements
	User Tasks
	System Functions and User Stories

	Non-Functional Requirements
	Modifiability
	Time behavior
	Attractiveness

	Workspaces
	Mock-ups
	Requirements Chapter Summary

	Design and Implementation
	Overview of ConDec Architecture
	Requirements Dashboard
	Architecture
	Architectural Decisions
	System Function Related Decisions
	Results

	Code To Work Item Relationship Visualization
	Architecture
	Architectural Decisions
	System Function Related Decisions
	Results

	Decision Grouping
	Architecture
	Architectural Decisions
	System Function Related Decisions
	Results

	Quality Assurance
	Test Concept
	Static Code Tests
	Component Tests
	System Tests

	Evaluation
	Evaluation Goals
	Acceptance Evaluation
	Evaluation on real data
	Threats to Validity

	Conclusion
	Summary
	Discussion & Future Work

	Bibliography
	Glossary
	Acronyms
	List of Figures
	List of Tables

