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Zusammenfassung

Im Rahmen der vorliegenden Dissertation werden theoretische und numerische Ergeb-
nisse hergeleitet, welche die exakte Rekonstruktion von stückweise konstanten Bildern
aus unzureichenden Messungen in der diskreten Tomographie garantieren. Dies ist
häufig der Fall bei der zerstörungsfreien Qualitätsprüfung von Industriebauteilen, die
aus wenigen homogenen Materialien bestehen und bei denen aufgrund von schnellen
Prüfzeiten keine vollständige Messung möglich ist. Die geringe Anzahl an Messun-
gen führt schließlich zu einen unterbestimmten linearen Gleichungssystem. Es wird
ein beschränkter Lösungsraum betrachtet, in welchem die Lösungen (a) dünnbesetzte
(sparse) Bildgradienten aufweisen und (b) beschränkte Pixelwerte besitzen.

Auf der Grundlage der
”
Compressed Sensing“-Theorie wird eine untere Schranke

für die Anzahl der Messungen bestimmt, die erforderlich sind, um unter den gegebe-
nen Bedingungen, mittels konvexer Optimierung ein Bild eindeutig zu rekonstruieren.
Darüber hinaus wird auch für den nicht-konvexen Fall eine untere Schranke bestimmt.
Deren Besonderheit darin besteht, dass sie auf der Anzahl der Zusammenhangskom-
ponenten beruht.

Auf diesen Ergebnissen aufbauend werden verschiedene Optimierungsmodelle un-
tersucht, welche Lösungen mit sparsen Bildgradienten liefern oder den Bereich der
Pixelwerte einschränken. In diesem Zusammenhang wird eine neuartige konvexe Re-
laxierung vorgestellt, die nachweislich genauer ist als alle bestehenden Ansätze. Hierbei
wird davon ausgegangen, dass das Lösungsbild einen sparsen Gradienten aufweist und
ganzzahlig ist. Da die Anzahl der Zusammenhangskomponenten in einem Bild für
dessen eindeutige Rekonstruktion entscheidend ist, wird ein ganzzahliges Programm
entwickelt, welches die maximale Anzahl der Zusammenhangskomponenten im rekon-
struierten Bild beschränkt. Ferner wird beim Lösen konvexer Modelle der Bildbereich
als Mannigfaltigkeit aufgefasst. Basierend auf Ergebnissen aus der Differentialgeome-
trie und der Optimierung auf Mannigfaltigkeiten wird ein Optimierungsverfahren erster
Ordnung, welches mehrere Ebenen nutzt, hergeleitet. Der entwickelte Mehrebenen-
Algorithmus weist eine schnelle Konvergenz auf und ermöglicht die Rekonstruktion
von hochauflösenden Bildern.
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Abstract

We investigate theoretical and numerical results that guarantee the exact reconstruc-
tion of piecewise constant images from insufficient projections in Discrete Tomography.
This is often the case in non-destructive quality inspection of industrial objects, made
of few homogeneous materials, where fast scanning times do not allow for full sampling.
As a consequence, this low number of projections presents us with an underdetermined
linear system of equations. We restrict the solution space by requiring that solutions
(a) must possess a sparse image gradient, and (b) have constrained pixel values.

To that end, we develop an lower bound, using compressed sensing theory, on the
number of measurements required to uniquely recover, by convex programming, an
image in our constrained setting. We also develop a second bound, in the non-convex
setting, whose novelty is to use the number of connected components when bounding
the number of linear measurements for unique reconstruction.

Having established theoretical lower bounds on the number of required measure-
ments, we then examine several optimization models that enforce sparse gradients or
restrict the image domain. We provide a novel convex relaxation that is provably
tighter than existing models, assuming the target image to be gradient sparse and
integer-valued. Given that the number of connected components in an image is criti-
cal for unique reconstruction, we provide an integer program model that restricts the
maximum number of connected components in the reconstructed image. When solv-
ing the convex models, we view the image domain as a manifold and use tools from
differential geometry and optimization on manifolds to develop a first-order multilevel
optimization algorithm. The developed multilevel algorithm exhibits fast convergence
and enables us to recover images of higher resolution.
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CHAPTER 1

Introduction

Computerized Tomography [Her09] (CT) is a widely used non-invasive method for cre-
ating cross-section images of an object. Initially developed for medical applications, CT
was soon used for industrial applications as well. For instance, in quality inspection,
one chooses a sample of produced parts, which is then destroyed to check for cracks or
other defects. This results in financial loss when the selected sample was non-defective.
By implementing CT for non-destructive quality inspection in a production line, every
produced part is checked, and only defect parts are discarded.

CT uses X-rays, which are transmitted through an object and partially absorbed by
material or tissue. For each X-ray the intensity that was not absorbed is measured
by a detector. Given these intensities, we reconstruct the attenuation at each spatial
position. The classical approach to tomographic reconstruction is the filtered back-
projection (FBP). For high-resolution images, FBP requires X-ray measurements at
numerous angles in order to comply to classical sampling theorems [Nat01]. In indus-
trial applications, this requirement cannot be accommodated due to time or physical
restrictions. Typically, in industrial applications, one affords only few projections ren-
dering FBP impractical. Figure 1.1 illustrates the poor reconstruction quality when
FBP is applied in limited-data or limited-angle scenarios.

Discrete tomography (DT) [HK99; HK07] is the mathematical field dealing with
image reconstruction from CT in the case of limited-angle or limited-data, and is an
active area of research to this day [BS11; BDP17; Den14b; FQ13; Gou13; Kap15;
KSP17; LB16; SJP11; WSH03; Zis16]. It considers the reconstruction of an d × d
image that represents the desired discrete cross-section image. The n := d2 coefficients
of the pixels are given by a vector x ∈ Rn, where each xj with j ∈ [n] corresponds
to the attenuation in the region described by pixel j. Then, we discretize the X-rays
according to a d × d pixel grid, and the coefficients Aij ∈ R provide an incidence
geometry defining how pixel j contributes to the i-th X-ray. Thus, let x ∈ Rn be the
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2 1 Introduction

(a) original (b) limited-data (c) limited-angle

Figure 1.1: Comparison of the reconstruction quality in Computer Tomography using
filtered backprojection when the number of projections is small (b) or the
range of angles are limited (c).

unknown vectorized image. Then the image reconstruction problem in DT corresponds
to solving the linear system

Ax = Ax =: b, (1.1)

where A ∈ Rm×n models m X-rays, each row one X-ray.

In the situation of limited-angle or limited-data, the linear system (1.1) is highly
under-determined, i.e., m� n. Hence, the inverse problem posed by (1.1) is ill-posed
as it does not admit a unique solution. To remedy this situation, we need to include
prior knowledge about the image to be reconstructed.

In view of our motivating industrial application, i.e., non-destructive quality inspec-
tion, the objects consist of few materials and the resulting cross-section image exhibits
large homogeneous regions. Based on these observations, we assume that the images
in question

(a) must possess a sparse image gradient, and
(b) have constrained pixel values.

The goal of this thesis is to investigate theoretical and numerical results that guar-
antee the exact reconstruction subject to (a) and (b). On the theoretical side, we
provide lower bounds on the number of measurements that concern unique recovery
by convex or non-convex optimization. Having established theoretical lower bounds on
the number of required measurements, we then examine several optimization models
that enforce sparse gradients or restrict the image domain.

In particular, we exploit results from the field of Compressed Sensing (CS) [FR13].
It provides recovery guarantees related to the sparsity of a signal and the number of lin-
ear measurements. However, most results hold for randomized measurements, unlike
tomography that uses deterministic sensors. Existing results for deterministic mea-
surements, e.g., expander graphs [FR13], only apply for specialized geometries [PS14;
PSS13]. Moreover, these results do not extend to gradient sparse images. Though
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the results from [NW13a; NW13b] are concerned with the recovery of gradient sparse
images, the work [Den14a] shows that they lead to overly pessimistic guarantees for
DT. Hence, classical existing recovery guarantees from CS do not apply. Nevertheless,
CS implies that the sparsity of an image or the image gradient is a crucial property
to guarantee unique reconstruction. Therefore, we use tools from CS to provide lower
bounds on the necessary number of linear measurements considering sparse image gra-
dients and constrained pixel values. By using phase transitions [Ame14], we empirically
show that our theoretical lower bounds are close to the empirical success rates of DT
reconstructions.

Additionally, we provide lower bounds for unique reconstruction when using non-
convex optimization. Here, we use the theory of union of subspaces [BD09; LD08]. As
a result, we show that the number of connected components in an image is a crucial
parameter in predicting the needed number of linear measurements, which was not
considered before in the literature.

Motivated by the theoretical lower bounds, we then examine several optimization
models that enforce sparse gradients or restrict the image domain. Our results are
reinforced by the authors in [Kei17] who showed that the lower bound is further reduced
if the pixel values are restricted to a finite set. Hence, we provide a novel convex
relaxation that is provably tighter than existing models, assuming the target image to
be gradient sparse and integer-valued. Given that the number of connected components
in an image is critical for unique reconstruction, we provide an integer program model
that restricts the maximum number of connected components in the reconstructed
image. Moreover, we derive inequalities to speed-up the convergence of the branch and
bound algorithm used to solve integer programs. When solving the convex models,
we view the image domain as a manifold and use tools from differential geometry and
optimization on manifolds to develop a first-order multilevel optimization algorithm.
The developed multilevel algorithm exhibits fast convergence and allows us to consider
images of higher resolution.

1.1 Outline

Each chapter of this thesis is mainly self-contained and covers a different aspect of
image reconstruction in Discrete Tomography.

Chapter 2 serves as an introduction to recall definitions needed throughout this
thesis and provides further literature. Proofs are generally omitted but are given in
the cited literature.

In Chapter 3, we use phase transitions to examine the success rate for unique recov-
ery in discrete tomography by convex programming. We derive a dual certificate for
generalized box-constrained convex optimization models, which is sufficient for proving
uniqueness for a given solution. Since the existing theoretical lower bounds for unique
recovery by convex programming do not apply to box-constraints, or non-negativity
constraints, we prove an extension to cover these cases. Finally, we provide empirical



4 1 Introduction

evidence that the proven lower bound is close to the phase transition of tomographic
reconstruction.

In Chapter 4, motivated by the lower bounds, we develop a novel convex relaxation to
reconstruct non-binary integer-valued images from tomographic projections. Further,
we provide an approach to show that our convex relaxation is theoretical and empirical
tighter than existing ones.

In Chapter 5, we consider sparse reconstruction by a non-convex optimization model.
Using the theory of union of subspaces [LD08; BD09], we devise a lower bound for the
number of linear measurements needed for unique reconstruction by non-convex opti-
mization. As a result, the connected components of an image are a crucial parameter
in predicting the needed number of linear measurements. Therefore, we construct an
integer program model that restricts the maximum number of connected components in
the reconstructed image. Further, we propose inequalities to speed-up the convergence
of the branch and bound algorithm used to optimize integer programs.

In Chapter 6, we review the field of multilevel methods [Nas00] by analyzing un-
constrained and constrained convex optimization. Then, we view the image domain
as a manifold and use tools from differential geometry [Lee12] and optimization on
manifolds [AMS08] to develop a first-order multilevel [Nas00] optimization algorithm.
The developed multilevel algorithm exhibits fast convergence and enables us to recover
images of higher resolution.

1.2 Publications

Parts of this thesis have already been published:

[KSP17] “A Novel Convex Relaxation for Non-binary Discrete Tomography”

[KP19] “Performance Bounds for Co-/sparse Box Constrained Signal Recovery”

In particular, Chapter 3 contains [KP19], and Chapter 4 is based on [KSP17].



CHAPTER 2

Preliminaries

In this chapter, we collect basic definitions and results that are used throughout this
thesis. It is assumed that the basic terms from linear algebra and analysis are known.
Proofs are generally omitted but available in the given references.

2.1 Basic Tools

2.1.1 Convex Analysis and Optimization

For a comprehensive introduction to convex analysis and convex optimization, we
recommend [Roc97; RW10; Ber15].

Conventional convex optimization is based on the following definitions.

Definition 2.1 (Convex Set). Let C ⊆ Rn be a subset of the real vector space. We
call C convex if for all x, y ∈ C and λ ∈ [0, 1] it holds

λ · x+ (1− λ) · y ∈ C. (2.1)

Definition 2.2 (Convex Function). Let f : C → R be a function and C ⊆ Rn a
convex set. We call f convex if for all x, y ∈ C and λ ∈ (0, 1) it holds

f(λ · x+ (1− λ) · y) ≤ λ · f(x) + (1− λ) · f(y). (2.2)

If the above inequality is strict (<), then we call f strictly convex.

Remark 2.1. Considering functions f : Rn → R := R∪{∞}, we call f convex if
dom f and f |dom f are convex.

The gradient of differentiable functions can be extended to subgradients for convex
functions.

5



6 2 Preliminaries

Definition 2.3 (Subdifferential). Let f : C → R be a convex function and C ⊆ Rn a
convex set. Then, we call ∂f(x) the subdifferential at x ∈ C and it is defined by

∂f(x) = {g ∈ Rn | f(y) ≥ f(x) + 〈g, y − x〉, ∀y ∈ Rn}. (2.3)

Each g ∈ ∂f(x) is called subgradient.

Remark 2.2. If f is a convex and differentiable function, then ∂f(x) = {∇f(x)}.

For a differentiable function f it is a necessary condition for x ∈ Rn to be a local
minimum that ∇f(x) = 0. In case f is convex and the subdifferential at x ∈ Rn is
non-empty, then x is a global minimum if and only if 0 ∈ ∂f(x). The proof can be
found in [RW10, Thm. 10.1].

Within the next lemma, we provide rules calculating the subdifferential, which are
frequently used in this thesis.

Lemma 2.4 (Subdifferential Calculus). Let f, fi : Rn → R for i ∈ [p] be convex and
lower semi-continuous. Then the following rules apply

(i) if g(x) = f(Ax) with A ∈ Rm×n and Ax ∈ dom f , then ∂g(x) = A>∂f(Ax);
(ii) if f =

∑
i∈[p] fi with x ∈ ⋂i dom fi, then ∂f(x) =

∑
i∈[p] ∂fi(x).

Proof. Using the chain rule for subdifferentials (see [RW10, Thm. 10.6]), we obtain
rule (i). The second rule (ii) follows by [RW10, Cor. 10.9].

In the next two lemmas, we use the rules from Lemma 2.4 to calculate the subdif-
ferential for two important functions which are used throughout this thesis.

Lemma 2.5. Let x ∈ Rn. Then the subdifferential of the function f(x) = ‖x‖1 at x
is defined by

∂f(x) = {α ∈ Rn | αS = sign(xS), ‖αSc‖∞ ≤ 1}, (2.4)

where S = supp(x).

Proof. First, we calculate the subdifferential of the absolute value function g(x) = |x|

∀y ∈ R : |y| ≥ |x|+ α · y ⇔ α ∈ ∂|x|, (2.5)

resulting in

∂|x| =
{

[−1, 1] if x = 0,

sign(x) otherwise.
(2.6)

By Lemma 2.4, we deduce

‖x‖1 =
∑
i

|〈ei, x〉| =⇒ ∂‖x‖1 =
∑
i

ei · ∂|xi|. (2.7)

Hence, the claim follows.
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Next, we consider the following constrained optimization problem

min
x∈C

f(x), (2.8)

where f : Rn → R is a convex function and C ⊆ Rn a closed convex set. Using the
indicator function

δC(x) =

{
0 if x ∈ C,
∞ otherwise.

, (2.9)

we transform the constrained optimization problem (2.8) to an unconstrained opti-
mization problem by

min
x∈Rn

f(x) + δC(x). (2.10)

In Chapter 3, we use formulation (2.10) and the optimality condition 0 ∈ ∂(f(x) +
δC(x)) to obtain testable optimality conditions for a class of optimization problems.
Therefore, we calculate the subdifferential of the indicator function in the following
lemma.

Lemma 2.6. Let C ⊆ Rn be a closed convex set and x ∈ C. Then the subdifferential
of f(x) = δC(x) at x is defined by

∂f(x) = N(x,C) = {g ∈ Rn | 〈g, y − x〉 ≤ 0, ∀y ∈ C}, (2.11)

where N(x,C) is the normal cone of C at x.

Proof. By the definition of the subdifferential, a vector g ∈ Rn is in the subdifferential
∂f(x) if and only if it holds for every y ∈ Rn that

δC(y) ≥ δC(x) + 〈g, y − x〉. (2.12)

If y 6∈ C the inequality is trivially true as δC(y) = ∞. Thus, we only have to check if
for all y ∈ C it holds

0 ≥ 〈g, y − x〉, (2.13)

which is the desired definition of the normal cone.

2.1.2 Differential Geometry

Below, we provide basic terms from differential geometry, which are required in Chap-
ter 6. For a more thorough introduction, see [Lee12]. Furthermore, we present results
from [AMS08] for the optimization on smooth manifolds.
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Definition 2.7 ([Lee12, p. 3]). A n-dimensional manifold is a topological space with
the following properties

• M is Haussdorff : for any pair of points p, q ∈ M, p 6= q, there exist disjoint
open subsets U, V ⊆M, U ∩ V = ∅ with p ∈ U and q ∈ V ;

• M is second-countable: there exist a countable basis for the topology of M;
• for each p ∈M we find

– an open subset U ⊂M with p ∈M,
– an open subset Û ⊂ Rn, and
– a homeomorphism ϕ : U → Û called chart.

Remark 2.3. An homeomorphism f between two topological spaces is a continuous
bijection such that the inverse map f−1 is also continuous.

In this thesis, we only consider smooth manifolds. Thus, we introduce the concept
of an atlas.

Definition 2.8 ([AMS08, p. 19]). A family of charts (Ui, ϕi), denoted by A, for a
n-dimensional manifold M is called an atlas if

• M =
⋃
i Ui, and

• for any i, j with Ui ∩ Uj 6= ∅ it holds ϕi ◦ ϕ−1
j ∈ C∞(Rn).

Remark 2.4. The set C∞(Rn) contains all smooth functions f : Rn → Rn.

Definition 2.9 (Smooth Manifold). Let M be a n-dimensional manifold. If it exists
an atlas A for M, then M is called a smooth manifold.

Remark 2.5. Henceforth, if we write manifold it means smooth manifold.

An atlas defines a differential structure on a manifold M so that we are able to
introduce concepts like differentials and tangent vectors from classical analysis for
manifolds.

We call a curve γ : R →M smooth if the composition ϕ ◦ γ : R → Rn is a smooth
function, where ϕ is a chart of M. Using the following equivalence relation

γi ∼ γj :⇔ ∀(U,ϕ) :
d

dt
(ϕ ◦ γi)(t)

∣∣∣∣
t=0

=
d

dt
(ϕ ◦ γj)(t)

∣∣∣∣
t=0

, (2.14)

we define the set of tangent vectors at a point p ∈M as the set of equivalence classes

TpM = {γ : R→M smooth | γ(0) = p}/ ∼ . (2.15)

Remark 2.6. The set from (2.15) forms a vector space, see [Lee12].

The differential of a smooth function F :M→N at p ∈M between two manifolds
M,N is a map

dxF :TxM→ TF (x)N ,
[γ] 7→ [F ◦ γ].

(2.16)
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Proposition 2.10 ([Lee12, Prop. 3.6]). Let M,N and P be smooth manifolds,
F : M → N and G : N → P be smooth maps and p ∈ M. Then the differential
has the following properties

(a) dpF : TpM→ TF (p)N is linear;
(b) dp(G ◦ F ) = dF (p)G ◦ dpF : TpM→ TG◦F (p)P;
(c) dp(IdM) = IdTpM : TpM→ TpM;
(d) if F is a diffeomorphism, then dpF : TpM→ TF (p)N is an isomorphism, and

(dpF
−1) = dF (p)(F

−1).

Remark 2.7. A function f is a diffeomorphism if f and f−1 are continuously differ-
entiable.

Considering M = Rn, we define a linear isomorphism between TpR
n and Rn by

Ψ : TpR
n → Rn,

[γ] 7→ γ̇(0) :=
d

dt
γ(t)

∣∣∣∣
t=0

,

Ψ−1 : Rn → TpR
n,

v 7→ [γ(t) := p+ t · v].

(2.17)

Hence, any chart ϕ covering p ∈ M implies that TpM ∼= Tϕ(p) R
n, see Proposi-

tion 2.10 (a) and (d). Then, we use the linear isomorphism (2.17) to identify the
tangent space of a n-dimensional manifold M at p, i.e.,

TpM∼= Rn . (2.18)

Gradient descent is a classical first-order optimization approach to minimize a smooth
function f : Rn → R. Therefore, one computes the gradient ∇f(xk) at some iterate
xk ∈ Rn and chooses a descent direction d meaning 〈∇f(xk), d〉 < 0. Fixing parameters
σ ∈ (0, 1) and α∗ > 0 over all iterates, one computes α ∈ (0, α∗] such that

f(xk + αd) ≤ f(xk) + σα〈∇f(x), d〉 (2.19)

and set xk+1 = xk − αd. Choosing α = βmα∗ with β ∈ (0, 1), we seek for the smallest
non-negative integer m satisfying (2.19). If the condition (2.19) is satisfied in every
iteration, then the iterates provably converge to a point x∗ satisfying ∇f(x∗) ≈ 0,
see [NW06].

On manifolds, the concept of the Armijo Line Search is applied by introducing the
Riemannian structure, which is available for every manifold [AMS08]. Thus, we equip
the manifold with an inner product 〈·, ·〉x : TxM× TxM → R. Next, we define the
Riemannian gradient for a smooth function f :M→ R at x ∈M, which is the unique
element ∇Mf(x) ∈ TxM such that ([AMS08, p. 46])

dxf [ξ] = 〈∇Mf(x), ξ〉x, ∀ξ ∈ TxM. (2.20)
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Similar to the classical analysis, ξ ∈ TxM is a descent direction if and only if

〈∇Mf(x), ξ〉x < 0. (2.21)

On a manifold the operation x+αξ for x ∈M and ξ ∈ TxM is not defined. Hence,
we define the so called retraction mapping tangent vectors back to the manifold and
transfers the concept of moving along a direction.

Definition 2.11 ([AMS08, Def 4.1.1]). A retraction on a manifold M is a smooth
mapping Rx : TxM→M with the following properties.

(i) Rx(0x) = x, where 0x denotes the zero element of TxM.
(ii) With the canonical identification T0xTxM∼ TxM, Rx satisfies

dRx(0x) = idTxM, (2.22)

where idTxM denotes the identity mapping on TxM.

To apply Armijo Line Search sketched in Algorithm 2.1, we need two more defini-
tions. The first definition is needed to ensure convergence, see [AMS08, Thm. 4.3.1].
While the second is the translation of the Armijo condition to the manifold setting.

Definition 2.12 ([AMS08, Definition 4.2.1]). Given a cost function f on a Riemannian
manifold M, a sequence {ηk}, ηk ∈ TxkM, is gradient-related if for any subsequence
{xk}k∈K of {xk} that converges to a non-critical point of f , the corresponding subse-
quence {ηk}k∈K is bounded and satisfies

lim sup
k→∞,k∈K

〈∇Mf(xk), ηk〉xk < 0. (2.23)

Definition 2.13 ([AMS08, Definition 4.2.2]). Given a cost function f on a Riemannian
manifoldM with retraction Rx, a point x ∈M, a tangent vector η ∈ TxM, and scalars
α > 0, β, σ ∈ (0, 1), the Armijo point is ηA = tA = βmαη, where m is the smallest
non-negative integer such that

f(x)− f(Rx(βmαη)) ≥ −σ〈∇Mf(x), βmαη〉x. (2.24)

The real tA is the Armijo step size.

2.1.3 Graph Theory

Graphs are combinatorial structures which we use to index variables and model re-
lations between variables throughout this thesis. See [KV18] for a more in-depth
introduction.

Let V be an index set which is called vertices or nodes. Choosing a subset E ⊆ V×V,
we name each element of E an edge. If v, w ∈ V and (v, w) ∈ E , then v is adjacent to
w. Together, these sets form a Graph G = (V, E). If for each (v, w) ∈ E it holds that
(w, v) ∈ E , we call G undirected otherwise directed . Henceforth, any graph is supposed
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Algorithm 2.1: Armijo Line Search on Manifolds

Input: f :M→ R is a smooth function, and Rx : TxM→M is a retraction
1 for k = 0, 1, . . . do
2 Pick ηk ∈ TxkM such that the sequence {ηi}i=0,1,... is gradient-related
3 xk+1 ← Rxk(tkηk) // tk according to Def. 2.13

4 if xk+1 satisfies some optimality condition then
5 return xk+1

6 end

7 end

v1

v2

v3 v4

v5

v6

v7

v8

edge node

Figure 2.1: We depict a graph G = (V, E) with nodes (blue circle) and edges (red line),
consisting of two connected components. A path from node v5 to v8 is given
by {v5v6, v6v8}. If choosing the path {v1v2, v2v3, v3v1}, it forms a circle.

to be undirected. Keeping the notation simple, we omit the parentheses of the edges
and write vw ∈ E instead of (v, w) ∈ E . Further, we identify with vw and wv the same
element, i.e., vw = wv.

A path between two nodes v, w ∈ V in a graph is an ordered subset

{u1u2, u2u3, . . . , un−1un} ⊆ E (2.25)

such that u1 = v and un = w. If u1 = un, we call the path a circle.

Choosing a subset C ⊆ V, we call G′ = (C, E ∩ (C × C)) a subgraph induced by C.
We name C connected when for each pair v, w ∈ C if it exists a path from v to w in
G′. Moreover, if it exists no set C ′ ⊆ V with C ⊆ C ′ such that C ′ is connected, we call
C a connected component of G.

In Figure 2.1, we give a graphical illustration of a graph consisting of two connected
components.

2.1.4 Branch and Bound

In chapters 4 and 5, we consider optimization problems with integrality constraints
and refer to a standard approach branch and bound [Dak65; LD60] to solve them.
This approach does not take a central role in this thesis. Thus, we only sketch it to
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introduce the necessary terms.

Consider the following general mixed-integer optimization problem

min f(x, y),

s.t. g(x, y) ≤ 0,

x ∈ X ∩ Zp,

y ∈ Y ∩Rq,

(MIP)

where f, g are continuous convex functions and X,Y ⊂ Rn are closed, convex sets.
Further, we suppose that the relaxation (P) below, meaning that we drop the integrality
restrictions of the variables x, is efficiently solvable and that a minimum exists.

min f(x, y),

s.t. g(x, y) ≤ 0,

x ∈ X ∩Rp,

y ∈ Y ∩Rq .

(P)

Using branch and bound to find a solution of (MIP) is a systematic enumeration
of possible integral solutions. Therefore, we iteratively solve variants of (P) and take
after each iteration a branch or bound action.

The branch and bound procedure starts by solving (P) to obtain a solution x∗. If
x∗ ∈ Zp, we found a solution to (MIP) and the procedure stops. Otherwise there
is an index i ∈ [p] such that x∗i 6∈ Z which results in taking the branch action. In
the branch action we create two variants of the problem (P) by adding the constraint
xi ≥ dx∗i e respectively xi ≤ bx∗i c. Consequently, the current non-integral solution x∗

is not feasible for either of the new variants of (P). Henceforth, we call new variants
created through the branch action active problems.

Suppose that there are already active problems caused by the branch action. In each
iteration of the branch and bound procedure, we remove an active problem by solving
it. That results in one of the following cases,

(i) the current active problem is infeasible,
(ii) x∗ 6∈ Zp, or
(iii) x∗ ∈ Zp.

Regarding (i), the iteration ends and we start over as above. Facing (ii), we again
apply the branch action resulting in the creation of new active problems as explained
above. In the last case, we found a feasible solution pair x∗, y∗ to (MIP). If this is
the first feasible solution found so far, we call this solution the incumbent solution.
Otherwise, we compare the new feasible solution with the current incumbent solution
and set the solution with the better objective value to the new incumbent solution.
Setting an incumbent solution is called the bound action. In Figure 2.2, we summarize
the above steps of branch and bound in a flow-chart for a better overview.

During all iterations we keep track of the lowest objective value of all active nodes
which is called the lower bound. The objective value of the incumbent solution is
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Choose active Node (P) (P) feasible?
Solve (P)

to obtain (x∗, y∗)
x∗ 6∈ Zn?

Update incumbent solution

Choose x∗i 6∈ ZAdd active nodes with
xi ≤ bx∗i c resp. xi ≥ dx∗i e

no

yes

yes

no

Figure 2.2: Branch and bound starts at the green node by solving the relaxation of the
mixed-integer program and runs until the list of active nodes is empty or
the lower bound exceeded the upper bound. Only if the list of active nodes
is non-empty, we may follow the dashed arrows. Otherwise, the branch and
bound procedure terminates.

called the upper bound. Branch and bound terminates if there is no active node left
or if the lower bound exceeded the upper bound. Hence, it ends after a finite number
of iterations. If the lower bound exceeded the upper bound, it implies that all other
solutions obtained from the remaining active problems would yield a worse objective
value. As a result, the incumbent solution after termination is the global optimal
solution to (MIP).

The description above is very general, but every branch and bound implementation
builds up on the idea sketched above. For a in-depth introduction, we refer to [Bal09;
KV18; Sch99; Bon08; Ley01] covering the linear and non-linear case.

2.2 Compressed Sensing

This thesis focuses on the reconstruction of discrete signals, especially images, from
incomplete linear measurements. Thus, we are interested in recovering a signal x ∈ Rn

undersampled by a matrix A ∈ Rm×n with m� n from linear measurements

Ax = Ax =: b. (2.26)

Assuming a full rank matrix A, the linear system above has infinitely many solutions.
Hence, we cannot reconstruct x from the linear system (2.26) without additional in-
formation. For this reason, we incorporate in the reconstruction model that the signal
meets a sparsity condition. There is a wide-ranging theory reconstructing such sig-
nals underlying a low-complexity model. This theory is known as Compressed Sensing
(CS) and provides mathematically substantiated conditions for signal recovery from
undersampled data. An in-depth introduction can be found in [FR13]. We only give a
short introduction as chapters 3 and 5 cover, and extend further topics of CS.
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Definition 2.14 (Sparsity). Let x ∈ Rn be a vector. Then we call x a s-sparse vector
with s ∈ N if

‖x‖0 := | supp(x)| ≤ s, (2.27)

where supp(x) = {i ∈ [n] : xi 6= 0}.
Knowing that the desired signal x ∈ Rn is s-sparse so that s is small compared to

n, we only seek for solutions of the given linear system which are sparse. As a result,
CS examines the solutions of the following combinatorial optimization problem

min ‖x‖0 s.t. Ax = b := Ax. (P0)

Ensuring that each s-sparse solution is unique, a necessary and sufficient condition for
A is that

spark(A) := min{‖v‖0 | v ∈ N (A) \ {0}} > 2s. (2.28)

As a consequence, if the matrix A satisfies the condition (2.28) and the desired signal
x is s-sparse, then x can be uniquely recovered by (P0). Chapter 5 introduces a more
general theory called union of subspaces [LD08; BD09] implying the result (2.28).

Both the optimization of (P0) and the calculation of (2.28) are known to be NP-hard,
see [Nat95; TP14]. Therefore, CS considers the convex relaxation

min ‖x‖1 s.t. Ax = b, (BP)

which is called basis pursuit. Similar to the condition that involves the spark, there is
also a necessary and sufficient condition for (BP) to guarantee reconstruction of any
s-sparse signal.

Definition 2.15 (Null Space Property). Let A ∈ Rm×n. Then A is said to have the
Null Space Property (NSP) relative to a set S ⊂ [n] if

‖vS‖1 < ‖vSc‖1, ∀v ∈ N (A) \ {0}. (2.29)

The matrix A is said to have the NSP of order s if

‖vS‖1 < ‖vSc‖1, ∀v ∈ N (A) \ {0}, ∀S ⊂ [n] : |S| ≤ s. (2.30)

Chapter 3 focuses on the reconstruction of signals through a generalized form of
(BP), where we replace ‖x‖1 by ‖Ωx‖1 with Ω ∈ Rp×n. This generalized problem
requires also a general form of the null space property.

In particular, we are interested if Ω is the two-dimensional discrete gradient denoted
by ∇. For an one-dimensional signal x ∈ Rd the discrete gradient Dx is defined by

Dx =

 x2 − x1
...

xn − xd−1

 ∈ Rd−1 . (2.31)
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Using the one-dimensional discrete gradient, we define the two-dimensional version
by

∇ =

(
I ⊗D
D ⊗ I

)
, (2.32)

where ⊗ is the Kronecker product. For the two-dimensional discrete gradient, we
assume that a two-dimensional signal from Rd×d is stacked column-wise into a vector
x ∈ Rn, where n = d2. Recovering gradient sparse two-dimensional signals, we use

min ‖∇x‖1 s.t. Ax = b. (2.33)

The main interest of this thesis is to investigate uniform recovery guarantees for
(2.33), when A is a tomographic matrix (see subsequent Section 2.3) However, the
results from CS only apply to sparse and not gradient sparse signals. One result
which extends a uniform recovery guarantee from CS to gradient sparse images is from
[NW13b]. They use the Haar wavelet transform and the restricted isometry property
(RIP) to guarantee unique recovery for gradient sparse images.

Definition 2.16. Let A ∈ Rm×n be a matrix and δ ∈ (0, 1). The matrix A has the
RIP of order s for s ∈ [n], if for all s-sparse vectors x ∈ Rn it holds

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22. (2.34)

The smallest δ denoted by δs satisfying (2.34) is called the RIP constant.

Since the result of [NW13b] applies also to continuous images, we provide the dis-
cretized version from [Den14a]. Then, the results reads that if the matrix AH−1 has a
RIP constant δ5s <

1
3 , we uniquely recover every s gradient sparse signal. With H we

denote the discrete Haar wavelet transform.
Considering tomographic matrix, the authors of [Den14a] showed that using the Haar

wavelet transform, it only guarantees the reconstruction of images with low gradient
sparsity. In Chapter 3, we see that tomographic matrices perform much better meaning
that even with few projections we are able to recover images with larger sparsity levels
of the gradient.

2.3 Discrete Tomography

In this section, we define the projection geometries of discrete tomography which are
used throughout this thesis. For the physics of computer tomography, we refer to
[Buz08; Her09]. An overview of discrete tomography can be found in [HK07].

The projection geometries used in this thesis base on the X-ray transform model [Nat01],
closely related to the Radon transform, which maps a function representing an image
u : R2 → R to its line integral

f(s, p) =

∫
u(s+ tp)dt, (2.35)
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(a) continous domain (b) 32× 32 pixel grid (c) 16× 16 pixel grid

Figure 2.3: In (a), we depicted an image with a continuous domain. Using a finite grid
of pixel basis functions, we receive in (b) and (c) different discretizations.
The gray value of each square represents the coefficient of a pixel basis
function at the spatial position.

where s, p ∈ R2 are linear independent vectors. Such a transform is a continuous-
to-continuous operation, since we map a function to a new function. The filtered
backprojection, mentioned in the introduction of this thesis, is an inversion formula of
(2.35) to retrieve the function u if only f is known.

In discrete tomography, we assume that the image function is discretized by a finite
expansion set, e.g., pixel, and u ∈ Rn are the coefficients. Figure 2.3 illustrates the
approximation of a continuous image domain by a finite pixel grid. Let Bj be the j-th
basis function. Then, for a single ray si + t · pi the transform (2.35) rewrites to

bi =
∑
i∈[n]

ui

∫
Bj(si + t · pi)dt︸ ︷︷ ︸

=:Aij

. (2.36)

Collecting the coefficients Aij from (2.36) into a matrix, we obtain a discrete-to-discrete
transformation in contrast to (2.35) by

b = Au, (2.37)

where b ∈ Rm are the result of choosing a finite set of m rays and A ∈ Rm×n. Hence,
the entries of A provides an incidence geometry defining how the basis function j
contributes to the i-th X-ray.

Throughout this thesis, we consider two basis functions to construct A, which are
presented in the remaining of this section. Henceforth, we consider the image to be
discretized by pixels on a d× d grid. We identify each pixel by an index j ∈ [d2].

Let Bj be the basis function corresponding to the pixel j, meaning that it yields one
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Aij

(a) real weights

j j′
Aij = 1

Aij′ = 0

(b) binary weights

Figure 2.4: The left figure shows real weight from (2.38) and on the right we see the
weights from (2.39). We marked the region of points with distance less
than 1

2 to the ray in blue.

in the square defined by the pixel and zero otherwise. Then,

Aij =

∫
Bj(si + t · pi)dt (2.38)

is the intersection length of ray i with pixel j. In this case, we call the entries of the
tomographic matrix A real weights. Figure 2.4 (a) illustrates that intersection of pixel
j and ray i to obtain (2.38).

The authors in [RLH14] presented binary weights, i.e., Aij ∈ {0, 1}, to model A.
Therefore, we define that the index j ∈ [d]2 represents the center of pixel j. Then, we
replace the basis function in (2.36) by the Heaviside1 step function to decide whether
the distance of the center of pixel j to ray i is less than 1

2 ,

Aij = H

(
1

2
− |〈j − si, si〉|‖si‖2

)
. (2.39)

In Figure 2.4 (b), we marked the region of points with a distance smaller than 1
2 to

ray i in blue to show which pixel assigned with weight zero or one.
So far, we explained the construction of the weights along a ray. We call a set of

parallel rays a projection which are uniformly distributed around the center of the
image domain. Figure 2.5 depicts projections for real or binary choice of weights.

Throughout this thesis, we keep the number of rays in a projection constant and
obtain new projections by rotating the rays simultaneously around the image center
which was proposed in [RLH14]. This is illustrated in Figure 2.6. Keeping the num-
ber of rays constant over all projections, we make sure that each projection collects
approximately the same amount of information.

1H(x) is one if x ≥ 0 and zero otherwise.



18 2 Preliminaries

(a) parallel real (b) parallel binary

Figure 2.5: Both figures show a set of parallel rays which are uniformly distributed
around the image center. In the left figure, we choose real weights and
binary weights in the right image.

Figure 2.6: In this figure, we show four different projections which are counter-
clockwise rotated from left to right. With the dashed circle, we mark the
domain of the image which nonzero values. The projections are rotated
around the center of the dashed circle.



CHAPTER 3

Box-Constrained Sparse and Cosparse Recovery

This chapter is motivated by the image reconstruction problem from few linear mea-
surements, more specifically by the tomographic recovery [HK99] of industrial objects.
Dealing with the severe under-sampling of an image, we want to exploit prior knowl-
edge like the gradient sparsity and the small finite range of signal values. In particular,
we are concerned with the recovery of box-constrained gradient sparse signals.

Recovering a structured signal/image from few linear measurements is a central
point in both compressed sensing (CS) [FR13] and discrete tomography [HK99]. In
CS, the signal structure is described through a low complexity model. For instance,
if the signal x ∈ Rn is sparse, i.e., ‖x‖0 =: s � n, the associated `0-regularization is
typically relaxed to the sparsity promoting convex `1-regularization. The theory of CS
implies that if the number of measurements m ≥ C · s · log(n/s) and the entries of the
measurement matrix A follows a normal distribution, i.e., aij ∼ N (0, 1), the solution
of `0-minimization is equal to the solution of `1-minimization. Hence, a combinatorial
problem is solved by a convex optimization problem.

In the following, we consider the noiseless setting

Ax = b, (3.1)

where the unknown (structured) signal x ∈ Rn is under-sampled either by a Gaussian
matrix A ∈ Rm×n, i.e., A has independent standard normal entries, or by a tomo-
graphic projection matrix A.

For the reconstruction of the sparse or gradient sparse box-constrained signal of
interest, we consider some structure enforcing regularizer f : Rn → R, that is a proper
convex function, and solve

min f(x) s.t. Ax = Ax, (3.2)

19
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where we consider f as one of the following functions

f1(x) =‖x‖1, (3.2a)

f2(x) =‖x‖1 + δRn≥0
(x), (3.2b)

f3(x) =‖x‖1 + δ[0,1]n(x), (3.2c)

f4(x) =‖Ωx‖1, (3.2d)

f5(x) =‖Ωx‖1 + δRn≥0
(x), (3.2e)

f6(x) =‖Ωx‖1 + δ[0,1]n(x). (3.2f)

In the first part of this chapter, Ω ∈ Rp×n is an arbitrary matrix, while in the latter
part, Ω corresponds to the discrete gradient operator, in view of the (anisotropic)
TV-regularizer we are interested in.

3.1 Individual Recovery

In this section, we derive testable uniqueness conditions for the considered problems
(3.2a) - (3.2f). We first provide recovery conditions called dual certificates. More
precisely, considering that given a specific vector x, and we have to decide whether
it is the unique solution of (3.2). We provide necessary and sufficient conditions that
certify the existence and uniqueness of a solution (3.2) for the case of a polyhedral
function f . Our analysis closely follows [Gil16]. These conditions are formulated in
terms of a solution to the dual problem of (3.2). For the cases (3.2a) - (3.2f), we
see that it is possible to test uniqueness by merely solving a linear program. In the
following, it is useful to recast (3.2) as an unconstrained optimization problem

min
x∈Rn

g(x) := f(x) + δX (x), (3.3)

where X denotes the feasible set of (3.2) with

X := {x ∈ Rn | Ax = Ax}. (3.4)

Hence, the function g considered in this section is convex polyhedral, meaning that its
epigraph is a convex polyhedron.

3.1.1 Dual Certificates

Hereafter, we use the result from [Gil16] giving us a necessary and sufficient condition
for x to be the unique minimum of a polyhedral function.
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Lemma 3.1 ([Gil16, Lem. 2.2]). Let g : Rn → R be any proper, convex and lower
semi-continuous function that is also polyhedral1. Then it holds

{x} = arg min
x
g(x)⇔ 0 ∈ int(∂g(x)). (3.5)

The main result, Theorem 3.3, in this section, concerns the uniqueness of the opti-
mization problem

min
x∈Rn

‖Ωx‖1 + δX (x) + δ[l,u]n(x). (3.6)

It is a generalization of (3.2a) - (3.2f) since one sets Ω = I, l = −∞, or u = ∞ to
achieve any of the before mentioned optimization problems.

Definition 3.2. Let x, l, u ∈ Rn with l < u, and Ψ : Rn → {−1, 0, 1}n×n. The
function Ψ maps a vector to a diagonal matrix, which is defined as

(Ψ(x, l, u))ii :=


−1 if li = xi

1 if ui = xi

0 otherwise.

(3.7)

If it is apparent from context, we write Ψ instead of Ψ(x, l, u).

Theorem 3.3 (Dual Certificate). A solution x to (3.6) is unique if and only if the
following conditions hold

(i) N (A) ∩N (ΩΛ,•) ∩N (Ψ) = {0}
(ii) ∃α ∈ Rp, ∃µ ∈ Rn :,

Ω>α+ Ψµ ∈ R(A>), αΛc = sign(ΩΛc,•x), ‖αΛ‖∞ < 1, µ > 0,

where Λ := cosupp(Ωx) and Ψ from Definition 3.2.

Proof. By Lemma 3.1, x is the unique solution to (3.6) if and only if

0 ∈ int(∂(‖Ωx‖1 + δX (x) + δ[l,u](x))). (3.8)

We rewrite (3.8) into:

(a) Rn = aff(∂(‖Ωx‖1 + δX (x) + δ[l,u](x))) ,
(b) 0 ∈ relint(∂(‖Ωx‖1 + δX (x) + δ[l,u](x))).

Condition (a) ensures that the interior of the subdifferential is non-empty, and is
converted to (see Lemma 2.4)

Rn = aff(∂‖Ωx‖1) + aff(∂δX (x)) + aff(∂δ[l,u](x))). (3.9)

Applying the subdifferential calculus from Section 2.1.1, we calculate the individual

1A function is polyhedral if it is piecewise affine linear.
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subdifferentials from (3.9) and the affine hull

aff(∂‖Ωx‖1) = aff({Ω>α | sign(ΩΛc,•x) = αΛc , ‖αΛ‖∞ ≤ 1})
= Ω>Λc,• sign(ΩΛc,•x)︸ ︷︷ ︸

=:y0

+ aff({Ω>Λ,•α | ‖α‖∞ ≤ 1})

= y0 +R(Ω>Λ,•),

aff(δX (x)) = aff(N(x,X )) = N (A)⊥,

aff(δ[l,u]) = aff(N(x, [l, u]) = aff(R
|Sl|
− ×{0}|Slu| ×RSu

+ )

= R(Ψ),

where Sl = {i | xi = li}, Su = {i | xi = ui} and Slu = {i | li < xi < ui}. Consequently,
we transform (a) to

Rn = y0 +R(Ω>Λ,•) +N (A)⊥ +R(Ψ). (3.10)

Consider that Rn +v = Rn for all v ∈ Rn, we omit y0 in the equation above. Then,
taking the orthogonal complement without y0, we obtain

{0} = (Rn)⊥ = (R(Ω>Λ,•) +N (A)⊥ +R(Ψ))⊥ (3.11)

= (R(Ω>Λ,•))
⊥ ∩ (N (A)⊥)⊥ ∩R(Ψ)⊥ (3.12)

= N (ΩΛ,•) ∩N (A) ∩R(Ψ), (3.13)

which yields (i). Next we reformulate condition (b). For this purpose, we use the result
[Roc97, Cor. 6.6.2] stating that for two convex sets C1, C2 it holds

relint(C1 + C2) = relint(C1) + relint(C2). (3.14)

Employing (3.14) and the definition of the subdifferential (see Def. 2.3), we obtain

0 ∈ relint(∂(‖Ωx‖1 + δX (x) + δ[l,u](x)))

= relint(∂(‖Ωx‖1) + relint(δX (x)) + relint(δ[l,u](x)))

= relint(y0 + {Ω>Λ,•α | ‖α‖∞ ≤ 1}) + relint(N (A)⊥) + relint({Ψy | y ≥ 0})
= relint(y0 + {Ω>Λ,•α | ‖α‖∞ ≤ 1}) + relint(R(A>)) + relint({Ψy | y ≥ 0})
= y0 + {Ω>Λ,•α | ‖α‖∞ < 1}+R(A>) + {Ψy | y > 0},

implying (ii), which concludes the proof.

Below, we demonstrate applications of the Theorem 3.3 to (3.2a) - (3.2f) as corol-
laries. In Section 3.1.3, we reveal that the conditions from Theorem 3.3 are efficiently
checked by linear programming.
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Corollary 3.4. A solution x of (3.2a) is the unique if and only if

∃y ∈ Rm : A>•,Sy = sign(xS) ∧ ‖A>•,Scy‖∞ < 1 and

A•,S is injective,

where S := supp(x).

Proof. Setting Ω = I, l = −∞ and u = ∞, we achieve (3.2a) from (3.6) such that
we apply Theorem 3.3. Consequently, we obtain Ψ = 0 such that the conditions from
Theorem 3.3 are reduced to

(i) N (A) ∩N (ISc,•) = {0},
(ii) ∃α ∈ Rn : α ∈ R(A>), αS = sign(xS), ‖αSc‖∞ < 1,

taking into account that Λ = Sc and N (Ψ) = Rn. Condition (i) is further simplified
to

{0} = N (A) ∩N (ISc,•) = N (A) ∩N (I•,Sc)

= N (A) ∩ {x : xSc = 0}
= N (A•,S),

which yields the condition that A•,S has to be injective. We conclude the proof by
transforming the condition (ii) to

∃α ∈ Rn, y ∈ Rm : α = A>y ∧ αS = sign(xS) ∧ ‖αSc‖∞ < 1 (3.15)

⇔ ∃y ∈ Rm : A>•,Sy = sign(xS) ∧ ‖A>•,Scy‖∞ < 1. (3.16)

Corollary 3.5. A solution x of (3.2b) is the unique if and only if

∃y ∈ Rm : A>•,Sy = 1S ∧A>•,Scy < 1Sc and

A•,S is injective,

with S := supp(x).

Proof. In order to apply Theorem 3.3, we proceed similarly to the proof of Corollary 3.4
by setting Ω = I, l = 0, and u =∞, resulting in the conditions

(i) N (A) ∩N (ISc,•) ∩N (−ISc,•) = {0},
(ii) ∃α ∈ Rn,∃µ ∈ Rn :

α− ISc,•µ ∈ R(A>), αS = sign(xS), ‖αSc‖∞ < 1, µ > 0.

where Λ = Sc and Ψ = −ISc,•. Likewise to Corollary 3.4, condition (i) yields that AS,•
has to be injective.

Condition (ii) rewrites to

A>•,Sy = 1S and A>•,Scy + µSc = αSc (3.17)
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with ‖αSc‖∞ < 1 and µSc,• > 0. Hence, we rewrite the second part of (3.17) as

A>•,Scy < 1Sc , (3.18)

which concludes the proof.

Corollary 3.6. A binary solution x ∈ {0, 1}n of (3.2c) is the unique if and only if

∃y ∈ Rm : A>•,Sy > 1 ∧A>•,Scy < 1, (3.19)

with S := supp(x).

Proof. Like in the previous corollaries, we set Ω = I, l = 0 and u = 1. As a result,
the matrix Ψ has only nonzero entries on its diagonal, which leads to N (Ψ) = {0}.
Consequently, condition (i) of Theorem 3.3 is fulfilled. Similar to Corollary 3.5, the
condition (ii) of Theorem 3.3 rewrites to

A>•,Sy − µS = 1S (3.20)

and A>•,Scy + µSc = αSc (3.21)

with ‖αSc‖∞ < 1 and µ > 0. By transforming the above equations to

A>•,Sy > 1S (3.22)

and A>•,Scy < 1S , (3.23)

we conclude the proof.

Corollary 3.7. A solution x ∈ Rn of (3.2d) is the unique if and only if

(i) N (A) ∩N (ΩΛ,•) = {0},
(ii) ∃α : Ω>α ∈ R(A>), αΛc = sign(ΩΛc,•x), ‖αΛ‖∞ < 1,

where Λ = cosupp(Ωx).

Proof. As in the proof of Corollary 3.4, we conclude that Ψ = 0 is the zero matrix.
Hence, the two conditions of Theorem 3.3 simplify to the conditions above, that do
not involve the variable µ.

Corollary 3.8. A solution x ∈ Rn
+ of (3.2e) is the unique if and only if

(i) N (AS) ∩N (ΩΛ,S) = {0},
(ii) ∃α,∃µ : Ω>α− I•,Sµ ∈ R(A>), α = sign(ΩΛc,•x), ‖αΛ‖∞ < 1, µ > 0

where Λ = cosupp(Ωx) and S = supp(x).

Proof. Immediate from Theorem 3.3 and Corollary 3.4 considering that Ψ = −I•,S .

Corollary 3.9. A binary solution x ∈ {0, 1}n of (3.2f) is the unique if and only if

∃α,∃µ > 0 : Ω>α+ Ψµ ∈ R(A>), α = sign(ΩΛc,•x), ‖αΛ‖∞ < 1,

where Λ = cosupp(Ωx).
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Proof. Like in Corollary 3.6, the condition (i) of Theorem 3.3 is always valid. Conse-
quently, we just have to consider condition (ii) of Theorem 3.3.

3.1.2 Null Space Property

In the preliminaries, we have already introduced the null space property for basis
pursuit. We show in the following theorem that an extended version of the null space
property is equivalent to Theorem 3.3.

Theorem 3.10. The optimality conditions in Theorem 3.3 are equivalent to the box-
constrained null space property

〈ΩΛc,•v, sign(ΩΛc,•x)〉 < ‖ΩΛ,•v‖1, ∀v ∈ N (A) \ {0},Ψv ≥ 0. (3.24)

Proof. We start by assuming that (3.24) holds and show that x is the unique minimizer
to (3.6). Recall that uniqueness is equivalent to the conditions of Theorem 3.3. In the
following, we will choose an arbitrary x 6= y ∈ [l, u] with Ay = Ax. It is straightforward
to see that Ψ(x− y) ≥ 0, where Ψ is defined as in Theorem 3.3.

‖Ωx‖1 = 〈ΩΛc,•x, sign(ΩΛc,•x)〉
1

= 〈ΩΛc,•x− ΩΛc,•y + ΩΛc,•y, sign(ΩΛc,•x)〉
= 〈ΩΛc,•(x− y), sign(ΩΛc,•x)〉+ 〈ΩΛc,•y, sign(ΩΛc,•x)〉
2

< ‖ΩΛ,•(x− y)‖1 + ‖ΩΛc,•y‖1
3

= ‖ΩΛ,•y‖1 + ‖ΩΛc,•y‖1
= ‖Ωy‖1.

We obtain 1 through a zero expansion. Using 〈ΩΛc,•y, sign(ΩΛc,•x)〉 ≤ ‖ΩΛc,•y‖1 and
(3.24), we achieve 2 . Finally, we use ΩΛ,•x = 0 to gain 3 . Consequently, ‖Ωx‖1 <
‖Ωy‖1 holds for all x 6= y ∈ [l, u], which implies that x is a unique minimizer.

Conversely, we suppose that x is a unique minimizer of (3.6). According to Theorem
3.3, we find α with ‖α‖∞ < 1 and µ > 0 such that

〈v,Ω>Λc,•α+ Ω>Λc,• sign(ΩΛc,•x) + Ψµ︸ ︷︷ ︸
∈N (A)⊥

〉 = 0 v ∈ N (A)

⇔ 〈v,Ω>Λc,•α+ Ω>Λc,• sign(ΩΛc,•x)〉 = −〈v,Ψµ〉 v ∈ N (A).

Further, we only consider v ∈ N (A) with Ψv ≥ 0. This leads to 〈Ψv, µ〉 ≥ 0, since
µ > 0. Consequently, we obtain

〈ΩΛc,•v, sign(ΩΛc,•x)〉 ≤ −〈ΩΛ,•v, α〉, ∀v ∈ N (A) \ {0} with Ψv ≥ 0

⇔ 〈ΩΛc,•v, sign(ΩΛc,•x)〉 ≤ ‖ΩΛ,•v‖1, ∀v ∈ N (A) \ {0} with Ψv ≥ 0.

The above inequality becomes strict if ΩΛ,•v 6= 0 or Ψv 6= 0. Condition (i) from
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Theorem 3.3 ensures that ΩΛ,•v and Ψv can not simultaneously be equal to the zero
vector. Hence (3.24) holds.

Remark 3.1. In [Nam13, Thm. 7] the authors showed a similar result to Theorem
3.10, but without considering box constraints.

3.1.3 Calculating the Dual Certificate

Next, we discuss how the conditions of Theorem 3.3 are verified using linear program-
ming. To this end, let x be a solution of (3.6). We need to check the conditions

(i) N (A) ∩N (ΩΛ,•) ∩N (Ψ) = {0}
(ii) ∃α ∈ Rp, ∃µ ∈ Rn :

Ω>α+ Ψµ ∈ R(A>), αΛc = sign(ΩΛc,•x), ‖αΛ‖∞ < 1, µ > 0,

from Theorem 3.3. Condition (i) is equivalent to test if

rank

 A
ΩΛ,•

Ψ

 = n. (3.25)

The second condition (ii) could be verified in practice by minimizing ‖αΛ‖∞ w.r.t.
y, α, µ, while respecting the equality constraints and converting the strict inequality
constraint µ > 0 to µ ≥ ε1 for a small ε, e.g., ε = 10−8, to ensure that the inequality
is satisfied strictly. This results in a linear program (LP),

min
t,y,α,µ

t s.t. − t1 ≤ αΛ ≤ t1,

A>y = Ω>α+ Ψµ,

µ ≥ ε1 .

For the optimal solution (t∗, y∗, α∗, µ∗) we have by definition the smallest possible
t := ‖αΛ‖∞. If t∗ is not smaller than one, then no y exists with smaller t. We therefore
declare x the unique minimizer if t∗ < 1, and if t∗ ≥ 1, x cannot be the unique
minimizer. Numerically, we would test whether t∗ ≤ 1 − ε. Technically, by applying
the above procedure we risk rejecting a unique solution x, for which 1 − ε < t∗ < 1.
Recall that the choice for ε is ad hoc. In order to resolve this issue, we provide next a
theoretically well-established methodology to deal with the strict feasibility problem

Ω>α+ Ψµ = A>y,

αΛc = sign(ΩΛc,•x),

‖αΛ‖∞ < 1,

µ > 0.

(3.26)

The above feasibility problem is recast as a linear system of inequalities, as we will see
next. For this purpose, we transform the above problem into the form Mz = q, Pz < p.
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Theorem 3.11. Let M,P be a matrices such that N (M>) = {0}. Then, there is a
point z with Mz = q, Pz < d if and only if v = 0 is the only feasible solution of the
problem

q>u+ p>v ≤ 0, M>u+ P>v = 0, v ≥ 0. (3.27)

Proof. We consider the following pair of linear programs

max 0 (P)

s.t. Mz = q

Pz ≤ d,

min q>u+ d>v (DP)

s.t. M>u+ P>v = 0

v ≥ 0

where (P) is the primal problem and (DP) its dual.

First, note that under the assumption N (M>) = {0}, vector v = 0 is the only
feasible solution of (3.27) if and only if v = 0 is the only solution of (DP). Indeed,
the common constraint M>u + P>v = 0 implies due to the assumptions v = 0 and
N (M>) = {0} that (u, v) = (0, 0).

Hence, we show the statement of the theorem by showing that (P) is strictly feasible
if and only if v = 0 is the only solution of (DP). On the one hand, we assume that
(P) is strictly feasible. Since any feasible solution is also a solution of (P), we deduce
from the existence of a primal solution the existence of a dual solution. The optimality
conditions yield in particular (d − Pz)>v∗ = 0 for such a primal solution z of (P)
and any dual solution (u∗, v∗) of (DP). Since Pz < d holds, it follows that v∗ = 0 is
the only solution. On the other hand, we assume for each dual solution (u∗, v∗) that
v∗ = 0. In view of the strict complementarity condition [Van14, Thm 10.7], it exists a
pair of primal and dual solutions such that

(d− Pz∗) + v∗ > 0. (3.28)

Since by assumption v∗ = 0, (3.28) implies the existence of a primal solution z∗ with
Pz∗ < d, which concludes the proof.

In view of Theorem 3.11, we check feasibility of the system (3.26) by linear program-
ming. First, we transform (3.26) into the primal problem of Theorem 3.11:

max
α,µ,y

0

s.t.
(
Ω>Λ,• Ψ A>

)︸ ︷︷ ︸
=:M

αµ
y


︸ ︷︷ ︸

=:z

= −Ω>Λc,• sign(DΛc,•x)︸ ︷︷ ︸
=:q

,

−I 0 0
I 0 0
0 −I 0


︸ ︷︷ ︸

=:P

αµ
y


︸ ︷︷ ︸

=:z

≤

1

1

0


︸ ︷︷ ︸

=:d

.

(P<)
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Assumption N (M>) = {0} in Theorem 3.11 corresponds to the first condition from
Theorem 3.3. Consequently, if the condition (i) of Theorem 3.3 is satisfied, then x is
the unique minimizer if and only if

max 〈1, u+ + u− + w〉
s.t. 〈1, u+ + u−〉 ≤ 〈sign(ΩΛc,•x),ΩΛc,•v〉,

ΩΛ,•v = u+ − u−,
Ψv = w,

Av = 0,

u+, u−, w ≥ 0,

(DP<)

has an optimal objective value equal to zero.

Remark 3.2. Any solution to (DP<), yielding a nonzero objective value, is a counter-
example to the nullspace property in Theorem 3.10.

3.2 Probabilistic Recovery

In this section, we investigate the probability that a solution of (3.2) is unique under
the assumption that only its co-/sparsity is known. More precisely, we are looking
for the likelihood of a unique solution of (3.2) given a fixed number of random linear
measurements and the sparsity.

For f = ‖ · ‖1 and a Gaussian matrix2 A, it is well-known that the recovery of a
sparse vector x from exact measurements Ax depends only on its sparsity level, and
is independent of the locations or values of the nonzero entries. There are precise
relations between the sparsity s, ambient dimension n, and the number of samples
m that guarantee success of (3.2a). Moreover, several authors have shown that there
is a transition from absolute success to absolute failure, and they have accurately
characterized in the case of regularization with `1 or other norms the location the
location of this transition, also called a phase transition. For the TV-seminorm, such
a complete analysis is still missing. As mentioned in the introduction, the authors
in [Zha16] have recently shown that in the case of one-dimensional TV-minimization,
case (3.2d), the phase transition is accurately described by an effective bound for the
statistical dimension of a descent cone, which is based on the squared distance of a
standard normal vector to the subdifferential of the objective function at the sought
solution x,

min
τ≥0

E[dist(X, τ∂f(x)], X ∼ N (0, I).

Next, we investigate whether the same relation that describes phase transitions for
`1-minimization and 1D TV-minimization also holds for all our objective functions in
(3.2a)-(3.2f).

2Every entry is normal distributed, i.e., aij ∼ N (0, 1).
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3.2.1 Statistical Dimension Estimation

Firstly, we compile recent results of convex signal reconstruction with a Gaussian
sampling model and briefly explain how these results lead to a sharp bound for the
number of Gaussian measurements that suffice to recover x from (3.2) uniquely.

We start by defining the statistical dimension, which generalizes the concept of
dimension of subspaces to close, convex cones.

Definition 3.12. (Statistical dimension, [Ame14]) The statistical dimension δ(K) of
a closed, convex cone K ⊆ Rn is the quantity

δ(K) := E[‖ΠK(X)‖22], (3.29)

where ΠK is the Euclidean projection onto K and X is a standard normal vector, i.e.,
X ∼ N (0, I).

In the subsequent proposition, we gather some essential properties of the statistical
dimension, which also reveal that the statistical dimension generalizes the concept of
the dimension of subspaces to closed, convex cones.

Proposition 3.13 ([Ame14, Prop. 3.1]). Let K ⊆ Rn be a closed, convex cone. The
statistical dimension obeys the following laws.

1. Polar Formulation. The statistical dimension is expressed in terms of the
polar cone3

δ(K) = E[dist(X,K◦)2], (3.30)

where K and X ∼ N (0, I).

2. Rotational invariance. The statistical dimension does not depend on the ori-
entation of the cone

δ(UK) = δ(K), (3.31)

for each orthogonal matrix U ∈ Rn×n.

3. Subspaces. For each subspace L, the statistical dimension satisfies

δ(L) = dim(L). (3.32)

4. Complementarity. The sum of the statistical dimension of a cone and that of
its polar equals the ambient dimension

δ(K) + δ(K◦) = n. (3.33)

This generalizes the property dim(L) + dim(L>) = n for each subspace L ⊆ Rn.

3K◦ = {y ∈ Rn | 〈y, x〉 ≤ 0, ∀x ∈ K}
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5. Monotonicity. For each closed convex cone K ⊆ Rn the inclusion C ⊆ K
implies that δ(C) ≤ δ(K).

Another quantity used in the same context in literature is the Gaussian width. For
completeness we give the definition and remark the relation to the statistical dimension.

Definition 3.14. (Gaussian width, [Cha12]) The Gaussian width of C ⊆ Rn is

ω(C) := E[sup
z∈C
〈X, z〉],

where X is a standard normal vector, i.e., xi ∼ N (0, 1) for i ∈ [n].

Remark 3.3. In case of closed, convex cones, see [Ame14], we have the following
relationship between the statistical dimension and the Gaussian width:

ω(K)2 ≤ δ(K) ≤ ω(K)2 + 1.

Before stating the main result of this subsection, we give an alternative character-
ization of the uniqueness of a solution x to (3.2). To this end, we define the descent
cone.

Definition 3.15. (Descent cone) The descent cone of a proper convex function f :
Rn → R at a point x is

Df (x) := cone({z − x : f(z) ≤ f(x)}), (3.34)

i.e., the conic hull of the directions that do not increase f near x.

Proposition 3.16 ([FR13, Thm. 4.35]). The vector x is the unique solution of the
convex program (3.2) if and only if

Df (x) ∩N (A) = {0}. (3.35)

The next theorem uses the statistical dimension to bound the probability that two
convex cones share a ray.

Theorem 3.17. [Ame14, Thm. I] Fix a tolerance parameter ε ∈ (0, 1). Let C and K
be convex cones in Rn, and draw a random orthogonal matrix Q ∈ Rn×n. Then

• δ(C) + δ(K) ≤ n− aε
√
n =⇒ C ∩QK 6= {0} with probability ≤ ε;

• δ(C) + δ(K) ≥ n+ aε
√
n =⇒ C ∩QK 6= {0} with probability ≥ 1− ε,

with aε :=
√

8 log(4/ε).

In the sequel, we consider A ∈ Rm×n to be a Gaussian matrix. Then with high
probability dim(N (A)) = n −m. Further, we have that N (A) is a convex cone and
δ(N (A)) = n − m. Consequently, we use condition (3.35) to derive using Theorem
3.17, the probability that x is the unique solution of (3.2).
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Theorem 3.18. [Ame14, Thm. II] Fix a tolerance parameter ε ∈ (0, 1). Let x ∈ Rn

be a fixed vector, and let f : Rn → R be a proper convex function. Suppose A ∈ Rm×n

has independent standard normal entries, and let b = Ax. Then

• m ≤ δ(Df (x))− aε
√
n =⇒ (3.2) succeeds with probability ≤ ε;

• m ≥ δ(Df (x)) + aε
√
n =⇒ (3.2) succeeds with probability ≥ 1− ε,

with aε :=
√

8 log(4/ε).

Theorem 3.18 states that there is a transition from failure to success and localizes
the phase transition at m = δ(Df (x)). Consequently, the statistical dimension of the
descent cone bounds the needed number of linear measurements to guarantee exact
recovery by (3.2) [Ame14].

3.2.2 Upper Bounds for the Statistical Dimension

As aforementioned, the calculation of the statistical dimension might be difficult. In
the following, we discuss an upper bound that admits a closed form in some cases.

By connecting the subdifferential to the descent cone, we provide an alternative
formulation of the statistical dimension.

Proposition 3.19 ([Tro15, Fact 4.4]). Let f : Rn → R be a proper convex function
and x ∈ Rn. If the subdifferential ∂f(x) is nonempty and does not contain the origin,
then

D(f, x)◦ = cone(∂f(x)). (3.36)

Combining the proposition above and (3.30), we calculate the statistical dimension
in terms of the subdifferential by

δ(D(f, x)) = E[dist(X,D(f, x)◦)2]

= E[dist(X, cone(∂f(x)))2]

= E[ inf
τ≥0

dist(X, τ · ∂f(x))2].

Next, we introduce the upper bound from [Ame14], which uses the connection between
the descent cone and the subdifferential.

Proposition 3.20 ([Ame14, Prop. 4.1]). Let f : Rn → R be a proper convex function,
and let x ∈ Rn. Assuming that the subdifferential ∂f(x) is non-empty, compact, and
does not contain the origin. Define the function

J(τ) := J(τ ; ∂f(x)) := E
[
dist (g, τ · ∂f(x))2

]
, for τ ≥ 0, (3.37)

where g is a normally distributed, i.e., gi ∼ N (0, 1) for i ∈ [n]. Then, we have the
upper bound

δ(D(f, x)) ≤ inf
τ≥0

J(τ). (3.38)
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Furthermore, the function J is strictly convex, continuous at τ = 0, and differentiable
for τ ≥ 0. It achieves its minimum at a unique point.

As an assumption in Theorem 3.20, the subdifferential needs to be compact. Con-
sidering the functions (3.2a)-(3.2f) from the introduction, this assumption might be
violated. Indeed, let x ∈ {0, 1}n. The subdifferential of the indicator function δ[0,1]n is
written as

∂δ[0,1]n(x) = {Ψy | y ≥ 0}, (3.39)

where Ψ is the matrix from Definition 3.2. Consequently, ∂δ[0,1]n(x) is unbounded and
hence not compact. Hence, the subdifferentials of the functions (3.2b),(3.2c),(3.2e)
and (3.2f) are not compact. As a result, Proposition 3.20 is not directly applicable in
presence of box constraints.

Inspecting the proof of Proposition 3.20 given in [Ame14, Prop. 4.1], the compact-
ness is not used to prove the upper bound (3.38) but used for showing the properties
of J defined in (3.37). As a remedy, we next prove that even if the subdifferential is
not compact, the function (3.37) is still

(a) strictly convex,

(b) continuous at τ = 0,

(c) differentiable for τ ≥ 0,

(d) achieves its minimum at a unique point.

Before proving the properties of J from (3.37), in case of a non-compact subdifferential,
we need the following lemma.

Lemma 3.21. Consider S,B,C ⊆ Rn non-empty, convex and closed, with S = B+C.
If B is compact, then for every x ∈ Rn it exists p ∈ Rn such that

πS(x) = πC(x) + p (3.40)

where ‖p‖2 ≤ 2 · supx∈B ‖x‖2.

Proof. Since S is closed and convex, we choose

(c∗, b∗) ∈ arg min
b∈B
c∈C

‖b+ c− x‖2

to obtain

πS(x) = arg min
c∈C
‖x− c− b∗‖2︸ ︷︷ ︸

=πC(x−b∗)

+ arg min
b∈B
‖x− c∗ − b‖2︸ ︷︷ ︸

=πB(x−c∗)

.
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By a zero expansion, we formulate πS(x) using the results from above as

πS(x) = πC(x) + πB(x− c∗) + πC(x− b∗)− πC(x)︸ ︷︷ ︸
=:p

= πC(x) + p.

Considering that the projection on a closed convex set is a contraction and that B is
bounded, we obtain

‖πC(x− b∗)− πC(x)‖2 ≤ ‖x− b∗ − x‖2 = ‖b∗‖2 ≤ sup
x∈B
‖x‖2 <∞.

Finally, we calculate an upper bound to p by

‖p‖2 ≤ ‖πB(x− c∗)‖2 + ‖πC(x− b∗)− πC(x)‖2
≤ 2 · sup

x∈B
‖x‖2.

Before verifying the desired properties for function J from (3.37), we validate them
for a slightly simpler function

Ju(τ) := dist (u, τ · ∂f(x))2 . (3.41)

Lemma 3.22. The function Ju from (3.41) is convex in τ .

Proof. Setting S := ∂f(x), we rewrite Ju(τ) for τ > 0 to

Ju(τ) =

(
inf
s∈S
‖u− τs‖2

)2

=

(
τ inf
s∈S

∥∥∥u
τ
− s
∥∥∥

2

)2

=
(
τ dist

(u
τ
, S
))2

. (3.42)

Due to the convexity of the distance function [Roc97, p. 34], the perspective transfor-
mation of a convex function is convex [HL93a, p. 160], and the square of a non-negative
convex function is convex. Hence Ju(τ) is convex.

Lemma 3.23. Let B,C ⊆ Rn be closed, convex sets such that ∂f(x) = B + C, B is
compact and C is a cone. Then the function Ju from (3.41) is continuous at τ = 0
and Ju(0) = ‖πC(u)− u‖22.

Proof. First, we observe that for any ε > 0 it follows that ε(B + C) = εB + C. We
now prove continuity at τ = 0 by showing that for any sequence ε→ 0 it follows that
Ju(ε)→ Ju(0) = ‖πC(u)− u‖22. We remind that dist (u, τ∂f(x))2 represents

min
b∈B
c∈C

‖u− τ · (b+ c)‖22 (3.43)

suggesting the assumption Ju(0) = ‖πC(u)− u‖22.
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Therefore, we calculate

|Ju(0)− Ju(ε)| =
∣∣‖πC(u)− u‖22 − ‖πC+εB(u)− u‖22

∣∣
1

=
∣∣‖πC(u)− u‖22 − ‖πC(u) + p− u‖22

∣∣
=
∣∣‖πC(u)‖22 − ‖πC(u) + p‖22 + 2〈u, p〉

∣∣
≤
∣∣‖πC(u)‖22 − ‖πC(u) + p‖22

∣∣+ 2 |〈u, p〉|
2

≤ ‖p‖22 + 2 |〈u, p〉|
≤ (2εB)2 + 2‖u‖2(2εB)→ 0 if ε→ 0,

where B := supx∈B ‖x‖22 and 1 , 2 follows by Lemma 3.21.

Lemma 3.24. Let B,C ⊆ Rn closed, convex sets such that ∂f(x) = B + C with B a
compact set and C a cone. Assume that the subdifferential ∂f(x) does not contain the
origin. Then the function (3.41) attains its minimum in the interval[

0,
‖u‖2 + ‖u− πC(u)‖2

s

]
, (3.44)

where s ≤ ‖y‖2 for all y ∈ ∂f(x).

Proof. We assume that s ≤ ‖y‖2 for all y ∈ ∂f(x) and τ ≥ ‖u‖2s . Then we calculate√
Ju(τ) = dist(u, τ∂f(x))

= inf
y∈∂f(x)

‖τy − u‖2

≥ inf
y∈∂f(x)

τ‖y‖2 − ‖u‖2

≥ τs− ‖u‖2 ≥ 0.

By choosing τ > ‖u‖2+‖u−πC(u)‖2
s , we obtain

‖u− πC(u)‖22 = Ju(0) < Ju(τ).

Given the convexity of Ju and just proven boundedness, it follows that the minimum
of Ju is attained in the interval (3.44).

Lemma 3.25. The function (3.41) is continuously differentiable on (0,∞) and the
derivative is given by

d

dτ
Ju(τ) = −2

τ
〈πτS(u), u− πτS(u)〉, (3.45)

where S := ∂f(x) is a closed convex set. Moreover, the right derivative at τ = 0 exists.

Proof. The squared distance dist2(x,X ) w.r.t. a closed convex set X ⊆ Rn is a contin-
uously differentiable function for all x ∈ Rn, see [Ame14, Sec. B.2]. Applying [RW10,
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Thm. 2.26], we obtain the derivative

∇ dist2(x,X ) = 2(x− πX (x)). (3.46)

Rewriting Ju as in (3.42), we are able to use (3.46) to obtain

d

dτ
Ju(τ) =

d

dτ
τ2 dist

(u
τ
, S
)2

(3.47)

=
2

τ

(
dist (u, τS)2 − 〈u, u− πτS(u)〉

)
, (3.48)

where τ > 0.
Reminding that dist (u, τS)2 = ‖u − πτS(u)‖22, we obtain from (3.48) the desired

derivative (3.45).
So far, we calculated that Ju is continuously differentiable on (0,∞). The result

[Roc97, Thm. 24.1] implies that if a convex function is continuously differentiable on
(0,∞) and continuous on [0,∞], the right derivative at zero exists. The function Ju
is a convex by Lemma 3.22 and by Lemma 3.23 continuous on [0,∞]. Thus, it follows
that the right derivative

J ′u(0) = lim
τ↓0

d

dτ
Ju(τ) (3.49)

does exist.

Lemma 3.26. Let B,C ⊆ Rn closed, convex sets such that ∂f(x) = B + C with B a
compact set and C a cone. Then the derivative of (3.41) is bounded through

|J ′u(τ)| ≤ 4B
(
‖u‖2 + 2‖πC(u)‖2 + 2τB

)
(3.50)

where B := supx∈B ‖x‖2.

Proof. Observing that for any ε > 0 it follows that ε(B + C) = εB + C, we calculate

|J ′u(τ)| = 2

τ
|〈πτS(u), u− πτS(u)〉|

1

=
2

τ
|〈πC(u) + p, u− πC(u)− p〉|

2

=
2

τ
|〈πC(u),−p〉+ 〈p, u− πC(u)− p〉|

=
2

τ
|〈p, u− 2πC(u)− p〉|

≤ 2

τ
‖p‖2‖u− 2πC(u)− p‖2

3

≤ 4B
(
‖u‖2 + 2‖πC(u)‖2 + 2τB

)
.

In 1 and 3 , we use Lemma 3.21 with B := supx∈B ‖x‖2. In 2 , we use that
〈πC(u), u− πC(u)〉 = 0 since C is a closed convex cone.
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Finally, we extend Proposition 3.20 in case when ∂f(x) is not compact.

Proposition 3.27. Let C,B ⊆ Rn be closed convex sets, such that ∂f(x) = C + B.
Assume that ∂f(x) does not contain the origin, B is compact and C is a cone. Then
(3.37) is strictly convex, continuous at τ = 0 and differentiable for τ > 0. Furthermore,
it attains its minimum at a unique point and

J ′(τ) = E
[
J ′u(τ)

]
for all τ ≥ 0, (3.51)

where u is normal random vector, i.e., u ∼ N (0, 1) for i ∈ [n].

Proof. Further in this proof, we need an upper bound to E[‖u‖2] which we obtain by
using Jensen’s inequality

E[‖u‖2]2 ≤ E[‖u‖22] = n

⇔ E[‖u‖2] ≤ √n.

Since E[‖πC(u)‖2] ≤ E[‖u‖2], it directly follows that E[‖πC(u)‖2] ≤ √n.

Continuity at τ = 0 follows directly by using Lemma 3.23 and E[‖u‖2] ≤ √n in view
of

J(ε)− J(0) = E [Ju(ε)− Ju(0)]

≤ (3εB)2 + 2
√
n(3εB)→ 0 if ε→ 0.

Differentiability follows by applying differentiation under the integral sign [Els18,
Satz 5.7]. This theorem tells us, if it exists a function g : Rn → R so that it holds for
any relative open interval I ⊂ R≥0:∣∣J ′u(τ)

∣∣ ≤ g(u) ∀u ∈ Rn, τ ∈ I,

with E[g(u)] <∞. Then, we may write J ′(τ) = d
dτ E [Ju(τ)] = E [J ′u(τ)]. Lemma 3.25

yields such a function g by

g(u) = 4B

(
‖u‖2 + 2‖πC(u)‖2 + 2B sup

τ ′∈I
τ ′
)

and E[g(u)] ≤ 4B

(√
n+ 2

√
n+B sup

τ ′∈I
τ ′
)
<∞.

Next, we show that J is strictly convex. Since Ju is convex, it follows that for every
0 ≤ τ < ρ and η ∈ (0, 1) it holds

E [Ju(ηρ+ (1− η)τ)] ≤ E [η · Ju(ρ) + (1− η) · Ju(τ)]

= η · E [Ju(ρ)] + (1− η)E [·Ju(τ)] ,

implying that J is convex. We prove that J is strictly convex by contradiction. If J
is not strictly convex, there have to be 0 ≤ ρ < τ and η ∈ (0, 1) so that the above
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inequality holds with equality. Equality would imply that

Ju(ηρ+ (1− η)τ) = η · Ju(ρ) + (1− η) · Ju(τ), (3.52)

for almost every u ∈ Rn. Setting u = 0, we calculate

J0(ηρ+ (1− η)τ) = dist2(0, (ηρ+ (1− η)τ)∂f(x)) = (ηρ+ (1− η)τ)2 inf
s∈∂f(x)

‖s‖22

< (ηρ2 + (1− η)τ2) inf
s∈∂f(x)

‖s‖22

= ηJ0(ρ) + (1− η)J0(τ).

Since Ju(τ) is continuous in u, it exists ε > 0 such that

J0(ηρ+ (1− η)τ) < ηJ0(ρ) + (1− η)J0(τ),

for all ‖u‖ < ε. This is a contradiction to (3.52), hence J is strictly convex.

Finally, we prove the minimum of J is attained at a unique point. Therefore, we set

s := infy∈∂f(x) ‖y‖2 and assume that τ ≥
√
n
s . This gives

J(τ)
1

≥ E
[
Ju(τ)

∣∣ ‖u‖2 ≤ √n] · P (‖u‖2 ≤ √n)
2

≥ 1

2
E
[
Ju(τ)

∣∣ ‖u‖2 ≤ √n]
3

≥ 1

2
E
[
(τs− ‖u‖2)2

∣∣ ‖u‖2 ≤ √n]
4

≥ 1

2
E
[
τs− ‖u‖2

∣∣ ‖u‖2 ≤ √n]2
5

≥ 1

2

(
τs−√n

)2
.

The properties used to achieve the inequalities above are

1 law of total expectation;
2 E[‖u‖2] ≤ √n implies P(‖u‖2 ≤

√
n) ≥ 1

2 ;
3 the bound from Lemma 3.24;
4 Jensen’s inequality;
5 the bound E[‖u‖2] ≤ √n.

Since C is a closed convex cone we have J(0) = E
[
‖πC(u)− u‖22

]
= δ(C◦) ≤ n.

Consequently, τ > 2
√
n
s implies J(τ) > J(0). Using the strict convexity of J , we

showed that the minimum is attained at a unique point in the interval
[
0, 2
√
n
s

]
.

Corollary 3.28. Let C,B ⊆ Rn closed convex sets, such that ∂f(x) = C+B. Assume
that ∂f(x) does not contain the origin, B is compact and C is a cone. Then

δ(D(f, x)) ≤ δ(C◦). (3.53)
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Proof. Proposition 3.20 provides the bound

δ(D(f, x)) ≤ inf
τ≥0

J(τ). (3.54)

By the proof of Proposition 3.27 we have

inf
τ≥0

J(τ) ≤ J(0) ≤ δ(C◦). (3.55)

Error Bounds There is a useful tool for bounding the statistical dimension in terms
of ∂f(x). Interestingly, this bound is tight for some classes of f , e.g., norms.

Below, we present two error bounds for the bound of Proposition 3.20 estimating
the distance between the upper bound and the statistical dimension.

Theorem 3.29. [Ame14, Thm. 4.3.] Let f : Rn → R be a norm on Rn and let
x ∈ Rn \{0}. Then

0 ≤ inf
τ≥0

J(τ)− δ(Df (x)) ≤ 2 sup{‖p‖ : p ∈ ∂f(x)}
f(x/‖x‖) . (3.56)

For the `1-case the right-hand side can be made very accurate for large sparsity
parameters s providing an accurate estimate of the statistical dimension of the `1-
descent cone. On the other hand, this error estimate is not very accurate when the
sparsity s is small. The work in [FM14] contains a bound that improves this result
and also extends to more general functions.

Theorem 3.30. [FM14, Prop. 1] Suppose that, for x 6= 0, the subdifferential ∂f(x) is
weakly decomposable, i.e.,

∃p ∈ ∂f(x) such that 〈p− p, p〉 = 0, ∀p ∈ ∂f(x). (3.57)

Then

δ(Df (x)) ≤ inf
τ≥0

J(τ) ≤ δ(Df (x)) + 6, (3.58)

with J(τ) = E[dist(X, τ∂f(x)].

This result implies that the upper bound is almost tight, when considering (3.2a).
Furthermore, the authors of [Zha16] showed that if Ω is the one-dimensional discrete
gradient for (3.2d), then the subdifferential is for every x weakly decomposable. Hence,
the upper bound to the statistical dimension precisely describe the phase transition.
Unfortunately, this is not the case if Ω is the two-dimensional discrete gradient as the
following counter-example illustrates. To this end, we consider f(x) = ‖Ωx‖1. Then
the subgradient at x ∈ Rn of f is given by

∂f(x) = {Ωα | αΛc = sign(ΩΛc,•x), ‖αΛ‖∞ ≤ 1}, (3.59)
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where Λ = cosupp(Ωx). For the computation of (3.59), we refer to the Subdifferential
Calculus in Section 2.1.1.

Next, we rewrite the condition (3.57) according to our choice of f yielding

∃w ∈ V : 〈Ω>v − Ω>w,Ω>w〉 = 0, ∀v ∈ V, (3.60)

where V := {v | vΛc = sign(ΩΛc,•x), ‖vΛ‖∞ ≤ 1}.
For an arbitrary choice of w, v ∈ V, we calculate

w>ΩΩ>v = w>ΩΩ>w (3.61)

⇔ w>(ΩΩ>)•,ΛvΛ + w>(ΩΩ>)•,ΛcvΛc = w>(ΩΩ>)•,ΛwΛ + w>(ΩΩ>)•,ΛcwΛc (3.62)

⇔ w>(ΩΩ>)•,ΛvΛ = w>(ΩΩ>)•,ΛwΛ, (3.63)

where (3.63) results from wΛc = vΛc . Since (3.63) must hold for every v ∈ V, we
directly obtain

w>(ΩΩ>)•,ΛvΛ = 0 ∀vΛ : ‖vΛ‖∞ ≤ 1 (3.64)

⇔ (ΩΩ>)Λ,•w = 0 (3.65)

⇔ (ΩΩ>)Λ,ΛwΛ + (ΩΩ>)Λ,ΛcwΛc = 0 (3.66)

⇔ (ΩΩ>)Λ,Λc sign(ΩΛc,•x) = −(ΩΩ>)Λ,ΛwΛ. (3.67)

As a consequence, the subdifferential ∂f(x) is weakly decomposable if and only if it
exists w ∈ V satisfying (3.67).

To provide a counter-example showing that the two-dimensional discrete gradient is
not weakly decomposable for every choice of x, we set

x :=
(
1 1 0 1 0 0 1 1 0

)>
. (3.68)

In view of (3.67), the matrix (ΩΩ>)Λ,Λ is invertible w.r.t. x. Then, one directly
computes

wΛ = −(ΩΩ>)−1
Λ,Λ(ΩΩ>)Λ,Λc sign(ΩΛc,•x) (3.69)

and obtains ‖wΛ‖∞ > 1. Since w ∈ V, it must hold ‖wΛ‖∞ ≤ 1. Hence, ∂f(x) is not
weakly decomposable.

3.2.3 Explicit Bounds for the Statistical Dimension

In this section, we explicitly calculate the bounds from Proposition 3.20 in the cases
(3.2a) - (3.2c) and discuss how we approximate the statistical dimension in general.

Starting (3.2a), we consider ∂f(x) = ∂‖x‖1 with x ∈ Rn and S = supp(x). Then,
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we calculate

J1(τ) =E
[
dist2 (u, τ∂‖x‖1)

]
(3.70)

= E

[
‖uS − τ sign(xS)‖22 + min

‖v‖∞≤1
‖uSc − τv‖22

]
(3.71)

= |S|(1 + τ2) + |Sc|E
[
(u− sign(u)τ)2

∣∣ |u| > τ
]
P(|u| > τ) (3.72)

= |S|(1 + τ2) + 2|Sc|E
[
(u− τ)2

∣∣ u > τ
]
P(u > τ) (3.73)

where u, u are normal random vectors, i.e., ui, ui ∼ N (0, 1) for i ∈ [n].

Next, we consider (3.2b) implying ∂f(x) = ∂‖x‖1 + ∂δRn≥0
(x) with x ∈ Rn

≥0 and

S = supp(x). Then, we calculate

J2(τ) =E
[
dist2

(
u, τ∂‖x‖1 + ∂δRn≥0

(x)
)]

(3.74)

= E

[
‖uS − τ sign(xS)‖22 + min

v≤τ
‖uSc − v‖22

]
(3.75)

= |S|(1 + τ2) + |Sc|E
[
(u− τ)2

∣∣ u > τ
]
P(u > τ), (3.76)

where u, u are normal random vectors, i.e., ui, ui ∼ N (0, 1) for i ∈ [n].

Finally, the definition of f in (3.2c) implies ∂f(x) = ∂‖x‖1 + ∂δ[0,1]n(x) with x ∈
{0, 1}n and S = supp(x). Then, we calculate

J3(τ) =E
[
dist2

(
u, τ∂‖x‖1 + ∂δ[0,1]n(x)

)]
(3.77)

= E

[∑
i∈S

min
µ≥τ

(ui − µ)2 +
∑
i∈Sc

min
µ≤τ

(ui − µ)2

]
(3.78)

= |S|E[(u− τ)2 | u < τ ]P(u < τ) + |Sc|E[(u− τ)2 | u > τ ]P(u > τ), (3.79)

where u, u are normal random vectors, i.e., ui, ui ∼ N (0, 1) for i ∈ [n]. We observe
that J3(0) = n

2 which coincides with the result of Corollary 3.28.

For better visualization, we display in Figure 3.1 the bound (3.38) with respect to
(3.73),(3.76), and (3.79).

Explicit curves for minτ J(τ) are only computable in the case of (3.2a) - (3.2c).
We skip the details here and illustrate these curves in Section 3.3. For (3.2d) - (3.2f)
explicit curves for J and for minτ J(τ) are missing. We use an approximation to the
upper bound J(τ) = E

[
dist2(u, τ∂f(x))

]
where u is a normal random vector, i.e.,

ui ∼ N (0, 1) for i ∈ [n]. To approximate the expected value, we use a very large k ∈ N

and calculate

hk(τ) =
1

k

k∑
i=1

dist2(ui, τ∂f(x)) =: Japprox(τ) ≈ J(τ),

where each vector ui is component-wise sampled from the normal distribution N (0, 1).
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Figure 3.1: From left to right, we plotted the bound (3.38) with respect to (3.73),(3.76),
and (3.79). In particular (c) shows that for binary signals n

2 measurements
are sufficient for unique recovery.

Note that for computing each dist2(ui, τ∂f(x)) one is faced with solving a quadratic
program, i.e.

min ‖ui − τy‖22 subject to y ∈ ∂f(x).

Note that the constraints are linear since ∂f(x) is described by linear equalities and
inequalities.

3.3 Phase Transition Curves

Our objective in this section is to empirically verify whether phase transitions occur
at

min
τ≥0

J(τ), (3.80)

which is a guaranteed tight upper bound to the statistical dimension δ(D(f, x)) if f is
(3.2a) or (3.2d) where Ω is the one-dimensional discrete gradient. For the other cases
(3.2c), (3.2b), (3.2f) and (3.2e) we provide empirical evidence implying that (3.80) is a
tight upper bound to the statistical dimension. We further note, that precise expres-
sions for J are only available for (3.2a) - (3.2c) as shown in the last section. For the
cases (3.2d) - (3.2f) using Ω as one- or two-dimensional discrete gradient we construct
phase diagrams by numeric recovery rates estimating minτ≥0 J(τ) and comparing the
resulting bounds to the average-case for both solving the reconstruction problems (3.2)
and certifying uniqueness by the procedure derived in Section 3.1.3.

3.3.1 1D Empirical Phase Transitions

In this section, we address `1-minimization and one-dimensional TV-minimization
without and with constraints. We define for (3.2d) - (3.2f) the one-dimensional discrete
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gradient by

Ωx =

 x1 − x0
...

xn−1 − xn−2

 .

Then, we refer to (3.2d) - (3.2f) as one-dimensional TV-minimization.

Testset Our testset consists of several randomly generated signals with specified rel-
ative sparsity ρ ranging from 0.05 to 0.95 with step size 0.05. For each of these relative
sparsities we create a signal so that

ρ ≈ ‖x‖0
n

resp. ρ ≈ ‖Ωx‖0
n

.

Hence, we cover almost the full range from highly sparse to dense signals. In addition,
we create three different classes of signals: with real-valued, non-negative or binary
entries, i.e., xi ∈ R, xi ≥ 0 or xi ∈ {0, 1} for all i ∈ [n]. Creating random real-valued,
non-negative, or binary signals of a given sparsity is immediate. To create signals
that are sparse in a transformed domain we rely on the work of [Nam13]. Instead of
choosing the support of x uniformly at random, we choose a set Λ ⊆ [p] in order to
create a signal with ΩΛ,•x = 0. Given a subset Λ and a randomly generated vector v
with nonzero entries, we obtain the desired signal by calculating

x = (I − Ω>Λ,•(ΩΛ,•Ω
>
Λ,•)

−1ΩΛ,•)v. (3.81)

Since Ωx represents differences of signal entries for consecutive indices, taking the
absolute value of each signal entry does not change the cosupport of the resulting
signal. Therefore, we use this method to generate non-negative signals. Binary signals
are obtained by using Algorithm 3.1.

`1-Minimization In this section, we compare the existing tight upper bounds for the
statistical dimension δ(D(f, x)) for f defined in (3.2a) - (3.2c) to the empirical phase
transition obtained by the testset displayed in Figure 3.3.

To this end, we first set the ambient dimension n = 100 and generate 10 instances of
a sparse one-dimensional signal, see Figure 3.2. The rows of Figure 3.2 display signals
x with equal number of nonzeros in x, i.e., ‖x‖0. The columns of Figure 3.2 display
signals that have entries sampled either from Rn,Rn

≥0 or {0, 1}n from left to right. For
each pair of relative sparsity and given number m of random linear measurements we
verify whether the signal is the unique solution of (3.2), where f corresponds to one
instance of (3.2a) - (3.2c). Uniqueness is tested as described in Section 3.1.3. Using
Mosek4, we solve the occurring optimization problems and plotted a phase transition in
Figure 3.6. The gray value shows the empirical probability of uniqueness for each pair
of parameters (relative sparsity or relative gradient sparsity, number of measurements):

4https://www.mosek.com

https://www.mosek.com
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Algorithm 3.1: Algorithm for converting a random gradient sparse signal
(w.r.t. the one-dimensional discrete gradient) into a binary gradient sparse
signal.

Input: Λ ⊆ [n− 1] desired cosupport
Output: x ∈ {0, 1}n with cosupport w.r.t. Λ, i.e ΩΛx = 0

1 x0 = 1
2 for i ∈ [n− 1] do
3 if i ∈ Λ then
4 xi+1 ← xi
5 else
6 xi+1 ← 1− xi
7 end

8 end

R
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n
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Figure 3.2: Testset for one-dimensional sparse signals. The rows display signals x with
equal number of nonzeros in x, i.e., ‖x‖0. The columns display signals that
have entries sampled either from Rn,Rn

≥0 or {0, 1}n from left to right.

black 0% uniqueness rate, white 100% uniqueness rate. Both regions are accurately
separated by our approximation to the statistical dimension. Rows from top to bottom
show results for: `1-, one-dimensional and two-dimensional TV-minimization. Columns
from left to right show the signal/image entries: Rn,Rn

≥0 or {0, 1}n. The red curves
show minτ≥0 J(τ) separating these regions accurately.

TV-Minimization To generate the phase diagrams, we proceed as above but use the
gradient sparse one-dimensional signals, see Figure 3.3. The rows display signals x
with equal number of nonzeros in Ωx, i.e., ‖Ωx‖0, with respect to the one-dimensional
finite difference operator. The columns display signals that have entries sampled either
from Rn,Rn

≥0 or {0, 1}n from left to right. Since explicit curves for J are missing, we
use an approximation to the upper bound (3.80). To approximate the expected value,
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Figure 3.3: Testset for one-dimensional gradient sparse signals. The rows display sig-
nals x with equal number of nonzeros in x, i.e., ‖x‖0. The columns display
signals that have entries sampled either from Rn,Rn

≥0 or {0, 1}n from left
to right.

we use a large k = 10000 and calculate

hk(τ) =
1

k

k∑
i=1

dist(Xi, τ∂f(x))2 ≈ J(τ), (3.82)

where each Xi is sampled component-wise from the normal distribution N (0, 1). Ad-
ditionally, we showed in Proposition 3.27 that the unique minimum lies in a compact
interval. Therefore, we use the BiSection method [Bar08, Sec. 2.2] to find the minimum
of (3.82).

Note that for computing each dist(Xi, τ∂f(x))2 one is faced with solving a quadratic
program with linear constraints, since ∂f(x) may formulated as a system of linear
equations

g ∈ ∂f(x)⇔ ∃α : g = Ωα, αΛc = sign(ΩΛc,•x), −1 ≤ αΛ ≤ 1. (3.83)

We refer to (3.59) for the definition of ∂f(x) when f(x) = ‖Ωx‖1.
As for `1-minimization, we show in Figure 3.6 the phase transition for the one-

dimensional TV-minimization. We emphasize the perfect agreement of the phase tran-
sition with the approximated upper bound.

3.3.2 2D Empirical Phase Transitions

Testset Creating gradient sparse images with a given gradient sparsity is more in-
volved than in the one dimensional case. By using random support sets Λ ⊂ [p]
with |Λ| ≥ n and the projecting technique (3.81), we most likely obtain constant two-
dimensional images. Thus, we use a different approach to construct random gradient
sparse images. To this end, we randomly add binary images with homogeneous areas
and use the modulo operation to binarize again the result. We show some results in
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Figure 3.4: Testset for two-dimensional gradient sparse images. Each image label
shows the relative sparsity of Ωx, i.e., ‖Ωx‖0/p, with respect to the two-
dimensional finite difference operator. Our test images are 64× 64.

Figure 3.4 for two-dimensional gradient sparse images. Each image label shows the rel-
ative sparsity of Ωx, i.e., ‖Ωx‖0/p, with respect to the two-dimensional finite difference
operator. Our test images are 64× 64.

Creating non-binary gradient sparse images, we identify the connecting components
of a binary image. We define a connected component by the induced graph of the
binary image as follows. For the definition of a graph, we refer to Section 2.1.3. Let
x ∈ {0, 1}n represents a binary image, and V = [n]. The edge set is defined by
ij ∈ E ⇔ xi = xj . Each connected component of the graph G = (V, E) consists of pixel
indices forming a connected component in the binary image x.

Since we are able to efficiently identify all connected components [KV18, Prop. 2.17]
in a binary image, we assign random real values to the different connected components.
The resulting discrete gradient of the new image has the same number of nonzeros,
but the image is non-binary.

Tomographic Measurements Each projecting direction leads in discrete tomography
in general to a different number of measurements. We adopt the idea of [RLH14] that
leads to tomographic measurements that carry the same amount of information for each
projecting direction/angle. In Figure 3.5, we illustrate the effect on the tomographic
projections when sensing an images embedded in a rectangle shape resp. to a circular
shape. We emphasize that our testset for 2D contains only images embedded in a
circular shape.
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(a) rectangle (b) circle

Figure 3.5: Illustration of parallel projections of a rectangle image and of an image
embedded in a circular mask. In (a) one needs at different angles a different
amount of equidistant parallel rays to cover the whole image. For sensing
an image in a circular (b) mask the number of equidistant parallel rays
covering the whole image are the same.

TV-Minimization For fixed ambient dimension n = 64 · 64, we chose a relative image
sparsity ‖Ωx‖0

p ∈ [0, 1], with Ω ∈ Rp×n, corresponding to a gradient sparse test im-
age and also choose the number of measurements m. Measurements are Gaussian or
tomographic. We consider three types of tomographic matrices:

• binary, as described in [RLH14];
• perturbed binary, that are matrices with the same incidence structure as above

but with perturbed nonzero entries in order to remove linear dependencies be-
tween rows;

• standard tomographic matrices, with non-negative real entries. We use the MAT-
LAB routine paralleltomo.m from the AIR Tools package [HJ18] that imple-
ments such a tomographic matrix for an arbitrary vector of angles. We choose
equidistant angels, set N=64 the image size and use the default value of q, i.e.,
the number of parallel rays for each angle q = round(sqrt(2)*n) to obtain a
tomographic matrix of size m× n.

Results are presented in Figure 3.7. All plots display a phase transition and thus ex-
hibit regions where exact image reconstruction has empirical probability equal or close
to one. All regions are accurately separated by our approximation to the statistical
dimension.

3.3.3 Phase Transition Curves in Practice

Figure 3.7 illustrates that the phase transition curves for random measurements ob-
tained from tomographic measurements separate quite accurately success and failure.
One use this observation to predict the number of measurements needed to uniquely
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reconstruct an image from tomographic measurements with high probability. As an
example, we depict in Figure 3.8 a way to acquire this information from a phase tran-
sition curve. In case of tomography, one has to keep in mind that we usually cannot
add row-wise measurements to the matrix since every tomographic projection con-
sists of a fixed number of rows. Taking the example from Figure 3.8 (a), we need at
least 2562 · 0.12 linear independent rows. Assuming that each tomographic projection
contains 256 rows, we need d ≥ 31 tomographic projections, since

2562 · 0.12 ≤ 256 · d

⇔ 2562 · 0.12

256
≈ 30.72 ≤ d.

We do the same calculation for the image in Figure 3.8 (c) and obtain d ≥ 41 projec-
tions.
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Figure 3.6: The gray value shows the empirical probability of uniqueness for each pair of
parameters (relative sparsity or relative gradient sparsity, number of mea-
surements): black 0% uniqueness rate, white 100% uniqueness rate. Both
regions are accurately separated by our approximation to the statistical
dimension. Rows from top to bottom show results for: `1-, 1D TV- and 2D
TV-minimization. Columns from left to right show the signal/image en-
tries: Rn,Rn

≥0 or {0, 1}n. The red curves show that the bound minτ≥0 J(τ)
from (3.38) separates these regions accurately as predicted in Proposition
3.20.
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Figure 3.7: We display the empirical probability of uniqueness in the case of tomo-
graphic measurements for each pair of parameters (relative sparsity or rel-
ative gradient sparsity, number of measurements): black 0% uniqueness
rate, white 100% uniqueness rate. Both regions are accurately separated by
our approximation to the statistical dimension. Rows from top to bottom
show results for: binary, perturbed binary and standard matrices, i.e. with
non-negative real entries. Columns for left to right show the signal/image
entries: Rn,Rn

≥0 or {0, 1}n. The results demonstrate a remarkable agree-
ment of the empirical phase transitions for tomographic recovery with the
approximated curve based on the statistical dimension for random mea-
surements.
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(a) Binary image with res-
olution 256 × 256 and
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p = 0.05.
0.1

1

0.05

0.12

‖Ωx‖0

p

m
n

Phase Transition

(b) Phase Transition for binary images

(c) Binary image with res-
olution 1024 × 1024 and
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(d) Phase Transition for binary images

Figure 3.8: This figure illustrates the usage of an available phase transition curve. If
the relative sparsity of an image is known e.g. (a) and (c), we use the
phase transition curve to estimate the minimum number of measurements
needed to reconstruct the image uniquely. In (b) and (d) we marked the
regions for two different relative sparsities. Conisdering a relative sparsity
less or equal than 0.05 like in (a), we see in (b) that every image needs
at least 2562 · 0.12 linear independend rows in the measuremnt matrix to
reconstruct the image uniquely via (3.2f).



CHAPTER 4

A Dual Decomposition Approach

In Chapter 3, we provided lower bounds on the number of measurements required to
uniquely recover, by convex programming, an image so that it is gradient sparse and has
constrained pixel values. While we considered constrained pixel values in a continuous
interval, [Kei17] showed that restricting pixel values to a finite range further reduces
the needed number of measurements for unique reconstruction. This motivated us to
propose in this Chapter1 a model that aims at finding

(a) a finite valued image x, .i.e, x ∈ {0, 1, . . . , k − 1}n, such that
(b) tomographic projection constraints are given by Ax = b with A ∈ {0, 1}m×n, b ∈

Nm are fulfilled, and
(c) x minimizes an energy function E : {0, 1, . . . , k − 1}n → R.

For the definition of a binary tomographic matrix A, we refer to Section 2.3.

Regarding computational complexity, even a model considering (a),(b) is NP-hard
for more than two tomographic projections [GGP99], implying that a model considering
(a)-(c) is too. Thus, it is reasonable to assume that there is no efficient algorithm to
find a solution concerning (a)-(c). As a consequence, efficient methods to approximate
a solution to (a)-(c) are needed.

We propose in this chapter a novel convex relaxation for (a)-(c) based on linear
programming [Van14], which yields a lower bound to the energy to judge the proximity
of a solution. Existing convex relaxations [Kap15; Gou13] consider only the binary case,
.ie. x ∈ {0, 1}n. We prove theoretically and numerically that our relaxation is tighter,
hence it better approximates (a)-(c).

To this end, we assume that E factorizes according to a pairwise graphical model [Li09],
in our case, a Markov Random Field. That is an important class of graph-structured
models in image processing, and machine learning: given a graph G = (V, E), to-
gether with a label space X V :=

∏
u∈V X u, X u := [ku] for all u ∈ V, ku ∈ N, the

1This chapter is based on [KSP17].
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energy is a sum of unary potentials θu : X u → R for all u ∈ V and pairwise potentials
θuv : X u×X v → R for all uv ∈ E . The definition of graphs is provided in Section
2.1.3.

The potentials assign costs to each label xu ∈ X u. In particular, the unary potentials
assign costs to label xu ∈ X u for node u ∈ V and the pairwise potentials to a combina-
tion (xu, xv) ∈ X u×X v of labels for an edge uv ∈ E . Hence, the entire problem reads

min
x∈XV

E(x) :=
∑
u∈V

θu(xu) +
∑
uv∈E

θuv(xu, xv) s.t. Ax = b . (4.1)

For the discrete tomography problem, we usually choose G to be a grid graph corre-
sponding to the pixels of the image to be reconstructed, zero unary potentials θu ≡ 0
for all u ∈ V, as no local information about the image values is known. Pair-
wise potentials θuv = g(xu−xv) penalize intensity transitions, e.g., the choice g(·) = |·|
leads to TV-regularization and g(·) = min(1, |·|) to Potts-regularization. Such choice of
pairwise potentials assigns small energy to labelings x with a regular spatial structure.

The outline of this chapter is as follows. First, we show that if the linear constraint
in (4.1) is a single row corresponding to a single tomographic projection ray, then
(4.1) is efficiently solvable. Decomposing (4.1) into subproblems consisting only of a
single tomographic projection ray, we use Lagrange multipliers to enforce consistency
between solutions of the subproblems. This enables us to construct a graphical model
with higher-order terms, but without additional linear constraints. Further, we intro-
duce message passing [Kol15] as an efficient algorithm to exactly solve the occurring
subproblems. Finally, we prove theoretically and numerically that our proposed model
yields a tighter relaxation than existing approaches.

4.1 One-Dimensional Non-Binary Discrete Tomography

Our decomposition of the discrete tomography problem (4.1) consists of considering a
subproblem for each ray constraint separately and joining them together via Lagrangian
variables.

In particular, let U = {u1, . . . , un} ⊆ V be the variables from a single ray constraint
xu1 + . . . + xun = b corresponding to a row of the projection matrix A in (4.1). For
each pair ui, ui+1 ∈ U with i ∈ [n− 1], we assume that ui and ui+1 are adjacent, i.e.,
uiui+1 ∈ E . In terms of graph theory, the sub-graph induced by G′ = (U, (U ×U) ∩ E)
is called a chain. Then, we define the one-dimensional discrete tomography problem
by

min
(x1,...,xn)∈XU

∑
u∈U

θu(xu) +
∑

i∈[n−1]

θui,ui+1(xui , xui+1)

s.t.
∑
u∈U

xu = b,
(4.2)
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that involves only variables corresponding to a single ray constraint. In the following,
we present an exact linear programming relaxation and an efficient message-passing
routine to solve (4.2).

4.1.1 Linear Programming Model

The one-dimensional discrete tomography subproblem (4.2) could naively be solved by
dynamic programming [Bel54] by going over all variables u1, . . . , un sequentially.

Dynamic programming is a well-known approach to problems of combinatorial op-
timization [KV18]. One assumes that the problem is hierarchically decomposable and
the overall solution is constructed by the intermediate results of the sub-problems.

Below, we use the big O notation [AB16] to compare approaches for dynamic pro-
gramming. For two functions f : N → N and g : N → N the big O notation is defined
by

f = O(g)⇔ ∃c > 0 ∃n0 ∀n > n0 : f(n) ≤ c · g(n). (4.3)

Writing the number intermediate results increases by O(g) means that for the actual
function f describing the increase it holds f = O(g).

Solving (4.2) by dynamic programming, we calculate for each variable ui the costs
for all possible labels xui and all values of the intermediate sum

∑i−1
j=1 xuj . The latter

sum has 1+
∑i−1

j=1(|X |−1) possible values. In total, the number of intermediate results

increases quadratic O(n2) with respect to the number of nodes n to construct a solution
for (4.2).

To reduce the number of intermediate results, we recursively

(i) equipartition variables u1, . . . , un,
(ii) define LP-subproblems in terms of so-called counting factors which are exact on

each subpartition, and
(iii) join them to eventually obtain an exact LP-relaxation for (4.2).

Our approach is inspired by [Tar12].

Partition of variables. Given the nodes u1, . . . , un, we choose an equipartition Π1 =
{u1, . . . , ubn/2c} and Π2 = {ubn/2c+1, . . . , un}. We recursively equipartition Π1 into Π1,1

and Π1,2 and do likewise for Π2. For u1, . . . , u8, we obtain a recursive partitioning as
in Figure 4.1.

Counting factors. Given an interval, a counting factor holds the states of its left and
right end and the value of the intermediate sum.

Definition 4.1 (Counting label space). The counting label space for interval [i : j] is
X i:j := X ui ×Si:j ×X uj with Si:j = [1 +

∑j−1
l=i+1(|X ul | − 1)] holding all possible inter-

mediate sums. A counting label xi:j consists of the three components (xui , si:j , xuj ): its
left endpoint label xui , intermediate sum si:j := xui+1 + . . .+ xuj−1 and right endpoint
label xuj .



54 4 A Dual Decomposition Approach

su1:u8

su1:u4
su5:u8

su1:u2 su3:u4 su5:u6 su7:u8

u1 u2 u3 u4 u5 u6 u7 u8

su1:u8

=

su2:u3
+ su6:u7

= =

...
...

Figure 4.1: Partition of variables: The chain of variables U = {u1, . . . , u8} (red
box) is first partitioned into Π1 = {u1, u2, u3, u4},Π2 = {u5, u6, u7, u8}
(blue boxes), and then into Π1,1 = {u1, u2},Π1,2 = {u3, u4},Π2,1 =
{u5, u6},Π2,2 = {u7, u8} (green boxes).
Counting sums: The topmost sum su1:u8 = xu2 + . . .+ xu7 is composed of
sums s1:4 for partition Π1 and s5:8 for Π2. Subsums are generated recur-
sively for s1:4 and 5:8 again.

See Figure 4.1 for the exemplary case U = {u1, . . . , u8}.
For interval [i : j] there are |X i:j | = |X ui | · |X uj | · |Si:j | distinct counting labels. We

associate to each counting factor counting marginals µi:j satisfying {µi:j ∈ R
|X i:j |
+ :∑

xi:j∈X i:j µi:j(xi:j) = 1}.
Assuming uniform label spaces |X u| = k for all u ∈ V, the total size of all counting

factors is O(k3 · n · log(n)), hence subquadratic in the number of nodes in U .

Joining counting factors. Assume the partitioning of variables has produced two
adjacent subsets Π = {ui, . . . , uj} and Π′ = {uj+1, . . . , ul}, which were constructed
from their common subset Π ∪ Π′ ⊆ U . The associated three counting factors with
marginals µi:j , µj+1:l, and µi:l introduced above should be consistent with each other.

Definition 4.2 (Label consistency). Label xi:l ∈ X i:l, xi:j ∈ X i:j and xj+1:l ∈ X j+1:l

are consistent with each other, denoted by xi:j , xj+1:l ∼ xi:l if and only if
(i) left endpoint labels of xi:j and xi:l are equal,
(ii) right endpoint labels of xj+1:l and xi:l are equal and
(iii) intermediate sums are equal si:l = si:j + xuj + xuj+1 + sj+1:l.

We enforce this by introducing a higher-order marginal µi:j:l ∈ R
X i:j ×X j+1:l

+ to bind
together µi:j , µj+1:l and µi:l.∑

xj+1:l

µi:j:l(xi:j , xj+1:l) = µi:j(xi:j), ∀xi:j ∈ X i:j , (4.4)

∑
xi:j

µi:j:l(xi:j , xj+1:l) = µj+1:l(xj+1:l), ∀xj+1:l ∈ X j+1:l, (4.5)

∑
xi:j ,xj+1:l∼xi:l

µi:j:l(xi:j , xj+1:l) = µi:l(xi:l), ∀xi:l ∈ X i:l . (4.6)
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θu1:u8

θu1:u4
θu5:u8

θu1
θu2

θu3
θu4

θu5
θu6

θu7
θu8

θu1u2 θu2u3 θu3u4 θu4u5 θu5u6 θu6u7 θu7u8

× ×

× × × ×

×
θu1:u2

×
θu3:u4

×
θu5:u6

×
θu7:u8

Figure 4.2: Illustration of the construction used for solving the one-dimensional to-
mography problem (4.2) with ` = 3, i.e., three labels. On the bottom is
the original chain; above, there are three layers of counting factors. Each
counting factor keeps track of the label xu (left vertical bar), xv (right ver-
tical bar), and the intermediate sum

∑
w∈U :u<w<v xw (middle horizontal

bar).

The recursive arrangement of counting factors is illustrated in Figure 4.2.

Remark 4.1. The constraints between µi:j:l and µi:j and µj+1:l are analogous to the
marginalization constraints between pairwise and unary marginals in the local polytope
relaxation for pairwise graphical models [Wer07]. The constraints between µi:j:l and
µi:l, however, are different. Hence, specialized, efficient solvers for inference in graphical
models cannot be applied.

Costs. Above, we have described the polytope for the one-dimensional discrete to-
mography problem (4.2). The LP-objective consists of vectors θi:j for each counting
marginal and θi:j:l for each higher-order marginal. Accounting for the pairwise costs
in (4.2) we define

θi:j(xi:j) :=

{
θuiuj (xui , xuj ), i+ 1 = j

0, otherwise
(4.7)

for the counting factors and for the higher-order factors we define

θi:j:l(xi:j , xj+1:l) := θujuj+1(xuj , xuj+1). (4.8)

For the projection constraint in (4.2) we set costs of the top counting marginal by

θ1:n(x1:n) :=

{
0, xu1 + s1:n + xun = b

∞, otherwise
. (4.9)
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4.1.2 Message Passing Algorithm

In Section 4.1.1, we have introduced a linear program formulation for the one-dimensional
discrete tomography problem (4.2). While it is possible to solve it with a standard LP-
solver, doing so would be slow. As the counting factors and the higher-order marginals
connecting them form a graph containing no circles, called a tree in graph theory, it
is possible to devise a message-passing algorithm that solves (4.2) exactly. First, this
implies that the linear programming relaxation for (4.2) is exact, as message passing
amounts to optimizing the Lagrangian dual of this same relaxation. Second, marginals
do not need to be held explicitly; holding messages is enough. The size of all messages
equals the size of all counting factors.

Message passing for (4.2) is detailed in Algorithm 4.1. It proceeds by first computing
up messages from adjacent fine subsets to coarser subsets (i.e., going up the tree
in Figure 4.2) and afterward computing down messages from coarse subsets to their
equipartition (i.e., going down the tree in Figure 4.2). Messages reparametrize the
costs of counting and higher-order factors.

Reparametrization Let indices i < j < l be given, where [i : j], [j+1 : l] and [i : l] are
subsets generated by the recursive partitioning. Then, we define reparametrizations of
the potentials θi:j:l(xi:j , xj+1:l), θi:j(xi:j), θj+1:l(xj+1:l) and θi:l(xi:l) by

θφi:j:l(xi:j , xj+1:l) := θi:j:l(xi:j , xj+1:l) + φi:j:l(xi:j) + φi:j:l(xj+1:l) + φi:j:l(xi:l), (4.10)

θφi:j(xi:j) := θi:j(xi:j)− φi:j:l(xi:j), (4.11)

θφj+1:l(xj+1:l) := θj+1:l(xj+1:l)− φi:j:l(xj+1:l), (4.12)

θφi:l(xi:l) := θi:l(xi:l)− φi:j:l(xi:l), (4.13)

where the values of φ correspond to the Lagrange multipliers of the constraints (4.4), (4.5)

and (4.6) respectively. Messages φ←i:j:l, φ
→
i:j:l, φ

↑
i:j:l act on (reparametrize) costs θφ by up-

dating the corresponding Lagrange multipliers.

”
Sending a message“ in Algorithm 4.1, e.g., for φ←i:j:l, implies the creation of new

multipliers by.

φ′i:j:l(xi:j , xj+1:l) = φi:j:l(xi:j) + φ→i:j:l(xi:j), (4.14)

φ′i:j(xi:j) = φi:j(xi:j)− φ→i:j:l(xi:j). (4.15)

For the description of
”
sending a message“, we introduce the notation

”
+=“ corre-

sponding to (4.14) and
”
−=“ corresponding to (4.15). Additionally, we take a compu-

tational point of view by reusing φ instead of writing φ′. Hence, we provide all message
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updates used in Algorithm 4.1 by

θφi:j:l(xi:j , xj+1:l) += φ←i:j:l(xi:j), θφi:j(xi:j) −= φ←i:j:l(xi:j), (4.16)

θφi:j:l(xi:j , xj+1:l) += φ→i:j:l(xj+1:l), θφj+1:l(xj+1:l) −= φ→i:j:l(xj+1:l), (4.17)

θφi:j:l(xi:j , xj+1:l) += φ↑i:l(xi:l), θφi:l(xi:l) −= φ↑i:j:l(xi:l). (4.18)

Algorithm 4.1: Message passing for one-dimensional discrete tomography

1 Up messages:
2 for [i : j] ∪ [j + 1 : l] = [i : l] ∈ Π in ascending order

3
φ←i:j:l = θi:j
φ→i:j:l = θj+1:l

// Send messages to higher-order counting factor θφi:j:l

4 φ↑i:j:l(xi:l) = min
xi:j ,xj+1:l∼xi:l

θφi:j:l(xi:j , xj+1:l)
// Send message from higher

// order to counting factor θφi:l
5 end
6 x∗1:n ∈ arg minx1:n∈X 1:n

θ1:n(x1:n) ; // optimum of top counting factor

7 Down messages:
8 for [i : j] ∪ [j + 1 : l] = [i : l] ∈ Π in descending order

9 φ↑i:j:l = θi:j:l ; // Send message to higher-order factor

10 x∗i:j , x
∗
j+1:l ∈ arg min

xi:j ,xj+1:l∼x∗i:l
θφi:j:l(xi:j , xj+1:l) ; // compute optimal labels

11 end

Fast message computation Naively computing one
”
up messages“ would result in

time complexity O(`5 · n2), which would make the algorithm unacceptably slow. We
describe a fast message computation technique for line 3 in Algorithm 4.1, which uses
the structure of the corresponding linear constraints (4.6) and relies on the latent

factorization of θφi:j:l. Specifically, when we fix the endpoints xui , xuj of interval [i : j]
and xuj+1 , xul of [j + 1 : l], (3) becomes

φ↑i:j:l(xi:l) = min
si:j+sj+1:l=si:l−xuj−xuj

θuj ,uj+1(xuj , xuj+1) + φ←i:j(xi:j) + φ→j+1:l(xj+1:l) ,

(4.19)
Problem (4.19) is an instance of the min-sum convolution problem: Given a, b ∈ Rn,
compute c ∈ R2n−1, where ci = minj≤i(aj +bi−j). This is by replacing φ← by a, φ→ by
b, and noting that θuj ,uj+1 is a constant, as xuj and xuj+1 were fixed. For the min-sum
convolution problem efficient algorithms [Bus94] were proposed with expected running
time O(n log(n)) under the assumption that sorting a and b results in permutations
occurring with uniform probability. Problem (4.19) is efficiently be computed by per-
forming O(`4) min-sum convolutions (one convolution for every choice of endpoints).
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Remark 4.2 (Comparison to [Tar12]). While our approach for solving (4.2) is in-
spired by [Tar12], it is notably different: (a) our model includes pairwise potentials
forming a chain, while [Tar12] assumes that pairwise potentials do not occur between
neighboring subsets. This necessitates storing left and right endpoints in counting fac-
tors. (b) [Tar12] optimizes a different objective: they solve the sum-product version
of (4.2) (i.e., they exchange

”
min“by

”
+“and

”
+“by

”
·“in (4.2)). This allows [Tar12] to

use fast Fourier transforms for message computations, instead of the harder min-sum
convolution problems.

4.2 Graphical Model for Discrete Tomography

The discrete tomography problem (4.1) consists of m distinct one-dimensional sub-
problems (4.2), where m is the number of rows of the tomographic matrix A. We
connect all subproblems (4.2) via Lagrangian variables into one large problem. This
procedure is called dual decomposition, see [SGJ11] for an introduction. Specifically,
in our discrete tomography problems, subproblems only share variables v ∈ V, but not
edges e ∈ E (shared edges are handled analogously). Then for each node u ∈ V, which
participates in the i-th subproblem, we introduce the Lagrangian variable λi,u ∈ R|Xu|.
The i-th subproblem then consists of solving (4.2) with the subset of variables Ui,
where the unary potentials are the Lagrangian variables θu = λi,u. We denote its
energy by Ei(·, λi). The overall problem is

max
λ1,...,λm

m∑
i=1

min
x∈XUi

Ei(x, λi) s.t.
∑
i

λi,u ≡ 0 ∀u ∈ V . (CTG)

An exemplary 4× 4 model with eight subproblems coming from two projection direc-
tions is depicted in Figure 4.3.

Optimization of relaxation (CTG). We use bundle methods [HL93b] minimizing a
non-differentiable convex function f : Rn → R by aggregating several subgradients
to obtain a descent direction in each iteration. This is an advantage compared to
subgradient methods [HL93b] since subgradients do not guarantee descent along their
direction. In particular, to solve (CTG), we use the bundle solver ConicBundle2 to
find optimal Lagrange multipliers λ and Algorithm 4.1 to find solutions to the one-
dimensional subproblems. Since (CTG) is the dual problem of the relaxation of (4.1),
the solution from (CTG) yields a lower bound to the optimal value of (4.1).

Primal solution. To obtain a feasible reconstruction, we solve a reduced problem by
excluding labels with a high cost: Given dual variables λi, let x∗ be the optimal solution
to the i-th subproblem on variables Ui ⊆ V. For each label xu ∈ X u, u ∈ Ui, xu 6= x∗u we
compute the energy x′∗ ∈ arg min{x′∈XU :xu=x′u}Ei(x

′, λi) of the minimal reconstruction
for subproblem i when the label at u is fixed to xu (this value can be read off from the

2https://www-user.tu-chemnitz.de/~helmberg/ConicBundle/

https://www-user.tu-chemnitz.de/~helmberg/ConicBundle/
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Figure 4.3: This figure is an illustration of a complete graphical model for the discrete
tomography problem with projections along rows and columns of the un-
derlying 4×4 grid. The circles (unary potentials) and red squares (pairwise
potentials) display the energy function from (4.1) according to the underly-
ing graph. The blue diamonds indicate the higher-order potentials, which
we defined to incorporate the linear constraint Ax = b from (4.1) into a
graphical model. We depicted two tomographic projections, four vertical
and four horizontal rays.

reparametrization output by Algorithm 4.1). Only if the gap Ei(x
′∗, λi)−Ei(x∗, λi) is

smaller than some given threshold, we consider the label xu. We construct the discrete
tomography problem on this reduced set of possible labelings and solve the problem
with CPLEX3.

Comparison to previously used relaxation. The algorithms in [Kap15; Zis16; WSH03;
Bat08] use the following relaxation.

minµ≥0
∑

u∈V〈θu, µu〉+
∑

uv∈E〈θuv, µuv〉
s.t.

∑
xu∈Xu µu(xu) = 1 ∀u ∈ V∑
xu∈Xu µuv(xu, xv) = µv(xv) ∀xv ∈ X v∑
xv∈X v µuv(xu, xv) = µu(xu) ∀xu ∈ X u ∀uv ∈ E∑
u∈V Aiu ·

(∑
xu∈Xu xu · µu(xu)

)
= bi i = 1, . . . ,m .

(STD)

3https://www.ibm.com/de-de/analytics/cplex-optimizer

https://www.ibm.com/de-de/analytics/cplex-optimizer
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This relaxation (STD) is the straightforward generalization of the local polytope relax-
ation [Wer07] to the discrete tomography problem. The only differences are the linear
constraints in the last line of (STD). Concerning the one-dimensional discrete tomog-
raphy problem (4.2), the difference between (STD) and our approach is: for (STD) the
tomographic projections are directly enforced through the unary marginals µu, u ∈ V
instead of enforcing them through the counting factors and higher-order ones as we
did in Section 4.1. This more simplistic relaxation (STD) is, however, less tight.

Proposition 4.3. Relaxation (STD) is less tight than (CTG).

Proof. Relaxation (STD) is equivalent to applying it to each tomographic projection
separately and then joining every subproblem by Lagrangian variables as we did with
our approach above (CTG), see [SGJ11, Section 1.6]. Hence, it is sufficient to show
that (STD) is not tight in the one-dimensional case (4.2). We give a counter-example.
Assume X u = {0, 1} ∀u ∈ U and we are given Potts pairwise potentials

θuv(xu, xv) =

{
0, xu = xv

1, xu 6= xv
(4.20)

and zero unary potentials θu ≡ 0. Set unary marginals µu(1) = b
|U | and µu(0) =

1− µu(1) ∀u ∈ U and pairwise marginals as

µuv(xu, xv) =

{
µu(xu), xu = xv

0, xu 6= xv
. (4.21)

Such marginals are feasible to (STD), yet give cost 0. On the other hand for e.g. b = 1
and |U | > 1 there must be at least one label transition, which the Potts potential
penalizes with cost 1.

4.3 Experiments

Test images. We used 200 randomly generated 32 × 32 images with three distinct
intensity values {0, 1, 2}, examples of which are displayed in Figure 4.4. The binary
matrix A ∈ {0, 1}m×n for the tomographic projections were constructed as in Section
2.3. For each test image, we consider two tomographic problems: (i) measuring along
horizontal and vertical directions or (ii) measuring along horizontal, vertical, and two
diagonal directions (left upper to the right lower and left lower to right upper corner).
This gives 400 test problems in total. Potentials for energy E in (4.1) are: unary
potentials are zero, while pairwise ones are θuv = |xu − xv| (that corresponds to TV).
Due to the integrality of all costs, optimality is ascertained through a duality gap < 1.

Algorithms. We identify our solvers by a prefix {CTG|STD} depending on whether
(CTG) or (STD) is solved and by a suffix {CB|relax|BB} depending on whether Con-



4.3 Experiments 61

Figure 4.4: These images are examples from our testset of 200 images with size 32×32.
Black represents value 0, gray 1 and white 2.

icBundle, CPLEX4 or CPLEX with branch and bound enabled was utilized. This gives
five solvers in total: CTG CB, CTG relax, CTG BB, STD relax, and STD BB.
We set a time limit of one hour for all algorithms.

Unfortunately, CPLEX cannot solve problems larger than 32 × 32 in our scenario.
When solving the relaxation (CTG), it already consumes multiple GB of memory for
32× 32 images. Solving (STD), on the other hand, leads to low memory consumption,
but CPLEX takes too much time for larger problems (> 1 hour). Consequently, we
decided to stick with 32× 32 images to obtain a baseline.

Results. In Proposition 4.3, we proved that relaxation (STD) is less tight than our
relaxation (CTG). Indeed, the first line in Table 4.2 shows that this occurs 350 times.
Furthermore, our tighter relaxation helps in giving optimality certificates. In Table 4.1,
we confirm this numerically: STD relax yields optimality certificates 53 times, while
CBC CB and CTG relax do so 205 times in total.

Interestingly, when using the branch and bound capabilities of CPLEX, the picture
changes, and STD BB outperforms CTG BB. This is probably due to the fact that
CPLEX solves the underlying relaxation (STD) much faster than (CTG). We conjec-
ture that the picture changes if a more efficient implementation CBC CB is used as a
bounds provider inside a branch and bound solver. However, this is beyond the scope
of our work.

In Figure 4.5, we give a detailed plot of how much our relaxation (CTG) improved
compared to (STD).

Also, our relaxation helps in reconstructing the signal. Out of 238 instances, where
our heuristic finds an optimal integral solution (third line in Table 4.2), there are 12
cases, where only our heuristic do so (second line in Table 4.2).

4https://www.ibm.com/de-de/analytics/cplex-optimizer

https://www.ibm.com/de-de/analytics/cplex-optimizer
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STD relax STD BB CTG CB CTG relax CTG BB

duality gap ”< 1” 53 243
178 154

182
205

Table 4.1: Number of instances where duality gap < 1 (optimality).

#Instances

(CTG) > (STD) (our relaxation yields strictly better lower
bound)

350

our heuristic (only) found optimal integral solution 12

our heuristic found optimal integral solution 238

Table 4.2: Comparison of bounds and primal solutions obtained by (STD) or (CTG).
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Figure 4.5: Comparison of lower bounds for (STD) and (CTG). We show relative
improvement (CTG)−(STD)/E(x∗)−(STD) on all problems, where we knew by
either method the true optimal solution E(x∗), but where (STD) is not tight
((STD) < E(x∗)). The lower bound (STD) was computed by STD relax,
while (CTG) was computed by CTG CB and CTG relax. A marker close
to zero means no improvement, and close to one means our relaxation solved
the instance exactly. We marked points with a blue circle if only (CTG)
but not (STD) achieved a duality gap < 1, i.e., optimality, and used a red
circle otherwise. For almost all instances, we have an improvement of 0.5
and for more than half of the instances improvement of 0.9.



CHAPTER 5

Integral Sparse and Cosparse Recovery

So far, we used convex priors to approximate sparse or cosparse signals, e.g., through
the `1-norm or the anisotropic TV-seminorm. In Chapter 3, we employed the statis-
tical dimension to relate the sparsity or cosparsity to the needed number of random
linear measurements to uniquely reconstruct a sparse or cosparse signal by convex
programming.

In this chapter, on the other hand, we consider non-convex sparse and cosparse sig-
nal recovery models. In the first part of this chapter, we focus on developing conditions
for unique sparse or cosparse recovery. To this end, we employ the union of subspace
model [LD08; BD09] as a low complexity model to relate the number of linear measure-
ments for achieving unique recovery. Throughout this chapter, the analysis operator
that defines the cosparse signal model is assumed to be the two-dimensional finite dif-
ference operator, also called image gradient operator. In this context, we show that
the number of linear measurements required for unique reconstruction depends either
on the number of jumps/discontinuities in the image gradient or on the number of
connected components.

In subsequent sections 5.2.1 and 5.2.2, we investigate non-convex models for finding
sparse or cosparse solutions subject to linear constraints. Given noiseless data, we
consider the solution of

min ‖Ωx‖0
s.t. Ax = b, x ∈ X . (P0)

Note that for Ω = ∇ the objective in (P0) is also known as the Potts prior [Pot52;
WS15].

63
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In the presence of noisy data, we consider the cardinality constrained problem

min ‖Ax− b‖22
s.t. ‖Ωx‖0 ≤ s, x ∈ X .

(Pls)

Since the problems (P0) and (Pls) are in general NP-hard [Bie96; Nat95], we cannot
expect to find an efficient method to find the optimal solution.

For approximatively solving (P0), one may consider the Lagrangian formulation, as
done in [WS15; Sto15] for the Potts prior, i.e., Ω = ∇. These works, consider an
ADMM splitting framework that leads to computationally tractable subproblems by
dynamic programming. However, in general the obtained solution is not feasible for
the linear system in (P0). A greedy approach for solving directly (P0) is proposed in
[Nam13] with guaranteed performance only in the case of matrices A,Ω satisfying an
extended version of the exact recovery condition (ERC) [Nam13, Cor. 8]. In the general
case, there are no specialized approaches for approximating the cosparse analysis (P0)
and (Pls).

Section 5.2 outlines two recent and promising approaches solving (P0) and (Pls)
heuristically in case Ω is the identity matrix. They seem easily extendable to the
general case, but failed in our experiments for every instance. Therefore, we only
sketch the extension but omit any convergence proof or success rates guarantees.

Aiming at finding the global optimal solution to (P0) and (Pls), we reformulate
these models as integer programs [Sch99; KV18; Bal09] such that we can apply stan-
dard methods as branch and bound [LD60; Dak65] in Section 5.3. Even though
branch and bound finds a globally optimal solution in finite time, however, it may
be necessary to enumerate all feasible solutions, which is not tractable in practice.
Therefore, we compare different relaxations in case of the finite difference operator
and develop specialized constraints to speed-up the branch and bound algorithm veri-
fying optimality.

Using the finite difference operator, both models (P0) and (Pls) only target the
number of jumps/discontinuities. In Section 5.4, we present linear constraints such that
we limit the number of connected components in the reconstructed signal as motivated
by the results derived in Section 5.1. Consequently, we obtain models needing less
linear measurements to uniquely reconstruct an image with respect to the number of
connected components.

5.1 Theoretical Recovery

In this section, we recall and extend the sampling requirements for classes of signals
that live in a union of subspaces. The general results developed in Section 5.1.1 serve
as a guideline for designing new recovery guarantees in Section 5.1.2 for the finite
differences operator.



5.1 Theoretical Recovery 65

5.1.1 Union of Subspaces Model

Consider problem (P0). We seek a signal x ∈ Rn corresponding to ΩΛ,•x = 0 and
|Λ| = k, where Λ ⊆ [p]. Defining Γk := {Λ ⊆ [p] | |Λ| ≤ k}, a solution x∗ with
‖Ωx∗‖0 = k to (P0) is unique if and only if x∗ is the only solution to

Ax = b s.t. x ∈
⋃

Λ∈Γk

N (ΩΛ,•). (5.1)

Subsequently, we recall the results from [LD08; BD09] which show that for almost all
matrices A, with a sufficient number of rows, (5.1) has at most one solution.

First, we define the invertibility of a non-square matrix A on some set X .

Definition 5.1. Let X ⊆ Rn and A ∈ Rm×n. We say that A is invertible on X if for
all x, y ∈ X it holds

A(x− y) = 0⇐⇒ x = y. (5.2)

The next proposition provides us necessary and sufficient condition for (P0) to have
at most one solution.

Proposition 5.2 ([LD08, Prop. 1]). Let A ∈ Rm×n,Ω ∈ Rp×n and Γ ⊆ 2[p]. Then it
holds that

A is invertible on
⋃

Λ∈Γ

N (ΩΛ,•)

⇐⇒
A is invertible on every N (ΩΛ1,•) +N (ΩΛ2,•) with Λ1,Λ2 ∈ Γ.

Proof. See [LD08, Prop. 1].

Proposition 5.3. Let A ∈ Rm×n,Ω ∈ Rp×n and Γ ⊆ 2[p]. It holds for any Λ1,Λ2 ∈ Γ
that

A is invertible on N (ΩΛ1,•) +N (ΩΛ2,•)
⇐⇒

N (A) ∩ (N (ΩΛ1,•) +N (ΩΛ2,•)) = {0}.

Proof. We start by defining V = N (ΩΛ1,•) +N (ΩΛ2,•). Since V is a subspace we have
for any x, y ∈ V that x − y ∈ V . As A is invertible on V then for any A(x − y) = 0
with x, y ∈ V it follows that x = y. Consequently, N (A) ∩ V = {0}.

Conversely, we assume that N (A) ∩ V = {0}. Let Ax = Ay with x, y ∈ V . Then
x − y ∈ V and A(x − y) = 0. If x 6= y we would have found 0 6= x − y ∈ N (A) ∩ V
that violates our assumption. Therefore, we showed that Ax = Ay implies x = y. This
shows that A is invertible on V .

The next proposition uses the conditions above to construct a lower bound on the
number of rows of A such that (5.1) has at most one solution.
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Proposition 5.4 ([LD08, Prop. 3]). Let A ∈ Rm×n,Ω ∈ Rp×n and Γ ⊆ 2[p]. If A is
invertible on

⋃
Λ∈ΓN (ΩΛ,•) it holds that

m ≥ max
Λ1,Λ2∈Γ

dimN (ΩΛ1,•) +N (ΩΛ2,•). (5.3)

Proof. See [LD08, Prop. 3].

The next theorem reveals that the lower bound (5.3) is necessary and sufficient to
guarantee that (P0) has at most one solution.

Theorem 5.5 ([BD09, Thm. 2.3]). Let A ∈ Rm×n,Ω ∈ Rp×n, Γ ⊆ 2[p] and m
satisfying (5.3). Then for almost all A it holds that A is invertible on

⋃
Λ∈ΓN (ΩΛ,•).

Proof. See [BD09, Thm. 2.3].

Remark 5.1. In general (Pls) does not yield a unique solution. Consider x∗ as an
optimal solution to (Pls) and Λ = cosupp(Ωx∗). If A is invertible on the feasible set of
(Pls) then x∗ is unique with respect to ΩΛ,•x = 0. Consequently, for almost all A with
sufficiently many rows, (Pls) has only a finite number of solutions.

Proposition 5.4 gives us a lower bound on the number of linear measurements such
that A is invertible on a union of subspaces. Furthermore, Theorem 5.5 states that
for almost all matrices the lower bound is sufficient. Now, we address the question
whether a given A is invertible on some union of subspaces

⋃
Λ∈ΓN (ΩΛ,•). In [Nam13]

a property called mutual independence of two matrices is described. The authors in
[Nam13] call two matrices A,Ω mutually independent if there are no non-trivial linear
dependencies among the rows of A ∈ Rm×n and Ω ∈ Rp×n. In the next proposition,
we show that the mutual independence property from [Nam13] is sufficient for the
invertibility of A on a union of subspaces.

Proposition 5.6. Let A ∈ Rm×n,Ω ∈ Rp×n with p + m > n. If for every set
Θ ⊆ [m],Λ ⊆ [p] with |Θ|+ |Λ| = n it holds that

N (AΘ,•) ∩N (ΩΛ,•) = {0}, (5.4)

then A is invertible on
⋃

Λ∈ΓN (ΩΛ,•) with Γ ⊆ 2[p] if m satisfies Proposition 5.4.

Proof. Throughout the proof, we make use of the following equivalence

N (AΘ,•) ∩N (ΩΛ,•) = {0} (5.5)

⇔ R(A>Θ,•) +R(Ω>Λ,•) = Rn . (5.6)

In view of Proposition 5.2 and 5.3 we need to show that for every Λ1,Λ2 ∈ Γ it follows
that

N (A) ∩ (N (ΩΛ1,•) +N (ΩΛ2,•)) = {0}. (5.7)
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Note that (5.7) above is equivalent to

R(A>) +R(Ω>Λ1,•) ∩R(Ω>Λ2,•) = Rn . (5.8)

By contradiction, we assume that we found Λ1,Λ2 ∈ Γ such that (5.8) fails. Accord-
ing to the mutual independence assumption (5.4) and Proposition 5.4, we have that
dimR(A>) = m and dimR(Ω>Λ1,•) ∩ R(Ω>Λ2,•) ≥ n −m. If |Λ1| ≥ n and |Λ2| ≥ n we

obtain from (5.4) that already R(Ω>Λ,•) ∩ R(Ω>Λ2,•) = Rn. Consequently, |Λ1| < n or
|Λ2| < n. W.l.o.g. we assume that |Λ1| < n.

As (5.8) does not hold, and n−m ≤ dimR(Ω>Λ1,•)∩R(Ω>Λ2,•) < n, as shown above,
there exist a row aj with j ∈ [m] in A such that

a>j = Ω>Λ1,•α (5.9)

with α ∈ R|Λ1|. Next, we choose Θ′ ⊂ [m] such that |Θ′| = n − |Λ1| − 1. Further, we
define Θ = Θ′ ∪ {j} and obtain |Θ|+ |Λ1| = n. By construction we obtain

R(A>Θ,•) +R(Ω>Λ1,•) 6= Rn . (5.10)

This, however, is a contradiction to (5.4) above.

First, we introduce the following measure similar to [Nam13]

κΩ(Γ) := max
Λ∈Γ

dimN (ΩΛ,•), Γ ⊆ 2[p]. (5.11)

Next, we provide a sufficient condition for the invertibility of A on union of subspaces
that involves the number of measurements m.

Proposition 5.7. Let A ∈ Rm×n,Ω ∈ Rp×n and Γ ⊆ 2[p]. If κΩ(Γ) ≤ m
2 then almost

all A are invertible on
⋃

Λ∈ΓN (ΩΛ,•).

Proof. Since κΩ(Γ) ≤ m
2 , than for every Λ ∈ Γ we have that dimN (ΩΛ,•) ≤ m

2 . Then
it follows that

dimN (ΩΛ1,•) +N (ΩΛ2,•) ≤ m (5.12)

for any Λ1,Λ2 ∈ Γ. Consequently, by Theorem 5.5 almost all A ∈ Rm×n are invertible
on
⋃

Λ∈ΓN (ΩΛ,•).

Remark 5.2. The authors from [Nam13, Prop. 3] derived the same conclusion as in
Proposition 5.7. However, their proof differs from ours by including that A,Ω satisfy
the mutual independence property (5.4).

Remark 5.3. Let Ω = I the identity and Γs = {Λ ⊆ [n] | |Λ| ≥ n − s}. Then⋃
Λ∈ΓN (ΩΛ,•) contains all vectors x ∈ Rn with less than s nonzero entries, i.e., ‖x‖0 ≤

s. The guarantees from Proposition 5.2 and 5.3 imply that A ∈ Rm×n is invertible on⋃
Λ∈ΓN (ΩΛ,•) if and only if every choice of k ≤ 2s column vectors of A are in general

position. Indeed, this is condition (2.28) that involves the spark to guarantee sparse
recovery.
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5.1.2 Finite Difference Operator

When choosing Ω in (P0) or (Pls) to be the two-dimensional finite difference operator,
we are enforcing solutions (2D images) that exhibit constant regions and a minimal
respectively bounded edge length. Prior analyzing the resulting union of subspaces
induced by the finite difference operator, we shortly recall some definitions.

We identify an image by a grid graph G = (V, E), where each v ∈ V corresponds to
a pixel. Let (xv)v∈V ∈ R|V| be a vector. The discrete gradient of an image is defined
by

∇x := (xi − xj)ij∈E . (5.13)

Hence, we regard the finite difference operator ∇ ∈ {−1, 0, 1}|E|×|V| as the matrix,
where each row corresponds to one edge with exactly two nonzero entries. Further, we
define for a subset Λ ⊆ E the following relation

v ∼Λ w ⇔ there is a path in Λ from v to w or v = w. (5.14)

For the definition of a path, we refer to Section 2.1.3. Clearly ∼Λ defines a equivalence
relation on V. It is reflexive by definition and symmetric as the graph is undirected.
Transitivity follows by concatenating two paths.

Proposition 5.8. Let Λ ⊆ E and CΛ := V/ ∼Λ, then

N (∇Λ,•) = lin{1C | C ∈ CΛ} and dimN (∇Λ,•) = |CΛ|. (5.15)

The set CΛ consists of all connected components with respect to Λ.

Proof. Since ∼Λ is an equivalence relation, it follows that for every C1, C2 ∈ CΛ it holds
C1 ∩C2 = ∅ or C1 = C2. Therefore, if ∇Λ,•x = 0, we directly obtain x =

∑
C∈CΛ αC1C

for suitable coefficients αC ∈ R. Hence, we proved the claim.

Using Proposition 5.8, we define the following family of index sets

Γck := {Λ ⊆ E : dimN (∇Λ,•) ≤ k}, (5.16)

such that
⋃

Λ∈Γck
N (∇Λ,•) defines all images with at most k connected components.

Corollary 5.9. Almost all A ∈ Rm×n with

m ≥ 2 · k = κ∇(Γck) (5.17)

are invertible on
⋃

Λ∈Γck
N (∇Λ,•).

Proof. Evaluate κ∇(Γck) defined by (5.11) yields k. By Proposition 5.7, it follows that
almost all A ∈ Rm×n are invertible on

⋃
Λ∈Γck

N (∇Λ,•) if m
2 ≥ κ∇(Γck). Hence, the

claim follows.
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In Section 5.4, we introduce a set of constraints which are added to (P0) and (Pls)
such that any solution has at most k connected components.

Next, we define the family of index sets

Γsk = {Λ ⊆ E | |Λ| ≥ k}, (5.18)

such that
⋃

Λ∈Γsk
N (∇Λ,•) defines all images with a total edge length of at most |E|−k.

In the next proposition, we obtain a sharp bound on the individual nullspace.

Proposition 5.10 ([Nam13, Prop. 6]). Let Ω be the finite difference operator and
|V| = n. Then for k ≥ 5 we have

n− k

2
−
√
k

2
− 1 ≤ κΩ(Γsk) ≤ n−

k

2
−
√
k

2
+

1

2
. (5.19)

Proof. The proof can be found in [Nam13].

Corollary 5.11. Almost all A ∈ Rm×n with

m ≥ 2 ·
(
n− k

2
−
√
k

2
+

1

2

)
≥ 2 · κ∇(Γsk) (5.20)

are invertible on
⋃

Λ∈Γsk
N (∇Λ,•).

Proof. Plugging κΩ(Γsk) from (5.19) into Proposition 5.7, hence the claim follows.

Remark 5.4. In [Nam13] the authors additionally assume mutual independence in
the Corollary 5.11. In view of Proposition 5.7, we do not need this assumption.

In summary, Corollaries 5.11 and 5.9 give us a lower bound on the needed number
of linear measurements to uniquely reconstruct a signal by (P0). As an example, if we
have an image x∗ with only two connected components, then for almost all matrices
A ∈ Rm×n with m ≥ 4 and b = Ax∗ the model (P0) has only x∗ as a optimal solution.

Regarding (Pls), the lower bound on the measurements implies a finite number of
optimal solutions.

To conclude, the number of jumps or connected components accurately describes the
minimal number of linear measurements necessary to reconstruct an image uniquely.
While the number of jumps depends on the image discretization, the number of con-
nected components is independent of the resolution.

Motivated by this theoretical findings we introduce, in Section 5.4, additional linear
constraints to problems (P0) and (Pls) that limit the number of connected components.

5.2 Sparse Approximation

As previously mentioned, problems (P0) and (Pls) are NP-hard [Bie96; Nat95]. Hence,
it is reasonable to assume that no efficient algorithm exists to solve them, unless NP=P.
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Existing approaches for (P0) proceed by applying the Lagrange dual, e.g., Potts
regularized least-squares [WS15; Sto15], or developing greedy methods, e.g., [Nam13].
Without efficient primal heuristics, the Lagrange dual does not provide feasible solu-
tions for the linear system. Success guarantees for greedy methods have strong assump-
tions on A,Ω like the extended version of the exact recovery condition (ERC) [Nam13,
Cor. 8].

In this chapter, we mainly consider methods that find the optimal solution to (P0)
and (Pls) without additional conditions to the matrices A,Ω. In particular, we exam-
ine recently published approximation algorithms [ZK15] and [Bra18] for Ω = I that
are possibly generalizable to the analysis case. Unfortunately both methods were un-
able to solve any of our test instances when extending them directly to the analysis
case. Therefore, we only outline our extension of these methods and do not provide
convergence results or success guarantees. Further work is needed to incorporate the
interesting ideas from [ZK15] and [Bra18] to the analysis models (P0) and (Pls).

In Section 5.2.1 below, we outline the approach from [ZK15] for (P0) in case of Ω = I.
The authors from [ZK15] reformulate (P0) into a bilevel program [Dem15, Chap. 2]
and develop a parameterized convex program as an approximation. Subsequently, in
subsection 5.2.2, we introduce the method in [Bra18] that uses a sequence of nonlinear
non-convex programs to approximate a solution for (Pls) in case of Ω = I.

5.2.1 Weighted `1-Minimization for the Analysis Model

In the following, we discuss the work of [ZK15] which transforms (P0) (for Ω = I) into
a bilevel program. A key ingredient to build the bilevel program is the relation between
`0-minimization and weighted `1-minimization. First, we formulate the weighted `1-
minimization problem (W1) for our case:

min ‖WΩx‖1 s.t. Ax = b, (W1)

where W = diag(w), w ∈ R
p
>0. Next, we show a connection between (W1) and (P0).

Let x∗ ∈ Rn, Λ = cosupp(Ωx∗) and N (A) ∩ N (ΩΛ,•) = ∅. Then there are weights
w ∈ R

p
>0 for (W1) such that x∗ is the unique minimizer. Before we detail this result

in Proposition 5.13 below, we collect some observations in the following lemma.

Lemma 5.12. Let W = diag(w), w ∈ R
p
>0,Ω ∈ Rp×n and x ∈ Rn. Then it holds

(i) N (Ω) = N (WΩ);
(ii) sign(Ωx) = sign(WΩx);

(iii) cosupp(Ωx) = cosupp(WΩx).

Proof. The items (ii) and (iii) are straightforward, as one set y = Ωx and use that
sign(Wy) and cosupp(Wy) act element-wise without taking the magnitude of the ele-
ment into account.
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Denoting ωi as the i-th row of Ω, we have

x ∈ N (Ω) (5.21)

⇔ 〈ωi, x〉 = 0 ∀i ∈ [p] (5.22)

wi>0⇔ wi · 〈ωi, x〉 = 0 ∀i ∈ [p] (5.23)

⇔ x ∈ N (WΩ). (5.24)

Observing that x ∈ N (Ω)⇔ x ∈ N (WΩ) completes the proof.

Proposition 5.13. Let x∗ ∈ Rn with Λ = cosupp(Ωx) such that it holds

N (A) ∩N (ΩΛ,•) = {0}. (5.25)

There exist weights W = diag(w) with w ∈ R
p
>0 such that x∗ is the unique minimizer

of (W1).

Proof. By Theorem 3.3, Lemma 5.12 and (5.25), we have that x∗ is the unique mini-
mizer if and only if

∃α ∈ Rp : Ω>Wα ∈ R(A>), αΛc = sign(ΩΛc,•x
∗), ‖αΛ‖∞ < 1. (5.26)

Next, we discuss how to choose weights w ∈ R
p
>0 such that there exists an α̃ that

satisfies (W1). Consider the following linear program and its dual

max 0

s.t. Ω>Λ,•α+A>y = d
(P)

min 〈d, v〉

s.t.

(
ΩΛ,•
A

)
v = 0

(D)

with d = −Ω>Λc,• sign(ΩΛc,•x
∗). By (5.25) the dual program has only v = 0 as solution.

A feasible dual program implies that the primal program is feasible as well [Van14,
Chap. 5]. Consequently, it exists α∗ that satisfies

Ω>Λ,•α
∗ +A>y = d. (5.27)

Using α∗, we choose some k > 1 and define weights

wΛ = k · |α∗| and wΛc = 1. (5.28)

Considering (W1) with the weights defined above, we construct a certificate α̃ to show
that x∗ is the unique minimizer. Setting α̃Λ = 1

k sign(α∗) and α̃Λc = Ω>Λc,• sign(ΩΛc,•x
∗),

we calculate

Ω>Wα̃ = Ω>Λ,•α
∗ + Ω>Λc,• sign(ΩΛc,•x

∗) ∈ R(A>). (5.29)

Since ‖α̃Λ‖∞ = 1
k < 1 holds by construction, it follows that x∗ is the unique minimizer

with the weights as in (5.28).
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Remark 5.5. If we drop the condition (5.25) in the Proposition 5.13, x∗ may not
the unique minimizer to (W1). Let x̂ be another minimizer of (W1), then it holds
supp(Ωx∗) = supp(Ωx̂) and consequently ‖Ωx∗‖0 = ‖Ωx̂‖0.

Remark 5.6. In view of Theorem 3.3 one expects that if we add box constraints to
(W1), we have to require

N (A) ∩N (ΩΛ,•) ∩N (Ψ) = {0}, (5.30)

to achieve a similar result as in the previous Proposition 5.13. However, this is not
true. Consider the following example

min ‖x‖1
s.t.

(
1 1 0

)
x =

1

2
x ∈ [0, 1]3

(5.31)

with x∗ =
(
0 1

2 1
)>

and Λ = cosupp(x∗). Clearly (5.30) holds, but there cannot
exist any weights to make x∗ the optimal solution to (W1).

Corollary 5.14. Let x∗ be a unique solution to (P0). There exist weights w ∈ Rn
>0

such that x∗ is the unique solution to (W1).

Proof. Since x∗ is a unique solution to (P0), and N (A)∩N (ΩΛ,•) = {0} is a necessary
condition such that x∗ is a unique solution, the claim follows directly by Proposi-
tion 5.13.

So far we have seen that (W1) is used to reconstruct a sparse signal with respect to
Ω for an appropriate choice of weights w ∈ Rn

>0. Next, we discuss how to find these
weights without knowing the unique optimal solution of (W1) in advance.

In the following, we rephrase (W1) to a linear program (PW1) and formulate the
corresponding dual program (DW1).

min 〈t, w〉
s.t. Ax = b,

Ωx+ t− α = 0,

− Ωx+ t− β = 0,

α, β, t ≥ 0.

(PW1)

max 〈b, y〉
s.t. A>y + Ω>(u− v) = 0,

u+ v + s = w,

u, v, s ≥ 0.

(DW1)
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By strict complementarity [Van14, Thm. 10.7], we obtain the existence of a primal
solution pair t∗, x∗ of (PW1) and a dual solution s∗ of (DW1) such that t∗ + s∗ > 0
and t∗i · s∗i = 0 for all i ∈ [p]. Since ‖t∗‖0 = ‖Ωx∗‖0, we get ‖Ωx∗‖0 + ‖s∗‖0 = p. As a
consequence, the sparsity of Ωx∗ in the primal program corresponds to the density of
s∗ in the dual program.

Based on the above observation, we proceed as in [ZK15] and construct the following
bilevel program [Dem15]

max ‖s‖0
s.t. A>y = Ω>(u− v),

u+ v + s = w,

〈b, y〉 = min{‖WΩx‖1 | Ax = b},
u, v, s ≥ 0,

(BP)

where W = diag(w).

Proposition 5.15. Let x∗ be the unique minimizer of (P0). Then (BP) calculates the
optimal weights w̃ such that x∗ is the unique minimizer of (W1).

Proof. By Proposition 5.13, it follows that there are weights w ∈ Rn
>0 such that x∗

is the unique minimizer of (W1). Consequently, t∗ = Ωx∗ is the unique minimizer of
(PW1). By strict complementarity, there exists a dual solution s∗ of (DW1) such that
‖s∗‖0 = p− ‖Ωx∗‖0 holds. Therefore, the optimal weights w̃ belong to the feasible set
of (BP).

Assuming that there exists ŝ in the feasible set of (BP) with ‖ŝ‖0 > ‖s∗‖0. Then ŝ
is part of a dual solution corresponding to ŵ from (DW1). Complementary slackness
then yields for all primal solutions t̂ that t̂i · ŝi = 0 for all i ∈ [p]. This implies that
for any optimal solution x̂ to (W1) with ŵ it follows ‖Ωx∗‖0 > ‖Ωx̂‖0. This is a
contradiction to the optimality of x∗. Additionally, if ‖ŝ‖0 = ‖s∗‖0, again we obtain
x̂ from (W1) with ŵ and it follows ‖Ωx∗‖0 = ‖Ωx̂‖0. Since we assumed that x∗ is the
unique minimizer, it follows x∗ = x̂.

In general, bilevel programs are hard to solve and there are no generic algorithms.
Therefore, [ZK15] proposed a relaxation to approximate the solution of (BP). First,
we observe that scaling the weights for (W1) does not change the solution. Having
weights w, we get the same solutions when choosing λ · w for λ > 0. For that reason,
we assume that

1 = 〈b, y〉 = min{‖WΩx‖1 | Ax = b}. (5.32)

Before we write down the relaxation of (BP), we need the following class of functions.

Definition 5.16 ([ZK15]). We call a function Φε : R
p
≥0 → R with ε > 0 a merit

function if it holds that

(i) for any s ∈ R
p
≥0 it holds Φε(s)→ ‖s‖0 if ε→ 0;
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(ii) Φε is continuously differentiable and concave with respect to s over an open set
containing R

p
≥0;

(iii) for any given constants 0 < c1 < c2 there exists a small ε∗ > 0 such that for any
given ε ∈ (0, ε∗] it holds

Φε(s)− Φε(ŝ) ≥
1

2
, (5.33)

for any 0 ≤ s, ŝ ≤ c2 satisfying ‖ŝ‖0 < ‖s‖0 and c1 ≤ si ≤ c2 for all i ∈ supp(s).

Proposition 5.17 ([ZK15, Prop. 3.2]). Let ε ∈ (0, 1). All the following functions are
merit function according to the Definition 5.16:

Φε(s) =
n∑
i=1

(
1− e−

si
ε

)
, where s ∈ Rn; (5.34)

Φε(s) =
n∑
i=1

si
si + ε

, where si > −ε for all i = 1, . . . , n; (5.35)

Φε(s) = n− 1

log ε

(
n∑
i=1

log (si + ε)

)
, where si > −ε for all i = 1, . . . , n. (5.36)

Using the merit function from Definition 5.16, we now adapt the relaxation from
[ZK15]

max αΦε(s) + 〈b, y〉
s.t A>y = Ω>(u− v),

s = w − u− v,
〈b, y〉 ≤ 1,

w ∈ Wk, 0 ≤ s, u, v.

(BPα,ε,k)

The problem (BPα,ε,k) above is considered as a perturbed version of (DW1), where
〈b, y〉 ≤ 1 models the weak duality. However, if one sets w ≥ 0 in (DW1), then s > 0
(that yields ‖s‖0 = p) would always be a feasible solution. Therefore, the authors
propose Algorithm 5.1 which iteratively adjusts the set Wk such that ‖s‖0 = p is not
feasible for (BPα,ε,k).

As already mentioned, Algorithm 5.1 could not solve any of our test instances.
For this reason, we refrain from further analysis, since translating success guarantees
would be associated with very restrictive conditions to the matrices A,Ω. Concern-
ing the application in discrete tomography, this is not target-oriented. However, the
reformulation of (P0) as a bilevel program is a interesting approach so that a more
profound analysis might be interesting for other applications.



5.2 Sparse Approximation 75

Algorithm 5.1: Bilevel Approximation [ZK15] for (P0)

Input: α0, τ, ε, α∗, ϑ ∈ (0, 1)

1 Let x0 be the solution of (W1) with W = I

2 Choose Γ0 ≥ ϑmax
{

1, 1
‖x‖1

}
3 Set W0 = {w ∈ R

p
≥0 | 〈|Ωx0|, w〉 ≤ ϑ,w ≤ Γ0}

4 Set k = 0

5 while αk > α∗ do
6 Solve (BPα,ε,k) and obtain wk

7 Set W k = diag(wk)

8 Solve (W1) using W k and obtain xk

9 Choose Γk+1 ≥ ϑmax
{

1, ‖wk‖∞
‖WkΩxk‖1

}
10 Set Wk+1 = {w ∈ R

p
≥0 | 〈|Ωxk|, w〉 ≤ ϑ,w ≤ Γk+1}

11 Set αk+1 = τ · αk
12 Set k = k + 1

13 end

5.2.2 Cardinality Constriants

In this subsection, we extend the method from [Bra18] to the analysis case of problem
(Pls). Our focus here is on the computational steps of the algorithm and not on its
convergence theory.

In order to find a feasible (not necessary optimal) solution to (Pls) for the case Ω = I,
the authors of [Bra18] propose iterations based on a sequence of non-linear, non-convex
optimization problems. In particular, they formulate the following non-linear program

min
x,y

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

0 ≤ y ≤ 1,

x ◦ y = 0,

〈1, y〉 ≥ n− s,

(5.37)

where f : Rn → R, g : Rn → Rr, h : Rn → Rq are continuously differentiable functions.
The problem (5.37) is an instance of a mathematical program with complementarity
constraints (MPCC) [LPR96].

It is straightforward to see that for any feasible solution of the above problem ‖y‖0 ≥
n − s implies ‖x‖0 ≤ s. Consequently, any optimal solution x∗ to the above problem
is also optimal for (Pls) (when Ω = I). Next, we modify the problem above to obtain
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the general case

min
x,y,z

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

Ωx = z,

0 ≤ y ≤ 1,

z ◦ y = 0,

〈1, y〉 ≥ n− s.

(NLP)

Again, we get ‖y‖0 ≥ n − s implying ‖Ωx‖0 = ‖z‖0 ≤ s. Therefore, any optimal
solution x∗ of (NLP) is also optimal for (Pls) and vice versa.

Since (NLP) is a non-convex optimization problem we can only expect to find local
minima. In [Bra18] the authors use the Scholtes regularization [Sch01] to be less
dependent on initialization and to find a

”
better “ of (NLP).

min
x,y,z

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

Ωx = z,

0 ≤ y ≤ 1,

− t · 1 ≤ z ◦ y ≤ t · 1,
〈1, y〉 ≥ n− s.

(NLPt)

Using the Scholtes regularization [Sch01], we now replace z ◦ y = 0 in (NLP) through
−t · 1 ≤ z ◦ y ≤ t · 1. Then, one solves (NLPt) for a decreasing sequence tk → 0 and
use any solution yk, xk, zk as an initial solution for the next iteration k + 1.

As in [Bra18], we used the software SNOPT [GMS05] to solve the subproblems
(NLPt). However, we always encountered numerical problems if z ◦ y ≈ 0 such that we
never reached a feasible solution for none of our test instances.

5.3 Exact Recovery by Integer Programming

In contrast to the previous section, we now discuss a way to provably find the optimal
solution to (P0) and (Pls). To this end, we formulate our considered problems into
mixed-integer-programs (MIP)[Sch99; KV18; Bal09]. Solving MIP might be extremely
time-consuming. However, there are powerful commercial solver like GUROBI1 or
CPLEX2 which handles large MIPs with millions of variables. By default, the men-
tioned software uses branch and bound to solve MIPs, which we introduced in Section
2.1.4.

In this section, we transform (P0) and (Pls) into a MIP. There are already for-

1https://www.gurobi.com/
2https://www.ibm.com/de-de/analytics/cplex-optimizer

https://www.gurobi.com/
https://www.ibm.com/de-de/analytics/cplex-optimizer
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mulations, e.g., [Bou16; JP07; Bie96] for Ω = I which are directly extendable for
the general analysis case. Our analysis in Section 5.3.1 differs as it uses disjunctive
programming [Bal18]. This leads us to an alternative MIP formulation that we now
present.

We start by introducing decision variables α ∈ {0, 1}p and the following implications
with respect to the considered problems in this chapter

∀i ∈ [p] : αi = 0→ (Ωx)i = 0. (5.38)

It is straightforward to see that if α ∈ {0, 1}p and x ∈ Rn satisfies (5.38), then it holds

‖Ωx‖0 ≤ 〈α, 1〉. (5.39)

For the later use, it is important to stress out that for a given x ∈ Rn it always exist
α ∈ {0, 1}p satisfying (5.38) such that

‖Ωx‖0 = 〈α, 1〉. (5.40)

Now, we use (5.38) to transform (P0) into

min 〈α, 1〉
s.t. Ax = b,

αi = 0→ (Ωx)i = 0, ∀i ∈ [p],

α ∈ {0, 1}p,

(PI0)

and (Pls) into

min ‖Ax− b‖22
s.t. 〈α, 1〉 ≤ s,

αi = 0→ (Ωx)i = 0, ∀i ∈ [p],

α ∈ {0, 1}p.

(PIls)

The problems above belong to the class of optimizing problems with indicator con-
straints [Bon15; Bel16; FHS16].

After discussing our disjunctive programming approach in Section 5.3.1, we close
with Section 5.3.2 by discussing additional constraints to reduce the depth of the
resulting branch and bound tree when solving (PI0) and (PIls).

5.3.1 Disjunctive Programming

In the field of (linear) disjunctive programming [Bal18] one deals with optimization
problems, where the feasible set is a union of polyhedra. A polyhedra P is represented
by a matrix A ∈ Rm×n and right-hand side b ∈ Rm by

P = {x | Ax ≥ b}. (5.41)
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Having some finite index set I we write the union of polyhedra as

x ∈ F :=
⋃
k∈I
{y | Aky ≥ bk}. (5.42)

The reason for the name
”
disjunctive“ comes from the fact that

x ∈ F ⇐⇒ x statisfies
∨
k∈I

Akx ≥ bk. (5.43)

Next, we translate (5.38) into the setting of disjunctive programming. Let α ∈ Rp, x ∈
Rn satisfying

∀i ∈ [p] : (αi = 0 ∧ (Ωx)i = 0) ∨ αi = 1. (5.44)

Then α ∈ {0, 1}p and the pair x, α satisfy (5.38). Obviously, the reverse direction also
applies. As a result, we get for each implication (i ∈ [p]) in (5.38) a union

{(x, α) ∈ Rn×Rp | αi = 0 ∧ (Ωx)i = 0} ∪ {(x, α) ∈ Rn×Rp | αi = 1}. (5.45)

Next, we present a result that gives us a linear representation of the convex hull for
any union of polyhedra.

Theorem 5.18 ([Bal18, Thm. 2.1]). The closed convex hull of F (defined as in (5.42)),
conv(F ), is the set of those x for which there exist (yk, yk0 ) ∈ Rn+1, k ∈ I, satisfying

x =
∑
k∈I

yk

Akyk − bkyk0 ≥ 0 k ∈ I∑
k∈I

yk0 = 1

yk0 ≥ 0 k ∈ I.

(5.46)

In the sense of model complexity, one asks whether there is a representation with less
variables as in Theorem 5.18. The answer is already given in [CDF19]. We summarize
the corresponding result in the following theorem.

Theorem 5.19. The representation given by Theorem 5.18 is optimal.

Proof. See [CDF19].

Applying Theorem 5.18 to (5.44), we get the following linear representation of the
convex hull

x = yi + zi, i ∈ [p],

(Ωyi)i = 0, i ∈ [p],

yi, zi ∈ Rn, α ∈ [0, 1]p.
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The linear system above is the convex hull (also a convex relaxation) to the indicator
constraint in (PI0) and (PIls). Consequently, the relaxation above is useless when ap-
plying branch and bound directly. Hence, we assume x ∈ [l, u]n for l < u and modify
(5.44) to

∀i ∈ [p] : (αi = 0 ∧ (Ωx)i = 0 ∧ x ∈ [l, u]n) ∨ (αi = 1 ∧ x ∈ [l, u]n). (5.47)

Now we apply again Theorem 5.18 and get the following linear system as the convex
hull

x = yi + zi, i ∈ [p],

(Ωyi)i = 0, i ∈ [p],

yi ∈ [(1− αi) · l, (1− αi) · u], i ∈ [p],

zi ∈ [αi · l, αi · u], i ∈ [p],

α ∈ [0, 1]p.

(5.48)

Remark 5.7. In practical applications like discrete tomography one always may bound
the values in the reconstructed image.

A more common approach in the mixed integer programming literature is called the
big-M method [JP07; Bou16; Bon15] that considers (5.47) by

− αθ ≤ Ωx ≤ αθ,
α ∈ [0, 1]p,

x ∈ [l, u]n,

(5.49)

where θ > 0 is assumed to be big enough. This approach also yields a convex relaxation
of (5.47). Considering the results above, we conclude that big-M method cannot yield
a better convex relaxation then (5.48). Since (5.48) is independent of the choice of
θ > 0, we believe that this approach is preferable to the big-M method if no optimal
θ > 0 is known.

As an example, we consider Ω = ∇ as the two-dimensional finite difference operator
as in Section 5.1.2. We use the graph G = (V, E) defining the pairwise differences to
write (5.47) as

∀ij ∈ E : (αij = 0 ∧ xi = xj ∧ xi, xj ∈ [l, u]) ∨ (αij = 1 ∧ xi, xj ∈ [l, u]). (5.50)

Analogously, we obtain, through (5.48), for each edge ij ∈ E the following linear system

xi = yij + zij,i,

xj = yij + zij,j ,

yij ∈ [(1− αij) · l, (1− αij) · u],

zij,i, zij,j ∈ [αij · l, αij · u],

αij ∈ [0, 1].

(5.51)
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Node

Edge

Circle

Figure 5.1: In this figure, we illustrate a simple grid graph G = (V, E) and marked a
circle in red.

As a consequence, both the big-M and the disjunctive programming approach above
need O(|E|) many variables and constraints to construct a convex relaxation to (PI0)
and (PIls) with respect to the finite difference operator.

5.3.2 Circle Constraints

When using branch and bound to solve (PI0) or (PIls), at each iteration a convex relax-
ation is solved (see Section 2.1.4). In particular, if the solution α∗ 6∈ {0, 1}p, one index
i ∈ [p] is chosen to create two subproblems with αi = 0 respectively αi = 1. As this
procedure enumerates many possible choices of α ∈ {0, 1}p, we should avoid to create
unnecessary subproblems.

We now consider the case Ω = ∇. As in Section 5.1.2, we consider the corresponding
graph G = (V, E), which models the relation between the pixel. Let C ⊆ E be a circle
in the graph G as in Figure 5.1. For the mathematical definition of a circle in a graph,
we refer to Section 2.1.3. We then add the following constraints to (PI0) respectively
(PIls)

αe′ ≤
∑

e∈C\{e′}

αe, ∀e′ ∈ C, (5.52)

without changing the feasible set. Suppose that we run branch and bound for some
iterations and there is a node such that αe = 0 is fixed for all e ∈ C\{e′, e′′} with e′, e′′ ∈
C. Then (5.52) implies that αe′ = αe′′ . Consequently, only two more subproblems are
needed to decide whether αe′ = αe′′ = 1 or αe′ = αe′′ = 0. In Figure 5.2, we illustrate
the use of circle constraints on a small example.

Adding all possible circles would result in an exponential number of constraints. In
order to restrict this number, we only considered circles of length four.

In Figure 5.3, we show an experiment that illustrates the benefit of using circle
constraints. We need to stress out, however, that circle constraints are only useful
when proving optimality of an integer solution through branch and bound. We noticed
in our experiments that when circle constraints, the time to find the best integer
solution was increased dramatically. Hence, circle constraints only help to increase the
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21

3 4

α12 ≤ α24 + α34 + α13

α24 ≤ α12 + α34 + α13

α34 ≤ α12 + α24 + α13

α13 ≤ α12 + α24 + α34

{α34 = 0, α24 = 0}

α12
=
0 α

12 =
1

α 1
3
=
0 α

13 =
1 α 1

3
=
0 α

13 =
1

Figure 5.2: As an example, suppose we have four variables corresponding to the four
grid points. Assuming that these four variables lie on a circle of the un-
derlying grid graph, we obtain the circle constraints in the lower left. In
our example, two edge variables are already fixed to zero (red dashed line),
i.e., α12 = α13 = 0. Within a branch and bound run, six more subproblems
(see right) would have to be enumerated to verify all possibilities for the
last two edge variables. However, the circular constraints prevent branch
and bound to consider of the four gray-shaded nodes, in view of α12 = α13.

lower bound faster when testing optimality in branch and bound.

5.4 Connected Components Constraints

So far, we have focused on problems (P0) and (Pls). In view of Ω = ∇, these problems
target the number of discontinuities. In view of Proposition 5.9, we derived in Sec-
tion 5.1.2 that the number of connected components in an image are crucial to predict
unique reconstruction by (P0) and (Pls). For that reason, we introduce in this section
modifications of problems (PI0) and (PIls) that allow integer solutions with at most c
connected components.

Consider now the finite difference operator and the corresponding grid graph
G = (V, E). Let x ∈ R|V| and α ∈ {0, 1}|E| satisfying (5.50), i.e, each αij = 0 for
ij ∈ E implies xi = xj . Further, we define

G(α) = (V, Eα) (5.53)

where Eα = {e ∈ E | αe = 0}. Hence, if x corresponds to a two-dimensional image, the
connected components of G(α) correspond to the constant regions of x. As a result, to
restrict the number of connected components in the solutions of (PI0) and (PIls), it is
enough to check whether the graph induced by α has at most c connected components.

In the following, we adapt the results from [Hoj18]. The authors in [Hoj18] used
linear constraints from network flow [KV18, Chap. 8] to check if two nodes belong to
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Figure 5.3: For 30 images with four connected components and exactly 36 jumps, we re-
constructed each image (using two binary tomography projections) through
(PI0) (using GUROBI with timelimit of 300 seconds). The percentages in
the captions indicate that the use of the circle constraints led to a reduction
of the runtime in % percent of the considered instances.

the same connected component. Therefore, we introduce additional variables

fi→j , fj→i ∈ R≥0 ∀ij ∈ E , (5.54)

where fi→j models the flow from node i to j.

Next, we choose a subset S ⊆ V and call each s ∈ S a sink . This then is used to
define that

α ∈ F(S) (5.55)

if and only if α satisfies the linear system

fi→j + fj→i ≤ (|V|+ 1) · (1− αij), ij ∈ E , (5.56a)∑
ij∈E

fi→j − fj→i ≥ 1, i ∈ V \ S, (5.56b)

fi→j , fj→i ≥ 0, ij ∈ E . (5.56c)

Basically, (5.56) checks if for every node v ∈ V \ S there is a path in G(α) (see
(5.53)) to any node of S. By (5.56a), we ensure that the only nonzero flow variables
are between nodes, which are adjacent with respect to G(α). Except nodes contained
in S, for each i ∈ V \ S there exist a node j ∈ V so that it holds fi→j > 0 or fi→j > 0.
As a consequence, if α ∈ F(S) then there exist for each i ∈ V \S a path in G(α) to one
of the nodes defined in S. Hence, if |S| ≤ c, G(α) has at most c connected components.
We depict the G(α) for α ∈ F(S) and α 6∈ F(S) in Figure 5.4. In case of α 6∈ F(S)
it need to exist a path from every non-sink node to any sink. If α 6∈ F(S), there are
nodes which separated from every sink.
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(a) (b)

Figure 5.4: Both figures show a graph G(α) for α ∈ {0, 1}|E| with nodes (circle) and
edges (line). The sinks defined by S are marked in red. Each edge depicted
implies αe = 0 (otherwise αe = 1). For (a) it follows α 6∈ F(S), as there
are nodes with no path to any sink. On the other hand, for (b) it follows
α ∈ F(S), as for every node it exists a path to a red sink.

Now, we use (5.55) to reformulate (PI0) into

min 〈α, 1〉
s.t. Ax = b,

αi = 0→ (Ωx)i = 0 ∀i ∈ [p],

α ∈ F(S)

α ∈ {0, 1}p,

(Pc0)

and (PIls) into

min ‖Ax− b‖22
s.t. α ∈ F(S),

αi = 0→ (Ωx)i = 0 ∀i ∈ [p],

α ∈ {0, 1}p.

(Pcls)

Hence, if |S| ≤ c every solution to (Pc0) or (Pcls) contains at most c connected compo-
nents

The question remains on how to choose S ⊂ V. In view of our application in discrete
tomography, one may use filtered back projection to receive a noisy reconstruction to
manually choose S. We illustrate this idea in Figure 5.5.

Remark 5.8. The models (Pc0) and (Pcls) are extendable so that the sinks are se-
lected within branch and bound. However, there is an exponential number of optimal
selections for the set of sinks S making this approach intractable.

In Section 5.1.2, we showed that the number of linear measurements for unique
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(a) filtered back projection (b) select sinks (c) `0 reconstruction

Figure 5.5: In (a) we used 180 angles and the filtered back projection to obtain a noisy
but fast reconstruction. Then, we choose sinks ( ) in (b), where each sink
marks a potential connected component. Using (Pc0) and only 10 angles we
were able to find the correct solution (c) in less than a minute. Without
predefining the sinks, we only found worse solutions within 10 minutes
computing time.

reconstruction of an image depends either on the number of jumps or the connected
components. To validate the theoretical findings from Section 5.1.2, we now devise a
tractable experiment in order to carry out the optimization in (Pc0). To this end, we
constructed 30 images (9 × 9) with exactly 36 jumps and 4 connected components.
Then, we reconstructed each image through (PI0) and (Pc0) using two tomographic
projections (horizontal and vertical direction). In view of (Pc0), for each image we
selected four sinks.

Figure 5.6 shows two plots analyzing the solutions obtained from the above men-
tioned reconstructions. As a result, we observe that for almost all instances (PI0) pro-
vided reconstructions with less jumps or more connected components implying that
the target image was not reconstructed. On the other hand, (Pc0) provided the optimal
solution in many instances. Furthermore, (Pc0) always provided solutions with more
jumps or exactly 4 connected components.

We conclude that using connected components reduces the number of needed lin-
ear measurements also empirically. This coincides with the theory developed in Sec-
tion 5.1.2.
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Figure 5.6: We created 30 images such that each image has exactly four connected com-
ponents and 36 jumps. Then, we reconstructed each image (using two bi-
nary tomography projections) through (Pc0) and (PI0), using GUROBI with
timelimit of 300 seconds. Solutions marked ( ) are only solved through
(Pc0). The plots above show that using flow constraints restricted the solu-
tion for each instance to four connected components. Consequently, most
instances were uniquely defined by just two tomographic projections.





CHAPTER 6

Multilevel Optimization

Recall that tomographic projections correspond to line integrals, and a solution x of
Ax = b corresponds to a discrete solution, see Section 2.3. On account of this, varying
the number of line integrals leads to different discretizations as the image discretization
is in general adapted to the measurements resolution. Please see Figure 6.1 for an
illustration. As a consequence, reconstructing an image from a finite number of line
integrals corresponds to solving a linear system

Ahx = bh, (6.1)

where h ∈ N defines the resolution of the reconstructed image.

In contrast to the previous chapters, we here consider a different optimization model
that incorporates the constraint (6.1) into the objective. It is given by

inf
x∈(0,1)n

fh(x) + λg(x), (6.2)

where f, g are a continuously differentiable convex functions such that fh(x) = 0 if
Ahx = bh and fh(x) > 0 otherwise. Further, we require λ > 0. In particular, we
consider the function fh(x) = KL(Ahx, bh)1.

In this chapter, we discuss how to use reconstructions with a coarse resolution to
speed-up the reconstruction process for the desired resolution. In the context of differ-
ential equations, it is a well-known procedure to use different discretization levels to
speed-up the convergence [BHM00]. Similarly, a multilevel approach to optimization
problems was proposed in [Nas00]. Following [Nas00], multilevel optimization was fur-
ther developed and applied to many other instances of optimization problems [GST08;
Gra08; GT10; HPZ16; JH17; KM16; Nas00; Nas14; WG10].

1KL(x, y) =
∑
i xi log

(
xi
yi

)
+ yi − xi for x ≥ 0 and y > 0.

87
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(a) 16 detectors (b) 16× 16 grid

Figure 6.1: Illustration of the connection between the number of line integrals and the
resulting discretization. (a) Line integrals in the continuous domain. In
discrete tomography, we discretize the line integrals in (a) and obtain as
many weighted sums over a grid equals the number of line integrals in (b).

In Section 6.1, we review the basics of the multilevel approach for unconstrained
optimization problems. This results in the definition of a coarse correction term to
calculate descent direction by coarse discretization level. Next, in Section 6.2, we
discuss how multilevel optimization is applied to constrained optimization problems.
We find that the correction term from the previous section remains unchanged, and only
the constraints need to be handled separately. As the optimization problems considered
in this chapter are defined on an open convex set, we can not apply classical line search
methods, which minimize along gradient directions. For that reason, we introduce tools
from Differential Geometry [Lee12; AMS08] in Section 6.3 which allows us to perform
line search on manifolds. Finally, in Section 6.4, we illustrate the potential of the
(proposed) multilevel approach by applying it to tomographic reconstructions.
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6.1 Basics of Multilevel Optimization

We start with a general optimization problem in the calculus of variations2

min
u∈L2(Ω)

g(u), (6.3)

where Ω ⊂ R2 and g : L2(Ω)→ R. Assuming that there are discretization levels, which
approximate (6.3). We obtain a sequence of optimization problems given by

min
x∈Rn`

f`(x), (6.4)

where f` : Rn` → R is a smooth convex function. Let  < ` denote two different
discretizations, then n < n`. Therefore, f0 is the coarsest discretization, e.g. n0 = 1.
For simplicity, we consider only two different discretizations f : Rn → R and fh :
Rnh → R with n > nh.

Multilevel optimization aims at accelerating iterative methods to solve (6.4) by em-
ploying coarser discretizations. The utilization of different discretization levels has
already been used and is well-known in the context of differential equations [TSO01;
BHM00]. Based on these results, Nash [Nas00] proposed a strategy to adopt this idea
for smooth optimization.

An essential ingredient for multilevel optimization is the transition between fine and
coarse grids, which we define as follows.

Definition 6.1. Let P ∈ Rn×nh and R ∈ Rnh×n such that

σR> = P (6.5)

for σ > 0. We call P the prolongation map and R the restriction map.

Generally, image patches, which not applied to every pixel, induce prolongation
maps, and result in an image of lower resolution. As a result, a pixel on the coarse
resolution is associated with an image patch on the fine resolution. This approach is
illustrated in Figure 6.2.

Next, we use a prolongation map in the sense of Definition 6.1 to transfer vectors
from the coarse level to the fine level. Using this operator, we derive a new optimization
problem at the current point x with fewer variables, i.e.,

min
h∈Rnh

f(x+ Ph). (6.6)

Problem (6.6) is related to subspace minimization [NW06]. However, in subspace
minimization, one solves (6.6) approximately, which does not involve any information
from coarser discretization. Hence, we consider the first Taylor expansion, which is a
linear approximation of the function f at x concerning the subspace defined by P ,

f(x+ Ph) ≈ f(x) + 〈∇f(x), Ph〉 = f(x) + 〈R∇f(x), h〉. (6.7)

2L2(Ω) contains all functions u : Ω→ R such that
∫

Ω
|u|2 <∞



90 6 Multilevel Optimization

(a) non-overlapping patches

(b) overlapping patches

Figure 6.2: Both figures show discretizations of a continuous image using different tech-
niques. Figure (a) averages over non-overlapping patches and Figure (b)
uses a weighted averaging over overlapping patches to obtain discretiza-
tions. Considering the middle discretization from (a) or (b) as a fine grid,
then each patch (red square) defines a pixel on the coarse grid (right).

To keep the formulas simple, we assume that σ = 1 in Definition 6.1. At this point,
we use the coarse discretizations to obtain an error term for the first Taylor expansion
which may depend on some coarse point

fh(h;xh) := fh(xh + h)− fh(xh)− 〈∇fh(xh), h〉. (6.8)

Using (6.8), we construct a new function given by

ψ(h) := 〈R∇f(x), h〉+ fh(h;xh). (6.9)

Since fh is convex and fh(x) ≥ 0 for all x ∈ Rnh , it follows immediately that fh(h;xh)
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is convex for every xh ∈ Rnh and fh(h;xh) ≥ 0 for all h ∈ Rnh .

Proposition 6.2. Let ψ be defined by (6.9). Then it holds that

ψ(h) < 0 =⇒ 〈Ph,∇f(x)〉 < 0, (6.10)

i.e., Ph is a descent direction for f at x.

Proof. Since fh(h;xh) ≥ 0 for all h ∈ Rnh and ψ(h) < 0 by assumption, it follows
directly from construction that

0 > ψ(h) = fh(h;xh) + 〈R∇f(x), h〉.

Considering that fh(h;xh) ≥ 0 it follows that

0 > 〈R∇f(x), h〉 = 〈∇f(x), Ph〉,

which concludes the proof.

Plugging (6.7) in (6.9) is called first-order coherence [GST08; WG10]. One obtains
an n-th order coherence by using the n-th order Taylor expansion in (6.7) and use the
n-th order error term in (6.9). However, in our cases, it is, in general, not tractable to
explicitly calculate second-order derivatives.

In summary, multilevel optimization uses the surrogate model (6.9) with fewer vari-
ables to find a new descent direction. If (6.9) is bounded from below, we find a new
descent direction by solving

h∗ ∈ arg min
h∈Rnh

ψ(h). (6.11)

In the case of an unbounded ψ from (6.9), one does some gradient descent steps such
that ψ(h∗) < 0. The resulting Ph∗ provides in either way a descent direction for f at x.

Remark 6.1. The proof of Proposition 6.2 only requires that R> = σP with
σ > 0. Therefore, one has many degrees of freedom to choose the prolongation map
and restriction map, respectively.

The usage of a descent direction obtained by (6.11) is called coarse correction. In
bulk of the publications [GST08; Gra08; GT10; HPZ16; JH17; KM16; Nas00; Nas14;
WG10] the coarse correction is used to accelerate the convergence of existing descent
algorithms.

Algorithm 6.1 summarize the ideas from [Nas00] adapted to our notation. In partic-
ular, the coarse correction step consists of finding a descent direction on a coarse level
(line 2− 4) and the descent (line 5) along the obtained direction via line search. This
procedure is used to accelerate the convergence of a descent algorithm by applying it
between iterations.

In Figure 6.3, we illustrate a simple example of the power of multilevel acceleration.
The structure of this simple example also fits a lower resolution. As a consequence,
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Algorithm 6.1: Coarse Correction Step

Input: f fine level function, fh coarse function,
x current point, xh coarse point

Output: x coarse correction with f(x) < f(x)

1 Function CoarseCorrection(f, fh, x, xh)
2 ψ(h) := 〈R∇f(x), h〉+ fh(h;xh) /* define coarse function */

3 find h∗ such that ψ(h∗) < 0 /* e.g. gradient descent */

4 d← Ph∗ /* descent direction */

5 x← x+ αd /* α > 0 such that f(x+ αd) < f(x) */

6 return x

7 end

multilevel propagates this coarse structure to the target resolution. Comparing the
multilevel iterations to the gradient descent, we observe that the gradient descent
struggles to reconstruct the coarse structure compared to the multilevel approach.

In practice, it is difficult to predict precisely whether the coarse correction provides
a lower objective value than direct gradient descent at the fine level. For instance,
if R∇f(x) is componentwise approximately zero, the coarse model might give only a
small descent applied to the fine level. Thus, [GST08] proposed a condition for a coarse
correction step:

‖R∇f(x)‖ ≥ κ‖∇f(x)‖ and ‖R∇f(x)‖ > ε, (6.12)

where κ ∈ (0,min{1, ‖R‖}) and ε > 0. By condition (6.12) a coarse correction is
rejected whenever the coarse gradient R∇f(x) is small or small compared to the fine
gradient ∇f(x).

6.2 Constrained Multilevel Optimization

So far, we have discussed multilevel optimization in the unconstrained optimization
setting. However, in previous chapters, we have discussed that the inclusion of bounds
leads to a significant reduction in the number of measurements for exact recovery. This
motivates a multilevel approach that is also able to handle variable bounds.

We proceed as follows. First, we examine a general smooth convex optimization
problem defined on different levels of discretization. Based on the idea of Nash [Nas10;
Nas14], we design a coarse correction model for two instances, similar to the case of the
unconstrained optimization. Continuing with Nash’s approach, it becomes apparent
that we require different restriction maps for the gradient and the constraints. Then,
we specialize in variable bounds and review the result from [Gra08] providing a suitable
restriction map.

We start with the definition of a general smooth convex constrained optimization
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Figure 6.3: Illustration of the coarse correction on a low complexity image using only
three projections. The first row illustrates the projections on the original
image. We used 128 rays for each projection and measured the image on
the resolution 4096 × 4096. Afterwards, we reconstructed the image on a
128×128 grid via minx∈(0,1)n KL(Ax, b) together with gradient descent. The
second row shows the result of using coarse correction steps on a 4× 4 grid
during the iterations of gradient descent, where the last row is the reference
without coarse correction. As a result, we see that the coarse correction
step shifts the fine iterations to a solution fitting to the measurements on
the coarse grid.

problem

min f(x)

s.t. p(x) = 0,

q(x) ≤ 0,

(6.13)

where f : Rn → R, p : Rn → Rmp , q : Rn → Rmq are smooth convex functions so that
the constraints define a closed convex set. As in the unconstrained case, there exists a
related optimization problem

min
x

fh(x)

s.t. ph(x) = 0,

qh(x) ≤ 0

(6.14)
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on a coarser discretization level which approximates the problem (6.13). The functions
fh, ph, qh are likewise smooth, convex and the constraints define a closed convex set.

Following Nash [Nas10; Nas14], we use the Lagrange function to design an ana-
log coarse correction model, as in the last section. For simplicity, we first omit the
inequality constraints in (6.13) and (6.14), .i.e., we consider

min
x

f(x)

s.t. p(x) = 0,
(6.15)

min
x

fh(x)

s.t. ph(x) = 0.
(6.16)

Let L(x, λ) be the Lagrange function of (6.15) and Lh(xh, λh) the Lagrange function
of (6.16). Further, we define by Lh(h;xh, λh) the adapted error term as in (6.8). As a
result, we obtain an analogous coarse correction term given by

ψ(h, h̃) :=

〈(
R∇ 0
0 R=

)
∇L(x, λ),

(
h

h̃

)〉
+ Lh

((
h

h̃

)
;xh, λh

)
. (6.17)

as in the unconstrained case.

We assume that p(x) = 0, ph(xh) = 0, i.e., x is feasible for (6.15) and xh is feasible
for (6.16), and set λ = λh = 0. The minimization of (6.17) w.r.t. h, h̃ by means of the
optimality condition ∇ψ(h, h̃) = 0 implies the convex optimization problem

min
h
〈R∇∇f(x), h〉+ fh(h;xh),

s.t. ph(xh + h) = 0,
(6.18)

which computes a coarse correction direction for problem (6.15). In particular, a
solution of problem (6.18) yields a descent direction P∇h∗ for f at x and h∗ is a
feasible direction in the solution space of (6.18). The operator P∇h∗ is the related
prolongation map to R∇. If P∇h∗ is not a feasible direction in the solution space of
(6.15), we need to apply an orthogonal projection on the solution space.

By introducing slack variables in (6.13) and (6.14), we perform an analogous calcu-
lation as above and obtain a coarse correction model including inequality constraints

min 〈R∇∇f(x), h〉+ fh(h;xh)

s.t. ph(xh + h) = 0,

qh(xh + h)− qh(xh) ≤ −R≤q(x).

(6.19)

It follows from (6.19) that by including inequality constraints, we need an additional
restriction map besides R∇.

With (6.19) we completed the design of the coarse correction model for constrained
optimization. Next, we specialize in variable bounds meaning that x ∈ [l, u] with
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l, u ∈ Rn and l < u, resp. x ∈ [lh, uh] with l, u ∈ Rnh and lh < uh. That means we
have two functions ql(x) = l − x, qu(x) = x− u resp. qlh(x) = lh − x, quh(x) = x− uh
realizing the inequality constraints. Utilizing (6.19), we obtain for variable bounds the
following coarse correction model

min
h
〈R∇∇f(x), h〉+ fh(h;xh)

s.t. R≤l (l − x) ≤ h ≤ R≤u (u− x).
(6.20)

As mentioned above, a solution h∗ induces a descent direction by P∇h for f at x,
but it may be infeasible for the solution space in the fine level meaning

x+ αP∇h 6∈ [l, u], ∀α > 0. (6.21)

We use restriction maps as proposed by [Gra08], defined below, to avoid (6.21).
Adapting the restriction maps from [Gra08] to our notation, we gain the following
component-wise definition

(lh)j =
1

‖P∇‖∞
max
i=1,...,n

{
(l − x)i P∇ij > 0

(x− u)i P∇ij < 0
, (6.22)

(uh)j =
1

‖P∇‖∞
min

i=1,...,n

{
(u− x)i P∇ij > 0

(x− l)i P∇ij < 0
, (6.23)

where P∇ is the corresponding prolongation map to the restriction map R∇ as in
Definition 6.1, lh = R≤l (l − x) and uh = R≤u (x− u).

Lemma 6.3 ([Gra08, Lem. 4.3]). Consider the variable bounds l, u ∈ Rn with l < u
and x ∈ Rn at the fine level. Let lh and uh be defined by (6.22). Then, it holds

l ≤ x+ P∇h ≤ u, ∀h : lh ≤ h ≤ uh. (6.24)

Proof. Define φi =
∑

j |P∇ij | as the sum of the absolute values of the i-th row of P∇

and calculate

xi +
∑
j

P∇ij hj (6.25)

= xi +
∑

j,P∇ij <0

|P∇ij |(−hj) +
∑

j,P∇ij >0

|P∇ij |hj (6.26)

≥ xi +
∑

j,P∇ij <0

|P∇ij |
−mini(x− l)i
‖P∇‖∞

+
∑

j,P∇ij >0

|P∇ij |
maxi(l − x)i
‖P∇‖∞

(6.27)
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≥ xi +
∑

j,P∇ij <0

|P∇ij |
(l − x)i
‖P∇‖∞

+
∑

j,P∇ij >0

|P∇ij |
(l − x)i
‖P∇‖∞

(6.28)

= xi + φi
(l − x)i
‖P∇‖∞

(6.29)

=
φi

‖P∇‖∞
li +

(
1− φi
‖P∇‖∞

)
xi ≥ li. (6.30)

The last inequality follows from xi ≥ li and φi
‖P∇‖∞ ∈ [0, 1]. Analogously, we obtain

that

xi +
∑
j

P∇ij hj ≤ ui. (6.31)

Remark 6.2. The authors Kočvara and Mohammed [KM16] have already successfully
adopted the restriction map from [Gra08] to optimize quadratic and non-quadratic
obstacle problems. Their results motivated our analysis and approach in this chapter.

Finally, we review the two primary results of this section. We constructed a coarse
correction model (6.20) analogous to the unconstrained case with variable bounds.
This enables us to compute a descent direction P∇h∗ of f at x by optimizing on a
coarse discretization level. We have remarked that without a special choice of the
prolongation map R≤, it may occur that P∇h∗ is infeasible for the solution space at
the fine level, see (6.21). Choosing the prolongation map according to (6.22), we ensure
that

x+ αP∇h ∈ [l, u], ∀α ∈ [0, 1], (6.32)

which is proved by Lemma 6.3. Consequently, unless the solution h∗ = 0 for (6.20),
we are able to achieve a descent of f along P∇h∗ at x.

6.3 Optimization on Manifolds

The optimization problems in this chapter consist of minimizing a smooth convex
function over an open convex set. Thus, classical line search methods in the Euclidean
space cannot be applied. As a remedy, we regard the open convex set as a manifold
which provides tools to perform a modified variant of classical line search methods.

In the preliminaries in Section 2.1.2, we briefly introduced iterative gradient descent
on manifolds. Using this procedure, we need two ingredients:

(i) a Riemannian structure on the manifold and

(ii) a retraction which maps tangent vectors to the manifold.
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Our primary goal in this section is to equip the open box manifold M = (l, u) with
(i) and (ii), where l, u ∈ Rn and l < u. Hence, in Section 6.3.1, we apply the result
from [ABB04] to achieve (i), which provides a construction to define a Riemannian
structure on open convex sets. The construction of a retraction is in general difficult.
Therefore, we introduce in Section 6.3.2 a concept to design a retraction through an
existing retraction from another manifold.

6.3.1 Open Convex Sets as Riemannian Manifolds

In the following, we furnish the box manifoldM = (l, u) with a Riemannian structure
employing the construction of [ABB04]. We remark that any manifold3 admits a
Riemannian structure [AMS08].

For a start, we bring to mind the crucial terms from the preliminaries in Section 2.1.2.
Let f :M→ R be a smooth function defined on a manifoldM. Then, the differential
dxf : TxM→ R generalizes the directional derivative along a direction defined w.r.t.
the tangent space TxM. We showed in the preliminaries that if M is a n-dimensional
manifold, each tangent space is isomorphic to Rn.

Further, let 〈·, ·〉x : TxM× TxM → R be a Riemannian metric, which is an inner
product on the tangent space. Then, it exists a unique element ∇Mf(x) ∈ TxM called
the Riemannian gradient such that ([AMS08, p. 46])

dxf [ξ] = 〈∇Mf(x), ξ〉x, ∀ξ ∈ TxM. (6.33)

In view of our setting, we are able to calculate the Euclidean gradient ∇f(x) and
by the identification TxM∼= Rn, it follows that

〈∇Mf(x), h〉x = 〈∇f(x), h〉, ∀h ∈ Rn . (6.34)

As a consequence, the coarse correction term (6.9) is still valid for calculating descent
directions on a coarse level, even if we optimize on a manifold.

Having reviewed the essential terminology, we construct a Riemannian metric for
the box manifold (l, u) using the instructions from [ABB04]. To this end, we need to
define a function H :M→ Sn++, where Sn++ is set of positive definite n× n matrices,
such that

〈u, v〉x = 〈u,H(x)v〉, u, v ∈ TxM⊂ Rn (6.35)

∇Mf(x) = H(x)−1∇f(x), ∇f(x) ∈ TxM. (6.36)

The function H is defined as the Hessian of a Legendre type function.

Definition 6.4 ([Roc97, Chapter 26]). A lower semicontinuous, proper and convex
function f : C ⊂ Rn → Rn ∪{∞} defined on a closed convex set C is called

(i) essentially smooth if h is differentiable on int(dom(f)) and |∇f(xj)| → ∞ for
any sequence xj converging to the boundary.

3We emphasize that as defined in the preliminaries, we only consider smooth manifolds but only write
manifold.
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(ii) of Legendre type if f is essentially smooth and strictly convex on int(dom(f)).

Designing a Riemannian structure by the aid of (6.35) and (6.36), we define the
following Legendre type function

h(x) = 〈u− l, (x− l) log(x− l) + (u− x) log(u− x)〉. (6.37)

The Hessian of h is given by

H(x) := ∇2h(x) = diag

(
(x− l)(u− x)

(u− l)2

)
(6.38)

Next, we insert (6.38) in (6.35) and (6.36). This yields the Riemannian metric

〈u, v〉x :=

〈
u,

(x− l)(u− x)

(u− l)2
v

〉
, u, v ∈ Tx(l, u), (6.39)

and the related Riemannian gradient

∇Mf(x) =
(u− l)2

(x− l)(u− x)
∇f(x). (6.40)

The choice of (6.37) seems arbitrary. We will later see that when defining the
retraction in the following section, we notice the advantage of precisely has chosen this
function.

6.3.2 Retraction for Box Constraints

In this section, we construct a retraction Rx : TxM → M, which generalizes the
notion of moving along a line on manifolds. Regarding our case, we let x ∈ (l, u) and
0 6= v ∈ Rn. Then, if we follow the line x+α·v it eventually occurs that x+α·v 6∈ (l, u)
for a sufficiently large α > 0. Using a retraction, we always stay on the manifold (l, u)
meaning Rx(α · v) ∈ (l, u) for all α ≥ 0.

For the definition of a retraction, we refer to Section 2.1.2. Generally, an approach
to retrieve a retraction is to define an additional differential structure called affine
connection [AMS08, Sec. 5.2]. This is used to define curves with zero accelera-
tion corresponding to straight lines in the Euclidean space. Such curves are called
geodesics [AMS08, Sec. 5.4]. Furthermore, geodesics are used to define the so-called
exponential map [AMS08, Sec. 5.4], which is also a retraction if it is defined on the
whole tangent space [AMS08, Prop. 5.4.1].

Instead of constructing a retraction from scratch, we show how to reuse an existing
retraction by transferring it to the desired manifold. Later in this section, we consider
the following retraction from [GHW20, Sec. 8.2.1.2]

R∆2
x (ξ) =

xe
ξ
x

〈x, e ξx 〉
, ξ ∈ Tx∆2, (6.41)



6.3 Optimization on Manifolds 99

which is defined on the simplex manifold ∆n
4. Indeed, this retraction is the exponential

map induced by the e-connection [Ay17, Prop. 2.5].

Next, we proceed with the main result of this section. For that reason, let RN be
a known retraction on the manifold N . We are interested in constructing a retraction
RM for the manifold M. Suppose, we have a diffeomorphism F : M → N between
these manifolds. Accordingly, we define RM as in the following diagram.

TxM M

TF (x)N N
dxF

RMx

F−1

RN
F (x)

. (6.42)

Within the next proposition, we prove that (6.42) indeed commutes.

Proposition 6.5. Let F : M → N be a diffeomorphism between two manifolds.
Having a retraction Rx : TxN → N , the map R̂x : TxM→M defined by

R̂x(v) = F−1(Rf(x)(dxF [v])) (6.43)

is also a retraction.

Proof. We need to check, that R̂x is smooth and that

• R̂x(0) = x and
• d0R̂x = Id.

R̂x is smooth because it is a composition of smooth functions. By assumption, F
is a diffeomorphism. Then dxF is a linear isomorphism [AMS08, Prop. 3.6] and
consequently

dxF [0] = 0. (6.44)

Therefore, we calculate

R̂x(0) =F−1(RF (x)(dxF [0])) (6.45)

=F−1(RF (x)(0)) (6.46)

=F−1(F (x)) = x. (6.47)

Let A : V → W be a linear map between two vector spaces V,W . The differential at
v ∈ V in direction η ∈ V is given by

dvA[η] =
d

dt
A(v + t · η)

∣∣∣∣
t=0

=
d

dt
Av + t ·Aη

∣∣∣∣
t=0

= Aη. (6.48)

As a consequence, we obtain dvA = A and consequently d0(dxF ) = dxF . This result

4∆n = {x ∈ Rn | 〈1, x〉 = 1, x > 0}
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is needed to show the second property of the retraction:

d0R̂x = dF (x)F
−1 ◦ ddxF [0]Rf(x) ◦ d0(dxF ) (6.49)

= (dxF )−1 ◦ d0RF (x) ◦ dxF (6.50)

= (dxF )−1 ◦ Id ◦ dxF (6.51)

= Id. (6.52)

Employing the result of Proposition 6.5, we may transfer the retraction from (6.41) to
the box manifold (l, u). But first, we need to define a diffeomorphism F : (l, u)→ ∇2,

F : (l, u)→ ∆2,

x 7→ 1

u− l

(
u− x
x− l

)
,

F−1 :

(
x1

x2

)
7→ x1 · l + (1− x1) · u.

(6.53)

As F, F−1 are affine linear functions, they are smooth. Moreover, (F−1 ◦ F )(x) = x
and (F ◦ F−1)(x) = x. Hence, F is a diffeomorphism between (l, u) and ∆2. We
also need to calculate the differential dxF . This is done by defining a smooth curve
γ : R→ (l, u) with γ(0) = x and γ̇(0) = ξ ∈ Tx(l, u)

dxF [ξ] =
d

dt
(F ◦ γ)(t)

∣∣∣∣
t=0

=
d

dt

1

u− l

(
u− γ(t)
γ(t)− l

)∣∣∣∣
t=0

(6.54)

=
1

u− l

(
−γ̇(0)
γ̇(0)

)
(6.55)

=
1

u− l

(
−ξ
ξ

)
. (6.56)

As dxF is a linear isomorphism, we deduce that Tf(x)∆2 = {v ∈ R2 : 〈1, v〉 = 0}.
Using Proposition 6.5 and F defined as above, we construct R

(l,u)
x by

R(l,u)
x (v) := f−1(R∆2

f(x)(df(x)[v])) =
(u− l)(x− l)e

(u−l)2v
(x−l)(u−x)

u− x+ (x− l)e
(u−l)2v

(x−l)(u−x)

+ l. (6.57)

All operations in the above equation are understood component-wise.

We mentioned in the last section, that our particular choice of a Riemannian struc-
ture is less arbitrary than it seems. To this end, let f : (0, 1)n → R be a smooth
convex function and ∇f(x) the corresponding Euclidean gradient at x ∈ (0, 1)n. The
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Figure 6.4: Illustration of the behavior of the retraction (6.57) for different directions
in the case of M = (0, 1)2. The red arrows are the tangent vectors identi-
fied with R2 and the blue line shows the computation of the retraction in
direction of the tangent vector. Unless the tangent vector is orthogonal to
a face of the box (see (d)), the curve induced by the retraction converges
to a corner of the box.

Riemannian gradient according to our choice is given by

∇(0,1)nf(x) =
1

x · (1− x)
∇f(x). (6.58)

Then, a line search in direction of the steepest descent meaning −∇f(x) for some
step size α > 0 results in

R(0,1)
x (−α∇f(x)) =

x · e−α∇f(x)

1− x+ x · e−α∇f(x)
. (6.59)

We recognize that the factor of the Riemannian gradient and the retraction cancel out,
which makes the retraction easier to compute.

In Figure 6.4, we illustrate the behavior of the retraction (6.57) for different directions
in the case of M = (0, 1)2.

6.4 Experiments

In this section, we illustrate the potential of our multilevel framework by applying it
to discrete tomography. To this end, we consider the following optimization problem

inf
x∈(0,1)n

KL(Ax, b) + λ〈gρ(∇x), 1〉︸ ︷︷ ︸
=:f(x)

, (6.60)

where gρ is the componentwise smooth approximation of the absolute value function
and is given by
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Figure 6.5: The plots show the Huber loss (6.61) (orange) and the absolute value func-
tion (blue). This illustrates that for decreasing values of ρ the Huber loss
smoothly approximates the absolute value function.

gρ(x)i =

{
x2
i

2ρ if |x| < ρ,

|xi| − ρ
2 otherwise

. (6.61)

We note that gρ is continuously differentiable and is known as the Huber Loss func-
tion [Hub64]. Thus, the term 〈gρ(∇x), 1〉 is a smooth approximation of ‖∇x‖1. In
Figure 6.5, we compare the absolute value function and the Huber loss function for
n = 1. We observe that for decreasing values of ρ the Huber loss smoothly approximate
the absolute value function.

We recall that when ∇ is applied to a vector x, it means the two-dimensional discrete
gradient, and when ∇ is applied to f(x), it means the gradient of f at x.

We approach (6.60) with gradient descent on manifolds as presented in Section 2.1.2.
Since the considered objective is smooth, convex and (0, 1)n is an open convex set, the
authors in [ABB04] proved that gradient descent converges to the minimal objective
value.

As described in the introduction of this chapter, we assume that the optimization
problem (6.60) exists on different discretization levels indexed by h, i.e.,

inf
x∈(0,1)nh

KL(Ahx, bh) + λh〈gρ(∇x), 1〉︸ ︷︷ ︸
=:fh(x)

. (6.62)

Before we adapt the coarse correction term

ψ(d) = 〈R∇f(x), d〉+ fh(d;xh) (6.63)

to our particular case, we prove the following preparatory lemma.
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Lemma 6.6. Let f(x) = KL(Ax, b) with A ∈ Rm×n and b ∈ Rm. Then it holds

f(h;x) = f(x+ h)− f(x)− 〈∇f(x), h〉 = KL(A(x+ h), Ax). (6.64)

Proof. The following straightforward computation shows the assertion of the lemma:

f(x+ h)− f(x)− 〈∇f(x)

= KL(A(x+ h), b)−KL(Ax, b)−
〈
AT log

(
Ax

b

)
, h

〉
=

〈
A(x+ h), log

(
A(x+ h)

b

)〉
−
〈
Ax, log

(
Ax

b

)〉
− 〈1, Ah〉 −

〈
log

(
Ax

b

)
, Ah

〉
=

〈
Ax, log

(
A(x+ h)

Ax

)〉
+

〈
Ah, log

(
A(x+ h)

Ax

)〉
− 〈1, Ah〉

=

〈
A(x+ h), log

(
A(x+ h)

Ax

)〉
+ 〈1, Ax−A(x+ h)〉

= KL(A(x+ h), Ax).

By Lemma 6.6, the coarse correction term is given by

ψh(d) = 〈R∇∇f(x), d〉+ KL(Ah(xh + d), Ahxh) + λh〈1, gρ,h(∇d;xh)〉. (6.65)

The crucial implication of Lemma 6.6 is that bh does not appear in the coarse correc-
tion term. As a consequence, when applying the multilevel approach to tomographic
reconstruction, we only need the projection data at the finest level.

The coarse correction term is not defined for all d ∈ Rnh . Hence, we use the restric-
tion map defined in (6.22) to ensure that xh + d ∈ (0, 1)n. As a result, we gain the
following coarse correction model

inf
d∈(lh,uh)

ψh(d). (6.66)

If we find d∗ 6= 0 by the above model so that ψh(d∗) < 0, then Proposition 6.2 ensures
that P∇d∗ is a descent direction of f at x. Moreover, using the restriction map defined
in (6.22) yields

x+ P∇d∗ ∈ (0, 1)n. (6.67)

To summarize, we compute a coarse correction step (6.67) in between gradient de-
scent steps on the manifold. This defines a gradient descent algorithm, which uses
two levels, as described in Algorithm 6.2. In the gradient descent part, we apply
Algorithm 2.1, which uses the retraction (6.57) to obtain a descent direction on the
manifold. Using Algorithm 6.2 inside the coarse correction step of Algorithm 6.1 to
find a new coarse correction, see line 3, we achieve a Multilevel Gradient Descent.

In the following numerical experiment, we used the full weighting [TSO01] prolon-
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Algorithm 6.2: Two Level Optimization

Input: fine level function f , coarse function fh,
starting point x

Output: x∗

1 Function Multilevel(x, f, fh)
2 x←− x
3 while x is not optimal do
4 xh ←− Rx
5 if ‖R∇∇fh(x)‖ ≥ κ‖∇f(xh)‖ and ‖R∇∇fh(xh)‖ ≥ ε then
6 x←− CoarseCorrection(f, fh, x, xh)
7 end
8 x←− GradientDescent(f, x)

9 end
10 return x

11 end

gation map P which is illustrated in Figure 6.6. Specifically, we defined xh := 1
16P

>x,
P∇ := 1

4P and R∇ := 1
4P
>. In particular, this choice ensures that xh ∈ (0, 1)nh .

As parameters, we found that κ = 0.49 and ε = 10−3 performed well in our experi-
ments. We applied multilevel gradient descent as described above. The images on the
finest level had the resolution 1023× 1023 and each level halfs the dimension until we
reach 63× 63. While we set λ = 10−3, each λh was multiplied by two w.r.t. the next
finer level. For instance, as 255× 255 is the second coarsest level, we set λh = λ · 22.

Using the setting defined above, we reconstructed the three images displayed in Fig-
ure 6.7. Explicit matrix vector multiplications to simulate tomographic projections are
too costly on the fine grid, since we have to evaluate the objective function (6.60) and
its gradient many times during the line search. Thus, we used the astra-toolbox [van16]
with GPU acceleration [PBS11].

In our experiments, we observed that solving (6.66) until we reach convergence does
not yield better coarse correction directions d∗ than only perform two descent steps
until ψh(d∗) < 0 holds. This choice is still sound to the theory developed in this chapter
and reduces the computational effort to obtain a coarse correction.

Figure 6.7 illustrates that performing coarse corrections steps in between gradient
descent steps accelerates the overall convergence.

6.5 Discussion

The chapter’s basic idea was to use different discretization levels of an optimization
problem to accelerate the convergence of gradient-based descent methods. To this
end, we used the preliminary work of [Nas00] to develop a correction term, which
computes a descent direction by utilizing a coarse discretization. We also studied the
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Figure 6.6: Using the full weighting prolongation map, we transfer each coarse grid
point (left 2× 2 grid) to a finer grid and distribute the values according to
the stencil.

case of constrained optimization problems and found that we were able to use the same
correction term and only had to treat the constraints with separate restriction maps.

For optimization on an open convex set in Rn, we introduced concepts from differ-
ential geometry to employ gradient-based descent methods on manifolds. We defined a
Riemannian structure on the open box (l, u) ⊆ Rn and proposed a method to transfer
a retraction between manifolds.

Combined, we developed an algorithm that accelerates a gradient-based descent
method using coarse corrections on multiple levels. Our experiments underpinned our
theoretical findings.
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Figure 6.7: Each row represents a reconstruction of the image in the first column. In
the second column we plotted the objective values during the iterations.
We see that only few coarse correction steps (marked by blue dots) were
needed to almost reach the optimal objective value. Comparing the time
in the third column, the overhead due to the use of multilevel optimization
is neglectable.



CHAPTER 7

Conclusion

In this thesis, we investigated the problem of reconstructing images from highly under-
determined linear systems motivated by the field of Discrete Tomography (DT). As
a solution of an under-determined linear system is never be unique, we considered
constrained optimization to restrict the solution space according to prior knowledge.
Throughout this thesis, we discussed two crucial features: the sparsity of the image
gradient and the restriction of the domain of each pixel. The first property (sparse
gradient) relates to the field of Compressed Sensing (CS) dealing with the unique
reconstruction of sparse signals from incomplete linear measurements. However, results
from CS mainly rely on choosing the linear system at random, making the direct
application to DT impossible. Existing results for a deterministic choice lead to overly
pessimistic recovery guarantees for DT.

The two main topics of this thesis were

(i) to guarantee unique recovery from insufficient projections, and

(ii) to construct optimization models that enforce sparsity of the image gradient or
restrictions of the image domain.

Considering (i), in Chapter 3, we showed a performance bound to guarantee unique
reconstruction for gradient sparse recovery via convex optimization. Hence, we con-
tributed to CS by extending existing results for unbounded domains to bounded do-
mains. Furthermore, we empirically validated that our theoretical result extend to
tomographic projections. As a consequence, we exactly recover an image in DT only
from few projections when knowing it has sparse gradient or lies in a bounded domain.

Additionally, in Chapter 5, we provided a lower bound for unique reconstruction
when using non-convex optimization. Here, we showed that the number of connected
components in an image is a crucial parameter in predicting the needed number of
linear measurements, which was not considered before in the literature.
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108 7 Conclusion

In view of (ii), in Chapter 4, we have proposed a novel convex relaxation and an
accompanying algorithm for the non-binary discrete tomography problem. We theo-
retically and empirically showed that our novel relaxation is tighter than the relaxation
commonly used.

As the number of connected components are crucial for unique reconstruction, we
used in Chapter 5 integer programming to restrict the number of connected components
in the resulting image. Moreover, we developed constraints to speed-up the convergence
of branch and bound when solving the aforementioned integer programs.

Since the problem of Discrete Tomography origins from a variational problem, it
naturally exists on different discretization levels. Therefore, in Chapter 6, we reviewed
the field of multilevel optimization for constrained and unconstrained optimization.
Viewing the image domain as a manifold and using tools from differential geometry
and optimization on manifolds, we developed a first-order multilevel optimization algo-
rithm. The developed multilevel algorithm did speed-up the convergence and allowed
us to consider images of higher resolution.

Outlook On the theoretical side, we proved a feasible approximation of the lower
bound to the number of needed measurements for unique reconstruction. While our
empirical results showed that the approximation seems to be tight, theoretical evidence
is still missing. In case of the one-dimensional finite difference operator this was done in
[FM14; Zha16], however, it is not straightforward to extend it to the two-dimensional
case.

We validated our numerical approaches on each of the proposed optimization models
on carefully designed test instances and showed that they are tractable. Yet, on the
algorithmic side, there is still space for improvement.

The convex relaxation from Chapter 4 is provably tighter than standard approaches.
However, we were restricted to binary tomographic matrices. A next step would be to
solve the subproblems according to non-binary projections, which is not straightfor-
ward.

In Chapter 5, we showed that the number of connected components is a good prior
for exact reconstruction. However, solving the integer program for higher resolutions
is time-consuming. Therefore, one needs to find efficiently solvable relaxations.

Chapter 6 showed that multilevel optimization applies to the reconstruction in dis-
crete tomography. Although we proved that every coarse correction direction is a de-
scent direction, it is still missing to predict or guarantee a minimum of descent in the
objective function at the fine level. Such a result may enable us to prove convergence
rates. Then, it would be possible to theoretically compare multilevel optimization
against classical gradient descent.
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