
applied  
sciences

Article

Real-Time 3D PET Image with
Pseudoinverse Reconstruction

Alejandro López-Montes 1,* , Pablo Galve 1 , José Manuel Udias 1,2 , Jacobo Cal-González 3,
Juan José Vaquero 4,5 , Manuel Desco 4,5,6,7 and Joaquín L. Herraiz 1,2,*

1 Nuclear Physics Group and IPARCOS, Faculty of Physical Sciences, University Complutense of Madrid,
CEI Moncloa, 28040 Madrid, Spain; pgalve@nuclear.fis.ucm.es (P.G.); jose@nuc2.fis.ucm.es (J.M.U.)

2 Health Research Institute of the Hospital Clinico San Carlos (IdISSC), 28040 Madrid, Spain
3 QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna,

1090 Vienna, Austria; jcal.cieu@gmail.com
4 Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid,

28911 Leganés (Madrid), Spain; jjvaquer@ing.uc3m.es (J.J.V.); desco@hggm.es (M.D.)
5 Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
6 Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
7 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
* Correspondence: alelopez@ucm.es (A.L.-M.); jlopezhe@ucm.es (J.L.H.)

Received: 24 March 2020; Accepted: 16 April 2020; Published: 19 April 2020
����������
�������

Abstract: Real-time positron emission tomography (PET) may provide information from first-shot
images, enable PET-guided biopsies, and allow awake animal studies. Fully-3D iterative
reconstructions yield the best images in PET, but they are too slow for real-time imaging. Analytical
methods such as Fourier back projection (FBP) are very fast, but yield images of poor quality
with artifacts due to noise or data incompleteness. In this work, an image reconstruction based
on the pseudoinverse of the system response matrix (SRM) is presented. w. To implement the
pseudoinverse method, the reconstruction problem is separated into two stages. First, the axial part
of the SRM is pseudo-inverted (PINV) to rebin the 3D data into 2D datasets. Then, the resulting 2D
slices can be reconstructed with analytical methods or by applying the pseudoinverse algorithm
again. The proposed two-step PINV reconstruction yielded good-quality images at a rate of several
frames per second, compatible with real time applications. Furthermore, extremely fast direct PINV
reconstruction of projections of the 3D image collapsed along specific directions can be implemented.

Keywords: positron emission tomography; rebinning; real-time; image reconstruction; system
matrix; pseudoinverse

1. Introduction

1.1. Motivation

Positron emission tomography (PET) is widely used in medical imaging. In many applications of
PET such as first-shot tests for chemicals [1] or PET image-guided surgery or biopsy [2], it is crucial
to obtain images as quickly as possible. The frame rate achievable will depend on the sensitivity
of the acquisition system, the hardware used for data acquisition, and the software employed for
data processing and image reconstruction [3]. State-of-the-art PET systems [4–6] can process up to
10 million coincidences per second, providing useful images in very short time frames. The challenge
to be considered here is to provide useful quasi real-time images, that is, at a rate of a few frames per
second with appropriate image quality.
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Tomographic PET image reconstruction methods are usually classified into analytical [7,8], and
iterative methods [9–11]. In order to be applicable, analytical methods such as filtered back projection
(FBP) require many assumptions such as ideal detection, uniform sampling, data completeness, and
noise properties to build the system response matrix (SRM) [12]. Although these assumptions are quite
reasonable for computed tomography (CT) imaging [13], they are questionable in PET, making these
reconstructions of suboptimal quality [10,14–16]. Another disadvantage of analytical methods is that the
resolution of the images is not uniform across the field of view (FOV), which affects quantification [17].
On other hand, iterative reconstructions provide better results than analytical methods [9,18], thanks to
the incorporation in the reconstruction process of the physics effects involved in the emission, transport,
and detection of PET radiation [14] such as positron range [19], non-collinearity, depth-of-interaction
(DOI) in the crystals [13], geometrical considerations of the scanner [18,20], etc. However, iterative
methods with realistic SRM are slow, and therefore, their application to real-time fully 3D PET imaging
is still challenging [3,7].

One of the most common approaches to speeding-up the reconstruction process involves
introducing axial rebinning of the data, followed by 2D reconstructions [7,21,22]. The simplest
method for axial rebinning of PET data is single-slice rebinning (SSRB) [23], where the activity is
assigned to the central axial coordinate z of both crystals z1, z2. This method is very fast, however, it
is only accurate for activity close to the axis of the scanner. A more accurate alternative to SSRB is
Fourier rebinning (FORE) [24], but unfortunately, it is much slower.

Here, we propose the pseudoinverse (PINV) of the SRM [25] to achieve real-time reconstructions
with uniform resolution [26]. The goal was to achieve some of the features of iterative methods
with the computational cost of analytical reconstructions, thus providing fast reconstructions while
incorporating the physics involved [18].

1.2. Theory

1.2.1. Separation of the System Response Matrix (SRM) into Axial and Transaxial Components

The line-of-response (LOR) of a given coincidence event is defined as the line connecting the
crystals where the detection took place [27]. These LORs are usually organized in 3D-sinograms with
coordinates (%,θ,z1,z2) (see Figure 1). Note that the axial position of the LOR (z) and its axial slope
angle (∆) are usually used instead of z1, z2 [9,28,29]. For convenience and for easier explanation, in this
work, we use the notation z1, z2.

The SRM contains the probability that a decay at a position (x, y, z) in the image space is detected
in a specific LOR with coordinates (%,θ,z1,z2) in the projection space [9,14,30,31]. The SRM in 3D
acquisitions is usually too large (of the order of terabytes) to be kept in the memory of current
computers. In most iterative methods, these huge matrices are handled with sparse methods [32] or
the storage requirement is reduced by exploiting symmetries [9]. However, the computation of the
PINV of the SRM does require the use of the whole matrix, because even when the SRM is sparse, the
pseudoinverse may not be [33,34]. To solve this issue, we decomposed the SRM into axial Az and
transaxial Ax,y components:

Ax,y,z (%,θ,z1,z2,x,y,z) � [Ax,y (%,θ,x,y);Az (z1,z2,z)], (1)

The axial matrix can be used for data rebinning and the transaxial matrix for 2D reconstruction of
the rebinned 2D slices.

1.2.2. Computation of the SRM

SRMs can be obtained from Monte Carlo simulations [9,20,31] approximated by analytical
expressions [35] (Reader 2003), or even measured experimentally [36]. In this work, we used analytic
SRMs. To model the problem more realistically for each LOR, we defined a tube of response (TORs)
[37], where its width reflects the physical effects. In this work, TORs were assumed to have a Gaussian
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cross section [18,38,39], whose width (σx,y, σz) was obtained empirically for a given scanner, being the
same for all LORs of the same scanner.
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Figure 1. (a) 3D Positron emission tomography (PET) scanner and computation of system response 
matrices (SRMs). (b) Axial SRM. A source placed in position (𝑧, 𝑤) in the rebinned data space, can 
produce a coincidence in a tube of response (TOR) (𝑧ଵ, 𝑧ଶ) of width σ. The probability depends on 
the distance d from the source to the line of response (LOR). (c) Transaxial SRM. A source placed in 
position (x,y) in the field of view can produce a coincidence in a TOR (𝜌, 𝜃)  of width 𝜎 . The 
probability depends on the LOR–source d. 

To derive the axial SRM, we considered an image space discretized in axial (z) and length 
coordinates (w) along the LOR (Figure 1b). The probability for each voxel to be connected to a given 
LOR was obtained as follows: 
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In a similar way, each element of the transaxial SRM can be modeled as (Figure 1c): 
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Figure 1. (a) 3D Positron emission tomography (PET) scanner and computation of system response
matrices (SRMs). (b) Axial SRM. A source placed in position (z, w) in the rebinned data space, can
produce a coincidence in a tube of response (TOR) (z1, z2) of width σ. The probability depends on
the distance d from the source to the line of response (LOR). (c) Transaxial SRM. A source placed in
position (x,y) in the field of view can produce a coincidence in a TOR (ρ,θ) of width σ. The probability
depends on the LOR–source d.

To derive the axial SRM, we considered an image space discretized in axial (z) and length
coordinates (w) along the LOR (Figure 1b). The probability for each voxel to be connected to a given
LOR was obtained as follows:

Az(z, w, z1, z2) = e
(− 1

2 )·
d(z,w, z1, z2)

2

σ2
z , (2)

where d(z, w, z1, z2) is the minimum distance between the voxel at (z, w) and the LOR given by (z1, z2)

(Figure 1b).
In a similar way, each element of the transaxial SRM can be modeled as (Figure 1c):

Ax,y(x, y,ρ, θ) = N·e
(− 1

2 )·
d(x,y,ρ,θ)2

σ2
x,y , (3)

where d(z, y,ρ,θ) is the distance from the voxel (x, y) to the LOR (ρ,θ) [39].
In order to ease operations with these matrices, we combined some variables in the same bin

index. We used Az(zw, z1z2) and Axy(x, y,ρθ) instead of Az(z, w, z1, z2) and Ax,y(x, y,ρ,θ). In what
follows, we will use this notation.

1.2.3. Pseudoinverse of the SRM

The solution of the least-squares problem [40] for a system with linear equations (Y = A·X) can be
obtained using the pseudoinverse A† of the matrix A [41–43]:

||Y −A·X||2 ≥|
∣∣∣Y −A·A†·Y

∣∣∣∣∣∣∣2 → Xargmin(||Y−A·X||2) = A†·Y, (4)
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The singular value decomposition (SVD) [44–48] was used here to compute the pseudoinverse of
the matrix. In this method, matrix A is first decomposed into the product of two orthonormal matrices
U and V and a diagonal matrix S containing the singular values (s ≥ 0) of A:

A = USVT, (5)

With that decomposition, the pseudoinverse A† of the matrix results:

A† = VS†UT, (6)

where the reciprocal singular values of the matrix S are given by S†.

1.2.4. Regularization of the Pseudoinverse

As can be noted, when singular values are very small or null, their reciprocals are not well defined.
Small singular values correspond to high frequency elements, which contain the finer details of the
image (interesting to keep) as well as most of the noise of the data [15,16,49] (which amplifies the
noise in the reconstructed image). To deal with this problem, we used regularization methods [50]. A
common regularization approach is truncated singular value decomposition (TSVD), which is obtained
by setting to 0 the reciprocal singular values larger than a chosen threshold [51].

s† =
1
s

i f s > ε ; else s† = 0, (7)

A less extreme approach is Tikhonov regularization [50], which replaces the reciprocal singular
values 1/s by:

s†k =
s

(s + k)2 , (8)

where k is a regularization parameter [52,53].
Very often in iterative reconstruction methods, the number of iterations serves as a regularization

parameter [54]. A small number of iterations corresponds to large regularizations. In fact, it was found
that a PINV regularization scheme such as the resulting images coincided with the ones of the iterative
Landweber algorithm [55]. The Landweber regularization would replace the reciprocal values by (see
Appendix A) [56]:

s†n =
1−

(
1− s2

)n

s
, (9)

where n is the number of Landweber iterations. This implies that through the PINV, an iterative
Landweber reconstruction can be performed in one single step.

Furthermore, the number of iterations in a Landweber regularization (Figure 2) can be related
with the regularization parameter k in Tikhonov regularization as:

Tikh(k = 1/n) ' Landweber(n), (10)

We present our results in terms of equivalent Landweber iterations, allowing us to study resolution
recovery and noise in the image in terms of the number of equivalent iterations, as is usually done for
iterative methods.
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1.2.5. Axial Rebinning and Transaxial Reconstruction with the Pseudoinverse

Following the way the SRM was modeled into two independent components, the reconstruction
process can be split into two smaller problems: axial rebinning (PINVz) and 2D reconstruction of the
corresponding rebinned slices (2D-PINV).

YT
Reb(z,ρθ) = A†z(z, z1z2)·YT(z1z2,ρθ); YReb(ρθ, z) = (YT

Reb(z,ρθ))
T

, (11)

A†z(z, z1z2) was obtained as the pseudoinverse of Az(zw, z1z2), obtained from Equation (2) and
then collapsing (summing over) in wt. On the other hand,

X(xy, z) = A†xy(xy,ρθ)·YReb(ρθ, z), (12)

where A†xy(xy,ρθ) is the pseudoinverse of Axy(xy,ρθ), obtained from Equation (3).Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 19 
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Since both processes are independent and only involve matrix products, the reconstruction can be
performed in a single step in which the 3D data are multiplied by each matrix from the left and right:

X(xy, z) = A†xy(xy,ρθ)·Y(ρθ, z1z2)·A†z(z1z2, z), (13)

The workflow of the reconstruction process is represented schematically in Figure 3.
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1.2.6. List-Mode Data and Event by Event Reconstruction

As it has been shown in previous works [3], the pseudoinverse of the SRM can be used for
list-mode data reconstruction. In a 3D problem, each column of the PINV of the SRM, A†(:, i), contains
the region of the image that would produce a coincidence in the given LOR i. Taking this into account,
the image can be refreshed after every event. A similar approach is also feasible in the proposed
scheme. Each coincidence with coordinates (ρ,θ, z1, z2) can be separated into transaxial and axial
coordinates. Using A†z , for every coincidence with z1z2 axial coordinates, each z slice (z) of the image
is weighted by the corresponding element of the pseudoinverse of the axial SRM A†z(z1z2, z). Then,
for each axial slice, coordinates (x, y) of the image are updated event by event using each row of the
transaxial SRM pseudoinverse A†xy(xy,ρθ). Although this is fast and feasible for a 2D case as presented
by Selivanov and Lecompte [3], it takes longer than reconstructing with the whole sinogram, except
for when the number of coincidences is very small. In our case, reading the list-mode coincidences and
histograming them in a sonogram is faster than event by event reconstruction, even for frames as small
as 0.1 s for the preclinical SuperArgus PET-CT scanner introduced in Section 2.2.1.

1.2.7. Projection over Planes

In many cases, real-time images are used to follow radiotracer distribution along the body of a
patient for which the sum of the image collapsed in specific directions instead of a 3D presentation of
the full image may be enough. This way of presenting real-time PET images is also convenient as short
frame images would typically contain a very low number of counts, and 2D projections will be less
noisy in this case.

In general, to obtain images collapsed over planes, a 3D image is needed, which is later projected.
However, using the pseudoinverse, this process can be reduced to one single step, if the pseudoinverse,
instead of the image, is collapsed once and for all. This leads to much smaller PINV matrices, and thus
much faster matrix products.

In this work, we used 2D-PINV matrices collapsed over the X and Y directions. These matrices,
combined with PINVz, produces projections in the XZ and YZ planes, respectively. Note that if we
sum over all the slices obtained from the rebinning step, and then reconstruct the resulting slice, we
obtain the equivalent of the 3D image collapsed into the XY plane.

2. Materials and Methods

2.1. Simulated Data

PeneloPET [57] was used for the simulations presented in this work. It is a Monte-Carlo simulator,
based on PENELOPE [58]. It considers the main physical effects during PET acquisitions such as
positron range [19], non-collinearity, nuclear decay of the isotope, etc.

18F point sources (radius 0.5 mm) were simulated for a geometry similar to the Biograph TPTV
(Siemens) scanner [58] to evaluate the axial resolution of the different rebinning strategies discussed.
The image noise was evaluated with another simulation of two homogeneous cylinders. The axial
resolution was obtained from the full width at half maximum (FWHM) of the 1D-Gaussian fit to the
axial profile obtained in the center of each source. The noise level was obtained as the ratio of the
standard deviation to the average value in spherical Regions Of Interest (ROI’s) with a radius of 5 cm
located inside the simulated cylinders.

We used the same sinogram dimensions as the actual clinical scanner data described below. The
rebinned 2D slices were reconstructed using FBP with a Hamming filter (cutoff 0.5).

A thin slice Defrise phantom [59] was simulated to study axial rebinning with different methods.
In this case, the simulated geometry was the one corresponding to the preclinical SuperArgus PET-CT
scanner (SEDECAL) [6]. The simulated phantom was composed of several disks of 8 cm diameter and
3 mm thickness. The gap between disks was 3 mm. We used the same sinogram dimensions as the
actual preclinical scanner data, as described in Section 2.2.1.
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2.2. Real Data

2.2.1. Preclinical PET/CT Scanner

We used the six ring version of the SuperArgus PET/CT scanner (Figure 4. (left)). This configuration
consists of 24 arrays of 13 × 13 crystals with 1.55 mm pitch size. The number of sinogram bins was 175
(radial) × 128 (angular). Radial bins were 0.5 mm in size, configuring a 8.75 cm transaxial FOV. A total
of 195 slices of 0.775 mm each were used in the axial direction. The maximum ring difference [28]
was set to 97 and a span factor of 19 was applied, resulting in a total of 1185 sinograms. The axial
pseudoinverse matrices A†z(z1z2, z) had a size of 1185 × 195. For the 2D matrices, 175 voxels were
chosen for the image FOV. The size of 2D matrices for the SuperArgus PET/CT was around 2.6 Gb.
Both σz and σxy of the Gaussian distributions of the TOR were 0.6 mm.
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Figure 4. Schematic representation of the SuperArgus (left) and the Biograph TPTV scanners (right)
simulated in PeneloPET.

For the evaluation of the image quality we used the IQ NEMA and Derenzo phantoms [60].
The rod diameters (Derenzo phantom) were 1.2, 1.6, 2.4, 3.2, 4, and 4.8 mm.

Two animal acquisitions injected with fluorodeoxyglucose (FDG) were also used to evaluate the
performance of the PINV (PINVz + 2D-PINV) methodology: a 200 g rat and a cardiac acquisition
of a 15 g mouse. Over the cardiac mouse acquisition, a quantitative comparison of 2D-PINV and
FBP in real preclinical acquisitions was made. A profile over the heart was fit to two Gaussians (one
to each side of the heart). The average of the standard deviation of both Gaussians is shown and
the relative improvement of 2D-PINV over FBP was calculated as |σ2D−PINV − σFBP|/σFBP. Moreover,
we used a first pass acquisition of a mouse injected with FDG to demonstrate the real-time capabilities
of PINV reconstructions.

Acquisitions were performed at the Instituto de Investigación Sanitaria Gregorio Marañón (Madrid,
Spain). All experimental procedures were done in compliance with the European Communities Council
Directive 2010/63/EU and submitted for approval to the Institutional Animal Care and Use and Ethics
Committee of the Hospital General Universitario Gregorio Marañón (HGUGM), supervised by the
Comunidad de Madrid, according to the Annex X of the RD 53/2013. The subjects were kept at the
animal housing facilities of the Unidad de Medicina y Cirugía Experimental (UMCE-HGUGM) in
Madrid, Spain.

2.2.2. Clinical PET/CT Scanner

For the clinical data, we used 18F acquisitions obtained with a Biograph TPTV [58,61] (Figure 4.
(right)) scanner at the Medical University of Vienna (Austria) with a 34 cm radial field of view, four rings
of 48 arrays with 13 × 13 scintillator crystals, with an axial length of 4 mm of each crystal. The total
number of radial and angular sinogram bins was 336 × 336 [61]. Radial bins were 2.024 mm in size.
A total of 109 slices of 2 mm each were used in the axial direction. The maximum ring difference was
set to 38 and a span factor of 11 was applied, yielded into 559 sinograms. The axial matrices A†z(z1z2, z)
had a size of 559 × 109 (238 KB). For the 2D matrices, 225 voxels were chosen, providing a FOV of
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45.54 cm. The size of the 2D matrices was around 21 GB. The σxy and σz for the TORs in the matrices
were 2 mm.

2.3. Image Quality Evaluation

We evaluated the reconstructed images of the phantoms following the National Electrical
Manufacturers Association (NEMA) NU 2-2007 and NU 4-2008 protocols for clinical and preclinical
phantoms, respectively [62,63].

• Noise level in the image (%): evaluated as the standard deviation of the activity in a uniform
region divided by the average activity in that region.

• Resolution (%), following the NEMA standards [62,63].

For the preclinical scanner, the mouse-size IQ phantom was used.
Sinograms were corrected by attenuation and random coincidences. In the case of the clinical

NEMA, scatter corrections were also included.
We present a comparison of SSRB + FBP or FORE + FBP with the proposed method (PINVz +

2D-PINV). Unless otherwise noted, execution times correspond to one thread of a CPU E5-2640 v4 @
2.40 GHz in a Linux computer with Centos 7 OS.

3. Results

3.1. Simulated Data and Axial Rebinning

Figure 5 shows resolution recovery and noise of four point sources located at different radial
and axial positions. Off-axis sources in SSRB reconstructions exhibit much worse resolution than
the other two rebinning methods studied. FORE provided the best axial resolution and less noise,
while PINV, on the other hand, provided a more uniform resolution and noise level across the FOV,
clearly improving SSRB for off-axis values, where it approached the best results of FORE. Indeed, with
a proper regularization parameter (around the equivalent to 8 Landweber iterations), similar results in
terms of resolution and noise were obtained for the sources placed at 10 cm radially from the center of
the scanner using PINV and FORE.
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Figure 5. Noise vs. resolution recovery for different rebinning methods (SSRB, FORE, and PINVz).
Point sources were simulated in a scanner with a geometry similar to Biograph TPTV with MRD 38 and
SPAN 11. Numbers in brackets at the FORE and SSRB points indicate the distance (R,Z) to the center of
the scanner in cm, for example, (10,0) represents a source at a radial distance of 10 cm from the center of
the scanner at the axis. Several points for PINVz show the axial resolution vs. recovery for a different
Landweber iterations, from right to left 5, 8, 10, 15, and 20 iterations. Outside the axis of the scanner,
SSRB was not accurate, while FORE provided the best results overall, although with some sensitivity to
distance to the scanner axis. PINVz keeps a more uniform resolution across the whole FOV.
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In Figure 6, we can see a coronal view of the reconstruction of a Defrise disk phantom where an
improvement in the pseudoinverse rebinning can be appreciated when compared to SSRB. We can see
that FORE and PINVz also provided similar detail.
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SuperArgus scanner reconstructed from the three rebinning methods (top) and a profile along the axis
of the scanner (bottom), that is, along the yellow line in the top panel. PINVz rebinning employed
20 iterations.

3.2. Preclinical Data

Results of a PINV reconstruction (PINVz + 2D-PINV) were compared with the FORE + FBP
images. We also studied the isolated 2D reconstruction with FBP and PINV from the same FORE
rebinned sinogram for the IQ-NEMA phantom. These results are presented in Figure 7 and Table 1.

Table 1. Recovery coefficients and uniformity according to NEMA 4-2008.

Method Rod 1 mm 2 mm 3 mm 4 mm 5 mm % Uniformity

FORE + FBP % RC 23.3 55.2 85.0 92.2 101.2 12.2
FORE + 2DPINV % RC 24.4 62.0 96.9 104.0 105.3 11.7

PINVz + FBP % RC 20.8 57.1 85.9 96.8 101.7 12.2
PINVz + 2DPINV % RC 22.8 62.7 95.7 105.6 101.4 12.9

In Table 1, we compared the recovery coefficients for the IQ-NEMA phantom at approximately
the same level of uniformity for every rebinning + 2D reconstruction combination. The 2D-PINV slice
reconstruction systematically outperformed (around 5–10% better for the smallest capillary and up
to 15% in the 2 mm capillary). As expected, FORE rebinning provided the best recovery, improving
marginally on the pseudoinverse rebinning results.

Furthermore, in Figure 8, we present the results for a Derenzo filled with 250 µCi of 18FDG
measured with a well-counter with an accuracy of ±5% [11]. It can be seen as an improvement in
resolution for 2D-PINV reconstruction when compared to FBP.
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Figure 8. Five centimeter diameter Derenzo phantom. Rods were 1.2, 1.6, 2.4 3.2, 4, and 4.8 mm in
diameter. (Left) Reconstructed with 2D-PINV and FBP, respectively, from same sinogram rebinned
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1.6 and 3.2 mm rods.

Figure 9 shows the cardiac region of a 15 g mouse injected with 170 µCi of 18FDG, with slices
reconstructed with FBP and 2D-PINV from a PINV rebinned sinogram. Improvement in spatial
resolution (a relative 15%) for 2D-PINV reconstructions can be clearly seen.
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Figure 10 shows the PINVz + 2D-PINV versus SSRB + FBP reconstructions of a 200 g rat injected
with 300 µCi of 18FDG where the improvement using PINV was evident. Images from both 30 min
(bottom) and 5 s (top) acquisitions are shown, the second demonstrating the capabilities for near real
time imaging.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 19 
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Figure 10. (Left) SSRB + FBP and (right) PINVz + 2D-PINV image reconstruction of a rat injected with
300 µCi 18FDG. The transverse, coronal and sagittal views are shown for a slice of the image. Top
(bottom) panel shows 5 s (1800 s) acquisition.

3.3. Clinical Scanner

We studied the recovery coefficients for the clinical IQ NEMA phantom from images rebinned
with SSRB, FORE, and PINVz and reconstructed with the same parameters as in Section 3.1 (i.e., FBP
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with a Hamming filter). Additionally, we studied a reconstruction PINVz + 2D-PINV. Table 2 shows
the recovery coefficients and uniformity over the six spheres following NEMA 2-2007. These results
are summarized in Figure 11 and Table 2.

Table 2. Recovery Coefficients (RC) and noise for the clinical IQ NEMA phantom (NEMA NU 2-2017).

Method Sphere 3.7 cm 2.7 cm 2.2 cm 1.7 cm 1.3 cm 1 cm

SSRB + FBP
% RC 72.0 63.1 54.2 42.4 27.4 18.1

% Stdv 1.5 1.9 2.3 3.1 4.1 5.2

FORE + FBP
% RC 75.6 67.5 60.2 49.6 35.5 25.3

% Stdv 1.6 1.8 2.2 2.9 3.9 4.8

PINVz + FBP
% RC 78.7 70.8 63.0 52.2 37.4 26.8

% Stdv 1.5 2.0 2.5 3.5 4.9 6.5

PINVz + 2D-PINV
% RC 78.9 70.7 65.0 53.0 37.9 26.7

% Stdv 2.7 2.9 3.5 4.3 6.0 8.0Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 19 
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Figure 11. Transverse FBP and 2D-PINV images from data rebinned with PINV, FORE, and SSRB for
the clinical IQ NEMA phantom.

3.4. Reconstruction Time

Reconstruction times are shown in Tables 3 and 4. Time to generate the pseudoinverse matrix
from the SRM and pre-load it to RAM memory was not included as part of the reconstruction, as both
processes are performed before it.

Table 3. Central Processing Unit (CPU) time for the different rebinning methods using a single core of
an Intel E5-2640 v4 @ 2.40 GHz processor, with CENTOS 7 Linux OS.

3D Sinogram Rebinned Sinogram SSRB FORE PINVz

175× 128× 1185 175× 128× 195 0.28 s 8.82 s 0.31 s
336× 336× 559 336× 336× 109 0.45 s 50.05s 0.50 s

Table 4. Central Processing Unit (CPU) time for the different 2D reconstruction methods using a single
core of an Intel E5-2640 v4 @ 2.40 GHz processor with CENTOS 7 Linux OS.

Rebinned Sinogram Final Image FBP 2D-PINV

175× 128× 195 175× 175× 195 13.0 s 6.0 s
336× 336× 109 255× 255× 109 48.8 s 45.0 s

3.5. Real-Time PET Image Reconstruction

As described in the previous sections, pseudoinverse methods allow for extremely fast, direct
reconstruction of projected or collapsed images into any plane. Figure 12 shows the results of a
reconstruction collapsed onto the YZ plane during a first shot acquisition for a 13 g mouse injected
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with 120 µCi of 18FDG, on the SuperArgus scanner. Six frames of one second each are presented,
clearly showing the activity coming in along the tail vein and further into the lungs, vascularity, and
remaining circulatory system. The reconstruction of the accumulated 6 s is also shown for reference.
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of 18FDG.

Table 5 presents the total time needed to obtain these reconstructions using a multithreaded
version of the code.

Table 5. Total (wall clock) time required for direct reconstruction of direct 2D projections using the 2D
PINV + PINVz code with eight threads of an Intel E5-2640 v4 @ 2.40 GHz processor (multithreaded
enabled, up to 20 threads out of 10 physical cores in this processor). Data were arranged into 175 x 128
x 1185 sinograms.

In-Plane 3D Image
ReconstructionXY XZ YZ

Time (s) 0.08 0.11 0.11 1.6

4. Discussion

In this work, we showed that pseudoinverse reconstruction of 3D PET data using PINVz +

2D-PINV provided better (Tables 1 and 2) and faster reconstructions than SSRB + FBP (Tables 3 and 4).
It is worth noting that in FBP, it is further needed to estimate the missing data (filling in the gaps in
between detectors) [22], and this time was left out from Table 4. On the other hand, pseudoinverse
reconstruction only requires knowing the position of the missing data in order to skip those, further
speeding the process. Pseudoinverse axial rebinning was much faster than FORE, with just a moderately
worse performance in terms of noise/resolution. As has been noted in previous works [3], there is a
2D-PINV matrix that would be fully equivalent to FBP. However, in the construction of the 2D-PINV,
it is also possible to add geometrical information and physics effects, which introduce blurring to the
TORs. This is the main reason for the improved resolution of in-slice PINV images compared to FBP
ones. The matrices for PINV rebinning and slice reconstruction can be precomputed and stored once
and for all for a given scanner, making it easy for the user to produce their own reconstructions.

Although it would be desirable to apply PINV methods in 3D altogether instead of the division
into axial and transaxial components employed in this work, building a 3D PINV matrix currently
seems impractical as 3D PINV arrays for modern complex scanners will not fit in the memory of
common computers. Furthermore, as we have presented here, the noise exhibited by PINV rebinning
methods is slightly larger than that of FORE. Better regularization techniques [50] or improvements in
the SRM could remedy this.
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New regularization techniques could involve filtering of the reconstructed image or even the
data before reconstruction. Any linear filter (F) can be applied during PINV reconstruction from its
matrix representation:

X � A+
·Y→ X̃ = F·X = F·A+

·Y =
(
F·A+

)
·Y, (14)

Therefore, applying the filter in the pseudoinverse before the reconstruction would result in the
same image as using the filter over the reconstructed image. The same applies to any linear filter
applied in the data domain:

X � A+
·Ỹ = A+

·F·Y =
(
A+
·F

)
·Y, (15)

Matrices to represent the SRM in this work were obtained analytically for convenience, but they
can also be obtained from Monte Carlo simulations, with likely improvement in image quality without
affecting the speed of the method.

Reconstruction times presented in Section 3.4 corresponded to only one CPU core. Multi-CPU
or Graphics Processing Unit (GPU) strategies can be used to further accelerate the reconstructions.
For instance, we have verified a very straightforward method to use multicore 2D by assigning each
slice to a CPU-thread, reducing the total time almost linearly within the number of threads employed.
In Tables 3 and 4, reconstruction times for smaller sinograms were also presented. Although some
resolution was lost with these smaller sinograms, their very short reconstruction times make them
suitable for real time imaging.

Moreover, for real time applications, most often, only projection images into predefined planes
will be needed. This projection operation can be incorporated into the pseudoinverse array before
reconstruction, drastically reducing the size of the matrices needed as well as the reconstruction time
as shown in Figure 12 and Table 5.

5. Conclusions

We showed that PINVz outperformed SSRB in terms of resolution for off-axis sources and provided
a more homogeneous resolution across the FOV than SSRB or FORE. Furthermore, pseudoinverse
methods are fast and can be implemented in real time applications, while other methods such as FORE
are not currently fast enough.

Additionally, 2D-PINV reconstruction can take into account the physical and geometrical
information in the SRM, which may result in improved resolution compared to analytical reconstructions,
without any impact in the reconstruction time.
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Appendix A

The expression of a regularization for the PINV can be derived mathematically from the algorithm
of the iterative Landweber method [55,56,63]:

Xi+1 = Xi + AT(Y −A·X), (A1)

Assuming an initial image of zeros:
X0 = (0), (A2)

X1 = ATY, (A3)

X2 = 2ATY −ATAATY =
(
2I−ATA

)
·ATY, (A4)

X3 = 3ATY − 3ATAATY + ATAATAATY =
(
3I− 3ATA + ATAATA

)
·ATY, (A5)

The term in brackets can be rewritten as:

3I− 3ATA + (ATA)
2
= (I−

(
I−ATA

)3
)·(ATA)

−1
, (A6)

Thus, a recurrence rule can be found for this iterative algorithm resulting in:

Xn = (I−
(
I−ATA)n

)
·(ATA)

−1
·ATY, (A7)

Considering the SVD of matrix A:

A = U·S·VT ; AT = V·ST
·UT = V·S·UT, (A8)

UT = U−1 ; VT = V−1, (A9)

ATA = V·S2
·VT, (A10)

(ATA)
n
= V·(S2)

n
·VT, (A11)

s−1 =
1
s
(s , 0) ; s−1 = 0 (s = 0), (A12)

I = V·VT, (A13)

Using Equations (A8)–(A13), Expression (A7) can be rewritten as:

Xn = V·(I−
(
I− S2)n

)
·VT
·V·

(
S2

)−1
·VT
·V·S·UT

·Y, (A14)

This can be simplified to obtain:

Xn = V·(I−
(
I− S2)n

)
·(S)−1

·UT
·Y, (A15)

Then, the Landweber algorithm, for niteration scan be expressed in a pseudoinverse form as:

Xn = A†n·Y = V·S†n·U
T
·Y, (A16)

where:
S†n = (I−

(
I− S2)n

)
·(S)−1, (A17)

That matrix is diagonal, and its elements can be expressed as:

s†n =
1−

(
1− s2

)n

s
, (A18)
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