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Abstract Wave‐supported fluid mud (WSFM) plays an important role in sediment downslope transport
on the continental shelves. In this study, we incorporated WSFM processes in the wave boundary layer
(WBL) into the Community Sediment Transport Modeling System (CSTMS) on the platform of the Coupled
Ocean‐Atmosphere‐Wave‐and‐Sediment Transport modeling system (COAWST). The WSFM module was
introduced between the bottommost water layer and top sediment layer, which accounted for the key
sediment exchange processes (e.g., resuspension, vertical settling, diffusion, and horizontal advection) at the
water‐WBL and WBL‐sediment bed boundaries. To test its robustness, we adapted the updated model
(CSTMS + WBL) to the Atchafalaya shelf in the northern Gulf of Mexico and successfully reproduced the
sediment dynamics in March 2008, when active WSFM processes were reported. Compared with original
CSTMS results, including WSFM module weakened the overall intensity of sediment resuspension, and the
CSTMS + WBL model simulated a lutocline between the WBL and overlying water due to the formation of
WSFM. Downslope WSFM transport resulted in offshore deposition (>4 cm), which greatly changed the
net erosion/deposition pattern on the inner shelf off the Chenier Plain. WSFM flux was comparable with
suspended sediment flux (SSF) off the Atchafalaya Bay, and it peaked along the Chenier Plain coast where
wave activities were strong and the bathymetric slope was steep. The influence of fluvial sediment supply on
sediment dynamics was limited in the Atchafalaya Bay. Sensitivity tests of free settling, flocculation, and
hindered settling effects suggested that sediments were transported further offshore due to reduced settling
velocity in theWBL once fluid mud was formed. Although sediment concentration in theWBLwas sensitive
to surface sediment critical shear stress, cohesive bed behavior was less important in WSFM dynamics
when compared with strong hydrodynamic during cold fronts.

Plain Language Summary Fluid mud is an intermediate stage between a consolidated seafloor
and dilute fine sediment suspension. Its high density (>10 g/L) and downslope movement are important in
sediment transport over the inner continental shelf (water depths < 15 m). In this study we adopted a
numerical model to simulate fluid mud transport on the Atchafalaya continental shelf in coastal Louisiana.
We found that fluid mud formed during the passages of cold fronts, and its transport contributed to
offshore sediment deposition. This downslope sediment transport process was more affected by the settling
velocity of sediment particles rather than fluvial supply from the Atchafalaya River or sediment
consolidation on the seabed.

1. Introduction

As the most volumetrically abundant natural material on the Earth's surface, mud (grain size < 63 μm) plays
a key role in fluvial sediment delivery, land building, and subsidence in coastal regions (Aplin et al., 1999;
Macquaker et al., 2010; Meade & Moody, 2010; Neill & Allison, 2005; Nittrouer et al., 1991). Mud deposits
have been widely observed seaward of active river systems and their morphological features are determined
by both fluvial discharge and oceanic processes (Hanebuth et al., 2015; Walsh & Nittrouer, 2009). They
usually have a high content of organic matter and show sign of bioturbation (Allison et al., 2000; Bentley
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et al., 2006; Bentley & Nittrouer, 2003; Bianchi et al., 2002; Goñi et al., 2006). Furthermore, records of pollu-
tion and human activities suggest that mud dynamics can impact the transport of contaminants such as
heavy metals, microplastics, and pesticides in the aquatic environment (Adams et al., 2007; Dail et al., 2007;
Huang et al., 2014; Martin, 2002; Trefry & Presley, 1976). In navigation channels, the existence of aggregated
mud layer near the bottom can introduce high drag resistance against the propulsion of vessels (Mehta
et al., 2014). Therefore, understanding the controlling mechanisms of muddy deposits is important to geo-
morphology, oceanic biogeochemical process, ocean pollution, and coastal engineering.

Fluid mud, an intermediate stage between consolidated deposition and dilute fine sediment suspension, is a
fine‐grained, non‐Newtonian slurry characterized by high concentration (>10 g/L) and hindered settling
(Ross & Mehta, 1989; Sahin et al., 2012; Sheremet et al., 2005). The ubiquity of fluid mud has been reported
globally in the regions of freshwater influence (ROFI) due to the high discharge of fine sediment‐laden rivers
(Jaramillo et al., 2009; Ma et al., 2010; McAnally et al., 2007; Traykovski et al., 2000; Wang et al., 2010). Fluid
mud's importance for cross‐shore sediment transport has been well‐documented (Hale et al., 2014; Hale &
Ogston, 2015; Kineke et al., 2006; Ogston et al., 2000; Traykovski et al., 2000; Wang et al., 2010). Unlike
self‐sustaining turbidity currents, fluid mud, when moving down mild slope (<0.7°), requires additional tur-
bulence provided by ambient waves and currents to be sustained (Wright et al., 2001). Based upon different
suspension maintenance mechanisms, fluid mud can be categorized as (i) wave‐supported fluid muds
(WSFM; Harris et al., 2005), which is also the focus of this study, (ii) current‐supported fluid muds
(CSFM; Wang et al., 2010), and (iii) wave‐current‐supported fluid muds (WCSFM; Ma et al., 2010). WSFM
mainly requires near‐bed turbulence introduced by wave orbital velocity within the wave boundary layer
(WBL) to maintain high concentration sediment suspension (Friedrichs & Scully, 2007; Traykovski
et al., 2000, 2007). In return, high density fluid muds with enhanced viscosity effectively attenuate wave
energy in different spectral bands (Sheremet et al., 2005, 2011; Sheremet & Stone, 2003; Winterwerp
et al., 2007). Under the influence of gravity, high density fluid muds move downslope across shelf to the
deeper regions until the decreased wave‐induced shear can no longer support the total amount of sedi-
ments in the WBL (Friedrichs & Scully, 2007; Traykovski et al., 2015; Wright & Friedrichs, 2006). WSFM
is usually reported during energetic wave activities associated with the cold front or hurricane passages
(Kineke et al., 2006; Sheremet et al., 2005). In response to energetic events, fine particles can be resus-
pended from the seabed creating WSFM which is capable of propagating downslope rapidly from the clin-
othem topsets to the more steeply dipping foresets, resulting in a higher sediment deposition rate offshore
(Denommee et al., 2016; Friedrichs & Scully, 2007; Neill & Allison, 2005; Traykovski et al., 2007; Wright &
Friedrichs, 2006).

The research area of this study is the Atchafalaya shelf in the northern Gulf of Mexico (nGoM), which is
characterized by shallow water depth and gentle gradient (Rotondo & Bentley, 2003). It receives large
amount of fluvial discharge (~237 km3/year water flux and ~71.5 Mt/year sediment load) from the
Atchafalaya River, a distributary of the lower Mississippi River (Allison et al., 2012). Freshwater discharge
of the Atchafalaya River accounts for ~30% of total Mississippi River discharge after the construction of
Old River Control Structure upstream near Simmesport, LA (Neill & Allison, 2005). Approximately 70% of
the Atchafalaya water flux flows into the Atchafalaya Bay through the Atchafalaya Outlet, and the remain-
der passes through the Wax Lake Outlet (Kineke et al., 2006). The sediment diversion to the Atchafalaya
River since the 1970s resulted in the growth of sandy delta lobes and land/subaqueous delta accretion in
the Atchafalaya Bay (Draut, Kineke, Huh, et al., 2005; Neill & Allison, 2005). Previous volumetric calcula-
tions estimated that less than half of the fluvial sediment was retained in the Atchafalaya Bay, and the rest
was transported into the nGoM (Wells et al., 1984). As an important sediment transport process, WSFM dis-
persal has been reported over the Atchafalaya subaqueous delta and Chenier Plain mudflats during the pas-
sage of cold fronts and tropical storms (Allison et al., 2000; Jaramillo, 2008; Kineke et al., 2006; Safak
et al., 2010; Wells & Kemp, 1981). The existence and significance of WSFM‐induced seaward sediment trans-
port over the Atchafalaya shelf are further supported by isotope chronologies (Allison & Neill, 2002; Draut,
Kineke, Velasco, et al., 2005; Rotondo & Bentley, 2003). Due to the high‐intensity wave activities during cold
fronts, WSFM mostly occurs in winter and early spring. During a winter storm, the muddy topset/foreset of
the subaqueous delta near the Atchafalaya Bay mouth goes through a cycle of liquefaction, erosion, and
deposition, which lead to fluid mud formation followed by consolidation (Sahin et al., 2012). Such a cycle
results in the formation of two fluid mud layers above the Atchafalaya clinoform: The first one is
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introduced by seafloor liquefaction and the second one is caused by advection and suspended sediment set-
tling (Jaramillo et al., 2009). Along the Chenier Plain coast, fluid mud forms following the cold front's
approach and potentially contributes to the landward sediment transport because of coastal upwelling
and wave energy attenuation (Kineke et al., 2006). The sedimentary fabrics (such as ripple cross‐bedding
and intercalated silts and clays) in sediment cores, as well as 210Pb profiles and X‐radiographs over the
Chenier Plain highlighted the importance of WSFM transport over the mud deposit (Denommee
et al., 2018).

Existing WSFM field studies on the Atchafalaya shelf have relied on tripods, anchor stations, buoy sta-
tions, and sediment cores (Denommee et al., 2018; Jaramillo et al., 2009; Kineke et al., 2006; Safak
et al., 2010; Sahin et al., 2012; Sheremet et al., 2011). Direct measurements of hydrodynamic and sedi-
ment quantities at the bottom boundary layer (BBL) are still limited. In addition, sampling fluid muds
and measuring gravity‐induced sediment flux on shelf scale are still challenging. These difficulties inhi-
bit a thorough understanding of the influence of fluid mud process on sediment dynamics. As an alter-
native method, numerical models have been widely developed to investigate fluid mud process and its
interaction with hydrodynamics. The wave model by Sheremet et al. (2011) revealed that mud‐induced
energy dissipation is crucial during wave propagation although nonlinear three‐wave interactions play a
key role in the shape of the frequency distribution of the dissipation rate. Safak et al. (2010) and Sahin
et al. (2012) applied the one‐dimensional cohesive BBL model by Hsu et al. (2009) to the Atchafalaya
shelf and concluded that the existence of fluid mud controls turbulent kinetic energy balance and state
of the seafloor. The idealized 1‐D (vertical) eddy‐viscosity BBL model developed by Trowbridge and
Kineke (1994) revealed that the vertical structure of turbid bottom layer was controlled by the charac-
teristics of sediment particles (e.g., settling velocity) and hydrodynamics (e.g., bottom friction velocity).
Considering the highly turbid hyperpycnal flow and wave‐supported resuspension, the 1‐D model in the
cross‐shelf direction developed by Friedrichs and Wright (2004) indicated that the equilibrium convex
clinoform profile is determined jointly by wave height and fluvial sediment supply. Scully et al. (2003)
employed a 2‐D (depth‐averaged for the WBL) WSFM model to the Eel River continental shelf during
flood periods and reasonably well simulated the offshore fine sediment deposit over the midshelf, which
accounts for 26% of the fine sediment discharged by the Eel River over four flood seasons from 1994–
1995 to 1997–1998. The same model was applied to the Po River subaqueous delta in the Adriatic Sea,
and most of the deposition was detected near where the offshore slope first ceases to increase
(Friedrichs & Scully, 2007). Harris et al. (2004, 2005) further included settling process into a 2‐D
(depth‐averaged for the WBL) WSFM model coupled to a 3‐D model of dilute suspension transport,
the Estuarine and Coastal Ocean Model‐Sediment (ECOM‐SED; Blumberg & Mellor, 1987), and simu-
lated a 5–10 cm deposition over the midshelf seaward off the Eel River during the January 1997 flood.
In the same study, for the cross‐shelf component of flow, the WSFM sediment flux was larger than the
dilute suspended flux.

Although previous field and numerical studies significantly furthered our understanding on WSFM
dynamics and its interaction with hydrodynamics, only a few studies (e.g., Denommee et al., 2018;
Neill & Allison, 2005) focused on the mechanisms behind the formation of the offshore depo‐center
on the Atchafalaya shelf, which is possibly the results of WSFM transport. In addition, there is a paucity
of a comprehensive understanding on the concurrent impact of fluvial discharge, waves, and winds on
shelf scale WSFM processes. In this study, we adapted the WSFM model by Harris et al. (2004, 2005)
into the Community Sediment Transport Modeling System (CSTMS; Warner et al., 2008) on the plat-
form of the Coupled Ocean‐Atmosphere‐Wave‐and‐Sediment Transport modeling system (COAWST;
Warner et al., 2008, 2010). Compared with its original platform (ECOM‐SED), COAWST incorporates sev-
eral state‐of‐the‐art numerical models, newly developed sediment modules (e.g., Sherwood et al., 2018),
and supports coupling among the atmospheric, wave, and ocean models. Specifically, the CSTMS of
COAWST can represent cohesive bed behavior (Sherwood et al., 2018), which could significantly alter sedi-
ment dynamics in a muddy deposition environment like the Atchafalaya shelf (Kineke et al., 2006;
Rinehimer et al., 2008). The objectives of this study are (i) to understand WSFM's contribution to the
depositional pattern over the Atchafalaya shelf, (ii) to quantify sediment fluxes due to fluid mud and dilute
suspended sediment during cold fronts, and (iii) to evaluate model sensitivity to fluvial discharge and sedi-
ment parameterizations.
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2. Model Setup

COAWST is an open source community model that incorporates three state‐of‐the‐art numerical models
(the Weather Research and Forecasting model [WRF, v 3.7.1, Skamarock et al., 2005], ROMS [svn 797,
Shchepetkin & McWilliams, 2005; Haidvogel et al., 2008], and the Simulating Waves Nearshore model
[SWAN, v 41.01AB, Booij et al., 1999]). In this study, we activated the coupling between the ROMS and
SWAN and adapted the wave‐supported gravitational flow module developed by Harris et al. (2004, 2005)
to ROMS's sediment transport model (CSTMS). A 25‐day coupled ocean‐wave‐sediment transport simula-
tion was conducted for the period of 1–25 March 2008. During the simulation period, there were three cold
fronts (hereafter defined as CF1, CF2, and CF3 in chronological order) which increased wave energy and for
which observational data were available (Sahin et al., 2012; Traykovski et al., 2015).

2.1. Hydrodynamic Model (ROMS, SWAN, and Model Coupling)

ROMS is a three‐dimensional, free surface, terrain following model that solves Reynolds‐Averaged Navier‐
Stokes (RANS) equations based on the hydrostatic and Boussinesq assumptions (Haidvogel et al., 2008). Our
model grid covers the nGoM with a horizontal resolution of 1 km (Figure 1a). A total of 24 vertical stretched
terrain following layers were specified to resolve the vertical structure of water column. Initial and boundary
conditions (e.g., sea‐level, barotropic, and baroclinic current speeds, temperature, and salinity) were
extracted from Zang et al. (2019). The Orlanski‐type radiation boundary condition was imposed for tempera-
ture, salinity, and baroclinic velocities (Orlanski, 1976). The boundary condition for depth‐averaged current

Figure 1. The northern Gulf of Mexico (nGoM) model domain (lower left of panel a) and Atchafalaya shelf overlaid with
water depth (color‐shading) and locations of tripods (T1, T2, and T3) from Traykovski et al. (2015) and Sahin et al. (2012).
The two yellow lines represent two transects across the Atchafalaya Bay (Transect A) and Chenier Plain inner shelf
(Transect B). The two transects (going through the tripods) are cutoff at 10 m depth. Panel (b) shows mud fraction
(unit: %) over the sea floor from usSEABED (Williams et al., 2007). Isobaths contoured at 5, 10, 15, and 20 m.
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velocity was specified following Flather (1976). The Oregon State University Tidal Inversion Software (OTIS;
Egbert & Erofeeva, 2002) regional tidal solution was interpolated on the model domain as tidal forcing. For
buoyancy forcing and meteorological momentum, we used the North American Regional Reanalysis
(NARR, https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html) with a 32 km horizontal resolution.
River inputs were obtained from United States Geological Survey (USGS) Water Data for the Nation
(http://nwis.waterdata.usgs.gov) at station Melville, LA (monthly mean fluvial sediment concentration:
0.27 g/L; water flux: 11,057 m3/s). We initialized the 25‐day simulation on 1 March 2018 00:00:00 UTC with
a time step of 1 s. Current field was free to develop without any benefits from nudging or data assimilation.

We used SWAN to simulate wind wave generation and swell propagation in the nGoM. The grid of SWAN
model was the same as that of the ocean model (ROMS). Wave boundary conditions were extracted from a
larger domain that covered the entire Gulf of Mexico (Zang et al., 2019). For realistic initialization of the
wave model, we conducted an nGoM wave simulation from 2–3 January 2008 and used its restart files as
the initial condition. The time step of wave model was 30 s. The physical setup of the wave model was the
same as Zang et al. (2018), and the upper limit of frequency range used for computing the swell height
was set to 0.2 Hz (Safak et al., 2010; Sheremet et al., 2005).

COAWST utilizes the Model Coupling Toolkit (MCT; Jacob et al., 2005) to support variable exchange
between ocean model (ROMS) and wave model (SWAN). ROMS sends water depth, water level, and baro-
tropic current speed to SWAN and receives the computed parameters (such as wave direction, wave length,
significant wave height, wave energy dissipation rate and bottom orbital velocity) from SWAN to estimate
the influence of waves to the momentum at the BBL, surface roughness, and wave breaking‐induced turbu-
lent energy injection. In this study, we used a wave‐current bottom boundary layer model (SSW_BBL;
Madsen, 1994) to simulate bottom shear stress induced by currents and waves. The information exchange
interval between ROMS and SWAN is 4 min.

2.2. Sediment Transport Model (CSTMS) and WSFM Module
2.2.1. CSTMS (Sherwood et al., 2018; Warner et al., 2008)
CSTMS is the sediment model incorporated in COAWST and has been widely used to investigate sediment
transport, stratigraphy, and geomorphology in coastal regions (Miles et al., 2015; Moriarty et al., 2014, 2015;
Xu et al., 2011; Xu, Mickey, et al., 2016; Xue et al., 2012; Zang et al., 2018; Zeng et al., 2015). Since this study
focused on mud transport, we specified one cohesive (mud) and one noncohesive (sand) sediment class.
Given that mud‐rich WSFM deposits were found over the Atchafalaya inner shelf (Denommee et al., 2016),
we simplified noncohesive sediment dynamics by treating sand as a resuspension‐resistant sediment class
(τcri ¼ 100 Pa) in this study. Sediment erosion flux was estimated following Ariathurai and Arulanandan (1978)
equation:

E ¼ E0 1 − ϕð Þ τcw − τcri
τcw

� �
; (1)

where E0 is erosion rate. τcw and τcri represent bottom shear stress and critical shear stress, respectively. All
sediment layers had a porosity (ϕ) of 0.5 in this study. Critical shear stress and settling velocity of the cohe-
sive sediment was set to 0.07 Pa and 0.1 mm/s, respectively (Xu, Mickey, et al., 2016). In the benchmark
run we did not consider critical shear stress variation due to cohesive bed consolidation. The gradient hor-
izontal boundary condition was implemented for sediment to avoid unreal sediment plumes near the
boundary (Xu et al., 2011). On the seafloor, we prescribed four sediment layers initially with 1 m thickness
for each layer, and their thicknesses evolved with deposition and erosion. The percentage of cohesive sedi-
ment on the seafloor was based on the usSEABED data set (Williams et al., 2007; Figure 1b). Because the
WSFM process has been primarily reported on the topset and foreset of the subaqueous delta (water
depth < 10 m; Allison et al., 2000; Denommee et al., 2018, 2016; Draut, Kineke, Velasco, et al., 2005),
the mud fraction over the seabed was prescribed as zero where water depth exceeded 10 m.
2.2.2. WSFM Module
The WBL plays an important role in offshore sediment transport and material exchange between the sea-
floor and overlying water, especially during strong wave events (Harris et al., 2005; Jaramillo, 2008;
Jaramillo et al., 2009; Wright & Friedrichs, 2006). Following Harris et al. (2004), a new layer was added to
represent the WBL between ROMS' bottommost water column layer and the top sediment bed layer
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(Figure 2). Since the WBL is represented using only one layer, sediment concentration and momentum
resolved in this module are depth‐averaged values. Jaramillo et al. (2009) observed that the lutocline and
the top of the WBL coincided, and their height variations were highly correlated with wave forcing over

the Atchafalaya shelf. Therefore, the thickness of WBL was estimated using δw ¼ uw
ω

(uw: wave orbital

velocity; ω: wave frequency) to account for stratification between WSFM and bottom water layer
following Harris et al. (2004). Different from the original CSTMS model, we set the downward sediment
settling flux from the bottommost water layer to the WBL instead of seabed. Similarly, upward suspended
sediment flux into the bottom water layer comes from the WBL instead of seabed. To account for
stratification between the WSFM and the bottommost water layer, we use and eddy viscosity that changes
with the gradient Richardson number to estimate the upward sediment flux (Ewbl; Munk &
Anderson, 1948; Ross & Mehta, 1989; Harris et al., 2004). Sediment exchange between the seabed and the
WBL is determined by the sediment erosion flux (E) and settling flux (D). Here, net erosion/deposition in
each time step is estimated following Harris and Wiberg (2002):

E − D ¼ ceq − cs; wbl
� �

ws; wblΔt; (2)

where cs,wbl is sediment concentration in the WBL. The equilibrium concentration (ceq) is estimated based
on Smith and McLean (1977). ws,wbl is sediment settling velocity in the WBL. The given sediment erosion
and deposition algorithm is different from Equation 1 used in original CSTMS (Warner et al., 2008).

To estimate the momentum in the WBL (uwbl and vwbl) and WSFM‐induced horizontal sediment flux, the
WSFM module uses a linearized Chezy equation that accounts for the velocities of both the WBL and the
bottom water layer (Wright et al., 2001). The drag coefficient CD is set to 0.004 based on previous studies
(e.g., Friedrichs & Scully, 2007; Ma et al., 2008). The variation of current speed in the bottommost water layer
due to frictional drag between the WBL and overlying water is neglected in this study. The horizontal
WSFM‐induced sediment fluxes in x‐ and y‐directions (Qx,wbl and Qy,wbl) are equal to cs,wbluwblδw and cs,
wblvwblδw, respectively.

Given all the WSFM‐related processes mentioned above (i.e. settling, resuspension, diffusion and horizontal
advection), the governing equation of WSFM flux in its general form is given below:

∂ δwcwblð Þ
∂t

¼ ws; watercs; water þ ws; wbl ceq − cwbl
� �þ Ewbl þ

∂Qx; wbl

∂x
þ ∂Qy; wbl

∂y
: (3)

This equation is identical to the governing equation in Harris et al. (2004). To solve the equation, we
employed the 2‐D Lax‐Wendroff method, which is an explicit second‐order scheme both spatially and
temporally.

Figure 2. Diagram of original community sediment transport modeling system (CSTMS; left panel) and updated CSTMS
model with wave boundary layer (CSTMS + WBL; right panel). (Note: Both water column and seabed have multiple
layers).
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2.3. Sensitivity Tests

Following Harris et al. (2005), we carried out three sets of sensitivity tests to examine the influences of
(1) WSFM, (2) riverine sediment inputs, and (3) settling velocity on simulated sediment fields.
Additionally, we included cohesive bed behavior in our model to test its potential role in WSFM dynamics.

Cohesive sediment transport over the muddy Atchafalaya shelf is mainly driven by two mechanisms: dilute
sediment transport in the water column and gravity‐driven downslopeWSFM transport near seabed (Kineke
et al., 2006; Kolker et al., 2014; Neill & Allison, 2005). During energetic events (e.g., cold fronts and hurri-
canes), both mechanisms are potentially important to sediment transport, yet their relative contributions
were understudied due to the difficulties in shelf scale field measurements or the lack of WSFM in existing
models. To understand the significance of WSFM in terms of sediment transport over the Atchafalaya shelf,
we compared calculations of sediment flux and patterns of erosion/deposition made using the model that
included the WSF (CSTMS + WBL) to those made using the original CSTMS with an identical model con-
figuration. Sediment fluxes in the water column (SSFwater) and the WBL (SSFWBL) were estimated as

SSFwater ¼ ∑N
i¼1SSCi · ui · hi; (4)

SSFWBL ¼ Cwbl · δw · uwbl; (5)

where SSCi and ui are suspended sediment concentration (unit: g/L) and current speed (unit: m/s) in the
ith layer. N is the number of vertical layers (24 in this study), and h is the thickness of each layer (unit: m).

Given that cold front‐induced WSFM transport mainly happens in winter and spring, during which the
Atchafalaya River is in its flood season and its flux changes drastically, it is necessary to understand the
response of WSFM dynamics to different riverine sediment discharge scenarios. The importance of fluvial
sediment discharge in controlling the intensity of dilute and gravity‐driven sediment transport has been con-
firmed over the Eel River shelf (Harris et al., 2005). Here we modified fluvial sediment discharge to test the
impact of Atchafalaya riverine sediment supply on sediment dynamics over the shelf. To avert the influence
of estuarine hydrodynamics variation with a changing river flow, we kept water discharge unchanged
(11,057 m3/s) but doubled the fluvial SSC (from 0.28 to 0.56 g/L) in one experiment and halved the fluvial
SSC (from 0.28 to 0.14 g/L) in the other.

Unlike noncohesive sediments, settling velocity of cohesive sediment varies greatly with concentration, par-
ticle properties, and hydrodynamics (Fugate & Friedrichs, 2002; Gratiot & Manning, 2004; Milligan &
Hill, 1998). For fluid mud transport simulations, settling velocity parameterization was even more challen-
ging due to the wide range of sediment concentration (Hill et al., 2000). Harris et al. (2004, 2005) found that
hindered settling due to flocculation could increase WSFM offshore transport distance on the Eel shelf. In
the benchmark run, we set the settling velocity of cohesive sediment in the WBL following Mehta (1996):

ws; wbl ¼
wsf cs; wbl<C1

� �

wsh cs; wbl ≥ C1
� �

8><
>: (6)

where C1 is the fluid mud concentration threshold (10 g/L). When sediment concentration in the WBL
(cs,wbl) is lower than C1, particle interaction is negligible and settling velocity becomes equal to free set-
tling velocity (wsf; 0.1 mm/s). If cs,wbl exceeds C1, settling velocity decreases to 0.01 mm/s (wsh) as a result
of the combination of upward return flow and wake generation, increased effective viscosity, and reduced
specific gravity of the flocs (hindered settling; Cheng, Yu, Hsu, Ozdemir, & Balachandar, 2015; Dankers &
Winterwerp, 2007; Winterwerp, 2002). Settling velocity of cohesive sediment is also greatly influenced by
flocculation: The formation of large size flocs results in a settling velocity several orders of magnitude
higher than individual particles (Van Leussen & Cornelisse, 1993). Considering the importance of settling
velocity in WSFM dynamics on the inner shelf (Harris et al., 2005), we designed two sensitivity tests using
different sediment settling velocity in the WBL: (1) a constant (0.1 mm/s; red line in Figure 3) and (2)
variable as a function of suspended sediment concentration which includes the effects of flocculation
and hindered settling. Following Hwang (1989), Wolanski et al. (1989), and Sheremet et al. (2005), vari-
able settling velocity is specified as
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ws; wbl ¼

wsf cs; wbl<C1
� �

aw
C1:33

C2 þ eC2
� �1:5 cs; wbl ≥ C1

� �
8>>>><
>>>>:

; (7)

where C1 is the sediment concentration threshold for particle inter-
action (0.1 g/L). The curve of settling velocity variation with sedi-
ment concentration in the WBL (cs,wbl) is shown in Figure 3
(black line). When cs,wbl is lower than C1, particle interaction is neg-
ligible, and settling velocity is equal to free settling velocity (wsf;
0.022 mm/s). If cs,wbl is higher than C1, settling velocity goes up
with the concentration due to the formation of flocs, and then it
decreases with further increase of concentration as a result of hin-
dered settling. aw is a dimensionless scaling coefficient (0.0037)
and eC is the hindered settling term (2 g/L). As shown in
Figure 3, due to three different variations in settling velocity with
increasing concentration, we will henceforth refer to the variable
settling velocity as three‐regimes settling velocity where these

regimes correspond to free settling, enhanced settling due to flocculation, and hindered settling. The ori-
ginal CSTMS model uses a constant settling velocity for each sediment type, in our model the variable set-
tling velocity formulations were applied only in the WBL cells, and ws was held constant in the overlying
water grid cells (0.1 mm/s).

Most sediment transport models adopted an user‐specified constant critical shear stress (τcri) to estimate
seabed erosion (Caldwell & Edmonds, 2014; Moriarty et al., 2015; Warner et al., 2008; Xu et al., 2011), while
previous measurements recognized the increase of τcri with burial depth for cohesive sediment deposits due
to consolidation (Butman et al., 2014; Rinehimer et al., 2008; Sanford &Maa, 2001; Xu, Bentley, et al., 2016).
Sherwood et al. (2018) included this cohesive bed behavior into the CSTMS and tested its importance in sedi-
ment dynamics, stratigraphic evolution, and morphologic change. Given high mud content over the
Atchafalaya shelf, we applied the cohesive bed behavior to the WSFM module and designed six τcri vertical
profiles (Table 1) with different slopes and surface critical shear stress τmin (Figures 4a and 4b). For these
runs, the number of seabed layer was specified as 40 with a total thickness of 0.1 m. The equilibrium τcri pro-
file was specified as follows:

τcri kð Þ ¼ min exp
ln Mk − 1ð Þ − τoffset

τslope

� 	
; τmax

� 	
; (8)

where τcri(k) is the bed critical shear stress in layer k (2 ≤ k ≤ 40), Mk − 1 is the total bed mass from the top
sediment layer to layer k–1, and τoffset and τslope are constants. τcri(k) is equal to τmin as k ¼ 1.

3. Model Validation

We quantitatively evaluated the performance of the coupled model by comparing model results with two in
situ data sets collected over the Chenier Plain (Traykovski et al., 2015) and the Atchafalaya shelf (Sahin

et al., 2012), both of which were tripod‐based measurements (for
locations of the observations see Figure 1). In Figure 5 we compared
the simulated significant wave height (Figure 5a), wave bottom orbi-
tal velocity (Figure 5b) and normalized wave spectra (Figures 5c and
5d) with those measured off the Chenier Plain (T1 and T2). Three
cold front‐induced energetic events occurred on 4, 7, and 20 March
2008. Our model captured the sharply elevated significant wave
height and wave bottom orbital velocity during the three cold fronts.
The correlation coefficients (R) were 0.89/0.91 and 0.87/0.79 for sig-
nificant wave height/wave bottom orbital velocity at stations T1

Figure 3. Relationships between sediment concentration and settling velocity in
(1) benchmark run (blue), (2) free settling sensitivity test (red), and (3)
three‐regimes sensitivity test (black).

Table 1
Cohesive Bed Parameterization

Test name τmin (Pa) τmax (Pa) τslope (Pa) τoffset (Pa)

Cbed 1 0.08 2.5 2 8
Cbed 2 0.08 2.5 2.5 6
Cbed 3 0.08 2.5 2.5 5
Cbed 4 0.03 2.5 2 8
Cbed 5 0.03 2.5 2.5 6
Cbed 6 0.03 2.5 2.5 5
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and T2, respectively. Both observed and simulated wave spectra (Figures 5c and 5d) exhibited high energy
density during the three cold fronts. Higher energy in swell bands (0.05 Hz ≤ f ≤ 0.2 Hz) suggested the
importance of swell propagation in coastal Chenier Plain.

Simulated sediment concentration in the WBL over the Chenier Plain showed similar temporal pattern as
Optical Backscattering Sensors (OBS) and Acoustic Backscattering Sensors (ABS)‐based sediment measure-
ments (Traykovski et al., 2015): When cold fronts approached, sediment concentration rose quickly from less
than 1 g/L to more than 10 g/L, indicating the formation of fluid mud during cold front events (Figure 6).
After the passage of cold fronts, the decrease of sediment concentration due to sediment settling was also
reproduced by our simulation.

As the field measurement of Sahin et al. (2012) was from 3–5 March, it only captured the hydro‐ and sedi-
ment dynamics during CF1. The significant wave height at T3 station increased from 0.5 to more than
1.0 m on 4March, then decreased back to 0.5 m by the end of observation (Figure 7a). Our simulation in gen-
eral reproduced the significant wave height variation (R¼ 0.74) although the simulated peak lags 10 hr. The
difference could be ascribed to the relative coarse spatial resolution of the wind forcing used by our model
(32 km). The salinity was stable (~30 PSU) until 06:00:00 UTC 4 March, when freshwater was flushed out

Figure 4. Equilibrium critical shear stress (τcri) profiles. The black line represents τcri ¼ 0.07 (Pa) in the benchmark run.
The only difference between tests Cbed 1–3 a and Cbed 4–6 b is τmin (green star).

Figure 5. Comparisons of the observed and simulated significant wave height (a), wave bottom orbital velocity (b) at T1
and T2 stations, and wave spectra at T2 station (normalized between 0 and 1; c and d) with three labeled cold front events
(CF1, CF2, and CF3).

10.1029/2019JC015269Journal of Geophysical Research: Oceans

ZANG ET AL. 9 of 24



of the bay as a result of the offshore expansion of the Atchafalaya
River plume (Figure 7b). Depth‐averaged (0–0.7 mab) current speed
of southward and eastward flows increased tomore than 40 cm/s dur-
ing cold front although our model underestimated eastward current
speed after 06:00:00 UTC 4 March (Figure 7c). After CF1, salinity
increased gradually due to freshwater plume landward retreat, and
current speed declined to ~0.2 m/s (Figures 7b and 7c). Both modeled
sediment concentration in the WBL and measured sediment concen-
tration 18 cmab increased during the waning phase of the cold front
due to the offshore expansion of the sediment‐laden river plume and
sediment settling from the overlying water (Figure 7d). Sediment
concentration reached its highest level after 12:00:00 UTC 4 March
(>15 g/L in the WBL) and decreased gradually after 18:00:00 UTC.
However, the simulated sediment concentration peak (40 g/L) was
higher than the observation (20 g/L), which could result in the over-
estimation of sediment flux. Overall, the comparisons between simu-

lations and measurements confirmed that our model reproduced both the hydrodynamics and sediment
dynamics during the passage of cold fronts, giving us the confidence that our model results could represent
WSFM‐related processes over the Atchafalaya shelf.

4. Results
4.1. Winds, Hydrodynamics, and River Plume

Since meteorological and hydrodynamic conditions varied drastically during cold front events, we specified
two snapshots for each event representing precold front stage and cold front peak, respectively (Figures 8
and 9). Southeasterly wind prevailed the Atchafalaya shelf before the arrival of cold fronts, and significant
wave height was less than 1.5 m (Figures 8a–8c). Depth‐averaged seaward current was ~0.2 m/s nearshore,
and westward alongshore current dominated the shelf (Figures 8d–8f). Bottom shear stress (τcw) was at low
level because of calm hydrodynamic conditions (Figures 8d–8f). The Atchafalaya River freshwater plume
was mainly confined within 5‐m isobath, and most freshwater was in the Atchafalaya Bay at precold front
stage (Figures 8g–8i). When cold fronts swept across the shelf, wind direction became southeastward, and
wind speed increased to more than 10m/s (Figures 9a–9c). Significant wave height decreased from 2.5 m off-
shore to 0.7 m nearshore (Figures 9a–9c). Current direction reversed to upcoast (eastward) due to the shift of

Figure 6. Comparisons of the observed (OBS and ABS at T1 station; Traykovski
et al., 2015) and simulated sediment concentration in the wave boundary layer
(WBL) with three labeled cold front events (CF1, CF2, and CF3). SSC measured
by the OBS located at 25 cm above the foodpads. ABS measured sediment
concentration over the lower 1 m of the water column.

Figure 7. Comparisons of observed and modeled significant wave height (a), salinity (b), depth‐averaged current field in
east‐west (u) and north‐south (v) directions over 0–0.7 mab (c), and sediment concentration (d) in the WBL at T3 station.
Current field was measured by PC‐ADP, and SSC was measured by the OBS located at 18 cmab.
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wind direction, and depth‐averaged current speed went up to ~0.6 m/s off the Atchafalaya Bay
(Figures 9d–9f). The maximum τcw (>1.0 Pa) was simulated between the 5‐ and 10‐m isobaths
(Figures 9d–9f). The upcoast flow over the shelf resulted in eastward expansion of freshwater plume while
the offshore expansion was quite limited (Figures 9g–9i). After the passage of cold fronts, both wind field
and hydrodynamics returned to normal conditions.

Figure 8. Wind field (arrow) and significant wave height (color) over the Atchafalaya shelf at three precold front stages (a–c). Current field (arrow) and bottom
shear stress (color) at three precold front stages (d–f). Sea surface salinity at three precold front stages (g–i). One column represents one cold front event, and the
time is shown at upper right of panels a–c.

Figure 9. Same as Figure 8 but at peak stages of three cold fronts. The time is shown at upper right of panels a–c.
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4.2. Sediment Dispersal

When fluid mud formed during the passage of cold fronts, sediment concentration in the WBL was on the
order of 10–100 g/L, which was more than 10 times higher than the depth‐averaged SSC in the overlying
water column (Figure 10). Both SSC in the water column and sediment concentration in the WBL were
determined by the strength of wave activities (CF3 > CF1 > CF2). The seaward boundaries of simulated
WSFM were located between 5‐ and 15‐m isobaths. Velocity of WSFM ranged from 3 cm/s in the
Atchafalaya Bay to 12 cm/s off the bay mouth and Chenier Plain coast (Figure 10). Since WSFM motion
was mainly driven by the downslope gravitational force, its direction aligned with the downslope gravita-
tional force over the shelf as well (Figure 10). For suspended sediments in the water column, currents deter-
mined the intensity and direction of transport: Prevailing seaward currents delivered large amounts of
sediments out of the bay, while the eastward alongshore transport dominated the Atchafalaya shelf and sea-
ward transport became very weak. Compared with the westward fluvial sediment transport under normal
weather conditions (Kolker et al., 2014; Walker & Hammack, 2000), when cold fronts impacted the shelf,
the suspended sediment transport direction was toward the east. Thus, rather than the direct Atchafalaya
fluvial sediment delivery, suspended sediments off the Chenier Plain were from the resuspension of modern
sediment deposits, and exposed relict sediment deposits formed during the activity of the Lafourche delta
lobe (~1,200–600 years BP; Törnqvist et al., 1996).

To quantitatively evaluate the contributions of suspended sediment transport and WSFM transport to sedi-
ment dispersal off the Chenier Plain and Atchafalaya Bay, we estimated suspended sediment flux (SSF) and
WSFM flux in alongshore and cross‐shore directions at T1 and T3 stations. For clarification, it is worth dis-
tinguishing SSF defined in previous studies and that herein: Here SSF refers to dilute sediment flux in the

Figure 10. Depth‐averaged current velocity (indicated with arrows; left panel) in the water column and WSFM velocity
(indicated with arrows; right panel) overlain with depth‐averaged SSC (color; left panel) and WSFM concentration
(color; right panel) when cold fronts approached. Each row represents one cold front event (CF1, CF2, and CF3).
To highlight sediment transport direction, we only plotted velocity arrow where SSC >10 mg/L in the left panel
and WSFM concentration >10 g/L in the right panel.
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water column excluding WSFM flux in the WBL. Under quiescent condition, sediment flux was negligible
until cold fronts approached (Figure 11). At T1 station, alongshore SSF (0.077 kg/m/s) outweighed
alongshore WSFM flux (0.009 kg/m/s; Figure 11a). In seaward direction, however, across‐shelf WSFM
flux reached 0.249 kg/m/s, which was more than 20 times higher than across‐shelf SSF (0.01 kg/m/s;
Figure 11c). For T3 station, net SSF (0.062 kg/m/s) and WSFM flux (0.084 kg/m/s) in seaward direction
(Figure 11d) were comparable, and they were an order of magnitude higher than those in alongshore
direction (SSF: 0.004 kg/m/s; WSFM flux: 0.003 kg/m/s; Figure 11b). Overall, WSFM flux did not
contribute significantly to the alongshore transport but was a key component of the across‐shelf (seaward)
transport (Figure 11). Unlike WSFM transport, the direction of SSF varied greatly during the cold front
events due to the rapid change of wind direction, and net SSF shifted from seaward off the Atchafalaya
Bay (T3 station) to alongshore direction off the Chenier Plain (T1 station).

4.3. Comparison Between CSTMS and CSTMS + WBL Model
4.3.1. Vertical Structure
To reveal the difference of sediment vertical structure brought by WSFM‐related processes, we extracted
model results along two cross‐shore transects (Figures 12 and 13, locations see Figure 1a): one across the tri-
pod over the Atchafalaya shelf (Transect A) and the other across the tripods off the coastal Chenier Plain
(Transect B). The maximumwater depth of both transects was set to 10 m, and their directions were perpen-
dicular to the coastline.

With WSFM module, the horizontal distribution of suspended sediment in the water column was similar to
that of the original CSTMS run: SSC was highest nearshore, and it decreased gradually seaward. The vertical
gradient of SSC was trivial in shallow area, and it became stronger offshore because the deep water was not
as well mixed as the shallow water. However, including WSFM module weakened sediment resuspension,
and the SSC was lower. The only exception was the SSC along transect B during CF3 (Figures 13e and
13f). The resuspension intensity difference could be explained by different sediment erosion algorithms
between the original CSTMS and WSFM module (Equations 1 and 2). Besides, the two sediment models
employed different algorithms to estimate sediment resuspension into the bottommost water layer. In the
original CSTMS, upward sediment flux into water is equal to sediment resuspension flux (Equation 1).
The WSFM module, however, quantifies upward sediment flux (Ewbl in Equation 3) based on wave

Figure 11. Time series of alongshore and cross‐shore sediment fluxes (black: SSF; red: WSFM flux) at T1 (a and c) and T3
(b and d) stations with three labeled cold front events (CF1, CF2, and CF3). For alongshore sediment flux, positive
value represents upcoast direction (oriented 60° east of south) and negative value represents downcoast direction
(oriented 60° west of north). For cross‐shore sediment flux, positive value represents shoreward direction (oriented
30° east of north) and negative value represents offshoreward direction (oriented 30° west of south).
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dynamics and intensity of vertical stratification (Munk & Anderson, 1948; Ross & Mehta, 1989). The most
significant difference between the two simulations appeared at the bottom: A lutocline developed between
the WBL and the bottom water layer in the benchmark run. Sediment concentration in the WBL reached
more than 10 g/L, and SSC in the bottom water layer ranged from 5 g/L at the bottom nearshore to
almost zero offshore (right panels of Figures 12 and 13). The original CSTMS, however, could not resolve
the formation of fluid mud in the WBL and lutocline (left panels of Figures 12 and 13).
4.3.2. Sediment Flux and Erosion/Deposition Pattern
Figure 14 compares the temporal‐averaged sediment flux (SSF and WSFM flux) of the benchmark case
(CSTMS + WBL) to that of the original CSTMS run. Between the two simulations, the directions of SSFs
were similar (seaward off the Atchafalaya Bay and northwestward along the coast of Chenier Plain), while
the original CSTMS run reproduced higher SSF off the Atchafalaya Bay and Chenier Plain due to more sedi-
ment was entrained into the water column (Figures 14a and 14b). Seaward WSFM flux in the benchmark
run was comparable with SSF off the Atchafalaya Bay mouth (~0.1 kg/m/s). However, WSFM flux
(~0.4 kg/m/s) overwhelmed SSF (<0.1 kg/m/s) along the Chenier Plain coast due to strong wave activities
(Figures 14b and 14c).

The most distinguished difference of erosion/deposition between the two simulations distributed along the
Chenier Plain (Figure 15). When WSFM transport was excluded, both net erosion and deposition over the
coastal Chenier Plain were less than 2 cm (Figure 15a). With WSFM included, strong seaward fluid mud
transport resulted in severe onshore erosion (>4 cm) and thick offshore deposition located onshore of
10‐m isobath (Figure 15b), which was consistent with measurements of accumulation rate off the
Chenier Plain (Denommee et al., 2018; Rotondo & Bentley, 2003). Another notable difference of
erosion/deposition between the two simulations was found at the Atchafalaya Bay mouth: Although both
benchmark and original CSTMS runs reproduced net erosion in the Atchafalaya Bay and offshore net

Figure 12. Vertical distributions of SSC along Transect A during the passages of three cold fronts with (right panel) and
without (left panel) the WBL. Each row represents one cold front. The WBL grid is the bottom cell on the right panel.
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deposition (Figure 15), the area of net erosion in the Atchafalaya Bay was larger, and an elongated net
deposition was formed along the 5‐m isobath in the benchmark run (Figure 15). Compared with the
Atchafalaya shelf off the bay mouth, the steeper bathymetry of the Chenier Plain (Figure 1) and higher
wave energy (Figures 9d–9f) increased the downslope momentum of WSFM transport. Both reasons
resulted in the stronger WSFM dynamics off the Chenier Plain than that at the Atchafalaya Bay mouth.

5. Discussion

In this section we discuss the importance of WSFM in the depositional settings, our WSFMmodel's response
to fluvial supply variation, settling velocity parameterization, and cohesive bed behavior (see section 2.3 for
detailed method and setup of sensitivity tests), followed by a discussion of model uncertainty.

5.1. The Role of Fluid Mud in the Depositional Settings

Although theWSFMonly forms during short‐term events (i.e., cold fronts and hurricanes; Kineke et al., 2006;
Sheremet et al., 2005), high sediment flux associated with WSFM downslope transport contributes to the
long‐term depositional environments over the Atchafalaya shelf: 210Pb chronological results of Allison
et al. (2000) and Neill and Allison (2005) revealed higher deposition rate at the Atchafalaya Bay mouth,
which was consistent with the elongated offshore depo‐center simulated in the benchmark run. Although
our simulation and 210Pb results were not quantitatively comparable since they focused on different tem-
poral scales (model: 25 days; 210Pb: several decades), the similar location andmorphology of offshore deposi-
tion implies the potential importance of WSFM in terms of cross‐shore transport and offshore depo‐center
formation on decadal scales. For the ROFI of other rivers (e.g., Yellow River, Amazon River, Rhone River,
and Waipaoa River) where fluid mud was observed, long‐term variation of water depth and 210Pb chronolo-
gical results also suggested the existence of offshore depo‐center (Kuehl et al., 1986; Miller & Kuehl, 2010;
Radakovitch et al., 1999; Wang et al., 2006). Since fluid mud needs to be supported by high velocity shear

Figure 13. Same as Figure 12 but along Transect B. The WBL grid is the bottom cell on the right panel.
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due to bottom wave orbital velocity or current, deposition associated
with fluid mud transport only distributes on the shelf where water
depth is less than 200 m. Given the ubiquity of fluid mud and its
importance in sediment transport from event to decadal scales, a bet-
ter understanding of fluid mud dynamics is of importance in explor-
ing the morphological evolution and quantifying net cross‐shelf
sediment flux in the ROFI.

5.2. Sensitivity to Riverine Sediment Supply

We compared our benchmark run results with sensitivity tests based
on different riverine sediment inputs to reveal the importance of flu-
vial sediment discharge to sediment dynamics over the Atchafalaya
shelf. As shown in Figures 16a and 16b, the erosion/deposition differ-
ence introduced by riverine sediment discharge variation was only
evident within the Atchafalaya Bay. The differences in seabed thick-
ness (Figures 16a and 16b) and sediment fluxes (both SSF andWSFM
flux; Figures 16c–16f) maximized off the two outlets (Wax Lake outlet
and Atchafalaya outlet) of the Atchafalaya River and decreased sea-
ward. Unlike the Eel River shelf where sediment flux and deposition
vary greatly with flood magnitude (Harris et al., 2005), the
Atchafalaya shelf is shallow and gentle, and the river plume is largely
constrained in the semi‐enclosed bay. Thus, the influence of riverine
sediment input is highly localized in the Atchafalaya Bay, and the
shelf can hardly be directly affected by fluvial sediment discharge var-
iation. 7Be derived deposition rate in different years' flood season also
indicated that deposition rate around the Atchafalaya Bay was highly
correlated with the magnitude of floods, while for the offshore area
(water depth >15 m), there is no clear correlation between high river
discharge during flood season and cross‐shore sediment transport
(Allison et al., 2000; Kolker et al., 2014). Besides, several sediment
cores collected off the Chenier Plain had 4 cm thick fluid mud layer
that did not contain 7Be (Rotondo & Bentley, 2003). The thick fluid
mud layer without excess 7Be activity indicated that WSFM transport
was still dominant with little deposition of freshly discharged fluvial
sediments along the Chenier Plain. Therefore, WSFM downslope
movement over the Atchafalaya shelf is limited by transport intensity

rather thanmodern fluvial sediment supply. The Atchafalaya River fluvial sediment input mainly influences
the sediment dynamics in the Atchafalaya Bay, and fluvial impact becomes less important with the increase
of distance to the Atchafalaya River outlets.

5.3. Sensitivity to Settling Velocity

To quantitatively evaluate the influence of sediment settling velocity, we compared the erosion/deposition
patterns between the benchmark run and the sensitivity tests that used constant settling velocity (free
settling) and dynamic settling velocity with hindered settling effect and flocculation (see section 2.3 for
details). The three experiments used identical setup except the settling velocity schemes in the WBL.

Net erosion/deposition patterns based on constant settling velocity (Figure 17a) and three‐regimes settling
velocity (Figure 17b) were similar to the benchmark run (Figure 15b). However, the thickness of net
erosion/deposition in the two sensitivity tests was different from that of the benchmark run. Here we esti-
mated the erosion/deposition difference between the benchmark run and sensitivity tests with different set-
tling velocity schemes (Figures 17c and 17d). In free settling case, both nearshore erosion and offshore
deposition were thinner compared with the benchmark run (blue color nearshore and red color offshore
in Figure 17c), suggesting that the calculated seaward sediment flux was increased by the hindered settling
effect. When three‐regimes settling velocity was specified, onshore erosion and offshore deposition were
thicker compared with the benchmark run (red nearshore and blue offshore areas in Figure 17d). Such

Figure 14. Temporal‐averaged (25 days) SSF in the water column based on
original CSTMS model (a) and CSTMS + WBL model (b) and WSFM flux
based on CSTMS + WBL model (c). The arrows indicate sediment flux direction
and background color represents sediment flux.
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difference indicates that seaward transport became stronger once
hindered settling effect was included (both benchmark run and
three‐regimes settling velocity case). The reason for the intensified
seaward transport once hindered settling becomes effective is that
sediments remain in suspension in the WBL longer due to slower set-
tling velocity and hence delays their deposition to the seafloor.
Besides, higher sediment concentration in the WBL induced by hin-
dered settling enhances downslope component of gravitational force
in the WBL, which can increase seaward WSFM flux effectively
(Harris et al., 2005). The flocculation regime, however, does not affect
WSFM dynamics too much because the increase ofWSFM concentra-
tion during cold front is sharp, and the flocculation regime does not
have enough time to post substantial impact on sediment settling.
Since most studies included flocculation in the idealized sediment
transport models (Liu et al., 2019; Maerz et al., 2011; Shen &
Maa, 2016; Xu et al., 2010), it is still a challenge to evaluate the role
of flocculation in realistic depositional settings. Tarpley et al. (2019)
implemented flocculation formulation within an idealized estuary
domain and found sediment concentration in the water column
halved in the estuarine turbidity maximum (ETM) region due to set-
tling acceleration. Compared with high density of fluid mud, sedi-
ment concentration in the ETM is on the order of 0.2–2.0 g/L
(McSweeney et al., 2017; Olabarrieta et al., 2018; Sanford et al., 2001),
in which flocculation exerts a great influence on sediment settling

velocity (Figure 3). Although our sensitivity tests suggest the impact of flocculation is quite limited in the
WBL, flocculation can affect sediment settling velocity in the water column and modulate sediment concen-
tration in the WBL via changing sediment settling flux from the bottom water layer into the WBL. To com-
prehensively estimate the influence of flocculation on WSFM, flocculation‐induced sediment settling
velocity variation in the water column should be taken into account in future model studies.

5.4. Sensitivity to Cohesive Bed Behavior

We compared simulated sediment concentration in the WBL at T1 station between the benchmark run and
six sensitivity tests (Cbed 1–6) to evaluate the significance of cohesive bed behavior in WSFM dynamics. For
the tests with τmin¼ 0.08 Pa (Cbed 1–3), the concentration was lower than the benchmark run due to higher
τcri in each layer (solid curves in Figure 18). The results showed that including cohesive bed behavior did not
change sediment concentration in the WBL significantly during CF1, while the concentration difference
turned to be more dominant during CF2 and CF3. The greater sediment concentration difference during
CF2 and CF3 suggested the importance of sediment consolidation in WSFM dynamics: After several rounds
of erosion, the seabed became more erosion‐resistant, and sediment resuspension was weaker in the follow-
ing erosion events. Similar findings were also reported based on the observations on the Eel shelf
(Traykovski et al., 2007). Interestingly, observations of Traykovski et al. (2015) in the nGoM indicated sedi-
ment concentration in the WBL were more related to the intensity of cold front events rather than seabed
consolidation (Figure 6). There are three possible reasons that might explain why cohesive bed behavior
was less important than cold front intensity in observations off the Chenier Plain (Traykovski et al., 2015):
(1) Coastal erosion and alongshore suspended sediment transport provided extra easily erodible cohesive
sediments to the measurement site (Draut, Kineke, Huh, et al., 2005); (2) the surface fluffy seabed layer with
small τcri over the Atchafalaya shelf was thicker than the maximum erosional depth, and the underlying
erosion‐resistant layer was not exposed to the bottommost water layer during cold front‐induced erosion;
and (3) the parameterization of the swelling and consolidation timescales might partially explain the discre-
pancies between model and measurements.

As we decreased τmin to 0.03 Pa (Cbed 4–6; Table 1), the temporal variation of sediment concentration in the
WBL changed dramatically: Sediment concentration was overestimated under normal conditions and
underestimated when a cold front approached (dashed curves in Figure 18). During CF1 and CF3,

Figure 15. Net erosion (red) and deposition (blue) pattern based on original
CSTMS model (a) and CSTMS + WBL model (b).
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sediment concentration was even lower than the tests with τmin ¼ 0.08 Pa because overestimated erosion
before cold fronts exposed the seabed layers with a higher τcri. Dramatic sediment concentration

Figure 17. Net erosion/deposition patterns based on constant settling velocity (a) and three‐regimes settling velocity
(b) and the difference of seabed thickness (sensitivity tests minus benchmark run) compared with benchmark result
(c and d). (Note: The range of color bar in the upper panel is different from that in the lower panel).

Figure 16. The difference of seabed thickness (a and b), SSF in the water column (c and d), and WSFM flux in the WBL
(e and f) between benchmark run and sensitivity tests whose fluvial sediment concentration is halved (left panel) or
doubled (right panel).
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differences between the sensitivity tests with different τmin implies the importance of the surface critical
shear stress initialization. The measurements based on sediment cores in receiving basin of the
Mississippi River diversions indicated that τcri was around 0.2 Pa for consolidated sediment, and the value
could be smaller for freshly deposited fluvial sediment (Xu, Bentley, et al., 2016). Due to the lack of
erodibility measurements over the Atchafalaya shelf, accurate parameterization of cohesive bed behavior
is still a challenge in this study. Given the presence of both poorly consolidated fluvial sediment and
consolidated relict Holocene sediment off the Chenier Plain (Draut, Kineke, Velasco, et al., 2005), the
spatial variation of equilibrium τcri curve should be included in the future to better reproduce WSFM over
the Atchafalaya shelf.

5.5. Model Uncertainties and Future Work

Our WSFM sediment transport model captured the main features of sediment dispersal induced by both
dilute sediment suspension in the water column and fluid muds in theWBL. The unique offshore deposition
over the Atchafalaya shelf and along the Chenier Plain was also reproduced. Nevertheless, it is worth noting
that there are still processes not considered in our model. Firstly, the model only includes one type of mobi-
lized sediment particle, and interactions between different types of particles (e.g., interparticle collision)
were not taken into account. When the volume fraction of particles is larger than 1 × 10−3 (i.e., 1‰),
particle‐particle collision becomes significant and the collision probability will substantially increase once
solid particles exceeds 5% (Elghobashi, 1994; Wachs, 2009). In aqueous flows, where the fluid is sufficiently
viscous, with decreasing sediment size the energy is mostly consumed by fluid viscosity rather than inelastic
deformation of the suspended particles. Such process might damp the turbulence and therefore affect the
sediment flux (Schmeeckle et al., 2001). Secondly, noncohesive (sand) sediment dynamics was not included
in our model because sediment cores with footprint of WSFM depositions off the Chenier Plain were com-
posed primarily of silt and clay (e.g., Denommee et al., 2016, 2018; Rotondo & Bentley, 2003). However,
the field measurements of Flores et al. (2018) documented the occurrence of wave‐supported gravity flow
on a sandy seabed. This finding has important implications for the WSFM dynamics on the entire
Louisiana Shelf: Wave‐supported gravity flow might happen on the edge of relict sandy shoals (e.g.,
Tiger/Trinity and Ship Shoals), where bathymetric slope is steep and sand content is high. To test this
hypothesis, bottom boundary layer measurements and WSFM simulation with noncohesive sediment
dynamics should be conducted over the sandy shoals in the future. Thirdly, our model so far included the
influence of hydrodynamics to sediment dispersal, erosion, and deposition, whereas the feedback of sedi-
ment dynamics to hydrodynamics (i.e., viscous fluid mud's wave energy dissipating capacity
(Siadatmousavi et al., 2012) and the effect of sediment‐induced stable density stratification on turbulence
attenuation), which could be significant during energetic events, was not taken into account. For example,
it is reported in Sheremet et al. (2005) that both long and short waves over the muddy shelf were lower than
that over the sandy shelf during winter storms and hurricanes due to fluid mud‐induced wave damping. A
fluid mud‐induced wave damping algorithm developed by Winterwerp et al. (2007) was included in SWAN
and applied to the Guyana coastal system. Prior turbulence‐resolving simulations in particle‐laden flow also
suggest the complexity of turbulence‐sediment interactions due to sediment‐induced stable density

Figure 18. Comparisons of the simulated sediment concentration in the WBL at T1 station between the benchmark run
and cohesive bed tests (Cbed 1–6). The legend is the same as Figure 4.
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stratification, bed erosion, and hindered settling (Cheng, Yu, Hsu, & Balachandar, 2015; Hsu et al., 2009;
Ozdemir et al., 2010, 2011). Therefore, a realistic fluid mud transport simulation in the future should incor-
porate different types of sediment particles and two‐way coupling between sediment dynamics and hydro-
dynamics to achieve more robust results.

6. Conclusions

We incorporated the 2‐DWSFMmodel into the COAWSTmodeling system and applied it to the Atchafalaya
shelf to investigate fluid mud dynamics in March 2008. A WBL model was introduced between the bottom-
most water column grid cells and top sediment bed grid cells, which accounted for the key sediment
exchange processes (e.g., resuspension, vertical settling, diffusion, and horizontal advection) at the
water‐WBL and WBL‐sediment bed boundaries. The simulation results compared well with the field mea-
surements from the Louisiana Shelf, indicating that the model was capable of reproducing both hydro‐
and sediment dynamics during the passage of three cold fronts.

As cold fronts swept across the Atchafalaya shelf, waves were enhanced to 2m offshore and 0.7 m onshore by
strong northwesterly winds (>10 m/s), and the direction of alongshore current shifted from westward to
eastward. Bottom shear stress peaked between the 5‐ and 10‐m isobaths. The river plume expanded seaward
during cold fronts due to intensified seaward currents in the bay. Dilute suspended sediment transport in the
water column was driven by seaward currents in the Atchafalaya Bay while the intensified eastward along-
shore currents transported sediment upcoast. Sediment concentration of WSFM was on the order of 10–
100 g/L, which was more than 10 times higher than that calculated for dilute suspension in the overlying
water column. The WSFM transport velocities were directed downslope ranging from 3 cm/s in the
Atchafalaya Bay to 12 cm/s off the Chenier Plain. Over the Atchafalaya shelf, net SSF andWSFM flux in sea-
ward direction were comparable (0.062 and 0.084 kg/m/s, respectively), and they were much higher than
those in alongshore direction. Along the Chenier Plain, the direction of dilute SSF (0.077 kg/m/s) was par-
allel to the shoreline while WSFM flux (0.249 kg/m/s) was seaward.

The introduction of the WBL WSFM model lowered the simulated SSC and SSF in the water column and
allowed the model to represent the lutocline formed between the WBL and the overlying water column in
the model. Both simulations (original CSTMS and CSTMS + WBL) reproduced net erosion in the
Atchafalaya Bay and net deposition over the Atchafalaya shelf, while the area of erosion nearshore was lar-
ger once the WBL WSFMmodel was included due to the extra seaward WSFM flux. The erosion/deposition
pattern along the Chenier Plain changed greatly (onshore erosion >4 cm) because seaward WSFM flux out-
weighed alongshore SSF.

Fluvial sediment discharge variation affected both sediment flux and deposition rate in the Atchafalaya Bay.
No substantial difference was simulated with different fluvial sediment discharge, indicating the
Atchafalaya shelf is a transport‐limited system. Sensitivity tests based on different schemes of settling velo-
city applied within the WBL indicated that hindered settling effect could enhance seaward transport by
keeping sediment in suspension and increasing the density of the fluid mud and thus the downslope
WSFM flux. As cohesive bed behavior was applied, sediment concentration in the WBL was sensitive to sur-
face critical shear stress initialization. The importance of seabed consolidation status in WSFM dynamics
was enhanced after several rounds of erosion.

Data Availability Statement

Data used in this study are stored in the LSUmass storage system, and detailed information is posted on the
homepage of Coupled Ocean Modeling Group (http://www.oceanography.lsu.edu/xuelab). Model code and
data request can be sent to the corresponding author via this webpage.
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