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Abstract Saturn's moon Enceladus has a global subsurface ocean and a porous rocky core in which
water‐rock reactions likely occur; it is thus regarded as a potentially habitable environment. For icy
moons like Enceladus, tidal heating is considered to be the main heating mechanism, which has generally
been modeled using viscoelastic solid rheologies in existing studies. Here we provide a new framework
for calculating tidal heating based on a poroviscoelastic model in which the porous solid and interstitial
fluid deformation are coupled. We show that the total heating rate predicted for a poroviscoelastic core
is significantly larger than that predicted using a classical viscoelastic model for intermediate to large
(>1014 Pa·s) rock viscosities. The periodic deformation of the porous rock matrix is accompanied by
interstitial pore fluid flow, and the combined effects through viscous dissipation result in high heat fluxes
particularly at the poles. The heat generated in the rock matrix is also enhanced due to the high
compressibility of the porous matrix structure. For a sufficiently compressible core and high permeability,
the total heat production can exceed 10 GW—a large fraction of the moon's total heat budget—without
requiring unrealistically low solid viscosities. The partitioning of heating between rock and fluid
constituents depends most sensitively on the viscosity of the rock matrix. As the core of Enceladus warms
and weakens over time, pore fluid motion likely shifts from pressure‐driven local oscillations to
buoyancy‐driven global hydrothermal convection, and the core transitions from fluid‐dominated to
rock‐dominated heating.

Plain Language Summary Discoveries made by the Cassini spacecraft revealed that wemay find
life even in our own cosmic neighborhood in the ocean of Saturn's moon Enceladus. Recent studies infer that
the fluid‐saturated rocky core of Enceladus harbors some of the processes that likely gave rise to life on
Earth. Here we develop a physics‐based model to understand the heating in the water‐saturated porous core
of Enceladus during periodic deformation under tidal forces. We find that the periodically loaded moon
distributes the heat generated during its deformation in both its rocky and fluid part. When the core is strong
and rigid (likely in the early history), heating in the fluid could be hundreds or thousands of times larger
than that in the solid rock; when the core is severely weakened (such as in its later history), more heat is
distributed in the solid rock than in the fluid. We also find that the coupling between pore fluid and solid
rock may enhance the heating of the core for a larger range of material properties, in contrast with
earlier studies. The enhanced heating could provide explanation for the high heat flux measured for
Enceladus, and a potential hot period in its early history.

1. Introduction

In nearly 15 years after the discovery of the enigmatic polar plumes by Cassini (Porco et al., 2006), the inter-
ior structure and orbital history of Enceladus has been made clearer based on analysis of its gravity, topogra-
phy and libration data, and numerical simulation (Iess et al., 2014; Neveu & Rhoden, 2019; Nimmo et al.,
2018; Taubner et al., 2015; Vance et al., 2018). It is now believed that under the ice shell of the moon, there
is a global, salty, liquid ocean (Čadek et al., 2016; Postberg et al., 2009, 2011, 2018; Thomas et al., 2016) over-
lying a highly porous, silicate‐based rocky core (Hemingway et al., 2018; Iess et al., 2014; Roberts, 2015),
where water‐rock hydration reactions and hydrothermal circulation are supported (Choblet et al., 2017;
Hsu et al., 2015; Sekine et al., 2015; Travis & Schubert, 2014; Waite et al., 2017)—a picture that presents great
similarities to Earth (Kelley et al., 2005; Russell et al., 2010).
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Enceladus is thought to consist of an ice shell about 20 km thick on average, overlying an ocean about 40 km
deep and a low‐density (≈2,500 kgm−3), high‐porosity rocky core (Čadek et al., 2016; Hemingway & Mittal,
2019; Iess et al., 2014). The shell is thinnest at the active south pole and also exhibits reduced thickness at the
north pole (e.g., Hemingway & Mittal, 2019). Based on these thickness estimates, the total conductive heat
loss across the whole of Enceladus is about 25–40 GW, while the measured excess thermal emission at the
south pole is 16 ± 3 GW (Howett et al., 2011).

The source of the heat is Enceladus's tides, which transfer energy from Saturn's rotation. But the distribution
of the tidal heating is currently uncertain. As previously reviewed (Nimmo et al., 2018), initial models
(Roberts & Nimmo, 2008; Ross & Schubert, 1989; Shoji et al., 2013; Tobie et al., 2008) focused on dissipation
in the ice shell. However, since the ice shell is thought to be conductive and the surface is cold, only a rela-
tively thin layer at the base of the shell is warm enough to be dissipative. As a consequence, viscoelastic mod-
els have found it difficult to generate sufficient heat within the ice shell (Souěk et al., 2019). Turbulent
dissipation of water in south polar fractures could be an additional energy source (Kite & Rubin, 2016)
but cannot explain the survival of relatively thin ice elsewhere, where fractures are absent (e.g., the northern
polar region). Dissipation in the ocean driven by obliquity tides has been suggested as a major heat source
(Tyler, 2009). However, for the inferred obliquity, and ocean and shell thicknesses, the magnitude of the pre-
dicted heat production is many orders of magnitude too small (Beuthe et al., 2016; Chen & Nimmo, 2011;
Hay & Matsuyama, 2017; Matsuyama et al., 2018). Other mechanisms for driving turbulent ocean dissipa-
tion have also been suggested (Lemasquerier et al., 2017; Wilson & Kerswell, 2018) but have not so far
received much scrutiny.

Recently, the silicate core has become more popular as a source of heat. A sufficiently weak silicate core can
generate significant amounts of heat (Choblet et al., 2017; Efroimsky, 2018; Roberts, 2015). Below we con-
sider an additional possibility: That tidal pumping of water through the porous core results in significant
heat production. Tidally driven viscous dissipation in pore fluids can generate heat (Al‐Hadhrami et al.,
2003; Jupp & Schultz, 2004; Vance et al., 2007). For Enceladus, this mechanism has only been studied once
in a simplified fashion (Vance et al., 2007) and was found to be insignificant in the context of heating and
maintaining a liquid ocean. However, as that model omitted the interaction between porous fluid flow
and tidal deformation, the resulting heating rates are likely underestimated.

Besides providing an additional heat source, heating of the fluid in the core of Enceladus is also relevant to
geochemical processes crucial for understanding the habitability of the moon. On Earth, rock‐water reac-
tions and potential metabolic reactions under the seafloor need to occur in pore fluids and along the
rock‐fluid interface, where the motion and heating of pore water play a nonnegligible role (Mayhew et al.,
2013; Schrenk et al., 2013; Schwarzenbach, 2016). Predicting the habitability beneath the seafloor of
Enceladus therefore requires more knowledge of the thermal and kinetic history of the pore fluids and their
relation with the rock matrix.

Currently, an explicit account of the coupling between porous flows and deforming rock matrix during
tidal flexing is not achievable using either the commonly assumed viscoelastic description of tidal heating,
or the poroelastic description of fluid motion (Choblet et al., 2017; Vance et al., 2007). As we explain
below, both these end‐member approaches neglect the coupling between porous solid and fluid, which
can result in enhanced heating in both phases. A model for Enceladus that can evaluate the production
of heat in both the pore fluid and rock matrix simultaneously and consistently has not been proposed
hitherto.

In this paper, we propose a method of evaluating heating of the rock and pore fluid in the core by assuming a
poroviscoelastic rheology, which consistently accounts for the coupling between pore fluid flows and defor-
mation of the rock matrix. Our approach is simplified in that we assume a homogeneous poroviscoelastic
spherical body loaded cyclically with an axisymmetric degree‐2 pattern. In section 2, and in Appendices A
and B, we provide the analytical framework for solving this simplified problem. In section 3 we compare
our results for heat production in both the solid and fluid components with the end‐member viscoelastic
solution in which the pore fluid is neglected; we also explore the spatial pattern of heating. In section 4
we explore how the evolution of the mechanical properties of the core may have changed the dominant
heat‐producing mechanism over time. Finally, we conclude with a discussion of our results and a sketch
of how a more complete analytical description may be accomplished.
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2. Methods
2.1. Overview of the Model

The core of Enceladus is modeled as a poroviscoelastic, spherical body with uniform porosity, permeability,
elastic moduli, and viscosity. The core is assumed to be submerged in an overlying ocean and all pore spaces
are filled with fluid with constant viscosity. During tidal deformation, the solid rocks in the core deform per-
iodically, generating heat (i.e., tidal heating). The deformation of the rock matrix causes the pore spaces to
compress/dilate, driving porous fluid flows and generating heat via fluid dissipation. As redistribution of
pore pressure changes the local stress and strain rate in the rock matrix, the coupling between fluid and solid
components in our model is intrinsically two way. To obtain the heating rates, the model seeks analytical
solutions for quantities including strain, stress, and velocity based on the assumptions and constraints
below.

The core is assumed to have properties of both a viscoelastic (i.e., viscous relaxation of the rock matrix) and
poroelastic material (i.e., mechanical coupling between pore pressure and total stress), which is described by
linear poroviscoelastic constitutive relations. The constitutive relations explicitly couple the pore pressure
and fluid mass with the strain and stress of the rock matrix (see next section). The motion of the interstitial
fluids, driven by spatial gradients of fluid pore pressure, satisfies Darcy's law and mass conservation. The
model assumes force balance while omitting the generation of seismic waves, leading to a quasi‐static equi-
librium condition for the total stress.

The quantitative framework is completed by boundary conditions and additional geometrical requirements
of the solutions: At the surface of the core (i.e., seafloor), the fluid pressure and stress are continuous; at the
poles of the core's surface, the amplitude of strain is approximated by a function of the moon's orbital motion
and its degree‐2 Love number determined by the rigidity and viscosity of the solid rock matrix (see next sec-
tion); the model implicitly accounts for the gravitational potential caused by the moon's orbital motion by
imposing degree‐2 spatial geometries and periodicity of the solutions and through the imposed boundary
conditions. The model is simplified by assuming only axisymmetric degree‐2 geometry, ignoring longitudi-
nal variations of gravitational potential.

2.2. Model Setup and Solutions

In this work we focus entirely on the water‐filled silicate core of Enceladus. We largely neglect the role of the
overlying ocean and ice shell. While these components will modify the tidal deformation of the core, the
changes expected are small while greatly complicating the analytical development. Parameter values
assumed are tabulated in Table A1.

In a poroviscoelastic material, the total stress is shared between pressurization of the pore fluid and the
deformation of the rock matrix. In comparison to the classical Maxwell viscoelastic description commonly
assumed for tidal heating models, a poroviscoelastic description incorporates an additional contribution of
pore fluid pressure to the bulk rheology. Its constitutive relation can be obtained by combining classical lin-
ear poroelasticity and a Maxwell viscoelastic model wherein viscous relaxation occurs in the shear compo-
nents (Biot, 1941; Cheng, 2016; Rice & Cleary, 1976; Roberts & Nimmo, 2008; Tobie et al., 2005; Wu &
Peltier, 1982),

∂σ
∂t

þ μ
ηm

σ −
1
3
μ
ηm

TrðσÞI ¼ 2μ
∂ϵ
∂t

þ Km −
2
3
μ

� �
∂TrðϵÞ
∂t

I − α
∂P
∂t

I: (1)

Here σ(r, θ, t) and ϵ(r, θ, t) are the stress and strain tensors for the ensemble material, P(r, θ, t) is the pore
pressure, I is a unit tensor, and μ and ηm are the rigidity (i.e., shear modulus) and viscosity of the rockmatrix.
The poroelastic coefficient α (also known as the Biot constant) indicates the relative strength of the rock
matrix in comparison with that of pure rock and has a value between 0 and 1, and Km¼ (1− α)Ks is the bulk
modulus of the rock matrix where Ks is the bulk modulus assumed for pure rock. In the current study we
assume Ks¼ 10 GPa or smaller, according to values assumed for Earth's oceanic crust (Crone & Wilcock,
2005; Vance et al., 2007). We can verify that the Maxwell formulation in classical tidal heating studies can
be obtained from Equation 1 when the pore pressure is decoupled from the matrix with α¼ 0 (Brusche &
Sundermann, 1978; Peale & Cassen, 1978; Ross & Schubert, 1989; Segatz et al., 1988; Tobie et al., 2005;
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Wu & Peltier, 1982). We implicitly assume that the bulk viscosity of
the rock matrix is infinitely large in comparison with the shear visc-
osity ηm; hence, the viscous relaxation process only occurs in the
shear component, similar to previous studies.

The core of Enceladus is modeled as a spherical, homogeneous, por-
oviscoelastic body under a fluid‐loading boundary condition at its
surface (see Figure 1). Following earlier works, we assume irrota-

tional deformation with displacement u!¼ ∇Φ (Landau & Lifshitz,
1959; Love, 1927), where the displacement potentialΦ(r, P2(θ)) is axi-
symmetric and has a degree‐2 pattern in zonal direction (P2 is
degree‐2 Legendre polynomial with m¼ 0). As discussed below, this

is a simplification of the actual tidal pattern, which includes both P0
2

and P2
2 components for eccentricity tides (e.g., Tobie et al., 2005).

Under periodic loading, all the quantities in the system

(denoted by f here) are represented by complex amplitudes as f ¼ Re

ðf̂ ðr; θÞeiωtÞ, where f stands for strain, stress, pore pressure, or fluid

velocity; f̂ is the complex amplitude of f; and ω is the loading fre-
quency. The constitutive relations, equilibrium condition, Darcy's
law and pore fluid continuity lead to analytical solutions for the dis-
placement potential and the pore pressure (see Appendices A and B
for derivation)

Φ̂¼ −
αC1

k2 Km þ 4
3
μ∗

� � 3
sin kr

k3r3
− 3

cos kr

k2r2
−
sin kr
kr

� �
ð3 cos 2θþ 1Þ

þC2r
2ð3 cos 2θþ 1Þ;

P̂ ¼ C1ð3 cos 2θþ 1Þ 3
sin kr

k3r3
− 3

cos kr

k2r2
−
sin kr
kr

� �
;

(2)

where k is a complex wavenumber determined by material properties. In the present study, contributions
from self‐gravity and the tidal forcing from orbital eccentricity are considered in a simplified fashion and
are implicitly reflected by the constant values of C1 and C2∝ C1, which are determined by the boundary
conditions at the surface of the core (see Appendices A and B). The expressions for the displacement
potential and pore pressure in Equation 2 further lead to solutions for the strain ϵ̂ , stress σ̂ , and Darcy's

velocity q̂! (see Equation A9 in section A1). The volumetric heating rates averaged over one tidal period
are therefore

htideðr; θÞ ¼ Σi; j
1
Tω

Z
ðn þ 1ÞTω
nTω

σij
∂ϵij
∂t

dt þ 1
Tω

Z
ðn þ 1ÞTω
nTω

Pf
∂ζ
∂t
dt; (3)

hvisðr; θÞ ¼ 1
Tω

Z
ðn þ 1ÞTω
nTω

ηf
κ
q! · q!dt; (4)

where Tω¼ 33 hr is the orbital period for application to Enceladus. The volumetric heating rate htide is
generated in the rock matrix and is the counterpart of tidal heating in a solid viscoelastic body. The last
term in Equation 3 arises from the compression/dilation of the pore fluid (ζ is the relative amount of
pore fluid entering the pore space) and typically has a negligible contribution. In Equation 4, hvis
represents the viscous heat generated in the pore fluid. The global heating rates in solid or fluid are

Htide;vis ¼ 2π∫R0
0 ∫π0 htide;visr2sinθdθdr and the total heating rate Htotal¼Htide +Hvis. Under the boundary

conditions of force balance and fluid pressure continuity at the surface of the core (i.e., the fluid‐loading
boundary condition; see Appendices A and B), the ratio Hvis/Htide is determined and represents the par-
titioning of total heat between the solid and fluid constituent in the core. To obtain the magnitude of
the heating rates, an additional boundary condition is required to constrain C1 and C2.

Figure 1. Setup of the axisymmetric model. The core of Enceladus is modeled as
a spherical, homogeneous poroviscoelasitic body with radius R0. The body
undergoes axisymetric oscillation with a period of 33 hours. During periodic
deformation, all quantities depend on radial position r and angle θ (measured
from vertical axis) and are independent of azimuthal angle φ. Lower left quarter
shows a fluid‐loading condition, where fluid pressure is continuous on the
surface, and internal stress balances with loading pressure.
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In practice, the deformation of the porous core is forced by tidal variations in the gravitational potential, with
the surface of the core treated as an interface with displacement and stress coupled to the volumetric defor-
mation and pressurization of the overlying ocean, which in turn is coupled to ice shell deformation. Such
complexities are beyond the scope of the present study. Here we instead simplify the forcing and the bound-
ary condition by assuming that the maximum strain at the poles is determined by the viscoelastic properties
of the solid matrix in the core. This allows us to carry out a direct comparison between the heating in a stan-
dard viscoelastic body and the additional heating arising from porosity and fluid flow. For diurnal tides the

maximum tidal strain ϵmax ≈ 3e
M
m

R3
0

a3
h2 (Murray & Dermott, 1999). Here e is eccentricity of the orbit,M and

m are the mass of the planet and moon, R0 is the radius of the moon and a the planet‐satellite distance; we

take h2 ¼ 5
3
k2 , which is the appropriate limiting behavior when rigidity dominates over gravity; k2 is the

tidal Love number. Following Kepler's law the relation further becomes ϵmax ¼ 9
4π

e
ω2

ρG
5
3
k2, k2 ¼ 3

5
3=2

1þ 19μ∗=2ρgR
assuming a uniform body, where the complex rigidity μ∗ ¼ μ

iωτ
1þ iωτ

depends on the

viscosity and rigidity of the matrix (e.g., Ross & Schubert, 1989). We assume that the amplitude of the radial

strain at the polar surface is ϵ0 ¼ ϵmax ¼ 9
4π

e
ω2

ρG
5
3
jk2j, which is used for constraining C1 (Figure 2a and see

the Appendices A and B).

2.3. Choice of Permeability and Viscosity

The material properties of the core are represented by four parameters: rock matrix rigidity μ, viscosity ηm,
permeability κ, and poroelastic coefficient α, which by definition ranges from 0 to 1. We consider a range of
high permeabilities and moderate to low rigidities and viscosities in our study. In earlier works, the perme-
ability of Enceladus was assumed to be no more than 10−10m2, given the typical value of the permeability of
the oceanic crust on Earth (Choblet et al., 2017; Vance et al., 2007). Furthermore, Choblet et al. (2017) con-
cluded that the permeability of the core of Enceladus needed to be smaller than 10−12 m2 for
high‐temperature hydrothermal circulation to occur, as suggested by the occurrence of silica nanoparticles.

Figure 2. (a) Contours of polar strain amplitude assumed for the study ϵ0 ¼ 9
4π

e
ω2

ρG
5
3
jk∗2 j shown as a function of

matrix viscosity and rigidity. The degree‐2 Love number for a uniform body is k∗2 ¼ 3=2
1þ 19μ∗=2ρgR

, where μ∗ is

the complex rigidity (see text). (b) Contours of tidal heating rate computed from theoretical prediction (black lines)

Htheory ¼ −
21
2
ω5R5

G
e2Imðk∗2Þ and tidal heating rate for a viscoelastic end‐member Hvisco computed with the

poroviscoelastic model with simplified, axisymmetric degree‐2 potential, which is based on a boundary condition shown
in (a). Our predicted heating using the simplified degree‐2 potential is approximately 57% of the theoretical prediction.
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In our work below we consider a wider range of possible permeability values based on the results of some
recent studies on Earth's seafloor, which suggest that the permeability is likely higher. In one study on
the Cocos plate, numerical simulations suggested that permeabilities of 10−10 and 10−8 m2 for recharge
and discharge portions of one outcrop yield the best match between simulations and heat flow measure-
ments (Lauer et al., 2018; Winslow et al., 2013). Borehole measurements of large permeabilities, up to
10−8 m2, and porosities, up to 10%, have also been made at some locations (Lauer et al., 2018; Winslow et al.,
2013). Although the structure of Earth's oceanic crust (e.g., sediment layers) are different from that in the
core of Enceladus, the characteristic permeability for the latter is anticipated to be of a similar order of mag-
nitude or higher because of its high porosity. The density of the core inferred from gravity studies suggests a
porosity of at least 20–30% (section 1), while some studies have assumed porosities of up to 50% extending
into the center of the core (Choblet et al., 2017; Roberts, 2015; Vance et al., 2018). As a result, we postulate
that κ is likely higher than the typical value for Earth's seafloor, and consider a range of permeability of κ∈
[10−12,10−7] m2 in our study.

In some early works, the rigidity and viscosity of the core of Enceladus were estimated based on the proper-
ties of solid rocks, with typical values of ηm∼ 1020 Pa·s and μ∼ 100 GPa, leading to predictions of very small
heating rates (e.g., Roberts & Nimmo, 2008). Other studies proposed lower rigidities and viscosities based on
the presence of porosity, rock alteration (e.g., serpentinization), or weakening of the core, which result in
higher heating rates (Choblet et al., 2017; Efroimsky, 2018; Roberts, 2015). In the recent work by Choblet
et al. (2017), 10–30 GW of tidal heating results from a weak core, with an effective shear modulus

μeff¼ |μ∗|∈[107,108] Pa and dissipation function Q−1
μ ¼ Imðμ∗Þ

jμ∗j ∈ ½0:2; 0:8� , which, in the context of

Maxwell viscoelastic rheology, corresponds to a low viscosity ηm ¼ 1
ω
μef f
Q−1
μ
, that is, less than 1013 Pa·s, and

a low rigidity μ ¼ μef fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðQ−1

μ Þ2
q , that is, between 0.01 and 0.1 GPa. These values are interpreted as a conse-

quence of weakening by cyclic loading, which has been observed in experiments of cyclic loading tests of
cohesive soils (Choblet et al., 2017). However, solid viscosities <1013 Pa·s resemble those of ice near its melt-
ing temperature, rather than those typical of near‐solidus solid rock values (>1018 Pa·s). In our study, we
assume a range of rigidities between 0.01 and 10 GPa, and a low‐ to moderate‐viscosity range of 1012 to
1018 Pa·s to represent a moderately to severely weakened core.

3. Model Results

In this section we first compare our results with end‐member viscoelastic tidal heating in which the
effect of the pore fluid is ignored. We then investigate how the presence of pore fluid affects heat produc-
tion in both the solid and fluid components. Finally, we investigate the spatial pattern of our tidal
heating model.

3.1. Comparison With Classical Predictions for a Viscoelastic End‐Member

When the pore fluid is decoupled from the deformation of the rock matrix (α¼ 0 or κ¼ 0), the body becomes
effectively viscoelastic and a heating rateHvisco can be obtained (see Appendix A2).Hvisco corresponds to the
viscoelastic end‐member of the poroviscoelastic model, which can be benchmarked using the classical vis-
coelastic model. According to earlier studies, the theoretical heating rate predicted by the classical
Maxwell model is Htheory ¼ −21ω5R5

0e
2Imðk2Þ=2G (Segatz et al., 1988; Tobie et al., 2005; Zschau, 1978). In

our approach, Hvisco is determined by the loading frequency, rigidity, and viscosity (see Appendix A1).
Hvisco is comparable to the theoretical predictionHvisco≈ 57%Htheory for a wide range of rigidity and viscosity
values (Figure 2b). Due to the neglect of the additional degree‐2 harmonic in the poroviscoelastic model,
Hvisco is always smaller than Htheory. As our poroviscoelastic model can reproduce the main characteristics
of the viscoelastic end‐member, we consider our choice of geometry and boundary conditions to be justified
for the purposes of this preliminary study.
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3.2. Enhanced Heating and Heating Partition

During cyclic loading, the displacement in the poroviscoelastic body develops higher amplitudes at surface
polar regions (Figure 3a). As in previous studies, phase lags exist between the stress and strain components,
contributing to the generation of heat in the rock matrix (Figure 3b).

The coupling between the pore pressure and solid matrix allows for higher internal deformation relative to
the viscoelastic end‐member, causing the heating in the solid matrix to increase, even though the boundary
strain remains small (determined by viscosity and rigidity). We find that the heating enhancement is
especially prominent when the viscosity of the solid matrix is moderate or large: for example, at a rigidity
of 1 GPa and viscosity of 1015 Pa·s, the total heating rate increases from 30MW for the viscoelastic core to
nearly 1 GW for the poroviscoelastic core when the poroelastic coefficient α¼ 0.9, and to nearly 17 GW
when α¼ 0.95 and permeability 10−11 m2 (Figure 4a). Since the total expected heat output of Enceladus is
a few tens of GW (section 1), it is clear that poroviscoelastic dissipation in the core could supply a large
fraction of Enceladus's total heat budget.

According to the micromechanical relation, Km¼ (1− α)Ks (Km and Ks are the bulk moduli of the rock
matrix (frame) and the pure rock, respectively), a large α indicates a much more compressible porous rock
matrix in comparison to a purely solid rock. When α> 0.9, the compressible rock matrix leads to a second
heating rate peak that emerges at moderate matrix viscosity (Figure 4a). We consider that large values of
α (>0.9) are likely, given the large porosity expected in the core of Enceladus. In the study of tidal pumping
in the shallow crust of Enceladus by Vance et al. (2007), a frame bulkmodulus of 0.1 GPa and rock bulkmod-
ulus of 10 GPa were assumed, corresponding to α∼ 0.99 in the study. Although a large α likely exists for the
porous core, it is not required for enhanced heating and the emergence of a second heating peak: with a
lower value for Ks< 2GPa (e.g., caused by mineral alteration of water‐rock reaction), even a moderate value
of α< 0.8 can lead to the same enhanced heating effect (see Figure B1a in Appendix B).

We further point out that the second heating peak (when it exists) occurs primarily in the solid component
(see Figure B1b in Appendix B) and that the viscosity corresponding to the second heating peak varies pri-
marily with the compressibility of the rock matrix (see Figures B1c and B1d in Appendix B). These observa-
tions suggest that the compressible rock matrix is the main contributor to the enhanced heating rate in the
solid. As most tidal heating models assume an incompressible matrix, the effect of compressibility has not
been extensively explored, although Hurford et al. (2006) explored the effects of varying material parameters
including compressibility on the tidal response of the Earth. While Kaula (1964) found an increase in the
heating rate of less than 3% when the compressibility of the lunar viscoelastic core was included, the
enhanced heating rates, we observe here indicate that for a poroviscoelastic core, the compressible rock

Figure 3. (a) The maximum magnitude of radial displacement jûr j on a cross section of the spherical body. (b) The time
series of tensile components of strain ϵθθ and stress σθθ as functions of time measured under the north pole (θ¼ 0o) at

depth 5.6 km below surface. The example case has permeability κ¼ 1 × 10−10 m2, rock matrix rigidity μ¼ 1 GPa,

viscosity ηm¼ 1017 Pa·s. Biot constant α¼ 0.2.
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matrix and the subsequent coupling between the matrix with pore fluid pressure can influence the heating
rate to a much larger extent than previously reported. Compressibility together with fluid permeability thus
provides an alternative to ultralow solid viscosities as an explanation for high heat production rates in
the core.

Besides enhanced heating in the solid component, the coupling between the rock and fluid phase causes
fluid oscillation throughout the body, providing an additional heat source via viscous dissipation. The
dissipative heating is especially prominent when the rock matrix viscosity and core permeability are moder-
ate or high. At small (less than 1013 Pa·s) matrix viscosity, the poroviscoelastic core resembles the viscoelastic
end‐member, where viscoelastic deformation of the solid matrix dominates and the heating rates are consis-
tent with the existing study by Choblet et al. (2017) (Figures 4a and 4b). Under the same boundary
conditions, rigidity and rock viscosity, the total heating rate Hvis +Htidal for poroviscoslastic body is

higher than that of the viscoelastic counterpart Hvisco, with relative increase in heating rate ΔHtotal%

Figure 4. (a) The total heating rate Htotal¼Htide+Hvis as function of rock matrix viscosity for different poroelastic coefficient α and permeability κ, in
comparison with the viscoelastic body (black broken line). For all cases, rigidity μ¼ 1GPa, Ks¼10 GPa are assumed. The gray shaded box shows the
estimated total heat flux for Enceladus (25–40 GW). (b) The contours of heating rate Htotal as function of both rigidity and viscosity for two different
permeabilities, for Biot constant α¼ 0.8, Ks¼10 GPa. Gray dash lines indicate the viscoelastic counterpart. (c and d) The relative enhanced total heating ΔH%¼
(Htotal−Hvisco)/Hvisco, where Hvisco is the heating rate of the viscoelastic counterpart with the same rigidity and viscosity. ΔH% generally increases
with ηm, μ, and α due to less effective viscoelastic dissipation under longer relaxation time, and more effective poroelastic diffusion under stronger coupling
between pore pressure and matrix as α increases.
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¼ Htidal þ Hvis −Hvisco

Hvisco
ranging from 1% for small viscosities (ηm< 1014 Pa·s) to 1,000 times for large

viscosities (see Figures 4c and 4d).

Both the heating rate of the solid rock Htide and heating rate of the pore fluid Hvis vary with physical para-
meters including permeability, poroelastic coefficient, rigidity and viscosity (Figure 5). The dependence of
Htide on poroelastic parameters such as the permeability κ and poroelastic coefficient α indicates that heating
in poroviscoelastic bodies is not a straight superposition of viscoelastic and poroelastic end‐members,
because of the interaction between poroelastic diffusion and viscoelastic relaxation processes. The partition
of heat between the fluid component and solid component in the core is represented by the ratio Hvis/Htide

and varies most sensitively with the viscosity of the matrix (see Appendix B Figure B2). Other parameters,
including α, κ, and μ, only affect the partition of heat to a moderate degree.

Overall, for a moderately weakened or un‐weakened rock with viscosity ηm> 1016 Pa·s, most of the heat is
produced in the pore fluid. For some choices of α and permeability, heat production rates can exceed 10
GW and thus contribute a significant fraction of Enceladus's global heat budget without requiring ultralow
solid viscosities. For a severely weakened rock with viscosity ηm< 1015 Pa, most of the heat is produced in
the solid matrix. For a system with severely weakened rock (i.e., low viscosity) with strong tidal heating,
as proposed in Choblet et al. (2017), the contribution of porous flow is very small. As a result, we postulate
that the heat generated via porous flows was most likely to play a role before the core became severely wea-
kened, most likely in the early history of Enceladus (see section 4 below).

3.3. Spatial Pattern of Heating

The volumetric heating rate htide(r, θ) and hvis(r, θ) (Figures 6a–6f) for the poroviscoelastic body develop spa-
tial patterns in response to fluid diffusion accompanying the cyclic deformation of the solid matrix. We find
that the heating in the fluid phase hvis concentrates below the seafloor under the polar regions and decreases
with depth, with high heating rates focusing in a shallow layer with depth similar to the “skin depth” deter-
mined by poroelastic parameters (Jupp & Schultz, 2004; Vance et al., 2007) (see Appendix B). The heating in
the solid matrix htide is virtually constant, with a small decrease toward the surface over the skin depth. This
lack of spatial variation does not capture all the features of the classical model (Beuthe, 2013; Tobie et al.,
2005), due to the missing harmonic modes in the deformation potential; therefore, although the simplified
geometry is capable of reproducing the total heating rate, an accurate description of spatial distribution
requires the inclusion of more harmonic modes. The volumetric heating rates lead to a rough estimation
of the maximum surface heat flux, which is an integration of htide or hvis in the radial direction. Due to
our assumption of axisymmetric geometry, the resulting heat flux varies only with latitude at the surface
of the core (Figures 6g–6i). For heat generated in the solid matrix, the flux peaks at mid latitude but is
almost constant; for heat generated in the fluid, the heat flux peaks in the polar regions and is smallest at
midlatitudes. We note in particular that panels (h) and (i) show peak polar heat fluxes of roughly 280 and
100mWm−2, enough to account for the measured polar flux (Howett et al., 2011).

Figure 5. Tidal heating in solid matrix Htide (blue solid lines) and viscous dissipation heating in pore fluid Hvis (red dash
lines) as a function of (a) poroelastic coefficient α, (b) solid matrix rigidity μ, (c) permeability κ (Htide is shown by
left y axis), and (d) solid matrix viscosity ηm. Among the parameters κ and α affect poroelastic diffusion process,
viscosity ηm affects the relaxation process, and rigidity μ effects both processes.
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4. Evolution of Heating Rate With Weakening of the Core

The enhanced heating rates we find may also have implications for the thermal evolution in the history of
Enceladus. As postulated by Choblet et al. (2017), cyclic deformation leads to progressive weakening of
the core, which causes a reduction in viscosity and rigidity. It is therefore possible that the core of
Enceladus possessed higher viscosity and rigidity in its past, which, according to the Maxwell model, corre-
sponds to a negligible heating rate. But incorporation of a second phase (i.e., fluid) changes this conclusion,
as follows.

Direct measurements of how viscosity and rigidity evolve over time due to periodic loading are not available.
However, existing experimental studies provide relations for both the damping ratio D and effective
modulus G, which are typical measurements in mechanical tests (Ishibashi & Zhang, 1993; Rollins et al.,
1998; Seed et al., 1986). For Maxwell viscoelastic materials these quantities are determined by the

Figure 6. Distribution of volumetric tidal heating rates in solid matrix htide (a–c), viscous dissipation in pore fluid hvis (d–f), and heat flux (radial integration of
volumetric heating rates) for solid and fluid heating (g–i). The volumetric heating rates (a–f) are shown on a vertical cross section of the spherical body, and
heat flux (g–i) is shown as functions of the colatitude. The heating rates are calculated assuming the simplified tidal potential with axisymmetric geometry. Panels
(a), (d), and (g) correspond to permeability κ¼ 10−8 m2, poroelastic coefficient α¼ 0.2; panels (b), (e), and (h) correspond to κ¼ 10−9 m2, α¼ 0.2; panels
(c), (f), and (i) correspond to κ¼ 10−9 m2,α¼ 0.8. Other parameters including rock matrix rigidity μ¼ 1 GPa and viscosity ηm¼ 1017 Pa·s are assumed for all
cases. The radius of the sphere is 186 km.
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complex rigidity μ∗ asD¼ Im(μ∗)/2|μ∗| andG¼ |μ∗| (Choblet et al., 2017), which further lead to the relations

ηm ¼ G
2Dω

, μ ¼ Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4D2

p . Here we infer a weakening trajectory based on the experimental data in (Rollins

et al., 1998) on cyclically deformed gravels, where D and G are measured as functions of cyclic shear strain.
Fitting a linear relation between D and G, we obtain from the experimental data the relation D¼−0.2086G/
Gmax + 0.1828 and choose a maximum effective modulus of Gmax¼ 10 GPa. During the weakening of the
core, the effective modulus G decreases over time, leading to an increase in damping ratio D, and reduction
in matrix viscosity ηm and rigidity μ (inset of Figure 7). According to viscoelastic tidal heating models, the
heating rate increases as the core weakens (Choblet et al., 2017), and 10–30 GW of heat implies a severely
weakened core with viscosity ηm< 1013 Pa·s (Choblet et al., 2017). With the poroviscoelastic model, an
enhanced heating rate is achievable at higher viscosity and rigidity (Figure 7), implying the possibility of
intense heating in the early history of Enceladus, prior to severe weakening of its core. Prolonged heating
in the deep past of Enceladus is certainly energetically possible, based on the rate at which energy can be
supplied by Saturn (Nimmo et al., 2018). Furthermore, there are potentially interesting feedbacks, since
early water‐rock reactions could lead to alteration of the silicate mechanical properties (e.g., serpentiniza-
tion) and a potential run‐away effect.

5. Summary and Discussion

In this study we developed a poroviscoelastic description for the tidal heating process in the fluid‐saturated
core of an icy satellite and applied it to Enceladus. The poroviscoelastic rheology incorporates the coupling
between the deformation of the solid rockmatrix and fluidmotion and requires reevaluation of the heat gen-
erated during tidal flexing in both the solid and fluid component of the core. Despite simplifications in load-
ing geometry and boundary conditions, the newmodel is reasonably consistent with the classical viscoelastic
models at its viscoelastic end‐member state, reproducing the bulk part (57%) of the predicted total heating
rate. When fluid‐solid coupling effects are incorporated, the poroviscoelastic model predicts high heating
rates, which can reach 10–30 GW without requiring the ultralow solid viscosities invoked by previous

Figure 7. Possible heating trajectories during the weakening of the core. During the weakening, reduction of solid matrix
viscosity and rigidity are approximated based on experimental data published in Rollins et al. (1998), as shown in the
inset plot. The main horizontal axis shows decreasing viscosity, which indicates weakening over time. The classical tidal
heating model would predict a monotonic increase of heating rate with time through most of the weakening trajectory
(Choblet et al., 2017). For a two‐phase core, there may exist a high heating period early in the moon's history, before
sufficient weakening occurs.

10.1029/2019JE006209Journal of Geophysical Research: Planets

LIAO ET AL. 11 of 19



work (Choblet et al., 2017; Efroimsky, 2018; Roberts, 2015). Based on the characteristics of these heating
rates, we postulate that the heating rate enhancement results from both the compressibility of the solid
matrix, and viscous dissipation of the fluid flows. The model also suggests that Enceladus may have under-
gone intense tidal heating early in its history, before the core was weakened. The volumetric fluid heating
rate is maximized at shallow depths at the poles, and the surface heat flux from the fluid component peaks
at the poles. Although our model provides a simplified description of the tidal deformation process, the
enhanced heating rates suggest the importance of considering tidal heating problems in a two‐phase frame-
work where the fluid and solid components are kinematically coupled. To obtain more precise heating rates
and distributions, future analytical work will need to incorporate an improved treatment of boundary con-
ditions and the tidal forcing.

Our poroviscoelastic model also yields some results that are consistent with observations. The model pre-
dicts that the fluid heating (both volumetric heating rate and heat flux) likely concentrates in the polar
regions, which could have possible implications for thickness variations of the ice shell of Enceladus and
the high polar heat flux (Beuthe et al., 2016; Čadek et al., 2016; Hemingway & Mittal, 2019; Howett et al.,
2011). The thinning of polar ice used to be primarily attributed to increased heating at the base of the ice
shell near its melting point, while the effect of core heating was considered to be too small to be relevant
(Běhounková et al., 2012; Tobie et al., 2008). Our model suggests that the local heating in the pore fluid
and the resulting heat flux peak at polar surface regions. These high heating rates and heat flux could con-
tribute to the thinning of polar ice shell.

There are several obvious ways in which this pilot study could be extended. One is to include a full treat-
ment of the degree‐2 tidal potential, rather than the axisymmetric potential assumed here. Doing so would
allow a full exploration of the tidal forcing, and in particular help to provide a detailed constraint on the
maximum strain in the polar regions. An intermediate step would be to focus on the effect of librations:
the librational potential consists of a single degree‐2 harmonic (e.g., Richard & Rambaux, 2014), and libra-
tions may have played an important role in Enceladus's evolution (Wisdom, 2004; Wilson & Kerswell,
2018). A second obvious improvement would be to use the heating derived to calculate the resulting ther-
mal structure. This is not straightforward, however, because particularly in the high‐permeability cases, the
effects of fluid convection will need to be treated (cf. Choblet et al., 2017), likely in a parameterized fashion.
But doing these calculations is important because it is not clear whether the permeabilities and heating
rates assumed here are consistent with the high‐temperature, water‐rock reactions inferred by Hsu et al.
(2015). Likewise, the periodic introduction of warm fluid into the base of the overlying ocean is likely to
have important consequences for the ocean circulation above (cf. Vance et al., 2007) and the evolution of
the ice shell thickness.

It is also of some interest to explore where else this analysis may be applied. Larger bodies with oceans and
rocky cores, such as Europa, are likely to have a thinner permeable layer owing to the higher pressures. But
the midsized Saturnian satellites, in particular Dione (which may have an ocean; Zannoni et al., 2020) are
likely candidates for heating generate by a poroviscoelastic response to tidal forcing. A less obvious candi-
date is Io, which likely has a subsurface, partially molten permeable region in which tidal forcing is impor-
tant (de Kleer et al., 2019). We conclude, in common with Choblet et al. (2017), that the core of Enceladus is
likely a region of high heat production and fluid motion. Future work that studies the forces driving this
heating and fluid motion in more detail will increase our capacity to evaluate the thermal evolution, the
locations and likelihood or geochemistry and biochemistry below the sea floor of Enceladus.

Appendix A: Quantitative Details

A1. Solutions for Periodically Loaded Poroviscoelastic Body

During periodic deformation, interstitial pore water can flow through the porous and permeable

solid matrix, driven by the gradient of pore pressure P(r, θ, t). Assuming a periodic form for all quantities f

ðr; θ; tÞ ¼ Re f̂ ðr; θÞeiωt
h i

, Darcy's law and the continuity equation may be written as
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q̂!þ κ
ηf
∇P̂ ¼ 0; (A1)

iωζ̂ þ∇ · q̂! ¼ 0: (A2)

Here q̂! is complex Darcy's velocity, κ is the permeability of the rock
matrix, ηf is the viscosity of the pore water. The variation in fluid con-
tent ζ(r,θ,t) is defined as the volume of pore fluid entering or leaving
the pore space for a unit undeformed volume (Biot, 1941; Cheng,
2016). The stress‐strain relation for a poroviscoelastic material can
be expressed in complex form similar to linear poroelasticity,

σ̂ ¼ Km −
2
3
μ∗

� �
Trðϵ̂ÞI þ 2μ∗ϵ̂ − αP̂I; (A3)

where α is the poroelastic coefficient (also known as the Biot con-
stant) ranging from 0 to 1 and is constructed via micromechanical
relation α¼ 1− Km/Ks (Cheng, 2016; Rice & Cleary, 1976). When
α¼ 0 the constitutive relation reduces to the Maxwell formulation
in classical tidal heating studies (Brusche & Sundermann, 1978;
Peale & Cassen, 1978; Ross & Schubert, 1989; Segatz et al., 1988;
Tobie et al., 2005; Wu & Peltier, 1982). The complex rigidity μ∗ is
defined as

μ∗ ¼ μ
iωτ

1þ iωτ
; (A4)

where τ¼ ηm/μ is the viscoelastic relaxation time. An irrotational displacement is assumed to arise from

an axisymmetric degree‐2 displacement potential û! ¼ ∇Φ̂ (Landau & Lifshitz, 1959; Love, 1927), and

volumetric deformation becomesTrðϵ̂Þ ¼ ∇2Φ̂. In addition to the stress‐strain relation, the poroelastic con-
stitutive relations also prescribe a linear relationship between pore pressure P and fluid content ζ, which is
independent of the viscoelastic relaxation (Biot, 1941; Cheng, 2016; Rice & Cleary, 1976),

ζ̂ ¼ α ∇2bΦ þ α
Ku − Km

P̂

� �
(A5)

where the undrained modulus Ku is the bulk modulus of the rock‐fluid ensemble (see Table A1). Since we
simplify the geometry of the problem in the model, we do not explicitly account for the tidally varying
gravitational potential (which involves all three degree‐2 geometries) in the forcing equation. Instead,
we simply assume a quasi‐static equilibrium condition∇ · σ̂ ¼ 0 here and enforce the tidal forcing through
the surface condition as described below. By choosing solutions with axisymmetric degree‐2 pattern and
periodicity, the axisymmetric part of the gravitational potential is implicitly accounted for (see below).
The constitutive relations (A1, A2‐1, and A5) and the quasi‐equilibrium condition lead to

∇2P̂ þ k2P̂ ¼ 0; (A6)

with a complex wavenumber

k ¼ 1 − iffiffiffi
2

p
ffiffiffiffi
ω
c

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ko

u þ iωτ
Ko

m þ iωτ

s
;

where material constants Ko
m, K

o
u and poroelastic diffusivity c are

Table A1
Ranges of Parameters Used in the Study

Symbol Definition Range of value/expression

Ro core radius 186 km
α poroelastic coefficient

(Biot coefficient)
0–1

c poroelastic diffusivity
κ
ηf

Km þ 4
3
μm

� �
ðKu − KmÞ

α2 Ku þ 4
3
μm

� �
Kf bulk modulus of pore water 2.2 GPa
Ks bulk modulus of rock 10 GPa
ϕo porosity of rock matrix 0.2
Km drained bulk modulus (1− α)Ks
Ku undrained bulk modulus

Km þ α2KsKf

ϕoKs þ ðα − ϕoÞKf

μ shear modulus (rigidity) of rockmatrix 107–1010 Pa
ηf pore water viscosity 0.0019 Pa·s
ηm viscosity of the rock matrix 1012− 1018 Pa·s
κ permeability of rock matrix 10−11–10−7 m2

τ viscoelastic relaxation time for rock
matrix

ηm/μ

Tω orbital period 33 hr
ω loading angular frequency 2π

Tω
δ poroelastic skin depth

ffiffiffiffiffiffiffiffi
c=ω

p
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Ko
m; u ¼ Km; u

Km; u þ 4
3
μ

� �; c ¼ κ
ηf

Km þ 4
3
μ

� �
ðKu − KmÞ

Ku þ 4
3
μ

� �
α2

:

When the rock matrix is deformable but incompressible, the pore fluid does not share the load of the system
(α¼ 0, Ks¼∞), and the evolution of the pore fluid pressure reduces to the Navier equation for porous flows
in an incompressible matrix, which is typically assumed in hydrothermal circulation studies, for example
(Choblet et al., 2017; Fisher et al., 2003). The general form of solution for Equation A6 in spherical coordi-
nates, with an implicit boundary condition that the solution is finite at r¼ 0, is

P̂ ¼ ∑
l

∑
m ∈ ½−l; l�

Cl;mjlðkrÞPm
l ðcosθÞeimφ;

where jl(kr) is an degree‐l spherical Bessel function, Pm
l is degree‐l associated Legendre polynomial, and Cl,

m are coefficients to be determined by initial and boundary conditions. With the axisymmetric condition
(m¼ 0) and imposed degree‐2 symmetry (l¼ 2), the solution reduces to

P̂ ¼ C1ð3 cos 2θþ 1Þ 3
sin kr

k3r3
− 3

cos kr

k2r2
−
sin kr
kr

� �
: (A7)

Substituting Equation A7 into the equilibrium condition ∇2Φ̂¼ α

Km þ 4
3
μ∗

� �P̂ leads to the solution for the

displacement potential

bΦ ¼ −
αC1

k2 Km þ 4
3
μ∗

� � j2ðkrÞð3 cos 2θþ 1ÞþC2r
2ð3 cos 2θþ 1Þ; (A8)

where the second term is a general solution to the Laplace equation in viscoelastic heating problem
(Kaula, 1964; Segatz et al., 1988; Tobie et al., 2005; Wu & Peltier, 1982). Under the constitutive relations,
Equations A7 and A8 lead to solutions for other quantities,

ϵ̂rr ¼ ∂2Φ̂
∂r2

; σ̂rr ¼ Km −
2
3
μ∗

� �
∇2Φ̂þ 2μ∗ ^ϵrr − αP̂;

ϵ̂θθ ¼ 1
r2

∂2Φ̂
∂θ2

þ 1
r
∂Φ̂
∂r
; ^σθθ ¼ Km −

2
3
μ∗

� �
∇2Φ̂þ 2μ∗ ^ϵθθ − αP̂;

ϵ̂φφ ¼ 1
r
∂Φ̂
∂r

þ cosθ
r2sinθ

∂Φ̂
∂θ

; ^σφφ ¼ Km −
2
3
μ∗

� �
∇2Φ̂þ 2μ∗ ^ϵϕϕ − αP̂;

^ϵrθ ¼ 1
2
∂
∂r

1
r
∂Φ̂
∂θ

� �
−

1
2r2

∂Φ̂
∂θ

þ 1
2r

∂2Φ̂
∂θ∂r

; ^σrθ ¼ 2μ∗ ^ϵrθ ;

q̂r ¼ −
κC1

ηf
ð3cos2θþ 1Þdj2ðkrÞ

dr
;

q̂θ ¼ 6
κC1

ηf
sin 2θ

j2ðkrÞ
r

;

ζ̂ ¼ C1

α2 Ku þ 4
3
μ∗

� �
Km þ 4

3
μ∗

� �
ðKu − KmÞ

ð3cos2θþ 1Þj2ðkrÞ;

(A9)

where q̂r and q̂θ are complex amplitudes for the radial and tangential components of the Darcy's velocity.
The solutions (A7–A9) contain two complex constants C1,C2, which are constrained by the following
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boundary conditions. We specify continuity of fluid pressure and force balance at the surface of the core
(Liao et al., 2018)

σrrðR0; θÞ ¼ −PoceanðθÞ; PðR0; θÞ ¼ PoceanðθÞ;

where σrr(R0, θ) is the radial component of the total stress in the core at the surface. Pocean(θ) is the fluid
pressure applied by the overlying ocean at the seafloor. Without specifying the ocean's pressure, we use

the above two relationships to derive the fluid‐loading condition P̂ðR0; θÞþσ̂rr ðR0; θÞ ¼ 0, which leads to

C2 ¼ C1
1
2

α

k2 Km þ 4
3
μ∗

� � d2j2
dr2

ðkR0Þþ1
2

α

Km þ 4
3
μ∗

j2ðkR0Þ− 1
4μ∗

j2ðkR0Þ

2664
3775:

To constrain C1, an additional boundary condition on the maximum strain at the poles is assumed.

For diurnal tides the maximum tidal strain ϵmax ≈ 3e
M
m

R3
0

a3
h2, where e is eccentricity of the orbit, M and

m are the mass of the planet and moon, R0 is the radius of the moon, and a the planet‐satellite distance;

h2 ¼ 5
3
k2 is the tidal rising Love number (Murray & Dermott, 1999). Following Kepler's law the relation-

ship may be written as ϵmax ¼ 9
4π

e
ω2

ρG
5
3
k2, k2 ¼ 3

5
3=2

1þ 19μ∗=2ρgR
. We assume that at the pole of the core

the magnitude reaches the maximum value ϵ0 ¼ 9
4π

e
ω2

ρG
5
3
jk2j. For each set of ηm and μ, the boundary con-

dition ^ϵrr ðR0; 0oÞ ¼ ϵ0 is used for constraining C1 via equation A8.

The volumetric heating rates htide and hvis are obtained by (Al‐Hadhrami et al., 2003; Cheng, 2016; Segatz
et al., 1988; Tobie et al., 2005)

htide ¼ Σi; j
1
Tω

Z ðn þ 1ÞTω

nTω

σij
∂ϵij
∂t

dt þ 1
Tω

Z ðn þ 1ÞTω

nTω

Pf
∂ζ
∂t
dt; hvis ¼ 1

Tω

Z ðn þ 1ÞTω

nTω

ηf
κ
q! · q!dt; (A10)

where Σi,j indicates summation of all the indices. Substituting complex formulations into Equation A10
leads to

htide ¼ −
ω
2
Σij Reðσ̂ijÞImðϵ̂ijÞ−Imðσ̂ijÞReðϵ̂ijÞ

� �
−
ω
2
ReðP̂f ÞImðm̂Þ−ImðP̂f ÞReðm̂Þ� �

; hvis ¼ 1
2

ηf
κ
ðjq̂rj2 þ jq̂θ j2Þ;

(A11)

and the total heating rate is calculated by volume integration of each heating rate

Htide; vis ¼ 2π
Z R0

0

Z π

0
htide; visðr; θÞr2sin θdθdr:

A2. End‐Member Case: Tidal Heating of an Effectively Viscoelastic Body

The poroviscoelastic body behaves effectively as a purely viscoelastic one if the pore pressure is decoupled
from the loading of the solid matrix (α¼ 0), or when the pore fluid is unable to flow (e.g., κ¼ 0). In these
cases, the strain‐stress relation becomes identical to that of a viscoelastic body (Roberts & Nimmo, 2008;
Ross & Schubert, 1989; Tobie et al., 2005)

σ̂ visco ¼ K −
2
3
μ∗

� �
∇2Φ̂viscoI þ 2μ∗ϵ̂visco; (A12)

where K is the bulk modulus (K¼ Km if the system is drained or K¼ Ku if the system is undrained). The

quasi‐equilibrium condition ∇ · σ¼ 0 leads to the Laplace equation for potential Φ̂visco and a solution with
degree‐2 symmetry,
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∇2Φ̂visco ¼ 0 → Φ̂visco ¼ C3r
2ð3cos2θþ 1Þ; (A13)

which reduces the strain‐stress relation to

σ̂ visco ¼ 2μ∗ϵ̂visco;

and leads to heating rate

hvisco ¼ 1
Tω

∫ðn þ 1ÞTω
nTω

dtΣReðσijÞRe ∂ϵij
∂t

� �
¼ ω

2
Imð2μ∗ÞΣjϵ̂ ijj2 ¼ 96C2

3ωImðμ∗Þ; (A14)

where C3 is to be determined by the same maximum strain boundary condition. The heating rate hvisco is
uniform in space because of the simplified form of Equation A13 arising from the implicit condition
Φvisco|r→ 0≠∞.
Appendix B: Additional Results
Figures B1–B4 show the volumetric heating rates as functions of viscosity ηm, the ratio between viscous dis-
sipation in fluid and tidal heating in solid as a function of the viscosity ηm, Biot constant α and permeability
κ, the maximal tidal fluid responses, and the tidal and viscous heating in a shallow crust, respectively.

Figure B1. (a) Total heating rate for different solid bulk modulus Ks. A second heating peak appears when Ks is small, indicating that the enhanced heating is
linked to increased compressibility of the rock matrix. (b) Total heating rate, solid heating rate, and fluid heating rate as functions of solid viscosity for
one set of parameters. (c) Total heating rates for different α values and (d) total heating rates for different permeability values. Panels (c) and (d) indicate that
the second heating rate peak migrates to higher viscosity for larger α but does not depend on permeability.
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Figure B3. Maximum pore pressure jP̂ j, radial component jq̂r j, and tangential component jq̂θj of Darcy's velocity. The
solutions are obtained based on maximum strain condition, viscosity ηm¼ 1016 Pa·s, rigidity μ¼ 1 GPa, α¼ 0.1, κ¼
10−8 m2, ϕo¼ 20%. Globally averaged radial fluid velocity is < jq̂r j=ϕo > ¼ 3:79 × 10−6 m/s and tangential velocity is
< jq̂θj=ϕo > ¼ 2:20 × 10−6 m/s.

Figure B2. Contours of ratio between heating in pore fluid and solid matrix Hvis/Htide varying with pairs of parameters.
For panel (a), permeability κ¼ 1 × 10−10 m2; for panel (b), poroelastic coefficient α¼ 0.2. The dependence of Hvis/Htide
on rigidity μ is negligible and hence is not shown.

Figure B4. Examples of volumetric heating rate and contours in shallow crust in a hemisphere for two different
parameter combinations κ and α combination. For both cases ηm¼ 1017 Pa·s, μ¼ 1GPa, and ϕo¼ 0.2. White dash
lines indicate the skin depth δ ¼ ffiffiffiffiffiffiffiffi

c=ω
p

for oscillating poroelastic material (Jupp & Schultz, 2004). The horizontal axis
shows colatitude θ, where θ¼ 0 indicates polar region.
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Data Availability Statement

Matlab codes for realizing the analytical solutions are available at Code Ocean (Liao, 2020).
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