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Bioinformatics is an important field that seeks to solve biological problems with the

help of computation. One specific field in bioinformatics is that of genomics, the

study of genes and their functions. Genomics can provide valuable analysis as to

the interaction between how genes interact with their environment. One such way to

measure the interaction is through gene expression data, which determines whether

(and how much) a certain gene activates in a situation. Analyzing this data can be

critical for predicting diseases or other biological reactions. One method used for

analysis is Formal Concept Analysis (FCA), a computing technique based in partial

orders that allows the user to examine the structural properties of binary data based

on which subsets of the data set depend on each other. This thesis surveys, in breadth

and depth, the current literature related to the use of FCA for bioinformatics, with

particular focus on gene expression data. This includes descriptions of current data

management techniques specific to FCA, such as lattice reduction, discretization, and

variations of FCA to account for different data types. Advantages and shortcomings

of using FCA for genomic investigations, as well as the feasibility of using FCA for

this application are addressed. Finally, several areas for future doctoral research are

proposed.
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Chapter 1

Introduction

Computation has been used to solve several important biological problems in the past

few decades. A principal example is the Human Genome Project [1], an effort in the

early 2000’s, which worked to produce a database of human genome sequences, or

sequences of molecular structures that instruct a cell what to do in response to a situ-

ation. The database produced is still being analyzed today to determine which areas

produce biological functions, and identify how variations and mutations in genes can

lead to development of diseases, such as cancer or Alzheimer’s. The project is part of

the field of genomics, the study of genes, their functions, and their inter-relationships.

Genomics is distinguished from genetics, which is the study of individual genes and

their hereditary properties [3].

In studying groups of genes, it is helpful to see how a gene responds to a biological

situation, whether lab- or nature-induced. This response is called gene expression,

and expression data is often measured from microarrays, chips that store up to tens of

thousands of individual DNA strands. Through a biological process called the Central

Dogma of molecular biology [27], RNA transcriptions of genes can be analyzed with

Northern blotting to examine gene responses [2, 71, 59].

After the success of the Human Genome Project, much attention was given to

how large amounts of genomic data can be analyzed. Clustering [49] is an important
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area, as assigning genes with similar expression levels can reveal which genes work

together in situations. Clustering can be done with Formal Concept Analysis (FCA),

a theoretical framework of computing based on partial orders that allows the user

to examine the structural properties of binary data based on which subsets of the

dataset depend on each other. FCA was developed in the 1980s by Wille to revitalize

lattice theory, part of abstract algebra, to provide benefits of examining the structure

of data to other fields [91]. While FCA was originally developed for binary data,

variations and extensions have been a popular area of research, such as for fuzzy

[17, 65], probabilistic [31, 28, 88], or time series data [54]. Since its conception, FCA

has benefited fields looking at the structure of its data, ontologies, and other areas

where hierarchical analysis is helpful.

FCA works by first determining concepts, subsets of the dataset that are marked

by maximal Trues. Then, a mathematical structure called a lattice is developed to

hierarchically examine the structure of those maximal subsets. For smaller datasets,

the lattice can also be visualized to uncover implicit information about the data and

how certain areas depend on one another. Implementations to visualize the lattice,

such as LatViz and Concept Explorer [6, 92], were developed in the early 2000s.

For larger datasets, the lattice may be prohibitively complex due to the potentially

exponential number of concepts. This exponential risk is one of the main drawbacks

of using FCA.

Over the last few decades, FCA has been used to analyze various types of data

relating to bioinformatics [44, 20, 68, 76, 41, 23, 81, 80]. The majority of studies,

however, have focused on using Formal Concept Analysis to analyze gene expression

data [79, 49, 75, 26, 21, 48, 22, 57, 53, 56, 47, 85, 40, 11, 12, 62, 58, 7, 8, 9]. Early

uses of FCA to analyze gene expression data attempted to identify groups of genes

with similar expression levels [79, 21, 75, 26]. These groups are called co-expressed
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genes. While some formative studies in the field, such as Potter [75] and Choi [26]

used the concept lattice, most only examined the lists of concepts generated. These

studies essentially reduced FCA’s effectiveness to that of a clustering tool’s, instead of

using its full hierarchical capabilities. More recent studies investigate more complex

variations on the initial problem, as well as disease similarity and the makeup of genes

in certain disease subtypes. These areas are promising and may be further developed

to make full use of of what FCA has to offer.

In addition to examining these studies and their effectiveness, a more important

question is whether these studies using gene expression data should make use of FCA

in the first place. What benefit does FCA-based clustering provide the genomics field

that other clustering methods cannot? If the concept lattice is not used, examina-

tion of whether FCA still provides benefit is a worthy research question. If FCA is

beneficial, discovering other fields of benefit is also necessary.

Several other areas where FCA may provide benefit should be examined as well.

For example, classification is a similar problem to clustering, and is a common tech-

nique in data mining that FCA can be used for. Once the concept lattice is generated,

predicting which concepts new data will be added to is an interesting problem, espe-

cially when combined with fuzzy data or other extensions of FCA [43].

Another area of possible worth is the framework of FCA as a bipartite graph.

Some investigation into this framework has been done [39], but additional work in

this field, especially with pairing FCA and graph algorithms (such as in [25]), may

lead to interesting results for FCA as a theoretical framework and as a graph theoretic

model.

The contributions of this thesis are as follows:

• We survey the literature that uses Formal Concept Analysis to study bioin-
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formatics, particularly gene expression data, providing a study in depth and

breadth of FCA’s benefits and drawbacks to the field. In addition, we remark

on FCA’s feasibility for the field. A similar survey studying how FCA is used

to discover knowledge from biological data, including gene expression data, was

done in 2017 [78]. We expand on that portion of the work by providing a robust

explanation of FCA and various data management strategies, as well as exam-

ining the feasibility of using FCA for such an application. This portion of the

thesis is currently under preparation for submission to the ACM Computing

Surveys journal.

• We identify areas of research in the intersection of Formal Concept Analysis

and gene expression data.

• We define two concrete problems for future research for Formal Concept Anal-

ysis which can lead to our PhD dissertation.

The rest of this thesis is organized as follows. First, in Chapter 2, a basic biological

background of gene expression data is provided. We provide insight into how FCA

works, some variations of FCA, and methods of managing data in Chapter 3. Next,

we examine how FCA has been used to analyze gene expression data in Chapter 4.

Finally, in Chapter 5 we identify areas of future research into FCA and conclude.
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Chapter 2

Biological Significance of Gene Expression Data

In this chapter we give an overview of the biological motivation for gene expression

data.

A living organism can contain trillions of cells, which are a basic unit of life. Cells

must perform certain functions to stay alive. Those functions are often completed

with the help of molecules called proteins, that carry out instructions provided by

the cell. The presence or absence of a protein can be measured to determine both

how a cell performs basic functions and how a cell reacts to its environment. In

order to measure this, we must first look at different molecules in the cell. To begin,

the nucleus is a membrane-enclosed molecule that holds chromosomes, each of which

include a string of deoxyribonucleic acid (DNA). DNA is where the organism’s genes

are stored, which are instructions for cell functions.

DNA is constructed with nucleotides, which are molecules including adenine (A),

cytosine (C), guanine (G), thymine (T), and uracil (U). Genes are constructed with

four out of these five nucleotides (A, C, G, and T), and various combinations of the

four can result in millions of different genes, depending on the organism.

DNA is similar to another type of molecule, ribonucleic acid (RNA). Both RNA

and DNA are constructed of nucleotides (RNA uses A, C, G, and U1). DNA is an

1Note that for reasons outside the scope of this paper, only DNA contains thymine and only
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intersecting double helix of nucleotides, while RNA is only a single strand, and is

obtained by copying sections of DNA. Although there are many different types and

functions of RNA, we focus on only three main types for this explanation: messenger

RNA, transfer RNA, and ribosomal RNA. Messenger RNA, or mRNA, contains a

copied gene from DNA that serves as the instructions for the future process. Transfer

RNA (tRNA) is a folded strand of RNA that is bonded with an amino acid. Ribosomal

RNA (rRNA) is part of the ribosome (a structure outside the nucleus) that helps

synthesize proteins.

We now look at how protein (and a sequence of proteins, called a protein chain),

is constructed, which will allow us to discuss cell reactions to the environment. The

first step is transcription. In this step, DNA is copied onto a strand of mRNA

within the nucleus. The second step is translation. In this step, the contents of the

mRNA interact with the other types of RNA to produce a protein chain. The mRNA

polymerase moves down a strand of DNA, copying the contents of a gene onto the

mRNA. Once the copying has concluded, the mRNA passes out of the nucleus.

The genes that the mRNA transcribes encode functions in the cell [2]. The levels

of mRNA can be determined with the Northern blot method [59, 71]. Our aim is to

analyze the mRNA levels.

Experiments relating to this protein production involves cells undergoing situa-

tions in a laboratory, and scientists measuring the resultant protein output. Recent

technologies allow for many experiments to be conducted at once in a microarray,

which contains thousands of cells, each containing a single gene. From this type of

experiment, the expression level, or amount of protein produced, of each gene is ob-

tained, usually as a numerical floating-point value. The resultant matrix of genes

tested versus situations tested in is called the gene expresion matrix (GEM), and the

RNA contains uracil; if RNA encounters thymine it is treated as uracil.



7

data in the matrix is called gene expression data (GED).
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Chapter 3

Formal Concept Analysis and Data Management

To see how analysis of gene expression data is done with Formal Concept Analysis

(FCA), we must first address its basic definitions. The following section enumerates

the definitions, describes several variations on the traditional structure, and addresses

how to manage incidents of high-complexity data.

3.1 Examples and Definitions

The input to Formal Concept Analysis is a formal context, a theoretical structure

similar to a matrix. The rows of the context represent objects, and the columns

represent attributes. A True (represented by an “X” in our examples) in a certain row

and column of the context indicates the corresponding object has the corresponding

attribute. Conversely, a False (respectively, the absence of an “X”) indicates the

corresponding object does not possess the corresponding attribute. Note that objects

and attributes may be purely abstract.

Formally, the context is a triple K = (G,M, I) where G is the set of objects, M

is the set of attributes, and I is the binary relation between the object and attribute

sets. One simple example of a context, K1, is shown in Table 3.1. Various animals

chosen (Dog, Cat, Fish, Parrot, Duck, and Snake) may or may not possess the various
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attributes (having Tail, Whiskers, Fur, Feathers, Scales, or Fins; able to Swim; making

Noise). A naive observation of a collection of these animals results in data that

indicates all the animals have a Tail; only Dog and Cat have Whiskers and Fur;

Parrot and Duck have Feathers; Snake and Fish have Scales; Fish is the only animal

with Fins; Dog, Fish, Duck, and Snake can Swim; and all except for Fish make Noise.

This data is stored in the matrix representing the relation I between G and M . Later,

in Section 3.2, we will address the concern that these attributes might not be true for

all individuals of these species.

Table 3.1: Animals and their characteristics represented in a binary FCA context
called K1.

K1 Tail Whiskers Fur Feathers Scales Fins Swims Noise

Dog X X X X X
Cat X X X X
Fish X X X X

Parrot X X X
Duck X X X X
Snake X X X X

Once the context is constructed, we must discover implicit information in the data

by looking at its structure and hierarchy. This is achieved with a formal concept,

referred to as a “concept”, for which FCA is named. The formal concept is a subset

of the matrix with “X”s in all locations, according to some constraints addressed in

Definitions 1 and 2.

Definition 1 (Intent). For a set A ⊆ G of objects, the intent of A is denoted by A′,

where

A′ := {m ∈M | every object g in A possesses every attribute m}.
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Alternatively, this is the corresponding set of attributes that all objects in A pos-

sess.

Example 1. As a simple example, for the set A = {Dog, Cat}, the set A′ is

{Tail, Whiskers, Fur, Noise}.

Definition 2 (Extent). For a set B ⊆ M of attributes, the extent of B is denoted

by B′, where

B′ := {g ∈ G| every attribute m in B is possessed by object g}.

Alternatively, this is the corresponding set of objects that possess all the attributes

in B.

Example 2. For the set B = {Swims, Noise}, the set B′ is {Dog, Duck, Snake}.

We can also obtain A′′ from Example 1, which is A′′ = {Dog, Cat}. Similarly, B′′

from Example 2 is {Tail, Swims, Noise}.

Definition 3 (Formal Concept). A formal concept is a pair (A,B) of objects and

attributes, respectively, such that A′ = B and B′ = A. A is called the extent of the

concept and B is called the intent of the concept.

Put another way, a concept is simply a pair of objects and attributes (A,B) such

that every object in A possesses all attributes in B, and every attribute in B is

possessed by all objects in A. Due to this definition, (A,A′) from Example 1 is a

concept because A′ = A′ trivially and A′′ = A. However, (B′, B) from Example 2

is not a concept because B′′ 6= B. We define the set of all concepts of a context as

B(G,M, I).
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With these definitions, another example concept is shown in Table 3.2. This

concept is constructed by choosing the set A={Parrot, Duck}, then obtaining all

attributes that satisfy A′. These attributes are B = {Tail, Feathers, Noise}. Even

though Noise and Tail are both attributes that belong to objects outside the set A,

the inclusion of the attribute Feathers in B restricts the object set A to only Parrot

and Duck, since both objects are the only to share the attribute Feathers.

Table 3.2: A sample concept from the context K1 in Table 3.1. Notice that for the
objects Parrot and Duck, all attributes in common to both objects (Tail, Feathers,
Noise) are included in the concept.

Tail Feathers Noise

Parrot X X X
Duck X X X

Because the concepts are specific subsets of the original context, some concepts may

depend on each other. We demonstrate this with another valid concept in Table 3.3,

and Definition 4.

Table 3.3: A concept (A,B) where A = {Cat, Parrot, Duck, Snake} and B = {Tail,
Noise}.

Tail Noise

Cat X X
Parrot X X
Duck X X
Snake X X

Definition 4 (Subconcept, Superconcept). Given two concepts C1 = (A1, B1) and

C2 = (A2, B2), C1 is a subconcept of C2 (denoted C1 ≤ C2) iff A1 ⊆ A2 or B1 ⊇ B2.

Equivalently, C2 is said to be a superconcept of C1 and C2 ≥ C1.

It is simple to see that every context will have two trivial concepts: the first has a

potentially empty extent and an intent containing all attributes in the context. The
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second has an extent containing all objects in the context, and a potentially empty

intent. We consider these potentially empty sets as valid parts of their concepts due

to a possible coincidence that all objects share one or more attributes (as in the case

of the attribute Tail in K1) or all attributes being possessed by one or more objects.

For ease of repetition, we will call the all-object concept CG and the all-attribute

concept CM .

FCA was created with lattice theory, an existing field of modern algebra, to re-

connect abstract mathematics to the modeling of real-world situations and data. We

now present some key definitions of lattice theory, beginning with the join and meet

of a set in Definitions 5 and 6, then discuss how the definitions function in FCA.

Definition 5 (Join). A set S with a partial order ≤ has a join iff there is an element

c ∈ S such that c ≥ x for every x ∈ S. c is also called the supremum or least upper

bound of S.

Definition 6 (Meet). A set S with a partial order ≤ has a meet iff there is an

element c ∈ S such that c ≤ x for every x ∈ S. c is also called the infimum or

greatest upper bound of S.

The set of all concepts, B(G,M, I), as well as its subsets, fulfills a pair of strict

definitions involving the join and meet of its elements.

Definition 7 (Lattice). A lattice is a set S such that there is a join and meet for

every pair of elements of S.

Since pairs of concepts in B(G,M, I) have at least the general supremum CG

and the general infimum CM , B(G,M, I) is a lattice. In addition, B(G,M, I) has a

structural property that every one of its subsets has a join and meet. The meaning
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of this in lattice theory is defined in Definition 8 and its implications are discussed in

the following paragraphs.

Definition 8 (Complete Lattice). A complete lattice S is a lattice such that every

subset of S has both a join and a meet.

The term for the lattice of concepts ordered by the subconcept-superconcept re-

lation is defined in Definition 9.

Definition 9 (Concept Lattice). The set of all concepts, ordered by ≤, is called the

concept lattice and is denoted by B(G,M, I).

The concept lattice B(G,M, I) is a complete lattice, the rigorous proof of which

is out of the scope of this paper; however, it can be found in Theorem 3 in Ganter

and Wille’s book [38]. Instead, we offer a general understanding of the theorem. If

B(G,M, I) was not complete, there would be some set Y ⊆ B(G,M, I) for which the

join or meet would not exist. Y could not be CG or CM , since these two concepts,

always present in the concept lattice, are the join and meet of themselves: CG is the

join of itself and CM , while CM is the meet of itself and CG. It remains for Y to be

a singleton concept in the lattice. However, since CG and CM are the respective join

and meet of the entire lattice, it is impossible for Y to be a singleton. This means that

because B(G,M, I) is a complete lattice, it must be connected in a graph theoretic

sense. In this way, although the data may be disjoint (concepts apart from CG and

CM are not sub or superconcepts of each other), it will not be disconnected, and can

therefore be analyzed accordingly.

A visualization of K1, made with LatViz [6], is shown in Figure 3.1. In this

type of diagram, there are three main parts for interpretation: vertices, edges, and

labels. Circles are concepts; lines represent subconcept-superconcept ordering, with
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a subconcept represented below the superconcept; labeling enables the reader to see

which objects share certain attributes in a way that will be explained once the entire

diagram is constructed. Even though one concept may be below another, physical

distance is of no relevance in the diagram. We now present a more detailed example

of how the concept lattice is constructed and how it may be interpreted in Example

3.

Figure 3.1: The concept lattice for context K1.

Table 3.4: A simplified context.

K2 Noise Scales Fins

Fish X X
Snake X X
Parrot X

Example 3. Taking a subset of data to be K2 (Table 3.4) from the original context

K1, we compute 6 concepts: CM with an empty object set, the set of all attributes

the animal Snake possesses (C2); the set of all attributes the animal Fish possesses

(C3); the set of all objects possessing the attribute Scales (C4); the set of all objects

possessing the attribute Noise (C5); and CG with an empty attribute set. According

to our definitions, no other concepts apart from these six are possible, as it would
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involve one of the object or attribute sets not equaling the equivalent intent or extent,

respectively.

Now that we have computed all the concepts, we determine if some are subconcepts

or superconcepts of each other. By examining the corresponding object and attribute

sets, we find CM ≤ CG, as expected. Additionally, C2 ≤ C4, C5, and CG, while

C3 ≤ C4 and CG. We find that C4 and C5 have no relation between each other

because neither has a set that is a subset of the other’s. C2 and C3 are similarly

disjoint. All six concepts are superconcepts of CM . All six concepts are subconcepts of

CG. Drawing these dependencies according to the previously mentioned specifications,

we obtain the concept lattice (Figure 3.2).

Figure 3.2: Concept lattice for the context X2 from Table 3.4.

Fish

Fins

Scales

Snake

Parrot

Noise

CM

CG

We label the objects on the concept lattice by first working bottom-up [37]. We label

the concept with an object if it is the object’s first appearance in the lattice is in that

concept. Similarly, work top-down to label (in italics) the first occurrence of each

attribute. When fully labeled, this allows us to work “up” the concept lattice to find

an object, then see, by moving only to superconcepts of the concept where the object

first appears, the attributes that object possesses. Similarly, if an attribute is found,

moving only to subconcepts, we can see the objects that possess that attribute. In this

way, we can see that fins are only possessed by fish in our simplified context, and that
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a parrot’s only attribute is that it makes noise. Thus the concept lattice allows for a

more intuitive method of examining the data, rather than looking solely at the binary

matrix.

3.2 Variations of FCA

Although FCA was developed to use a binary context, most real-life applications

may not use binary data. For example, gene expression data often uses floating-point

values to represent protein concentration as a result of how genes react in different

situations. There are several options to analyze such data with FCA. Either the multi-

valued data can be binarized to 0 and 1, remain as multi-valued data and perhaps

be used as fuzzy or probabilistic data, or be represented in pattern structures. Since

application-specific binarization (discretizing data to binary values) methods will be

discussed in Section 4.2.1, we will briefly describe the latter two options here.

To motivate Fuzzy FCA, we observe that different breeds of cats in the context K1

may have differing amounts of fur. Some breeds (Turkish Angora, British Longhair)

have long fur, and others (Sphynx, Peterbald) are hairless or almost so. Other cats

(Siamese, Tabby) can fall between the two extremes. To represent this variation

accurately in our context, one option is to expand the “Fur” attribute into three:

Fur-Long, Fur-Short, and Fur-None. We may do a similar refinement process for the

attribute “Noise”, since each of the animals in K1 make different noises. We may

expand Noise to: Noise-Bark, Noise-Growl, Noise-Mew, Noise-Hiss, Noise-Squawk,

and Noise-Quack. While this strategy may help clearly refine our small context and

eliminate possible confusion of varying breeds, it is not necessarily scalable for the

whole data set. For contexts with a high number of dimensions, this process could lead

to an explosion of binary attributes, many of which might not be relevant for most
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objects that did not possess the attribute in the first place. This method of expanding

attributes to suit the data is known as scaling, and will be further addressed in Section

4.2.1. As an alternative, Fuzzy FCA is sometimes used to accommodate variation in

an object’s possession of an attribute. A user-friendly explanation of Fuzzy FCA is

detailed in [65], a small summary of which is given here.

Instead of a binary value, fuzzy contexts’ attribute values are real-valued num-

bers, usually in the range of [0, 1], where the attribute value represents the degree of

attribute in the object (e.g. amount of fur on a cat). A fuzzy subset of a context is

made up of fuzzy object and attribute sets, each one specifying how relevant it is to

specify the element it contains. This is often represented as a threshold to determine

an object or attribute’s inclusion. To generate concepts, a residuum, or fuzzy impli-

cation, determines whether the threshold is met for each object and attribute. From

here the concept lattice, a residuated lattice, can be constructed.

To avoid the explosion of number of attributes, pattern structures [36] may be

used, which can capture information about numerical attributes without need for

scaling. Pattern structures can also be connected with Fuzzy FCA [24]. A few

authors have analyzed gene expression data with FCA and pattern structures [45, 51,

55, 14, 49, 53, 56]. This developing field is a promising alternative to scaling, and

should be further explored to assess its user-friendliness and scalability.

Another way FCA can be applied is in probabilistic applications [50], the theory

of which is based on rough sets. Unlike fuzzy sets, which involve the degree of an

attribute manifesting in an object, rough sets are used to extract knowledge from

missing or incomplete data by estimating the missing or incomplete set’s boundary

regions. These regions are computed to attempt to determine the certainty of an

object possessing a given attribute. Rough set theory can also help reduce data

redundancy by treating objects which possess the same attributes as indiscernible
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and thus identical. For example, if the pair (Cat, Swims) was present in the context

K1, the objects Cat and Dog would be indiscernible for the purposes of rough sets,

and the objects could be merged to create a reduced data set called the reduct. FCA

can also be used with rough set theory to generate probabilistic association rules [88]

and further discover maximal potentially useful rules in databases [30, 29].

Use of these variations in analysis of gene expression data is becoming more pop-

ular, but still lacks a widespread implementation.

3.3 Reducing Concept Lattice

Whether using a variation of FCA or not, a common issue in data analysis is that with

larger datasets, the number of concepts greatly increases, as does the size of the lattice.

This leads to a cluttered visualization and decreasing intuition unless preventative

steps are taken to reduce the concept lattice into an interpretable structure. These

steps may include algorithms to generate (select) only specific concepts, to simplify the

context by removing redundant objects and/or attributes, or to simplify the concept

lattice itself by eliminating concepts that capture information already represented in

the lattice.

A comprehensive survey of this topic was written in 2015 by [32], which addresses

the categories of selection, removing redundant information, and simplifying the lat-

tice. We mention here strategies of lattice reduction in these categories that have

emerged after the survey’s publication or were not mentioned.

Selection of concepts is done while computing the initial list of all concepts. Al-

gorithms to do so have been developed, with varying improvements, including com-

putation requirements, threshold of concept inclusion, and incremental construction

of the concept lattice. ParallelGenerate and FCbO [60, 61] require no synchro-
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nization when computing concepts. In-Close2 [10] allows for an input of minimum

support threshold for a concept’s object and attribute inclusion, which reduces the

overall number of concepts and potentially allows more “significant” concepts to be in-

cluded. AddIntent [86] constructs the concept lattice diagram incrementally, rather

than computing all concepts and expensively building the diagram from scratch.

The other main methods of selecting concepts include functional dependencies

[52, 67], an expression of FCA’s attribute implications. However, functional depen-

dencies are often defined over the numerical and categorical attributes, while in FCA,

implications are defined over binary attributes. An approach for classical FCA was

developed [64] and is quadratic for the number of objects in the context, thus not

scalable for large data sets. To overcome this limitation, authors in [16] present an

approach for transformation by introducing partition pattern structures to apply bi-

narization over attributes rather than objects. In partition pattern structures, the

dataset is partitioned on attributes with sets over objects with same value of at-

tributes. This results in reduced concept lattice size but with equivalent results that

may be scalable for large data sets.

Methods to remove objects and attributes from the context include algorithms to

change specificity of binary data, locally reduce attributes instead of globally, and

theoretical methods to find the reduct of the context. The algorithms Fold [89]

and Unfold [93] are used to increase granularity (fineness) of attributes. This is a

significant step in binarization of a multi-valued matrix to a formal context, but the

resulting set of attributes impacts the total number of concepts, thus meriting inclu-

sion in this discussion. Another method to reduce attributes is to use decision rules

to determine local attribute reductions [77], to avoid loss of information locally. This

method can help improve three-way classification. Other theoretic methods include

[25], which proposes method for constructing simplified discernibility matrix which
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does not require to generate all formal contexts. Further, a fast heuristic algorithm

is designed based on graph theory to greedily find the vertex cover corresponding to

the attribute set, and so obtain the reduct of the formal decision context. Using the

Min-Ex algorithm [72], intrinsically noisy data can be reduced by mining association

rules, then extracting sets of objects that are more significant than the naive explo-

sion of concepts through traditional means. This produces a so-called “fault-tolerant”

FCA, with concepts bounded by a number of dimensions.

To simplify the lattice by choosing representative concepts from the total list of

concepts, attribute clustering, theoretical extensions of FCA, and minimal generators

are used. Fuzzy attribute clustering [63] allows for more flexibility in multi-valued

data, while clustering attributes with the Jaccard similarity [84] can be completed

with binary data.

Theoretical extensions of FCA can also assist in choosing representative concepts.

Authors in [16] demonstrated that increasing uncertainty in formal fuzzy concept

analysis leads to reduction in size of the concept lattice. In their previous work [15],

they presented an attribute-oriented concept lattice where attributes were derived

as positive and negative information from the given data. In the present work [16]

they show that the uncertainty is naturally modelled in Fuzzy FCA which, in turn,

naturally leads to lattice size reduction.

A fairly common approach is to identify the minimal combination of objects or

attributes (called minimal generators) that distinguish the objects of one concept

from other. In 2002, an incremental algorithm to mine minimal generators [73] was

proposed. However, the minimal generators may still contain redundant attributes.

Therefore, in 2005, a new algorithm was proposed to remove the redundancy [34].

A depth first search approach is followed to build a depth first tree representing all

attribute set for a given set of attributes. Then, useless branches are removed from
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the tree. Their approach is experimentally validated on two real test datasets, UCI

Mushroom and colon tumor gene expression [5]. The results shows that the succinct

approach can deal with high dimensional and large real datasets.

Each of these methods can assist the user in generating an interpretable concept

lattice, thus aiding in analysis. This concludes our discussion of how FCA works and

FCA-specific data management strategies.
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Chapter 4

Analyzing Bioinformatics Data with Formal Concept

Analysis

4.1 General Bioinformatics Applications

Formal Concept Analysis has been used as an approach for knowledge discovery in

various bioinformatics fields. A comprehensive survey of use of FCA for knowledge

discovery was done by [74].

FCA being used in bioinformatics areas other than gene expression data include

[44], which analyzes metabolomic data with FCA as a key step to find patterns in the

database. Another area concept analysis has been used for is finding ecological traits

in hydrobiological data [20]. Fuzzy FCA is used, and scaling of the multi-valued data

is done with histogram scaling. Phylogeny has been approached as a possible area of

interest in FCA, especially with the concept lattice as a visual structure to analyze

evolutionary data. An attempt at using phylogeny with FCA for information-retrieval

and conceptual clustering was done by [68]. Evolutionary analysis with FCA was also

attempted by [76], who compared the concept lattice to median networks. However,

it is shown in [41] that FCA is not equivalent to a median graph, and therefore the

area requires more formalism and caution before FCA can be applied to phylogeny.

The survey [74] also cites areas FCA has been used for in biochemistry and
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medicine. These areas include applications such as predicting the biological activity

in chemical compounds [23], identifying similar test results [81], and examining drug

reactions [80]. The majority of FCA’s effect in bioinformatics has been in analyzing

gene expression data.

4.2 Gene Expression Data Analysis

The structure of FCA, specifically its concept generation from data, lends itself to

to generating groups of genes that are expressed similarly. These groups are com-

monly called synexpression groups or co-regulated genes. In this section, we first

examine how gene expression data can be discretized to work with classical FCA

(Section 4.2.1). Then, we discuss the various studies that use FCA (Section 4.2.2),

beginning with synexpression groups and surveying other developments topically, in-

cluding disease applications in Section 4.2.3. Finally, We conclude with a discussion

of the feasibility of such applications in Section 4.3. A brief summary of the methods

surveyed and their purposes can be found in Table 4.1.

Table 4.1: A summary of authors’ purposes for using FCA to analyze gene expression
data.

Category Regarding Papers
Feasibility Studies [79], [49], [75], [26]

Transcription Factors [21]
Multiple Experiments [48]
Synexpression Groups [22], [57],[53],[56]

Gene networks/Negative Synexpression [47], [85],[40]
Biological Functions [11], [12]

Diseases
[62], [58],

[7], [8], [9], [69]
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4.2.1 Discretization of Gene Expression Matrices

Before examining the applications in detail, how the gene expression data is dis-

cretized must be discussed. Several common techniques are used to discretize and/or

binarize (discretize to 2 values) gene expression data data. These will be addressed

in full in the applications, but we briefly explain them here. The easiest method of

binarization is measuring whether a gene is expressed or not (E/NE); this is deter-

mined by assigning 1 if the value exceeds a threshold for each gene [79]. This method

is also used to capture whether a gene is overexpressed in a situation [72, 22]. Strong

expression, whether positive or negative, can be captured is a similar method [21].

A variant of this is first transforming the matrix to a 3-valued matrix (often -1, 0,

1) based on each row’s value varying from the average. From there, the matrix is

discretized to a binary matrix by doing a similar computation [46, 85, 47].

Some of these methods, especially overexpression or E/NE, risk losing the strength

of expression by setting a threshold. To retain a measure of expression strength,

interordinal scaling is used [75, 57]. Using binary attributes of one-sided intervals to

partition the multi-valued data was proposed [75]. However, if an attribute exceeds

a certain threshold, then the object will possess all the relevant attributes, not just

one. A following study proposed two-sided intervals (called interordinal scaling) to

address this issue [57]. The intervals chosen in interordinal scaling correspond to a

scale proposed by [26] and [70]. Measuring the similarity of concepts discretized with

interordinal scaling was done by [35]. Interordinal scaling can also be combined with

pattern structures [53].

Another way to binarize is to use cluster membership when clusters of genes are

computed as a preprocessing step [48]. Groups of genes can be also be used using

Rough Set Theory, where all permutations of objects are paired together [82, 83]. The
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attribute for the new paired object is measured by how the second attribute’s value

compares to (by < or ≥) the first. Classification results shows reasonable results.

However, this method results in quadratic complexity, as discussed in [14], so using a

similar process with pattern structures is proposed instead, as it is more scalable and

feasible for the lattice construction. However, this method has been used to analyze

the effect of discretization, and not on the biological impact of such calculations.

Whatever method of discretization is used, it must be directly related to the

purpose of the study. As discretization has inherent data loss, care must be taken as

to which method is used.

4.2.2 Applications of Gene Expression Data

We now address how gene expression data is analyzed with FCA. Two authors ini-

tially examine the feasibility of clustering gene expression data with similar methods

to FCA. In a 2003 study, [79] examines Galois concepts in discovering co-regulated

genes. Results of different discretization methods are also examined, which shows

insight into its importance. A 2004 survey explored the feasibility of clustering gene

expression data [49]. Although Formal Concept Analysis is not explicitly mentioned,

the survey describes how clustering (including biclustering, a similar method to FCA)

can be used to gain information from a microarray gene expression matrix . In par-

ticular, clustering methods specifically used for gene expression data as well as class

validation and the reliability of produced clusters are discussed. Other early attempts

to do gene expression analysis with FCA include finding transcription factors, pro-

teins that regulate whether a gene is expressed or not. Using the algorithm D-Miner,

formal concepts with Galois operators are mined [21]. The concepts then reveal the

transcription factors.

Potter, in his doctoral thesis, is one of the first to use FCA with microarray
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data. In his algorithm microBLAST, Potter uses interordinal scaling as one way

to discretize the gene expression matrix, which is done by comparing the expression

level of each gene to an inequality. If a gene does fulfill an inequality, it is said to

possess that attribute. An example of this transformation is shown below in Tables

4.2 and 4.3. One potential issue is that if an attribute exceeds a certain threshold,

then the gene will possess all the relevant attributes, not just the closest one. This

issue is addressed in [57]. Potter then creates the microBLAST lattice from the

biological lattice, which is simply the concept lattice of the discretized biological

data. No mention is made of synexpression groups or other specific applications to

gene expression data.

Table 4.2: Original sample gene expression matrix.

s1 s2
g1 5.3 0.7
g2 3.36 1.2
g3 2.5 0.25
g4 0.43 0.96

Table 4.3: Gene expression matrix discretized with interordinal scaling.

s1,≥ 1 s1,≥ 2 s1,≥ 3 s1,≥ 4 s2,≥ 0.5 s2,≥ 0.75 s2,≥ 1
g1 X X X X X
g2 X X X X X X
g3 X X
g4 X X

Potter’s seminal work is then implemented in Choi et al [26]. The authors ap-

proach the problem of binarization in a method similar to interordinal scaling, by

dividing the number line according to the “gaps” in expressed numerical values.

Then recursively partition the intervals into subintervals until a desired partition-

ing is reached. This allows any given gene in the context to possess the one-valued

attribute of being in its interval. Concept lattices are generated for each separate
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experiment, and then compared according to a defined distance. The distance Choi

et al propose is a measure of which genes each vertex (concept) in the lattice shares

with another. This allows for comparison and analysis of different experiments with

mouse lung tissue gene expression data.

Using multiple experiment data is further explored in [48], which proposes multiple

experiments can be beneficial to analysis because the risk of biases in individual

experiments is reduced, and combining data can result in a higher confidence of

results. Binarization is done by first partitioning then consensus clustering the genes.

Then, the context objects are genes while the attributes are whether each gene belongs

to each cluster. Analysis is done with a time series dataset of fission yeast, and the

biological significance of these results are discussed.

Identifying the synexpression groups of a dataset is the explicit purpose of [22].

Discretization is done by overexpression: if a gene’s expression level in some situation

is over a set threshold, the relationship is 1, 0 otherwise. The extraction of concepts

is done with D-Miner [21], an algorithm designed to extract transcription factors,

which works through local pattern discovery. The intent of these extracted concepts

are then examined to find the synexpression groups.

The effects of various binarization techniques on discovered synexpression groups

are explored by [57, 53, 56]. In the first study [57], a binarization method called

conceptual scaling, which converts the value of each expression level to an interval, is

proposed. If an expression level does correspond to an interval, it is said to possess

that attribute. This is a better method than Potter’s interordinal scaling, because if

two expression levels fulfill a certain inequality, there is a better chance that attributes

do not overlap. An example of Table 4.2 converted to binary data with conceptual

scaling is shown in Table 4.4. A potential downside to this method is that the number

and size of intervals should be determined by an expert to avoid losing too much
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precision.

Table 4.4: Gene expression matrix discretized with conceptual scaling proposed by
Kaytoue-Uberall et al.

s1, (4,∞) s1, (3, 3.99) s1, (2, 2, 99) s1, (0, 0.99) s2, (1, 1.99) s2, (0.5, 0.99) s2, (0, 0.499)
g1 X X
g2 X X
g3 X X
g4 X X

In the second study, the effects of binarization on algorithms Norris, CbO, and

NextClosure are examined. In particular, two methods of adapting real-valued

data to a form FCA can use are inspected. These two methods, interordinal scaling

and pattern structures, are used to reduce the size and complexity of the concept

lattice in experiments with Laccaria bicolor, a fungus that is found on tree roots

[53]. With data in a gene expression matrix, the numerical data is represented as as

attributes in terms of scales. For example, if a gene gi has value wj in situation sk, the

attribute for gi is represented as the one-valued attribute sk ≤ wj. This is done for all

values each gene may have in any situation, which accordingly leads to a very large

context. To restrict attributes, the inequalities may be restricted (i.e., not included

in the context) to satisfy some maximum value. As this method can result in an

explosion of attributes, interval pattern structures are also explored as an alternative

to binarization, reducing the risk of data loss. The experiments on the tree fungus

dataset show the role and function of genes that are expressed similarly. Concept

extraction with interval pattern structures is further explored in [56]. By modifying

FCA to allow for pattern structures, concept extraction from such a context can show

the gene synexpression.

An algorithm BiFCA+ was developed [46] to cluster gene expression data into

biclusters based on FCA, which corresponds to synexpression groups. The algorithm

is based on biclustering data that is binarized to a three-state matrix based on ex-
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pression variance in conditions before transforming into a two-state matrix based on

the average value per gene. The set of biclusters are reduced by the Bond correlation

if there is significant overlap between samples.

A variation on finding synexpression groups is done by [40], who identifies candi-

date genes to include in the gene regulatory network, a group of genes that interact

to perform and regulate cell function. Binarization is done by matching a gene to a

template of a statistical measure. The method is tested on a tuberculosis dataset.

While this application is not exactly the same as other synexpression experiments, it

is related because some genes may interact positively (expression behaves similarly

for both genes in a situation) or negatively (while one gene’s expression increases,

another’s decreases). This negative interaction is also called negatively correlated

genes.

Negative correlation between genes is examined in [85] and [47]. In [85], the

algorithm NCFCA find the negatively correlated genes in cell cycle time series data.

Discretization of the matrix is done by transforming the expression value to 1, 0, and -

1 if the value in the time series data increased, not changed, or decreased, respectively.

Then the matrix is binarized based on the row’s average value deviation. The concept

lattice is filtered by limiting the minimum number of genes in each subset.

Another algorithm, NBF, was proposed to find negative correlations, which the

author refers to by negative biclusters [47]. Discretization is similar to [85], except

when going from the 3-state to the 2-state matrix, two binary matrices are produced,

one representing a positive average change per row, and another representing a neg-

ative change. Experimental results are obtained from yeast cell-cycle, human b-cell

lymphoma, and Alzheimer gene expression databases.

Negative gene synexpression is an interesting application with FCA and should

be explored further.
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Using FCA to extract which genes perform biological functions is a natural ex-

tension of determining positive or negative synexpression groups, as the functions

generally involve groups of genes expressed in similar situations or negatively corre-

lated. Using a dataset of genes involved in colorectal cancer (context objects) and the

expression profiles, gene ontology terms, and knowledge bases (context attributes),

the concepts produced are then analyzed with enrichment analysis to determine the

biological reasons the genes are grouped together in the concepts [19].

In order to select biclusters of genes that work together to perform biological

functions, a variation on FCA, K-FCA is developed [42], along with a web tool Web-

GeneKFCA [18] that provides a variety of visualization techniques to aid the user in

determining gene under- or over-expression, as well as provide an interface with gene

ontology. K-FCA provides an analysis method similar to Fuzzy FCA that reduces the

need to binarize the entire dataset. Lattice reduction is also addressed; a proposed

solution is to “filter” concepts by judging if an intent contains too many or too few

genes, according to some threshold which is again determined by an expert. This

allows the lattice to be somewhat simplified, and allows the “critical” concepts to

be generated and displayed. Further research in this area could attempt to reconcile

Fuzzy FCA with K-FCA.

Specifically using developing mouse embryo tissue gene expression data like [26],

the makeup of genes in components of tissues is found [10, 11, 12]. The algorithm

In-Close 2 was developed [10] and tested on the mouse tissue data to see which

concepts were detected. Binarization in all three studies was done by allowing any

expression level in a gene. The components of mouse tissue were visualized with the

acquired knowledge of the genes expressed in each component. These studies could

be further explored with a method of binarization that does not reduce the strength

of each gene’s expression.
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4.2.3 Disease Applications

FCA can also be used to determine disease similarity [58], as well as discover which

genes correspond to specific subtypes of diseases [69, 8, 9, 7].

Using FCA to test for disease similarity is done by [58]. Of particular interest is

the graph theory formulation of FCA, which uses subgraphs and spanning trees to

discover concepts. Analyzing the data of up- or down-regulated genes in renal disease

biopsy tissue, the concept lattice is inspected to determine the relationship between

the various renal diseases.

Determining a set of genes that can distinguish between two classes of a disease is

done by [69]. Specifically, the goal is to distinguish which genes are associated with

tumor-based breast cancer, and which are associated with metastatic breast cancer.

Discretization is done by setting a threshold for each gene and having one attribute

represent the experimental value below or equal to the threshold, and another repre-

sent above. Noise is reduced by setting a minimum and maximum number of genes

allowed in an intent.

Another group of studies that examines the genetic data of diseases with FCA is

[8, 9, 7]. FCA is used to find genes that have inhibited [8] or uninhibited [9] expression

in breast cancer subtypes. Given a context where the objects are the inhibited genes

and the attributes are whether that individual gene corresponds to a breast cancer

subtype, the extracted concepts reveal which groups of inhibited genes correspond

to cancer subtypes. To find which genes are expressed in tissues with lung cancer

tumors as opposed to normal tissues, knowledge discovery is used by first statistically

selecting features from lung cancer gene expression data, then examining the samples

associated with the feature genes [62].

These methods can provide an opportunity to examine the roles of genes in dis-
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eases. For a study that uses gene expression data to detect cancer subtypes, we refer

the reader to [87]. A future area of this field could lead to detection and classification

of disease similarity and subtypes. This concludes our survey of the methods.

4.3 Hierarchical Capability of FCA

As discussed in Section 3.1, FCA, which is based in partial orders, has natural hier-

archical capabilities. These include the concept lattice, which for sufficiently small

datasets, can allow for visual inspection, thus improving the potential helpfulness of

the analysis. Some of the studies previously mentioned do utilize the concept lattice

[75, 26, 12]. If the data is prohibitively complex, examining the structure and simi-

larity between multiple concepts can provide a similar benefit [8, 9, 7, 12, 57]. Many

studies may benefit from using techniques described in Section 3.3. Most studies,

however, merely use FCA techniques to generate synexpression groups without do-

ing further analysis on the concepts generated. In these studies, FCA is reduced to a

biclustering method [66]. This may still be an effective way to computationally exam-

ine and derive meaning from the dataset, but it may not be as efficient as other gene

clustering methods, such as K-Means or other hierarchical clustering methods, such

as Optimal Leaf Ordering. Moreover, the hierarchical capability does not obviously

appear to be useful in the basic problem of finding synexpression groups. However, in

more recent studies, especially those investigating disease, the hierarchical capability

of FCA can be used (for example, [8, 9]). Discovering the solutions to more complex

problems than finding synexpression groups could make FCA’s cost worthwhile. The

concept lattice structure may be useful in showing the hierarchy of genes that play

a role in cancer, perhaps revealing previously unknown genes that impact the pro-

gression of the disease. Further investigations of this may also attempt to classify



33

whether the disease is present or not based on which concepts a gene or genes belong

to. Using FCA for disease classification is an area for a future feasibility study.
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Chapter 5

Conclusion and Future Work

This thesis describes how Formal Concept Analysis (FCA) provides a framework for

analysis of gene expression data, which measures how the cell genetically responds

to biological signals. In particular, the concepts generated by FCA from the data

can provide biologically relevant information in the form of synexpression groups, or

clusters of co-expressed genes. How the data is discretized or how the concepts are

generated may provide additional insight depending on the experiment’s desired out-

come. For example, binarizing the data by overexpression will result in discovering

synexpression groups of only genes that are overexpressed. Similarly, choosing one al-

gorithm to generate concepts over another may result in a finer collection of concepts,

with little overlap between concepts, or a coarser collection with more overlap.

Recent state-of-the-art advances in this field include analyzing data from multiple

experiments [48], using FCA to analyze similarities between diseases [58] or disease

subtypes [7], and determining synexpression groups of genes that are negatively cor-

related [85, 47]. These advances in the field also indicate areas of future interest,

which are described as follows:

• Examining the detection and classification of diseases. Some work has

been done to determine whether diseases are similar to one another, as well as
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detecting subtypes or two classes of diseases. This can be further expanded to

different types of genetically-related diseases, including Alzheimer’s and other

types of cancer.

• A user-friendly tool to integrate gene expression data analysis using

Fuzzy FCA, Pattern Structures, or Rough Set Theory. While many

studies address the benefits to using these variations, including the minimization

of data loss, few user-friendly implementations exist. Effort should be made to

explain how data is affected and provide an interface for biological analysis.

Integration of these variations, such as K-FCA and Fuzzy FCA, may also be an

area of interest.

• Negative gene synexpression. While much work has been done in the past

fifteen years to identify synexpression groups, the identification of groups of

genes that are negatively co-expressed is a promising area. Negative synexpres-

sion groups may provide a fuller explanation of gene expression in situations,

especially in disease applications such as cancer. This area could also be ex-

panded by incorporating a variation of FCA to hold positive and negative data.

• Naive binarization data loss. Depending on how binarization of gene ex-

pression data is done, the risk of data loss is very high. Incorporating the

strength of expression without an explosion of attributes and maintaining the

core definitions of FCA would allow data to be analyzed on existing FCA tools.

Additionally, great care should be taken as to how data is discretized depending

on the application.

• Use of the concept lattice in analysis. Most studies explained in this paper

address only the composition of concepts. If sufficient purpose is chosen that
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can benefit the application, the concept lattice may be useful and the relation-

ships between concepts can be analyzed. FCA concept generation used solely

as a clustering method appears to be inefficient, and another, more efficient,

clustering method is advised.

5.1 Future Doctoral Work

In addition to the areas mentioned above, there are several key areas of opportunity

in other areas of FCA for future research; we focus on two here: FCA for classification

of diseases with biological data, and formulation of FCA as a bipartite graph.

5.1.1 FCA Classification of Diseases with Biological Data

Classifying diseases from biological data is an area of bioinformatics with a great

amount of potential to help people in the real world. There is existing work addressing

FCA’s use for classification, mostly for knowledge discovery in databases [74, 13, 33].

Our survey revealed that FCA has been used in two-class classification of breast

cancer [69]. However, this is not a diagnostic classification problem, but between two

types of the existing disease. Other studies using biological data examines aspects

of the disease but do not classify whether the disease is present or not. An FCA

algorithm has been designed by Gotoor [43], a member of our research group, that

uses an autoencoder to classify images of tissues with colon cancer. The algorithm

is based on Fuzzy FCA, and classification is performed based on concept similarity

when all concepts have been generated. However, the concepts are not examined

due to the abstract nature of the autoencoder-generated data. This shows that FCA

classification of whether a disease is present or not in the data given remains an open

problem. Our goal is to adapt this existing system to use with gene expression data.
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Additionally, our goal is to:

• Investigate feasibility. We aim to test the system on a common numeri-

cal dataset. This will provide insight as to whether classification is a feasible

problem for FCA, and this system in particular.

• Perform classification with gene expression data. Since the algorithm

already takes as input numerical data, we aim to use this algorithm with an

open-source cancer gene expression dataset to classify whether the cancer is

present or not, as well as what type of cancer is present.

• Investigate concepts once generated. While this may not be feasible for the

current algorithm due to the abstract nature of the autoencoder’s parameters,

using the system with gene expression data instead of the encoded image data

will provide the opportunity to investigate the concepts generated, as that would

be an efficient use of FCA’s hierarchical capabilities.

• Develop a baseline for discovering classes. The existing algorithm clas-

sifies objects in the same class if they appear in many of the same concepts

together. However, naive judgements as based on the concept lattice may be

incorrect. For example, the “Bodies of Water” context (Figure 5.1) and ac-

companying lattice (Figure 5.1) from Wille’s 1984 paper shows some potential

issues with determining classes solely on the visual results [90]. Two obvious

classes appear to be “floating” (containing objects “river”, “brook”, “canal”,

and “ditch”) and “stagnant” (containing objects “lake”, “pond”, “basin”, and

“pool”). However, if classes “large” and “small” are desired instead, the presen-

tation of the lattice may be misleading, giving the false impression that “basin”

is “small” since it is on the right side of the diagram, or correspondingly that
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“ditch” is “large”. Similar objects, such as a river and lake, both natural, large

bodies of water, may be on opposite sides of the lattice. Depending on the

desired group of classes, adding distance functions or other measurements may

avoid such confusions.

Table 5.1: Context for the “waters” lexical field as given in [90]

Kwaters floating stagnant natural artificial large small

river X X X
brook X X X
canal X X X
ditch X X X
lake X X X
pond X X X
basin X X X
pool X X X

This proposed area of research into disease classification with FCA has the po-

tential for real-world benefit. Our discussion above shows the areas for immediate

research.

5.1.2 Bipartite FCA

Now we address the formulation of FCA as a bipartite graph. In our survey of the

literature, several authors discussed the definition of a context K = (G,M, I) as a

graph G = (G ∪M, I), where G and M are independent sets, and an edge between

an object g ∈ G and attribute m ∈ M occurs if and only if gIm [4, 26]. A visual

representation as shown in [4] is in Figure 5.2.

In this framework, concepts are maximal bicliques, induced complete subgraphs

where inclusion of any edge will result in a non-complete subgraph. Some work has

been done to link these two fields already [39], including computing clusters with

fuzzy measurement-based random walks. However, not much else has been done to
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Figure 5.1: Concept lattice for the “waters” lexical field as given in [90]

Figure 5.2: Representation of FCA as a bipartite graph, as seen in [26].

establish useful FCA formalism in a bipartite graph format. Notation in this area can

also be standardized based on Wille and Ganter’s FCA notation. Additionally, while

some work has been done to link Fuzzy FCA with graph theoretic concepts in [39],

this can be further expanded and also be developed to use other extensions such as

probabilistic FCA. Once the formalism is developed, common graph algorithms could
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be adapted to generate concepts and provide other useful FCA features.

Specifically, our goal in this area concerns the following:

• Formalize notation. Formalization of notation between bipartite graph the-

ory and Wille and Ganter’s standard notation for FCA will benefit future re-

searchers in this area.

• Develop or adapt an efficient algorithm for graph-based concept gen-

eration. Develop an efficient algorithm or adapt a current graph algorithm to

find maximal cliques from the bipartite graph. This will allow for traditional

graph-based algorithms to perform functions such as concept generation, lattice

formulation, or classification, thus improving the intersection of these two fields

• Support common FCA variations. Formulate variations (such as fuzzy or

probabilistic) of FCA in detailed theoretic format.

• Classification. Once the above tasks have been done, we can develop an incre-

mental graph algorithm to predict new data’s biclique membership. This could

be done with existing graph algorithms such as strongly connected components,

or a variation on other common algorithms.

In this section, we have presented several core problems that will form the basis

of our PhD research. These areas for future doctoral work represent the state-of-

the-art areas of research for Formal Concept Analysis. We will begin working on

these problems as soon as this thesis is submitted. We expect that this will lead to

pioneering results in both theory and applications.
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