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Abstract. Populations of invasive species often spread heterogeneously across a landscape,
consisting of local populations that cluster in space but are connected by dispersal. A funda-
mental dilemma for invasive species control is how to optimally allocate limited fiscal resources
across local populations. Theoretical work based on perfect knowledge of demographic con-
nectivity suggests that targeting local populations from which migrants originate (sources) can
be optimal. However, demographic processes such as abundance and dispersal can be highly
uncertain, and the relationship between local population density and damage costs (damage
function) is rarely known. We used a metapopulation model to understand how budget and
uncertainty in abundance, connectivity, and the damage function, together impact return on
investment (ROI) for optimal control strategies. Budget, observational uncertainty, and the
damage function had strong effects on the optimal resource allocation strategy. Uncertainty in
dispersal probability was the least important determinant of ROI. The damage function deter-
mined which resource prioritization strategy was optimal when connectivity was symmetric
but not when it was asymmetric. When connectivity was asymmetric, prioritizing source popu-
lations had a higher ROI than allocating effort equally across local populations, regardless of
the damage function, but uncertainty in connectivity structure and abundance reduced ROI of
the optimal prioritization strategy by 57% on average depending on the control budget. With
low budgets (monthly removal rate of 6.7% of population), there was little advantage to priori-
tizing resources, especially when connectivity was high or symmetric, and observational uncer-
tainty had only minor effects on ROI. Allotting funding for improved monitoring appeared to
be most important when budgets were moderate (monthly removal of 13–20% of the popula-
tion). Our result showed that multiple sources of observational uncertainty should be consid-
ered concurrently for optimizing ROI. Accurate estimates of connectivity direction and
abundance were more important than accurate estimates of dispersal rates. Developing cost-ef-
fective surveillance methods to reduce observational uncertainties, and quantitative frame-
works for determining how resources should be spatially apportioned to multiple monitoring
and control activities are important and challenging future directions for optimizing ROI for
invasive species control programs.

Key words: bioeconomic model; connectivity; control; elimination; invasive species; metapopulation; op-
timal strategy; wild pig.

INTRODUCTION

The interaction of reproduction and dispersal pro-
cesses determines the dynamics and persistence of spa-
tially structured populations (Hanski 1998).

Reproduction provides new individuals that can disperse
among local populations, promoting persistence in the
global population. Rates and directions of dispersal in
space define the “demographic connectivity” of a popu-
lation. The concept of demographic connectivity under-
lies modern theory in conservation planning (Rudnick
et al. 2012, van Nouhuys 2016). Conserving patches of
habitat with higher levels of connectivity facilitates dis-
persal among local populations (Williams et al. 2004,
Rudnick et al. 2012), which maximizes population
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growth rates and makes the entire population more resi-
lient to extinction pressures (Hanski and Ovaskainen
2000, Williams et al. 2004, Hastings and Botsford 2006,
Jacobi and Jonsson 2011).
An understanding of the importance of demographic

connectivity is also used to optimize control of invasive
species (Travis and Park 2004, Chades et al. 2011, Caplat
et al. 2012, Glen et al. 2013, Baker 2017) and disease
(Haydon et al. 2006, Chades et al. 2011). When control
in spatially structured populations of invasive species is
the objective, general guidelines for optimal prioritiza-
tion have included to “target the most highly connected
local populations” (Perry et al. 2017) and to “target local
source populations” (Baker 2017) to minimize abun-
dance and maximize extinction rates. These recommen-
dations are consistent when considering a variety of
connectivity structures, for example: managing upstream
local populations when connectivity is directional,
managing any local population and then its nearest
neighbors when connectivity is a ring structure, and to
start at one end and continue sequentially in bidirec-
tional or linear connectivity structures (Chades et al.
2011). However, more complex recommendations can
emerge when (1) one local population is highly con-
nected and all others have only one connection, i.e., ring
structures (Chades et al. 2011), (2) local populations
exhibit source–sink dynamics (Travis and Park 2004),
and (3) particular population growth (Caplat et al. 2014)
and dispersal rates (Travis and Park 2004) are exhibited.
Thus, the optimal strategy is affected by context-depen-
dent demographic processes, including population
growth rates and dispersal dynamics.
In practice, using knowledge of spatial population

processes to manage populations (“connectivity-based
management”) requires estimates of demographic con-
nectivity among local populations. Measures of demo-
graphic connectivity can be based on landscape features,
or on estimates of dispersal behavior or gene flow
between local populations (Baguette et al. 2012). Land-
scape-based estimates (e.g., least-cost path analysis) are
useful for examining how processes such as landscape
fragmentation and climate change might affect popula-
tion connectivity and persistence, but usually neglect
individual-level dispersal behavior (i.e., how animals
actually travel through the landscape; Baguette et al.
2012). Estimates from tracking individual movement
over time are ideal for understanding and predicting
population persistence, but directly monitoring dispersal
behavior for many individuals can be expensive in man-
agement applications. To address this gap, measures of
gene flow have been used to infer demographic connec-
tivity (Lowe and Allendorf 2010). However, models for
estimating gene flow between local populations can
require unrealistic or inappropriate assumptions (e.g.,
genetic equilibrium conditions, narrow ranges of demo-
graphic conditions), resulting in biased or imprecise esti-
mates (Faubet et al. 2007, Meirmans 2014, Younger
et al. 2017). Also, genetic estimates of demographic

connectivity can be highly uncertain (Samarasin et al.
2017). Thus, the practical benefit of using estimates of
connectivity based on real-world data to inform optimal
allocation of control resources remains poorly under-
stood.
Applying optimal resource allocation strategies

through connectivity-based management requires moni-
toring data on abundance, demographic connectivity,
and the damage function. In addition to structural
uncertainty in the ecological and management processes
that determine the true levels of abundance, the data
used by managers to implement connectivity-based man-
agement are uncertain due to observational error. Obser-
vational uncertainty in monitoring data of invader
presence or abundance can make theoretically optimal
strategies less effective (Chades et al. 2011, Regan et al.
2011, Rout et al. 2014, Kling et al. 2017, Bonneau et al.
2019). Similarly, as the optimal resource allocation strat-
egy depends on the relationship between invader abun-
dance and damage costs (Yokomizo et al. 2009, Davis
et al. 2018a), imperfect knowledge in this relationship
could affect the optimal strategy. And, yet to be deter-
mined, are the potential effects of imperfect knowledge
about the true connectivity structure.
In this study, we concurrently consider the effects of

uncertainty in abundance, connectivity, and damage
functions in a single framework. Our work builds on
studies that have separately examined how observational
uncertainty in abundance (Haight and Polasky 2010,
Kling et al. 2017) and knowledge of the damage function
(Yokomizo et al. 2009, Davis et al. 2018a) affects the
optimal resource allocation strategy. Specifically, our
objective was to provide guidance for using one-time
connectivity estimates to inform surveillance and control
decisions in practical settings. Our hypothesis was that
observational uncertainty in the one-time estimate of
connectivity would decrease the benefits of prioritizing
resources spatially because there would be increased
error in identifying source populations (i.e., local popu-
lations that provide migrants) and their migration rates.
We also expected that the optimal resource allocation
strategy would depend on knowledge of the damage
function and accuracy of the regular abundance esti-
mates that are used to guide spatial prioritization. Our
results provide general guidance for spatial prioritization
of resources under multiple sources of uncertainty and
fixed budgets and highlight which data may be more
valuable to collect for optimizing resource allocation.

METHODS

Invasive species and management context

Our theoretical framework is inspired by demographic
dynamics of invasive wild pigs (Sus scrofa) in areas of
the United States where populations of wild pigs are not
contiguous; although our approach was developed to
apply more generally to the control of any spatially
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structured pest population. In areas of the United States
where wild pig populations are less abundant and along
the edges of areas with high-density pig populations,
their distribution is similar to a metapopulation with dis-
tinct subpopulations and genetic evidence of recent dis-
persal between subpopulations (T. Smyser, unpublished
data). Wild pigs produce offspring throughout the year
(Mayer and Brisbin 2009), with one or two seasonal
peaks in parturition rather than one distinct seasonal
birth pulse. A genetic archive of wild pig samples col-
lected ancillary to ongoing control efforts is currently
being developed to guide management decisions based
on spatial dispersal probabilities and directions. We used
a range of probabilities and simplified connectivity
structures that have been determined for wild pigs from
genetic analyses (Tabak et al. 2017, Hernandez et al.
2018; T. Smyser, unpublished data) to determine optimal
allocation of resources across populations where the
management objective is to eliminate the metapopula-
tion at the lowest overall cost of damages and removal
costs.

Overview of approach

Similar to previous work (Chades et al. 2011, Baker
and Bode 2016, Baker 2017), our framework accounts for
nonlinear relationships between population density and
removal and damage costs, in determining the optimal
resource allocation strategy. However, we simplify the
number of potential resource allocation strategies a priori
by considering practical rules of thumb (“prioritization
schemes”) that could be implemented by managers at
coarse time scales. Thus, our method aims to identify the
best strategy for the objective function (defined in Evalua-
tion section) within a pre-defined set of strategies (here-
after referred to as “optimal”), rather than the optimal
solution from all possible strategies (i.e., we conducted
simulation optimization Amaran et al. 2014, Punt et al.
2016). We define the optimal resource allocation strategy
as the one with the highest return on investment (ROI;
“returns”, i.e., savings from management, divided by its
management costs;see Eq. 14).
We use a stochastic metapopulation model to allow for

natural levels of uncertainty (stochasticity) that would be
expected in the true management (number of individuals
removed relative to the intended number) and ecological
(abundance in each subpopulation) processes. These
sources of uncertainty are structural, affecting the genera-
tion of the true abundance. To this, we add observational
uncertainty in abundance and connectivity. We assume
that the manager has an estimate of connectivity among
local populations through a genetic analysis (or other
methods) conducted at the outset of a new management
program. We also assume that the manager has monitor-
ing data on population abundance at each time step
through a method that requires no additional cost, e.g.,
analyzing the removal data using a removal model (Davis
et al. 2016). We first examine how applying different

prioritization schemes to different connectivity structures
and damage functions affects ROI when abundance and
connectivity are perfectly observed. Then, we examine
how observational uncertainty in the one-time estimate of
connectivity and the monthly estimates of abundance
affect ROI of the assumed optimal strategy. Our approach
is conceptually similar to bioeconomic models such as
Haight and Polasky (2010) and Regan et al. (2011) in that
we examine the effects of observational uncertainty on
optimal resource allocation strategies. However, our
approach differs from these approaches in two important
ways: (1) we assume that the manager pre-determines
how resources should be allotted in space based on
knowledge of connectivity structure and test how obser-
vational uncertainty in connectivity and abundance moni-
toring affects ROI of an assumed optimal resource
allocation strategy, rather than determining how much
should be apportioned to monitoring throughout control
in order to apply the optimal strategy, and (2) our “strate-
gies” are defined by how a fixed amount of resources are
apportioned in space rather than how they are appor-
tioned to control vs. monitoring. In our approach, we
assume all monitoring data are available at no additional
cost.
Code for the simulation model is given in Data S1. The

model processes at each time step progress as follows: (1)
density-dependent growth of each subpopulation (Eqs. 1,
2), (2) dispersal among subpopulations according to their
connectivity structure and rates (Eqs. 3, 4), (3) manage-
ment removal of individuals from each subpopulation
(Eq. 5) dependent on the abundance–capture-success rela-
tionship (Eq. 6) and the effort allotted to each subpopula-
tion, which depends on the overall effort available (b) and
an effort prioritization function (fp) among subpopula-
tions (Eqs. 7, 8), (4) determination of management costs
dependent on multiplying overall effort by a dollar value
(Eq. 9), and, finally, (5) determination of the damage
value dependent on density (Eq. 10) and on the shape of
the density-damage relationship that is fixed throughout
each simulation (either Eqs. 11, 12, or 13). Last, ROI is
calculated for each simulation from the cumulative man-
agement costs, cumulative damage costs, and elimination
status at the end (Eq. 14). Each of these processes is
described in detail in the following.

Metapopulation model

We consider an established metapopulation of an
invasive species that is spatially structured with three
subpopulations connected through dispersal, and closed
to emigration and immigration to and from outside
sources. We also assume that each subpopulation has a
fixed carrying capacity (i.e., pre-defined geographic
capacity) such that subpopulations cannot expand out-
side their patches. We examine six different connectivity
“motifs” within the metapopulation to study the effects
of connectivity structure on the optimal management
strategy (Fig. 1). We assume that each subpopulation
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Connectivity structure Prioritization Description of prioritization

Symmetric

A. Unconnected 1 & 2 & 3

1  2 3

1 & 2 3

1  2 & 3

Equal (all concurrently)
Sequential (one at a time)

Partial (2 subpops equally, then the other) 
Partial (1 subpop, then the other 2 equally)

B. Infinite islands 1 & 2 & 3

1 2 3

1 & 2 3

1  2 & 3

Equal (all concurrently)
Sequential (one at a time)

Partial (2 subpops equally, then the other)
Partial (1 subpop, then the other 2 equally)

Asymmetric

C. Two islands and

mainland

1 & 2 & 3

2 1 3

1 3 2

2 1 & 3

1 & 3 2

Equal
Sequential (source then recipients)
Sequential (recipients then source)

Partial (source then recipients concurrently)
Partial (recipients concurrently then source)

D. Stepping stone 1 & 2 & 3

1 2 3

3 2 1

1 & 2 3

2 & 3 1

Equal
Sequential (source then recipients)
Sequential (recipients then source)

Partial (sources concurrently, then recipient)
Partial (recipients concurrently then source)

E. Two mainlands and

island

1 & 2 & 3

1 3 2

2 1 3

1 & 3 2

2 1 & 3

Equal
Sequential (source then recipients)
Sequential (recipients then source)

Partial (sources concurrently, then recipient)
Partial (recipient, then sources concurrently)

F. Connected islands 1 & 2 & 3

2 1 3

1 3 2

2 1 & 3

1 & 3 2

Equal
Sequential (source then recipients)
Sequential (recipients then source)

Partial (source then recipients concurrently)
Partial (recipients concurrently then source)

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

FIG. 1. Connectivity motifs and a description of prioritization schemes. Connectivity increases with the number of arrows.
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can expand locally (up to their carrying capacity) and
that subpopulations can be completely removed, but
that no new subpopulations can be added. At the start
of control, we assume that the metapopulation is at car-
rying capacity (i.e., equal abundance of subpopulations)
and that control efforts decrease metapopulation abun-
dance below carrying capacity.

Reproduction.—We assume subpopulations in the
metapopulation undergo logistic population growth to a
fixed carrying capacity. Birth dynamics occur in discrete
time at a monthly time step with Poisson-distributed error

Bt;k �Poissonðkt;kÞ; where kt;k ¼ rtNt�1;kð1�Nt�1;k=KÞ
(1)

with abundance dynamics

Ntþ1;k ¼ Nt;k þ Bt;k þMt;J!k �Mt;k!J � Rt;k (2)

here, Bt,k are the new births in month t in subpopulation
k, and Nt,k is population abundance. Mj?k, Mk?j, and
Rt,k (described in detail in Dispersal) are the number of
immigrants from each subpopulation j to subpopulation
k, the number of emigrants from subpopulation k to
each subpopulation j, and the number of invaders
removed due to control. We assume the fixed carrying
capacity, K, is equal to 1,000 in each subpopulation and
that abundance can exceed this level slightly due to
stochastic processes. The parameter rt is a monthly
growth rate that fluctuates based on seasonal birth
dynamics (Table 1). Each subpopulation is initialized at
carrying capacity.

Dispersal.—Subpopulations are potentially connected
by dispersal. We consider six different dispersal struc-
tures: (A) unconnected, (B) infinite islands, (C) two
islands and mainland, (D) stepping stone, (E) two main-
lands and island, and (F) connected islands (Fig. 1). At
each time step, new migrants are added to subpopula-
tion k as follows

Mt; J!k ¼
XJ
j¼1

Binomial ðNt;j ;Xj!kÞ; with constraints j

6¼ k andMt;j!k �Nt;j ð3Þ

Mt;k!J ¼
XJ
j¼1

Binomial ðNt;j ;Xk!jÞ; with constraints j

6¼ k andMt;k!J �Nt;k ð4Þ

Xj?k is the monthly dispersal probability from subpopu-
lation j to k. Thus, we assume that dispersal can occur in
any month, depending on fixed dispersal probabilities
among subpopulations, and that dispersal probabilities
are proportional to abundance (i.e., not density depen-
dent).

Control.—No prioritization.—In the absence of prioriti-
zation, a fixed monthly control effort (b) is always
divided equally among subpopulations. We assume that
the number of individuals removed from a population k
in month t, Rt,k, is a random variable that depends on
effort allocated, and declines steeply with the population
size as individuals become hard to find (Choquenot
et al. 1999). We model R as a Poisson random variable

Rt;k �Poisson ðNt;k � faðNt;kÞ � b=
X

kÞ
with constraintRt;k �Nt;j

(5)

where fa is the abundance–capture-success function and
∑k is the total number of subpopulations. The fa func-
tion quantifies the success probability of removal efforts
based on current abundance. We follow the intuition of
(Choquenot et al. 1999), defining fa

faðNt;kÞ ¼ 1� 1

1þ acð ÞNt;k
; (6)

The parameter fa assumes that the proportion of the
population that can be removed using a fixed amount of
effort increases sharply at lower abundances to an
asymptote of 1 when abundance is high because individ-
uals are more easily located at high abundance and thus
removal success (the proportion of the target removal
number) increases to full capacity (i.e., 1). We assume
that monthly removal success is based on the monthly
starting abundance and does not change within a month.
For example, if ac = 0.03 and abundance is >200, then
the target removal number will almost always be
achieved. However, the actual number removed will be
lower than the target removal number when abundance
is <200 pigs with ac = 0.03. ac is a tuning parameter
affecting the threshold abundance where actual manage-
ment removal becomes lower than the target number
(Appendix S1: Fig. S1). In general, lower values of ac
lead to less efficient removal (lower success), whereas
higher values lead to more efficient removal (higher suc-
cess). By modeling the effects of removal using a Poisson
variable (Eq. 5), we allow for stochastic variation in
abundance to scale to mean abundance.

Prioritization.—When prioritization of subpopulations
occurs, the fixed monthly control effort (b) is not divided
equally, rather it is apportioned to subpopulations using
a prioritization function (fp). We assume that the man-
ager has abundance estimates at each time step to deter-
mine the amount of effort that should be allotted to
each subpopulation based on fp, and that effort would
begin to be shifted from the most prioritized subpopula-
tion to less prioritized subpopulations as abundance
decreases because fewer locations within a subpopula-
tion would need to be targeted at lower abundance.
Thus, in general, when prioritization occurs, the number
of individuals removed at time t in subpopulation k is
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Rt;k �Poisson ðNt;k � faðNt;kÞ � fpðNt;kx Þ � bÞ
with constraintRt;k �Nt;j

(7)

where fp(Nt,kx) is conditional on the spatial prioritization
scheme (kx, Fig. 1) for removal and current Nt,k and ap
according to

fpðNt;kxÞ ¼ 1� 1

ð1þ apÞNt;kx
(8)

where ap scales the amount of effort that will be allotted
to subpopulation kx (specifies the prioritization scheme)

as a function of its abundance. Lower values of ap gener-
ate prioritization rules that are closer to equal allocation
whereas higher values lead to higher discrepancy in the
amount of effort allotted to each subpopulation
(Appendix S1: Fig. S2). Appendix S1: Fig. S2 shows the
effects of ap on example patterns of effort allotment to
the most prioritized subpopulation (kx=1), followed by
secondarily and lastly prioritized subpopulations. In addi-
tion to equally dividing resources (as above), we allow
three potential prioritization schemes (kx): (1) sequential
(kx=1 then 2 then 3), (2) first two equally and then the last
(kx=1 & 2 equally, then 3), and (3) first one and then the
other two equally (kx=1 then 2 & 3 equally; Fig. 1). Specific
equations defining how effort is allotted under different
general prioritization schemes (1–3 above) and values of
ap are described in Data S1: culling3.

Removal costs and damage function

We assume that there is a fixed monthly budget avail-
able to control the metapopulation with upper maximum
Pr. When effort is divided evenly among the subpopula-
tions, the maximum monthly effort at high abundance in
each subpopulation results in removal of 33.3% of each
subpopulation monthly (i.e., if b = 1, which we do not
examine). We use an arbitrary maximum monthly budget
of $6,000 for control of the metapopulation ($2,000 per
subpopulation when effort is divided equally; with all
monetary amounts expressed in real dollars). Different
levels of control effort (b = 0.8, 0.6, 0.4, 0.2) correspond
to decreases in the monthly budget for control by 20%,
40%, 60%, or 80%, which translates to maximummonthly
removal rates of 26.7%, 20.0%, 13.3%, and 6.7%, in each
subpopulation when abundance is high and resources are
divided equally. For example, under the lowest control
effort (b = 0.2), the maximum amount of monthly fund-
ing available to control is $1,200 while the maximum
amount of monthly damage at carrying capacity is
$6,000. Thus, b determines both the proportion of indi-
viduals that can be removed monthly and the relative dif-
ference between damage and control costs. Also, as
mentioned above, the same amount of resources becomes
less efficient as population density declines such that
removal success decreases with the same amount of effort
once subpopulations reach low densities. Total monthly
amount spent on control is as follows:

Ct;kx ¼ fpðNt;kxÞ � b� Pr; orCt ¼ b� Pr (9)

where Ct,kx is the amount spent on subpopulation kx in
month t, Ct is the amount spent for all subpopulations
in month t, and Pr is the fixed maximum amount of
resources available to be spent each month for removal
($6,000).
We examine three different damage functions (fd(Nt,

k)) for determining damage costs based on abundance
(Eqs. 11–13). We assume that total monthly damage

TABLE 1. Description of parameters.

Parameter Description Values

Fixed values
K carrying capacity of

each subpopulation
1,000

r monthly population
growth rate (January–
December); values
chosen to mimic birth
seasonality in feral
swine—similar to
(Pepin et al. 2017)

0.1069, 0.0855, 0.0362,
0.0378, 0.0526, 0.0296,
0.0247, 0.0247, 0.0066,
0.0247, 0.0132, 0.0576

Dmax total cost of damage
over 10 yr without
control

$720,000

Pr monthly maximum
funding for resources
(effort) available per
subpopulation

$2,000

Pd monthly maximum cost
of damage per
subpopulation

$2,000

ac scaling parameter for
abundance–capture-
success function

0.013, 0.03, 0.07

ap scaling parameter for
effort prioritization
functions

0.0025, 0.005, 0.01,
0.03

Variable inputs
b control effort 0.2, 0.4, 0.6, 0.8
X connectivity structure structures A–F (Fig. 1)
Xj?k annual proportion

dispersing from
subpopulation j to k
(Tabak et al. 2017,
Hernandez et al. 2018)

0.01, 0.025, 0.05, 0.075,
0.1, 0.125, 0.15, 0.2

kx in
fp(N(t,
kx))

prioritization schemes see Fig. 1

fd damage function saturating, linear, or
exponential

Ua uncertainty in
abundance; truncated
normal distribution
between 0 and 1

mean, r2: 1,0 (none);
0.9, 0.1 (low); 0.9, 0.25
(high)

UXj?k uncertainty in dispersal
probability

~uniform(0, 0.2)

UX uncertainty in
connectivity structure

random 3 9 3 matrix
with values ~uniform
(0, 1) rescaled so rows
sum to 1
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costs from the metapopulation (Dt) at carrying capacity
are a fixed arbitrary value ($6,000 for the metapopula-
tion; $2,000 per subpopulation)

Dt ¼
Xk¼3

k¼1

fdðNt;kÞ � Pd (10)

where Pd is the maximum cost of damage for a subpopu-
lation when it is at carrying capacity ($2,000) and fd is
the proportional damage as a function of current abun-
dance. The different damage functions are described as
follows:

fd ¼ 1� 1

1þ 100ð Þ
Nt;k
K

0
@

1
A ðsaturatingÞ (11)

fd ¼ Nt;k

K
ðlinearÞ (12)

fd ¼ 1

1þ 100ð Þ1�
Nt;k
K

ðexponentialÞ: (13)

These damage functions are similar to Type II, Type I,
and Type IV functional responses (Holling 1959), except
our Type IV (exponential) function does not saturate at
high abundance after rising from the low damage condi-
tion (Appendix S1: Fig. S3). We assumed the damage
function was fixed throughout each simulation. We
tested the effects of imperfect knowledge of the damage
function by determining the optimal resource allocation
strategy for each damage function.

Evaluation

We evaluated outcomes of simulations by ROI, a mea-
sure of cost effectiveness. ROI calculates the difference
between total costs in the absence of control and total
costs with control (i.e., damages avoided net of control
costs) scaled to the cost of control. Thus, ROI gives the
amount saved per dollar spent on control. ROI was cal-
culated as

ROI ¼ Dmax �
P

Ct þ
P

Dtð ÞP
Ct

� Ie � 100% (14)

where Dmax is the total damage cost over 10 yr when no
control occurred, and Ie indicates whether the metapop-
ulation was eliminated (Ie ¼ 1Þ or not (Ie ¼ 0Þ by the
end of the simulation. Thus, we assumed that runs that
did not eliminate had a return on investment of 0
because our objective was to identify strategies that led
to elimination with the highest return on investment.

Observational uncertainty in abundance

Our prioritization methods assumed that the manager
has monitoring data that can be used to estimate

abundance in the subpopulations at each time step
(Davis et al. 2016). Because abundance measures are typ-
ically imperfect, we examined how uncertainty in the
monthly estimates impacts ROI of the optimal prioriti-
zation plan (Kendall and Moore 2012). We examined
two levels of uncertainty in abundance (Ua: low and
high). We assumed that the process for observing abun-
dance is biased low (underestimation of the true abun-
dance) because studies that have estimated detection
probability during management-based monitoring in
populations have found that it is well below 1 (Davis
et al. 2018b, although in the supplementary information
we also present results for instances where abundance
estimation is imperfect but unbiased; Appendix S1:
Fig. S10). We assumed the error term is a normally dis-
tributed random variable truncated between 0 and 1
(i.e., biased low), with mean 0.9 and variance of 0.1 (low
error) or 0.25 (high error). For each subpopulation at
each time step, we multiplied the random proportion
variable by the true abundance to determine the “ob-
served” abundance. Then, effort prioritization at each
month was determined based only on the observed
abundance and the prioritization function (kx scheme
and ap).

Observational uncertainty in connectivity

Because measures of connectivity can be difficult to
obtain, we assumed that the manager had connectivity
information once at the start of control (one-time infor-
mation). We examined the situation where the manager
assumes the one-time connectivity information is per-
fectly observed and remains the same over time, and thus
applies the optimal control strategy in the case where
abundance and connectivity are observed perfectly. To
evaluate effects of uncertainty in connectivity structure,
we apply the optimal strategy for each connectivity
structure to itself and every other connectivity structure
and calculate the mean and variance in ROI across all
connectivity structures. Thus, our methodology evalu-
ates how observing the wrong connectivity structure and
thus potentially applying a suboptimal allocation strat-
egy affects the ROI outcome. Note that for some connec-
tivity structures the same allocation strategy is optimal
and thus observing connectivity structure imperfectly
may not be problematic. We tested both aspects of
imperfect knowledge in connectivity: the structure (path-
ways in Fig. 1) and the rates (dispersal probability
among the edges). To evaluate effects of uncertainty in
structure, we held the rate constant at 0.1 and evaluated
ROI across all six structures under each optimal control
strategy. To evaluate the effects of rates, we held the
structure constant and evaluated ROI across all disper-
sal probabilities (Table 1). When evaluating uncertainty
in both components we evaluated ROI for all structures
and dispersal probabilities. In order to compare the
uncertainties on equal grounds, we calculated the means
and their coefficients of variation by subsampling the
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data at random so that each metric was composed of
100 data points because there were more data points
when both types of uncertainties were combined.

Simulations

Each subpopulation was initialized with 1,000 individ-
uals and thus an equal level of damage. Each parameter
set was run for 10 yr of population dynamics and repli-
cated 100 times. Design of parameter sets in simulations
is given under “variable inputs” in Table 1. To evaluate
the effects of observational uncertainty on the optimal
resource allocation strategy, we only ran the optimal
spatial prioritization schemes (each optimal scheme ran
on all six connectivity structures), and fixed fd at linear,
ap at 0.03, and ac at 0.03, because effects of these param-
eters were examined in the first set of analyses (without
uncertainty in abundance and connectivity). We did
include variation in b in the uncertainty analyses because
it was such a strong predictor of ROI. We performed all
simulations and analyses in Matlab R2018a (Math-
Works, Natick, Massachusetts, USA). We evaluated how
observational uncertainty in abundance and connectivity
affected the optimal resource allocation strategies using
(1) descriptive summaries of mean ROI and its uncer-
tainty in terms of a coefficient of variation (reported
below), (2) random forest analysis on the ROI outcomes
to examine the relative importance of variables (methods
described in caption of Appendix S1: Fig. S8), and (3) a
zero-inflated negative binomial model on the ROI
response to estimate the direction of effects of different
variables (methods described in caption of Appendix S1:
Table S1).

RESULTS

Control effort and damage function

Under the lowest control effort (b) and no connectiv-
ity or prioritization (0.2; removal of 6.7% of the
metapopulation monthly at carrying capacity; budget of
$1,200 monthly), control efforts failed to eliminate the
metapopulation within 10 yr, even when the abundance–
capture-success parameter (ac) was high (Appendix S1:
Fig. S4), unless the subpopulations were sequentially
prioritized (Appendix S1: Fig. S4 vs. S5). At a removal
intensity of 0.4 (13.3% of the metapopulation monthly
at carrying capacity; budget of $2,400 monthly), when
there was no prioritization complete elimination only
occurred sometimes unless ac was high (Appendix S1:
Fig. S4). However, if the subpopulations were sequen-
tially prioritized, elimination occurred more often (ROI
was higher) even when ac was moderate (Appendix S1:
Fig. S5). A control effort of at least 0.6 (20% of the
metapopulation monthly at carrying capacity; budget of
$3,600 monthly) and a moderate or high ac (0.03, 0.07)
was required to eliminate the metapopulation frequently,
with ROI being higher when removal was sequentially

prioritized. (Appendix S1: Figs. S4, S5). Some form of
prioritization almost always outperformed equal alloca-
tion of effort across the range of control effort values,
except when the subpopulations had full, symmetric
connectivity (Appendix S1: Fig. S6), but the magnitude
of benefit from prioritization depended on control effort
(Appendix S1: Fig. S6E). Relative to the effects of b, the
effects of the damage function (fd) were more subtle
(Fig. 2A vs. B). ROI was generally higher when ap (scal-
ing parameter of the prioritization function) was higher,
meaning that more stringent prioritization (less like
equal allocation) was generally better (Fig. 2C). Capture
success (controlled by ac) had a very strong effect on
ROI (Fig. 2D), where more efficient capture (higher val-
ues of ac) lead to much higher ROI.
In general, ROI tended to be higher when the damage

function was exponential but the magnitude of effect
depended on b (Appendix S1: Figs. S4, S5) and connec-
tivity structure (Fig. 2B). While absolute ROI was
affected by the damage function, prioritization of the
source (either sequential or partial) remained optimal
across all three damage functions (Fig. 3C–F) for the
full range of b (data not shown). However, the damage
function did affect the optimal strategy when connectiv-
ity was symmetric (Fig. 3A, B).

Connectivity and dispersal probability

For asymmetric connectivity, ROI was always higher
when sources were prioritized, regardless of dispersal
probability values (Fig. 4). However, when subpopula-
tions had full symmetric connectivity, equal resource
allocation was best at high levels of dispersal probability,
while unequal resource allocation was better at lower
values of dispersal probability (Fig. 4). When there were
multiple source populations, it was optimal to prioritize
both sources at the same time rather than to allot
resources to each sequentially before allotting resources
to the recipient (Fig. 4D, E). The best strategies were
optimal both in terms of mean and uncertainty in ROI,
i.e., in general, strategies that predicted the highest mean
ROI predicted the lowest uncertainty in ROI relative to
their means (or at least similarly low uncertainty : mean
ROI ratios as competing strategies; Appendix S1:
Fig. S7), indicating that the best strategies were also
appropriate for risk-averse managers.

Uncertainty

Uncertainty in abundance and connectivity structure led
to lower ROI (Fig. 5A–C) with higher uncertainty in ROI
(Fig. 5D–F), but the magnitude of effects on mean ROI
depended on control effort (Fig. 5; Appendix S1: Fig. S8,
Appendix S1: Table S1 rows 34–36). The effects of uncer-
tainty in abundance and connectivity structure tended to
be strongest at moderate values of control effort (b = 0.4
or 0.6; Fig. 5, Appendix S1: Fig. S9). When all types of
observational uncertainty were present and b = 0.6, ROI
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was 57% and 73% lower on average in cases where the true
connectivity was none or asymmetric, respectively. Uncer-
tainty in connectivity rate was less important than uncer-
tainty in connectivity structure and abundance (Fig. 5;
Appendix S1: Figs. S8, S9). The negative effects of uncer-
tainty in abundance were not significantly different across
true connectivity structures (Appendix S1: Table S1 rows
19–23), while the magnitude of effects of uncertainty in
connectivity structure and rate on ROI depended signifi-
cantly on the true connectivity structure (Fig. 5;
Appendix S1: Table S1 rows 24–33). There was a signifi-
cantly negative interaction between uncertainty in connec-
tivity rate and structure (Appendix S1: Table S1 row 18),
but no significant interaction between uncertainty in

abundance and connectivity structure or rate
(Appendix S1: Table S1 rows 16–17).

DISCUSSION

Ecological and bioeconomic theory suggests that spa-
tial prioritization of resources is important for efficient
control of invasive species or disease (Hanski and Ovas-
kainen 2000, Chades et al. 2011, Hastings 2014, Baker
2017). However, applying spatial prioritization plans in
practice requires data that describe the connectivity
between subpopulations in space. As quantifying demo-
graphic connectivity directly can be time consuming and
expensive, one way to infer movement between
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FIG. 2. One-way sensitivity analysis of key parameters on return on investment (ROI, %) for the optimal prioritization rule
(shown as stars in Fig. 3). (A) Effects of control intensity (budget); (B) damage function (saturating, linear, exponential); (C) priori-
tization parameter, ap; (D) capture success parameter, ac. Box plots summarize ROI for 100 replicate simulations (mid dot shows
the median, box edges span the 25th to 75th percentile, whiskers show span the full range of data that are not outliers). Each series
of box plots represents results from a different connectivity structure (see legend). Stars are outliers in the box plots distributions.
Horizontal dashed lines indicate the median ROI for the default parameter values (i.e., values that were fixed in Fig. 2; b = 0.6,
fd = linear, ac = 0.03, and ap = 0.03).
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subpopulations is to collect genetic samples from the
subpopulations and analyze the data using population
genetic approaches (Lowe and Allendorf 2010). Here, we
showed that uncertainty in directionality of dispersal
can substantially reduce ROI and increase its uncer-
tainty. Our results highlight an important challenge for
practitioners and geneticists because current methodolo-
gies for estimating connectivity using genetics can be

highly uncertain or biased unless true demographic pro-
cesses meet specific conditions (Meirmans 2014, Sama-
rasin et al. 2017), and connectivity structure can be
dynamic. The silver lining is that uncertainty in dispersal
rates seemed less important than uncertainty in dispersal
direction, and genetic methods typically have less uncer-
tainty in estimating dispersal direction than in estimat-
ing dispersal rates (Samarasin et al. 2017).
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FIG. 3. Effects of damage function on ROI and optimal strategy. Colors represent mean ROI of 100 replicate simulations. Each
plot shows results for a different fixed connectivity structure. The x-axes for symmetric connectivity structures (A, B) indicate the
number of subpopulations that are prioritized simultaneously (e.g., 3 means that all subpopulations are equally prioritized, whereas
2 ? 1 means that two subpopulations were initially prioritized simultaneously followed by the third). The x-axes of the asymmetric
connectivity structures (C–F) indicate the order of source (S) and recipient (R) prioritization, where “Equal” refers to distributing
all resources equally, “&” indicates that two subpopulations are being prioritized simultaneously, and an arrow indicates sequential
prioritization. The y-axes indicate the shape of the damage function. Fixed conditions were b = 0.6, ac = 0.03, ap = 0.03, dispersal
probability = 0.1, abundance uncertainty: none, connectivity uncertainty: none. Stars indicate the “optimal” strategy; triangles are
not significantly different from the stars.
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In practical applications, it is important to understand
how budget constraints affect the optimal control strat-
egy in order to use the available resources efficiently

(Epanchin-Niell and Hastings 2010). We found that it
was better to prioritize source populations, similar to
Baker (2017), across a range of monthly budgets when
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FIG. 4. Effects of prioritization strategies on ROI (%). Colors represent mean ROI of 100 replicate simulations. Each plot shows
results for a different fixed connectivity structure. The x-axes for symmetric connectivity structures (A, B) indicate the number of
subpopulations that are prioritized simultaneously (e.g., 3 means that all subpopulations are equally prioritized, whereas 2 ? 1
means that two subpopulations were initially prioritized simultaneously followed by the third). The x-axes of the asymmetric con-
nectivity structures (C–F) indicate the order of source/recipient prioritization, where “Equal” refers to distributing all resources
equally, “&” indicates that two subpopulations are being prioritized simultaneously, and an arrow indicates sequential prioritiza-
tion. The y-axes are population-level annual dispersal probabilities (B–F), or levels of the ac and ap parameters (A, where H-, M-,
L- correspond to high (0.07), medium (0.03), and low (0.013) values of capture success (ac) as shown in Appendix S1: Fig. S1, and
S, M1, M2, and W correspond to strong (0.03), moderate 2 (0.01), moderate 1 (0.005), and weak (0.0025) values of prioritization
strength (ap) as shown in Appendix S1: Fig. S2). The horizontal black lines in A show results for the values of ac = 0.03 and
ap = 0.03 that are used in plots B–F (note condition A has no potential for dispersal). Other fixed conditions were: b = 0.6, fd = lin-
ear, abundance uncertainty: none, connectivity uncertainty: none. Stars indicate the “optimal” strategy under these conditions and
the average dispersal probability when there is no uncertainty; triangles are not significantly different from the stars.
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connectivity was asymmetric. However, the optimal
resource allocation strategy was affected by budget
under no connectivity due to the non-linear relationship
between capture success and abundance. In these cases,
some form of prioritization was always advantageous
but whether the strategy should be partial or sequential
depended on budget. Our finding that the budget can
affect not just the amount of damage prevented but also
the strategy that would lead to the highest ROI and its
uncertainty is consistent with previous work based on
empirical data from willow (Salix cinerea) invasion man-
agement in the Australian Alps (Giljohann et al. 2011).
For example, Giljohann et al. (2011) found that the bud-
get affected which sites should be included in the control
plan as well as time investment in each site. In general,
under low budgets and high connectivity (symmetric or
asymmetric), prioritization had little advantage over
equal allocation of resources because elimination proba-
bility was low for all prioritization schemes under these
conditions. Thus, ultimately the optimal resource alloca-
tion strategy depends most strongly on whether there are
enough resources to rapidly reduce each subpopulation
and dispersal probabilities when prioritization is applied
(i.e., removal rates that are well beyond birth and immi-
gration rates).
Another important factor determining the optimal

resource allocation strategy was the damage function.

Previous work has demonstrated that ROI from control
can vary dramatically depending on the damage func-
tion and the relative difference of damage costs to con-
trol costs (Yokomizo et al. 2009, Davis et al. 2018a).
Specifically, when the damage function is saturating and
damage costs are low to moderate, there can be little to
gain by investing in control (Yokomizo et al. 2009, Davis
et al. 2018a). Similarly, we also found that ROI for the
optimal strategy was generally lower when the damage
function was saturating or linear as compared to expo-
nential. As with the effects of budget, we found that the
damage function only affected the optimal resource allo-
cation strategy when connectivity was symmetric,
although it did affect absolute ROI under all connectiv-
ity structures. Thus, the damage function plays an
important role in determining overall ROI, and the opti-
mal strategy depending on the true connectivity struc-
ture. Future work should evaluate the ROI of allocating
resources into monitoring to decrease uncertainty in the
damage function, e.g., see Moore and Runge (2012) for
a similar concept.
A third important factor affecting the optimal strat-

egy was observational uncertainty in abundance and
connectivity. Our model assumed that the manager allo-
cated resources with a predetermined prioritization
scheme based on knowledge of connectivity structure
and monthly estimates of subpopulation abundances.

FIG. 5. Effects of uncertainty in abundance and connectivity on ROI (A–C) and its error (D–F). The x-axes define the uncer-
tainty conditions (0,0,1 = UXj?k; 0,1,0 = UX; 0,1,1 = UXj?k & UX; L,0,0 = low Ua; H,0,0 = high Ua; L,1,1 = low Ua & UXj?k &
UX; H,1,1 = high Ua & UXj?k & UX; see Table 1 for parameter definitions). A–C shows the difference in mean ROI (predictions
from model in Appendix S1: Table S1) for each set of uncertainty conditions as compared with no uncertainty, whereas D–F show
the difference in coefficient of variation (CV of the raw data) between conditions with uncertainty vs. those without. Note, when
b = 0.2, the CVs were generally very high and stochastic even with no uncertainty in connectivity and abundance so these were
omitted. True connectivity structures that were evaluated are indicated at the top of the plots; “asymmetric” refers to the average of
all four connectivity structures that were not symmetric.
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Thus, when uncertainty in subpopulation abundance
was high, subpopulations may have received more or
fewer resources than if abundance had been observed
more accurately. This allocation error resulted in
decreased and more uncertain ROI, similar to Bonneau
et al. (2019) and Regan et al. (2011) and occurred
regardless of the true connectivity structure. Uncertainty
in connectivity did not explain as much of the variation
in ROI for different resource allocation strategies as
compared to uncertainty in abundance. However, when
uncertainty in connectivity structure was present, higher
control intensities were needed in order to have more
certainty about ROI of the optimal strategy. This was
because when the connectivity structure was uncertain,
there was error in identifying the true source population
(s) such that benefits from reducing dispersal probabili-
ties were reduced. Also, when the true connectivity struc-
ture was “completely connected,” ROI was higher and
less uncertain when there was uncertainty in connectivity
structure (data not shown). This was because ROI in sev-
eral other connectivity structures tended to be higher
than ROI in fully connected populations across several
different prioritization strategies (i.e., the fully connected
case was generally a worst case scenario such that if con-
nectivity was less than fully connected applying any
strategy would still give a higher ROI). In contrast,
uncertainty in connectivity structure generally decreased
expected ROI and increased its uncertainty for all other
types of true connectivity structures. Thus, uncertainties
from both abundance and demographic connectivity are
important for determining optimal resource allocation
strategies. Incorporating both sources of demographic
uncertainty, in a manner that appropriately links and
propagates their uncertainties will be important for
determining optimal resource allocation strategies in
practice.
While our model accounted for several realistic non-

linear relationships of management costs and density
(e.g., similar to Baker 2017), we did not consider den-
sity-dependent dispersal between subpopulations, nor
dispersal outside the original area occupied by the
metapopulation. Instead, we modeled dispersal as a
fixed proportion of the source population and without
regard to recipient population density. While density-in-
dependent dispersal could be unrealistic in some con-
texts (Olsson et al. 2006, Strevens and Bonsall 2011,
Tabak et al. 2017, De Bona and Bruneaux 2019), den-
sity-independent connectivity could occur in some situa-
tions where anthropogenic movement shapes the
connectivity structure (Hernandez et al. 2018). Regard-
less, we expect that incorporating density-dependent dis-
persal may have only a minor impact on the relative
importance of factors affecting the optimal resource
allocation strategy because we found that the details of
connectivity structure were less important than the over-
all control effort and uncertainty in abundance.
Although patterns of dispersal were density indepen-
dent, we assumed that birth rates in local populations

were density-dependent. Limiting subpopulations by
density-dependent births could affect the optimal priori-
tization strategy because uncontrolled populations
would be allowed to expand further, causing more dam-
age, and resource allocation decisions and damage func-
tions are dependent on densities. Thus exponential
growth could offset the benefits of spatial prioritization
(depending on spatial expansion rates and damage costs;
e.g., Bonneau et al. 2017). Exponential growth in local
populations could be realistic in the case of wild pigs in
the United States, where uncontrolled populations con-
tinue to expand more than controlled populations (Pepin
et al. 2019), i.e., they are not limited by favorable habitat.
An understanding of density dependence in demo-
graphic processes will be important for applying connec-
tivity-based management on real landscapes.
We tested the concept that managers could use a one-

time estimate of demographic connectivity that was
obtained at the outset of a management program to
identify an optimal resource allocation scheme. We then
tested how uncertainty in that one-time estimate would
affect robustness of the optimal resource allocation
strategy that is applied. We assumed that, for a given sce-
nario, connectivity structure and rate were fixed. As con-
nectivity is likely to change due to management or
environmental factors, developing bioeconomic frame-
works that account for these effects, and how additional
surveillance and learning could optimize connectivity-
based management plans, will be important for realizing
the full benefits of connectivity-based management in
practice.
Our results highlighted the importance of accurate

monitoring data for planning optimal resource alloca-
tion strategies: uncertain knowledge of demographic
processes and economic relationships can result in
choosing resource allocation strategies with lower ROIs.
However, we did not consider the costs of different types
of monitoring data (e.g., abundance, connectivity, dam-
age costs). An important future direction is to determine
how much investment in monitoring demographic and
economic processes would be needed (if any) to maxi-
mize ROI by increasing the confidence in choosing the
optimal connectivity-based control strategy (Epanchin-
Niell et al. 2012, Moore and Runge 2012, Rout et al.
2014, Baker and Bode 2016, Gormley et al. 2016). Our
results suggest that robust estimates of connectivity will
be especially important when connectivity is asymmet-
ric, and that reduced uncertainty in economic data is
most important when connectivity is symmetric. Future
work that considers the monitoring costs for reducing
uncertainties in the data used to guide management deci-
sions is important for determining how resources can
optimally be apportioned to control and monitoring in
realistic contexts (i.e., where uncertainty in demographic
dynamics and damage functions exists).
Our qualitative results should be generally applicable

across a wide variety of animal systems where reproduc-
tion occurs throughout the year and migration among

September 2020 SPATIAL PRIORITIZATION FOR ELIMINATION Article e2126; page 13



distinct local populations occurs (e.g., rodents, feral
ungulates, feral cats). In fact, similar metapopulation
modeling approaches have proved useful for informing
optimal control in very different types of species, for
example, aquatic species such as lionfish (Tamburello
et al. 2019) or insects such as gypsy moths (Bogich et al.
2008). Although we did not consider systems with dis-
tinct annual birth pulses, we do not expect results to dif-
fer for these systems. To understand the importance of
uncertainty in dispersal structure, we considered a broad
range of connectivity structures, where some will be
more relevant than others in specific contexts. For exam-
ple, the “Stepping-stone” connectivity structure is likely
to be most relevant to invasions in streams where disper-
sal occurs through unidirectional water flow rates. In
these systems, our “Infinite islands” structure is not
likely to be relevant and thus need not be considered.
Thus, some understanding of the dispersal structure in
the system being managed is important for identifying
the breadth of possibilities that could contribute to
uncertainty. Also, in systems where dispersal occurs
more continuously across space (e.g., passive dispersal
without distinct local populations as in some weed spe-
cies (Adams et al. 2015) or animal invasions that cover
widespread areas of establishment such as wild pigs in
Texas), a different model structure for dispersal (i.e.,
connectivity) would be needed. In these cases, the con-
cept of uncertainty in connectivity structure might be
best studied in terms of uncertainty in dispersal rates
across a continuous landscape, a process that can also be
measured by genetic methods. Our results highlight that
regardless of the nature of dispersal structure, its uncer-
tainty is important to consider.
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