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ABSTRACT

By analyzing the elemental abundance profile of a star, insight can be gained into

the composition of its initial dust cloud. Using this insight, it is possible to determine

the likelihood that the star was able to form planets based on the amount of metal

material available. We present an analysis of 16 dwarf stars in the galactic halo, a

relatively metal-poor region when compared to the thin disk, where most currently

known exoplanets reside. We calculated detailed elemental abundance profiles for each

of these stars and found their metallicities to be in the range expected for halo stars

(-2.0 ≤ [Fe/H] ≤ -0.5). In this process, we also determined the values of the effective

temperature and surface gravity for each star.

1. INTRODUCTION

A planet-metallicity correlation has been well-demonstrated for gas giant planets across a wide

range of stellar metallicities. If a star is metal-rich, it is more likely to have formed giant planets.

The accepted theory explaining the cause of this correlation is as follows: In order for a star to

form planets, the initial dust cloud needs to be rich enough with metals (the key component of

dust particles and the amalgamations thereof, i.e. planets) that the particles are sufficiently dense

and numerous enough to be able to coalesce to form larger particles, which then form planetesimals

which can accrete gas around them and create a gas giant. Thus, if the cloud is too metal-poor, this

accretion will not happen on a large enough scale to form particles big enough that they grow to

become planets.
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This same correlation, however, has not been firmly established for terrestrial planets. This is an

important problem to tackle as it has implications regarding target selection for future exoplanet

searches. If terrestrial planets are indeed more common around metal-rich host stars, these stars

should be prioritized for observation. Conversely, if it can be determined that, below a certain stellar

metallicity, the probability that a terrestrial planet forms approaches 0, stars of and below that

threshold can be safely removed from target samples in order to conserve observation time for more

interesting targets.

We performed a spectroscopic abundance analysis on stars selected from a larger set of dwarf

halo stars. These stars were especially chosen as good candidates for being metal-poor, and have

been selected for observation by TESS to confirm the presence of any detectable transiting planets

orbiting them. Additionally, as most currently-discovered exoplanets reside in the galactic thin-disk,

this analysis hopes to provide some insight into planet formation in areas of the galaxy with different

chemical makeup and stellar populations.

Finally, the halo contains some of the oldest stars in the Milky Way. This analysis will allow

more insight into the correlation between planet formation and metallicity in this domain, as well

provide information that will help us to understand an area of our galaxy which preserves important

information on the formation and earliest chemical evolution of our galaxy (Bullock & Johnston

2005).

Until recently, however, it has not been easy to identify halo stars. Even the distribution of their

ages has not been fully understood. The Gaia mission (Gaia Collaboration et al. 2016) though, has

the identification process can be made far more efficient through its astrometry and radial velocity

measurements of one billion stars in the Milky Way.

2. SAMPLE SELECTION

2.1. Larger Dwarf Sample

For the purposes of our analysis, the sample selection should be such that the stars within it have

a high probability of being metal-poor. Since the solar neighborhood is composed of roughly 1%
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metal-poor stars, we must look elsewhere for a metal-poor sample of sufficient purity. The galactic

halo is a region that is known to contain a significant fraction of metal-poor stars, so our selection

criteria were centered around values that would be characteristic of stars in this region. This selection

process used kinematics data from Gaia, as well as stellar radius data from CTLv0801 (Stassun et al.

2018, 2019) to limit the sample to dwarf stars. In the end, 17,342 stars were selected, and we estimate

the success rate of selecting dwarf halo stars to be approximately 70%.

To confirm this, we can analyze the demographics of the sample to confirm that they are within

expectations. Figure 1a displays the distribution of stellar radii in the sample and shows that the

peak of the distribution falls at approximately 0.7 R�. Figure 1b shows the distance distribution

of the sample, which was chosen so that all stars selected have d < 1 kpc. Regarding Figure 1c,

Casey et al. (2018) shows a metallicity correlation with a star’s (W1−W2) color index. Specifically,

their results suggest that selecting a sample of stars with −0.05 ≤ (W1 − W2) ≤ 0.05 increases

the yield of metal-poor stars (defined as having [Fe/H] ≤ −1.5) significantly over the results of a

random selection by a factor of 250. Since the majority of stars we selected fall within this color

range, we can use this to conclude that we have a high chance of finding that our sample is largely

metal poor. The discontinuous distribution of Tmag displayed in Figure 1d is due to the fact that

although the majority of targets from the CTL have T < 13, the Cool Dwarf list extends to T = 16

(for a description of this special list, see Muirhead et al. 2018).

2.2. Detailed Subsample

16 stars were chosen that were either taken directly from the larger sample, or were shown to

have properties fitting the expected demographics. In particular, we took Gaia kinematics data for

each star and used the method outlined in Johnson & Soderblom (1987) to calculate galactic space

velocities, ensuring that the results were indicative of stars in the galactic halo (|v| > 200 km s−1).

We also did the same for all the stars in the larger halo sample with Gaia radial velocity data. The

results are displayed in Figure 2, which shows that all of the stars exhibit halo-like kinematics. The

diagram is a projection of a star’s 3-dimensional space velocity onto a 2-dimensional plane, where
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(a) (b)

(c) (d)

Figure 1: Demographics of the Halo Sample

the x-axis represents velocity in the direction of galactic rotation (V), and the y-axis represents the

magnitude of the vector sum of radial velocity (U) and velocity perpendicular to the galactic plane

(W). A star’s total velocity is represented by its distance from the origin. For this reason, isovelocity

lines are shown in gray for readability.
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Figure 2: Galactic Space Velocities of the Sample With Respect to the Local Standard of Rest
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3. ABUNDANCE ANALYSIS

3.1. PEPSI Spectra

Observations of each of these stars were taken using the Large Binocular Telescope’s PEPSI high-

resolution spectrograph. The resulting data was fed through a reduction pipeline to create merged

1-dimensional spectra in both the R band and the B band.

In order to derive stellar parameters and abundance profiles of the stars, we first calculated the

equivalent widths of the absorption lines from elements of interest. We did this using a custom

Python program which allowed us to adjust the continuum and wavelength range over which to

calculate the equivalent widths to get precise measurements. Examples of the resulting plots and

calculations can be found in Figure 4, which shows Iron I line features of varying strengths. In the

plots, the line feature is drawn in gray, the continuum in dark blue, and the minimum point of the

line feature in light blue. The dark blue lines on either side of the minimum point are a graphical

depiction of the equivalent width, which is shown in units of m�A. Absorption lines and their relevant

data were chosen from Table 3 of Fulbright (2000).

Figure 3: Example of Reduced 1-Dimensional Spectra: The R-band Profile of BD+51 1696.

Once we had calculated equivalent widths for each star, we chose to keep only lines which had equiv-

alent widths greater than 5 m�A. This was due the signal-to-noise ratio of the spectra preventing any

accurate measurement of weaker absorption lines, which is best illustrated by comparing Figure 4d to
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(a) (b)

(c) (d)

Figure 4: Example Results of Equivalent Width Calculation on BD+51 1696

the other plots in the figure. For certain stars, this resulted in no usable line strength measurements

for a given element. In this case, we simply ignored that element in our analysis (represented as ”–”

in our final abundance results, which can be viewed in Table 3).

Table 3 of Fulbright (2000) conveniently contains wavelength, excitation potential, and oscillator

strength data for every spectral line listed. We took this data and combined it with our equivalent

width data to produce unique line lists for each star. In our analysis, we used PyMOOGi1 (Adamow

2017), a Python implementation of the Fortran code MOOG2 (Sneden 1973), which itself is a popular

1 https://github.com/madamow/pymoogi
2 http://www.as.utexas.edu/∼chris/moog.html

https://github.com/madamow/pymoogi
http://www.as.utexas.edu/~chris/moog.html
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tool in stellar spectroscopy. MOOG also requires model stellar atmospheres. We used ODFNEW

model atmospheres from Kurucz’s grids3 and the KMOD interpolation tool4 to create appropriate

atmospheres which closely matched our stars

3.2. The Abundance Analysis Process

MOOG is a spectral analysis tool widely used for line analysis and synthesis. In our analysis we

used the driver abfind, which uses the basic equations of LTE spectral line analysis to fit chemical

abundances to an input line profile given an appropriate model stellar atmosphere. In order to get

appropriate atmospheres, we first needed to get accurate stellar parameters, which for our needs

include Teff , log(g), microturbulence (ξ), and [Fe/H]. Details on the methods we used to determine

these parameters can be found in the following section, 3.3. At this point, using the model atmosphere

grids from Kurucz, we were able to use KMOD to linearly interpolate models that closely fit each

star. Then, we ran our model atmospheres and line lists through MOOG, which outputs a summary

file, and a plot for each element.

The summary output file contains statistics which detail the mean abundance calculated from each

line of the elements in the line list, along with the standard deviation. Figure 5 is an example of

one of the graphs output by MOOG, where in this case, neutral Iron is plotted in blue and singly-

ionized Iron is plotted in green. The individual abundances derived from each line are plotted as

points, and the average abundance is represented by the horizontal dashed line. The solid lines are

trend lines of abundances in each of their respective parameter spaces, useful for obtaining accurate

stellar parameters while assuming local thermodynamic equilibrium, which requires that the slope of

some of these trend lines be equal to 0 within a margin of error. While we first attempted a strict

LTE assumption, in our final analysis, we decided to forego this. This yielded more consistent results

when fitting the sample subset to stellar isochrones in different parameter spaces from the Dartmouth

Stellar Evolution Pipeline. More details can be found in Section 4.1.

3 http://kurucz.harvard.edu/grids.html
4 http://www.as.utexas.edu/∼hebe/stools/

http://kurucz.harvard.edu/grids.html
http://www.as.utexas.edu/~hebe/stools/
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Figure 5: Example MOOG Output Graph: The Iron abundance profile of star TYC 3873-597-1

3.3. Stellar Parameter Derivation

We report Teff to a precision of 10 K, surface gravity to a precision of 0.05 log(cm s−2), and micro-

turbulence to a precision of 0.01 km s−1. These values, along with the error associated with them,

are displayed in Table 2.

3.3.1. Effective Temperature and Surface Gravity

Since all 16 stars have Gaia photometry and 2MASS photometry publicly available through the

Gaia archive and SIMBAD, we used spectral colors calculated from this photometry to compare

against the Dartmouth isochrones to develop new parameters.

This was a two-part process. Initially, we compared each star’s photometry against the isochrone for

a 10 Gyr old population with [Fe/H] = -1.0. Color comparisons were done using every combination
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of band magnitudes available (G, Bp, and Rp from Gaia, and J, H, and K from 2MASS). Each

individual color corresponded to a specific evolutionary stage along the isochrone, which carries with

it values for Teff and log(g). The median value of both over all possible colors were taken to be our

first approximation of effective temperature and surface gravity. We chose to use the median instead

of the mean due to the occasional significant outlier in the data. A tabled example of the results of

this process for one of our stars is found in Table 1.

Color Index Teff [K] log(g [cm s−2])

(G - Rp) 6200 4.40

(G - Bp) 5930 4.55

(Bp - Rp) 6090 4.50

(J - H) 6380 4.05

(H - K) 5610 4.60

(J - K) 6220 4.40

(G - J) 6170 4.45

(G - H) 6220 4.40

(G - K) 6170 4.45

(Bp - J) 6090 4.45

(Bp - H) 6170 4.45

(Bp - K) 6130 4.45

(Rp - J) 6130 4.45

(Rp - H) 6230 4.40

(Rp - K) 6170 4.45

MEDIAN 6170 4.45

Table 1: Example of Photometric Derivation of Teff and log(g) For HD 108177

We then took these parameters and ran them through MOOG, determining an initial Fe metallicity

for the star. With this [Fe/H] value, along with the star’s position on the (G − Rp) color versus G

magnitude diagram to determine an approximate age, we were able to get a new, more accurate

isochrone for the star to fall on. The process of comparing the star’s spectral colors was repeated

once more using this new isochrone, and we took the resulting Teff and log(g) values to be used

in our analysis. In theory, this process could be iterated further. However, the values resulting
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from any second-order correction were found to be within one standard deviation of the first-order

approximation, making this a negligible correction.

3.3.2. Microturbulence

To determine a value for the microturbulence parameter, we used Iron I lines of similar excitation

potential and varying equivalent widths to remove the correlation between equivalent width and

derived abundance by varying the microturbulence parameter. This resulted in about five Fe I lines

for each star being used for this process. Our reasoning for limiting the Iron lines used was such that

we were able to minimize non-LTE effects. Since MOOG assumes LTE, using a range of lines with

different excitation potentials would expose this calculation to uncertainties stemming from the fact

that the star is not in excitation equilibrium since we did not derive Teff spectroscopically.

Star Teff [K] log(g [cm s−2]) ξ [km s−1]

BD+18 3309 5710 ± 80 4.60 ± 0.06 0.83 ± 0.44

BD+18 3423 5960 ± 70 4.40 ± 0.17 0.71 ± 0.10

BD+20 2594 5980 ± 70 4.55 ± 0.06 0.67 ± 0.12

BD+20 3603 6270 ± 40 4.45 ± 0.12 0.64 ± 0.18

BD+25 1981 6860 ± 90 4.40 ± 0.08 1.67 ± 0.31

BD+34 2476 6270 ± 40 4.40 ± 0.11 0.66 ± 0.17

BD+36 2165 6160 ± 50 4.40 ± 0.10 0.50 ± 0.22

BD+42 2667 5980 ± 30 4.55 ± 0.03 0.94 ± 0.31

BD+51 1696 5670 ± 60 4.60 ± 0.05 0.53 ± 0.38

BD+72 659 4440 ± 30 4.55 ± 0.01 1.02 ± 0.16

BD+75 839 5710 ± 30 4.55 ± 0.03 1.10 ± 0.13

HD 64090 5450 ± 40 4.70 ± 0.02 1.07 ± 0.40

HD 108177 6170 ± 40 4.45 ± 0.11 0.73 ± 0.26

HD 160693 5790 ± 60 4.45 ± 0.11 1.29 ± 0.24

HD 194598 6040 ± 50 4.50 ± 0.05 1.17 ± 0.23

TYC 3873-597-1 5700 ± 30 4.50 ± 0.03 0.83 ± 0.12

Table 2: Stellar Parameters

3.4. Error Analysis
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For stellar parameters, errors on Teff and log(g) were calculated as the standard deviation of the

mean value taken from the isochrones as explained in the previous section. Uncertainty in the

microturbulence parameter was determined by varying the microturbulence by 0.1 km/s and relating

the the change in ξ to the change in metallicity using the equation σξ =
σ[Fe/H]

Mf−Mi
(0.1km/s) where Mi is

the Iron I abundance derived from using ξ, and Mf is the Iron I abundance derived using ξ+0.1km/s

as the microturbulence parameter.

For elemental abundances, the error was taken to be the standard deviation of the mean abundance

derived by MOOG. For the case where a star had only one usable spectral line for a given element,

we took the average error of the same element’s abundance from other stars of similar parameters.

For elements which only had at maximum one usable spectral line per star (This includes Li, V, Ba,

and Eu), we chose to vary the continuum used to calculate the equivalent width, using the ’eye test’

to find an upper and lower bound on it. We then ran PyMOOGi on both these parameters and

took the average deviation of the two to be the standard deviation of the abundance. This yielded

consistent results from star to star, which suggests that this method is valid. However, because of

the inherent uncertainty in using this method, we report standard deviations calculated this way to

only two significant figures.

3.5. Results

We found the stars to fall within ranges of 4400 ≤Teff ≤ 6900, 4.4 ≤ log(g) ≤ 4.7, and −2.0 ≤

[Fe/H] ≤ −0.45. We take the [Fe/H] parameter to be equal to the Fe II abundance rather than Fe I

as a consequence of our choice to forego ionization balance as we do not assume LTE. This is because

Fe II lines are significantly less affected by the consequences of this when run through MOOG (which

assumes LTE in its equations) than Fe I lines. These ranges confirm the assumptions of the selection

process that these stars are indeed metal-poor dwarfs. Complete abundance data and errors can be

found in Table 3. We used solar abundance values from Palme et al. (2014) to transform our results

to be relative to solar.
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Figure 6: Color-Log(g) Diagram of the Sample

We can show the validity of our parameter choice, as well as show that the stars are indeed

metal-poor, by plotting the stars on an HR diagram along with isochrones of relevant age and

metallicity. Figure 6 displays the results of this, with several isochrones covering the range of the

sample parameters. These isochrones have been assigned (arbitrarily and for clarity purposes) color

corresponding to the age of the stellar population they represent, and lightness corresponding to their

representative metallicity. The gray points represent our 16 sample stars, which fit nicely into the

main sequence section of the isochrones from −2.0 ≤ [Fe/H] ≤ −0.5 and 6 Gyr ≤ Age ≤ 12 Gyr. The

notable outlier from this conformity is the star BD+72 659, with (G − Rp) > 0.7, which sits firmly

above the highest-metallicity isochrones in the diagram. This can be attributed to its large [Fe/H]

error ([Fe/H] = −0.477± 0.242), which cannot be adequately quantified in this parameter space.
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To further confirm the validity of our results, Figure 7 displays a comparison of two cumulative

metallicity distributions. The first, plotted in gray, is a cross-referencing of the larger, 17,342-star

sample with stars in APOGEE DR14 that have metallicity data available. The resulting subset

contains 118 halo stars with APOGEE metallicity data. In red is plotted the distribution of metal-

licity we derived from our smaller 16 star sample. This falls well within the range of the expected

distribution, further backing up the validity of our results.

Figure 7: Cumulative Metallicity Distribution Comparison

4. DISCUSSION

4.1. Analysis Methods

Originally, we performed our analysis assuming that the stars were in a state of local thermodynamic

equilibrium (LTE). Under this assumption, stellar parameters can be determined purely using the

spectroscopy. This is done by adjusting the following parameters accordingly until certain conditions

are met:

1. Effective Temperature: The star should be in excitation equilibrium, i.e. the correlation between

abundance derived from each line and excitation potential should be removed.
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2. Surface Gravity: The star should be in ionization balance, i.e. the abundances of Fe I and Fe II

should be within error the same.

3. Microturbulence: The correlation between abundance derived from each line and reduced equiv-

alent width (log( eqw
λ

)) should be removed.

Normally, convergence of these three criteria would be good enough to accept the resulting pa-

rameters as correct, especially as selecting a set of parameters which satisfied all three of the above

conditions proved to be very difficult in some cases. However, our results, particularly those for

surface gravity, did not match up with what was expected. The larger sample we selected our stars

from was chosen specifically to contain dwarf stars. However, our initial log(g) range placed the stars

in a section of the color-log(g) plane where, based on theoretical isochrones, sub-giant stars would

be found after they’ve evolved off the main sequence. This did not agree with their positions on

the color-magnitude plane, which were indicative of main-sequence dwarfs, as illustrated in Figure

8. On the left, our sample is plotted using our log(g) values derived under the LTE assumption. On

the right are the same stars on a color-magnitude diagram. Both sets are plotted along with the

same isochrones as were used in Figure 6. This makes it easier to show the significance of the initial

discrepancy in our initial results versus what we expected based on other data about the stars. These

original surface gravity values were also accompanied by very large errors, which were rectified in

our final analysis, as illustrated in Figure 6. This, along with the discrepancies we found with Reddy

et al. (2006), led us to use photometry to derive the stellar parameters rather than our spectroscopy,

which produced results more in line with expectations given the population demographics of our

sample.

4.2. Comparison

We found 6 stars in common with Reddy et al. (2006), which had also performed a similar abundance

analysis. Their method involved deriving Teff photometrically using both (b - y) and (V - K), except

in the case where this resulted in a deviation of σ(Teff) > 69K. In this case, Teff was derived
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(a) (b)

Figure 8: Our Initial Log(g) Values Plotted on a Color-Log(g) Graph, Constrasting with a Color-
Magnitude Diagram of the Same Stars

spectroscopically. Their method of deriving log(g) was fundamentally the same as that which we

employed, though they used separately derived isochrones, in conjunction with Hipparcos data.

Though our spectroscopic temperatures were within 5% of their values for the same stars, the

discrepancy between our initial log(g) values and those which they derived was in some cases roughly

an entire order of magnitude. This problem was solved once we re-derived our surface gravities

photometrically, which led to much better agreement between the papers.

In addition to Reddy et al. (2006), we also compared our results with those of Boesgaard et al.

(2011), with which we found 7 stars in common. In this paper, they described a stellar parameter

determination process very similar to our original spectroscopic method. Our metallicities derived

from this method were within 0.2 dex of their derivations. However, when we re-determined our

stellar parameters more accurately, the mean Iron abundance of our sample subset was raised by

0.345 dex. This fact leads us to believe that the biggest source of error among studies on these stars

is whether or not the stellar parameter determination process assumes LTE.

The conclusion that can be drawn from these comparisons is that great care must be taken to

ensure consistency among the implications of the stellar parameters one has chosen. Otherwise there

is a risk of converging on incorrect values which then lead to incorrectly-derived abundances.
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5. CONCLUSION

Using this metallicity data we’ve obtained, we can predict the viability of the stars in our sample

for hosting planets. Figure 9 illustrates one method of doing so, making the assumption that all

stars begin within a dust cloud of similar mass to that which formed the solar system, or about

30 Earth masses worth of material. Using this initial condition, we can show what the minimum

metallicity of a star is to be able to form planets of different masses. A good value to use for the

mass of Saturn’s terrestrial core is approximately 10 MEarth. Therefore, for a star to be capable of

producing a terrestrial core of this size, it would require its initial dust cloud to contain at least

one-third the quantity of metals that are in our solar system. This corresponds to a metallicity of

[Fe/H] ≥ −0.477, which is marked in Figure 9 by a purple line. A similar calculation can be done

for an earth-sized planet. A single 1 MEarth object would require a metallicity of [Fe/H] ≥ −1.477,

which has been marked off on the same plot by a blue line.

Comparing these mass thresholds to the cumulative metallicity distribution shows that, carrying

forward our assumption of dust cloud mass, it should be expected that the probability of finding a

Saturn-like planet around a star in the galactic halo is minimal, as the fraction of stars even capable

of forming such a planet is on the order of 5%. Earth-sized planets should be considered more likely,

as we expect roughly 65% of stars in the galactic halo to be capable of their formation. Knowing this,

we can limit our selection of stars for observation by exoplanet missions by first getting abundance

profiles of potential targets, which will allow us to eliminate stars which have a low probability of

having formed exoplanets.
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Figure 9: Addition of Mass Thresholds to Figure 7, Assuming Solar Dust Cloud Size
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Table 3: Elemental Abundances Relative to Solar [dex]

Star Fe II Fe I Li Mg Al Si Ca Ti V Cr Ni Y Ba Eu

BD+18
3309

-1.524
±0.043

-1.927
±0.023

1.064
±0.200

-1.776
±0.261

– -1.106
±0.000

-1.444
±0.016

-1.537
±0.022

– -1.940
±0.016

-1.775
±0.042

-1.642
±0.030

-2.016
±0.060

–

BD+18
3423

-0.861
±0.026

-1.084
±0.023

1.394
±0.180

-1.128
±0.209

– -0.843
±0.101

-0.908
±0.028

-0.931
±0.018

-1.150
±0.220

-1.156
±0.051

-1.174
±0.017

-1.094
±0.046

-1.027
±0.030

–

BD+20
2594

-0.926
±0.019

-1.072
±0.025

1.259
±0.130

-1.155
±0.169

– -0.872
±0.030

-0.777
±0.033

-0.801
±0.010

– -1.058
±0.022

-1.089
±0.018

-1.055
±0.104

-0.998
±0.050

–

BD+20
3603

-1.935
±0.047

-2.161
±0.019

1.431
±0.160

-1.969
±0.121

– – -1.774
±0.002

– – -2.292
±0.045

-2.179
±0.060

– – –

BD+25
1981

-1.391
±0.034

-1.582
±0.019

– -1.221
±0.119

– – -1.078
±0.054

-1.214
±0.040

– -1.602
±0.028

-1.488
±0.032

-1.282
±0.059

-1.838
±0.030

–

BD+34
2476

-1.880
±0.034

-2.214
±0.022

1.348
±0.210

-1.669
±0.493

– – -1.769
±0.020

-1.409
±0.020

– -2.307
±0.018

-2.172
±0.060

– -2.304
±0.030

–

BD+36
2165

-1.422
±0.024

-1.615
±0.026

1.477
±0.110

-1.704
±0.132

– -1.147
±0.040

-1.099
±0.142

-1.193
±0.010

– -1.614
±0.126

-1.740
±0.022

-0.841
±0.701

-1.588
±0.070

–

BD+42
2667

-1.378
±0.022

-1.592
±0.019

1.418
±0.130

-1.629
±0.153

– -1.097
±0.019

-1.193
±0.018

-1.189
±0.023

– -1.630
±0.037

-1.578
±0.015

-1.381
±0.040

-1.700
±0.020

–

BD+51
1696

-1.413
±0.030

-1.404
±0.024

0.995
±0.150

-1.440
±0.136

– -1.192
±0.037

-1.129
±0.032

-1.107
±0.022

– -1.433
±0.025

-1.504
±0.018

-1.586
±0.080

-1.744
±0.080

–

BD+72
659

-0.477
±0.242

-0.930
±0.034

– -0.435
±0.160

-0.361
±0.030

0.434
±0.080

-0.600
±0.045

-0.474
±0.117

-0.514
±0.230

-0.884
±0.035

-0.647
±0.117

-0.231
±0.348

-1.496
±0.030

–

BD+75
839

-1.146
±0.028

-1.273
±0.023

1.077
±0.140

-1.025
±0.093

– -1.065
±0.122

-0.971
±0.052

-0.971
±0.014

-1.259
±0.210

-1.213
±0.010

-1.300
±0.017

-1.328
±0.064

-1.980
±0.080

–

HD
64090

-1.882
±0.060

-1.829
±0.027

0.502
±0.190

-1.500
±0.143

– – -1.501
±0.035

-1.437
±0.011

-1.610
±0.220

-1.849
±0.027

-1.837
±0.021

-1.967
±0.115

-2.239
±0.040

–

HD
108177

-1.646
±0.037

-1.728
±0.018

1.493
±0.160

-1.449
±0.206

– – -1.434
±0.028

-1.269
±0.032

– -1.709
±0.119

-1.751
±0.018

-0.634
±1.005

-1.960
±0.030

–

HD
160693

-0.598
±0.051

-0.867
±0.041

– -1.702
±1.236

-0.380
±0.013

-0.401
±0.080

-0.489
±0.032

-0.545
±0.053

-0.614
±0.230

-0.724
±0.035

-0.708
±0.023

-0.820
±0.047

-1.005
±0.050

–

HD
194598

-1.122
±0.037

-1.239
±0.027

1.440
±0.140

-1.266
±0.059

– -0.954
±0.085

-0.928
±0.035

-0.991
±0.044

– -1.212
±0.040

-1.302
±0.042

-1.338
±0.044

-1.275
±0.070

–

TYC
3873-
597-1

-0.702
±0.037

-0.928
±0.035

– -1.774
±1.071

-0.547
±0.081

-0.545
±0.091

-0.537
±0.055

-0.507
±0.029

-0.722
±0.260

-0.780
±0.017

-0.787
±0.020

-1.021
±0.154

-1.102
±0.070

0.040
±0.200
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