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Abstract

The substantial increase in greenhouse gases in the atmosphere has been linked to global

warming. Although carbon dioxide (CO2) has the largest contribution to the increase in

the Earth’s temperature, methane (CH4) has a global warming potential (GWP) that is 25

times that of CO2 and must be regulated as well due to this significant impact. This issue

is exemplified by fugitive methane emissions from coal mining, which have a considerable

contribution to anthropogenic methane emissions in the United States. In this study, a

stable and economical system was investigated for catalytic CH4 mitigation with a state-of-

the-art catalyst for the complete combustion of methane. Palladium (Pd)-based supported

catalysts show high activity for the methane oxidation reaction but are very sensitive to

the poisonous effect of water vapor. This sensitivity is problematic as water vapor is a

product of the methane oxidation reaction and is present in the coal-mine ventilation air

along with methane. A cobalt (Co)-based system was proposed as an alternative to the

Pd-based catalysts, to avoid this water vapor sensitivity. The characterization technique

of X-Ray diffraction (XRD) and temperature-programmed reduction (TPR) were utilized

for determining the physical and chemical properties of the resulting Co-based catalysts.

Methane oxidation activity tests were performed on the synthesized Pd-based and Co-

based catalysts, both in the presence and absence of water vapor. These characterization

and activity tests demonstrated that despite the higher light-off temperatures of Co-based

catalysts compared to Pd-based catalysts, the Co-based catalysts were significantly more

resistant to the poisonous effect of water vapor. This resistance was maintained for levels

of water vapor present in a typical ventilation air methane (VAM) stream as well as that

produced during the oxidation reaction. Comparatively, Pd-based catalysts suffered from

lower activity in the presence of water vapor due to the formation of the non-active Pd-OH

phase. Therefore, the Co-based catalysts are a well-founded alternative as they did not

display deactivation due to the presence of H2O in the reaction medium, and still allowed

for methane combustion.
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1 Introduction

1.1 Background and Motivation

Greenhouse gases pose a threat to our environment, and reducing these emissions is

a key component of combating climate change. Carbon dioxide is widely regarded as a

large contributor because it makes up the majority of emissions as seen in Figure 1, but

the effect of methane must not be discounted. This is because methane has a global

warming potential (GWP) 25 times that of carbon dioxide. Emissions from coal mines

make up almost 10% of the US methane emissions, therefore this represents the great need

of a methane mitigation technology in this sector. Methane emissions from coal mines

were over 237 million metric tonnes CO2 equivalents in 2000, and increased to 584 million

metric tonnes CO2 equivalents in 2010 [4]. In these mines, there is a large volumetric

flow rate, and a low methane concentration making it challenging to combust. Another

issue is that methane is a highly stable and inert molecule, and cannot be oxidized using

simple oxidation processes at low temperatures [5]. Additionally, the catalytic oxidation of

methane is particularly difficult when comparing hydrocarbons due to the strength of the

C-H bonds [6].

The ventilation systems in coal mines require methane mitigation systems. While nec-

essary for the safety of workers, these systems cause ventilation air methane to be released

to the atmosphere at concentrations of around 1% methane. There are two main meth-

ods for mitigating these low levels of methane: The ancillary approach uses ventilation air

methane as a supplemental fuel for combustion, and the principal method uses ventila-

tion air methane as the primary fuel to oxidize methane to carbon dioxide. The principal

approach is investigated here, as ancillary only utilizes a fraction of the methane, while

principal can have complete combustion. This catalytic combustion method uses flameless

combustion and is ideal for highly diluted air and methane streams. When considering
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Figure 1: Major greenhouse gases [1]

methods of principal conversion, catalytic conversion is preferred to thermal conversion

due to lower operating temperatures and nitrogen oxide emissions.

The catalysts were analyzed to gain information about their crystal structures using

X-ray diffraction, by finding matches to peaks of known elements. Gas chromatography

was used to examine and quantify the components of the reactant and product streams.

The reactant stream had methane, air, and an inert gas in order to be able to test different

oxygen to methane ratios while keeping the methane concentration the same in all the

activity experiments. Carbon dioxide and water were found in the product stream. A 100%

conversion of methane was targeted, but any incomplete reaction will also have methane

in the product stream. Catalyst characterization was done using X-ray diffraction. Initial
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activity tests were used to find the best catalyst candidates. Temperature programmed

reduction investigated the reducibility of the active Co3O4 phase. And lastly methane

conversion tests were completed to compare the effect of a promoter and to test water

stability.

Without catalysts for controlled combustion of methane, the coal mine emissions will

continue to have a negative effect on the environment. Ventilation air shafts are naturally

humid and will cause PdO catalysts to deactivate if methods are not used to prevent this.

The metal oxide based catalysts will provide a solution to the problem of water deactivation

and will be beneficial to the environment.

1.2 Literature Review

Studies have been completed on palladium-based catalysts and unsupported metal oxide

catalysts. It was found that when reacted with sufficient oxygen, the only carbonaceous

product of methane oxidation is carbon dioxide, but carbon monoxide is also formed with

lower oxygen concentrations [7]. Noble metals, especially Pt and Pd, are used in combustion

catalysts due to their high specific activity [8]. Other benefits are that Pt remains in its

reduced state over the reaction conditions, but Pd is preferred because it has higher activity

due to its formation of PdO [6]. It has been found that PdO is the active phase for this

reaction, and forms via calcination between 300°C and 400°C [9]. Past experiments have

been done with noble metals of palladium and platinum with alumina supports [10]. Despite

positive results, this approach can be improved due to the scarcity and high cost of noble

metals. Though catalytic combustion has typically been done using noble metals, these

are downsides. Noble metals such as Pd and Pt are expensive, rare, and also can sinter:

compacting into a solid mass [8]. This results in decreased activity as pores collapse causing

reduced surface area. Another limitation is that palladium catalysts are can be sensitive

to water, as the water in the feed stream will deactivate the PdO active sites to form the
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less active PdOH [11]. Other studies have been complete on palladium-based catalysts and

unsupported metal oxide catalysts.

Therefore, as an alternative to noble metals, transition metals can be used to prepare

lean methane oxidation catalysts. Transition metal oxides are used because they offer

technical and commercial advantages, and the transition metal oxide cobalt (II,III) oxide

(Co3O4) showed excellent promise when performing catalytic combustion of methane [12].

This is due to the Co2+ at tetrahedral sites and Co3+ at octahedral sites [8]. A unit cell

ball-and-stick model of Co3O4 is shown in Figure 2.

Figure 2: Unit Cell of Co3O4 [2]

Oxygen mobility is a key component of catalysis methane oxidation with metal oxide
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supports. Oxygen can be exchanged from the metal oxide and then bonded with the

catalyst such as Pd, before being used in the reaction [13]. Oxidation over metal oxides

involves the activation of gas-phase oxygen with the catalyst surface. This activation starts

with dissociative adsorption on the catalysts, including coordination, electron transfer,

incorporation into a lattice. At the end of this process, there are two states of oxygen: highly

active absorbed oxygen and lattice oxygen [6], which can both play a role in oxidation.
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2 Methodology

2.1 Catalyst Preparation

The beginning methods of the project started with the synthesis of catalysts, which was

done using a wetness impregnation technique. This involves the filling of catalyst pores

by suspending the catalytic support in a solution of aqueous metallic pre-cursor. In this

experiment cobalt was used on metal oxide support materials of alumina, silica, zirconia,

and ceria. A loading of 10 mol% Co was used in all cobalt catalysts.

The experimental synthesis procedure was as follows:

1) Weigh out 1g of support, and the 10% mol equivalent of cobalt, calculated according to

Equation 1. The calculated masses for the synthesized catalysts are shown in Table 1.

1.0g support× 1 mol support

MW support
× % mol catalyst

mol support
×MW catalyst = grams catalyst (1)

2) Dissolve support in 20mL DI water in a 50mL beaker.

3) Using stir plate, mix for 30 minutes with no heat.

4) Impregnate with cobalt nitrate solution:

- Dissolve cobalt nitrate in vial of water. With the catalysts involving Pd promotion,

the order of mixing and addition is being varied at this step.

- Add dropwise to support solution slowly while stirring.

5) Cover beaker with Parafilm and stir for 3 hours.

6) Remove Parafilm and put beaker in a water bath for homogeneous heating.

7) After water has evaporated, dry in oven overnight at 110°C. If the resulting dried material

is coarse, it is ground with a mortar and pestle.

8) Once the mixture was dried, the synthesis was finished with a 3 hour calcination in
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Table 1: Calculated Masses for Catalyst Synthesis

air at 400°C. The sample is prepared in a glass boat for calcination with air at 400°C

flowing through a glass tube in a furnace. This process is to remove unwanted parts of the

precursors such as the nitrate, as well as to oxidize cobalt.

The metal oxide solutions mixed before impregnation can be seen in Figure 3. The

impregnated mixture stirring in the hot-water bath is shown in Figure 4. The catalysts at

end of synthesis following calcination can be seen in Figure 5. As some of the catalysts

such as silica were light in texture, they were pelletized to reduce its volume before analysis

to be more consistent with more dense catalysts. Additionally, the sample are pelletized

to compress the catalyst, so they will use a smaller bed to eliminate pressure drop in the

reactor.
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Figure 3: Metal Oxide Mixtures Before Impregnation Onto Support

2.2 Catalyst Characterization

Catalyst Characterization was done using X-ray diffraction (XRD) as seen in Figure 6.

The cobalt samples were measured for their XRD diffraction pattern using a Bruker D8

Advance X-Ray Powder Diffractometer to study the bulk crystal structure. For the XRD,

first one must clean the glass plate with ethanol, then load the catalyst on and press it flat.

The first position on the device was used, and the device was set to the parameters shown

in Table 2.

The catalyst was placed in the center and then illuminated with x-rays, from the source

tube to the detector on the other side. The signal from the detector was recorded as an

intensity, with the peaks related to atomic structure, which are unique to the components

in the sample. The high energy x-rays were scattered at specific angles, which can be
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Figure 4: Wet Impregnation Mixture

related to the x-ray wavelength and distance between atomic planes. This relationship

is demonstrated with Bragg’s law in Equation 2, where d is the distance between atomic

planes, λ is the x-ray wavelength, and θ is half of the 2θ angle of the scattered x-ray.

nλ = 2 d sin(θ) (2)
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Figure 5: Catalysts at End of Synthesis

2.3 Activity Tests

Initial activity tests were used to find the best catalyst candidates. The reactor system

uses a packed bed, with bench scale trials to replicated ventilation conditions seen in Figure

7. The methane oxidation tests were carried out using 50mg of catalyst with a bed height

of 0.4cm. The reaction was in a packed bed in a 1/4 inch outside diameter quartz tube.

The gas hourly space velocity (GHSV) was 61000h−1 with a total volumetric flow rate of

50 sccm, 1% methane, varying oxygen from 2 to 21%, and with the balance of helium.
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Table 2: XRD Operating Parameters

D8 ADVANCE XRD
Flat plate mode
0.6mm slit
0.5s dwell time
2θ increment of 0.014°
2θ range of 20-90°
Generator voltage of 40V
Current of 40mA

Figure 6: X-ray Diffraction Instrument

2.3.1 Initial Activity Screening Tests

The catalytic activity screening tests were performed in a temperature range of 450-850

°C on metal oxide supported catalysts: 10% Co/ZrO2, 10% Co/CeO2, 10% Co/SiO2 and

16



Figure 7: Activity Test System [3]

10% Co/Al2O3. These experimentas used a bed height of 0.4cm with 35 mg of catalysts.

The total gas flowrate was set to 50 sccm, with a composition of 0.4% CH4, 4.6% O2 and

balance of helium and nitrogen. For all catalysts except silica, the GHSV was 61000 h−1,

which was made with a bed height of 0.7 cm due to its lower density, and therefore had

a GHSV of 35000 h−1. The feed stream was analyzed using a micro gas chromatograph

before each initial activity test.
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Figure 8: Test System

2.3.2 Promoter Activity Tests

The catalytic activity tests were then done on Co-based (10% Co/ZrO2), Pd-promoted

Co-based (Co-Pd-ZrO2, Pd-Co-ZrO2, Pd+Co-ZrO2) and Pd-based (1% Pd/ZrO2) catalysts.

For each experiment, the bed height was 0.4cm, with 50 mg of catalysts used. Mirroring

the initial activity screening tests, the reactant gas composition was set to 0.4% CH4, 4.6%

O2 and balance helium and nitrogen with a total volumetric flowrate of 50 sccm.

2.3.3 Activity Tests on the Effect of Water

The catalytic activity tests were done with Pd- and Co-incorporated catalysts: 1%

Pd/ZrO2 and 10% Co/ZrO2. For each experiment, the bed height was 0.4cm, with 50 mg

18



of catalysts used. Mirroring the initial activity screening tests, the reactant gas composition

was set to 0.4% CH4, 4.6% O2 and balance helium and nitrogen with a total volumetric

flowrate of 50 sccm. The GSHV was 61000 h−1 for both catalysts. The feed stream was

analyzed using micro GC before each test. For the dry tests, not water was added to the

feed stream. To test the effect of the presence of water, the feed gas mixture was sent to a

water bubbler first to make a saturated feed with water. The amount of water sent to the

reactor was 3% in all the activity experiments conducted in the presence of water.

2.4 Temperature Programmed Reduction Tests

Next, temperature programmed reduction using a thermal conductivity detector inves-

tigated the reducibility of the Co3O4 active sites. This was to check for oxygen mobility

as well, because if oxygen was more mobile, then it would react to form water at lower

temperatures. The temperature programmed reduction was done with 5% hydrogen in

nitrogen, analyzing the water output produced using a mass spectrometer.

A 50mg catalyst was packed in a quartz tube reactor. Quartz wool was used for packing,

to plug the middle of the reactor tube. The catalyst was put in the long side of the tube,

and the wool was added after that. First, before changing the reactor parameters, the valve

to the mass spectrometer was closed, and the helium valve was turned off. The system

was flushed with a 5% H2/N2 stream of 30mL/minute at room temperature. Next, put the

tube in with components and the O-ring. Then the gas flow was checked to be 30mL/min.

Then the valve to send gas to the mass spectrometer was turned on, taking 10mL/min.

The gas analyzer used was an MKS Cirrus bench top residual gas analyzer.

The reaction process starts out with just helium in the feed stream, then is switched over

to 5% hydrogen with the balance of nitrogen. The heating begins at room temperature,

then with a ramp rate of 10 degrees Celsius per minute up to 1000 degrees Celsius. The

temperature is held at 1000 degrees Celsius for 1 hour, then the gas is switched to helium
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and the temperature decreased back to room temperature. This reaction procedure is shown

in Figure 9. The signal for water of 18 amu, was measured to investigate the reducibility

of the catalyst.

Figure 9: TPR Heating Scheme

2.5 Effect of Promoter

Based on the results from the screening activity and TPR tests, the cobalt zirconia cat-

alyst was chosen as the best catalyst from those synthesized. Next, the effect of promoter

addition on the cobalt zirconia catalyst was investigated. Palladium was selected as the

promoter because Pd/PdO is the active phase for conventional catalytic methane combus-

tion. The order of addition of this promoter was also investigated. 1%Pd-ZrO2 is the 1%

Pd catalyst which was included for comparison. Even though it shows the best activity,

it is not reliable as it does not have resistance to water. Next are the three Pd-promoted

catalysts, varied in synthesis order.
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With Pd+Co-ZrO2, the Palladium and cobalt solutions were mixed and then added

together on zirconia. For Pd-Co-ZrO2, it was cobalt first on zirconia, then palladium

on that mixture. Then with Co-Pd-ZrO2, it was first palladium on zirconia, then cobalt

onto the mixture. Lastly, 10%Co-ZrO2 was the catalyst from previous tests, which has no

palladium.

Methane conversion tests were done to compare the effect of a promoter and to test

water stability.

2.6 Stability Tests

The long-term stability was investigated using a time-on-stream test. This activity test

was conducted using 35 mg catalyst (catalyst bed height of 0.4 cm). The gas composition

was 0.4% methane, 4.6% oxygen, with the balance helium and nitrogen. The GHSV was

61000 h−1 and the total volumetric flow rate was 50 sccm. The Time-on-stream tests

were for the long-term stability of the methane combustion catalysts, and a good result

would be the catalysts maintaining the same initial conversion with no activity loss [8].

Next, methane conversion tests were completed to test the water stability of the catalysts,

comparing the activity of the Pd and Co catalysts in the presence and absence of water.
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3 Results and Discussion

3.1 XRD Catalyst Characterization

The XRD characterization aimed to investigate crystalline structures, diffraction pat-

terns, and crystal phase composition and morphology. The red bars in Figure 10 are the

peak locations for the Co3O4 diffraction pattern. This indicated that Cobalt has been

oxidized during the calcination process to form Co3O4 for these catalysts. Pd or PdO was

not detected meaning it was highly dispersed in the support.

Later the XRD was done on the Pd based and Pd promoter Co catalysts, and the XRD

results did not show any difference between the Pd-promoted catalysts.

Figure 10: XRD Patterns for Cobalt Catalysts
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3.2 Temperature Programmed Reduction Tests

The area under these curves in Figure 11 is useful for identifying the amount of active

Co3O4 phase reduced to CoO and Co. The greatest area for the silica catalyst indicated

that the most Co3O4 had been reduced, whereas the least area for the zirconia catalyst

indicated that the least Co3O4 had been reduced. This resistance to reduction is a preferred

feature in the zirconia catalyst. The zirconia catalyst’s behavior was attributed to zirconia’s

high redox abilities, as an oxygen donor to the Co3O4 phase to protect it from extensive

reduction.

Figure 11: TPR Tests of 10% Co/SiO2, Al2O3, CeO2, and ZrO2

Therefore based on these TPR results showing resistance to further reduction of the

active phase of methane combustion as well as the activity screening results, the cobalt
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zirconia catalyst was chosen to as the best methane oxidization catalyst of those tested.

3.3 Activity Tests

The methane conversion was calculated in terms of the CH4 inlet and outlet concentra-

tions as shown in Equation 3.

Methane Conversion, x =
Cin − Cout

Cin

× 100% (3)

3.3.1 Catalyst Activity Comparison

The activity tests in Figure 12 showed that the silica catalyst had higher conversion at

lower temperatures, and at higher temperatures was similar to the zirconia catalyst. The

silica activity was higher than expected, but this was due to it having higher surface area

and lower gas hourly space velocity because of its lower density. These results showed there

were still multiple possible candidates, further tests needed to be done.

3.3.2 Effect of GHSV on Activity

Previous experiment showed that the higher activity of 10% Co/SiO2 could be due to

higher GHSV as it has a lower density, the effect of GHSV on activity was explored. This

was demonstrated in Figure 13, which showed that the methane conversion activity was

higher when the GHSV was lower. This can be explained by when the reaction system has

a low GHSV, the reactants spend more time in the reaction bed on the active sites, giving

a higher chance of reacting.

3.3.3 Varying Methane Level for Activity

The effect of methane concentration was investigated by performing activity tests at

0.5, 1, 2, and 3 % CH4 with excess oxygen, shown in Figure 14. This experiment used 50mg
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Figure 12: Lean Methane Oxidation Activity of Cobalt Catalysts

of catalyst (0.5%Pd+10%CoZrO2). The total flow rate was 50 sccm, and the GHSV was

61000h−1. The methane concentrations were diluted from a 10% CH4/He stream with air

and He. This activity test resulted in very little difference between the four trials, meaning

there was not a significant effect of methane concentration on the catalyst activity. This

was likely because oxygen was provided in excess, so there was not competitive adsorption

between methane and oxygen. This is a positive result, because oxygen levels in ventilation

shafts are expected to have oxygen levels that would be considered excess. Additionally, as

methane levels are expected to be around 1% or less, this shows that these catalysts would

be effective at, and around, the anticipated methane concentrations.
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Figure 13: Activity of 10% Co/ZrO2 at GHSV of 3000 h−1 and 61000 h−1

3.3.4 Varying Oxygen Level for Activity

The effect of oxygen concentration on the activity of the 10% Co/ZrO2 Catalyst was

investigated next. This was completed with 50mg of the catalyst in a catalyst bed height

of 0.4cm. The GHSV was 61000h−1 with a total volumetric flow rate of 50 sccm, 1%

methane, varying oxygen from 2 to 21%, and with the balance helium. Similar to the

effect of methane concentration, all trials were relatively close in value. As seen in Figure

15, there was a slight positive effect of oxygen concentration on methane conversion. The

lowest concentration of oxygen gave the lowest methane conversions, while the highest

oxygen concentration in the feed gave the highest conversions. Again, this was a positive

result as the highest methane conversion was with the 21% oxygen which is what the

expected VAM stream condition will be.
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Figure 14: Methane Concentration Effect on 10% Co/ZrO2 Catalyst Activity

Figure 15: Oxygen Concentration Effect on the Activity of 10% Co/ZrO2 Catalyst
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3.4 Effect of Promoter

As expected, the palladium promotion caused an increase in activity. Figure 16 shows

the differences between the three orders, especially in orange as it showed high activity at

lower temperatures due to accessibility of Pd particles on the outer surface, but these could

have been affected by water at higher temperatures and cause this apparent deactivation

of the Pd sites.

Figure 16: Lean methane oxidation activity of Pd Promoted Catalysts
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3.5 Stability Tests

3.5.1 Effect of Water in Reactant Stream for Pd and Co Catalysts

The cobalt and palladium catalysts were compared using a catalytic activity test, with a

temperature range of 250-600°C. The effect of water on activity was investigated by sending

the feed gas mixture to a water bubbler, resulting in 3% water in the wet activity tests.

50 mg of the catalyst was used with the reactant gas of 0.4%methane and the balance

He and air, a flow rate of 50 sccm and a GHSV of 61000 h−1. The activity in terms of

methane conversion for the 10% Co/ZrO2 catalyst is shown in Figure 17, for the presence

and absence of water. The experiment was repeated with the 1% Pd/ZrO2 in Figure 18.

Figure 17: Dry and Wet Methane Oxidation Activity of 10% Co/ZrO2

The cobalt catalyst showed almost no effect of the presence of water, which was the

desired result. Interestingly, the wet test result had slightly higher activity than the dry

test at 550°C, which is ideal because the VAM is likely to have the presence of water.

On the other hand, the palladium catalyst showed a negative effect on activity in the
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Figure 18: Dry and Wet Methane Oxidation Activity of 1% Pd/ZrO2

presence of water. At temperatures lower than 600°C, the activity of the wet test was

lower than that of the dry test. This inhibition can be attributed to the conversion of active

palladium oxide sites into less active palladium hydroxide sites at high temperatures. At

temperatures higher than 550°C, this inhibition effect of H2O disappears, most likely due

to the regeneration of the active sites, transformation of palladium hydroxide back to active

PdO, in the presence of excess amount of O2 in the reactant stream. Overall, although the

palladium catalyst had higher activity at lower temperatures, the cobalt is preferred as it

does not show deactivation. This is in addition to the known disadvantages of palladium

being expensive, rate, and susceptible to sintering.

3.5.2 Long-Term Time-on-Stream Tests

The long-term stability was investigated using a time-on-stream test. This activity test

was conducted using 35 mg catalyst (catalyst bed height of 0.4 cm). The gas composition
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was 0.4% methane, 4.6% oxygen, with the balance helium and nitrogen. The temperature

was held at 700°C for 24 hours, under dry conditions. As shown in Figure 19, there was not

a significant decrease in methane conversion over the course of the test. Therefore, as the

activity did not decrease the catalyst can be considered stable without deactivation over

this time period.

Figure 19: Dry Stability of 10% Co/ZrO2

The wet stability of 1%Pd-ZrO2 in 0.5% CH4 was examined next. An activity test was

performed for 12 hours to test the long term stability with 3% water in the feed stream.

The results of the stability test for the 1%Pd-ZrO2 catalyst are shown in Figure 20. This

shows the instability of the palladium catalyst over time in the presence of water.

Lastly, the effect of the 3% water in the reactant stream on the stability of the cobalt

catalyst was examined. An activity test was performed at 550°C and 570°C for 12 hours

to understand long term stability. The results of the stability test for the wet methane

oxidation of 10% Co/ZrO2 are shown in Figure 21.
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Figure 20: Wet Methane Oxidation of 1%Pd-ZrO2

As there was no significant activity decrease or catalyst deactivation, this showed that

the cobalt zirconia catalyst is highly stable under reaction conditions and in the presence

of water.
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Figure 21: Wet Methane Oxidation of 10% Co/ZrO2
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4 Conclusions

4.1 Summary

In conclusion, this effort aimed for the catalytic mitigation of coal mine ventilation air

methane. This was achieved by synthesizing cobalt catalysts with different metal oxide

support materials. Palladium promoted cobalt catalysts were shown to be similar to the

palladium-based catalysts. The cobalt based catalyst, despite having lower activity, showed

significant resistance to water vapor. These experiments demonstrated the potential of the

cobalt zirconia catalyst, due to its resistance to the active Co3O4 phase as well as its

long-term stability. The cobalt based catalysts are the preferred solution as they are more

economically feasible than palladium catalysts.

4.2 Future Work

Further experiments could include the investigation of the activation energy of the

methane oxidation reaction. This could be informative as the reaction is very sensitive to

changes in temperature: there is a large difference in activity with only small changes in

temperature. For example, as seen previously in the long term stability tests in Figure 21, a

difference of 20°C caused the methane conversion to increase from 75 to 95%. Investigating

the activation energy could give insight into the specific requirements of the reaction.

The future work of this experiment involves the commercialization of these technologies.

A potential design can be seen in Figure 22 for the catalytic oxidation of ventilation air

methane.

This method is recommended as it reduces the required reactor temperature, because

the auto-ignition temperature is lower, which also reduces nitrogen oxide emissions. Mass

and energy balances on this system showed the possibility and cost-saving benefit of using

the exhaust stream to pre-heat the ventilation air stream. As this project was conducted
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Figure 22: Commercial Design for Catalytic Oxidation of VAM [3]

at the bench-scale, additional work is needed at the pilot scale. At this larger scale, initial

temperatures and pressures can be more difficult to regulate and these fluctuations would

need to be tested to prevent any safety issues or potential downtime. Also the feasibility of

the process would need to be verified using scaled up parameters. Lastly, extra precautions

should be taken when investigating the operating parameters that lead to nitrogen oxide

production, to ensure that these conditions are avoided.
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