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A PROBABILISTIC ANALYSIS OF THE 

MEAN-VARIANCE OPPORTUNITY LOCUS 

ABSTRACT 

In this dissertation it is shown that there is a high 

probability that the variances of portfolios selected at 

random from a large investment universe, and expected to 

yield ex ante a return E^, will map on the mean variance 

plane in the immediate neighborhood of the conditional ex¬ 

pectation E(v|Ej). 

The implications of this finding for the two parameter 

mean-variance model were analyzed with the help of ten Monte 

Carlo experiments. For investment universes as small as the 

one composed by fifteen uncertain prospects, it has been 

shown that E(v|Ej) maps very close to the minimum variance 

portfolio for that level of expectation, under conditions 

not unlike those observed in the stock market. That is, 

when the correlations between pairs of investment prospects 

are moderate (in the neighborhood of .5 or smaller), and 

when Ej is not at the extremes of its feasible range. 

These findings are expected to have wideranging and un¬ 

settling consequences for portfolio theory, its normative 

and positive implications, and even for the empirical vali¬ 

dation of the latter. The characteristics of the condition¬ 

al distribution of variances introduce strong structural 

patterns on the mean variance opportunity locus which may 
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show that a great number of the "good results" attributed 

to the two-parameter model are a consequence of the "struc¬ 

ture" of the opportunity locus and not due to the explana¬ 

tory power of the model 

Old and new empirical research has been reexamined with 

the help of plausible structural models derived from the 

characteristics of the opportunity locus. The startling 

conclusion is that the structural models explain equally 

well the observable implications of the mean-variance model, 

and that they also explain observable phenomena which the 

two parameter model fails to predict. 

A review of the pertinent literature related to norma¬ 

tive and prescriptive portfolio models is provided in Chap¬ 

ter One. It begins with the concepts of admissibility and 

stochastic dominance, discusses moment approximation models, 

provides a panoramic overview of the mean-variance model 

and concludes with a brief presentation of popular alterna¬ 

tive risk criteria, such as semivariance and the concept of 

"safety first". 

The random process for the generation of portfolios x 

in the convex set {x|Ej} is formulated in Chapter Two. It 

is based on the property of points in a closed convex set 

to be convex linear combinations of the extreme points of 

the set. The Monte Carlo methodology derived from this 

process is documented in Chapter Three. Chapter Five pro¬ 

vides satisfactory evidence that the random process is ap- 
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propriate and that it corresponds to a process which is in¬ 

tuitively acceptable. 

The Monte Carlo experiments were designed to observe 

the responsiveness of the conditional distributions of var¬ 

iances to changes in the size of the investment universe, 

in the level of correlation between returns of pairs of un¬ 

certain prospects, and to different levels of expectation 

within its feasible range. The description of the experi¬ 

ments, the results and their interpretation may be found in 

Chapter Four. 

Finally, Chapter Six develops the models for the formu¬ 

lation of the normative and empirical implications of the 

results of Chapter Four which lead to the conclusions stated 

at the beginning of this abstract. 
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INTRODUCTION 

The purpose of this dissertation is to analyze the char¬ 

acteristics of the conditional distribution of variances re¬ 

sulting from a random process which selects portfolios ex¬ 

pected to yield ex ante a fixed return E^. The characteris¬ 

tics of the conditional distribution of variances define an 

implicit structure of the mean-variance opportunity locus 

which has not been previously analyzed. An analysis of the 

mean-variance opportunity locus has apparently never been 

attempted. Farrar's early study of mutual funds described 

the shape of the region with respect to its boundaries but 

did not study other characteristics.^ 

The characteristics of the conditional distribution of 

variances define very strong structural patterns of the op¬ 

portunity locus which may be used as an alternative explana¬ 

tion to the normative and positive observable consequences 

implied by the mean-variance model. It is shown that under 

conditions which are also present in the stock market, the 

variances of random portfolios expected to yield ex ante a 

return will exhibit an unordinately high density in the 

immediate neighborhood of their conditional expectation 

E(v|Ej); that the distance between this conditional expecta¬ 

tion and the variance of the minimum variance portfolio for 

that level of expectation can be explained by the size of 

the investment universe, the overall level of correlation 
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between returns of pairs of uncertain prospects, and the po¬ 

sition of Ej on its feasible range. The results of ten 

Monte Carlo experiments indicate that under specified condi¬ 

tions, E(V Ej) is negligibly different from the minimum var¬ 

iance for the level of expectation E^. 

Plausible structural models have been derived from these 

results, and they provide a strong indication that many of 

the useful attributes of the two parameter mean-variance 

model may well be due to the structural characteristics of 

the opportunity locus. Since these characteristics are in¬ 

herent to the region and they do not imply behavioral or 

theoretical assumptions about individuals and markets of un¬ 

certain prospects, the state-of-the-art implications of the 

mean variance model are therefore placed in jeopardy. 

Chapter One reviews the development of normative and 

prescriptive portfolio models. It begins with the most gen 

eral formulations based on the admissibility of uncertain 

prospects, and describes discriminators based on the concept 

of stochastic dominance. Through gradual addition of assump¬ 

tions, several moment approximation models are examined 

leading to the presentation of the two parameter mean-vari¬ 

ance model. This model and its implicatiore are reviewed in 

a panoramic, if brief, historical perspective. The sporadic 

literature related to mean-variance prescriptive models is 

discussed, and used as evidence of an underlying structure 

in the opportunity locus which may explain the conformity of 
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prescribed approximations with the portfolios on the mean- 

variance efficient set. Finally, the last section of the 

chapter examined popular risk criteria which are variations 

of the concepts of semivariance and "safety first". In this 

section it is also shown that one of these measures, the 

lower partial variance of the multivariate distribution of 

returns, prescribes portfolios which map in the mean vari¬ 

ance plane at negligible distances from the mean-variance 

efficient frontier. The latter observations are used as 

preliminary evidence that a strong structure characterizes 

the mean-variance opportunity locus, and that it may very 

well explain the persistency of good results attributed to 

approximations. Chapter One provides the atmosphere and 

the motivation for the analysis of the conditional distri¬ 

bution of variances corresponding to random portfolios ex¬ 

pected to yield ex ante a return E^. 

In Chapter Two a random process is defined for the gen¬ 

eration of random portfolios x in a convex set {x|Ej} which is 

defined by the target return E^ and a group of linear con¬ 

straints. The random process is based on the property of 

the closed convex sets which allows that any point in the 

set can be expressed as a convex linear transformation of its 

extreme points. The linear coefficients constitute a random 

partition of the interval [0,1] and define a random portfolio 

in the set {x E.}. Based on this definition of the random 
' J 

process, the first two moments of the distribution of condi¬ 

tional variances are derived, and some of their properties 
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established. The last sections of the chapter examine the 

similarity between the portfolio E(x£{x|Ej}) and the port¬ 

folios x^ and X* in the same set which correspond to the 

minimum and maximum variances for the set. This analysis of 

similarity provided sufficient grounds for the formulation 

of causality relationships which define the experimental 

variables of interest. 

Chapter Three describes the Monte Carlo methodology 

and the programs used for the generation of random port¬ 

folios according to the random process formulated above. 

Chapter Four describes the ten Monte Carlo experiments 

designed to observe the responsiveness of the conditional 

distributions to changes in the size of the investment uni¬ 

verse, in the level of correlation between pairs of uncer¬ 

tain prospects; and to different levels of expectation E^ 

within its feasible range. The analysis and discussion of 

the results of this experiment lead to the conclusion that 

under specified conditions a great density of the condition¬ 

al distribution can be expected in the immediate neighbor¬ 

hood of the minimum variance for that level of expectation. 

The specified conditions are loosely defined as those in 

which the investment universe contains fifteen or more pros¬ 

pects , the correlations between prospects are in the neigh¬ 

borhood of .5 or less; and the target level of expectation 

is not at either extreme of its feasible range. 

The vector x in {x|e.} may not be uniquely determined 
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through a convex linear transformation of the extreme points 

of the set by a partition of [0,1]. This introduces the 

suspicion that the high density observed in the neighborhood 

of the expectation of the conditional distribution of vari¬ 

ances may be due to overdetermination or "double counting". 

A test is provided in Chapter Five which shows that "double 

counting" did not take place. In the same chapter, an al¬ 

ternative intuitively acceptable random process is also for¬ 

mulated, and it is shown that its results are in agreement 

with those of Chapter Four. This is taken as evidence of 

the appropriateness of the random generation process formu¬ 

lated in Chapter Two, and the generality of the patterns ob¬ 

served in the Monte Carlo experiments. 

Finally, an evaluation criterion is defined in Chapter 

Six under which mean variance prescriptive models do not 

dominate ex ante two alternative selection models based on 

the structural properties of the opportunity locus. A brief 

discussion of the implications of this finding for the man¬ 

agement of an active, high-turnover portfolio and the informa¬ 

tion systems of mutual funds constitutes the concluding re¬ 

marks regarding the prescriptive implications of the results 

of this dissertation. The remaining sections of that chapter 

are devoted to the discussion of the empirical implications 

of the structure of the opportunity locus. The early work 

2 3 
of Farrar and Sharpe is used as background for the discus¬ 

sion of the philosophical issues resulting from two models 
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being empirically indistinguishable over a wide range of ob¬ 

servations. The chapter concludes with a demonstration that 

. . . 4 
the empirical observations of Fama and McBeth could be ex¬ 

plained by a structural model which is tentatively proposed. 

There is an indication that the structural model explains 

observations which they document but choose to ignore. 

These results suggest that future tests of the implica¬ 

tions of the two parameter model should include conclusive 

evidence that the relationships observed are not a consequence 

of the structural characteristics of the mean variance oppor¬ 

tunity locus. This follows from the fact that the structural 

characteristics have been derived independently of the be¬ 

havioral assumptions of the mean-variance model and therefore 

have no behavioral or theoretical content and are merely 

properties of the data. 

In summary, this dissertation has taken a fresh look 

at the mean-variance paradigm and has provided new insights 

into the nature of the relationships underlying the model, 

which are useful to explain many of the implications of the 

two parameter model. The job is not nearly finished since 

this research is at best preliminary and many of the assump¬ 

tions made here constitute quantum jumps that must be smoothed 

out. It is a novel and provocative approach to an old prob¬ 

lem in which the direction of research seems to be to test 

"ad infinitum" the implciations of the behavioral assumptions 

implied by the mean variance model. It is hoped that by in- 
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troducing structural relationships, some attention will be 

directed to the analysis of the characteristics of the op¬ 

portunity locus which have no bearing on the elegant theo¬ 

retical formulations of investment behavior, but which may 

constitute a critical factor rendering the theory empirical¬ 

ly untestable. 
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CHAPTER I 

THE PORTFOLIO SELECTION PROBLEM 

In its most general formulation, the selection of a port¬ 

folio consists of allotting proportions of a fixed initial 

wealth Wq to n investments which constitute the entire invest¬ 

ment opportunity set. 

The portfolio selection problem is a two-stage process in 

which a suitable criterion for choice is adopted first, and 

then a portfolio is constructed according to this criterion. 

Normative models of portfolio selection make assumptions, 

explicitly or implicitly, about the preference structure of 

individual investors, prescribe criteria for selection which 

are consistent with the preference assumptions, and some formu¬ 

late algorithms which under specified conditions will yield 

optimum portfolios for the assumed preference structure. 

This chapter will review the formulation, assumptions 

and implications of the most popular normative models for 

portfolio selection. Assuming a structural rather than a de¬ 

velopmental approach, the review will begin with the most gen¬ 

eral models and through gradual imposition of assumptions and 

conditions, it will attempt to describe the most popular mo¬ 

dels and algorithms available for the selection of portfolios 

of risky assets. 
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A General Formulation of the Normative Portfolio Models 

An investor with a preference structure conforming to a 

well defined group of axioms is attempting to allocate his 

present wealth Wq between n investment prospects. Without 

loss of generality it can be assumed that each investment 

prospect can be described by a probability distribution func¬ 

tion (r) of its single-period wealth relatives r (1 + Rate 

of Return). To formulate a normative portfolio selection 

mod^l it is first necessary to establish an ordering over a 

set of stochastic variables. This ordering may be established 

over the distribution functions F^(r) and may be represented 

by a class of well behaved utility functions, the Von Neumann- 

Morgernstern (hereafter referred as VNM) class of utility 

functions, for example.^ 

For the wide class of VNM utility functions, an ordering 

over the distribution of wealth relatives may be defined as 

2 
follows; 

Let U(r) be a VNM utility function, and F^(r), F^ (r) be 

the distributions of value relatives for investment prospects 

i and j respectively, then 

(1) /~U(r)dF^(r) 

if and only if the i-th investment prospect is preferred or 

indifferent (i>j) to the j-th investment prospect. Equiva¬ 

lently, if E^(U) and E^(U) are the expectations of U(r) over 

Fj^ (r) and F^ (r) respectively, then 
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(2) E^(U) - Ej(U) = /_^(F^(r) - Fj(r))dU(r) > 0 

if and only if i > j. 

From (1) or (2), a weak partial ordering can be estab- 

3 
lished over the set of all possible portfolios provided 

that U(r) is non-decreasing with finite values for any finite 

value of r. Given any two portfolios i and j, it will be 

said that i dominated j (iDj) if and only if 

(3) F^(r) _< F. (r) for every r, and F^ ^ F. for at least 

4 
one r. 

The relation described by (3) is also known as a stochastic 

dominance relation. 

The set {P} is the set of all possible portfolios given 

the constraints of an individual investor, it will be called 

the portfolio opportunity set. If i is in {P}, i is said to 

be inadmissible if there is a portfolio in the portfolio 

opportunity set such that jDi. Portfolios are said to be 

admissible if and only if they are not inadmissible.^ The 

efficient set {e} is then defined as the subset of {P}contain- 

ing only admissible portfolios. Efficiency depends on the 

definition of the dominance relation jDi, which in turn, de¬ 

pends on the class of utility functions for which it is de¬ 

fined. One is allowed to talk about an efficient set only in 

relation to a specific class of utilities. 

For example, if the investor is assumed to be a risk 

6 7 
averter in the Pratt -Arrow sense, a new weak partial order¬ 

ing can be defined for utility functions in the risk averter 
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class: 

Let U(r) be such that 6U/6r>0, 6^U/6r^<0 and 6^U/6r^ ex¬ 

ists, then a necessary and sufficient condition for dominance 

iDj is that 

(4) (Fj (t)-F^ (t) ) dt ^ 0 for every r, and not F^=Fj for all 

, 8a 
r' s. 

8b 
Alternative conditions for dominance have proliferated 

and will not be discussed here. Despite their elegance, cri¬ 

teria for dominance such as those described here are merely 

binary discriminators which require pairwise comparisons of 

all elements in {P} X {P} for the identification of efficient 

sets. Some attempts have been made to formulate heuristics 

9 
for the identification of subsets of the efficient set, but 

they are preliminary and at best very rudimentary. 

The practical importance of a normative model must be 

judged on its ability to prescribe not only criteria for se¬ 

lection, but paths to the "optimality" implied by those cri¬ 

teria. From (1) or (2) above, it can be inferred that indi¬ 

viduals acting consistently with the assumptions implied by 

the VNM utility functions must select an element of {P} such 

that it maximizes their expected utility. The formulation of 

algorithms and heuristics for the accomplishment of this ob¬ 

jective depends to a great extent on the existence of a repre¬ 

sentation of E(U) which is computationally amenable for this 

purpose. 
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The following section will describe an approximation 

which is particularly well suited for the construction of al¬ 

gorithms leading to the selection of portfolios which maximize 

expected utility. This method will be called the "moment ap¬ 

proximation approach," which is to be distinguished historic¬ 

ally from the so-called state-time-preference approach de¬ 

veloped by Arrow^^ and Debreu.^^ The latter is a very elegant 

framework for the analysis of the theoretical issues of econ¬ 

omic decision making under uncertainty, but it has yet to pro- 

12 
vide empirical content to its formulations and derive pre¬ 

scriptive paths for the attainment of maximum utility. This 

paper will not discuss the comparative advantages of one ap¬ 

proach over the other, this can be found by reference to 

Hirschleifer^^ or Karl Borch.^^ 

The Moment Approximation Approach 

Assume that an investor chooses from a portfolio oppor¬ 

tunity set such that all the elements in the set are fully 

described by their distributions of terminal wealth F(W), where 

terminal wealth is the random variable 

(5) W = rWQ 

which can be expressed as 

(6) W = W + h, where W = E(W) so that E(h)=0. 

Let the utility of wealth U(W) be continuous and have 

derivatives, then it can generally be expanded into a Taylor 

15 — 
Series about W as 
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(7) U(W) = U(W+h) = U(W) + U' (W)h + U” (W) (h^/2!) +_ 

+ (W) (h^’V(k-l)!) + 

where the residual is defined as 

(8) (W+th) (hVk!), 0<t<l 

If m^,m2.'^k-1 first k-1 central moments 

of the distribution F(W), then the expected utility can be 

expressed as 

(9) E(U(W))=U(W) + U” (W) (m2/2!) + U (W) (in,/3 J) +. . . 

+ (W) (inj^_^/(n-l)!) + E(R^) 

Tsiang,^^ to whom the previous development is owed, ex¬ 

plicitly states that only when the series (9) can be shown 

to be convergent can the remainder E(Rj^) be neglected. Under 

these conditions, expected utility can be treated as a poly¬ 

nomial of the first k-1 central moments of F(W) with constant 

coefficients for a fixed W. This is not to say that the 

utility function can be expressed as a (k-l)-th order poly- 

17 
nomial. Borch shows that this would be inconsistent with 

18 19 
the generally accepted Arrow conditions for risk aversion. 

A heuristic study of the conditions under which the poly¬ 

nomial in (9) is a reasonable apprcKimation for expected util¬ 

ity can be found in the previously referenced article by 

20 
Tsiang, and in a recent article by Samuelson. For the pur¬ 

pose of this review it will suffice to state that the first 

two-moment approximation is appropriate when the standard de- 
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viation of the distribution of final wealth is small relative 

to total wealth including human capital, e.g. for "stakes" 

which are small compared to wealth; and in general, as Samuel- 

son shows, when the distribution of terminal wealth is "com- 

21 
pact." Reasonably, the normal distribution is particularly 

well fitted since its odd moments vanish and the higher even 

moments can be expressed as functions of powers of m2, gener¬ 

ally of smaller order; so that if m2 is small, the series will 

converge rapidly. How far a truncation of (9) will be per¬ 

missible depends on the characteristics of its convergence 

which also reflects the class of utility functions which are 

assumed. Particularly well suited functions are the exponen- 

22 
tial utility and the constant elasticity utility functions. 

A serious constraint to the utilization of higher moments 

in the approximation is the lack of economic theory about the 

behavior of for i of order higher than the third. The 

state of the art for risk averters is the definition given 

above (n.l9) from which Tsiang derives the requirement that 

There is some indication that assuming iso¬ 

morphism with the exponential or logarithmic utility functions; 

23 
or, as argued by Fama, by observing that in comparison to 

the normal distribution, a highly leptokurtic distribution 

implies a larger probability of high losses. The latter argu¬ 

ments remain speculative. 

Three moment approximations became popular in the finance 

O A 

literature following the publication of empirical results by 
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2 5 26 
Arditti ' who presented evidence that investors are will¬ 

ing to trade away expected return for positive skewness in 

the distribution of returns. This result may now be strength¬ 

ened by the demonstration that for risk averters, the third 

derivative must be non-negative. At the danger of incurring 

2 8 
in redundancy, it is also noticed that Alderfer and Bierman 

report that skewness preference was a fairly prevalent pattern 

in the behavior of subjects selecting trivial make-believe in¬ 

vestment prospects in a laboratory situation. 

Four-moment models have not been intended as such, but 

have resulted from the attempts of researchers to investigate 

an alternative criterion for portfolio selection, the geo¬ 

metric mean. As an alternative for expected utility maximiza¬ 

tion, it is assumed that investors have the objective of maxi- 

29 
mizing terminal wealth in the long-run; Latane and Tuttle 

show that this objective is consistent with the selection of 

portfolios which maximize ex ante expected geometric mean re¬ 

turn, provided that returns are reinvested in a portfolio 

which allots in each period the same proportion of wealth to 

each prospect which had been allotted in the previous period. 

Interestingly, this policy maximizes the expected utility of 

terminal wealth for investors possessing logarithmic utility 

functions, and subject to a solvency constraint with probabil- 

ity one. Young and Trent, building upon the previous 

work of Latne, studied the properties of moment approximations 

to the geometric mean return G of a portfolio which is 
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(10) G = - {m^/2u^) + (m^/Su^) - (m^/4u^) 

where is the expected single-period wealth relative, and 

is the i-th central moment of the distribution of wealth 

relatives. It is not surprising that Young and Trent state 

that if the third and higher moments are small in relation to 

u^, then the geometric mean can be approximated by the first 

two moments. These authors showed that for actual portfolios, 

the three and four-moment approximations did not improve sig¬ 

nificantly the accuracy of two-moment approximations, and 

that the error of the two-moment approximations to the geo¬ 

metric mean return decreases rapidly with the size of the 

portfolio, reaching an average error of one tenth of a percent 

for portfolios including 224 stocks. These results are en¬ 

couraging for the proponents of the mean-variance approach 

since the isomorphism of expressions (9) and (10) is readibly 

observable, and it suggests that the first two moment approx¬ 

imation to expected utility may be appropriate for actual port 

folios of stocks. This is a testable speculation which in the 

case of the popular logarithmic utility function is even 

tractable, as will be seen below. 

Let W=WQr=(u^+z)Wq and U(W)=log W, then by (9) it can be 

seen that 

(11) E (logW)=log (W^u^^) - (m2/2u^) + (m^/Bu^) - (m^/4u^) + . . . . 

and by application of (10) above, it can be seen that an accur 

ate approximation given the results of Young and Trent is 
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(12) E(logW)=log(WqU^) + G - 

when moments of order greater than four can be neglected. 

Since G can be accurately approximated by the first two-mo¬ 

ments, then by examination of (12), it follows that the ex¬ 

pected utility should be accurately approximated by (9) trun¬ 

cated after the first two moments. Young and Trent's empiri¬ 

cal results are complementary to Tsiang's analysis in giving 

strength to a defense of the mean variance approach as an ap¬ 

proximation. It is only fair to observe that this conclusion 

should not be very surprising given the previously referenced 

conclusion by Haakansson (see n.30) who shows the equivalence 

between maximization of G and E(U) when the utility U is 

logarithmic. 

Despite the arguments presented here for the inclusion 

of higher moments in the approximation, it seems that the ap¬ 

parent power of the first two moments to approximate the most 

accepted normative criterion - Expected Utility Maximization - 

will contribute to the longevity of the mean-variance paradigm. 

The approximation of expected utility by a (k-l)-th order 

polynomial hinges on the fact that all (k-1) first moments 

are assumed to exist and to be finite. Mandelbrot and Fama 

have presented empirical results which they have interpreted 

as evidence that the distributions of price changes in the 

stock and commodity markets are non-normal members of the 

32 
Pareto-Levy family of distributions. These distributions 
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share the characteristic of possessing no finite moments, and 

the property of being closed under addition, so that the dis¬ 

tributions of day-to-day changes are of the same form of those 

of week-to-week or year-to-year changes, thereby the name 

"stable" which is applied to members of this family. The 

normal distribution is the only member of the family which 

possesses all its moments. 

Numerous arguments have been raised against this hypothe- 

33 
sis, most notably by Agnew who showed that other distribu¬ 

tions such as the bilateral exponential share the stability 

property and possess all their moments, and who claimed that 

a better empirical "fit" can be achieved using other "fat¬ 

tailed" distributions. The issue is not settled yet, but the 

soundness of the arguments for infinite moments may be judged 

34 35 
from the following comments of Markowitz and Tsiang. 

Markowitz denies the theoretical requirement for the stabil¬ 

ity property on the grounds that the determinants of day-by¬ 

day price changes are unrelated to the determinants of the 

year-to-year fortunes of an enterprise. He also claims after 

introspection, that since the distributions of future returns 

are subjectively determined, he is willing to bound his be¬ 

tween zero and a very large finite value and expects other 

investors to do the same. Tsiang presents a very convincing 

argument that is based on the fact that downward changes in 

prices cannot exceed 100 percent and therefore the distribu¬ 

tions must be truncated stable Paretian, which since they are 
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truncated cannot have infinite moments and therefore not be 

Paretian. He also makes a call for the proponents of the 

Paretian hypothesis to define an acceptable VNM utility func¬ 

tion which when applied to a Paretian distribution other than 

the normal will yield a finite positive expected utility. 

3 6 
The latter is a very pertinent argument since Fama 

attempts to reconcile his claim with the "finite moment ap¬ 

proach" by indicating that the mean variance approach provides 

valuable insights into diversification which remain valid even 

in the event of infinite variance. A suitable measure of in- 

37 
terfractile dispersion may be used as indicated by Blume 

as a sxibstitute for variance for the purpose of obtaining ap¬ 

proximate predictive descriptions of the distributions of re¬ 

turns for distributions which are stable Paretian. An algor¬ 

ithm for the identification of efficient sets under these 

conditions has apparently not been proposed. 

This is an interesting although anticlimatic conclusion 

for the Paretian hypothesis since it is another indication of 

the willingness of the academic community to preserve the in¬ 

tegrity of the mean-variance approach. When the method is 

deemed an adequate approximation for situations involving a 

small variance, and an adequate explanation for situations 

involving infinite variance, one can only expect that mean- 

variance approach and its close relatives, the moment approx¬ 

imation models, are here to stay for a much longer period than 

its detractors had hoped for. A closer scrutiny of the mean 
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variance paradigm will follow. 

The Mean-Variance Approach to Portfolio Selection 

38 
A brief historical comment. In his pioneering article 

Harry Markowitz formulated a single period normative model of 

portfolio selection which is based on the assumption that in¬ 

dividual preferences can be adequately described for the rel¬ 

evant range of terminal wealth values by the rising portion 

of a quadratic utility function. This assumption leads to 

the formulation of the portfolio selection problem as a quad¬ 

ratic program. The work of Markowitz constitutes a turning 

point in the development of models and theories of decision¬ 

making under uncertainty, and is the cornerstone in which a 

host of positive and prescriptive models rely; or the target 

chosen for attack when alternative prescriptive models are 

presented. A review of these models will follow under the 

arbitrary headings which attempt to chategorize them as 

Positive, Evaluative and Naively Prescriptive. 

Positive models. The most important category from the 

point of view of economic theory is the development of "posi¬ 

tive" models based on the assumptions of the Markowitz model. 

This trend was pioneered by Tobin who, following the publi¬ 

cation of the mean-variance normative model, presented a model 

of liquidity preference and demand for cash for investors pos¬ 

sessing utility functions fully determined by the first two 

moments of the distributions of returns of a two-parameter 
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40 
family, which, as it turned out, must be normal for the 

model to hold. Tobin's model stimulated the appearance and 

41 42 
development of what has come to be known as the Sharpe -Treynor 

43 
Lintner theory of equilibrium in the capital markets, or 

colloquially, as the Capital Market Models. 

These models operate on a capital market where the prices 

for assets fully reflect the available information, which is 

shared by all investors who possess the same identical beliefs 

about the future, and who are mean-variance expected utility 

maximizers. To these conditions they add the requirement 

that the market is in equilibrium and prognosticate the three 

propositions that ex ante, the expected returns of an asset 

are related to no other risk except the portfolio risk; that 

this relationship is linear ex ante; and that the risk premi- 

44 4 5 
urns are positive. ' Strictly speaking, these models are 

not positive since the consequences that they predict are all 

ex ante and therefore not observable; this was noted by Sharpe 

(n.41) but largely ignored thereafter. The proponents of the 

models (n.44) insist on labeling them as positive models, and 

although there is some conflicting evidence that ex ante spe¬ 

cific risk (as measured by the residual variance) is related 

to ex post average returns, the consensus is that until now 

the three implications outlined above have withstood the 

battery of empirical (tests using naive ex ante estimates of 

48 
risk, and ex post returns) to which they have been exposed. 

From the point of view of the normative mean-variance 
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model, the "positive" models are disturbing since they con¬ 

tain one normative implication which if confirmed would ren¬ 

der the quadratic programming formulation totally useless. 

Given the assumptions and implications of capital market the¬ 

ory which were outlined above, and the assumption that in¬ 

vestors may borrow and lend at the risk-free rate r^, the 

normative implication is that there exists only one "effi¬ 

cient" portfolio of risky assets in the mean variance sense, 

and this is the "market portfolio" which contains all risky 

49 
assets in proportion to their market value. 

The market portfolio can be approximated with relative 

ease by selecting random portfolios from the population of 

risky assets, with probabilities of selection proportional 

to the market value of the asset. The normative implication 

and the ease with which proxies for the market portfolio can 

be selected provided the foundations for the derivation of 

evaluative models. 

Evaluative models. These models have come to be known 

as performance evaluation models and are due, not surpris- 

50 51 
ingly, to Sharpe and Treynor, and most notably to Jensen. 

They rely on the implications of capital market theory and 

test the assumption of market efficiency, e.g. that market 

prices reflect all available information. The benchmark for 

comparison in all three models is a naively derived portfolio 

This may be a random portfolio selected as a proxy for the 

market portfolio, which with all possible combinations of 

borrowing and lending yields a linear locus of risk and re- 

52 
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turn called the (ex ante) capital market line. The perform¬ 

ance of an actual portfolio may be ascertained by comparison 

of the ex post differential between its returns and the re¬ 

turns of a portfolio which is ex post in the capital market 

line, with the differential between the returns of the naive- 

53 
ly derived portfolio with the same ex ante risk and a port- 

54 
folio in the ex post capital market line. Although the 

methodology for comparison varies between the three authors, 

their philosophy is equivalent. Jensen's conclusions may be 

used to summarize the findings: although mutual funds (115 

mutual funds over the period 1955-1964) did not outperform in 

general naively derived random portfolios which are proxies 

for the market, some funds appear to perform consistently 

above the market; but in general, "fund portfolios were found 

to be inferior after deduction of all management expenses and 

55 
brokerage commissions." 

Given this conclusion, Sharpe and Jensen do not hesitate 

to issue an investment manifesto which may be properly sum¬ 

marized in Shapre's words: "Good managers concentrate on 

evaluating [portfolio] risk, spending little effort and money 

on the search of incorrectly priced securities.But as he 

later admits, "if some securities are [....] mispriced, the 

past record will help to identify the slightly superior group. 

This suggests a procedure which will do little harm and may 

do some good: Perform a mean-variance analysis using his¬ 

torical data with reasonably stringent [diversification con- 
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straints]." 

58 
A very recent article by Treynor and Black seems to 

agree with the later statement. Under the assumption that 

"security analysis properly used can improve portfolio per- 

59 
formance," they proceed to formulate a highly idealized 

model in which the decision of how much to invest in the mar¬ 

ket portfolio is independent of the decision to invest in an 

"active" portfolio of securities which the analyst considers 

wrongly priced. The selection of the active portfolio is 

based on the familiar tradeoff between differential return 

(subjective estimate based on the belief that the market 

price is incorrect) and residual risk (variability about the 

differential expected return which is not explained by the 

market). Behavior consistent with this model would explain 

Fama and MacBeth's "puzzling" results (see n.45 above) and 

probably the finding by Jensen that "some" mutual funds per¬ 

formed consistently above the market. The latter conclusions 

are very speculative but attractive in terms of portfolio 

management, particularly in view of Jensen's assertion that 

analysts often possess advantageous information which is not 

realized into differential returns due to the administrative 

lag between detection of the differential and implementation 

of an action. The market absorbs information at a very rapid 

rate. What this suggests is the implementation of an inform¬ 

ation system, possibly mechanized, which can rapidly convert 

information into action that would result in differential re- 
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turns. The proposal for an active portfolio lays the grounds 

for the pursuit of this concept. 

The comments and speculations made in the last two para¬ 

graphs breathe new life into some "dated" research directed 

to the implementation of the mean-variance normative model, 

and the implications of using historical information to ob¬ 

tain naively optimal mean-variance portfolios. The interest 

in this aspect of portfolio management had naturally disap¬ 

peared in view of the strong conclusions reviewed in this 

section, but regains interest in light of the comments of 

the last paragraphs. These models have been arbitrarily 

labelled as naively prescriptive and will be discussed in 

the section that follows. 

Implementation of the Markowitz Model as a naively pre¬ 

scriptive model. The third category of research stimulated 

by Markowitz has been directed to the practical implementa¬ 

tion of the normative model for the selection of portfolios. 

Contributions in this area have been sporadic and probably 

inhibited by the host of evidence supporting the normative 

implications of the capital market model, and the skepticism 

of practitioners with respect to the utilitarian value of 

these models. 

One argument against the implementation of the normative 

model is that since it requires subjective estimates of var¬ 

iance and expected returns for individual prospects, and of 

covariances between the returns of pairs of prospects, its 

application to any meaningful portfolio selection problem 
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taxes disproportionately the ability of analysts to convert 

information into estimates of variances and covariances. For 

example, if the efficient set were to be selected from a uni¬ 

verse of 1000 prospects, the analyst is required to make 

501,500 estimates, not including the number of pairwise com¬ 

parisons which would be required to attain a consistent posi¬ 

tive definite covariance matrix. 

To avoid this problem, Sharpe^^ suggested a simplified 

algorithm which requires only 3002 estimates for the same 

universe of prospects. His simplification is based on the 

assumption (as in Capital Market Theory) that covariation be¬ 

tween securities is entirely explained by their relationship 

to a common underlying market factor. The resulting algorithm 

possesses the additional advantage of being computationally 

more efficient (a linear programming problem) than the quad¬ 

ratic programming problem proposed by Markowitz. 

Cohen and Pogue^^ studied the implications of using his¬ 

torical data to obtain the estimates required by the Markowitz 

and Sharpe models, and by an approximation of their own design. 

Theirs was a multi-purpose study in which they compared ex 

ante (as defined by historical data) the positions on the mean 

variance plane of the efficient portfolios generated by appli¬ 

cation of Markowitz's model and the corresponding portfolios 

generated by the approximations; and ex post with random port¬ 

folios generated from a smaller universe of prospects and 

portfolios of actual mutual funds. The ex ante results of 
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the comparison are not surprising: Markowitz portfolios were 

mean variance efficient in relation to those yielded by the 

other models; and their composition was appreciably different 

also, with the exception of the extremes in the range of pos¬ 

sible returns. What is surprising is that even for the range 

where the composition was different, the "efficient" frontiers 

yielded by the approximation models were insignificantly dif¬ 

ferent from their Markowitz counterpart when they were plotted 

on the mean-standard deviation plane. It is interesting to 

note that while the models do not differ in their estimation 

of expected returns; when compared with the "true" historical 

covariance matrix, the covariance matrices of the approxima¬ 

tions exhibited errors in their corresponding correlation ma¬ 

trices ranging from -.6999 to .6999. Considering that corre¬ 

lations in the market are moderately positive, the error may 

be considered substantial. This is the characteristic of the 

mean-variance paradigm which Farrar labelled robustness in 

relation to calibration of the inputs, and that will be la¬ 

belled here "the persistency of good results." 

Cohen and Pogue's ex post results have their share of 

surprises too as indicated by their conclusions: 

1. The expost performance [as measured by the 
descriptive regression of standard deviations vs. 
average returns] of the efficient portfolios se¬ 
lected by the models and the mutual funds clearly 
dominates that of the random portfolios. 

2. The ex post performance of [the portfolios 
generated by the three methods] tends to dominate 
the performance of mutual funds for higher levels 
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of returns (above 15%) . 

3. The performances of mutual funds with less 
than 15 percent return are not dominated by the 
efficient portfolios. 

4. There is no strong evidence [....] for the 
absolute dominance for any of the [naively pre¬ 
scriptive] portfolio selection methods over the 
total range of returns available.®^ 

It is necessary to point out, as suggested by Friend 

64 
and Vickers, that Cohen and Pogue unintentionally loaded 

their results by selecting random portfolios of a smaller num¬ 

ber of securities and from smaller universes than the port¬ 

folios selected by the naively prescriptive models, or those 

of mutual funds. The reason for this comment is derived from 

their observation that as the number of securities in the ran¬ 

dom portfolio increases, and as the size of the universe for 

selection is allowed to increase, the descriptive line of the 

random portfolios approaches the descriptive lines of the 

other selection modes. Their method for the selection of 

random portfolios consists of selecting 20 or 40 stocks from 

universes respectively of 75 or 150 securities, with equal 

probability of selection, and distributing the wealth equally 

among the stocks in the portfolio. It is questionable that 

random portfolios selected accordingly will meaningfully 

represent the range of feasible points in the mean variance 

plane. This is made evident by the fact that the random port¬ 

folios selected from a universe of 150 securities cluster non- 

overlappingly with the cluster of mutual funds which group 

at a higher return and a higher variance. 
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If, as the two authors claim in their reply to these 

criticisms,” the random portfolios were selected merely as 

a null test, then they selected probably the weakest of all 

available null tests since their random selection is behavior- 

ally isomorphic with an investor who has no objectives and 

utilizes no information about the market. It appears that 

they are willing to endow their models with nothing short of 

omniscence, while they refuse the alternatives (often called 

null tests) even the most trivial access to information. When 

the results show that the null test model cannot be outper¬ 

formed by the model, the practice may be correctly labeled as 

conservative; but when the results show that the model clear¬ 

ly outperforms the null test model, and that there is a clear 

indication that this null test is not the most stringent of 

those available, the researcher must at the least acknow¬ 

ledge the possibility of alternative explanations for the 

conclusions. 

6 6 
A related paper by K.V. Smith analyzed the implications 

of utilizing stock price indexes and economic indexes as 

proxis for the "underlying market factor" required by Sharpe's 

linear approximation. The ex ante "efficient" sets plotted 

on the mean-standard deviation plane and corresponding to the 

stock price indexes are negligibly different and often over¬ 

lapping. The comparison of these mappings with the mapping 

of a historically derived "true" ex ante Markowitz-efficient 

frontier confirms the results of Cohen and Pogue. Although 
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Smith explains the closeness of the frontiers by the fact 

that the three indexes are highly correlated (of the order of 

6 7 
.9 or greater), these results are not totally what one would 

expect. Smith used the Standard and Poor and NYSE indexes, 

and the Dow Jones Average for his research. The S&P and 

NYSE weight their stock in proportion to the outstanding 

market value of the asset while the DJ Average uses only 30 

stocks and weights them equally. The latter can be expected 

to be quite erratic in comparison to the other two, and there¬ 

fore when stock returns are regressed with it, the regression 

coefficients may be expected to understate those of the other 

two indices, which represent the behavior of a market port¬ 

folio more accurately. Fisher states in reference to the Dow 

Jones Average that "neither in its short run nor in its long 

run can this index be expected to reflect the behavior of a 

6 8 
truly diversified portfolio of common stocks in the NYSE." 

Covariance matrices derived from the use of all three in¬ 

dexes may be expected to understate the true historically de¬ 

rived covariance matrix since residual variances and covari¬ 

ances (if any) are ignored. In the case of the Dow Jones 

Average, the covariances may be further understated due to 

its erratic behavior (greater variance). As a result, the 

efficient set obtained from Sharpe's approximation and the 

Dow Jones as a market index may be expected to contain over¬ 

diversified portfolios in relation to the others. Given the 

previous considerations, it is again surprising that port- 
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folios which should be different in composition map so close 

to each other in the mean standard deviation plane. Observe 

though that the criterion for rejoicement in the last two 

articles reviewed and, as it will be seen later, in Farrar's 

6 9 
dissertation is the "closeness" of the portfolios obtained 

using alternative selection modes as compared to those yielded 

by the Markowitz method. At the risk of being mischieviously 

Cartesian, one is tempted to inquire "how close is close?"; 

and to request an educated guess of how probable it is to be 

close to a Markowitz efficient portfolio under a given set of 

circumstances. 

As part of his now dated analysis of mutual funds, 

Farrar (see n.69) attempted to assess the performance of mu¬ 

tual funds by comparing ex ante mappings of mutual fund port¬ 

folios with the mappings of historically derived Markowitz 

efficient portfolios, this procedure he labeled "mean-variance 

goodness-of-fit." He addressed himself to the question of 

"how close close is" by obtaining the locus of maximum vari¬ 

ance portfolios corresponding to each level of expectation, 

which together with the Markowitz efficient frontier consti¬ 

tute the boundaries of the portfolio opportunity set in the 

mean-standard deviation plane. The startling result is that 

actual mutual fund portfolios map on the mean-standard devia¬ 

tion in the "immediate neighborhood" of the efficient frontier 

for a fixed level of expectation, and at a considerable dis¬ 

tance from the mapping of the maximum variance portfolio for 
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the same level of expectation. Farrar's positive conclusion 

was that mutual funds behaved as if they were Markowitz mean- 

variance optimizers. His attempt to assess the probability 

of mapping in the neighborhood of efficient portfolios was 

less successful. Although he was very willing to assess 

closeness by comparing the position of a portfolio between 

the mappings of the maximum- and minimum-variance portfolios 

for a given level of expectation, to obtain an indication of 

the probability of this observation he devised a null test 

similar to the one used later by Cohen and Pogue. Farrar 

selected portfolios with equal probability of selection be¬ 

tween eleven classes of assets, so that a great degree of 

conservatism can be expected of these random portfolios since 

they can be expected to cluster (and they did) in the immedi¬ 

ate neighborhood of a portfolio containing all assets, with 

equal weights distributed among the eleven classes of assets. 

This portfolio is overdiversified, but still diversified and 

can be expected to mapp closer to the minimum variance port¬ 

folio than to the maximum variance portfolio at an expected 

return which is the arithmetic average of the expected re¬ 

turns of the eleven classes of assets. Not surprisingly, 

Farrar found these results to confirm this expectation, and 

concluded that this may be interpreted as an indication that 

behaviorally, the mutual funds are isomorphisms of the mean- 

variance paradigm. 

The mere fact that a portfolio mapps in the neighborhood 
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of an efficient portfolio only means that the two points are 

in each other's neighborhood. That this is the result of a 

willful act, a characteristic imbedded in the process, or an 

act of God can only be inferred after some meaningful hypothe¬ 

ses have been formulated as alternatives. One of the alterna¬ 

tive hypotheses can be used as a null test, after specifica¬ 

tion of the probability of occurrence of an event, given that 

the alternative hypothesis holds. The alternative hypothesis 

can now be rejected if it fails to satisfy some arbitrary 

rule of thumb such as "the probability of occurrence of the 

event, or of events even more extreme is less than a under the 

alternative hypothesis," but this does not justify acceptance 

70 
of the proposed hypothesis. The fact that Farrar must re¬ 

ject the hypothesis that mutual funds are isomorphs of his 

random portfolios does not mean that he is entitled to accept 

the hypothesis that they are isomorphs of the mean-variance 

paradigm. Such conclusion is reminiscent of the paradox of 

the ravens in which the empirical observation "this vase is 

green" is accepted as confirmation of the hypothesis "all ra¬ 

vens are black" since the vase is a non-raven and it is also 

non-black. 

This presentation concludes the panoramic review of the 

mean variance approach and its dependent models in a one-per¬ 

iod horizon. The following section will analyze in more de¬ 

tail the normative-mean variance model. 
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The Mean Variance Normative Portfolio Selection Model 

A portfolio k in {P} is said to be "mean variance effi¬ 

cient" if there is no portfolio 1 in {P} such that and 

v^_<Vj^ where u and v represent respectively the mean and vari¬ 

ance of the distribution of single-period wealth relatives, 

and both equalities do not occur simultaneously. 

The normative model which results from this definition is 

the quadratic programming formulation of the portfolio prob¬ 

lem. Given an investment opportunity set of n investment 

prospects, let u be the column vector representing the expec¬ 

tation of the n-variate distribution of single period wealth 

relatives and C its covariance matrix. If x is an n-column 

vector representing the proportion of total wealth invested 

on each one of the n prospects, the mean-variance standard 

portfolio selection problem consists of selecting x such 

that 

x'Cx is a minimum 

subject to 

(13) x'u = E. 

n 

E X. = 1 

i=i ^ 

U ^ X ^ L 

where is the target level of expectation, and U and L are 

n-column vectors representing upper and lower bounds. 

If the expected utility is a monotonic function of x'u 

- cx'Cx where c is a constant representing the absolute value 
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of a coefficient of risk aversion, then the expected utility 

will reach its maximum when the argument x'u - cx'Cx reaches 

its maximum. A quadratic programming problem can be formu¬ 

lated which yields parametric solutions on X=l/c, and which 

consists of finding x such that 

Ax'u - x'Cx is a maximum 

subject to 

n 

(14) E X. = 1 

i=l ^ 

U ^ X ^ L 

The solution of (14) will yield for each value of X in [0,“>] 

a unique x(A) which is an element of the mean-variance effi¬ 

cient set. 

Algorithms for the solution of (13) and (14) are dis- 

72 73 
cussed by Markowitz and Sharpe; an extension for multi- 

74 
period mean-variance analysis has been developed by Hommes 

as an extension of Sharpe's. The solution procedures are 

well known and will not be discussed here. 

The formulation (14) implies a quadratic utility function 

hopefully rising in the relevant range. The criticisms against 

the use of quadratic utility are familiar and will not be re- 

75 
peated here. This formulation has also been criticized in 

terms of its inability to yield truly admissible portfolios 

under conditions other than those of an n-variate normal dis- 

76 7 7 
tribution of investment prospects, ' and because except un¬ 

der the previous condition it violates the assumption that in- 
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terms of variance. Recently an algorithm has been presented 

for the solution of this problem. 

The definition of alternative measures of risk is moti¬ 

vated by the desire to provide practitioners with prescriptive 

models of portfolio selection which are based on concepts of 

risk more amenable to their beliefs. These models cannot 

claim to be strictly normative in the sense that they do not 

claim consistency with axiomatic representations of rational 

behavior; but rather, they claim isomorphism with behavioral 

assumptions which are based on observation or introspection. 

For this reason they will be labeled here as "behaviorally 

motivated models" and will be discussed in the section that 

follows. 

Behaviorally Motivated Models 

8 5 
These models were pioneered by Roy who also deserved 

to be called the precursor of diversification models since 

his article, which appeared simultaneously with Markowitz's, 

lays the ground for the same implications of the mean-variance 

model. Roy introduced his concept of "safety first" arguing 

that investors possess an absolute lower bound or disaster 

level for the returns of uncertain investment prospects which 

they are assumed to avoid at all costs. Consequently, Roy's 

investor will select portfolios in such a way that the prob¬ 

ability of returns below the disaster level is a minimum. It 

can be shown for normal distributions of returns that the 



30 

"safety first rule" is exactly equivalent to Markowitz mean- 

variance paradigm. 

The viability of this concept has acquired modern status 

since it can be formulated as a chance-constrained program- 

8 6 
ming problem. Machol and Lerner present a very lucid argu¬ 

ment for the adoption of such models. They formulate a model 

which attempts to maximize terminal wealth while requiring 

that the probability of returns below a "disaster level" does 

not exceed an appropriately chosen upper bound. 

Both formulations implicitly assume utility functions 

which do not have to be specified, but which share the char¬ 

acteristic of being steeper below the disaster level, and in¬ 

creasing at a lower rate, or constant above this level, de¬ 

pending on whether wealth is to be maximized or probability 

of loss is to be minimized. The use of semivariance as a 

measure of risk implies a similar assumption about the utility 

functions. 

Semivariance is the incomplete or partial second moment 

of the distribution of portfolio returns about an arbitrary 

point which may well be Roy's disaster level. As a risk mea¬ 

sure it assumes a utility function which is quadratic below 

this level, and linearly increasing above it, so that an in¬ 

dividual attempting to maximize expected utility will choose 

portfolios in such a way that he maximizes 

(15) E(U) = Xx'u - S(x)^ 
a 

where S(x) is the semivariance about a of the distribution 
a 
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vestors prefer more to less which is the cornerstone of the 

78 79 
theory of money. ' These criticisms are theoretically 

valid, but practically, they must be analyzed in the light 

of the ability of the mean variance criterion to yield ade¬ 

quate approximations to the expected utility as it was seen 

above. 

8 0 
Baumol recognized the validity of the criticisms and 

proposed to eliminate from the efficient set derived from 

(14) those portfolios which are likely candidates for inad¬ 

missibility by means of a discriminator based on Chebyshev's 

inequality. His criterion has been severely criticized on 

81 
the grounds that it solves the wrong problem since the 

screening rule is only correct when the distributions are 

normal, and under this condition formulation (14) will yield 

truly admissible portfolios. 

Another source of dissatisfaction with the mean variance 

approach, which is reflected by the practitioners indifference 

82 83 
towards its prescriptive applications, ' stems from the 

fact that variance as a measure of risk contradicts introspec¬ 

tive intuitive definitions of risk. Markowitz (see n.34 

above) recognized the intuitive inconsistency of equating 

variability and risk and formulated a measure of downward 

risk, the semivariance of the distribution of portfolio re¬ 

turns about a properly selected safety level. Although he 

presumably preferred this measure to variance, the computa¬ 

tional problems which it poses led him to develop the model in 
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of returns of the portfolio represented by the vector of 

weights x. 

A more modern application of the semivariance concept is 

8 7 
due to Bower and Wippern who express dissatisfaction with 

the Sharpe-Treynor indices of portfolio performance on the 

groundsthat they fail to differentiate downward variations, 

and propose a measure of the instances in which a given port¬ 

folio falls more than the market. This measure is called 

semideviation and may be defined as follows: 

Let r^ be the return of a portfolio at the end of period 

m^ be the return of the market portfolio at the end 

of t, then 

■ “"t ■ if ° 
(16) 

0 otherwise 
k 

t 

and the semideviation sd 

n 
(17) sd = ( Z d^/N) 

i=l ^ 

is 

1/2 

The correlation between sd and the variance of actual port¬ 

folios in the market is of the order of -.15 as reported by 

Bower and Wippern. 

As attractively intuitive as the semivariance is, it 

remained an academic curiosity until the appearance of Hogan 

and Warren's (see n.84 above) algorithm for the solution of 

(15). Previous to the appearance of this algorithm, Belovicz, 

Hommes and Pipino ' formulated an approximate measure of 
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downward risk which they called Lower Partial Variance (LPV). 

LPV assumes that individuals would like to maximize expected 

utility as in (15), but since they do not know a priori the 

shape of the distributions of returns corresponding to each 

portfolio X, which is a requisite for the definition of S(x) , 
a 

then an individual consistent with (15) will attempt to mini¬ 

mize the dispersion of portfolio returns which result from 

n-variate random vectors which do not dominate a predetermined 

"disaster vector" A. If R is the n-variate vector of returns 

of the investment prospects, and the vector 

(18) D = 

R-A if R A 

1 0 otherwise 

then the conditional covariance matrix C* of observations 

which do not dominate A is 

(19) C* = E[(R-A)'(R-A) - D'D]' 

and the lower partial variance for a disaster vector A is 

(20) LPV(A) = x'C*x 

A lower partial variance efficient set will be obtained from 

the solution of 

(21) Maximize Z = x'u - x'C*x 

a quadratic programming problem which is computationally equiv¬ 

alent to formulation (14). Belovicz and al. (see n.89) report 

that although the minimum variance and minimum lower partial 

variance portfolios for specified levels of expectation ex¬ 

hibit different compositions, they map very closely to each 
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other when plotted on the mean variance plane. This is an¬ 

other surprising result to add to the "persistence of good re 

suits." Not reported in their paper was the fact that when 

they tested for stochastic dominance (Kolmogorov Smirnov 

Statistic) between pairs of portfolios yielding ex ante the 

same expected return, they could not reject the two-tail null 

hypothesis that LPV-efficient portfolios were not dominated 

by variance-efficient portfolios or viceversa. The results 

are surprising since they were using Monte Carlo simulated 

positively skewed distributions of returns which would be ex¬ 

pected to yield very different covariance matrices C and C*, 

not being here merely the case as in Cohen and Pogue's and 

Smith's articles in which the covariance matrices of the ap¬ 

proximations understated the covariances of the "true" co- 

variance matrix. 

A plausible explanation which has not been examined 

elsewhere in the literature is that the constraints, which 

are shared by all these models, excert an unordinate control 

over the variety of the outputs, as they map on the mean var¬ 

iance plane. If this is the case, the persistency of good 

results is doubtfully a virtue of the mean-variance paradigm 

since it implies that ex ante, the outcome of a portfolio 

choice is almost entirely determined by the definition of con 

straints, and thus calibration of inputs and even the defini¬ 

tion of the model does not only allow for a wide range of 

errors, but makes measurement error irrelevant. 
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The remaining chapters will examine this speculation in 

more detail by analyzing the conditional distribution of 

portfolio variances given a set of constraints and a target 

expected return. 

Conclusion 

Mean variance analysis appears to be an inordinately ro¬ 

bust paradigm since it withstands violations of its assump¬ 

tions, demonstration of inconsistencies in its theoretical 

structure, gross inaccuracies in its inputs when it is used 

as a prescriptive model; and it is shown to be an appropri¬ 

ate approximation to widely acceptable normative criteria 

such as the expected utility maxim, to behaviorally based 

prescriptive models such as the lower partial variance model 

and even to actual investment management modes such as 

Farrar's mutual funds. 

The persistency of good results has been found suspi¬ 

cious in at least one aspect, which is the robustness that 

the model exhibits as a prescriptive algorithm when the in¬ 

puts are grossly distorted. This characteristic suggests an 

absence of "degrees of freedom" in the outputs. The present 

paper will examine the variety of the outputs corresponding 

to portfolio decisions in which a target expected rate of 

return is assumed as a constraint. 
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CHAPTER II 

THE PORTFOLIO OPPORTUNITY SET: DISTRIBUTIONAL PROPERTIES ON 

THE MEAN-VARIANCE PLANE UNDER AN EXPECTATION CONSTRAINT 

Introduction 

In the previous chapter the portfolio opportunity set 

{P} was defined as the set of all portfolios feasible under 

a specified set of constraints. A portfolio can be described 

entirely by the n-column vector of weights x representing the 

proportion of wealth which corresponds to each of the n in¬ 

vestment prospects. This implies that there is a one-to-one 

correspondence between elements of {P} and points of a region 

{xl in a n-Euclidean space. The region {x} is defined by a 

set of constraints as in (14) of the previous chapter. By 

introducing the additional constraint x'u=Ej, a subregion 

{x|Ej} of {x} is defined as a representation of the subset 

{PjEj} of {P}, where {PjEj} is the set of all feasible port¬ 

folios which are expected to yield ex ante a rate of return 

E . . 

A randomly selected portfolio from the subset {PjE^} 

will be represented on the mean-variance plane by the point 

(Ej,V) or, since E^ is given, simply by its variance V. 

Since there is a one-to-one correspondence between {P} 

and {x}, the random selection of a vector x in {xjEj} is the 

exact equivalent of the random selection of a portfolio if 

{p|Ej}. The distribution of variances resulting from this 
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process of random selection will be defined as the distribu¬ 

tion of variances given , or simply F(v|x'u=Ej), which is 

bounded from above and from below. 

This chapter discusses first the definition of the sub- 

region {x|Ej} for portfolio selection problems consistent 

1 2 
with the traditional formulations of Markowtiz and Sharpe, 

in which the investment opportunity set consists entirely of 

risky prospects and is exhaustive, e.g. it includes all pos¬ 

sible risky investment prospects. 

Following the definition of the subregion, some proper¬ 

ties of the conditional distribution of variances will be 

analyzed for a specific random process formulated below. 

Formulation of the Random Process for the selection of 

points in {x|e^}. Let u and C be the expectation and covari¬ 

ance matrix of the n-variate distribution of wealth rela¬ 

tives, and let the constraints of the Markowitz-Sharpe norma¬ 

tive model be characterized by the set of m equations on n 

variables Ax=b. The subregion {x|Ej} is defined as the set 

Of all X in {x}, such that 

(1) X ' u = E . 

and Ax = b 

where A is an (m x n) matrix of constant coefficients and b 

is an m-column vector of constraints. 

For the standard portfolio problem defined in (13) of 

the previous chapter, {xjE^} is defined as the set of all 

points X in {x}, such that 
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= E . 
D 

= 1 

1 L 

for U and L defined as before. 

The special case for which U is a vector of I's and L a 

vector of O's is the most commonly discussed. For this rea¬ 

son it will be used as an illustration of some of the develop¬ 

ments that follow. For convenience and future reference, 

the region corresponding to this special case, is defined as 

(3) x'u = Ej 

n 
Z X. = 1 

i=l ^ 

and X ^0 

It will be seen in the following section that any port¬ 

folio problem with constraints as in (1), (2) or (3) can be 

reduced to a standard form. 

Representation of the elements of {xjE^} in terms of its 

extreme points. In general, the region defined by (1) has a 

finite number k of extreme points y^, for i=l..,k and 

n 3 
k < (^). Furthermore, y. is the i-th basic feasible solu- 

— m 1 

4 
tion of the set (1), and any point x in (1) can be defined 

5 
as a convex linear combination of its extreme points. For 

w, a k-column vector representing the lengths of k subinter¬ 

vals which form a partition of [0,1], and Y an (n x k) matrix 

whose columns represent all basic feasible solutions of (1), 

(2) X' u 

n 
Z X. 

i=i ^ 

and U > X 
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any point x in the region (1) may be expressed as 

(4) X = Yw 

Since the variance of the distribution of returns of a 

portfolio X is V = x'Cx, then from (4) it follows that 

(5) V = w'Y'CYw = w'Qw 

where Q is a k-square positive-semidefinite matrix. 

From (4) and (5) it follows that the Markowitz-Sharpe 

portfolio selection problem may be reduced to a standard 

form and defined as 

(6) Minimize V = w'Qw 
k 

subject to E w. = 1 
i=i ^ 

and w 

The representation of x in (4) provides the basis for 

the random generation process which is described in the fol¬ 

lowing section. 

Definition of the Random Vector x and the Random Vari¬ 

able V(x). The random vector w represents a random partition 

of the interval [0,1] into k subintervals of length w^ 

(0 £ w^ _< 1, i=l,...,k). A random partition is the (k-1) 

dimensional analogue of the uniform distribution. The joint 

density f (w^^ ,W2,. . . . = l/(k-l)!, which for k=2 (the 

uniform distribution) reduces to f(w^) = 1. Each element 

w^, for i=l,....,k-l, is independently distributed with the 

k-1 
common distribution P(w^>a) = (1-a) , which for k=2 reduces 

7 
to P(w^>a) = 1-a as corresponds to the uniform distribution. 
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The matrix Y is the (n x k) matrix with columns corres¬ 

ponding to the extreme points as defined above. 

The random vector x in {x|Ej} is defined as 

(7) X = Yw 

which follows from (4) above. 

The variance corresponding to x is a random variable and 

can be defined by application of (5) and (7) as 

(8) V(x) = x'Cx = w'Y'CYw = w'Qw 

If the matrix Y corresponds to the extreme points of the 

region defined by either (2) or (3), the random variable V(x) 

represents the variance of randomly selected portfolios which 

are expected to yield ex ante a return E^. The distribution 

F(V|x'u=Ej) is the distribution F(V(x)) of the random vari¬ 

able V(x). The underlying random process as defined in (7) 

corresponds to the random selection of points w in a k-dimen- 

sional Euclidean space such that its elements w^ (for i=l,...., 

k) conform to^ 

k"l k-1 
(9) Z w. < 1 and w, = 1 - Z w. , for all w. >0 

.,1 — k .,1 1 — 
1=1 1=1 

and may assume with equal probability any value in the closed 

interval [0,1]. This is equivalent to the selection, with 

equal probability of being selected, of points in the simplex 

defined by 

k 
(10) Zw.=l, w>0. 

i=i ^ 

The random variable V(x) is bounded from above and from 

below by 
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(11) 

and 

(12) 

V* = {x*'Cx* : x*'Cx* is a maximum in (1) , (2) 

or (3)} 

= {xJ^Cx^ : x^Cx^ is a minimum in (1) , (2) or 

(3) } 

The mean and variance of the distribution of V(x) will 

be derived analytically in the following sections. This deri¬ 

vation will be followed by a heuristic analysis of some dis¬ 

tributional characteristics of F(V|Ej) for the special case 

in which {x|Ej} is defined as in (3) above. 

Expectation of V(x) 

The expectation of V(x) is 

(13) E(V(x) ) = E(x'Cx) 

= E(w'Y'CYw) 

k 

(14) 

= E( Z w ylCy. + Z Z w.w.ylCy.) 
i=l -L 1 1 i=l 1 3 1 J 

9 
An interesting property of the random vector w is that 

E (w?w^w^w^. . . .) = (k-1) 1 (a Ibl cl dl . . .)/(k-l+a+b+c+d+. . .) ! 
1 3 P q 

for 1 f j /P^q = 1 ../k. 

Define the average variance of the extreme points in the 

convex set as 

(15) V = (1/k) Z y.'Cy. 
i=l 

and the variance of the conditional expectation of x as 
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(16) V(E(x) ) = E(x) 'C E(x) 

= (1/k^) E E y:cy. 
i=l j=l ^ ^ 

It follows from (13) and (14) that 

(17) E(V(x)) = ^ y-CYi + Z y!Cy, 
1=1 j=l 

and from (15) and (16) that 

(18) E(V(x)) = (V + k V(E(x) ) )/(k+l) 

It is interesting to notice that 

(19) V > V(E(x)) 

since the function V(x) is convex, and therefore 

(20) E(V(x)) > V(E(x)) 

and also that 

(21) lim E(V(x)) = V(E(x)) 
k-oo 

so that for a large k, 

(22) E(V(x)) = V(E(x)) 

The Variance of V(x) 

The variance of the random variable V(x) is 

k k k k 2 
(23) V(V(x)) = E(E E E E w.w.w w ylCy.y'Cy ) - (E(V(x))) 

ijpq 

It is shown in Appendix E that V(V(x)) may be expressed as 

(24) V(V(x)) = [k^/(k+3) (k+2) (k+1) ] V(E{x))^ 

+ 
k ^ k k 2 

[23 E Q^. + E E (20Q^.Q^^+6Q^.+3Q^^Q.j) 
i=l i=l jT^i 
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k k k 

+ Z E Z (2Q Q +4Q Q )][ 
1 = 1 

[1/k(k+1)(k+2)(k+3)] - E(V(x)) 

where Q.. = yICy.. 
13 ^1 

Due to the order of magnitude of the terms in (24), it 

is also shown in Appendix E that 

(25) lim V(V(x)) = O'*' 
k->oo 

which means that for large values of k, the variance of the 

distribution of random variances is very small, and decreases 

for increasing values of k. 

This is a very interesting property because since k de- 
« 

pends on the size of the n-investment prospect universe, and 

on the position of on its feasible rangefor arbitrar¬ 

ily large values of k it will be sufficient to determine the 

position of V(E(x)) in the interval (V*,V*) to obtain an ap¬ 

proximate description of the shape of the distribution of 

V(x). Notice that for n=100, and an intermediate E^, the 

3 
magnitude of k may increase to the order of 10 for the con- 

3 ~ 
vex region defined by (3). For k of the order of 10 , V(V(x)) 

is such that 

(26) 0< V(V(x)) < (10 [2Q. 0. .+4Q. .Q. -2W(E(x))]+o(10 ®) 
J Jr J 

fk “6 
where o(l0 ) = "Terms of order of magnitude less than 10 

Since V(V(x)) must never be negative, in the event that 

[20. Q..+40..Q.~-2VV(E(x))] < 0 then the variance of the dis- 
JP 11 13 ip 

tribution of variances is even smaller, of order of mag- 



51 

nitude less than 10 

An investment universe of 100 prospects is not uncommonly 

large when compared for example to the number of stocks in 

the New York Stock Exchange. The previous example is then a 

very good indication of the magnitudes that can be expected 

for the variance of the conditional distribution of variances. 

What is important to recognize is that since variance is a 

measure of dispersion about the mean of the distribution, and 

since the variance of the distribution can be expected to be 

very small for large values of k, then the shape of the dis¬ 

tribution can be approximately described by the position of 

E(V(x)). This is particularly desirable since the derivation 

of the third central moment of the distribution is tractable, 

but, judging from the complexity of (24), not particularly 

amenable to derivation. 

Under the assumption that the position of E(V(x)) on the 

closed inteval [V^,V*] will provide a rought but good indica¬ 

tion of the shape of the distribution, the following sections 

will describe a heuristic attempt to ascertain the influence 

on the relative position of E(Vx)) of the overall level of 

correlation p between pairs of returns of investment pros¬ 

pects; and the effect of the level of E^, given its feasible 

range, on the distribution of V(x). 

Analysis of the Composition of the Maximum and Minimum Variance 

Portfolios 



52 

This section will be devoted to the analysis of the de¬ 

gree of similarity between the expected portfolio E(x) and 

respectively the maximum variance portfolio x* and the mini¬ 

mum variance portfolio x^. It was shown in the previous sec¬ 

tions that for a large k, the distribution of variances of 

random portfolios with the same expectation can be adequately 

described by the position of E(V(x)) = V(E(x)) in the inter¬ 

val [V^,V*]. The degree of similarity between E(x) and re¬ 

spectively X* and x^ will provide an indication of the rela¬ 

tive position of E(V(x)) in the interval. 

The measure of similarity between portfolios was sug- 

12 
gested by Farrar and is defined as 

between the vectors and 2 the maximum degree of dissimilarity. 

The maximum variance portfolio x* and the minimum vari¬ 

ance portfolio x^ can be defined by application of (6) as 

X* = {Yw : w'Qw is a maximum} 

X* = {Yw : w'Qw is a minimum} 

(27) 

w. = 1, w > 0 
1 — 

subject to t 
i=l 

Observe in this formulation that a necessary condition 

for X* is that x* = / one of the extreme points in the con¬ 

vex region. Therefore, w* which corresponds to x* = Yw* must 

be such that its i-th element equals 1 and all others equal 0. 
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The failure of x* to comply with this condition would imply 

that it could be expressed as a convex linear combination of 

two extreme points, and therefore its variance would not be 

a maximum for the region. 

No such condition applies to the composition of x^ ex¬ 

cept for the special case of perfect correlation between ex¬ 

treme points which will be reviewed below. If w^ is defined 

as a k-column vector such that x^ = Yw^, it can be observed 

that the "participation" t of extreme points in w*, - e.g. 

the number t of non-zero elements of w^, depends entirely on 

the configuration of the k-square covariance matrix Q. To 

illustrate this point, observe the effect of the variables E. 

and p defined above on the "participation" t in w^, which 

will be analyzed in the following paragraphs. 

For the extreme case for which = 1 for all pairs 

(i,j), X* and x^ can be redefined as 

(28) X* = {Yw : E w.(Q..) . , 1 11 
1=1 

1/2 
is a maximum} 

X* = {Yw : E w.(Q..) 
* • n 1 11 1=1 

1/2 
is a minimum} 

subject to E w. = 1 ; w > 0 
i=i ^ 

where is the i-th diagonal element of Q. 

Since (28) corresponds to the formulation of a linear 

programming problem, it follows that x* = y^, and = y^, 

- e.g. that the maximum and minimum variance portfolios are 
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extreme points of the convex region. The "participation" t 

in w* and is then t=l. 

For configurations of the covariance matrix which differ 

from the case of perfect correlation presented above, the 

"participation" of extreme points in w* remains unaltered, 

while the "participation" in w^ is expected to increase, 

approaching t=k as the off-diagonal elements of Q approach 

zero, or take negative values. A rough but adequate indica¬ 

tor of the magnitude of t is the number of zero or negative 

off-diagonal elements in Q. 

The analysis of the conditions for which the off-diagon¬ 

al elements of Q are zero or negative will follow, after de¬ 

fining them as 

(29) Q^. = Y[CY.r iT^j 

the covariance between portfolios represented by the extreme 

points y^ and y^. 

Given that the n investment prospects are distributed 

independently, then = 0 if and only if y^ and y^ are or¬ 

thogonal. If the n-square covariance matrix C is strictly 

positive, then the k-square matrix Q is also strictly posi¬ 

tive, - e.g. > 0 for all pairs (i,j). When the covari¬ 

ance matrix C contains positive and negative elements, is 

more likely to be negative or zero if y^ and y^ are orthogon¬ 

al than if the two vectors are not. 

In conclusion, the "participation" t in the vector w^ 

depends directly on the number of orthogonal pairs possible 
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and the overall level of correlation between pairs of pros¬ 

pects. The "participation" of extreme points in w can be 

expected to increase as the level of correlation between 

pairs of prospects decreases and as the incidence of ortho¬ 

gonal pairs increases. 

It can be demonstrated that the incidence of orthogonal 

pairs is directly affected by the level of the expected re¬ 

turn Ej in the range of values it may take. For a demonstra¬ 

tion of this argument it will be illustrative to examine the 

standard problem defined in (3). Let d be the number of in¬ 

vestment prospects for which u^ > E^; then the number of or¬ 

thogonal pairs that can be formed such that y^^ is in the pair 

is (n-d-1)(d-1), which will increase as d approaches n/2 and 

will decrease as d moves towards 1 or (n-1), - e.g. as E^ 

moves towards the extremes of its feasible range. 

Since the composition of the extreme points y^ depends 

entirely on E^ (see n.lO above); other things being equal, it 

may be concluded that x* will contain the minimum possible 

number of investment prospects allowed by the constraints; 

while X* will contain a greater number of investment pros¬ 

pects, the number being greater for intermediate levels in 

the feasible range of E^, lower levels of correlation between 

pairs of prospects, and a higher incidence of orthogonal ex¬ 

treme points in the region. These considerations will allow 

the analysis of the degree of similarity between E(x) and 

respectively x* and x*, which follows in the next section. 
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Analysis of the Degree of Similarity Between E(x) and x*,x^ 

The degree of similarity between E(x) and the portfolios 

corresponding to the maximum and minimum variances in the re¬ 

gion will be a function of the overall level of correlation 

between pairs of investment prospects, the incidence of or¬ 

thogonal pairs of extreme points and their "participation" t 

in the vector w^. 

In the case of perfect correlations between pairs of 

prospects, it can be observed that 

k k k 
(30) D^(x*,E(x)) = y'.y.+ il/'k^) 1 i: Y'y„-(2/k) Z y(y 

3 3 p=i q=i P p=l 3 P 

k k k 
D^(x*,E(S)) = y:y.+(l/k^) Z Z y'y^-{2/k) Z yly 

p=l q=l P *3 p=l ^ P 

will always be of the same order of magnitude since the or¬ 

thogonality of y^ and y^ with the other extreme points will 

affect both measurements of similarity in the same way. 

This argument becomes clear for the standard problem de¬ 

fined in (3). Observe that for each extreme point in this 

region, there are (n-1) possible pairs such that y|yj7^0; so 

that the order of magnitude of the similarity measurements 

13 
can be established as follows 

(31) o(D^(x*,E(x)) = (1-(n-l)/k)o(y^Yg) 

o(D^(x*,E(x) ) = (l-(n-l)/k)o(7|;^) 
* p q 

From (31) it can be concluded that given perfect correla 

tions between pairs of prospects, an equivalent degree of sim 
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ilarity is exhibited between E(x) and respectively x* and x^ 

For this reason, it can be expected that for a high level of 

correlation between pairs of investment prospects, the vari¬ 

ances of random portfolios will have their expectation at 

some distance of both boundaries, e.g. it can be expected 

that the distribution is not significantly skewed in either 

direction. For large values of k, given that the variance 

is very small, the distribution may be expected to have long 

and narrow tails since a high density in the neighborhood of 

V(E(x)) follows from the fact that the distributional vari¬ 

ance approaches zero as k increases. 

It should be noted that as the level of correlation be¬ 

tween pairs of prospects approaches 1, the distance between 

the maximum and minimum variance for a level E^ diminishes 

accordingly, so that little or no advantages may be derived 

from diversification, as evidenced by the fact that at the 

limit (when p^j=l) both the maximum and minimum variance 

portfolios are extreme points of the region (3), e.g. they 

are portfolios containing two prospects only. 

For it can be observed that for the standard prob 

lem referenced above, given the measures of similarity be¬ 

tween E(x) and x*,x^ which are 

9 , k k k 
(32) D^(x*,E(5)) = yW. + (1/k^) E E y'y -(2/k) E yW 

3 3 p=l q=i R <3 p=l 3 P 
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(x*,E(x))= Z 
k k 
Z Z w 

p=l q=l 

k k 

It is possible to analyze the behavior of the measures by 

reducing them in terms of their overall order of magnitude. 

Given that t is the participation of extreme points in 

the order of magnitude of the similarity measurements can be 

expressed as follows 

(33) 

The analysis of the relations in (33) suggests that as 

E. moves from the center of its feasible range to the ex¬ 
3 

tremes, k approaches n-1 and t becomes smaller in relation 

to k because of a decreased indicence of orthogonal pairs. 

Under these circumstances it can be observed that E(x) and 

X* are very similar and thus E(V(x)) is in the neighborhood 

of V*. 

For intermediate levels of E^, k>>n-l, with the great¬ 

est incidence of orthogonal pairs of extreme points. Under 

these conditions, t will approach k as the level of correla¬ 

tion between pairs of prospects decreases. Consequently, 

E(x) is then very similar to x^ and very dissimilar to x*, 

which for a large k will result on a high concentration of 

the distribution in the neighborhood of x*. This means that 
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the distribution of variances will be positively skewed, the 

degree of positive skewness depending on the level of corre¬ 

lation between pairs of prospects and on the level of 

with respect to its feasible range. 

The previous analysis is valuable as long as one is not 

concerned with ascertaining the exact shape of the distribu¬ 

tions. It allows for the definition of tentative causality 

relationships regarding the factors that may or will affect 

the shape of the conditional distribution. For the standard 

problem defined by (3), it can be argued that the greater the 

size of the investment universe, the more dense the distribu¬ 

tion of variances in the neighborhood of E(V(x)) = V(E(x)). 

That the distribution will be highly concentrated in the 

neighborhood of , provided that correlations between pairs 

of prospects are not inordinately high on the average, and 

that the level of E. is not at either extreme of its feasible 

range; that when correlations between pairs of investment 

prospects uniformly approach unity, the distribution may be 

expected to be near symmetrical; and finally, that at the ex¬ 

tremes of the feasible range of E^'s, the distribution will 

be negatively skewed, e.g. that it will be concentrated in 

the neighborhood of V*. 

These heuristically derived results have been supported 

by the results of ten Monte Carlo experiments, as it will be 

seen in Chapter IV. Chapter III describes the Monte Carlo 

methodology for the generation of random variances condition- 
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al on a fixed level of expectation E^. 
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CHAPTER III 

MONTECARLO GENERATION OF RANDOM PORTFOLIOS 

Generation of the Random Vector w 

The random vector w has been defined as a random parti¬ 

tion of the interval [0,1]. The generation of w follows 

from the properties of the exponen tial distribution.^ If 

e^,.,ej^ are k exponential variates from the same par¬ 

ent distribution, then 

k 
(1) w = {w^} = {e^/le^} 

is a random partition of [0,1] in k intervals. 

The generation from a set of k uniform random variates 

follows directly from (1): let r^,....,rj^ be uniform on 

[0,1], then 

k 
(2) w = {w^} = {In (r^)/In (TTr^) } 

Identification of the Basic Feasible Solutions y. 

Unlike the traditional mathematical programming problems 

where algorithms are constructed with the purpose of avoiding 

inspection of all the extreme points in the region, the gen¬ 

eration of random vectors requires the construction of heuris¬ 

tics to generate economically all the extreme points in the 

region. Two methods are described below to generate the ex¬ 

treme points for two special cases. 
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The standard problem. This problem consists of selecting 

random portfolios in the region defined by 

(3) X ' u = E . 
3 

n 
Z X. = 1 

i=i ^ 

X . >0 for i = 1..,n 
1 — 

A strategy in which a heuristic for the generation of ex¬ 

treme points is based will follow: 

(a) All extreme points will be basic feasible solutions 

of (3) 

(b) Basic feasible solutions of (3) will have two ele¬ 

ments j,l obtained from the solution of 

X . 
3 

+ — 1 

U .X . + U- X, II 

3 3 1 1 

X . 
3 '^1 i 

0 

while all other elements x^ = 0 for i 7^ j,l 

(c) The non-negativity constraints require that if u^ is 

greater than u^, then ^ ^ u^^ for a basic feasible solu¬ 

tion. 

The heuristic suggests itself immediately: Order the n 

prospects from highest to lowest expected return; define the 

position of Ejin this sequence; and to obtain a basic feasible 

solution, select j,l according to condition (c)aabove. 

Upper and lower boundaries. Since it is not unusual in 

portfolio selection problems to find the portfolio manager 
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facing upper and lower boundary constraints which are either 

self-imposed or required by government regulation, the stan¬ 

dard problem may be expanded to include left- and right-hand 

constraints on the vector x such that the region will be de¬ 

fined by 

(4) x'u = E 

X. = 1 
1 

U ^ X ^ L 

where U and L are n-column vectors. 

The development of heuristics to generate extreme points 

in the region does not appear to be a trivial exercise, and 

it may require that they be tailored for the particular prob¬ 

lem. It may be advantageous for the construction of such 

heuristics to utilize the property of the region (4) which 

stipulates that the extreme points y^ in the region are such 

that (n-2) of the elements of y^ are either at their upper or 

lower boundaries, while the remaining two are associated with 

2 
a basic solution for (3). 

The problem will thus be reduced to a combinatorial prob¬ 

lem where the number of extreme points to be generated will be 

bounded by 

n-2 « 
(11) k < (5) Z 

The number of points may be reduced substantially for a given 

problem as it will be illustrated in the example that follows. 

Assume that n=6, {U } = .2 and {L } = 0 for all q's. In 
q q 
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this case only those combinations with n-2 elements at their 

upper boundaries need to be examined; and out of those, the 

infeasible solutions may be screened out by means of a simple 

filter rule. The filter rule will be constructed as follows: 

let y. be a candidate such that (n-2) of its elements v =.2 for 
1 

q p,l and 

(12) 
n 

y = (E.-.2( E u -u ))/(u -u ) 
D q P P 1 

y, = . 2 - y 
1 -^p 

Then y^ is an extreme point of the region only if .2 ^ y^ ^ 0. 

Generation of Random Portfolios and Their Variances 

Having obtained, as shown above, the matrix of extreme points 

Y in the region, and the random vector w, a random variate of 

the distribution of x is given by (7) of the previous chapter 

as 

(13) X = Yw 

and its corresponding variance will be 

(14) V(x) = x'Cx 

Repeated generation of variates w through the Monte Carlo 

method will allow for a preliminary analysis of the distribu¬ 

tional properties of the random variable V(x)for fixed levels 

of expectation. 

Appendix C contains the programs utilized for the gener¬ 

ation and analysis of the random variates discussed above. 

All programs were written in Extended Basic and are compatible 

with the executive routines of the UMASS timesharing system of 
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the University of Massachusetts at Amherst. The quadratic 

programming algorithms utilized to obtain the boundary values 

3 
of the distribution are described elsewhere. 

The following chapter will describe the ten Monte Carlo 

experiments which were conducted to obtain a preliminary de¬ 

scription of the conditional distribution of variances, by 

analyzing the properties of its sample distributions. An an¬ 

alysis of the results and discussion of the observations 

follows the description of the experiments. 



65 

Footnotes 

1. W. Feller, An Introduction to Probability Theory and 
its Applications, New York (John Wiley and Sons), 75. 

2. G. Hadley, Linear Algebra, Reading (Addison-Wesley Pub¬ 
lishing Co.), 1963, 388. 

3. R. Homines, Documentation for Program Prtflio, Faculty 
Working Paper Series, No. 73-19, Center for Business and 
Economic Research, University of Massachusetts, Amherst, 
1973. 



CHAPTER IV 

THE MONTE CARLO EXPERIMENTS 

Description of the Experiments 

Ten experiments have been selected for the analysis of 

the properties of the sample distributions of the variances 

corresponding to random portfolios expected to yield ex ante 

a target rate of return E^. The convex region described in 

(3) of Chapter III was chosen for this analysis, so that the 

distributions to be analyzed correspond to the random vari¬ 

able 

V(x) = x'Cx 

subject to 

and 

1 

x' u = E . 
3 

X > 0 

where x is an n-dimensional random vector generated by the 

Monte Carlo process described in Chapter III. 

The covariance matrices C and the vectors of expecta¬ 

tion u corresponding to each one of the experiments can be 

1 2 
found in Appendix A. ' 

In Chapter II it was shown that the variables n, E^ and 

p - respectively the size of the investment opportunity set, 

the expected return ex ante of the portfolio and the overall 

level of correlation between pairs of investment prospects 

have an effect on the degree of similarity between E(x) and 
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the upper and lower bounds x*, x*. Under the assumption that 

this effect will be reflected on the shape of the conditional 

distributions of variances, these same variables were chosen 

for experimental manipulation, e.g. as explanatory variables 

for the behavior of the conditional sample distribution of 

variances. 

The experiments examine circumstances in which the in¬ 

vestment universe is composed of six, ten and fifteen (n=6, 

10,15) investment prospects respectively. The expectation 

is fixed at low, intermediate and high levels (E. = 1.1, 1.2, 

3 
1.3, 1.4, 1.5); and the covariances correspond respectively 

to low (0 < p.. < .10), intermediate (.25 < p.. < .45) and 
13 13 

high (.70 < p.. < .90) levels of correlations between the re- 

4 
turns of investment prospects. The sample distributions of 

conditional variances were studied under conditions corres¬ 

ponding to all the levels of n, E^ and p described above. 

To allow for comparisons of the effects of changes in 

the explanatory variables between distributions spanning dif¬ 

ferent ranges of values, the comparisons will be made between 

distributions of the standardized variable v which is defined 

as 

(1) V = (V(x) - V*)/(V*-V*) 

In addition to the variable v, some new variables are intro¬ 

duced in this chapter and will be defined in the following 

section. 
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Definition of Variables and Nomenclature 

The following notation has been used for the variables 

appearing in this chapter: 

C Covariance matrix of the n-variate distribution 
of returns of investment prospects. 

u Vector of expectations (plus 1) of the n-variate 
distribution of returns of investment prospects. 

n Size of the investment opportunity set. 

k Number of extreme points in the convex region 
defined by the constraints. 

E . 
D 

Ex ante level of expectation (plus 1) set as a 
constraint for the generation of random portfolios. 

V^ Minimum portfolio variance given E^ 

V* Maximum Portfolio Variance given E^ 

E(v) True expectation of the standardized variable v 

V Sample mean of the standardized variable v 

2 
s (v) Sample estimate of the variance of v 

3 
M (v) Sample estimate of the third central moment of v 

3 3 
Sk (M (v)/s (v)), the skewness coefficient of the 

sample distribution of v. 

M Median of the sample distribution of v 

Q Interquartile range of the sample distribution 
of V 

q Upper bound of the first quartile of the sample 
distribution of v 

V Value_of v for which the sample probability 
P(v<v ) = .9 



69 

Descriptive Variables 

Given that the purpose of these experiments is to provide 

an approximate description of the behavior of the conditional 

distribution of variances corresponding to random portfolios, 

and that the distributional form is unknown, four sets of 

variables were selected to describe those characteristics of 

the distribution which are considered interesting. It is of 

interest ot determine how fast the distribution may be expected 

to become dense in the neighborhood of its mean, and therefore 

it is necessary to observe the effect of the experimental con¬ 

ditions on the dispersion of the distribution. It is also 

desirable to ascertain the location of the mean, and the 

behavior of the tails of the distribution since these char¬ 

acteristics are rough indicators of the shape of the distribu¬ 

tion and, together with a measure of the skewness of the dis¬ 

tribution, they provide an indication of the probability of 

an observation in a given interval. According to the previ¬ 

ous considerations, the following variables were selected as 

descriptive variables of the characteristics of the distribu¬ 

tions ; 

2 
(1) Measures of Dispersion: The sample variance s (v) 

and the interquartile range Q of the standardized distribu¬ 

tion were selected as measures of dispersion. They are ex¬ 

pected to be highly correlated, and in this sense redundant; 

but since the distributions cannot be expected to be always 
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syminetrical, the two measures contain distinct information. 

(2) Behavior of the Tails of the Distribution: The 

upper bound q of the first quartile, and the length of the 90% 

probability band v were selected to analyze the response of 

the tails of the sample distributions to varying experimental 

conditions. This asymmetric choice will be better understood 

after casual examination of the shape of the cumulative sam¬ 

ple distributions shown in Appendix B. 

(3) Measure of Location of a High Density Neighborhood: 

Although a "high density neighborhood" is a euphemistic de¬ 

scription of what could more accurately be labeled a modal 

interval, the latter carries connotations of unimodality 

which are to be avoided in the absence of knowledge about 

the distributional form. It was shown in Chapter II that 

E(V(x)) may be an indicator of the location of a high density 

interval. To this effect, E(v) will be used as a measure of 

2 
location of the interval, and s (v) as a measure of concen¬ 

tration. 

(4) Measure of Skewness; The sample coefficient of 

skewness Sk has been selected as a proper measure, with one 

qualification. It is conceivable that if the true distribu¬ 

tion has inordinately long tails, the sample distribution 

will not contain observations representative of those tails 

unless a proper method of importance sampling is designed. 

Unfortunately, importance or stratified sampling implies 

imputting a "true" distribution which in this case is un- 
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known. If observations on the tails are not present in the 

sample distribution, the sample measure of skewness may be 

an understatement of the true measure, or even reverse its 

sign. Fortunately, since the high density interval is in 

the neighborhood of E(v) and the distributions are bounded, 

the sample coefficient of skewness may be interpreted as 

follows: The sample distributions will be considered sym¬ 

metrical if Sk is close to zero and E(v) is approximately 

equal to .5; if Sk is approximately equal to zero and E(v) 

is significantly different from .5, the location of E(v) 

will override the sign of Sk. That is, for Sk approximately 

equal to zero and E(v) to the left of .5, the distribution 

will be considered positively skewed; if E(v) is to the 

right of .5, then the distribution will be negatively skewed. 

This argument is supported by the observed graphical repre¬ 

sentations of the cumulative distributions in Appendix B. 

A summary presentation of the results of the ten Monte 

Carlo experiments is given in the next section. 

The Results of the Experiments 

The results of the experiments for the descriptive var¬ 

iables defined above, and for a selected number of other 

variables which where considered of interest for discussion, 

are summarized in Tables IV-1 through IV-10. These corres¬ 

pond to each one of the ten experiments described in Appendix 

A. 
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A graphical summary of these results can be found in 

figures IV-1 through IV-7. These figures can be used for a 

comparative analysis of the effect of experimental conditions 

on the descriptive variables which characterize the sample 

distributions. Figures IV-1 and IV-2 depict the response of 

2 
the dispersion measures Q and s (v) to changes in the experi¬ 

mental variables. Figure IV-3 shows the effect of these 

changes on the expectation E(v). The behavior of the tails 

of the distributions, as described by q and v ; and the behav¬ 

ior of the skewness coefficient may be found respectively in 

figures IV-4, IV-5 and IV-6. Finally, a composite pictorial 

description of the effect of the experimental conditions on 

the shape of the distributions has been attempted in figure 

IV-7. 

Appendix B contains the graphical representation of the 

sample cumulative distributions corresponding to each one of 

the experiments. The Appendix consists of figures B-1 

through B-50, which are properly labeled for cross refer¬ 

ence. The graphs depict the distributions of the standardized 

variance v to facilitate visual inspection and comparisons. 

These results will be analyzed and discussed in great 

detail in the remaining sections of this chapter. 
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FIGURE IV — I 

RESPONSE OF Q TO CHANGES IN EXPERIMENTAL CONDITIONS 

1 ■LOW t« INTERMEDIATE 'fa HIGH 
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FIGURE IV — I 

RESPONSE OF Q TO CHANGES IN EXPERIMENTAL CONDITIONS 

t« LOW INTERMEDIATE bHIGH 
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FIGURE IV - 2 

RESPONSE OF S*(v) TO CHANGES IN EXPERIMENTAL CONDITIONS 
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FIGURE IV - 3 

RESPONSE OF E(v) TO CHANGES IN EXPERIMENTAL CONDITIONS 

■^=LOW ‘^’slNTERMEDIATE '?=HIGH 
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FIGURE IV- 4 

RESPONSE OF q TO CHANGES IN EXPERIMENTAL CONDITIONS 
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FIGURE IV - 5 

RESPONSE OF >r TO CHANGES IN EXPERIMENTAL CONDITIONS 

f» LOW f. INTERMEDIATE f. HIGH 
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FIGURE IV-6 

RESPONSE OF Sk TO CHANGES IN EXPERIMENTAL CONDITIONS 

f »LJDW f = INTERMEDIATE f»HIGH 
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FIGURE IV- 7 

COMPOSITE DESCRIPTION OF THE BEHAVIOR OF f(v |Ej) 



E
X

P
E

R
IM

E
N

T
 N

O
. 7

 

91 

FIG
U

R
E
 

IV
-8

 

O
P

P
O

R
T

U
N

IT
Y
 

L
O

C
U

S 
A

N
D
 

9
0
%
 

P
R

O
B

A
B

IL
IT

Y
'B

A
N

D
 



92 

r- m 
“ o» 

rN> 04 4^ ai cn 

O
P

P
O

R
T

U
N

IT
Y
 

L
O

C
U

S 
A

N
D
 
9

0
%

 PR
O

B
A

B
IL

IT
Y
 

B
A

N
D

 



E
X

P
E

R
IM

E
N

T
 

N
O

, 9
 

93 
F

IG
U

R
E
 

IV
- 10 

O
P

P
O

R
T

U
N

IT
Y
 

L
O

C
U

S 
A

N
D
 

9
0
%

 PR
O

B
A

B
IL

IT
Y
 B

A
N

D
 



94 

Analysis of the Results of the Experiments 

Dispersion of the distributions. The behavior of the two 

2 
measures of dispersion Q and s (v) as it is summarized in 

figures IV-1 and IV-2 confirms the statement made earlier that 

they respond similarly to changes in the experimental condi¬ 

tions. The observation of their patterns of behavior leads to 

the formulation of the following conclusions about the dis¬ 

persion of the sample distributions: 

(1) For fixed levels of n and p, the density of the dis¬ 

tributions in the neighborhood of their means can be expected 

to increase as one moves towards the extremes of the range of 

values feasible for . This change becomes negligible for 

larger values of n, the size of the universe of investment 

prospects. This conclusion corroborates the analytically de¬ 

rived conclusion that as the number of extreme points in the 

region increases, the variance of the distribution becomes 

negligible. It is interesting to notice that for universes 

as small as the one composed by fifteen investment prospects, 

the dispersion of a large sample distribution of variances is 

already very small; an interval of less than ten percent of 

[V*,V*], centered around the median of the distributions, con¬ 

tains fifty percent of the observations. Observation of the 

values of s (v) for the fifteen-prospect universe confirms 

the assertion that for large values of k, a high concentra¬ 

tion of the observations may be expected to cluster in the 
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neighborhood of the mean of the distribution. It is again 

very reassuring that this is already evident for n=15. 

(2) For fixed levels of expectation and a given uni¬ 

verse of investment prospects, an increase in the overall 

level of correlation between pairs of investment prospects 

leads to relative increases in the dispersion of the distri¬ 

butions. As interesting as this effect may be for the dis¬ 

tributions of standardized variances, the importance of this 

effect is diminished by the fact that increases in the level 

of correlation will also lead to narrower intervals between 

and V*. An illustration of this latter effect may be ob¬ 

served by reference to figures IV-8, IV-9 and IV-10 which 

depict the mean-variance opportunity loci corresponding to 

an investment opportunity universe of size ten, and respec¬ 

tively to low, intermediate and high levels of correlation 

between investment prospects. 

In conclusion, it can be asserted that for investment 

opportunity universes of a moderate or large size (n ^ 15) , 

it appears that the conditional distribution of variances 

corresponding to random portfolios, yielding ex ante a fixed 

expected return, will be concentrated in the immediate neigh¬ 

borhood of the distributional mean; and that in the limit, 

the distribution will tend to a spike located on the mean. 

This effect is already pronounced and observable for n=15. 

Location of the mean of the distribution. The analysis 

of Figure IV-3 indicates that while for intermediate and low 
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levels of correlation between pairs of prospects, the size of 

the investment opportunity universe (a proxi for the number 

of extreme points k) has an overriding influence on the posi¬ 

tion of E(v), which drastically approaches the minimum vari¬ 

ance as n increases; it can be observed that for high levels 

of correlation, E(v) remains comparatively large regardless 

of the size of the universe. This behavior corroborates the 

conclusions reached in Chapter II after the heuristic analysis 

of the similarity between the vector E(x) and the upper and 

lower bounds x* and x^. 

It can also be observed, in agreement with that analysis, 

that as Ej moves towards the extremes of its feasible range, 

E(v) moves away from the minimum variance. The significance 

of this effect diminishes in importance for large values of n. 

In conclusion, given the present analysis and the con¬ 

clusion of the previous section, it is reasonable to expect 

that for intermediate to low levels of correlation between 

pairs of prospects, there is a high probability that port¬ 

folios drawn from a population of investment prospects of 

moderate or large size (n > 15), and expected to yield ex 

ante a return E^, will map on the mean-variance plane at a 

relatively small distance from the Markowitz efficient fron¬ 

tier. How high this probability may be expected to be de¬ 

pends on the behavior of the tails of the distribution which 

will be analyzed subsequently. 

Behavior of the tails of the distribution. The first 
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conclusion that must be drawn from the observation of figures 

IV-4 and IV-5 is that the lengths of the two tails of the dis¬ 

tribution move in almost perfect negative correlation in re¬ 

sponse to changes in the experimental conditions. This fol¬ 

lows from the fact that the length of the first quartile q, 

and that of the 90% probability band v are almost perfectly 

correlated descriptive variables. This effect is consistent 

with the previous conclusions about the dispersion of the 

distributions and the location of the high density interval, 

and constitutes in effect a cross validation of the previous 

conclusions. This indicates that the distribution responds 

to changes in the experimental variables by "sliding" the 

high density interval from left to right or from right to 

left, preserving the composition of this interval. The anal¬ 

ysis of figures IV-4 and IV-5 leads to the following conclu¬ 

sions about the "sliding" effect: 

(1) For low and intermediate levels of correlation be¬ 

tween pairs of investment prospects, the left tail of the 

distribution can be expected to be short and fat. Although 

for intermediate levels in the range of E^, the length of 

the tail is almost negligible, as moves towards the ex¬ 

tremes of this range the length of the left tail can no 

longer be neglected, e.g. the probability of v < q is very 

small for extreme values of E^. This is in perfect harmony 

with the heuristic analysis of the similarity between E(x) 

and respectively x* and x^ which was made in Chapter II. 
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(2) For a high positive level of correlation between 

prospects, both tails are long and narrow, so that the prob¬ 

ability of a random portfolio mapping on the mean variance 

plane in the neighborhood of either V* or V* is negligible. 

An interesting conclusion that can be derived from this 

and the previous sections, and which will be useful for the 

discussion of the implications of this research is the fol¬ 

lowing. Given the characteristics about the dispersion, lo¬ 

cation of the mean and tail behavior which have been reached 

here, assume that portfolios are generated at random for ex¬ 

pectations spanning the feasible range of E^'s and that these 

portfolios are plotted on the mean-variance, or mean-standard 

deviation plane. A descriptive least-square polynomial is 

fitted to these points using the conditional variance or 

standard deviation as the independent variable, and the ex¬ 

pectation Ej as the dependent variable. The graphical repre¬ 

sentation of this polynomial function for the relevant range 

may be expected to be closely parallel to the Markowitz-effi¬ 

cient frontier for intermediate values in the range of E^ and 

to swing downwards and away from the frontier for extreme 

values of E^. It is very plausible then that a quadratic re¬ 

gression constitutes an appropriate approximation. This con¬ 

clusion was reached after the examination of figures IV-8, 

IV-9 and IV-10, where for a fixed investment universe and at 

three levels of correlations, a 90% probability band has been 

constructed such that the sample probability P(V(x)e90% Band|Ej) 



99 

= .9. Observe that this band is very narrow in the neighbor¬ 

hood of the Markowitz-efficient frontier, and also that its 

upper bound is roughly parallel to the frontier in all three 

cases. 

In view of the strong conclusions derived above, the 

analysis of the behavior of the skewness coefficient in re¬ 

sponse to the experimental conditions seems almost redundant. 

It is nonetheless useful since it provides a cross validation 

for the conclusions reached. 

Analysis of the skewness of the sample distributions. 

The following observations can be made from the analysis of 

the effect of experimental conditions on the coefficient of 

skewness Sk: 

(1) The distributions are positively skewed for large 

investment universes (n > 15) and for intermediate levels in 

the feasible range of E^'s. This behavioral pattern is even 

more accentuated for low levels of correlation between pairs 

of investment prospects. 

(2) The distributions are nearly symmetrical and even 

negatively skewed at the extremes of the feasible range of 

Ej's for small values of n. These patterns are more pro¬ 

nounced when the overall level of correlations approaches 

unity. 

These observations are in perfect agreement with the 

conclusions reached before and do not require further comment. 

It remains to analyze the behavior of the distributions when 
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the covariance matrix contains negative elements. 

The effect of negative covariances. All observations and 

conclusions made in the immediately preceding sections refer 

to experimental conditions in which the covariances between 

pairs of investment prospects are positive. Experiment No. 10 

has been designed to observe the effect of allowing covari¬ 

ances to take positive and negative values indiscriminately. 

From the results shown in Table IV-10, it can be immediately 

observed that the descriptive variables respond to experimental 

conditions in the same form of those corresponding to Table 

IV-7, which may be used as a control. 

The conclusion is that in comparison with a situation in 

which the covariances are positively small; everything else 

being equal, the indidence of negative covariances will cause 

the sample distributions of the standardized variable v to be 

more positively skewed, with a lower expectation and a smaller 

dispersion about their means and (or) their medians. 

The incidence of negative correlations is unlikely in 

the stock market where all securities are roughly correlated 

to the market. But it is conceivable that other investment 

problems which may be regarded as portfolio problems will ex¬ 

hibit this characteristic. 

The conclusions reached in this chapter have been summar¬ 

ized into a composite perspective in figure IV-7 which attempts 

to present a pictorial description of the behavior of the sam¬ 

ple distributions in response to changes in the experimental 
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conditions. The following section will provide a summary of 

the conclusions. 

Summary of the Conclusions 

The tentatively defined causality relationships of Chap¬ 

ter II and the empirical support they have received from the 

results of the experiments described in this chapter lead to 

the following conclusion about the conditional distributions 

of variances corresponding to randomly selected portfolios 

which are expected to yield ex ante a return : 

(1) If the randomly selected portfolios described above 

are drawn from an investment universe of moderate or large 

size (n > 15), for values of E. not at the extremes of their 
D 

feasible range; and if the investment prospects are such that 

pairwise correlations between their returns are not inordin¬ 

ately high for all pairs, then there is a very high probabil¬ 

ity that these portfolios will map on the mean-variance plane 

within a very narrow band drawn from the mean-variance effi¬ 

cient frontier. 

(2) This probability will be reduced for portfolios 

whose expectations are at the extremes of the feasible range; 

if correlations between pairs of investment prospects are 

uniformly high; or if the size of the investment universe be¬ 

comes very small. 

(3) For investment universes of moderate and large size 

(n > 15) the dispersion of the conditional distributions about 

V(E(x|Ej)) is very small, so that the highest incidence of ob- 
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servations in a sample may be expected in the neighborhood 

of the mean. 

This conclusion, although weakly stated, becomes a very 

strong statement when it is realized that the investment uni¬ 

verse made of all the securities in the New York Stock and 

American exchanges exceeds one thousand prospects, that cor¬ 

relations between returns of pairs of securities are typical¬ 

ly positively moderate, and that even the loosest diversifi¬ 

cation constraints prevent the incidence of at the ex¬ 

tremes of its range. 

It is the coincidence of these conditions with the ob¬ 

servations made here what makes the results of this chapter 

worthy of consideration, since they suggest an absence of 

variety in the investment process, as conceptualized by the 

mean-variance model, which may have wide ranging implications 

for the formulation of normative and positive conclusions 

based on the assumptions of the mean-variance paradigm. Some 

of these implications will be discussed in Chapter VI. 

Chapter V analyzes the assumptions underlying the pre¬ 

vious experiments and demonstrates the robustness of the 

present conclusions under an alternative random selection 

process. 



Footnotes 

All covariance matrices were tested to be positive 
definite and non-singular by evaluation of their prin¬ 
cipal minors. 

The results of the experiments are independent of dis¬ 
tributional characteristics and errors in the estima¬ 
tion of the parameters, since both u and C are assumed 
to be the true expectation and covariance matrix of the 
n-variate distribution of wealth relatives. 

On occasions the minimum level E.=l.l could not be used 
since the efficient frontier turned at a higher value. 
This should not be disturbing since other low values of 
Ej fulfill the requirement that it be low. 

Experiment No. 10 allows p.. to take freely positive 
and negative values. This^is of less interest since 
securities in the stock market are typically positively 
correlated. 



CHAPTER V 

A CRITIQUE OF THE RANDOM PROCESS' 

Introduction 

This chapter is devoted to the analysis of the random 

process which was formulated in Chapter II, and which was 

used for the Monte Carlo generation of random portfolios 

corresponding to the experiments described in the previous 

chapter. 

The main concern of this analysis is related to the 

property of the linear transformation 

(1) X = Yw 

by which a point x in {x|Ej} may not always be uniquely de¬ 

termined by a vector w. This introduces the suspicion that 

the high density observed in the neighborhood of the condi¬ 

tional expectation of the sample distributions may be due to 

overdetermination of "double counting". 

A secondary concern, although of some utilitarian value, 

is to establish a correspondence between the random process 

adopted in this research and an alternative intuitively ac¬ 

ceptable method for selection of random points in {x|Ej}. 

The Problem of Multiple Determination 

In addition to the linear transformation defined in (1) 

above, let the augmented matrix Y be defined as 

(2) = (Y,x) 
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where x is a point in {x|Ej}. 

The vector x in is said to be uniquely represented by 

k 2 
the vector w in E if and only if 

(3) rank (Y) = rank (Y ) = k 

Under any other circumstances in which the rank of Y equals 

the rank of Y , there is an infinite number of solutions in 

w for the system of simultaneous linear equations (1), and 

thus X will not be uniquely determined by any one w. 

The problem arises due to the nature of the linear trans¬ 

formation which expresses x as a convex linear combination of 

the extreme points in {x|Ej} which is 

(4) X = Yw 

k 
E X. = 1 

i=i ^ 

w ^ 0 

The constraints impose pecularities on the system that 

are not entirely explained by the characteristics of (1). 

For example, if x=y^, one of the extreme points of the con¬ 

vex set, then there must be a unique feasible solution to (1) 

given the constraints in (4) since, by definition, an extreme 

point cannot be represented by a convex linear combination of 

other points in the set. The same can be shown to be true 

for points in the edge of the convex set {x|Ej} which are 

uniquely determined by a convex linear combination of two 

adjacent extreme points given the constraints in (4). 

In terms of the random process defined in Chapter II, 
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these considerations mean that compared with interior points, 

the points in the edges of the convex set have a negligible 

probability of being selected. This is in contradiction with 

the stated purpose that all points in {x|Ej} be given identi¬ 

cal probabilities of selection. 

In effect, given the Monte Carlo generation process de¬ 

scribed in Chapter III, points in the edges of the set will 

never be selected since the uniform random variates generated 

by the pseudorandom number generator are in the open interval 

(0,1) and not in [0,1]; and therefore, values for w^ = 0 or 

w. =1 can never occur. 
1 

Due to this property of the pseudo random process, the 

random vectors w are not selected from the closed set defined 

in (4), but from the open set 

(5) 

k 
Z 

i=l 
w. 

1 
= 1 

w >0 

so that all random vectors w are interior points of the con¬ 

vex set defined in (4). 

It will be illustrative to consider that the system (1) 

can be rewritten as 

(6) x = Yw + Y\W,, V 
n n (k-n) (k-n) 

3 
where Y is an n-th order non-singular matrix whose columns 

n 

are any n extreme points y^; w^ is the corresponding n-column 

vector. Y,, , and w,, . correspond to the remaining (k-n) 
(k-n) (k-n) 

extreme points. 
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Since is non-singular, then solutions for (6) can be 

obtained for 

(7) w = y"^x - y"^Y„ , . 
n n n (k-n) (k-n) 

An infinite number of solutions can be obtained assigning 

arbitrary values to w,, .. If at least two of these solu- 
(k-n) 

tions are feasible in terms of the constraints in (5), then 

there will be an infinite number of w's which will determine 

a single point x; namely, all w's in the line between the two 

feasible solutions. There is still the possibility that for 

a given x in the interior of {x|Ej} there is a unique feasi¬ 

ble solution; while for others there is an infinite number 

of solutions. 

The question could be resolved if it could be shown that 

there exists an infinite number of solutions feasible under 

constraints (5) for every interior x, since in this case the 

probability of selection would be equal for all interior 

points. Or, conversely, if it could be shown that given the 

constraints in (5) there is a unique feasible solution for 

every point in {x|Ej}. 

In the absence of any of these proofs, the possibility 

remains that some interior points have a greater probability 

of being selected than others. Rather than delving into the 

mathematical solution of this issue, a test has been devised 

to provide an indication of the nature of this problem as it 

related to the conclusions of Chapter IV. An examination of 

Figures B-1 through B-50 in Appendix B will immediately identify 
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a prime suspect for relatively excessive overdetermination. 

As it had been noticed before, the distributions of sample 

conditional variances "pack" in the neighborhood of the vari- 
k 

ance corresponding to E(x) = (l/k) E y., and this effect has 
i=l ^ 

been shown to be more accentuated for large values of k. That 

this behavioral observation is due to the fact that "more" 

w's will yield values in the neighborhood of E(x) than in the 

neighborhood of any other points in the set could easily be 

detected by observing the relative sample frequency in which 

E(x) appears for vectors w such that w^ ^ (l/k) and i“l,...,k; 

and compare it with the relative frequency in which a differ¬ 

ent point x^ that has been generated by the vector w^^ will 

appear as a consequence of vectors w / w^^. 

Since the process is strictly continuous, the probabil¬ 

ity of an observation x = E(x), or x = x^ is exactly equal to 

zero. For this reason, the frequencies should be computed 

for vectors in "the neighborhood of" E(x) or x^, which are 

not the direct result of values of w "in the neighborhood of" 

either w = {l/k} or w^^. The concept "in the neighborhood of" 

can easily be accomplished by discretizing the comparisons as 

it was done in the test that follows. 

Let the vectors i(x) and i(w) be such that their ele¬ 

ments are defined by 

(8) {i(x)j} = {.01INT( lOOXj + .5)} 

{i(w)^} = {.01INT( lOOw^ + .5)} 

where the operator INT(*) truncates the argument to its in- 
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teger component. 

The computation of the frequency of double counting, 

this is the frequency in which the same x results from dif¬ 

ferent values of w in a sample of a given size, can now be 

accomplished by means of the following logical relations. 

Let be the vector under scrutiny, and w^ be the vec¬ 

tor used for its generation; then for any couple (X2,W2) 

(9) If i(w^) 7^ i(w2) and i(x^) = i(x2) ^"1" 

If I(w^) = i(w2) or (if i(w^) f 

i(x^) 7^ i(x2)) ->"0" 

where "1" is a command to increment the frequency of double 

counting by one and "0" is a command to examine the next pair 

(x2fW2) in the sample. 

The investment universe with the greatest concentration 

of sample observations in the neighborhood of the variance 

corresponding to E(x) is that of fifteen investment prospects. 

For this reason, this universe is the prime suspect for the 

observation of the double counting effect. The test described 

in (9) was performed for samples of 500 observations each 

corresponding to levels of expectation = 1.1, 1.2, 1.3, 

1.4, 1.5. 

In these tests, ten x variates corresponding to each 

level of E. were selected in such a way that nine of them 
J 

were different from E(x); the tenth vector was E(x). These 

vectors served as x^'s for the test described above. The 

vectors used for the generation of the first nine were used 
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as their corresponding w^'s. The corresponding to E (x) 

was {1/k}. Each of the ten vectors for each level of E. was 
3 

then compared by means of (9) with the vectors in the sample. 

The W2's corresponding to the vectors in the sample were 

those randomly generated vectors which yielded the sample 

variates. This test was repeated for the ten security uni¬ 

verse. 

The results obviate the need for the construction of 

formal statistical tests. The frequency of double counting 

resulting from these comparisons was exactly zero for all 

4 
vectors and all levels of E^. The conclusion is straight¬ 

forward: The high density of the sample distributions in the 

neighborhood of the variance corresponding to E(x)is not due 

to overrepresentation of E(x) by randomly generated vectors 

from the set defined by (5). 

It remains to establish the correspondence between the 

results of Chapter IV and the results of a behaviorally 

plausible method for generating random portfolios. 

A Behaviorally Plausible Random Generation Process 

The implications for the conclusions of this research of 

establishing a correspondence between the results of Chapter 

IV and those of a behaviorally plausible model are merely 

utilitarian. It will help to get the point across. 

It is granted that to claim that individuals choose 

portfolios in any way that resembles the process formulated 
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in Chapter II would be to stretch the limits of academic 

naivete. But it is also fair to state that the model pro¬ 

posed in that chapter is not a behavioral model, but simply 

a method for generating random portfolios. Nonetheless, it 

can be anticipated that unless a relationship is established 

between this method and some other method that can be easily 

understood; the results of the previous chapter may be met 

with criticism on the grounds that the random generation pro¬ 

cess does not resemble the behavior of an investor selecting 

portfolios on information regarding expectations alone. 

For this reason it is suggestive to examine the proper¬ 

ties of a random selection process that because of its sim¬ 

plicity could be used without computational requirements 

other than a calculator and a pencil. If a correspondence 

is established between the results of such a process and 

those of the previous chapter, the alternative method pro¬ 

vides an attractive way of cross-validating the conclusions 

of Chapter IV. 

The following process has been designed for the repli¬ 

cation of experiments Four, Five and Six, of Chapter IV which 

correspond to a ten-prospect universe at three levels of 

correlation between the returns of investment prospects. 

A discrete model for the generation of random portfolios. 

This model imposes the requirement that the random vector x 

is such that 
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(10) X . 
1 

.11 

1,2,3,....,9 

k 
Z X. 

i=i ^ 

= 1 

1*“! / • • • / n 

E . - > X* u > E . ^ 
jl - - j2 

X > 0 

where x and u are as defined before, and [E.^,E.,] is an ex- 
J ^ D J- 

pectation interval. 

In the experiments described above the expectation con¬ 

straint was dropped so that random portfolios can span the 

whole range of feasible expectations. The generation of ran¬ 

dom vectors was accomplished by selecting at random (with 

equal probability) any one of the unordered portfolio compo¬ 

sitions feasible under the constraints, and randomly assign¬ 

ing the weights in the composition to the n assets in such a 

way that the assignment probabilities are equal. Table I 

in Appendix F depicts all feasible unordered compositions; and 

program DISCR in Appendix D shows the method for random gen¬ 

eration . 

The results corresponding to the three experiments are 

summarized in tables V-1 and V-2 of this chapter. It was decided 

to describe the sample distributions corresponding to each 

set of experimental conditions merely by their medians and 

their interquartile range. These two descriptive parameters 

adequately describe the response of the distributions to 

changes in the experimental conditions. Table 1 contains the 
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medians of the sample distributions corresponding to high, 

intermediate and low levels of correlation and to eight dif¬ 

ferent intervals the corresponding values for the 

interquartile range are presented in Table V-2. 

Discussion of the results. Before discussing the results 

of tables V-1 and V-2, it will be of great interest to examine the 

bias introduced by the use of the discretized method. It can 

be observed in Table 1 of Appendix F that the feasible unor¬ 

dered portfolio configurations are such that only two of them 

have more than eight non-zero elements while thirty-one have 

configurations containing no more than six non-zero elements 

and twenty-one have configurations with no more than four 

non-zero elements. 

The result of the higher incidence of configurations 

with fewer non-zero elements is that a high proportion of the 

random portfolios are expected to have compositions different 

to the composition of the minimum variance portfolio for a 

given level of expectation; and also, that the dispersion of 

the sample distributions is comparatively large. 

The results shown in tables V-1 and V-2 conform to this pre¬ 

diction. When compared with experiments 4, 5 and 6 of the 

previous chapter, the distributions resulting from the dis¬ 

cretized process have higher expectations and a proportionally 

larger dispersion. What is important is that the patterns of 

behavior that were predicted in Chapter IV are preserved for 

this method of generation of random portfolios. 
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Table V-1 

Medians of the Sample Distributions 
Discrete Random Generation Method 

p = Low p = Intermediate p = High 

E . -E ., 
D2 3I V* V* M V* V* M V* V* M 

1.1-1.15 .020 .096 .048 .035 .096 .060 .059 .096 .075 

1.15-1.2 .024 .135 .057 .045 .14 .079 .086 .186 .117 

1.2-1.25 . 028 . 221 .075 .064 .221 .105 .13 .221 .173 

1.25-1.3 .041 . 29 .094 .090 .29 .140 .17 .344 .245 

1.3-1.35 .054 . 36 .10 .121 .36 .180 .258 .360 .332 

1.35-1.4 .09 .56 .21 .165 . 56 .290 . 34 .529 .45 

1.4-1.45 .12 .69 . 32 .215 .69 .42 .443 .690 .59 

1.5-1.55 . 3 .962 . 80 .460 .962 .845 . 81 .962 .90 

TABLE V-2 

Interquartile Range of the Sample Distributions 
Discrete Random Generation Process 

p = Low P = Intermediate P = High 

j2 jl 
V*-V* I . Q. R. v*-v* I.O. R. v*-v* 1.0. R 

1.1-1.15 .076 .016 .061 .011 .037 .016 

1.15-1.2 .111 .023 .095 .017 .100 .029 

1.2-1.25 .193 .028 .157 .026 .091 .020 

1.25-1.3 . 25 .030 .20 .033 .174 . 040 

1.3-1.35 . 3 .053 .24 .045 .102 .054 

1.35-1.4 .47 .12 . 395 .090 .189 .074 

1.4-1.45 . 57 .14 .465 .123 .247 .070 

1.5-1.55 .66 .015 .5 .013 .152 .031 
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From Table V-1 it can be observed that the medians of 

the sample distributions remain in the neighborhood of the 

minimum variance for intermediate and low levels of correla¬ 

tion, with the exception of the extremes of the range of 

feasible expectations. Furthermore, it can be observed in 

Table V-2 that the dispersion of the distributions, as mea¬ 

sured by their interquartile range, remains a fairly constant 

proportion of the total range (V*-V^).for the three levels of 

correlation and at fixed levels of expectation. It also can 

be observed that as one moves away from the extremes of the 

range of feasible expectations, the dispersion of the dis¬ 

tribution decreases as a proportion of (V*-V*); except for 

the case of high correlations in which it remains uniformly 

small. 

Finally, the medians corresponding to the distributions 

in the high correlation case remain at some distance of ei¬ 

ther extreme as was predicted in the previous chapter; and 

also as predicted, the medians corresponding to either very 

high or very low levels of expectation may be found in the 

neighborhood of the maximum variance for those levels of ex¬ 

pectation . 

In conclusion, this experiment supports fully the be¬ 

havioral conclusions reached at the end of Chapter IV; and 

although the medians and dispersions of the distributions 

resulting from the discretized method are uniformly higher 

than those corresponding to Experiments 4, 5 and 6, the main 
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effects have been preserved. 

Conclusion 

With the help of a rigorous test, it was ascertained 

that there is no evidence of "double counting" of vectors in 

the neighborhood of E(x), or of a selected number of other 

vectors at any level of expectation. How rigorous the test 

was is left for other minds to evaluate since the same mind 

who developed the model can never be expected to devise the 

"most rigorous test available." Furthermore, three experi¬ 

ments were replicated using a discretized method for the gen¬ 

eration of the random portfolios which does not share any of 

the characteristics of the method described in Chapters II 

and III. The results of this replication are consistent with 

the conclusions of Chapter IV, and provide evidence that the 

patterns of behavior predicted in that chapter are preserved 

under the discretized method. Since the latter method does 

not rely on a linear transformation, these results cannot be 

attributed to the overdetermination effect; and therefore, 

presumably it has no bearing at all on the conclusions reached 

in the previous chapter. 

Finally, the discretized model is a believable procedure 

that can be used by "the men on the street," and since its 

results correspond behaviorally to those of the random pro¬ 

cess formulated in Chapters II and III, it can be expected 

that more precise methods for random selection of portfolios 
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which impose an expectation constraint and totally disregard 

variance, will yield portfolios which are more likely to be 

near the Markowitz frontier than elsewhere on the mean-vari¬ 

ance opportunity locus. 

The following chapter will examine the implications of 

this and the previous chapter for some aspects of the so- 

called mean-variance portfolio theory. 
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Footnotes 

1. I am indebted to Professors Pao Lun Cheng and Walt 
McKibben of the University of Massachusetts at Amherst 
for their valuable comments and suggestions in rela¬ 
tion to this chapter. 

2. G. Hadley, Linear Algebra, Reading (Addison-Wesley Pub¬ 
lishing Company), 1964, p. 172. 

3. Ibid., p. 171. 

4. Computer printouts are available on request. 

5. Frequency distributions of sample variances are avail¬ 
able on request. 



CHAPTER VI 

IMPLICATIONS OF THE RESULTS 

Introduction 

The results presented in Chapters IV and V have wide- 

ranging and perhaps unsettling implications for different 

aspects of what is commonly known as the mean-variance port¬ 

folio theory. 

This chapter will examine the implications of the re¬ 

sults in relation to a model which calls for the mechanical 

management of an "active," high-turnover portfolio devoted 

to capitalize on the detection of incorrectly priced securi¬ 

ties. It will be shown that ex ante, Markowitz prescriptive 

models cannot dominate models suggested by the structure of 

the opportunity locus implied by the results of the Monte 

Carlo experiments. This presentation borrows considerably 

from Treynor and Black,^ but it is somewhat unrelated. The 

only assumption maintained from their formulation is that 

mutual funds may decide what proportion of total wealth W 
a 

is to be invested in the "active" portfolio, independently 

of the decision of how much wealth to invest on a well di¬ 

versified "market" portfolio. 

The final sections of the chapter are devoted to the 

analysis of the empirical implications of the structure im¬ 

plied by the results of the Monte Carlo experiments. Struc¬ 

ture, as used in this paper, must be distinguished from the 
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usual econometric meaning of the word which refers to systems 

of equations. Structure here is reminiscent of what biolo¬ 

gists call "strong equilibrium" and relates to the high densi¬ 

ty which can be observed in the mean variance opportunity 

locus in the neighborhood of the conditional expectation of 

variance for fixed levels of expectation. 

The philosophical points of view sponsored in these lat- 

2 3 
ter sections have been strongly influenced by Basmann, ' 

although the conceptual transfer applies to circumstances not 

examined by him. These sections will examine old and new em¬ 

pirical research intended for the validation of the implica¬ 

tions of the two parameter mean-variance model. It will be 

demonstrated that the structural characteristics of the op¬ 

portunity locus can provide equally plausible explanation 

for the empirical observations; and furthermore, that they 

explain observations which are not predicted by the two pa¬ 

rameter model. 

It is suggested that the real contribution of this re¬ 

search may be in these demonstrations. The real test of the 

mean variance model is in confrontation to empirical evi¬ 

dence; and so far, the mean variance paradigm has shown ad¬ 

mirable robustness and withstood the battery of tests, as it 

was indicated in Chapter I. This chapter attempts to provide 

an explanation for the robustness of the paradigm which is 

independent of any of its assumptions. The arguments pre¬ 

sented in this chapter give an indication that the robustness 
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of the mean-variance model may be the result of the structure 

of the opportunity locus, and thus not at all an attribute of 

the model. 

Implications Concerning the Utilitarian Value of 

Prescriptive Models 

This analysis will be confined to the management of an 

active portfolio which is composed of incorrectly priced se¬ 

curities. It will be assumed, perhaps unrealistically, that 

long and short selling is not allowed. 

In this conceptualization, the return of interest is the 

"differential return," which is not explained by fluctuations 

of the market. The return of a security can thus be defined 

as 

(1) R. = R. + R. 
1 im le 

where R^^ is the return explained by the market fluctuations 

and R. is the differential return, which results from incor- 
le 

rect prices of the security. 

It can be assumed that R. and R. are independently 

distributed random variables since the factors affecting mar¬ 

ket fluctuations do not have a bearing on the fact that a se¬ 

curity is underpriced or overpriced. It may also be assumed 

that in general, the factors affecting the price of any one 

security to be above or below its equilibrium value are inde¬ 

pendent of those affecting other securities. 
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It follows that 

(2) ^ i“l/./H 

and that 

(3) Cov(R^^,Rj^) = 0 for 

Given the assumptions of the mean-variance paradigm, the 

universe of n securities can be characterized by the expecta¬ 

tion u of the multivariate distribution of differential re- 
e 

turns, and by their covariance matrix C . This is all the in- 

formation required for the selection of mean-variance effi¬ 

cient active portfolios. These portfolios will again be de¬ 

fined by the vector x of proportions of W invested in each 
a 

security for the holding period. 

Assuming that the investor is a mean-variance utility 

maximizer, he will attempt to choose portfolios that minimize 

ex ante variance for a given level of expectation. Thus he 

will select his portfolio in such a way that 

(4) V = x'C xis a minimum 
e e 

subject to x'u = E. 

n 
and E X. = 1 

i=i ^ 

X ^ 0 

Unfortunately the true values of u^ and are unknown, 
/s 

and only the estimates u and C are available. Under these 

circumstances it is worthwhile to examine what the best course 

is for a mean-variance utility maximizer. Assuming that the 
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investor is more confident of his estimate of u than he is 
e 

of his estimate of C^, which is not an unreasonable assump¬ 

tion since the estimation of the covariance matrix is a non¬ 

trivial subjective exercise, the portfolio problem may be re¬ 

formulated by asserting that the investor would like to mini¬ 

mize portfolio variance (unknown or subject to great estima¬ 

tion errors), for a fixed level of estimated return which he 

is fairly confident of achieving. This investor will then 

select X hoping that 

(5) ~ ^'^e^ ^ minimum (but it is unknown]_ 

subject to x'u = E. 
® 3 

n 
and Z X. =1 

i=i ^ 

X ^ 0 

The portfolio opportunity set is then defined as {x|e.=x'u }. 

Three selection modes are proposed for the solution of 

problem (5); the first, which will be labeled "the Markowitz 

prescriptive model," dictates that the investor must select 

X such that x'C x is a minimum in the portfolio opportunity 
e 

set defined above. The second method, described as the "con¬ 

strained random selection model," will select portfolios ran¬ 

domly in the portfolio opportunity set. Finally, a different 

prescriptive model called the "constrained average selection 

model" will dictate that the investor must select the port¬ 

folio 
k 

= (l/k) Z y. 
i=l 

(6) X 
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where y.'s 
1 

are the extreme points of the convex set {x 

= x'u }. 
e 

Given the assumed characteristics of , an investment 

universe of fifteen or more securities, and that the inves¬ 

tor does not choose at the extremes of the range implied 

by u^, the first two alternatives will yield portfolios with 

a very high probability of being close to the benchmark V^. 

The third alternative will yield a portfolio which is close 

to the benchmark with probability one. Clearly, if the 

investor is a risk averter there is no reason why he should 

not prefer the constrained average selection mode proposed in 

(6) . 

The previous presentation is very idealized and it car¬ 

ries very strong normative overtones which may be distaste¬ 

ful. It nonetheless shows that the mean variance normative 

model is very vulnerable in its own backyard. If mean-vari¬ 

ance analysis is an acceptable normative criterion for the 

selection of portfolios, then it does not follow that a mean 

variance prescriptive model based on estimates is the best 

available prescriptive tool under the assumptions of the mean- 

variance paradigm. 

From the practical point of view there are some real ad¬ 

vantages derived from utilizing selection techniques based 

entirely on expectations. It was observed in Chapter I that 

mutual funds fail to convert detection of wrongly priced se¬ 

curities into differential return because the rate at which 
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management absorbs information is often slower than the rate 

at which the market will absorb it. A successful active port 

folio must be then constantly reevaluated as a result of in¬ 

formation received from the field. It was suggested in 

Chapter I that this is probably a task that mechanical models 

for portfolio management could perform successfully if they 

are supported by an efficient information system whose one 

priority is to convert information into action at as rapid a 

rate as possible. In this context, a mechanical selection 

model such as the one presented in (6) above would obviate 

painful and time-consuming estimates of and concentrate on 

the relevant task which is the detection of differential re¬ 

turns and their conversion into profit. 

The latter remarks are very speculative and are con¬ 

tingent on the usefulness of mean-variance prescriptive 

models for the same purpose. If mean-variance prescriptive 

models are useful, then the selection mode described in (6) 

above is just as useful from the theoretical point of view of 

ex ante minimization of expected utility; and more useful 

from a practical point of view since it requires much less in 

formation. 

In the next sections two models will be presented to 

analyze the empirical implications of the results of the pre¬ 

vious chapters. 
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Implications of the Underlying Structure 

of the Opportunity Locus 

It was seen in Chapter IV that for investment universes 

of moderate to large size, the mean of the conditional dis¬ 

tribution of variances for a fixed level of expectation is in 

the immediate neighborhood of the Markowitz frontier, pro¬ 

vided that Ej is not at the extremes of the feasible range 

and that the correlations are moderate. For the extremes of 

the feasible range of it has been shown that the condition¬ 

al expectation will be in the neighborhood of the maximum var¬ 

iance attainable for those levels. These characteristics are 

labeled "structural characteristics" of the mean-variance op¬ 

portunity locus. 

The structural characteristics will be used in the fol¬ 

lowing sections to provide an alternative explanation to the 

4 5 
empirical findings of Farrar and Sharpe. The purpose of 

this analysis is to provide a background for the discussion 

of the methodological and empirical implications of the struc¬ 

tural characteristics. Since validation of the implications 

of the two parameter model has been greatly improved both in 

its formulation and its theoretical content, the last sections 

of the chapter are devoted to the analysis of the implications 

of the structural characteristics for the empirical results 

presented in one of the most complete and up-to-date tests of 

6 
the model. 
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Analysis of Farrar's Results. As it was stated in Chap¬ 

ter I, Farrar made the claim that mutual funds are mean-vari¬ 

ance isomorphic since the mappings of their portfolios, on 

the historically derived standard deviation-average return 

plane, are consistently above but "close to" the efficient 

frontier.^ 

An alternative explanation for these observations may be 

proposed here. It will be assumed for the sake of argument 

that mutual funds select their portfolios as if they are re¬ 

turn achievers, selecting random portfolios for a fixed level 

of expectation E^. 

The problem, which is expected to be resolved by the em¬ 

pirical evidence, is to choose the "correct alternative" 

given the choice of 

: "Mutual Funds select portfolios as if 
they were mean-variance utility max¬ 
imizers " 

: "Mutual Funds select portfolios as if 
they were return achievers, selecting 
random portfolios for a fixed level E^" 

The design of the proper test involves the analysis of 

the observable characteristics that would result if either 

or are maintained. To this effect, define 0 as the 

subset of feasible values of E^ such that E^ is not at either 

extreme, and as its complement. 

Were all of Farrar's mutual funds in the range of expec¬ 

tations contained in a full-fledged identification problem 

would arise since for this range both and P^^edict that 
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portfolios are in the immediate neighborhood of the efficient 

frontier. The problem would then be outside the scope of sta¬ 

tistical hypothesis testing. 

A proper test must be conducted in the range of expecta¬ 

tions for which the two hypotheses predict observations which 

are at odds with one another. For observations contained in 

0 , the hypothesis predicts "Mutual fund portfolios are 

closer to the efficient frontier than to the locus of maximum 

variances;" predicts that "Mutual funds are closer to the 

maximum variance locus than to the efficient frontier." This 

is a proper test which may be achieved through traditional 

statistical testing procedures if the distribution of random 

variances is known. 

Farrar's data do not warrant his conclusion that mutual 

funds are mean-variance isomorphic. Casual examination of 

p 
his Chart III shows that as E. increases so does the relative 

distance between the frontier and the mapping of the fund 

portfolio; with the highest return portfolios literally touch¬ 

ing the locus of maximum variances. 

Sharpe's early study of Mutual funds. In his early at¬ 

tempt to validate his own theory of capital asset prices, 

9 
Sharpe mapped the portfolios of thirty-four open-end mutual 

funds on the historically estimated standard deviation-aver¬ 

age return plane. Cross-sectionally, he regressed standard 

deviation on average return and average return on standard 

deviation and concluded that although the linear models pro- 
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vided adequate representation of the data (correlations of 

the order of .83), the relationship between average return 

and standard deviation does not appear to be linear. More¬ 

over, the quadratic relations provided a slightly better fit. 

10 
give an indication of why the Observation of the data 

quadratic relationships may be a better fit. For intermedi- 

while for large returns it is evident that there is an upward 

shift in the standard deviation. 

Interestingly, the results of Chapter IV indicate that 

this might be precisely the effect implied by the structure 

of the mean variance opportunity locus. Thus, if and 

are defined as above, and it is added to that investors may 

borrow and lend at the given rate of interest, it is possible 

to predict the consequences and 02 that would be expected 

if the hypotheses are maintained. If the relationship between 

standard deviation and return is defined by 

(7) a. = At + A„E. + A-E? + e 
j 1 2 3 3 j 

it follows that 

(8) 

01 =<A2 > 0 

3 

and 
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(5>' 

J ^1 > ^2 

> 0 

^ > 0 

v^ere r- is the given risk-free rate of interest. 

ihe only conclusion used by Sharpe is that average re¬ 

turn and standard deviation are oositivelv related (A^>0) 

ind it is precisely on this observable result in which and 

^ are enpirically indistincuishable. Ihat A, may be greater 

nan zero has not been docxmented by Sharpe, but it can be in¬ 

ferred fron the upward swing of the data, and by the fact 

. SL w he quadratic fit was slightly better than the linear fit, 

ihe previous two sections have presented suggestive indi- 

oaticns that the structure of the opportunity locus explains 

the enpirical results better than the two parameter model, 

rnfozniunauely the ernirical studies here discussed are dated 

in uhe sense that they do not incorporate the assuir^tions and 

qualificaticns that have been added to the model in the last 

decade- For this reason, a different model has been con¬ 

structed in the next section for the comparison of its pre¬ 

dictions with the recent predictions of the two parameter 

mcdel provided by Fana and McBeth.^^ 

Fcmulation of an alternative structural model. To es¬ 

tablish a correspondence between the implications of the find- 

incs of Chanters IV and V with the modern formulation of the ^ * 

two parameter model, it is of interest to formulate tentative¬ 

ly a structural relationship betw’een expected return and var- 
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lability of the form 

(10) E = a, + a^a + a_a + 
p 1 2 p 3 p 

+ a +C 
n+1 p ^ 

where is a random variable denoting the expectation of 

portfolios with standard deviation o . 
P 

Unfortunately the conditional distributions of £ given 
P 

a fixed standard deviation have not been studied, but an an¬ 

alysis of figures IV-8, IV-9 and IV-10 provided a strong in¬ 

dication that they may also be highly concentrated in the 

neighborhood of the efficient frontier. Moreover, since a 

high concentration of conditional variances may be expected 

in the neighborhood of the conditional expected variance for 

a level of expectation E^, then the descriptive regression of 

Ej on E(a[E^) will provide an indication of the shape of the 

regression of E on a . 
P P 

The regression of E^ on E(a|Ej) is 

expected to be parallel to the efficient frontier, as drawn 

in figure IV-8, for the wide range of intermediate expected 

returns, and turn downwards at the extremes. Since the fron¬ 

tier is positively sloped and rising at a decreasing rate, 

then the structural relationship proposed in (10) may be ap¬ 

proximated by 

(11) E = a, + a^o’ + a^cr + T, 
p 1 2 p 3 p 

where ^3*^^ least-square estimates. 

Assume now that a time series relationship is formulated 

between the return of a well diversified portfolio p and a 

market factor I which may be represented by the "market port- 
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folio." Then 

(12) "k .= A + B 1. + e ^ 
pt p p t pt 

where R . is the return of portfolio p, A and B are constant 
pt ^ P P 

through time and and e^^ are stationary and independent. 

The ex ante variance of the portfolio may be defined as 

(13) 
2 ^22^2 

a = B a^. + a 
P pi ep 

where B is the responsiveness of the returns to fluctuations 
P 

in the market, is the standard deviation of the market fac¬ 

tor, and a is the standard deviation of the residual return 
pe 

not explained by the market. 

By substitution of the terms in (13), (11) can be re¬ 

written as 

(14) E = a + a B a (l+(a^ + a (B^a^+a^ ) + 
p 1 2 p I ep pi 3 p I ep 

The term in the square root can be expanded into a Taylor 

series as 

(15) (1+q)^/^ = 1 + ^ - {l/2^)q^ + (l/2'*)q^ + q n 

where q is the remainder with terms of order greater than q . 

2 
Depending on the size of the q=(a^p/Bpa^) , the remainder 

can be neglected. Black, Jensen and Scholes have shown that 

12 
a is a small proportion of a , so that q<l, and thus q 

ep p ri 

can be ignored. (14) can now be rewritten as 

E = a. + 
3 2 2^2 

(16) 
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Since a random variable can always be represented as the sum 

of its expectation plus a random disturbance, then 

(17) ft = E + 
P P 

n 
p 

and thus, adding a t to the subscript to represent the next 

time period 

(18) + ^/2^) (q^-q^) + 

+ (a3 + (a2/2Bpa^))a2p 

a^B 
2 p I 3 I p 

+ t + n 
P/t 

If 3 ^ T is an unbiased estimate of B ^ ^, it must also be 
p,t-l p,t-l' 

an unbiased estimate of B . since B is assumed constant. 
P^t p 

13 . ^ 
Levy states that for large portfolios, 3p ^ is stationary. 

It follows that a predictive model can be formulated, pro- 

2 2 
vided that a is also stationary, and that s is its esti- 

ep ^ ep 

mate. This model is 

(19) ft ^ = a 
Pt 

3 + (a^B 03/2^) (q^-q^) + ( a^a ) 3^ 

3 
2 
p,t-l 

+ ("‘3+(a2/2BpOi ) ) S 
2 
ep,t-1 

+ Z 
p,t I 

The structural model (20) is now directly comparable with 

Fama and McBeth's proposed test of the positive implications 

14 
of the mean-variance model. They propose the following 

15 
model for the test 

(20) 
""p-t = ^0 

where 
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(21) 3 
2 
P/t-1 

3 
2 
Pft-1 

n n 
2 Z Z 

i=l 
(x. X.) 3 • 3 . 

1 

and x^ is the proportion of portfolio p invested in the i-th 

security, 3^ is the regression estimate of the responsiveness 

of the i-th security to fluctuations in the market. Similarly, 

(22) 
P,t-1 

s , , - 2 
ep,t-l 

n 
Z 

n 
Z 

i=l 

(x.X.) C6v(e.,e .) 
1 j p 13 

where e^^ is the return of the i-th security not explained by 

market fluctuations. These discrepancies require a reformula¬ 

tion of the structural model in (19) which must be rewritten 

as 

(23) Rr, <- = 1 + (3,0^) p,t 1 21 p,t-l 3 I p,t-l 

+ (§3 + (V2Vl’>®P,t-l *p,t 

and 

(24) e 3 2 
n n 

= + (a^B a (q'^-q^) ) + (a,a ) (2 Z Z (x.x.) B.B.) 
1 1 z p 1 z ± 1 j p 1 j 

n n 
+ (a^+a^/2B a ) (2 Z Z (x. x .) Cov(e^. ,e^)) + I 

J ^ pi i=l j^i i ^ P I D 

B^ is the responsiveness of individual securities to market 

fluctuations. Comparison of (20) and (23) allows for the pre¬ 

diction of consequences resulting from the structural model in 

(23). This set of consequences will be labeled ^2 before, 

and the set of consequences proposed by Fama and McBeth will 

be labeled and 0^2 summarized below. 
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(25) > 0 Return is positively related to risk 

=0 
2 No other measure of risk systematic- 

^ _ Q ally affects returns 

and from (20) and (23) 

(26) ^ ® 

?2 = (^3 + (42/2BpCj)) I 0 

^3 = < 0 

Judging from (25) and (26) , the crucial test between the 

two models is the obser^/ation of ^3 which is the consequence 

for which the two models are at odds in their prediction of 

consequences. Weaker tests will result from the ez:::pirical 

observation of ^2' discrimination is possible by merely 

observing the sign of If it is observed nonetheless that 

is correlated to the market variance, this will constitute 

additional support for the structural model. 

From the analysis of the results of Fama and McEeth as 

they relate to concluded that the mean-variance 

model does not fare very well. They state that "there are 

some variables in addition to that systematically affect 

period by period returns. Some of the omitted variables are 

apparently related to [3^] and to the [average standard devi- 

ation of residual returns of the securities in the portfolio]. 

But the latter are almost surely proxies since there is no 

economic rationale for their presence in ....the risk-return 

model. 
16 



136 

Perhaps not an economic rationale, but a structural ex¬ 

planation may be provided. It is very suggestive that for 

their Panel D which estimated the coefficients in (20) , Y3 

when significant (t<-2) was less than zero, and that out of 

nine non-overlapping periods, the averages of Y3 were nega- 

17 
tive for seven periods. Furthermore, they state also that 

declines in the averages of Yj^ "are matched by quite a notice- 

18 
able downward shift" in the market variance. 

Moreover, it can be observed from their data that 

not consistently equal to zero and that it is fairly well 

19 
correlated with '93* The latter is not surprising since 

~~2 20 
s increases with B and therefore the responsiveness of 
ep p ^ 

the model to changes in this variable must be reflected more 

by a^ than by , causing Y3 to be correlated. 

In summary, the only definite conclusion reached by Fama 

and McBeth which is not conflicting with their own data is 

that is greater than zero. Unfortunately this is also pre¬ 

dicted by the structural model. It is clear from the previous 

discussions that the absence of "an economic rationale" does 

not justify pushing conflicting evidence under the rug. Fama 

and McBeth's conclusion that they "cannot reject the hypothe- 
/s 

sis that no other measure of risk in addition to [3 ] system- 
Ir 

21 
atically affects average returns" is completely unwarranted 

except for semantic interpretations of the word "systematic". 

An alternative explanation has been provided here which pre¬ 

dicted the discrepancies between the theory and the observe- 
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tions. This explanation is entirely based on plausible struc¬ 

tural characteristics of the data utilized to validate the im¬ 

plications of the mean variance model. Future tests of the 

two parameter model should demonstrate that the relationships 

observed are not merely due to the structure of the data which 

is empty of any behavioral or economical content. A fair guess 

resulting from the results discussed here is that if the struc¬ 

tural relationships are eliminated, then the empirical results 

may show that there is no substance to the implications of the 

mean variance model. This is left as an open question for fu¬ 

ture research. 

Summary and Conclusions 

It has been argued in this chapter that there is a strong 

indication that mean-variance portfolio theory can contribute 

very little in its positive and normative implications that 

is not imbedded in the nature of the mean-variance opportuni¬ 

ty locus. 
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CONCLUSION 

The results of ten Monte Carlo experiments corresponding 

to investment universes of six, ten and fifteen investment 

prospects indicate that the conditional distribution of vari¬ 

ances corresponding to randomly selected portfolios which are 

expected to yield ex ante a fixed return have the following 

properties: 

(1) Randomly selected portfolios will map on the mean- 

variance plane in the neighborhood of the Markowitz efficient 

frontier with a very high probability, provided that the in¬ 

vestment universe is large (n>15); that is not at the ex¬ 

tremes of its feasible range and that the correlations between 

pairs of investment prospects is not near one. 

(2) For portfolios expected to yield ex ante returns E^ 

at the extremes of the feasible range of expectations, there 

is a high probability that they will map towards the center 

of the interval between the minimum and maximum variances, and 

even in the neighborhood of the maximum variance for that level 

of expectation. 

(3) When the correlations between returns of pairs of 

prospects are high, a great proportion of the randomly se¬ 

lected portfolios may be expected in the center of the inter¬ 

val between the maximum and minimum variances for the level 

of expectation E.. 
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(4) For investment universes of moderate and large size. 

is very small and it may be expected to decrease as the size 

of the universe is increased. 

Based on these conclusions and on the fact that the cor¬ 

relations between pairs of securities in the stock market is 

of the order of .5, it has been suggested thht a quadratic 

polynomial fit between variability and average returns may be 

an adequate description of the mapping of a group of port¬ 

folios in the average return-variability plane. This de¬ 

scription has been treated as a structural property of the 

mean variance opportunity locus, and it has been used to 

demonstrate that the results of two published attempts to 

validate two-parameter models of the asset pricing mechanism 

could be explained by the structure implicit on the data used 

for empirical validation. 

This demonstration poses methodological problems which 

have apparently never been considered before in relation to 

the empirical validation of the capital asset pricing model. 

The validation of this model is contingent upon evidence that 

the observed relations are not a consequence of the structur¬ 

al properties of the mean-variance opportunity locus since 

they are merely properties of the data and have no theoreti¬ 

cal content. 

It has also been suggested that the mean-variance norma¬ 

tive model may be of little value when it is based on esti- 
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mates of the parameters of the multivariate distribution of 

returns. The characteristics of the opportunity locus indi¬ 

cate that under these conditions, two alternative selection 

modes which are based exclusively on information about the 

expectation of the multivariate distribution of returns will 

not be dominated ex ante by the mean-variance selection mode. 

The implications of the results of this dissertation are 

apparently novel and it is hoped that they will stimulate 

further analysis of the properties of the mean variance locus. 

It has been demonstrated that they have a bearing on the use¬ 

fulness of the mean-variance prescriptive model; and more im¬ 

portantly, on the tests of the validity of its implications. 

These should be sufficient reasons to motivate the analysis 

of the structural properties of the opportunity locus. 
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u = [1.55 

Experiment No. 2 

, 1.45, 1.35, 1.25, 1. 15, 1.05] 

9613 . 0676 .0516 .0302 .0175 .0133 

0676 . 6867 .0387 . 0283 .0163 .0132 

0516 . 0387 .3591 . 0157 .0103 . 0076 

0302 .0283 .0157 .221 .0136 
V 

.0090 

0175 .0163 .0103 .0136 .0904 .0044 

0133 .0132 .0076 .009 . 0099 .0453 
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u = [1.55 

Experiment No. 2 

, 1.45, 1.35, 1.25, 1. 15, 1.05] 

9613 . 3380 .2581 .151 .0878 .0665 

3380 .6867 .1939 .1417 .0817 .0663 

2581 .1939 . 3591 .0785 .0514 .0378 

1510 .1417 .0785 .2210 .068 .0452 

0878 .0817 .0514 .0680 .0904 .0221 

0665 .0663 .0378 .0452 .0221 .0453 



Experiment No. 3 

[1.55 , 1.45, 1.35, 1.25, 1. 15, 1.05] 

9613 . 6422 . 4904 . 2869 .1668 .1263 

6422 . 6867 . 3684 . 2692 .1552 .1260 

4904 . 3684 .3591 .1491 . 0976 .0718 

2869 . 2692 .1491 .221 .1292 .0859 

1668 .1552 .0976 .1292 .0904 .0420 

1263 .1260 .0718 .0859 .0420 .0453 
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Experiment No. 4 

.55, 

I—1 

LO • 
1—1 

1—1 

to
 • .4 , 1.35, 1. • 

1—1 

o
 

C'J • 
1—1 

in 
C

N
 • 

1—1 

o
 

1—1 • 
1—1 

LO 
1—1 05] 

9613 .0663 . 0675 .407 .0515 .0301 .0358 .0175 .0184 .0132 

0663 . 8137 . 0583 .0221 .0227 .0308 .0144 .0177 .0196 .0227 

0675 . 0583 . 6867 .0602 .0305 .0216 .0269 .0142 .0131 .0104 

0407 . 0221 .0602 .5512 .0107 .0116 .0199 .0214 .0069 .0142 

0515 .0227 .0305 .0107 .3591 .0211 .0132 .0118 .013 .0088 

0301 .0308 .0216 .0116 .0211 .221 .0152 .0066 .0037 . 0041 

0358 .0144 .0269 .0199 .0132 .0152 .1395 .0095 .0073 . 0073 

0175 .0177 .0142 .0214 .0118 .0066 .0095 .0904 .0049 . 0048 

0184 .0196 .0131 .0069 .0130 .0037 .0073 .0049 .0613 .0049 

0132 . 0227 .0104 .0142 .0088 .0041 .0073 .0048 .0049 .0453 
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Experiment No. 5 

[1.55, 1. 0, 1.45, 1—1 • 

1—1 .35, 1 .25, 1 .2, 1.15, 1. 1, 1. 

.9613 . 3316 . 3379 . 2038 .2579 .1509 .1794 .0877 .0922 

. 3316 . 8137 .2915 .1105 .1135 .1541 .0724 .0888 . 0982 

. 3379 .2915 . 6867 . 3014 .1526 .1084 .1364 .0710 .0656 

.2038 .1105 . 3014 .5512 .0536 . 0584 .0998 .1073 .0349 

.2579 .1135 .1526 .0536 . 3591 .1056 .066 .0594 .0625 

.1509 . 1541 .1084 .0584 .1056 .221 .0763 .0332 .0186 

.1794 . 0724 .1364 .0998 .066 . 0763 .1395 .0477 .0365 

. 0877 . 0888 .0710 .1073 .0594 . 0332 .0477 .0904 .0245 

.0922 . 0982 .0656 .0349 .0625 .0186 .0365 .0245 .0613 

. 0664 .0720 .0522 .0713 .044 .0205 .0365 .0243 .0245 

5] 

.0664 

.0720 

.0522 

.0713 

.044 

.0205 

. 0365 

.0243 

.0245 

. 0453 
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Experiment No. 6 

u = [1.55, 1.5, 1.45, 1.4, 1.35, 1.25, 1.20, 1.15, 1.10, 1.05] 

9613 . 7886 . 7398 .6197 . 5335 . 4058 . 3384 . 2593 . 2185 . 1852 

7886 . 8137 .6649 .5405 .4566 . 3698 . 2876 . 2362 .2016 .1701 

7398 . 6649 . 6867 .5576 .4297 . 3349 . 2822 .219 .1802 .1557 

6197 .5405 . 5576 .5512 . 3479 . 2762 .2453 .2025 .1504 .1419 

5335 . 4566 . 4297 . 3479 . 3591 .2475 .1962 .1567 .134 .1118 

4058 . 3698 .3349 .2762 . 2475 .221 .1572 .1188 . 0951 .0831 

3384 . 2876 . 2822 .2453 .1962 .1572 .1395 .102 .0828 . 0727 

2593 . 2362 .219 . 2025 .1567 .1188 .102 .0904 .0656 .0579 

2185 .1802 .108 .1504 .134 . .0951 . 0828 .0656 .0613 .0482 

1852 .1701 .1557 .1419 .1118 .0831 . 0727 .0579 . 0482 .0453 
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SAMPLE CONDITIONAL DISTRIBUTIONS 

CORRESPONDING TO EXPERIMENTS 1 THROUGH 10 
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Appendix C 

Two programs were used for the generation of random port¬ 

folios and for the analysis of the distribution of their vari¬ 

ances, conditional on a level of expectation E^. 

The first program is the program BASIX which identified 

all the basic feasible solutions for the convex region (3) 

using the heuristic procedure described in Chapter III. After 

identifying all k basic feasible solutions, program BASIX gen¬ 

erates a sample of random portfolios according to the proce¬ 

dure described in (1) and (2) of Chapter III. This sample is 

stored in the disk file VECT for the analysis of the sample 

distribution of its corresponding variances. 

The second program is the program VARAN which analyzes 

the distribution of variances corresponding to the sample of 

random vectors generated by the program BASIX. Program VARAN 

calculates the expectation of the conditional distribution of 

variances, the mean, variance, third moment and skewness co¬ 

efficient of its sample distribution; and the corresponding 

values of these statistics for the sample distribution of the 

standardized variable v which is defined in Chapter IV. In 

addition, the program calculates the cumulative sample dis¬ 

tribution for intervals of length equal to .01(V*-V^). These 

approximations of the cumulative sample distribution were 

used for their graphic representation in Appendix B. 



PROGRAM BASIX 



10 REM PROGRAM CALCULATES BASIC FEASIBLE SOLUTIONS 
15 REM AND GENERATES RANDOM VECTORS X FOR REGION (3) 
20 DIM E(20> D^RC 100):»W( 1> 100):»X< 100^20)^y( 1>20) 
21 RANDOMIZE 
27 OPEN 5>**VECT” \ 
29 OPEN 6^’*BASE” / 
31 INPUT Nl^Ul 
35 MAT READ ECNl^l) ^ 
40 FOR 1=1 TO N1 
45 IF E(I,1> < U1 THEN 60 
50 IF E(I,1)=U1 THEN 75 
55 GO TO 80 
60 J1=I-1 
65 N2=J1*(N1-J1) 
70 I=N1 
72 GO TO 80/ 
75 J1=I-1 
77 N2=0 
79 I=N1 
80 NEXT I 
85 IF N2>0 THEN 150 
90 N2=1+U1*<N1-J1-1) 
95 Kl=Jl+2 I 
100 IF K1>N1 THEN 140 

.102 IF J1=0 THEN 140 
105 K2=J1+1 ^ 
110 MAT X=ZEH(Nl>i) ' 
115 X(K2,1)=1 ' / 
120 MAT WRITE (6) X - ' 
121 MAT B=C0NC2,1) 
122 MAT A=C0NC2:,2) . 
123 B(I,1)=U1 
125 GO TO 180 
140 MAT X=ZER(N1^1) ' . 
142 'k2=J1+1‘ 
143 PRINT ’’UNIQUE SOLUTION” 
144 XCX2:» 1 ) = I , ■ 
145 MAT PRINT X - 
T46 GO TO 999 
150 K1=J1+1 
155 MAT B=C0N(2^1) 
158 BC U1) = U1 
160 MAT A=C0N(2^2) 
180 FOR 1=1 TO J1 



t 

185 FOR J=K1 TO N1 
190 A(1^1)=E(I, 1) 
195 AC1>2)=E(J, 1) 
200 MAT C=INV(A) ^ 
205 MAT Y=C*B ^ " 
210 MAT X=ZER(Nl>n" 
215 XCI> 1 )=YC 1> 1) ^ 
220 X( J> 1 )=Y(2^ 1 ) 
225 MAT WRITE (6) X ‘ 
230 NEXT J • I 
235 NEXT I 
236 REWIND 6 
237 MAT READ C6) XCN2,N1) ‘ . 
238 WRITE (5) N2 , 
240 MAT W=ZERC1^N2) K 
241 PRINT “INPUT SAMPLE SIZE” 
242 INPUT X9 
245 FOR 1=1 TO K9 
247 N5=0. 
250 FOR U=1 TO N2 
255 N6=RND(1) 
260 R(J)=-L0G(N6) 
265 N5=N5+6(J) 
270 NEXT J 
275 FOR J=1 TO N2 _ ■' 
280 W( 1, J) = RC J)/N5 - ^ 
285 NEXT J 

•290 MAT Y = W*X / ’'• 
295 MAT WRITE C5) Y 
300 NEXT I 
305 CLOSE 5 
310 CLOSE 6 ‘ - * 
999 END 

> 

r 



PROGRAM VARAN 



10 HEM PROGRAM ANALYSES DISTRIBUTION OF VARIANCES 
15 DIM X( 100>2b)^VC20^20) >Y( 1^20) :»DC 100^ n>Z(20, 1 )^PC 100^ 1 ) 
18 DIM VJ<20W) >TC 1,100) 
21 OPEN 4,»'DTFL” 
22 OPEN 5,"VECT” 
25 OPEN 6^’’BASE” 
28 HEAD (4) N1,U1,M1 
30 INPUT N1,U1,M1,M2,N5 
33 M3=M1-M2 ' 
35 MAT HEAD (4) VCM1,1) 
36 MAT READ (4) V(Ni,Nl) 
40 HEAD <5) N2 ' '' ; ’ 
60 MAT P = ZER(i00,l) , ' 
61 M5=0 
62 M4=0. 
63 M6=0 
65 FOB 1 = 1 TO N5 
70 MAT HEAD (5) YCl^Nl) 
75 MAT Z = THN(Y) ' ' ' . . • ' ' 
80 MAT W=Y*V 

>'85 MAT A=W*Z 
90 J=1+INT(100*CA<1,1)-M2)/M3) 
91 IF J>=1 THEN 95 
92 J=1 , 
93 GO TO 105 
95 IF J<=iOO THEN 105^ 
100 J=100 
105 PCJ,1)=1+PCJ,1) . \ 

! no M5=M5+(A( 1, 1 ) t2) 
1 1 1 M4=M4+AC 1,1) ' 
112 M6=M6+(AC1,l)t3) ' 

I 120 NEXT I . : , 
122 M4=M4/N5 ' ' > . 

1 124 M6=M6-’3*M5*M4+2*N5*(M4t 3) / . . 
; 125 M5=M5-N5*CM4t2) • , ' ‘ . 
I 170 M5=M5/(N5-1) ' ; 
i 175 M6=M6/<N5-1) . ' ■ 

180 Sl=M6/CM5t(3/2)) ' ' 
185 MAT T=C0NC1,N2) ^ ^ 
190 MAT HEAD C6) X(N2,N1) " ' 
195 MAT Y = T*X , ' ' ; . / 
200 MAT Z = THNCY) ' . 



: 205 
■ 210 
1 215 
' 217 

220 
,! 225 
. 230 
f 235 
: 240 
■'245 

250 
’ 255 
: 260 

265 
270 

: 27 5 
. 280 

. 290 
. 295 

300 
; 305 
- 320 

, 325 
330 
335 
345 
346 
350 
360 
362 
365 
380 
385 
390 
395 
400 
408 
41-0 
415 
999 

’’SUBJECT 
’’MAXIMUM 
II 

TO EXPECTATION= 
\;ahiamce=”^mi 

MINIMUM VAaiANCE=:”^M2 

MAT W=Y*U 
MAT A=W*Z 
T1=A(T^1) 
T2=0 
REWIND 6' 
FOR 1=1 TO N2 
MAT READ C6) YCl^Nl) 
MAT Z=TRNCY) 
MAT W=Y*V , .. 
MAT A=W*Z 
T2=T2+A(1^1) 
NEXT I V 
Tl = CTl-»-T2)/(N2*<N2+l ) ) 
PRINT ”FOH A SAMPLE OF 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
MAT D=ZER(100^1) 
DC 1,1)=P(1^1) 
PRINT (D<l^l)/N5) 
FOR 1=2 TO 100 
J=I-1 
DCI^ 1 ) = D( 1)+P(I , 1 ) 
PRINT (D<I^1)/N5) 
NEXT I 
PRINT 
CLOSE 4,”DTFL" 
CLOSE 5 
CLOSE 6 
END 

m 

SIZE=”,N5 

U1 

’’SAI-IPLE MEAN=”^M4>(M4-M2)/M3 
"TRUE M£AN=">T1:»(T1-M2)/M3 
"SAMPLE VAHIANCE=">M5>M5/(M3T8) 
"THIRD M0MENT=”,M6^M6/(M3t3) 
"SKEWNESS=">S1 : 

i 

"CUMULATIVE DISTRIBUTION AT .01 

I 

INTERVALS 

- i 
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Program DISCR 

This program is written in Extended Basic, compatible 

with the UMASS Time Sharing System at the University of Mass 

achusetts. 

The program selects at random a configuration from the 

table shown in Appendix F; and given the unordered configure 

tion, it assigns randomly the weights on the configuration 

to the n investment prospects. This defines a random port¬ 

folio in the region spanning the range of feasible values 

for Ej. The random portfolios are stored in the disc file 

"EX7", for the analysis of the distributions. 



Program DISCR 

r 

■t 
r 
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VrTV 

’ - •»■.*■ , '. 
\. 

.'■y 

.' • •• ’I, 
. .«'* 

t 

il KEM PBOGaW GEINERATES RANDOM PORTFOLIOS, DISCRETE MODEL 
f‘5 DIM TC40\.20)^X<20,.4'),.YC2Q,n,AC2'0^1)>BC80>l) i . ' 

; 
•7. BANDOMIZ'E • ,'V,'a 
110 OPEN 6^*’EX7” 
80, INPUT W.»N7 
82 NI=N4-1 
£5 MAT BEAD T(38^M1) r^i 

, '’j ■• ■< ,} . .... 
■ . . .ff V- - ‘ . «s ■ . '' ?. 
■ -V.' V W. " 

^7 FOH M9=i TO W7 , - 
30. 1 = 1 + 3.7*1 NTC 10*RNDC n + .o) 
32 I = IMT<I) r 
35 Ki = TCI:»J) 
38 .MAT 'A=ZSRCKli»i) 

[<iO Kl^Kl + l". >• 
U FOH J=2 TO K1 

K55 NEKT- J • 
Kl=Kl-1 

5 MAT X=:2£aCN^i) 
163 MAT V=2£H(K1 
i'7G N1=M 
■*75 FOH J~1 fO‘Ki \ Tl'' 
^85 i=i+.i*cNi-j)*iwTc 

'42 K2=J-1 
&5 ACK2j> i) = T(Ii, J) .. 

. . ' A 
^ » V . 

•\* .4'h,- ‘ . -'..•V- 

■* ■ ' 

f K 
• >' ? ! • ■ r-> ■ ->! -' '. * ■ *• 1 

7kr ':>■ ■ 

' A 
A h-.A 

/-.wm 

v* - « 

90 I=INTCI) 
A' 

W’6 Y< J., i ) = I 
! < rOO Wl=Nl~l - ♦ / ij Vi* .T'-^i;vr *■ 

•v-v 

; 105 >NEXT' J 
; no MAT B=2ERCN:».l 
: 130 K2=T( n i) 
>135 BCKOi. 1 ) = 1 
140 -FOH J=2 TO Ki 

'■■/i-V '’.-- ‘ y'l • * . 
■»'if Y 

^ 'V'^4 >>: f 

^ .‘i . ;r, """V . .* .v*’ 

a 

.V • t 

.* '. 

is: . 

\ ■ '■ V^' • .l:' 

i-v- 

.c. i*p- 

‘m-'-A 7 • *\. ^ •> ♦a*^ ' % 

< « 

' • V ' V 'i.- ' 
/V 4,' . 

“V 
, < * J 



>■ 

:a. ^..i.-, 

‘•v t' . ’ ;< 

>*'v 

i^r ■ *<i ^•i.v>’ •. V 
p - •, V f/ • I 'j ^ 

sf*f. :^' ■-< ' 

r: 
145 KS=Y( J:» 1 ) , 
150 K4=0 
155 FOH M=1 TO M Vv ' •' 
157 IF BCM^ 1)>0 .THEN ,190 

■, ■ 

-»! .' 
. ' j -.1 ■.» :. , 

'/■ :s, 

,r; 

158 K4=K4+1 
l159 if K2>K4 THEN ‘19a' 
160 BCM^ 1 )==J , 
4^2 GO TO 230- 
[190 NEXT M 

!30 NEXT ‘"J i, 
135 FOR J=1 TO N - ',' 

[240 IF BC0^i)=0 THEN 300 
545 K3=BC n ^ ' . ; 

'250 XCa^ 1 )=ACK3^ i) \ , 
i300 NEXT J 

10 MAT Vj*RrTE C 6) X : ' 
120 NEXT M9 

i325 CLOSE 6 v''.’- ■ 'i 

. 
- 'f.» f '. ^ -> 

•m..‘ -.J* ■.•■;■/... 
'■ 

:^■y v - ‘‘ • i*: * 'i 
■■ ■ 'T' ' • .^^ 'V . r- •■ , 

‘ .c 
i* 

• 

;. 1 , • ■'■?,' : ’ ;;^V 
• .r'-' ■ \ v^'A 

r.* • 

. END 

■ii • ■. 

•' •' ■;_, ■• ..'■•'■■■'•I* —■ 

. -L' i .• ■^•J irv" * / 

X j. *■ * ■ 

f ■^- * *■ -, T.aw'i Mialr Aw«v ' ' '*•' 

■ . ' ■_ v--'-V S'-1^ ^ 
L v ‘v '-.v- ■■ ' 
r. r-;..-,. •. , ■ •-X.v ■ r -li. ^ 

L •/»'.*' Vi- ' ^ 

■f‘j- \ 
• 5 ‘ - . ’. i - 

' '• >* - 

HF'*' Tun 
r /■ ■ . ,^ ■■ 

,.>v: 

V 1 

.T 'rO ♦ ' • . 
> ' It,'. _ ' '> .< ' a'T>' 

fe’A' 

•■ ( 

•■Ci' 
r-A. f> • - 

'-. 'vt 

■ ,•;- >■ A*, ■ V 

’ 4 

nB. #L * A . vv 

’, ' • ^ >*!.« • .. •- " 

■■■. >•'■; 

[M/'r.-V; 
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Derivation of V(V(x)) 

The random variable V(x) was defined in Chapter II as 

(1) 

k k 
V (x) = E E w . w .Q . . , 

i=l j=l ^ 

where Q.. = v!Cy.. 
ID 

2 
The random variable V(x) is then 

(2) V(x) ^ (EEw. w .Q . .) 
1 D ij 

k k 
Z wTq . + 4 Z 

i=l ^ 
E w . w .Q . .Q . . 

i=l j^i 1 

kk«^ kkp^^ 

+ E E w.w Q..Q.. + 2 E E wTw.Q. 
i=l ^ 3 DD i=i 1 J ID 

+ 2E E E w.w.wQ.Q.. 
i=l j^i p^i^j - 3 P DP 11 

+ 4E E E W.W.WQ..Q. 
i=l p^i^j 1 D P ID IP 

k k k k 
+ E E E E W.W.WWQ..Q 

■ • / • • 1 D p q ID pq 
1=1 Pt^D/I qT^P/Dfi 

From (14) in Chapter II it follows that 

(3) E(w?) = 41 (k-l!/(k+3) ! 

E(w?Wj) = 3! (k-l!/(k+3) I 

E(w?Wj) = 2121(k-1)l/(k+3)1 

E(w?w.w ) = 2 1 (k-1) 1/(k+3) 1 
1 D P 
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~ 2 
Then E(V(x) ) may be expressed as 

(4) E(V(x) ) = (k-1) l/(k+3) 1 [24 Z Q.f + 24 Z 
i=l 

11 

k 

2 Q. 
i=l 

ij 11 

+4Z ZQ..Q..+8Z ZQ.f 
i=l i=l j^i 

k k k k k k 
+4Z Z Z Q.Q..+8Z Z Z Q..Q. 

i=i j^i p^j^i 3P i=i p^j^i 13 IP 

k k k k 

+ Z Z Z Z Q. _;Q „] . 
i=l jj^i p^j,i q^p,j,i ^ 

The variance V(E(x)) corresponding to the vector E(x) is 

(5) V(E(x)) = 
k 
Z 

k 

k^ i=i 

it follows from (5) by analogy with (2) that 

(6) k^V(E(x))^ = [ Z Q ^ + 4 Z Z Q..Q.. 
i=l i=l 

+ Z ZQ..Q..+2Z ZQ.. 

1=1 1=1 

k k k k k k 
+ 2Z Z Z Q. Q..+4Z Z Z 

i=l p^j,i i=l j^i p^j,i "P 

k k k k 
+ Z- Z Z Z 

i=l j^i P7^j,i q7^p,j,i ^ 

From the relations in (6) it is possible to rewrite (4) as 
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(7) E(V(x)^) = (k-1) !/(k+3) ! [k'’v(E(x))^ 

Define 

k ^ k k 
+ 23 Z Q.T + 20 Z Z Q..Q.. 

i=l i=l jT^i 11 

k k k k 
+ 31 Z Q. .Q.. + 61 Z Q. . 

i=l i=l 

k k k k k 
+2Z Z ZQ.Q..+4Z Z 

k 
Z 

i=l p^j i=l j^i p7^j,i 

(8) Q . ? = i Z Q. ? 
^11 k . T 11 

1=1 

(9) 
k k 

2 Q, .Q. •ij ii k(k-l) j^^~ij~ii 

(10) 
k k 

Oi3 = ^ 

(11) 
k k 

Q- .Q . . 
11 3 3 k(k-l) 2 QaaQ^a 

i-1 j?^i 11 JJ 

(12) Q . Q. . 
3P 11 

k k k 
Z Z Z 

k(k-l)(k-2) jp 11 

(13) Q. .Q. 
13 ip 

k k k 
Z Z Z Q. .Q. 

k{k-l)(k-2) ij ip 

(14) 

It follows from 

E(V(x)^) = 

+ 

(7) and (8) through (13) that 

[kV(k+3) (k+2) (k+l]V(E(x))^ 

[23 Q. ?/(k+3) (k+2) (k+1) ] 

+ [(k-1) (20Q. .Q. .+6Q.?+3Q. .Q. .)/(k+3) (k+2) (k+1)] 
J.JJ.J. J-J -LXJJ 

+ [ (k-l (k-2) (2Q. Q. .+4Q. .Q. )/(k+3) (k+2) (k+1) ] 
J -Lx XJ X^ 
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From (14) it can be observed that' 

(15) limE(V(x)^) =V(E(x))^ 

The variance of V(x) is 

(16) V(V(x)) = E(V(x)^) - E(V(x))^ 

= E(V(x)^)-(k^/(k+l)^) V(E(x))^-(2k/(k+l^)W{E(x)) 

- (l/(k+l)^)V^ 

From (15) and (16) it can be observed that 

(17) lim V(V(x)) = Lim E(V(x)^) - lim E(V(x))^ 
k“^°° 

= V(E{x))^ - V(E(x))^ 

= 0 + 

3 
To illustrate the effect, assume that k=10 , then 

(18) V(V(x)) = [k^/(k+3) (k+2) (k+1) ]V(E(x) )^ 

+ [ (k-1) (k-2)/(k+3) (k+2) (k+1) ICQ. Q^^+4Q^ .Q^ ) 

- (k/k+1) ^V(E9x) ) [2k/(k+l) W(E(x) ) 

+ do”®) 

-6 “6 
where o(10 ) means terms of order of magnitude less than 10 

It follows that for a large k 

(19) V(V(x))<[(k-l) (k-])/(k+3) (k+2) (k+1)] (2Q~^+4Q^~^) 

- [2k/(k+l)^]W(E(x) ) +o(10"^) 

For k = 10^ 

V(V(x))<10"^[(2Q. Q. . + 4Q. .Q.“) - 2W(E(x))] + o (10 ^) 
J P J -^P 

If the term in the brackets is negative, the variance is of 
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“ 6 
order of magnitude less than 10 ; and in any event very small 

since Q. Q.., Q..Q. are of equal or smaller order than 
3p 11 ij ip ^ 

W(E (x) ) 
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TABLE F-1 

Feasible Unordered Configurations in the Discrete Model For 

Random Generation of Portfolios 

.9,. .1 •4/^4/^l/^l 

• 8 ^ < ,2 •4/^3/^l/^l/^l 

• 8 ^ < »1/^1 •4/^2/^2/^l/^l 

.7,. .3 •4/^2/^l/^l/^l/-l 

.7,. •2/^l •4/^l/^l/^l/^l/^l/^l 

.7,. .1,.1,,1 .3 f.3,,3,,1 

• 6 ^ < ,4 •3/^3/^2/^l/^l 

. 6,. >3/^l •3/^3/^l/^l/^l/^l 

.6,, >2/^2 •3/^2/^l/^l/^l/^l/^l 

• 6/1 >2/^l/^l •3/^l/^l/^l/^l/^l/^l/^l 

. 6 /. .1/-1/-1/-1 .2,,2,,2,.2,.2 

• 5 / • .5 ^2/ ^2/ ^2/^2/•!/-1 

• 3/1 ,4/^1 •2/^2/^2/^l/^l/^l/^l 

• 3 /1 ,3/^2 •2/^2/^l/^l/^l/^l/^l/»l 

• 3/1 .3/^l/^l •2/^l/^l/^l/^l/^l/»l/»l/»l 

5 • f > .2/^2/^l •l/^l/^l/^l/^l/^l/»l/*lf»l/*l 

• 5 ^ < .2/^l/^l/^l 

.2, •1/•!/•!/•!/•! 

.4/ • 4/^2 

.4/ • 3/^3 

.4/ • 2/•2/ • 2 

.4/ •3/^2/•! 
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