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ABSTRACT 

PERFORMANCE AND MICROBIAL EVALUATION 

OF AN ARTIFICIAL WETLAND TREATMENT SYSTEM 

FOR SIMULATION MODEL DEVELOPMENT 

MAY 2007 

LESLEY A. SPOKAS, B.S., UNIVERSITY OF MASSACHUSETTS 

M.S., UNIVERSITY OF MASSACHUSETTS 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Peter L.M. Veneman 

The current research was undertaken to evaluate the performance of a top 

loading vertical flow submerged bed treatment system (TLVFSBTS) treating primary 

sewage effluent. Both pollutant elimination and microbial processes were measured. 

The wetland system is located just west of the Hudson River in upstate New York. The 

system consists of four 232-m2 wetland cells, currently operating in series. Two cells 

are planted with Phalaris anindineacea and two with Phragmites communis. The data 

collected were used to evaluate an existing mechanistic compartmental simulation 

model and to develop an new simulation model for TLVFSBTS wetlands. 

Treating CBOD5 to permit levels (< 4 mg L’1) was not difficult to accomplish 

and occurred in the first wetland cell during much of the study period. At no time 

during the 17-month evaluation period did measurable CBOD5 leave the wetland, 

although lack of carbon source (CBOD5) for microorganisms in subsequent wetland 

cells (cells 3 and 4) may have been a limitation for denitrification. Ammonium 

oxidation in the first wetland cell was greater than in the second wetland cell (70.8% 

VI 



and 39.2%, respectively). Nitrite accumulation in the first wetland cell (2.204 mg L 1 

maximum value) appeared to be seasonal, and not directly related to nitrite oxidation. 

Both nitrite and nitrate leave the wetland system at levels below primary drinking water 

standards (1 and 10 mg L'1, respectively. The ammonium concentration leaving the 

system was at or below permit level (2.2 mg L’1) during much of the study period. 

Nitrification potential and denitrification enzyme activity in the wetland system, 

especially the first wetland cell, exceeded published values for natural wetlands, 

tropical soils, and both marine and freshwater sediments. These findings, however, 

demonstrate the ability of TLVFSBTS wetlands to remove the various nitrogen 

constituents once the microbial population becomes acclimated to the influent 

wastewater. 

The original simulation model evaluated was determined to be inappropriate for 

TLVFSBTS wetlands. A new TLVFSBTS model was developed, parts of which worked 

quite well. A computational problem with the chosen simulation software, however, 

made it impossible to determine the applicability of the current model. Future work will 

continue to pursue development of the current model, perhaps with different software. 
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CHAPTER 1 

INTRODUCTION 

Treatment Wetlands 

Artificial wetlands for wastewater treatment are a sustainable, green technology 

that has been employed in Europe since the 1940’s (Seidel, 1970). Following the Clean 

Water Act of 1972, artificial wetland wastewater treatment (AWWT) technology was 

adopted in the United States on a limited basis. The majority of AWWT systems built in 

the United States are free water surface systems (FWS) (Fig. 1). These systems are 

comprised of open water bodies with distinct flow channels and areas of emergent 

macrophytic vegetation such as cattails (Typha spp.), bulrush (Scirpus spp.), rushes 

(.Juncus spp.) and sedges (Carex spp.) (Kadlec, 2003). FWS systems in the United 

States are predominately used in conjunction with conventional concrete and steel 

treatment facilities to polish secondary effluent to meet stringent discharge limits 

(Knight et aL, 1993). 

The original European submerged bed treatment (SBT) systems, as well as the 

few SBT systems currently in use in the United States, were horizontal flow (HF) 

systems. European countries are now experimenting with vertical flow (VF) systems 

(Fig 2) (Weedon, 2003; Winter and Goetz, 2003). Both SBT configurations are 

composed of some type of media, usually gravel or small stones, with hydrophytic 

vegetation, usually common reed (Phragmites sp.), supported by the liquid waste that is 

kept several centimeters below the surface (Kadlec and Knight, 1996; Reed et cil., 1995). 

Vertical flow systems may be either top-loading or up-flow and may be submerged 

1 



constantly, or of the flood and drain type (von Felde and Kunst, 1997; Ottova et al, 

1997; Brix, 1993; Guang et cil., 2002). 

Figure 1. Typical free water surface artificial wetland. 

FWS systems require a treatment time of 30 d or longer (Reed et al, 1995; 

Kadlec and Knight, 1996), thus they require larger land area to construct. The prime 

advantage of these systems is that they are inexpensive to build, so long as land need 

not be purchased, and inexpensive to operate. The disadvantages are that they provide a 

place for mosquitoes and other disease vectors to breed, they are prone to “secondary 

biochemical oxygen demand (BOD5) and total suspended solids (TSS)” production due 

to algae growth, and they may have odor problems dependant on the quality of the 

influent (Reed et al, 1995). 

f f § r 

" ^ >;■ ^ •*v- 

-Inlet Pipe 
Excavated Land 

r 

T 

V-—— 

, ' 
Sand 

1 

Outlet Pipe 

10 mm Stone 

40 mm Stone- - Perforated Pipe 

Figure 2. Cross-section through a typical European vertical flow artificial wetland (from 
Weedon, 2003). 

Subsurface flow submerged bed systems are typically constructed 70-80-cm 

deep, with some type of liner material and dikes high enough to provide a measure of 
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“free board” for rain events as well to prevent surface water from entering during storm 

and associated run-off events. The advantages of submerged bed systems are that they 

are designed to be dry (phreatic level > 5-cm below the surface), thus there will be no 

disease or odor problems. The disadvantage to these systems is that they are more 

expensive to build (excavation, liner, media, pipes, etc) than FWS systems (excavation, 

liner). These costs, however, need to be weighed against the smaller footprint required 

due to shorter treatment time in the VF bed. 

Sewage 

or Effluent 

Treated 

Effluent 
◄- 

Figure 3. End loading (horizontal flow) submerged bed artificial wetland treatment 

system. 

Figure 3 illustrates a typical “end loading” system that requires the wastewater 

to travel the full length of the bed. End loading systems perform well when there are 

little or no suspended solids in the waste stream. If suspended solids exist, or if dense 

bacterial growth at the head-works/media interface are not compensated for, the systems 

are prone to clogging (Blazejewski and Murat-Blazejewski, 1997; Breen and Chick, 

1995; Tanner et al., 1998; EPA, 1993). Once the hydraulic conductivity at the inlet end 

falls below the application rate, wastewater surfaces and flows overland. When this 

occurs, treatment efficiency is significantly reduced, and the system is in failure (Breen 

and Chick, 1995; Blazejewski and Murat-Blazejewski, 1997). A second limiting factor 



of horizontal flow systems is the minimal cross sectional area available for loading (i.e. 

width x depth). 

An alternative operational mode is vertical-flow. For vertical-flow systems H • 

L'1 is typically unity, clogging is reduced due to the large surface area available for 

loading (i.e. greater K), and the cross sectional area (Axs) becomes the surface area of 

the entire top of the bed rather than the area of the end of the bed. The required 

detention times are maintained by a “control box” which is designed to provide variable 

heads ranging from 0 to unity (Lavigne and Jankiewicz, 2000). 

Treatment Processes 

Wastewater treatment processes require both aerobic and anaerobic conditions 

for complete treatment, but anaerobic conditions are not typically part of conventional 

wastewater plants, leaving many complex organic compounds untreated. In a SBT 

system both environments exist within close proximity to each other. Figure 4 illustrates 

a typical root cross section within an SBT system. As illustrated, oxygen gas diffuses 

and or is “pumped” out of the root creating an aerobic annulus around it (Mitch and 

Gosselink, 2000; Good and Patrick, 1987). These aerobic microsites will be surrounded 

by anaerobic microcosms where oxygen concentrations have been reduced to zero due 

to the demand created by aerobic biochemical activity. Biological and chemical 

processes will remain anaerobic until the waste passes into another aerobic microsite. 

The diameter of the oxygen-rich annulus will be controlled by the degree of the oxygen¬ 

demanding forces at work, and the ability of the plant species to provide oxygen 

(Sorrell and Brix, 2003; Teal and Kanwisher, 1966; Weisner and Graneli, 1989). 

Changes in the ratio of aerobic to anaerobic micro-sites typically occur naturally with 
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variations in wastewater quality, but the ratio can also be manipulated by such factors as 

loading rates, bed and root depths, re-circulation (aeration), and plant choice (Gersberg 

et al., 1989b; Guang et al., 2002; Szogi et ah, 2003). 

Organic-N “►NH4-Ni 
ammonification Microbially 

Mediated 

NOs-N -> N20, N2 
denitrification 

Figure 4. Dynamics of the root-growth media interface. (Adapted from Good and 

^ Patrick, 1987). 

Settling tanks typically remove about 65% of the suspended solids in wastewater 

(Metcalf and Eddy, 2003). The remaining 35% (both organic and inorganic) will be 

removed, generally at the stone/sand interface around the distribution lines with VF or 

at the head works/media interface of HF systems (Tanner et al., 1998). This biological 

“scum layer” is also the primary location for removal of bacteria (total coliform, fecal 

coliform) and other microscopic organisms (Brix, 1993; Gersberg et al., 1989a). 

One of the primary differences between SBTS units and other wetland treatment 

types is the large surface area associated with the growth media. The matrix material 

not only filters solids, and supports fixed bacterial films, but it also enhances removal of 

contaminants by a variety of surface adsorption, complexation, and chelation processes 
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(Brix, 1993; Ottova et a/., 1997). As the media particle size decreases, surface treatment 

processes are augmented by the increased surface area. Unfortunately the hydraulic 

conductivity decreases as the pore size decreases and it can reach a point where reduced 

flows through the media are unacceptable as pore velocity decreases (Wynn and Liehr, 

2001). Conversely, if growth media particle size is increased to enhance flow through 

the system (e.g. pea gravel) surface areas are decreased exponentially as are the 

associated treatment efficiencies (Lavigne and Jankiewicz, 2000). 

Justification 

All vegetated submerged bed artificial wetland treatment systems are not the 

same and should not be “lumped” together as free water surface or submerged bed 

wetland systems as has been done throughout the literature. AWWT systems are a 

complex interaction of microorganisms and higher plants in a submerged environment. 

Media type and size are an integral part of the whole. The microorganisms are the 

“heart” of the system, but these organisms do not simply exist in the wastewater as with 

conventional treatment processes. The bacteria form a complex living system with the 

plants and the media, thus the systems must be studied in their entirety. Consequently 

there is a need for improved understanding of the microbial ecosystem within each 

specific AWWT type. This research evaluated a Top Loading Vertical Flow Submerged 

Bed Treatment System (TLVFSBTS) with specific attention to the interactions of the 

microbial populations with each other and within their ecosystem. 
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Hypothesis 

Any model used for sizing AWWT systems or predicting their performance 

needs to be written specifically for the type of system being built, and that wetland type 

(FWS, HV, VF) and physical construction components are important factors in system 

sizing and performance. Parameters for microbial processes and interactions need to be 

included in future models, rather than mere rate constants. 

Objectives 

This research evaluated a vertical flow submerged bed artificial wetland system 

and a mechanistic, compartmental simulation model for wetland performance (Wynn 

and Liehr, 2001). The model was found to be unnecessarily complicated and 

inappropriate for the actual conditions in a TLVFSBTS treating primary effluent. 

Specific objectives for this study were: 

1) To collect system performance data including: influent and effluent 

concentrations of biochemical oxygen demand, ammonium, nitrite and nitrate; 

2) To collect local weather data including temperature and precipitation; 

3) To collect redox potential data at different depths within the wetland cells; 

4) To collect microbial data including: heterotrophic potential, nitrification 

potential, denitrification rate and total microbial biomass, and 

5) To develop a compartmental simulation model for TLVFSBTS. 
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CHAPTER 2 

LITERATURE REVIEW 

The Classic Literature 

In 1993, Knight et aI. published a summary article of findings from the USEPA 

Data Base of AWWT systems in North America. At that time there were 126 artificial 

wetland systems mentioned in the article, of which, only 26 were vegetated submerged 

bed (VSB) treatment systems. The most recent update of the Database (November, 

2000) listed 334 wetland systems, of which 51 were VSB systems and 13 were a 

combination of free water systems and VSBs. Of the 334 systems, only 10 were treating 

primary effluent. Most of the AWWT systems were treating secondary effluent (BOD5 

< 50 mg L'1; TSS < 80 mg L1; NH3 < 20 mg L_1). By comparison, in 2000 there were 

approximately 5000 constructed wetlands in Germany alone, although most of these 

(95%) were for systems treating the sewage of 20 or fewer people (Luederitz et al., 

2001) 

Knight et al. (1993) concluded that loading rate and land area do not have much 

of an effect on BOD5 removal efficiency except at very high hydraulic loading rates 

(HLR). This conclusion was based on the FWS systems that are prone to secondary 

BOD? and TSS problems from algae growth in warm weather. The larger the surface 

area of the system, the more algae growth, therefore, the higher the “good” BOD5 and 

TSS. This article, along with the EPA evaluation of Artificial Wetlands (EPA, 1993) 

became the foundation of the “literature” on AWWT systems, and the basis of the 

opinion held by many State Regulators that, “Artificial Wetlands do not work”. During 

the intervening years (1993 to present), many research studies have been conducted on 
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artificial wetlands. Some systems were bench scale, some pilot scale, and some full 

scale. Media type and size varied, plant species varied, waste stream varied, AWWT 

system type varied. As late as the late 1990’s, studies were still being conducted that 

compared planted beds to unplanted beds (Kemp and George, 1997) and the exact role 

of the plants - nutrient sink or microbial aerator, was still being discussed. 

Gersberg et al. (1989a) is the classic review of pathogen removal in constructed 

wetlands, although it is more of an introduction to microbial contaminant levels than a 

review of system performance. The minimal infective dose (MID) for bacteria was high, 

4 6 9 
ranging from 10 for Shigella sp. to between 10 and 10 for Salomnella sp., Vibrio sp., 

or toxic Escherichi coli. All of the wetlands being discussed in the study were able to 

meet this level of treatment. However, the MID for most viruses may be 1 and the 

ability of AWWT systems to meet this level of treatment has yet to be demonstrated. At 

hydraulic residence times of 3-6 days, SBT artificial wetlands are more effective at 

removal of disease-causing bacteria and viruses than conventional treatment systems 

(Gersberg et al. 1989a) (HRT usually <0.5 d). In addition to pathogen removal, 

AWWT systems also remove suspended solids and ammonia, both of which interfere 

with efficient disinfection. Disinfection is the means by which conventional wastewater 

treatment plants prevent pathogen dispersal. Disinfection practices, however, have been 

shown to be “more effective at killing the predators to cysts and viruses” than in killing 

the actual pathogens (Davis and Masten, 2004), and physical removal of cysts and 

viruses during the activated sludge process is limited. 
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Wetland Design 

To design any wastewater treatment system it is necessary to know the strength 

of the wastewater and what effluent limits will be. Typical National Pollution Discharge 

Elimination System (NPDES) discharge limits for secondary treatment plants were 

designed to return the waters of the United States to a fishable and swimable condition 

(Clean Water Act, 1972). Thus, the discharge limits for secondary treatment plants 

discharging to a medium to large waterway are typically 30 mg/L BOD? and 30 mg/L 

TSS. 

Primary domestic effluent (following settling) has BOD5 values ranging from 

110^100 mg L'1; TSS ranging from 100-350 mg L"1; total nitrogen (TN) ranging from 

20 - 85 mg L'1; total organic carbon (TOC) ranging from 80 - 290 mg L'1; and total 

phosphorous (TP) ranging from 8-35 mg L*1. Of the TN present, the dominant forms are 

organic nitrogen compounds and free ammonium (NH4+) with values of 8-35 mg L , 

and 12-50 mg L'1, respectively (Metcalf and Eddy, 2003). 

Early design models were based on first-order kinetics decay models with plug- 

flow hydraulics and a single design parameter. The following is an example of this 

simplistic approach to sizing calculations for BOD5 reduction, TSS, and nitrogen. 

Biochemical Oxygen Demand 

Using the integrated form of the first order decay model for BOD5 reduction 

Eq.[l,2] detention time may be calculated. 

-kt 

or 
Ce = Coe 

-i-S 
where C0= influent BOD5 concentration 

Ce= effluent BOD5 concentration 

[1] 

[2] 

t = detention time (days) 

k = decay rate constant (days'1) 

10 



The desired detention time for BOD5 based on a presumed influent concentration of 350 

mg L'1 and desired effluent concentration of < 5 mg L'1 with a decay rate constant of 

1.104 days’1 (Reed, 1995; Kadlec and Knight, 1996) at 20°C can be calculated by 

substituting into Eq. [3]. 

t = L • In t = 0.906 x In 70 t = 3.85 days 
1.104 5 J 

Bed Sizing 

Once the desired detention time is calculated, the size of the beds can be calculated 

using Eq. [3]. 

VT = Q • t = L2 • h • f [3] 

where: Vj = total bed volume in m3 

Q = flow rate in nT d’1 (39 nTd’1) 

t = detention time in days (3.85 d) 

L* = bed area in nT 

h = height of the porous media (0.6 m) 

f = porosity of the porous media (0.35) 

After substituting the above values into Eq. [3], the required bed volume Vt may be 

calculated: 

VT = 39 m3 d'1 • 3.85 d = 150 m3 

Once the bed volume has been calculated the required bed area (L2) may be calculated: 

150 m3 = L2 • h • f = L2-0.6 m-0.35 L2=715m2 

Total Suspended Solids 

Using the simple model derived for BOD removal and substituting into Eq. [2] 

t = f In = 4— • ln~~ = 0.8 ■ In 16.67 = 2.25 days 
K Uj 1.25 9 

where C0= influent TSS concentration (150 mg/L) 

Ct= effluent TSS concentration (9 mg/L) 

k = TSS removal rate constant (1.25 d'1 Crites and Tchobanoglous, 1998) 
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gives a detention time of 2.25 days. This value when substituted into Eq.[3] 

VT = 39 m3 d'1 • 2.25 d = 88 m3 = L2 ■ h • f = L2 ■ 0.6 m • 0.35 

yields a total bed volume of less than 88 nT and a bed area of 418 nr. 

Nitrogen Reduction Model 

The third parameter of interest is nitrogen reduction, specifically ammonia 

removal by nitrification. Reed (1995) used a temperature dependent rate constant Icnh to 

represent the nitrification rate as a function of rz, the portion of the wetland cell that is 

occupied by the root zone. The relation is expressed by Eq. [4], 

kNH = 0.01854 + 0.3922 rz2'6077 [4] 

Knh ranges from 0.01854 in an unplanted wetland cell to 0.4107 with a fully developed 

root zone (Reed, 1995). The temperature dependence of the rate constant kT is given by 

Reed (1995) as kNH (0.4103) d'1 at T = 1°C, and kNH (1.048)‘T'20) d '' at T > 1°C. 

Therefore, at 15°C with full rooting 

kT = .4107 • 1.048(15'20) = 0.325 d_1 

following the same steps as before, this gives t = In (60/5) 0.325, t = 7.6 d 

VT = 39 m3 d'1 • 7 d = 298 m3 

yields a total bed volume of 298 nr and a bed area of 1420 m2. 

273 m3 = L2 • h • f = L2 • 0.6 m • 0.35 L2= 1420 m2 

At 20°C, t drops to 6 days and L2 to 1124 m2. 

The values Reed (1995) used to determine rz and kNH are based on data from the 

Santee California wetland (Gersberg et al. 1989b). The assumption was that it takes 5 g 

of oxygen to nitrify 1 g of ammonium. By using the ammonium removal numbers from 
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the Santee wetland Reed (1995) derived an average available oxygen value for the 

different plant species, which was then used to derive the Icnh equation. 

Using the simple models discussed above, the AWWT system would need to be 

twice as large for NH4" removal (1420 m2) as for BOD5 reduction (713 m2). An 

-» 1 

unplanted wetland cell receiving 7.5 mJ d' of wastewater with the “typical” inflow 

concentration of 60 mg L'1 NH4+ (Metcalf and Eddy, 2003) would require 184 d to meet 

a 2.2 mg L'1 NPDES limit using Reed’s kNH of 0.0184 d'1 at 20°C. An AWWT system 

with a mean influent NH4^ concentration of 127 mg L'1 would require a total bed area of 

2317 m2 at a flow rate of 7.5 mJ d'1 to meet permit at 15°C and yet a TLVFSBTS in 

Upstate New York receiving that influent concentration had an effluent ammonium 

concentration for the first month of operation that averaged 3.6 mg L'1 with a bed area 

of only 950 m\ Over the course of the 6 A years this system has been in operation, the 

mean ammonium influent concentration has been 124 mg L'1 with a mean effluent 

concentration of 6.06 mg/L while effluent temperatures have ranged from 0 - 30°C 

(unpublished data). Clearly, the simplistic model, even with corrections for temperature 

and rooting depth, does not adequately predict TLVFSBTS performance. 

Data from various wetland treatment systems, primarily FWS wetlands have 

been used to add various “correction factors” to the first order kinetics plug flow decay 

model. Most of these design models ignore the importance of microbial growth and 

metabolism. As seen in the previous discussion, reactions are lumped together in “black 

box” method with zero- or first-order kinetics models and plug-flow hydraulics. The 

best fit for the hydraulics of TLVFSBTS at the Upstate NY facility may be sequencing 

batch reactors rather than plug flow or continuously stirred tank reactors (CSTR). 
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Gidley (1995) developed a mechanistic, compartmental simulation model 

consisting of 6 linked sub-models representing various wetland treatment processes 

including: autotrophic and heterotrophic microbial growth components, carbon and 

nitrogen cycle components, and oxygen and water balance components. Wynn and 

Liehr (2001) calibrated and evaluated the model using data from the treatment wetland 

at the Mayo Water Reclamation Facility (Anne Arundel County, MD). The Mayo 

wetland is a subsurface horizontal flow system and Wynn and Liehr used CSTR flow 

for their calibration. Microbial growth constants were taken from “pure cultures” and 

needed to be decreased orders of magnitude in the calibration process. The use of CSTR 

hydraulics for this model may not have been the best choice as end-loading horizontal 

flow wetlands are usually modeled with plug flow hydraulics. This compartmental 

simulation model has yet to be verified with additional wetland data. 

Current Literature 

An AWWT system should be considered a specialized version of a fixed film 

reactor and that the microorganisms within the submerged bed are the major source of 

treatment within the system. The literature that has been reviewed for this research, 

therefore, has focused on the microbial processes occurring within AWWT systems. 

Comparing the systems discussed in the literature and their performance, however, is 

akin to comparing bacteria and fungi (Table 1). 

Microbial Processes 

Discussion of microbial processes in the literature generally falls into two 

categories, pathogen removal efficiencies, and discussion of microbially mediated 
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pollutant removal (typically nitrogen). Pathogen removal is discussed in terms of the 

specific articles incorporated in this review, but was not a focus this research. 

Ottova et cil. (1997) summarized performance of 5 fully operational AWWT 

systems in Poland. Of specific interest to these researchers were the microbial 

communities of the various wetland systems, their extent, performance, and the 

influence of the plant community on the microbial community. Table 2 summarizes the 

systems (location, age, plant species and hydrology). All five systems were treating 

primary domestic sewage. Microbial reduction was attributed to physical factors: 

filtration, sedimentation, aggregation, UV ray action; biological factors: antibiosis, 

ingestion by nematodes, protozoans, cladocera; attacks by lytic bacteria and 

bacteriophages; natural death; and chemical factors: oxidation, adsorption, and exposure 

to toxic exudates from other microbes and plants. These researchers reported 99% 

removal of total coliforms in all but the Chmelna system. Ottova et al. (1997) attribute 

the lower performance in the Chmelna system to reduced rooting of the Phalaris 

arundinacea (20-30-cm depth) as compared to the Phragmites sp. beds where roots 

were found to a depth of 60-80-cm. The influent ratio of aerobic:anaerobic organisms 

was greater than 1, but the effluent ratio was less than 1 for all systems. On roots and 

rhizomes, bacterial colonies were reported as: denitrifying bacteria 106 - 108 g'1 dry 

matter, ammonifying bacteria 107 - 108 g*1 dry matter, and nitrifying bacteria 103 - 105 

g’1 dry matter. 
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Table 2. Summary data of operational parameters for 5 artificial wetland treatment 

systems in Poland (from Ottova et al., 1997). 

Location Date started 
(mo/yr) 

Area Media 

(nr) 

Vegetation HRT* 

(d) 

Loading 

Rate cm d'1 

Doksy 4/93 300 CSH** 
+ gravel 

Glyceria sp. 10.7 2.2 

Onsov 11/93 2 beds 

GOO) 

gravel Phragmites 

sp. 

4.7 4.5 

Ondrjov 7/91 806 gravel Phragmites 

sp. 

4.5 6.6 

Kolodeje 10/93 4 beds 

(493) 

sand Phragmites 
sp. 

4.5 4.0 

Chmelna 11/92 706 gravel Phalaris 

arundinacea 

1.7 11.0 

* HRT - Hydraulic retention time. 

** CSH - Crushed soil heap 

Role of Plants 

The role of plants in AWWT systems has been discussed for many years. Plants 

have been touted as both the most important part of the system for nutrient/pathogen 

removal (Guang et al., 2002) and as the cause of hydraulic short-circuiting (EPA, 1993; 

Breen and Chick, 1995; Tanner, 2001). Many studies still compare vegetated beds to 

unplanted beds (Gersberg et al., 1989b; Kemp and George, 1997). While plants may 

increase nutrient removal from the waste these nutrients would be subject to return to 

the AWWT beds if plants are not harvested and removed. 

Nutrient and pathogen removal in surface flow (free water surface), subsurface 

flow (submerged bed), and floating aquatic plant systems has been compared by Guang 

et al. (2002). All three systems showed statistically significant reductions in total 

coliform and E. coli. Influent E. coli was 12,292 cfu 100-mf1 while the effluent from 

the SBTS bed was 193 cfu 100 ml'1. The lowest dissolved oxygen (DO) was reported in 

the SBT system suggesting a greater amount of biodegradation and oxygen 
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consumption. Only the SBT system showed significant reduction in BOD? or NH4 . The 

authors cited Kadlec & Knight (1996) as evidence that a sufficient population of 

Nitrosomonas sp. and Nitrobacter sp. should be present within 6—12 months of 

planting to allow complete microbial degradation of ammonium. The authors also cited 

Reddy and Patrick (1983) when discussing the concept that the limiting O2 

concentration for nitrification was 0.3 mg L'1 dissolved oxygen, this amount of DO was 

measured in all three systems, yet only the SBT showed significant ammonium 

removal. Neither of the other systems showed statistically significant reductions in any 

of the wastewater parameters. 

The performance of an end-loading vegetated submerged bed system followed 

by a sand filter, and free water surface wetland at a Pennsylvania campground and 

conference center was reported by Shannon et al. (2000). The system was designed for 

BOD5 removal with influent BOD5 concentration set at 150 mg L'1, and a desired 

effluent concentration of 20 mg L'1. The mean influent ammonium concentration in 

1998 was 33 mg L'1, with a range of 25-45 mg L. The effluent concentration was 

initially 5 mg L'1 but the concentration increased to 12 mg T1 by the end of the 1998 

season. During the 1999 season the mean influent ammonium concentration increased 

to 40 mg L'1 with a range of 30-65 mg L'1 while effluent concentration averaged 25 mg 

L'1. These authors concluded that the more important role of deeply rooted emergent 

macrophytes (i.e. cattail and bulrush) was in oxygenating the rhizosphere for aerobic 

decomposition and nitrification. It has been reported that nutrient assimilation by plants 

never exceeds 20 -25% of total nitrogen and that the amount assimilated is inversely 

proportional to the load (Gersberg et al, 1986; Tanner et al, 1998). 
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Szogi et al. (2003) reported on a FWS wetland treating swine lagoon 

wastewater. The system consisted of four cells 3.6-m x 33.5-m x 0.1-m water depth. 

One pair of cells had three bulrush species Scirpus cyperinus, Schoenoplectus 

americanus, and S. tabemaemontani and one rush Juncus effuses while the other two 

cells were planted with two cattail species Typha angustifolia and T. latifolia and bur- 

reed Sparganium americanum. Loading rate varied with the strength of the lagoon 

waste, which was diluted with fresh water to obtain desired N concentrations. The 

authors report that the cattail/bur-reed cells had a better root/soil condition for microbial 

removal of NH4+-N suggesting that they “leak more air”. 

Tanner et al. (1998) reported on the relationship between loading rate and 

pollutant removal during maturation of gravel-bed constructed wetlands. Results were 

from a 5-year study period. The loading rate increased from 15 to 70 mm d'1 during the 

coarse of the study. The influent was dairy process water with influent ammonium 

concentration of 40± 21.4 g m°. Effluent ammonium was 24.2 - 33.2 g m°, which 

represented a 60% to 34% reduction depending on loading rate. As loading rate 

increased, ammonium removal decreased. Five years of data for these gravel beds show 

a sustained performance level for carbonaceous biochemical oxygen demand (CBOD), 

carbonaceous and nitrogenous biochemical oxygen demand (CNBOD), total nitrogen 

and fecal coliform, but a decrease in removal efficiency for total solids. Tanner et al. 

(1998) attribute the increase in TSS to clogging, which was shown to have occurred at 

the higher treatment levels. Tanner and Sukais (1995) measured organic solids within 

the media, reporting accumulation closest to the inflow in end-loading beds. 
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In a related study, Halley (1990) used ''N-labeled ammonium tracer in one of 

the end-loading pilot-scale gravel beds reported to have a theoretical hydraulic retention 

time of 7 d. The mean time for the pulse to travel through the wetland was found to be 

about 60 d. Based on these results, Tanner et al. (1998) suggest that N fluctuations in 

the influent may not be seen for anywhere between 1 and 3 months. These authors 

especially caution against the use of simultaneous inflow/outflow pollutant 

concentrations as a measure of treatment performance. 

Breen and Chick (1995) reported on a 22-month old pilot scale end-loading 

vegetated submerged bed system receiving 4.3 kL d (43 nT d ) continuous flow of 

secondary treated domestic sewage. The system had a theoretical retention time of 7 d. 

The hydraulics of the system were checked with eriochrome acid red dye as a tracer. A 

20 L slug of dye solution (O.lg L'1) was added to the wastewater over the course of 1 

hour. The dye tracer indicated major hydraulic differences between the upper and lower 

portions of the trench system. For the first 12.5 m the tracer peaked at essentially the 

same time (1 day) but the majority of the flow was in the upper portion of the bed. At 

the mid point of the bed (25 m from the head) dye appeared in the bottom portion about 

24 hours after application and peaked at 2 days. The upper portion of the section of bed 

did not receive the tracer until 2 days after application. The tracer arrived in the lower 

portion of the bed, 3A of the way down the trench, 2 days after application and peaked at 

3 days, although dye was still detectable 6 days after application. In the upper portion of 

this section of the bed the dye arrived 3.25 days after application and the concentration 

was still rising at the end of 6 days. For a trench system with a theoretical detention 

time of 7 days and plug flow, the calculated times for peaks would be 1.75, 3.5, and 
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5.25 days, respectively. Breen and Chick (1995) suggest that the root density in the 

upper half of the bed was responsible for channeling of flow to the lower half of the 

trench as the path of least resistance. The authors suggest a “critical root biomass” of 

112 - 251 g/m2 for maximum plant mediated nutrient removal. Thus vertical flow 

maximizes the wastewater/root-zone contact in the upper portion of the trench, while 

the horizontal flow in the lower portion of the trench minimizes partitioning and short- 

circuiting. This root density configuration maximizes both spatial and temporal 

wastewater/root-zone contact. 

Breen and Chick (1995) reported the presence of plants as the major factor 

determining profile variability in a greenhouse study that was conducted using 20-L 

pots 0.35-m deep with 3-7-mm washed gravel to simulate vertical up-flow vegetated 

submerged bed systems. The pots were planted with Schoenoplectus validus (Vahl, A. 

& D. Love) and were 6 months old at the start of the experiments. Pots were sampled at 

0.1 and 0.25-m depths. Primary domestic sewage was batch loaded at 1 L d"! and the 

system had a theoretical retention time of 6 days. Significant differences occurred 

between different vertical positions in the profile of the planted pots, but no differences 

were reported in the unplanted controls. In the experimental cells, root biomass was 

found to be 70% in the upper half of the vessels and 30% in the lower half. This ratio 

was the same for both winter and summer sampling, although overall biomass was 

greater in the summer sample. The overall level of performance for the planted 

experimental systems measured as a percentage reduction was very similar in the winter 

and summer trials, suggesting that temperature per se was not the major factor for 

differences in the concentrations of variables within the profile. 
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Oxygen Balance 

Measurement of dissolved oxygen (DO) in effluent from AWWT systems is 

temperature dependant, and is not an accurate measure of aerobic microcosms within 

the system. The DO of the effluent is an integration of all aerobic and anaerobic sites 

within the bed (Lavigne and Jankiewicz, 2000). The stoichiometric ratios for 02 

T 1 -f- 

required for the reduction of influent constituents such as BOD5 (1 g O" g' C) and NH4 

(4.5 mg 02 per mg N) are probably a more accurate measure of the oxygen balance. 

The performance of a compact vertical-flow constructed wetland system, during 

the first 2 years of operation, was reported by Weedon (2003). Of particular interest in 

this paper was the calculation of an oxygen transfer rate (OTR) as follows: 

OTR = 0.7 g 02/gCOD degraded + 4.3g 02/gTKN degraded - 2.9 g O2/g TON 

denitrified 

(TON = total organic nitrogen). This equation assumes 0 mg L'1 DO in the influent and 

takes no account of biological N assimilation, therefore the author suggested 

recalculating assuming 10% denitrification. Other researchers have expressed OTR 

rates on an area basis. Luederitz et al. (2001) calculated that based on the German 

specific area requirement (50 nr m'3 d'1) 8.8 g 02 m'2 would be required for satisfy the 

COD, with an additional 4.3 g 02 m' necessary for nitrification. Amounts of oxygen 

available within the root zone remain a source of controversy, however, with calculated 

ranges from as low as 20 mg 02 m"2 (Brix et al., 1996) through 2-12 g 02 m'2 (Gries et 

al., 1990; Armstrong et al, 1990), 10 - 33 g 02 m'2 (Platzer, 1998) to a high of 23-64 g 

02 m'2 (Cooper, 1999). Variation in measurement techniques and calculation formulas 

were the most probable source of the range listed above. 
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As early as 1966, researchers were measuring gaseous diffusion rates and 

oxygen concentrations in the roots of hydrophytic plants. Teal and Kanwisher (1966) 

noted that the amount of oxygen transported to the roots of Spartina alterniflora plants 

was from 1/3 to twice the requirement for root respiration. Weisner and Graneli (1989) 

measured mean oxygen concentrations of 16% of the gas content of the rhizome and 20 

-21% of the gas content of the shoot base. 

Comprehensive studies of several wetland plant species by Wiesner et a/. (2002) 

linked oxygen diffusion from the roots to the redox status of the rhizosphere. The rate 

at which the plants released oxygen differed with species, and with the redox potential 

of the rhizosphere. All species tested (Typhci latifolia, Phragmites australis, Juncus 

effuses, and Iris pseudacorus) had an absolute release maximum in the range of -250mV 

to -190 mV. Oxygen release was also measured for all species over the entire range of 

redox values studied (-300 to 200 mV). The authors concluded that the plants released 

oxygen continuously, albeit at different rates, until the immediate rhizosphere was 

highly oxidized. 

The Nitrogen Cycle 

It is often assumed that nitrification can only be achieved in vertical flow 

wetlands by aeration of some type, which is difficult to achieve in a submerged bed 

system. Most sUidies show fill and drain systems, with the draining process used to 

draw air into the media, or effluent recycling to increase oxygen content and/or to dilute 

influent ammonium concentration. In aerated systems, however, lack of anaerobic 

micro-sites is often the reason for excess nitrate in the effluent (Hammersley et a/., 

2003; Hammersley and Howes, 2002). These findings are comparable to Luederitz et al. 
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(2001) citing the work of von Felde et al. (1997) that in a comparison of horizontal flow 

and vertical flow wetlands in Saxony (Germany) there was a 3-fold higher effluent 

ammonium concentration from horizontal flow systems, but that vertical flow systems 

had a 25% higher effluent total N concentration. 

In the horizontal flow pilot system mentioned previously, Breen and Chick 

(1995) sampled influent and effluent 4 times a day for 3 consecutive days in mid and 

late winter. A buildup of nitrite/nitrate and a decrease in ammonium in the mid winter 

sample (water temp. 9.7°C) was reported, with more ammonium and less nitrite/nitrate 

in the bottom samples than in top samples. These authors concluded that since nitrite 

and nitrate are usually denitrified as quickly as they are produced a build up of either 

was unusual. 

von Felde and Kunst (1997) studied nitrogen and chemical oxygen demand 

(COD) in a two-bed vertical flow AWWT system. Ninety percent removal of NH4+-N 

was reported but only 5% of total-N was removed. The researchers reported 

nitrification activity to a depth of 60 cm, but most of the activity was in the 0-15-cm 

depth interval. Nitrate reductase activity was reported to be lOx greater in the 0-15-cm 

depth than from 15-60 cm. 

In a bench scale study designed to mimic a full scale vertical flow system in use 

in Israel, Green et al. (1997) built 1-m2 square (0.3-m x 0.32-m) boxes 75-cm deep with 

gravel layers. Ten centimeters of coarse sand with a 1-cm aeration pipe was underlain 

by 18-cm of small gravel (2.5 - 4-mm), above 18-cm of coarse gravel (4 - 6-mm). 

Five centimeters of coarse stone (10 - 25-mm) was used as under-drain. The loading 

rate varied with the unplanted boxes ponded, drained, and ponded again on a 6-hour 
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rotation. Application was for “slow fill, fast drain” Drainage was by siphon since the 

fast drain causes suction of air into air pipes, reoxygenating the units. The experimental 

system was loaded with simulated wastewater containing 40 - 100 mg L'1 NH4~-N. 

Using the stoichiometric equation that oxidation of each mole of NTLf to NO3' requires 

2 moles of (X The maximum calculated ammonium removal was 60 mg L'1 while 

maximum observed removal was 74 mg L'1. The difference between calculated values 

and observed values was reported to be ammonium oxidation to nitrite, which lowers O2 

consumption per ammonium ion removed, and thus enables higher ammonium removal. 

Nitrogen removal in a combined system (vertical flow vegetated bed over 

horizontal flow sand bed) was discussed by Kantawanichkul et al (2001). The pilot 

scale system was 1.2-m x 1.2-m x 1.2-m with the vegetated portion 0.8-m deep and the 

horizontal flow section 0.3-m deep. The system had intermittent loading, 4 hours 

loaded, 4 hours rest, with 3.7-cm d'1 of liquid pig manure (after 5 days of settling). The 

average influent concentrations were COD 2,800 mg L'1 (1,725-3,210 mg L'1 range), 

total Kjeldahl nitrogen (TKN) 240 mg L'1, and NH4* 168 mg L'1. Effluent 

concentrations averaged 43 mg L'1 for COD and 6.6 mg L'1 for TKN. The ammonium 

concentration leaving the vertical flow portion of the system was 1.9 mg L'1 while the 

effluent concentration leaving the horizontal flow section was 3.1 mg L'1. Recycling 

50% of the effluent increased total nitrogen reduction, but the NO3' leaving the system 

was 57 mg L"1. 

Kemp and George (1997) studied subsurface flow constructed wetlands treating 

municipal wastewater for nitrogen transformation and removal. A total of 77% of NH4+ 

was removed, with the first stage cells reducing the “organic load” (BOD) and the 
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second stage cells nitrifying the NH44". In the second stage cells the increase in NO3 

accounted for 10% of the NH4+ lost. The BOD5/TN influent ratio in the second stage 

cells was approximately 0.7, which the authors report would favor the growth of 

nitrifying bacteria citing EPA (1975). 

Gersberg et al. (1989b) reported on the results of a pilot scale end-loading 

vegetated submerged bed wetland system at the Water Reclamation Center, Santee, 

California. The beds for the nitrogen removal study were 18.5 x 3.5 x .76m-deep with 

an unspecified size gravel (Darcy’s K (10° m/sec). Beds were planted to one of three 

hydrophytic species Scirpus sp., Typha sp., or Phragmites sp. Primary effluent with a 

BOD5 in of 113 mg L'1, NH4+ of 70 mg L'1 was applied at a rate of 5 cm d'1. Mean 

effluent values were 11 mg L"1 for BOD? and 6.8 mg L’1 for NH4+. Total N removal 

with bulrush and reeds was 80% while ammonium removal varied with plant species: 

Scirpus sp. 94%, Phragmites sp. 78%, Typhia sp, 28%, and unplanted beds 11%. 

Most papers suggest that there is insufficient oxygen in a wetland environment 

to sustain nitrification, and the effluent NH4+ concentrations reported support this 

assumption. Gersberg et al. (1989b), however, calculated that the bulrush plants in their 

study had supplied the bed with 7.2 g of oxygen per square meter of bed, more than 

enough to remove both BOD and NH4+. It is possible that the low NH4+ removal 

efficiencies reported (Sikora et al., 2005; Neralla et ah, 2000; Morris and Herbert, 

1997; White, 1995; and Zhu and Sikora, 1995) are due to low influent concentrations 

(20 - 40 mg L'1) favoring organisms adapted to oligotrophic conditions, and that at 

higher influent concentrations removal efficiencies are greater due to a consistent 

substrate source. 
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Wastewater treatment N removal is by: i) degradation of organic compounds; ii) 

oxidation of NH4+ to NOs"; and iii) reduction of NO3' to N2v Efficient oxidation of 

ammonium (nitrification) is typically considered to require aerobic conditions, while 

denitrification is thought of as an anaerobic process. Mechanized wastewater treatment 

plants are aerobic treatment plants, with aeration provided by mechanical means (i.e. 

bubble diffusers, pumping to trickling filters, rotating biological contactor, etc). 

Aeration in any form is expensive, and if nitrate accumulates it is difficult to treat in the 

aerobic environment, but the accumulation of nitrite has been shown to have inhibitory 

effects on nitrification, denitrification, and biological phosphate uptake; and 

accumulation of NO2’ may promote the release of N20 (a greenhouse gas) from 

wastewater (Nielson et al., 2004). 

The current focus in wastewater treatment is on partial nitrification, (oxidation 

of NELf to NO2’) followed by the anammox process, as way to reduce energy 

requirements and therefore the economic costs of wastewater treatment. In the 

anammox process bacteria utilize ammonium and nitrite in a 1:1 ratio to form N2 gas 

NH4+ + NOT N2 + 2H20 

Bacteria capable of carrying out the anammox reaction are a new, deep branching group 

within the Planctomycetales including: Candidatus Brocadia anammoxidans which 

shows less than 80% 16S rRNA sequencing similarity to other planctomycetes; and 

Candidatus Kuenenia stuttgartiensis (<91 % sequencing similarity) and ‘‘several” close 

relatives of K. stuttgartiensis (>98% sequencing similarity) (Pynaert et al., 2003). 

Anammox bacteria have a specific anaerobic oxidation rate 50 times faster than that of 

aerobic ammonia oxidizing bacteria and Ks values for ammonia and nitrite less than 5 
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uM (Sliekers et al., 2005). These bacteria have been identified in biofilms from 

wastewater treatment plants (Nielson et al., 2005), but have also been identified in 

natural sediments (Carter et al., 1995; Thamdrup and Dalsgaard, 2002; Dalsgaard et al., 

2003). 

Thamdrup and Dalsgaard (2002) observed a nitrite accumulation at two sites 

along the Baltic-North Sea transition. These researchers considered that it was likely 

that the nitrite was the oxidant for ammonium while the reduction of nitrate to nitrite 

was coupled to the oxidation of organic matter in the sediments. This would be 

analogous to the transformations occurring in wrastewater reactors exhibiting the 

anammox process. Using ''N-labeled nitrate (90% labeled) and no labeled ammonium, 

these researchers determined that up to 70% of the labeled N w'as in 29N2; and that this 

distribution deviated strongly from the expected ratio for conventional denitrification 

wThich would have produced less than 10% ~ N2 through random isotope pairing. Most 

of the 14N originated from ammonium (Thamdrup and Dalsgaard, 2002). 

In a similar study in the anoxic water column of Golfo Dulce, Costa Rica, 

Dalsgaard et al. (2003) used bN labeled bNH4~ but not labeled N02‘ or NO3'. The 

bacteria produced i4NbN but essentially no bNbN. When lDN03* was used, however, 

both 14N1dN and bN1:>N were produced, with production rates increasing with increased 

incubation time due to the gradual build up of bN02‘ in the nitrite pool. These 

experiments clearly demonstrate that nitrite is the electron acceptor for anammox and is 

a free intermediate in N2 formed by denitrification while added 15N03* must be 

transferred into the nitrite pool before bN-labeled N2 can be produced (Dalsgaard et al., 

2003). 
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In wastewater treatment the anammox process is being studied either in the 

CANON reactor (Completely Autotrophic Nitrogen removal Over Nitrite) or the 

SHARON process (Single-reactor High-activity Ammonium Removal Over Nitrite). 

CANNON reactors are operated at O2 limiting conditions in combination with high 

ammonium concentrations (5 mM), which prevent the complete oxidation of NO2' to 

NO3' (Nielson et al., 2005). The SHARON process is run at temperatures higher than 

ambient (30-35°C), at pH 7-8, with cell residence time of 1 day. These conditions create 

an environment where AAOB (aerobic ammonia oxidizing bacteria) can maintain 

themselves, and NOB (nitrite oxidizing bacteria) are washed out, resulting in the 

production of nitrite only (Pynaert et al., 2003). The combination of the SHARON 

process and anammox would mean complete autotrophic nitrogen removal. To 

demonstrate that these processes could be combined, anaerobic oxidizing bacteria 

(ANAOB) were added to a continuously operation SHARON process in a rotating 

biological contactor (RBC). The RBC had a total reactor load of 52.32 g N/day with 

89% removal (N loss of 46.56 g N/day). Ammonia was not detected (i.e. no 

volatilization), N2O production was only 3.1% of N loss and NO was even lower 

(0.0003% of N loss). Batch tests under anoxic conditions showed simultaneous removal 

of ammonium and nitrate, and 99.7% of the N loss was production of NN. The remaining 

0.3% was NNO production that occurred during the first hour, and then no more was 

1 # 

produced. The RBC was removing N at an average of 7.4 g N/m" d' and translates into 

a ammonium surface loading rate of 8.3 gNm‘ d' attributed to autotrophic organisms, 

because no NH3 volatilization occurred and because the synthetic wastewater had no 

carbon source. The AAOB and NOB compete for oxygen; the ANAOB and the NOB 
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compete for nitrite and the AAOB and the ANAOB compete for ammonium. When 

ammonium concentrations are high the AAOB produce nitrite, which the ANAOB 

combine with additional ammonia to produce nitrogen gas and a small amount of 

nitrate. NOB activity under these conditions was negligible. (Pynaert et al., 2003). 

Robertson et al (1988) reported that many of the common denitrifying bacteria 

in soil are also heterotrophic nitrifiers. For example Thiosphaera pantotropha 

simultaneously converts ammonium to nitrite, nitrite to nitrogen gas and oxygen to 

water (as shown below), provided a suitable electron donor (i.e., acetate, succinate, etc.) 

is available as shown below (Robertson et al., 1988). 

nh4+-»nh2oh -»N02‘ 

no2 n2o n2 

o2 h2o 

This means that under fully aerobic conditions, these organisms convert ammonium to 

nitrogen gas without accumulating nitrite, and therefore not making nitrate. Rates are 

even faster under low DO conditions (<30% air saturation) Based on these results, 

Robertson et al. recalculated heterotrophic nitrification from published studies (Table3), 

showing that in some cases heterotrophic nitrification rates were only an order of 

magnitude less than the autotrophs. When combined with the fact that growth rates of 

heterotrophs may be as high as an order of magnitude greater than growth rate of 

nitrifiers, the significance of heterotrophic nitrification becomes much greater. 
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Table 3. Nitrification rates calculated from published results of batch culture 

experiments. For ease of comparison results were recalculated for ammonia if the 

original experiments used other nitrogen compounds, (from Robertson et ai, 1988) 

Organism 

Activity 

nm of NH3 min'1 

mg dry wt'1 

Reference 

Pseudomonas aeruginosa 70-90 Ralt et aL, 1981 

P. denitrificana 2.6 Castignetti and Hollocher, 1984 

P. aureofaciens 2.8 Castignetti and Hollocher, 1984 

Alcaligenes faecalis 11.9 Castignetti and Hollocher, 1984 

Alcaligenes sp. 33 Castignetti et al., 1985 

Arthrobacter sp. 0.8 Verstraete and Alexander, 1972 

Thiosphaera pantotropha 35.4 van Niel et al., 1987 

Nitrosomonas europae 
* 

50-100 Drozd et al. 1978 

Nitrosomonas sp 590-2,300 Goreau <2/. 1980 
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CHAPTER 3 

SYSTEM PERFORMANCE 

Traditionally, the nitrogen cycle has been considered to have two basic 

components; nitrification, the conversion of ammonium to nitrate in a two step process 

in the presence of oxygen; and denitrification, the anaerobic conversion of nitrate to 

nitrogen gas by as many as five steps. Incomplete denitrification has been identified as a 

source of the greenhouse gases referred to collectively as NOx. As advances in 

microbiology have occurred it has come to light that the organisms associated with 

nitrification and denitrification are also capable of nitrification by the nitrite pathway 

(Wyffels et al., 2003), anaerobic ammonium oxidation (Dalsgaard et al, 2003), aerobic 

denitrification (Carter et al, 1995), and anammox. Anammox is the conversion of 

ammonium and nitrite directly to nitrogen gas (NH4" + NOT N2 + 2 H20) (Dalsgaard 

et al, 2003). 

For Nitrosomonas europaea, as with other nitrifying bacteria, ammonium 

oxidation (nitrification) is the preferred mechanism to gain energy. These bacteria can 

grow, however, under oxic or anoxic conditions using hydrogen or organic compounds 

as electron donors, and nitrite as electron acceptor (Schmidt et al, 2004). In natural 

systems, as well as in wastewater treatment processes, oxygen is often limited, and 

current studies are focusing on the presence of bacteria that oxidize ammonium to 

nitrogen gas by the anammox process (Carter et al, 1995, Thamdrup and Dalsgaard, 

2002, Dalsgaard et al, 2003). Nitrification-anammox (NH4+ NOT; NH4+ + NOT 

N2) results in up to 62.5% reduction in the oxygen requirement for nitrification because 

only half of the ammonium needs to be oxidized and the carbon requirement is 
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completely removed because NH4 is the electron donor for nitrite reduction (Wyffels et 

a/., 2003). For wastewater treatment plants, this could represent a huge decrease in cost 

(electrical and chemical) as well as reduced greenhouse gas production (NO, and N20). 

Several bacteria in the order Planctomycetales, that are capable of carrying out the 

anammox process, have been identified in biofilms from wastewater treatment plants 

(Nielson et al, 2005). Similar bacteria have also been identified in natural sediments 

(Dalsgaard et al., 2003, Kuypers et al., 2003). While the focus of this study was not to 

determine if the anammox process was occurring in the wetland cells, the recent 

research brings that possibility to the table for discussion. 

The classic literature of wetland assessment indicates that nitrogen removal in 

artificial wetlands has been of limited success, usually in the range of 70 to 80% 

removal of ammonium with an increase in nitrate (Reed, 1995; Kadlec and Knight. 

1996, Gersberg et al., 1989b). The artificial wetland, which was the focus of this study, 

has performed much better than literature values would predict (95-99% reduction in 

ammonium, 1-3% increase in nitrate) since it became operational in 2001. There have, 

however, been periods when nitrogen removal was not at acceptable levels. The current 

study was undertaken to determine the probable cause(s) of these lapses in performance. 

Wastewater parameters measured for this study included ammonium, nitrate, nitrite, and 

CBOD5. Additionally, redox probes were placed at three depths within the wetland cells 

to determine if the probes could be used as a diagnostic tool in assessing plant and or 

microbial health and activity. 
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Methods and Materials 

Site 

The Zumtobel Staff Wetland is located in the town of Highland, NY on the 

western bank of the Hudson River approximately 90 miles north of New York City. The 

Staff system began receiving wastewater in June 2001. This system was constructed 

using Top Loading Vertical Flow Submerged Bed Treatment System (TLVFSBTS) 

technology (Fig. 5). 

Primary 
Settling 

Figure 5. Top loading vertical flow submerged bed treatment system (TLVFSBTS, Pat. 

Pending) cross sectional view showing control boxes. 

The system consists of 4 treatment cells, two trains (parallel operation) of 2 beds 

in series. Each bed is 237 nY (950 m‘ total). Two beds (1 train) are planted with Reed 

Canary grass (JPha laris arundinacea) and the other train with common reed (Phragmites 

-> 1 1 

communis). The design flow rate was 39 nV d' . The current mean flow rate is 7.5 nYd' . 

The current flow pattern is four beds in series, with all wastewater passing through the 

two Canarygrass beds before being pumped to the reed beds. 

The treatment system is a part of the Highland, NY Sewer District and 

discharges to two small man-made ponds, the second of which discharges to an 

intermittent stream. The wetland system is subject to a NY SPDES permit. Permit levels 

for the Staff wetland system are BOD?: 5 mg L'1; TSS: 10 mg L'1; NH4+: 2.2 mg L1; 

and P04J': <1 mg L'1, respectively. 
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Media Type 

The media is processed black shale coarse sand with a uniformity coefficient of 

5.3 and no fines (Fig. 6). Mean bulk density at the surface, as tested in November 2006 

is 1.08 ± 0.01 Mg m'\ The mean water content at 15 cm-depth is 0.15 ± 0.01 g g'1 

(water: soil). 

10.00 1.00 o.io o.oi 

Particle Size (mm) 

Figure 6. Particle size distribution for wetland media, Zumtobel Staff Lighting, 

Highland, NY. 

Monitoring Data 

Samples were collected weekly (April - December) or bi-weekly (January - 

March) and routine wastewater parameters were measured. These consisted of CBODs 

by Standard Method SM 507 (American Public Health Association et al., 2003); and 

ammonium, nitrite, and nitrate by HACH methods 8075 (Nessler method), 8507 

(diazotization NED rapid liquid method), and 8171 (cadmium reduction method), 

respectively (HACH Company, Loveland, CO). CBODs samples were replicated 5 

times, while all nitrogen measurements were done in triplicate. 

Influent samples were taken from the “distribution” box (D-Box) at the head of 

the four-wetland cells (Figure 7). This D-Box allows the influent to be: 1) split and sent 
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Figure 7. Schematic diagram of the Staff wetland after spring 2006 recycle tank 

installation. Arrows indicate direction of flow; dashed gray lines indicate alternative 

flow paths; and dash-dot-dash arrow indicates overflow pathway. 
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to both GB1 and PB1 in approximately equal portions, or 2) for all flow to be sent to 

either GB1 or PB1. During the first four years (2001 - 2004) the system operated as two 

parallel systems, with the effluent being recycled through the system or sent to the 

existing leachfield. System flow was GB1 to GB2 to effluent tank and PB1 to PB2 to 

effluent tank. In May 2005 system operation was converted to four beds in series, using 

the “effluent tank” to recycle effluent to PB1 (system flow was GB1 to GB2 to effluent 

tank; effluent tank to PB1 to PB2 to effluent tank, with the effluent tank receiving 

inflow from both GB2 and PB2). During the spring of 2006, a new recycle tank was 

added to the system so that system flow was from GB1 to GB2 to recycle tank, to PB1, 

to PB2, to effluent tank to discharge. Monitoring samples were also taken from the 

control box of each bed and are referred to as GB1, GB2, PB1 and PB2. 

Redox Probes 

Redox probes were constructed by the method of Vepraskas and Bouma (1976) 

by soldering 1.25 cm platinum wire (20 gauge) to copper wire (12 gauge). The copper 

wire was sealed inside a 0.67 cm PVC pipe using epoxy (Loctite, Corp.) to make the 

probes watertight and to seal the platinum/copper junction in epoxy. Five replicate 

probes were installed at 15-, 30-, and either 45- or 60 cm-depths within each wetland 

cell and within 25 cm of a salt bridge. Salt bridges were made from 1.25-cm PVC pipe, 

filled with saturated KC1 in 3% agar (Veneman and Pickering, 1983). Holes were drilled 

in the salt bridges at 15, 30, 45, and 60 cm. Redox potentials were measured with a 

calomel electrode connected to a digital multi-meter (Radio Shack, #22 - 813). Redox 

potentials were taken weekly during the growing season, biweekly during the remainder 

of the year and were corrected according to Bates (1973). 
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Statistical Analysis 

All system performance data were subjected to an analysis of variance (ANOVA) using 

either PROC ANOVA or PROC GLM of the SAS System, Version 9.1.3 (SAS Institute, 

Inc., 2004). When indicated by the ANOVA F-Test, means were separated by use of 

Duncan’s New Multiple Range Test. 

Results and Discussion 

Wetland influent and effluent samples from each cell were analyzed for 

ammonium, nitrate, nitrite (Appendix A), and CBOD5. Table 4 provides summary data 

for these measurements. The additional nitrogen analyses were performed for use with 

calibrating the model (Chapter 5) but they also increase the understanding of the 

nitrogen transformations within each bed and may shed light on the possible microbial 

processes occurring within the wetland cells. 

Table 4. Influent and effluent nitrogen concentrations in samples from August 2005 

through December 2006. 

Average Maximum Minimum 
Parameter Sample 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 CJQ

 n
 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Ammonium' Influent 170.8 ±26.0 265.0 94 
GB1 Effluent 49.9 ±17.4 93.3 13 
GB2 Effluent 30.4 ±9.2 58.0 8 
PB1 Effluent 10.8 ±7.8 34.7 0 
PB2 Effluent 2.2 ± 1.8 10.0 0 

Nitrate; Influent 3.1 ±2.0 11.2 0 

— 
GB1 Effluent 11.2 ±5.1 29.2 1.2 
GB2 Effluent 10.2 ±5.1 25.3 0 
PB1 Effluent 8.25 ±4.6 24.2 0 
PB2 Effluent 4.13 ±2.5 25.7 0 

Nitrite' Influent 0.015 ±0.008 0.102 0.000 
GB1 Effluent 0.380 ±0.364 2.204 0.010 
GB2 Effluent 0.023 ±0.024 0.191 0.002 

— 
PB1 Effluent 0.021 ±0.016 0.135 0.002 
PB2 Effluent 0.002 ±0.002 0.019 0.000 

’ n = 153 for influent, GB1 and GB2; 105 for PB1; and 120 for PB2 

* n = 150 for influent, GB1 and GB2; 102 for PB1; and 117 for PB2 
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Carbonaceous Biochemical Oxygen Demand 

Influent CBOD5 ranged from 103-421 mg L’1 with a mean concentration of 259 

mg L"1. Low values correspond to times when the settling tanks had been pumped, and 

extreme high values correspond to shortly before pumping occurred. Influent samples 

and samples from GB1 were diluted to obtain repeatable and valid measurements. 

Samples from GB2, PB1 and PB2 were run undiluted, and valid results were obtainable 

from GB2 only. During the fall and early winter of 2005-2006 samples from both 

Phragmites beds failed to exhibit the 2 mg L'1 decrease in DO required for a valid 

CBOD5 test, so analysis of these samples was discontinued. Effluent from GB1 

exhibited a seasonal trend in CBOD5 reduction (Fig. 8), with concentrations below 5 mg 

L'1 (Permit level) during the growing season, but rising to as high as 18 mg L'1 during 

the winter and early spring. Effluent from GB2 showed the same seasonal trend, but 

remained below 4 mg L'1 throughout the monitoring period. 

Figure 8. Mean five-day carbonaceous biochemical oxygen demand for effluent from 

GB1 and GB2 between July 14. 2005 and December 14, 2006. 
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Ammonium 

Influent and effluent ammonium concentrations for GB1 and GB2 are presented 

in Figure 9. It was possible to collect a sample from these two beds every week that 

sampling occurred. Data for PB1 and PB2 are presented in Appendix A because during 

most of the summer and fall it was not possible to obtain an adequate sample from PB1. 

It is clear that during some of this time there was little or no outflow from either bed. At 

other times it was possible to collect a sample from PB2, so obviously flow was going 

through PB1 into PB2, just not at the time of sampling. Additionally, since overflow 

from the D-Box at the head of the system was shunted to PB2 during periods of peak 

flow, an accurate method for establishing what the PB1 influent ammonium-N was not 

attainable. This was not considered to be a problem with nitrate or nitrite, as any 

influent bypass would not have introduced appreciable amounts of either. 

Regardless of inflow ammonium concentration, effluent from GB1 was less than 

50 mg L'1 during the late growing season, early winter (August - February) but rose to 

70-80 mg L'1 during the spring and summer (March - July). Effluent from GB2 

followed the same seasonal trend with fall/winter concentration ranging from 20-30 mg 

L'1 and spring/summer concentrations remaining between 40 and 50 mg L'1. This 

seasonal pattern can be attributed to the increased oxygen available in the root zone 

from actively growing plants. The delay in return to fall/winter performance levels can 

be explained by the growth habit of cool season grass species. During times when top 

growth is favored over root growth, performance suffered. The large decrease in 

ammonium concentration in GB1 (70.8% reduction) as compared to GB2 (39.2%) may 

be due to a smaller microbial population in GB2 (see Chapter 4). Evapotranspiration 
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Figure 9. Mean influent and effluent ammonium concentrations for GB1 (A) and GB2 

(B) from August 1, 2005 through December 14, 2006. 
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from the plants and evaporation from the media result in periods of “no flow”, where 

influent volume to the system cannot keep pace with water loss due to 

evapotranspiration. Since daily inflow remains essentially constant, the first bed in the 

series (GB1) would receive normal flow. Volume loss in GB1, however, would result in 

reduced flow to the second bed (GB2). The lower flow to the second bed may have 

caused a decrease in substrate for the nitrifying organisms and resulted in reduction of 

performance (Kemp and George, 1997; Neralla et at., 2000). 

Nitrate 

Effluent nitrate concentrations for all beds are shown in Figure 10. System 

influent nitrate concentrations (Appendix A) were low (3.1 ± 2 mg L"1) as would be 

expected in primary effluent, but may have been skewed to the high side due to the 

presence of suspended solids in the samples. It was necessary to use undiluted samples 

to obtain enough nitrate to measure, and samples were zeroed against untreated influent. 

Flow to the system from the anaerobic settling tank was not constant and was 

influenced by both time of day and day of the week. As such, it is possible that 

periodically influent to the system reflected some denitrification occurring within the 

settling tank. 

With notable exceptions (22 and 28 September, and 15 December 2005) nitrate 

concentrations leaving PB2 did not exceed 10 mg L'1 (Primary Drinking Water 

Standard). The highest mean nitrate concentration (25.7 mg L'1) leaving PB2 during the 

course of the study was on October 5, 2005. The October 5th sample was the second 

sample collected after an absence of effluent from either PB1 or PB2 for at least 3 

months. Samples were analyzed by the cadmium reduction method, which may have 
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Figure 10. Mean nitrate concentrations for GB1 and GB2 (A) and PB1 and PB2 (B) 

from August 1, 2005 to December 14, 2006. 
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interferences caused by the presence of iron, copper and other metals (American Public 

Health Association et al., 2003). Samples were analyzed for total iron (the most 

prevalent of the interfering metals) during May 2006 and iron was determined to be 

nondetectable in the effluent of all four beds (data not presented). 

Nitrite 

Periodic spikes in nitrite concentration occurred in GBland PB1 during the fall 

of 2005 (Figure 11). These spikes were more sustained in PB1 than GB1 during this 

time period and did not appear to be followed by spikes in GB2 and PB2 as would be 

expected if the nitrite had been “flushed through” the entire system. Nitrite 

concentrations exceeded 1 mg L'1 in GB1 during most of the late winter and spring of 

2006. Spikes in nitrite concentration did occur in GB2 and then PB1 following periods 

of heavy rain in April and May 2006 indicating that in this case nitrite probably was 

being “flushed” from GB1 into the other beds, but as with nitrate concentrations, 

effluent leaving PB2 were never higher than 0.02 mg L'1. The seasonal increase in 

nitrite exhibited in GB1 during fall 2005 was repeated in fall of 2006. If nitrifying 

bacterial growth is represented by Monod kinetics, under steady-state conditions nitrite 

accumulation has been shown to be insignificant; thus the rate limiting step is assumed 

to be the oxidation of ammonium (Benefield and Randall, 1980). This would suggest 

that the dramatic increase in nitrite concentration exhibited in GB1 was the result of a 

major disturbance in the nitrite oxidizing population (i.e. Nitrobacter, Nitrospira, etc.). 

While this is definitely a possible explanation for this phenomenon, it seems strange 

that the suggested decrease in nitrite oxidation begins at the same time that there is a 

seasonal increase in total microbial population along with increases in both nitrification 
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potential and denitrifying enzyme activity (see chapter 4). An alternative explanation 

would be that during the summer months, the apparently temperature sensitive 
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Figure 11. Mean nitrite concentrations for GB1 (A) and GB2, PB1. PB2 (B) from 

August 1, 2005 to December 14, 2006. 
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anammox reactions are occurring, consuming nitrite and ammonium in a 1.32:1 ratio 

(Schmidt et ah, 2002, Wvffels et a/., 2003), but when temperatures begin to drop in the 

fall, the anammox reactions first slow, and then stop completely when temperatures 

drop below 6-7°C (Thamdrup and Dalsgaard, 2002). 

Redox Measurements 

In GB1, the corrected mean redox potential at the 15-cm depth was 440 mV, 

dropping below 375 mV only six or seven times during the 18-month study (Figure 12). 

Probes at the 15-cm depth in the other 3 beds (Figures 13, 14, and 15) were subject to 

the most variation in potential from one measurement to the next. This was indicative of 

the rapidly changing moisture content at this depth. The hydraulic regime for all of the 

beds kept the phreatic level at or below the 15-cm depth (controlled by the height of the 

overflow pipe in the control box). Evaporation from the exposed sand surface in the 

Phragmites beds and evapotranspiration from the plants in all beds would drop the 

phreatic level significantly during the summer. Similarly, rain events would raise the 

level quickly. The shallowness of the depth, and the lack of a bentonite seal around the 

probes also contributed to variability of readings at this depth. 

The potential in GB1 was usually lower at the 30-cm depth (mean 195 ± 85 mV) 

than at the 60-cm depth (mean 289 ± 43 mV) indicating more microbial activity and 

less free oxygen at the 30-cm depth. Potential at both depths was consistently below the 

threshold levels for nitrate reduction. A similar trend was seen in both GB2 and PB2 

during the calendar year 2006. For PB2, the readings at the 30- and 45-cm depth during 

the late summer and fall of 2005 were virtually indistinguishable from each other. In 

GB2, however, the potential was higher at both the 30 and 45-cm depths during 2005 
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than at these depths during the summer of 2006. This change in redox potential 

mirrored a noticeable lack of vigor, and browning of the leaf blades in GB2 during 

summer 2006. 

Figure 12. Redox potential in GB1 from July 1, 2005 to December 22, 2006. 

600 

Figure 13. Redox potential in GB2 from July 1, 2005 to December 22, 2006. 
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Figure 14. Redox potential in PB1 from July 1, 2005 to December 22, 2006. 
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Figure 15. Redox potential in PB2 from July 1, 2005 to December 22, 2006. 
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PB1 did not have deep redox probes during 2005. In April 2006 all probes in PB1 were 

moved to a new location where it was possible to install probes at the 60-cm depth. In 

the new location less variability was seen in the replicate readings, than was exhibited 

during 2005. The probes at the 60-cm depth took approximately 2 weeks to stabilize at 

less than 100 mV, dropped to -50 mV by May where they remained until early 

September when they dropped to -150 mV. There was very little variation in reading at 

this depth once the rains started in September, while the shallow probes in this bed 

continued to indicate lack of moisture (400 mV). 

Conclusions 

As indicated by most published evaluations, treating CBOD5 to permit levels was not 

difficult to accomplish, although lack of carbon source (CBOD5) for other 

microorganisms in GB2 may be a problem. Ammonium oxidation in GB1 was greater 

than in GB2 (based on percent reduction) and this trend was not influenced by lack of 

plant vigor during 2006. Nitrite accumulation in GB1 appeared to be seasonal, and not 

directly related to nitrite oxidation. Neither nitrite nor nitrate leave the system at levels 

that might be considered environmentally significant (i.e. both are below primary 

drinking water standards). Although redox measurements appear to be indicative of 

microbial activity within the beds, it is unclear if the costs of the probes (both time and 

money) are justified. 
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CHAPTER 4 

MICROBIAL ANALYSIS 

Introduction 

Discussion of microbial processes in the artificial wetland literature generally 

falls into two categories, pathogen removal efficiencies (Gersberg et al., 1989a; Ulrich 

et al., 2005; Song et al.,2006) and discussion of microbially mediated pollutant removal 

(typically nitrogen and BOD). Pollutant removal is the parameter measured; results and 

discussion are focused on removal efficiencies (i.e. influent ammonium concentration, 

effluent ammonium concentration, % removal etc.) (Gersberg et al., 1989b; Kemp and 

George, 1997; Kantawanichkul et al., 2001); and there is no discussion of the 

microorganisms responsible for the reductions. Few studies have undertaken significant 

analyses of the actual microbial communities, or measurement of the microbially 

mediated process themselves. One published study attributed lower microbial 

populations, which were actually quantified; to reduced rooting of Phalaris 

arundinacea (20-30-cm) as compared to Phragmites sp. where roots were found to a 

depth of 60-80-cm (Ottova et a/., 1997). The lack of rooting depth in the Phalaris bed in 

Chmelna wetland may have been an artifact peculiar to that system (i.e., media type or 

other environmental factor). At the Staff Wetland in Highland, NY two beds are planted 

with Phalaris arundinacea and they have typically out performed the Phragmites beds. 

This would indicate if not a more extensive root system, then a greater ability to provide 

oxygen to the microsites. 

The current study was undertaken to elucidate some of the factors responsible 

for the range and fluctuations of nitrification and denitrification within a top loading 
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vertical flow submerged bed treatment system (TLVFSPTS). Heterotrophic potential, 

nitrification potential, denitrifying enzyme activity, and total microbial biomass were 

evaluated throughout the growing season to determine environmental factors 

influencing the processes but not to determine which specific organisms might be 

responsible. The Zumtobel Staff Wetland is located in the town of Highland, NY on the 

western bank of the Hudson River approximately 90 miles north of New York City. The 

Staff system began receiving wastewater in June 2001. This system was constructed 

using TLVFSBTS technology, details of which are to be found in chapter 3. 

Methods and Materials 

Sampling 

Samples for each of the microbial analyses were collected with a Dutch auger at 

a depth of 15 cm. Only the portion of the sample at the very tip of the auger was used. 

Samples were collected from random locations within each wetland cell, and no sample 

was collected from the same place twice. Five samples were collected on each sampling 

date. Analyses were repeated on a monthly basis. 

Heterotrophic Potential 

Heterotrophic potential measurements were modified from those of Wright and 

Hobbie (1966), Behera and Wagner (1974), and Scow et al. (1986), and are summarized 

below. Media samples were collected from 15-cm depth at 5 random locations within 

each wetland cell and transported to the lab on ice. Ten-gram sub-samples were placed 

into 125-mL Erlenmeyer flasks and allowed to acclimate to incubation temperature for 

12 hours prior to initiation of each experiment. Two and a half mL of 1M NaOH 

solution were placed in a 7-mL trap within each flask. Samples received 1 mL glucose 
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solution (2 mg mL-1) amended with l-I4C-D-Glucose- (46.6 mCi mmol-1; Sigma 

Chemical, St. Louis, MO) to provide 1.8 x 10$ dpm mL-1. Microbial metabolism was 

stopped by the addition of 1 mL 0.5 M sulfuric acid injected through the rubber 

turnover septum stopper. Samples were incubated for 20, 20, 30, 60, 90, and 180 min at 

27, 20, 16, 12, 8, and 4°C, respectively. A 2-mL aliquot from each trap was added to 18 

mL of Scintiverse BD scintillation cocktail (Fisher Scientific) and placed in the dark, at 

room temperature, overnight, to reduce chemiluminescence. Samples were counted 

using a multi-purpose scintillation counter (Model LS 6500; Beckman-Coultur, 

Fullerton, CA). 

Potential for glucose assimilation and respiration was expressed as VMAX for 

total uptake in micrograms per gram of wetland media per hour (Wyndham and 

Costerton, 1981). Preliminary experiments were conducted with media from a single 

bed at each incubation temperature to determine incubation duration. Incubation times 

were adjusted so that no more than 3% of the substrate was metabolized during the 

course of the experiment. To determine if differences in heterotrophic potential existed, 

the experiment was repeated using media from each of the four beds. 

Microbial Biomass 

Microbial biomass (carbonmitrogen ratio) was calculated from ninhydrin 

reactive nitrogen values (Joergenson and Brooks, 1990) obtained following 

simultaneous fumigation and soil extraction (Fierer, 2003). Five media samples (A-E) 

from each wetland cell (GB1, GB2, PB1, PB2) were isolated, split in half, and 5-grams 

of each isolate weighed into 20-ml scintillation vials. Samples were extracted with 15 

mL of 0.5 M potassium sulfate (Doyle et al., 2004). One set of the isolated samples 
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received 0.5 mL of ethanol-free chloroform prior to placement on either a reciprocal 

shaker (75 strokes per minute) or an orbital shaker (50 revolutions per minute) at 

ambient temperature for 4 hours. Samples were then filtered through Whatman #1 filter 

paper and the filtrate stored at 4°C for analysis. Extracting solution with and without 

chloroform addition was also filtered to determine the background concentration of 

nitrogen in the extracting solution and on the filter paper. Following filtration a 0.75 mL 

aliquot of each sample was combined with 1.75 mL of citric acid buffer (pH 5) and 1.25 

mL ninhydrin reagent (0.11 M in 3:1 DMSO to lithium acetate buffer {4 M, pH 5.2}). 

Samples were then placed in a “vigorously boiling” water bath for 25 minutes; cooled to 

room temperature; diluted with 4.5 mL of ethanol-water (50:50); mixed; and had 

absorbance read at 570 nm on a Hitachi U-2000 UV-VIS Double Beam 

Spectrophotometer (Hitachi Instruments, Schaumburg, Illinois). 

Ninhydrin reactive nitrogen was calculated using Eq.[5]; where NRN = 

ninhydrin reactive nitrogen (mg kg"1), r = regression coefficient, A = sample 

absorbance, V = sample volume (ml) and W = sample weight (g). 

NRN = (rA -V)- W'1) [5] 

Background absorbance values were subtracted from sample absorbance when needed 

(i.e., when extracting solution/filter paper absorbance * 0). The value calculated for a 

nonfumigated sub-sample was subtracted from the value calculated for the fumigated 

sub-sample (i.e., NRN for GB1A non fumigated would be subtracted from NRN for 

GB1A fumigated). The mean of the difference was calculated and then multiplied by 

5.0 to convert to total microbial nitrogen. Total microbial carbon was calculated by 

multiplying the NRN value by 20.6 (Joergenson and Brooks, 1990). 
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Nitrification Potential 

Five replicate samples (15 g moist media) were weighed into individual 125-mL 

Erlenmeyer flasks to which 45 mL 0.5 M phosphate buffer (pH between 7.0 and 7.2) 

and 0.1 mL of 0.25 M ammonium sulfate solution were added. Flasks were placed on 

either a reciprocating shaker (75 strokes per minute) or an orbital shaker (50 revolutions 

per minute) and 0.5 mL of 1 M chlorate solution was added per flask to inhibit 

conversion of nitrite to nitrate (Schmidt and Belser, 1994). A 5-mL aliquot was 

removed at ten minutes, and then hourly for 6 to 8 hours. Reactions were stopped by the 

addition of 0.06 ml merthiolate (1% weight:volume) and allowed to settle overnight 

prior to nitrite analysis by the modified Griesse-Ilsovay method (Mulvaney, 1996). 

Sample concentrations were adjusted to reflect the reduced volume but constant solid 

mass remaining within the flask following each aliquot withdrawal. Nitrification 

potential rates (NPR) were calculated with Eq. [6], 

NPR(ng kg'1 h'1) = (A,- A0) r V, • W'1 ■ 1000 • tf1 [6] 

Where Ao= absorbance at 10 min 

Vo = volume at 10 minutes 

i = 1,2,3... counts sampling times 

At = absorbance at time t; 

r = regression coefficient 

Vt= volume at t; (mL) = Vo - (v • i) 

v = volume of sample aliquot (5 mL) 

W = sample weight (g) 

tj = time of the ith sample (hrs) 

Denitrifying Enzyme Activity 

Prior to denitrifying enzyme activity (DEA) analysis 125-ml Erlenmeyer flasks 

were permanently numbered and the volume of each determined by taring the balance 

with the empty flask on the balance, filling the flask with water, inserting the rubber 

turnover septa stopper with a needle through the septa to allow the excess water to be 
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ejected as the stopper was inserted, drying the flask, and weighing the full flask. These 

flasks were used for all DEA experiments. For DEA analysis media samples (25 g) 

were placed into premeasured flasks along with 10 mL of “feed” solution (1 mM 

glucose as carbon source, 5 mM potassium nitrate as nitrate source, 0.25 g L'1 

chloramphenicol to inhibit microbial division). Flasks were capped with gas-tight 

stoppers and made anaerobic by flushing with N2 gas for 4 minutes. Acetylene was then 

injected into each flask to achieve a final concentration of 10%. Flasks were placed on a 

reciprocal shaker (75 strokes per minute) to incubate for 2 hours. Headspace was 

sampled by gas tight syringe every 30 minutes and stored in 4-ml glass shell vials fitted 

with rubber turnover septa stoppers which, had been evacuated for 2 minutes at 8 kPa 

(600± mm Hg). Nitrous oxide was analyzed using a Shimadzu GC 17A gas 

chromatograph equipped with a JNi electron capture detector (Shimadzu Corporation, 

Columbia, MD), and a 2-mm x 2-m Poropak Q stainless steel column (Supelco, 

Bellefonte, PA). The carrier gas was 95% argon with 5% methane. Flow rate was 40 

mL min'1, column temperature 90°C and detector temperature 240°C. Nitrous oxide 

produced was calculated using Eq. [7] through Eq.[15] 

where: Va = volume of C2H2 injected into flask (0.015 L) 

Vh = volume of flask headspace (~ 0.135 L) 

V] = volume of primary (flask sampling) syringe (0.002 L) 

Vw= volume of water in the flask (water added + water content of sample) 

mj = pmol of N20 injected for the ith sample = (peak area • regression 

coefficient) 
i = 1,2,3,4 counts sampling time 

kncc = unitless Henry’s constant for N20 (pmol Lwater’1) • (pmol Lgas"1)"1 

Fi = fraction of headspace removed during ith sampling = Vj * (Vh + V])'1 [7] 

P0 = Initial pressure in the flask (atm.) = (Va + Vh) • Vh’1 [8] 
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[9] Pi = Pressure in flask after the ith sample is withdrawn - Pj-iVh * (Vh + Vi) 

O; = Fraction of N20 withdrawn from flask during ilh sampling that 
remains in the primary syringe after depressurization = 1 • Pf [10] 

f; = fraction of headspace moles injected into 

vial during the ith sampling = Fi • <f>i [11] 

H] = pmol of N20 actually in the headspace 
immediately before the ith sample = 5 mi (Fi • Oj)'1 [12] 

Qi = pmol of N20 dissolved in water in the flask 

just before the ith sample = Hi • (Vw * Vh'1) • knct [13] 

Mi = pmol of N20 that would have been present in the headspace 

at the time of the iTh sample if no prior samples had been taken 

Mi = Hi for i >1, Mj = Hi + F^Mm [14] 

Ti = Total umol of N20 created within the flask by the time of 

the ith sample = Mj + Qi [15] 

To obtain a DEA rate, the total number of pmol of N20 was converted to mg N20 

produced per hour per kilogram of wetland media. 

Results and Discussion 

Heterotrophic Potential 

Heterotrophic potential experiments for all temperatures could not all be run 

simultaneously due to lack of incubator space. Preliminary experiments to determine 

incubation times and initial incubations at 4, 20, and 27°C were run during October 

2005. The complete experiment was run during June 2006. Samples were run at 16 and 

8°C on June 1, 2006, at 12°C on June 7, 2006 and at 4, 20 and 27°C on June 15, 2006. 

Preliminary experiments had indicated differences between the four-wetland beds, but 

when samples were run in June 2006 there were no significant differences between 
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wetland cells. A final experiment was run in late September 2006, again with no 

differences between beds (data not presented). Combined data from all beds (4 beds, 5 

reps per bed) and all temperatures (6) were plotted (Figure 16) and a nonlinear 

regression curve [Eq. 16] was fit to the data using Sigma Plot 8.03 (Systat Software, 

Inc., San Jose, CA). 

Vmax — 1-04 + 

1 + e 

6.75 
r ~\ 
x-13.07 

1.70 y j 

[16] 

R1 for the above equation 0.72 at P=.0001. 

Figure 16. Heterotrophic potential measurements for all samples taken during June 2006 

from the Staff Wetland. The curve shows a nonlinear regression to the data of a 

sigmoidal model of the form y = y0 + a/(l+e'((X'Xo) bl). 
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It is unclear why there were differences in Vmax at both 20 and 27°C between 

the beds during the fall 2005, and not at other times. Two different sets of samples were 

analyzed, with each set run through the scintillation counter twice with similar results, 

indicating that there was significantly lower heterotrophic potential in GB1 than in the 

other three-wetland cells (Table 5). The decreased population of heterotrophs that 

would be indicated by the lower potential was not associated with a loss of performance 

(measured nitrate concentration) and is difficult to explain. Seventeen cm of rain fell on 

the system on October 8 and a total of 38 cm fell within a week (October 7-15). It 

seems unlikely, however, that if heterotrophs were being “flushed” from the sand media 

by the heavy rain that it would occur in only one of 4 beds. Similarly, it does not appear 

that the increased heterotrophic activity in the other three cells was enhanced by “extra” 

heterotrophs, as the range of potential measured for these beds during June and 

September 2006 was equivalent to that measured in October 2005. The decreased 

activity could also be explained by a sampling difference (i.e., samples were taken from 

a shallower/deeper depth, less active microsites were sampled, etc.). This possibility, 

however, seems less likely, as the difference occurred in two consecutive samples. The 

third explanation is that the measured difference was the result of a “disturbance” which 

had occurred previous to sampling and was reflected in the October 2005 

measurements. Regardless of the reason, the data represent the range of heterotrophic 

potentials possible. 
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Table 5. Heterotrophic potential of samples taken during October 2005. Values are the 

mean of 20 samples ± 1 standard deviation. Values within a column followed by the 

same letter are not significantly different from each other according to Duncan’s New 

Multiple Range Test. 

Sample Location 

Incubation temperature (°C) 

27 20 4 
V, i i (wo o ^ hr ^ -tt n-- 

v MAX tM-fe & 111 ) 

GB1 
Sex 

4.81 ±1.5 b 3.16 ±1.0 b* 0.57 ±.06 ns 

GB2 11.09 ±0.5 a" 6.02 ±2.3 a* 0.95 ±.04 ns 

PB1 
jfc 5-C 

11.01 ±1.7 a 8.16 ±1.5 a" 0.96 ±.04 ns 

PB2 12.16 ±3.7 a" 8.08 ±2.7 a* 0.83 ±.04 ns 

*, **, ns Significant at the P = 0.05, 0.01, and not significant, respectively. 

Microbial Biomass 

Microbial biomass, analyzed as ninhydrin reactive nitrogen, exhibited a bimodal 

curve when plotted across a calendar year. One local maximum occurred in late 

May/early June and the other in October. GB1 had significantly more measured 

biomass (July 26 and November 8, 2006) than the other three beds, and so a curve was 

fit to the data from GB1 and a second curve fit to the mean data from the other three 

beds (n = 5 and 15 for each date, respectively). Both 6 order polynomial curves and 

double bell curves were applied to the data. While the polynomial curves had greater R" 

values (0.97 and 0.92, respectively), the double bell curves were considered to be more 

appropriate, as the biomass values return to a single baseline value after each local 

maximum (Figure 17). The double bell model was algebraically expressed as shown in 

Eq- [17]. -a(t-t[)2 -P(t-t2)2 
y = Ae ±Be ±C 

where: A = the height of the first maxima 

a = the width of the first maxima 

B = the height of the second maxima 

(3 = the width of the second maxima 

C = the baseline value 

[17] 
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Figure 17. Bimodal distribution curves fitted to ninhydrin reactive nitrogen mean values 

for GB1 (diamonds) and the other three beds combined (circles). Equations and R2 

values for each are given. 

The seasonal trend in the location of the first local maximum corresponded to 

the warming of the sand media and resumption of active plant growth. The second 

maximum occurred in early fall, corresponding to the arrival of cooler temperatures and 

fall rains. While the measured heterotrophic potential reached its maximum value in the 

laboratory at temperatures above 20°C, in the natural environment temperatures above 

20°C lead to increased evapotranspirational cooling by the plants with more energy 

expended on plant maintenance than on active growth. The combined results at a 

microbial level were decreased oxygen, less moisture (lowered phreatic level as 

evidenced by no measurable outflow) and/or more competition for both. It is expected 

that the location and extent of the microbial growth maxima may vary slightly from 
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year to year with fluctuations in actual local weather conditions but that the bimodal 

trend will continue to be expressed. 

The measured ninhydrin reactive nitrogen was converted to total microbial 

carbon and nitrogen (Joergenson and Brooks, 1990) to allow comparison to published 

values. Mean total microbial N values calculated for GB1 (56.7 mg N kg'1 dry soil) are 

in keeping with those reported by Groffman et al. (2001) for tropical riparian forest soil 

in Puerto Viejo, Costa Rica (40-50 mg N kg'1). Maximum values from GB1 (130 mg N 

kg'1 dry soil) were also similar to total microbial N in an intact forest in Gandoca, Costa 

Rica (114 and 120 mg N kg-1, respectively). In another study of natural wetlands in 

Dutchess County, NY Groffman et al. (1996) report microbial biomass nitrogen at 

values as high as 300 mg N kg'1 soil in red maple swamps and woodland pools. The 

difference in the range of values can be explained by the measurement technique. 

Groffman et cil. (1996, 2001) used a chloroform fumigation-incubation method followed 

by analysis of the CCB flushes and extractable mineral N (NH/, NO3'). That analysis 

was likely measuring microorganisms in the log phase of growth after they had been 

reintroduced to the fumigated soil. Limitations of the analytical methods used in these 

experiments may also be the source of the discrepancies in biomass estimates. 

Ninhydrin reactive nitrogen analysis specifically measures amino-N compounds and 

was chosen for use because it would not include measurements of ammonium or nitrate, 

both of which would both be present in the wetland solution. It should also be noted that 

biomass measurements in GB1 are an underestimation of actual numbers since the color 

intensity of the solutions were often beyond the linear portion of the standard curve. 
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Neither dilution of samples following extraction nor extraction of a reduced soil volume 

reduced the color intensity of the final solution. 

Wastewater engineers use stoichiometry to estimate biomass yield. C5H7O2N is 

typically used to represent the molecular formula of bacterial cells (Hoover and Porges, 

1952 as cited by Metcalf and Eddy, 2003). This represents 0.105 g N g cell'1 (14 g N 

133g cell'1). The calculated microbial total N values were used to calculate the potential 

number of bacteria per gram of dry soil in the wetland cells. 

r 
1-1 

~\ 

g N g soil 
0.105 g N g cell 

x number cells g cell 
-1 

= cells g soil'1 

The average, maximum and minimum numbers of bacterial cells possible per gram soil 

are listed in Table 6. For these calculations it was assumed that all microorganisms 

present were bacteria. While not a valid assumption in the “real world”, it does allow 

for calculation of a theoretical microorganism population that can be used for 

comparison to other wetland and soil microcosms. Ottova et al. (1997) report 

denitrifying and ammonifying bacteria present on the roots and rhizomes of plants from 

the Doksy wetland (Poland) in the range of 10 - 10 per gram of dry material. This 

range was 3 orders of magnitude higher than the reported nitrifying bacteria (10J - 10“ 

per gram of dry matter). 
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Table 6. Possible number of bacterial cells present in wetland media as calculated from 

ninhydrin reactive nitrogen measurements. 

Multiplier used for calculations 

5.2 x 1011cells g'1T 1.28 x 10IJ cells g'l; 

Bacterial cells g soil'1 

GB1 Average 2.1 x 10* 5.2 x 109 

Maximum 5.6 x 10s 13.8 x 109 

Minimum 1.6 x 108 3.9 x 10v 

Other three 

beds 

combined 

Average 9.8 x 107 2.4 x 10s 

Maximum 3.6 x 10s 8.8 x 10v 

Minimum 8.3 x 10’ 2.0 x 105 

t Whipps and Lynch, 1983 

X Schniiner et al., 1986 

Nitrification Potential 

Nitrification potential measurements exhibited the expected seasonal trend, with 

greater potential exhibited between August and November (Fig. 18) than between 

November and August. GB1 and PB1 had significantly greater nitrification potential as 

would be expected due to the inflow of primary effluent with a high ammonium 

concentration. The single maximum coincides with the secondary maximum (October) 

exhibited in total microbial biomass. The possibility exists that the nitrification trend 

should also be bimodal, and that the sensitivity of nitrifying organisms to disturbance as 

well as some methodology problems during early analyses were responsible for the low 

potentials measured during May and June. 
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Figure 18. Nitrification potential measured every 3 to 4 weeks throughout the year. 

The average nitrification rate measured during this study (all 4 beds, all 

measurements) was 0.402 mg N L'1 h'1 with the maximum rate (2.66 mg N L'1 h'1) in 

PB1 and the minimum rate (0.01 mg N L'1 h'1) in GB2. These values lie within the 

range of most published values (D’Angelo and Reddy, 1993; Bowden, 1986; Reddy et 

al1980; Chen et al., 1972). Kemp et al. (1990) reported a maximum nitrification 

potential of 1.44 mg L'1 h'1 in marine sediments, noting that the rate was limited by the 

penetration of oxygen into the sediments. Groffman et al. (1996, 2001) report 

nitrification rates ranging from 0.2 - 5.3 mg N kg'1 d'1 in tropical soils and 0 - 0.9 mg N 

kg'1 d'1 in natural wetlands. These low rates can in part be explained by the method of 

analysis (measurement of NO3' accumulated during a 10-day incubation period). The 

method as described does not account for nitrate that may have been denitrified, or 

ammonium which may only have been oxidized to nitrite. Maximum nitrification rates 

measured in both GB1 and PB1 (40 and 50 mg N kg'1 h'1, respectively) during the 
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course of these experiments exceeded all of those found in the literature. The ability of 

the hydrophytic vegetation to supply oxygen below the surface, the constant supply of 

ammonium, and the larger pores of the sand medium (allowing movement within the 

medium) all contribute to a nitrifier population acclimated to the specific environment 

and thus the increased nitrification potential measured. 

Nitrification potential was somewhat elevated beginning in January 2007 when a 

variable speed rotary shaker became available. With the new shaker, motion during the 

incubation period was a “gentle swirl” rather than an abrupt agitation. February 2007 

samples were removed from beneath snow and ice except in GB1 where warm influent 

entering the bed had prevented ice formation. All samples were incubated in a 

cardboard box at 20°C overnight to allow microorganisms to warm slowly and prevent 

cell lysing. It is possible that a combination of: 1) warmer temperatures in GB1, 2) 

nitrifier populations at a somewhat higher level than would be typical winter levels (due 

to unseasonably warm temperatures in December and early January), and 3) a gradual 

increase from field temperature to 20°C were responsible for the high nitrification rate 

measured in GB1 during February. 

Denitrifying Enzyme Activity 

Denitrifying enzyme activity exhibited a bimodal curve (Fig. 19) similar to that for total 

microbial biomass. All four beds followed the same pattern, with GB1 having the 

greatest activity (an order of magnitude larger), followed by GB2, PB1 and PB2. This 

ranking of the denitrification rate in the four-wetland cells follows the current flow 

pattern (GB1 -> GB2 -> PB1 -> PB2). While reducing conditions (Eh < 375 mv) 

existed at the 30-cm depth and below in all four wetland cells during most of the 
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Figure 19. Denitrifying enzyme activity for GB1 (A), GB2, PB1, PB2 and mean of all 4 

beds (B). 

experimental period (Fig. 12-15, Chapter 3), the amount of available carbon (as 

measured by CBOD5) was significantly different within the beds. The primary effluent 

entering the system was carbon rich (259 mg L'1 mean CBOD5), but the majority of the 
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CBODs was consumed in GB1 and very little left GB2. Phragmites Bed 1 received 

some carbon inflow during times of influent bypass, but this input was not constant and 

was only a small portion of the total inflow to PB1. The decline in measured 

denitrification rate through the system was most likely due to the lack of carbon source 

for the heterotrophic denitrifiers. 

Denitrification potentials measured during this experiment 0.20 mg N L'1 h'1 

(December) to 1.9 mg N L'1 h'1 (June) are much larger than those published in the 

literature. D’Angelo and Reddy (1993) reported DEA rates of 0.108 mg L'1 h'1 for lake 

sediments amended with 100 mg L'1 of nitrate prior to measurement. When expressed 

as the rate of N2O produced per kilogram soil per hour, rate from these experiments 

(monthly mean of 83.8 mg N2O kg'1 h'1 for GB1) greatly exceed published rates. The 

monthly mean of the other beds (12.4, 11.0, and 7.5 mg N2O kg'1 h'1 for GB2, PB1, and 

PB2 respectively) was more in line with published rates. Groffman et al. reported 

denitrification rates ranging from 2.5 - 4.5 mg N kg'1 h'1 in both natural wetlands in NY 

state (1996) and tropical soils in Costa Rica (2001). Ellis et al. (1998) reported 8 mg kg' 

1 over a 6-hr incubation period and 23 mg kg'1 over a 12-hour period in grass land soils 

in the U.K. These correspond to 1.3 and 1.9 mg kg'1 h'1, respectively. Lowrance and 

Smittle (1988) reported the highest rate of their experiments (1.1 mg N2O kg'1 dry soil 

d'1) when Bonifay sand cores were incubated in a NVEE-CCb atmosphere in an 

anaerobic chamber for 3 hours prior to treatment with added nitrate and glucose. The 

overall low denitrification rates reported by these researchers were presumably due to a 

fairly small microbial population in the Bonifay sand in combination with the infrequent 

fertilizer applications of the study. Both Lowrance and Smittle (1988) and D’Angelo 
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and Reddy (1993) reported the highest rates following addition of either fertilizer or 

fertilizer and glucose. The higher rates of denitrification activity measured for this study 

reflect the nature of the treatment wetland system. In GB1, there is a constant source of 

both ammonium to nitrify (and thus nitrate to denitrify) and ample carbon to sustain the 

denitrifier populations. 

Correlations between microbial biomass, nitrification potential, and 

denitrification rate were examined for each month and for each bed but were considered 

to be inappropriate, in that measurements were not all made on the same samples or 

during the same week. When all data for the study were grouped (n =116, 95, and 128, 

for biomass, nitrification potential and denitrification rate, respectively) and correlations 

run, denitrifying enzyme activity was significantly correlated to microbial biomass 

(P=0.0005), with Pearson’s correlation coefficient = 0.32. This suggests that total 

biomass is a good predictor of denitrification activity, but not of nitrification potential. 

This lack of correlation between nitrification potential and biomass as well as the lack 

of significant differences in both analyses (biomass and nitrification potential) on some 

dates was likely due to the various problems associated with the measurements 

themselves. Nitrification potential measurements exhibited the most variability and 

were the most sensitive to mechanical and/or methodology changes. Measurements in 

July were all negative, presumably due to failure to adjust the pH of the phosphate 

buffer. May and June measurements failed to detect any nitrification occurring in GB2, 

and all measurements were low in September, due to problems with the speed of the 

shaker. Biomass measurements also proved problematic from time to time. July 

biomass measurements were not used because fumigated cells had less biomass than 
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non-fumigated cells in two of the beds (including GB1). It was determined that sample 

handling at the time of sample collection was the most likely cause. Variations within 

replicates of DEA measurements were the least problematic in that regardless of the 

amount of variation between replications, the means were still significantly different 

from each other. 

Conclusions 

It is interesting to note that the standard heterotrophic potential measurement 

(Wright and Hobbie, 1965, 1966; Hobbie and Wright, 1968; Hobbie and Crawford, 

1969; Wyndham and Costerton, 1981; Scow et a/., 1986) used for these experiments 

failed to predict the differences in microbial biomass exhibited by the different wetland 

cells. Since the majority of the heterotrophs within the wetland cells should be bacteria, 

and the only heterotrophs measured by the glucose addition method were glucose 

consuming bacteria, the lack of differences in heterotrophic potential between wetland 

cells would suggest microbial biomass would also exhibit no differences. Total 

microbial biomass in GB1, however, was always at least double that of the other beds, 

and yet heterotrophic potential in GB1 was either not different from or was less than the 

other three cells. 

Both nitrification potential and denitrification enzyme activity in the wetland 

system, especially GB1, exceeded published values for natural wetlands, tropical soils 

and for both marine and freshwater sediments. These findings demonstrate the ability of 

top loading vertical flow submerged bed treatment wetlands to remove the various 

nitrogen constituents once the microbial population becomes acclimated to the influent 

wastewater. 
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CHAPTER 5 

MODEL EVALUATION 

Introduction 

Early design models for artificial wetlands were based on first order kinetic 

decay models with plug flow hydraulics and a single design parameter (Reed, 1995; 

Kadlec and Knight, 1996). Originally the typical design parameter was biochemical 

oxygen demand or total suspended solids. As use of constructed wetlands expanded 

nitrogen removal often became the design parameter. When the constructed wetlands 

failed to meet the predicted effluent concentrations, temperature or other environmental 

factors were added to the equations to lower predicted effluent concentrations. As the 

desire for use of artificial wetland treatment systems has grown, fueled by their low cost 

and sustainability, the need for better predictive models has been the focus of many 

research studies (Gidley, 1995; Kadlec, 2000; Wynn and Liehr, 2001). As models have 

evolved, they have become increasingly complicated, including multiple sub-models 

and feedback loops, and yet still fail to adequately predict measured effluent 

concentrations (Marsili-Libelli and Checchi, 2005). 

From the modeling perspective, treatment wetlands are considerably more 

complex than conventional wastewater treatment plants (Marsili-Libelli and Checchi, 

2005). Natural environmental dynamics (i.e., temperature, precipitation, aeration, etc.) 

are often not predictable and definitely not controllable. Hydraulic flow dynamics in 

free water surface wetland systems are much different than in submerged bed systems 

and horizontal flow is different from vertical flow. None of the various hydraulic 
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regimes are adequately modeled by plug-flow hydraulics (Kadlec, 2000) or sequencing 

batch reactor hydraulics (Wynn and Liehr, 2001). 

The current study evaluated a mechanistic, compartmental simulation model 

(Gidley, 1995; Wynn and Liehr. 2001) to determine if it was an appropriate model for 

top loading vertical flow submerged bed treatment systems (TLVFSBTS). To this end, 

wetland system performance data (Chapter 3), microbial process data (Chapter 4) and 

environmental data were collected over a period of 17 months. The treatment wetland 

system studied during this research is located in the town of Highland, NY on the 

western bank of the Hudson River approximately 90 miles north of New York City. The 

system began receiving wastewater in June 2001. The system was constructed using 

TLVFSBTS technology, details of which are to be found in chapter 3. 

The original data from the Mayo Wetland (Ann Arundel, MD), as well as the 

model input and output data were obtained (Gidley, 1995) in order to correctly recreate 

the model. All model inputs were duplicated, and the model was run using the original 

input data. Output data obtained did not replicate the published output, and many 

mistakes in model values and statements were discovered. Initial attempts to debug the 

complete model failed. The individual model compartments (water budget, oxygen 

budget, heterotroph dynamics, etc.) were then run separately, again, using the original 

input data (Gidley, 1995). The water budget compartment failed to produce the reported 

output (evapotranspiration was not correctly computed), and heterotroph and autotroph 

dynamics failed to produce realistic values. Further attempts to debug the existing 

model were not made. A new simpler model has been designed, but is only partially 

successful. The current progress is, however, notable and offers several insights into the 
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type of dynamics and interactions occurring in the wetland system as well as the 

direction future modeling efforts should take. 

Model Development 

STELLA 8.1 (isee systems, inc) simulation software is based on J.W. Forrester’s 

dynamic systems models (Gidley, 1995) and utilizes several methods for numerically 

solving systems of differential equations (Euler’s, 2nd order and 4th order Runge-Kutta 

numerical methods (isee systems, inc.)). The user constructs a diagram of the processes 

to be modeled, and the software develops the mathematical equations. The modeler 

simulates conditions with the use of “stocks” (rectangles), “flows” (valves), 

“converters” (circles), and “action connectors” (arrows). Stocks can be reservoirs, 

conveyors, queues, or ovens, depending on the processes occurring within. Flows can 

be used as inputs to or as outputs from stocks. Converters allow the modeler to modify 

an input variable, while action connectors are used to direct the converter to the proper 

location, thus defining the specific relationship. Converters may be either mathematical 

functions or graphs. For example, in the simple model below (Fig. 20.) “Water 

Volume” is a reservoir (stock), with precipitation as input, and evapotranspiration (ET) 

Figure 20. Simple model showing use of stocks, flows, converters, and action 

connectors. Arrows indicate direction of movement. Squiggles (~) within a converter 
indicate that the input is graphical. 
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as output (flows). Daily precipitation, surface area, and potential evapotranspiration 

(PET) are converters used to convert the input values (cm of either precipitation or 

PET) to volumes. Bed area is the area (m2) on which the precipitation is falling or from 

which ET is lost. The statements on the equation level are listed below. 

Water Volume(t) = Water_Volume(t - dt) + (Precipitation - Evapotranspiration) * dt 

INIT Water_Volume = 26.75 nr 

INFLOWS: 

Precipitation = (Daily_precipitation {cm}/100)*Surface_Area {m2} 

OUTFLOWS: 

Evapotranspiration = (PET{cm}/100)*Surface_Area {m2} 

Surface_Area = Bed_width*Bed_length = 15.24 m x 15.24 m 

Daily_precipitation = GRAPH (Time) 

(0, 0.00), (1, 0.00), (2, 0.00), (3, 0.00), (4, 1.98), (5, 0.03), (6, 0.00), (7., 0.00), (8, 0.00), 

(9, 0.00), (10, 0.00), (11, 1.19), (12, 0.00), ... 

PET = GRAPH (Time) 

(0, 0.33), (1, 0.483), (2, 0.533), (3, 0.559), (4, 0.432), (5, 0.432), (6, 0.406), (7, 0.305), 

(8, 0.356), (9, 0.508), (10, 0.432), (11, 0.508), (12, 0), ... 

Water Budget 

The first compartment of the new model to be created was the Water Budget 

(Fig. 21). This segment began as a simple model for the first wetland cell only. Inputs 

were measured inflow and measured precipitation, both graphed against time (i.e., date, 

precipitation or inflow). Outflows calculated by the model were evapotranspiration and 

effluent volume. Initial water volume was set as the volume of the bed below the 

phreatic level times the porosity of the sand (0.3). Bed capacity was established as the 

volume of water required within the bed in order for outflow to occur (i.e., bed volume 

with the phreatic level at the level of the outflow pipe). Therefore, water volume within 
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the bed at any time was current inflow + precipitation (adjusted for bed area) minus ET 

adjusted for bed area, minus outflow (bed volume - bed capacity). Once this portion of 

the water budget was running, the remaining wetland cells were added to the 

compartment to simulate flow from one bed to another (the current flow pattern). Thus, 

outflow from GB1 became the inflow to GB2 etc. Bed capacity for each bed was set to 

reflect current phreatic levels. Initial simulation output was determined to be inaccurate, 

as the model did not adequately predict times when there would be no outflow from the 

system. 

Figure 21. Water budget sub-model of Stella simulation model developed for a 

TLVFSBTS. 
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Evapotranspiration rates used in the original model runs were considered to be 

underestimates of actual ET. Calculated PET values were used rather than calculated 

ET as PET values are for a short green crop of uniform height that completely shades 

the soil surface and adequate (i.e., unlimited) water, whereas ET is calculated as if the 

surface were a single plane. The PET values originally used were calculated for Stewart 

Airport approximately 20 miles south of the research site. The vegetation in both grass 

beds was dense enough to shade the sand surface, but the grass was between 2 and 3- 

feet tall. In the Phragmites beds, the sand surface was exposed between plants, allowing 

direct evaporation. The plants, however, were 8 to 10-feet tall, increasing the 

transpirational surface area considerably. Probable ET rates for GB1 were calculated as 

the difference between measured inflow (water meter) and measured outflow (tipping 

bucket with counter). Probable ET was plotted against time, fitted to a cosine curve, and 

compared to the cosine curve of the calculated PET. During non-growth periods 

(October - March) probable ET and calculated PET were equivalent, while during the 

growing season probable ET was determined to be higher, with the largest differences 

occurring in July and August. Probable ET curves were then used on subsequent model 

runs (Fig.22), and the model simulation better matched days when there was no 

measurable outflow from the system; 48 of 53 and 40 of 46 days in 2005 and 2006, 

respectively. 

It should be noted, that the STELLA (isee systems, inc.) “smooths” the flow in 

the model. This effect is dependent on which numerical method is chosen, and what the 

integration interval is set at. Fourth order Runge-Kutta gives the best output, but also 

requires the most computational “space”, so it was often necessary to set simulation 

75 



runs time of 100 days, rather than the full 500 day study period. The shorter simulation 

duration allowed for shorter integration intervals. Figure 23 illustrates the difference 

between the output for a 100-day simulation run, with time interval set to 1 day, or to 3 

hours (0.125 d). The “smoothing effect” shifts the curve, but otherwise has no effect. 

Figure 22. Sample output from the model simulation of outflow from the 4 individual 
wetland cells during the fall of 2005. Precipitation is plotted as bars. 
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Figure 23. STELLA 8.1 simulation output for total flow into the wetland system over a 

100-day simulation period using a 2nd order Runge-Kutta numerical method. Run 1 was 

set for a 3-hr time interval, while run 2 was set for a 1-day time interval. 

Nitrogen Cycle 

The Gidley (1995) model contained a sub-model ‘autotroph dynamics’ to 

simulate the nitrification process. Similarly ‘heterotroph dynamics’ was the sub-model 

for denitrification processes. The number of autotrophs and heterotrophs, autotroph and 

heterotroph growth and death rates, and half saturation constants for both autotrophs 

and heterotrophs were obtained from published data and various textbooks (Gidley, 

1995). The sub-model outputs were then used as input to the ‘Nitrogen Cycle’ sub¬ 

model. When model simulations did not adequately approximate the collected data, 

these original model values were adjusted as needed (orders of magnitude adjustments). 

While this is a valid method for modeling, it was decided that a more realistic approach 

would be to measure the dynamics of the processes, and use the measured rates for 

future simulation models. 
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In the TLVFSBTS model, the ‘Nitrogen Cycle' sub-model is fairly simple (Fig. 

24). It consists of an ammonium reservoir, a biomass N reservoir, a nitrite reservoir, and 

a nitrate reservoir. Inflows to the various reservoirs were manipulated by converters for 

flow, precipitation, and nitrification/denitrification rate. Nitrification was a two-step 

process, ammonium oxidation and nitrite oxidation. 

Figure 24. Nitrogen Cycle sub-model of Stella simulation model developed for a 

TLVFSBTS. 

Nitrification Rate 

Nitrification potential (chlorate blockage method) was measured monthly during 

the growing season (Chapter 4). Rates were obtained for the potential amount of 

ammonium oxidized to nitrite per gram of dry soil per hour. Using the bulk density of 

the sand media, the rates were converted to grams of nitrite produced per cubic meter of 

bed volume per day. Data were then plotted against time to determine seasonal trends. 
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A double bell curve was then fit to the data (Fig. 25), and the curve extrapolated to 

include the entire 500-day evaluation period. 

1400 

Figure 25. Nitrification rate curve fit to measured data and then extrapolated to include 

the entire 500-day evaluation period. 

Denitrification Rate 

Denitrifying enzyme activity (acetylene blockage method) was also measured 

throughout the growing season. Analysis was conducted immediately after return from 

the field so that the measurements reflected actual field conditions as closely as 

possible. Denitrification rates were calculated for each wetland cell as grams of nitrous 

oxide produced per kilogram dry media per hour. Denitrification rates were then 

converted to grams nitrous oxide produced per cubic meter of wetland cell per day. A 

double bell curve was fit to the data (Fig. 26) and the curve extrapolated to cover the 

full evaluation period. 
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Figure 26. Denitrification rate curve fit to measured data and then extrapolated to 

include the entire 500-day evaluation period. 

Mineralization and Immobilization 

For modeling purposes, immobilization of incoming ammonium and 

mineralization of organic nitrogen were estimated by the amount of microbial nitrogen 

measured within each bed (Chapter 4 Fig. 17). The difference between microbial 

nitrogen on day t and the amount of microbial nitrogen on day t-1 was calculated on a 

daily basis for the evaluation period. The daily difference was input into the new model 

as converters to flows into and out of the biomass N reservoir. 

Although plant growth and death are another source of immobilization and 

mineralization, the Nitrogen Cycle of the TLVFSBTS model does not currently contain 

a separate plant biomass component. Plant uptake was not measured, but total plant 

biomass was measured in October of 2005, and typical C:N ratios for the two species 

could be obtained from the literature to add this component in the future. The Staff 
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Wetland is never nitrogen deficient, at least not in grass bed 1 (GB1) and thus it was 

determined that the nitrification and denitrification rates would be sufficient for 

estimation of the nitrification and denitrification occurring within GB1. It was 

anticipated that only a portion of the measured nitrification/denitrification rates would 

actually be realized within the wetland system, so a “realized fraction” was used as a 

converter within the model. The realized fraction addresses the differences between 

laboratory- measured potential and the actual rates occurring within the treatment 

wetland cells. Mass balance analysis performed on the weekly nitrogen totals indicates 

that if only 10% of the measured nitrification potential were realized, there would be no 

measurable ammonium leaving the system. Measured nitrification potentials, however, 

are reflective of the more ideal conditions of the laboratory. The analysis requires a pH 

range between 7 and 7.2, as nitrifying bacteria are extremely pH sensitive (Paul and 

Clark, 1996; Sylvia et al., 1999) This was clearly demonstrated when one set of samples 

(July 17, 2006) were inadvertently run without adjusting the pH of the incubation 

solution and no readable results were obtained, even after 6 hours of incubation. 

Wetland pH has been measured by the Highland Sewer Department three times 

per week since January 2004, but measurements were for influent and effluent only. 

Beginning in May 2006 effluent pH values were considerably higher than previously 

reported (data not presented). This raised questions as to the value of the reported 

influent and effluent measurements. Therefore, system influent and effluent from each 

of the individual wetland cells was analyzed for pH on site from June 21 through 

December 14, 2006 (data not presented). Average influent pH during this time period 

was 7.35. The pH dropped in GB1 to an average value of 6.63 and returned to close to 
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neutral (6.87) before leaving PB2. The drop in pH within GB1 was the result of the 

known acidification accompanying nitrification. This pH drop, however, also functions 

as a type of “Teed back inhibition” decreasing nitrification potential in the less well- 

buffered wetland microsites. 

It may be surmised that only a fraction of the denitrification potential would be 

realized by the enzymes nitrate reductase, nitrite reductase and nitric oxide reductase, 

which are inhibited by oxygen (Paul and Clark, 1996; Sylvia et al., 1999). Thus, 

denitrification will occur only in the anoxic microsites, regardless of the location (oxic 

or anoxic microsite) of the denitrifying organisms. During the laboratory experiments to 

measure DEA, the incubation flasks were purged with N2 gas for 4 minutes to insure 

anoxic conditions. Although the measured redox potential (chapter 3) indicated that the 

wetland cells were within the anoxic range, -100 < Eh < +300 mV (Headley et al., 

2005), the heterogeneity of the wetland environment and the measured nitrification 

within the wetland units indicated that not all microsites were anoxic. 

TLVFSBTS Model Evaluation 

As previously mentioned, simulation runs of the ‘water budget’ sub-model 

realistically predicted flow rates from each bed, and from the system as a whole. Input 

and output data from this simulation may be found in Appendix D. Graphical output as 

seen in Fig. 22 clearly showed precipitation events moving from one wetland cell to 

another as the additive effect of the additional water volume moved through the system. 

The simulation output also adequately predicted times when no outflow occurred. 

Simulation of the ‘nitrogen cycle’, however, was not successful. The simplest 

version of the nitrogen cycle merely added ammonium concentration as a converter to 

82 



the inflow component from the “water budget’. Ammonium was treated as ‘inert’ (i.e. 

non reactive) to test the inflow, outflow, and dilution effect (precipitation). This portion 

of the model accurately predicted outflow as being diluted by precipitation, and reduced 

to outflow volume by evapotranspiration. 

The next component added to the nitrogen cycle was the first step of 

nitrification, ammonium oxidation to nitrite. This outflow was defined as the 

nitrification rate (g m° d' ) multiplied by the bed volume (mJ) and then multiplied by 

the realized fraction of the nitrification rate (unitless). If the realized fraction was set 

equal to 0 (i.e., no nitrification occurring) the model correctly simulated all nitrogen 

leaving the wetland cell as ammonium. By varying the ‘realized fraction’ between 0 and 

0.1 simulated nitrogen output changed from all ammonium to all nitrite. 

Since the simulation software assigns priority to reservoir outflows based on the 

order in which they are created, the sub-model was recreated with the first outflow 

going to Biomass N (immobilization), the second outflow to N02 (NH4 oxidation), and 

the third outflow to ammonium in the wetland effluent (Effluent NH4). With the 

realized fraction of nitrification rate set equal to 0, the simulation model realistically 

modeled immobilization and minerialization as well as Biomass N (Fig. 27). 

The remaining portions of the nitrogen cycle model, nitrite oxidation and 

denitrification, were added to the model after the Biomass N portion. With ‘realized 

fraction 2’ and ‘DEA realized fraction’ both set equal to 0, ammonium N should have 

gone to Biomass N first, then to N02 via NH4 Oxidation, and the remainder to Effluent 

NH4. The problem with the TLVFSBTS model occurs when the ‘realized fraction’ of 

the nitrification rate during ammonium oxidation is set to a value greater than 0.01. At 
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a realized fraction at or below 0.01, the output resembles the curve fit to the measured 

nitrification potential. When the realized fraction is set to a larger value, the program is 

unable to correctly calculate the nitrification rate, and erroneous data are generated (Fig. 

28). The wide fluctuations in the nitrification rate curve when the realized fraction is set 

to a value greater than 0.01, cause equally wide fluctuations in the Effluent NH4 

component of the model. Efforts to overcome this problem have failed. 
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Figure 27. Simulation output from TLVFSBTS Model output for Biomass N (A) and 

immobilization/minerialization of nitrogen (B). 
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Figure 28. Simulation output for NH4 Oxidation portion of the TLVFSBTS model 

showing the nitrification rate curve shape when realized fraction = 0.01 and the 

erroneous data when realized fraction = 0.1. 

When the difference between influent ammonium concentration and GB1 

effluent ammonium concentration were plotted, a distinct seasonal trend existed. A 

cosine curve was fit to the data (Fig. 29) and would have been used as the ‘seasonal 

factor’ modifying the ‘realized potential’ or as the new ‘realized potential’ for both 

nitrification and denitrification rates in the TLVFSBTS model if the calculation errors 

could have been overcome. It should be noted that the curve fit to the difference 

between the influent and effluent ammonium concentrations in GB1 is nearly a mirror 

image of the PET curve, indicating that when probable evapotranspiration is greatest, 

the difference between influent and effluent concentrations is the smallest. The 

calculated PET values as the basis for the probable ET curve take into account 

environmental factors, which are difficult to measure accurately within the canopy of a 
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treatment wetland (solar radiation, wind velocity, humidity, etc.). It should also be 

noted that the use of a seasonally varying realized potential makes a great deal of sense 

in that it allows incorporation of the majority of “environmental" factors influencing the 

performance of a living treatment system. 
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Figure 29. Difference between influent and effluent ammonium concentration in GB1 of 

the treatment wetland. Circles represent measured date, the solid line represents fitted 

curve for the equation in the figure, and the dashed line represents the PET curve. 

Conclusions 

The original simulation model evaluated was that of Gidley (1995). This model 

was determined to be exceedingly complicated, and there were numerous differences 

between the original (Gidley, 1995) and the published version (Wynn and Liehr, 2001). 

Due to cumulative effects of erroneous values, or misstatements, it was impossible to 
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resolve the differences between the two versions or to debug the model statements. A 

new, simpler TLVFSBTS model was developed, parts of which worked quite well. 

There appears, however, to be a computational problem in the simulation software, 

which is interfering with the simulation output. This makes an accurate assessment of 

the new, simple model impossible. Future work will continue to pursue development of 

the current model, perhaps with different software. A great deal was learned about the 

interactions between the microbial systems studied and the environmental factors 

influencing the wetland treatment system, all of which reinforce the notion that a 

simpler model will ultimately be the best predictor of system performance. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

System Performance and Microbial Evaluation 

Artificial or constructed treatment wetlands such as the top loading vertical flow 

submerged bed treatment system (TLVFSBTS) studied during this research represent, 

or should represent, the future of wastewater treatment. These systems mimic nature, 

and are low technology, energy efficient, and when properly built and maintained, are 

capable of out performing conventional concrete and steel technology. Since Global 

Climate Change is one of the leading issues for the political and scientific leaders of the 

world, it only seems appropriate to look at all measures that could reduce global energy 

consumption and greenhouse gas production. Conventional wastewater treatment plants 

are tremendous “energy hogs”. Aeration requires electricity, which in turn often 

requires consumption of petroleum products. Biosolids reduction usually requires the 

use of synthetic chemical polymers, which must be produced (consuming more 

petroleum products and electricity) and transported to the treatment plant, again 

consuming petroleum products. The “treated” biosolids, must then be removed from the 

treatment plant (in liquid or ‘dry’ form) again consuming energy. 

The “treated” effluent from conventional wastewater treatment plants is often 

discharged only partially treated (as evidenced by NPDES Permit Limits of 30 mg L'1 

for both BOD5 and TSS). When stricter discharge limits are required, as is mandated in 

parts of upstate New York the cost of treatment becomes incredible. Grahamsville, NY 

a small rural community in the Catskill region built a $30,000,000 sewer treatment plant 

in the early 1990’s to treat 180,000 GPD. The plant requires 11 fulltime operators. In 
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comparison, Highland, NY has a treatment plant treating 1.75 MGD, which can be 

operated by only three fulltime employees. The difference is that the Highland plant 

discharges into the Hudson River, while the Grahamsville plant discharges into a 

tributary to one of New York City’s drinking water reservoirs. As evidenced by the 

system performance evaluation of this study, the TLVFSBTS wetland in Highland is 

capable of excellent ammonium removal while meeting the drinking water nitrate MCL 

(maximum contaminant level) of 10 ppm. If microorganisms within the wetland are 

capable of carrying out the ANAMOX process, as has been suggested by this research, 

then the ammonium removal (ammonium nitrite nitrogen gas) is producing NT2 

directly, thereby eliminating the possibility of producing greenhouse gases (NOx). The 

combination of producing a near drinking water quality effluent (from a nutrient 

standpoint); with non-detectable suspended solids (allowing easy UV disinfection); 

while not consuming electricity or petroleum products; and not discharging greenhouse 

gases would seem to be an obvious choice. 

The next question, therefore, would be why are such systems not being used? 

The short answer is regulators. In order to feel comfortable approving and permitting 

wetland systems, regulators subject these systems to more stringent discharge levels 

than most existing conventional treatment plants; thus the permit for the Staff wetland 

requires meeting NY State DEC Intermittent Stream Standards (< 5, <10, <1 and <2.2 

mg L'1 for CBOD5, TSS, P042', and NH4+, respectively). Not all artificial wetland 

systems can meet these strict limits. Free water surface systems grow algae, thus 

increasing effluent BOD5 and TSS. End-loading horizontal flow submerged bed 

systems produce excessive nitrate, or do not reduce ammonium, depending 
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predominantly on the size and type of media used within the system. Both nitrification 

potential and denitrification enzyme activity as measured in the wetland system, 

especially GB1, demonstrate the ability of top loading vertical flow submerged bed 

treatment wetlands to remove the various nitrogen constituents once the microbial 

population has acclimated to the influent wastewater. It would appear from the results 

of this study and a survey of the literature, that top-loading vertical flow through 

medium sand is the right combination for the desired level of treatment. 

Future research investigations of this particular treatment wetland system should 

focus on identification of the microorganisms present within the wetland cells. It would 

be most productive to determine if ANAMOX bacteria are present. If it could be clearly 

demonstrated that TLVFSBTS wetlands are capable of a level of treatment (ANAMOX) 

difficult to achieve or sustain in conventional wastewater treatment except at exorbitant 

costs, regulators would have a greater ‘comfort factor’ in approving the use of these 

systems. Similarly, if natural systems (i.e., non concrete and steel), and especially 

constructed wastewater treatment wetlands, are capable of removing pharmaceutical 

compounds from wastewater, as early research in the mid-west is indicating, this too 

would be a boon for the permitting and use of constructed wastewater treatment wetland 

systems. The Staff wetland would be an ideal candidate for such a study precisely 

because it is essentially a “black water” system (i.e., bathroom waste only). The lack of 

dilution (from laundry, showers, dish washers, etc) which result in the extremely high 

influent BOD5 and NH4+ concentrations, would also keep the concentration of 

pharmaceutical compounds (synthetic hormones, antibiotics, and other prescription 

compounds) from being diluted to levels that might make them difficult to detect. 
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Additionally, since the “users” of the system are a small, known population, 

determining exactly which compounds might be in the waste stream may be easier than 

in a system with a large input. 

During the course of this study, the heterotrophic potential measurements failed 

to predict the large differences in total microbial biomass between the wetland cells. It 

would be interesting to repeat the heterotrophic potential experiment using both the 

labeled glucose and a labeled amino acid. Perhaps this would better predict the 

differences in total microbial biomass and help to differentiate between the glucose¬ 

consuming bacteria and the more diverse heterotrophs. 

From the soil scientist viewpoint, it would be of great interest to determine if the 

use of processed shale sand, rather than quartz sand, is a factor in treatment. Black shale 

has been shown to be high in both iron and manganese. It would appear that reduced 

iron and/or manganese weathering from the sand may be a contributing factor to 

continued phosphorous removal within the wetland system. The lack of phosphorous 

‘flushes7 from the system would also point to sorption or precipitation of stable 

phosphorous compounds, which do not ‘desorb’ or otherwise flush out of the sand. The 

possibility that manganese is reduced in the first wetland cell and then oxidized in the 

second wetland cell should also be investigated. Manganese toxicity in plants is not 

common, but would be more apt to occur when reduced manganese is retained within 

the system. Should manganese toxicity prove to be a problem in the second wetland 

cell, it would suggest that over time it might become a problem in cells three and four, 

leading to the possibility of reduced performance. Use of manganese-tolerant plant 

species would overcome this obstacle, should it prove to be a problem. 
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Model Evaluation and Future Model Development 

The existence of programs such as STELLA 8.1 (isee systems, inc.) has led to 

the ability of people other than computer programmers and mathematicians to develop 

simulation models. This advancement is beneficial to the extent that future simulation 

models may be developed by scientists knowledgeable of the living systems being 

modeled. These programs also have drawbacks, however, in that such models may not 

be mathematically valid. This would be particularly true if care is not taken to insure 

that the mathematics are correct with respect to “units” (i.e., 24 g m° d'1 x 200 g m'3 d'1 

gives an answer 4800, but with meaningless units g' m‘ d""). Conversely, simulation 

models may be developed by those who understand the mathematics, but not the living 

systems being modeled. This was the case with the original simulation model evaluated 

for this study (Gidley,1995; Wynn and Liehr, 2001). This model was determined to be 

exceedingly complicated, leading to an inability to debug the model statements when 

the simulation runs produced meaningless output. For complex artificial wetland 

treatment systems, however, the simple empirical models originally used also failed to 

adequately predict system performance. It seems clear that a new, simpler TLVFSBTS 

model, such as the one partially developed using research and data from this study, are 

needed. It may be that Stella 8.1 (isee systems, inc.) software is not robust enough for 

the interactions required to adequately model TLVFSBTS wetlands. 

A great deal was learned about the interactions between the microbial systems 

studied and the environmental factors influencing the wetland treatment system. There 

appear to be distinct, seasonal trends influencing all systems. The concept that there 

might be “constants” within the system was quickly disabused. The results of this study, 
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especially those from the modeling phase, reinforces the notion there are “patterns” in 

nature, that these patterns can be simulated with fairly simple mathematical equations, 

and that a simpler model will ultimately be the best predictor of system performance. 
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APPENDIX A 

STAFF WETLAND PERFORMANCE DATA 

Table 7. Mean nitrate concentration from all samples. Numbers within a row followed 

by the same letter are not statistically different from each other according to Duncan’s 

New Multiple Range Test. Dates when no sample was available are indicated by nf. 

Date Influent GB1 GB2 PB1 PB2 
m o T ^ 
mg J- -. 

2005 

10-Aug 
-sPskTk 

11.2c 
- *** 

13.2 b 
sk sksk 

14.5 b nf nf 

18-Aug 
-^njrs}!- 

8.0 c 9.7 b’” 
* >k * 

12.0 a nf nf 

25-Aug 4.8 c 
x sksk 

23.5a 21.7b 
>k * * 

5.7 c nf 

1-Sep 
—— 

7.2 c 29.2 a 
sk sk >k 

25.3 b 7.5 c”* nf 

22-Sep 
Z “ XW* 

2.8 c 22.2 b 
5k 5jOk 

24.3 a 
T >k 5K >k 

22.3 b nf 

28-Sep 2.3 b 
sksjcsk 

19.3 a 19.0 a”* 19.2 a’" 
" "jjesjesk" "" 

20.0 a 

5-Oct 
sk % sk 

4.2 d 
* ** 

19.7 c 
5k Sk * 

22.8 b 
sk 5k 5k 

24.2 ab 25.7 a""" 

13-Oct 
■'sjc's-csjc ' 

2.2 c 
sk>k5k 

3.5 a 2.8 bw 
5j« 5k >|c 

1.5 d 1.5 d^ 

19-Oct 
Z Z * * * 

2.2 c 
♦ ^ >k 

11.3 a 7.7 b 
' 'sksksk " 

2.2 c 
>k >k 5k 

2.2 c 

27-Oct 
■ T 

4.0 c 
*** 

9.5 a 
sksksk 

9.5 a 
sk 5k ^ 

4.3 b 
sksksk 

4.3 b 

2-Nov 
s|< S-C X 

4.0 e 
-- 

13.1 a 11.7 b™ 7.3 c 
Z Z , 5ksk* 

6.8 d 

16-Nov 
* * * 

6.3 b 
* * * 

17.7 a 15.5 a*** 
sk sk 5k 

7.7 b 7.7 b 

1-Dec 3.0 c 
* * * 

4.7 b 4.5 b*” 
sksksk 

5.2 a 
5jc >k 5k 

4.8 ab 

15-Dec 
sk sk sk 

4.7 c 17.3 a 
sk sk sk 

17.5 a 
5k 5k 5k 

14.2 ab 
sk>k5k 

11.3b 

2006 

6-Jan 
JjCJjCJjC 

5.2 d 
sr»sc 

13.0 b 14.8 a*" 7.2 c”’ 
—r 

6.8 c 

19-Jan 4.8 aw 
sk sk sk 

2.8 e 
5k * * 

3.5 d 4.5 b”* 
sk sk sk 

4.0 c 

1-Feb 5.0 c’” 
5k sk5k 

7.2 b 8.2 a”* 6.7 b’" 
-sk>k>k- 

7.2 b 

14-Feb 
WWW 

4.5 c 
5k 5* * 

6.3 b 
5k 5k 5k 

4.5 c 
5k 5k 5k 

6.2 b 
5k 5k 5k 

6.8 a 

8-Mar 0 e 
5k « 5k 

5.0 b 
;T7 *** 

j.5 c 8.2 b*** 
— ' sksksk- 

8.7 a 

5-Apr 4.7 d”’ 11.5 a’” 9.5 b”’ 6.7 cw 7.j c 
13-Apr 

sksksk 

4.8 b 
sksksk 

8.8 a 
Sk Sk 5j< 

9.3 a nf nf 

19-Apr 
5J< S-< SJC 

3.5 d 
5JC JjCJJC 

13.0 a 7.3 c 
sjrsr & 

8.0 b 
-WWW- 

3.7 d 

25-Apr 
sJTsR 

0.4 d 
s-Tsk 

1.2 a 
5jnk 

1.0 ab 
sfTsk 

0.9bc 0.7 cd** 

3-May 

10-May 6.0 e 
sk sk sk 

14.3 a 
- _ *** 

6.5 c 
5k 5k 5k 

10.7 b 5.7 d”’ 
17-May 0.5 c”’ 2.6 a*"* 

Snjrs- 

1.3 b 
sk Sk s< 

1.1 b a n ***- 0.7 c 

24-May 0.4 c’” 1.8 a’” 1.3 bw 1.2 b"’ 
—z—z—***- 

0.5 c 
1 -Jun 3.2 a* 2.9 ab* 2.6 abc 2.1 be 1.8 c 
7-Jun 0.4 e’” 1.9 a*** 1.6 b™ 

sk >k sk 

1.3 c 
-- 

0.6 d 
15-Jun 1 A I*’5’* 

1.4 d 
_ - - >*>** 

8.6 b 8.0 b*” 
„ sk sk ^ 

9.4 a 
sksksk 

4.6 c 
21-Jun 6.0 c’” 9.7 b”” 9.7 b”* 

——I-- 

24.5 a 
sk Sk 5k 

9.5 b 
28-Jun i.2 <r~ 6.9 a 3.8 b’” 

z ^ „ ***- 

3.8 b 
T ~ 

3.2 c 
5-Jul 1.7 c 

A A i*** 1.4 d 2.5 b"' 
-sklok- 

11.8a 
---'--'sksksk- 

1.5 d 
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Date Influent GB1 GB2 PB1 PB2 

--mg l ---- 

11-Jul 
— m 

1.3 c 
WWW 

6.1 b 
w * w 

9.7 a nf 0.9 cw 
18-Jul 

9K MC 9K 

1.9 b 
>}C >-C JjC 

10.4 a 
-WWW- 

10.3 a nf 
nf 

26-Jul 2.1 b"” 
-WWW— 

9.3 a 
>■( 3fs 

9.3 a 
WWW 

9.5 a 0.5 c'"' 

3-Aug 1.5 b"” 
-1~-WWW- 

0.8 a 
WWW 

6.2 a nf nf 

13-Sep 1.6 c 
WWW— 

15.7 b 
WWW~~" 

23.5 a nf nf 

28-Sep 1.2 c 
* w w 

11.2a 
* * * 

10.3 b nf nf 

5-Oct 
*** 

1.2 c 
>|Oj< * 

11.7b 13.2 a"* nf 0.3 d*** 

12-Oct 
—T *** 

1.2 e 
>k W 

14.3 a 
WWW 

10.8 b 
WWW 

8.3 c 
WWW 

2.3 d 

19-Oct 1.4 d 
WWW 

14.8 b 
>!< * w 

12.5 c 
WWW 

16.2 a 
T ~ WWW 

0.8 e 

26-Oct 
-:——-WWW- 

1.5 c 
-WWW— 

21.8a 
- 'WW *- 

13.7 b nf 
1 ***- 

0.1 d 

1-Nov 
-WWW- 

1.5 c 
* * * 

10.0 a 
7 WWW 

6.8 b nf 
7 I WWW 

0.1 c 

8-Nov 
: r—wwy. 

1.3 e 
-WWW— 

11.3 a 8.5 b * 3.9 c"” 2.1 d"” 

2 2-Nov 
*** 

1.4 c 
*** 

9.0 a 
Jj« * 5j< 

6.2 b nf 0.1 d 

2 9-Nov 
-----WWW- 

1.4 c 
* Jic * 

22.0 a 
■sranj?— 

12.2 b nf 0.3 c*”* 

6-Dec 1.5 cw 
>K SC * 

16.5 a 
53?5^ 

13.8 b nf 
5j< >jC 

0.3 d 

14-Dec 
WWW 

1.4 c 
*** 

13.0 a 11.8b nf 
WWW 

0.9 d 

*, **, *** Significant at P=0.05, 0.01 and 0.001, respectively. 
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Table 8. Mean ammonium concentration from all samples. Numbers within a row 

followed by the same letter are not statistically different from each other according to 

Duncan’s New Multiple Range Test. Dates when no sample was available are indicated 

_by nf._ 

Date Influent GB1 GB2 PB1 PB2 
mrr T'1 . mg -L - .. 

2005 

10-Aug 
WWW 

152.3 a 
WWW 

44.3 b 34.7 c"” nf nf 

18-Aug 
W 5-c * 

94.0 a 
WWW 

21.7b 15.7 c”* nf nf 

25-Aug 
WWW 

231.7 a 
WWW 

33.0 b 
WWW 

26.0 c 
W sfc W 

22.1 d nf 

1-Sep 
WWW 

160.0 a 32.7 bw 
WWW 

23.7 b 9.0 b’” nf 

22-Sep 
w* w 

104.0 a 
WWW 

40.3 b 
WWW 

32.7 c 
WWW 

19.7 d nf 

28-Sep 
>jC 

177.3 a 
W W 

47.0 b 
5^ 5k 

31.3 c 
—WWW— 

19.0 d 10.0 ew 

5-Oct 
WWW 

216.0 a 
WWW 

41.3 b 
WWW 

29.3 be 
5-C * 5-C 

13.0 cd 
~www 

7.3 d 

13-Oct 
* x w 

156.7 a 13.0b 
WWW 

8.0 be 
W * w 

4.0 cd 
5-C5-(C5fC 

0.7 d 

19-Oct 
w w * 

147.3 a 
>|c 5)c 

25.3 b 
WWW 

13.3 c 
W >K 

4.0 d 
T “ Www 

0.0 e 

27-Oct 
WWW 

160.0 a 
W * 

21.0b 
5jc w W 

14.3 c 
5k 5k 5-C 

4.0 d 
WWW 

1.0 d 

2-Nov 
5k Sc 5k 

178.7 a 
w ^ W 

29.0 b 18.3 c 0.7 d"’ 
—www~ 

0.0 d 

16-Nov 
* * * 

250.0 a 
T WWW 

27.7 b 
w * w 

21.0b 
WWW 

0b 
WWW 

0 b 

1-Dec 
w * * 

230.0 a 
SC 5k « 

22.7 b 
SC 5k SC 

12.0 c 0dw 
' sic** 

0d 

15-Dec 
w w w 

227.3 a 
w w w 

33.0 b 
W * W 

20.7 c 
T ~WWW 

0d 
WWW 

0 d 

2006 

6-Jan 
WWW 

174.0 a 33.0 bw 
SC 5jc sc 

20.7 c 3.7 d”* 
W 5k W 

4.0 d 

19-Jan 
WWW 

163.7 a 
~ WWW 

25.3 b 
Www 

16.3 b 0.0 c 
WWW 

3.3 c 

1-Feb 
* * * 

146.0 a 
WWW— 

40.0 b 
WWW 

23.0 c 
>|C 5f< * 

1.7 d 
w w w 

0.0 d 

14-Feb 
W w 

179.2 a 
WWW 

59.7 b 
5-C 5^ 5-C 

23.7 c 
5-C 5k 5k 

2.3 d 
zwww 

0.0 d 

8-Mar 
—WWW— 

158.0 a 
SC 5)C sc 

51.7 b 
-www— 

25.3 c 
WWW— 

0.7 d 
5* w W 

1.3 d 

5-Apr 
w w w 

150.0 a 
WWW 

58.3 b 
WWW 

33.0 c 1.0 dw 
WWW 

0.0 d 

13-Apr 
w w w 

265.0 a 
WWW 

85.0 b 
WWW 

38.3 c nf nf 

19-Apr 
5k « 5k 

202.3 a 
>ic 5jC ^C 

86.7 b 44.0 cw 
-www— 

0.0 d 
WWW 

0.0 d 
2 6-Apr 

WWW 

152.7 a 
1 WWW 

55.0 b 
w w w 

25.3 c 
5£ * 5-C 

11.7 d 
W 5JC 5k 

3.3 e 
3-May 

sjo-c w 

175.3 a 
* 5k * 

89.3 b 
"""'Jfe-jJc'iSc— 

36.0 c 18.3 d 
-WWW— 

4.3 e 

10-May 
Www 

155.0 a 
5-C 5+S W 

84.0 b 
Www 

32.7 c 
5-C W W 

19.7 d 
2 ~Z www 

5.0 e 

17-May 
WWW 

176.0 a 
WWW 

77.0 b 
w * W 

41.3 c 
>rc w w 

14.7 d 
WWW 

4.3 e 
24-May 159.3 aw 93.3 bw 

>jc 5k >|c 

46.7 c 
5k 5k SC 

17.0 d 
*** 

4.0 e 
1-Jun 

ww w 

144.7 a 
WWW 

83.3 b 
5fC W 

47.7 c 19.7 d*** 6.7 e 
7-Jun 164.7 aw 85.7 b”” 58.0 c”’ 22.3 d’" 

-WWW— 

4.7 e 
15-Jun 108.7 a”" 

w % w 

46.3 b 
WWW 

35.3 c 17.3 d*** 
WWW 

3.7 e 
21-Jun 168.7 a’” 73.3 b’~ 50.3 cw 

-1-WWW— 
34.7 d 

WWW 

0.0 e 
28-Jun 

*** 

116.7 a 31.7 b”’ 
5-£ Sj< 5k 

27.7 b 
Z 7 www 
7.0 c 

' ~ WWW 

4.0 c 
5-Jul 174.0 a"" 51.3 b*" 26.7 c*” 

5^*5^ 

16.7 d 1.0 e^ 
11-Jul 151.3 a"" 80.7 b”’ 39.3 c”* nf 0.0 d"’ 
18-Jul 144.0 a”" 75.0 b’” 

WWW 

48.7 c nf nf 
26-Jul 162.7 a’” 73.0 bw 

55C 5JC 5JC 

44.0 c 
WWW 

15.3 d 
-——-srsir*— 

4.7 e 
3-Aug 119.3 a~" 60.7 b"* 

w w w 

40.7 c nf nf 
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Date Influent GB1 GB2 PB1 PB2 

..mg L 1- 
13-Sep 

*** 
159.3 a 50.7 b 

8 8 8 
42.3 c nf nf 

21-Sep 
888—1-888 

143.3 a | 50.7 b 
-— 

39.0 b nf nf 

28-Sep 
8 8 8 8 8 8 

202.0 a 57.7 b 43.0 c* nf nf 

i O
 

o
 

r
-
t-

 * * * 

194.7 a 45.7 b 
8 8 8 

35.3 c nf 
8 8 8 

0.0 d 

12-0ct 182.0 a*”* 
-55T5JT5?— 

39.7 b 
->!rsF5S— 

32.3 c 6.3 d"’ 
r ”— 
2.3 e 

19-0ct 175.3 a 
8 8 8 

42.7 b 
8 8 8 

31.7c 
888 

5.0 d 
8 8 8 

0.0 e 

26-Oct 
888 

166.0 a 43.0 b" 
8 8 8 

30.0 c nf 0.3 dw 

1-Nov 
8 8* 

171.3 a 33.7 b 
8 8 8 

22.0 c nf 
8 8 8 

0.0 d 

8-Nov 
* * * 

197.3 a 
8 8 >k 

37.0 b 
8 8 8 

22.3 c 
888 

4.0 d 
8 8 8 

0.3 d 

22-Nov 152.7 a""" 37.3 bw 16.7 c*” nf 0.0 d** 

2 9-Nov 
* 8 * 

218.0a 
8 8 8 

44.7 b 
888 

23.0 c nf 
8 8 8 

1.0 d 

6-Dec 
■" " " 888- 

174.0 a 
8 8 8 

42.7 b 25.7 cw nf 
8 88 

0.0 d 

14-Dec _ 

8 * * 

207.3 a 
sir8"8 

38.7 b 
8 8 8 

29.3 c nf 
8 8 8 

0.0 d 

Significant at P=0.001. 

97 



Table 9. Mean nitrite concentration from all samples. Numbers within a row followed 

by the same letter are not statistically different from each other according to Duncan’s 

New Multiple Range Test. Dates when no sample was available are indicated by nf. 

Date Influent GB1 GB2 PB1 | PB2 
m o- T ^  mg u 

2005 

10-Aug 
-*** 

0.015 a 0.019 a"’ 0.006 b"* nf nf 

18-Aug 
5k>k sk 

0.008 b 
yt >jc JJC 

0.017 a 0.006 b*" nf nf 

25-Aug 
Slo-nk 

0.005 c 
sksksk 

0.168 a 
sk 5k 5k 

0.008 c 
sk 5k »k 

0.019 b nf 

1-Sep 
5j< « SjC 

0.000 c 
sk sk >k 

0.065 a 
>k 5}c 5k 

0.013 b 
5k 5k 5k 

0.011 b nf 

22-Sep 
* * * 

0.012 be 0.022 a 
sk ?k 5k 

0.009 c 
sk >k >k 

0.013 b nf 

28-Sep 0.017 ab 
>k £ >k 

0.017 ab 0.009 c’" 
3? 5}T>? 

0.014 b 0.019 a 

5-Oct 
* * >k 

0.007 b 
* >k 5k 

0.020 a 
5k >k >k 

0.020 a 
5k sk >k 

0.006 b 
sk'sk'sk 

0.007 b 

13-Oct 
* ** 

0.007 b 
>k sk 5k 

0.151 a 
>k *k >k 

0.008 b 
5k Jk 5k 

0.005 b 
sk 5k sk 

0.002 b 

19-Oct 
WWW 

0.011 b 
sk' 

0.048 a 0.006 b"* 
5k»k5k 

0.008 b 0.004 b*" 

27-Oct 
sk 5k >k 

0.005 c 
* 5k * 

0.026 a 
5k 5k >k 

0.002 d 
sk Jk >k 

0.008 b 
sk >k 5k 

0.000 e 

2-Nov 0.011 be*" 0.119 a’" 0.005 c’" 0.049 ab’" 0.001 c*" 

16-Nov 
Sk W Sk 

0.019 c 
5k 5k 5k 

0.215 a 
5k 5k >k 

0.006 d 0.037b 
sk sk sk 

0.002 d 

1-Dec 
* # sk 

0.013 c 
sk>k>k 

0.038 a 
■ ' ■"sk'jjsrs-r 

0.006 d 
>k >k 5k 

0.032 b 0.002 e"* 

15-Dec 
* * * 

0.010 c 
sk >k Jk 

0.373 a 
5k 5k 5k 

0.009 c 
5k 5k sk 

0.053 b 
5k sk sk 

0.001 d 

2006 

6-Jan 
* * * 

0.018 c 0.362 a"* 0.009 d’" 0.028 b 
-sk*! *- 

0.001 e 

19-Jan 
5k=k * 

0.020 c 
sksksk 

0.090 a 
5k 5k 5k 

0.020 c 
sk 5k sk 

0.030 b 
sk >k sk 

0.001 d 

1-Feb 
sks-esk 

0.017 be 
sk sk >k 

0.584 a 
5k 5k 5k 

0.029 b 
->k sk *- 

0.020 be 
' sksk*- 

0.001 c 

14-Feb 
5JT55T3I8 

0.022 b 
sksksk 

0.655 a 
Sk 5k 5k 

0.007 be 
5k 5k sk 

0.008 be 
5k >k sk 

0.001 c 

8-Mar 
3k WW 

0.010 c 
—WWW— 

1.058 a 
>k >k sk 

0.090 b 
5k 5k 5k 

0.009 c 
sk 5k 5k 

0.001 c 

5-Apr 
skskifc 

0.018 be 
>k^5k 

0.894 a 0.038 b"* 
5k>k>k 

0.002 c 
- sksksk- 

0.001 c 

13-Apr 0.018 c 
>k >k >k 

1.094 a 
5k 5k 5k 

0.161 b nf nf 

19-Apr 0.019 d 
5k 5k 5k 

1.570 a 
* >k 5k1 

0.038 c 
->k >k*- 

0.135 b 
-WWW- 

0.000 e 
2 6-Apr 

sk sk * 

0.018 b 
5k >k sk 

0.641 a 
“ sk sk sk 

0.005 b 
5k 5k 5k 

0.011 b 
sk 5k >k 

0.000 b 

3-May 
—WWW— 

0.102 b 1.618 a"" 
>k )k 5je 

0.002 c 
ik 5k Ik- 

0.003 c 
WWW 

0.000 c 

10-May 
* sk sk 

0.022 b 
5k 5k 5k 

1.820 a 
5k sk 5k 

0.006 b 
>k sk 5k 

0.008 b 
-WWW- 

0.002 b 

17-May 0.013 c 
5k >k >k 

2.204 a 
5k sk x 

0.065 b 
7! ^ _ >k sk >k 

0.005 c 
-WWW- 

0.001 c 
24-May 

MC X )K 

0.010 b 0.858 aw 0.007 cw 
-ik'Sksk' 

0.004 c 
-single- 

0.001 d 

1 -Jun 0.000 d""" 0.522 a"" 
5k 5k 5k 

0.191 b 
5k sk >k 

0.011 c 
-WWW- 

0.001 d 
7-Jun 0.003 c*" 0.493 a’" 

5k sk 5k 

0.005 c 0.044 b"* 
-s^rsjc- 

0.001 c 
15-Jun 0.017 b*” 

>k 5k >k 

0.361 a 
5k 5k >k 

0.008 cd 0.013 be’" 
-sJT^Tsk- 

0.003 d 
21-Jun 0.014cw 0.052 a"’ 

5j< 5k 5k 

0.107 b 
>k 5k 5k 

0.009 d 
-WWW- 

0.005 e 
28-Jun 0.020 b"* 0.159 a"* 

5k 5k 5k 

0.010 c 
„ sk >k 5k 

0.008 c 
—7www- 

0.003 d 
5-Jul 0.014 d’" 0.017 c"' 

5k 5k 5k 

0.078 a 
sk sk sk 

0.024 b 
-WWW- 

0.001 e 
11-Jul 0.026 bw 0.019 c"* 0.052 a"* nf 

-WWW- 

0.002 d 
18-Jul 0.024 a"" 0.023 a’" 0.008 h*" nf nf 
26-Jul 0.019 b"’ 0.011 c'" 

5k 5k >k 

0.005 d 
—I-WWW- 

0.041 a 
-WWW- 

0.000 e 
3-Aug 0.024 a"' 0.014 b*** 

~ 5k 5k >k 

0.009 c nf nf 
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Date Influent GB1 GB2 PB1 PB2 

- rag n 

13-Sep 
# 3fC Jfc 

0.018 b 
-***- 

0.038 a 0.011 c nf nf 

21-Sep 0.013 a*** 
*** 

0.010 b 
>je Jj< 

0.008 c nf nf 

28-Sep 0.010 a'" 0.012 a 0.006 bw nf nf 

5-Oct 
jjT5?T5S 

0.001 c 0.138 a 
-- 

0.007 b nf 0.002 be* 

12-Oct 
—arsTC- 

0.006 c 
" 1 #^sj<- 

0.070 a 0.005 c 0.034 b**" 0.004 c** 

19-0ct 
* * * 

0.017 b 
## * 

0.150a 
3rT5JT5 

0.007 c 
5?7}o|c 

0.007 c 
* * * 

0.002 c 

26-Oct 
sfeTJc * 

0.016 b 
-* - 

0.127 a 
-- 

0.017 b nf 0.002 c*** 

1-Nov 
* * * 

0.012 b 
* * * 

0.162 a 
STsJcl-c 

0.007 c nf 
WWW 

0.001 d 

8-Nov 
* * * 

0.009 b 
»k * * 

0.320 a 
s-citsr 

0.006 b 0.005 b 
* * * 

0.002 b 

2 2-Nov 
-* 

0.003 b 0.288 a’” 
' ' ' jJeakjff 

0.005 b nf 
X * * 

0.001 b 

29-Nov 
sk »?£ sk 

0.006 b 
*** 

0.488 a 
>js 5^C 

0.004 b nf 0.001 b 

6-Dec 
-- 

0.011 b 
5?<" 5?: jJS 

0.310 a 
>jC * sic 

0.004 be nf 
—^nirsp— 

0.001 c 

14-Dec 0.005 b 
*** 

0.485 a 
5rT3r55 

0.005 b nf 
* * * 

0.001 b 

Significant at P=0.001. 
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Table 10. Mean CBOD5 concentration from influent and GB1 effluent and GB2 

effluent. Numbers within a row followed by the same letter are not statistically different 

from each other according to Duncan’s New Multiple Range Test. 

Date Influent GB1 GB2 
1TI O' T 1 mg l 

2005 

14-Jul 
Sc5c5e 

295 a 1.60 b”* 0.20 b 

22-Jul 286 a*” 
■ Sc5< * 

3.70 b 
>?es)<5c 

1.80 b 

28-Jul 
& 5< 5< 

253 a 
55 55 >5 

3.40 b 
Sc Sc 5< 

2.60 b 

3-Aug 
5: sjc 5c 

199 a 1.20 b”* 0.80 b*” 

10-Aug 
5-ci^rs^ 

232 a 
5T5515 

3.20 b 
551F55 

2.00 b 

17-Aug 
« Sc sc 

204 a 2.40 b"* 
-5ST3T5?— 

0.40 b 

25-Aug 
sjc 

262 a 
sc sc sc 

2.90 b 
5c 5c 5< 

0.60 b 

1 -Sep 199 a 
SC Sc * 

1.20 b 
5c 5c 5c 

0.80 b 

22-Sep 
SC SC sc 

235 a 3.30 b*" 
SC sc sc 

1.30 b 

28-Sep 
5c 5k 5c 

164 a 
Sc sc sc 

0.84 b 
5c 5< 5« 

0.61 b 

5-Oct 
jjc jjc Jje 

227 a 3.30 b”* 
s< S< >k 

2.70 b 

13-Oct 
5c sc s= 

201 a 
>5 >5 * 

4.70 b 
5< 5< 5c 

1.00 b 

19-Oct 
SC** 

130 a 
SC SC * 

3.70 b 
SC 5jC SC 

0.50 b 

27-Oct 
5£"5<"5R 

179 a 
sc s< sc 

2.80 b 
5c 5c 5s 

1.40 b 

2-Nov 
SCSCSC 

103 a 
* * * 

3.30 b 
5c 5C 5c 

0.90 b 

16-Nov 
" ‘5c >k 5c " 

265 a 5.60 b”* 
5C 5c jcc 

1.20 b 

16-Dec 285 a 7.95 b 
” 5c 5c 5c 

b 

2006 

6-Jan 290 a 
*>515 

9.10b 
5c 5c 5c 

1.90 b 

19-Jan 220 a 
* s< sc 

8.50 b 
' 5c 5« 5c" 

1.70 b 

1-Feb 277 a 
sc ^c sc 

12.60 b 
% 5c'5e 

1.80 b 

14-Feb 327 a 
^5515 

11.60 b 
“ 5c 5c 5c 

1.33 b 

5-Apr 
.57C s}< 

292 a 17.60 b*** 
5c 5c 5c 

2.20 b 

13-Apr 314a 11.30 b*" 
5c 5< 5c 

2.10b 

19-Apr 
SC * SC 

311 a 
***— 

15.00 b 
5c 5c 5c 

2.30 b 

26-Apr 
5T5TS 

332 a 
55^15 

15.60 b 
“ 5c 5< 5c 

2.20 b 

3-May 
sc sc sc 

287 a 
SC Sc SC 

11.60b 
5c 5:5c 

2.00 b 

10-May 
*** 

307 a 17.90 b*** 
5c 5c s« 

1.10b 

17-May 
5= sc 5c 

323 a 
5515^55 

14.10b 
I I 5< 5c 5C 

1.30 b 

24-May 
SC * sc 

318a 
SC X SC 

6.08 b 
SC 5c Sc 

2.30 b 

15-Jun 
SC * SC 

312a 
55^15 

9.66 b 
5« 5c 5< 

2.54 b 

21-Jun 281 a”* 5.36 b"* 
-ST*-*— 

2.74 b 

28-Jun 
_ _ _ *** 
289 a 4.68 b 

“ 5c 5: 5c 

3.30 b 

5-Jul 
551515 

260 a 
r *«* 
3.43 b 

5c SC Sc 

2.33 b 

12-Jul 
SC SC sc 

332 a 
sc sc sc 

3.73 b 3.79 b*" 

19-Jul 
S< * SC 

326 a 
5c s< 5< 

8.07 b 2.83 b*" 

26-Jul 421 a*” 
5<>Scsc 

7.32 b 3.76 b*" 

13-Sep 291 a’” 1.90 b"* 2.65 b*" 
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Date Influent GB1 GB2 

—-mg L;'- 
21-Sep 

*** 

283 a 
* * * 

4.19b 1.44 b* * 
28-Sep 253 a""" 4.73 b 0.99 b 
5-Oct 276 a”’ 

SfT5SrS?e- 

2.69 b 1.37b 
12-Oct 

£ sfc £ 

173 a 
* * * 

3.08 b 
* * J-S 

1.11 b 
19-Oct 

5^ & W 

244 a 
*>jC * 

2.43 b 0.92 b 
26-Oct 225 a 

* * * 

3.00 b 
* * * 

0.91 b 
1-Nov 233 a"* 

* >=e # 

2.27 b 4.06 bw 
2 2-Nov 
-*** 

221 a 
* * * 

4.15b 
5-njrs 

1.40 b 
*** Significant at P= 0.001. 
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APPENDIX B 

MICROBIAL ANALYSIS DATA 

Table 11. Nitrification potential expressed at mg nitrite produced per gram dry sand per 

hour. Values within a row followed by the same letter are not significantly different 

according to Duncan’s New Multiple Range Test. 

GB1 GB2 PB1 PB2 

Date m rr Vrr ^ Ar\r cai 1 In ^ 

May 17 4.3 ns 3.0 ns 1.8 ns 

Jun 24 3.9 ns 2.3 ns 3.7 ns 

Aug 3 18.8 a 1.3 b* 14.1 ab* 3.6 b 

Oct 5 39.9 ns 21.4 ns 49.8 ns 19.2 ns 

Oct 26 
* * * 

6.0 b 
~ *** 

1.5b 
SjrSTsfc 

24.6 a 
* * * 

4.4 b 

Nov 29 
ijofc ' 

21.2 a 4.7 c 15.9 ab * 
SjC X 

7.8 be 

Dec 14 8.2 ns 10.7 ns 9.2 ns 4.6 ns 

Jan 24 
-* * *- 

16.9 a 
* JjOjC 

3.1 c 14.8 ab ’ 
x 

10.7 b 

Feb 21 25.7 4.5 6.0 3.0 

* ** *** Significant at P = 0.05, 0.01, 0.001, and not significant, respectively. 

Table 12. Denitrifying enzyme activity expressed at mg nitrite produced per gram dry 

sand per hour. Values within a row followed by the same letter are not significantly 

different according to Duncan’s New Multiple Range Test. 

GB1 GB2 PB1 PB2 

Date mrr Ircr ^ Hrv crul In ^ 

Junl 
* 

5.77 a 0.62 b * 

* 

4.37 a 2.29 ab ’ 

Jul 16 177.7 a 
3}T>!oJ< 

43.50 b 
rk Jjcije 

32.85 b 
5?C & 

19.35 b 

Jul 26 80.4 a 12.27 b 
* * * 

14.25 b 
5?r5S"5J« 

6.35 b 

Sep 28 58.4 a 
** * 

2.87 b 
3TSJT55 

4.70 b 5.03 b 

Oct 19 
>iOj< 

224.1 a 
*** 

11.11 b 
-*- 

18.04 b 
>k^ok 

6.08 b 

Nov 22 
snjr* 

45.0 a 6.75 b 
X X X 

6.83 b 
** * 

5.09 b 

Dec 14 
* X >■< 

14.8 a 
x >■« Me 

6.67 b 
-— 

7.39 b 
* >■< * 

4.12 b 

Jan 24 31.2a 5.94 b 
* >K * 

4.06 b 3,44b 

Feb 21 
5?C X 5jC 

102.4 a 18.11 b" 11.51 bw 
-- 

6.10 b 

* *** Significant at P = 0.05, 0.001, respectively. 
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APPENDIX C 

STELLA EQUATIONS 

Water Budget 

GBl(t) = GBl(t - dt) + (Inflow + Precipitation - Evapotranspiration - GB1 Out) * 
dt 

INIT GB1 =26.75 

INFLOWS: 
Inflow = GRAPH (TIME) 
(0.00, 4.92), (1.00, 4.54), (2.00, 4.92), (3.01, 5.30), (4.01, 5.30), (5.01, 1.33), (6.01, 
1.33), (7.01, 2.65), (8.02, 4.54), (9.02, 4.92), (10.0, 5.30), (11.0, 4.92), (12.0, 9.84), 
(13.0, 9.84), (14.0, 9.84), (15.0, 4.92), (16.0, 6.06), (17.0, 4.54), (18.0, 4.16), (19.0, 
1.51), (20.0, 1.51), (21.0, 6.06), (22.0, 6.43), (23.0, 5.68), (24.0, 5.68), (25.0, 2.74), 
(26.1,2.74), (27.1, 2.74), (28.1, 2.74), (29.1, 4.92), (30.1, 5.30), (31.1, 3.79), (32.1, 
2.46), (33.1,2.46), (34.1,2.65), 

Precipitation = (Daily_precipitation/100)*Surface_Area 

OUTFLOWS: 
Evapotranspiration = (PET_GBl/100)*Surface_Area 
GBl_Out = GBl-Bed_Capacity_GBl 

GB_2(t) = GB_2(t - dt) + (GBl_Out + Precip_2 - GB2_Out - ET2) * dt 
INIT GB_2 = 26.75 

INFLOWS: 
GB l_Out = GB1 -Bed_Capacity_GB 1 
Precip_2 = (Daily_precipitation/100)*Surface_Area 

OUTFLOWS: 
GB2_Out = GB_2-Bed_Capacity_GB2 
ET2 = (PET_GB2/100)* Surface_Area 

PBl(t) = PBl(t - dt) + (GB2 Out + Precip_3 - PB1 Out - ET3) * dt 
INIT PB1 =26.75 

INFLOWS: 
GB2_Out = GB_2-Bed_Capacity_GB2 
Precip_3 = (Daily_precipitation/100)*Surface_Area 

OUTFLOWS: 
PBl_Out = PBl-Bed_Capacity_PBl 
ET3 = (PET_PBl/100)*Surface_Area 
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PB2(t) = PB2(t - dt) + (PB1 Out + Precip_4 - PB2 Out - ET4) * dt 
INIT PB2 = 26.75 

INFLOWS: 
PBlOut = PBl-Bed_Capacity_PBl 
Precip_4 = (Daily__precipitation/100)*Surface_Area 

OUTFLOWS: 
PB2_Out = PB2-Bed_Capacity_PB2 
ET4 - (PET_PB2/100)*Surface_Area 

Bed_Capacity_GBl = 24.4 
Bed_Capacity_GB2 = 26.5 
Bed_Capacity_PBl =31.8 
Bed_Capacity_PB2 = 31.8 
Bed_length = 15.24 
Bed_width = 15.24 
PET_GB 1 = .31 *(cos(2*PI*(TIME+30)/365)+l .05) 
PETGB2 = .31 *(cos(2*PI*(TIME+30)/365)+l .05) 
PET_PB 1 = .375*(cos(2*PI*(TIME+30)/365)+1.05) 
PETPB2 = .375^(cos(2*PU(TIME+30)/365)+1.05) 
Surface_Area = Bed_width*Bed_length 

Daily_precipitation = GRAPH(TIME) 
(0.00, 0.00), (1.00, 0.00), (2.00, 0.00), (3.01, 0.00), (4.01, 1.98), (5.01, 0.03), (6.01, 
0.00), (7.01, 0.00), (8.02, 0.00), (9.02, 0.00), (10.0, 0.00), (11.0, 1.19), (12.0, 0.00), 
(13.0, 0.66), (14.0, 0.03), (15.0, 0.05), (16.0, 0.00), (17.0, 0.00), (18.0, 0.00), (19.0, 
0.13), (20.0, 0.00), (21.0, 0.00), (22.0, 0.00), (23.0, 0.03), (24.0, 0.00), (25.0, 0.00), 
(26.1, 0.03), (27.1, 0.08), (28.1, 0.03), (29.1, 0.13), (30.1, 0.58), (31.1, 0.00), (32.1, 
0.00), (33.1, 0.00), (34.1, 0.00), (35.1, 0.00), (36.1, 0.00), (37.1, 0.03), (38.1, 0.00), 
(39.1, 0.00), (40.1, 0.00), (41.1, 0.00), 
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Nitrogen Cycle 

DEA Equation 

alpha_dea = 9 
A_dea = 5500*EXP(el_dea) 
beta_dea = 3 
Bdea = 4300*EXP(e2_dea) 
C_dea = 5500*EXP(e3_dea) 
DEA_Potential = A_dea+B_dea+C_dea+D_dea 
D_dea = 500 
el_dea = -beta_dea*((date_3-tl_dea)A2) 
e2_dea = -alpha_dea*((date_3-t2_dea)A2) 
e3_dea = -beta_dea*((date_3-t3_dea)A2) 
tl_dea = 2.5 
t2_dea =10.6 
t3_dea =14 
date_3 = GRAPH(TIME) 
(0.00, 0.00), (31.3, 1.00), (62.5, 2.00), (93.8, 3.00), (125, 4.00), (156, 5.00), (188, 6.00), 
(219, 7.00), (250, 8.00), (281, 9.00), (313, 10.0), (344, 11.0), (375, 12.0), (406, 13.0), 
(438, 14.0), (469, 15.0), (500, 16.0) 

Flow 

GBl(t) = GBl(t - dt) + (Stafflnflow + Precipitation - Evapotranspiration - 
GBI Out) * dt 

INITGB1 =26.75 

INFLOWS: 
Stafflnflow = Inflow 
Precipitation = (Daily_precipitation/100)*Surface_Area 

OUTFLOWS: 
Evapotranspiration = (PET_GBl/100)*Surface_Area 
GBl_Out = GBl-Bed_Capacity_GBl 

Bed_Capacity_GBl = 24.4 
Bedlength = 15.24 
Bed_width = 15.24 
PETGBl = .31 *(cos(2*PI*(TIME+30)/365)+l .05) 
Surface_Area = Bed_width*Bed_length 
Daily_precipitation = GRAPH(TIME) 
(0.00, 0.00), (1.00, 0.00), (2.00, 1.19), (3.01, 0.00), (4.01, 0.66), (5.01, 0.03), (6.01, 
0.05), (7.01. 0.00), (8.02, 0.00), (9.02, 0.00), (10.0, 0.13), (11.0, 0.00), (12.0, 0.00), 
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Inflow = GRAPH(TIME) 
(0.00, 5.12), (1.00, 5.52), (2.00, 5.12), (3.01, 5.00), (4.01, 5.00), (5.01, 5.00), (6.01, 
5.12), (7.01, 6.30), (8.02, 4.73), (9.02, 4.33), (10.0, 0.00), (11.0, 0.00), (12.0, 6.30), 
(13.0, 6.70), (14.0, 5.91), (15.0, 5.91), (16.0, 6.30), (17.0, 0.00), (18.0, 0.00), (19.0, 
5.12), (20.0,5.12), 

Nitrification Equation 

alpha_nt = 5 
A_nt = 500*EXP(el_nt) 
betant = 4.5 
B_nt = 200*EXP(e2_nt) 
Cnt = 500*EXP(e3_nt) 
D_nt = 200*EXP(e4_nt) 
elnt = -alpha_nt*((date_2-t 1 _nt)A2) 
e2_nt = -beta_nt*((date_2-t2_nt)A2) 
e3_nt = -alpha_nt*((date_2-t3_nt)A2) 
e4_nt = -beta_nt*((date_2-t4_nt)A2) 
E_nt = 100 
Nitrification_Potential = A_nt+B_nt+C_nt+D_nt+E_nt 
tint = 2 
t2_nt = 3.7 
t3_nt =13.5 
t4_nt =15.2 
date_2 = GRAPH(TIME) 
(0.00, 0.00), (31.3, 1.00), (62.5, 2.00), (93.8, 3.00), (125, 4.00), (156, 5.00), (188, 6.00), 
(219, 7.00), (250, 8.00), (281, 9.00), (313, 10.0), (344, 11.0), (375, 12.0), (406, 13.0), 
(438, 14.0), (469, 15.0), (500, 16.0) 

BiomassN(t) = Biomass_N(t - dt) + (Immobilization - Mineralization) * dt 

INIT Biomass N = 9000 

INFLOWS: 
Immobilization = Biomass_IN*Bed_Volume 

OUTFLOWS: 
Mineralization = Biomass_Out*Bed_Volume 

NH4(t) = NH4(t - dt) + (Influent_NH4 + Mineralization - Immobilization - 
NH4_Oxidation - Effluent_NH4) * dt 

INIT NH4 = 1500 

INFLOWS: 
Influent_NH4 = IF lnflow=0 THEN 
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NH4_In*(Inflow+4)*(Bed_Capacity_GBl/(Bed_Capacity_GBl+Precipitation)) 
ELSE NH4_In*Inflow*(Bed_Capacity_GBl/(Bed_Capacity_GBl+Precipitation)) 

Mineralization = Biomass_Out*Bed_Volume 

OUTFLOWS: 
Immobilization = Biomass_IN*Bed_Volume 
NH4_Oxidation = Nitrification_Potential*Realized_Factor*Bed_Volume 
Effluent_NH4 = IF GBl_Out=0 THEN 0 ELSE NH4/GBl_Out 

N02(t) = N02(t - dt) + (NH4_Oxidation - Nitrification_Step_2 - N02_0ut) * dt 

INIT N02 = .24 

INFLOWS: 
NH4_Oxidation = Nitrification_Potential*Realized_Factor*Bed_Volume 

OUTFLOWS: 
Nitrification_Step_2 = 
Nitrification_Potential*Realized_Fraction_2*Bed_Volume 
N02_0ut - IF GBl_Out=0 THEN 0 ELSE N02/GBl_0ut 

N03(t) = N03(t - dt) + (Nitrification_Step_2 - N03_0ut - N2) * dt 
INIT N03 = .24 

INFLOWS: 
Nitrification_Step_2 = 

Nitrification_Potential*Realized_Fraction_2*Bed_Volume 

OUTFLOWS: 
N03_0ut = IF GBl_Out=0 THEN 0 ELSE (N03/GBl_0ut) 
N2 = DEA Potential*DEA Realized Fraction*Bed Volume 

BedVolume = 82.6 
DEA_Realized_Fraction = .05 
RealizedFactor = .0001 
Realized Fraction 2 = 0 

Biomass_IN 
(0.00, 0.00), 
0.00), (7.00, 
(13.0,0.00), 
0.00), (20.0, 
(26.0, 0.00), 
0.00), (33.0, 
(39.0, 0.00), 
0.00), (46.0, 

= GRAPH(TIME) 
(1.00, 0.00), (2.00, 0.00), 
0.00), (8.00, 0.00), (9.00, 
(14.0,0.00), (15.0, 0.00), 
0.00), (21.0, 0.00), (22.0, 
(27.0, 0.00), (28.0, 0.00), 
0.00), (34.0, 0.00), (35.0, 
(40.0,0.00), (41.0, 0.00), 
0.00), (47.0, 0.00), (48.0. 

(3.00, 0.00), (4.00, 0.00), (5.00, 0.00), (6.00, 
0.00), (10.0, 0.00), (11.0, 0.00), (12.0, 0.00), 
(16.0, 0.00), (17.0, 0.00), (18.0, 0.00), (19.0, 
0.00), (23.0, 0.00), (24.0, 0.00), (25.0. 0.00), 
(29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 
0.00), (36.0, 0.00), (37.0, 0.00), (38.0. 0.00), 
(42.0, 0.00), (43.0, 0.00), (44.0, 0.00), (45.0, 
0.00), 

107 



BiomassOut = GRAPH(TIME) 
(0.00, 0.00), (1.00, 1.68), (2.00, 1.71), (3.00, 1.75), (4.00, 1.79), (5.00, 1.81), (6.00, 
1.85), (7.00. 1.86), (8.00, 1.89), (9.00, 1.90), (10.0, 1.92), (11.0, 1.92), (12.0, 1.94), 
(13.0, 1.94), (14.0, 1.94), (15.0, 1.94), (16.0, 1.94), (17.0, 1.93), (18.0, 1.91), (19.0, 
1.91), (20.0, 1.89), (21.0, 1.88), (22.0, 1.85), (23.0, 1.83), (24.0, 1.80), (25.0, 1.78), 
(26.0, 1.75), (27.0, 1.72), (28.0, 1.68), (29.0, 1.65), (30.0, 1.61), (31.0, 1.57), (32.0, 
1.53), (33.0, 1.49), (34.0, 1.44), (35.0, 1.40), (36.0, 1.34), (37.0, 1.30), (38.0, 1.25), 
(39.0, 1.20), (40.0, 1.15), (41.0, 1.09), (42.0, 1.03), (43.0, 0.98), (44.0, 0.93), (45.0, 
0.86), (46.0, 0.81), (47.0, 0.75), (48.0, 0.68), 

NH4_In = GRAPH(TIME) 
(0.00, 152), (10.2, 94.0), (20.4, 232), (30.6, 160), (40.8, 104), (51.0, 177), (61.2, 216), 
(71.4, 157), (81.6, 147), (91.8, 160), (102, 179), (112, 250), (122, 230), (133, 227), 
(143, 174), (153, 164), (163, 146), (173, 179), (184, 158), (194, 150), (204, 265), (214, 
202), (224, 153), (235, 175), (245, 155), (255, 176), (265, 159), (276, 145), (286, 165), 
(296, 109), (306, 169), (316, 117), (327, 174), (337, 151), (347, 144), (357, 163), (367, 
119), (378, 159), (388, 143), (398, 202), (408, 195), (418, 182), (429, 175), (439, 166), 
(449, 171), (459, 197), (469, 153), (480, 218), (490, 174), (500, 207) 

Seasonal_F actor = GRAPH(TIME) 
(0.00, 0.014), (1.00, 0.014), (2.00, 0.014), (3.00, 0.014), (4.00, 0.014), (5.00, 0.013), 
(6.00, 0.013), (7.00, 0.013), (8.00, 0.013), (9.00, 0.013), (10.0, 0.013), (11.0, 0.013), 
(12.0, 0.013), (13.0, 0.013), (14.0, 0.013), (15.0, 0.013), (16.0, 0.013), (17.0, 0.012), 
(18.0, 0.012), (19.0, 0.012), (20.0, 0.012), (21.0, 0.012), (22.0, 0.012), (23.0, 0.012), 
(24.0, 0.012), (25.0, 0.012), (26.0, 0.012), (27.0, 0.011), (28.0, 0.011), (29.0, 0.011), 
(30.0, 0.011), (31.0, 0.011), (32.0, 0.011), (33.0, 0.011), (34.0, 0.011), (35.0, 0.011), 
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APPENDIX D 

MODEL INPUT AND PREDICTIONS 

Table 13. TLVFSBTS model Water Budget input and output values. Measured and 
Precip. are measured inputs, STELLA and all output values were calculated by the 

software. 

Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date nT cm m3 Ill 

10-Aug 5.12 5.32 0 1.37 3.24 0.61 0 0 

11-Aug 5.52 2.70 0 1.37 3.41 1.60 0 0 

12-Aug 5.12 0.14 2.77 1.36 0.49 0.98 0 0 

13-Aug 0 14.00 0 1.35 2.38 3.57 0.39 0 

14-Aug 0 17.93 1.53 1.35 20.47 7.55 0.01 0 

15-Aug 30.73 7.00 0.06 1.34 8.42 11.40 8.76 0 

16-Aug 5.12 5.55 0.12 1.33 6.20 7.87 7.11 1.84 

17-Aug 6.30 4.67 0 1.32 4.61 5.38 5.19 3.25 

18-Aug 4.73 2.58 0 1.32 3.71 3.71 3.44 2.72 

19-Aug 4.33 0.38 0 1.31 0.95 1.83 2.13 1.63 

20-Aug 0 2.48 0.29 1.30 1.39 2.51 2.80 2.86 

21 - Aug 0 5.79 0 1.29 3.14 1.26 0.88 1.18 

22-Aug 6.30 6.36 0 1.28 5.75 3.73 1.93 1.16 

23-Aug 6.70 6.01 0 1.27 4.87 3.87 2.54 1.01 

24-Aug 5.91 6.05 0.06 1.27 4.77 3.79 2.42 1.02 

25-Aug 5.91 4.05 0 1.26 4.90 3.66 2.20 0.88 

26-Aug 6.30 0.95 0 1.25 1.70 2.60 2.17 0.75 

2 7-Aug 0 1.70 0.06 1.24 0.38 0.78 0.56 0.391 

2 8-Aug 0 4.26 0.18 1.23 1.72 0.05 0 o 

2 9-Aug 5.12 5.25 0.06 1.22 3.18 0.94 0 o 

30-Au 2 5.12 4.96 0.29 1.21 3.73 1.88 0 0 

31 -Aug 5.52 4.60 1.36 1.20 3.34 2.21 0 0 

1-Sep 3.94 3.41 0 1.19 3.46 2.28 0.10 0 

2-Sep 5.12 1.09 0 1.18 1.60 1.66 0.48 0 

3-Sep 0 0.00 0 1.17 0.26 0.53 0 0 

4-Sep 0 1.44 0 1.16 0.00 0.00 0 0! 

5-Sep 0 4.20 0 1.15 0.71 0.00 0 0 

6-Sep 5.52 5.61 0 114 3.21 0.00 0 o 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 cm __rn'1_ 
-HI - 

7-Sep 5.52 5.62 0.06 1.13 4.14 1.56 0 0 

8-Sep 5.91 4.18 0 1.12 5.13 3.75 0 0 

9-Sep 5.12 1.41 0 1.11 2.48 2.93 0.89 0 

10-Sep 0 1.23 0 1.10 0.52 1.10 0.46 0 

11-Sep 0 4.10 0 1.09 1.00 0.26 0 0 

12-Sep 5.91 5.48 0 1.08 3.67 0.88 0 0 

13-Sep 5.52 4.97 0 1.06 3.77 2.11 0 0 

14-Sep 4.73 4.80 0 1.05 3.60 2.48 0 0 

15-Sep 4.73 4.16 3.01 1.04 3.79 2.66 1 0 

16-Sep 5.12 1.72 0.41 1.03 2.74 2.37 1.09 0 

17-Sep 0 0.92 0 1.02 0.51 1.03 0.78 0 

18-Sep 0 4.02 0 1.01 0.62 0.26 0 0 

19-Sep 6.30 5.90 0 1.00 4.00 0.83 0 0 

20-Sep 5.91 5.12 0 0.98 4.16 2.38 0 0 

21-Sep 4.73 4.48 0 0.97 3.67 2.77 1 0 

22-Sep 4.33 3.89 0 0.96 3.45 2.66 1.08 0 

23-Sep 4.33 1.73 0 0.95 4.82 5.07 3.96 0 

24-Sep 0 0.46 0 0.94 1.02 3.11 4.00 0 

25-Sep 0 3.28 0.06 0.92 0.46 0.89 1.53 0 

26-Sep 5.52 5.87 1.94 0.91 3.76 1.17 0.31 0 

27-Sep 6.30 5.48 0.06 0.90 4.59 2.61 0.70 0 

28-Sep 4.73 5.31 0 0.89 3.98 3.15 1.66 0 

29-Sep 5.91 4.88 1.53 0.88 4.65 3.35 1.84 0 

30-Sep 4.33 2.00 0 0.86 3.45 3.24 2.29 0 

1-Oct 0 0.11 0 0.85 0.73 1.76 1.92 0 

2-Oct 0 2.67 0 0.84 0.00 0.52 0.39 0 

3-Oct 5.12 5.12 0 0.83 3.10 0.40 0 0 

4-Oct 5.12 5.12 0 0.81 5.00 3.68 1.73 0 

5-Oct 5.12 5.12 0 0.80 4.43 3.87 2.75 0 

6-Oct 5.12 4.93 0 0.79 4.32 3.71 2.72 0 

7-Oct 4.73 2.52 5.48 0.78 5.06 4.89 4.01 0 

8-Oct 0 0.15 41.96 0.77 1.13 3.12 3.87 0 

9-Oct 0 2.49 3.83 0.75 0.30 0.95 1.66 0 

10-Oct 5.52 4.90 0.12 0.74 3.13 0.89 0.36 0 
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Input Output 

Measured iSTELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 cm m3 1 Ill - - 

11-Oct 4.73 4.94 0 0.73 3.57 2.16 0.73 0, 

12-Oct 5.12 4.93 15.09 0.72 4.03 2.83 1.36 0! 

13-Oct 4.73 4.59 8.66 0.70 3.98 3.17 1.91 0 

14-Oct 4.33 2.61 12.49 0.69 3.75 3.18 2.18 0.15 

15-Oct 0 0.41 0.77 0.68 4.61 6.97 6.97 5.6! 

16-Oct 0 2.30 0 0.67 28.41 40.12 42.15 42.57 

17-Oct 5.91 5.10 0 0.65 14.81 29.56 43.57 49.56 

18-Oct 5.52 6.15 0.35 0.64 8.36 17.31 29.10 39.41 

19-Oct 7.09 6.18 0 0.63 7.33 11.11 18.05 27.61 

20-Oct 5.12 5.25 0 0.62 15.65 20.98 24.96 31.56 

21-Oct 4.73 3.16 0 0.61 13.69 22.09 29.22 35.12 

22-Oct 0 0.74 4.24 0.59 13.00 23.96 32.73 39.82 

23-Oct 0 1.80 3.01 0.58 4.73 14.26 24.71 33.68 

24-Oct 5.52 4.94 2.06 0.57 4.25 7.57 14.20 23.39 

25-Oct 6.70 6.12 6.72 0.56 5.61 5.69 8.60 14.8 

26-Oct 5.52 5.74 0.35 0.55 5.66 5.65 6.79 9.87 

27-Oct 5.52 5.75 0 0.53 5.18 5.21 5.69 7.16 

28-Oct 6.30 4.36 0 0.52 5.42 4.95 4.85 5.55 

29-Oct 0 1.37 0 0.51 3.02 4.14 4.56 4.62 

30-Oct 0 1.56 0 0.50 3.25 5.81 6.80 7.34 

31-Oct 5.91 4.22 0 0.49 5.25 6.42 7.70 9.2 

1-Nov 4.73 5.21 0 0.48 6.45 7.06 8.17 9.45 

2-Nov 5.52 5.13 0.47 0.46 9.41 11.62 12.74 13.64 

3-Nov 4.73 5.30 0 0.45 6.64 9.35 12.00 13.51 

4-Nov 6.30 4.49 0 0.44 5.59 6.93 8.89 10.94 

5-Nov 0 1.76 0 0.43 3.85 5.27 6.76 8.41 

6-Nov 0 1.20 0.77 0.42 1.04 3.09 4.83 6.33 

7-Nov 5.91 4.38 0 0.41 1.90 1.73 2.48 4.21 

8-Nov 7.09 7.09 0 0.40 4.93 2.65 1.75 2.481 

9-Nov 9.06 7.82 2.06 0.39 6.54 4.48 2.91 2.09 

10-Nov 5.52 6.53 0 0.38 7.27 6.15 4.68 3.21 
_I_I 

11-Nov 4.73 4.24 0.88 0.37 5.41 6.05 5.65 4.31 

12-Nov 0 1.61 0 0.36 3.61 4.79 5.13 4.75! 

13-Nov 0 0.89 0.06 0.35 1.00 2.85 3.99 4.34 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

m3 cm _ 
LJdlC -Ill - 

14-Nov 6.30 3.78 0 0.34 1.95 2.15 2.74 3.81 

15-Nov 4.33 5.16 0.82 0.33 4.67 2.78 2.13 2.73 

16-Nov 5.12 4.82 5.77 0.32 4.09 3.65 3.04 2.37 

17-Nov 5.12 5.25 0.65 0.31 5.85 5.59 4.88 4.29 

18-Nov 6.3 5.23 0 0.30 5.42 5.53 5.44 4.99 

19-Nov 0 2.54 0 0.29 5.46 5.79 5.81 5.61 

20-Nov 0 0.47 0 0.28 1.33 4.06 5.51 5.54 

21-Nov 5.91 3.34 0.24 0.27 1.17 2.05 3.17 4.53 

22-Nov 4.73 5.21 4.95 0.26 4.53 2.44 1.90 2.98 

23-Nov 4.33 4.28 0 0.25 4.71 4.24 3.60 3.07 

24-Nov 0 1.94 0 0.24 7.36 8.75 8.62 8.09 

2 5-Nov 0 0.00 0 0.23 2.72 6.85 9.47 9.88 

26-Nov 0 0.00 0 0.22 0.96 3.34 5.98 8.23 

27-Nov 0 0.10 0 0.22 0.40 1.45 3.23 5.52 

2 8-Nov 5.91 3.05 0 0.21 0.14 0.56 1.58 3.23 

29-Nov 5.91 5.91 2.18 0.20 4.48 1.78 0.82 1.83 

30-Nov 5.52 5.72 10.61 0.19 7.98 7.55 6.33 5.47 

1-Dec 5.52 5.52 0 0.18 6.42 7.55 8.06 7.39 

2-Dec 5.52 5.52 0 0.18 5.60 6.36 7.04 7.25 

3-Dec 0 2.96 0 0.17 5.47 5.76 6.13 6.6 

4-Dec 0 0.20 0 0.16 1.58 4.19 5.62 5.98 

5-Dec 5.52 2.46 0 0.16 0.69 2.04 3.42 4.89 

6-Dec 4.73 4.87 0.06 0.15 3.88 2.10 1.89 3.28 

7-Dec 5.12 4.95 0 0.14 5.51 5.01 4.39 4.18 

8-Dec 5.52 5.26 0 0.14 11.32 13.44 13.40 13.03 

9-Dec 5.12 5.32 0 0.13 8.18 11.77 14.76 15.63 

10-Dec 0 3.10 0.12 0.12 5.92 8.42 11.33 13.54 

11-Dec 0 0.50 0.77 0.12 2.36 5.64 8.49 10.83 

12-Dec 5.52 2.12 0.53 0.11 0.93 2.96 5.30 8.1 

13-Dec 3.94 4.28 0 0.11 3.53 2.43 2.99 5.39 

14-Dec 5.12 4.57 0 0.10 3.95 3.30 3.20 3.84 

15-Dec 4.73 4.82 0 0.10 4.45 3.86 3.48 3.47 

16-Dec 5.52 5.06 4.77 0.09 4.60 4.24 3.86 3.55 

17-Dec 0 3.52 0 0.09 5.00 4.56 4.13 3.79 
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Input Output 

Measured iSTELLA Precip. PET GB1 GB2 PB1 PB2 

Date   m3 cm 

18-Dec 0 0.88 0 0.08 2.53 4.04 4.56 4.16 

19-Dec 5.91 1.90 0 0.08 1.21 2.98 4.06 4.6 

20-Dec 5.12 4.61 0 0.07 3.72 2.96 3.15 4.29 

21-Dec 4.73 5.15 0 0.07 4.89 3.85 3.49 3.68 

22-Dec 4.73 4.81 0 0.07 4.69 4.43 4.12 3.69 

23-Dec 4.73 4.73 0 0.06 4.64 4.55 4.33 3.98 

24-Dec 0 3.42 0 0.06 7.27 8.07 7.91 7.69 

25-Dec 0 1.05 3.83 0.06 4.10 6.99 8.83 9.11 

26-Dec 0 0.00 3.83 0.05 1.20 3.96 6.40 7.98 

27-Dec 0 0.00 0 0.05 0.57 1.93 3.75 5.91 

28-Dec 0 0.00 0 0.05 0.26 0.91 2.10 3.86 

29-Dec 0 0.00 5.42 0.05 0.11 0.41 1.13 2.33 

30-Dec 0 0.00 0.24 0.04 0.03 0.16 0.57 1.31 

31-Dec 0 0.00 0 0.04 0.00 0.07 0.25 0.68 

1-Jan 0 0.00 0.06 0.04 0.00 0.01 0.09 0.32 

2-Jan 3.94 1 1.77 0.04 1.98 2.65 2.72 2.85 

3-Jan 5.52 3 0 0.04 4.33 5.51 6.14 6.53 

4-Jan 5.91 5 0 0.04 5.04 5.35 6.31 7.09 

5-Jan 5.52 6 3.71 0.04 5.33 5.19 5.63 6.18 

6-Jan 4.73 6 0.88 0.04 8.44 9.25 9.27 9.47 

7-Jan 0 4 0 0.04 7.08 9.12 10.59 11.09 

8-Jan 0 2 0 0.04 4.27 6.73 8.86 10.13 

9-Jan 5.91 0.80 0 0.04 1.32 4.20 6.58 8.44 

10-Jan 5.12 3.66 0 0.04 2.77 3.71 5.16 7.52 

11-Jan 5.52 5.46 2.36 0.04 5.34 4.19 4.46 6.11 

12-Jan 5.12 5.32 0 0.04 5.00 4.79 4.86 5.11 

13-Jan 5.52 5.32 0 0.04 7.18 7.58 7.46 7.47| 

14-Jan 0 4.85 4.42 0.04 6.79 8.17 9.04 9.24: 

15-Jan 0 2.25 0 0.04 5.22 6.75 8.15 8.94 

16-Jan 7.88 0.58 0 0.04 1.41 4.46 6.64 7.79 

17-Jan 5.12 4.34 0 0.04 1.54 2.48 3.98 6.07 

18-Jan 5.52 6.34 7.37 0.05 6.10 3.36 2.71 4.22 

19-Jan 6.30 5.38 0 0.05 6.22 6.42 5.96 5.34 

20-Jan 5.12 5.90 0 0.05 6.16 6.61 6.80 6.58 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 cm __ -m - 

21-Jan O1 5.52 0 0.05 6.12 6.20 6.42 6.53 

22-Jan 0 2.41 0 0.06 7.33 8.79 9.20 9.29 

23-Jan 5.91 0.07 1.24 0.06 2.78 7.00 9.66 10.43 

24-Jan 5.12 3.02 0.12 0.06 1.10 3.47 6.15 8.64 

25-Jan 5.52 5.52 0.00 0.07 4.91 3.18 3.55 5.98 

26-Jan 5.52 5.32 0 0.07 8.48 9.20 9.07 9.41 

27-Jan 5.12 5.51 0 0.07 7.68 9.67 11.18 11.7 

28-Jan 0 5.33 0 0.08 5.94 7.51 9.35 10.6 

29-Jan 0 2.79 1.71 0.08 5.41 6.34 7.56 8.96 

30-Jan 6.30 0.21 0.06 0.09 1.69 4.48 6.39 7.55 

31-Jan 5.52 2.78 1.53 0.09 1.30 3.06 4.75 6.71 

1-Feb 5.52 5.59 0 0.10 4.95 J.JO 3.42 5.28 

2-Feb 5.52 5.57 0 0.10 5.15 4.40 4.12 4.22 

3-Feb 5.52 5.52 4.07 0.11 5.24 4.88 4.52 4.19 

4-Feb 0 5.52 2.53 0.11 5.32 5.09 4.76 4.4 

5-Feb 0 3.33 1.59 0.12 5.36 5.19 4.92 4.61 

6-Feb 5.12 0.57 0 0.12 2.92 5.24 6.11 5.86 

7-Feb 5.12 1.94 0 0.13 1.33 3.44 5.04 6.06 

8-Feb 5.52 4.50 0 0.14 4.10 3.56 4.04 5.59 

9-Feb 5.52 5.26 0 0.14 5.01 4.45 4.47 4.97 

10-Feb 7.49 5.46 0 0.15 5.07 4.71 4.58 4.53 

11-Feb 0 6.19 0 0.16 7.17 7.51 7.23 7.01 

12-Feb 0 4.67 0 0.16 8.96 9.79 10.12 10.16 

13-Feb 5.91 1.24 1 0.17 5.22 9.01 11.30 11.72 

14-Feb 4.73 1.87 0 0.18 1.86 5.55 8.66 10.75 

15-Feb 5.52 4.46 0 0.18 3.50 3.53 5.06 7.93 

16-Feb 4.73 5.19 0 0.19 4.60 3.81 4.07 5.5 

17-Feb 4.73 5.13 0.77 0.20 4.81 4.30 4.12 4.42 

18-Feb 0 4.89 0 0.21 4.79 4.51 4.24 4.11 

19-Feb 0 3.44 0 0.22 4.57 4.49 4.28 4.06 

20-Feb 5.52 1.07 0 0.22 2.60 3.74 4.18 4.01 

21-Feb 5.52 1.41 0 0.23 1.05 2.72 3.68 4.14 

22-Feb 5.12 4.16 0 0.24 2.64 2.17 2.45 3.49 

23-Feb 4.73 5.42 0 0.25 4.54 2.92 2.27 2.53 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 cm _ ryt ' _ 
Ill - 

24-Feb 5.12 5.14 0 0.26 4.76 3.92 3.12 2.42 

25-Feb 0 4.92 0 0.27 4.97 4.73 4.11 3.31 

26-Feb 0 3.93 0 0.28 4.90 4.86 4.54 3.99 

27-Feb 5.52 1.48 0 0.29 3.23 4.11 4.41 4.08 

28-Feb 5.12 1.06 0 0.30 0.87 2.51 3.50 3.75 

1-Mar 5.12 3.75 0 0.31 1.73 1.48 1.85 2.76 

2-Mar 5.12 5.25 0 0.32 4.20 2.31 1.45 1.75 

3-Mar 5.12 5.12 0.18 0.33 4.44 3.46 2.47 1.64 

4-Mar 0 5.12 0.41 0.34 4.61 3.96 3.09 2.15 

5-Mar 0 4.36 0 0.35 4.69 4.20 3.47 2.64: 

6-Mar 5.91 1.80 0 0.36 3.59 3.93 3.70 3 

7-Mar 4.73 0.77 0 0.37 0.89 2.50 3.24 3.03 

8-Mar 5.12 3.58 0 0.38 1.24 1.27 1.66 2.321 

9-Mar 4.73 5.22 0 0.39 4.25 2.04 1.03 1.33 

10-Mar 4.73 4.93 0 0.40 4.14 3.24 2.21 1.21 

11-Mar 0 4.88 0 0.41 4.52 3.79 2.83 1.85 

12-Mar 0 4.32 0 0.42 4.55 4.24 3.54 2.64 

13-Mar 6.30 1.95 2.47 0.43 3.86 4.03 3.75 3.1 

14-Mar 5.12 0.43 0.12 0.44 0.91 2.56 3.32 3.04 

15-Mar 5.12 3.52 0 0.45 0.66 1.05 1.62 2.26i 

16-Mar 5.52 5.64 0 0.46 4.50 1.82 0.63 1.1 

17-Mar 6.30 5.14 0 0.48 4.31 3.26 2.05 0.89 

18-Mar 0 5.36 0 0.49 4.50 3.72 2.65 1.5 

19-Mar 0 5.78 0 0.50 4.89 4.05 3.03 2.01 

20-Mar 7.09 3.00 0 0.51 5.29 4.41 3.40 2.42 

21-Mar 5.52 0.05 0 0.52 1.93 4.58 5.17 4.18 

22-Mar 5.12 3.58 0 0.53 1.30 2.95 4.13 4.91 

23-Mar 5.12 6.31 0 0.55 5.40 2.78 2.17 3.33! 

24-Mar 5.12 5.34 0.35 0.56 4.80 3.99 3.17 2.39 

25-Mar 0 5.13 0.00 0.57 4.58 4.10 3.37 2.51' 

26-Mar 0 5.12 0.41 0.58 4.56 4.04 3.34 2.61 

27-Mar 5.12 2.80 0 0.59 4.54 3.99 3.30 2.62 

28-Mar 5.52 0.24 0 0.61 1.11 2.80 3.26 2.58 

29-Mar 5.52 2.23 0 0.62 0.37 0.91 1.51 1.95 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 cm m3. 

30-Mar 5.52 4.96 0 0.63 2.91 0.95 0.36 0.69 

31 -Mar 5.91 5.49 0 0.64 4.11 2.32 0.82 0.14 

1-Apr 0 5.52 0.77 0.65 4.64 3.44 1.94 0.52 

2-Apr 0 5.67 0 0.67 4.82 3.98 2.72 1.35 

3-Apr 5.91 3.56 2.89 0.68 5.19 4.38 3.25 2.07 

4-Apr 5.52 0.64 3.01 0.69 1.84 3.48 3.66 2.59 

5-Apr 5.12 2.21 0.06 0.70 0.55 1.36 1.98 2.19 

6-Apr 6.30 5.02 0 0.72 2.88 1.08 0.51 0.92 

7-Apr 5.12 5.43 0.65 0.73 4.19 2.33 0.87 0.2 

8-Apr 0 5.59 0.82 0.74 4.25 3.14 1.72 0.3 

9-Apr 0 5.72 0 0.75 5.19 4.02 2.56 1.22 

10-Apr 6.30 3.62 0 0.77 5.03 4.48 3.40 2.07 

11 - Apr 5.12 0.87 0 0.78 3.09 4.77 4.86 3.83 

12-Apr 4.73 1.97 0 0.79 2.55 4.99 6.06 6.31 

13-Apr 4.73 4.76 0 0.80 4.22 4.19 4.93 6.19 

14-Apr 0 5.24 2.00 0.81 4.56 3.70 3.71 4.24 

15-Apr 0 4.81 0 0.83 4.38 3.98 3.56 3.31 

16-Apr 0 3.42 0 0.84 4.57 4.31 3.79 3.38 

17-Apr 5.91 1.06 0 0.85 2.38 3.43 3.66 3.23 

18-Apr 6.70 0.00 0 0.86 0.56 1.39 2.07 2.29 

19-Apr 5.52 1.48 0 0.88 0.00 0.41 0.47 0.85 

20-Apr 4.73 4.62 0 0.89 1.18 0.00 0 0.13 

21 - Apr 5.52 6.22 0 0.90 4.12 0.89 0 0 

22-Apr 0 5.66 4.54 0.91 5.39 3.64 0.79 0 

23-Apr 0 5 9.43 0.92 5.08 4.74 3.09 0.41 

24-Apr 6.30 4.16 1.12 0.94 4.33 4.00 3.05 1.45 

25-Apr 5.52 1.62 0.59 0.95 2.86 3.13 2.65 1.58 

26-Apr 4.73 1.19 0 0.96 0.61 1.42 2 1.2 

2 7-Apr 5.52 4.20 0 0.97 1.12 0.40 0 0.46 

2 8-Apr 5.12 5.63 0 0.98 3.99 1.26 0 0 

29-Apr 0 5.12 0 1.00 3.93 2.46 0.33 0 

30-Apr 0 5.19 0 1.01 5.52 4.97 3.21 0.56 

1-May 6.30 4.52 0 1.02 9.67 10.95 10.13 8.43 

2-May 5.12 1.82 0 1.03 8.09 12.18 14.24 13.92 
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Input Output 

Measured ISTELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 cm f-rr ill 

3-May 5.12 0.79 0.24 1.04 1.98 6.83 10.88 12.66 

4-May 5.91 3.81 0 1.05 1.58 3.07 5.58 8.78 

5-May 6.30 5.57 0 1.06 4.30 2.38 2.41 4.64 

6-May 0 5.20 0 1.08 3.95 2.91 2.17 2.22 

7-May 0 5.63 0 1.09 4.11 2.97 1.87 1.25 

8-May 5.91 5.63 0 1.10 4.67 3.21 1.78 0.79 

9-May 11.03 2.64 0 1.11 4.24 3.31 2.01 0.67| 

10-May 7.49 0.38 0 1.12 0.80 1.86 2 0.64 

11-May 6.30 3.62 0 1.13 0.06 0.55 0 0.34 

12-May 7.88 8.59 6.66 1.14 4.06 0.62 0 0 

13-May 0 9.05 0 1.15 7.83 3.46 0 0 

14-May 0 6.90 0.06 1.16 6.21 5.10 2.37 0 

15-May 5.12 6.98 1.83 1.17 5.46 4.83 3.00 0 

16-May 6.7 3.78 2.65 1.18 6.22 4.73 0.24 

17-May 5.12 0.01 0 1.19 1.22 3.07 2) 1.05 

18-May 5.52 2.54 0.71 1.20 0.02 0.93 1 0.62 

19-May 6.70 5.85 2.71 1.21 2.60 0.00 0 0.04 

20-May 0 5.92 0 1.22 6.62 4.59 2.03 0.76 

21-May 0 5.34 0.94 1.23 7.00 7.77 6.71 4.93 

22-May 6.70 6.04 0 1.24 4.79 5.35 5.52 4.89 

23-May 5.52 3.64 0 1.25 5.97 5.29 4.62 4.45 

24-May 7.88 0.34 0 1.26 2.65 5.40 6.09 5.54 

25-May 5.12 2.89 0 1.27 1.10 3.12 4.48 5.45 

26-May 7.09 5.74 2.24 1.27 4.09 2.03 1.69 3.05 

27-May 0 6.59 0 1.28 5.33 4.16 3.04 2.55 

28-May 0 6.56 0 1.29 6.98 5.65 4.32 3.36! 

29-May 0 6.16 0 1.30 5.12 5.21 4.62 3.34| 

30-May 6.30 4.14 2.12 1.31 5.82 4.94 3.98 3.251 

31-May 5.12 0.80 0 1.32 1.65 3.23 3.45 2.51 

1-Jun 5.12 0.00 2 1.32 0.42 0.94 1.09 1.27 

2-Jun 4.73 2.27 0 l.JJ 0.00 0.02 0.07 0.22 

3-Jun 0 5.01 3.42 1.34 2.32 0.00 0 0! 

4-Jun 0 5.30 0 1.35 4.22 2.11 0 0 

5-Jun 6.30 5 0 1.35 3.57 2.36 0.33 0 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date -m3 - cm m3  

6-Jun 5.91 3.26 0 1.36 3.47 2.32 0.45 0 

7-Jun 5.91 0.83 6.25 1.37 1.72 2.28 1 0 

8-Jun 5.52 1.94 0.47 1.37 0.55 1.45 1 0 

9-Jun 5.91 4.97 0.35 1.38 2.64 1.01 0.26 0 

10-Jun 0 5.99 0.41 1.39 4.81 2.64 0.77 0 

11-Jun 0 5.80 0 1.39 5.39 4.28 2.61 0 

12-Jun 6.30 5.71 0 1.40 5.99 5.71 4.52 1.61 

13-Jun 5.91 4.27 0 1.40 4.65 4.31 3.71 1.97 

14-Jun 5.52 1.40 1.12 1.41 2.29 2.88 2.63 1.44 

15-Jun 5.91 1.54 0.29 1.41 1.57 3.17 3.34 2.89 

16-Jun 5.52 4.60 0.06 • 1.42 4.79 4.95 4.89 5.32 

17-Jun 0 5.92 0.06 1.42 4.81 3.77 3.69 3.84 

18-Jun 0 5.71 0 1.43 4.64 3.80 3.05 2.46 

19-Jun 9.06 5.72 0 1.43 4.54 3.58 2.52 1.66 

20-Jun 5.52 4.52 1.94 1.44 4.37 3.22 1.95 0.89 

21 -Jun 5.12 1.65 0 1.44 2.51 2.43 2 0.32 

22-Jun 5.52 1.66 0.82 1.44 0.53 1.02 1 0.18 

23-Jun 5.52 5.57 0.18 1.45 2.02 0.70 0.04 0 

24-Jun 0 6.61 0.94 1.45 5.29 1.90 0 0 

2 5-Jun 0 5.32 11.73 1.45 4.00 2.87 0.63 0 

2 6-Jun 5.91 5.38 1.30 1.46 3.87 2.68 0.75 0 

27-Jun 5.12 4.75 0.12 1.46 4.02 2.57 1 0 

2 8-Jun 5.12 1.99 9.49 1.46 3.42 2.91 1 0 

2 9-Jun 4.33 0.72 0.77 1.46 0.85 2.23 2.07 0 

30-Jun 5.52 3.58 0 1.47 0.57 0.46 0.42 0 

1-Jul 0 5.43 0 1.47 3.87 1.01 0 0 

2-Jul 0 5.05 0 1.47 3.80 2.21 0 0 

3-Jul 0 4.75 4.42 1.47 7.08 6.93 5.01 0.05 

4-Jul 0 4.60 0.77 1.47 9.81 12.42 12.47 9.76 

5-Jul 5.12 Z.jj 0 1.47 5.19 7.93 10.40 10.2 

6-Jul 4.73 0 0.06 1.47 3.01 7.04 9.55 10.66 

7-Jul 5.91 0 0 1.48 4.77 8.52 11.12 13.54 

8-Jul 0 0.21 0 1.48 0.89 3.29 6.82 9.75 

9-Jul 0 2.76 0 1.48 0.00 1.07 2.23 4.73 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 cm m3 

10-Jul 5.91 4.94 0 1.48 2.39 0.00 0.58 1.43 

11 -Jul 5.12 5.26 0 1.48 3.90 2.14 0.26 0.49 

12-Jul 4.73 2.87 7.72 1.48 6.34 5.42 3.65 2.36 

13-Jul 5.91 0 0.06 1.47 1.06 3.18 3.88 2.62 

14-Jul 4.33 2.89 0 1.47 0.00 0.94 1 1.21 

15-Jul 0 5.46 2.59 1.47 2.82 0.00 0 0.16 

16-Jul 0 4.95 0 1.47 3.09 0.95 0 0 

17-Jul 5.91 5.29 0 1.47 3.08 1.48 0 0 

18-Jul 5.12 5.15 0 1.47 3.98 1.91 0 0 

19-Jul 5.12 2.48 0 1.47 3.17 2.06 0 0 

20-Jul 5.52 0.24 0 1.46 1.96 3.29 1 0 

21-Jul 5.52 2.52 0.35 1.46 3.47 5.59 5.30 1.15 

22-Jul 0 5.14 8.25 1.46 3.50 2.64 2.82 1.65 

23-Jul 0 5.19 0 1.46 4.30 3.26 2.37 1.2 

24-Jul 6.70 5.28 0 1.45 5.09 4.55 3.51 2.26 

25-Jul 4.73 5.48 0 1.45 4.17 3.46 2.70 1.65 

26-Jul 7.09 3.41 0 1.45 4.14 3.02 1.83 0.8 

27-Jul 5.12 0.65 1.83 1.44 1.02 1.77 1.39 0.25 

28-Jul 5.12 2.44 1.00 1.44 0.11 0.38 0 0 

29-Jul 0 5.09 0 1.44 2.36 0.00 0 0 

30-Jul 0 5.83 0.06 1.43 5.24 3.31 0.46 0 

31-Jul 5.52 6.06 0.06 1.43 9.02 8.94 7.06 4.46 

1-Aug 5.52 5.44 0 1.42 5.08 6.08 6.47 4.97 

2-Aug 5.52 3.48 0 1.42 4.23 4.34 4.20 3.81 

3-Aug 5.12 0.92 0.06 1.41 1.51 2.50 2.65 2.36 

4-Aug 4.73 1.67 0 1.41 0.43 0.84 1.06 1.26 

5-Aug 0 4.42 0 1.40 2.64 1.43 0.79 0.94 

6-Aug 0 5.52 0 1.40 4.06 2.24 0.88 0.27 

7-Aug 5.91 5.41 0.71 1.39 3.93 2.50 0.95 ° 

8-Aug 4.73 5.11 0 1.39 3.91 2.64 0.97 o 

9-Aug 5.12 3.60 0 1.38 3.65 2.54 0.97 0 

10-Aug 4.73 1.14 0 1.37 1.61 1.69 0.79 0 

11 -Aug 5.52 1.42 0 1.37 0.24 0.50 0 0 

12-Aug 
— 

0 4.10 0 1.36 0.93 0.00 0 0 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

m3 cm __ 
LJd LC --Ill - 

13-Aug 0 5.13 0 1.35 3.09 0.00 0 0 

14-Aug 5.52 4.93 0 1.35 3.21 1.13 0 0 

15-Aug 5.12 5.00 2.00 1.34 3.56 1.87 0 0 

16-Aug 4.73 4.20 0 1.3.3 4.00 2.61 0 0 

17-Aug 5.91 1.68 0 1.32 2.47 2.08 0 0 

18-Aug 5.12 0.98 0 1.32 0.40 0.82 0 0 

19-Aug 0 3.67 5.07 1.31 0.36 0.00 0 0 

20-Aug 0 5.19 0.35 1.30 3.07 0.00 0 0 

21-Aug 5.91 5.04 0 1.29 3.29 1.16 0 0 

22-Aug 5.12 5.39 0 1.28 3.57 1.81 0 0 

23-Aug 4.73 4.72 0 ■ 1.27 4.52 2.83 0 0 

24-Aug 6.30 1.88 0 1.27 4.01 4.00 0 0 

25-Aug 4.73 0.69 1.59 1.26 0.70 1.67 0 0 

26-Aug 0 3.56 1.41 1.25 0.12 0.49 0 0 

2 7-Aug 0 5.39 7.37 1.24 4.34 1.46 0 0 

28-Aug 5.91 5.03 0.06 1.23 6.53 6.11 3.86 0 

29-Aug 5.52 5.53 7.37 1.22 4.37 4.60 4.10 0 

30-Aug 4.73 5.05 0.53 1.21 4.80 3.85 2.89 0 

31 - Aug 4.73 2.02 0 1.20 3.32 3.24 2.51 0 

1-Sep 5.12 0.32 0 1.19 0.65 1.44 1.60 0 

2-Sep 0 3.26 1.53 1.18 0.00 0.49 0.23 0 

3-Sep 0 5.67 1.18 1.17 4.63 1.83 0.33 0 

4-Sep 0 5.09 0 1.16 6.07 5.38 3.99 0 

5-Sep 5.91 4.74 0.59 1.15 8.23 9.79 9.46 2.68 

6-Sep 5.52 4.88 0 1.14 5.78 7.84 9.31 6.58 

7-Sep 5.91 2.51 0 1.13 8.86 11.08 12.14 11.69 

8-Sep 5.52 0 0 1.12 1.82 6.08 9.67 10.44 

9-Sep 0 0 1.18 1.11 0.45 2.03 4.52 6.91 

10-Sep 0 2.80 0 1.10 0.00 0.77 1.60 3.47 

11-Sep 6.30 5.58 0 1.09 4.04 1.52 1.05 2.26 

12-Sep 5.12 5.71 0 1.08 4.57 3.40 2.28 1.51 

13-Sep 7.09 5.72 0.06 1.06 4.64 3.61 2.37 1.28 

14-Sep 6.30 3.12 6.07 1.05 4.80 4.06 2.79 1.62 

15-Sep 5.12 0.34 7.48 1.04 1.07 2.54 2.64 1.57 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 cm m3 

16-Sep 0 2.66 0.06 1.03 0.18 0.74 0.71 0.83 

17-Sep 0 5.32 0 1.02 3.23 0.58 0.05 0.21 

18-Sep 5.12 6.02 0.06 1.01 4.43 2.88 0.97 0 

19-Sep 5.12 6.59 0.24 1.00 5.18 3.45 1.59 0 

20-Sep 4.33 5.93 0 0.98 5.27 4.03 2.29 0.42 

21-Sep 5.52 0 0.97 4.59 4.02 2.72 1.05 

22-Sep 5.12 0.63 0 0.96 2.34 3.95 3.83 2.61 

23-Sep 0 1.84 0.18 0.95 4.84 7.69 8.39 8.48 

24-Sep 0 4.40 0.94 0.94 7.68 9.91 11.65 13.03 

25-Sep 5.91 4.85 0 0.92 4.82 6.28 8.70 10.4 

26-Sep 4.73 4.85 0 0.91 4.11 4.66 5.76 7.24 

27-Sep 5.12 5.19 0 0.90 4.37 3.95 4.03 4.95 

28-Sep 5.12 3.58 0 0.89 4.52 3.87 3.40 3.56 

29-Sep 4.73 0.95 4.12 0.88 1.88 2.84 2.99 2.64 

30-Sep 0 1.76 0.24 0.86 0.47 1.02 1.47 1.69 

1-Oct 0 4.37 3.59 0.85 2.03 0.57 0.27 0.58 

2-Oct 7.88 5.09 0 0.84 3.87 1.94 0.33 0 

3-Oct 5.52 5.04 0 0.83 4.44 3.47 1.97 0.39 

4-Oct 4.73 5.02 0 0.81 4.22 3.43 2.30 0.94 

5-Oct 6.30 3.63 0 0.80 4.11 3.42 2.36 1.21 

6-Oct 4.73 1.17 0 0.79 2.19 2.72 2.36 1.35 

7-Oct 0 1.85 0 0.78 0.68 1.85 2.09 1.77 

8-Oct 0 5.26 0 0.77 5.14 4.58 4.03 4.37 

9-Oct 5.12 5.99 0 0.75 6.08 4.93 4.52 4.33 

10-Oct 5.12 5.28 0 0.74 6.92 7.74 7.50 6.76 

11-Oct 4.33 5.53 6.25 0.73 5.09 5.78 6.40 6.36 

12-Oct 4.33 4.30 0.29 0.72 5.10 4.93 4.95 5.19 

13-Oct 5.12 1.46 0 0.70 2.97 3.91 4.24 4.2 

14-Oct 0 0.89 0 0.69 0.76 1.99 2.83 3.21 

15-Oct 0 3.45 0 0.68 1.02 0.75 1.04 1.77 

16-Oct 5.91 5.00 0 0.67 3.58 1.43 0.29 0.571 

17-Oct 4.73 4.61 3.48 0.65 3.84 2.55 1.20 0.08 

18-Oct 4.73 4.44 0.12 0.64 3.63 2.93 1.81 0.53 

19-Oct 4.73 4.18 0 0.63 4.49 3.94 2.90 1.85 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 cm m3.. -m - 

20-Oct 4.73 1.90 2.95 0.62 7.49 8.85 8.43 7.55 

21-Oct 0 0.66 0 0.61 1.51 5.02 7.54 7.72 

22-Oct 0 3.49 0 0.59 1.20 2.24 3.87 5.65 

23-Oct 6.70 5.20 0 0.58 4.23 2.28 1.89 3.23 

24-Oct 4.33 4.73 0 0.57 3.96 3.16 2.43 2.06 

25-Oct 4.33 4.73 0 0.56 4.41 3.84 3.02 2.38 

26-Oct 5.12 4.41 0 0.55 6.47 6.78 6.16 5.5 

27-Oct 4.73 2.05 0.77 0.53 4.17 5.16 5.82 5.59 

28-Oct 0 0.33 12.61 0.52 1.13 3.44 4.78 5.1 

29-Oct 0 3.58 0 0.51 2.57 3.96 4.98 6.24 

30-Oct 4.73 5.42 0 0.50 5.11 3.27 3.22 4.49 

31-Oct 4.73 4.35 0 0.49 3.93 3.85 3.62 3.28 

1-Nov 4.73 4.74 0.06 0.48 3.92 3.62 3.25 2.98 

2-Nov 4.73 4.90 2.42 0.46 4.47 3.71 3.07 2.73 

3-Nov 5.12 2.36 0 0.45 4.24 3.85 3.26 2.67 

4-Nov 0 0.02 0 0.44 0.98 2.74 3.34 2.8 

5-Nov 0 2.26 0 0.43 1.62 2.99 3.73 4.29 

6-Nov 5.52 4.63 0 0.42 11.95 13.49 13.50 14.42 

7-Nov 5.12 4.73 0 0.41 5.36 8.65 12.27 13.46 

8-Nov 5.12 4.73 13.44 0.40 4.85 6.28 8.37 10.56 

9-Nov 4.73 4.90 0.06 0.39 4.60 5.12 6.18 7.96 

10-Nov 4.33 2.88 0 0.38 4.96 4.93 5.27 6.38 

11 -Nov 0 0.34 0 0.37 3.10 5.71 6.89 7.39 

12-Nov 0 2.30 0 0.36 0.84 2.67 4.59 6.11 

13-Nov 4.73 4.89 0.12 0.35 3.51 2.13 2.33 3.97 

14-Nov 4.73 5.16 2.24 0.34 4.34 3.17 2.54 2.64 

15-Nov 4.33 4.97 0 0.33 4.55 3.83 3.08 2.5 

16-Nov 5.12 4.62 3.48 0.32 5.32 5.25 4.62 3.95 

17-Nov 4.73 2.77 0.06 0.31 13.57 16.94 16.94 16.54 

18-Nov 0 0.55 0 0.30 3.33 9.62 14.99 16.44 

19-Nov 0 1.68 0 0.29 1.37 4.79 8.84 12.67 

20-No v 4.33 4.04 0 0.28 2.92 2.95 4.80 8.39 

21-Nov 4.73 4.60 0 0.27 4.04 3.23 3.56 5.35 

22-Nov 4.33 4.66 0 0.26 4.26 3.93 3.79 4.25 
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Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 m3 Ill dll 

23-Nov 0 4.86 0 0.25 6.02 6.13 5.83 5.87 

24-Nov 0 3.33 0 0.24 5.00 5.49 5.90 5.95 

25-Nov 0 0.90 0 0.23 4.89 7.43 8.44 8.68 

2 6-Nov 0 1.27 0 0.22 1.20 4.00 6.47 7.84 

2 7-No v 5.91 3.55 0 0.22 2.29 2.41 3.59 5.65 

28-Nov 3.94 4.53 0 0.21 3.83 2.77 2.71 3.78 

29-Nov 4.73 3.27 2.77 0.20 4.06 3.45 3.04 3.02 

30-Nov 5.12 1.02 0 0.19 2.33 3.16 3.33 3 

1-Dec 4.33 0 5.24 0.18 0.66 1.90 2.62 2.85 

2-Dec 0 0 0 0.18 0.24 0.77 1.44 2.16 

3-Dec 0 1.36 0 0.17 0.03 0.27 0.65 1.25 

4-Dec 5.12 3.88 0 0.16 1.89 0.59 0.19 0.56 

5-Dec 5.12 4.66 0 0.16 3.96 2.08 0.83 0.38 

6-Dec 5.12 4.58 0 0.15 3.85 3.21 2.23 1.05 

7-Dec 5.12 4.85 0 0.14 4.55 3.88 3.01 2.08 

8-Dec 4.73 3.77 0 0.14 6.55 6.87 6.27 5.45 

9-Dec 0 1.36 0 0.13 3.55 5.40 6.48 6.22 

10-Dec 0 0.86 0 0.12 4.76 8.30 9.91 10.7 

11-Dec 4.73 3.42 0 0.12 2.35 4.46 7.20 9.35 

12-Dec 4.33 5.12 1.36 0.11 4.53 3.83 4.65 6.77 

13-Dec 4.73 5.12 0 0.11 4.77 4.36 4.47 5.16 

14-Dec 3.94 5.07 0 0.10 4.90 4.64 4.51 4.64 

15-Dec 5.12 4.29 0 0.10 4.88 4.76 4.59 4.52 

16-Dec 0 1.78 0 0.09 3.81 4.43 4.63 4.52 

17-Dec 0 0.50 0 0.09 1.02 3.01 4.12 4.37 

18-Dec 4.73 2.83 0 0.08 1.18 1.67 2.48 3.59! 

19-Dec 4.73 4.53 0 0.08 3.79 2.17 1.74 2.53 

20-Dec 3.94 4.50 0 0.07 4.02 3.30 2.70 2.29! 

21-Dec 4.73 4.35 0 0.07 5.31 5.15 4.60 4.03J 

22-Dec 4.33 4.30 0 0.07 4.22 4.69 4.88 4.51 

23-Dec 0 2.24 0 0.06 4.42 4.43 4.48 4.52 

24-Dec 0 0.21 0 0.06 1.09 3.27 4.38 4.4 

25-Dec 0 2.57 0 0.06 0.80 1.68 2.67 3.77! 

26-Dec 0 4.71 0 0.05 3.81 2.07 1.67 2.66 
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A. 

Input Output 

Measured STELLA Precip. PET GB1 GB2 PB1 PB2 

Date m3 m3 dll 

27-Dec 0 4.33 0 0.05 4.21 3.34 2.69 2.3 

28-Dec 0 4.34 0 0.05 3.89 3.78 3.39 2.76 

29-Dec 0 4.53 0 0.05 4.47 4.02 3.59 3.21 
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