
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations 1896 - February 2014 

1-1-2002 

Manganese toxicity in marigold as affected by calcium and Manganese toxicity in marigold as affected by calcium and 

magnesium. magnesium. 

Touria El-Jaoual 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 

Recommended Citation Recommended Citation 
El-Jaoual, Touria, "Manganese toxicity in marigold as affected by calcium and magnesium." (2002). 
Doctoral Dissertations 1896 - February 2014. 6167. 
https://scholarworks.umass.edu/dissertations_1/6167 

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It 
has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of 
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_1
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F6167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/6167?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F6167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu




MANGANESE TOXICITY IN MARIGOLD 
AS 

AFFECTED BY CALCIUM AND MAGNESIUM 

A Dissertation Presented 

by 

TOURIA EL JAOUAL 

Submitted to the Graduate School of the 
University of Massachusetts Amherst in partial fulfillment 

of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

May 2002 

Department of Plant and Soil Sciences 



© Copyright by Touria El-Jaoual Eaton 2002 

All Rights Reserved 



MANGANESE TOXICITY IN MARIGOLD 
AS 

AFFECTED BY CALCIUM AND MAGNESIUM 

A Dissertation Presented 

By 

TOURIA EL JAOUAL 

Approved as to style and content by: 

, Member 

Robert L. Wick, Member 

Mm. 
Peter Veneman, Department Head 
Department of Plant and Soil Sciences 



To my husband Robert Willis Eaton 

To my son Adam Jalal Eaton 

In memory of my son Ryan Moraad Eaton 

with all my love 



ACKNOWLEGEMENT 

I would like to express my appreciation and gratitude to Dr. Cox, Dr. Barker, Dr. 

Autio and Dr. Wick. Their advice, guidance, encouragement and faith in my abilities have 

sustained me during the most difficult phases of my work. 

I would like to express my appreciation to the New England Greenhouse 

Conference Grant Program for its support of this project. Thanks are also accorded to Dr. 

Barnes and Dr. Assaas for helping me with the ICP analysis. 

My thanks are extended to Dr. Veneman, Dr. Craker, Dr. Bramlage, Dr. Herbert, 

and Dr. Han for their teachings, advice, support and encouragments. 

I also wish to thank Pat Killay, Susanne, Carol, Doreen, Holly, Pat and Diane for 

their assistance and friendliness. 

My thanks also go to Susanne, Melissa, and Mark for their friendship and for 

helping with pest control and tissue analysis. 

I would like to thank the many people in the Department of Plant and Soil Sciences 

who offered me invaluable advice and friendly assistance. 

Finally, I wish to thank my mother Lalla Fettouma El Idrissi for all she did and 

does for me. I thank my husband for his help, encouragement and understanding. I thank 

my family and family in-law. Special gratitude goes to my mother in law Carol Eaton, for 

her support, love and respect. 



ABSTRACT 

MANGANESE TOXICITY IN MARIGOLD 
AS 

AFFECTED BY CALCIUM AND MAGNESIUM 

MAY 2002 

TOURIA EL JAOUAL, B.S., UNIVERSITY MOHAMMED V / MOROCCO 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Douglas A. Cox 

Iron/manganese toxicity disorder in marigold (Tagetes erecta L.) has been related 

to high concentrations of Mn and low concentrations of Ca and Mg in the affected leaves. 

Preplant addition of micronutrients in the media combined with constant feed program 

and low medium pH create favorable conditions for the development of Mn toxicity in 

greenhouse crops. Deficiency of Ca or Mg is due in part to low medium pH and to a lack 

of Mg and Ca in many of the fertilizers used in greenhouse production. The objectives of 

this research were to determine the relationship of Mn toxicity to the incidence of Fe/Mn 

toxicity disorder in marigold, and to evaluate the effect of low Mg supply and/or low Ca 

supply on the occurrence of the toxicity. 

Six experiments were conducted. Plants of Tagetes erecta L. ‘First Lady’ were 

started from seeds and then grown in solution culture supplying different concentrations 

of Mn, Ca and Mg depending on the objectives of each experiment. Symptoms were 

described for each experiment. When the plants were harvested, their dry weights were 

taken and their tissues were analyzed for Mn, Fe, Ca, and Mg concentrations. 
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The symptoms of Mg deficiency included stunting, chlorotic and necrotic areas on 

the leaves. The symptoms of Ca deficiency included chlorosis and curling, especially of 

the new leaves. The symptoms of Mn toxicity included curled leaves, bleached patches 

and brown spots on the leaves. These symptoms of Mn toxicity are similar to those 

related to Fe/Mn toxicity disorder. 

The incipient deficiency solution concentration of Mg was 10 mg/1 (internal 

incipient deficiency concentration was 1.5%). The incipient deficiency solution 

concentration of Ca was 20 mg/1 (internal incipient deficiency concentration was 0.54%). 

The critical toxicity concentration of Mn was 4.5 mg/1 (internal critical toxicity 

concentration was 270 mg/kg DW). 

Low Ca in solution (20 mg/liter) increased the sensitivity of marigold to high 

levels of Mn in solution by reducing the critical toxicity concentration of Mn from 4.5 to 

0.5 mg/liter. Similar results were found when both Ca and Mg were low. 

Iron/manganese toxicity disorder can be attributed to Mn toxicity. Low Ca supply 

or low Ca and Mg supplies are factors favoring the occurrence of the disorder. Low Mg 

supply, alone does not seem to affect Mn toxicity in marigold. 

Based on this research, high Ca supply could alleviate the harmful effects of Mn 

toxicity in marigold. Low Mn supply could prevent the toxicity problems. Agricultural 

practices and nutritional regimes that reduce the availability of Mn and increase the 

availability of Ca could reduce the occurrence of Fe/Mn toxicity disorder in marigold and 

similar physiological disorders in other bedding plants grown in soilless media. Monitoring 

Mn supply and fertilizing with Ca could prevent or reduce Mn toxicity to floriculture 

plants. 
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CHAPTER 1 

INTRODUCTION 

1.1 PROBLEM STATEMENT 

An iron/Manganese physiological disorder affecting marigold (Tagetes erecta L.) 

has been reported in the floriculture industries of the United States and Canada throughout 

the last decade (Koranski, 1988; Todd, 1994; Albano and Halbrooks, 1991; Albano and 

Miller, 1993; Biembaum et al., 1988; Carlson, 1988; halbrooks and Albano, 1990). The 

disorder is characterized by specific symptomology distinguished visually by speckled 

patterns of chlorosis and necrosis and downward curling and cupping of the leaves (Albano 

et al., 1996; Biembaum et al., 1988; Vetanovetz and Knauss, 1989). Affected leaf tissue has 

been reported to have excessive concentrations of iron (Fe) and manganese (Mn) (400-2500 

mg/kg) (Koranski, 1988; halbrooks and Albano, 1990), and low concentrations of calcium 

(Ca) and magnesium (Mg) (Koranski, 1988). 

Losses in crop quality and production attributed to this disorder have been 

significant (Biembaum et al., 1988; Koranski, 1988). Because flowering bedding plants are 

valued at greater than $750 million annually in the United States (U.S. Dept, of Agr., 1993), 

economic losses associated with this disorder could be significant. 

The relationship of the disorder to Fe toxicity has been investigated (Albano and 

Miller, 1996; Albano et al., 1996; Vetanovetz and Knauss, 1989, Bachman and Miller, 

1995), however its relationship to Mn toxicity has not yet been studied under controlled 

conditions. Therefore, the relationship of Mn toxicity to the incidence of Fe and Mn-related 

toxicity disorders in marigold needs to be established. 



1.2 PREVIOUS WORK AND PRESENT OUTLOOK 

Several trade and extension publications have identified this disorder as an Fe 

toxicity of some crops including marigold (Albano et al., 1996; Albano and Miller, 1993; 

Todd, 1994), New Guinea impatiens, common impatiens (Impatiens wallerana), cutting and 

seedling geraniums, vinca, some species of Brassica, cabbage and tomato transplants, and 

elatior begonia (Vetanovetz and Knauss, 1989). The disorder may be related to Mn toxicity 

as well, because the affected plants have large concentrations of Mn in their tissue 

(Koranski, 1988; Halbrooks and Albano, 1990; Biembaum et al., 1988). The affected plants 

also show symptoms similar to those observed on Easter lily, soybean, peanut, muskmelons, 

water-melons, and sweet potato suffering from Mn toxicity (Holmes and Courts, 1980; 

Parker et al., 1969; Davis, 1996; Simon et al., 1986; Mortley, 1993). In addition, at low 

concentrations of Fe in the medium, the occurrence of the disorder is more closely 

correlated with increased levels of Mn in leaf tissue than Fe (Halbrooks and Albano, 1990). 

In many higher plants excessive amounts of Mn disrupt various aspects of plant 

metabolism, leading to serious physiological and morphological disorders. Manganese 

toxicity has been associated with reduced enzyme activity (Heenan and Campbell, 1981; 

Sirkar and Amin, 1974), reduced hormone activity (Morgan et al., 1966), inhibition of ATP 

synthesis, and reduced respiration rates (Sirkar and Amin, 1974). 

Factors that affect the toxicity of Mn in plants include the concentration of Mn in the 

growth medium, and the concentrations of salts, particularly those of Ca and Mg (Foy et al., 

1978; Goh and Haynes, 1978; Bachman and Miller, 1995; Harrison and Bergman, 1981; Le 
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Mare, 1977). Small changes in these factors can determine the degree of Mn toxicity in a 

given crop. 

1.2.1 High Availability of Mn in the Growth Medium 

Most bedding plants are grown in soilless, peat-based media. Increased peat in 

the medium increases the amount of micropore water and decreases its air capacity, 

conditions which favor Mn reduction from Mn to Mn which is more readily taken up 

by plants (Goh and Haynes, 1978; Mortvedt and Cunningham, 1971; Ponnamperuma et 

ah, 1969). 

In some cases, the accumulation of Mn in the leaf tissue is the direct result of 

applying excessive levels of micronutrients. The continuous use of high levels of peat-lite 

fertilizers containing micronutrients including Mn may cause problems if salt levels are not 

monitored carefully (Sheely, 1990). Preplant addition of micronutrients in the media, 

combined with constant feed program, creates toxicity problems (Sheely, 1990). 

1.2.2 Low Level of Ca in the Medium 

The second part of the disorder may be a deficiency of Ca due in part to low pH in 

the growth medium and to the lack of Ca in many of the fertilizers used in greenhouse crop 

production (Koranski, 1988). In addition, peat-based media commonly used to grow 

bedding plants, are acidic and contain low concentrations of Ca (Bunt, 1988; Nelson, 1991). 

The toxicity effects of high concentrations of Mn in the plant tissue are considerably 

modified by Ca status. They are much more severe when Ca level in the plant tissue is low 

(Clark et al., 1981; Galvez et al., 1989; Foy et al., 1981; Horst and Marschner 1978; 

Keisling and Fuqua, 1979; Wallace et al., 1945). Le Mare (1972, 1977) found that large 

concentrations of Ca in the medium could alleviate the harmful effects of Mn toxicity. The 



plants grown in a soil that supplied little Ca were very sensitive to Mn toxicity (Le Mare, 

1972; Le Mare, 1977). 

Foy et al. (1978) reported the importance of Ca/Mn ratios in the tolerance of plants 

to Mn toxicity. Ratios above 80 were found desirable for a balanced nutrition in peanut 

(Bekker et al., 1994). 

Although increasing the concentration of Ca in the medium can alleviate the 

detrimental effects of high concentrations of Mn, optimal concentration (60 mg/kg) of Ca is 

crucial for optimal plant growth (Morris and Pierre, 1947). Morris and Pierre (1947) 

pointed out that high Ca levels (300 mg/kg) in the medium could reduce plant growth 

regardless of the concentration of Mn in the medium, because of unbalanced nutrition. 

1.2.3 Low Level of Mg in the Medium 

Another possible aspect of the Fe/Mn toxicity disorder in marigold is low 

concentration of Mg in the leaf tissue. 

Peat-based media commonly used in the production of bedding plants are acidic, 

contain high levels of available Mn and contain low concentrations of Mg (Goh and 

Haynes, 1978; Mortvedt and Cunningham, 1971; Ponnamperuma et al., 1969; Bunt, 

1988; Nelson, 1991). 

Large concentrations of Mn in the medium can induce Mg deficiency in the plant 

(Mn-induced Mg deficiency) (Heenan and Campbell, 1981). Kazda and Znacek (1989) 

reported that excess Mn in the medium reduced Mg uptake by 50%. 

Manganese toxicity can often be counteracted by large Mg supply (Lohnis, 1960; 

Elamin and Wilcox, 1986b). It was reported that Mg decreased Mn uptake both by excised 
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and intact roots of several plant species (Harrison and Bergman, 1981; Lohnis, 1960; Maas 

etal., 1969) 

In some cases. Mg application is not a practical method for the avoidance of Mn 

toxicity (Davis, 1996). The ability of Mg to reduce Mn uptake depends on the concentration 

of Mn in the medium. Elamin and Wilcox (1986a) found that at high Mn concentration in 

the medium, Mg had little effect on Mn uptake and the plants were able to accumulate toxic 

levels of Mn at all levels of Mg supply. In addition, using Mg to prevent Mn toxicity would 

require large Mg applications, which could lead to serious nutritional imbalance because Mg 

would interfere with Ca uptake. 

In summary, Fe/Mn toxicity disorder in marigold may be caused by Mn toxicity 

since the affected plants contain high concentrations of Mn in their tissue. Basic factors 

affecting Mn toxicity in plants include high levels of Mn in the growth medium, Ca 

deficiency and Mg deficiency. The relationship of these factors to the incidence of Fe/Mn 

toxicity in marigold needs to be investigated. 

13 OBJECTIVES 

The objectives of this research are to induce and characterize Fe/Mn toxicity 

disorder under controlled conditions and high Mn levels in the medium; and to determine 

the relationship of the disorder to Ca deficiency, Mg deficiency, and a combination of both. 

1.4 CONTRIBUTION 

The findings of this research will improve the understanding of the relationship of 

Mn toxicity to the incidence of Fe/Mn toxicity in marigold. They may also help develop 

better agricultural practices and nutritional regimes to reduce the occurrence of Fe/Mn 

toxicity disorder in marigold and similar physiological disorders in other bedding plants 
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grown in soilless media. This information will also allow a better understanding of the 

effect of Ca deficiency, Mg deficiency or both on Mn toxicity in marigold. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 ABSTRACT 

Manganese toxicity in plants is often not a clearly identifiable disorder. 

Symptoms of Mn toxicity as well as the concentration of Mn that causes toxicity vary 

widely among plant species and varieties within species, perhaps because the phytotoxic 

mechanisms of Mn involve different biochemical pathways in different plant genotypes. 

Plant availability of Mn depends on soil adsorption and on root exudates for Mn 

chelation or reduction. Soils with higher Mn sorption capacity have lower potential for 

plant absorption of Mn. Manganese tolerance is associated with restricted absorption, 

restricted translocation of excess Mn to the shoots, or ability to tolerate high Mn levels 

within the plant tissue. The ability to escape Mn toxicity through limited absorption or 

translocation is low in plants grown in wet soils rich in organic matter, or grown under 

high temperature or high light intensity. Manganese toxicity is likely with plants that are 

fertilized with acid-forming fertilizers, high rates of superphosphate, or nitrate (NO3 ) as 

source of nitrogen (N), or plants that are low in silicon (Si) or deficient in calcium (Ca), 

iron (Fe), or magnesium (Mg). Comparative studies of Mn toxicity among different 

genotypes of the same species and a multidisciplinary approach are needed for a full 

understanding of Mn toxicity disorder in plants. 

2.2 INTRODUCTION 

Manganese is an essential element for plant growth. It can, however, be 

detrimental when available in excess in the growth medium. Concentrations as low as 1 

mg Mn/liter in the solution culture can be toxic to tobacco (Nicotiana tobacum L.), potato 
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(iSolarium tuberosum L.), or bush clover (Lespedeza sp. Michx) (Berger and Gerloff, 

1947; Jacobson and Swanback, 1932; Morris and Pierre, 1949). 

Excess Mn in the growth medium can interfere with the absorption, translocation, 

and utilization of other mineral elements such as Ca, Mg, Fe, and P (Clark, 1982). High 

Mn concentration in plant tissues can alter activities of enzymes and hormones, so that 

essential Mn-requiring processes become less active or nonfunctional (Epstein, 1961; 

Horst, 1988). 

23 GENERAL EFFECTS 

23.1 Plant Symptoms 

Symptoms of Mn toxicity are quite diverse among plant species. They include 

marginal chlorosis and necrosis of leaves of alfalfa (Medicago sativa L.), rape (Brassica 

napus L.), Kale {Brassica oleracea L. Acephala Group), or lettuce (Lactuca sativa 

L.)(Foy et al., 1978); interveinal and marginal chlorosis along with brown necrotic 

spotting in sweet-potato {Ipomoea batatas L.), snapbean (Phaseolus vulgaris L.), lettuce, 

barley (Hordeum vulgare L.) or cotton (Gossypium hirsutum L.) (Foy et al., 1995; Foy et 

al., 1969); small dark spots surrounded by irregular areas of chlorotic tissues in marigold 

{Tagetes erecta L.)(Albano and Miller, 1996) and geranium {Pelagonium X hortorum 

Bailey) (Bachman and Miller, 1995); dark, reddish-brown leaf spots with chlorotic 

margins in bush clover {Lespedeza sp. Michs); crumbled, distorted small sized leaves 

with irregular interveinal chlorosis in soybean {Glycine max Merr.), small reddish purple 

spots on the underside of the leaves in cowpeas {Pisum arvense L.), and marginal 

chlorosis and crimping of the leaves with no spotting in sweet-clover (Morris and Pierre, 
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1949). Loss of apical dominance and enhanced formation of auxiliary shoots ("witches' 

broom") constitute another symptom of Mn toxicity (Kang and Fox, 1980). 

Although expression of Mn toxicity varies considerably among plant species, 

brown spots on older leaves surrounded by chlorotic zones are typical symptoms of Mn 

toxicity. The necrotic brown spots were reported to be localized accumulations of 

oxidized Mn (Horigushi, 1987). Horst (1988) reported that the spots contain precipitated 

Mn compounds. Quite often, however, Mn-induced symptoms of deficiencies of other 

mineral nutrients, such as Fe, Mg, and Ca, are dominant (Fleming, 1989; Foy et al., 1981; 

Lee, 1972). 

In severe cases of manganese toxicity, plant roots turn brown (Morris and Pierre, 

1949), usually after the shoots have been severely injured (Foy et al., 1978). Aso (1902), 

on the other hand, found that high concentrations of Mn caused root browning first, then 

lower-leaf browning. Root browning indicates the presence of oxidized Mn (Horigushi, 

1987). Its intensity increases with the severity of the toxicity, is usually darker near the 

root tips, and progresses upward becoming localized on the older roots (Mortley, 1993). 

Such roots are inefficient in absorbing nutrients and water (Aso, 1902). 

Foy et al. (1978) reported that plant symptoms of Mn toxicity are often detectable 

at stress levels which produce little or no reduction in vegetative growth. Galvez et al. 

(1989), however, reported growth restriction of sorghum plants grown with high levels of 

Mn in the nutrient solution. Morris and Pierre (1949) found that Mn toxicity caused 63% 

suppression in the dry weight of lespedeza plants. When growth restriction occurs, it is 

usually more severe in the roots than in the shoots (Mortley, 1993). 
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Manganese toxicity causes symptoms much before the suppression in dry weight 

occurs. The concentration at which symptoms occur is usually much lower than the one 

that causes the suppression in dry weight. For example, the dry weight of soybean and 

cowpeas was significantly limited at 10 mg/kg Mn but the symptoms occurred at 2.5 

mg/kg (Morris and Pierre, 1949). 

According to Morris and Pierre (1949), the reduced dry weight may be caused by 

the shedding of the affected leaves since chlorosis may cover as much as 50% of the leaf 

area and up to 100% of the leaves may be affected in severe cases of toxicity. 

Other reported effects of Mn toxicity include: restricted number and size of 

nodules (Foy et al., 1978; Vose and Jones, 1963), retarded germination (Brenshley, 1914; 

Millikan, 1948); retarded growth (Aso, 1902), and delayed ripening (Brenshley, 1914). 

Specific physiological disorders such as “bronze speckle” in marigold or 

geranium, "crinkle leaf' of cotton, "stem streak necrosis" in potato, "internal bark 

necrosis" of apple (Malus sylvestris P. Mill.), "tip bum" in carnation (Dianthus 

caryophyllus L.), and "fruit cracking" in muskmelon (Cucumis melo Ser. ‘reticulatus’) 

have been associated with excess Mn in the tissues (Foy, 1983). 

In some Mn-induced disorders, such as leaf marginal chlorosis in mustard, leaf 

speckling in barley, and internal bark necrosis in apple, the toxicity is related to localized 

accumulations of Mn rather than high overall Mn concentrations in plant shoots (Fisher et 

al., 1977; Williams and Vlamis, 1957b; Williams and Vlamis, 1971). For example, 

Williams et al. (1971) found that the yellow leaf margins of mustard affected by Mn 

toxicity contained 2300 mg/kg Mn compared to 570 mg/kg for green portions of the same 

leaves. 
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2.3.2 Physiological and Biochemical Effects 

Epstein (1961) pointed out that an element present in excess can interfere with 

metabolism through competition for absorption, inactivation of enzymes, or displacement 

of essential elements from functional sites. 

In cotton, Mn toxicity has been associated with an increased activity of 

indoleacetic acid oxidase, peroxidase, and polyphenol oxidase; lower activities of 

catalase, ascorbic acid oxidase and glutatione oxidase; lower ATP contents; and lower 

respiration rates (Morgan et al., 1976; Morgan et al., 1966). In sugar beets, excess Mn 

restricted leaf cell number and volume (Terry et al., 1975). 

Manganese toxicity has been associated with an increase in indoleacetic acid 

oxidase activity, which results in a destruction of auxin (IAA) (Morgan et al., 1976; 

Morgan et al., 1966). Bhatt et al. (1976) found that 36 mg/kg Mn was able to reverse the 

growth inhibition of sorghum roots caused by 100 mg/liter gibberellic acid (GA). 

Gibberellic acid enhances auxin production. The inhibition of root growth by GA was 

due to elevated auxin synthesis to a level that was inhibitory for root growth and 

stimulatory for shoot growth. The promotion of root growth by Mn was thus due to auxin 

oxidation caused by excess Mn. Manganese toxicity also has been associated with an 

increase in peroxidase activity (Horigushi and Fukumoto, 1987; Morgan et al., 1966). 

Horigushi and Fukumoto (1987) demonstrated that the increase in peroxidase activity was 

followed by the appearance of the necrotic browning (visual symptoms of Mn toxicity). 

They suggested that the increase of the peroxidase activity is associated with the 

mechanism of the necrotic browning. Also, they felt that the increase in the peroxidase 

activity may, however, not be the only factor for the browning because the contact of 
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peroxidase with the substrates, which are oxidized to form brown substances, is 

necessary. 

It has been reported that peroxidase is localized in the cell walls and plays a 

significant role in lignification (Swain, 1977). When peroxidase oxidizes the precursors 

of lignin, the necrotic browning does not occur (Horigushi, 1987). Engelsma (1972) and 

Brown et al. (1984) reported that Mn stimulates phenolic metabolism. If peroxidase 

comes into contact with substrates such as caffeic acid or chlorogenic acid, which are 

easily oxidized to form brown substances, necrotic browning of the tissues appears 

(Horigushi, 1987). 

The brown necrotic spots have also been associated with the accumulation and 

deposition of oxidized Mn. Horigushi (1987) reported that a peroxidase-malate 

dehydrogenase system in the root cell walls oxidized Mn. The presence of oxidized Mn 

in plant tissues has been reported in the stems and leaves of pea (Pisum sativus L.) and 

sunflower (Helianthus annuus L.); in the leaves of tobacco and bush bean (Phaseolus 

vulgaris L.); and in the stems, petioles and leaf blades of cucumber (Cucumis sativus L.), 

localized around the trichomes (Horigushi, 1987). 

Aso (1902) examined the brown spots of the Mn-affected leaves and found that 

the membranes of epidermal cells, and in some cases the nuclei, were stained deeply 

brown. 

Excess Mn in plant tissue precipitated nucleic acids (Trim, 1959) and inhibited the 

nuclear deoxyribonucleic acid (DNA) replication (Baranowska et al., 1977) and protein 

synthesis (Foy et al., 1978). Guerin (1897) isolated nucleic precipitate of Mn from the 

woody tissues of the plants, and Foy et al. (1978) reported that excess Mn may act as an 
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error-producing factor during the mitochondrial replication, which causes mitochondrial 

mutations that are up to 4500 base-pairs long and that inhibit total protein synthesis by up 

to 90%. 

Excess Mn also may predispose plants to certain diseases. Singh et al. (1974) 

found that high quantities of Mn (1900 mg/kg) in Scopolia sinensis, which is host of the 

potato spindle tuber virus, increased the replication of the virus ribonucleic acid (RNA). 

2.4 IMPORTANCE AND OCCURRENCE 

In many parts of the world, Mn toxicity is more important than Mn deficiency in 

crop plants (Welch et al., 1991). Manganese toxicity is usually encountered in poorly 

drained, acid soils (below pH 5.5) (Chesworth, 1991; Morris and Pierre, 1949). Such 

soils usually contain relatively low concentrations of available Ca and Mg and high 

concentrations of soluble Fe and Mn. Many crops are sensitive to concentrations as low 

as 1 mg/kg Mn in the medium and 1 mg/kg Mn is within the range found in many acid 

soils (Morris and Pierre, 1949). 

The amount of total Mn in most soils ranges from 200 to 3,000 mg/kg (Mortvedt 

and Cunningham, 1971). Only a small fraction of the total Mn is in the reduced divalent 

form, which is available to plants. Studies on the Mn content of some acid soils showed 

that they sometimes contain as high as 50 mg/kg Mn in the soil solution (Morris and 

Pierre, 1949). 

Manganese toxicity also can occur at high pH levels in soils under reducing 

conditions created by flooding, compaction, or organic matter accumulation (Kamprath 

and Foy, 1971). 
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2.5 TOLERANCE TO Mn TOXICITY 

Tolerance to Mn toxicity is affected by several factors including plant genotype 

(Morris and Pierre, 1949); soil management factors, such as type of fertilizer applied, liming 

(Labanauskas, 1966), and growth media (Goh and Haynes, 1978); environmental factors, 

such as temperature (Welch et al., 1991) and light intensity (McCool, 1935); and nutritional 

interactions (Bachman and Miller, 1995; Foy et al., 1981; Lewin and Reimann, 1969; Ohki, 

1975). 

The critical Mn concentration associated with injury is quite variable among plant 

species and varieties within species, due to wide differences in Mn tolerance (Ohki, 1981; 

Edwards and Asher, 1982). An example of the differences among plant species is given in 

Table 1. 

Table 1: Critical toxicity levels of Mn in the leaves of various plant species3 

Species Concentration above which 

toxicity occurs (mg Mn/kg 

leaf dry weight) 

Reference 

1 Bragg soybean 160 Foy et al ., 1978 

Corn 200 Horst . and Marshner, 1990 

Pea 300 \> 

Soybean 600 \> 

Cotton 750 \\ 

Sweet potato 1380 » 

Sunflower 5300 
\\ 

Carrot 7100-9600 Gupta et al., 1970 

Critical toxicity levels are associated with a 10% reduction in dry matter production (Ohki, 

1981). 

Ohki (1981) defined critical toxicity level of Mn as Mn concentration in the leaves 

associated with 10% restriction in dry weight due to toxicity. Symptoms of Mn toxicity, 

however, occur at much lower concentrations (Morris and Pierre, 1949). Gupta et al. (1970) 

reported that 2600 mg/kg Mn in carrot (Daucus carota L. ‘sativus’) shoots caused 
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symptoms (bronzing) to occur but higher concentrations (7100-9600) were required to limit 

yields. 

Based on the Mn concentration in the medium associated with injury, the critical 

Mn concentration was found to be 1 mg/kg for tobacco (Jacobson and Swanback, 1932); 3.5 

mg/kg for peas; and 10 mg/kg for soybean, peanut (Arachis hypogaea L.) (Morris and 

Pierre, 1949), and barley (Aso, 1902). 

So plant species and cultivars within species differ widely in tolerance to excess 

Mn. In general, water plants are able to accumulate higher amounts of Mn in their tissues 

without injury, than land plants (Gossl, 1905). Morris and Pierre (1949) compared the 

differential Mn tolerance among legumes. Lespedeza and sweet-clover (Melilotus sp. Mill.) 

were the most sensitive to Mn toxicity; cowpeas and soybeans were intermediate, and 

peanuts were the most tolerant. Brenchley (1914) reported that barley is more tolerant to 

high concentrations of Mn than wheat. Benac (1976) found that in nutrient solution, about 

20 times as much Mn was required to produce toxicity in com as in peanut. Manganese 

tolerance in plants has been attributed to restricted absorption, restricted translocation of 

excess Mn to the shoots, and greater tolerance to high Mn levels within plant tissues 

(Andrew and Hegarty, 1969; Foy et al., 1995; Morris and Pierre, 1949). 

2.5.1 Manganese Absorption 

Plants can modify the soil chemistry within their root zone (Foy et al., 1978). 

Certain Mn-tolerant cultivars of wheat (Triticum sp. L.), barley, rice (Oryza sativa L.), peas, 

and com (Zea mays L.) increase the pH of their nutrient solutions (Barber, 1974). Such 

increase in the medium pH reduces the availability of Mn to the plants. In contrast, Mn- 

sensitive cultivars of the same species decrease or have no effect on the pH of their nutrient 
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solution (Barber, 1974), and thus are exposed to higher concentrations of available Mn. In 

some wheat genotypes, these differential pH changes have been demonstrated in thin layers 

of soil removed directly from the root zone and even in the bulk soil in pot culture (Barber, 

1974). 

Possible causes of pH lowering in the plant root zone are release of H* resulting 

from excess cation over anion absorption, release of H* ions as result of NH/ nutrition, 

release of H* ions from carboxyl groups of polygalacturonic acid residues of pectic acid, or 

excretion of FT protons from microorganisms associated with the roots (Barber, 1974). 

The superior Mn tolerance of rice over soybean, coincides with greater oxidizing 

power of rice roots (Doi, 1952; Engler and Patrick, 1975). The rice roots are able to oxidize 

Mn from the divalent (available) to the tetravalent (unavailable) form of Mn (Mn02), which 

decreases Mn absorption by the plants (Engler and Patrick, 1975). Doi (1952) found that 

soybean was Mn injured if planted alone in paddy soils, but this injury was reduced if 

soybean was planted with rice. The beneficial effect was probably due to the oxidation and 

detoxification of Mn by rice roots. 

The superior tolerance of peanut (compared to cowpea and soybean) (Morris and 

Pierre, 1949), and ‘Siam 29’ rice (compared to ‘Pebifun’) (Foy et al., 1978) was attributed 

to limited Mn absorption. 

Robson and Loneragan (1970) found that the greater sensitivity of Medicago species 

of tropical legumes (compared to subterranean clover (Trifolium subterraneum L.)) was 

associated with a higher rate of Mn absorption and less retention of Mn by the roots. 
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2.5.2 Manganese Accumulation and Translocation 

Kamprath and Foy (1971) reported that Mn may be detoxified by accumulating in 

the woody portions of the azalea plant. High Mn sensitivity in peanut was associated with 

the accumulation of Mn in its leaves but little or no accumulation in roots, stem, or petioles 

(Morris and Pierre, 1949). 

Morris and Pierre (1949) found that leaves of legumes affected by Mn toxicity 

contained three to five times the concentrations of Mn in stems. 

Manganese tolerance in some plant species is associated with greater retention of 

excess Mn in the roots. The oxidation of Mn with concomitant deposition of oxidized Mn 

in the roots reduces Mn translocation to the shoots and enhances the tolerance of the plant to 

excessive amounts of Mn (Foy et al., 1978). Horiguchi (1987) observed deposition of 

oxidized Mn on the roots of rice, which displayed a dark brown color and accumulated a 

large amount of Mn. He also reported that a peroxidase-malate dehydrogenase system in the 

root cell walls oxidized Mn. 

Andrew and Hegarty (1969) reported that the relative tolerance of either tropical or 

temperate legume species depends in part on the retention of excess amounts of Mn within 

the root system. The superior Mn tolerance of com (compared to peanut) was associated 

with reduced translocation of Mn from the roots and stems to the leaves (Benac, 1976). 

Ouellette and Dessureaux (1958) reported that the tolerant clones of alfalfa contained lower 

concentrations of Mn in their shoots and higher concentrations of Mn in their roots than did 

the more sensitive clones . 
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Although Mn retention in the roots may contribute to the Mn tolerance of some 

plant species, this mechanism is not sufficient to account for the Mn tolerance of other 

species. 

2.5.3 Internal Tolerance to Excess Mn 

In some species, the Mn tolerance is associated more closely with the internal 

tolerance of the shoots to excessive amounts of Mn. Horigushi (1987) reported that rice 

retained less Mn in its roots than other species, and the shoots were able to tolerate a high 

Mn concentration in the tissues. On the other hand, the shoots of alfalfa were sensitive to a 

high Mn concentration in the tissues although the roots oxidized Mn and retained it in high 

concentrations. Foy et al. (1995) reported that the differential Mn tolerance in cotton 

genotypes [Gossypium hirsutum L.](307,317) was associated with differential internal 

tolerance to excess Mn. 

The higher Mn tolerance of ‘Lee’ soybean (compared to ‘Bragg’ and ‘Forrest’) 

(Brown and Jones, 1977a), and ‘Rex Smooth Leaf cotton (compared to ‘Coher 100-A’) 

(Foy et al., 1969) was attributed to a greater ability to tolerate high levels of Mn in the 

shoots. 

The tolerance of plants to high concentrations of Mn in their shoots varies among 

species and genotypes within species (Foy et al., 1978; Morris and Pierre, 1949). 

Winterhalder (1963) showed that seedlings of Eucalyptus saligna (Sm.) were more tolerant 

to excess soil Mn than those of Eucalyptus gummifera (Gaertn.) Hochr., although the leaves 

of the former contained higher concentrations of Mn. 

Tea {Camellia thea L.) and tomato {Lycopersicon esculentum Mill.) are more 

tolerant to high internal levels of Mn than many other species (Dennis, 1968; Foy et al.. 
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1978). Rice may tolerate 5 to 10 times as much Mn as those of many other grasses such as 

oats (Avena sp. L.), barley, wheat and ryegrass (Lolium sp. L.) (Vlamis and Williams, 

1967). 

Sorghum {Sorghum propinguum (Kunth) Hitoho.) generally tolerates high levels of 

Mn. However, some genotypes such as NB 9040 tolerate higher concentrations of Mn than 

others (IS 7173c) (Mgema and Clark, 1995). 

A possible explanation for the internal tolerance of some plants to high levels of Mn 

in the shoots is the oxidation of excess Mn (Horigushi, 1987). Blarney et al. (1986) 

reported that the shoots of sunflower {Helianthus sp. L.) tolerate high Mn concentrations in 

the tissues through the presence of Mn in a metabolically inactive form. Horigushi (1987) 

found that when cucumber absorbed an excessive amount of Mn, a part of the Mn absorbed 

changed to oxidized Mn. They suggested that oxidized Mn is probably metabolically 

inactive since the dry weight of the plants was preserved up to a relatively high Mn 

concentration in the tissues. The mechanism of the Mn tolerance of rice does not appear to 

be associated with Mn oxidation because oxidized Mn could not be detected on the leaves 

(Horigushi, 1987). 

2.5.4 Genetic Control of Mn Tolerance in Plants 

Genetic variations in the ability of plants to accumulate Mn have been reviewed by 

many investigators (Brown et al., 1972; Gerloff and Gabelman, 1983; Graham, 1984). Foy 

et al. (1978) reported that Mn tolerance in alfalfa was due to additive genes. Lettuce 

genotypes, Lactuca sativa ‘Neptune’ (Mn-sensitive) and ‘Plenos’ and ‘Troppo’ (Mn- 

tolerant), differ greatly in tolerance to available Mn in steam sterilized soils (Eenink and 
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Garresten, 1977). Studies of their progenies indicated that Mn tolerance was determined by 

different genes in the parents (Eenink and Garresten, 1977). 

2.6 SOIL MANAGEMENT FACTORS 

Because plant roots absorb Mn as the divalent cation, any factors that change its 

concentration in the soil solution potentially can affect the accumulation of Mn in the plant. 

These factors include soil physical and chemical properties (Graham, 1988); soil moisture, 

organic matter, and pH (Christenson et al., 1951); and the concentrations of other elements 

that interact with Mn absorption, translocation and use (Welch et al., 1991). Small changes 

in these factors can determine the degree of Mn toxicity in a given crop. Lowering the pH 

below about 5.5 increases the level of the divalent Mn in the soil solution and increases the 

likelihood of toxicity, air drying may greatly increase the level of exchangeable Mn in acid 

soils rich in easily reducible Mn, and flooding and compaction of soils reduce soil aeration 

and favor the reduction of Mn to the divalent form in which it may reach toxic levels 

(Kamprath and Foy, 1971). 

2.6.1 Fertilizer and N Form 

Manganese toxicity can appear on previously productive cropland that has been 

treated repeatedly with Mn-containing pesticides and fertilizers (Chaney and Giodano, 

1977). Excess Mn was reported in certain Florida citrus soils, in which the accumulation 

resulted from repeated spray and fertilizer applications (Foy et al., 1978). 

Manganese toxicity was reported in plants treated with sewage sludge (Chaney and 

Giodano, 1977). Peterson et al. (1971) found that the Mn content of com leaves was 

directly correlated with sludge fertilization. 
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Application of divalent Mn sources with acid-forming fertilizers results in increased 

Mn absorption (Hossner and Richards, 1968). Williams et al. (1971) reported that 

fertilizers increase Mn concentrations in plants in the following order: (NFL^SC^ > 

NH4NO3 > Ca(NC>3)2. This series coincides with the declining order of soil acidification by 

these fertilizers. There were no symptoms above soil pH 5.5, and yields were inversely 

correlated with Mn in plants. 

Preplant addition of dolomite to a soilless peat-based medium maintained the pH 

within the range of 5.8 to 6.2 and lowered Fe and Mn concentrations in the tissue of 

geranium (Pelagonium XHortorum L.H. Bailey 'Aurora') plants suffering from Fe and Mn 

toxicity. Liquid dolomite drenches during plant growth had little effect on tissue Fe or Mn 

(Bachman and Miller, 1995). 

Larson (1964) reported increased Mn absorption by plants if high rates of 

superphosphate were applied to neutral and alkaline soils. They suggested chemical 

mobilization of soil Mn as a result of soil reactions of the superphosphate. 

Elamin and Wilcox (1986c) found that N form influenced Mn toxicity in 

muskmelons. The plants grown with nitrate (NO3') developed Mn toxicity symptoms and 

had high concentrations of Mn in the shoot tissue when exposed to high concentrations of 

Mn. In opposition, the plants grown with ammonium (NLU+) had less Mn in their shoot 

tissue and developed no Mn toxicity symptoms when exposed to the same Mn 

concentration treatments. Ammonium was also found to decrease Mn absorption and 

toxicity in barley (Amon, 1937). Reddy and Mills (1991) found that NO3' source of N 

enhanced Mn uptake while NH4NO3 reduced it. They also found that the growth of 

marigold was suppressed with high concentrations of Mn in the nutrient solution (10 

25 



mg/liter) and that the suppression was greater with the N03" source than with the NH4NO3. 

Since NO3" fertilization increases soil pH, use of this N source should result in a decreased 

Mn concentration in the soil solution and consequently uptake by plants. However, NO3' or 

NH4+ influences not only the rhizosphere pH but also the uptake of other ions by plants 

(Barker and Mills, 1980) and this latter factor must also be considered independent of Mn 

availability to plants as a consequence of rhizosphere pH changes. 

2.6.2 Liming 

The absorption of excessive amounts of Mn and the resultant toxicity in sensitive 

crops can be reduced by liming acid media to pH 5.5 or above (Fleming, 1989; Jackson et 

al., 1996). However, Mn toxicity also was observed in calcareous soils and flooded neutral 

soils (Moraghan and Freeman, 1978). Moraghan and Freeman (1978) reported that flax 

(Linum usitatissimum L.) developed Mn toxicity symptoms at pH 8.1, on a calcareous soil 

with low available Fe. 

It is generally considered that the role of liming in amelioration of Mn toxicity is 

due primarily to reduced Mn availability at high soil pH. However, such beneficial effects 

could be, in part, due to increased Ca availability (Bekker et al., 1994). 

Bekker et al. (1994) found that liming the soil with coarse corraline lime material 

containing 31.1 % Ca and 1.7% Mg alleviated Mn toxicity in peanut plants. They explained 

that this alleviation was not likely due to decreased Mn solubility because the lime 

application increased the soil pH by less than 0.1 unit but that it was due rather to an 

increase of Ca availability. Calcium availability reduced Mn toxicity through a Ca-Mn 

antagonism. 
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Morris and Pierre (1947) attributed the effect of liming in promoting growth of 

lespedeza on acid soils to removal of toxic concentrations of soluble Mn and not to the 

addition of Ca to the soil, because lespedeza requires very low Ca. Liming acid soils to pH 

values of 5.5 to 6.0 eliminates all water-soluble Mn from the soil (Morris and Pierre, 1947). 

The availability of Mn to plants generally decreases as soil pH increases. A sharp 

yield depression may occur when strongly acid soils are limed to pH 6.0 or above, because 

of micronutrient deficiencies that may occur under limed conditions (Kamprath and Foy, 

1971). 

2.6.3 Moisture Level and Growth Medium 

Waterlogging of soil promotes the reduction of Mn to the divalent (available) form. 

Tolerances of some plant species to certain wet soils coincide with their tolerances to excess 

Mn in nutrient cultures. For example, the Mn-tolerant subterranean clover is more tolerant 

to waterlogging than the Mn-sensitive barrel-clover (Medicago truncatula Gaertner) 

(Robson and Loneragan, 1970). Graven et al. (1965) suggested that the sensitivity of alfalfa 

to wet soils might be due in part to Mn sensitivity. 

Gupta and Chipman (1976) and Gupta et al. (1970) reported Mn toxicity of carrots 

in a sphagnum peat medium. The toxicity was attributed to an increased solubility of a 

humic fraction of peat which rendered Mn more available to the plants. Goh and Haynes 

(1978) found that different proportion of peat resulted in different growth rate of marigold 

(Tagetes erecta L. ‘Naughty Marietta’), petunia {Petunia hybrida nana compacta Juss 

‘Rose of heaven’) and forget-me-not {Myosotis alpestris L.). Generally, poorest growth 

occurred when peat represented more than 25% of the growth medium. Increased peat in 

the medium increases the amount of micropore water and decreased its air capacity, 
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conditions which favor Mn reduction and make it available to plants. Poor growth also 

occurred if peat was mixed with soil, sawdust, or bark, perhaps because soil, sawdust, and 

bark contain significant amount of organic matter. Welch (1991) reported that in England 

Mn toxicity was seen in crops grown in peaty soils and mineral soils with high levels of 

organic matter. 

The biological reduction of Mn in the soil is enhanced by the addition of fresh 

organic matter (Cotter and Mishra, 1968) and by flooding (Ponnamperuma et al., 1969). 

The availability of the divalent form of Mn upon flooding is usually greater when soils 

contain high levels of organic matter (Mortvedt and Cunningham, 1971). 

The availability of Mn is closely related to the transformations of organic materials 

in soils (Kamprath and Foy, 1971). Microorganisms influence the availability of Mn by 

changing the pH of the medium (Kamprath and Foy, 1971) and by changing the oxidation 

state (Alexander, 1961). 

Soil microorganisms appear to play a major role in determining soil levels of 

reduced Mn especially at the higher soil pH levels (Douka, 1977; Nambier, 1975). 

Christenson et al. (1951) reported that soil pH was of greater importance than 

organic matter content and moisture level in affecting the status of available soil Mn. 

2.7 ENVIRONMENTAL INTERACTIONS 

The incidence of Mn toxicity is strongly dependent on environmental and nutritional 

status of nutrients other than Mn. For example, in some cases concentrations around 700 

mg/kg in potato foliage have induced Mn toxicity, but in other cases, levels up to 4,000 

mg/kg Mn in field-grown potato foliage did not cause toxicity (Marsh et al., 1989; Ouellette 
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and Genereaux, 1965). This differential tolerance to Mn appeared to depend on nutritional 

and environmental interactions. 

It is apparent that several of these nutritional and environmental interactions could 

depend on changes in growth rate. Plant tolerance to Mn toxicity is to some extent 

dependent on growth rate, cell size, and particularly the size of the vacuole (Rufty et al., 

1979), which is the site of Mn accumulation (Horst and Marshner, 1978b; Roby et al., 

1987). Any factor that reduces growth might induce Mn toxicity in plants growing under 

high Mn concentrations. 

The relative tolerance of plants to excess Mn is affected by climatic factors such as 

temperature and light intensity (Rufty et al., 1979; McCool, 1935). 

2.7.1 Temperature 

Some reports suggest substantial changes in Mn tolerance with temperature (Lohnis, 

1951). Plant tolerance to Mn toxicity increases with increasing temperature in tobacco or 

soybeans despite high Mn absorption (Rufty et al., 1979; Heenan and Carter, 1975). This 

increased tolerance to Mn toxicity with increasing temperature is attributed mainly to faster 

growth rate due to high temperature. Fast growing leaves have the opportunity to form 

large vacuoles, sequestering the potentially toxic Mn. In the case of potato, high 

temperature reduces the growth rate and increases Mn absorption (Marsh et al., 1989). The 

combination of these two facts results in accentuated symptoms of Mn toxicity when the 

plants are grown under high Mn concentration in the medium. Marsh et al. (1989) 

attributed the severity of Mn toxicity at high temperature to an interaction between growth 

rate and Mn tolerance. 
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2.7.2 Light 

High light intensity stimulates Mn absorption by plants and accentuates the severity 

of Mn toxicity (McCool, 1935; Horigushi, 1988b). 

Horiguchi (1988b) reported that increased light intensity at high levels of Mn in the 

nutrient solution, decreased the chlorophyll content of the leaves, causing chlorosis, and 

precipitated the oxidized Mn in the medium. High light intensity increased the severity of 

Mn-induced chlorosis even at similar levels of Mn concentration within the leaves. 

According to Horiguchi (1988b), the Mn-induced chlorosis in the leaves is due to 

the oxidation of chlorophyll by the oxidized Mn in the medium. Gerretsen (1950) attributed 

Mn-induced chlorosis to photooxidation of chlorophyll. 

2.8 NUTRITIONAL INTERACTIONS 

Several investigators (McCool, 1913; Morris and Pierre, 1947; Somers and Shive, 

1942; Williams and Vlamis, 1957a) reported that plant tolerance to soluble Mn was affected 

by the concentration of other nutrient elements in the medium. Excess Mn can interfere 

with the absorption, translocation, and utilization of other mineral elements such as Ca, 

Mg, Fe, and P (Clark, 1982). Galvez et al. (1989) found that high levels of Mn in the 

nutrient solution decreased shoot concentrations of Si, K, Ca, Mg, Zn, and Cu; increased 

shoot concentrations of Mn and P; decreased root concentrations of K and Mg; and 

increased root concentrations of Mn, Si, P, Fe, Zn, and Cu. Under some conditions the 

addition of Si, Fe, Ca, or Mg alleviates Mn toxicity (Heenan and Carter, 1975; Horst and 

Marshner, 1978b; Lohnis, 1960; Osawa and Ikeda, 1976). 
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2.8.1 Interaction with Fe 

The interaction between Mn and Fe in their absorption by plants has been known for 

quite some time (Jahnson, 1917). The nature of the interaction varies among plant species 

and is not always consistent among studies. The interaction between Mn and Fe was absent 

in tomato, sorghum, rice, or wheat (Jaurigui and Reisenauer, 1982; Foy et al., 1978; Kuo 

and Mikkelson, 1981; Sanchez-Raya et al., 1974; Van Der Vorm and Van Diest, 1979); 

positive in oats, wheat, or barley (Mashhady and El-Damary, 1981; Shuman and Anderson, 

1976; Singh and Pathak, 1968) and negative in pineapple (Ananas comosus (L.) Merr.), 

soybean, mustard (Brassica sp. L.), tobacco, rice, barley, or flax (Beauchamp and Rossi, 

1972; Dekock and Inkson, 1962; Heenan and Campbell, 1983; Hiatt and Ragland, 1963; 

Jahnson, 1917; Moraghan, 1979; Somers and Shive, 1942; Vlamis and Williams, 1964). 

The growth medium used in the studies seems to have a major influence on the 

nature of the relationship between Fe and Mn. In the same studies conducted by Mashhady 

and El-Damary (Mashhady and El-Damary, 1981), solution cultures tended to give a 

negative interaction; sand cultures gave no interaction; and soil-grown plants gave positive 

interactions. The authors suspected that the dramatic effect of the medium on the nature of 

the plant Mn-Fe interaction involved the presence or absence of solid phases, and then- 

interaction with plant roots. 

To evaluate Mn-Fe interactions for soil-grown plants, Warden and Reisenauer 

(1991) suggests to determine not only plant Mn and Fe composition but also rhizosphere 

Mn and Fe levels and root length. 

Most of the investigations done on the interaction between Fe and Mn in plants, 

showed a negative correlation between Fe and Mn accumulation in the shoots of susceptible 
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cultivars. Ohki (1975) reported reciprocal Fe-Mn relationships in cotton; Mn 

concentrations 4 and 247 mg/kg in plant shoots were associated with Fe concentrations of 

270 and 51 mg/kg, respectively. Kohno and Foy (1983) found that high concentrations of 

Fe decreased the absorption of Mn by some plants. 

2.8.1.1 Manganese-induced Fe deficiency 

Osawa and Ikeda (1976) described two types of manganese toxicity in plants. The 

first type was identical to Fe deficiency symptoms "interveinal chlorosis on young leaves" 

and was observed in spinach (Spinacia oleracea L.), tomato, pepper {Capsicum annuum L.) 

and beans. The second type of Mn toxicity was characterized by marginal chlorosis of old 

leaves, often with brown necrotic spots, and was observed in lettuce, celery {Apium 

graveolens L.), and cabbage {Brassica oleracea Capitata group). In general, increasing the 

Fe supply prevented or reduced the severity of the interveinal chlorosis, but had little or no 

effect on reducing the marginal chlorosis and brown spots. Leaf analyses indicated that the 

Mn-induced interveinal chlorosis was due to Fe deficiency whereas the marginal chlorosis 

and brown necrotic spots were due to accumulation of excess Mn. 

Foy et al. (1978) also described two types of Mn toxicity in chickpeas {Cicer 

arietinum L.). The first type was pronounced in genotype T-l and was characterized by 

marginal chlorosis and brown necrotic spots on leaflets of middle and young leaves. The 

second type of Mn toxicity was pronounced in genotype T-3 and was Mn-induced Fe 

deficiency chlorosis. Manganese treatment of T-3 decreased Fe concentrations of young 

leaves causing chlorosis. The reduction of chlorophyll in chlorotic plants was counteracted 

by high Fe applications. 
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Millikan (1948) found that flax grown at excess concentrations of Mn (25 mg/kg) 

developed lower leaf necrosis in addition to chlorosis and necrosis of the top of the plant, 

which are symptoms identical to those of Fe deficiency. Supplying the plants with Fe 

eliminated the symptoms of Fe deficiency but did not have any effect on the lower leaf 

necrosis. Lee (1972) reported that excess Mn in the medium induced Fe deficiency in 

potato. Manganese-induced Fe deficiency was related to the ratio Fe/Mn (Leach and Taper, 

1954) as well as to the concentration of these 2 nutrients in the medium (Beauchamp and 

Rossi, 1972; Foy et al., 1995). Foy et al. (1995) reported that Fe concentrations and Fe/Mn 

ratio were higher in the Mn-tolerant cultivar of cotton [Gossypium hirsutum L.] (307) than 

in the Mn-sensitive cultivar (517). 

Beauchamp and Rossi (1972) found that high levels of Mn in the solution culture 

depressed Fe absorption by barley. Somers and Shive (1942) found that Mn toxicity to 

various plant species decreased by increasing the concentration of Fe in the solution. 

Somers and Shive (1942) reported that the Fe/Mn ratio in culture solution, rather 

than the total amounts of these elements, controlled the growth of soybeans. They found 

that the optimum ratio was around 2.0 and any appreciable variation in this ratio would 

result in appearance of Fe or Mn toxicity symptoms. Hophins et al. (1944), however, 

obtained normal growth of beans in culture solutions with Fe/Mn ratios much higher than 2 

and found no toxicity from Mn regardless of the ratio. Morris and Pierre (1947) found that 

0.5 mg/liter Fe and 1 mg/liter Mn made excellent growth and that the plants grown with the 

same ratio (2.0) but with concentrations five times higher than the former treatment resulted 

in poor growth and severe Mn toxicity symptoms. 
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Leach and Taper (1954) found that the optimum Fe/Mn ratios in plants ranged from 

1.5 to 3 for kidney beans (Phaseolus vulgaris L. ‘humilis Alef.’) and from 0.5 to 5 for 

tomato. Iron deficiency developed at lower ratios. 

Osawa and Ikeda (1976) reported that in spinach the Fe/Mn ratio in nutrient solution 

was related closely to plant growth. Decreasing this ratio gave Mn-induced chlorosis (Mn- 

induced Fe deficiency) and decreased growth. They also reported that in tomato, pepper, 

bean, and eggplant (Solarium melongena L.) both Fe/Mn ratio and Mn concentration in 

nutrient solution affected plant growth and occurrence of Mn-induced chlorosis, and in 

celery, cabbage, and Welsh onion (Allium fistulosum L.) the absolute Mn concentration 

appeared to be the dominant factor. 

The actual means by which Mn induces Fe deficiency in some plant species, is still 

obscure. Rippel (1923), Chapman (1931), and Millikan (1949) reported that plants 

manifesting symptoms of Fe deficiency associated with excess Mn may actually contain the 

same or higher content of Fe than normal plants, indicating that it is not Fe absorption but 

its action in the tissues that is unfavorably affected by excess Mn. Somers and Shive (1942) 

suggested that this unfavorable effect is probably due to the Mn catalysis of the oxidation of 

the physiologically active form of Fe (Fe2+) to the inactive form (Fe3+). They also suggested 

the probable formation of an insoluble ferric-phosphate-organic complex. 

Benette (1945) reported that Mn does not interfere with Fe utilization in the leaf but 

produces chlorosis by depressing the absorption of Fe. Johnson (1917) also explained Mn- 

induced Fe deficiency by inhibited Fe absorption. In Fe-deficient soils, Mn-induced Fe 

deficiency may be related to excessive mobilization of soil Mn as a result of reductant and 

proton release by plant roots responding to Fe deficiency (Horst, 1988). 
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Other explanations to the effect of Mn in inducing Fe deficiency could be that the 

plant species susceptible to Mn-induced Fe deficiency assimilate Mn preferentially over Fe 

and are more susceptible to interference of Mn with Fe function inside the plant or that Fe is 

immobilized more readily within tissues of these plants (Somers and Shive, 1942). 

There may also be genotypic variations in the absorption and utilization of Mn and 

Fe by plants (Brown et al., 1972; Graham, 1988). 

2.8.1.2 The effectiveness of Fe supply 

The abilities of Fe to alleviate Mn toxicity depends on whether or not the toxicity is 

due to Mn-induced Fe deficiency or to accumulation of excess Mn in the plant tissues 

(Osawa and Ikeda, 1976; Foy et al., 1978). Iron supply had a marked effect on alleviating 

Mn toxicity in many crops (Morris and Pierre, 1947; Sideris and Young, 1949). 

Iron treatments corrected Mn toxicity in Eucalyptus {Eucalyptus sp. L’her) 

(Winterhalder, 1963), soybean (Heenan and Campbell, 1983), flax (Moraghan and Freeman, 

1978), and pineapples (Sideris and Young, 1949). 

Morris and Pierre (1947) reported that the beneficial action of Fe in reducing Mn 

toxicity appeared to be due to some mechanism that prevents the excessive absorption and 

subsequent accumulation of Mn in the plant rather than to an increase in Fe absorption and 

corrective action of Fe within the plant itself. They found that alleviation of Mn toxicity by 

higher Fe concentration (1 mg/liter compared to 0.2 mg/liter) was not due to an increase of 

total iron in the plant but to an approximate 50% reduction in the Mn content of the plant. 

Limitations as to the effect of Fe in overcoming Mn toxicity are evident from the 

research of Morris and Pierre (1947), who showed that an increase in the concentration of 

Fe in culture solution up to 1 mg/liter resulted in marked reduction of the Mn toxicity from 
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a given concentration of Mn. A further increase in the Fe concentration from 1 to 2.5 

Mg/liter produced no additional decrease in Mn absorption, and higher Fe concentration 

resulted in suppressed growth regardless of the Mn concentration. 

2.8.1.3 The effectiveness of Mo and P supply 

Millikan (1948) reported that an essential function of Mo is intimately associated 

with the regulation of the deleterious effects of Mn on the physiological availability of Fe to 

the plants. Kirch et al. (1960) found that Mn absorption in tomatoes was influenced by 

interactions among Fe, Mn, and Mo. Iron supply counteracted the yield depressive effects 

of excess Mn, but the amount of Fe needed for maximum yield was increased as the Mo 

supply increased. Molybdenum suppressed yields at low Fe levels and increased yields at 

higher Fe levels. 

Foy et al. (1978) reported that low P levels in the medium reduced the effect of Mn 

toxicity in chickpeas (variety T-3) because low P increases Fe uptake by the plants. 

2.8.1.4 Manganese toxicity induced by Fe deficiency 

Manganese toxicity may develop under Fe-deficient conditions (Brown and Jones, 

1977a). Iron-deficiency stress seems to enhance Mn absorption in some species (Heenan 

and Campbell, 1983; Sideris and Young, 1949; Somers and Shive, 1942). Brown and Jones 

(1977a; 1977b; 1977c) reported increased Mn absorption by soybean, cotton, or sorghum, 

grown under Fe-deficiency stress. The absorption of Fe and Mn was greater in ‘Hawkeye’ 

(Fe-efficient) than in ‘PI’ (Fe-inefficient) soybean. When these cultivars were grown under 

Fe-sufficient conditions, both cultivars absorbed low levels of Fe and Mn (Brown and 

Jones, 1962). Dicots respond to Fe deficiency by an increased potential for Fe absorption 

and translocation (Fleming, 1989; Brown and Ambler, 1973). When the Fe response is 
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initiated (roots release reductants) the absorption of Mn, as well as Fe, is enhanced in Fe 

efficient species such as sunflower and soybean (Fleming, 1989; Brown and Ambler, 1973). 

The magnitude of the enhanced Mn absorption is related to the intensity of Fe stress as well 

as the cultivar sensitivity to Mn. 

In a study on snapbean, Fleming (1989) found that under alkaline conditions, Mn 

absorption by ‘Bush Blue Lake (BBL) 290’ snapbean was increased dramatically with Fe 

stress, whereas a moderate increase was found for 'BBL 274'. Fleming also found that foliar 

symptoms of Mn toxicity, observed on Fe stressed 'BBL 290', increased in severity at higher 

Mn concentrations. 

2.8.1.5 Manganese-iron toxicity 

Contrary to the precedent findings, susceptibility to Mn toxicity and Fe toxicity 

seem to coincide in ‘Bragg’ and ‘Forrest’ soybeans (Brown and Jones, 1977a), marigold 

(Albano and Miller, 1996), and geranium (Bachman and Miller, 1995). Brown and Jones 

(1977a) suggested that high Fe levels in the shoots of ‘Bragg’ soybean may accentuate Mn 

toxicity or create Fe toxicity per se. Bachman and Miller (1995) found that 1 to 60 mg/kg 

Fe in the medium caused Fe/Mn toxicity in ‘Aurora’ geranium plants. Symptomatic tissues 

of affected geraniums had higher concentrations of Fe and Mn than asymptomatic tissues. 

Iron concentration increased with increasing Fe level in the medium, in both symptomatic 

and asymptomatic tissues. Manganese, however, increased in symptom tissues as Fe level 

increased; and remained the same in asymptomatic tissue, among all Fe treatments. Vlamis 

and Williams (1964) also reported that the chlorotic spots of lettuce contained high 

concentration of Fe and Mn. Iron content of lespedeza plants increased with increased Mn 
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concentration in the nutrient solution (Morris and Pierre, 1947). High Mn concentration in 

the medium may thus cause Fe deficiency in the plants if the medium is not sufficient in Fe. 

2.8.2 Interaction with Si 

Abundant evidence show that a soluble source of silicon (Si) in the growth medium 

can protect plants against Mn toxicity (Bowen, 1972; Lewin and Reimann, 1969; Peaslee 

and Frink, 1969; Williams and Vlamis, 1957b). The higher absorption of Si by monocots 

than dicots may help explain the higher tolerance of monocots to Mn toxicity (Foy et al., 

1978). Lewin and Reimann (1969) reported that low silica plants accumulate higher 

concentrations of Mn than high silica plants. Galvez et al. (1989) reported that acid-soil- 

tolerant genotypes had higher leaf Si concentrations than the acid-soil-susceptible genotypes 

grown at higher-acid soil stresses; Si might be the cause of the plant tolerance to high 

acidity and hence to Mn toxicity. Silicon reduced or prevented Mn toxicity in barley, rice, 

rye (Secale sp. L.), lyegrass (Vlamis and Williams, 1967); Sudan-grass (Sorghum bicolor 

(L.) Moench) (Bowen, 1972); and sorghum (Galvez et al., 1989). 

Van Der Vorm and Van Diest (1979) attributed the effect of Si in alleviating Mn 

toxicity to a decreased rate of Mn absorption. Peaslee and Frink (1969) found that treating 

acid soils with H2Si03 significantly decreased Mn concentrations in the plant tissues. 

Williams and Vlamis (1957b), however, reported that the effect of Si in suppressing Mn 

toxicity does not necessarily result from decreased Mn absorption. They found that Si 

prevented the formation of necrotic spots of high Mn concentrations in barley leaves 

although it did not significantly alter the absorption of Mn by plants. 

The effect of Si in alleviating Mn toxicity also was attributed to decreased Mn 

transport from the roots to the shoots (Horigushi, 1988a) and to homogeneous distribution 
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of Mn throughout the leaves instead of concentrating in some areas more than others 

(Vlamis and Williams, 1967). Vlamis and Williams (1967) reported that the distribution of 

Mn was homogeneous in the leaves of the high silica plants whereas it was not 

homogeneous in those of the low silica plants and that Mn was more concentrated in the 

affected areas than in the green areas. Silicon enhances the tolerance of plants to Mn 

toxicity by increasing Mn critical toxicity concentration (Horst and Marshner, 1978b; 

Galvez et al., 1989). Horst and Marshner (1978b) reported that the critical toxicity 

concentration of Mn in beans increased from about 100 mg/kg dry weight of the leaves to 

about 1000 mg/kg in the presence of Si. 

Galvez et al. (1989) found that Si enhanced the tolerance of rice to Mn toxicity by 

increasing root oxidizing conditions to decrease Mn (and Fe) reducing capacities at root 

surfaces, so that toxic levels of Mn (and Fe) in the reduced form would not be available to 

plants. Foy et al. (1978) reported that Mn oxidation was greater in rice plants supplied with 

Si than in Si-deprived plants and that Si decreased excessive absorption of Mn and Fe. 

Other reported effects of Si in alleviating Mn toxicity are moderated respiration rate 

and decreased peroxidase activity (Horigushi, 1988a). Silicon in the cell, is deposited in 

close association with other constituents of the cell wall (Lewin and Reimann, 1969). 

Silicon may play a role in maintaining the compartmentalization of the cell wall and 

preventing peroxidase from coming into contact with the precursors of the brown substrates 

(Horigushi, 1988a). Silicon also was found to limit the increase of P in plants caused by 

excess Mn in the nutrient solution (Galvez et al., 1989). 
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Limitations as to the effect of Si in overcoming Mn toxicity were reported (Galvez 

et al., 1989). If Mn was sufficiently high to inhibit dry matter yields of sorghum by about 

80% or more, added Si had no beneficial effect on overcoming Mn toxicity. 

2.8.3 Interaction with Ca 

Calcium deficiency is induced by Mn toxicity in dicotyledons such as cotton 

("crinkle leaf') (Foy et al., 1981) and bean (Phaseolus vulgaris L.)(Horst and Marshner, 

1978a). When the supply of Mn is excessive, the translocation of Ca to the shoot apex, 

especially, is inhibited (Horst and Marshner, 1990). This inhibition might be related to the 

fact that high Mn levels decrease the cation exchange capacity of the leaf tissue (Horst and 

Marshner, 1978a) and decrease the IAA levels in the areas of new growth (Morgan et al., 

1966; Morgan et al., 1976). Auxin was reported to be responsible for the formation of new 

binding sites for the transport of Ca to the apical meristems (Horst and Marshner, 1978a). 

Manganese-induced suppressions in concentrations of Ca have been reported (Clark 

et al., 1981; Galvez et al., 1989). The higher tolerance of strain b(, of lespedeza (compared 

to strain L39) to excess Mn appears to be attributed to its greater tolerance to soluble Mn and 

to its lower requirement for Ca (Morris and Pierre, 1949). The calcium content of peanut 

decreased markedly as the Mn concentration of culture solution increased (Bekker et al., 

1994). 

Increased Ca levels in the growth medium often decreased Mn absorption and 

toxicity (Heenan and Carter, 1975; Robson and Loneragan, 1970; Shuman and Anderson, 

1976; Hewitt, 1945). Vose and Jones (1963) found that increasing the Ca level in the 

solution culture reduced the adverse effects of high Mn level on suppressing the number of 

nodules on white-clover {Trifolium repens L.) roots. 
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The Ca/Mn ratio was important in nodulation and Mn tolerance in soybean (Foy et 

al., 1978). Bekker et al. (1994) reported the importance of a Ca/Mn-ratio above 80 for a 

desirable Ca/Mn balance in peanut tissue. Ouellette and Dessureaux (1958) found that Mn- 

tolerant clones of alfalfa contained lower concentrations of Mn in their shoots and higher 

concentrations of Mn and Ca in their roots than the sensitive clones. They concluded that 

Ca absorption regulated Mn toxicity by reducing Mn transport to shoots. Contrary to these 

findings, Chapman (1931) and Morris and Pierre (1947) found that Mn toxicity was not 

alleviated by additional Ca and was even greater at high Ca concentrations. 

The conflicting results between Hewitt (1945) and Chapman (1931) and Morris and 

Pierre (1947) may be due to the different crops used. Morris and Pierre (1947) pointed out 

that high Ca levels (300 mg/liter) in the nutrient solution can limit plant growth regardless 

of the concentration of Mn in the solution, probably because of unbalanced nutrient 

solution. They concluded that optimal Ca concentration (60 mg/liter) was crucial for 

optimal plant growth and that Ca addition to the nutrient solution may cause a nutritional 

unbalance to the plants. 

2.8.4 Interaction with Mg 

Large concentrations of Mn in the medium can induce Mg deficiency in the plant 

(Mn-induced Mg deficiency) (Heenan and Campbell, 1981). Excess Mn may reduce Mg 

uptake by up to 50% (Kazda and Znacek, 1989) due to competition (Heenan and Campbell, 

1981). The competition between Mg and Mn for binding sites in the roots during 

absorption, inhibits Mg absorption, since Mn competes more effectively than Mg and even 

blocks the binding sites for Mg (Horst and Marshner, 1990). 
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Manganese toxicity often can be counteracted by a large Mg supply (Elamin and 

Wilcox, 1986a; 1986b; Lohnis, 1960). Magnesium reduced Mn uptake both by excised and 

intact roots of several plant species (Harrison and Bergman, 1981; Lohnis, 1960; Maas et 

al., 1969). 

In some cases, Mg application is not a practical method for the avoidance of Mn 

toxicity (Davis, 1996). The ability of Mg to reduce Mn uptake depends on the 

concentration of Mn in the medium. Elamin and Wilcox (1986a) found that at high Mn 

concentration, Mg had little effect on Mn uptake and the plants were able to accumulate 

toxic levels of Mn at all levels of Mg supply. In addition, using Mg to prevent Mn toxicity 

would require large Mg applications, which could lead to serious nutritional imbalance 

because Mg would interfere with Ca uptake. 

2.8.5 Interaction with K 

In comparison, the absorption of K is only slightly affected by increasing Mn 

concentrations (Heenan and Campbell, 1981). Brown and Jones (1977b) speculated that 

high K levels in the shoots of Mn-tolerant ‘Lee’ soybean alleviated the harmful effects of 

high internal Mn concentrations. 

2.8.6 Interaction with P 

Bortner (1935) suggested that P may reduce the toxicity of excess Mn by rendering 

it inactive within the plant. Phosphorus may detoxify excess Mn in the plant roots through 

precipitation (Heintze, 1968). However, P does not seem to detoxify excess Mn in the 

stems and the leaves since no precipitation was found in those parts of the plant (Morris and 

Pierre, 1947). 
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Applications of soluble phosphates to soils or nutrient solutions containing high 

amounts of Mn increased crop yields and suppressed development of Mn toxicity symptoms 

(Bortner, 1935). Bortner (1935) attributed these effects to the additional available P and a 

decrease in soluble Mn in the medium by precipitation. 

Contrary to these findings, Morris and Pierre (1947) found that the solubility of Mn 

in the nutrient solution was not affected by the additional phosphate and that P did not have 

any effect in preventing Mn toxicity but may even accentuate it if added at high 

concentrations to the medium. Le Mare (1977) reported that P application to the soil 

increases P content of the plants and increases Mn absorption. Phosphorus also increased 

Mn absorption by potato and accentuated the severity of visual symptoms of Mn toxicity at 

high temperature (Marsh et al., 1989). 

Millikan (1948) reported an indirect negative effect of P on Mn toxicity. He found 

that P may precipitate Mo in the medium making it unavailable to plants and may 

accentuate Mn toxicity. 

2.8.7 Interaction with Mo 

Anderson and Thomas (1946) found general similarities between Mo deficiency and 

Mn toxicity. Molybdenum deficient plants showed chlorosis with a necrosis of the margins 

of the lower leaves, which are also symptoms of Mn toxicity. 

Molybdenum availability increases with soil alkalinity whereas Mn availability 

increases with acidity. Thus the effect of soil reaction on Mo availability is the opposite of 

its effect on the availability of Mn. 
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Plants with a high requirement for Mo may have a low requirement for Mn. On 

highly acid soils, therefore, such plants likely would be injured by excess Mn in the soil, 

unless supplied with an adequate concentration of Mo. 

Liming of Mo-responsive soils improves growth. This beneficial effect of lime has 

been attributed to an increase in the availability of Mo following a rise in the pH of the soil, 

but concomitantly with such an improvement in the Mo status in the soil there would be a 

decrease in the availability of Mn. 

Millikan (1948) found that small applications of Mo to the medium, prevented Mn 

toxicity symptoms (lower leaf necrosis) of flax grown in strongly acid soil rich in MnSCL. 

The report of Davies (1945) that "whiptail" disease of cauliflower may be prevented 

by Mo is also of interest here as Mn toxicity symptoms in cauliflower appear to be similar 

to those of "whiptail" disease (Wallace, 1946; Wallace et al., 1945). 

Anderson and Thomas (1946) and Anderson and Oertel (1946) found that Mo 

alleviated the symptoms of Mn toxicity in the case of clover but not in the case of grass. 

This difference in responsiveness to Mo is probably due to a difference in the normal Mo 

requirements of the two species of plants as clover has been shown to have much higher 

content of Mo than grass (Lewis, 1943; Millikan, 1948). 

One of the essential functions of Mo is to regulate the deleterious effects of Mn on 

the physiological availability of Fe to plants (Millikan, 1948). The addition of 5 to 25 

mg/liter Mo to the nutrient solution reduced the severity of Mn induced Fe deficiency 

(Millikan, 1948). With excess Mn (25 to 150 mg/liter), the addition of 5 to 25 mg/liter Mo 

retarded the appearance of symptoms and reduced the severity of lower leaf necrosis, which 

is a characteristic symptom of Mn toxicity (not Fe deficiency). 
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Manganese toxicity of plants may still occur with the presence of fair quantity of 

Mo in the medium, if the pH is low and the concentration of phosphate is high in the 

medium (Millikan, 1948). This is probably because of the precipitation of Mo under these 

conditions. 

2.8.8 Other Interactions 

Plant tolerance to soluble Mn may also be affected by the concentration of sulfur 

(S), aluminum (Al), zinc (Zn), and copper (Cu) in the medium. Additional S may lower the 

pH of the growth medium and increase the availability of Mn to plants. Wallace et al. 

(1974) reported that S significantly decreased the yields of soybeans suffering from Mn 

toxicity. Aluminum reduced and prevented Fe chlorosis caused by excess Mn in flax 

(Millikan, 1949), but also increased Mn absorption and toxicity symptoms in soybeans (Foy 

et al., 1978). Zinc (Hewitt, 1948) and Cu (Landi and Fagioli, 1983) were found to reduce 

Mn absorption and toxicity in plants. 

2.9 CONCLUSIONS 

Manganese toxicity in plants is often not a clearly identifiable disorder; instead, it 

may be the result of complex interactions of Mn with other nutrients and with some 

environmental factors. Several of these nutritional and environmental interactions 

depend on changes in growth rate. To some extent, plant tolerance to Mn toxicity 

depends on growth rate, cell size, and particularly the size of the vacuole, which is the site 

of Mn accumulation. Any factor that restricts growth might induce Mn toxicity in plants 

growing under high Mn concentrations. 

Although excess Mn may produce some common effects on plants in general, 

such as development of brown spots on older leaves, there are many cases of specific 
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differential effects of Mn on different plant genotypes. The phytotoxic mechanisms of 

Mn involve different biochemical pathways in different plant species and varieties. 

Plant availability of Mn in soil depends on soil adsorption strength as well as 

plant effectors such as root exudates for Mn chelation or reduction. Adsorption and 

chelation are strongly affected by soil pH. At acid pH, soil Mn is naturally much more 

plant available. Several other soil factors play a role in Mn binding, although these are 

much less important than pH. The organic matter, clay, and hydrous oxides can adsorb 

Mn; soils with higher Mn sorption capacity have lower potential for plant absorption of 

Mn. 

Manganese toxicity is associated with increased Mn absorption by plant roots, 

rapid translocation of Mn from roots to shoots, or localized accumulation of oxidized Mn 

in leaves. Low Fe/Mn or Ca/Mn ratios in plant tissues may be associated with the 

disorder. Plants high in Fe and Ca may tolerate higher internal levels of Mn, perhaps by 

restricting Mn transport to the shoots or by preventing localization of Mn into toxic spots. 

Excess Mn in the plant tissue interferes with plant metabolism by disturbing 

enzyme activities or displacing essential elements from functional sites. For example, 

excess Mn increases peroxidase activity and stimulates phenolic metabolism. If 

peroxidase comes into contact with substrates such as caffeic acid or chlorogenic acid, 

which are easily oxidized to form brown substances, necrotic browning of the tissue 

appears. 

Plant species and genotypes within species differ in tolerance to Mn toxicity. 

Greater Mn tolerance may be attributed to restricted absorption, restricted translocation of 

excess Mn to the shoots, or greater tolerance to high Mn levels within plant tissue. Plants 
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that tolerate high levels of Mn in their tissue may oxidize excess Mn to a metabolically 

inactive form. 

Some plants may escape Mn toxicity by lowering the Mn2+ concentration in the 

growth medium [some plants may increase the pH of the growth medium and thereby 

decrease the concentrations of Mn2+ or secrete 02 through their roots and oxidize Mn2+ to 

Mn4+ (Mn02)], retaining excess Mn in the roots, accumulating excess Mn in the woody 

parts of the plant, or preventing Mn translocation from the stems and roots to the leaves. 

The ability of plants to escape toxicity by limiting Mn absorption is low for plants 

grown in wet soils rich in organic matter, for plants that are fertilized with high rates of 

superphosphate, acid-forming fertilizers, or NO3' as a source of N; plants grown under 

high temperature or high light intensity, or for plants that are low in Si or deficient in Fe, 

Ca, or Mg. The translocation rate of Mn from roots to shoots is higher in plants low in Si 

or deficient in Ca or P. Plants that are low in Si or deficient in Fe, Ca, Mg, or P may 

accumulate higher concentrations of Mn in their shoots and are more susceptible to Mn 

toxicity than plants adequately supplied with these elements. 

Research on Mn toxicity should not be confined to a single plant species because 

the symptoms and the critical toxicity concentration associated with toxicity vary 

considerably among different genotypes within the same species. What is needed is 

comparative studies among different genotypes of the same species. 

Identification of genetic control mechanisms of Mn tolerance may be combined 

with other desirable traits to produce plants that are better adapted to high Mn levels in 

the growth medium. Studies of biochemical mechanisms of tolerance may help select or 

breed plants having greatest tolerance to Mn toxicity. Such biochemical knowledge could 
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also lead to the development of improved agricultural practices for problem soils 

(fertilization, liming, organic matter, tillage, drainage). 

Other approaches in studying Mn toxicity in tolerant and sensitive plant genotypes 

include: determining the chemical compartmentalization of Mn in various plant fractions; 

levels and kinds of organic matter which may act as Mn chelators and detoxifiers or 

toxifiers; NH/ vs NO3' preference (in relation to pH change and Mn activity in root zone 

and plant fractions); physiological and biochemical effects of essential and non essential 

ions on excess Mn; effect of peat medium as related to moisture level; and effect of stage 

of plant development. 

Studies on Mn toxicity require collaboration among soil scientists, plant breeders, 

plant physiologists, plant biochemists, and plant nutritionists. A multidisciplinary 

approach is needed to limit the losses in crop quality and production attributed to Mn 

toxicity. 
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CHAPTER 3 

MAGNESIUM DEFICIENCY IN MARIGOLD 

3.1 ABSTRACT 

Iron/manganese toxicity disorder in marigold has been related to high 

concentrations of Fe and Mn and low concentrations of Ca and Mg in the affected leaves. 

Deficiency of Mg in marigold may occur because most bedding plants are grown in peat 

based media and peat based media are poor in Ca and Mg unless well-limed. To 

investigate the effect of poor supply of Mg on marigold (Tagetes erecta L. ‘First Lady’) 

growth, appearance, and nutrient (Mn, Fe, Ca and Mg) content of the shoots, a solution 

culture study with various Mg concentrations was conducted. Concentrations of Mg up 

to 8mg/liter resulted in stunted plants with a significant amount of chlorotic and necrotic 

symptoms on the leaves. The concentration 10 mg Mg/liter resulted in plants relatively 

ffee of symptoms. Concentrations above 10 mg/1 resulted in relatively healthy looking 

plants. In an earlier experiment, 10 mg/liter Mg resulted in reduced dry weight. Ten mg 

Mg/liter was thus considered incipient deficiency concentration of Mg in marigold. This 

concentration of Mg in solution corresponded to 1.5 % Mg in the plant shoots. In this 

experiment low Mg had no effect on Fe content in the shoot tissue but resulted in 

increased Mn and Ca contents and decreased Mg content. 

3.2 INTRODUCTION 

Magnesium, the central atom of chlorophyll, is vital for the process of 

photosynthesis and therefore for the life of plants in general. In addition to its implication 

in the synthesis and maintenance of chlorophyll, Mg also has a favorable influence on the 

synthesis of other leaf pigments such as carotene and xantophyll (Bergmann, 1992). 
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Although Mg deficiency leads to the rapid breakdown of chlorophyll and 

subsequent chlorosis, the Mg in chlorophyll accounts for only 15-20% of the total Mg 

contained in a healthy plant (Bergmann, 1992). So apart from its implication in 

photosynthesis, Mg is needed in substantial quantities for other important functions and 

physiological processes in the plant metabolism. 

Magnesium functions in plants are related to its mobility within the cells, its 

capacity to interact with strongly nucleophilic ligands through ionic bonding, and its ability 

to act as a bridging element and form complexes of different stabilities (Bergman, 1992). 

A high proportion of the total Mg in plants is involved in the regulation of cellular 

pH and the cation-anion balance (Sigel and Sigel, 1990). 

Magnesium also acts as a cofactor and activator for many enzyme and substrate 

transfer reactions. According to Gunther (1981) about 300 enzyme reactions are influenced 

by Mg ions. First, Mg may serve to link the enzyme and substrate together, as for example 

in reactions involving phosphate transfer from ATP, in which Mg serves as a link binding 

the enzyme to its substrate (Bidwell, 1974). Second, Mg may serve to alter the equilibrium 

constant of a reaction by binding with a product, as for example in some kinase reactions 

(Bidwell, 1974). Third, Mg may act by complexing with an enzyme inhibitor (Bidwell, 

1974). Magnesium is thus an activator, by one or more of these mechanisms, of many of 

the phosphate transfer reactions (except phosphorylases), of enzymes involved in the 

synthesis of nucleic acids, and also of many of the enzymes involving carbon dioxide 

transfer-carboxylation and decarboxylation reactions (Bidwell, 1974). Magnesium has also 

been found to activate Na/K-ATPase, which acts as an ion pump (efflux of sodium, influx 

of potassium) (Bergmann, 1992). 
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Magnesium has great affinity for the pyrophosphate structure of ADP and ATP and 

is able to establish a chelate-like link (bridge-bond) between these substrates (Bergmann, 

1992). Magnesium thus is involved in virtually all phosphorylation processes serving the 

transfer and conversion of energy (Bergmann, 1992). Consequently, almost all energy 

transfers involving phosphorylation in the metabolism of the cell needs Mg ions, starting 

from photosynthetic phosphorylation through ATP dependent CO2 fixation, carbohydrate, 

protein, fat and lipoid synthesis to glycolysis (breakdown of carbohydrates into pyruvic 

acid) and respiration metabolism (Bergmann, 1992). Aikawa (1981) stated that whenever 

there is ATP, there is an obligatory need for Mg. 

Tisdale et al. (1985) reported that Mg activates the formation of polypeptide chains 

from amino acids. Indeed, Mg plays a role in the stabilization of ribosomes, the particles 

responsible for “translating” the genetic code during the synthesis of polypeptide chaines, 

and are therefore also necessary for protein synthesis (Bergmann, 1992 and Bidwell, 1974). 

Owing to their hydrating properties. Mg ions together with Ca ions influence the 

volume of plasma colloids and thus have a an influence on the water budget in the plant 

(Bergmann, 1992). 

According to Kiss (1981) Mg influences the phytohormone balance and nitrate 

reduction. So Mg deficiency inhibits nitrate reduction and the production of 

phytohormones. 

As in the case of other elements, plants vary widely in their Mg needs. Tobacco 

and citrus species for example require especially high concentrations of Mg in the 

nutritive medium (Bergmann, 1992). Potatoes, beets, brassicas, clover, lucem and maize 

are also crops with a high Mg requirement and cotton requires even higher levels of 
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available Mg in the soil than maize (Bergmann, 1992). Nelson and Barber (1964) 

reported that legumes need two to three times as much Mg as grasses. 

Magnesium deficiency leads to the breakdown of chlorophyll and affects the plant 

metabolism as a whole resulting in stunted chlorotic and necrotic plants. Lyon and Garcia 

(1944) reported that Mg deficiency led to small pith cells and chlorenshyma is densely 

packed with chloroplasts. Adequate supply of Mg produced maximum size and smallest 

numbers of chlorenchyma cells. Magnesium deficiency has also been reported to inhibits 

nitrate reduction and phytohormone production (Kiss, 1981). Because of its interaction 

with other divalent cations in the medium. Mg deficiency has been related to numerous 

nutritional and physiological disorders in plants (Koranski, 1988; Harrison and Bergman, 

1981; Bergmann, 1992). 

Iron/manganese toxicity disorder in marigold has been related to low concentrations 

of Mg in leaf tissue of the affected leaves (Koranski, 1988). In fact most bedding plants are 

grown in soilless, peat-based media that provide little Mg to the plants (Bunt, 1988; Nelson, 

1991). Despite the importance of this problem, data on the effect of Mg nutrition in 

marigold on nutrient content in the plant tissue are meager. Available information on Mg 

requirement for marigold is also scant. This experiment was designed to investigate Mg 

requirements in marigold and the effect of Mg concentration in the medium on nutrient 

concentration in the plant tissue. Determination of the incipient deficiency concentration of 

Mg is needed for further investigation of the relationship of Fe/Mn toxicity disorder in 

marigold to Mg deficiency. The objectives were: (1) to determine the symptoms of Mg 

deficiency in marigold; (2) to determine the incipient deficiency concentrations of Mg in 
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marigold; and (3) to determine the effect of Mg concentration in the medium on the 

concentrations of Mn, Fe, Ca and Mg in the tissue of the plant shoots. 

3.3 MATERIALS AND METHODS 

Seeds of marigold (Tagetes erecta L. ‘First Lady’) were planted in vermiculite #3 on 

February 12, 1996 in the greenhouse. Three-week-old seedlings were transplanted into 

treatment solutions in 1.6-liter opaque plastic containers. The basal nutrient solution 

contained 107 mg/1 Ca, 79 mg/liter K, 63 mg/liter P, 75 mg/liter NO3-N, 75 mg/liter NH4-N, 

2.3 mg/liter Fe, 0.02 mg/liter Cu and 0.5 mg/liter of B, Mn, Zn and Mo. Magnesium 

treatments were 0; 2; 4; 6; 8; 10 and 12 mg Mg/liter solution. Magnesium was added to the 

nutrient solution as MgS04-7H20. The hydroponic cultures were aerated continuously and 

the nutrient solution was replaced with a fresh one every 10 days. Deionized water was 

added to the containers as needed to maintain volume. 

Forty-two containers consisting of seven treatments and six replicates were placed 

on two tables in the greenhouse in a completely randomized design. The photoperiod was 

about 16/8. The temperature was maintained as closely as possible to 21/17 °C (day/night). 

The plants were harvested and divided into roots and shoots on May 26, 1996. The roots 

were rinsed with tap water then deionized water to discard nutrients from the root surface. 

The plant parts were dried at 70 °C for 48 hours and weighed. The plant shoots were 

ground (20 mesh) and analyzed by atomic absorption spectroscopy (Appendix A) for Mn, 

Fe, Ca, and Mg contents. The data obtained were statistically analyzed using Regression 

Analysis and Analysis of Variance (ANOVA) to test for significance of main effects and 

interactions, and terms were considered significant at /?<0.05. 
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3.4 RESULTS AND DISCUSSION 

3.4.1 Description of Symptoms 

Results reflected the close link between Mg function in the plant metabolism, its 

mobility and symptom manifestation of its deficiency. The function of Mg as a constituent 

of chlorophylls a and b naturally determined some of the most important effects caused by 

the deficiency of this element. Chlorosis commenced as a marked interveinal yellow green 

mottling that was distributed uniformly over most of the older leaves while most vascular 

tissue remained green. In addition to the chlorotic patterns, the margins became brilliantly 

tinted with yellow green color. Necrosis followed chlorosis and pigmentation. It developed 

in the chlorotic areas and on the margins. Plants grown in Mg deficient medium were 

stunted and their flowering was delayed. 

Since Mg is quite soluble and readily transported around the plant, symptoms of its 

deficiency usually appear in older leaves first (Bidwell, 1974). The withdrawal of Mg from 

the older leaves leads to the gradual inhibition of the energetic enzyme reactions needed to 

maintain metabolism and this eventually leads to the decomposition of chlorophyll. 

The visual symptoms of Mg deficiency in marigold were the outward signs of 

disturbed metabolic processes in which Mg is implicated. Indeed, in addition to its 

implication in the synthesis and maintenance of chlorophyll. Mg has a key role in many of 

the metabolic processes of the plant (Follet et al., 1981; Gunther, 1981; Bergmann, 1992; 

Aikawa, 1981). All oxidative decarboxylation reactions are catalyzed exclusively by Mg 

ions, which owing to their ability to activate acetyl coenzyme A, also play a key role in the 

citric acid cycle and fat metabolism (Bergmann, 1992). Magnesium deficiency thus results 

in reduced growth and delayed maturity. 
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The symptoms of Mg deficiency in marigold are similar to those shown in lettuce, 

citrus (Camp et al., 1941), tomato and pear (Hewitt, 1963). They are however different 

from those shown in potato, pea, broad bean, red clover, white clover, and lucerne in that 

their margins frequently become brilliantly tinted with orange, red or purple colors 

(Stewerd, 1963; Hewitt, 1944; Hewitt, 1945; Hewitt, 1946; Wallace, 1930; Wallace, 

1961;). In tobacco, celery and parsnip, the margins and the leaf tips are the first to be 

affected (McMurtry, 1964; Gamer et al., 1923; Stewerd, 1963). 

3.4.2 Effect of Mg Deficiency on Plant Dry Weight 

Magnesium concentration in the medium had a highly significant effect on the 

root, shoot and total dry weight (Appendix C). The plant dry weight increased as Mg 

concentration in the medium increased (Figure 3.1). Reduced plant dry weight as a 

response to reduced amount of Mg in the nutrient solution is due to the vital role of Mg in 

the biological production and conversion of matter in the metabolism of plants. 

Magnesium as plant nutrient is required for the formation of chlorophyll and the absence 

of this element leads to inadequate photosynthesis. Inadequate supply of Mg also reduces 

enzyme activities, nitrate reduction, phytohormone and polypeptide production and other 

vital metabolic processes in the plant (Gunther, 1981; Kiss, 1981; Tisdale et al., 1985; 

Bidwell, 1974; Bergmann, 1992). 

Beringer and Forster (1981) found that the weight of Mg deficient cereal crops 

was below normal. 

Dry weight reduction resulting from Mg shortage seems to depend on when the 

deficiency occurs and how acute it is. McMurtrey (1964) reported that reduction in yield 
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Figure 3.1: Effect of Mg level in solution on the plant dry 
Weight (see Appendix C, Tables 1,3, 4) 
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of tobacco is less severe when Mg deficiency occurs in late stages of growth rather than 

earlier stages. 

3.4.3 Incipient Deficiency Concentration of Mg 

Incipient deficiency refers to the situation where a crop needs more of a given 

nutrient, yet it does not show marked outward symptoms of deficiency. If not detected an 

incipient deficiency will continue to develop to the point that deficiency is severe enough 

to cause symptoms and a significant reduction in growth and yield. 

Our results suggest that 10 mg Mg/liter nutrient solution was in this experiment 

the incipient deficiency solution concentration of Mg. Indeed, the plants grown in 

concentrations from 0 to 8 mg/liter Mg showed significant amount of symptoms. The 

plants grown in 10 mg Mg/liter and higher concentrations did not show symptoms. In 

previous experiment, it was noted that 1 Omg Mg/liter reduced the plant dry weight (data 

not shown). When Mg in solution was 10 mg/liter, the shoot concentration of Mg was 

1.3%. This level of Mg is considered the incipient deficiency plant concentration of Mg. 

Incipient deficiency of Mg may be damaging to a crop. If the Mg content drops 

below a certain critical level, which is not the same for all species, no net assimilation is 

possible (Bergmann, 1992). According to Kirkby and Mengel (1976) for barley this level 

is 0.012% fresh weight, but even before this level is reached major accumulation of starch 

are found in the leaves because of inhibition of the transformation and translocation of 

synthesis products. The leaves feel brittle and the protein, carbohydrate (starch, sugar) 

and fat contents of the seeds and fruit are reduced. 
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3.4.4 Effect of Mg Deficiency on the Nutrient Concentrations in the Shoots 

Blasl and Mayer (1978) pointed out that more attention should be paid to the 

relative proportions of certain nutrients and the possibility of overabundance of plant 

nutrients. A deficiency of one element therefore means simultaneously that there is a 

relative or absolute excess of the others. 

3.4.4.1 Effect of Mg in Solution on Mn in the Shoots. 

Manganese concentration in the shoots was significantly high in Mg deficient 

plants (Appendix C). As Mg concentration in the medium increased Mn concentration in 

the shoots decreased (Figure 3.2). Our results agree with Bergmann (1992) when he 

reported that Mn uptake is inhibited by the presence of Mg. 

The different ways in which Mn reacts show that it is similar, in some degree, to 

Mg in its mode of action. In fact both Mg and Mn are activators of many enzymes and 

can even replace each other to some extent (Bergmann, 1992). Manganese, Mg, Fe and 

zinc appear together to be very finely balanced in respect of their regulation of metabolic 

processes affecting plant growth in general and carbohydrate, protein and chlorophyll 

synthesis in particular (Bergmann, 1992). 

Since Mg deficiency is most common on acid soils, it is often accompanied by Mn 

toxicity (Bergmann, 1992). Hu and Schmidhalter (2001) reported that when Mg is low in 

the growth medium, Mn actually replaces Mg in some of its metabolic functions. This 

may cause an increase in the concentration of Mn in the plant tissue. 
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Figure 3.2: Effect of Mg in solution on nutrient concentrations 
in the plant shoots (see Appendix C, Tables 2, 3, 4) 
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3.4.4.2 Effect of Mg in Solution on Fe in the Shoots. 

Magnesium concentration in the nutrient solution had no significant effect on Fe 

concentration in the plant shoots. Yet, there was a tendency for plants grown at low Mg 

to have higher concentrations of Fe in their tissue (Figure 3.2). The concentration of Fe 

in the shoot tissue decreased as the concentration of Mg in the medium increased (Figure 

3.2). Our results differ from those reported by Straub and Wurm (1971). They found that 

the damaged leaves of magnesium deficient apple plants were characterized by low Fe 

contents. In a study on maize and sunflower plants, Scherer (1978) found that 

magnesium level was high in the plant tissue when the plants are deficient in Fe. Scholl 

(1979a, b) reported the same results. They found that magnesium content increased from 

9% in normal leaves to 14% in Fe deficient leaves. 

3.4.43 Effect of Mg in Solution on Ca in the Shoots 

Magnesium concentration in the medium had a highly significant effect on Ca 

concentration in the plant shoots (Appendix C). Calcium concentration in the shoots was 

higher in the Mg deficient plants than in the Mg sufficient plants (Figure 3.2). As Mg in 

the nutrient solution increased, Ca in the shoots decreased (Figure 3.2). 

Our results differ from those reported by Straub and Wurm (1971). They found 

low concentration of Ca in the leaves of apple plants deficient in Mg. 

Schwartz and Bar-Yosef (1983) found that Ca concentration in tomato 

(Lycopersicon esculentum Mill.) plants decreased with increased Mg concentration in the 

medium. They also found that the concentration of Ca was relatively more reduced in the 

roots than in the shoots. 
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Wichmann (1976) found that the ratio of Mg to Ca content in the shoots was 

important when estimating whether cereal plants were adequately supplied with Mg. On 

the basis of his experiments he determined that the Mg:Ca ratio should be 0.30 for 

adequate yield of wheat, barley and oats. 

Bergmann (1992) attributed the effect of high level of Mg in the medium on Ca 

content in the plant tissue to ion antagonism. Schwartz and Bar-yosef (1983) found that 

Mg interference operates by decreasing Ca binding to absorption sites or carrier sites in 

the root but not by reducing the capacity of these sites for Ca. 

3.4.4.4 Effect of Mg in Solution on Mg in the Shoots. 

Magnesium concentration in the nutrient solution had a highly significant effect 

on Mg in the plant shoots. As Mg in the nutrient solution increased. Mg in the shoots 

increased (Figure 3.2). 

Csatho et al. (2000) found that the correlation between soil Mg and Mg contents in 

winter wheat followed a quadratic polynomial. They found that Mg in the shoots 

increased with Mg in the soil up to certain level, then when this level is exceeded, an 

increase in Mg supply caused a decrease in Mg in the shoots. 

Schwartz and Bar-Yosef (1983) found that Mg in the shoots increased about 

threefold when increasing Mg in the medium from 0.05 to 1.35 meq/1. Mg in the roots 

did not change or slightly increased. 

3.5 CONCLUSION 

Magnesium deficiency affected the appearance and the growth of marigold. Low 

concentrations of Mg in the solution up to 8 mg/liter caused severe damage to the plant. 

The plants were stunted and they developed chlorotic and necrotic symptoms on the 
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leaves. The damage caused by Mg deficiency was undoubtedly due to its role in 

important metabolic processes in the plant such as photosynthesis; protein, carbohydrate 

and fat synthesis and its involvement in about 300 enzyme activities. 

Plants grown in 10 mg Mg/liter nutrient solution were still relatively stunted but 

there were no significant symptoms affecting their appearance. The concentration 

lOmg/liter may thus be considered incipient deficiency solution concentration of Mg in 

marigold. In this experiment, this concentration was the turning point of Mg nutrition 

from deficiency to sufficiency. It did not fulfill the Mg requirement of marigold for 

adequate growth, but it was just enough to prevent chlorosis. The incipient deficiency 

solution concentration corresponded to a shoot tissue concentration of 1.3%. 

The present data suggest that Mg in the medium had no significant effect on Fe in 

the shoot tissue. Magnesium in the medium did have highly significant effects on Mn, Ca 

and Mg concentrations in the plant shoots. Manganese and Ca concentrations in the 

shoot tissue were high when Mg in the medium was low. An increase in Mg in the 

medium caused a decrease in Mn and Ca in the plant shoots. Magnesium in the shoot 

tissue increased with increased Mg in the medium. The interrelationship between Mg in 

the medium and Mn and Ca in the plant shoots may be due to ion antagonism or to the 

similarities between Mg and Mn in their mode of action. Reduced Ca in the plant shoots 

as a response to increased Mg in the medium may be attributed to decreased Ca binding 

to absorption sites or carrier sites in the root. 
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CHAPTER 4 

CALCIUM DEFICIENCY IN MARIGOLD 

4.1 ABSTRACT 

Iron/manganese toxicity disorder in marigold has been related to high 

concentrations of Fe and Mn and low concentrations of Ca and Mg in the affected leaves. 

Deficiency of Ca may occur because of low medium pH and to lack of Ca in many of the 

fertilizers used in greenhouse crop production. To investigate the effect of poor supply of 

Ca on marigold (Tagetes erecta L. ‘First Lady’) growth, appearance, and nutrient (Mn, 

Fe, Ca and Mg) content of the shoots, a solution culture study with various Ca 

concentrations was conducted. Concentrations of Ca up to 15 mg/1 resulted in stunted 

plants with significant amount of chlorotic and necrotic symptoms on the leaves. The 

concentration 20 mg Ca/1 resulted in stunted plants relatively free of symptoms. 

Concentrations above 20 mg/1 resulted in relatively healthy looking plants. The 

concentration 20 mg/1 Ca may thus be considered incipient deficiency concentration of 

Ca in marigold. At this solution concentration, the level of Ca in the plant shoots was 

0.54%. Under the experimental conditions used here, low supply of Ca had no effect on 

Fe concentration in the growing point but resulted in a high concentration of Fe in the old 

part of the shoots. Calcium deficiency did not affect the concentration of Mn in the old 

part of the shoots but resulted in high concentration of Mn in the growing point new 

leaves, buds and stems). Low Ca in the solution resulted in low Ca and high Mg in the 

shoots. 
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4.2 INTRODUCTION AND LITERATURE 

Sprengel (1787-1859) was the first to show that Ca is essential as a nutrient for 

plants. Calcium is present in salts of organic and inorganic acids, bound by sorption to 

plasma colloids, and in immobilized form (Bergmann, 1992). 

4.2.1 Calcium Uptake and Translocation 

Calcium is absorbed by plants only in ionic form and is transported to the shoots 

with the transpiration flow through the xylem (Bergmann, 1992). 

In contrast to potassium and Mg ions which, like nitrogen and phosphorus 

compounds, are easily transported in the phloem, Ca ions are transported exclusively 

through the vessels of the xylem, being supplied mainly to young meristematic tissues 

(Bergmann, 1992). 

Since little or no Ca is redistributed in the plant, plants must continuously take up 

Ca and transport it to wherever it is needed in order to maintain metabolism and growth 

(Bergmann, 1992). A continuous supply of Ca to the growing plants is necessary to 

ensure that the needs of older tissue are met as well as those of the younger growing 

tissues and fruit (Shear, 1975). However, the transport of Ca at a rate that is adequate to 

ensure normal shoot growth, does not guarantee adequate supply of Ca to the roots or 

fruit (Shear, 1975). Apple fruit, for example, which accumulate about 40% of the net 

assimilate of the tree, contain only 2% of the total Ca uptake (Shear, 1975). 

The Ca content of fruit and storage organs is often reduced by inhibited 

transpiration. If transpiration increases, however, it does not necessarily mean that the 

supply of Ca to the fruits is adequate, because under such conditions the leaves and fruit 
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compete for both water and Ca, and the fruit are usually less competitive than the leaves 

(Mix and Marschner 1976a,b). 

An experiment performed by Bradfield (1976) showed that nutritional conditions 

leading to high organic acid concentrations (citric acid and malic acid) in the xylem, for 

instance after nitrogen fertilization, increases Ca mobility. Indeed, because of the 

chelating agents formed in the roots, over 50% of the Ca is transported through the xylem 

in the form of chelates (Bradfield, 1976). 

4.2.2 Role of Ca in Plant Metabolism 

Calcium is responsible for the structural and physiological stability of plant 

tissues. Together with other substances, Ca regulates influx and efflux processes in cells 

and tissues (Christiansen and Foy, 1979; Millaway and Wiersholm, 1979). 

Calcium is necessary for regulating the actions of phytohormones. Calcium ions 

and indolacetic acid (IAA), for instance, influence cell elongation and differentiation. A 

lack of Ca leads to enlarged undifferentiated cells because of the lack of structural 

stability. It therefore follows that Ca ions are necessary for systematic cell division, cell 

wall construction and cell elongation in the meristematic tissue of the vegetative points of 

the shoot and root and cannot be replaced in this role by any other ion (Bergmann, 1992). 

As far as its physiological effects are concerned, Ca is usually regarded as the 

counterpart to potassium. Because of its dehydrating properties, it opposes the plasma¬ 

expanding action of potassium ions. Calcium ions are therefore important as a factor 

influencing the stability of the structure of protoplasm. Its colloid-chemical functions, 

however, extend beyond the simple regulation of cell hydration and must be considered 

mainly in connection with its chelate-forming properties (Bergmann, 1992). 
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In the regulation of ion uptake by plants, Ca ions have both synergistic and 

antagonistic effects. Low Ca concentrations encourage ion uptake, probably because Ca 

has a membrane-stabilizing effect, and through the fact that it encourages respiratory 

metabolism, synthetic activity and electron transport (Bergmann, 1992). High 

concentrations of Ca, on the other hand, inhibit the uptake of other cations owing to ion- 

antagonistic effects (Mengel, 1979), and this can be a major advantage, particularly if the 

availability of other non-essential ions (especially heavy metals) is high. Damage due to 

toxic concentrations of ions is less severe in such cases (Bergmann, 1992). Wallace 

(1979) regarded this “protection effects” against high concentrations of trace elements as 

one of the most important roles of Ca in plants because the phytotoxicity of these 

elements (except molybdenum), especially aluminum and heavy metals, increases 

considerably if Ca uptake is reduced. 

One of the important roles played by Ca is that of stabilizing the pectin of the 

middle lamella in the primary cell wall by forming Ca pectinate. Similarly, by stabilizing 

the micellar structure of membrane phosphatides, it is important for maintaining the 

integrity of membranous structures (Bergmann, 1992). The stabilization of biological 

membranes is important for regulating metabolic processes at the cellular and tissue 

level. These membranes prevent ions and molecules from permeating passively between 

the different intracellular compartments. Membranes also prevent ions from escaping out 

of the cell, thus making possible the enzymatically regulated systematic transport of 

substances between intracellular compartments (Marshner and Gunther, 1964, 

Weisenseel and Ruppert, 1977). 
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According to Simon (1978) this regulated transport of substances between 

intracellular compartment explains how Ca deficiency symptoms develop: Ca deficiency 

leads to permeable cell membranes. Turgor is consequently lost and cell sap spills out 

into the tissue, giving it its glassy appearance. The tissues eventually collapse and 

whither. 

4.2.3 Calcium Deficiency: Cause and Impact 

According to Marshner (1974) research on Ca in plants is not only of academic 

interest, but is also of great economic importance because of the widespread occurrence 

of Ca deficiency in fruit (for example, “bitter pit of apples” and “blossom-end rot” in 

tomato, melon and other fruit). Collier et al. (1979) estimates that losses exceeding 10 

million German Marks a year are caused by Ca deficiency in England alone. 

While the use of N, P and K fertilizers has increased considerably in many 

countries in recent decades, Ca is frequently ignored in fertilization practice (Bussler, 

1979). Reliance is usually placed on the lime reserves of the soil and the ability of plants 

to take up sufficient amounts of Ca ions as long as the pH value is not too low. In fact, 

while the heavy applications of nitrogen, phosphorus and potassium fertilizers naturally 

increase yields, the plant’s Ca demand is often ignored (Bergmann, 1992). Moreover, the 

increasing use of nitrogenous fertilizers with an acidifying effect is increasingly stressing 

the Ca potential of the soil (Bergmann, 1992). 

In addition to Ca extraction by plants, leaching of Ca ions can also be 

considerable. At least 80-100 Kg Ca per hectare for 600-700 mm of precipitation is 

leached annually, and often as high as 400-500 Kg per hectare (Schffer and 
✓ 

Schachtchabel, 1982). 
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It seems there is a link between the pH of growth medium and Ca deficiency. 

Vegetable plants grown on acid, easily leached sandy soils often show signs of Ca 

deficiency (Maynard, 1979). 

One of the main causes for the appearance of Ca deficiency is the irregularity of 

water availability (Millaway and Wiersholm, 1979). Latent and acute Ca deficiencies in 

plants are caused mainly by insufficient transport of Ca to the apical meristem, flowers 

and fruits. Calcium deficiencies are obviously more common in fruits if transpiration 

there is low (Isermann, 1978). “Bitter pit” in apples, “blossom-end rot” in tomatoes, 

“black heart” in celery, “leaf tip-bum” in lettuce and cabbages, and “cavity spot” in 

carrots and parsnips have become increasingly common in recent decades (Shear and 

Faust, 1971; Forster, 1972; Shear, 1974, 1975; Carolus, 1975; Yamada, 1975; dekock et 

al., 1981). 

Unbalanced fertilization and/or high humidity may easily induce Ca deficiency in 

greenhouse crops of cucumbers, lettuce, pepper, tomatoes, garden cabbage, Chinese 

cabbage and Kohlrabi (Bussler, 1979). 

Apart from low concentration of Ca in the nutritive medium, high concentrations 

of other nutrients such as Mn and Mg can inhibit the uptake of Ca by plants and thus 

induce Ca deficiency. Antagonism between Ca and aluminum may also reduced the 

uptake and utilization of Ca by plants (Bergmann, 1992). 

Calcium deficiency increases the permeability of the cell membrane, and this may 

lead to ionic inundation of the vacuoles or permit ions to escape. Ultimately, it can lead 

to the breakdown of intracellular compartmentalization, the escape of enzymes, and 

autolytic phenomena (Hecht-Buchholz, 1979). 
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Further consequences of Ca deficiency also include the destruction of structures 

within the cell nucleus and reduced chromosomal stability, and therefore disturbance of 

nuclear and cell division, and the destruction of mitochondria. Since mitochondria are 

particularly rich in Ca, Ca deficiency may impair the respiratory metabolism (Bergmann, 

1992). 

Calcium deficiency leads to abnormal nuclear division: both small nuclei and 

large polyploid nuclei are produced. The chromatin is accumulated in granules. 

Meristematic tissue in particular therefore needs Ca for normal differentiation 

(Bergmann, 1992). 

Parenchymatic and phloem tissues are also at risk when Ca is deficient in the 

plant. According to Bussler (1962a, b, 1963), when Ca is deficient, the middle lamellae 

is more exposed to the effects of pectinases emerging through the membranes. The cells 

separate from each other, autolyze and turn brown. This is often preceded by the 

infiltration of cell sap into the air-filled intracellular spaces, giving the tissue a glassy 

appearance. The tissue of the vascular bundles is brownish, and the medullary cells 

disintegrate into dark brown granules, the dead zone then containing only clogged 

lignified vessels. 

However, Pissareck (1979) thought differently regarding the autolysis of cell 

walls. According to his observations the darkening is induced by increased phenol 

synthesis when Ca is deficient. The phenols, oxidized to chinons, react with amino acids 

and proteins to form melanins which, finally, give the Ca deficient tissue its dark 

appearance. 
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Low concentrations of Ca in fruit accelerate ripening and reduce firmness and 

suitability for storage. Richardson and Al-Ani (1982), for example, found that in pears 

there was a negative correlation between Ca content and particularly the water-soluble Ca 

content, of the fruit and their development of ethylene during ripening. Elevated Ca 

contents also reduce respiration of the fruit. Pears containing less than 0.007% Ca (fresh 

weight) and with a N:Ca quotient higher than 10 ripened faster in cold storage, and this 

was accompanied by more intense ethylene development. 

Yamada (1975) reported that Ca deficiency leads to the accumulation of nitrite 

(NO2") because intercellular (NC^-) transport is reportedly disrupted. Calcium deficient 

plants are therefore unable to use nitrate (NO3’) efficiently as a source of N. 

Calcium deficiency in legumes prevents the development of nodule bacteria, thus 

affecting nitrogen fixation. Consequently, Ca deficiency induces nitrogen deficiency in 

legumes (Bergmann, 1992). 

Calcium deficiency also inhibits the transport of carbohydrates in plants. In the 

case of tomatoes, for instance, Rangnekar (1974) was able to show that under conditions 

of Ca deficiency the transport of photosynthetic products out of the leaves (source) was 

inhibited so that growth of the terminal meristem (sink) was slowed down. Gosset et al. 

(1977) observed the same effect in soybeans. 

Because of its interaction with other divalent cations in the medium, Ca 

deficiency has been related to numerous nutritional and physiological disorders in plants 

(Koranski, 1988; Harrison and Bergman, 1981; Bergmann, 1992). 

Iron/manganese toxicity disorder in marigold has been related to low Ca in leaf 

tissue of the affected leaves (Koranski, 1988). In fact most bedding plants are grown in 
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soilless peat based media that provides little Ca to the plants (Bunt, 1988; Nelson, 1991). 

Despite the importance of this problem, data on the effect of Ca nutrition in marigold on 

nutrient content in the plant tissue are meager. Available information on Ca requirement 

for marigold is also scant. This experiment was designed to investigate Ca requirements 

in marigold and the effect of Ca concentration in the medium on nutrient concentration in 

the plant tissue. Determination of the incipient deficiency concentration of Ca is needed 

for further investigation of the relationship of Fe/Mn toxicity disorder in marigold to Ca 

deficiency. The objectives were: (1) to determine the symptoms of Ca deficiency in 

marigold; (2) to determine the incipient deficiency concentrations of Ca in marigold; and 

(3) to determine the effect of Ca concentration in the medium on the concentrations of 

Mn, Fe, Ca and Mg in the tissue of the plant shoots. 

43 MATERIALS AND METHODS 

Seeds of marigold (Tagetes erecta L. ‘First Lady’) were planted in vermiculite #3 on 

June 1st, 1996 in the greenhouse. Three-week-old seedlings were transplanted into treatment 

solutions in 1.6-liter opaque plastic containers. The basal nutrient solution contained 48 mg/1 

Mg, 79 mg/1 potassium, 63 mg/1 phosphorus, 75 mg/1 nitrate-nitrogen, 75 mg/1 ammonium- 

nitrogen, 2.3 mg/1 Fe, 0.02 mg/1 copper and 0.5 mg/1 of boron, Mn, zinc and molybdenum. 

Calcium treatments were 2.5; 5; 7.5; 10; 12.5; 15; 20; 40; 60; 80; and 100 mg Ca/1 solution. 

Calcium was added to the nutrient solution as CaCb- The hydroponic cultures were aerated 

continuously and the nutrient solution was replaced with a fresh one every 10 days. 

Deionized water was added to the containers as needed to maintain volume. 

Sixty-six containers consisting of 11 treatments and 6 replicates were placed on two 

tables in the greenhouse in a completely randomized design. The plants were grown under 
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ambient light conditions. The temperature was maintained as closely as possible to 21/17 °C 

(day/night). The plants were harvested and separated into roots, growing point and older 

part of the shoots on August 10,1996. The growing point consisted of the apical 

meristematic parts of the terminal buds. The roots were rinsed with tap water then deionized 

water to discard nutrients from the root surface. 

The plant parts were dried at 70 °C for 48 hours and weighed. The plant shoots were 

ground (20 mesh) and analyzed by atomic absorption spectroscopy (Appendix A) for Mn, 

Fe, Ca, and Mg contents. The data obtained were statistically analyzed using Regression 

Analysis and Analysis of Variance (ANOVA) to test for significance of main effects and 

interactions, and terms were considered significant at p<0.05. 

4.4 RESULTS AND DISCUSSION 

4.4.1 Description of Symptoms 

The symptoms of Ca deficiency in marigold consisted of white necrotic spots, 

between the veins and close to the margins of the newly matured leaves. The new leaves 

showed a yellowish green color. In advanced stages of Ca deficiency, the yellowish green 

young leaves developed chlorotic spots between the veins and along the main vein. These 

chlorotic spots became brown necrotic areas. The overall look of the plant was bushy and 

the young leaves were smaller than normal. In severe deficiency conditions, the youngest 

leaves and roots died starting from the tip. 

Our results suggest that there is a close link between Ca function in the plant 

metabolism, its mobility and symptom manifestation of its deficiency. 

Since Ca deficiency is closely linked with the specific behavior (migration with 

the transpiration flux, accumulation in older leaves, immobility) and the functions of Ca 
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ions in plants, the symptoms manifested themselves first on the youngest and young 

tissues and organs where differentiation was still taking place. Plant growth was 

therefore inhibited, and the plants had a bushy appearance. The youngest leaves, which 

were affected first of all, were small. Chlorotic spots and blotches with necrotic lesions 

developed along the margins and particularly at the tips of the leaves, spread into the 

veinal areas and later united. Necrotic lesions appeared on the leaf blade as well. The 

leaves died from the tip to the base, as also did the apical meristematic tissue of the 

terminal buds and the roots. 

The symptoms of Ca deficiency in marigold differ slightly from those in other 

plants. In tomato, margins of terminal and then lateral leaflets on recently expanded leaves 

become purple. Central interveinal areas become chlorotic then necrotic (Hewitt, 1963). 

Beet (Beta vulgaris), cauliflower (Brassica oleracea var. botrtis), tobacco (Gamer et al., 

1930; McMurtry, 1941), and cocoa (Masked, et al., 1953) develop a characteristic 

“hooking” of the leaf tip when deficient in Ca. In moderate deficiency, the number of shoots 

in flax and potato plants increases producing a markedly bushy look. In severe deficiency 

cases, the stem apex dies, which is characteristic of Ca deficiency in many plants (Hewitt, 

1963). 

Bierman et all (1989) reported that the young expanding leaves of poinsettia plants 

affected by Ca deficiency exhibit a marginal chlorosis which rapidly progresses to necrosis, 

while interior portions of the leaf retain a normal green color. They stated that as marginal 

tissue ceases to grow continued expansion of the leaf blade causes a puckering of the leaf 

surface and downward curling of the leaf tip and margins. 
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4.4.2 Effect of Ca Deficiency on the Plant Dry Weight 

Calcium concentration in the solution had a highly significant effect on the root, 

shoot and total dry weight (Appendix D). Results suggested that Ca deficiency caused a 

reduction in the plant dry weight (Figure 4.1). 

Plants that received no Ca were completely unviable and did not survive beyond 

the seedling stage. Root growth was reduced when Ca was deficient and was extremely 

limited without Ca (Figure 4.1). For the reasons already explained the roots remained 

short, became slimy, turned brown and died, starting at the tips. The formation of new 

root tissue always depends on a continuous Ca uptake. Root growth is controlled by Ca, 

which regulates cell growth, increases the elasticity and stability of the cell walls, 

encourages metabolic activity and binds the CO2 from respiration in the nutritive 

medium. 

Shoot growth was also reduced when Ca was deficient in the nutritive medium 

(Figure 4.1). Because of inefficient root function and because of the crucial role of Ca as 

a phytohormone and cell growth regulator, Ca deficiency resulted in reduced shoot 

growth as well. 

4.4.3 Incipient Deficiency Concentration of Ca 

The plants grown in concentrations up to 10 mg/1 Ca showed symptoms. Those 

grown in 12.5 and 15 mg/1 Ca treatments did not show significant symptoms but their 

new leaves were pale green. The plants grown in concentrations above 15 mg/1 Ca had 

no significant symptoms. 
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Figure 4.1: Effect of Ca level in solution on the plant dry 
weight (see Appendix D, Tables 1, 3) 
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The plants grown in 20 mg/1 Ca did not show any significant symptoms but their 

dry weight was reduced (Figure 4.1). The concentration 20 mg/1 Ca might thus be 

considered the incipient deficiency concentration of Ca in marigold in this experiment. 

Despite its many important roles in the metabolism of plants, many plants require 

only a little Ca as long as the supply is not interrupted (Wallace at al., 1966). According 

to Millaway and Wiersholm (1979) plants show Ca deficiency symptoms when the 

momentary uptake rate falls below the functional demand of the tissue. Wallace and 

Soufi (1975) reported that Ca demand in plants is low particularly if heavy metal 

concentrations are low. In their opinion Ca concentrations of 0.3-2.0% DW in the leaves 

and 0.20-3.00% DW in the fruit should be completely sufficient for most plants. In the 

authors’ view, Ca deficiency problems are induced by “heavy metal overstressing”, and 

“critical Ca concentrations” depends on the heavy metal concentration in the plants 

concerned. 

Plant species and their varieties differ greatly in their Ca needs and also in their 

Ca uptake and translocation ability. According to Yamada (1975) a Ca content of 0.5% 

in the tissues is generally considered adequate. The Ca uptake of cereals and other 

grasses is much lower than that of dicotyledones, particularly herbaceous plants and 

legumes, whose Ca needs are five times as high as those of grasses (Bergmann, 1992). 

Tomato, for instance, take 10-15 times as much Ca from standard nutritive solutions as 

wheat (Bergmann, 1992). Lupins have about the same Ca requirement as cereals and 

grasses (Kamprath and Foy, 1971). In vegetables, Ca concentrations of less than 0.8% in 

the leaf should be regarded as critical, although the Ca levels at which signs of deficiency 

occur vary considerably (Bergmann, 1992). 
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It is important to prevent incipient deficiency and deficiency symptoms rather 

than to correct them. Soil testing is an important tool and plant tissue analysis in 

combination with a good knowledge of plant nutrient requirement, help better fertilizer 

program. 

4.4.4 Nutrient Distribution 

Manganese was distributed evenly between the growing point and the older parts 

of the shoots (Figure 4.2). Iron and Mg was higher in the older parts of the shoots than in 

the growing point, and Ca was higher in the growing point than in the older parts of the 

shoots (Figure 4.2). 

Nutrient distribution may be due to the role of these elements in the plant 

metabolism. Calcium is more needed in the growing point where it supports new growth. 

Iron and Mg, on the other hand are more involved in the “production of respiratory 

energy” (Bergmann, 1992) and photosynthesis respectively. These metabolic functions 

are more important in the older parts of the shoots than in the growing point. The 

involvement of manganese in many enzymatic activities makes it needed uniformly 

throughout the shoots. 

4.4.5 Effect of Ca Deficiency on Nutrient Concentrations in the Shoots 

Blasl and Mayer (1978) emphasized the importance of a balanced nutrition for 

adequate plant growth. They suggested that that more attention should be paid to the 

relative proportions of certain nutrients and the possibility of overabundance of plant 

nutrients. A deficiency of one element may cause a relative or absolute excess of the 

others. 
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Figure 4.2: Nutrient distribution in the shoots 
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4.4.5.1 Effect of Ca in solution on Mn in the shoots 

Calcium deficiency had no effect on Mn concentration in the older parts of the 

shoots but caused a highly significant increase of Mn in the growing point (Figure 4.3). 

Different results were found in strawberry cultivars. Makus (1998) reported that 

Mn concentration increased in the plant tissue when the plants were treated with gypsum. 

They added that paired Ca and sulfate ions from gypsum have no effect on soil pH in 

most soils, and should not influence Mn availability. 

4.4.5.2 Effect of Ca in solution on Fe in the shoots 

Iron was higher in the older parts of the shoots than in the growing point (Figure 

4.4). Calcium deficiency caused a highly significant increase of Fe in the older parts of 

the shoots but had no effect on Fe in the growing point (Figure 4.4). 

This negative correlation between Ca in the nutritive medium and Fe 

concentration in the plant growing point is supported by Bergmann (1992). They 

reported that one of the known symptoms of excessive Ca were the “lime chlorosis”. 

2“F “Lime chlorosis” is caused by a shortage of “activated Fe ions” resulting from 

excessive liming or high levels of lime in the soil. 

4.4.5.3 Effect of Ca in solution on Ca in the shoots 

Calcium was higher in the growing point than in the older parts of the shoots 

(Figure 4.5). This may be because of the role of Ca in meristematic growth. Calcium 

deficiency resulted in a highly significant decrease of Ca in both the growing point and 

the old part of the shoots (Figure 4.5). 
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Figure 4.3: Effect of Ca level in solution on the level of Mn 
in the shoots (see Appendix D, Tables 2, 3) 
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Figure 4.4: Effect of Ca level in solution on the level of Fe 
in the shoots (see Appendix D, Tables 2, 3) 
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Figure 4.5: Effect of Ca level in solution on the level of Ca 
in the shoots (see Appendix D, Tables 2, 3) 
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Our results are similar to those of Gunter et al. (1996) who found that increased 

Ca in the medium resulted in increased Ca in potato tuber. Makus (1998) also found that 

Ca(N03)2 treatment significantly improved Ca content of strawberry fruit. 

4.4.5.4 Effect of Ca in solution on Mg in the shoots 

Magnesium was higher in the older parts of the shoots than in the growing point 

(Figure 4.6). Calcium deficiency caused a highly significant increase of Mg in both the 

growing point and older parts of the shoots (Figure 4.6). As Ca increased in the nutrient 

solution. Mg decreased in the plant tissue. 

These results may be explained by Moore et al. (1961) and Maas and Ogata 

(1971). They reported that excess Ca in the medium had an inhibitory effect on Mg 

influx. 

Bergmann (1992) reported that usually Mg uptake is initially encouraged by 

liming. However, when liming becomes excessive or more frequent, the disproportion 

between Ca and Mg ions causes Mg deficiency symptoms to develop on the plants. 

The uptake of Mg by plants and the interaction between the absorption of Mg and 

the absorption of Ca have been investigated by Spear et al. (1978), McLean et al. (1972), 

and Christenson et al. (1973). Their studies showed that Mg contents in plant tissue were 

suppressed by Ca, but the effect depended on the concentration of the ions in the 

medium. 

Moor et al. (1961) and Maas and Ogata (1971) studied the influence of Ca 

concentration in solution on Mg uptake by excised barley (Hordeum vulgare L.) and com 

(Zea mays L.) roots, respectively. In both reports it was concluded that enhanced 
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Figure 4.6: Effect of Ca level in solution on the level of Mg 
in the shoots (see Appendix D, Tables 2, 3) 
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solution Ca concentrations reduced Mg uptake rate by suppressing the Mg transport 

capacity of the roots rather than competing with Mg for absorption sites. 

According to Shear and Faust (1971) and Shear (1975), excessive levels of Mg in 

the medium may increase the occurrence of bitter pit in plants. 

In experiments with Mg and Ca, Schimansky and Wienecke (1976) were able to 

show that in fruit-bearing plants such as strawberry, tomato and grapevines, Mg and Ca 

ions are distributed in the same general way. Both ions are present mainly in the 

vegetative parts and accumulate only to a small extent in the fruit. However, the value of 

the distribution coefficient Mg/Ca increases with increasing distance from the point of 

application (root, stem, fruit stalk) because of the greater distance covered by the more 

mobile Mg ions. 

Similarly, inside the fruit the values of the quotient Mg/Ca increase from the stalk 

to the flower end of the fruit. According to Wienecke (1969), this increase of the Mg/Ca 

quotient from the stalk to the flower end of the fruit of apples occurs because Ca ions are 

constantly transferred laterally into adjacent tissue causing a dilution effect as the supply 

of these ions diminishes. 

To provide optimal nutrition for plants it is important to achieve a harmonious 

balance between Ca and Mg (lime-Mg law or Loew’s lime factor) (Bergmann, 1958). 

Hao and Papadopoulos (2000) recommend 300/50-80 ppm Ca/Mg for best yield and 

quality of tomato. 

4.5 CONCLUSION 

Calcium deficiency affected the appearance and the weight of marigold. Low Ca 

in the nutrient solution up to 15 mg/1 caused severe damage to the plant. The plants were 

stunted and bushy and their leaves were severely damaged by chlorotic and necrotic 
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stunted and bushy and their leaves were severely damaged by chlorotic and necrotic 

symptoms. The damage caused by Ca deficiency probably due to the role of Ca in 

important metabolic processes in the plant such as maintaining the integrity of cell 

membrane; cell division, and phytohormone regulation. 

The plants grown in 20mg Mg/1 nutrient solution were still relatively stunted but 

there were no significant symptoms affecting their appearance. The concentration 20mg/l 

may thus be considered incipient deficiency concentration of Ca in marigold. This 

concentration was the turning point of Ca nutrition from deficiency to sufficiency. It still 

does not fulfill the requirement of marigold in Ca for adequate growth, but it was just 

enough to reach meristematic tissues and support their metabolism. At 20mg/liter Ca in 

solution, the concentration of Ca in the shoot tissue was 0.54%. 

The present data showed that Mn was evenly distributed in the plant shoots. 

There was no significant difference between the concentration of Mn in the growing 

point and the concentration of Mn in the older part of the shoots. 

Calcium concentration in the medium had no significant effect on Mn 

concentration in the old part of the shoots but had a highly significant effect on Mn 

concentration in the growing point. Calcium deficiency caused a highly significant 

increase of Mn in the growing point. Manganese concentration in the growing point 

decreased as Ca concentration in the medium increased. 

Calcium deficiency had no significant effect on Fe in the growing point but 

resulted in a significant increase of Fe in the older part of the shoots. As Ca 

concentration in the medium increased, Fe concentration in the older part of the shoots 

decreased. 
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Calcium was significantly higher in the growing point than in the older parts of 

the shoots. Calcium in the nutrient solution had a highly significant effect on Ca in the 

growing point as well as the older parts of the shoots. Calcium deficiency caused a 

decrease in Ca in the shoots. As Ca concentration in the medium increased, Ca 

concentration in the shoots increased. 

Magnesium was significantly higher in the older parts of the shoots than in the 

growing point. Calcium in the medium had a highly significant effect on Mg in the older 

parts of the shoots as well as the growing point. Calcium deficiency in the medium 

caused an increase of Mg in the shoots. As Ca in the nutrient solution increased. Mg in 

the shoot tissues decreased. Reduced Ca in the plant shoots as a response to increased 

Mg in the nutrient solution may be attributed to decreased Ca binding to absorption sites 

or carrier sites in the root. 
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CHAPTER 5 

MANGANESE TOXICIY IN MARIGOLD 

5.1 ABSTRACT 

Iron/manganese toxicity disorder in marigold has been related to high 

concentrations of Mn in the affected leaves. In greenhouse crop production, preplant 

addition of micronutrients in the media combined with constant feed program and low 

medium pH, create favorable conditions for the development of Mn toxicity. To 

investigate the effect of excess supply of Mn on marigold (Tagetes erecta L. ‘First Lady’) 

growth, appearance, and nutrient (Mn, Fe, Ca and Mg) concentrations, a solution culture 

study with various Mn concentrations was conducted. Concentrations of Mn equal or 

above 6.5mg/l resulted in stunted plants with significant number of small brown spots, 

interveinal chlorotic patches, and necrotic symptoms on the tips and margins of the 

leaves. The concentration 4.5mg/l resulted in stunted plants relatively free of symptoms. 

Concentrations below 4.5mg/l Mn resulted in relatively healthy looking plants. The 

concentration 4.5mg/l Mn may thus be considered critical toxicity concentration of Mn in 

marigold. Internal concentrations close to 270mg/kg in the new leaves were associated 

with normal growth. Plants with lOOOmg/kg Mn suffered from Mn toxicity. Using the 

methods of this experiment, excessive supply of Mn increased the concentration of Mn in 

the roots and leaves, increased the concentration of Fe in the roots, and slightly increased 

the overall concentration of Ca and Mg in the plant. 

5.2 INTRODUCTION AND LITERATURE 

In many higher plants excessive amounts of Mn disrupt various aspects of plant 

metabolism, leading to serious physiological and morphological disorders. Manganese 
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toxicity has been associated with reduced enzyme activity (Heenan and Campbell, 1981; 

Sirkar and Amin, 1974), reduced hormone activity (Morgan et al., 1966), inhibition of 

ATP synthesis, and reduced respiration rates (Sirkar and Amin, 1974). 

Morgan et al. (1976) and Morgan et ah (1966) found that Mn toxicity in cotton 

was associated with an increased activity of indoleacetic acid oxidase, peroxidase, and 

polyphenol oxidase; lower activities of catalase, ascorbic acid oxidase and glutatione 

oxidase; lower ATP contents; and lower respiration rates. In sugar beets, excess Mn 

restricted leaf cell number and volume (Terry et ah, 1975). Manganese toxicity has been 

associated with an increase in indoleacetic acid oxidase activity, which results in a 

destruction of auxin (IAA) (Morgan et ah, 1976; Morgan et ah, 1966). 

Factors that affect the toxicity of Mn in plants include the concentration of Mn in 

the growth medium; growth medium moisture, organic matter, and pH (Foy et ah, 1978; 

Goh and Haynes, 1978); concentration of salts, particularly those of Ca, Mg, Fe and P 

(Bachman and Miller, 1995; Harrison and Bergman, 1981; Le Mare, 1977); nitrogen 

source (Sirkar and Amin, 1974) and plant developmental stage (Hood et ah, 1993). Small 

changes in these factors can determine the degree of Mn toxicity in a given crop. 

5.2.1 High Level of Mn in the Medium 

In some cases, the accumulation of Fe and Mn in the leaf tissue is the direct result of 

applying excessive levels of micronutrients. The continuous use of high levels of peat-lite 

fertilizers may cause problems if salt levels are not monitored carefully (Sheely, 1990). The 

preplant addition of micronutrients in the media, combined with a constant feed program, 

create the toxicity problem (Sheely, 1990). 
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5.2.2 Low Level of Ca in the Medium 

The toxicity effects of high concentrations of Mn in the plant tissue are considerably 

modified by Ca status. They are much more severe when the Ca level in the plant tissue is 

low (Clark et al, 1981; Galvez et al., 1989; Foy et al., 1981; Horst and Marshner, 1978, 

Keisling and Fuqua, 1979; Wallace et al., 1945). Le Mare (1972,1977) found that large 

concentrations of Ca in the growth medium could alleviate the harmful effects of Mn 

toxicity. The plants grown in a soil that supplied little Ca were very sensitive to Mn toxicity 

(Le Mare, 1972; Le Mare 1977). 

Foy et al. (1978) reported the importance of Ca/Mn ratios in the tolerance of plants 

to Mn toxicity. Ratios above 80 were found desirable for a balanced nutrition in peanut 

(Bekker et al., 1994). 

Although increasing the concentration of Ca in the medium can alleviate the 

detrimental effects of high concentrations of Mn, optimal concentration (60 mg/kg) of Ca is 

crucial for optimal plant growth (Morris and Pierre, 1947). Morris and Pierre (1947) 

pointed out that high Ca levels (300 mg/kg) in the medium can reduce plant growth 

regardless of the concentration of Mn in the medium, probably because of unbalanced 

nutrition. 

5.2.3 Low Level of Mg in the Medium 

A large concentration of Mn in the medium can induce Mg deficiency in the plant 

(Mn-induced Mg deficiency) (Heenan and Campbell, 1981). Kazda and Znacek (1989) 

reported that excess Mn in the medium reduced Mg uptake by 50%. 

Manganese toxicity can often be counteracted by large Mg supply (Lohnis, 1960; 

Elamin and Wilcox, 1986). It was reported that Mg decreased Mn uptake both by 
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excised and intact roots of several plant species (Harrison and Bergmann, 1981; Lohni, 

1960; Maas et al., 1969). 

In some cases. Mg application is not a practical method for the avoidance of Mn 

toxicity (Davis, 1996). The ability of Mg to reduce Mn uptake depends on the 

concentration of Mn in the medium. Elamin and Wilcox (1986) found that at high Mn 

concentration. Mg had little effect on Mn uptake and the plants were able to accumulate 

toxic levels of Mn at all levels of Mg supply. In addition, using Mg to prevent Mn 

toxicity would require large Mg applications, which could lead to serious nutritional 

imbalance because Mg would interfere with Ca uptake. 

In summary, Fe/Mn toxicity disorder in marigold has been related to high 

concentrations of Mn in the tissue of the affected leaves (Koranski, 1988). In fact, the 

agricultural practices such as preplant addition of micronutrients in the media and 

constant feed program and the low pH of the growth media create favorable conditions 

for the development of Mn toxicity in greenhouse crops (Sheely, 1990; Biembaum et al., 

1988; Vetanovetz and Knauss, 1989). 

Despite the importance of this problem, data on the effect of Mn nutrition in 

marigold on nutrient content in the plant tissue are meager. Available information on Mn 

requirement for marigold is also scant. This experiment was designed to investigate Mn 

requirements in marigold and the effect of Mn concentration in the medium on nutrient 

content in the plant tissue. Determination of the critical toxicity concentration of Mn is 

needed for further investigation of the relationship of Fe/Mn toxicity disorder in marigold 

to Mn toxicity. The objectives were: (1) to determine the symptoms of Mn toxicity in 

marigold; (2) to determine the critical toxicity concentration of Mn in marigold; and (3) 
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to determine the effect of Mn concentration in the medium on the content of Mn, Fe, Ca 

and Mg in the plant tissue. 

5.3 MATERIALS AND METHODS 

Seeds of marigold (Tagetes erecta L. ‘First Lady’) were planted in vermiculite #3 on 

September 17, 1996 in the greenhouse. Three-week-old seedlings were transplanted into 

800 ml half strength nutrient solution in 800 ml opaque plastic containers. The basal nutrient 

solution contained 100 mg/1 Ca, 48 mg/1 Mg, 79 mg/1 potassium, 63 mg/1 P, 75 mg/1 nitrate- 

nitrogen, 75 mg/1 ammonium-nitrogen, 2.3 mg/1 Fe, 0.02 mg/1 Cu and 0.5 mg/1 of Mn, B, Zn 

and Mo. After 10 days of growth in the half strength basal nutrient solution, the seedlings 

were transferred to treatment solutions. Manganese treatments were 0.5; 2.5; 4.5; 6.5; 8.5; 

10.5; 12.5; 14.5; 16.5 and 18.5 mg Mn/1 solution. Manganese was added to the nutrient 

solution as MnCb. The hydroponic cultures were aerated continuously and the nutrient 

solution was replaced with a fresh one every week. Deionized water was added to the 

containers as needed to maintain volume. 

Sixty containers consisting of 10 treatments and 6 replicates were placed on two 

tables in the greenhouse in a completely randomized design. The photoperiod was about 

16/8. The temperature was maintained as closely as possible to 21/17 °C (day/night). The 

plants were harvested on November 14,1996 into roots, stems, old leaves and young leaves 

separately. The roots were rinsed with tap water then deionized water to discard nutrients 

from the root surface. 

The plant parts were dried at 70 °C for 48 hours and weighed. The different plant 

parts were ground (20 mesh) and analyzed by atomic absorption spectroscopy ( Appendix 

A) for Mn, Fe, Ca, and Mg contents. The data obtained were statistically analyzed using 
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Regression Analysis and Analysis of Variance (ANOVA) to test for significance of main 

effects and interactions, and terms were considered significant at /?<0.05. 

5.4 RESULTS AND DISCUSSION 

5.4.1 Description of Symptoms 

The symptoms of Mn toxicity in marigold consisted of small, clearly defined 

blackish-brown spots on old leaves. Initially the brown spots were difficult to see unless 

the leaves were held against the light. In advanced toxicity the spots appeared on the new 

leaves as well and became surrounded by chlorotic spots. Sometimes the chlorosis was 

so accentuated that the leaves looked patchy and even bleached. In addition to that, 

necrosis developed at the edges and tips of the leaves. The roots of the plants grown in 

excessive concentrations of Mn were brown and brittle. 

According to Bergmann (1992), the brown spots on the leaves consist of 

enzymatically-controlled precipitations of Mn as Mn oxide (MnCh) in the old epidermal 

cells. Bussler (1958) regards such depositions as a sort of Mn detoxification by the plant. 

In many plants accumulations of this kind are formed before the first chlorotic symptoms 

appear. As the excess Mn increases, the regions around the spots marking the 

accumulations become chlorotic and the leaves take on a patchy appearance (Bussler, 

1958). 

The chlorotic patches and the bleached look of the leaves may be associated with 

reduced chlorophyll synthesis and to Mn-induced Fe deficiency. Indeed, excess Mn 

interferes with the synthesis of chlorophyll, and in some cases, it reduces Fe uptake by 

the plant causing Fe deficiency symptoms to appear (Bergmann, 1992). 
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Osawa and Ikeda (1976) found that Mn toxicity in lettuce, celery, and cabbage 

was characterized by marginal chlorosis of the leaves with brown necrotic spots. They 

found that increasing the Fe supply prevented or reduced the severity of interveinal 

chlorosis, but had little or no effect on reducing the marginal chlorosis and brown spots. 

The leaf analysis indicated that the Mn-induced interveinal chlorosis was due to Fe 

deficiency whereas the marginal chlorosis and brown necrotic spots were due to 

accumulation of excess Mn. 

The brown color of the roots may be attributed to oxidation of Mn with 

concomitant deposition of oxidized Mn in the roots. Foy et al. (1978) reported that 

deposition of oxidized Mn in the roots reduces Mn translocation to the shoots and 

enhances the tolerance of the plant to excessive amounts of Mn. Horiguchi (1987) 

observed deposition of oxidized Mn on the roots of rice, which displayed a dark brown 

color and accumulated a large amount of Mn. They also reported that a peroxidase- 

malate dehydrogenase system in the root cell walls oxidized Mn. 

5.4.2 Effect of Mn Toxicity on the Plant Dry Weight 

High concentrations of Mn in the growth medium resulted in reduced root and 

shoot growth (Figure 5.1). The general plant growth associated with excess Mn 

concentration in the medium may be due to the depression of the phytohormone 

metabolism by high Mn concentrations (Morgan et al., 1966). Reduced growth may, as 

well, be linked to reduced enzyme activity (Heenan and Campbell, 1981; Sirkar and 

Amin, 1974), inhibition of ATP synthesis, and reduced respiration rates (Sirkar and 

Amin, 1974). 
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Figure 5.1: Effect of Mn level in solution on the plant 
dry weight (see Appendix E, Tables 1,3) 
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5.4.3 Critical Toxicity Concentration of Mn 

Plants grown at Mn concentrations of 0.5 and 2.5 mg/liter nutrient solution did 

not show any significant symptoms of Mn toxicity. Plants grown in 4.5 mg/1 did not 

show significant symptoms but their dry weight was reduced in comparison to those 

grown in 0.5 and 2.5 mg Mn/liter. The plants grown at concentrations of Mn greater than 

4.5 were stunted and showed symptoms. The intensity of dry weight reduction and 

symptom appearance depended on the concentration of Mn in the solution. These results 

suggest that 4.5mg/liter Mn may be considered critical toxicity concentration of Mn in 

marigold in this experiment. This concentration was the turning point of Mn nutrition 

from sufficiency to toxicity. It seems that 4.5mg/l Mn was not high enough to cause 

localized precipitation of Mn on the leaves or to induce Fe deficiency, but it was high 

enough to disturb the plant metabolism and reduce growth. 

The tissue analysis suggested that the internal concentration of Mn associated 

with normal growth was about 270 mg/kg in the new leaves. The concentration 1000 

mg/kg was associated with toxicity symptoms and stunting. The level of Mn in the plants 

that were stunted, but free of symptoms, was about 750 mg/kg. This internal 

concentration of Mn in the new leaves may be considered the internal critical toxicity 

concentration of Mn in marigold. 

Critical toxicity concentration of Mn in plants depends on the degree of tolerance 

of these plants to excess Mn. Chrysanthemums, for example, are reported to be very 

sensitive to excess Mn in the medium; they show symptoms of Mn toxicity at very low 

concentration of Mn in the medium (Bergmann, 1992). It has even been suggested to use 

chrysanthemums as indicators of excess Mn in the medium (Foy, 1976). Carnations, 
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poinsettia and roses are able to tolerate higher concentrations of Mn than 

chrysanthemums (Foy, 1976). Some sensitive plants such as lettuce, beans and roses 

show toxic effects at 200-400 mg Mn/kg dry weight (Sonneveld and Voogt, 1975). 

Carnations show toxic effects at Mn levels 600-800 mg/Kg dry weight (Sonneveld and 

Voogt, 1975). Other so called tolerant plants, often show no toxic effects even at Mn 

levels of 1500-2000 mg/Kg dry weight (Sonneveld and Voogt, 1975). 

Based on the Mn concentration in the medium associated with injury, the critical 

Mn concentration was found to be 1 mg/kg for tobacco (Jacobson and Swanback, 1932); 

3.5 mg/kg for peas, and 10 mg/kg for soybean, peanut (Morris and Pierre, 1949), and 

barley (Aso, 1902). 

5.4.4 Effect of Mn Toxicity on the Nutrient levels in the plant 

5.4.4.1 Effect of Mn in solution on Mn level in the plant 

An increase in Mn level in the nutrient solution caused an increase in the Mn 

concentration in the plant tissue (Figure 5.2). This increase was highly significant in the 

roots, old leaves and new leaves but it is not significant in the stems (Figure 5.2). 

Manganese seemed to accumulate much more in the roots than in any other organ of the 

plant (Figure 5.2). This high accumulation of Mn in the roots might be related to an 

attempt by the plant to prevent translocation of excess concentrations of Mn to the shoots. 

The brown color of the roots supports this hypothesis. It appeared that a large amount of 

Mn absorbed by the plants was precipitated in the roots to prevent translocation to the 

shoots. 

Manganese accumulation and translocation is closely associated with the degree 

of tolerance of the plant to excessive Mn. Kamprath and Foy (1971) reported that Mn 
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Figure 5.2: Effect of Mn level in solution on the level of Mn 
in the plant tissue (see Appendix E, Tables, 2, 3) 
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may be detoxified by accumulating in the woody portions of the azalea plants. High Mn 

sensitivity in peanut was associated with the accumulation of Mn in its leaves but little or 

no accumulation in roots, stem, or petioles (Morris and Pierre, 1949). 

High retention of excess Mn in the roots may be associated with the relative 

tolerance of marigold to excess Mn. Andrew and Hegarty (1969) reported that the 

relative tolerance of either tropical or temperate legume species depends in part on the 

retention of excess amounts of Mn within the root system. The superior Mn tolerance of 

com (compared to peanut) was associated with reduced translocation of Mn from the 

roots and stem to the leaves (Benac, 1976). Ouelette and Dessureaux (1958) reported that 

the tolerant clones of alfalfa contained lower concentrations of Mn in their shoots and 

higher concentrations of Mn in their roots than did the more sensitive clones. 

Although Mn retention in the roots may contribute to the Mn tolerance of some 

species, this mechanism does not seem to reflect the Mn tolerance of marigold. Although 

large concentrations of Mn were retained in the roots, symptoms related to excess 

concentrations of Mn were expressed in the leaves. 

5.4.4.2 Effect of Mn in solution on Fe level in the plant 

The statistical analysis suggested that Mn level in the nutrient solution had no 

significant effect on Fe concentration in the stem, old leaves or young leaves, but had a 

highly significant effect on Fe concentration in the roots (Figure 5.3;). An increase in Mn 

in the nutrient solution resulted in an increase in Fe concentration in the roots (Figure 

5.3). 

This finding does not support our interpretation of the interveinal chlorosis of the 

leaves as a consequence of Mn-induced Fe deficiency. Some researchers, however. 
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Figure 5.3. Effect of Mn level in solution on the level of Fe 
in the plant tissue (see Appendix E, Tables 2, 3) 
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found that the Fe/Mn ratio in the culture solution, rather than the total amounts of these 

elements, controlled the growth of plants (Somers and Shive, 1942). 

Somers and Shive (1942) found that the optimum ratio was around 2.0 and any 

appreciable variation in this ratio would result in appearance of Fe or Mn toxicity 

symptoms. Morris and Pierre (1947) found that 0.5mg/liter Fe and 1 mg/liter Mn made 

excellent growth and that the plants grown with the same ratio (2.0) but with 

concentrations five times higher than the former treatment resulted in poor growth and 

severe Mn toxicity symptoms. 

Leach and Taper (1954) found that the optimum Fe/Mn ratios in plants ranged 

from 1.5 to 3 for kidney beans and from 0.5 to 5 for tomato. Iron deficiency developed at 

lower ratios. 

Osawa and Ikeda (1976) reported that in spinach the iron/Mn ratio in nutrient 

solution was related closely to plant growth. Decreasing this ratio gave Mn-induced 

chlorosis (Mn-induced Fe deficiency) and decreased growth. They also reported that in 

tomato, pepper, bean, and eggplant both Fe/Mn ratio and Mn concentration in nutrient 

solution affected plant growth and occurrence of Mn-induced chlorosis. 

The actual means by which Mn induces Fe deficiency in marigold is to be 

explained by the statistical analysis which suggests that excess Mn in the solution had no 

effect on Fe concentration in the shoots and it even caused an increase in Fe 

concentration in the roots. These results suggested that it is not Fe absorption but its 

action in the tissue that is unfavorably affected by excess Mn as shown in other studies 

(Rippel, 1923; Chapman, 1931; Millikan, 1949). 
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Somers and Shive (1942) suggested that this effect was probably due to the Mn 

catalysis of the oxidation of the physiologically active form of Fe (Fe2+) to the inactive 

form (Fe3+). They also suggested the probable formation of an insoluble ferric- 

phosphate-organic complex. 

5.4.4.3 Effect of Mn in solution on Ca level in the plant 

The statistical analysis suggested that an increase in Mn level in the nutrient 

solution caused a small increase in the overall Ca concentration in the plant tissue (Figure 

5.4). Even though this increase was highly significant from the statistical point of view, 

'■y 

it is not as important an increase as that of Mn (R = 20% for Ca compared to 90% for 

Mn). This slight increase in the overall Ca concentration in the plant may be due to 

reduced growth, which results in increased concentration, rather to increased Ca uptake. 

It has been reported that excess Mn does not result in increased Ca uptake, but rather it 

inhibits Ca uptake by plants (Keil et al., 1980; Smith, 1979). 

As to the repartition of Ca in the plant, it seems that most Ca was localized in the 

stem and the leaves. Calcium was lower in the new leaves and very low in the roots 

(Figure 5.5). 

Low Ca in the new leaves may be due to the effect of high Mn level in the 

nutrient solution. Indeed, when the supply of Mn is excessive, the translocation of Ca into 

the shoot apex is inhibited (Horst and Marschner, 1990). This inhibition might be related 

to the fact that high Mn levels decrease the cation exchange capacity of the leaf tissue 

(Horst and Marschner, 1978a) and decrease the IAA levels in the areas of new growth 

(Morgan et al., 1966; Morgan et al., 1976). Auxin was reported to be responsible for the 
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Figure 5.4: Effect of Mn level in solution on the level of 
nutrients in the plant tissue (see Appendix E, Tables 2, 3) 
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formation of new binding sites for the transport of Ca to the apical meristems (Horst and 

Marschner, 1978a). 

Horst and Marschner (1978c) found that the translocation of Ca to the leaves of 

bean plants was reduced when Mn levels were high. The reduced auxin levels caused by 

the increased IAA-oxidase activity associated with an excess of Mn is believed to inhibit 

cell enlargement and the creation of negative binding sites, thus reducing the 

translocation of Ca ions (Bergmann, 1992). 

5.4.4.4 Effect of Mn in solution on Mg level in the plant 

An increase in Mn level in the nutrient solution caused an increase in the overall 

Mg concentration in the plant (Figure 5.4). Magnesium was higher in the stem and 

leaves than in the roots (Figure 5.5). Even though the increase in Mg concentration was 

highly significant from the statistical point of view, it was not as an important increase as 

'y 

that of Mn (R = 12% for Mg compared to 90% for Mn). Our findings were different 

from those of Heenan and Cambell (1981). The authors found that high concentrations of 

Mn in the medium actually induced Mg deficiency in the plant. Competition between 

Mg and Mn for binding sites in the roots during absorption inhibits Mg absorption, since 

Mn competes more effectively than Mg, and even blocks the binding sites for Mg (Horst 

and marschner, 1990). Keil et al. (1980) found that excess Mn in the nutritive medium 

inhibits the uptake of Mg. 

The slight increase in the overall Mg in the plant associated with increased Mn is 

probably due to reduced growth, but it might also be related to the concentrations of Mg 

and Mn used in this study. Elamin and Wilcox (1986a, 1986b) and Lohnis (1960) found 

that a large supply of Mg can actually counteract the effects of Mn toxicity. Magnesium 
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was found to reduce Mn uptake both by excised and intact roots of several plant species 

(Harrison and Bergmann, 1981; Lohni, 1960; Maas et al., 1969). 

5.5 CONCLUSION 

Manganese toxicity affected the appearance and reduced the growth of marigold. 

Concentrations of Mn equal or above 6.5mg/liter nutrient solution caused severe damage 

to the plant. The plants were stunted and their leaves were severely damaged by the 

appearance of small brown spots and/or chlorotic patches and necrotic margins. The 

damage caused by excessive amounts of Mn may be due the detrimental effects of high 

Mn content in the plant on the metabolism, such as reduced enzyme activity, reduced 

hormone activity, inhibition of ATP synthesis, and reduced respiration rates. The 

symptoms related to high Mn level in the nutrient solution may as well be related to 

localized accumulations of Mn oxide and to Fe deficiency caused by Mn toxicity. 

Plants grown in 4.5 mg/1 Mn in the nutrient solution were still relatively stunted 

but there were no significant symptoms affecting their appearance. The concentration 4.5 

mg/1 may thus be considered critical toxicity concentration of Mn in marigold. This 

concentration was the turning point of Mn nutrition from sufficiency to toxicity. It seems 

that 4.5 mg/1 Mn was not high enough to cause localized precipitation of Mn on the 

leaves or to induce Fe deficiency, but it was high enough to disturb the plant metabolism 

and reduce growth. 

The data show that high Mn in the nutrient solution caused an increase of Mn in 

the roots and the leaves. Manganese accumulated to high concentrations in the roots 

perhaps as a way reducing translocation to the shoots. High Mn concentration in the 

nutrient solution also resulted in an increase of Fe in the roots and a slight increase in the 
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overall Ca and Mg concentration of the plant. Increased Ca and Mg in the overall plant 

tissue as a response to excess Mn in the nutrient solution may have resulted from a 

reduced dry weight rather than an increase in Ca and Mg uptake by the plants. 

Increased Fe in the roots as result of high Mn in the nutrient solution may have 

been caused by reduced translocation of Fe from the roots to the shoots. Excess Mn 

catalyses the oxidation of the physiologically active form of Fe (Fe ) to the inactive form 

(Fe3+). In addition to that, the formation of insoluble ferric-phosphate-organic complex 

in the roots due to high Mn concentration in the roots may have prevented Fe 

translocation to the shoots. 
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CHAPTER 6 

MANGANESE TOXICIY IN MARIGOLD AS 
AFFECTED BY CALCIUM 

6.1 ABSTRACT 

Iron/Manganese toxicity disorder in marigold has been related to high 

concentrations of Mn and low concentrations of Ca in the affected leaves. Preplant 

addition of micronutrients in the media combined with constant feed program and low 

medium pH create favorable conditions for the development of Mn toxicity in greenhouse 

crops. Deficiency of Ca is due in part to low medium pH and to lack of Ca in many of 

the fertilizers used in greenhouse production. To investigate the effect of Ca on Mn 

toxicity effects (growth, appearance, and nutrient concentrations) in marigold (Tagetes 

erecta L. ‘First Lady’), a solution culture study with various Ca and Mn concentrations 

was conducted. 

Treatments 20/6.5,20/4.5, and 20/2.5 mg/1 Ca/Mn concentrations resulted in 

stunted plants with significant number of small brown spots, interveinal chlorotic patches 

and necrotic symptoms on the tips and margins of the leaves, deformed leaves, and 

necrotic margins and tips of the leaves. The treatments 20/0.5, 100/2.5, and 100/4.5 

resulted in stunted plants relatively free of symptoms. Treatment 100/6.5 resulted in 

stunted plants with blackish brown spots, chlorotic patches, and necrotic tips 

and margins on the leaves. The treatment 100/0.5 resulted in fully-grown and healthy 

looking plants. 

Concentrations of Ca as high as the incipient deficiency concentration reduced the 

critical toxicity concentration of Mn in marigold from 4.5 to 2.5mg/l nutrient solution. 

Low concentrations of Ca in the nutrient solution accentuated the effect of excessive Mn 
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on Mn and Fe in the plant tissue, but had no effect on Ca and Mg. Low Ca in the 

medium accentuated the increase of Mn in the leaves and stem. It also accentuated the 

increase of Fe in the roots resulting from excessive Mn concentration in the medium. 

6.2 INTRODUCTION AND LITERATURE 

High Mn supply combined with low Ca supply disrupts various aspects of plant 

metabolism, leading to serious physiological and morphological disorders. Manganese 

toxicity has been associated with reduced enzyme activity (Heenan and Cambell, 1981; 

Sircar and Amin, 1974), reduced hormone activity (Morgan et al., 1966), inhibition of 

ATP synthesis, and reduced respiration rates (Sircar and Amin, 1974). 

Calcium deficiency has been associated with increased permeability of the cell 

membrane (Hecht-Buchholz, 1979), destruction of structures within the cell nucleus, 

reduced chromosomal stability, disturbance of nuclear and cell division, destruction of 

mitochondria, and impaired respiratory metabolism (Bergmann, 1992). 

Calcium deficiency has also been associated with abnormal nuclear division, 

accelerated fruit ripening and reduced firmness and suitability for storage (Richardson 

and Al-Ani, 1982), accumulation of nitrite (NO2') (Yamada, 1975), and inhibited 

transport of carbohydrates in plants (Rangnekar, 1974; Gosset et al., 1977). 

Factors that affect the toxicity of Mn and deficiency of Ca include the 

concentration of Mn in the growth medium; growth medium moisture, organic matter and 

pH (Foy et al., 1978; Goh and Haynes, 1978); concentrations of salts, particularly those 

of Mg, Fe and phosphorus (Bachman and Miller, 1995; Harrison and Bergman, 1981; Le 

Mare, 1977); nitrogen source (Reddy and Mills, 1991) and plant developmental stage 
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(Hood et al., 1993). Small changes in these factors can determine the degree of Mn 

toxicity and Ca deficiency in a given crop. 

6.2.1 High Level of Mn in the Medium 

The accumulation of Mn in the leaf tissue may result directly from applying 

excessive amounts of micronutrients. The continuous use of high levels of peat-lite 

fertilizers may cause problems if salt levels are not monitored carefully (Sheely, 1990). 

Preplant addition of micronutrients in the growth medium, combined with constant feed 

program, creates toxicity problems (Sheely, 1990). 

High concentrations of Mn in the growth medium can also inhibit the uptake of 

Ca by plants and thus induce a Ca deficiency (Bergmann, 1992). 

6.2.2 Interaction with Ca 

The second part of Fe/Mn toxicity disorder is deficiency of Ca due in part to low 

medium pH and to lack of Ca in many of the fertilizers used in greenhouse crop 

production (Koranski, 1988). The toxicity effects of high concentrations of Mn in the 

plant tissue are considerably modified by Ca status. The effects are much more severe 

when the Ca level in the plant tissue is low (Clark et al., 1981; Galvez et al., 1989; Foy et 

al., 1981; Horst and Marshner, 1978; Keisling and Fuqua, 1979; Wallace et al., 1945). Le 

Mare (1972; 1977) found that large concentrations of Ca in the medium could alleviate 

the harmful effects of Mn toxicity. The plants grown in a medium that supplied little Ca 

were very sensitive to Mn toxicity (Le Mare, 1972; Le Mare, 1977). 

Foy et al. (Foy et al., 1978) reported the importance of Ca/Mn ratios in the 

tolerance of plants to Mn toxicity. Ratios above 80 were found desirable for a balanced 

nutrition in peanut (Bekker et al., 1994). 
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Although increasing the concentration of Ca in the medium can alleviate the 

detrimental effects of high concentrations of Mn, optimal concentration (60 mg/kg) of Ca 

is crucial for optimal plant growth (Morris and Pierre, 1947). Morris and Pierre (1947) 

pointed out that high Ca levels (300 mg/kg) in the medium can reduce plant growth 

regardless of the concentration of Mn in the medium, probably because of unbalanced 

nutrition. 

6.2.3 Interaction with Mg 

A large concentration of Mn in the medium can induce Mg deficiency in the plant 

(Heenan and Cambell, 1981). Kazda and Znacek (1989) reported that excess Mn in the 

medium reduced Mg uptake by 50%. 

Manganese toxicity can often be counteracted by a large Mg supply (Lohnis, 

1960; Elamin and Wilcox, 1986). It was reported that Mg decreased Mn uptake both by 

excised and intact roots of several plant species (Harrison and Bergman, 1981; Lohnis, 

1960; Maas et al., 1969). 

In some cases. Mg application is not a practical method for the preventionof Mn 

toxicity (Davis, 1996). The ability of Mg to reduce Mn uptake depends on the 

concentration of Mn in the medium. Elamin and Wilcox (Elamin and Wilcox, 1986b) 

found that at high Mn concentration. Mg had little effect on Mn uptake and the plants 

were able to accumulate toxic levels of Mn at all levels of Mg supply. In addition, using 

Mg to prevent Mn toxicity would require large Mg applications, which could lead to 

serious nutritional imbalance because Mg would interfere with Ca uptake. 

In summary, Fe/Mn toxicity disorder in marigold may be caused by Mn toxicity 

since the affected plants contain high concentrations of Mn in their tissue. Basic factors 
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affecting Mn toxicity in plants include Ca deficiency. The relationship of Ca deficiency 

to the incidence of Fe/Mn toxicity in marigold needs to be investigated. 

Despite the importance of this problem and its relation to high concentrations of 

Ca in the affected leaves, no research has been done on the effect of Ca nutrition on 

manganese toxicity in marigold. Available information on the interaction between ca and 

Mn are meager. This experiment was designed to investigate the effect of Ca on Mn 

toxicity in marigold. 

The objectives were: (1) to determine the effect of Ca in the nutrient solution on 

the sensitivity of marigold to high concentrations of Mn; (2) to determine the effect of Ca 

in the nutrient solution on the critical toxicity concentration of Mn; and (3) to determine 

the effect of the interaction between Ca and Mn in the nutrient solution on the 

concentration of Mn, Fe, Ca and Mg in the plant tissue. 

6.3 MATERIALS AND METHODS 

Seeds of marigold (Tagetes erecta L. ‘First Lady’) were planted in vermiculite #3 on 

September 8,1997 in the greenhouse. Three-week-old seedlings were transplanted into 800 

ml half strength nutrient solution in 1.6 liter opaque plastic containers. The basal nutrient 

solution contained 48 mg/1 Mg, 79 mg/1 potassium, 63 mg/1 phosphorus, 75 mg/1 nitrate- 

nitrogen, 75 mg/1 ammonium-nitrogen, 2.3 mg/1 Fe, 0.02 mg/1 copper and 0.5 mg/1 of Mn, 

boron, zinc and molybdenum. After 10 days of growth in the half strength basal nutrient 

solution, the seedlings were transferred to treatment solutions. Mn treatments were 0.5; 2.5; 

4.5 and 6.5mg/l nutrient solution. Mn was added to the nutrient solution as MnCL. 

Calcium treatments were 100 and 20 mg/1. The concentration 100 mg/1 is considered 

optimal concentration of Ca for marigold growth (Chapter 4). The concentration 20mg/l is 
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considered incipient deficiency concentration of Ca in marigold (Chapter 4). This 

concentration is enough to fulfill the metabolic needs of the plant but not enough for optimal 

growth. The hydroponic cultures were aerated continuously and the nutrient solution was 

replaced with a fresh one every week. Deionized water was added to the containers as 

needed to maintain volume. 

Forty-eight containers consisting of 4 Mn treatments, 2 Ca treatments and 6 

replicates of treatment combinations were placed on two benches in the greenhouse in a 

completely randomized design. Plants were grown under ambient light conditions. The 

temperature was maintained as closely as possible to 21/17 °C (day/night). The plants were 

harvested on October 24,1997 into roots, stems, old leaves and young leaves separately. 

The roots were rinsed with tap water then deionized water to wash residual nutrients from 

the root surface. 

The plant parts were dried at 70 °C for 48 hours and weighed. The different plant 

parts were ground (20 mesh) and analyzed by inductive coupled plasma (ICP) (Appendix B) 

for Mn, Fe, Ca, and Mg contents. The data obtained were statistically analyzed using 

Regression Analysis, Analysis of Variance (ANOVA) and procedure mixed to test for 

significance of main effects and interactions. Terms were considered significant at /?<0.05. 

6.4 RESULTS AND DISCUSSION 

6.4.1 Symptoms 

The nature of the symptoms and their severity depended on the treatment. The 

plants grown in 100 mg/1 Ca-0.5 mg/1 Mn did not show any symptoms. The plants grown 

in 100mg/l Ca-2.5 mg/1 Mn and 100 mg/1-4.5 mg/1 Mn did not show significant 

symptoms but the plants looked smaller relative to lOOmg Ca/0.5 Mn. The plants grown 
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in 100 mg/1 Ca-6.5 mg/1 Mn were also small and showed typical symptoms of Mn 

toxicity as observed in earlier experiments (Chapter 5). The Mn toxicity symptoms 

appeared in the old leaves first then spread toward the rest of the plant. The symptoms 

started as small blackish brown spots on the leaves. Patches of chlorosis appeared on the 

tips and margins of the leaves afterward. When the plants were exposed to the same 

treatment for a longer time the chlorotic areas became necrotic. 

The plants treated with 20/6.5,20/4.5, and 100/6.5 mg/1 Ca-Mn showed 

symptoms. The symptoms however were most severe in the plants treated with 20 mg/1 

Ca-6.5 mg/1 Mn. The plants were also very small per comparison to the plants grown 

with the other treatments. The symptoms included small brown spots on the surface area 

of the leaves, deformation of the leaves, interveinal and marginal chlorosis, rolling and 

crinkling of necrotic leaf margins and brown brittle roots. After being exposed to the 

treatment for a longer time, necrosis developed on the margins and at the tips of the 

leaves. 

The plants treated with 20/0.5 or 20/2.5 mg/1 Ca/Mn did not show significant 

symptoms but the plants were smaller than those treated with 100/0.5 mg/1 Ca/Mn. 

The small brown spots shown in the affected leaves the brown color of the roots 

may have been associated with accumulation of Mn as precipitated Mn oxide (MnC>2) in 

the leaves and roots (Horst and Marshner, 1978a, b, c). 

Interveinal chlorotic patches on the leaves may have been associated with Mn- 

induced Fe deficiency. Local accumulations of Mn may interfere with Fe dependent 

metabolic functions and thus lead to Fe deficiency (Horst and Marshner, 1978a). 
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The deformation and curling of the leaves may be due to deficiency of plant 

hormones. Indeed, toxic concentrations of Mn increase the activities of 

polyphenoloxidase, peroxidase and IAA oxidase, which result in decomposition of auxins 

(Morgan et al., 1966; Cheng and Ouelette, 1971; Kamprath and Foy, 1971; Foy, 1973). 

Horst and Marshner (1978c) reported that high concentrations of Mn reduced Ca 

translocation in the plant leaves. They believed that this reduced translocation of Ca in 

the leaves was responsible for the deformation and crinkling of the leaves. 

According to their findings, excess Mn increases LAA-oxidase activity, which 

reduces auxin level in the leaves. Reduced auxin level inhibits cell enlargement and the 

creation of negative binding sites, thus reducing the translocation of Ca ions. 

6.4.2 Dry Weight 

Manganese concentration in the solution had no significant effect on root dry 

weight, but did have a significant effect on shoot and total dry weight. When Mn in the 

solution increased, the dry weight of the shoots decreased (Figure 6.1). The 

concentrations of Mn used in this study were probably not high enough to affect the 

growth of roots but, were high enough to affect shoot growth and development. In 

Chapter 5 high Mn in the nutrient solution reduced root and shoot dry weight. The 

reduced plant growth associated with high Mn may have resulted from the depression of 

phytohormone metabolism by excess Mn (Marshner, 1978a). 

Low concentration of Ca in the nutrient solution resulted in a decrease in the root 

and shoot dry weight (Figure 6.2). This decrease in plant growth is due to the crucial role 

of Ca in plant metabolism. 
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Figure 6.1: Effect of Mn level in solution on the plant 
dry weight (see Appendix F, Tablel) 
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Figure 6.2: Effect of Ca level in solution on the plant 
dry weight (see Appendix F, Table 1) 
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The interaction between Ca and Mn in the medium had no significant effect on 

the plant dry weight (Appendix F). 

6.4.3 Critical Toxicity Concentration 

Plant appearance suggested that low concentrations of Ca in the medium 

decreased the critical toxicity solution concentration of Mn in marigold from 4.5 to 

2.5mg/l. At optimal concentration of Ca in the medium, 2.5 and even 4.5mg/l Mn did not 

cause any significant symptoms. However, when Ca level in the medium was low 

(incipient deficiency concentration), the low concentration of Mn (2.5 mg/1) resulted in 

significant symptom development. 

6.4.4 Nutrient concentrations in the plant tissues 

6.4.4.1 Manganese 

The Mn level in the nutrient solution had a highly significant effect on Mn in the 

roots, stems, and old leaves; and a significant effect on Mn in the young leaves 

(Appendix F). Increased Mn level in the solution resulted in increased Mn in all the plant 

parts (Figure 6.3). The increase in Mn in the stem and leaves as a result of increased Mn 

in the nutrient solution was greater when Ca was low (Figure 6.4). The increase in the 

overall Mn in the plant as a result of increased Mn in the nutrient solution also was 

greater when Ca was low (Figure 6.4a). Calcium in the solution had no significant effect 

on Mn in the roots (Figure 6.4). 

The effect of Ca in solution on Mn increase in the stem and leaves may have been 

due to the effect of Ca on Mn absorption by plants. Increased Ca level in the growth 

medium often decreases Mn absorption (Heenan and Carter, 1975; Robson and 

Loneragan, 1970; Shuman and Anderson, 1976; Hewitt, 1945). Ouellette and 
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Figure 6.3: Effect of Mn level in solution on the level of Mn 
in the plant tissue (see Appendix F, Table 2) 
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Figure 6.4: Effect of Ca in solution on the level of Mn 
in the plant tissue (see Appendix F, Table 2) 
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Figure 6.4a: Effect of Mn level in solution on the level of Mn 
in the plant tissue under low and optimal levels 
of Ca in solution (see Appendix F, Table 2) 

145 



0 -1-1-1-1-1-L 
0 1 2 3 4 5 6 

Mn (mg/liter) in solution 

Figure 6.5: Effect of Mn level in solution on the Fe level 
in the plant tissue under low (L) and optimal (H) 
levels of Ca (see Appendix F, Table 2) 
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Somers and Shive (1942) suggested that the unfavorable effect of excess Mn on 

Fe may be due to the Mn catalysis of the oxidation of the physiologically active form of 

9-4- 

Fe (Fe ) to the inactive form (Fe ). They also suggested the probable formation of an 

insoluble ferric-phosphate-organic complex. 

6.4.4.3 Calcium 

Manganese in the solution had no significant effect on Ca in the roots (Appendix 

F). It however had a significant effect on Ca in the stems and old leaves and a highly 

significant effect on Ca concentration in the young leaves (Appendix F). As Mn in the 

solution increased, Ca concentration decreased in the stem, old and young leaves (Figure 

6.6). 

These results are similar to those of Bekker et al. (1994), Foy et al. (1981) and 

Horst and Marshner (1978a). They found that the Ca content of cotton, bean and peanut 

decreased markedly as the Mn concentration of the medium increased. Clark et al. 

(1981) and Galvez et al. (1989) also found that excess Mn concentration in the nutritive 

medium suppressed Ca concentration in the plant tissue. 

Excess Mn inhibits the translocation of Ca into the shoot apex (Horst and 

Marshner, 1990). This inhibition might be related to the fact that high Mn levels 

decrease the cation exchange capacity of the leaf tissue (Horst and Marshner, 1978a) and 

decrease the IAA levels in the areas of new growth (Morgan et al., 1966; Morgan et al., 

1976). Auxin was reported to be responsible for the formation of new binding sites for 

the transport of Ca to the apical meristems (Horst and Marshner, 1978a). 

Calcium level in the nutrient solution had a highly significant effect on Ca 

concentration in the roots, stems, old leaves and young leaves (Appendix F). Calcium 
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Figure 6.6: Effect of Mn level in solution on the level of Ca 
in the plant tissue (see Appendix F, Table 2) 
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was much higher in the roots, stem, old leaves and young leaves when Ca in the nutrient 

solution was optimal rather than low (Figure 6.7). Our results are similar to those of 

Gunter et al. (1996) and Makus (1998). They found that increased Ca in the medium 

resulted in increased Ca in potato and strawberries. 

Under the conditions of this experiment, the interaction between Mn and Ca in the 

nutrient solution had no effect on Ca in the tissue of the plant parts (Appendix F). 

6.4.4.4 Magnesium 

Manganese in the solution had no significant effect on Mg in the roots, stems, and 

old leaves, but did have a significant effect on Mg in the young leaves (Appendix F). 

Magnesium in the young leaves decreased as Mn in the solution increased (Figure 6.8). 

This decrease in Mg in the young leaves may have been due to reduced Mg 

uptake by marigold. Heenan and Campbell (1981) found that large concentrations of Mn 

in the medium can induce Mg deficiency in the plant. Kazda and Znacek (1989) and 

Heenan and Campbell (1981) reported that excess Mn may reduce Mg uptake by up to 

50% due to competition. The competition between Mg and Mn for binding sites in the 

roots during absorption, inhibits Mg absorption, since Mn competes more effectively than 

Mg and even blocks the binding sites for Mg (Horst and Marshner, 1990). 

Calcium level in the nutrient solution had a highly significant effect on Mg in the 

roots, stems, old leaves and young leaves (Appendix F). Magnesium in the plant was 

greater when Ca in the medium was low (Figure 6.9). 

High Ca in the medium inhibits Mg influx. Moore et al. (1961) and Maas and 

Ogata (1971) found that high Ca in the medium reduced Mg uptake rate by suppressing 

the Mg transport capacity of the roots rather than competing with Mg for absorption sites. 
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Figure 6.7: Effect of Ca level in solution on the level of Ca 
in the plant tissue (see Appendix F, Table 2) 
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Figure 6.8: Effect of Mn level in solution on the level of Mg 
in the plant tissue (see Appendix F, Table 2) 
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Figure 6.9: Effect of Ca level in solution on the level of Mg 
in the plant tissue (see Appendix F, Table 2) 
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6.5 CONCLUSION 

Low Ca level in the nutrient solution reduced the critical toxicity solution 

concentration of Mn in marigold from 4.5 to 2.5mg/l. High concentrations of Mn in the 

nutrient solution combined with a low concentration of Ca resulted in stunted plants with 

curled deformed leaves. The leaves were covered with small brown spots and chlorotic 

almost bleached patches. The tips of the leaves and edges were necrotic and the roots 

were brittle and brown. 

The small brown spots and the brown color of the leaves may have resulted from 

localized precipitations of Mn as Mn oxide (Mn02). The chlorotic bleached patches on 

the leaves may have been due to Mn-induced Fe deficiency. The deformation and 

crinkling of the leaves and the necrosis on the tips and edges may be due to Mn-induced 

Ca deficiency. 

Results suggest that the interaction between Mn and Ca in the solution had a 

highly significant effect on Mn and Fe in the plant tissue but had no significant effect on 

Ca and Mg. High Mn in the solution resulted in increased Mn in all the plant parts. This 

increase was greater when Ca in the solution was low rather than optimal. Calcium 

probably regulates Mn toxicity by reducing Mn absorption and transport to the shoot. 

High Mn in the solution resulted in increased Fe in the roots. This increase was 

greater when Ca in the solution was low. 

High Mn in the solution resulted in decreased Ca in the stem, old leaves and 

young leaves; and decreased Mg in the young leaves. This decrease in Ca and Mg as a 

result of excess Mn was not affected by the level of Ca in the solution. 

154 



Decreased Mg in the young leaves may have been due to reduced Mg uptake by 

marigold. Decreased Ca may have been due to inhibited translocation of Ca into the 

shoot apex. Manganese decreases the cation exchange capacity of the leaf tissue and 

decreased the IAA levels in the areas of new growth. Decreased auxin results in limited 

formation of new binding sites for the transport of Ca to the apical meristems. 
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CHAPTER 7 

MANGANESE TOXICIY IN MARIGOLD AS 
AFFECTED BY MAGNESIUM 

7.1 ABSTRACT 

Iron/manganese toxicity disorder in marigold has been related to high 

concentrations of Mn and low concentrations of Mg in the affected leaves. Preplant 

addition of micronutrients in the media combined with constant feed program and low 

medium pH create favorable conditions for the development of Mn toxicity in greenhouse 

crops. Deficiency of Mg is due in part to low medium pH and to lack of Mg in most of 

the fertilizers used in greenhouse production. To investigate the effect of Mg on Mn 

toxicity effects (growth, appearance, and nutrient concentrations), a solution culture study 

with various Mg and Mn concentrations was conducted. 

In this experiment, the treatments 10/6.5, 10/4.5, 5/6.5, and 5/4.5mg/l Mg-Mn 

solution concentrations resulted in stunted plants with significant number of small brown 

spots, interveinal chlorosis and necrotic symptoms on the tips and margins of the leaves. 

The treatments 10/0.5, 15/4.5, and 20/4.5, resulted in stunted plants relatively free of 

symptoms. Treatment 20/6.5, 15/6.5 resulted in stunted plants with blackish brown spots, 

chlorotic patches and necrotic tips and margins on the leaves. The treatment 20/0.5 and 

15/0.5 resulted in fully-grown and healthy looking plants. 

Concentrations of Mg as high as the incipient deficiency concentration reduced 

the critical toxicity solution concentration of Mn in marigold from 4.5 to 2.5mg/l. 

High Mn in the nutrient solution affected the plant appearance and reduced the 

dry weight of the plants. High Mn also increased the concentration of Mn in the roots 

162 



and leaves, increased Fe in the roots, reduced the concentration of Fe in the stem and old 

leaves, reduced Ca in the leaves, and reduced Mg in the plant. 

Magnesium concentration in the nutrient solution did not affect the effect of 

excessive Mn in the medium on Mn, Fe, Ca or Mg in the plant. 

7.2 INTRODUCTION AND LITERATURE 

High Mn supply combined with low Mg supply disrupts various aspects of plant 

metabolism, leading to serious physiological and morphological disorders (Davis, 1996; 

Elamin and Wilcox, 1986b, c). Manganese toxicity has been associated with reduced 

enzyme and hormone activities, inhibition of ATP synthesis, and reduced respiration 

rates (Heenan and Campbell, 1981; SirKar and Amin, 1974; Morgan et al., 1966). 

Magnesium deficiency has been associated with the breakdown of chlorophyll, 

large number of small chlorenchyma cells, inhibition of nitrate reduction, inhibition of 

phytohormone production, reduced stability of cell membrane, reduced regulation of the 

intra- and extra-cellular balance of cations, and numerous nutritional and physiological 

disorders in plants (Koranski, 1988; Harrison and Bergman, 1981; Bergmann, 1992; 

Lyon and Garcia, 1944; Kiss, 1981). 

Factors that affect the toxicity of Mn and deficiency of Mg include the 

concentrations of Mn and Mg in the growth medium; growth medium and moisture 

content, nitrogen source, plant developmental stage, organic matter and pH, and 

concentrations of salts, particularly those of Ca, Fe and phosphorus (Foy et al., 1978; Goh 

and Haynes, 1978; Bachman and Miller, 1995; Harrison and Bergman, 1981; Le Mare, 

1977; Reddy and Mills, 1991; Hood et al., 1993). Small changes in these factors can 

determine the degree of Mn toxicity and Mg deficiency in a given crop. 
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7.2.1 Concentration of Mn in the Growth Medium 

The accumulation of Mn in the leaf tissue may result directly from applying 

excessive amounts of micronutrients. The continuous use of high levels of peat-lite 

fertilizers may cause problems if salt levels are not monitored carefully (Sheely, 1990). 

Preplant addition of micronutrients in the growth medium, combined with constant feed 

program, creates toxicity problem (Sheely, 1990). 

Large concentrations of Mn in the medium can induce Mg deficiency in the plant 

(Heenan and Campbell, 1981). Excess Mn may reduce Mg uptake by up to 50% (Kazda 

and Znacek, 1989) due to competition (Heenan and Campbell, 1981). The competition 

between Mg and Mn for binding sites in the roots during absorption, inhibits absorption of 

Mg, since Mn competes more effectively than Mg and even blocks the binding sites for Mg 

(Horst and Marshner, 1990). 

7.2.2 Concentration of Mg in the Growth Medium 

A second aspect of Fe/Mn toxicity disorder may be deficiency of Mg due in part 

to low medium pH and to lack of Mg in most of the fertilizers used in greenhouse crop 

production (Koranski, 1988). Manganese toxicity often can be counteracted by a large 

supply of Mg (Elamin and Wilcox, 1986a; 1986b; Lohnis, 1960). Magnesium reduced 

Mn uptake both by excised and intact roots of several plant species (Harrison and 

Bergman, 1981; Lohnis, 1960; Maas et al., 1969). 

The ability of Mg to reduce Mn uptake depends on the concentration of Mn in the 

medium. Elamin and Wilcox (1986a) found that at high Mn concentration. Mg had little 

effect on Mn uptake and the plants were able to accumulate toxic levels of Mn at all 

levels of Mg supply. 
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Although increasing the concentration of Mg in the medium can alleviate the 

detrimental effects of high concentrations of Mn, Mg application is not a practical 

method for the avoidance of Mn toxicity (Davis, 1996). Indeed, using Mg to prevent Mn 

toxicity would require large applications of Mg, which could lead to serious nutritional 

imbalance because Mg would interfere with Ca uptake. 

In summary, Fe/Mn toxicity disorder in marigold may be caused by Mn toxicity 

since the affected plants contain high concentrations of Mn in their tissue. Basic factors 

affecting Mn toxicity in plants include Mg deficiency. The relationship of Mg deficiency 

to the incidence of Fe/Mn toxicity in marigold needs to be investigated. 

In spite of the fact that Fe/Mn toxicity has been related to high concentrations of 

Mn and low concentrations of Mg in the affected leaves, no research has been done on 

the effect of Mg nutrition on manganese toxicity in marigold. Available information on 

the interaction between Ca and Mn are meager. This experiment was designed to 

investigate the effect of Mg on Mn toxicity in marigold. 

The objectives were: (1) to determine the effect of Mg on the sensitivity of 

marigold to high levels of Mn in the nutrient solution; (2) to determine the effect of Mg 

on the critical toxicity solution concentration of Mn; and (3) to determine the effect of the 

interaction between Mg and Mn in the nutrient solution on Mn, Fe, Ca and Mg in the 

plant tissue. 

7.3 MATERIALS AND METHODS 

Seeds of marigold (Tagetes erecta L. ‘First lady’) were planted in vermiculite #3 

on January 13, 1998 in the greenhouse. Three-week-old seedlings were transplanted into 

800ml half strength nutrient solution in 1 liter opaque plastic containers. The basal 
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nutrient solution contained 48 mg/1 Mg, 100 mg/1 Ca, 79 mg/1 potassium, 63 mg/1 

phosphorus, 75 mg/1 nitrate-nitrogen, 75 mg/1 ammonium-nitrogen, 2.3 mg/1 Fe, 0.02 

mg/1 copper and 0.5 mg/1 of Mn, boron, zinc and molybdenum. After 10 days of growth 

in the half strength basal nutrient solution, the seedlings were transferred to treatment 

solutions. Manganese treatments were 0.5; 2.5; 4.5 and 6.5mg/l nutrient solution. 

Manganese was added to the nutrient solution as MnC^. Magnesium treatments were 5; 

10; 15; and 20mg/l. Magnesium was added as MgS04-7H20. Based on the results of 

Chapter 3, the concentration 20mg/l is considered optimal concentration of Mg for 

marigold growth. Magnesium at 10mg/l is considered incipient deficiency solution 

concentration of Mg in marigold. This concentration is enough to fulfill the metabolic 

needs of the plant but not enough for optimal growth. The hydroponic cultures were 

aerated continuously and the nutrient solution was replaced with a fresh one every week. 

Deionized water was added to the containers as needed to maintain volume. 

Eighty containers consisting of 4 Mn treatments, 4 Mg treatments and 5 replicates 

were placed on two benches in the greenhouse in a completely randomized design. Plants 

were grown under ambient light conditions. The temperature was maintained as closely as 

possible to 21/17 °C (day/night). The plants were harvested on March 29,1998 into roots, 

stems, old leaves and young leaves separately. The roots were rinsed with tap water then 

deionized water to discard nutrients from the root surface. 

The plant parts were dried at 70 °C for 48 hours and weighed. The different plant 

parts were ground (20 mesh) and analyzed by inductive coupled plasma (ICP) (Appendix B) 

for Mn, Fe, Ca, and Mg contents. The data obtained were statistically analyzed using 

166 



Analysis of Variance (ANOVA) and procedure Mixed to test for significance of main 

effects and interactions. Terms were considered significant at /?<0.05. 

7.4 RESULTS AND DISCUSSION 

7.4.1 Symptoms 

The nature of the symptoms and their severity depended on the treatment. The 

plants grown in 20/0.5 and 15/0.5 mg/1 Mg-Mn did not show any symptoms and they 

looked big and healthy, while the plants grown in 15/2.5 and 15/4.5 mg/1 Mg-Mn did not 

show significant symptoms but the plants were smaller. The plants grown in 20/6.5 and 

15/6.5 mg/1 Mg-Mn were small and showed typical symptoms of Mn toxicity as 

described in chapter 5: the symptoms appeared in the old leaves first then spread toward 

the rest of the plant. The symptoms started as small blackish brown spots on the leaves. 

Patches of chlorosis appeared on the tips and margins of the leaves afterward. When the 

plants were exposed to the same treatment for a longer time the chlorotic areas became 

necrotic. 

The plants treated with 10/6.5, 5/6.5, 10/4.5, and 5/4.5 mg/1 Mg-Mn showed 

symptoms. The symptoms, however, were much more severe in the plants treated with 

5/6.5 and 5/4.5 Mg-Mn. The plants were also very small per comparison to the plants 

grown with the other treatments. The symptoms included small brown spots on the 

surface area of the leaves, deformation of the leaves, interveinal and marginal chlorosis, 

rolling and crinkling of necrotic leaf margins and brown brittle roots. After being 

exposed to the treatment for a longer time, necrosis developed on the margins and at the 

tips of the leaves. 
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The plants treated with 10 mg/1 Mg-0.5 mg/1 Mn or 10 mg/1 Mg-2.5 mg/1 Mn did 

not show significant symptoms but the plants were smaller than those treated with 10 

mg/1 Mg-0.5 mg/1 Mn. 

The small brown spots shown in the affected leaves and the brown color of the 

roots may have been associated with accumulation of Mn as precipitated Mn oxide 

(MnC^) in the leaves and roots (Horst and Marshner, 1978a, b, c). 

Interveinal chlorotic patches of the leaves may have been associated with Mn- 

induced Fe deficiency (Horst and Marshner, 1978a). Local accumulations of Mn may 

interfere with Fe dependent metabolic functions and thus lead to Fe deficiency (Horst and 

Marshner, 1978a). 

The deformation and curling of the leaves may be due to deficiency of plant 

hormones. Toxic concentrations of Mn increase the activities of polyphenoloxidase, 

peroxidase and IAA oxidase, which result in decomposition of auxins (Morgan et al., 

1966; Cheng and Ouelette, 1971; Kamprath and Foy, 1971; Foy, 1973). 

7.4.2 Dry Weight 

Manganese concentration in the nutrient solution had a highly significant effect 

on root dry weight, shoot dry weight and total dry weight. When Mn in the solution 

increased the dry weight of the roots and shoots decreased (Figure 7.1). 

Magnesium concentration in the solution had a significant effect on the root dry 

weight, but it had no significant effect on the shoot and total dry weight. As Mg 

concentration decreased in the solution, the root dry weight decreased (Figure 7.2). 

Under the conditions of this experiment, there was no significant effect of the 

interaction between Mg and Mn in the solution on the plant dry weight (Appendix G). 
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Figure 7.1: Effect of Mn level in solution on the plant 
dry weight (see Appendix G, Table 1) 
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Figure 7.2: Effect of Mg level in solution on the 
plant dry weight (see Appendix G, Table 1) 
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The reduced plant growth associated with high concentrations of Mn in the 

medium may have resulted from the depression of phytohormone metabolism by excess 

Mn (Marshner, 1978a). 

Low Mg in the nutrient solution resulted in a decrease in the root dry weight and 

did not affect the shoot dry weight (Figure 7.2). These results are different from what 

was expected considering the crucial role of Mg in plant metabolism (Chapter 3). The 

results obtained in this experiment may have been due to the concentrations of Mg used 

in this experiment combined with the conditions of growth. 

7.4.3 Critical Toxicity Concentration of Mn 

In this experiment, plant appearance suggested that low concentrations of Mg in 

the nutrient solution decreased the critical toxicity solution concentration of Mn in 

marigold from 6.5 to 2.5mg/l. At optimal concentration of Mg (20 mg/1), in the medium, 

2.5 and even 4.5mg Mn/1 did not cause any significant symptoms to appear. However, 

when Mg level in the medium was at the incipient deficiency concentration (10mg/l), 

concentrations of Mn as low as 4.5 resulted in significant symptom development that 

affected the plant appearance. These results suggest that low concentrations of Mg in the 

medium decrease the critical toxicity concentration of Mn. Some researchers actually 

found that Mg reduces Mn uptake by plants (Harrison and Bergmann, 1981; Lohnis, 

1960; Maas et al., 1969). 

7.4.4 Nutrient Concentrations in the Plant Tissues 

7.4.4.1 Manganese 

Manganese in the solution had a highly significant effect on Mn in the roots, 

young leaves and old leaves and no significant effect on Mn in the stem (Appendix G). 
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Increased Mn level in the medium resulted in increased Mn in the roots, old leaves and 

young leaves (Figure 7.3). The increase of Mn in the roots and leaves as a result of 

increased Mn in the nutrient solution was not affected by Mg in the nutrient solution 

(Figure 7. 3a). In other words the interaction between Mn and Mg in the nutrient solution 

was not significant (Appendix G). 

7.4.4.2 Iron 

Manganese in the nutrient solution had no significant effect on Fe in the new 

leaves. Manganese level, however had a highly significant effect on Fe in the roots, stem 

and old leaves (Appendix G). As Mn level in the nutrient solution increased, Fe 

concentration increased in the roots and decreased in the stem and old leaves (Figure 7.4). 

This effect of Mn in the nutrient solution on Fe level in the plant tissue was not affected 

by Mg concentration in the nutrient solution. In other words, the interaction between Mn 

and Mg was not significant (Appendix G). 

Some of the symptoms of Mn toxicity in marigold were bleached patches on the 

leaves, which are typical symptoms of Fe deficiency. Perhaps excess Mn in the medium 

caused a Mn-induced Fe deficiency. Yet, the concentration of Fe in the roots increased 

as the concentration of Mn increased in the medium. This suggests that high Mn 

concentration in the medium does not inhibit Fe absorption, but rather transport or 

accumulation in the shoots. Others have found that excess Mn in the medium does not 

affect Fe absorption, but it unfavorably affects Fe action in the plant tissues (Rippel, 

1923; Chapman, 1931; Millikan, 1949). 

Somers and Shive (1942) suggested that the unfavorable effect of excess Mn on 

Fe may be due to the Mn catalysis of the oxidation of the physiologically active form of 
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Mn (mg/liter) in solution 

Figure 7.3: Effect of Mn level in solution on the level of 
Mn in the plant tissue (see Appendix G, Table 2) 
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Figure 7.3a: Effect of Mn level in solution on the level of Mn 
in the plant tissue under low and optimal levels 
of Mg in solution (see Appendix G, Table 2) 
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Figure 7.4: Effect of Mn level in solution on the level 
of Fe in the plant tissue (see Appendix G, Table 2) 
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Fe (Fe2+) to the inactive form (Fe3+). They also suggested the probable formation of an 

\ 

insoluble ferric-phosphate-organic complex. 

Magnesium concentration in the medium had no significant effect on Fe in the 

shoots, but had a highly significant effect on Fe in the roots (Appendix G). As the Mg in 

the solution decreased below 15mg/l, Fe in the roots increased (Figure 7.5). 

Our results differ from those reported by Straub and Wurm (1971). They found 

that Mg concentration in the medium affected Fe concentration in the leaves. They also 

found that the leaves of Mg deficient apple plants had low Fe contents. In a study on 

maize and sunflower plants, Scherer (1978) found that Mg level was high in the plant 

tissue when the plants were deficient in Fe. Scholl (1979a, b) reported the same results. 

They found that Mg content increased from 9% in normal leaves to 14% in Fe deficient 

leaves. 

7.4.4.3 Calcium 

Manganese in the solution had no significant effect on Ca concentration in the 

roots and stem (Appendix G). It however had a significant effect on Ca concentration in 

the new leaves and a highly significant effect on Ca concentration in the old leaves 

(Appendix G). As Mn in the solution increased, Ca decreased in the leaves (Figure 7.6). 

This decrease of Ca in the leaves due to excess Mn was not affected by Mg level in the 

medium. In other words, the interaction between Mn and Mg in the medium was not 

significant (Appendix G). 

These results are similar to those of Bekker et al. (1994), Foy et al. (1981) and 

Horst and Marshner (1978a). They found that Ca content of cotton, been and peanut 

decreased markedly as the Mn concentration in the medium increased. Clark et al. (1981) 
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Figure 7.5: Effect of Mg level in solution on the level 
of Fe in the plant tissue (see Appendix G, Table 2) 
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Figure 7.6: Effect of Mn level in solution on the level 
of Ca in the plant tissue (see Appendix G, Table 2) 
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and Galvez et al. (1989) also found that excess Mn concentration in the nutritive medium 

suppressed Ca in the plant tissue. 

Excess Mn inhibits the translocation of Ca into the shoot apex (Horst and 

Marshner, 1990). This inhibition might be related to the fact that high Mn levels 

decrease the cation exchange capacity of the leaf tissue (Horst and Marshner, 1978a) and 

decrease the IAA levels in the areas of new growth (Morgan et al., 1966; Morgan et al., 

1976). Auxin was reported to be responsible for the formation of new binding sites for 

the transport of Ca to the apical meristems (Horst and Marshner, 1978a). 

Under the conditions of this experiment, Mg in the solution had no significant 

effect on Ca concentration in the plant tissue (Appendix G). 

7.4.4.4 Magnesium 

Manganese concentration in the solution had a highly significant effect on the 

overall concentration of Mg in the plant (Appendix G). The effect of Mn in the medium 

on Mg in the plant tissue was the same regardless of the plant part. In other words the 

interaction between Mn level in the medium and plant part was not significant (Appendix 

G). Results show that the overall Mg concentration in the plant tissue decreased as Mn in 

the nutrient solution increased (Figure 7.7). This decrease was not affected by Mg 

concentration in the solution. Indeed, the interaction between Mn and Mg in the nutrient 

solution was not significant (Appendix G). 

The decrease in Mg in the plant due to high concentration of Mn in the solution 

may be due to reduced Mg uptake by marigold. Heenan and Campbell (1981) found that 

large concentrations of Mn in the medium can induce Mg deficiency in the plant (Mn- 

induced Mg deficiency). Kazda and Znacek (1989) and Heenan and Campbell (1981) 
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Figure 7.7: Effect of Mn level in solution on the level 
of Mg in the plant tissue (see Appendix G, Table 2) 
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reported that excess Mn may reduce Mg uptake by up to 50% due to competition. The 

competition between Mg and Mn for binding sites in the roots during absorption, inhibits 

Mg absorption, since Mn competes more effectively than Mg and even blocks the binding 

sites for Mg (Horst and Marshner, 1990). 

Magnesium concentration in the solution had a highly significant effect on Mg in 

the roots, stems, old leaves and young leaves (Appendix G). As Mg in the nutrient 

solution increased. Mg in the plant tissue increased as well (Figure 7.8). 

7.5 CONCLUSION 

When Mg was low in the solution, the critical toxicity solution concentration of 

Mn in marigold decreased from 4.5 to 2.5 mg/1. High levels of Mn in the nutrient 

solution combined with low concentration of Mg (10 mg/1) (incipient deficiency 

concentration) resulted in relatively stunted plants with curled deformed leaves. The 

leaves showed chlorotic areas as well as small brown spots. The tips of the leaves and 

edges were necrotic and the roots were brownish. 

The small brown spots and the brown color of the leaves may have resulted from 

localized precipitations of Mn as Mn oxide (MnC^). The chlorosis on the leaves may 

have been due to Mn-induced Fe deficiency. 

The reduced critical toxicity concentration of Mn at low levels of Mg in the 

solution does not seems to be due to increased Mn in the plant tissue as a results of high 

Mn and low Mg in the solution. Magnesium level in the solution did not affect the effect 

of high Mn in the solution on Mn in the plant tissue. The reduced critical toxicity 

concentration of Mn may be due just to the conditions of this experiment. 
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Figure 7.8: Effect of Mg level in solution on the level 
of Mg in the plant tissue (see Appendix G, Table 2) 
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Results of this experiment suggest that the interaction between Mn and Mg in the 

nutrient solution had no significant effect on Mn, Ca or Mg concentrations in the plant 

tissue. Large concentrations of Mn in the nutrient solution resulted in increased Mn in all 

the plant parts. This increase was not affected by Mg in the nutrient solution. 

High Mn in the nutrient solution resulted in increased Fe in the roots and 

decreased Fe in the shoots. This effect of Mn in the nutrient solution on Fe in the plant 

tissue was not affected by Mg in the nutrient solution. 

High Mn in the nutrient solution resulted in decreased Ca in the leaves and 

decreased overall concentration of Mg in the plant tissue. Magnesium did not affect the 

decrease of Ca and Mg in the plant tissue due to excess Mn in solution. 

Decreased Mg in the plant tissue due to excess Mn in the solution may have 

resulted from reduced Mg uptake by marigold. Manganese competes with Mg for the 

binding sites in the roots during absorption. 

Decreased Fe in the shoots may have been due to the oxidation of the 

physiologically active form of Fe (Fe2+) to the inactive form (Fe3+) or to the formation of 

insoluble ferric-phosphate-organic complex. 

Decreased Ca may have been due to inhibited translocation of Ca into the shoot 

apex. Manganese decreases the cation exchange capacity of the leaf tissue and decreased 

the IAA levels in the areas of new growth. Decreased auxin results in limited formation 

of new binding sites for the transport of Ca to the apical meristems. 

In conclusion, even though symptoms of manganese toxicity appeared at 4.5 

instead of 6.5 mg/1 Mn in the solution, Mg does not seem to have an effect in preventing 
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or reducing the occurrence of manganese toxicity in marigold because it does not affect 

Mn level in the plant tissue. 
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CHAPTER 8 

MANGANESE TOXICIY IN MARIGOLD 
AS 

AFFECTED BY CALCIUM AND MAGNESIUM 

8.1 ABSTRACT 

Iron/manganese toxicity disorder in marigold has been related to high 

concentrations of Mn and low concentrations of Ca and Mg in the affected leaves. 

Preplant addition of micronutrients in the media combined with constant feed program 

and low medium pH create favorable conditions for the development of Mn toxicity in 

greenhouse crops. Deficiency of Ca or Mg is due in part to low medium pH and to a lack 

of Mg and Ca in most of the fertilizers used in greenhouse production. To investigate the 

effect of Ca and Mg on Mn toxicity effects (growth, appearance, and nutrient 

concentrations), a solution culture study with various Ca, Mg and Mn concentrations was 

conducted. 

The treatments 0.5/20/10 mg/1 Mn-Ca-Mg concentrations resulted in stunted 

plants with curled leaves, a significant number of small brown spots, interveinal 

chlorosis, and necrotic areas on the tips and margins of the leaves. The treatments 

0.5/20/20, 0.5/100/20, and 4.5/100/20 resulted in stunted plants relatively free of 

symptoms. 

Low concentrations of Mg and Ca (incipient deficiency concentration of Mg and 

Ca) reduced the critical toxicity concentration of Mn in marigold from 4.5 to 0.5 mg/1. 

Large concentrations of Mn in the medium affected plant appearance, reduced the 

dry weight of the plants, and increased the concentration of Mn in all the plant parts. 
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This increase was greater when Ca level in the medium was low, but was not as much 

affected by the concentration of Mg. 

High Mn in the solution also resulted in increased Fe in the roots. This increase 

of Fe concentration in the roots was not affected by Mg in the solution, but was greater 

when Ca level in the solution was low. 

High concentrations of Mn in the nutrient solution resulted in increased Ca in the 

roots, stems, and new leaves. This increase in Ca was not affected by Mg but was greater 

when Ca level was high. High Mn in the nutrient solution resulted in increased Ca in the 

old leaves when Mg level was low in solution. Calcium in the old leaves was reduced 

when Mg in solution was high. 

High Mn in solution resulted in increased Mg in the roots when Ca level in 

solution was low. Excess Mn in solution also resulted in increased Mg in the stem when 

Ca level in solution was low and reduced Mg when Ca level in solution was high. High 

Mn had no effect on Mg in the old leaves, but resulted in increased Mg in the new leaves 

when Ca level in solution was low. 

8.2 INTRODUCTION AND LITERATURE 

High Mn supply disrupts various aspects of plant metabolism, leading to serious 

physiological and morphological disorders. Manganese toxicity has been associated with 

reduced enzyme and hormone activities, inhibition of ATP synthesis, and reduced 

respiration rates (Heenan and Cambell, 1981; Sircar and Amin, 1974; Morgan et al., 

1966). 

Factors that affect the toxicity of Mn, deficiency of Ca, and deficiency of Mg 

include the concentrations of Mn, Ca and Mg in the growth medium; growth medium and 

192 



moisture content, nitrogen source, plant developmental stage, organic matter and pH, and 

concentrations of salts, particularly those of Ca, Fe and phosphorus (Foy et al., 1978; Goh 

and Haynes, 1978; Bachman and Miller, 1995; Harrison and Bergman, 1981; Le Mare, 

1977; Reddy and Mills, 1991; Hood et al., 1993). Small changes in these factors can 

determine the degree of Mn toxicity. Mg deficiency, and Ca deficiency in a given crop. 

8.2.1 Concentration of Mn in the Growth Medium 

The accumulation of Mn in the leaf tissue may result directly from applying 

excessive amounts of micronutrients. The continuous use of high levels of peat-lite 

fertilizers may cause problems if salt levels are not monitored carefully (Sheely, 1990). 

Preplant addition of micronutrients in the growth medium, combined with a constant feed 

program, creates toxicity problem (Sheely, 1990). 

High concentrations of Mn in the growth medium can also inhibit the uptake of 

Ca by plants and thus induce Ca deficiency (Bergmann, 1992). 

High concentrations of Mn in the medium can induce Mg deficiency in the plant 

(Mn-induced Mg deficiency) (Heenan and Campbell, 1981). Excess Mn may reduce Mg 

uptake by up to 50% (Kazda and Znacek, 1989) due to competition (Heenan and Campbell, 

1981). The competition between Mg and Mn for binding sites on the roots during 

absorption, inhibits absorption of Mg, since Mn competes more effectively than Mg and 

even blocks the binding sites for Mg (Horst and Marshner, 1990). 

Manganese toxicity can induce Ca deficiency "crinkle leaf' in dicotyledons such as 

cotton (Foy et al., 1981) and bean (Phaseolus vulgaris L.)(Horst and Marshner, 1978a). 

When the supply of Mn is excessive, the translocation of Ca into the shoot apex, especially, 

is inhibited (Horst and Marshner, 1990). This inhibition might be related to the fact that 
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high Mn levels decrease the cation exchange capacity of the leaf tissue (Horst and Marshner, 

1978a) and decrease the IAA levels in the areas of new growth (Morgan et al., 1966; 

Morgan et al., 1976). Auxin was reported to be responsible for the formation of new 

binding sites for the transport of Ca to the apical meristems (Horst and Marshner, 1978a). 

Manganese-induced suppressions in concentrations of Ca have been reported (Clark 

et al., 1981; Galvez et al., 1989). Bekker et al. (1994) found that Ca content of peanut 

decreased markedly as the Mn concentration of culture solution increased. 

8.2.2 Concentration of Ca in the Growth Medium 

Anoter aspect of Fe/Mn toxicity disorder may be a deficiency of Ca due, in part, 

to low medium pH and to a lack of Ca in many of the fertilizers used in the greenhouse 

crop production (Koranski, 1988). The toxicity effects of high concentrations of Mn in 

the plant tissue are considerably modified by Ca status. Manganese toxicity is much 

more severe when the Ca level in the plant tissue is low (Clark et al., 1981; Galvez et al., 

1989; Foy et al., 1981; Horst and Marshner, 1978; Keisling and Fuqua, 1979; Wallace et 

al., 1945). Le Mare (1972, 1977) found that large concentrations of Ca in the medium 

could alleviate the harmful effects of Mn toxicity. The plants grown in a medium that 

supplied little Ca were very sensitive to Mn toxicity (Le Mare, 1972; Le Mare, 1977). 

Foy et al. (Foy et al., 1978) reported the importance of Ca/Mn ratios in the 

tolerance of plants to Mn toxicity. Ratios above 80 were found desirable for a balanced 

nutrition in peanut (Bekker et al., 1994). 

Although increasing the concentration of Ca in the medium can alleviate the 

detrimental effects of high concentrations of Mn, optimal concentration (60 mg/kg) of Ca 

is crucial for optimal plant growth (Morris and Pierre, 1947). Morris and Pierre (1947) 
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pointed out that high Ca levels (300 mg/kg) in the medium can reduce plant growth 

regardless of the concentration of Mn in the medium, probably because of unbalanced 

nutrition. 

Increased Ca levels in the growth medium often decreased Mn absorption and 

toxicity (Heenan and Carter, 1975; Robson and Loneragan, 1970; Shuman and Anderson, 

1976; Hewitt, 1945). Vose and Jones (1963) found that increasing the Ca level in the 

solution culture reduced the adverse effects of high Mn level on suppressing the number of 

nodules on white-clover (Trifolium repens L.) roots. 

The Ca/Mn ratio was important in nodulation and Mn tolerance in soybean (Foy et 

al., 1978). Bekker et al. (1994) reported the importance of a Ca/Mn ratio above 80 for a 

desirable Ca/Mn balance in peanut tissue. Ouellette and Dessureaux (1958) found that Mn 

tolerant clones of alfalfa contained lower concentrations of Mn in their shoots and higher 

concentrations of Mn and Ca in their roots than the sensitive clones. In this study, Ca 

absorption seemed to regulate Mn toxicity by reducing Mn transport to shoots. Contrary to 

these findings. Chapman (1931) and Morris and Pierre (1947) found that Mn toxicity was 

not alleviated by additional Ca and was even greater at high Ca concentrations. 

The conflicting results between Hewitt (1945) and Chapman (1931) and Morris and 

Pierre (1947) may be due to the different crops used. Morris and Pierre (1947) pointed out 

that high Ca levels (300 mg/liter) in the nutrient solution can limit plant growth regardless of 

the concentration of Mn in the solution, probably because of unbalanced nutrient solution. 

Optimal Ca concentration (60 mg/liter) was crucial for best plant growth and Ca addition to 

the nutrient solution may have caused a nutritional imbalance to the plants. 
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Bergmann (1992) reported that Mg uptake is usually increased by liming. 

However, when liming become excessive or more frequent, the disproportion between 

the Ca and Mg ion concentrations causes Mg deficiency symptoms to develop on the 

plants. 

The uptake of Mg by plants and the interaction between the absorption of Mg and 

the absorption of Ca was investigated by Spear et al. (1978), McLean et al. (1972), and 

Christenson et al. (1973). Their studies showed that the Mg content in plant tissue was 

suppressed by Ca, but the effect depended on the concentration of the ions in the 

medium. 

Moor et al. (1961) and Maas and Ogata (1971) studied the influence of Ca 

concentration in solution on Mg uptake by excised barley and com roots, respectively. In 

both reports it was concluded that enhanced solution Ca concentrations reduced Mg 

uptake rate by suppressing the Mg transport capacity of the roots rather than competing 

with Mg for absorption sites. 

To provide optimal nutrition for plants it is important to achieve a harmonious 

balance between Ca and Mg. Wichmann (1976) found that the ratio of Mg to Ca content 

in the shoots was important when estimating whether cereal plants were adequately 

supplied with Mg. On the basis of their experiment Mg:Ca ratio should be 0.30 for 

adequate yield of wheat, barley and oats. Hao and Papadopoulos (2000) recommend 

300/50-80 mg/kg Ca/Mg for best yield and quality of tomato. 

8.2.3 Concentration of Mg in the Growth Medium 

Another factor affecting Fe/Mn toxicity disorder may be deficiency of Mg due in 

part to low medium pH and to lack of Mg in many of the fertilizers used in greenhouse 
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crop production (Koranski, 1988). Manganese toxicity often can be counteracted by a 

large supply of Mg (Elamin and Wilcox, 1986a; 1986b; Lohnis, 1960). Magnesium 

reduced Mn uptake both by excised and intact roots of several plant species (Harrison and 

Bergman, 1981; Lohnis, 1960; Maas et al., 1969). 

The ability of Mg to reduce Mn uptake depends on the concentration of Mn in the 

medium. Elamin and Wilcox (1986a) found that at high concentrations of Mn, Mg had 

little effect on Mn uptake and the plants were able to accumulate toxic levels of Mn at all 

levels of Mg supply. 

Although increasing the concentration of Mg in the medium can alleviate the 

detrimental effects of high concentrations of Mn, Mg application is not a practical 

method for the avoidance of Mn toxicity according to Davis (1996). Using Mg to prevent 

Mn toxicity would require large applications of Mg, which could lead to serious 

nutritional imbalance because Mg would interfere with Ca uptake. 

Although Fe/Mn toxicity disorder in marigold has been related to high 

concentrations of Mn and low concentrations of Mg and Ca in the affected leaves, no 

research has been done on the effect of Ca and Mg nutrition on Mn toxicity in marigold. 

Available information on the interaction among Ca, Mg and Mn are meager. This 

experiment was designed to investigate the effect of Mg and Ca on Mn toxicity in 

marigold. 

The objectives were: (1) to determine the effects of Mg and Ca on the sensitivity 

of marigold to high levels of Mn in the nutrient solution; (2) to determine the effects of 

Ca and Mg on the critical toxicity solution concentration of Mn; and (3) to determine the 
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effect of the interaction among Ca, Mg and Mn in solution on Mn, Fe, Ca and Mg in the 

plant tissue. 

8.3 MATERIALS AND METHODS 

Seeds of marigold (Tagetes erecta L. ‘First Lady’) were planted in vermiculite #3 on 

March 4,1998 in the greenhouse. Three-week-old seedlings were transplanted into 800ml 

half strength nutrient solution in 16 oz, opaque plastic containers. The basal nutrient solution 

contained 48 mg/1 Mg, 100 mg/1 Ca, 79 mg/1 potassium, 63 mg/1 phosphorus, 75 mg/1 

nitrate-nitrogen, 75 mg/1 ammonium-nitrogen, 2.3 mg/1 Fe, 0.02 mg/1 copper and 0.5 mg/1 of 

Mn, boron, zinc and molybdenum. After 10 days of growth in the half strength basal 

nutrient solution, the seedlings were transferred to treatment solutions. Manganese 

treatments were 0.5; 2.5; 4.5 and 6.5mg/l nutrient solution. Calcium treatments were 20 and 

100 mg/1 and Mg treatments were 10 and 20mg/l nutrient solution. Manganese was added as 

MnCh to the basal nutrient solution. Calcium was added as CaCl2-6H20 and Mg was added 

as MgSC>4-7Fl20. The concentration 100 mg/1 is considered optimal concentration of Ca 

and 20 mg/1 is considered the incipient deficiency concentration of Ca in marigold based on 

the results discussed in Chapter 4. The concentration 20 mg/1 is considered optimal 

concentration of Mg and 10mg/l is considered the incipient deficiency concentration of Mg 

in marigold (Chapter 3). Incipient deficiency concentrations of Ca and Mg are considered 

enough to fulfill the metabolic needs of the plant in Ca and Mg but they are not enough for 

optimal growth. The hydroponic cultures were aerated continuously and the nutrient 

solution was replaced with a fresh one every week. Deionized water was added to the 

containers as needed to maintain volume. 
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Eighty containers consisting of 4 Mn treatments, 2 Ca treatments, 2 Mg treatments, 

and 5 replicates were placed on two benches in the greenhouse in a completely randomized 

design. The temperature was maintained as closely as possible to 21/17 °C (day/night). The 

plants were harvested on April 21,1998 and separated into roots, stems, old leaves and 

young leaves. The young leaves are the leaves closest to the apical buds. The old leaves are 

the leaves located far from the apical buds. The roots were rinsed with tap water then 

deionized water to discard nutrients from the root surface. 

The plant parts were dried at 70 °C for 48 hours and weighed. The different plant 

parts were ground (20 mesh) and analyzed by inductive coupled plasma (ICP) (Appendix B) 

for Mn, Fe, Ca, and Mg contents. The data obtained were statistically analyzed using 

Analysis of Variance (ANOVA) and procedure Mixed (tests of Fixed Effects and tests of 

effect Slices) to test for significance of main effects and interactions. Terms were 

considered significant at /K0.05. 

8.4 RESULTS AND DISCUSSION 

8.4.1 Symptoms 

The nature of the symptoms and their severity depended on the treatment. The 

treatments 0.5/100/20 mg/1 (Mn/Ca/Mg) did not show any significant symptoms. 

0.5/20/20; 2.5/100/20; 4.5/100/20 did not show any significant symptoms but were 

smaller and bushier. The plants treated with 0.5/100/10; 0.5/20/10; 2.5/100/10; 

2.5/20/10; 4.5/100/10; 4.5/20/10 and 4.5/20/20 showed symptoms similar to those 

described for manganese toxicity in Chapter 5. All the plants grown in 6.5 mg/1 Mn 

showed significant symptoms and decrease in dry weight regardless of the concentrations 

of Ca and Mg. 
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The symptoms were severe on the plants treated with 0.6/20/10 and the plants 

were very small in comparison to the plants grown under the other treatments. 

Symptoms appeared in the old leaves first then spread toward the rest of the plant. They 

included small blackish, brown spots on the leaves, curled leaves, brown roots and 

chlorosis on the tips and margins of the leaves afterward. When the plants were exposed 

to the same treatment for a longer time the chlorotic areas became necrotic. 

The brown color of the roots and the curling of the leaves occurred mostly when 

high concentration of Mn was combined with low concentration of Ca in the nutrient 

solution. 

The small brown spots shown in the affected leaves and the brown color of the 

roots may be associated with accumulation of Mn as precipitated Mn oxide (MnC>2) in the 

leaves and roots (Horst and Marshner, 1978a, b, c). 

Interveinal chlorosis of the leaves may be associated with Mn-induced Fe 

deficiency. Local accumulations of Mn may interfere with Fe dependent metabolic 

functions and thus lead to Fe deficiency (Horst and Marshner, 1978a). 

The deformation and curling of the leaves may be due to deficiency of plant 

hormones. Indeed, toxic concentrations of Mn increase the activities of 

polyphenoloxidase, peroxidase and IAA oxidase, which result in decomposition of auxins 

(Morgan et al., 1966; Cheng and Ouelette, 1971; Kamprath and Foy, 1971; Foy, 1973). 

Horst and Marshner (1978c) reported that high concentrations of Mn reduced Ca 

translocation in the plant leaves. They believed that this reduced translocation of Ca in 

the leaves was responsible for the deformation and crinkling of the leaves. According to 

their findings, excess Mn increases IAA-oxidase activity, which reduces auxin level in 
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the leaves. Reduced auxin level inhibits cell enlargement and the creation of negative 

binding sited, thus reducing the translocation of Ca ions. 

8.4.2 Dry Weight 

Manganese concentration in solution had a highly significant effect on root, shoot 

and total dry weight. As Mn in solution increased, the root, shoot and total dry weight 

decreases (Figure 8.1). This decrease was more pronounced when the Ca level in the 

medium was low (Figure 8.2). 

Calcium concentration in the solution had a highly significant effect on the root 

and shoot dry weight. Low levels of Ca in the solution caused a decrease in the root and 

shoot dry weight (Figure 8.3). 

Magnesium concentration in solution had a significant effect on the root and total 

dry weight. Low level of Mg in solution caused a decrease in the root and total dry 

weight (Figure 8.4). 

Under the conditions of this experiment, there was no significant effect of the 

interaction between Mg and Mn in the medium on plant dry weight. The interaction, 

however, between Ca and Mn was significant (Appendix H). 

The reduced plant growth associated with high Mn in solution may have resulted 

from the depression of phytohormone metabolism by excess Mn (Marshner, 1978a). 

Low Ca and Mg in solution resulted in a decrease in the root and shoot dry weight 

(Figure 8.3; 8.4). This decrease in plant growth was probably due to the crucial roles of 

these elements in plant metabolism. 
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Figure 8.1: Effect of Mn level in solution on the plant 
dry weight (see Appendix H, Table 1) 
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Figure 8.2: Effect of Mn in solution on the plant dry weight 
under low and optimal Ca in solution (see Appendix H, Table 1) 
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Figure 8.3: Effect of Ca level in solution on the plant 
dry weight (see Appendix H, Table 1) 
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Figure 8.4: Effect of Mg level in solution on the plant 
dry weight (see Appendix H, Table 1) 
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8.4.3 Critical Toxicity Concentration of Mn 

Plant appearance suggested that low Ca and/or Mg in solution decreased the 

critical toxicity concentration of Mn in marigold from 6.5 to 0.5 mg/1. At optimal 

concentration of Mg in solution, 2.5 and even 4.5 mg Mn/1 did not cause any significant 

symptoms to appear. However, when Mg level in the medium was low (incipient 

deficiency concentration), and/or Ca level in solution was low, Mn as low as 2.5 resulted 

in the appearance of symptoms in the affected plants. These results suggest that low Mg 

and/or Ca in solution can decrease the critical toxicity solution concentration of Mn. 

Some researchers have found that Mg reduces Mn uptake by plants (Harrison and 

bergmann, 1981; Lohnis, 1960); Maas et al., 1969). Other researchers have found that 

high levels of Ca in the medium reduce Mn absorption and toxicity (Heenan and Carter, 

1975; Robson and Loneragan, 1970; Shuman and Anderson, 1976; Hewitt, 1945). 

8.4.4 Nutrients in the Plant Tissue 

8.4.4.1 Manganese 

Manganese in solution had a highly significant effect on Mn in the roots, stem, 

old leaves and young leaves (Appendix H). As Mn in solution increased, Mn 

concentration in the roots, stems, old leaves and young leaves also increased (Figure 8.5). 

This increase was greater in all plant parts when Ca level in solution was low (Figure 8.6, 

8.7, 8.8, 8.9). The increase in Mn in the different plant parts as a response to Mn increase 

in solution was slightly greater when the level of Mg in solution was low (Figure 8.10, 

8.11,8.12,8.13). 

The greater increase of Mn in plant parts when Ca level in solution was low was 

probably due to the interaction between Mn and Ca solution. High levels of Ca in the 
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Figure 8.5: Effect of Mn level in solution on the level 
of Mn in plant tissue (see Appendix H, Table 2) 
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Figure 8.6: Effect of Mn level in solution on the Mn level in 
the roots under low and optimal levels of Ca 
(see Appendix H, Table 2) 
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Figure 8.7: Effect of Mn level in solution on the Mn level in 
the stem under low and optimal levels of Ca 
(see Appendix H, Table 2) 
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Figure 8.8: Effect of Mn level in solution on the Mn level in the 
old leaves under low and optimal levels of Ca 
(see Appendix H, Table 2) 
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Figure 8.9: Effect of Mn level in solution on Mn level in the 
new leaves under low and optimal levels of Ca 
(see Appendix H, Table 2) 

211 



M
n 

(m
g/

K
g 

D
W

) 
in
 t

h
e 

ro
o

ts
 

3000 

2500 

2000 

1500 

1000 

500 - 

0 

Low Ca*’ 

High Ca* 

0 

Mn (mg/liter) in solution 

Figure 8.10: Effect of Mn level in solution on the Mn level in 
the roots under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.11: Effect of Mn level in solution on Mn level in 
the stem under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.12: Effect of Mn level in solution on Mn level in the 
old leaves under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.13: Effect of Mn level in solution on Mn level in the 
new leaves under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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growth medium reduce Mn absorption and toxicity in plants (Heenan and Carter, 1975; 

Robson and Loneragan, 1970; Shuman and Anderson, 1976; Hewitt, 1945). This decrease 

in Mn absorption is thus reduced when Ca level in the medium is low. 

The slight accentuation of Mn increase in plant parts when Mg in solution was 

low was probably due to the interaction between Mn and Mg in solution. High levels of 

Mg in the growth medium can reduce Mn uptake by plants (Harrison and Bergman, 1981; 

Lohnis, 1960; Maas et al., 1969). This decrease in Mn uptake is thus reduced when Mg 

level in the medium is low. 

Calcium concentration in solution had a highly significant effect on Mn in the 

roots, stem, old leaves and young leaves (Appendix H). When Ca in the solution was low, 

Mn was high in the roots, stem, old leaves and young leaves (Figure 8.14). 

The effect of Ca in solution on Mn concentration in the different plant parts was 

greater when Mg level in the medium was low (Figure 8.15, 8.16, 8.17, 8.18, 8.18a). 

The finding that high level of Ca in solution resulted in lower concentration of Mn 

in the plant tissues agree with those of Shuman and Anderson (1976), who found that high 

levels of Ca in the nutritive medium decreased Mn absorption in plants. Other researchers 

also found similar results (Heenan and Carter, 1975; Robson and Loneragan, 1970; Hewitt, 

1945). 

The accentuation of the effect of Ca in solution on Mn in the different plant parts 

when Mg in solution was low was probably due to the interaction between Mn and Mg in 

solution. In fact, Harrison and Bergman (1981) and other researchers found that high 

levels of Mg in the growth medium can reduce Mn uptake by plants (Lohnis, 1960; Maas et 

al., 1969). 
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Figure 8.14: Effect of Ca level in solution on Mn level 
in the plant tissue (see Appendix H, Table 2) 
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Figure 8.15: Effect of Ca level in solution on Mn level in 
the roots under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.16: Effect of Ca level in solution on Mn level in 
the stem under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.17: Effect of Ca level in solution on Mn level in the 
old leaves under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.18: Effect of Ca level in solution on Mn level in the 
new leaves under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.18a: Effect of Mn level in solution on the level of Mn 
in the plant tissue under different levels of Ca 
and Mg in solution (see Appendix H, Table 2) 

222 



Magnesium concentration in solution had a highly significant effect on the overall 

concentration of Mn in the plant tissue but there was no significant interaction between 

Mg in solution and the individual plant parts (Appendix H). Manganese concentration 

was high in the plant tissue when Mg level was low in solution (Figure 8.19). These 

results may be due to the effect of Mg in solution on Mn absorption by plants. Indeed, 

when Mg level in the medium is high, Mn absorption is reduced (Harrison and Bergman, 

1981; Lohnis, 1960; Maas et al., 1969). When Mg level in the medium is low, Mn 

absorption is not reduced and Mn in the plant tissue can reach high concentrations. 

8.4.4.2 Iron 

Manganese concentration in solution had no significant effect on Fe in the stem 

and leaves, but did have a highly significant effect on Fe in the roots (Appendix H). As 

Mn level in solution increased, Fe in the roots also increases (Figure 8.20). This increase 

in Fe was much greater when Ca level solution was low (Figure 8.21). Magnesium in 

solution had no effect on the Fe increase in the roots (Appendix H). 

Some of the symptoms of Mn toxicity in marigold were bleached or chlorotic 

patches on the leaves, which are similar to the typical symptoms of Fe deficiency. These 

findings may indicate that excess Mn in the solution causes a Mn-induced Fe deficiency. 

Yet, Fe increased in the roots as Mn increased in the solution. This suggests that high 

Mn concentration in the medium does not inhibit Fe absorption. Other researchers have 

found that excess Mn in the medium does not affect Fe absorption by plants but it 

unfavorably affects Fe action in the plant tissues (Rippel, 1923; Chapman, 1931; 

Millikan, 1949). 

223 



1200 

<D 
Z5 
CO 
CO 

c 
ctf 
Q_ 
© 

c 

5 
o 

C 

1000 

800 

600 

400 

200 

0 
10 20 

Mg (mg/liter) in solution 

Figure 8.19: Effect of Mg level in solution on the level of Mn 
in the plant tissue (see Appendix H, Table 2) 
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Figure 8.20: Effect of Mn level in solution on the level of Fe 
in the plant tissue (see Appendix H, Table 2) 
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Figure 8.21: Effect of Mn level in solution on Fe level in the 
roots under low and optimal levels of Ca 
(see Appendix H, Table 2) 
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Somers and Shive (1942) reported that the unfavorable effect of excess Mn on Fe 

may be due to the Mn catalysis of the oxidation of the physiologically active form of Fe 

(Fe2+) to the inactive form (Fe3+). They also reported the probable formation of an 

insoluble ferric-phosphate-organic complex. 

The greater increase in Mn in the plant tissue when Mn was high and Ca was low 

in the solution may be due to the interaction between Mn and Ca. Indeed, high a 

concentration of Ca in the medium reduces Mn absorption by plants (Shuman and 

Anderson, 1976; Heenan and Carter, 1975; Robson and Loneragan, 1970; Hewitt, 1945). 

Low levels of Ca do not have this unfavorable effect on Mn absorption. 

Calcium concentration in solution had no effect on Fe concentration in the stems 

and leaves but had a highly significant effect on Fe concentration in the roots (Appendix 

H). Iron level in the roots was high when Ca in solution was low and the opposite was 

also true (Figure 8.22). Our results agree with Rutland (1971), who found that Ca ions 

-> i 

actually inhibit Fe uptake and translocation by precipitating Fe compounds both outside 

and inside the plant. They also found that Fe accumulated in the nerves of chlorotic 

azalea leaves under the influence of Ca(HC03)2. 

Under the conditions of the present experiment. Mg in the solution had no 

significant effect on Fe concentration in any part of the plant (Appendix H). These 

results differ from those reported by Straub and Wurm (1971). They found that Mg 

concentration in the medium affected Fe concentration of the leaves. They also found 

that the leaves of Mg deficient apple plants had low Fe contents. In a study on maize and 

sunflower plants, Scherer (1978) found that Mg level was high in the plant tissue when 
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Figure 8.22: Effect of Ca level in solution on the level of 
Fe in the roots (see Appendix H, Table 2) 
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the plants were deficient in Fe. Scholl (1979a, b) reported the same results finding that 

Mg content increased from 9% in normal leaves to 14% in Fe deficient leaves. 

8.4.4.3 Calcium 

Manganese in solution had a highly significant effect on the overall Ca in the 

plant tissue (Appendix H). As Mn in the solution increased, the overall concentration of 

Ca in the plant tissue also rose (Figure 8.23). This increase was greater when Ca in 

solution was high (Figure 8.24) and the Mg level was low (Figure 8.25). 

Manganese effect on Ca in the plant tissue was dependent on plant part and on 

Mg in the solution. High Mn in the solution caused an increase in Ca concentration in the 

roots, stems, and new leaves regardless of the Mg level in the solution. This increase of 

Ca was grater when the Mg level in solution was low (Figures 8.26; 8.27; 8.28). In the 

old leaves, excess Mn in the solution caused an increase of Ca when Mg level was low in 

the solution and caused a decrease in Ca when Mg was high (Figure 8.29). 

Our results are different from those of Bekker et al. (1994), Foy et al. (1981) and 

Horst and Marshner (1978a), who found that Ca content of cotton, bean and peanut 

decreased markedly as the Mn in the medium increased. Clark et al. (1981) and Galvez 

et al. (1989) also found that excess Mn in the nutritive medium suppressed Ca in the plant 

tissue. 

Excess Mn inhibits the translocation of Ca into the shoot apex (Horst and 

Marshner, 1990). This inhibition might be related to the fact that high Mn levels 

decrease the cation exchange capacity of the leaf tissue (Horst and Marshner, 1978a) and 

decrease the IAA levels in the areas of new growth (Morgan et al., 1966; Morgan et al.. 
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Figure 8.23: Effect of Mn level in solution on the level of Ca 
in the plant tissue (see Appendix H, Table 2) 
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Figure 8.24: Effect of Mn level in solution on Ca level in the 
plant tissue under low and optimal levels of Ca 
(see Appendix H, Table 2) 
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Figure 8.25: Effect of Mn level in solution on Ca level in the 
plant tissue under low ans optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.26: Effect of Mn level in solution on Ca level in the 
roots under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.27: Effect of Mn in solution on Ca level in the 
stem under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.28: Effect of Mn level in solution on Ca level in the 
new leaves under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.29: Effect of Mn level in solution on Ca level in the 
old leaves under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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1976). Auxin was reported to be responsible for the formation of new binding sites for 

the transport of Ca to the apical meristems (Horst and Marshner, 1978a). 

Calcium in the solution had a highly significant effect on Ca in the roots, stems, 

old leaves and young leaves. Calcium concentration was much greater in the different 

plant parts when Ca supply was high (Figure 8.30). 

Magnesium in solution had a highly significant effect on the overall Ca in the 

plant tissue (Appendix H). Calcium in the plant tissue was greater when Mg in solution 

was low (Figure 8.31). This effect of Mg in the solution on Ca in the plant tissue was 

probably attributed to ion antagonism between Ca and Mg. Bergmann (1992) attributed 

reduced Ca content in the plant tissue as a result to high level of Mg in the medium to ion 

antagonism. 

Schwartz and Bar-yosef (1983) found that Mg interference operates by decreasing 

Ca binding to absorption sites or carrier sites in the root but not by reducing the capacity 

of these sites for Ca. Our results differ from those reported by Straub and Wurm (1971). 

They found that Mg deficient apples had low Ca in their leaves. Our results, however, 

agree with those of Schwartz and Bar-Yosef (1983). They found that Ca in tomato 

decreased with increased Mg in the medium. 

8.4.4.4 Magnesium 

Manganese in the solution had a highly significant effect on the overall Mg in the 

plants (Appendix H). As Mn in the solution increased, the concentration of Mg in the 

plant tissue also increased (Figure 8.32). 

The effect of Mn in the solution on Mg in the plant tissue depended on the level 

of Mg in the solution. When Mg level was high in the solution, an increase in Mn 
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Figure 8.30: Effect of Ca level in solution on the level of 
Ca in the plant tissue (see Appendix H, Table 2) 
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Figure 8.31: Effect of Mg level in solution on Ca level in 
the plant tissue (see Appendix H, Table 2) 
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Figure 8.32: Effect of Mn level in solution on the level of Mg 
in the plant tissue (see Appendix H, Table 2) 
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concentration in the solution had no effect on Mg concentration in the plants. But when 

Mg was low in the solution, an increase in Mn in the solution caused a significant 

increase in Mg concentration in the plant tissue (Figure 8.33). 

The effect of Mn in solution on Mg in the plant, also depended on Ca level in 

solution. When Ca level in the solution was high, there was no significant effect of Mn 

in the solution Mg in the plants. But when Ca was low in the solution, an increase in Mn 

in the solution caused a significant increase in Mg in the plants (Figure 8.34). 

High Mn in the solution resulted in an increase in Mg in the roots (Figure 8.35). 

This increase was greater when Ca in the solution was low. 

In the stem the interaction between Ca and Mn in the solution was significant. 

Under low Ca level in the solution, an increase in Mn in the solution caused an increase 

in Mg in the stem. When Ca in the solution was high, an increase in Mn in the solution 

caused a decrease in Mg in the stem (Figure 8.36). 

The interaction between Mn and Ca in solution was not significant in the old 

leaves, but it was significant in the new leaves (Appendix H). Indeed, when Ca was low 

in the solution, an increase in Mn in the solution caused an increase in Mg in the new 

leaves (Figure 8.37). When Ca in the solution was high, increased Mn in the solution did 

have an effect on Mg in the new leaves (Figure 8.37). 

These results differed from those in Chapters 6 and 7, possibly due to the 

interaction between Mn, Mg and Ca in the solution, and also from the findings of Heenan 

and Campbell (1981). They found that large concentrations of Mn in the medium can 

induce Mg deficiency. Kazda and Znacek (1989) and Heenan and Campbell (1981) 

reported that excess Mn may reduce Mg uptake by up to 50% due to competition. The 
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Figure 8.33: Effect of Mn level in solution on Mg level in the 
plant tissue under low and optimal levels of Mg 
(see Appendix H, Table 2) 
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Figure 8.34: Effect of Mn level in solution on Mg level in the 
plant tissue under low and optimal levels of Ca 
(see Appendix H, Table 2) 
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Figure 8.35: Effect of Mn level in solution on Mg level in 
the roots under low and optimal levels of Ca 
(see Appendix H, Table 2) 
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Figure 8.36: Effect of Mn level in solution on Mg level in the 
stem under low and optimal levels of Ca 
(see Appendix H, Table 2) 
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Figure 8.37: Effect of Mn level in solution on Mg level in the 
new leaves under low and optimal levels of Ca 
(see Appendix H, Table 2) 
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competition between Mg and Mn for binding sites in the roots during absorption, inhibits 

Mg absorption, since Mn competes more effectively than Mg and even blocks the binding 

sites for Mg (Horst and Marshner, 1990). 

Calcium concentration in the solution had no significant effect on Mg in the roots 

but did have a highly significant effect on Mg in the stem, old leaves and young leaves. 

More Mg was contained by the stem, old leaves and young leaves when Ca in the 

solution was low (Figure 8.38). 

These results may be explained by the inhibitory effect that Ca has on Mg uptake. 

Indeed, a large concentration of Ca in the medium inhibits Mg influx (Bergmann, 1992). 

Moor et al. (1961) and Maas and Ogata (1971) found that high Ca concentration in the 

medium reduced Mg uptake rate by suppressing the Mg transport capacity of the roots 

rather than competing with Mg for absorption sites. 

Magnesium in the solution had a highly significant effect on Mg in the roots, 

stems, old leaves and young leaves. Magnesium in the different plant parts was greater 

when Mg level in the medium was high rather than low (Figure 8.39). 

8.5 CONCLUSION 

Low Ca and Mg in the solution (incipient deficiency concentrations 20 mg/1 for 

Ca and 10 mg/1 for Mg) reduced the critical toxicity concentration of Mn in marigold 

from 4.6 to 0.5 mg/1. High concentration of Mn in solution (critical toxicity solution 

concentration 6.5 mg/1) combined with low Ca and Mg resulted in stunted plants with 

curled deformed leaves. Small brown spots covered the leaves. The tips of the leaves 

and edges were necrotic and the roots were brown. 
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Roots Stem Old leaves New leaves 

Figure 8.38: Effect of Ca level in solution on the level of Mg 
in the plant tissue (see Appendix H, Table 2) 
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Figure 8.39: Effect of Mg level in solution on the level of Mg 
in the plant tissue (see Appendix H, Table2) 
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The small brown spots and the brown color of the leaves may have resulted from 

localized precipitations of Mn as Mn oxide (Mn02). The chlorosis on the leaves may 

have been due to Mn-induced Fe deficiency. The curling of the leaves may have been 

due to Mn-induced Ca deficiency. 

High Mn in the solution resulted in increased Mn in all the plant parts. This 

increase was greater when Ca level was low. These results may be explained by the 

nature of the interaction between Mn and Ca. High levels of Ca in the growth medium 

decrease Mn absorption. Low Mg in the solution did not have as great an effect on Mn as 

that of Ca. 

High Mn in the solution had no effect on Fe in the stems and leaves, but resulted 

in increased Fe in the roots. This increase was greater when Ca in the solution was low, 

but was not affected by Mg in the solution. 

Despite this increase in Fe in the roots, high Mn in the solution may have resulted 

in Fe deficiency in the plant (the cause of the chlorotic areas on the leaves). Excess Mn 

did not inhibit Fe absorption, but it appeared to reduce Fe movement to the shoots. 

High Mn in the solution caused an increase in Ca in the roots, stems, and new 

leaves regardless of the concentration of Mg. This increase in Ca was greater when Mg 

in the solution was low. 

These results may be explained by the fact that high Mn in the medium may have 

inhibited Mg uptake, and that reduced Mg uptake may have favored Ca uptake. Indeed, 

Mg can reduce Ca uptake by plants. 
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In the old leaves, excess Mn in the solution caused an increase of Ca when Mg 

level was low and caused a decrease in Ca when Mg was high in the solution. These 

results may be explained by the antagonism between Mg and Ca. 

High Mn in the solution increased the overall concentration of Mg in the plants. 

This increase was greater when Mg and Ca levels in the solution were high. These 

results may be explained by the interaction between Mn, Ca and Mg. High Mn in the 

medium may have inhibited Mg uptake; it may also have inhibited Ca uptake. The 

inhibition of Ca uptake may have favored Mg uptake over Ca uptake. 
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CHAPTER 9 

CONCLUSION 

9.1 INCIPIENT DEFICIENCY CONCENTRATIONS FOR Ca AND Mg 

Under the experimental conditions provided here, the incipient deficiency 

concentration of Mg in ‘First Lady’ marigold was determined to be about 10 mg/liter 

nutrient solution. This concentration was the turning point of Mg nutrition from 

deficiency to sufficiency. It still does not fulfill the requirement of Mg in marigold for 

optimal growth, but it was enough to prevent foliar deficiency symptoms. 

Magnesium lower than 10 mg/liter resulted in stunted plants with severely 

damaged leaves. The symptoms on the leaves were typical symptoms of Mg deficiency: 

chlorosis and necrosis. 

The incipient deficiency concentration of Ca in marigold was determined to be 

about 20 mg/liter nutrient solution. Concentrations of Ca lower than 20 mg/liter resulted 

in stunted bushy looking plants. Chlorotic spots and blotches developed along the 

margins and particularly at the tips of the leaves. Necrotic lesions appeared on the leaf 

blade as well. The leaves died from the tip to the base, as also did the apical meristematic 

tissue of the terminal buds and the roots. 

9.2 CRITICAL TOXICITY CONCENTRATION OF Mn 

The critical toxicity concentration of Mn in ‘First Lady’ marigold was determined 

to be 4.5 mg/liter nutrient solution. This concentration was the turning point of Mn 

nutrition from sufficiency to toxicity. It seems that 4.5 mg/1 Mn was not high enough to 

cause localized precipitation of Mn in the leaves or to induce Fe or Ca deficiency, but it 

was high enough to reduce growth. 
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Concentrations of Mn higher than 4.5mg/liter resulted in stunted plants with 

damaged leaves. These leaves developed chlorotic patches that may be related to Fe 

deficiency induced by Mn toxicity. They also showed brown spots that may have been 

the result of localized precipitations of Mn. 

Calcium and/or Mg deficiency decreased the critical toxicity solution 

concentration of Mn in marigold. When the concentration of Ca and/or Mg was low in 

the nutrient solution, the symptoms of Mn toxicity developed at lower concentrations of 

Mn in the solution. 

9.3 NUTRIENT CONCENTRATION IN THE PLANT TISSUE 

9.3.1 Manganese Concentration in the Plant Tissue 

The present data suggested that Mn was evenly distributed in the plant shoots. 

There was no significant difference between the concentration of Mn in the growing 

point and the concentration of Mn in the older part of the shoots. 

Low Mg in the solution resulted in increased Mn in the shoot tissue. 

Low Ca in the solution had no significant effect on Mn in the old part of the 

shoots but resulted in increased Mn in the growing point (terminal bud, young leaves and 

young stem). Manganese in the growing point decreased as Ca in the solution increased. 

Calcium regulates Mn toxicity by reducing Mn absorption and transport to the shoot. 

High Mn in the solution resulted in increased Mn in all the plant parts. 

Manganese accumulated in high concentrations in the roots perhaps reflecting a means 

reducing excess translocation to the shoots. It seemed that when the concentration of Mn 

exceeded certain amount, Mn was then translocated to the shoots where it may have 

precipitated as Mn oxide in the leaves (some of the symptoms of Mn toxicity). 
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The increase in Mn in the plant as a result of excess Mn in the solution was 

greater when Ca in the solution was low. Calcium tended to reduce Mn absorption and 

transport in the plant. 

Magnesium did not affect Mn increase in the plant resulting from excess Mn in 

the solution. 

When both Ca and Mg in the solution were low, high Mn in the solution resulted 

in increased Mn the plant. This increase was greater when Ca in the solution was low. 

These results may be explained by the nature of the interaction between Mn and Ca in the 

medium. High levels of Ca in the solution reduced Mn absorption. Low Mg in the 

solution did not have as great an effect on Mn increase as that of Ca. 

9.3.2 Iron Concentration In The Plant Tissue 

Magnesium in the solution had no significant effect on Fe in the shoots (old 

leaves, new leaves and stems). 

Calcium deficiency had no significant effect on Fe in the growing point (new 

leaves, stems and buds) but resulted in a significant increase of Fe in the older part of the 

shoots (old leaves and stems). As Ca in the solution increased, Fe in the older part of the 

shoots decreased. 

High Mn in the solution resulted in increased Fe in the roots. Increased Fe in the 

roots as a result of high Mn in the solution may have been caused by reduced 

translocation of Fe from the roots to the shoots. Excess Mn catalyses the oxidation of the 

physiologically active form of Fe (Fe2+) to the inactive form (Fe3+). Also, the formation 

of insoluble ferric-phosphate-organic complex in the roots due to high Mn in the roots 

may have prevented Fe translocation to the shoots. 
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The increase in Fe in the roots as a response to excess Mn in the solution was 

greater when Ca in the solution was low. 

Magnesium in solution did not alter the effect of Mn in the solution on Fe in the 

plant. 

When both Ca and Mg were low in the solution, high Mn in the solution had no 

effect on Fe in the stems and leaves, but resulted in increased Fe in the roots. This 

increase was greater when Ca in the solution was low, but was not affected by Mg. 

Despite the increase of Fe in the roots, high Mn in solution may have resulted in Fe 

deficiency in the plant (the cause of the chlorotic areas on the leaves). In fact, excess Mn 

did not inhibit Fe absorption, but it unfavorably affects Fe action in the plant tissues. 

9.3.3 Calcium Concentration in the Plant Tissue 

Low Mg in solution resulted in increased Ca in the shoots. An increase in Mg in 

solution caused a decrease in Ca in the shoots (old leaves, new leaves and stem). 

Reduced Ca in the plant as a response to increased Mg in the solution may be attributed 

to decreased Ca binding to absorption sites or carrier sites in the root. 

Low Ca in the solution caused a decrease in Ca in the shoots. As Ca in the 

solution increased, Ca in the shoots increased. 

High Mn in the solution resulted in a slight increase in the overall concentration 

of Ca in the plant. Increased Ca in the plant as a response to excess Mn in the medium 

may be attributed to reduced dry weight rather to an increased Ca uptake by the plants. 

The interaction between Mn and Ca in the solution had no significant effect on Ca 

in the plant tissue. 
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The interaction between Mn and Mg in the solution had no significant effect on 

Ca in the plant. 

When both Ca and Mg were low in the solution, high Mn in the solution caused 

an increase in Ca in the roots, stems, and new leaves regardless of the concentration of 

Mg in the solution. This increase may have been due to the fact that high Mn in the 

solution inhibited Mg uptake, which in turn favored Ca uptake. Indeed, Mg can reduce 

Ca uptake by plants. 

In the old leaves, excess Mn in the solution caused an increase of Ca when Mg 

was low in the solution and caused a decrease in Ca when Mg was high. These results 

may be due to the antagonism between Mg and Ca in the solution. 

9.3.4 Magnesium Concentration in the Plant Tissue 

Magnesium deficiency resulted in decreased Mg in the plant shoots. Magnesium 

in the shoots increased with increased Mg in the solution. 

Low Ca in the solution caused an increase of Mg in the shoots. As Ca in the 

solution increased. Mg in the shoot tissues decreased. Reduced Ca in the plant shoots as 

a response to increased Mg in the solution may have been attributed to decreased Ca 

binding to absorption sites or carrier sites in the roots. 

High Mn in the solution resulted in a slight increase in the overall Mg of the plant. 

Increased Mg as a response to excess Mn in the solution may have resulted from a 

reduced dry weight rather to an increased Mg uptake by the plants. 

The interaction between Mn and Ca in the solution had no significant effect on 

Mg in the plant tissue. 
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The interaction between Mn and Mg in the solution had no significant effect on 

Mg in the plant tissue. 

When both Ca and Mg are low in the solution, high Mn in the solution resulted in 

increased overall Mg in the plant. This increase was greater when Mg and Ca levels in 

the solution were high. These results may have been due to the interaction between Mn, 

Ca and Mg in the solution. High Mn in the solution may inhibit Ca uptake. Since Ca 

inhibits Mg uptake, high Mn ends up favoring Mg uptake to the detriment of Ca. 

As a conclusion, Fe/Mn toxicity disorder in marigold can be attributed to Mn 

toxicity. Low Ca supply or low Ca and Mg supplies are factors favoring the occurrence 

of Mn toxicity in marigold. Low Mg supply does not seem to have great an effect on 

this disorder. 

Based on these results, large concentrations of Ca in the medium could alleviate the 

harmful effects of Mn toxicity in marigold. Low Mn supply could reduce or prevent the 

toxicity problems. Agricultural practices and nutritional regimes that reduce the availability 

of Mn and favor the availability of Ca could reduce the occurrence of Fe/Mn toxicity 

disorder in marigold and similar physiological disorders in other bedding plants grown in 

soilless media. I would recommend monitoring Mn supply and fertilizing with Ca to 

prevent or reduce Mn toxicity to floriculture plants. 
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APPENDIX A 

TISSUE ANALYSIS BY ATOMIC ABSORPTION 
FLAME SPECTROPHOTOMETRY 

PART I: HIGH TEMPERATURE OXIDATION (DRY ASHING) 

Half of a gram of dried (70°C) and ground (20 mesh) plant tissue were weighed into a 

30 ml high form porcelain crucibles. The crucibles were then placed in a cool furnace. The 

temperature control of the furnace was set at 500 °C. After approximately 6 hours of muffling 

at 500oC, the crucibles were removed from the furnace and allowed to cool. Ten ml dilute 

aqua regia (300 ml hydrochloric (HC1) and 100 ml nitric (HN03) acids in 1 liter distilled 

water) to dissolve the ash (solution A). The digest was diluted as necessary to bring an 

element concentration within the range of the analytical instrument. 

PART H: ATOMIC ABSORPTION PROCEDURE 

1. Calcium and Magnesium Analysis 

1.1 Reagents 

• Lanthanum solution. 12.5%: 147 g of Lanthanum oxide (La^) were dissolved in a 

minimum amount of concentrated HC1. 100 ml of HC1 was added in excess. The 

content was mixed, diluted to 1 liter with distilled water and mixed again. 

• Lanthanum solution. 5%: 1 volume of "Lanthanum solution, 12.5%" was diluted with 

24 volumes of 1 + 9 HC1. 

• Calcium reference solution (diluted to 100 ppm). 

• Magnesium reference solution (diluted to 10 ppm). 

• Calcium and magnesium standards: The standards were 
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prepared in distilled water as directed bellow and used to establish a calibration 

curve for the atomic absorption spectrophotometer. 

• Magnesium standards: 

Final concent¬ 

ration Of Mg 

Volume of 

Mg reference 

Solution 

Volume of La2+ 

solution (12.5%) 

Final 

volume 

ml 

0 0 4 ml 100 
0.1 1 4 ml 100 

o
 

• to
 

2 4 ml 100 
0.3 3 4 ml 100 
0.4 4 4 ml 100 

• Calcium standards: 

Final concent¬ 

ration of Ca 

Volume of 

Ca reference 

Solution 

Volume of 

solution 

La2+ 

(12.5%) 

Final 

volume 

ml 

0 0 4 ml 100 

1 1 4 ml 100 

2 2 4 ml 100 

3 3 4 ml 100 

4 4 4 ml 100 

1.2 Procedure 

One ml aliquot of solution A was transferred into a 25 ml volumetric flask. One ml 

of the 12.5% lanthanum solution was added and the solution was diluted to volume with 

distilled water. Calcium and magnesium concentrations were determined with the atomic 

absorption spectrophotometer, following manufacturer’s instructions. When it was 

necessary to dilute the solutions, 0.5% lanthanum solution was used as the diluent. 

266 



1.3 calculations 

[Ca] in the plant tissue = [Ca] read (ppm) X Dilution Factor 
in mg/kg dry weight 0.5 

[Mg] in the plant tissue = [Mg] read (pprrO X Dilution Factor 
in mg/kg dry weight 0.5 

2. Iron and Manganese Analysis 

2.1 Reagents 

• Iron reference solution (diluted to 100 ppm). 

• Manganese reference solution (diluted to 100 ppm). 
• 0.2N HNO:. 

• Manganese standards: 

Final concent¬ 

ration of Mn 

Volume of 

Mn reference 

Solution 

Final 

volume 

ml 

0 0 100 ml 

1 1 100 ml 

2 2 100 ml 

3 3 100 ml 

• Iron standards 

Final concent¬ 

ration of Mn 

Volume of 

Mn reference 

Solution 

Final 

volume 

ml 

0 0 100 ml 

1 1 100 ml 

2 2 100 ml 

3 3 100 ml 

4 4 100 ml 

5 5 100 ml 
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2.2 Procedure 

As for Calcium and magnesium, solution A was used to determine iron and 

Manganese concentrations on the atomic absorption spectrophotometer, following the 

manufacturer's instructions. All dilutions were made with 0.2N HN03. 

2.3 Calculations 

[Mn] in the plant tissue = fMnl read (ppm) X Dilution Factor 
in mg/kg dry weight 0.5 

[Fe] in the plant tissue = rFel read (ppm) X Dilution Factor 
in mg/kg dry weight 0.5 
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APPENDIX B 

TISSUE ANALYSIS BY INDUCTIVE COUPLED 
PLASMA 

(ICP) 

Procedure 

Half of a gram of dried (70°C) and ground (20 mesh) plant tissue were weighed into a 

30 ml high form porcelain crucibles. The crucibles were then placed in a cool furnace. The 

temperature control of the furnace was set at 500°C. After approximately 6 hours of muffling 

at 500oC, the crucibles were removed from the furnace and allowed to cool. Ten ml dilute 

Nitric acid (lliter 15 N (HN03) + 1 liter H20) was added to the crucibles to dissolve the ash. 

The digest was diluted as necessary to bring an element concentration within the range of the 

analytical instrument. 

Manganese, Fe, Ca and Mg were determined with the ICP following manufacturer’s 

instructions. 

Calculations 

[Ca] in the plant tissue = fCal read (ppm) X Dilution Factor 
in mg/kg dry weight 0.5 

[Mg] in the plant tissue = [Mel read (ppm) X Dilution Factor 
in mg/kg dry weight 0.5 

[Mn] in the plant tissue = [Mnl read (ppm) X Dilution Factor 
in mg/kg dry weight 0.5 

[Fe] in the plant tissue = [Fel read (ppm) X Dilution Factor 
in mg/kg dry weight 0.5 
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APPENDIX C 

STATISTICAL ANALYSIS 

MAGNESIUM DEFICIENCY IN MARIGOLD 

Abbreviation used in statistics 
SDW : Shoot dry weight in grams 
RDW : Root dry weight in grams 
TDW : Total dry weight in grams 
M : Magnesium concentration in the medium 
Mg : Magnesium concentration of the plant shoots 
Ca : Calcium concentration of the plant shoots 
Mn : Manganese concentration of the plant shoots 
Fe : Iron concentration of the plant shoots 

Degree of significance 
NS, *, **: Nonsignificant or significant at P = 0.05 and 0.01, respectively. 

PART 1: ANALYSIS OF VARIANCE 

Table 1: Effect of Mg level in the solution on the plant dry weight (Figure 3.1) 

SDW 

Source DF Anova SS Mean Square F Value Pr > F 

M 6 1469.91 244.98 168.40** 0.0001 

Error 33 48.01 1.45 

Correct.T. 39 517.92 

RDW 

Source DF Anova SS Mean Square F Value Pr > F 

M 6 14.53 2.42 
* * 

35.21 0.0001 

Error 33 2.27 0.07 

Correct.T. 39 16.80 

TDW 

Source DF Anova SS Mean Square F Value Pr > F 

M 6 1771.43 295.30 183.39** 0.0001 

Error 33 53.13 1.61 

Correct.T. 39 1824.56 
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Table 2: Effect of Mg level in the solution on the nutrient levels in the 
plant shoots (Figure 3.2) 

Mn 
Source DF Anova SS Mean Square F Value Pr > F 

M 6 09568.28 18261.38 
* * 

4.17 0.0077 

Error 19 83218.50 4379.92 

Correct.T. 25 192786.78 

Fe 
Source DF Anova SS Mean Square F Value Pr > F 

M 6 150916.00 25152.67 o
 

• 0
0

 
0
0

 2 w
 

0.53 

Error 19 546134.95 28743.95 

Correct.T. 25 697050.95 

Ca 
Source DF Anova SS Mean Square F Value Pr > F 

M 6 2.94 0.49 
* * 

11.22 0.0001 

Error 19 0.83 0.04 

Correct.T. 25 3.77 

Mg 
Source DF Anova SS Mean Square F Value Pr > F 

M 6 0.08 0.01 15.88** 0.0001 

Error 19 0.02 0.01 

Correct.T. 25 0.09 
1_ 

PART 2: GENERAL LINEAR MODEL ANALYSIS 

Table 3 (Figures 3.1, 3.2) 

Variable SDW RDW TDW Mn Ca Mg 

Linear ★ ★ * * ★ ★ ★ ★ ★ * ★ ★ 

Quadratic ★ ★ * * ★ ★ ★ ★ ★ NS 

Cubic * Ar ★ * * ★ * NS NS NS 
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PART 3: REGRESSION ANALYSIS 

Table 4 (Figures 3.1, 3.2) 

Variable Equation R2 

SDW SDW = -19.5 +25. 7 M - - 5 .2 M2 + 0.3 M3 94% 

RDW RDW = -1.7 + 2.4 M - 0 5 M2 + 0.03 M3 85% 

TDW TDW = -2i.: 5 + 28.2 M - 5. 7 M2 + 0.4 M3 95% 

Mn Mn = 303 . ,1 - 86 M + r 7.7 M2 44% 

Ca Ca = 2.7 - 0.5 M + 0. .05 M2 70% 

_ 
Mg = 0.1 + 0.02 M 71% 
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APPENDIX D 

STATISTICAL ANALYSIS 

CALCIUM DEFICIENCY IN MARIGOLD 

Abbreviation used in statistics 
SDW : Shoot dry weight in grams 
RDW : Root dry weight in grams 
TDW : Total dry weight in grams 
C : Calcium concentration in the medium in mg/1 

solution 
GP/SHMg : Magnesium concentration of the growing point or 

the old part of the shoots in mg/kg dry weight 
GP/SHCa : Calcium concentration of the growing point or the 

old part of the shoots in mg/kg dry weight 
Gp/SHMn : Manganese concentration of the growing point or 

the old part of the shoots in mg/kg dry weight 
GP/SHFe : Iron content of the growing point or the old part 

of the shoots in mg/kg dry weight 
PI : The old part of the shoots 
P2 : Growing point (new leaves, new stem, terminal buds) 

Degree of significance 
NS, *, **: Nonsignificant or significant at P = 0.05 and 0.01, respectively. 
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PART 1: ANALYSIS OF VARIANCE 

Table 1: Effect of [Ca] in the medium on the plant dry 
Weight (Figure 4.1) 

RDW 
Source DF Anova SS Mean Square F Value Pr > F 

C 10 32.67 3.26 19.93“ 0.0001 
Error 52 8.52 0.16 
Correct. T. 62 41.19 

SDW 
Source DF Anova SS Mean Square F Value Pr > F 

C 10 1132.77 113.27 44.97“ 0.0001 
Error 52 130.98 2.51 
Correct. T. 62 263.76 

TDW 
Source DF Anova SS Mean Square F Value Pr > F 

C 10 
Error 52 
Correct.T.62 

1533.51 
175.434667 

1708.95 

153.35 
3.37 

★ * 

45.45 0.0001 
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Table 2: Effect of [Ca] in the medium on the nutrient concentration of the plant 
shoot (Figures 4.3, 4.4, 4.5, 4.6) 

Mn 

Source DF Anova SS Mean Square F Value Pr > F 

C 10 141162.46 14116.24 2.77** 0.0001 
P 1 2959.63 2959.63 2.6 8ns 0.1046 
C*P 10 128425.25 12842.52 11.62** 0.0001 

C:PX 10 7194.18 719.41 0.65ns 

C:P2 10 262393.53 26239.35 23.74** 

Error 110 121569.41 1105.1765 

Corr.T. 131 394116.76 

Fe 

Source DF Anova SS Mean Square F Value Pr > F 

C 10 616101.28 61610.12 2.66** 0.0060 

P 1 1030869.45 1030869.45 44.54** 0.0001 

C*P 10 969915.64 96991.56 4.19** 0.0001 

C:PX 10 1419567.05 141956.70 6.13** 

C:P2 10 166449.86 16644.98 0.72ns 

Error 110 2545655.61 23142.32 

Corr.T. 131 162541.993 

Ca 

Source DF Anova SS Mean Square F Value Pr > F 

C 10 29.00 2.90 30.97** 0.0001 

P 1 1.60 1.60 17.19** 0.0001 

C*P 10 3.96 0.39 
. _ . ** 

4.24 0.0001 

C:PX 10 24.01 2.40 25.54** 

C:P2 10 8.95 0.89 9.53** 

Error 110 10.29 0.09 

Corr.T. 131 44.87 

Mg 

Source DF Anova SS Mean Square F Value Pr > F 

C 10 20.11 2.01 49.93** 0.0001 

P 1 0.15 0.15 3.93* 0.0500 

C*P 10 1.09 0.10 2.72** 0.0050 

C: PI 10 13.67 1.36 34.18** 
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Part 2: REGRESSION ANALYSIS 

Table 3 (Figures 4.1, 4.3, 4.4, 4.5, 4.6) 

Equation R2 

RDW — -0.88 + 1.62 C - 0.25 C2 + 0.01 C3 69% 
SDW = -2.49 + 7.09 C - 0.99 C2 + 0.05 C3 86% 
TDW = -3.37 + 8.71 C - 1.24 C2 + 0.06 C3 85% 
GPMn = 450.68 - 162.85 C + 23.85 C2 - 1.08 C3 72% 
SHFe — 333.58 + 174.61 C - 42.33 C2 + 2.38 C3 30% 
GPCa = -0.34 + 1.44 C - 0.46 C2 + 0.06 C3 - 0.002 C4 48% 
SHCa — -0.40 + 0.97 C - 0.36 C2 + 0.05 C3 - 0.002 C4 88% 
GPMg — 2.20 - 0.27 C + 0.01 C2 70% 
SHMg = 2.38 - 0.24 C + 0.009 C2 85% 
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APPENDIX E 

STATISTICAL ANALYSIS 

MANGANESE TOXICITY IN MARIGOLD 

Abbreviation used in statistics 
SDW : Shoot dry weight in grams 
RDW : Root dry weight in grams 
TDW : Total dry weight in grams 
M : manganese concentration in the medium (mg/1) 
Mg : Magnesium concentration in the plant tissue 
Ca : Calcium concentration in the plant tissue 
Mn : Manganese concentration in the plant tissue 
Fe : Iron concentration in the plant tissue 

MnT : Manganese treatment 

1 : 0.5 mg/1 
2 : 2.5 mg/1 
3 : 4.5 mg/1 
4 : 6.5 mg/1 

Plant parts: 

1 : Roots 
2 : Stem 
3 : Old leaves 
4 : New leaves 

Degree of significance 

NS, *, **: Nonsignificant or significant at P = 0.05 and 0.01, respectively. 
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PART 1: ANALYSIS OF VARIANCE 

Table 1: Effect of [Mn] in the medium on the plant dry 
weight (Figure 5.1) 

RDW 
Source DF Anova SS Mean Square F Value Pr > F 

M 9 0.21 0.02 
* * 

3.71 0.0013 

Error 50 0.31 0.01 

Correct.T. 59 0.51 

SDW 
Source DF Anova SS Mean Square F Value Pr > F 

M 9 3.06 0.4 9.11** 0.0001 

Error 50 1.86 0.04 

Correct.T. 59 4.92 

TDW 
Source DF Anova SS Mean Square F Value Pr > F 

M 9 4.68 0.52 
* * 

9.63 0.0001 

Error 50 2.70 0.05 

Correct.T. 59 7.37 
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Table 2: Effect of [Mn] in the medium on the nutrient concentration in the plant 
tissue (Figures 5.2, 5.3, 5.4) 

Manganese 
Source DF Anova SS Mean Square F Value Pr > F 
M 9 168890638.1 18765626.5 81.75” 0.0001 
P 3 131533588.8 43844529.6 190.99” 0.0001 
M*P 27 55542212.1 2057119.0 8.96” 0.0001- 

M: Pi 9 3398102.9 3775667.0 1.6 4ns 
M:P2 9 52416976.8 5824108.5 25.37” 
M:P3 9 29220110.0 3246678.9 14.14” 
M:P4 9 139397660.7 15488629.0 67.47” 

Error 200 45912159.3 229560.8 
Cor.T.239 401878598.4 

Iron 
Source DF Anova SS Mean Square F Value Pr > F 
M 9 5257994.60 584221.62 2.98 0.0001 
P 3 42559485.15 14186495.05 72.29” 0.0001 
M*P 27 103102259.77 381861.47 1.95” 0.0001 

M: PI 9 244647.74 27183.08 0.12 NS 
M:P2 9 105708.67 11745.41 0.05 NS 
M:P3 9 179092.48 19899.16 0.09 NS 
M:P4 9 15038805.51 1670978.39 7.28” 

Error 200 39250565.67 196252.83 
Cor.T.239 97378305.18 

Calcium 
Source DF Anova SS Mean Square F Value Pr > F 
M 9 26.00 2.89 3.16 0.0014 
P 3 113.46 37.82 

* * 

41.31 0.0001 
M*P 27 23.14 0.86 0.9 4ns 0.5601 
Error 200 183.09 0.92 
Cor.T.239 345.69 

Magnesium 
Source DF Anova SS Mean Square F Value Pr > F 
M 9 0.77 0.08 2.72” 0.0051 
P 3 7.07 2.36 74.73” 0.0001 
M*P 27 1.29 0.05 0.52ns 0.0558 
Error 200 6.31 0.03 
Cor.T.239 15.44 
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PART 2: GENERAL LINEAR MODEL ANALYSIS 

Table 3 (Figures 5.1, 5.2, 5.3, 5.4) 

Variable SDW RDW TDW Mn Fe Ca Mg 

Linear * ★ ★ * * * * * * * ★ * 

Quadratic NS ★ ★ * * * * * * * * 

Cubic NS NS * * * * * * 
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APPENDIX F 

STATISTICAL ANALYSIS 

MANGANESE TOXICITY IN MARIGOLD AS AFFECTED 
BY CALCIUM 

Abbreviation used in statistics 

SDW : Shoot dry weight in grams 
RDW : Root dry weight in grams 
TDW : Total dry weight in grams 
M : manganese concentration in the medium (mg/1) 
Mg : Magnesium concentration in the plant tissue 
Ca : Calcium concentration in the plant tissue 
Mn : Manganese concentration in the plant tissue 
Fe : Iron concentration in the plant tissue 

CaT : Calcium treatment 

1 : 20 mg/1 
2 : 100 mg/1 

MnT : Manganese treatment 

1 : 0.5 mg/1 
2 : 2.5 mg/1 
3 : 4.5 mg/1 
4 : 6.5 mg/1 

Plant parts: 

1 : Roots 
2 : Stem 
3 : Old leaves 
4 : New leaves 

Degree of significance 

NS, *, **: Nonsignificant or significant at P = 0.05 and 0.01, respectively. 
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PART 1: ANALYSIS OF VARIANCE 

Table 1: Plant dry weight (Figure 6.1) 

Shoot dry weight 

Source DF Anova SS Mean Square F Value Pr > F 

CAT 1 0.48803333 0.48803333 10.05** 0.0029 
MNT 3 0.59055833 0.19685278 4.05* 0.0132 
CAT*MNT 3 0.24780000 0.08260000 1.7 0NS 0.1823 

Root dry weight 
Source DF Anova SS Mean Square F Value Pr > F 

CAT 1 0.06526875 0.06526875 6.70* 0.0134 
MNT 3 0.03022292 0.01007431 1.03ns 0.3878 
CAT*MNT 3 0.02317292 0.00772431 0.7 9ns 0.5051 

Total dry weight 
Source DF Anova SS Mean Square F Value Pr > F 

CAT 1 0.91025208 0.91025208 10.99** 0.0020 
MNT 3 0.79920625 0.26640208 3.22* 0.0329 
CAT*MNT 3 0.42007292 0.14002431 1.69ns 0.1845 

Table 2: Nutrient concentration in the plant tissue (Figures 6.2, 6.3, 6.4, 6.4a, 6.5, 
6.6, 6.7, 6.8, 6.9) 

Manganese 

Source DF Anova SS Mean Square F Value Pr > F 

CaT 1 2356981.92 2356981.92 19.71** <.0001 
MnT 3 4525916.56 11508638.85 96.24** <.0001 
Part 3 6826363.52 8942121.17 74.78** <.0001 
CaT*MnT 3 2776919.72 925639.91 

_ _ . * * 

7.74 <.0001 

MnT:Cal 3 — — 78.47** <.0001 
MnT:Ca2 3 — - 25.51“ <.0001 

CaT*Part 3 930404.43 310134.81 2.59ns 0.0545 
MnT*Part 9 5503715.01 611523.89 5.11*’ <.0001 

MnT:Pi 3 _ 29.34“ <.0001 
MnT:P2 3 — - 4.60“ 0.0041 

MnT:P3 3 — - 50.80** <.0001 
MnT:P4 3 — - 26.85“ <.0001 

CaT*MnT*Part 9 493376.84 4819.65 0.4 6ns 0.9004 
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Iron 

Source DF Anova SS Mean Square F Value Pr > F 

CaT 1 22598.38 22598.38 0.1 6ns 0.6905 
MnT 3 726359.97 242119.99 1.7 0NS 0.1681 
Part 3 25182782.31 8394260.77 59.11** <.0001 
CaT*MnT 3 119440.31 39813.44 0.2 8ns 0.8395 
CaT*Part 3 170362.56 56787.52 0.4 0NS 0.7533 
MnT*Part 9 3269982.59 363331.40 2.56** 0.0090 

MnT:PI 3 — — 8.94** <.0001 
MnT:P2 3 — - o.nNS 0.9523 
MnT:P3 3 — - o.nNS 0.9537 
MnT:P4 3 — - 0.21NS 0.8863 

CaT*MnT* Part 9 324207.67 36023.07 0.2 5ns 0.9854 

Calcium 

Source DF Anova SS Mean Square F Value Pr > F 

CaT 1 9.82265052 29.82265052 1481.69** <.0001 
MnT 3 0.53556823 0.17852274 

* it 

8.87 <.0001 
Part 3 27.42130156 9.14043385 454.13** <.0001 
CaT*MnT 3 0.23615156 0.07871719 3.91“ 0.0099 

MnT:Cal 3 _ — 0.61 NS 0.6075 
MnT:Ca2 3 - - 12.17** <.0001 

CaT*Part 3 7.24844323 2.41614774 120.04** <.0001 

CaT:PI 1 _ _ 11.48** 0.0009 
CaT:P2 1 - - 697.56** <.0001 
CaT:P3 1 — — 713.77** <.0001 
CaT:P4 1 — — 419.01** <.0001 

MnT*Part 9 0.60426302 0.06714034 3.34** 0.0009 

MnT:Pi 3 _ _ 0.2 5ns 0.8590 
MnT:P2 3 — — 3.20* 0.0250 
MnT:P3 3 — - 2.97* 0.0334 

MnT:P4 3 - - 12.45** <.0001 

CaT*MnT*Part 9 0.10336302 0.01148478 0.57ns 0.8197 
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Magnesium 

Source DF Anova SS Mean Square F Value Pr > F 
CaT 1 3.06282552 3.06282552 166.93” <.0001 
MnT 3 0.02705156 0.00901719 0.49ns 0.6887 
Part 3 3.11554740 1.03851580 56.60* <.0001 
CaT*MnT 3 0.01699323 0.00566441 0.31NS 0.8191 
CaT*Part 3 0.34353906 0.11451302 6.24** 0.0005 

CaT:PI 1 — — 8.03** 0.0052 
CaT:P2 1 - - 48.42** <.0001 
CaT:P3 1 - - 72.12** <.0001 
CaT:P4 1 - — 57.08** <.0001 

MnT*Part 9 0.32209219 0.03578802 1.95* 0.0485 

MnT:Pi 3 — — 1.88 NS 0.1355 
MnT:P2 3 - - 0.63 NS 0.5973 
MnT:P3 3 - - 0.89 NS 0.4480 
MnT:P4 3 — — 2.95* 0.0346 

CaT*MnT* Part 9 0.06390052 0.00710006 0.3 9ns 0.9401 
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APPENDIX G 

STATISTICAL ANALYSIS 

MANGANESE TOXICITY IN MARIGOLD AS AFFECTED 
BY MAGNESIUM 

Abbreviation used in statistics 

SDW : Shoot dry weight in grams 
RDW : Root dry weight in grams 
TDW : Total dry weight in grams 
M : manganese concentration in the medium (mg/1) 
Mg : Magnesium concentration in the plant tissue 
Ca : Calcium concentration in the plant tissue 
Mn : Manganese concentration in the plant tissue 
Fe : Iron concentration in the plant tissue 

MGTRT: Magnesium treatment 

5 mg/1 
10 mg/1 
15 mg/1 
20 mg/1 

MNTRT: Manganese treatment 

0.5 mg/1 
2.5 mg/1 
4.5 mg/1 
6.5 mg/1 

PART : Plant parts 

1 : Roots 
2 : Stem 
3 : Old leaves 
4 : New leaves 

Degree of significance 

NS, *, **: Nonsignificant or significant at P = 0.05 and 0.01, respectively. 
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PART 1: ANALYSIS OF VARIANCE 

Table 1: Plant dry weight 

Root dry weight 
Source DF Anova SS Mean Square F Value Pr > F 

MNTRT 3 0.17615375 0.05871792 4.44** 0.0067 

MGTRT 3 0.14162375 0.04720792 3.57* 0.0187 

MNTRT*MGTRT 9 0.05475125 0.00608347 0.46ns 0.8956 

Shoot dry weight 
Source DF Anova SS Mean Square F Value Pr > F 

MNTRT 3 3.79088500 1.26362833 4.32** 0.0078 

MGTRT 3 1.07254500 0.35751500 1.22ns 0.3092 

MNTRT* MGTRT 9 3.10404500 0.34489389 1.18ns 0.3241 

Total dry weight 
Source DF Anova SS Mean Square F Value Pr > F 

MNTRT 3 5.30981375 1.76993792 4.52** 0.0062 

MGTRT 3 1.98813375 0.66271125 1.69ns 0.1777 

MNTRT* MGTRT 9 3.72024125 0.41336014 1.05ns 0.4078 

_ _1 

Table 2: Nutrient concentration in the plant tissue 

Manganese 
Source DF Anova SS Mean Square F Value Pr > F 

MgT 3 3673.58 1224.52 0.02ns 0.9954 

MnT 3 24765876.83 8255292.27 152.01** 0.0001 
PART 3 28767565.16 9589188.38 176.57** 0.0001 

MgT*MnT 9 438899.49 48766.61 0.9 0NS 0.5276 

MgT*PART 9 193771.04 21530.11 0.4 0NS 0.9362 

MnT*PART 9 6587120.62 731902.29 13.48** 0.0001 

MnT:Pi 3 _ — 63.54** 0.0001 

MnT:P2 3 — - 2.13ns 0.0971 

MnT:P3 3 — - 96.81** 0.0001 

MnT:P4 3 - - 29.96** 0.0001 

MGT*MNT 
*PART 

27 481056.64 17816.91 0.33ns 0.9995 
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Iron 

Source DF Anova SS Mean Square F Value Pr > F 

MgT 3 167556.46 55852.15 
* * 

7.27 0.0001 
MnT 3 116950.64 38983.547 5.07** 0.0020 
PART 3 2210196.84 736732.28 95.84** 0.0001 
MgT*MnT 9 106339.92 11815.54 1.54ns 0.1351 
MgT* PART 9 190668.58 21185.39 2.76** 0.0043 

MgT:PI 3 — — 13.09** 0.0001 
MgT:P2 3 - - 0.44ns 0.7230 
MgT:P3 3 - - 1.05ns 0.3690 
MgT:P4 3 — — 0.94ns 0.4195 

MNT*PART 9 164116.63 18235.18 2.37* 0.0137 

MnT:PI 3 — _ 4.45** 0.0046 
MnT:P2 3 - - 2.84* 0.0383 
MnT:P3 3 - - 3.52* 0.0158 
MnT:P4 3 — - 1.3 8ns 0.2491 

MGT*MNT*PART 27 175637.47 6505.09 0.8 5ns 0.6884 

Calcium 

Source DF Anova SS Mean Square F Value Pr > F 

MGT 3 27.45 9.15 1.14ns 0.3335 
MNT 3 204.14 68.04 8.48** 0.0001 
PART 3 17897.92 5965.97 743.17** 0.0001 
MGT* MNT 9 95.67 10.63 1.32ns 0.2244 
MGT*PART 9 67.92 7.54 0.94ns 0.4908 
MNT*PART 9 202.29 22.47 2.80** 0.0038 

MnT:Pi 3 — — 0.5 6ns 0.6395 
MnT:Pi 3 — - 1.3 6ns 0.2554 
MnT:Pi 3 - — 

★ * 

12.22 0.0001 
MnT:Pi 3 — - 2.74* 0.0441 

MGT*MNT*PART 27 215.68 7.98 1. ooNS 0.4760 
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Magnesium: 
Source DF Anova SS Mean Square F Value Pr > F 

MgT 3 47.16 15.72 110.40” 0.0001 
MnT 3 2.16 0.72 5.08“ 0.0020 
PART 3 57.98 19.32 135.71“ 0.0001 
MgT*MnT 9 1.99 0.22 1.55ns 0.1297 
MgT*PART 9 3.65 0.40 2.85“ 0.0032 

Mg: PI 3 — — 10.55“ 0.0001 
Mg: P2 3 - - 33.50“ 0.0001 
Mg: P3 3 - - 44.56“ 0.0001 
Mg: P4 3 — — 30.33“ 0.0001 

MnT*PART 9 0.39 0.04 0.31NS 0.9725 
MgT * MnT * PART 27 2.73 0.10 0.71NS 0.8548 
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APPENDIX H 

STATISTICAL ANALYSIS 

MANGANESE TOXICITY IN MARIGOLD 
AS 

AFFECTED BY CALCIUM AND MAGNESIUM 

Abbreviation used in statistics 

SDW : Shoot dry weight in grams 
RDW : Root dry weight in grams 
TDW : Total dry weight in grams 
M : manganese concentration in the medium (mg/1) 
Mg : Magnesium concentration in the plant tissue 
Ca : Calcium concentration in the plant tissue 
Mn : Manganese concentration in the plant tissue 
Fe : Iron concentration in the plant tissue 

Calcium levels: 

20 mg/1 
100 mg/1 

Magnesium levels: 

10 mg/1 
20 mg/1 

Manganese levels: 

0.5 mg/1 
2.5 mg/1 
4.5 mg/1 
6.5 mg/1 

Plant parts: 

1 : Roots 
2 : Stem 
3 : Old leaves 
4 : New leaves 

Degree of significance 

NS, *, **: Nonsignificant or significant at P = 0.05 and 0.01, respectively. 
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PART 1: ANALYSIS OF VARIANCE 

Table 1: Plant dry weight 

Root dry weight 

Source DF Anova SS Mean Square F Value Pr > F 

MNTRT 3 1.51 0.50 32.64** 0.0001 
CATRT 1 0.32 0.32 21.21** 0.0001 
MGTRT 1 0.05 0.05 3.2 6ns 0.0759 
MNTRT*CATRT 3 0.26 0.08 5.66** 0.0017 
MNTRT * MGTRT 3 0.01 0.01 0.26ns 0.8558 
CATRT * MGTRT 1 0.01 0.01 o.ions 0.7544 
MNTRT * CATRT * MGTRT 3 0.01 0.01 0.2 8ns 0.8372 

Shoot dry weight 

Source 
F 

DF Anova SS Mean Square F Value Pr > 

MNTRT 3 15.50 5.16 42.86” 0.0001 
CATRT 1 4.47 4.47 37.11** 0.0001 
MGTRT 1 0.77 0.77 6.41* 0.0138 
MNTRT*CATRT 3 2.47 0.82 6.85** 0.0004 
MNTRT*MGTRT 3 0.51 0.17 1.42ns 0.2461 
CATRT*MGTRT 1 0.01 0.01 0.00NS 0.9591 
MNTRT * CATRT * MGTRT 3 0.41 0.13 1.14ns 0.3411 

Total dry weight 
Source DF Anova SS Mean Square F Value Pr > F 

MNTRT 3 26.71 8.90 46.16** 0.0001 
CATRT 1 7.23 7.23 37.48** 0.0001 
MGTRT 1 1.21 1.21 6.31“ 0.0145 
MNTRT*CATRT 3 4.07 1.35 7.04** 0.0004 
MNTRT*MGTRT 3 0.61 0.20 1.0 6ns 0.3730 
CATRT*MGTRT 1 0.01 0.01 0.02ns 0.8971 
MNTRT * CATRT * MGTRT 3 0.55 0.18 0.97ns 0.4144 

1_ _I 
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Table 2: Nutrient concentration in the plant tissue 

Manganese 

Source DF Anova SS Mean Square F Value Pr > F 

MnT 3 121064375.31 40354791.77 1127.80” 0.0001 
CaT 1 35267696.10 35267696.10 985.63“ 0.0001 
MgT 1 1196583.20 1196583.20 33.44“ 0.0001 
PART 3 82786466.60 27595488.80 771.21“ 0.0001 
MnT*CaT 3 1730149.06 7243383.02 202.43“ 0.0001 

MnT:Cal 3 — — 1130.3“ 0.0001 
MnT:Ca2 3 — — 199.89“ 0.0001 

MnT*MgT 3 1748559.17 582853.05 16.29“ 0.0001 

MnT:Mgl 3 — — 676.40“ 0.0001 
MnT:Mg2 3 — — 467.69“ 0.0001 

MnT*PART 9 4429145.81 2714349.53 75.86“ 0.0001 

MnT:PARTI 3 — — 375.44“ 0.0001 
MnT:PART2 3 - - 34.74“ 0.0001 
MnT:PART3 3 — - 696.17“ 0.0001 
MnT:PART4 3 - - 249.03“ 0.0001 

CaT*MgT 1 532358.44 532358.44 14.88“ 0.0001 

CaT:Mg1 1 — — 

* * 

46.46 0.0001 
CaT:Mg2 1 — - 1.85NS 0.1745 

CaT*PART 3 7975218.16 2658406.05 74.29“ 0.0001 

CaT:PARTI 1 — — 192.45“ 0.0001 
CaT:PART2 1 — - 40.70“ 0.0001 
CAT:PART3 1 — - 740.52“ 0.0001 
CAT*PART4 1 — — 234.85“ 0.0001 

MgT*PART 3 256532.57 85510.85 2.3 9ns 0.0693 
MnT*CaT*MgT 3 719027.87 239675.95 6.70“ 0.0002 

MNT*MGT:Cal 7 — — 500.34“ 0.0001 
MNT*MGT:Ca2 7 — — 86.51“ 0.0001 

MNT:(Cal*Mgl) 3 — — 680.13“ 0.0001 
MNT:(Cal*Mg2) 3 — - 471.84“ 0.0001 
MNT:(Ca2*Mgl) 3 — - 116.75“ 0.0001 
MNT:(Ca2*Mg2) 3 — — 84.49“ 0.0001 

MnT*CaT*PART 9 4531406.56 503489.61 14.07“ 0.0001 

(MNT*CAT):PARTI 7 — — 217.75“ 0.0001 
(MNT*CAT):PART2 7 — - 23.60“ 0.0001 
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(MNT*CAT):PART3 7 - - 454.82” 0.0001 
(MNT*CAT):PART4 7 — — 162.20” 0.0001 

MNT: (CAT1* PARTI)3 — — 371.45” 0.0001 
MNT: (CAT1* PART2)3 - — 35.77” 0.0001 
MNT: (CAT1* PART3)3 - — 687.48” 0.0001 
MNT: (CATl* PART4)3 — - 261.94” 0.0001 

MNT: (CAT2* PARTI)3 — - 72.48" 0.0001 
MNT: (CAT2 * PART2)3 — - 5.72” 0.0008 

MNT: (CAT2* PART3)3 - - 126.93” 0.0001 
MNT: (CAT2 * PART4)3 — - 38.25” 0.0001 

MnT * MgT * PART 9 618608.55 68734.28 1.92* 0.0494 

(MNT*MGT):PARTI 7 — — 163.66” 0.0001 
(MNT*MGT):PART2 7 — - 15.66** 0.0001 
(MNT*MGT):PART3 7 — - 308.36” 0.0001 
(MNT*MGT):PART4 7 — — 108.45” 0.0001 

MNT: (MGTl* PARTI)3 — — 214.48” 0.0001 
MNT: (MGTl* PART2)3 - - 22.46” 0.0001 
MNT: (MGTl* PART3)3 - - 433.15** 0.0001 
MNT:(MGT1*PART4)3 - - 143.50” 0.0001 
MNT: (MGT2 * PARTI)3 - - 165.71” 0.0001 
MNT: (MGT2* PART2)3 - - 13.36” 0.0001 
MNT: (MGT2 * PART3)3 - - 277.82** 0.0001 
MNT: (MGT2 * PART4)3 — — 106.94” 0.0001 

CaT*MgT* PART 3 423528.92 141176.30 
** 

3.95 0.0089 

(CAT*MGT):PARTI 3 — — 65.86** 0.0001 
(CAT*MGT):PART2 3 - — 14.51** 0.0001 
(CAT*MGT):PART3 3 - - 262.91” 0.0001 
(CAT*MGT):PART4 3 - — 82.00** 0.0001 

CAT:(MGTl*PARTI)1 — — 3.24” 0.0728 
CAT: (MGTl* PART2)1 - - 2.64NS 0.1052 

CAT:(MGT1*PART3)1 - - 48.17** 0.0001 
CAT: (MGTl* PART4)1 - - 10.67” 0.0012 
CAT: (MGT2 * PARTI)1 - — 1.88NS 0.1711 

CAT: (MGT2 * PART2)1 — - 0.20NS 0.6575 
CAT: (MGT2 * PART3)1 — - 0.05NS 0.8294 

CAT: (MGT2 * PART4)1 - — 0.48NS 0.4900 

MnT*CaT*MgT*PART 9 371190.84 41243.42 1.15ns 0.3262 
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Iron 

Source DF 
F 

Anova SS Mean Square F Value Pr > 

MnT 3 1628957.80 542985.93 32.13** 0.0001 
CaT 1 349074.25 349074.25 20.66** 0.0001 
MgT 1 12713.40 12713.40 0.75ns 0.3866 
PART 3 16400236.53 5466745.51 323.50** 0.0001 
MnT*CaT 3 802776.23 267592.07 15.84** 0.0001 

MnT:Cal 3 — — 46.19“ 0.0001 
MnT:Ca2 3 — — 1.7 8ns 0.1518 

MnT*MgT 3 68672.58 22890.86 1.3 5ns 0.2572 
MnT*PART 9 5949968.57 661107.61 39.12** 0.0001 

MnT*PARTI 3 — — 47.95“ 0.0001 
MnT*PART2 3 - — 0.19ns 0.9034 
MnT* PART3 3 - - 1.31NS 0.2704 
MnT*PART4 3 — — 0.0 4ns 0.9890 

CaT*MgT 1 5502.90 5502.90 0.33ns 0.5687 
CaT*PART 3 1680877.85 560292.61 33.16** 0.0001 

CaT*PARTI 1 — — 118.03“ 0.0001 
CaT*PART2 1 - — o.ooNS 0.9849 
CaT*PART3 1 - - 1.97ns 0.1619 
CaT* PART4 1 — — 0.12ns 0.7247 

MgT*PART 3 2245.20 748.40 0.0 4ns 0.9876 
MnT*CaT*MgT 3 37346.03 12448.67 0.7 4ns 0.5310 
MnT*CaT*PART 9 1824132.00 202681.33 11.99“ 0.0001 

(MNT*CAT):PARTI 7 — — 101.88“ 0.0001 
(MNT*CAT):PART2 7 - — 0.2 0NS 0.9853 
(MNT* CAT) :PART3 7 - - 1.32ns 0.2418 
(MNT*CAT):PART4 7 - — 0.04ns 0.9999 

MnT:(Cal*PARTI) 3 — — 184.35” 0.0001 
MnT:(Cal*PART2) 3 - - 0.32ns 0.8088 
MnT:(Cal*PART3) 3 - - 0.47ns 0.7055 
MnT:(Cal*PART4) 3 - - o.ooNS 0.9996 
MnT:(Ca2*PARTI) 3 - - 14.02“ 0.0001 
MnT:(Ca2*PARTI) 3 - - 0.14ns 0.9337 
MnT:(Ca2*PARTI) 3 - - 1.95ns 0.1215 
MnT:(Ca2*PARTI) 3 — — 0.06ns 0.9820 

MnT*MgT*PART 9 96823.15 10758.12 0.64ns 0.7653 

CaT*MgT* PART 3 10772.35 3590.78 0.21NS 0.8877 

MnT *CaT*MgT*PART9 171316.8 19035.20 1.13ns 0.3443 
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Calcium 

Source DF Anova SS Mean Square F Value Pr > F 

MNT 3 94.83 31.61 10.49” 0.0001 
CAT 1 2726.11 2726.11 904.93” 0.0001 
MGT 1 43.51 43.51 14.44” 0.0002 
PART 3 7585.71 2528.57 839.36” 0.0001 
MNT*CAT 3 46.93 15.64 5.19” 0.0017 

Mn:Cal 3 — — 7.64” 0.0001 
Mn:Ca2 3 — — 8.05” 0.0001 

MNT*MGT 3 43.33 14.44 4.80” 0.0029 

MnrMgl 3 — — 14.06” 0.0001 
Mn:Mg2 3 — — 1.23ns 0.2979 

MNT*PART 9 43.63 4.84 1.61ns 0.1127 
CAT*MGT 1 27.61 27.61 9.17” 0.0027 

Ca:Mgl 1 — — 23.31” 0.0001 
Ca:Mg2 1 — — 0.3 0NS 0.5851 

CAT*PART 3 659.81 219.93 
* * 

73.01 0.0001 

Ca:PARTI 1 — — 13.96” 0.0002 
Ca:PART2 1 . — - 505.40” 0.0001 
Ca:PART3 1 - - 430.22” 0.0001 
Ca:PART4 1 — - 174.38” 0.0001 

MGT*PART 3 5.36 1.78 0.59ns 0.6199 
MNT*CAT*MGT 3 30.63 10.21 3.39* 0.0186 

(Mn*Ca):Mgl 7 — — 7.01** 0.0001 
(Mn*Ca):Mg2 7 — — 6.59” 0.0001 

Mn:(Cal*Mgl) 3 — — 5.26** 0.0015 
Mn:(Cal*Mg2) 3 - - 3.33* 0.0200 
Mn:(Ca2*Mgl) 3 — - 9.44” 0.0001 
Mn:(Ca2*Mg2) 3 — — 5.84** 0.0007 

MNT*CAT*PART 9 67.83 7.53 2.50” 0.0093 

(Mn*Ca):PARTI 7 — — 2.83” 0.0075 
(Mn*Ca):PART2 7 — - 76.27** 0.0001 
(Mn*Ca):PART3 7 - - 65.97** 0.0001 
(Mn*Ca):PART4 7 - — 27.51** 0.0001 

Mn:(Cal*PART2) 3 _ — 1.8 0NS 0.1475 
Mn:(Cal*PART2) 3 — - 3.40* 0.0185 

Mn:(Cal*PART3) 3 — — 1.76ns 0.1560 

Mn:(Cal*PART4) 3 — - 4.30** 0.0055 

Mn:(Ca2*PARTI) 3 — - 0.14ns 0.9353 
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Mn:(Ca2*PART2 3 - — 6.09” 0.0005 
Mn: (Ca2* PART3) 3 - - 8.77** 0.0001 
Mn: (Ca2 * PART4) 3 — - 1.76ns 0.1560 

MNT * MGT * PART 9 54.28 6.03 2.00* 0.0394 

(Mn*Mg):PARTI 7 — — 0.71NS 0.6625 
(Mn*Mg):PART2 7 - - 1.84ns 0.0793 
(Mn*Mg):PART3 7 - - 7.95** 0.0001 
(Mn*Mg):PART4 7 — - 3.01** 0.0047 

Mn:(Mgl*PARTI) 3 — — 1. oiNS 0.3903 
Mn:(Mgl*PART2) 3 — - 1.50ns 0.2137 
Mn:(Mgl*PART3) 3 - - 15.90** 0.0001 
Mn:(Mg1*PART4) 3 - - 4.24’* 0.0061 
Mn:(Mg2*PARTI) 3 - - 0.4 5ns 0.7149 
Mn: (Mg2 * PART2) 3 - - 0.6 9ns 0.5563 
Mn: (Mg2 * PART3) 3 - - 1.05ns 0.3717 
Mn: (Mg2 * PART4) 3 — — 1.2 8ns 0.2805 

CAT*MGT* PART 3 23.96 7.98 2.65* 0.0492 
MNT * CAT * MGT * PART 9 70.88 7.87 2.61** 0.0066 

(Mn*Ca*Mg):PARTI 15 — — 1.41NS 0.1435 
(Mn*Ca*Mg):PART2 15 - - 36.29** 0.0001 
(Mn*Ca*Mg):PART3 15 - - 36.15** 0.0001 
(Mn*Ca*Mg):PART4 15 “T — 13.32** 0.0001 

Magnesium 

Source DF Anova SS Mean Square F Value Pr > F 

MNT 3 3.73 1.24 
IT* 

A.11 0.0030 
CAT 1 103.51 103.51 396.69** 0.0001 
MGT 1 68.45 68.45 262.32** 0.0001 
PART 3 221.96 73.98 283.54** 0.0001 
MNT*CAT 3 1.93 0.64 2.4 8ns 0.0620 
MNT*MGT 3 2.30 0.76 2.94* 0.0338 

Mn:Mgl 3 — — 7.31** 0.0001 
Mn:Mg2 3 — — 0.41NS 0.7480 

MNT*PART 9 2.18 0.24 0.93ns 0.4982 
CAT*MGT 1 0.20 0.20 0.77ns 0.3821 
CAT*PART 3 40.06 13.35 51.18** 0.0001 

Ca:PARTI 1 _ — 1.72ns 0.1903 
Ca:PART2 1 - - 72.86** 0.0001 
Ca:PART3 1 — - 346.11** 0.0001 

Ca:PART4 1 129.53** 0.0001 
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MGT*PART 3 11.57 3.85 14.79” 0.0001 

Mg:PARTI 1 — — 9.39** 0.0024 
Mg:PART2 1 - - 97.01** 0.0001 
Mg:PART3 1 - - 144.91** 0.0001 
Mg:PART4 1 — — 55.38** 0.0001 

MNT * CAT * MGT 3 2.95 0.98 3.77* 0.0113 
MNT*CAT*PART 9 6.68 0.74 2.85** 0.0033 

(Mri*Ca):PARTI 7 — — 0.63ns 0.7313 
(Mn*Ca):PART2 7 - - 13.35** 0.0001 
(Mn*Ca):PART3 7 - - 51.35** 0.0001 
(Mn*Ca):PART4 7 — - 21.24** 0.0001 

Mn:(Cal*PARTI) 3 — _ 0.26ns 0.8574 
Mn:(Cal*PART2) 3 - - 3.16ns 0.0252 
Mn:(Cal*PART3) 3 - - 1.8 8ns 0.1327 
Mn: (Cal* PART4) 3 - - 6.26** 0.0004 
Mn:(Ca2*PARTI) 3 - - 0.64ns 0.5907 
Mn:(Ca2*PART2) 3 - - 3.70* 0.0123 
Mn:(Ca2*PART3) 3 - - 2.5 5ns 0.0559 
Mn:(Ca2*PART4) 3 - - 0.13ns 0.9436 

MNT * MGT * PART 9 3.47 0.38 1.4 8ns 0.1556 
CAT*MGT*PART 3 0.52 0.17 0.67ns 0.5707 
MNT*CAT*MGT*PART 9 2.12 0.23 0.9 0NS 0.5215 
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