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ABSTRACT 

MODELING 'YIELD - POPULATION' RELATIONSHIPS IN SOYBEAN 

MAY 2001 

JOMOL P. MATHEW, B.Sc(Ag)., KERALA AGRICULTURAL UNIVERSITY 

M.Sc(Ag)., KERALA AGRICULTURAL UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Stephen J. Herbert 

Our objectives were to evaluate the seed yield of soybean, and Duncan’s model 

with respect to relationship between seed yield and plant population, and analyze the 

response of soybean seed yield components to light enrichment initiated at different 

growth stages. Duncan coined the term crowding to include the effects of density and 

planting pattern. Duncan’s model states that there is a linear relationship between 

natural logarithm of yield plant'1 and crowding. Results of the studies fitting Duncan’s 

model to the data obtained from different soybean cultivars planted at different densities 

and planting patterns indicated that the model can predict the changes in yield with 

changing densities and planting pattern especially if the variability in the data is low. 

In order to analyze the response of soybean seed yield components to non - 

destructive light enrichment initiated at different growth stages, light enrichment was 

imposed on the indeterminate soybean cultivar Evans by installing wire mesh fencing on 

either side of the center row to push the adjacent rows aside at different growth stages. 

Fences prevented plants in the neighboring rows from encroaching on the growing space 

of the center row plants. Pod number per plant and to a lesser extent seed size 
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accounted for variation in seed yield. Light enrichment initiated at late vegetative or 

early flowering stages increased seed yield 217%, mainly by increasing pod number, 

while light enrichment beginning at early pod formation increased seed size 23%, 

resulting in a 115% increase in seed yield. Responses to light enrichment occurred 

proportionately across all node positions despite the differences in the time (15 to 20 

days) of development of yield components at the different node positions. Although 

maximum seed size may be under genetic control in soybean plants, our results 

suggested seed size can still be modified by the environment with some internal control 

moderating the final size of most seeds in all pods. It indicates that plants are able to 

redistribute the available resources to components not yet determined, in an attempt to 

maintain or improve yield. 
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CHAPTER I 

Introduction 

Understanding the quantitative relationships between plant density and crop yield 

has been ot great interest to Agronomists. Such knowledge helps in explaining and 

evaluating the characteristics of‘optimum density’ and ‘maximum yield’, and facilitate 

comparisons between different cropping situations. Deriving equations relating yield and 

population helps agronomists in fitting yield population curves easily and accurately from 

minimum data (Willey and Heath, 1969). Many equations relating population and yield 

have been put forth by scientists. 

Holliday (1960) suggested that the total dry matter produced follows an 

asymptotic relationship with density, while reproductive forms of yield exhibits a parabolic 

relationship. Even though some exceptions have been reported to this rule (de Wit, 1959; 

Bleasdale, 1966; Bruinsma, 1966; Campbell and Viets, 1967; Farazdaghi, 1968), it holds 

true for most crops. 

Among the many mathematical equations that have been put forth to define the 

biological relationships between population and crop yield, some propose a direct 

relationship between ‘yield per unit area’ and density while the majority propose a basic 

relationship between ‘mean yield per plant and density. 
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Yield - Density Equations 

Polynomial equations 

Hudson 

Hudson (1941) described the relationship between grain yield and seed rate of 

winter wheat as 

y = a+bp+cp 2 

where y is the grain yield in kg/ha, p is the density in plants/ha, and 

a, b and c are constants, c being negative. 

As reviewed by Willey and Heath in 1969, this equation gives little flexibility in fitting 

yield/density relationships and it is not suitable for the asymptotic situations. For parabolic 

situations, the accuracy is restricted to a narrow range of density around the point of 

maximum yield. It assumes a value 4a’ and not the ‘origin’ corresponding to zero density 

and has an unrealistically sharp decline in yield at high densities. 

Sharpe and Dent 

Sharpe and Dent (1968) proposed 

y = a+bp+cp 1/2 

where y is the grain yield in kg/ha, p is the density in plants/ha, and a, b, and c are 

constants, b being negative. 

Again, this equation is unsuitable for asymptotic situations. It has a slightly more gradual 

decline in yield at higher densities and hence is slightly better than the previous equation 

for parabolic situations. However, it also assumes a value a for the zero density. 
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However, due to the above mentioned shortcomings, yield predictions using 

pol> nomial equations might lead to values very much different from actual yields 

especially at lower and higher densities. 

Exponential equations 

Duncan 

Duncan (1958) proposed an exponential equation relating grain yield and density 

as 

log y = log K +bp 

or 

y = K 10bP 

Where y is the yield per plant in kg, K is a constant (the y intercept), and b is the 

slope of the regression line (negative), p is the density in plants per ha. 

This equation can also be expressed as 

Y = p K 10bP 

where Y is the yield in kg/ha. 

Carmer and Jackobs 

Carmer and Jackobs (1965) proposed an analogous equation 

Y = p AKP 

Where A and K are constants. 
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The exponential equations, compared to the polynomials are much more flexible 

and give a good fit tor the parabolic situations. Unlike the polynomial equations, the 

curves pass through the origin, and at high densities the curves do not cut the density axis, 

but more realistically, only gradually approaches it. However they still do not give a good 

fit for the asymptotic situations (Willey and Heath, 1969). 

Since Duncan’s equation is based on a linear regression, it is possible to construct 

the line, using the yield from two densities. However, as pointed out by Duncan (1958) 

himself, the accuracy depends on the distance between the two points on the line. Duncan 

suggested that the farther apart the two densities, the more accurate will be the regression 

line. 

Geometric equations 

Warne 

Wame (1951), while studying the effect of density on root yield of beet, parsnip 

and carrot, proposed a linear relationship between root yield per plant and the logarithm of 

the distance between plants in a row where row width was constant. 

Log w = log A+b log(s) 

or 

w=A(s)b 

where w is the root yield per plant, s is the space available per plant, and A and b 

are constants. 
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It we consider ‘yield per unit area’ instead of‘yield per plant’ and include ‘density’ rather 

than ‘space’, the equation becomes 

y = A(Py-b 

Kira et al 

Kira et al. (1953) proposed a linear relationship between the logarithm of total 

yield and the logarithm of density in soybeans as 

log w+a log p = log K 

or 

or 

log w=log K - a log p 

wpa = K 

where ‘a’ known as ‘competition-density index’ and K are constants. 

The only type of yield density curve which this equation can describe is one where yield is 

still increasing even at the highest density (Willey and Heath, 1969). Failure of the 

equation to describe the leveling off of yield per plant at densities too low for competition 

to occur is another disadvantage (Shinozaki and Kira, 1956). 

Reciprocal equations 

These equations describe the mathematical relationships between the reciprocal of 

mean yield per plant and density. 
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Shinozaki and Kira 

Shinozaki and Kira (1956) assumed a linear relationship between the reciprocal of 

yield per plant as 

1/w = a+bp 

where a and b are constants. 

E\en though Shinozaki and Kira (1956) found that the equation holds true for many 

asymptotic situations, it could not be used for parabolic situations. 

Shinozaki and Kira suggested a modification in their equation to account for the 

constancy of yield at lower densities where competition is negligible as 

1/w = a+b(p+8) 

where 8 is a value chosen depending on the maximum yield per plant (when there 

is no competition), so that at high densities 8 will be negligible compared to p and could 

be discarded, and at lower densities 8 would become meaningful.. 

However, the term 8 was introduced to increase the goodness of fit at lower 

densities and has no biological meaning and its value also has to be determined 

experimentally (Willey and Heath, 1967). 

Holliday 

Holliday (1960) proposed an equation identical to Shinozaki and Kira’s equation. 

Later, identifying that his equation could not account for a constant yield per plant at low 

densities where there is no competition, he proposed a modified equation beginning at the 
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density where competition starts as 

1/W = a’ + bm 

where m - p-n (n is the density at which competition starts), b is a constant and a’ 

is experimentally determined for each cropping situation. 

However, as mentioned by Willey and Heath(1967), Holliday himself admitted that 

the practical use of the equation would be limited as a’ would have to be experimentally 

determined for each cropping situation. 

Holiday also proposed a parabolic yield density equation as 

1/w = a+bp+cp2 

where a, b, and c are constants. 

This equation produces a curve which is not symmetrical about its point of maximum yield 

and flattens off realistically at high densities. 

De Wit 

De Wit and Ennik(1958) proposed an equation as 

1/y = a+bd 

where a and b are constants and d is the row width ( row width = distance between 

plants in a row). 

Like in the case of Shinozaki and Kira’s, de Wit’s equation can only be applied to 

asymptotic yield - density situations. 
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Bleasdale and Nelder 

Bleasdale and Nelder (1960) proposed the reciprocal equation representing 

asymptotic conditions as 

1/w® =a + b§® 

where a, b and 9 are constants. 

They also proposed that if slightly modified, the equation can be used for parabolic 

conditions also. The modified equation is 

l/w®=a+bp(t) 

where 0 and <|> are parameters having constant values for any one set of data 

(Bleasdale, 1966b; Bleasdale and Thompson, 1966; Bleasdale, 1967). When yield is 

asymptotic, 0 = and when yield is parabolic, 0 < (|>. 

Bleasdale (1967) also suggested that the ratio of 0 to <|) is more important than 

their absolute values and that for practical purposes, it is adequate to take § as unity. 

Thus the equation becomes 

l/w^=a+bp 

Farazdaghi and Harris 

Farazdaghi and Harris (1968) proposed the yield-density equation as 

l/w=a+bp^ 

For asymptotic situations y =1 and for parabolic situations y > 1. According to them, this 

equation can predict the yield in both asymtotic and parabolic situations. 

8 



Crowding vs ‘density’ in yield - population modeling 

Even though most of the above equations, especially the reciprocal equations 

express the relationship between density and yield, they do not account for the fact that 

plant population can not be defined just in terms of number of plants per unit area. 

Population involves number of plants and planting pattern or rectangularity of plant 

spacing. Rectangularity of plant spacing is the longest distance between plants divided by 

shortest distance. A square planting pattern has rectangularity of 1 while a wide row 

width with close intra row spacing has high rectangularity. As competition between plants 

growing in ‘communities’ depends on the number of plants and planting pattern, 

considering rectangularity would give more biological meaning to the yield-population 

equations. 

Recognizing the significance of the interaction of density with spacial arrangements 

of plants, Duncan (1984) suggested that all forms of interplant competition can be 

combined into a single term 'crowding' (C) in which he included the effects of plant 

population (density) and planting pattern. Accordingly Duncan stated that the maximum 

crowding (C = 1) occurs when two plants are grown together in essentially the same 

space. As the distance between the plants increases, crowding decreases and becomes 

zero at D which is the least separation at which competition is considered negligible. 
max A 

To calculate crowding, the deviation of the plant from Dmax is expressed as a fraction of 

D and is termed the ‘Separation Fraction’ (SF). Duncan calculated SF as 
max A 

SF = (Dmax - separation)/Dmax 

The rate of change of crowding with separation is obtained by raising SF to a power of 
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alpha. Crowding between two plants then is C = SFalpha. The total crowding for a 

community of plants is 

where, p = 1 to p = n includes all plants in the planting pattern within the distance 

Dmax from the center plant. The total crowding in a planting pattern, is the sum of 

crowding experienced by all the individual plants and it is a constant for a particular 

planting pattern. Figure 1 illustrates the competition between two plants in terms of their 

separation. 

Based on this concept of crowding, Duncan proposed a crowding model to 

express the relationship between crowding and yield in a mathematical form. 

According to the model, 

dy/dC = Ey 

where, y is yield/plant; C is crowding and E is a constant which defines the 

effect of crowding on yield. 

This can also be written as: 

dy/y = EdC 

By integrating, 

lny = lny0+EC 

When a plant is grown in isolation, separation > Dmax, and SF equals zero. Crowding 

therefore equals zero and thus lny0 = lny. Thus y0 can be defined as the maximum yield of 

a single plant at zero crowding. 
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Responses of seed yield components to changes in growth environment 

Environmental conditions prevailing during the growth period, especially intensity 

and quality of solar radiation intercepted by the canopy, are important determinants of 

yield components and hence the yield of soybean (Taylor et al., 1982; Willcott et al., 

1984; Myers et al., 1987; Board and Harville, 1992 & 1996). Light enrichment using 

lamps or reflectors increased the yield of soybean (Johnston et al., 1969; Schou et al., 

1978). Shading (49-20% of ambient light) resulted in lengthening of intemodes and 

increased lodging in soybean plants (Ephrath et al., 1993). 

Hardman and Brun (1971) proposed that the yield of soybean is controlled by the 

availability of photosynthates during the post flowering stage of development. Schou et 

al. (1978) observed that light levels during late flowering to mid-pod formation stages of 

growth are more critical than during vegetative and late reproductive periods in 

determining the yield of soybean. Taylor et al. (1982) concluded that pod abortion caused 

by lack of photosynthate supply late in the growing period is a major factor limiting yield 

of soybean. Duncan (1984) suggested that light intercepted during and after seed 

initiation is a major determinant of yield. Jiang and Egli (1993) reported that shade during 

Rj to R5 period of the reproductive stage reduces flower production and increases flower 

and pod abscission resulting in reduced pod number and yield. They also found that 

canopy photosynthesis during flowering and pod set are important determinants ot 

seed m'2, and that the impact of shading on seeds m2 depends on duiation ot shading 

(Jiang and Egli, 1995). Sharma et al. (1996) observed anthesis to be the most critical 

stage during which low light intensity can cause severe yield reduction in soybean. 
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Board et al. (1992) and Board and Harville (1996) suggested that the increased 

seed yield of soybean from planting in narrow rows (less than 50 cm) reported by many 

researchers (Lehman and Lambert, 1960; Costa et al., 1980; Herbert and Litchfield, 1982; 

Willcott et al., 1984), can be attributed to the increased light interception during 

vegetative and early reproductive periods (first flowering to seed initiation). In most of 

the above studies, changes in yield was mainly brought about by changes in pod and seed 

number. However an increase in seed size so as to compensate for the decreased pod load 

has been observed in source - sink manipulation studies (Me Alister and Krober, 1958; 

Schonbeck et al., 1986). 

Herbert and Litchfield (1982) noticed that pod number per plant was the most 

important component responsible for differences in soybean yield between different row 

widths and densities within a particular year, while a change in seed size resulted in the 

yield difference between two consecutive years. Thus, there is a differential response of 

yield components to changes in environmental conditions. However, the exact nature of 

response to the timing of light enrichment has not been identified yet. Also most ot the 

studies conducted so far on differential response achieved increases in light interception 

indirectly by removal of leaves and thereby modifying the source strength. 

Objectives 

The objectives of the research are: 

1) To evaluate the seed yield of soybean, and Duncan’s model with respect to the 

relationship between seed yield and plant population in soybeans. 
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2) To determine the influence of nondestructive light enrichment imposed at different 

growth stages on seed yield and the nodal development of seed yield components. 
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CHAPTER II 

Yield population Modeling 

Introduction 

Genotype and environment as determinants of ‘maximum yield’. 

Crop plants carry all the genetic information acquired during evolution and 

breeding in their chromosomes in the cells. By changing or incorporating specific genes 

controlling certain traits, scientists have developed cultivars that are more adapted to the 

local environment, tolerant to stresses, and resistant to specific pests and diseases. Donald 

(1968) proposed that ‘ideotypes’ of crop plants can help in improving productivity. The 

ideotype for intensively cropped wheat plants is characterized by short stiff straw, 

minimum number of erect leaves(erect at the top, gradually becoming horizontal towards 

the bottom the lower most leaf becoming perfectly horizontal), and a large spike." 

‘Environment’ as defined by De Vries (1965) is “the entire complex of physical, 

chemical and biological factors met by a plant or other living entity”. The principal 

physical and chemical factors that affect growth and yield of crops include climatic factors 

like radiation, cloudiness, precipitation, wind, air temperature, humidity, C02 content ot 

the air, air pollution etc.; and edaphic factors like soil structure and texture, soil 

temperature, soil moisture, soil aeration, organic matter content, soil reaction and soil 

fertility. 

Climate is a major determinant of the geographic distribution ot both natural and 

cultivated crops. Each plant species has certain climatic requirements for optimum 

growth, and the success or failure of the crop is based on how well each of these particular 

requirements is met (Watson, 1965, Buck, 1961). 
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Environmental factors effecting potential yield of crops 

Solar radiation 

The ultimate source of energy for earth is ‘solar radiation’. The solar radiation 

reaching the outer edge of earth's atmosphere is 1.39 kWm'2. However only 47% of it 

reaches the earth surface after reflection by clouds, refraction and diffraction in the 

atmosphere, and scattering and absorption by clouds and suspended particles. The 

ecosphere (part of the atmosphere that supports life) receives solar radiation at 

wavelengths 290-3000 nm. About 40-50% of the solar energy falls in the spectral region 

of 390-780 nm (visible light). Of the visible light that falls on the leaves about 6-12% is 

reflected. About 70% of the photosynthetically usable radiation (PAR 400-700 nm) 

entering the mesophyll is absorbed by the chloroplast. Photoreceptors involved in 

photosynthesis are chlorophylls with an absorption maxima of red and blue along with 

accessory plastid pigments (carotin and xanthophylls) that absorb the blue and UV 

regions. 

In crop stands, photosynthesis occurs in a stacked arrangement of leaves. The 

incident light is absorbed progressively as it passes through the leaf layers. This 

attenuation of radiation depends mainly on the density of foliage called the leal area index 

(LAI - Watson, 1947), and the arrangement of leaves. Monsi and Saeki (1953), have 

shown that 

I=I0e'kLAI 

where, I is the intensity of radiation at a certain distance from the top of the plant canopy, 

I0 is the radiation incident on the top of the canopy and k is the extinction coefficient for 

the plant community. The LAI above the level at which I is estimated is used in the 
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equation. Extinction coefficient indicates degree of light attenuation within a canopy for a 

given LAI. In grain crops where leaves have an upright orientation (more than 3/4 of the 

leaves at an angle of more than 45° from horizontal), k is less than 0.5 and in stands with 

broad horizontal leaves (e.g. Clover or sunflower), k is greater than 0.7. Studies on the net 

photosysnthesis of grain plants in stands indicated that, within a stand, because of the 

angle at which light strikes at the leaf surface and because of the shading of leaves by one 

another, light saturation is not reached even under strong irradiation (Boysen-Jensen, 

1932). 

Photosynthesis and hence yield are influenced by intensity and quality of solar 

radiation, and crops differ in their light requirements. He et a/. (1996), conducted 

experiments on the influence of irradiance on photosynthesis under natural conditions 

using Heliconia spp. The results indicated reduced photosynthetic capacities and lowered 

chlorophyll content when the plants were grown under full sunlight compared with those 

grown under intermediate and deep shade. Experiments by Sanchez, in 1989 on lettuce 

showed that shading reduces growth and yield especially when done at the heading stage 

of development. Potential productivity of maize in temperate regions was found to be 

limited by the amount of solar radiation available around silking (Otegui et al., 1995). 

Plants exhibit environmental and genetic modifications to the prevailing quality and 

quantity of radiation. Plants adapted to intense light have more efficient axial system, 

several layers of mesophyll cells with abundant choroplasts, and hence produce more dry 

matter. Those adapted to shade develop extensive leaf surfaces with high concentration of 

chlorophyll and accessory pigments in the chloroplasts and are distinguished by 

comparatively lower dry matter production and low respiration. Depending on anatomy 
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and C02 fixation mechanism, plants have been described as C3, C4 and CAM plants. 

Comparison of the light dependence curves showing dependence of net photosynthesis on 

light showed that C4 plants like maize and millet are not light saturated i.e.,reach maximum 

photosynthesis, even at high light intensities, and at intermediate irradiance they operate 

more efficiently than C3 plants. C3 plants on the other hand are much less efficient and 

hence light saturate at lower intensities. Studies by Kephart et al. in 1992 using C3 and C4 

perennial grasses indicated that responses of C4 grasses in terms of herbage yield, shoot 

dry weight and crop growth rate to irradiance were two to three times greater than for C3 

grasses. 

Temperature 

Plants vary in their tolerance to temperature. Most plants can live in the 

temperature range of 5°C to 50°C. However, biological activities are limited at lower 

temperatures by freezing of water and at upper temperatures by denaturation of protein. 

Chilling and freezing injury occurs in plants at low temperatures. This results in damage 

to bio - membranes and breakdown of metabolism of nucleic acids and proteins. Certain 

crops on the other hand, have a chilling requirement for their growth. Winter annuals and 

biennials, as well as buds of certain woody plants require a cold winter season (chilling 

requirement) in order to flower normally in the spring. They do not flower until after they 

have been exposed for weeks to temperatures between -3°C to 13°C. This acquisition or 

enhancement of the ability to flower by exposure to cold is called vernalization. Excessive 

heating also results in the death of plants by denaturing the enzymes and breakdown of 

metabolism. Temperature resistance mechanisms in plants vary according to the genetic 
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adaptations (Levitt ,1958). Photosynthesis has been shown to be extremely sensitive to air 

temperature. Studies on the performance of the photosynthetic apparatus using the third 

leaves of maize seedlings showed a reduction in photosynthetic rate as temperature 

decreased from 25-4°C (Haldimann et al., 1996). Based on experiments to study the 

effects of high light and temperature stress on structure and function of the photosynthetic 

apparatus of wheat, Mishra and Singhal (1992) reported a decrease in the electron 

transport activity of chloroplast isolated from photoinhibited and heat stressed leaves. 

Photosynthetic rates of wheat seedlings declined gradually after temperature increased 

from 22 to 42°C (Al Khatib and Paulsen, 1989). Studies on the seasonal changes in 

growth of ‘titan’ red raspberry indicated that photosynthetic rates of primocane and 

floricane leaves was very sensitive to temperature exhibiting a decline from 15-40°C 

(Massacci et al., 1995). 

Temperature range suitable for dry matter production, growth and development 

depends on thermal climate of the region in which the species grows. For example, 

extension of shoot growth of temperate plants begins as soon as the temperature rises a 

few degrees above zero whereas in tropical plants growth does not begin until 12-15 C is 

reached. For each plant, there is a minimum, optimum, and maximum range of 

temperature called ‘cardinal temperature’ for each stage of the crop. 

Carbon dioxide content of the atmosphere 

Impact of increased C02 on physiology, growth and yield of crops has been an 

issue of debate among scientists (Kubiske and Pregitzer, 1996; Koike et al, 1996; Jones et 

al, 1996; Conroy et al, 1994; Acock, 1990; Nederhoff and Vegter, 1994; Pearson et al. 
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1994; Seddigh et al, 1994). Positive effects of high C02 on wheat grain yield were 

observed by (Tubiello et al., 1995). Elevated C02 was found to increase dry matter 

accumulation and pod yield in ground nut (Clifford et al., 1993). However experiments 

by Chen, in 1990, indicated improvement in production of marketable seeds in groundnut 

only when C02 enrichment was combined with depegging which helped to prevent 

excessive sink load. In many other studies also, response to increased C02 by different 

crops were found to be influenced by interactions with other environmental factors (Allen, 

1990; Sengupta and Sharma, 1993; Teramura et al., 1990; Wheeler et al., 1991). 

Wind 

Wind is shown to have both favorable and unfavorable effects on crop production. 

Mild wind assists in pollination of many crops [fir (El Kassaby et al., 1993), com (Johnson 

and Hayes, 1932)], and helps in air mixing replenishing C02 in the crop canopy depleted 

by photosynthesis. Unfavorable effects include lodging of crops (Jones and Mitchell, 

1992), desiccation of fruits and vegetables, mechanical damage to leaves (Eckstein et al., 

1996), and branches, increased transpiration rates etc. These can severely reduce crop 

yields or in extreme cases result in complete devastation of crops. 

Apart from these direct influences, wind affects crop growth indirectly by causing 

substantial soil erosion (Schillings 1996; Johnston et al., 1995). Wind velocities and 

direction often influence the spread of pests and diseases (Montandon et al., 1993) and 

application efficiencies of fertilizers (Viets, 1950; Sogaard and Kierkegaard, 1994). 
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Precipitation 

Yet another factor that decides crop productivity is water availability. About 

75 - 95% of the weight of plants is contributed by water. The roles of water in plants 

include: being a structural constituent of proteins and nucleic acids, involvement in 

biological reactions and temperature regulation. 

Rainfall is the direct source of most of the water used by crops. Amount and 

distribution of rainfall in a region influences the growth and distribution of plants as water 

is essential for all biological reactions from germination to senescence. Crops differ in 

critical stages during which a deficiency of water will result in yield reductions (e.g. 

tasseling and silking in com, pod filling in soybean). Certain plants are genetically adapted 

to growing in regions with low water availability. They often possess morphological 

features like pubescent leaves, rolling of leaves, bloom on stem and leaf (white powder in 

sorghum), number and distribution of stomata, cutinized epidermal cells, sunken stomata 

etc. Plants also differ in their water use efficiency (WUE=Dry matter production/water 

consumption (g DM. I'1 H20). Millets, com etc are the most efficient water users followed 

by cereal grains which are intermediate in water requirements and forages (c.g- altalta) 

have a relatively high water requirement. 

In addition to playing these direct roles, rainfall controls crop growth and yield 

indirectly by influencing surface runoff soil erosion(Razavian, 1990), and availability ot 

nutrients. 
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Humidity 

Relative humidity influences crop growth directly and/or indirectly. Leaf growth 

rate and turgor was found to be sensitive to relative humidity in experiments by (Metcalfe 

et al., 1991). Humidity during grain filling has been shown to influence wheat protein 

quality (Graybosch et al, 1995) and wheat yield (Kobata et al., 1992). Relative humidity 

influences incidence of diseases [early leaf spot of peanut (Wu et al., 1996)] and insects 

[(cabbage maggot on broccoli and Chinese cabbage (Matthews Gehringer and Hough 

Goldstein, 1988)]. Calcium uptake by sorghum was found to be slowed down at high 

relative humidity due to decreased transpiration which reduced the Ca mobility (Murtadha 

et al., 1989). Humidity influences application efficiency of agricultural chemicals (Singh 

and Das, 1939; Wills and Street, 1988). 

Environmental pollution 

Atmospheric and water pollution and its impact on crop production has gained 

significance in the recent past. Atmospheric pollutants particularly dangerous to plants are 

S02, hydrogen halides (HF, HC1) ozone and peroxy-acetyl nitrates (PAN). Nitrogen 

oxides, ammonia, hydrocarbons, tar fumes, soot and dust are also dangerous. Plants 

growing in water are damaged by poisonous chemicals in sewage (cyanides, chlorine, and 

hypochlorite, phenol and benzol derivatives, heavy metal compounds etc.), detergent 

additives (sulfonates, phosphates) and by seepage from sewage plants, garbage dumps, 

and cultivated fields. The effects of many pollutants is decided by their concentration and 

period of exposure. Below the concentration threshold there are no observable changes 

even after prolonged exposure (Kohut et al., 1988, Lesser et al., 1990, Sommerville, 
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1989). Exposure to high concentration (e.g. greater than 1 cm3 S02/m3 air) causes acute 

injury to plants. Chlorophyll bleaching, leaf discoloration, necrosis of tissue and organs or 

death of entire plants results. At low concentrations (e.g. 0.05 to 0.2 cnf S02/mJ), there 

is no externally visible poisoning initially, but chemical, biochemical or structural and 

functional changes might occur (e.g. enolase inhibition and enhance peroxidase activity 

under HF stress). However certain crops like lavender can tolerate the effect of pollutants 

and can be grown without threat of contamination of economic parts (Zheljazkov and 

Nielsen, 1996) 

Edaphic factors 

Edaphic factors play crucial roles in determining crop yield. Soil texture has been 

shown to be one of the factors that cause yield differences among landscape positions 

(Brubaker et al., 1993). Texture influences water infiltration (Gulick et al., 1994), 

erodibility of the soils (Burroughs et al., 1992) and availability of plant nutrients (Davis et 

al., 1996; Yadvinder et al., 1994). 

Management practices that help to maintain good soil structure have been shown 

to facilitate proper aeration of soil and increase yield of crops (Glenn and Welker, 1989; 

Pezzarossa et al., 1995; Bell et al., 1995). Studies by Meyer et al. (1985) on cotton, 

Mukhtar et al. (1988) on corn, Bushnell (1935) on potato and Kosaka et al. (1981) on 

sugarbeet have stressed the significance of soil aeration as an important factor affecting 

performance of crops. Soil temperature was reported to control root growth (Teasdale et 

al, 1995) and yield of crops (Shuler and Hannaway, 1993). Soil moisture is another 

important edaphic factor that is critical for the growth, yield and quality of crops 
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(Haddock, 1949; Hunter et al, 1950; Awada et al., 1967; Cullen, 1971;Kamara, 1976; 

Kolderup, 1975; Kosaka et al., 1981; Morris and Sims, 1985; Carlson, 1990). 

Voluminous research data are available on the influence of soil organic matter 

(Bauer and Black, 1994) and nutrients on growth and yield of crops (Mooso et al., 1995; 

Odland and Allbritten, 1950; Fageria and Baligar, 1995; Lynd and Ansman, 1995,and 

Saxena et al, 1996). 

Soil reaction influences crop growth (Sundling et al., 1932), quality (Stark, 1924) 

and yield by controlling incidence of diseases [for example, higher soil reaction (6.1) was 

found to decrease yield and increase scab incidence in potato (Odland and Allbritten, 

1950)], and nutrient availability (Ensminger and Cope, 1947; Warden and Reisenauer, 

1991). 

Duncan’s Model 

The foregoing discussion clearly indicates that the potential yield of a crop is very 

specific to the genotype and the environment in which it is grown. According to Duncan’s 

model - 

lny = lny0 + EC 

Thus, y in Duncan’s model (Duncan, 1984) is decided by genotype, growing environment 

and competition from neighboring plants (crowding) tor the available environmental 

resources. The extent to which competition affects the yield, E in the model, is a measure 

of the interaction between genotypes and environmental factors. This means that it there 

is no resource limitation, the impact of crowding on yield will be the least and yield will be 

dependent mostly on genetic potential. This dependence of E on environmental factors is 
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well demonstrated in experiments by Lang et al. (1956) and Rhodes and Stanley (1984) as 

cited by Duncan (1984). If so, y0 can be thought of as the theoretical ‘maximum yield’ 

that can be attained by a specific genotype under a particular environment when there is 

absolutely no competition from any other plant for the available resources. The current 

study was conducted with the objective of evaluating the seed yield of soybean, and 

Duncan’s model with respect to the relationship between seed yield and plant population 

in soybeans. 

\ 

Materials and Methods 

A three - year field study was conducted in 1995, 1996 and 1998 at the University 

of Massachusetts research farm in South Deerfield. The soil at the experimental site is a 

Hadley fine sandy loam (Typic Udifluvent). In all years, seeds inoculated with commercial, 

powdered, peat - based granular Bradyrhizobium were used for planting, and other normal 

cultural practices were followed. A pre-emergence mixture of 0.85 kg (ai) ha'1 Linuron 

[3-(3,4-dichlorophenyl)-1 -methoxy-1 -methylurea] and 1.75 kg (ai) ha'1 Alachlor (2- 

chloro-2',6'-diethyl-N-(methoxymethyl) acetanilide) were used for weed control in all 

years. 

In 1995 and 1996, a complete randomized block design of four soybean cultivars 

NK 0066, NK1990, PIONEER 9071, and PIONEER 9111, grown at three different 

densities was used. The densities were 25 plants m~ planted at a distance ot 25cm 

between rows and 16cm within row, 50 plants m'2 planted at a distance of 25cm between 

rows and 8cm within row, and 75 plants m'2 planted at a distance of 25cm between rows 

and 5.3cm within row. The plots were 7m long with 8 rows per plot. 
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In 1998, a complete randomized block design of three soybean cultivars PIONEER 

9071, NK 0066 and PIONEER 9111, grown at six different densities and row spacing was 

used. The different densities used in the experiment included 83 plants m'2 planted at a 

distance of 25cm between rows and 4.826cm within row, 41 plants m'2 planted at a 

distance of 50cm between rows and 4.826cm within row, 43 plants m"2 planted at a 

distance of 25cm between rows and 9.525cm within row, 21 plants m'2 planted at a 

distance of 50cm between rows and 9.525cm within row, 57 plants m'2 planted at a 

distance of 25cm between rows and 7.112cm within row, and 23 plants m'2 planted at a 

distance of 75cm between rows and 5.842cm within row. Each plot was 2.25m wide and 

7.5m long. 

Each year, in addition to the above mentioned treatments, .uniformly spaced 

(‘isolated’) plants were grown at 50cm x 50cm, 75cm x 75 cm, 100cm x 100cm, and 

150cm x 150cm spacings. 

Yield was determined by harvesting plants in one square meter from each plot and 

recording the seed dry weight after drying the samples to constant weight at 60°C in a 

forced dry air oven. This sample was used to calculated yield m2 and the number ot plants 

ni"2. For yield component analysis, 15 plants, were harvested at maturity from each 

treatment. For each group of plants, data were recorded on pod number, seed number, 

and seed dry weight. 

Statistical analyses of the data was performed using the SAS analysis of variance 

and regression procedures (SAS, 1995). 
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Determination of crowding 

Crowding for each cultivar and planting pattern was calculated following the 

procedure outlined by Duncan(1984). 

a) Dmax, the distance at which crowding becomes zero or negligible, was determined by 

growing soybean plants at different spacings and plotting the yield per plant against 

density of uniformly spaced (rectangularity = 1) plants. 

b) Deviation of the plant from Dmax was expressed as a fraction of Dmax termed the 

Separation fraction(SF) as SF = (Dmax - separation)/Dmax). 

c) Alpha, the power to which SF is raised to get an appropriate curve relating crowding 

and separation distance was calculated by fitting different arbitrary values and testing 

them with several years of data. 

d) Crowding value for the given planting pattern was calculated using a computer program 

written using C++ programming language (Appendix A) as 

Crowding (C) gpalpha 

P=1 

where, p=l to p=n includes all plants in the planting pattern within the distance Dmax 

from the center plant. 

Crowding remains constant for a particular planting pattern but increases with increasing 

plant number and increasing plant rectangularity at the same planting density. 
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Calculation of y0 and E 

y0 and E were calculated as follows : 

a) Different genotypes of soybean were grown in the given environment at two 

populations spanning as wide a range of plant populations as feasible. 

b) C values for each of these populations were calculated as described above. 

c) Yield per plant from each of these populations was calculated from the harvest data on 

yield. 

d) Regression analysis of In of y (measured) against C value was done as suggested by 

Duncan(1984) as lny = lny0 + EC where lny0 is the isolated plant yield at zero 

crowding and E is a measure of the effect of cultural and environmental factors in 

influencing the rate of change in yield with a change in crowding. 

Testing the prediction lines using two crowding values 

Regression equation fitted using the lowest crowding value and the highest 

crowding value was compared to an equation fitted using all data points to see if there is a 

statistically significant difference between the slopes and intercepts of the lines. 

Results and Discussion 

Yield per square meter 

Results showed significant difference in yield nr among cultivars in all years 

(Table 1). In both 1995 and 1996, PIONEER 9071 produced the highest yield and was 

closely followed by NK 1990. NK 0066 gave the lowest yield nr. In 1998, PIONEER 

9111 
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Table 1. Yield component analysis of soybean varieties for 1995, 1996 and 1998. 
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Variety 1995 1996 1998 

Yield m'2 NK 0066 580.01c* 329.39c 482.50b 

(g m'1) NK 1990 675.81a 396.07ab - 

PIONEER 9071 685.06a 425.50a 495.61b 

PIONEER 9111 634.18b 340.28bc 636.33a 

Plants m'2 NK 0066 52.00 47.00 42.56 

(No nr1) NK 1990 57.33 46.33 - 

PIONEER 9071 48.22 47.89 42.94 

PIONEER 9111 47.22 44.77 40.00 

Yield plant’1 NK 0066 12.70c 9.74b 20.01b 

(g plant’1) NK 1990 15.43a 13.81a - 

PIONEER 9071 14.25ab 12.87a 19.17b 

PIONEER 9111 12.95bc 12.65a 26.95a 

Pods plant'1 NK 0066 29.27 20.94c 55.80 

(No plant’1) NK 1990 29.56 23.02bc - 

PIONEER 9071 34.29 32.46a 57.39 

PIONEER 9111 28.96 25.43b 63.39 

Seeds pod’1 NK 0066 2.32b 2.37 2.25 

(No pod'1) NK 1990 2.54a 2.78 - 

PIONEER 9071 2.41b 2.41 2.41 

PIONEER 9111 2.38b 2.40 2.35 

Seed size NK 0066 192.89b 198.95b 159.56b 

(mg seed’1) NK 1990 209.02a 229.52a - 

PIONEER 9071 175.28c 166.08c 140.46c 

PIONEER 9111 190.34b 203.93b 181.17a 

tMeans not followed by the same letter are significantly different at the 0.05 probability level. 

Mean separation was done using DMRT. 
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gave significantly higher yield compared to PIONEER 9071 and NK 0066. Statistically 

similar yield m'2 was recorded for PIONEER 9071 and NK0066 in 1998. 

Differences among the densities with regard to yield m'2 were significant in 1995 

and 1998 (Tables 2 and 3). Among the three densities used in the experiments in 1995 and 

1996, the highest yield in both years was recorded by the highest density of 75 plants m'2. 

In 1998, a density of 83 plants at 25 cm between the rows gave the highest yield. There 

was no significant difference in yield m'2 between densities of 43 and 57 plants m'2 at 25 cm 

row spacing, and density of 41 plants m'2 at 50cm row spacing. Lowest yield m 2 was 

recorded by a density of 23 plants m'2 at 75 cm row spacing and this was statistically 

similar to that of 21 plants m'2 at 50 cm row spacing. 

Thus, it can be summarized that narrow row planting at a density of 75 - 83 plants 

m'2 gives the maximum yield m'2 among the different cultivars and densities studied in these 

experiments. 

Yield components 

Yield plant1 

Significant difference in yield plant1 was observed among different cultivars in all 

years (Table 1). In 1995 and 1996, NK 1990 and PIONEER 9071 recorded the highest 

yield plant-1 across all densities. The lowest yield plant’1 was recorded by NK0066. Just 

as in the case of yield m’2, in 1998, PIONEER 9111 gave significantly higher yield plant’1 

compared to the other two cultivars. Statistically similar yield plant’1 was recorded by 

PIONEER 9071 and NK0066. 
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Table 2. Yield component analysis of soybean grown at different densities in 1995 

and 1996. 
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Density Row Spacing Crowding at Dmax 
120 and Apha 2 

1995 1996 

Yield nr2 25 25 20.20 626.34 363.78 

(g m1) 50 25 39.08 621.18 373.69 

75 25 58.32 683.77 380.95 

Plants m'2 25 25 20.20 28.33 23.83 

(No m'1) 50 25 39.08 52.58 45.42 

75 25 58.32 72.67 70.25 

Yield plant'1 25 25 20.20 19.13 19.10 

(g plant'1) 50 25 39.08 12.60 10.16 

75 25 58.32 9.78 7.54 

Pods plant'1 25 25 20.20 44.52 40.23 

(No plant'1) 50 25 39.08 27.17 21.10 

75 25 58.32 19.88 15.06 

Seeds pod'1 25 25 20.20 2.40 2.47 

(No pod'1) 50 25 39.08 2.41 2.41 •- 

75 25 58.32 2.44 2.59 

Seed size 25 25 20.20 181.52 194.51 

(mg seed'1) 50 25 39.08 194.30 200.43 

75 25 58.32 199.83 203.91 
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Table 3. Yield component analysis of soybean grown at different densities in 1998. 
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Density Row Spacing Crowding at Dmax 

120 and Apha 2 

1998 

Yield m'2 83 25 64.26 689.00 

(g m'1) 41 50 31.61 593.89 

21 50 33.11 449.89 

43 25 15.85 540.22 

57 25 43.86 558.78 

23 75 17.60 397.11 

Plants m'2 83 25 64.26 77.89 

(No m'1) 41 50 31.61 41.56 

21 50 33.11 21.78 

43 25 15.85 38.11 

57 25 43.86 51.67 

23 75 17.60 20.00 

Yield plant'1 83 25 64.26 13.51 

(g plant'1) 41 50 31.61 20.09 

21 50 33.11 29.61 

43 25 15.85 21.64 

57 25 43.86 17.67b 

23 75 17.60 29.75 

Pods plant'1 83 25 64.26 34.82 

(No plant'1) 41 50 31.61 54.72 

21 50 33.11 80.21 

43 25 15.85 58.32 

57 25 43.86 45.92 

23 75 17.60 79.18 

Seeds pod'1 83 25 64.26 2.29 

(No pod'1) 41 50 31.61 2.28 

21 50 33.11 2.36 

43 25 15.85 2.35 

57 25 43.86 2.38 

23 75 17.60 2.36 

Seed size 83 25 64.26 167.30 

(mg seed'1) 41 50 31.61 160.21 

21 50 33.11 156.33 

43 25 15.85 158.64 

57 25 43.86 162.89 

23 75 17.60 157.00 
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Differences among the densities with respect to the yield plant'1 were statistically 

significant in all years (Tables 2 and 3). In both 1995 and 1996, the highest yield plant'1 

was recorded by the lowest density of 25 plants m'2 and the lowest yield plant'1 was 

recorded by the highest density of 75 plants m'2 which gave the highest yield m'2. In 1998, 

the highest yield plant1 was given by the lowest densities of 23 plants m'2 at 75 cm row 

spacing and 21 plants m'2 at 50 cm row spacing. Significantly lowest yield plant'1 was 

observed at the highest density of 83 plant'1 at 25 cm row spacing. The other densities 

were statistically similar to each other with respect to yield plant'1. 

The results thus indicate that as the density increases yield plant'1 decreases. This 

can be attributed to the increase in competition for the available resources, mainly solar 

radiation and water. 

Pods plant1 

Pods plant'1 showed significant difference between cultivars only in 1996, when 

PIONEER 9071 recorded the highest followed by PIONEER 9111 and NK 1990 (Table 1). 

The lowest number of pods plant"1 was given by NK 0066 which gave the lowest yield 

plant'1. 

Pods plant'1 was the component that was the component most affected by changes 

in density and there for also competition for available resources in our experiments (Tables 

2 and 3). Results on changes in pods plant'1 with density were similar to that of yield plant' 

\ Differences among the densities were statistically significant in all the years. In both 

1995 and 1996, the most pods plant1 was recorded for the lowest density of 25 plants m'2 

and the lowest pods plant'1 was recorded for the highest density of 75 plants m'2. In 1998, 
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the highest pods plant'1 was given by the lowest densities of 21 plants m'2 at 50 cm row 

spacing and 23 plants m'2 at 75 cm row spacing. Significantly lowest pods plant'1 was 

observed at the highest density of 83 plant'1 at 25 cm row spacing. Like in the case of yield 

plant'1 the other densities gave statistically similar number of pods plant1. 

Seeds pod1 

No statistically significant difference in the number of seeds pod'1 between cultivars 

could be observed in all years except 1996 when NK 1990 recorded a slightly higher seed 

number per pod compared to the other varieties (Table 1). 

Densities showed no significant difference in seeds pod'1 in all the years indicating that 

seeds per pod is the component that is least affected by the growing environment (Tables 2 

and 3). 

Seed size 

Seed size seed'1 was significant in all years between the cultivars. NK 1990 

recorded the highest seed size and POINEER 9071 recorded the lowest seed size in both 

1995 and 1996 (Table 1). In 1998, POINEER 9071 had the lowest seed size and 

PIONEER 9111 had the highest seed size. There was no statistically significant difference 

between varieties PIONEER 9111 and NK 0066. 

Just like in the case of seed number per pod, seed size did not show any statistically 

significant difference between densities in any year (Tables 2 and 3). 
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Dmax, alpha and crowding 

Analysis of the yield plant'1 from isolated plants (Table 4) revealed a significant 

difference between seed yield between cultivars. NK 1990 had the highest yield plant'1 in 

both 1995 and 1996. In 1998, among the three cultivars grown, PIONEER 9111 and 

PIONEER 9071 had similar yield plant'1. NK 0066 had the lowest yield plant"1 in all the 

years. 

There was a significant difference in yield plant'1 between the different separation 

distances in all years (Table 5). Yield plant"1 increased as the separation distance increased 

from 50 cm to 100 cm between plants following a 2nd order polynomial each year. The 

data showed that the yield was similar for separation distances of 100cm and 150cm 

between plants. There was no significant interaction between cultivars and separation 

distance in any year. 

As the separation distance increased yield plant''increased and then plateaued. 

NLIN procedure (SAS, 1995) was used to determine the point at which the relationship 

plateaus for each cultivar in each year thus determining Dmax (Figure 2 to 5). Most 

cultivars reached plateau between 112cm to 120cm separation distance. The extreme low 

value of 85cm for PIONEER 9111 in 1996 may be due to the damage to plants due to 

Japanese beetle attack and the relatively higher values of 137 for NK0066 in 1995 and 135 

for PIONEER 9071 in 1998 may be due to increased number of weeds and the resulting 

lower yields at higher separation distances. 

Data were combined for each different variety across years (Figure 6), for all 

varieties within a year (Figure 7) and all varieties and all years (Figure 8) to examine the 

consistency of the predicted plateau points. All combinations suggested that 120cm was a 
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Table 4. Yield plant'1 from different cultivars of isolated plants grown from 1995 to 1998. 
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Variety Yield Plant'1 (g) 

1995 1996 1998 

NK 0066 56.55c* 55.12c 47.66b 

NK 1990 165.47a 147.19a - 

PIONEER 9071 62.90c 65.09b 60.47a 

PIONEER 9111 87.83b 61.51 be 60.92a 

*Means within columns not followed by the same letter are significantly different at the 0.05 

probability level. Mean separation was done using DMRT. 
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Table 5. Yield plant'1 from isolated soybean plants grown at different separation 

distances from 1995 to 1998. 
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Separation 

Distance 
Yield Plant'1 (g) 

1995 1996 1998 

50cm X 50cm 68.44 54.66 27.49 

75cm X 75cm 87.10 78.36 48.55 

100cm X 100cm 100.52 98.07 78.87 

150cm X 150cm 108.69 97.83 70.48 

Trend Quadratic Quadratic Quadratic 

+ Plateau + Plateau + Plateau 
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good approximation of plateau point. The lower value of 105cm for P9111 (Figure 6D) 

lesulted from the lower value tor this variety in 1996 as explained before. The analysis of 

\ ield plant horn uniformly spaced (isolated) plants thus began to decrease at separation 

distances below approximately 120cm suggesting that a Dmax of 120cm would be suitable 

for calculating crowding values. Duncan (1984) suggested using Dmax values of 3m for 

com which was equal to the mature height of Com Belt cultivars. In the case of soybean, it 

has been shown that the roots grew across the inter-row space of 102cm rows by the R2 

(full bloom) stage of development and the average plant height for soybean is 79 to 119cm 

at R6 (full seed) development stage (Herman, 1985). In the case of the varieties used in 

our experiment, mature plant height exceeded 100cm. This might be the reason for yield 

stabilization above 120cm of separation distance between the plants. Competition for 

available resources like light, water and nutrients might be negligible or practically zero 

when the distance between two plants is more than 120cm, because, any possibility of 

competition due to mutual shading or due to overlapping roots is negligible at such 

separation distances. 

When two widely separated plants are planted increasingly closer together, 

crowding becomes measurable when the separation distance is equal to or less than Dmax 

(120cm in our experiment). Crowding increases at an increasing rate and reaches the 

maximum value of one when the plants are brought in contact with each other. The 

function used to calculate C, defined as alpha by Duncan, should be one that allows the 

value of C to rise from zero at Dmax to one at zero separation. The quadratic relationship 

between separation distance and yield plant'1 until the plateau point suggested that using an 

alpha value of 2 would give good prediction lines. 
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The generated relationship between yield plant'1 and the separation distance 

suggested as the with varying ALPHA’S and Dmax’s indicated that, for a given Dmax and 

separation distance, competition at any given point decreases with increase in alpha (Figure 

9). Also, as evident from Figure 9, as Dmax increases, the competition experienced at a 

particular separation decreases and hence a corresponding alpha value that signifies this 

reduction in competition has to be chosen while calculating crowding. This means that if 

the C value increases too rapidly (ie. alpha is low) as the separation distance decreases 

ffomDmax, the effect of more distant plants is exaggerated and if it increases too slowly (ie. 

alpha is high), the relative influence of near-by plants on the target plant is over 

emphasized. Also, it appears that rather than the absolute values of alpha or Dmax, it is an 

appropriate combination of both that controls the accuracy of predictions using the model. 

Duncan (1984) also stated that precise determination of alpha and Dmax were not 

necessary. However, it may be important that if a higher value of Dmax is chosen, then a 

correspondingly higher alpha value should be chosen or vice versa so that the total 

crowding of the system is not altered. A comparison of crowding relationship shown in 

Figure 9 for the different varieties, with the reduction in yield per plant'1 suggested that an 

alpha of 2 would best approximate the change in yield plant1 with separation. 

Prediction lines 

gy filing a linear regression of these C values corresponding to a Dmax of 120 and 

alpha value of 2, and experimental per - plant yields, lnY0 and E were calculated. In the 

case of most cultivars and years, these gave significant regression lines (Figures 10 to 13). 

To check the validity of the assumption that, rather than the absolute values of alpha or 
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Dmax, ^ *s an appropriate combination of both that controls the accuracy of predictions 

using the model, predicted yields obtained for Dmax set at 90, 120 and 150 cm with different 

alpha values were tested. As shown in the Figures 10 to 13, combinations ofDmax and 

alpha 1.2 and Dmax 150 and alpha 2.8 gave lines that were statistically similar in slope and 

intercept to those obtained from Dmax 120 at alpha 2. Also the regression was significant in 

each case indicating that any of the chosen Dmax and alpha combinations will give good 

fitting regression lines. 

Prediction lines using two crowding values 

Comparison of regression lines obtained by fitting regression equations obtained 

from the lowest and highest crowding values the one obtained using all data points revealed 

no statistically significant difference between the lines (Figure 14). For all the cultivars, 

regression lines obtained from all points accounted for a significant amount of variation. 

However, in the case of P9071 even though the regression obtained from all points was 

significant, regression using two points was not significant. This can be attributed to the 

greater variation in the data points which is evident from the error bars. There was no 

statistically significant difference between the regression lines using all points and those 

using the GLM procedure (SAS, 1995). In the case of NK 0066, the regression line 

obtained from two crowding values(17.6 and 64.3) when optimized over all points, had an 

r2 value of 0.5619 which was close to the r2 of 0.58, obtained by using all points. 

However, In the case of PIONEER 9071, the regression line obtained from two crowding 

points (17.6 and 64.3) when optimized over all points, the r2 was 0.3376 compared to an r2 

of 0.3749 obtained by using all points. For PIONEER 9111 regression line obtained from 
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two crowding points(17.6 and 64.3) when optimized over all points, had an r2 value of 0.27 

compared to an r of 0.39, obtained by using all points. This shows that if the variability in 

the data is small, the model can effectively predict the changes in yield with crowding using 

a regression equation obtained using two crowding values. However, great emphasis has 

to be given to all experimental practices that would help in attaining less variability among 

replicates. This includes using proper seeding techniques which ensures the correct plant 

population and adequate weed control to prevent competition (crowding) from weeds. 

Conclusion 

Density and spatial arrangement of plants together determine the competition for 

available resources especially solar radiation, water and nutrients. These two factors are 

represented by ‘crowding’ in the model. The results indicated that the model can predict 

the changes in yield with changing densities and planting pattern especially if the variability 

in the data is low. Thus, this model shows promise as a tool for evaluating planting 

patterns for soybean as was suggested by Duncan for com. 
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CHAPTER III 

Differential Response of Soybean Yield Components to 

the Timing of Light Enrichment 

Abstract 

Solar radiation is an important environmental factor influencing seed yield in 

soybeans [Glycine max (L). Merr.]. Our objective was to analyze the response of soybean 

seed yield components to light enrichment initiated at different growth stages. Light 

enrichment was imposed on the indeterminate soybean cultivar Evans by installing wire 

mesh fencing on either side of the center row to push the adjacent rows aside at different 

growth stages. Fences prevented plants in the neighboring rows from encroaching on the 

growing space of the center row plants. Pod number per plant and to a lesser extent seed 

size accounted for variation in seed yield. Light enrichment initiated at late vegetative or 

early flowering stages increased seed yield 217%, mainly by increasing pod number, while 

light enrichment beginning at early pod formation increased seed size 23%, resulting in a 

115% increase in seed yield. Responses to light enrichment occurred proportionately 

across all node positions despite the differences in the time (15 to 20 days) of development 

of yield components at the different node positions. Although maximum seed size may be 

under genetic control in soybean plants, our results suggested seed size can still be 

modified by the environment with some internal control moderating the final size of most 

seeds in all pods. It indicates that plants are able to redistribute the available resources to 

components not yet determined, in an attempt to maintain or improve yield. 
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Introduction 

Environmental conditions prevailing during the growth period, especially intensity 

and quality of solar radiation intercepted by the canopy, are important determinants of yield 

components and hence the yield of soybean (Taylor et al., 1982; Willcott et al, 1984; 

Myers et al, 1987; Board and Harville, 1992, 1996). Light enrichment using lamps or 

reflectors increased the yield of soybean (Johnston et al, 1969; Schou et al, 1978). 

Shading (49-20% of ambient light) resulted in lengthening of intemodes and increased 

lodging in soybean plants (Ephrath et al, 1993). 

Hardman and Brun (1971) proposed that the yield of soybean is controlled by the 

availability of photosynthates during post flowering stage of development. Schou et al 

(1978) observed that light levels during late flowering to mid-pod formation stages of 

growth are more critical than during vegetative and late reproductive periods in 

determining the yield of soybean. Taylor et al (1982) concluded that pod abortion caused 

by lack of photosynthate supply late in the growing period is a major factor limiting yield of 

soybean. Duncan (1984) suggested that light intercepted during and after seed initiation is 

a major determinant of yield. Jiang and Egli (1993) reported that shade imposed from first 

flower to early podflll reduced flower production and increased flower and pod abscission, 

resulting in reduced pod number and yield. They also found canopy photosynthesis during 

flowering and pod set to be an important determinant of seeds m , and that the impact of 

shading on seeds m'2 depends on duration of shading (Jiang and Egli, 1995). Sharma et al. 

(1996) observed anthesis to be the most critical stage during which low light intensity can 

cause severe yield reduction in soybean. 
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Board et al (1992) and Board and Harville (1996) suggested that the increased 

.seed yield of soybean from planting in narrow rows (less than 50 cm) reported by many 

researchers (Lehman and Lambert, 1960; Costa et al, 1980; Herbert and Litchfield, 1982; 

Willcott et al., 1984), can be attributed to increased light interception during vegetative and 

early reproductive periods (first flowering to seed initiation). In most of the above studies, 

changes in yield was mainly brought about by changes in pod and seed number. However, 

an increase in seed size compensated for the decreased pod load in some source - sink 

manipulation studies (McAlister and Krober, 1958; Schonbeck et al, 1986). 

Herbert and Litchfield (1982) noticed that pod number per plant was the most 

important component responsible for differences in soybean yield between different row 

widths and densities within a particular year, while a change in seed size resulted in the 

yield difference between two consecutive years. Thus, there is a differential response of 

yield components to changes in environmental conditions. However, the exact nature of 

response to the timing of light enrichment has not been identified yet. Also most of the 

studies conducted so far on differential response achieved increases in light interception 

indirectly by removal of leaves, thereby modifying the source strength. 

Our objectives for conducting these studies were to analyze the differential seed 

yield response of indeterminate soybean to non-destructive light enrichment imposed at 

different stages during soybean growth, and to examine the effect of light enrichment on 

nodal development of seed yield components to determine developmental stages most 

affected by environmental change. 
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Materials and Methods 

Studies were conducted at the University of Massachusetts during 1995 using 

Evans ot maturity group 0 which matures in approximately 115 days at this location. The 

soil at the experimental site was a Hadley fine sandy loam (Typic Udifluent). 

A randomized block design was used with four replications. There were three light 

enrichment treatments, no light enrichment, light enrichment initiated 5-7 days prior to first 

flowering (V5 stage), and light enrichment initiated at late flower/early pod formation (R3 

stage). In all cases light enrichment, once started, lasted until harvest.. Each plot consisted 

of 8 rows, planted 25 cm apart. The planting density was 83 plants m'2. Before planting, 

the seeds were inoculated with commercial powdered peat based granular Brady 

Rhizobium. Normal cultural practices were followed. A pre-emergence mixture of 0.85 kg 

(ai) ha'1 linuron [3-(3,4-dichlorophenyl)-l-methoxy-l-methylurea] and 1.75 kg (ai) ha'1 

alachlor (2-chloro-2',6'-diethyl-N-(methoxymethyl) acetanilide) was used for weed control. 

Total rainfall varied from 370mm from May to September. Since soil was near field 

capacity at planting, water availability was judged as being adequate for growth. 

Light enrichment was achieved by installing 90 cm tall wire mesh fencing (mesh 

hole size 4-5 cm) adjacent to the rows bordering the center sample row, sloping away at a 

45° angle from the center row, in each plot. Fences prevented encroachment of plants from 

the neighboring rows into the growing space, and thus increased the radiation interception 

area of the sample row. The fences were inspected periodically (1-3 times per week) and 

all plants in rows bordering the center row were pushed behind the fences to prevent 

encroachment on the sample row. Light intensity measurements, using a Licor line quantum 
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sensor (LI-188B) placed parallel to, and beside the center row plants, during the period 

tiom V5 to R3 showed that the control intercepted 98.5% and light enrichment treatments 

intercepted 74.2% of the incoming solar radiation. Thus leaves at the base of the canopy in 

light enriched plots were receiving more than 25% available light. Light intensity after R3 

was always above 25% available light at the base of the canopy for the light enriched 

treatments. 

Yield was determined by harvesting 3 m of the center treatment row from each plot 

and recording the seed dry weight after drying the samples to constant weight at 60°C in a 

forced dry air oven. This sample was used to calculated yield m'1 of the row and the 

number of plants m'1. Estimates of whole plot yields were not possible since in every plot 

where plants were light enriched only the center row received the light enrichment 

treatment and could only be compared on a row equivalent basis. Hence yield is expressed 

as yield m'1 rather than yield m'2. For yield component analysis, 15 plants, selected from a 

random starting point in the center row were harvested at maturity from each treatment. 

For each group of plants, data were recorded according to node position on the main stem 

and for each branch corresponding to the main stem node from which it arose. Node one 

was the unifoliate node, being the first node above the cotyledons. Among the data 

recorded were pod number, seed number, and seed dry weight. Statistical analysis ot the 

data was performed using the SAS ANOVA procedure (SAS, 1988). Mean separation was 

done by using Duncan’s Multiple Range Test (DMRT). 
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Results and Discussion 

Yield ot soybean plants and yield components have been summarized in Table 6. 

Yield per unit row length 

Light enrichment initiated at both V5 and R3 increased seed yield m"1 compared to 

that of the non-light enriched control in all years, and the extent of the increase was higher 

when light enrichment commenced at V5. Light enrichment initiated at R3 increased yield 

115% while there was a 217% increase for light enrichment starting at V5 over the control. 

Light enrichment during flowering and seed fill of soybean increased yield per plant 

(Johnston et al., 1969; Schou et al., 1978), while shade during seed fill reduced seed yield 

(Egli et al., 1980). Data obtained from our experiments showed a greater increase in seed 

yield when light enrichment was initiated at V5 compared to Rt suggesting that the period 

starting from late vegetative stage (V5) is important in determining the yield of soybean. 

Improving efficiency of interception of light at this stage through cultural practices and by 

selecting cultivars with improved efficiency of light utilization could lead to increased yield 

Yield components 

In all years, pod number per plant was the yield component most responsible for 

yield increase from light enrichment initiated at either V5 (Table 1). Light enrichment 

initiated prior to flowering (V5) increased pod number per plant more than light enrichment 

beginning at early pod formation (R3). This shows that even though pod formation begins 
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Table 6. Yield component analysis of soybean grown under different levels of solar 

radiation during different growth stages 
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Year 

Variety 

Treatment 1995 

Evans 

Yield m'1 LE0t 72.07b 

(g m-1) LE, 228.93a 

le2 155.45a 

Plants m'1 row LE0 21.1 

(No m'1) LE, 19.9 

le2 20.2 

Yield plant'1 LE0 5.17b 

(g plant'1) LE, 12.02a 

le2 6.63b 

Pods plant'1 LE0 13.32b 

(No plant'1) LE, 29.92a 

le2 16.58b 

Seeds pod'1 LE0 2.10 

(No pod'1) LE, 2.20 

le2 2.14 

Seed size LE0 162.1c 

(mg seed'1) LE, 179.43b 

le2 199.63a 

tLE0 indicates no light enrichment. Light enrichment, LE, initiated at V5 and LE2 initiated at R3. 

» 

:Means not followed by the same letter are significantly different at the 0.05 probability level. 
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at R:„ environmental conditions during the period from V5 to R3 are more critical in 

deciding the final pod number than the conditions associated with pod filling and retention 

prevailing after R3. Other studies have also identified pod number per plant as the yield 

component most influenced by changes in cultural and environmental conditions (Lehman 

and Lambert, 1960; Dominguez and Hume, 1978; Shou et al, 1978; Herbert and 

Litchfield, 1982). This suggests that light enrichment imposed during early stages of 

development of soybean would increase availability of assimilates to the developing 

reproductive structures, increase flowering, and reduce flower and pod abscission with a 

resultant increase in final pod number at harvest. Other studies have indicated light 

interception during vegetative and early reproductive stages to be more critical in 

determining the yield increase in narrow rows compared to latter stages of growth (Board 

etal., 1992). 

Seed number per pod was least affected by changes in light regime in these 

experiments (Table 1). No significant changes in seed number per pod were observed 

among the treatments. As evident from this study, seed number per pod is a minor 

component determining the yield of soybean. However there was a small tendency for seed 

number per pod to increase with light enrichment. Similar findings of small or no 

significant changes in seed number per pod have been reported in other studies (Dominguez 

and Hume, 1978; Schou et al, 1978; Herbert and Litchfield, 1982). 

Light enrichment at both V5 and R3 were found to significantly increase seed size 

compared to that of the control. Light enrichment initiated at R3 was found to increase 

seed size more than light enrichment initiated at V5. McAlister and Krober (1958) and 
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Schonbeck et al. (1986) proposed that an increase in seed size is a possible compensation 

response for the reduction in pod number by pod removal. Egli et al. (1978) and Swank et 

al. (1987) indicated that in soybean, seed size was a function of the rate of seed growth and 

the duration ot dry weight accumulation in the seed fraction, and that genetic differences in 

seed growth rate are controlled by the cotyledon cell number (Egli et al., 1981). Later, 

based on a source-sink alteration study, Egli et al. ,(1989) concluded that soybean plants 

lespond to changes in their immediate environment not only by changing the number of 

pods per plant, but also by altering cotyledon cell number, which correlated with seed size. 

Cotyledon cell number is one of the two main components determining seed size, the other 

being cotyledon cell volume or weight. Hence, the increased seed size observed in our 

experiments in response to light enrichment could be attributed to either an increased 

number of cells per cotyledon, or an increased dry matter accumulation of cells during the 

seed filling period. 

Nodal analysis 

Initiating light enrichment at V5 increased the number of pods somewhat 

proportionally across all mainstem nodes (Figure 15). Nodes in the mid-mainstem portion 

(nodes 4-7) had the largest number of pods, and showed the greatest increase in the 

number of pods per node. Previous studies (Herbert and Litchfield, 1982; Heindl and 

Brun, 1984; Jiang and Egli, 1993) also indicated that nodes in the central region of soybean 

plants have the greatest yield potential among the mainstem nodes. Analysis of pod 

number per node also revealed that regardless of the treatment, branch pods accounted for 
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moie than 500/0 of the total Pods produced at nodes 1 to 3. Light enrichment initiated at V5 

also increased branching, and thereby increased the number of pods produced from lower 

nodes, and these branches had 72 to 99% of all pods produced at these mainstem nodes. 

Heindl and Brun (1984) reported that in indeterminate soybean, there is only a 

slight variation in the number of flowers formed at each node, and they suggested that high 

late of flower abscission was the major factor determining the pod number per node. 

Koller (1971) observed that the central nodes had the most leaf area at the time of rapid 

seed development. Leaves in the middle portion of the plant are also displayed, due to long 

petioles, much higher and close to the periphery of canopy where light interception is the 

greatest (Willcott et al., 1984). This appears important for maintenance of yield since most 

of the photosynthate (60-70%) produced by a soybean leaf during pod filling is ultimately 

incorporated into pods and seeds borne on the same node or two nodes above and below 

this node (Stephenson and Wilson, 1977). 

Seed number per mainstem pod remained relatively constant across all node 

positions except for the extreme node positions (Figure 16). Variation in seeds per pod 

observed at the extreme node positions could be due to the small number of pods borne at 

these nodes. Whereas seed number per pod for most nodes was averaged over many pods, 

a smaller number of pods with extreme seed numbers (1 or 4) found at the extreme node 

positions, would cause variation in the calculation of mean seed number per pod. 

Seed size also was mostly constant across mainstem nodes and seed size response 

to light enrichment was similar across nodes (Figure 17). In indeterminate soybean 

vegetative growth continues during reproductive stages. When the lower most nodes 
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started filling seeds, the upper most nodes were still producing flowers. However seed size 

was quite uniform across all node positions in spite of the difference (15 to 20 days) in the 

duration of seed filling. Egli et al. (1981) reported genetic differences in seed growth rates 

were controlled by the cotyledons not by the supply of assimilate from the plant to the 

cotyledons. Our data suggests that seed size can still be modified by the environment with 

some internal control moderating the final size of most seeds in all pods. Soybean seed 

yield response to changes in light regime, was mostly by changes in pod number per plant, 

and least by seed number per pod. Responses occurred proportionately across all node 

positions despite differences in the time of development of yield components. 
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CHAPTER IV 

Summary 

Studies were conducted at the University of Massachusetts to evaluate the seed 

yield of soybean, and Duncan’s model with respect to the relationship between seed yield 

and plant population in soybeans, and analyze the response of soybean seed yield 

components to light enrichment initiated at different growth stages. Duncan (1984) 

suggested that all forms of interplant competition can be combined into a single term 

'crowding' (C) in which he included the effects of plant population (density) and planting 

pattern. 

According to Duncan, to calculate crowding, ‘Separation Fraction’ (SF) has to be 

calculated as 

SF = (Dmax - separation)/Dmax 

where SF (Separation Fraction), Dmax is the maximum distance at which crowding is 

expereienced. Crowding between two plants then is C = SFalpha. The total crowding for a 

community of plants is 

p=n 

C = E SFalpha 

P=1 

where, p = 1 to p = n includes all plants in the planting pattern within the distance 

D from the center plant. The total crowding in a planting pattern, is the sum of 
max A 

crowding experienced by all the individual plants and it is a constant for a particular 
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planting pattern. Based on this concept of crowding, Duncan proposed a crowding model 

to express the relationship between crowding and yield in a mathematical form. 

According to the model, 

lny = lny0+EC 

When a plant is grown in isolation, separation > Dmax, and SF equals zero. Crowding 

therefore equals zero and thus lny0 = lny. Thus y0 can be defined as the maximum yield of a 

single plant at zero crowding. The results of the studies fitting the model to the data 

obtained from different soybean cultivars planted at different densities and planting patterns 

indicated that the model can predict the changes in yield with changing densities and 

planting pattern especially if the variability in the data is low. Thus, this model shows 

promise as a tool for evaluating planting patterns for soybean as was suggested by Duncan 

for com. 

Solar radiation is an important environmental factor influencing seed yield in 

soybeans. In order to study the effect of non - destructive light enrichment on yield and 

yield components in soybean, light enrichment was imposed on the indeterminate soybean 

cultivar Evans by installing wire mesh fencing on either side of the center row to push the 

adjacent rows aside at different growth stages. Fences prevented plants in the neighboiing 

rows from encroaching on the growing space of the center row plants. Pod number per 

plant and to a lesser extent seed size accounted for variation in seed yield. Light 

enrichment initiated at late vegetative or early flowering stages increased seed yield 217%, 

mainly by increasing pod number, while light enrichment beginning at early pod formation 
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increased seed size 23%, resulting in a 115% increase in seed yield. Responses to light 

enrichment occurred proportionately across all node positions despite the differences in the 

time (15 to 20 days) of development of yield components at the different node positions. 

Although maximum seed size may be under genetic control in soybean plants, our results 

suggested seed size can still be modified by the environment with some internal control 

moderating the final size of most seeds in all pods. It indicates that plants are able to 

redistribute the available resources to components not yet determined, in an attempt to 

maintain or improve yield. 
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APPENDIX A 

Crowding calculator 

#include <iostream.h> 

#include <conio.h> 

#include <fstream.h> 

#include <stdio.h> 

class C 

{ private: 

struct Cvals 

{float Spacing; 

float Width; 

float Dmax; 

float Alpha; 

}c; 

fstream file; 

public: 

co 
{ file.open("CVALUE.DAT",ios: :binary|ios::app); 

if*(! file) 

{ c. Spacing=c. Width=c. Dmax=c. Alpha=0.0; 

file.write((char*)&c,sizeof(c)); 
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} 

} 

void show() 

{ file.read((char*)&c,sizeof(c)); 

cout«"\nSpacing : "«c.Spacing; 

cout«"\nWidth: "«c.Width; 

cout«"\nDmax: "<<c.Dmax; 

cout«"\nAlpha; "«c.Alpha; 

} 

void reset() 

{ cout«"\nEnter new value for Spacing 

cin»c. Spacing; 

cout«"\nEnter new value for Width 

cin»c. Width; 

cout«"\nEnter new value for Dmax 

cin»c.Dmax; 

cout«"\nEnter new value for Alpha 

cin»c.Alpha; 

file.write((char*)&c,sizeof(c)); 
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} 

}; 

void main() 

{ C clas; 

// clrscr(); 

char opt='y'; 

while(opt=='y'||opt:=-Y') 

{ clas.reset(); 

cout«"\n\tMore inputs ? (y/n) 

cin»opt; 

} 

getch(); 

} 

// Calculate Crowding values 

#include <iostream.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <conio.h> 

#include <fstream.h> 
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struct values 

{ 

float Spacing, Row Width,Dmax, Alpha; 

}; 

void main() 

{ 

//clrscr(); 

system("cls"); 

values V; 

fstream file; 

file.open("cvalue.dat",ios::binary|ios::in); 

label 1: 

cout«"\nEnter 'C for calculating C-Values"; 

cout«"\nEnter 'Y' for calculating Yield"; 

cout«"\nYour choice :"; 

char choice; 

{ 

cin»choice; 

float Yzero,E,LNYzero; 

if(choice=-C'||choice=-c') 
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Yzero=0.0; 

E=0.0; 

else if (choice=-Y'||choice=='y') 

{ 

cout«"\n\tEnter value of LNYzero : 

cin»LNYzero; 

cout«"\n\tEnter value of E : 

cin»E; 

Y zero=exp(LN Y zero)/1000; 

} 

else 

{ 

cout«"\nInvalid Input!"; 

goto label 1; 

} 

float Xdist[50][50], Ydist[50][50]; 

do 

{ 

file.read((char*)&V,sizeof(V)); 

// clrscr(); 
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// system("cls"); 

cout«"\nYzero "«Yzero«"\nE "«E; 

if(V.Spacing==0) 

return; 

for(int j=0;j<5;j++) 

{ 

for(int k=0;k<40;k++) 

{ 

Xdist[j][k]=0.0; 

Ydist[j][k]=0.0; 

} 

} 

int Xnum= 1.0+(2.0 * (int)( V. Dmax/V. Spacing)); 

int Ynum=l .0+(2.0*(int)(V.Dmax/V.RowWidth)); 

int Xn=V.Dmax/V.Spacing; 

int Yn=V.Dmax/V.RowWidth; 

int YZ=0; 

int XX,YY,XaX; 

for(j=l ;j<=Ynum;j++) 

{ 

XX=0; 

YY=Yn-YZ; 
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XaX=0; 

for(int k-l;k<=Xnum;k++) 

{ 

if(Xn<XX) 

{ 

Xdist[j][k]=XaX*V.Spacing; 

XaX++; 

Ydist [j ] [k]=Y Y * V. Ro wW idth; 

} 

else 

{ 

Xdist [j ] [k]=(Xn-XX) * V. Spacing; 

XX++; 

Ydist[j][k]=YY*V.RowWidth; 

} 

} 

YZ++; 

} 

//cout«"\n\n\tI Y num "«Ynum; 

int SFPlant-0; 

int count=0; 

float Competition=0.0; 
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for(j=1 ;j <=Y num ;j ++) 

{ 

for(int k=l ;k<=Xnum;k++) 

{ 

count++; 

if((YdistU][k]<=V.Dmax)&&(XdistD][k]<=V.Draax)) 

{ 

float 

Hypt=sqrt(pow(Xdist[j][k],2)+pow(Ydist[j][k],2)); 

if((Hypt>=0.01 )&&(Hypt<=V.Dm J) 

{ 

SFPlant++; 

float QUAN=(V.Dmax-Hypt)/V.Dmax; 

if(QUAN>0.0) 

Competition=Competition+pow(QUAN,V. Alpha); 

} 

} 

} 

} 

cout«"\n\tRow width : "«V.RowWidth«" cm"; 
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cout« \n\tSpacing : "«V.Spacing«" cm"; 

cout«"\n\tMaximum Distance(Dmax): "«V.Dmax«" cm"; 

cout«"\n\tAlpha : "«V.Alpha«endl; 

count=0; 

float Population^ 00000000/(V.Spacing* V.RowWidth); 

cout«"\n\t\tCompetition = "«Competition; 

cout«"\n\t\tIYnum "«Ynum; 

cout«"\n\t\tICOUNT "«count; 

cout«"\n\t\tNumber of plants used for SF : "«SFPlant; 

cout«"\n\t\tPopulation : "«Population«endl; 

if(E!=0) 

{ 

float EXPON=Competition*E; 

float YieldPerPlt=Yzero * exp(EXPON); 

float Yield=YieldPerPlt* Population; 

cout«"\n\t\tYield per plant : "«YieldPerPlt«endl; 

cout«"\t\tYield per Hect : "«Yield«endl; 

} 

//getch(); 

}while(!(file.eof())); 

} 
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APPENDIX B 

Agronomy journal publication 

Reprinted from A qronomv Journal 
Vol 92. No. 6 

Differential Response of Soybean Yield Components to the Timing of Light Enrichment 

Jomol P. Mathew. Stephen J. Herbert.* Shuhuan Zhang. Andreas A. F. Rautenkranz. and Gerald V. Litchfield 

ABSTRACT 
Solar radiation is an important environmental factor influencing 

seed yield in soybean |Glycine max (L). Merr.). Our objective was 

to analyze the response of soybean seed yield components to light 

enrichment initiated at different growth stages. Light enrichment was 

imposed on the indeterminate soybean cultivars Altona and Evans 

bv installing wire mesh fencing on either side of the center row to 

push the adjacent rows aside at different growth stages. Fences pre¬ 

vented plants in the neighboring rows from encroaching on the grow¬ 

ing space of the center row plants. Pod number per plant and to a 

lesser extent seed size accounted for variation in seed yield. Light 

enrichment initiated at late vegetative or early flowering stages in¬ 

creased seed yield 144 to 252%, mainly by increasing pod number, 

while light enrichment beginning at early pod formation increased 

seed size 8 to 23%. resulting in a 32 to 115% increase in seed yield. 
Responses to light enrichment occurred proportionately across all 

node positions despite the differences in the time (15-20 d) of develop¬ 

ment of yield components at the different node positions. Although 

maximum seed size may be under genetic control in soybean plants, 

our results suggested seed size can still be modified by the environment 
with some internal control moderating the final size of most seeds in 

all pods. It indicates that plants are able to redistribute the available 

resources to components not yet determined, in an attempt to maintain 

or improve yield. 

Bivironmental conditions prevailing during the 
growth period, especially intensity and quality of 

solar radiation intercepted by the canopy, are important 
determinants of yield components and hence the yield 
of soybean (Taylor et al., 1982; Willcott et al.. 1984, 
Myers et al., 1987; Board and Harville, 1992, 19%). 
Light enrichment using lamps or reflectors increased 
the yield of soybean (Johnston et al., 1%9; Schou et al., 
1978). Shading (49-20% of ambient light) resulted in 
lengthening of internodes and increased lodging in soy¬ 
bean plants (Ephrath et al., 1993). 

Hardman and Brun (1971) proposed that the yield of 
soybean is controlled by the availability of photosyn- 
thates during postflowering stage of development. 
Schou et al. (1978) observed that light levels during late 
flowering to midpod formation stages of growth are 
more critical than during vegetative and late reproduc¬ 
tive periods in determining the yield of soybean. Taylor 
et al (1982) concluded that pod abortion caused by lack 
of photosynthate supply late in the growing penodis a 
major factor limiting yield of soybean. Duncan (1985) 
suggested that light intercepted during and after seed 
initiation is a major determinant of yield. Jiang and hgli 
(1993) reported that shade imposed from first flower to 
early podfill reduced flower production and increased 
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flower and pod abscission, resulting in reduced pod 
number and yield. They also found canopy photosynthe¬ 
sis during flowering and pod set to be an important 
determinant of seeds m“2. and that the impact of shading 
on seeds m': depends on duration of shading (Jiang 
and Egli. 1995). Sharma et al. (1996) observed anthesis 
to be the most critical stage during which low light 
intensity can cause severe yield reduction in soybean. 

Board et al. (1992) and Board and Harville (1996) 
suggested that the increased seed yield of soybean from 
planting in narrow rows (<50 cm) reported by many 
researchers (Lehman and Lambert, 1960; Costa et al.. 
1980; Herbert and Litchfield, 1982; Willcott et al.. 1984), 
can be attributed to increased light interception during 
vegetative and early reproductive periods (first flow¬ 
ering to seed initiation). In most of the above studies, 
changes in yield was mainly brought about by changes 
in pod and seed number. However, an increase in seed 
size compensated for the decreased pod load in some 
source-sink manipulation studies (McAlister and Kro- 
ber, 1958; Schonbeck et al., 1986). 

Herbert and Litchfield (1982) noticed that pod num¬ 
ber per plant was the most important component re¬ 
sponsible for differences in soybean yield between dif¬ 
ferent row widths and densities within a particular year, 
while a change in seed size resulted in the yield differ¬ 
ence between 2 consecutive years. Thus, there is a differ¬ 
ential response of yield components to changes in envi¬ 
ronmental conditions. However, the exact nature of 
response to the timing of light enrichment has not been 
identified yet. Also most of the studies conducted so 
far on differential response achieved increases in light 
interception indirectly by removal of leaves, thereby 
modifying the source strength. 

Our objectives for conducting these studies were to 
analyze the differential seed yield response of indeter¬ 
minate soybean to nondestructive light enrichment im¬ 
posed at different stages during soybean growth, and to 
examine the effect of light enrichment on nodal develop¬ 
ment of seed yield components to determine develop¬ 
mental stages most affected by environmental change. 

MATERIALS AND METHODS 

Studies were conducted at the University of Massachusetts 
Agronomy Farm during 1982-1983,1987-1988. and 1994-1995 
using Altona of maturity group 00, which matures in approxi¬ 
mately 100 d at this location, and Evans of maturity group 0. 
which matures in approximately 115 d. The soil at the experi¬ 
mental site was a fine sandy loam (Typic Udifluent). 

In each year a randomized block design was used with three 
replications in 1982 and four in later years. In 1982. a factorial 
combination of two cultivars (Altona and Evans) with two 
light levels, light enrichment initiated at flowering [R| stage 
(Fehr and Caviness, 1977)], and a nonenriched control were 
tested. In all other years there were three light enrichment 
treatments, no light enrichment, light enrichment initiated 5 
to 7 d prior to first flowering (V5 stage), and light enrichment 
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Tahle 1. \ ield component analysis of soybean grown under different levels of solar radiation during different growth stages. 

Yield 1982 
1983 

Average 
1987 

Evans 
1988 

Evans 
1994 

Evans 
component Altona Evans 

1995 
Evans 

Yield m l 
tg nT1) 

LE,t 210.0b* 212.0b 83.0c 9L0c 63.0c 87.2b 72.07b 
LE, 231.1b 351.0a 203.3a 23<L0a 178.0a 306.3a 228.93a 
le2 - 126.2b 1 IJJlb 90.0b 118.6b 155.45a 

Plants m'1 row LE, 27.4 26.7 15.0 19.0 21.4 21.0 21 1 (No. m ‘) LE, 115 27.3 15.0 205 21.1 19.6 19.9 
LEj - - 15.0 2L2 20.4 17.0 20.2 

Y ield plant 1 LE, 7.7b 7.9b 5.5c 4.9c 2.9c 4.2b 5.17b (g plant ') LE, 8.4b 12.9a 13.6a lL2a 8.4a 15.6a 12.02a 
LE: - - 8.4b 5s8b 4.4b 7.0b 6.63b 

Pods plant'1 LE, 20.4b 23.9b 12.9b 18_5b 11.5c 11.2b 13.32b 
(No. plant ') LE, 

le2 
20.5b 36.2a 30.7a 

16.9b 
29.7a 
15.9b 

25.2a 
15.2b 

34.0a 
15.4b 

29.92a 
16.58b 

Seeds pod'1 LE, 123 2.32 2.26c 2J1 2.13b 2.09b 2.10 
(No. pod1) LE, 2.30 2.33 2.39b 128 2.28a 2.40a 2.20 

le2 - - 2.43a 127 2.22ab 2.23ab 2.14 
Seed size LE, 168.0b 143.0 188.0b 188.0b 137.0b 164.7b 162.1c 
(mg seed1) LE, 177.0a 153.0 188.0b 1710b 143.0ab 191.5a 179.43b 

le2 - - 206.0a 194.0a 148.0a 203.0a 199.63a 

* Means not followed by the same letter are significantly different at the 0.05 probability leveL 
+ LE, indicates no light enrichment. Light enrichment. LE, initiated at R, in 1982 and Vj in the remaining years: LE. initiated at R, in all years. 

initiated at late flower-early pod formation (R, stage). In all 
cases light enrichment, once started, lasted until harvest. In 
1983. Altona and Evans were used for the study, and in later 
years only Evans was grown. Each plot consisted of eight 
rows, planted 25 cm apart, except in 1982 when each plot had 
five rows that were 50 cm apart. The planting density was 60 
plants m~: in 1982 and 1983 and 83 plants m~: in later years. 
Before planting, the seeds were inoculated with commercial 
powdered peat based granular Bradv Rhizobium. Normal cul¬ 
tural practices were followed in all years. A preemergence 
mixture of 0.85 kg (a.i.) ha-1 linuron [3-(3.4-dichlorophenvl)- 
1-methoxy-l-methylurea] and 1.75 kg (a.i.) ha-1 alachlor (2- 
chloro-2'. 6'-diethyl-/V-(methoxymethyl) acetanilide) was used 
for w'eed control in all vears. Total rainfall varied from 370 
mm (1983 and 1995) to'522 mm (1982 and 1994) from May 
to September. Since soil was near field capacity at planting, 
water availability was judged as being adequate for growth. 

Light enrichment was achieved by installing 90 cm tall wire 
mesh fencing (mesh hole size 4-5 cm) adjacent to the rows 
bordering the center sample row. sloping away at a 45c angle 
from the center row. in each plot. Fences prevented encroach¬ 
ment of plants from the neighboring rows into the growing 
space, and thus increased the radiation interception area of 
the sample row. The fences were inspected periodically (1-3 
times per week) and all plants in rows bordering the center 
row were pushed behind the fences to prevent encroachment 
on the sample row. Light intensity measurements, using a 
Licor line quantum sensor (L1-188B) placed parallel to. and 
beside the center row plants, during the period from V< to R? 
showed that the control intercepted 98.5% and light enrich¬ 
ment treatments intercepted 74.2% of the incoming solar radi¬ 
ation. Thus, leaves at the base of the canopy in light-ennched 
plots were receiving more than 25% available light. Lig 

intensity after R> was always above 25% available light at t e 
base of the canopy for the light enriched treatments. 

Yield was determined by harvesting 3 m of the center trea - 
ment row’ from each plot and recording the seed dry weig 
after drying the samples to constant weight at 60 C m a orce 
drv air oven. This sample was used to calculated viel m o 
the row and the number of plants m':. Estimates o w 0 
plot yields were not possible, because in every plot w er 
plants were light enriched only the center row receive 
light enrichment treatment and could only be compare o ^ 
row' equivalent basis. Hence, yield is expressed as ^ 
rather than yield m :. For yield component analysis, p 

selected from a random starting point in the center row. were 
harvested at maturity from each treatment. For each group 
of plants, data were recorded according to node position on 
the main stem and for each branch corresponding to the main 
stem node from which it arose. Node 1 was the unifoliate 
node, being the first node above the cotyledons. Among the 
data recorded were pod number, seed number, and seed dry 
weight. Statistical analysis of the data was performed using 
the SAS ANOVA procedure (SAS Inst.. 1988). Mean separa¬ 
tion was done by using Duncans multiple range test (DMRT). 

RESULTS AND DISCUSSION 

Yield of soybean plants and yield components ob¬ 
tained from the six experimental years have been sum¬ 

marized in Table 1. 

Yield Per Unit Row Length 

Light enrichment initiated at both V, and R, increased 
seed yield m-1 compared w'ith that of the nonlight en¬ 
riched control in all years, and the extent of the increase 
was higher when light enrichment commenced at V,. 
Light enrichment initiated at Ri increased yield 32 to 
115% while there was a 144 to 252% increase for light 
enrichment starting at V>. In 1982, light enrichment initi¬ 
ated at R, increased seed yield m"1 by 38% over the 

control. 
In 1982. a significant cultivar-treatment interaction 

was observed. w:ith Evans being more responsive to light 
enrichment than Altona. This could be attributed to the 
greater plasticity of Evans (Willcott et al.. 1984). Evans, 
a more profusely branching cultivar. exhibited earlier 
canopv closure compared with Altona. thus enabling 
greater exploitation of available light. This difference 
was not obvious in 1983 because the row spacing was 
reduced from 50 cm in 1982 to 25 cm in 1983. which 
enabled Altona to attain canopy closure earlier to more 
fully utilize the available solar radiation. Thus, light 
enrichment affected both cultivars similarly in 1983 and 

data was combined. 
Light enrichment during flowering and seed fill of 
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Number of Pods 
._• nnj_ nf a itona and Evans soybean crown under different levels of solar radiation. F\lS"" C-nncLTn, LE, «.«<. a, B, in .9*2 - V, .o ,h, ~8 ^ LE, con,me„c«d a. K, al. 

years. Bars indicate ±1 SE of the mean. 

soybean increased yield per plant (Johnston et al., 1969, 
Schou et al., 1978), while shade during seed fill reduced 
seed yield (Egli et al., 1980). Data obtained from our 
experiments showed a greater increase in seed yield 
when light enrichment was initiated at V5 compared 
with R,, suggesting that the period starting from late 
vegetative stage (V5) is important in determining t e 
yield of soybean. Improving efficiency of interception 
of light at this stage through cultural practices and by 
selecting cultivars with improved efficiency of light utili¬ 

zation could lead to increased yield. 

Yield Components 

In all years, pod number per plant was the yield com 
ponent most responsible for yield increase r ^ g 
enrichment initiated at either V5 or Ri (Ta )• 
enrichment initiated prior to flowering ( 5) 

pod number per plant more than light enrichment begin¬ 
ning at early pod formation (R3). This shows that even 
though pod formation begins at R3, environmental con¬ 
ditions during the period from V5 to R3 are more critical 
in deciding the final pod number than the conditions 
associated with pod filling and retention prevailing after 
R3. Other studies have also identified pod number per 
plant as the yield component most influenced by 
changes in cultural and environmental conditions (Leh¬ 
man and Lambert, 1960; Dominguez and Hume. 1978; 
Shou et al., 1978; Herbert and Litchfield, 1982). This 
suggests that light enrichment imposed during early 
stages of development of soybean would increase avail¬ 
ability of assimilates to the developing reproductive 
structures, increase flowering, and reduce flower and 
pod abscission with a resultant increase in final pod 
number at harvest. Other studies have indicated light 
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Fig. 2. Average number of seeds per pod at each mainstem 
LE» indicates no light enrichment. Light enrichment, LE, 

years. Bars indicate ±1 SE of the mean. 

node of Altona and Evans soybean grown under different levels of solar radiation, 
initiated at R, in 1982 and V« in the remaining years; LE2 commenced at R, in all 

interception during vegetative and early reproductive 
stages to be more critical in determining the yield in¬ 
crease in narrow rows compared with latter stages of 

growth (Board et al., 1992). 
Seed number per pod was least affected by changes 

in light regime in these experiments (Table 1). In 198*.. 
1987. and 1995, no significant changes in seed number 
per pod were observed among the treatments. However, 
in 1983. light enrichment initiated at V5 increased seeds 
per pod by 6% and late light enrichment initiated at 
R, bv 8% over the control. In 1988 and 1994. light 
enrichment initiated at V5 increased seed number per 
pod more than light enrichment initiated at R?. As evi¬ 
dent from these studies, seed number per pod is a minor 

component determining the yield of soybean. Howe'[e7' 
there was a small tendency for seed number per pod 
increase with light enrichment. Similar findings ofsmal 

or no significant changes in seed number per po 

been reported in other studies (Dominguez and Hume, 
1978: Schou et al., 1978: Herbert and Litchfield, 1982). 

Light enrichment at both V5 and R? were found to 
significantly increase seed size in 1994 and 1995 (Table 
1). In other years seed weight with light enrichment 
initiated at V5 was similar to that of the control. In 
most years, light enrichment initiated at R3 was found 
to increase seed size more than light enrichment initi¬ 
ated at V5. McAlister and Krober (1958) and Schonbeck 
et al. (1986) proposed that an increase in seed size is a 
possible compensation response for the reduction in pod 
number by pod removal. Egli et al. (1978) and Swank 
et al. (1987) indicated that in soybean, seed size was a 
function of the rate of seed growth and the duration of 
dry weight accumulation in the seed fraction, and that 
genetic differences in seed growth rate are controlled 
by the cotyledon cell number (Egli et al., 1981). Later, 
based on a source-sink alteration study. Egli et al. (1989) 
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Seed size (mg seed'1) 

Fig. 3. Average seed weight at each mainstem node of Altona and Evans soybean grown under different levels of solar radiation. LE, indicates 

no light enrichment. Light enrichment. LE, initiated at R, in 1982 and V5 in the remammg years; LE2 commenced at R, m all years. Bars light enrichment. Light 

indicate ±1 SE of the mean. 

concluded that soybean plants respond to changes in 
their immediate environment not only by changing the 
number of pods per plant, but also by altering cotyledon 
cell number, which correlated with seed size. Cotyledon 
cell number is one of the two main components de¬ 
termining seed size, the other being cotyledon cell vol¬ 
ume or weight. Hence, the increased seed size observed 
in our experiments in response to light enrichment could 
be attributed to either an increased number of celts per 
cotyledon, or an increased dry matter accumulation of 

cells during the seed filling period. 

Nodal Analysis 

In each year there were similar responses to nodal 
distribution of vield components. Initiating light ennc - 

ment at V5 increased the number of pods somewhat 

proportionally across all mainstem nodes. Nodes in the 
midmainstem portion (Nodes 4-7) had the largest num¬ 
ber of pods, and showed the greatest increase in the 
number of pods per node (Fig. 1). The increase in pod 
number per node with light enrichment was significantly 
greater in the case of Evans than Altona, again demon¬ 
strating plasticity of Evans. Previous studies (Herbert 
and Litchfield, 1982; Heindl and Brun, 1984; Jiang and 
Egli. 1993) also indicated that nodes in the central region 
of soybean plants have the greatest yield potential 
among the mainstem nodes. Analysis of pod number 
per node also revealed that, regardless of the cultivar 
and treatment, branch pods accounted for >50% of the 
total pods produced at Nodes 1 to 3. Light enrichment 
initiated at V5 also increased branching, and thereby 
increased the number of pods produced from lower 
nodes, and these branches had 72 to 99% of all pods 
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produced at these mainstem nodes. 
Heindl and Brun (1984) reported that in indetermi¬ 

nate soybean, there is only a slight variation in the num¬ 
ber of flowers formed at each node, and they suggested 
that high rate of flower abscission was the major factor 
determining the pod number per node. Koller (1971) 
observed that the central nodes had the most leaf area 
at the time of rapid seed development. Leaves in the 
middle portion of the plant are also displayed, due to 
long petioles, much higher and close to the periphery 
of canopy where light interception is the greatest (Will- 
cott et al., 1984). This appears important for mainte¬ 
nance of yield since most of the photosynthate (60-70%) 
produced by a soybean leaf during pod filling is ulti¬ 
mately incorporated into pods and seeds borne on the 
same node or two nodes above and below this node 
(Stephenson and Wilson, 1977). 

In all the years, seed number per mainstem pod re¬ 
mained relatively constant across all node positions ex¬ 
cept for the extreme node positions (Fig. 2). Variation 
in seeds per pod observed at the extreme node positions 
could be due to the small number of pods borne at 
these nodes. Seed number per pod for most nodes was 
averaged over many pods; however, a smaller number 
of pods with extreme seed numbers (1 or 4) found at 
the extreme node positions caused variation in the calcu¬ 

lation of mean seed number per pod. 
Seed size also was mostly constant across mainstem 

nodes, and seed size response to light enrichment was 
similar across nodes (Fig. 3). In indeterminate soybean 
vegetative growth continues during reproductive stages. 
When the lower most nodes started filling seeds, the 
upper most nodes were still producing flowers. How¬ 
ever. seed size was quite uniform across all node posi¬ 
tions in spite of the difference (15-20 d) in the duration 
of seed filling. Egli et al. (1981) reported genetic differ¬ 
ences in seed growth rates were controlled by the cotyle¬ 
dons. not by the supply of assimilate from the plant to 
the cotyledons. Our data suggests that seed size can still 
be modified by the environment with some internal 
control moderating the final size of most seeds in all 
pods. Soybean seed yield response to changes in light 
recime was mostly by changes in pod number per plant, 
and least by seed number per pod. Responses occurred 
proportionately across all node positions despite differ¬ 
ences in the time of development of yield components. 
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