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ABSTRACT 

ISOZYME POLYMORPHISM AND INHERITANCE IN HA TIORA AND 
SCHLUMBERGERA (CACTACEAE) 

MAY 1996 

MAUREEN C. O'LEARY, B.S., WORCESTER POLYTECHNIC INSTITUTE 

M S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Thomas H. Boyle 

Isozyme analysis was used to identify clones, measure levels of genetic variation 

within groups of clones, and analyze mating systems in two Cactaceae genera - Hatiora 

and Schlumbergera. Isozymes were extracted from phylloclades and pollen and were 

separated by polyacrylamide gel electrophoresis. The inheritance of aspartate 

aminotransferase (AAT), glucose-6-phosphate isomerase (GPI), malate dehydrogenase 

(MDH), phosphoglucomutase (PGM), and triosephosphate isomerase (TPI) was examined 

in Hatiora. Six loci (.Aat-1, Gpi-l, Mdh-1, Pgm-1, Pgm-2, and Tpi-2) were analyzed, and 

results were generally as expected for single loci with codominant alleles. For all six 

isozyme loci segregation distortion was observed in at least one segregating family. Aat-1 

was linked with Pgm-1 (26 cM), but the other isozyme loci assorted independently. The 

inheritance of leucine aminopeptidase (LAP), phosphoglucomutase (PGM), and shikimate 

dehydrogenase (SKD) was investigated in Schlumbergera. Three loci were analyzed 

(Ixip-1, Pgm-1, and Skd-1), and results were generally as expected for single loci with 

codominant alleles. Significant segregation distortion was observed in at least one 

segregating family for all three isozyme loci. Disturbed segregation at Lap-1 was due to 

tight linkage (7 cM) with the locus controlling gametophytic self-incompatibility (S). All 

three loci assorted independently of each other. In a third study, a Hatiora germplasm 

collection composed of 49 clones was assayed for AAT, GPI, LAP, MDH, PGM, SKD, 
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and TPI. Thirteen putative loci and 42 putative alleles were identified, and 9 of the 13 loci 

(69%) were polymorphic. Twenty-two clones (45%) could be distinguished solely on the 

basis of their isozyme profiles, but the other 27 clones shared isozyme profiles with one to 

five other clones. Thirteen modem H. x graeseri cultivars exhibited less genetic diversity 

than 40 H. gaertneri, H. x graeseri, and H. rosea clones representing older and modem 

cultivars plus field-collected specimens. The difference in genetic diversity was primarily 

attributed to a loss of alleles during breeding. In a fourth study, a Schlumbergera 

germplasm collection composed of 59 clones was assayed for AAT, GPI, LAP, MDH, 

PGM, SKD, and TPI. Twelve putative loci and 36 putative alleles were identified, and 10 

of the 12 loci (83%) were polymorphic. Forty-one clones (69%) could be distinguished 

solely on the basis of their isozyme profiles, but the other 18 clones shared isozyme 

profiles with one or two other clones. Forty-two commercial clones of S. truncata, S. x 

buckleyi, and S. x exotica exhibited less genetic diversity than 14 field-collected clones of 

S. kautskyi, S. opuntioides, S. orssichiana, S. russelliana, and S. truncata. The difference 

in genetic diversity was attributed to limited sampling from wild populations and loss of 

alleles during breeding. 
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CHAPTER 1 

LITERATURE REVIEW 

Introduction 

Hunter and Markert (1957), using the combined technologies of starch gel 

electrophoresis and enzyme activity staining, demonstrated that enzymes exist in 

multiple forms. The multiple forms of an enzyme may be separated by electrophoresis 

and then visualized by staining. A zymogram is the term used to describe the 

configuration of bands in the electrophoretic analysis of an enzyme (Richards, 1990). 

The term allozyme refers to different forms of an enzyme specified by alternative 

alleles at one gene locus, whereas the term isozyme refers to different forms of an 

enzyme specified by genes at different loci (Wendel and Weeden, 1989). 

Isozymes have been recognized as a more convenient and reliable source of 

genetic markers than morphological characters which have been traditionally used in 

plant breeding (More and Collins, 1983). Isozymes also have several attributes to 

make them especially suited to genetic studies: Mendelian inheritance, codominant 

expression, complete penetrance, and lack epistatic or pleiotropic interactions among 

loci (Weeden and Wendel, 1989). The most important attribute of isozymes is their 

simple genetic basis. A diploid organism contains two copies (alleles) of each gene, 

and, in most cases, both alleles are transcribed and translated. This codominant 

expression and complete penetrance allows for the calculation of allele frequency, and 

identification of heterozygous and homozygous individuals (Weeden, 1989). Other 

attributes of isozymes include selective neutrality, and consistency of expression of 

most isozymes regardless of environmental conditions, developmental stage, and tissue 

sampled. Generally, isozyme analysis requires only a small amount of plant tissue, so 

that the plant is not destroyed by tissue sampling (Wendel and Weeden, 1989). In 

addition, the number of loci and subcellular location of the isozymes is highly 
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conserved in plant evolution (Gottlieb, 1982). It has been found that, in most diploid 

plant species, many enzymes have the same number of loci, a conserved subunit 

structure, and specific subcellular locations (Weeden and Wendel, 1989; Gottlieb, 

1982). 

There are several areas in plant breeding where isozymes can be utilized. 

Isozymes can be employed to: distinguish individual cultivars; develop markers for 

commercially important traits; estimate genetic diversity within taxa; confirm existence 

of intra- or interspecific hybrids; analyze quantitative traits; and increase knowledge 

about genome structure by the development of linkage maps (Wendel and Weeden, 

1989). 

Cultivar Identification. Cultivar identification is important for commercial 

production of agronomic and horticultural crops and in plant patent applications and 

patent infringement cases. Brewbaker (1966) first proposed the use of isozymes for 

cultivar identification. Isozyme polymorphism has been successfully used for 

identifying cultivars in many crops (Nielsen, 1985). 

Plant breeders rights (PBR) legislation was first enacted in 1930 (Bailey, 1983). 

This legislation provides licenses to breeders allowing them to control the marketing 

and propagation of plant cultivars which they have created. In order to obtain a patent, 

it must first be established that there is varietal distinctness. Varietal distinctness may 

be identified with morphological or biochemical characterizations. In some crop 

species, morphological distinctness is rare and sometimes not convenient for plant 

identification, i.e., characters that are only distinguishable at plant maturity (Hashemi, 

et al., 1991). Techniques used in varietal identification must exhibit environmental 

stability, ability to distinguish intervarietal variation (which may be minimal), and 

repeatability of results. Isozymes not only conform to the necessary criteria for use in 

varietal identification, but may potentially be one of the most practical and economic 

techniques available in many cases. 
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There are many examples of using isozymes to aid in identifying cultivars 

(Nielsen, 1985). Isozyme analysis has been conducted on guayule (Parthenium 

ar^entalum) (Hashemi et al., 1991). Previously, only one morphological marker was 

available. Isozyme polymorphism was found to be prevalent in guayule, and is 

currently employed to identify cultivars. Other crops where isozymes have been used 

successfully for genetic characterization include rice (Oryza sativa L.) (Glaszmann, 

1987), carnation (Dianthus caryophyllus L.) (Messeguer and Arus, 1985), white poplar 

(Populus alba L.) (Rajora and Dancik, 1992) sugarbeet (Beta vulgaris L.) (Nagamine 

et al., 1989), pine (Pinus) (Shrunkal et al., 1992), Azolla lam, an aquatic nitrogen- 

fixing fern (Zimmerman, 1989), pecan (Carya illinensis) (Marquard et al., 1995) and 

Olive (Olea europaea) (Trujillo et al., 1995). 

There are, however, limitations to the usefulness of isozymes. Polymorphism 

must be present within taxa in order to distinguish genotypes. The number of bands is 

a function of the number of loci, number of alleles per locus and the quaternary 

structure of the specific enzyme. The larger the sample of loci, the greater the number 

of alleles detected and the greater the probability of finding a unique phenotype 

(Cheliak and Pitel, 1984). In certain crops such as tomato (Lycopersicon esculentum) 

(Rick, 1983), pepper (Capsicum annuum) (Mclxiod, 1983), and safflower (Carthamus 

tine tori us) (Estilai et al., 1994) limited enzyme polymorphism has been detected, 

making isozyme analysis a poor technique for genetic characterization. Another 

problem that may be encountered in cultivar identification is distinguishing between 

sports of a cultivar. Many important horticultural varieties have developed from bud 

sports. Sports are almost identical to the parent plant with only minor genetic changes. 

Thus far, detection of isozyme polymorphism in cultivars that have arisen as sports has 

been unsuccessful (Weeden and Lamb, 1985; Mendenez, 1986). 

Estimating Genetic Diversity. Isozyme analysis between and among different 

taxa can also provide an accurate estimation of genetic diversity and may aid breeding 
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programs in the evaluation of samples for potential sources of new traits, in the 

conservation of genetic resources, and in determining the phylogeny of a species 

(Mowrey and Werner, 1990; Tanksley, 1983). Genetic diversity estimations are useful 

in both cultivated and wild populations. Eighteen isozyme loci were examined to 

determine the genetic diversity in a germplasm collection of cultivated Cucumis sativus 

L. (Knerr et al., 1989). The genetic diversity of the collection was determined to be 

low. However, the information obtained in this study provided a basis to facilitate 

future additions to the germplasm collection. In a wild population of Lophocereus 

schottii (columnar cactus), the genetic diversity within a population that reproduced 

primarily by asexual means was found to have a level of genetic diversity similar to 

sexually reproducing species (Parker and Hamrick, 1992). The authors suggest that 

this relatively high level of genetic diversity was achieved through the occasional sexual 

reproduction and immigration through pollen movement and the long distance dispersal 

of stems by water. Genetic diversity was also studied in two wild populations of 

Tillandsia (Soltis et al., 1987). The species T. ionantha and T. recurvata have 

considerably different flower morphology, suggesting different reproduction strategies. 

Isozyme analysis of the T. recurvata population indicated a very low level of genetic 

diversity, suggesting a high level of inbreeding. The population of T. ionantha was 

found to have a high level of genetic diversity, suggesting outbreeding. The results of 

this study confirmed reproduction strategies that were consistent with the flower 

morphology of the two of Tillandsia species. 

Confirmation of Hybridity. The use of isozymes has been successful in 

determining if progeny are of zygotic or asexual origin (Soltis, 1989). Confirmation of 

this can be determined easily if the two parents possess distinct allozyme banding 

patterns. In polyploid guayule, reproduction is by facultative apomixis, thus producing 

progenies derived by either maternal tissue or fertilized eggs (Hashemi et al., 1991). 

The identification of zygotic and asexual progeny can be established at the seedling 
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stage by isozyme analysis, so that unwanted asexual seedlings can be discarded. There 

are many examples using isozyme segregation data to distinguish asexual progeny from 

zygotic progeny, especially in long-term crops. For instance, in citrus, a breeder can 

avoid 5-10 year costs of growing out and maintaining unwanted asexual seedlings if 

isozyme analysis is conducted at an early stage (Torres, 1982). 

Another application of isozymes in genetic studies is in determining the 

parentage of a particular cultivar. Torres and Bergh (1984) were able to distinguish the 

paternal parent that contributed root rot resistance in avocado {Persea americana 

Mill.). In banana {Musa), it was determined by isozyme analysis that three cultivars 

originated from an interspecific cross between M. acuminata and M. balbisiana (Jarret 

and Litz, 1986). Also isozyme analysis was used to test the hypothesis that Paulownia 

taiwaniana, a native of Taiwan, originated from a cross between P. fortunei and P. 

kauakamii (Finkeldey, 1992). 

Marking Monogenic Traits. Isozymes are also useful for marking monogenic 

traits. Marking these traits would be extremely beneficial in breeding programs where 

time space and money are usually limited. There are several examples where isozymes 

have been involved in marking genes conferring disease resistance (Weeden, 1989). 

Traits such as nematode resistance in tomato {Lycopersicon esculentum) (Rick and 

Fobes, 1974) and more recently apple scab resistance in apple {Malus pumila Mill) 

(Manganaris et al., 1994) have been linked to an isozyme locus. In addition, the gene 

Adh-1 in Pisum sativum was found to be closely linked to the gene or genes expressing 

resistance to pea enation mosaic virus (Weeden and Provvidenti, 1988). The benefits 

of this isozyme marker are enormous due to the ability to test expression for Adh-1 

allele in the seed prior to planting. In the pea, one-fifth of the cotyledon can be 

removed from the seed and assayed for the expression of this allele without affecting 

germination or seedling growth. 
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Other important traits such as sex determination in dioecious asparagus 

(.Asparagus officinalis L.) have also been marked by isozymes (Maestri et al., 1991). 

In apple (Malus pumila Mill.), the self-incompatibility (5) locus was marked by the 

isozymes GOT-1 and IDH-1 (Manganaris and Alston, 1987; Batlle et al., 1995). 

Having the self-incompatibility locus tagged, there now exists a sound base for 

genotyping apple varieties for the 5-alleles. Analysis for these isozymes is very simple 

and rapid in comparison to time-consuming pollination studies previously conducted 

with apple cultivars. 

Quantitative Trait Analysis. Isozyme loci are well suited to mapping 

polygenic traits, for they are found to be well distributed over the plant genome 

(Powell et al., 1990). The marking of quantitative traits such as yield and cold 

tolerance has been accomplished in several crops such as corn (Zea mays) (Stuber, 

1982; Stuber and Moll, 1980) and tomato (Lycopersicon esculentum) (Vallejos and 

Tanksley, 1983). More recently, polygenic traits have been tagged by isozyme 

markers in soybean (Glycine soja) (Graef, 1989), lentil (Lens culinaris Medik.) (Havey 

and Muehlbauer, 1989), barley (Hordeum spontaneum) (Powell et al., 1990) and 

almond (Primus amygdalus) (Asins et al., 1994). 

Linkage Maps. Detailed genetic maps using isozymes and morphological 

characters have received considerable attention for use as a breeding tool and in basic 

genetic research. A linkage map is a map of the linkage groups in a genome. A 

linkage group is defined by genes that occur on the same chromosome (Richards 1990). 

The more linkage groups with markers available, the better the chance of finding 

associations between these markers and economically-desirable traits. Linkage between 

pairs of isozyme loci has been reported in a number of horticultural genera (Vezvaei et 

al., 1995; Huang et al., 1994; Heemstra et al., 1991). Linkage maps are generally a 

combination of markers that can include morphological traits, isozymes, restriction 
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fragment length polymorphisms (RFLPs) and/ or random amplified polymorphic DNA 

(RAPDs). 

Electrophoresis. Polyacrylamide was chosen as the support medium for this 

study over the more commonly used starch medium. Polyacrylamide offers several 

advantages over starch. Most importantly, polyacrylamide offers greater resolving 

power that can be achieved by altering the concentrations of acrylamide, thereby 

increasing or decreasing the molecular sieving effect for enhancing band separation 

and/or sharpness. Other advantages of polyacrylamide include more rapid running 

times, uniformity, repeatability, and gel transparency that allows for densitometer 

readings and lighter colored dye precipitates to be visible that may not be detected with 

the opaque starch medium (Weeden, 1989). Using the starch gel matrix can potentially 

result in time savings since the starch gel can be sliced into many gels after 

electrophoresis so that several enzymes may be assayed at one time. However, projects 

requiring maximum resolving power generally use polyacrylamide due to the uniform 

and greater flexibility in sieving properties for the best resolution of enzyme bands 

possible. 

A Review of Cactaceae Literature 

Taxonomy. The family Cactaceae is comprised of about 2,200 species 

(Barthlott, 1983). The epiphytic species, which represent approximately 10% of all 

cacti are in the subfamily Cactoideae. The epiphytic species are divided into two 

tribes, Rhipsalideae and Hylocereinae, which are separated based on the geographic 

location of their evolutionary centers (Barthlott, 1983). The evolutionary center of the 

tribe Rhipsalideae is southern South America, whereas the evolutionary center of 

Hylocereinae is southern Mexico and Central America. The tribe Rhipsalideae 

comprises four genera: Schlumbergera, Hatiora, Rhipsalis, and Lepismium 
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(Barthlott,1983). The two genera that will be genetically analyzed by isozymes are 

Schlumbergera and Hatiora. 

Hatiora. The genus Hatiora is compised of five species of epiphytic or 

epilithic shrubs that are endemic to southeastern Brazil (Barthlott, 1987; Hunt, 1992). 

Plants have a determinate growth pattern and produce a series of leafless stem segments 

(phylloclades) with a composite areole (Moran, 1953). According to Barthlott (1987), 

the genus is divided into two subgenera. The subgenus Hatiora includes two species 

with terete phylloclades: H. salcomioides (Haw.) Britton & Rose and H. herminiae 

(Campos-Porto & Castellanos) Backeberg ex Barthlott. The subgenus Rhipsalidopsis 

contains three species with flattened or angular phylloclades: H. epiphylloides 

(Campos-Porto & Werdermann) F. Buxbaum, H. gaertneri (Regel) Barthlott, and H. 

rosea (Lagerheim) Barthlott. Hatiora gaertneri and H. rosea were brought into 

cultivation nearly a century ago (Lagerheim, 1912; Regel, 1884), and have been valued 

as ornamentals due to their showy flowers. Hybrids between H. gaertneri and H. 

rosea, first described by Werdermann (1939), have been used extensively to breed 

commercial cultivars (Meier, 1992). The collective name for hybrids of H. gaertneri x 

H. rosea parentage is H. x graeseri (Werdermann) Barthlott (Barthlott, 1987). The 

two species and their interspecific hybrids are commonly known as Easter cactus, and 

refers to the fact that plants grown in the northern hemisphere flower primarily in 

spring (near Easter). 

Hatiora rosea was discovered by Per Dusen in 1909 growing at 1100-2300 

meters in the forests near Caiguava in Parana, Brazil. Hatiora rosea was originally 

named Rhipsalis rosea, but in 1920 was transferred to the genus Rhipsalidopsis by 

Britton and Rose (McMillan, 1981). Hatiora gaertneri was originally discovered in 

southern Brazil in 1881 by Gaertner. Hatiora gaertneri was first named Epiphyllum 

russellianum var. gaertneri by Regel, and was transferred to Schlumbergera by Britton 

and Rose in 1920. The species was transferred several more times until finally in 1953 
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it was placed into the genus Rhipsalidopsis by Moran (1953). Although the genus 

Rhipsalidopsis was accepted by most taxonomists, Barthlott (1987) transfered the genus 

Rhipsalidopsis to the genus Hatiora. The transfer of Rhipsalidopsis to the genus 

Hatiora has been accepted by most taxonomists (Boyle et al.,1994; Huxley et al., 

1992; Ganders, 1976; Taylor, 1976). 

Both H. gaertneri and H. rosea exhibit self-incompatibility but the two species 

are interfertile (McMillan, 1981). As with most cacti, Hatiora has a chromosome 

number of 2n=22 (Boyle, unpublished data; Love, 1976). 

Easter cactus is a popular crop in Europe and is now gaining in importance in 

the United States. There are approximately 125 cultivars of Easter cactus in cultivation 

(Meier, 1992). Many of the commercial cultivars of Easter cactus were developed in 

Europe and are not adapted to environmental conditions found in North America. 

There is a great demand for the development of new cultivars of Easter cactus for the 

U.S. market. However, no information is available about the extent of genetic 

diversity within Hatiora germplasm. Information on genetic diversity on this crop 

would greatly enhance the breeding programs for future cultivar development. 

Schlumbergera. The genus Schlumbergera consists of six species: S. truncata, 

S. russelliana, S. orssichiana, S. kautskyi, S.obtusangula, and S. opuntioides (Huxley 

et al.,1992). The six species are native to the states of Sao Paulo, Rio de Janiero, 

Espirito Santo, and Minas Gerias in southeastern Brazil (Barthlott and Rauh, 1977; 

Hunt, 1969). 

Schlumbergera truncata, the most important Schlumbergera species in 

cultivation, flowers in November in the northern hemisphere and is commonly called 

Thanksgiving cactus. Hybrids of S. truncata and S. russelliana (= S. x buckleyi) 

flower in December and are called Christmas cactus. Thanksgiving and Christmas 

cactus are collectively called holiday cactus (Runger and Poole, 1985). 
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Although Schlumber%era exhibits an enormous amount of phenotypic variation, 

the amount of genetic variation is unknown. All of the species have the same number 

of chromosomes (2n-22) and some species are able to hybridize (Barthlott and Rauh, 

1977). Except for S. obtusangula and S. kautskyi,aU other Schlumbergera species are 

self-incompatible (McMillan, 1991; McMillan and Horobin, 1992). 

The genus Schlumbergera can also be separated from other closely-related 

genera by the distinctive flower tube and basal nectar chamber (Barthlott and 

McMillan, 1978). The genus can be divided into two groups based on vegetative 

differences: those species with flattened phylloclades (= S. truncata, S. russelliana, S. 

orssichiana, and S. kautskyi), and those species with spiny opuntoid phylloclades ( = 

S.opuntoides and S. obtusangula) (Barthlott and McMillan, 1978). The taxonomy of 

Schlumbergera species has been a topic of debate since the genus was established by 

Lemaire in 1858 (Hunt, 1969). The species currently in Schlumbergera have passed 

through a number of different genera before consolidation by Hunt in 1969 (McMillan, 

1990). 

Today, there are approximately 200 cultivars of holiday cactus in cultivation 

(McMillan, 1985). Very little is known about the genetics of this crop. Information 

regarding the genetic diversity would be advantageous for plant breeding programs, and 

may also elucidate some long-standing taxonomic disputes within this genera. 

Isozyme Literature on The Cactaceae. Literature involving isozyme research 

on the Cactaceae is limited. Wallace and Fairbrothers (1986) isoelectrically focused 

seed proteins of Opuntia humifusa Raf. (prickly pear) to determine the degree of 

similarity between two north American populations. Similar enzyme profiles were 

obtained from both populations, but some variability did exist between the two 

populations. This variability was attributed to small changes in genotypes of isolated 

populations and genetic fixation. The authors concluded that, despite morphological 

differences within this phenotypically plastic taxon, that O. humifusa should remain a 
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single species. Parker and Hamrick (1992) analyzed isozymes from several populations 

of Lophocereus schottii (columnar cactus) to determine the amount and distribution of 

genetic diversity within and among populations, and the relation between plant spacing 

and genetic diversity. The results of this study showed that L. schottii, with occasional 

sexual reproduction, pollen movement, and dispersal of stems via water, had diversity 

characteristics similar to species in which reproduction is primarily sexual. The authors 

also determined that greater numbers of L. schottii with identical genotypes occurred 

closer together than far apart. Murawski et al. (1993) used isozyme analysis to 

determine the nature of polyploidy (auto vs. alloploidy) of Pachycereus pringlei. 

Pachycereus pringlei was confirmed to be an autotetraploid based on isozyme data 

showing tetrasomic inheritance. Garcia-Carreno (1993) also reported on peroxidase 

activity in P. pringlei. That study focused on the isolation, separation of isozymes, and 

kinetic characterizations of isoperoxidases isolated from shoots of P. pringlei. 
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CHAPTER 2 

MATERIALS AND METHODS 

Abstract 

Isozyme analysis is a reliable technique that has been used in plant studies to 

measure levels of genetic variation within populations, analyze mating systems, 

determine taxonomic relationships among species, identify varieties, and help 

substantiate parentage in breeding programs. This paper reports on polyacrylamide gel 

electrophoresis (PAGE), which has proven to be a reliable method for analyzing 

isozymes in two Cactaceae genera (//atiora and Schlumber^cra). Information is 

provided on PAGE equipment and running conditions as well as procedures used for 

preparing tissue samples, polyacrylamide gels, electrode buffers, and enzyme stains. 

The techniques described here may be useful for investigations of other Cactaceae taxa. 

Introduction 

Isozyme markers are widely used in plant research, and are especially suited to 

genetic studies. Isozymes exhibit Mendelian inheritance, codominant expression, and 

complete penetrance, but lack epistatic or pleiotropic interactions among loci (Weeden 

and Wendel, 1989). They also exhibit selective neutrality, and consistency of 

expression of most isozymes regardless of environmental conditions, developmental 

stage, and tissue sampled. Isozymes have been successfully used for demonstrating 

genetic variation, identifying interspecific hybrids, distinguishing individual cultivars, 

and developing markers for commercially important traits (Wendel and Weeden, 1989). 

Literature involving isozyme research on the Cactaceae is limited. Murawski 

et. al (1994) used isozymes to study the breeding behavior of the autotetraploid species 

Pachycerus prinfflei. Garcia-Carreno (1993) reported on the isolation, separation of 

isozymes, and kinetic characterizations of isoperoxidases in Pachycerus pringlei. 
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Parker and Hamerick (1992) analyzed several populations of Lophocereus schottii to 

determine the amount and distribution of genetic diversity within and among 

populations, and the relation between plant spacing and genetic diversity. Wallace and 

Fairbrothers (1986) analyzed Opuntia humifusa using isozymes to determine the degree 

of similarity between two North American populations. There have, however, been no 

isozyme studies on the genera Hatiora or Schlumbergera. Isozymes may be useful for 

identifying cultivars on a year-round basis, as a source of genetic markers in breeding 

programs, and to assess the level of genetic diversity within the species. 

Traditionally isozyme studies are based on starch gel eletrophoresis. 

Polyacrylamide gel electrophoresis (PAGE) offers several advantages over starch and 

was chosen as the support medium for this study. Most importantly, polyacrylamide 

offers greater resolving power that can be achieved by altering the concentrations of 

acrylamide, thereby increasing or decreasing the molecular sieving effect for enhancing 

band separation and/or sharpness. Also PAGE offers rapid running times,uniformity, 

repeatability and gel transparency that allows for lighter colored dye precipitates to be 

visible. 

The main objective of this study was to identify enzyme systems that were 

consistently resolved, intensely stained, and interpretable. Evaluations concerning the 

best tissue to employ, method of extraction and extraction buffer to use were 

conducted. Also, the amount of sample loaded, percent polyacrylamide gel, gel and 

electrode buffers, and enzyme staining protocols, were evaluated to optimize band 

activity and resolution for Hatiora and Schlumbergera cultivars. 

Materials and Methods 

Plant Material. Phylloclades of Hatiora and Schlumbergera cultivars were 

collected from greenhouse-grown plants. For most enzyme systems, approximately 

half of a 5 mm disk (8 mg) of mature phylloclade tissue, immature (2-6 mm) whole 
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phylloclade segments, or 5-10 mm pieces of young roots were used to determine the 

best activity for a given enzyme system. Plants were pinched intermittently to enhance 

the production of immature phylloclades. Root tissue was obtained by placing mature 

phylloclade segments on wet filter paper in glass petri dishes and kept under lights (* 

22° C) in the laboratory. Pollen samples were obtained by removing the flowers and 

using a vortex to collect the pollen into scintillation vials. 

Sample preparation. All samples of mature phylloclade, immature phylloclade 

and root tissue were prepared in the same manner. Approximately 25-100 ul of 

extraction buffer (50 mM Tris - pH 7.5, 5% sucrose, 14 mM B-mercaptoethanol, and 

5% PVP-40) (Wendel and Weeden, 1989) was pipetted into a microcentrifuge tube, 

and the tube was placed on ice. Plant tissue then was added to the ice-cold extraction 

buffer in approximately 1:12, 1:10 and a 1:5 tissue to extraction buffer ratio for 

mature, immature and root samples respectively. The tissue was ground with an art 

supply pestle until most of the solid tissue was macerated. Samples were then 

microcentrifuged at 10,000 rpm in a 4°C refrigerator for ten minutes. The supernatant 

(10-60 ul) was removed and placed into a fresh microcentrifuge tube containing 5-10 ul 

ice-cold sample mix (50% glycerol and 0.1% of bromphenol blue, with a final gycerol 

concentration of » 4-7% in samples) (Shields et al., 1983). For pollen sample 

preparation, approximately 5 mg of pollen was placed into a microcentrifuge tube 

containing 500 ul of pollen extraction buffer (50 mM Tris-HCl containing 1 mM 

EDTA and 14 mM B-mecaptoethanol) for 4 hours at 4°C (Weeden and Gottlieb, 1980). 

The pollen then was centrifuged and the supernatant was placed in sample mix as 

described earlier. 

The majority of samples were prepared and analyzed on the same day. Storage 

of samples for up to one month at -20°C was possible for most enzyme systems, with 

only a minor loss of activity. However, almost complete loss of activity was observed 
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for some isozymes of aspartate aminotransferase (AAT) and malate dehydrogenase 

(MDH) within a week when samples were stored at -20°C. 

Gel Preparation. A Mini-Protean II multicasting chamber (Bio-Rad, 

Richmond, CA.) was used to cast 12 single percentage polyacrylamide gels at the same 

time. The acrylamide solution (30:1 acrylamide to bisacrylamide) was poured into the 

casting chamber from the top quickly and evenly to avoid polymerization and bubbles. 

Afterwards, a 15-well comb was placed into each gel in the casting chamber starting 

from the back. The gels were removed from the chamber approximately 45 minutes 

after they were poured. Combs were removed under the running tap and the gels were 

rinsed and shaved of excess polymerized acrylamide with a razor blade. Single 

percentage gels (5-10%) could be stored upright for up to two weeks at 4°C when held 

in air tight plastic bags containing approximately 1-3 mis of electrode buffer. The gel 

buffer used for preparing the polyacrylamide gels was 375 mM tris-HCl pH 8.8 

(Hames, 1981). 

Electrophoresis. The Mini-Protean II dual slab cell system (Bio-Rad, 

Richmond, CA.) was used for running gels. The reservoir buffer consisted of 25 mM 

tris 1.92 mM glycine pH 8.3 (Hames, 1981). Electrophoresis was conducted under a 

constant 200 voltage at 4°C. Gels were completely immersed in cold (4°C) electrode 

buffer in the electrophoresis cell at least a half hour prior to sample loading. The 

electrophoresis cell was removed for approximately 10 minutes from the incubator for 

sample loading. Running times varied with the enzyme system assayed, but was 

usually about 45 minutes. 

Staining and Gel Preservation. The enzyme stains were prepared 

immediately prior to use. Stocks of many common solutions were prepared in advance 

and stored at the appropriate temperature and volume (table 2.1).The enzyme staining 

procedures were obtained from Wendel and Weeden (1989). All chemicals were 

obtained from Sigma Chemical Co. (St. Louis, MO). After the appropriate staining 
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intensities were achieved, gels were rinsed with water and fixed in 7% acetic acid 

(Hames, 1981). Gels were dried using the Bio/Gel Wrap System (Biodesign Inc., 

Carmel, NY.) 

Results and Discussion 

Many different enzyme systems were evaluated. Only enzyme systems that had 

consistently sharp and intense banding patterns were chosen for further studies and 

presented in this paper. The enzymes AAT, GPI, LAP, MDH, PGM, SKD, and TPI 

all were found to contain polymorphisms and have consistently resolved and intensely 

stained bands. Gel and sample preparation conditions for each enzyme are described in 

Table 2. 

The main problem that was encountered in isozyme analysis of Hatiora and 

Schlumbergera was the mucilaginous tissue. The mucilage made samples very difficult 

to prepare and load onto gels, and caused problems in the banding resolution. The 

mucilage also limited the tissue: extraction buffer ratios that could be used in sample 

preparation. Attempting to concentrate the sample to obtain more enzyme activity was 

difficult. This problem was partially overcome in some instances by adding PVP-40 to 

the sample extraction buffer. Mature phylloclade tissue was the tissue of choice to use 

in sample preparations, only because it was the most abundant and available at all 

times. However, in some instances immature phylloclade tissue or root tissue was used 

because of the inability to concentrate the mature tissue extract enough for the 

appropriate band staining. 

Pollen samples were used mainly to confirm intralocus and interlocus 

heterodimers. Generally, the pollen samples contained considerable enzymatic activity 

and, in some cases, pollen specific bands were observed. 

Traditionally, it has been thought that using starch gels results in time savings, 

since the starch gel can be sliced into many gels after electrophoresis for assaying 
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several enzymes simultaneously. However, in this study, we employed mini¬ 

polyacrylamide gels which saved a great amount of time and supplies. With the use of 

the multi-casting chamber, up to 12 polyacrylamide gels, each containing 15 wells for 

samples, can be cast in approximately one hour. This, together with the small size of 

the gels, made it possible to run approximately 20-24 gels per day, assuming that the 

samples were previously prepared. In addition, less enzyme stain was required to 

obtain the necessary band intensities on these small gels. Each gel required only 25 

mis of enzyme stain, half of what is commonly used to stain starch gels. 

In conclusion, this study provided seven enzyme systems with twelve loci in 

total to be used in future inheritance and genetic diversity studies with Hatiora and 

Schlumberf>era. 
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Tabic 2.1. Solutions, concentrations, storage conditions and life of many commonly used stocks in 
isozyme analysis. 

Stock Concentration Storage temperature/duration 

Acrylamide 30% 4°C 
months 

AAT substrate solution 200 mis 4°C 
1 week 

Ammonium persulfate 
(APS) 

10 mg/ml 21°C 
fresh daily 

Arsenic acid 75 mg/ml 21°C 
months 

Bis-acrylamidc 1% 4°C 
months 

Bromphenol Blue 5 mg/ml 21°C 
months 

Fast Black K. salt 20 mg/ml 4°C 
months 

Fast Blue BB salt 50 mg/ml 4°C 
months 

G1 ucosc-6-phosphate 
dehydrogenase 

20 units/40ul 4°C 
months 

Glyceraldchyde-3 -phosphate 
dehydrogenase 

300 units/ml -20°C 
months 

Tetrazolium thiazolyl blue 
(MTT) 

10 mg/ml 4°C 
months 

MgCl? 50 mg/ml 21°C 
months 

NAD 10 mg/ml -20°C 
months 

NADP 5 mg/ml -20°C 
months 

Phenazinc mcthosulfate 
(PMS) 

50 mg/ml 4°C 
1-2 w eeks 

Sample mix 
(50% glycerol, 0.1% 
bromphenol blue) 

25 mis 21°C 
months 

Tris-HCl 1 M-1.5M 21°C 
months 
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CHAPTER 3 

INHERITANCE OF SIX POLYMORPHIC ISOZYME LOCI IN HAT/ORA 

Abstract 

Polyacrylamide gel electrophoresis (PAGE) was performed to investigate the 

inheritance of aspartate aminotransferase (AAT), glucose-6-phosphate isomerase (GPI), 

malate dehydrogenase (MDH), phosphoglucomutase (PGM), and triosephosphate 

isomerase (TPI) in the genus Hatiora (Cactaceae). F], F2, BC], and S\ populations 

were examined to determine the mode of inheritance. The results of inheritance studies 

for six polymorphic loci (Aat-1, Gpi-1, Mdh-1, Pgm-1, Pgm-2, and Tpi-2) were 

generally as expected for single loci with codominant alleles. However, segregation 

distortion was observed in at least one segregating family for all six isozyme loci, and 

was more common in BC] and Sj families. Linkage analysis revealed that Aat-1 and 

Pgm-1 were linked (26 cM), whereas the other isozyme loci assorted independently. 

The monomeric structure of Pgm-1 and Pgm-2 and the dimeric structure of Aat-1, Gpi- 

/, Mdh-1, and Tpi-2 were consistent with quaternary structures previously reported for 

other plant species. 

Introduction 

Easter cactus \Hatiora gaertneri (Regel) Barthlott, H. rosea (Lagerheim) 

Barthlott, and their interspecific hybrids (= H. x graeseri (Werdermann) Barthlott)] is 

a popular flowering potted plant in northern Europe and has been increasing in 

popularity in North America (Boyle, 1991). Plants have showy flowers and produce a 

series of flattened or angular stem segments (phylloclades) that function as the primary 

photosynthetic organ (Moran, 1953). Hatiora gaertneri and H. rosea are endemic to 

southeastern Brazil (Barthlott, 1987; Hunt, 1992) and were brought into cultivation 

nearly a century ago (Lagerheim, 1912; Regel, 1884). The first interspecific hybrids 
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of H. gaertneri and H. rosea were produced in 1928 by Alfred Graser of Niimberg, 

Germany (Tjaden, 1986; Werdermann, 1939). More than 100 cultivars of Easter 

cactus are in existence, and the majority of these are complex hybrids of H. x graeseri 

(Boyle, 1995; Meier, 1992). The common name for these taxa refers to the fact that 

plants grown in the northern hemisphere flower primarily in spring, i.e., near Easter. 

Hatiora gaertneri, H. rosea, and H. x graeseri are diploid taxa with a chromosome 

number of 2/z=2x=22 (Barthlott, 1976). 

Breeding of Easter cactus was initiated at the University of Massachusetts in 

1987, and is directed towards the production of novel and superior clones. It was 

therefore highly desirable to have a set of genetic markers for identifying cultivars and 

selecting progeny in the seedling stage. Crossing studies have revealed that few 

simply-inherited morphological markers exist in Easter cactus (T.H. Boyle, 

unpublished data). 

Isozymes are widely used in horticulture for identifying cultivars and as genetic 

markers for breeding programs (Nielsen, 1985). Several attributes of isozymes make 

them particularly useful as genetic markers, such as Mendelian inheritance, codominant 

expression, complete penetrance, and consistency of expression under a wide range of 

environmental conditions (Weeden and Wendel, 1989). Boyle et al. (1994) used 

isozymes to demonstrate that S\ progeny had been recovered from a highly self¬ 

incompatible cultivar of H. gaertneri. Isozymes have also been analyzed in other 

Cactaceae genera, including Lophocereus (Parker and Hamrick, 1992), Opuntia 

(Wallace and Fairbrothers, 1986), and Pachycereus (Garcia-Carreno, 1993; Murawski 

et al., 1994). However, there have been no formal genetic studies on isozyme 

inheritance for any Cactaceae taxa. The Cactaceae are not particularly amenable to 

genetic studies due to their long juvenility period, which can last for 5 years or longer 

(Cullman et al., 1987). Hence, the absence of isozyme inheritance studies on Cactaceae 

taxa is not suprising. By growing Easter cactus seedlings under optimal environmental 
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conditions, however, the juvenility period can be reduced to »2xh years, which makes 

them more suitable than most other Cactaceae taxa for genetic studies. This paper 

reports on the inheritance of six polymorphic isozyme loci in Easter cactus. 

Materials and Methods 

Plant material. Plants were propagated and grown in glasshouses at the 

University of Massachusetts, Amherst. Parental cultivars were obtained from the 

clonal germplasm collection maintained in the Department of Plant and Soil Sciences at 

the University of Massachusetts. Fj, F2, BCj, and S\ populations were generated for 

inheritance studies. Cross-compatible clones were used as parents for producing Fj, 

F2, and BCj seed, and crosses were performed in a glasshouse maintained at 18°C 

nights/22°C days. Si seed of ‘Crimson Giant’, a highly self-incompatible cultivar, 

was produced by incubating flowering plants for 12 hours in a growth chamber set at 

40°C and selfing immediately after incubation (Boyle et al., 1994). Techniques used in 

emasculation, pollination, seed germination, and plant culture were similar to those 

reported previously (Boyle et al., 1994). Henceforth, all crosses will be presented as 

pistillate parent x pollen parent unless specified otherwise. 

Protein extraction and sample preparation. Isozymes were extracted from 

mature phylloclades or pollen. Tissue was removed from mature phylloclades with a 

no. 1 cork borer. Soluble proteins were extracted by homogenizing «8 mg phylloclade 

tissue in 100 /d cold extraction buffer [0.050 M Tris-HCl buffer (pH 7.5), 0.014 M 

fi-mercaptoethanol, 5% (w/v) polyvinylpyrrolidone (PVP-40), and 5% (w/v) sucrose 

(Wendel and Weeden, 1989)]. Crude homogenates were centrifuged at 10,000 rpm for 

10 minutes at 4°C. The supernatant (~60 /d) was collected and mixed with 10 /d of 

cold sample mix [50% (v/v) glycerol and 0.1% (w/v) bromphenol blue (Shields et al., 

1983)]. 
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Flowers were obtained on the day of anthesis from glasshouse-grown plants, 

and pollen was removed from the anthers with a vortex and collected in scintillation 

vials. Soluble proteins were extracted by soaking *5 mg of pollen in 500 \A pollen 

extraction buffer (0.050 M Tris-HCl buffer (pH 7.5), 0.014 M 2-mercaptoethanol, and 

1 mM EDTA) for 4 hours at 4°C (Weeden and Gottlieb, 1980). Pollen extracts were 

then centrifuged at 10,000 rpm for 10 minutes at 4°C, and the resulting supernatant 

was treated as described earlier for phylloclade samples. 

Electrophoresis. Native proteins were separated by polyacrylamide gel 

electrophoresis (PAGE) using a Mini-Protean II cell (Bio-Rad Laboratories, Hercules, 

CA). Single percentage (5-10%) polyacrylamide gels were prepared using 0.375 M 

Tris-HCl (pH 8.8) as the gel buffer (Hames, 1981). Details on acrylamide 

concentrations and sample loading volumes are provided in Table 3.1. The electrode 

buffer for all enzyme systems was 0.025 M Tris and 0.192 M glycine, pH 8.3 (Hames, 

1981). Electrophoresis was conducted at 4°C under constant voltage (200 V). 

Running times varied according to the enzyme system assayed, but typically required 

45 minutes for completion. 

Gel staining. Five enzyme systems were examined: aspartate aminotransferase 

(AAT, E.C. 2.6.1.1), glucose-6-phosphate isomerase (GPI, E.C. 5.3.1.9), malate 

dehydrogenase (MDH, E.C. 1.1.1.37), phosphoglucomutase (PGM, E.C. 5.4.2.2), 

and triosephosphate isomerase (TPI, E.C. 5.3.1.1). The staining procedures of Wendel 

(1989) for assaying enzyme activity. Enzyme stains were prepared immediately prior 

to use. After the appropriate staining intensities were achieved, the gels were rinsed 

with water and fixed in 7% acetic acid (Hames, 1981). 

Data analysis. Revalues were calculated for each band by dividing the band’s 

migration distance by the tracking dye’s migration distance (Hames, 1991). Data were 

collected immediately after gels were fixed, i.e., when the staining intensities were 

maximal. For each enzyme, loci were numbered sequentially, with 1 denoting the 
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most anodally migrating locus. Alleles at individual loci were designated by letters 

assigned sequentially from the anode. 

Isozyme inheritance was determined by evaluating the segregation ratios in S\, 

full-sib Fj, F2, and BCj families. Data from reciprocal crosses were pooled for chi- 

square analysis when populations did not differ significantly from the expected ratios in 

homogeneity testing. The computer program LINKAGE-1 (Suiter et al., 1983) was 

used to test goodness-of-fit for the expected segregation ratios at single loci and 

possible linkage relationships among loci. 

Results and Discussion 

Aspartate aminotransferase. Two polymorphic zones of activity were 

observed for A AT (Figure 3.1). Five phenotypes were observed at Aat-1: four single- 

banded phenotypes (aa, bb, cc and dd) and one triple-banded phenotype (cd). The Re¬ 

values for cc, and dd were 0.45 and 0.38, respectively. Bands aa and bb (with Rf 

values 0.50 and 0.48) were not subjected to genetic analysis. Presence of cd in 

phylloclade samples and its absence in pollen samples suggests that AAT is a dimer 

composed of two subunits. Crosses between a single-banded phenotype and a triple- 

banded phenotype yielded, in most cases, progenies which exhibited the expected 1 : 1 

segregation ratio (Table 3.3). One BCj family (‘Crimson Giant’ x R891-2), however, 

deviated significantly from the expected 1 : 1 ratio (Table 3.3). Progeny recovered 

from crosses between two triple-banded phenotypes exhibited significant departures 

from the expected 1:2:1 ratio in all three familes that were examined (Table 3.3). In 

two of these families (‘Crimson Giant’ x R891-6 and the Sj progeny of ‘Crimson 

Giant’), one single-banded phenotype was deficient whereas the other single-handed 

phenotype was in surplus. Interestingly, the ratio of single-handed phenotypes (cc and 

dd) to triple-banded phenotypes did not deviate from the expected 1 : 1 ratio in either 
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of these families (X2 = 0.200, P > 0.50 for ‘Crimson Giant’ x R891-6 ; X2 = 0.005, 

P > 0.90 for ‘Crimson Giant’ S\ progeny). 

The single band of Aat-2 (= cc) had an Revalue of 0.32 (The bands aa and bb 

with Revalues 0.36 and 0.34 were not analyzed in this study). Since the Revalue of cc 

did not change when different banding patterns were observed at Aat-1, the two zones 

of activity were considered to be separate loci. Interlocus heterodimers between Aat-1 

and Aat-2 were not observed, suggesting that these two loci code for proteins which 

have different subcellular locations (Weeden and Marx, 1987). The existence of two 

activity zones for A AT along with the dimeric structure is consistent with findings on 

other plant species (Nagamine et al., 1989). 

Glucose-6-phosphate isomerase. GPI exhibited two polymorphic zones of 

activity (Figure 3.1). The bands of Gpi-1 migrated close together and had Revalues of 

0.43, 0.39, and 0.36. At Gpi-2 only one band (ee) was subjected to genetic analysis, 

bands aa, bb, cc, and dd with Revalues 0.32, 0.30, 0.27, and 0.25 respectively, were 

not analyzed in this study. Five phenotypes were observed at Gpi-1: two single-handed 

phenotypes (aa and bb) and three triple-banded phenotypes, each of which displayed a 

band of intermediate mobility (ab, ac, and be). The intermediate bands were observed 

in phylloclade extracts but absent in pollen extracts, indicating that Gpi-1 is a dimer. 

When a triple-banded phenotype was crossed with a single-handed phenotype, 

progenies were obtained in the expected 1 : 1 segregation ratio, except for one Fj 

family (‘Crimson Giant’ x ‘Evita’) which deviated significantly from the expected ratio 

(Table 3.4). Progeny recovered from crossing two identical triple-banded phenotypes 

did not significantly differ from the expected 1:2:1 segregation ratio (Table 3.4). 

When a triple-banded phenotype was crossed with a different triple-banded phenotype 

with one allele in common, progeny were obtained in the expected 1 : 1 : 1 : 1 ratio 

(Table 3.4). Presence of two zones of enzymatic activity and a dimeric quaternary 
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structure for GPI has been been demonstrated in several other plant species (Gottleib, 

1982; Weeden and Wendel, 1989). 

Malate dehydrogenase. Electrophoretic separation of MDH isozymes from 

phylloclades revealed four zones of activity: Mdh-1, Mdh-2, Mdh-3, and Mdh-4 (f igure 

3.2). Mdh-1 and Mdh-4 were polymorphic whereas Mdh-2 and Mdh-3 were 

monomorphic. Bands of Mdh-4 were too faint to interpret consistently and therefore 

were not subjected to genetic analysis. 

Mdh-1 displayed three single-handed phenotypes (aa bb and cc) and one triple- 

banded phenotype with a band of intermediate mobility (ac). The bb band with an Rf 

value 0.58, was not subjected to genetic analysis. Bands aa, ac, and cc had Rr values 

of 0.63, 0.58, and 0.53, respectively. Band ac was present in phylloclade extracts but 

absent in pollen extracts, suggesting that Mdh-1 has a dimeric structure. Crosses 

between a single-handed phenotype and a triple-banded phenotype yielded five families 

which segregated in the expected 1 : 1 ratio, but three other families deviated 

significantly from the expected 1 : 1 ratio (Table 3.5). Crosses between two triple 

banded phenotypes resulted in the expected 1:2:1 segregation ratio in all three 

families that were examined. 

Addition of 8.3% (w/v) ascorbic acid to the phylloclade extraction buffer 

(Goodman et al., 1980) inhibited the activity of Mdh-1 but did not af fect the activity of 

Mdh-2 and Mdh-3, indicating that Mdh-1 is a cytosolic form of MDH whereas Mdh-2 

and Mdh-3 are organellar forms of this enzyme (Goodman and Stuber, 1983). The 

single bands of Mdh-2 and Mdh-3 had Revalues of 0.39 and 0.34, respectively, and 

were designated as aa-2 and aa-3, respectively. A band of intermediate mobility 

between aa-2 and aa-3 was tenatively identified as an interlocus heterodimer of Mdh 2 

and Mdh-3; this band was present along with aa-2 and aa-3 in MDH assays of pollen 

extracts, providing further evidence it is an intelocus heterodimer of Mdh 2 and Mdh 3. 

Presence of an interlocus heterodimer between two mitochondrial forms of MDH have 
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tGcvximan « *1., 19$0). 

Pbasphoghx'ose mutise. Two polymorphic zones of PGM activity were 

observed m PAGE cels (Figure 5.2). At Pc’*-/. six single-handed phenoppes (aa. bb. 

ee. dc. ee. and ff and one one double-handed phenop'p? were observ ed. Bands dd and 

~ had iy values of O.cC and 0.55. respectively. Bands aa. hb. cc and ee with Revalues 

0 T. 0.6~. 0.o5. and 0.5’ respectively, were not subjected to genetic analvsis. 

Crosses heraren a single-handed phenoppe and a double-handed phenotype resulted in 

rhe expected 1 : 1 segregation ratio in tour families, hut significant departures from 

expectations were observed in three other families (Table 5.6). Crosses between two 

double-handed phenoppes yielded three families that exhibited the expected 1:2:1 

segregation rano (Table 5.6). In one Fy family (RS^l-2 x RS^l-5). however, dd 

phenotypes were were deficient and ff phenot>-pes were in excess (Table 5.6). 

At Pew--, three single-handed phenotypes (aa. hb. and dd) and three double- 

handed phenotypes were observed (Figure 5.2). Bands aa. bb. and dd had Rr values 

of 0 -5. 0 and 0 -2. respectively. Band or-/ (R-* value 0.45) was not subjected to 

genetic analysis. When a double-handed phenoppe was crossed with a single-handed 

phenotype, progenies were obtained in the expected 1 : 1 segregation ratio (Table 5.7). 

Crosses betw een clones with identical double-handed phenotypes resulted in progeny 

which fit the expected 1:2:1 ratio, and crosses between clones with different double- 

handed phenotypes yielded progeny in the expected 1 : 1 : 1 : 1 ratio (Table 5.7). 

Segregations at Pgm-2 fit the expected ratios in all families except for the S} progeny 

of 'Crimson Giant' (Table 5.7). These results generally support the hypothesis that 

PGM is a monomeric enzy me that is specified by two loci in Easter cactus. Previous 

szudies tNavot and Zamir. 1986: Weeden and Gottlieb. 1980) have shown that PGM is 

a monomer. Two PGM loci have been identified in several other plant species 

(Goabeb. 1982). 
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Triosephosphate isomerase. TPI displayed two zones of activity: a more 

anodal monomorphic zone (Tpi-1) and a more cathodal polymorphic zone (Tpi-2) 

(Figure 3.2). The single band observed at Tpi-1 (= aa) had an Revalue of 0.52. 

Three phenotypes were observed at Tpi-2: two single-banded phenotypes (aa and bb) 

and one triple-banded phenotype with a band of intermediate mobility (ab). The Ry 

values for bands aa, ab, and bb were 0.38, 0.35, and 0.32, respectively. Band ab was 

present in phylloclade extracts but was absent in pollen extracts, confirming that TPI 

has a dimeric structure and that ab was an intralocus heterodimer. When a triple- 

banded phenotype was crossed with a single-handed phenotype, most families 

segregated in the expected 1 : 1 ratio, but significant departures from expectations were 

observed in two families (‘Crimson Giant’ x ‘Red Pride’ and ‘Crimson Giant’ x 

‘Evita’) (Table 3.8). Crosses between two triple-banded phenotypes yielded two 

families which fit the expected 1:2:1 ratio, and another family with no aa individuals 

but a surplus of bb individuals (Table 3.8). 

Bands that formed between Tpi-1 and Tpi-2 were presumed to be interlocus 

heterodimers (Figure 3.2). Clones with single-handed phenotypes at Tpi-2 produced 

only one interlocus heterodimer, whereas clones with triple-banded phenotypes at Tpi-2 

exhibited two interlocus heterodimers (Figure 3.2). Presence of these band(s) in pollen 

extracts supports that contention that they are interlocus heterodimers. Interlocus 

heterodimers between Tpi-1 and Tpi-2 have also been reported in Annona cherimola 

Mill. (Pascual et al., 1993; Patty et al., 1988). 

Segregation distortion. Deviations from expected Mendelian ratios were 

observed in at least one segregating family for all six isozyme loci. Hatiora gaertneri, 

H. rosea, and H. x graeseri are outcrossers (Boyle et al., 1994; Ganders, 1976; 

Taylor, 1976), and inbreeding of a normally-outbred taxon would be expected to result 

in some weak or inviable progeny, thus leading to the attrition of some genotypes prior 

to PAGE analysis. Easter cactus exhibits self-incompatibility (Boyle et al., 1994), and 
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linkage between isozyme loci and the self-incompatiblity (S) locus may have also 

caused unequal segregation, as has been reported in Malus pumila Mill. (Manganaris 

and Alston, 1987), Camellia japonica L. (Wendel and Parks, 1984) and Lycopersicon 

(Tanksley and Figueroa, 1985). Segregation distortion may also have been caused by 

interspecific hybridization. All of the F2 and BCi families used in this study were 

derived from the interspecific cross H. gaertneri ‘Crimson Giant’ x H. rosea. Zamir 

and Tadmor (1986) analyzed monogenic segregation ratios in three plant genera 

('Capsicum, Lens, and Lycopersicon) and found that the proportion of loci deviating 

from expected Mendelian ratios was 13% for progeny of intraspecific crosses, but was 

significantly higher (54%) for progeny of interspecific crosses. The above hypotheses 

are speculative, and further research is needed to discern the mechanism(s) underlying 

segregation distortion in Easter cactus. 

Linkage analysis. Independent assortment of Aat-1, Gpi-1, Mdh-1, Pgm-1 

Pgm-2, and Tpi-2 was tested for all possible pairs of loci using the LINKAGE-1 

computer program (Suiter et al., 1983). All six loci segregated independently except 

for Aat-1 and Pgm-1 which displayed a mean recombination fraction of 0.26 and 

standard error of 0.07. 

This study demonstrates that considerable isozyme polymorphism is present in 

Easter cactus. The high degree of isozyme polymorphism observed in Easter cactus is 

consistent with other plant species that are primarily outbreeding (Ellstrand and Roose, 

1987; Hamrick and Godt, 1989). The six isozyme loci identified in this study will be 

useful for distinguishing cultivars, confirming hybridity, and may aid in selecting 

superior genotypes in the seedling stage, thus expediting the development of new 

cultivars. 

29 



Table 3.1. Polyacrylamide gel concentrations and sample loading volumes used for 
electrophoresis. 

Enzyme Gel concentration 

(%) 

Loading volume 
(ul) 

Aspartate aminotransferase (AAT) 5 10 

Glucose-6-phosphate isomerase (GPI) 7.5 5 

Malate dehydrogenase (MDH) 7.5 10 

Phosphoglucomutase (PGM) 7.5 10 

Triosephosphate isomerase (TPI) 10 5 
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Table 3.2. Hatiora clones used for generating Fj, F2, BCj, and Sj progenies for isozyme analysis. 

Clone Parentage Source z 

Andre unknown RG 
Crimson Giant unknown MD 
Evita unknown JV 
MD861 unknown MD 
Red Pride unknown JV 
R891-2 Crimson Giant x MD681 MA 
R891-3 Crimson Giant x MD681 MA 
R891-6 Crimson Giant x MD681 MA 
R891-8 Crimson Giant x MD681 MA 
R891-9 Crimson Giant x MD681 MA 
R891-1 MD681 x Crimson Giant MA 

z JV=J. de Vries Potplantencultures bv, Aalsmer, The Netherlands; MA=University of Massachusetts, 
Amherst; MD=University of Maryland, College Park; RG=Rainbow Gardens, Vista, CA. 
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Table 3.3. Segregation and X2 analysis for Aat-1. 

Cross or self Parental 
phenotypes 

Progeny 
phenotypes 

Expected 
ratio 

X1 P value 

F] progeny 

Crimson Giant x MD681 cd x cc 18 cc 23 cd 1 : 1 0.39 0.60-0.50 
Crimson Giant x Red Pride 
a 

cd x cc 31 cc 32 cd 1: 1 0.00 >0.99 

Cnmson Giant x Evita a cd x cc 34 cc 36 cd 1 : 1 001 0.90-0.80 

Evita x Red Pnde a cc x cc 61 cc — . — 

F? progeny 

R891-2 x R891-3 a cc x cd 13 cc 19 cd 1 : 1 0.78 0.40-0.30 

RJ891-2 x R891-9 cc x cd 51 cc 44 cd 1 : 1 0.38 0.60-0.50 

R891-8 x R891-6 CC X cd 6 cc 3 cd 1 : 1 0.44 0.60-0.50 

BCi progeny 

Cnmson Giant x R891-2 a cd X cc 18 cc 36 cd 1 : 1 5.35 <0.05 

Cnmson Giant x R891-3 a cd X cd 1 cc 17 cd 9 dd 1:2:1 6.55 <0.05 

Cnmson Giant x R891-6 a cd X cd 21 cc 21 cd 3 dd 1:2:1 14.60 <0.001 

Crimson Giant x R892-1 a cd X cc 25 cc 24 cd 1 : 1 0.00 >0.99 

R891-2 x MD681 CC X cc 12 cc — — 

RJ891-8 x Cnmson Giant CC X cd 5 cc 5 cd 1:1 0.00 >0.99 

Si progeny 

Cnmson Giant cd x cd 5 cc 53 cd 49 dd 1:2:1 36.19 <0.001 

a Pooled data from reciprocal crosses 
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Tabic 3.4. Segregation and X2 analysis for Gpi-1. 

Cross or self Parental 
phenotypes 

Progeny 
phenotypes 

Expected 
ratio 

X- P value 

Fi progeny 

Andre x Evita a be x ab 25 ab 12 ac 17 bb 14 be 1 : 1 : 1 : 1 5.76 0.20-0.10 
Andre x MD681 be x ab 21 ab 22 ac 25 bb 27 be 1 : 1 : 1 : 1 0.96 0.90-0.80 
Crimson Giant x MD681 bb x ab 19 ab 21 bb 1 : 1 0.03 0.90-0.80 
Crimson Giant x Red Pride a bb x ab 25 ab 37 bb 1 : 1 1.95 0.20-0,10 
Crimson Giant x Evita a bb x ab 26 ab 44 bb 1 : 1 4.13 <0.05 
Evita x Red Pnde a ab x ab 15 aa 23 ab 23 bb 1:2:1 5.79 0.10-0.05 
Red Pride x MD681 ab x ab 25 aa 50 ab 25 bb 1:2:1 0.00 >0.99 

F? progeny 

R891-2 x R891-3 a bb x bb 32 bb _ , _ 

R891-8 x R891-6 bb x ab 4 ab 5 bb 1 : 1 0.00 >0.99 

BCi progeny 

Cnmson Giant x R891-2 a bb x bb 56 bb — 1 - p, - i 

Crimson Giant x R891-3 a bb x bb 26 bb — — — 

Crimson Giant x R891-6 a bb x ab 20 ab 25 bb 1 : 1 0.36 0.60-0.50 
Cnmson Giant x R892-1 a bb x ab 29 ab 20 bb 1 : 1 1.31 0.30-0.20 
R891 -2 x MD681 bb x ab 8 ab 4 bb 1 : 1 0.75 0.40-0.30 
R891-8 x Cnmson Giant bb x bb 10 bb — — — 

Si progeny 

Cnmson Giant bb x bb 100 bb — — — 

a Pooled data from reciprocal crosses 
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Table 3.5. Segregation and X2 analysis for Mdh-l. 

Cross or self Parental 
phenotypes 

Progeny 

phenotypes 
Expected 

ratio 

P value 

F| progeny 

Crimson Giant x MD681 ac x aa 18 aa 22 ac 1 : 1 0.23 0.60-0.50 

Crimson Giant x Red Pride a ac x aa 30 aa 33 ac 1 : 1 0.06 0.90-0.80 

Crimson Giant x Evita a ac x aa 42 aa 25 ac 1 : l 3.82 0.10-0.05 

Evita x Red Pride a aa x aa 61 aa — — — 

F? progeny 

R891-2 x R891-3 a aa x ac 9 aa 22 ac 1 : 1 4.65 <0.05 

R891-8 x R891-6 ac x aa 6 aa 3 ac 1 : 1 0.44 0.60-0.50 

R891-8 x R891-2 ac x aa 6 aa 9 ac 1 : 1 0.27 0.50-0.40 

BC| progeny 

Crimson Giant x R891-2 a ac 
% 

x aa 15 aa 41 ac 1 : 1 11.16 <0.001 

Crimson Giant x R891-3 ac x ac 5 aa 9 ac 8 cc 1 : 2 : 1 1.54 0.20-0.10 

Crimson Giant x R891-6 a ac x aa 16 aa 29 ac 1 : 1 3.20 0.10-0.05 

Crimson Giant x R892-1 a ac x ac 10 aa 23 ac 16 cc 1 : 2 : 1 1.65 0.50-0.40 

R891-2 x MD681 aa x aa 12 aa - — — 

R891-8 x Crimson Giant ac x ac 5 aa 3 ac 2 cc 1 : 2 : 1 3.40 0.20-0.10 

S] progeny 

Crimson Giant ac x ac 30 aa 52 ac 19 cc 1 : 2 : 1 2.49 0.30-0.20 

a Pooled data from reciprocal crosses 
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Table 3.6. Segregation and X2 analysis for Pgm-1. 

Cross or self Parental 
phenotypes 

Progeny 
phenotypes 

Expected 
ratio 

~XT~ P value 

Fl progeny 

Andre x MD681 dd x dd 96 dd — — 

Crimson Giant x MD681 ff x dd 40 df — — 

Crimson Giant x Red Pride a ff x dd 62 df — — 

Crimson Giant x Evita a ffx dd 67 df — - — 

Evita x Red Pride a dd x dd 59 dd — — — 

Evita x Shocking Pink dd x df 15 dd 17 df 1 : 1 0.03 0.90-0.80 

Red Pride x MD681 dd x dd 100 dd — — 

F? progeny 

R891-2 x R891-3 a df x df 4 dd 13 df 14 ff 1 : 2 : 1 7.26 <0.05 

R891-2 x R891-9 df x df 20 dd 53 df 22 ff 1 : 2 : 1 1.36 0.60-0.50 

R891-8 x R891-2 df x df 5 dd 9 df Iff 1 : 2 : 1 2.73 0.30-0.20 

R891-8 x R891-6 df x df 2 dd 7 df 0 ff 1 : 2 : 1 3.66 0.20-0.10 

BCi progeny 

Crimson Giant x R891-2 a ff x df 40 df 16 ff 1 : 1 9.45 <0.01 

Crimson Giant x R891-3 a ffx df 9 df 18 ff 1 : 1 2.37 0.10-0.05 

Crimson Giant x R891 -6 a ff x df 33 df 12 ff 1 : 1 8.89 <0.01 

Crimson Giant x R892-1 a ff x df 35 df 14 ff 1 : 1 8.16 <0.01 

R891-2 x MD681 df x dd 5 dd 7df 1 : 1 0.08 0.90-0.80 

R891-8 x Crimson Giant df x ff 8 df 2 ff 1 : 1 2.50 0.20-0.10 

St progeny 

Crimson Giant ffxff 100 ff — — 

a Pooled data from reciprocal crosses 
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Table 3.7. Segregation and X2 analysis for Pgm-2. 

Cross or self Parental 
phenotypes 

Progeny 
phenotypes 

Expected 
ratio 

“~X2— P value 

F| progeny 

Andre x MD681 ad x ab 29 aa 22 ab 22 ad 23 bd 1 : 1 : l : 1 1.42 0.70-0.60 
Crimson Giant x MD681 ad x ab 9 aa 12 ab 11 ad 8 bd 1 : 1 : 1 : 1 1.00 0.90-0.80 
Crimson Giant x Red Pride a ad x ab 16 aa 9 ab 21 ad 16 bd 1 : 1 : 1 : 1 4.71 0.20-0.10 
Crimson Giant x Evita a ad x aa 31 aa 36 ad 1 : 1 0.24 0.60-0.50 
Evita x Red Pride a aa x ab 27 aa 34 ab 1 : 1 0.59 0.40-0.30 
Evita x Shocking Pink aa x aa 32 aa — — —_ 

Red Pride x MD681 ab x ab 33 aa 39 ab 28 bb 1:2:1 5.34 0.10-0.05 

¥-) progeny 

R891-2 x R891-3 a ad x aa 16 aa 15 ad 1 : 1 0.00 >0.99 
R891-2 x R891-9 ad x ad 28 aa 42 ad 25 dd 1:2:1 1.46 0.50-0.40 
R891-8 x R891-2 aa x ad 8 aa 7 ad 1 : 1 0.00 >0.99 
R891-8 x R891-6 aa x ad 5 aa 4 ad 1 : 1 0.00 >0.99 

BC] progeny 

Crimson Giant x R891-2 a ad x ad 17 aa 26 ad 13 dd . 1:2:1 0.86 0.70-0.60 
Crimson Giant x R891-3 a ad x aa 9 aa 17 ad 1 : 1 1.88 0.20-0.10 
Crimson Giant x R891-6 a ad x ad 9 aa 25 ad 11 dd 1:2:1 0.73 0.70-0.60 
Crimson Giant x R892-1 a ad x ad 13 aa 25 ad 11 dd 1:2:1 0.18 0.95-0.90 
R891-2 x MD681 ad x ab 4 aa 3 ab 3 ad 2 bd 1 : 1 : 1 : 1 0.66 0.90-0.80 
R891-8 x Crimson Giant aa x ad 6 aa 4 ad 1 : 1 0.10 0.70-0.60 

Sj progeny 

Crimson Giant ad x ad 37 aa 51 ad 12 dd 1:2:1 12.54 <0.01 

a Pooled data from reciprocal crosses 

v 
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Table 3.8. Segregation and X2 analysis for Tpi-2. 

Cross or self Parental 
phenotypes 

Progeny 
phenotypes 

Expected 
ratio 

X2 P value 

Andre x MD681 ab x ab 

Fi progeny 

21 aa 55 ab 20 bb 1:2:1 2.06 0.40-0.30 
Crimson Giant x MD681 bb x ab 14 ab 26 bb 1 : 1 3.60 0.10-0.05 
Crimson Giant x Red bb x ab 5 ab 26 bb 1 : 1 12.90 <0.01 

Pride 
Red Pride x Crimson ab x bb 14 ab 17 bb 1 : 1 0.13 0.70-0.60 

Giant 
Crimson Giant x Evita a bb x ab 11 ab 59 bb 1 : 1 31.56 <0.001 

Evita x Red Pride a ab x ab 0 aa 33 ab 27 bb 1:2:1 24.9 <0.001 

Red Pride x MD681 ab x ab 22 aa 56 ab 22 bb 1:2:1 1.44 0.50-0.40 

R891-2 x R891-3 a bb x bb 

F? progeny 

31 bb 
R891-2 x R891-9 bb x ab 50 ab 45 bb 1 : 1 0.17 0.60-0.50 

R891-8 x R891-2 ab x bb 7 ab 8 bb 1 : 1 0.00 >0.99 

R891-8 x R891-6 ab x bb 4 ab 5 bb 1 : 1 0.00 >0.99 

Crimson Giant x R891-2 
a 

bb x bb 

BC| progeny 

56 bb _ — — 

Crimson Giant x R891-3 
a 

bb x bb 26 bb — — — 

Crimson Giant x R891-6 
a 

bb x bb 45 bb — — — 

Crimson Giant x R892-1 bb x bb 49 bb — — — 

R891-2 x MD681 bb x ab 4 ab 8 bb 1 : 1 0.75 0.30-0.20 

R891 -8 x Crimson Giant ab x bb 6 ab 4 bb 1 : 1 0.10 0.70-0.60 

Crimson Giant bb x bb 

Si progeny 

100 bb — — — 

a Pooled data from reciprocal crosses 
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Figure 3.1. Schematic illustrations of enzyme phenotypes for AAT and 
GPI in Hatiora. 
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CHAPTER 4 

INHERITANCE OF THREE POLYMORPHIC ISOZYME LOCI IN 

SCHL UMBERGERA 

Abstract 

Polyacrylamide gel electrophoresis (PAGE) was performed to investigate the 

inheritance of leucine aminopeptidase (LAP), phosphoglucomutase (PGM), and 

shikimate dehydrogenase (SKD) in the genus Schlumbergera (Cactaceae). Fj, F2, and 

BCj populations were examined to determine the mode of inheritance. The results of 

inheritance studies for three polymorphic loci (.Lap-1, Pgm-1, and Skd-1) were 

generally as expected for single loci with codominant alleles. However, significant 

segregation distortion was observed in at least one segregating family for all three 

isozyme loci. Segregation ratios for Lap-1 were significantly distorted in 15 out of the 

22 families that were examined. Further analysis revealed that disturbed segregation at 

Lap-1 was due to tight linkage with the locus controlling gametophytic self¬ 

incompatibility (S). Linkage analysis indicated that all three loci assorted 

independently of each other. The monomeric structure of Lap-1, Pgm-1, and Skd-1 

was consistent with the quaternary structures previously reported for other plant 

species. 

Introduction 

The genus Schlumbergera consists of six species of epiphytic or lithophytic 

shrubs that are native to southeastern Brazil (Hunt, 1969; Huxley et al., 1992). 

Schlumbergera truncata (Haw.) Moran, also known as zygocactus or Thanksgiving 

cactus, is the most commonly cultivated species and is an economically important 

floricultural crop in northern Europe and North America (Cobia, 1992). The other 

Schlumbergera species are rare in cultivation, but have been used for breeding. 

Hybridization between S. truncata and S. russelliana (Hook.) Britton & Rose has 
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yielded many cultivars, including the well-known Christmas cactus (Hunt, 1981). The 

collective name for interspecific hybrids of S. truncata and S. russelliana is S. x 

buckleyi (T. Moore) Tjaden (Tjaden, 1966). Schlumbergera truncata has also been 

crossed with S. orssichiana Barthlott & McMillan, and the resulting interspecific 

hybrids have been given the collective name S. x regime McMillan & Orssich 

(Horobin and McMillan, 1985). Schlumbergera orssichiana, S. russelliana, and S. 

truncata are diploid species with a chromosome number of 2n = 2x = 22 (Barthlott, 

1976; Remski, 1954; Stockwell, 1935). 

Breeding of Schlumbergera was initiated at the University of Massachusetts in 

1987, and the program’s objective is to develop novel and superior clones for 

commercial production. To achieve this objective, commercial cultivars (5. truncata 

and S. x buckleyi) have been intercrossed with wild species clones (S. orssichiana, S. 

russelliana, and S. truncata) and Fj interspecific hybrids to create a diverse gene pool. 

A set of genetic markers would be highly desirable for identifying clones, and also for 

selecting progeny in the seedling stage. Currently, morphological traits are used to 

distinguish Schlumbergera clones, but these traits can vary with environmental 

conditions. Furthermore, crossing studies have revealed that few simply-inherited 

morphological markers exist in Schlumbergera (T.H. Boyle, unpublished data). 

Isozymes are widely used in agriculture for identifying cultivars and as genetic 

markers for breeding programs (Nielsen, 1985). In most cases, isozymes are simply 

inherited and exhibit codominant expression, complete penetrance, and consistency of 

expression under a wide range of environmental conditions (Weeden and Wendel, 

1989), and thus are particularly useful as genetic markers. To date, there have been no 

published studies of isozyme polymorphism or inheritance in Schlumbergera. This 

paper reports on the inheritance of three polymorphic isozyme loci in Schlumbergera. 
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Materials and Methods 

Plant material. Plants were propagated and grown in glasshouses at the 

University of Massachusetts, Amherst. Parental cultivars were obtained from the 

clonal germplasm collection maintained in the Department of Plant and Soil Sciences at 

the University of Massachusetts. Cross-compatible clones were used as parents for 

producing Fj, F2, and BCj seed, and crosses were performed in a glasshouse 

maintained at 18°C nights/22°C days. Techniques used in emasculation, pollination, 

seed germination, and plant culture were similar to those previously reported (Boyle et 

al., 1994). Henceforth, all crosses will be presented as pistillate parent x pollen parent 

unless specified otherwise. 

Protein extraction and sample preparation. Tissue was removed from 

mature phylloclades with a no. 1 cork borer. Soluble proteins were extracted by 

homogenizing «8 mg tissue in 100 /d cold extraction buffer [0.050 M Tris-HCl buffer 

(pH 7.5), 0.014 M B-mercaptoethanol, 5% (w/v) polyvinylpyrrolidone (PVP-40), and 

5% (w/v) sucrose (Wendel and Weeden, 1989)]. Crude homogenates were centrifuged 

at 10,000 rpm for 10 minutes at 4°C. The supernatant (M50 /d) was collected and 

mixed with 10 /d of cold sample mix [50% (v/v) glycerol and 0.1% (w/v) bromphenol 

blue (Shields et al., 1983)]. 

Electrophoresis. Native proteins were separated by polyacrylamide gel 

electrophoresis (PAGE) using a Mini-Protean II cell (Bio-Rad Laboratories, Hercules, 

CA). Single percentage (7.5%) polyacrylamide gels were prepared using 0.375 M 

Tris-HCL (pH 8.8) as the gel buffer (Hames, 1981). The electrode buffer for all 

enzyme systems was 0.025 M Tris and 0.192 M glycine, pH 8.3 (Hames, 1981). 

Electrophoresis was conducted at 4°C under constant voltage (200 V). Running times 

varied according to the enzyme system assayed, but typically required 45 minutes for 

completion. 
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Gel staining. Three enzyme systems were examined: leucine aminopeptidase 

(LAP, E.C. 3.4.11.1), phosphoglucomutase (PGM, E.C. 5.4.2.2), and shikimate 

dehydrogenase (SKD, E.C. 1.1.1.25). The staining procedures of Wendel (1989) were 

used to assay LAP, PGM, and SKD. Enzyme stains were prepared immediately prior 

to use. After the appropriate staining intensities were achieved, the gels were rinsed 

with water and fixed in 7% acetic acid (Hames, 1981). 

Data analysis. Revalues were calculated for each band by dividing the band’s 

migration distance by the tracking dye’s migration distance (Hames, 1981). Data were 

collected immediately after gels were fixed, i.e., when the staining intensities were 

maximal. For each enzyme, loci were numbered sequentially, with 1 denoting the 

most anodally migrating locus. Alleles at individual loci were designated by letters 

assigned sequentially from the anode. 

Isozyme inheritance was determined by evaluating the segregation ratios in full- 

sib Fj, F2, and BC\ families. Reciprocal crosses were pooled for chi-square analysis 

in the following circumstances: 1) one or both families consisted of relatively few 

individuals; and 2) parents and progeny were homozygous for the same isozyme 

phenotype. The computer program LINKAGE-1 (Suiter et al., 1983) was used to test 

goodness-of-fit for single locus segregation ratios, and to test for linkage relationships 

among the enzyme loci. 

Results and Discussion 

Shikimate dehydrogenase. One polymorphic region of SKD activity was 

observed on PAGE gels, which was designated Skd-1 (Fig. 4.1). Plants produced 

either a single-banded pattern (aa, bb, or cc) or a double-banded pattern (cd or ce). 

The a and b alleles with Revalues 0.47 and 0.44 respectively, were not subjected to 

genetic analysis. Crosses between two different clones with cc phenotypes yielded only 

cc progeny (Table 4.2). Crosses between cc and cd phenotypes yielded, in most cases, 
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progenies which exhibited the expected 1 : 1 segregation ratio (Table 4.2). Progeny 

from the cross S. x buckleyi S881-6 (cc) x S. x regime ‘Madame Butterfly’ (ce) 

deviated significantly from the expected 1 : 1 ratio (P < 0.001), with only one plant 

exhibiting the e allele from the pollen parent. The observed segregation ratios at Skd-1 

generally conform to the expected ratios for a simply-inherited monomeric enzyme, and 

are consistent with previous studies on SKD (Weeden and Wendel, 1989). 

Phosphoglucomutase. Two polymorphic regions of PGM activity were 

observed on PAGE gels (Fig. 4.1). At the slower region, designated as Pgm-2, only 

one band cc was subjected to genetic analysis, bands aa and bb (Rvalues 0.47 and 

0.45) were not analyzed in this study. At Pgm-1 three single-banded patterns (aa, bb, 

and cc) and one double-banded pattern (be) were observed. The a allele was not 

subjected to genetic analysis and had an Rf value of 0.64. Crosses between two bb 

phenotypes yielded exclusively bb progeny (Table 4.3). As expected, only be progeny 

were obtained when a bb phenotype was crossed with a cc phenotype. Crosses between 

bb and be phenotypes yielded, in all cases, progenies which exhibited the expected 1 : 

1 ratio (Table 4.3). Crosses between two be phenotypes yielded five families which 

segregated in the expected 1:2:1 ratio, and one Fj family (S. truncata ‘Linda’ x S. x 

buckleyi S881-4) which exhibited a deficiency of bb progeny and an excess of cc 

progeny (Table 4.3). The observed segregation ratios at Pgm-1 generally conform to 

those expected for a simply inherited gene. Navot and Zamir (1986) and Weeden and 

Gottlieb (1980) have shown that PGM is a monomer, and the current results are 

consistent with a monomeric enzyme. 

Leucine aminopeptidase. One polymorphic region of LAP activity was 

observed on PAGE gels (Fig. 4.1). This region (designated Lap-1) exhibited four 

single-banded patterns (aa, bb, cc, and dd) and three double-banded patterns (be, bd, 

and cd). Inheritance of the a allele with an Rf value 0.60 was not examined. 

Progenies exhibited significant departures from the expected single-locus segregation 
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ratios in 15 of the 22 full-sib families that were examined (Table 4.4). Analysis of 

reciprocal crosses revealed that segregation distortion was due to differential 

transmission of Lap-1 alleles (Table 4.4). Maternally-derived alleles were present at 

the expected frequency (0.5) in most progenies, whereas specific paternally-derived 

alleles were present at a higher-than-expected frequencies. These results are consistent 

with linkage between Lap-1 and the locus controlling gametophytic self-incompatibility 

(SI). Distorted segregation results from differential transmission of pollen tubes in 

semi-compatible crosses, i.e., those in which both parents share one S allele in 

common, whereas fully compatible crosses (those in which both parents share no S 

alleles in common) exhibit normal segregation ratios (Leach, 1988). This phenomenon 

has been reported in several species with gametophytic SI systems (Leach, 1988; 

Manganaris and Alston, 1987; Tanksley and Loaiza-Figueroa, 1985). SI is reported to 

occur in all Schlumbergera species except for S. obtusangula (Schum.) D. Hunt 

(McMillan, 1991) and S. kautskyi (Horobin & McMillan) N.P. Taylor (McMillan and 

Horobin, 1992). Recent studies (T.H. Boyle, unpublished data) indicate that the SI 

system in Schlumbergera is gametophytic and controlled by a single locus. The cross 

‘Rocket’ x ‘Buckleyi’ is fully compatible and yields four cross-compatible but intra¬ 

incompatible progeny classes, showing that ‘Rocket’ and ‘Buckleyi’ have totally 

different S phenotypes. From these results, the following phenotypes for the S locus 

and Lap-1 can be proposed: S\ b/S2 d for ‘Rocket’, S3 C/S4 c for ‘Buckleyi’, and S\ 

b/S3 c, Si b/S4 c, S2 d/S3 c, and S2 d/S4 c for the Fi progeny (Table 5). Simple 1 : 

1 segregation was observed for ‘Rocket’ x ‘Buckleyi’ and the reciprocal cross, which is 

consistent with a fully-compatible cross (Table 5). All five F2 families and most of the 

BCi families exhibited distorted segregation ratios, results which agree with those 

expected from semi-compatible crosses (Table 5). Three BCi progenies that were 

produced using ‘Buckleyi’ as the paternal parent segregated in a 1 : 1 Mendelian ratio, 

whereas the reciprocal crosses exhibited disturbed segregation ratios (Table 5). 
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Differences between reciprocal crosses occurred because ‘ Buckleyi’ was homozygous at 

Lap-1 (cc) whereas the other BCi parents were heterozygous at Lap-1 (be or cd). 

These data show that disturbed segregation ratios occur only when the cross is semi¬ 

compatible and the paternal parent is heterozygous at Lap-1. Distorted segregation 

ratios in two Fj families (S881-6 x ‘Madame Butterfly’ and ‘Linda’ x S881-6) is most 

likely due to semi-compatible parents. It is worth noting that most of the F2 and BCj 

families which displayed distorted segregation ratios for Lap-1 were found to have 

normal segregation ratios for Skd-1 and Pgm-1 (Tables 1 and 2), thus supporting the 

hypothesis that segregation distortion is due to linkage between Lap-1 and the S locus 

and not due to clonal variation in pollen viability. 

Seven Fj and BCj families exhibited segregation ratios at Lap-1 that are 

consistent with a simply inherited isozyme with a monomeric structure (Tables 3 and 

5). Scandalios and Espiritu (1969) reported that LAP is a monomer in Pisum sativum 

L. 

Linkage analysis. Linkage relationships among Skd-1, Pgm-1, and Lap-1 were 

estimated in all possible pairwise combinations using the LINKAGE-1 computer 

program (Suiter et al., 1983). The recombination frequencies (r) and values for the 

three pairs of isozyme loci suggest that the three loci segregate independently. The 

maximum likelihood methods described by Leach (1988) were used to estimate linkage 

between the S locus and Lap-1. The recombination frequency between the S locus and 

Lap-1 varied from 0.02 to 0.13 for the 13 segregating families, and was 0.07 ± 0.01 

for pooled data (Table 5). 

Hatiora (Boyle et al., 1994), Lophocereus (Parker and Hamrick, 1992), 

Opuntia (Wallace and Fairbrothers, 1986), and Pachycereus (Garcia-Carreno, 1993; 

Murawski et al., 1994) are the only Cactaceae genera that have been subjected to 

isozyme analysis. The Cactaceae are not particularly amenable to genetic studies due to 

their long juvenility period, which can last for 5 years or longer (Cullman et al., 1987). 
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Hence, the paucity of isozyme inheritance studies on Cactaceae taxa is not suprising. 

By growing Schlumbergera seedlings under optimal environmental conditions, 

however, the juvenility period can be reduced to «2Vfc years, which makes them more 

suitable than most other Cactaceae taxa for genetic studies. 

The three monomeric isozymes examined in Schlumbergera demonstrated 

considerable polymorphism (Fig. 1), results which are consistent with other plant 

species that are primarily outbreeding (Ellstrand and Roose, 1987; Hamrick and Godt, 

1989). These three isozymes can aid in distinguishing cultivars and confirming 

hybridity in Schlumbergera, and may facilitate selection of superior phenotypes in the 

seedling stage, thus expediting the development of new cultivars. 
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Table 4.1. Schlumbergera clones used for generating Fj, F2, and BCj progenies for 
isozyme analysis. 

Clone Parentage Source z 

Buckleyi unknown RG 
Dark Marie unknown PM 

Frida unknown GT 

Linda unknown PM 

Madame Butterfly S. orssichiana x White Christmas LN 

Rocket unknown RG 
S881-2 Rocket x Buckleyi MA 

S881-4 Rocket x Buckleyi MA 

S881-6 Rocket x Buckleyi MA 

S881-7 Rocket x Buckleyi MA 

S881-15 Rocket x Buckleyi MA 

z GT=Gartneriet Thoruplund, Odense, Denmark; LN=Leavitt's Nursery, Lehighton, Penn. 
MA=University of Massachusetts, Amherst; PM=Gartneriet PKM, Odense, Denmark; 

RG=Rainbow Gardens, Vista, CA. 
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Table 4.2. Segregation and X2 analysis for Skd-1. 

Cross Parental 
phenotypes 

Progeny phenotypes Expected 
ratio 

~W P value 

F] Progeny 

Buckleyi x Rocketa cc x cd 96 cc 120 cd 1 : 1 2.45 0.20-0.10 

Frida x S881-2 cd x cc 14 cc 22 cd 1 : 1 1.36 0.20-0.10 

S881-6 x M. Butterfly cc x ce 27 cc 1 ce 1 : 1 22.32 <0.001 

Linda x S881-4 cd x cc 11 cc 19 cd 1 : 1 1.63 0.20-0.10 

S881-7 x Linda cc x cd 12 cc 21 cd 1 : 1 1.94 0.20-0.10 

¥j Progeny 

S881-4 x S881-6 a cc x cc 148 cc — — — 

S881-4 x S881-15 a cc x cc 127 cc — — — 

S881-2 x S881-7 a cc x cd 38 cc 12 cd 1 : 1 12.50 <0.001 

S881-2 x S881-6 cc x cc 18 cc — — —-— 

BC] Progeny 

Buckleyi x S881-4 a cc x cc 100 cc — — — 

Buckleyi x S881-6 a CC X cc 100 cc — 

Buckleyi x S881-15 a CC X cc 100 cc — — 

S881-4 x Rocket cc x cd 25 cc 25 cd 1 : 1 0.00 >0.99 

Rocket x S881-6 a cd x cc 50 cc 50 cd 1 : 1 0.00 >0.99 

Rocket x S881-15 a cd x cc 49 cc 51 cd 1 : 1 0.01 0.90-0.80 

a Pooled data from reciprocal crosses 
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Tabic 4.3. Segregation and analysis for Pgm-1. 

Cross Parental 
phenotypes 

Progeny phenotypes Expected 
ratio 

P value 

F] Progeny 

Buckleyi x Rocket a bb x be 107 bb 109 be 1 : 1 .01 0.90-0.80 

Frida x S881-2 cc x bb 36 be — 

S881-6 x M. Butterfly be x be 9 bb 13 be 6 cc 1:2:1 0.79 0.70-0.60 

Linda x S881-4 be x be 0 bb 15 be 15 cc 1:2:1 15.0 <0.001 

S881-7 x Linda be xbc 8bb 15 be 10 cc 1:2:1 0.52 0.80-0.70 

F? Progeny 

S881-4 x S881-6 a be x be 40 bb 74 be 34 cc 1:2:1 0.49 0.80-0.70 

S881-4 x S881-15 a be xbb 54 bb 73 be 1 : 1 2.55 0.20-0.10 

S881-2 x S881-7 a bb x bb 50 bb — 

S881-2 x S881-6 bb xbc 11 bb 7 be 1 : 1 0.50 0.40-0.30 

BCj Progeny 

Buckleyi x S881-4 a bb x be 52 bb 48 be 1 : 1 0.09 0.90-0.80 

Buckleyi x S881-6 a bb xbc 47 bb 53 be 1 : 1 0.25 0.60-0.50 

Buckleyi x S881-15 a bb x bb 100 bb 

S881-4 x Rocket be xbc 15 bb 23 be 12 cc 1:2:1 0.68 0.80-0.70 

Rocket x S881-6 a be xbc 26 bb 56 be 18 cc 1:2:1 2.72 0.30-0.20 

Rocket x S881-15 a be x bb 45 bb 55 be 1 : 1 0.81 0.40-0.30 

a Pooled data from reciprocal crosses 
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Table 4 4 Segregation and X?- analysis for Lap-1. 

Cross 
(female x male) 

Parental 
phenotypes 

Progeny phenotypes Expected X2 
ratio 

P value 

F] Progeny 

Buckleyi x Rocket cc x bd 59 be 57 cd 1 : 1 0.01 0.90-0.80 

Rocket x Buckleyi bd x cc 41 be 59 cd 1 : 1 2.89 0.20-0.10 

Dark Mane x S881 -2 
3 

cd x be 14 be 17 bd 13 cc 13 cd 1:1:1: 1 0.75 0.90-0.80 

Fnda x S881-2 cd x be 9bc 3 bd 10 cc lied 1:1:1: 1 4.70 0.20-0.10 

S881-6 x M Butterfly cd x cd 1 cc 18 cd 9 dd 1:2:1 6.60 <0.05 

Linda x S881-4 bd x be Obb 9 be 2 bd 19 cd 1:1:1: 1 29.46 <0.001 

S881-7x Linda be x bd 5 bb 5 be 10 bd 11 cd 1:1:1: 1 4.03 0.30-0.20 

F? Progeny 

S881-4 x S881-6 be x cd 4 be 28 bd 42 cd 1 cc 1:1:1 : 1 61.80 <0.001 

S881 -6 x S881 -4 cd x be 34 be 33 bd 3 cd 5 cc 1:1:1 : 1 46.55 <0.001 

S881-4 x S881-15 be x be 1 bb 24 be 27 cc 1:2:1 26.31 <0.001 

S881-15 x S881-4 be x be 3 bb 40 be 32 cc 1:2:1 22.76 <0.001 

S881-2 x S881-7 be x be 3 bb 16 be 21 cc 1:2:1 17.80 <0.001 

BC] Progeny 

Buckleyi x S881 -4 cc x be 47 be 3 cc 1 : 1 36.98 <0.001 

S881 -4 x Buckleyi be x cc 20 be 30 cc 1 : 1 1.62 0.20-0.10 

Buckley i x S881-6 cc x cd 1 cc 49 cd 1 : 1 44.18 <0.001 

S881 -6 x Buckleyi cd x cc 26 cc 24 cd 1 : 1 0.01 0.90-0.80 

Buckleyi x S881-15 cc x be 48 be 2 cc 1 : 1 40.50 <0.001 

S881-15 x Buckleyi be x cc 23 be 27 cc 1 : 1 0.09 0.90-0.80 

S881-4 x Rocket be x bd 0 bb 1 be 20 bd 29 cd 1:1:1: 1 49.36 <0.001 

Rocket x S881 -6 bd x cd 16 be 3 bd 28 cd 3dd 1:1:1 : 1 34.64 <0.001 

S881 -6 x Rocket cd x bd 12 be 35 bd 1 cd 2 dd 1:1:1 : 1 59.92 <0.001 

Rocket x S881-15 bd x be 1 bb 18 be 3 bd 28 cd 1:1:1 : 1 39.44 <0.001 

S881-15 x Rocket be x bd 1 bb 2 be 26 bd 21 cd 1:1:1 : 1 39.76 <0.001 

a Pooled data from reciprocal crosses 
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Table 4.5. Influence of reciprocal crosses on phenotypic frequencies at Lap-1 in Schlumbergera. 

Cross Parental Progeny Phenotype freauenev 
(female x male) phenotypes phenotypes Observed Expected 

S881-4 x S881-6 be x cd b 0.43 0.50 
d_ 0.93 0.50 

S881-6 x S881-4 cd x be b 0.89 0.50 
d 0.48 0.50 

Buckleyi x S881-4 cc x be b 0.94 0.50 

S881-4 x Buckleyi be x cc b_ 0.40 0.50 

Buckleyi x S881-6 cc x cd d 0.98 0.50 

S881-6 x Buckleyi cd x cc d_ 0.48 0.50 

Buckleyi x S881-15 cc xbc b 0.96 0.50 

S881-15 x Buckleyi be x cc b_ 0.46 0.50 

Rocket x S881-6 bd x cd b_ 0.38 0.50 

c 0.88 0.50 

S881-6 x Rocket cd x bd b_ 0.94 0.50 

c_ 0.26 0.50 

Rocket x S881-15 bd xbc c 0.92 0.50 

d 0.62 0.50 

S881-15 x Rocket be x bd c 0.46 0.50 

d 0.94 0.50 
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Table 4.6. Parental phenotypes for the S locus and Lap-1, and estimates of the recombination 
frequency between S and Lap-1. 

Cross 
(female x male) 

Proposed S locus and 
Lap-1 phenotypes 

Progeny Lap-1 

phenotypes 
Recombination 7 

r SE 

F] progeny 

Rocket x Buckleyi Sjb/S^d x S^c/S4c 41 be 59 cd 

Buckleyi x Rocket S^c/S4c x S^b/S^d 59 be 57 cd — 

F7 progeny 

S881-4 x S881-6 Sjb/S^c x S-^c/S^d 4 be 28 bd 42 cd lcc 0.07 0.03 

S881-6 x S881-4 S^c/S^d x S^b/S^c 34 be 33 bd 3 cd 5 cc 0.11 0.04 

S881-4 x S881-15 Sib/S^c x S]b/S4c 1 bb 24 be 27 cc 0.04 0.04 

S881-15 x S881-4 S]b/S4c x Sib/S^c 3 bb 40 be 32 cc 0.09 0.05 

S881-2 x S881-7 S]b/S4c x Sjb/S^c 3 bb 16 be 21 cc 0.13 0.07 

BC] progeny 

Buckleyi x S881-4 S^c/S4c x S]b/S^c 47 be 3 cc 0.06 0.03 

S881-4 x Buckleyi Sjb/S^c x S^c/S4c 20 be 30 cc 

Buckleyi x S881-6 S7c/S4c x S^c/S7d 1 cc 49 cd 0.02 0.02 

S881-6 x Buckleyi S^c/S7d x S7c/S4c 26 cc 24 cd 

Buckleyi x S881-15 S7c/S4c x Sib/S4c 48 be 2 cc 0.04 0.03 

S881-15 x Buckleyi Sib/S4c x S^c/S4c 23 be 27 cc 

S881 -4 x Rocket Sjb/S^c x Sib/S7d 0 bb 1 be 20 bd 29 cd 0.02 0.02 

S881-6 x Rocket S^c/S7d x Sib/S7d 12 be 35 bd 1 cd 2 dd 0.06 0.03 

Rocket x S881-6 S]b/S7d x S^c/S^d 16 be 3 bd 28 cd 3 dd 0.12 0.05 

S881-15 x Rocket S]b/S4c x Sjb^d 1 bb 2 be 26 bd 21 cd 0.06 0.03 

Rocket x S881-15 Sib/S7d x S]b/S4c 1 bb 18 be 3 bd 28 cd 0.08 0.04 

Pooled data 0.07 0.01 

z Maximum likelihood estimates (Leach, 1988). 
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Figure 4.1. Schematic illustrations of enzyme phenotypes for SKD, PGM, and LAP in 
Schlumbergera. 
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CHAPTER 5 

USING ISOZYME MARKERS TO IDENTIFY CULTIVARS AND ESTIMATE 

THE GENETIC DIVERSITY IN A HATIORA CLONAL GERMPLASM 

COLLECTION 

Abstract 

A clonal germplasm collection representing four Hatiora species and containing 

49 commercial cultivars and field-collected specimens was evaluated for seven enzyme 

systems: aspartate aminotransferase (AAT), glucose-6-phosphate isomerase (GPI), 

leucine aminopeptidase (LAP), malate dehydrogenase (MDH), phosphoglucomutase 

(PGM), shikimate dehydrogenase (SKD), and triosephosphate isomerase (TPI). 

Isozymes were extracted from phylloclades and were separated by polyacrylamide gel 

electrophoresis. Thirteen putative loci and 42 putative alleles were identified, and 9 of 

the 13 loci (69%) were polymorphic. Twenty-two clones (45%) could be distinguished 

solely on the basis of their isozyme profiles, but the other 27 clones shared isozyme 

profiles with one to five other clones. Among clones that shared isozyme profiles, 21 

could be distinguished by flower and/or phylloclade traits. A group of 13 modern H. x 

graeseri cultivars exhibited less genetic diversity than a group of 40 H. gaertneri, H. x 

graeseri, and H. rosea clones representing older and modern cultivars plus field- 

collected specimens. The difference in genetic diversity was primarily attributed to a 

loss of alleles during breeding. The percentage of heterozygous loci ranged from 22 to 

56% for eleven field-collected clones of the predominantly outcrossing species H. 

salcomioides, and was 0% for a field-collected clone of primarily selling species H. 

herminiae, results which conform to expectations. However, field-collected clones of 

H. gaertneri and H. rosea contained few (0 to 23%) heterozygous loci, i.e., less than 

expected for these predominantly outcrossing species, suggesting that these plants 

originated from populations composed of relatively few individuals. 
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Introduction 

The genus Hatiora consists of five species of epiphytic or epilithic shrubs that are 

endemic to southeastern Brazil (Barthlott, 1987; Barthlott and Taylor, 1995). Plants 

have a determinate growth pattern and produce a series of leafless stem segments 

(phylloclades) with a composite areole (Moran, 1953). As currently conceived, the 

genus is comprised of two subgenera - Hatiora and Rhipsalidopsis (Barthlott, 1987). 

Subgenus Hatiora contains two species - H. salcomioides (Haworth) Britton & Rose 

and H. herminiae (Campos-Porto & Castellanos) Backeberg ex Barthlott - which have 

terete or cylindric phylloclades and terete pericarpels. Subgenus Rhipsalidopsis 

contains three species - H. epiphylloides (Campos-Porto & Werdermann) F. Buxbaum, 

H. gaertneri (Regel) Barthlott, and H. rosea (Lagerheim) Barthlott - which have 

flattened or angular phylloclades and angled pericarpels. Hatiora epiphylloides and H. 

herminiae are difficult to cultivate and are represented in only a few living collections. 

Hatiora salcomioides is cultivated to some extent as a foliage plant. The most 

horticulturally important Hatiora species are H. gaertneri and H. rosea. Hatiora 

gaertneri and H. rosea were introduced into cultivation nearly a century ago 

(Lagerheim, 1912; Regel, 1884) and have achieved prominence due to their large and 

showy flowers. These two species, along with their interspecific hybrid [= H. x 

graeseri Barthlott ex D. Hunt (Hunt, 1992)], are commonly referred to as "Easter 

cactus" because they flower primarily in the spring, i.e., near Easter. 

Easter cactus is a popular flowering potted plant in northern Europe, and has 

been increasing in popularity in North America (Boyle, 1991). Cultivars of Easter 

cactus, like many other ornamentals, are clonally propagated. More than 100 cultivars 

of Easter cactus are in existence, the majority of which are complex H. x graeseri 
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hybrids (Boyle, 1995; Meier, 1992). A rapid and accurate means of identifying 

specific cultivars is important to breeders and propagators. Presently, Easter cactus 

cultivars are identified by their flower and phylloclade morphology, flower color, and 

plant habit. Identifying cultivars becomes difficult when plants are in a vegetative state 

because there are fewer distinguishing features that can be used for identification. 

Isozymes are widely used in agricultural crops for identifying cultivars (Nielsen, 1985; 

Weeden, 1989). Isozymes can also be used to quantify the genetic diversity within 

germplasm collections (Weeden, 1989), data which may be useful in germplasm 

evaluation and amelioration. Several attributes of isozymes make them particularly 

useful as biochemical markers, including Mendelian inheritance, codominant 

expression, complete penetrance, lack of epistatic or pleiotropic interactions among 

loci, and consistency of expression under a wide range of environmental conditions 

(Weeden and Wendel, 1989). Isozymes can be extracted from a variety of tissues and 

can be separated using relatively inexpensive techniques. 

The likelihood of identifying Hatiora cultivars by their isozyme phenotypes 

depends on the level of isozyme polymorphism present within the germplasm (Weeden, 

1989). Previously, it was shown that several isozyme loci are polymorphic in Hatiora 

(Chapter 3). The objectives of the present study were to determine the isozyme 

phenotypes for a diverse collection of Hatiora clones, and to ascertain if isozymes 

could be used to identify cultivars and estimate the genetic diversity within the 

germplasm collection. 

Materials and Methods 

Plant material. A total of 49 clonal accessions were used for this study (Table 

1). Accessions were obtained from commercial sources, botanical gardens, and 

universities, and included both commercial clones (cultivars) and field-collected clones. 
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Hatiora epiphylloides could not be obtained for analysis, but clones of the other four 

Hatiora species were included in this study. All species except for H. herminiae were 

represented by two or more accessions. 

Protein extraction and sample preparation. Isozymes were extracted from 

immature or mature phylloclades. Immature phylloclades (3-5 mm in length) were 

removed with tweezers. Tissue samples were removed from mature phylloclades with 

a no. 1 cork borer. Soluble proteins were extracted by homogenizing 5-7 immature 

phylloclades (or mg mature phylloclade tissue) in 100 p\ cold extraction buffer 

[0.050 M Tris-HCl buffer (pH 7.5), 0.014 M mercaptoethanol, 5% (w/v) 

polyvinylpyrrolidone (PVP-40), and 5% (w/v) sucrose (Wendel and Weeden, 1989)]. 

Crude homogenates were centrifuged at 10,000 rpm for 10 minutes at 4°C. The 

supernatant («60 p\) was collected and mixed with 10 /zl of cold sample mix [50% 

(v/v) glycerol and 0.1 % (w/v) bromphenol blue (Shields et al., 1983)]. 

Electrophoresis. Native proteins were separated by polyacrylamide gel 

electrophoresis (PAGE) using a Mini-Protean II cell (Bio-Rad Laboratories, Hercules, 

CA). Single percentage (5-10%) polyacrylamide gels were prepared using 0.375 M 

Tris-HCL (pH 8.8) as the gel buffer (Hames, 1981). Details on acrylamide 

concentrations and sample volumes for each enzyme system are provided in Table 2. 

The electrode buffer for all enzyme systems was 0.025 M Tris and 0.192 M glycine, 

pH 8.3 (Hames, 1981). Electrophoresis was conducted at 4°C under constant voltage 

(200 V). Running times varied according to the enzyme system assayed, but typically 

required 45 minutes for completion. 

Gel staining. Seven enzyme systems were examined: aspartate 

aminotransferase (AAT, E.C. 2.6.1.1), glucose-6-phosphate isomerase (GPI, E.C. 

5.3.1.9), leucine aminopeptidase (LAP, E.C. 3.4.11.1) malate dehydrogenase (MDH, 

E.C. 1.1.1.37), phosphoglucomutase (PGM, E.C. 5.4.2.2), shikimate dehydrgenase 

58 



(SKD, E.C. 1.1.1.25) and triosephosphate isomerase (TPI, E.C. 5.3.1.1). The 

staining procedures of Wendel (1989) for assaying enzyme activity. Enzyme stains 

were prepared immediately prior to use. After the appropriate staining intensities were 

achieved, the gels were rinsed with water and fixed in 1% acetic acid (Hames, 1981). 

Gels were scored for the presence or absence of specific allelic bands of known 

migration distances. Data were collected immediately after gels were fixed, i.e., when 

the staining intensities were maximal. For each enzyme, loci were numbered 

sequentially, with 1 denoting the most anodally migrating locus. Alleles at individual 

loci were designated by letters assigned sequentially from the anode. Rf values were 

calculated by dividing the band’s migration distance by the tracking dye’s migration 

distance (Hames, 1991). The Rf values presented in this paper represent the average of 

three gels that were run under identical conditions. 

Data analysis. Isozyme data were used to assess genetic diversity in the 

germplasm collection. The percentage of polymorphic loci, mean number of alleles per 

locus, average heterozygosity, and allelic diversity [(number of alleles observed total 

number of alleles at all loci) x 100] were calculated separately for the following four 

groups: 1) clones of H. herminiae and H. salcomioides (= subgenus Hatiora); 2) 

clones of H. gaertneri, H. x graeseri, and H. rosea (= subgenus Rhipsalidopsis); 3) 

modem cultivars of H. x graeseri; and 4) all Hatiora clones. Mean number of alleles 

per locus and average heterozygosity were calculated for all isozyme loci. The 

percentage of heterozygous loci was determined for several clones to determine if 

heterozygosity was correlated with the breeding system. 

Results and Discussion 

The inheritance of A AT, GPI, MDH, PGM, and TPI isozymes has been 

reported for Hatiora (Chapter 3). There have been, however, no published accounts on 

59 



the inheritance of LAP and SKD iri Hatiora, and therefore the loci and alleles for these 

two enzyme systems are reported as putative. The inheritance of LAP and SKD has 

been reported for the closely related genus Schlumheryera (Chapter 4). These two 

studies (Chapters 3 and 4) have shown that LAP, PCM, and SKD are monomeric 

enzymes whereas AAT, CPI, MDH, and 'I PI are dimeric enzymes. 

Considerable isozyme polymorphism was present in the Hatiora germplasm 

collection (Table 3 and f igure 1), A total of 13 putative loci and 42 putative alleles 

were identified among the 4() accessions, and 9 of the 13 loci (69%) were polymorphic 

(Table 4). Among the polymorphic loci, the number of alleles per locus ranged from 

three (Aat-2, Opl-J, Mdh-I, and Tpi-2) to six (Pym-I) (Table 4). 

Aspartate aminotransferase. Two polymorphic zones of AAT activity were 

observed on the gels. Three single banded patterns (aa, cc, ee) and four triple-banded 

patterns (ac, be, cd, ce) were observed at Aat-I (Table 3 and Ligure 1). Aat-I was 

dimorphic in //. yaertrieri, //. x y/aeseri, arid //. rosea but was tetramorphic in //. 

herminiae and H salcornioides. Aat / phenotypes were useful for identifying clones of 

//. salcornioides. Three single banded patterns (aa, bb, cc) were observed at /lar-2. 

/L// 2 phenotypes for II. salcornioides and //. herminiae were aa and bb, respectively. 

All clones of //. yaertneri, II. x yraeseri, and //. roil# exhibited a cc phenotype for 

/Li/ 2. 

Clucose 6 phosphate isoinerase. GPJ activity was detected in two zones on 

the zymograms. Clones of II. yaertneri, //. x y/aeseri, and II. rosea yielded well- 

defined dpi / bands, but clones of // herminiae and //. salcornioides produced dpi-1 

bands that were t/K> faint to be scored Two single-handed patterns (aa, bb) and three 

triple banded patterns (ab, ac, be) were observed at dpi / (Table 3 and l igure 1). The 

most common dpi / phenotypes for //. yaertneri, //. x yraeseri, and //. ravra were ab 

arid bb. The c allele of dpi / was restricted to three accessions (‘Andre’, ‘Crystal 
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Lake No. 1*, ‘Crystal Lake No. 32’). Gpi-2 displayed three single-handed patterns 

(bb, cc, ee) and three triple-banded patterns (ac, be, cd). Gpi-2 was monomorphic in 

H. gaertneri, H. x graeseri, and H. rosea, but was polymorphic in H. salcomioides. 

Gpi-1 may be useful for distinguishing clones in subgenus Rhipsalidopsis whereas Gpi- 

2 may have value for differentiating clones in subgenus Hatiora. 

Leucine aminopeptidase. Gels contained one polymorphic zone of LAP 

activity, tenatively designated as Lap-1 (Figure 3). Four single-handed patterns (aa, 

cc, dd, ee) and six double-banded patterns (ad, bd, cd, ce, de) were observed among 

the clones (Table 3). Alleles a and b were unique to H. herminiae and H. 

salcomioides, whereas alleles c and e were restricted to H. gaertneri, H. x graeseri, 

and H. rosea. The H. x graeseri clones exhibited six different Lap-1 phenotypes (cc, 

cd, ce, dd, de, ee). The H. rosea clones, however, had the same Lap-1 phenotype 

(ee). Lap-1 is a highly polymorphic locus which is useful for distinguishing many 

Hatiora clones. 

Malate dehydrogenase. Four zones of MDH activity were observed. The 

most anodal zone (Mdh-1) was polymorphic (Figure 2). Clones displayed either a 

single-handed pattern (aa, bb) or a triple-banded pattern (ac) at Mdh-1 (Table 3). Mdh- 

1 was monomorphic in H. salcomioides and H. herminiae, but was dimorphic in H. 

gaertneri, H. x graeseri, and H. rosea. Most clones of H. gaertneri, H. x graeseri, 

and H. rosea exhibited a single-handed (aa) pattern at Mdh-1; the triple-banded (ac) 

pattern was observed in only three clones (‘Bliss’, ‘Crimson Giant’, ‘Crystal Lake No. 

2’). Mdh-2 and Mdh-3 were monomorphic in all clones that were analyzed (Table 3). 

Mdh-3 bands for H. herminiae and H. salcomioides were very faint, and therefore 

were not scored. Initially, it was thought that Mdh-2 and Mdh-3 were one zone of 

activity due to the band of intermediate mobility that formed between the two loci. 

However, the intermediate band was also observed on gels of pollen extracts, indicating 
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that Mdh-2 and Mdh-3 were discrete loci and the intermediate band was actually was an 

interlocus heterodimer. The most cathodal zone, Mdh-4, contained very faint bands 

and was not evaluated in this study. 

Phosphoglucomutase. Two polymorphic zones of PGM activity were detected 

on the gels. Eight Pgm-1 phenotypes were observed, including four single-handed 

patterns (aa, cc, dd, ff) and four double-banded patterns (ab, ac, df, ef) (Table 3 and 

Figure 2). The more anodal Pgm-1 bands (a, b, and c) were present only in H. 

herminiae and H. salcomioides whereas the more cathodal Pgm-1 bands (d, e, and f) 

were present only in H. gaertneri, H. x graeseri, and H. rosea. Several of the H. 

salcomioides clones could be distinguished solely on the basis of their Pgm-1 

phenotypes. Most H. x graeseri clones were either a dd or df phenotype. The ef 

phenotype was limited to five H. x graeseri accessions (‘Rainbow’, ‘Sutter’s Gold’, 

‘Crystal Lakes No. 2’, ‘Crystal Lakes No. 3’, ‘Crystal Lakes No. 16’) and the ff 

phenotype was restricted to two H. gaertneri accessions (‘Bliss’, ‘Crimson Giant’). All 

H. rosea accessions were a dd phenotype. A total of ten Pgm-2 phenotypes were 

observed, including four single-handed patterns (aa, bb, cc, ee) and six double-handed 

patterns (ab, ad, be, bd, be, ce) (Figure 2). Alleles a and d were observed only in 

clones of H. gaertneri, H. x graeseri, and H. rosea; alleles c and e were limited to H. 

herminiae and H. salcomioides. The d allele was uncommon and was observed in only 

five accessions (‘Andre’, ‘Bliss’, ‘Crimson Giant’, ‘Thor-Ina’, ‘Crystal Lake No. 32’). 

The high level of polymorphism at Pgm-1 and Pgm-2 makes these loci extremely useful 

for identifying Hatiora clones. 

Shikimate dehydrogenase. Two zones of SKD activity were observed, but 

only the more anodal zone (tenatively designated Skd-1) was resolved clearly. In 

addition, the Skd-1 bands for the H. herminiae and H. salcomioides accessions were 
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blurred and therefore were not scored. Skd-1 was monomorphic in all H.gaertneri,H. 

x graeseri, and H. rosea accessions that were surveyed (Table 3 and Figure 3). 

Triosephosophate isomerase. Two zones of TPI activity were detected on the 

gels (Figure 3). The more anodal zone (Tpi-1) was monomorphic in accessions of H. 

gaertneri, H. x graeseri, and H. rosea. Tpi-1 bands were not consistently resolved for 

accessions of H. herminiae and H. salcomioides and therefore were not scored. The 

less anodal zone (Tpi-2), however, was resolved clearly for all 49 accessions. 

Clones exhibited either a single-handed pattern (aa, bb) or a triple-banded pattern (ab, 

ac) at Tpi-2 (Table 3 and Figure 3). The most common Tpi-2 alleles were a and b; the 

c allele was detected in only one clone (H. salcomioides LG891). 

Distinguishing clones by isozyme profiles. A total of 33 isozyme profiles, 

each with a distinctive combination of alleles, were identified among the 49 accessions 

that were surveyed (Table 3). Twenty-two accessions (45%) could be distinguished 

solely on the basis of their isozyme profiles. The other 27 accessions shared isozyme 

profiles and could be classified into one of eleven groups (Table 5). Clones within eight 

of these groups could be distinguished using other phenotypic characters, i.e., flower 

and/or phylloclade morphology (profiles 2, 7, 9, 10, 11, 12, 19, and 21). Clones 

within three groups (profiles 5, 6, and 33) could not be distinguished either by isozyme 

profiles or morphological characters, and most likely represent identical clones. These 

results demonstrate that isozyme phenotypes can aid in identification of Hatiora clones, 

especially when used in conjunction with morphological characters. 

Substantiating parentage by isozyme analysis. Isozymes have proven useful 

for confirming parentage in several crops (Weeden, 1989). In the current study, 

isozymes were used to verify the parentage of H. salcomioides H921-2. This clone 

was a seedling of the cross H. salcomioides LG891 (female parent) x UM875. The 

Pgm-1 phenotypes for LG891 and UM875 are cc and aa, respectively, and the 
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phenotype for H921-2 (ac) indicates that it is indeed an Fj hybrid. Boyle et al. (1994) 

used AAT and PGM phenotypes to verify that the progeny obtained when a highly self¬ 

incompatible Hatiora clone (‘Crimson Giant’) was selfed were in fact S\ progeny. 

These results demonstrate that isozymes can be useful for confirming hybridity in 

Hatiora. 

Genetic diversity in the germplasm collection. Among the 13 loci that were 

surveyed, 54% were polymorphic in H. gaertneri, H. x graeseri, and H. rosea, but 

only 38% were polymorphic in the modern H. x graeseri cultivars (Table 6). Among 

the H. herminiae and H. salcomioides accessions, 78% of the 9 loci surveyed were 

polymorphic. Mean number of alleles per locus was 2.67 for H. herminiae and H. 

salcomioides, 1.85 for H. gaertneri, H. x graeseri, and H. rosea, and 1.54 for the 

modern H. x graeseri cultivars. Mean heterozygosity for the H. herminiae and H. 

salcomioides clones was nearly twice that of the H. gaertneri, H. x graeseri, and H. 

rosea clones. Among the 42 putative alleles that were identified in this study, 24 

(57%) were present in H. gaertneri, H. x graeseri, and H. rosea and 20 (48%) were 

detected in the modern H. x graeseri cultivars. The allelic diversity present in the H. 

herminiae and H. salcomioides clones was comparable to that observed in the H. 

gaertneri, H. x graeseri, and H. rosea clones. 

The statistics presented in Table 6 indicate that the group of 40 H. gaertneri, H. 

x graeseri, and H. rosea clones exhibit greater genetic diversity than the 13 modern H. 

x graeseri cultivars. This to be expected, since the former group contains field- 

collected clones, older cultivars, and modem cultivars and thus represents a broader 

genetic base than the modem cultivars alone. However, an examination of the isozyme 

phenotypes in Table 5.3 reveals that many of the uncommon alleles found in older H. 

gaertneri and H. x graeseri cultivars were not present in the modem H. x graeseri 

cultivars. Thus, the decline in genetic diversity results from the loss of alleles during 
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breeding. The primary objective of commercial breeding programs is towards the 

production of superior clones, and, as a result, the parental material for crossing 

programs is nearly always modem cultivars rather than wild species or older cultivars. 

Utilization ot field-collected clones and older cultivars in breeding programs will 

broaden the genetic base and may yield clones exhibiting novel physiological and 

morphological traits. 

Relationship between genetic diversity and a species’ breeding system. 

Several Hatiora species exhibit self-incompatibility (SI), including H. gaertneri (Boyle 

et al., 1994; Ganders, 1976), H. rosea (Taylor, 1976), and H. salcomioides (Ross, 

1981). As a consequence, these three species would be expected to be predominantly 

outcrossed. However, H. herminiae is self-compatible and undisturbed plants set seed 

freely, suggesting that this species is predominantly selfed (T.H. Boyle, unpublished 

data). Generally, species that are predominantly outcrossed exhibit greater genetic 

diversity than species that are primarily selfed (Hamrick and Godt, 1990). One 

measure of intrapopulational genetic diversity is the mean proportion of loci that are 

heterozygous per individual (Hamrick, 1989). Table 7 shows the percentage of 

heterozygous isozyme loci for ten Hatiora clones that presumably represent 

unimproved (field-collected) material. The percentage of heterozygous loci ranged 

from 22 to 56% for the four H. salcomioides clones and was 0% for the single H. 

herminiae, results that generally conform to expectations. Contrary to expectations, the 

percentage of heterozygous loci was low for all H. gaertneri and H. rosea clones 

except for MD861. Morphologically, MD861 appears to be pure H. rosea but its Gpi- 

1, Pgm-2, and Tpi-2 phenotypes differ from the other H. rosea clones, suggesting it is 

actually a man-made or natural interspecific hybrid. What then may account for the 

low levels of heterozygosity in the H. gaertneri and H. rosea clones? The most likely 

answer is that these clones originated from populations composed of relatively few 
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individuals. Genetic diversity is rapidly lost from small populations due to inbreeding 

and random changes in allelic frequencies (genetic drift) (Wilcox, 1984). Hatiora 

gaertneri and H. rosea are native to montane forests in the southeastern Barzilian states 

of Parana, Santa Catarina, and Rio Grande do Sul (Barthlott and Taylor, 1995). The 

low levels of heterozygosity in the H. gaertneri and H. rosea clones may indicate 

habitat disturbance or other factors which can threaten the long-term survival of the 

species. Quantitative estimates of biological diversity such as those provided here may 

prove useful for in situ conservation of Hatiora species. 

Summary. This study demonstrates that substantial isozyme polymorphism is 

present in Hatiora. The high level of polymorphism permitted the unambiguous 

identification of many clones and quantification of genetic diversity present in 

individual accessions and the collection as a whole. The information presented in this 

study may have practical applications for plant breeders, ecologists, and taxonomists. 

The data may also be useful for resolving long-standing questions regarding these taxa. 
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Table 5.1. The Hatiora accessions used for study and their sources, 
botanical names, and status. 

Clone Binomial Status} Source2 

Named accessions 

Andre H. x graeseri CV RG 
Andromeda H. x graeseri CV PM 

Annika H. x graeseri CV BF 

Auriga H. x graeseri CV PM 

Bliss H. gaertneri CV BF 

Caprice H. x graeseri CV RG 
Cassiopeia H. x graeseri CV PM 

Cetus H. x graeseri CV PM 

China Rose H. x graeseri CV RG 

Christine H. x graeseri CV RG 

Crimson Giant H. gaertneri CV MD 

Evita H. x graeseri CV JV 

Flash H. x graeseri CV RG 

France H. x graeseri CV RG 

Gaertneri Giant H. x graeseri CV RG 

Hatherton Star H. x graeseri CV RG 

Laura Ann H. x graeseri CV RG 

Leo's Pink H. x graeseri CV RG 

Mira H. x graeseri CV PM 

Monarch H. x graeseri CV RG 

Orion H. x graeseri CV PM 

Pink Perfection H. x graeseri CV RG 

Purple Pride H. x graeseri CV JV 

Rainbow H. x graeseri CV RG 

Red Pride H. x graeseri CV JV 

Rood H. x graeseri CV JV 

Shocking Pink H. x graeseri CV RG 

Sutter's Gold H. x graeseri CV RG 

Thor-Anne H. x graeseri CV GT 

Thor-Ina H. x graeseri CV GT 

Vista Delight H. x graeseri CV RG 

Yvonne Pelham H. x graeseri CV 

Numbered accessions 

RG 

06524 H. gaertneri FC BG 

No. 1 H. x graeseri CV CL 

No. 2 H. x graeseri CV CL 

No. 3 H. x graeseri CV CL 

No. 16 H. x graeseri CV CL 

No. 32 H. x graeseri 
Continued next page 

CV CL 
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Table 5.1 continued 
36170 H. herminiae FC BH 

AG941 H. rosea CV; FC AG 
AG942 H. rosea CV; FC AG 
EC500 //. rosea CV; FC? RG 
MD861 H. rosea CV; FC? MD 
FN931 H. salcorniodes CV; FC? FN 
H921-2 H. salcorniodes CV MA 
LG891 H. salcorniodes CV, FC? LG 
UM875 H. salcorniodes CV; FC? MA 
01625 H. salcorniodes FC BG 
52257 H. salcorniodes FC HG 

ZAG= Abbey Gardens, Carpinteria, CA; BF= Bliss Farms Inc., Woodcliff Lake, 
NJ; BG= Botanischer Garten Bonn, Bonn, Germany; BH= Botanischer Garten 
Heidelberg, Heidelberg, Germany; CL= Crystal Lake Greenhouses, Carver, Mass; 
FN= Franks Nursery and Crafts, Hadley, Mass; GT= Gartneriet Thoruplund, 
Odense, Denmark, HG= Huntington Botanical Gardens, San Marino, CA; JV= 
J. de Vries Potplantencultures bv, Aalsmeer, The Netherlands; LG= Logees 
Greenhouses, Danielson, CT; MA= Univ. of Massachusetts, Amherst, Mass; 
MD= Univ. of Maryland, College Park; PM= Gartneriet PKM, Odense, 
Denmark; RG= Rainbow Gardens, Vista, CA. 
y CV= commercial cultivar; FC= field-collected clone or grown from field-collected seed. 
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Tabic 5.2. Polyacrylamide gel concentrations and sample loading volumes used for 
electrophoresis. 

Enzyme Gel concentration 

(%) 

Loading volume 
(ul) 

Aspartate aminotransferase (AAT) 5 10 

Glucose-6-phosphatc isomcrase (GPI) 7.5 5 

Leucine aminopeptidasc (LAP) 7.5 5 

Malate dehydrogenase (MDH) 7.5 10 

Phosphoglucomutase (PGM) 7.5 10 

Shikimate dehydrogenase (SKD) 7.5 10 

Triosephosphate isomcrase (TPI) 10 5 
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Table 5.4. Number of alleles present at 13 isozyme 
loci among the 49 Hatiora accessions. 

Locus Alleles Locus Alleles 

Aat-1 a,b,c,cfe Mdh-3 a 

A at-2 a,b,c Pgm-1 a,b,c,d,e,f 

Gpi-1 a,b,c Pgm-2 a,b,c,d,e 

Gpi-2 a,b,c,d,e Skd-1 a 

Lap-1 a,b,c,d,e Tpi-1 a 

Mdh-1 a,b,c Tpi-2 a,b,c 

Mdh-2 a 
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Table 5.5. Hatiora clones with identical isozyme patterns. 

Isozyme profile 
(no.) 

Clones Clonal differentiation by 
phenotypic characters 

2 Andromeda, Gaertneri Giant, Red Pride yes 

5 Bliss, Crimson Giant no 

6 Caprice, Evita no 

7 Cassiopeia, Thor-Anne yes 

9 China Rose, Laura Ann, Vista Delight, 
AG941, AG942, EC500 

yes 

10 Christine, Yvonne Pelham yes 

11 Flash, Monarch yes 

12 France, Hatherton Star yes 

19 Rood, 06524 yes 

21 Sutter's Gold, No. 16 yes 

33 01625, 52257 no 
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Table 5.6. Diversity statistics for the Hatiora clonal germplasm collection. 

Group No. clones 
analyzed 

% 
polymorphic 

loci2 

Mean # 
alleles/ 
locus 

Mean 
heterozygosity 

Allelic 
diversity y 

H. gaertneri 

H. rosea 

H. x graseri x 

40 54 1.85 0.21 57 

H. salcornioides 

H. herminae x 
6 78 2.67 0.42 57 

Modem cultivars 
H. x graseri xw 

13 38 1.54 0.17 48 

All clonesx 46 69 3.23 0.30 

z Calculations based on thirteen loci for all groups except H. salcornioides/H. herminiae, which 
were based on 9 loci. 
y (No. alleles observed in group total no. alleles at all loci for all accessions) x 100. 
x Excluding duplicate accessions. 
w Andromeda, Annika, Auriga, Cassiopiea, Cetus, Evita, Mira, Orion, Purple Pride, Red Pride, 
Rood, Thor-Anne, Thor-Ina. 
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Table 5.7. A comparison of percent heterozygous loci and breeding systems among four Hatiora 
species. 

Species Clone Heterozygous loci (%) Breeding system2 

H. gaertneri 06524 8 outbreeding (SI) 

H. herminiae 36170 0 unknown 

H. rosea AG941 0 outbreeding (SI) 
AG942 0 outbreeding (SI) 
EC500 0 outbreeding (SI) 
MD861 23 outbreeding (SI) 

H. salcorniodes FN931 22 outbreeding (SI) 
LG891 22 outbreeding (SI) 
UM875 56 outbreeding (SI) 
01625 44 outbreeding (SI) 

z SI= self-incompatible. Presence of SI confirmed by pollination tests. 
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CHAPTER 6 

USING ISOZYME MARKERS TO IDENTIFY CLONES AND ESTIMATE 

GENETIC DIVERSITY IN A SCHLUMBERGERA CLONAL GERMPLASM 

COLLECTION 

Abstract 

A clonal germplasm collection representing five Schlumbergera species 

and containing 59 commercial cultivars and field-collected specimens was 

evaluated for seven enzyme systems - aspartate aminotransferase (AAT), 

glucose-6-phosphate isomerase (GPI), leucine aminopeptidase (LAP), malate 

dehydrogenase (MDH), phosphoglucomutase (PGM), shikimate dehydrogenase 

(SKD), and triosephosphate isomerase (TPI). Isozymes were extracted from 

phylloclades and were separated by polyacrylamide gel electrophoresis. Twelve 

putative loci and 36 putative alleles were identified, and 10 of the 12 loci (83%) 

were polymorphic. Forty-one clones (69%) could be distinguished solely on the 

basis of their isozyme profiles, but the other 18 clones shared isozyme profiles 

with one or two other clones. Among clones that shared isozyme profiles, 13 

could be distinguished by flower and/or phylloclade traits. A group of 42 

commercial clones of S. truncata, S. x buckleyi, and S. x exotica exhibited less 

genetic diversity than a group of 14 field-collected clones of S. kautskyi, S. 

opuntioides, S. orssichiana, S. russelliana, and S. truncata. The difference in 

genetic diversity was attributed to limited sampling of germplasm from wild 

populations and during breeding a loss of alleles. The percentage of 

heterozygous loci ranged from 17 to 42% for field-collected clones of the 

predominantly outcrossing species S. opuntioides, S. orssichiana, and S. 

truncata, and was 0% for a field-collected clone of primarily selling species S. 

kautskyi, results which conform to expectations. However, field-collected S. 

russelliana clones contained few (0 to 17%) heterozygous loci, i.e., less than 
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expected for a predominantly outcrossing species, suggesting that these plants 

were obtained from populations composed of relatively few individuals. 

Introduction 

The genus Schlumbergera consists of six species epiphytic or lithophytic cacti that are 

endemic to the states of Sao Paulo, Rio de Janeiro, Espirito Santo, and Minas Gerias in 

southeastern Brazil (Barthlott and Taylor, 1995; Hunt, 1969, 1992). Schlumbergera 

truncata (Haworth) Moran, also known as zygocactus or crab cactus, is the most 

commonly cultivated species and is an economically important floricultural crop in 

northern Europe, Japan, and North America (Cobia, 1992). Schlumbergera species 

other than S. truncata are rare in cultivation but have been used for breeding. 

Hybridization between S. truncata and S. russelliana (Hooker) Britton & Rose has 

yielded the well-known Christmas cactus (Hunt, 1981), along with many other 

cultivars. The collective name for S. truncata x S. russelliana hybrids is S. x buckleyi 

(T. Moore) Tjaden (Tjaden, 1966). Schlumbergera truncata has also been crossed with 

S. opuntioides (Lofgren & Dusen) Hunt (Barthlott and Rauh, 1977) and S. orssichiana 

Barthlott & McMillan (Horobin and McMillan, 1985). Cultivars of S. truncata x S. 

opuntioides parentage have been given the collective name S. x exotica Barthlott & 

Rauh (Barthlott and Rauh, 1977). Most of the Schlumbergera cultivars that are grown 

currently are either S. truncata or S. x buckleyi (Cobia, 1992; McMillan, 1985). 

Schlumbergera is a clonally propagated crop, and a rapid and accurate means of 

identifying clones is important to breeders and propagators. Currently, clones are 

identified by their flower and phylloclade morphology, flower color, and time of 

flowering under natural photoperiods. Clones that are in a vegetative state are difficult 

to identify due to a paucity of morphological traits. Isozymes have proven useful for 

identifying cultivars in many horticultural crops (Nielsen, 1985; Weeden, 1989). 

Isozymes can also be used to estimate the genetic diversity in germplasm collections 
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(Weeden, 1989). Estimates of genetic diversity can aid breeding programs in the 

evaluation of samples for potential sources of new traits, in the conservation of genetic 

resources, and in elucidating taxonomic relationships among species (Mowrey and 

Werner, 1990; Tanksley, 1983). Several attributes of isozymes make them particularly 

useful as biochemical markers, including Mendelian inheritance, codominant 

expression, complete penetrance, lack of epistatic or pleiotropic interactions among 

loci, and consistency of expression under a wide range of environmental conditions 

(Weeden and Wendel, 1989). Isozymes can be extracted from a variety of tissues and 

separated using relatively inexpensive procedures. 

A high level of isozyme polymorphism must be present within a crop in order to 

identify cultivars by their isozyme phenotypes (Weeden, 1989). Previous studies 

(Chapter four) indicated that Schlumbergera clones were polymorphic for leucine 

aminopeptidase, phosphoglucomutase, and shikimate dehydrogenase. The objectives of 

the present study were to determine the isozyme phenotypes for a diverse collection of 

Schlumbergera clones, and to ascertain if isozymes could be used to identify clones and 

estimate genetic diversity within the germplasm collection. 

Materials and Methods 

Plant material. A total of 59 accessions were used for this study (Table 1). 

Accessions were obtained from commercial sources, botanical gardens, and private 

collections, and included both commercial clones (cultivars) and field-collected clones. 

Schlumbergera microsphaerica (Schumann) Hovel could not be obtained for analysis, 

but clones of the other five Schlumbergera species were included in this study. All 

species except for S. kautskyi (Horobin & McMillan) Taylor were represented by two 

or more accessions. 

Protein extraction and sample preparation. Tissue samples were removed 

from mature phylloclades using a no. 1 cork borer. Soluble proteins were extracted by 
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homogenizing *8 mg tissue in 100 /d cold extraction buffer [0.050 M Tris-HCl buffer 

(pH 7.5), 0.014 M mercaptoethanol, 5% (w/v) polyvinylpyrrolidone (PVP-40), and 

5% (w/v) sucrose (Wendel and Weeden, 1989)1. Crude homogenates were 

microcentrifuged at 10,000 rpm for 10 minutes at 4°C. The supernatant (~60 /d) was 

collected and mixed with 10 /d of cold sample mix f50% (v/v) glycerol and 0.1% 

(w/v) bromphenol blue (Shields et al., 1983)]. 

Electrophoresis. Native proteins were separated by polyacrylamide gel 

electrophoresis (PAGE) using a Mini-Protean II cell (Bio-Rad Laboratories, Hercules, 

CA). Polyacrylamide gels were prepared using 0.375 M Tris-HCL (pH 8.8) as the gel 

buffer (Hames, 1981). Table 2 lists the gel concentrations and sample loading volumes 

for each enzyme system. The electrode buffer for all enzyme systems was 0.025 M 

Tris and 0.192 M glycine, pH 8.3 (Hames, 1981). Electrophoresis was conducted at 

4°C under constant voltage (200 V). Running times varied according to the enzyme 

system assayed, but typically required 45 minutes for completion. 

Gel staining. Seven enzyme systems were examined: aspartate 

aminotransferase (AAT, E.C. 2.6.1.1), glucose-6-phosphate isomerase (GPI, E.C. 

5.3.1.9), leucine aminopeptidase (LAP, E.C. 3.4.11.1), malate dehydrogenase (MDH, 

E.C. 1.1.1.37), phosphoglucomutase (PGM, E.C. 5.4.2.2), shikimate dehydrogenase 

(SKD, E.C. 1.1.1.25) and triosephosphate isomerase (TPI, E.C. 5.3.1.1). The 

staining procedures of Wendel (1989) were used for all seven enzyme systems. 

Enzyme stains were prepared immediately prior to use. After the appropriate staining 

intensities were achieved, the gels were rinsed with water and fixed in 7% acetic acid 

(Hames, 1981). 

Gels were scored for the presence or absence of specific allelic bands of known 

migration distances. Data were collected immediately after gels were fixed, i.e., when 

the staining intensities were maximal. For each enzyme, loci were numbered 

sequentially, with 1 denoting the most anodally migrating locus. Alleles at individual 
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loci were designated by letters assigned sequentially from the anode. Rf values were 

calculated for each band by taking the average of three measurements and dividing the 

band’s migration distance by the tracking dye’s migration distance (Hames, 1991). 

Data analysis. Isozyme data were used to assess genetic diversity in the 

germplasm collection. The percentage of polymorphic loci, mean number of alleles per 

locus, average heterozygosity, and allelic diversity [(number of alleles observed -s- total 

number of alleles at all loci) x 1001 were calculated separately for the commercial 

clones (cultivars) and the field-collected clones. Mean number of alleles per locus and 

average heterozygosity were calculated for all isozyme loci (monomorphic as well as 

polymorphic). The percentage of heterozygous loci was determined for several field- 

collected clones to determine if heterozygosity was correlated with a species’ breeding 

system. 

Results and Discussion 

The inheritance of LAP, PGM, and SKD in Schlumbergera was reported 

previously (Chapter 4). AAT, GPI, MDH, and TPI were not subjected to genetic 

analysis, and therefore the loci and alleles designated for these four enzyme systems are 

reported as putative. However, the inheritance of AAT, GPI, MDH, and TPI has been 

reported for the closely related genus Hatiora (Chapter 3). These two studies (Chapter 

3 and 4) have shown that LAP, PGM, and SKD are monomeric enzymes whereas 

AAT, GPI, MDH, and TPI are dimeric enzymes. 

Considerable isozyme polymorphism was present among the accessions (Table 3 

and Figure 1). A total of 12 putative loci and 36 putative alleles were identified among 

the 59 accessions, and 10 of the 12 loci (83%) were polymorphic (Table 4). The 

number of alleles per locus ranged from two (.Aat-1, Mdh-1, Mdh-2, and Tpi-2) to five 

/, Pgm-2, and Skd-I) for the polymorphic loci (Table 4). 
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Aspartate aminotransferase. Gels exhibited two zones of A AT activity, 

designated Aat-1 and Aat-2 (Figure 1). Aat-1 homodimers exhibited greater mobilities 

than the Aat-2 homodimers on 5% polyacrylamide gels, thus permitting the two loci to 

be differentiated readily. Two homodimers (aa or bb) and one heterodimer (ab) were 

observed at Aat-1. The aa homodimer was the most common Aat-1 phenotype. The b 

allele of Aat-1 was present in only five accessions: S. opuntioides clones 01537 and 

CC615 (= bb), S. russelliana 33160 (= bb), and the S. x exotica cultivars ‘Exotica’ 

and ‘Minibelle’ (= ab) (Table 3). ‘Exotica’ and ‘Minibelle’ are Fj interspecific 

hybrids of S. truncata and S. opuntioides (Barthlott and Rauh, 1977), and their A AT 

phenotypes confirm their hybridity. Three homodimers (aa, bb, cc) and four 

heterodimers (ab, ac, be, bd) were observed at Aat-2. The Aat-2 alleles a, b, and c 

were relatively common, whereas the d allele of Aat-2 was present only in the S. 

orssichiana clones. The high level of polymorphism at Aat-2 makes this locus 

exceptionally useful in distinguishing Schlumbergera clones, and may have value in 

distinguishing Schlumbergera species. 

Glucose-6-phosphate isomerase. Two areas of GPI activity (designated Gpi-1 

and Gpi-2) were identified on the gels (Figure 1). Gpi-1 was monomorphic whereas 

Gpi-2 was polymorphic. The Gpi-1 homodimer (aa) displayed a greater mobility than 

Gpi-2 homodimers on 7.5% polyacrylamide gels, so that Gpi-1 was clearly 

distinguishable from Gpi-2 (Figure 1). Six phenotypes were observed at Gpi-2, 

including three homodimers (aa, bb, cc) and three heterodimers (ab, ac, be). The most 

common Gpi-2 alleles were a and b. The c allele of Gpi-2 was restricted to nine clones 

of S. truncata and S. x buckleyi. Clones of S. kautskyi, S. orssichiana, and S. 

russelliana possessed either an aa or bb phenotype for Gpi-2. The ab phenotype was 

observed in both S. opuntioides clones and several clones of S. truncata and S. x 

buckleyi. Many Schlumbergera accessions could be distinguished by their Gpi-2 

phenotypes, which makes this locus quite useful for identifying clones. 
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Leucine aminopeptidase. Gels stained for LAP activity contained one 

polymorphic zone of activity, designated Lap-1 (Figure 2). Three single-handed 

phenotypes (bb, cc, dd) and five double-banded phenotypes (ac, be, bd, cd, ce) were 

observed at Lap-1 (Table 3). The most common Lap-1 alleles were b, c, and d. The a 

allele was detected only in S. opuntioides CC615 and S. x exotica ‘Exotica’, whereas 

the e allele was present only in S. russelliana JFH clone 1. The high level of 

polymorphism at Lap-1 permitted many Schlumbergera clones to be distinguished from 

clones with similar phenotypes. For example, S. opuntioides clones 01537 and CC615 

were distinguishable based on their Lap-1 genotypes. Also, two of the five S. 

russelliana clones could be separated based on their Lap-1 genotypes (Table 3). 

Malate dehydrogenase. Mdh-1 and Mdh-2 were dimorphic whereas Mdh-3 

was monomorphic (Tables 3 and 4). The clones produced either a single-handed 

pattern (bb) or a triple-banded pattern (ab) at Mdh-1 (Figure 2). The a allele was 

present in many S. truncata and S. x buckleyi clones, but was not observed in any of 

the field-collected clones except for S. orssichiana 05584 (Table 3). Two single- 

handed patterns (aa and bb) were observed at Mdh-2 (Figure 2). The Mdh-2 bb 

phenotype was restricted to S. truncata Abendroth No. 2 (Table 3). Mdh-1 and Mdh-2 

could be distinguished readily on 7.5% polyacrylamide gels due to the distinct mobility 

differences between the slow migrating (b) band of Mdh-1 and the fast migrating (a) 

band of Mdh-2 (Figure 2). Initially it was thought that Mdh-2 and Mdh-3 were one 

zone of activity due to the band of intermediate mobility that formed between the two 

loci. However, the intermediate band was also observed on gels of pollen extracts, 

indicating that Mdh-2 and Mdh-3 were distinct loci and the intermediate band was 

actually was an interlocus heterodimer. 

Phosphoglucomutase. Two zones of PGM activity were observed on PAGE 

gels (Figure 3). Both zones (designated Pgm-1 and Pgm-2) were polymorphic. Three 

single-handed phenotypes (aa, bb, cc, dd) and two double-banded phenotypes (ad, be) 
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were observed at Pgm-1 (Table 3). The S. truncata clones were either bb, be, or cc 

phenotypes. All of the S. kautskyi, S. orssichiana, and S. russelliana clones were bb 

phenotypes. The most common Pgm-1 alleles were b and c. The a allele was limited 

to S. opuntioides and its interspecific progeny (‘Exotica’ and ‘Minibelle’), whereas the 

d allele was found only in a few S. x buckleyi clones (‘Kris Kringle II’, ‘Lavender Doll 

II’, ‘Sonja’, ‘Thor-Louise’) (Table 3). Pgm-1 and Pgm-2 could be differentiated easily 

on 7.5% polyacrylamide gels due to differences in band mobility (Figure 3). One 

single-banded pattern (cc) and four double-banded patterns (ac, be, cd, ce) were 

observed at Pgm-2 (Table 3). Most clones exhibited a single-banded cc phenotype for 

Pgm-2. The a, d, and e alleles of Pgm-2 were limited to a few clones. Alleles a and d 

were observed only in S. truncata Abendroth No. 2 and S. x buckleyi ‘Species B’, 

respectively. Only the two S. opuntioides clones and S. x exotica ‘Exotica’ and 

‘Minibelle’ contained the e allele. 

Shikimate dehydrogenase. Gels contained one polymorphic zone of SKD 

activity, designated Skd-1 (Figure 3). Two single-banded patterns (cc, ee) and five 

double-banded patterns (ab, be, cd, ce, de) were observed at Skd-1 (Tables 3 and 4). 

Most of the named accessions were either cc or cd phenotypes. Skd-1 alleles a, b, and 

e were restricted in distribution. Only the S. russelliana clone 34533 and the two S. 

opuntioides clones contained the a allele. The b allele was detected in S. opuntioides 

and S. x exotica (‘Exotica’ and ‘Minibelle’). Only S. kautskyi and S. orssichiana 

contained the e allele. Skd-1 is a highly polymorphic locus in Schlumbergera may be 

useful for studying taxonomic relationships within the genus. 

Triosephosphate isomerase. Two zones of TPI activity were detected on the 

gels. The more anodal zone, designated Tpi-1, was not consistently resolved and 

therefore was not scored. The less anodal zone (Tpi-2) was resolved clearly and was 

scored (Figure 2). Three Tpi-2 phenotypes were observed, including two homodimers 

(aa, bb) and one heterodimer (ab). Among the species clones, S. kautskyi and S. 
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truncata Abendroth No. 2 and 6 were a bb phenotype, S. opuntioides and S. 

orssichiana were an ab phenotype, and the S. russelliana clones were either aa, ab, or 

bb phenotypes. The S. x buckleyi clones were either aa or ab phenotypes whereas the 

all of the S. truncata clones surveyed exhibited a bb phenotype (Tables 1 and 3). 

Hence, the a allele of Tpi-2 was common in S. x buckleyi and one of its parents, i.e., 

S. russelliana, but was notably absent in the other parent, i.e., S. truncata. These data 

suggest that Tpi-2 may be a useful locus for systematic studies of Schlumbergera. 

Distinguishing clones by isozyme profiles. Sufficient isozyme 

polymorphism was present at ten loci to distinguish 41 of the 59 clones (69%) solely on 

the basis of their isozyme profiles. Clones that shared isozyme profiles could be 

classified into one of eight groups (Table 5). Clones within six of these groups could 

be distinguished using other characters such as flower morphology/color (profiles 4, 

12, 15, 27, and 49) or phylloclade morphology (profiles 7, 15, 27, and 49). ‘Dark 

Marie’ is a flower color sport of ‘Marie’, and these two cultivars could not be 

distinguished based on their isozyme profiles (Tables 3 and 5). Bud sports result from 

minor genetic changes that do not produce discernible differences in isozyme patterms 

(Weeden and Lamb, 1985; Mendenez, 1986). Clones within two groups (profiles 20 

and 42) could not be distinguished by their isozyme profiles or morphological 

characters, and most likely represent duplicate accessions. These results demonstrate 

that isozyme markers can aid in identifying Schlumbergera clones. Isozyme data are 

best used in conjunction with morphological descriptors to resolve questions of identity. 

Substantiating parentage by isozyme analysis. The isozyme profiles 

presented in Table 3 can be used to ascertain the parentage of some Schlumbergera 

clones. The commonly-grown Christmas cactus ‘Buckleyi’ has been in cultivation for 

over a century, and its parentage is not known. It has been suggested ‘Buckley’ is a F\ 

hybrid of S. russelliana and S. truncata, but McMillan (1990) proposed that it may be 

a hybrid between S. russelliana and a 5. x buckleyi clone. As noted previously, the a 
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allele of Tpi-2 is common in clones of S. x buckleyi and S. russelliana, but was not 

detected in any of the S. truncata clones (Table 3). The Tpi-2 phenotype for ‘Buckleyi’ 

(aa) is inconsistent with that expected for an Fi interspecific hybrid of S. russelliana 

and S. truncata, which lends support McMillan’s (1990) theory. Clone 50447 was a 

field-collected specimen tenatively identified as S. truncata, but its flower and 

phylloclade morphology suggested that it was a hybrid of S. russelliana and S. 

truncata. The Tpi-2 phenotype for clone 50447 (aa) indicates that its parentage 

includes S. russelliana, thus corroborating the morphological data. Thus, the correct 

binomial for clone 50447 is S. x buckleyi. 

Isozyme expression and ploidy level. Previous studies (Barthlott, 1976; 

Remski, 1954; Stockwell, 1935) have shown that the genus Schlumbergera consists of 

diploid species with a chromosome number of In = 2x = 22. However, several 

commercial cultivars included in this study are reported to be polyploid, i.e., 

‘Bridgeport’, ‘Cambridge’, ‘Gold Charm’, and ‘Santa Cruz’ (Cobia, 1992; Wade et 

al., 1985). Isozyme profiles of individual plants may provide evidence of polyploidy. 

A diploid (In) individual has a maximum of two alleles per locus whereas a polyploid 

(Xn where X > 3) individual can have up to X alleles per locus. As a consequence, 

polyploids that have three or more alleles per locus usually exhibit greater numbers of 

isozyme bands than would be expected for diploids. The ploidy level of ‘Bridgeport’, 

‘Cambridge’, ‘Gold Charm’, ‘Santa Cruz’, however, could not be deduced from their 

isozyme phenotypes (Table 3). These four cultivars were heterozygous at several 

isozyme loci, but at most two bands were detected for the monomeric enzymes LAP, 

PGM, and SKD and three bands for the dimeric enzymes (AAT, GPI, MDH, and 

TPI), as would be expected for diploid taxa (Figures 1, 2, and 3). Chyi and Weeden 

(1984), Murawski et al. (1994), and Nielsen (1980) reported that relative intensity of 

isozyme bands can be used to distinguish specific genotypes in some polyploid taxa. 

Scoring genotypes by this method assumes that staining intensity is directly 
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proportional to gene dosage. Lack of proportionality between staining intensity and 

gene dosage can lead to incorrect genotype identification. No attempt was made to 

deduce ploidy level of specific Schlumbergera clones from the relative intensities of 

isozyme bands. 

Genetic diversity in the germplasm collection. The percentage of 

polymorphic loci was 75% for the 42 commercial clones, but was slightly higher (83%) 

for the 14 field-collected clones (Table 6). On average, the commercial clones 

contained fewer alleles per locus and displayed less allelic diversity than the field- 

collected clones. However, the mean heterozygosity values for the commercial clones 

and the field-collected clones were similar (Table 6). 

The isozyme data presented here indicate that the field-collected clones are a 

more genetically diverse group than the commercial clones. It should be noted that the 

level of genetic diversity in the 14 field-collected clones nearly matched that of the 

entire germplasm collection (Table 6). Crop species typically exhibit less genetic 

diversity than their wild relaives (see review by Doebley, 1989). The decline in 

genetic diversity results from limited sampling of germplasm from wild populations and 

loss of alleles during breeding. The commercial clones undoubtedly represent only a 

small fraction of the genetic variation in Schlumbergera, whereas the field-collected 

clones represent a more diverse gene pool which may be useful in future breeding 

efforts. 

Relationship between genetic diversity and a species’ breeding system. 

Schlumbergera truncata, S. russelliana, S. opuntioides, and S. orssichiana are self¬ 

incompatible, predominantly outcrossed species whereas S. kautskyi and S. 

microsphaerica are self fertile, primarily selfing species (Boyle, 1995; Ganders, 1976; 

Horobin and McMillan, 1990; McMillan, 1991). Species that are predominandy 

outcrossed often exhibit higher levels of genetic diversity than species that are primarily 

selfed (Hamrick and Godt, 1990). Hence, one would expect Schlumbergera species 
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that are predominantly outcrossed to exhibit greater genetic diversity than those species 

that are primarily selfed. One measure of intrapopulational genetic diversity is the 

mean proportion of loci that are heterozygous per individual (Hamrick, 1989). Table 7 

shows the percentage of heterozygous isozyme loci for 12 field-collected 

Schlumbergera clones. The S. kautskyi clone was homozygous at all 12 loci, as would 

be expected for a selfing species. The percentage of heterozygous loci ranged from 17 

to 42% for the S. opuntioides, S. orssichiana, and S. truncata clones, and ranged from 

0 to 17% for the S. russelliana clones. Most S. russelliana clones contained fewer 

heterozygous loci than expected for an outcrossing species (Hamrick, 1989). 

Schlumbergera russelliana is endemic to the Serra dos Orgaos in the Brazilian state of 

Rio de Janeiro, and is found only in cloud forests at 1350 to 2200 m altitude (Barthlott 

and Taylor, 1995). Low levels of heterozygosity may indicate that the S. russelliana 

clones were sampled from relatively small populations. Genetic diversity is rapidly lost 

from small populations due to inbreeding and random changes in allelic frequencies 

(genetic drift) (Wilcox, 1984). Low levels of heterozygosity in the S. russelliana 

clones may indicate habitat disturbance or other factors which can threaten the long¬ 

term survival of the species. Quantitative estimates of biological diversity such as those 

provided in Table 7 could prove useful in conservation efforts for Schlumbergera 

species. 

Summary. This study demonstrates the utility of isozyme markers for 

distinguising clones, identifying duplicate accessions, substantiating parentage, and 

quantifying genetic diversity for the entire germplasm collection and for specific 

clones. The information obtained from this study may aid in systematic studies of 

Schlumbergera species and in plant conservation efforts. 
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Tabic 6.1. The Schlumbergera accessions used for study and their sources 
botanical names, and status. 

Clone Binomial Status? Source2 

Named accessions 

Alexis 

Apricot 

Barbara 

Bridgeport 

Buckleyi 

Cambridge 

Christmas Charm 

Christmas Cheer 

Christmas Fantasy 

Claudia 

Dark Marie 

Eva 

Exotica 

Gina 

Gold Charm 

Kris Kringle 

Kris Kringle II 

Lavender Doll 

Lavender Doll II 

Lilofee 

Linda 

Madisto 

Madonga 

Majestic 

Marie 

Minibelle 

Naomi 

Noris 

Peach Parfait 

Pinkie 

Purple Devil 

Red Radiance 

Rocket 

Salmoneum Rubrum 

Santa Cruz 

Sonja 

Starbright 

Thor-Britta 

Thor-Louise 

S. x buckleyi 
S. x buckleyi 
S. x buckleyi 
S. truncata 

S. x buckleyi 
S. truncata 

S. x buckleyi 
S. truncata 
S. truncata 

S. x buckleyi 
S. truncata 
S. truncata 
S. x exotica 

S. x buckleyi 
S. truncata 

S. x buckleyi 
S. x buckleyi 
S. x buckleyi 
S. x buckleyi 
S. x buckleyi 
S. truncata 

S. x buckleyi 
S. x buckleyi 
S. x buckleyi 
S. truncata 
S. x exotica 

S. x buckleyi 
S. x buckleyi 
S. truncata 

S. x buckleyi 
S. x buckleyi 
S. x buckleyi 
S. truncata 

S. x buckleyi 
S. truncata 

S. x buckleyi 
S. x buckleyi 
S. truncata 

S. x buckleyi 
Continued next 

cv PM 
cv DK 
cv PM 
cv CO 
cv MA 
cv CO 
cv CO 
cv JV 

cv CO 
cv PM 
cv PM 
cv JV 

cv DK 
cv PM 
cv CO 
cv CO 
cv CO 
cv CO 
cv CO 
cv DK 
cv PM 
cv PM 
cv PM 
cv DK 
cv PM 
cv RG 
cv JV 

cv DK 
cv CO 
cv RG 
cv DK 
cv CO 
cv RG 
cv DK 
cv CO 
cv JV 

cv LN 

cv GT 
cv GT 

page 
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Tabic 6.1 continued 
Twilight Tangerine S. x buckleyi CV CO 
VollB S. x buckleyi FC DK 
White Christmas S. truncate CV CO 
Yantra S. x buckleyi CV JV 
Zaraika S. x buckleyi CV JV 

Numbered accessions 

50447 S. x buckleyi FC HU 
Clone 1 S. kautskyi FC DK 
01537 S. opuntioides FC BG 
CC6I5 S. opuntioides FC RG 
05584 S. orssichiana FC BG 
CC617 S. orssichiana FC RG 
UM921 S. orssichiana FC DK 
32959 S. orssichiana FC BH 
34533 S. russelliana FC HU 
33160 S. russelliana FC BH 
Hunt 6484 S. russelliana FC DK 
JFH Clone 1 S. russelliana FC DK 
02636 S. russelliana FC BG 
Abendroth No. 2 S. truncate FC HG 
Abendroth No. 6 S. truncate FC HG 

2 BG= Botanischer Garten Bonn, Bonn, Germany; BH= Botanischer 
Garten Heidelberg, Heidelberg, Germany; CO= B.L. Cobia Inc., Winter 
Garden, FL; DK= Dolly Kolli, Mashpee, MA; GT= Gartneriet Thoruplund, 
Odense, Denmark; HG= Holly Gate Cactus Nursery. West Sussex, England; 
HU= Huntington Botanical Gardens, San Marino, CA; JV= J. de Vries 
Potplantencultures bv, Aalsmeer, The Netherlands; LN= Leavitt's Nursery, 
Lehighton, PA; MA= University of Massachusetts, Amherst, MA; PM= 
Gartneriet PKM, Odense, Denmark;RG= Rainbow Gardens, Vista, CA. 
y CV= commercial cultivar; FC= field-collected clone. 
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Tabic 6.2. Polyacrylamide gel concentrations and sample loading volumes used for 
electrophoresis of seven enzyme systems. 

Enzyme Gel concentration 

(%) 

Loading volume 
(ul) 

Aspartate aminotransferase (AAT) 5 10 

Glucose-6-phosphate isomerase (GPI) 7.5 10 

Leucine aminopeptidase (LAP) 7.5 10 

Malate dehydrogenase (MDH) 7.5 10 

Phosphoglucomutase (PGM) 7.5 10 

Shikimic dehydrogenase (SKD) 7.5 10 

Triosephosphate isomerase (TPI) 10 5 
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Tabic 6.4 Number of alleles present at 12 isozyme 
loci among the 59 Schlumbergera accessions. 

Locus Alleles Locus Alleles 

Aat-J a,b Mdh-2 a.b 

Aat-2 a,b,c.d Mdh-3 a 

(}pi-l a a,b,c,d 

Gpi-2 a,b,c P%m-2 a,b,c,d.c 

iMp-J a,b,c,cLc Skd-J a,b,c,d,e 

Mdh-J a,b Tpi-2 a,b 
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Tabic 6.5. Schlumbergera clones with identical isozyme patterns. 

Isozyme profile Clones Clonal differentiation by 
(no.) phenotypic characters 

2 Apricot, Buckleyi. 50447 yes 

5 Cambridge, Gold Charm yes 

10 Dark Marie, Marie yes 

13 Gina, Twilight Tangerine yes 

20 Madisto, Pinkie no 

25 Noris, Purple Devil yes 

37 Yantra, Zaraika yes 

42 CC617, UM921, 32959 no 
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Tabic 6.6. Diversity statistics for the Schlunibergera clonal germplasm collection. 

Group No. clones 
analyzed 

% 
Polymorphic 

loci 

Mean # 
alleles/ 
locus 

Mean 
heterozygosity 

Allelic 
diversity7 

Commercial clones} 42 75 2.33 0.28 78 

Field-collected clones}’ 14 83 2.92 0.30 97 

All clones}' 56 83 3.00 0.30 100 

7 (No. alleles observed -5- total no. alleles at all loci) x 100. 
y Excluding duplicate accessions. 
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Table 6.7. A comparison of percent heterozygous loci and breeding sy stems among five 
Schlumbergera species. 

Species Clone Heterozygous loci (%) Breeding system2 

S. kautskyi 1 0 inbreeding (SC) 

S. opuntioides 10537 33 outbreeding (SI) 
CC615 42 outbreeding (SI) 

S. orssichiana 05584 42 outbreeding (SI) 
32959 42 outbreeding (SI) 

S. russelliana 34533 17 outbreeding (SI) 
33160 8 outbreeding (SI) 

Hunt 6484 0 outbreeding (SI) 
JFH clone 1 8 outbreeding (SI) 

02636 0 outbreeding (SI) 

S. truncata Abendroth No. 2 25 outbreeding (SI) 
Abendroth No. 6 17 outbreeding (SI) 

z SC= self-compatible; SI= self-incompatible. Breeding system confirmed by pollination tests. 
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