A qualitative and quantitative methodology in interpreting the results of field toxicity survey.

Ming-Jung Coler
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

Recommended Citation

Coler, Ming-Jung, "A qualitative and quantitative methodology in interpreting the results of field toxicity survey." (1995). Doctoral Dissertations 1896 - February 2014. 6142.
https://scholarworks.umass.edu/dissertations_1/6142

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

A QUALITATIVE AND QUANTITATIVE METHODOLOGY IN INTERPRETING THE RESULTS OF FIELD TOXICITY SURVEY

A Dissertation Presented
by

MING-JUNG COLER

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
February 1995
Plant and Soil Sciences
(C) Copyright by Ming-Jung Coler 1995

All Rights Reserved

A QUALITATIVE AND QUANTITATIVE METHODOLOGY IN INTERPRETING THE RESULTS OF FIELD TOXICITY SURVEY

A Dissertation Presented by
 MING-JUNG COLER

Approved as to style and content by:

Hair B. Gunner, Chair

Stephen C. Simkins, Member

MichulSch
Michael Switzenbaum, Member

Lyle E. Craker, Head
Department of Plant and Soil Sciences

To my

Husband

Parents and Parents-in-law
and Children

ACKNOWLEDGEMENTS

As I finish my dissertation, there are many people whom I owe a great deal of thanks. Thanks goes to my advisor, Dr. Gunner, who offers a great deal of academic guidance and personal support. His continuing efforts in providing me the opportunity of learning experience as a professional and an individual will always be remembered.

Thanks are extended to my committee members, Dr. Stephen Simkins, Dr. Kenneth Simmons, and Dr. Michael Switzenbaum for reviewing the dissertation, raising concerns and providing assistance in their areas of expertise.

Special thanks goes to my husband for his understanding, patience and love; my parents and parents-in-law for their encouragement and faith; my children for their cooperation and inspirations.

I am grateful to Trina Hosmer for providing statistical assistance; Robert Bode, David Penrose and Robert Nuzzo for offering help with insect identifications.

This research was in part supported by funds provided from Department of Environmental Quality Engineering, Division of Water Pollution Control, Massachusetts.

ABSTRACT

A QUALITATIVE AND QUANTITATIVE METHODOLOGY IN INTERPRETING THE RESULTS OF FIELD TOXICITY SURVEY

FEBRUARY 1995

MING-JUNG COLER, B.S., TAIWAN PROVINCIAL COLLEGE OF MARINE AND OCEANIC TECHNOLOGY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor Haim B. Gunner

Though ample evidence supports the detrimental effects of residual chlorine to many aquatic biota, the on-site response of macroinvertebrates has hitherto been little documented. Accordingly, year-long in-stream collections were undertaken to assess and characterize the response of the macroinvertebrate community inhabiting Lampson Brook, Belchertown, Massachusetts. Artificial substrates (limestone chips) were used in the data gathering and a new methodology, Wrona's, was applied to the data analysis. One control station and four downstream stations extending for 3000 meters along the stream were established. All the macroinvertebrates captured at these stations were counted and identified to their lowest taxonomic group.

These data were employed to evaluate several diversity indices as well as qualitative and quantitative community comparison indices. The implications of the respective mathematical formulae applied to biological collections were examined and revisions of certain of the formulae are proposed.

The combination of density estimates, species richness, EPT value (a value derived from total identified species of Ephemeroptera, Plecoptera and Tricoptera), and a number of selected indices was chosen to describe the impact of chlorinated/non-chlorinated sewage. A list of macroinvertebrate species has been designated as chlorine sensitive/tolerant with the respective total residual chlorine (TRC) concentration.

The results indicate that community comparison indices are more sensitive then diversity indices in measuring pollution effects. Community comparison indices, however, showed considerable variations in assessing the severity of the impact.

The macroinvertebrate community structures of all the downstream stations were altered due to changes in environmental conditions with regard to all aspects of community parameters.

The suspected causes of such disruption in aquatic macroinvertebrate community may be attributed to either the immediate impact of TRC in the water column at station 2 or the chronic effects of stable chlorinated by-products associated with the sediments at stations 3,4 , and 5 .

The level of impact with regard to each station is a matter of subjective definition as to which are the most important parameters in describing community structure. Different aspects of change in relation to water quality need to be further tested before imposing any judgement on the extent of impact at each station.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS V
ABSTRACT vi
LIST OF TABLES xiii
LIST OF FIGURES xxii
CHAPTERS
I. INTRODUCTION 1
A. Use of Artificial Substrates for Collection of Benthic Macroinvertebrates 1
B. Use of Indices to Analyze Field Data 2
C. Objectives 5
II. LITERATURE REVIEW 6
A. Introduction 6
B. Biotic Indices 8
C. Diversity Indices 13
D. Community Comparison Indices 24
E. Chlorine Toxicity 40
III. MATERIALS AND METHODS 56
A. Suudy Area 56

1. Lampson Brook and Belchertown, Massachusetts. 56
2. Belchertown Wastewater Treatment Plant 57
3. Stream Quality 58
4. Selection of Study Site 59
B. Experimental Design 59
5. Chemical-Physical Sampling 59
a. Field Methods 59
b. Laboratory Methods 60
6. Biological Sampling 60
a. Field Methods 60
b. Laboratory Methods 61
c. Sampling Schedules 61
d. Raw Data 63
C. Selection of Diversity and Community Comparison Indices 64
7. Evaluation of Various Diversity Indices 64
8. Evaluation of Various Community Comparison Indices 66
a. Qualitative Community Comparison Indices 66
b. Quantitative Community Comparison Indices. 67
D. Interpretation of the Field Data 68
9. Density of Stone-Dwelling Organisms 68
10. Abundance and Species Richness 69
11. Diversity 69
a. Brillouin Diversity 70
b. Hurlbert's PIE 71
12. Community Comparison 71
a. Qualitative Community Comparison 71
b. Quantitative Community Comparison 71
13. EPT 72
14. Indicator Species 72
VI. RESULTS 78
A. Chemical Data 78
B. Biological Data 79
15. Evaluation of Indices 79
a. Diversity Indices 78
b. Community Comparison Indices 83
i. Qualitative Community Comparison Indices 83
ii. Quantitative Community Comparison Indices 84
16. Interpretation of the Field Data 86
a. General Census Data and Trends 86
b. Density, Abundance and Species Richness 87
i. Non-chlorination Regime: December 22, 1987 and March 29, 1988 87
ii. Chlorination Regime: October 30, 1987 and April 14, August 22, 1988 88
iii Placement Experiment: October 17, 1988 90
c. Species Diversity 90
i. Non-chlorination Regime: December 22, 1987 and March 29, 1988 90
ii. Chlorination Regime: October 30, 1987 and April 14, August 22, 1988 92
iii Placement Experiment: October 17, 1988 93
d. Community Comparison 94
i. Non-chlorination Regime: December 22, 1987 and March 29, 1988 94
ii. Chlorination Regime: October 30, 1987 and April 14, August 22, 1988 97
iii Placement Experiment: October 17, 1988 100
e. EPT 100
V. DISCUSSION 175
A. Evaluation of the Qualitative and Quantitative Methodology 175
17. Individual Stones as Discrete Sampling Units 175
18. Diversity Indices 179
19. Community Comparison Indices 187
a. Qualitative Community Comparison Indices 187
b. Quantitative Community Comparison Indices 191
B. Interpretation of the Field Data 196
20. Station 1 (Control station) 197
21. Station 2 199
22. Station 3 202
23. Station 4 204
24. Station 5 205
25. Placement Experiment 206
26. Temporal Variations of Species Occurrence and Succession 207
27. Indicator Species 208
28. Conclusion 210
VI. CONCLUSIONS AND RECOMMENDATIONS 235
A. Summary of Conclusions 235
29. Evaluation of Qualitative and Quantitative Methodology 235
30. Interpretation of Field Results 237
B. Recommendations 240
APPENDICES 243
A. BENTHIC MACROINVERTEBRATES DATA 244
31. Benthic macroinvertebrate species associated with chlorinated or non-chlorinated sewage, collected by basket-type artificial substrates from Lampson Brook. 245
32. Data recorded with Individual Stone as a Sampling Unit 260
33. Data Recorded with Basket as a Sampling Unit 313
B. SIMPSON'S D, HURLBERT'S PIE AND KEEFE'S TU 328
C. FORMULA FOR THEORY OF RUN 332
D. A SAS PROGRAM TO CALCULATE DIVERSITY INDICES OF BENTHIC MACROINVERTEBRATES 335
E. A SAS PROGRAM TO CALCULATE QUALITATIVE COMMUNITY COMPARISON INDICES OF BENTHIC MACROINVERTEBRATES 349
F. SAS PROGRAMS TO CALCULATE QUANTITATIVE COMMUNITY COMPARISON INDICES OF BENTHIC MACROINVERTEBRATES 352
34. Program to Calculate Percent Similarity (Renkonen, 1938), SIMI (Stander, 1970) and Distance Measure (Clifford and Stephenson, 1975). 353
35. Program to Calculate Bray-Curtis Index (1957), Canberra Metric (Lance and Williams, 1967), Collection and Percent Dissimilarity (1981). 356
36. Program to Calculate Morisita Similarity Index (1959) and Simplified Morisita Index (Horn, 1966). 359
37. Program to Calculate Squared Euclidean Distance (Sokal, 1961), Pinkham-Pearson Index B, and Pinkham-Pearson Index B_{2} (1976)362
38. Program to Calculate Average Chi Square (Parrish and Wagner, 1983). 365
LITERATURE CITED 367

LIST OF TABLES

Table Page
2.1 Diversity indices which are proposed in ecosystem studies, arranged in eight categories according to their theoretical approach. After Washington (1984) 46
2.2 Summary of the main properties of several diversity indices 49
2.3 Various qualitative and quantitative similarity/dissimilarity indices proposed in ecosystem studies 50
2.4 Summary of the main properties of several qualitative community comparison indices 54
2.5 Summary of the main properties of several quantitative community comparison indices 55
3.1 Effluent discharge limitations and monitoring requirements of Belchertown Wastewater Treatment Plant 73
3.2 The criteria of water quality for freshwater aquatic life and public health (EPA, 1986) 74
3.3 Analytical procedures for chemical, physical, and biological parameters 75
3.4 Baskets designation 76
3.5 Hypothetical communities used to test the differences among various quantitative community comparison indices 77
4.1 Analysis of water quality of selected stations along Lampson Brook from September 25, 1987 to October 29, 1987. All the data are presented as average \pm S.D. in $\mathrm{mg} / /$ unless otherwise indicated 102
4.2 Analysis of water quality of selected stations along Lampson Brook from November 19, 1987 to December 17, 1987. All the data are presented as average \pm S.D. in mg / h unless otherwise indicated. 104
4.3 Analysis of water quality of selected stations along Lampson Brook from February 25, 1988 to March 29, 1988. All the data are presented as average \pm S.D. in mg / l unless otherwise indicated. 106
4.4 Analysis of water quality of selected stations along Lampson Brook from April 1, 1988 to April 14, 1988. All the data are presented as average \pm S.D. in $\mathrm{mg} / 1$ unless otherwise indicated. 108
4.5 Analysis of water quality of selected stations along Lampson Brook from July, 20, 1988 to August, 20, 1988. All the data are presented as average \pm S.D. in mg / l unless otherwise indicated. 110
4.6 Analysis of water quality of selected stations along Lampson Brook from October 8, 1988 to October 15, 1988. All the data are presented as average \pm S.D. in mg / l unless otherwise indicated. 112
4.7 The results of the Sign test in comparing the differences in mean diversity values calculated either from the basket or the stones for macroinvertebrates, midges, and family level census 121
4.8 The results of Spearman rank correlation in measuring the degree of association for all possible combination of diversity values for total macroinvertebrates. 122
4.9 The results of Spearman rank correlation in measuring the degree of association for all possible combination of diversity values for midges. 124
4.10 The results of Spearman rank correlation in measuring the degree of association for all possible combination of diversity values for family level census. 126
4.11 The results of the Sign test in comparing the differences in mean diversity values for total macroinvertebrates, midges, and family level census. 128
4.12 The results of Spearman rank correlation in measuring the degree of association among total macroinvertebrates, midges and family level census for a number of diversity values 129
4.13 The results of Spearman rank correlation in measuring the degree of association for all possible combination of qualitative similarity values for total macroinvertebrates 130
4.14 The results of Spearman rank correlation in measuring the degree of association for all possible combination of qualitative similarity values for midges 131
4.15 The results of Spearman rank correlation in measuring the degree of association for all possible combination of qualitative similarity values for family level census 132
4.16 The differences of various quantitative community comparison in detecting the upper and lower limits of similar/dissimilar pairs. 133
4.17 The differences of various quantitative community comparison in detecting the upper and lower limits of similar/dissimilar pairs. 134
4.18 The results of Spearman rank correlation in measuring the degree of association for all possible combination of quantitative similarity/dissimilarity values for hypothetical communities. 135
4.19 The results of Spearman rank correlation in measuring the degree of association for all possible combination of quantitative similarity/dissimilarity values for total macroinvertebrates. 137
4.20 The results of Spearman rank correlation in measuring the degree of association for all possible combination of quantitative similarity/dissimilarity values for midges. 139
4.21 The results of Spearman rank correlation in measuring the degree of association for all possible combination of quantitative similarity/dissimilarity values for family level census. 141
4.22 General census data for collections of benthic macroinvertebrates isolated from stone-filled basket substrates retrieved from upstream station 1 control) and downstream 4 stations receiving chlorinated sewage of Lampson Brook. 143
4.23 Distribution of major benthic macroinvertebrate taxa inhabiting basket substrates recovered from the five stations along the Lampson Brook. Expressed as total organisms (species found). 144
4.24 Percentage distribution of major benthic macroinvertebrate taxa inhabiting basket substrates recovered from the five stations along the Lampson Brook. Expressed as total organisms (species found) with the percent composition greater then one percent. 145
4.254.26The abundance and species data for collections of benthicmacroinvertebrates colonizing limestones-filled basketsubstrates.147
4.27 The abundance and species data for collections of chironomids colonizing limestones-filled basket substrates. 148
4.28 The percentage of chironomids abundance and species colonizing limestones-filled basket substrates. 149
4.29 Brillouin's diversity of total benthic macroinvertebrates colonizing limestones-filled basket substrates. 150
4.30 Hurlbert's diversity of total benthic macroinvertebrates colonizing limestones-filled basket substrates. 151
4.31 Brillouin's diversity of midges colonizing limestones-filled basket substrates. Percent contribution of the midge diversity indicated in parenthesis. 152
4.32 Hurlbert's diversity of midges colonizing limestones-filled basket substrates 153
4.33 Brillouin's diversity of macroinvertebrate families colonizing limestones-filled basket substrates. Percent contributions of the family level diversity indicated in parenthesis. 154
4.34 Hurlbert's diversity of macroinvertebrate families colonizing limestones-filled basket substrates. 155
4.35 The Sorensen's quotient of similarity of corresponding control and downstream basket populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates. 156
4.36 The revised Fager and McGowan index of corresponding control and downstream basket populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates. 157
4.37 The Sørensen's quotient of similarity of corresponding control and downstream basket populations of midges colonizing limestones-filled basket substrates. 158
4.38 The revised Fager and McGowan Index of corresponding control and downstream basket populations of midges colonizing limestones-filled basket substrates. 159
4.39 The Sørensen's quotient of similarity of corresponding control and downstream basket populations of macroinvertebrate families colonizing limestones-filled basket substrates. 160
4.40 The revised Fager and McGowan index of corresponding control and downstream basket populations of macroinvertebrate families colonizing limestones-filled basket substrates 161
4.41 The Morisita similarity index values of corresponding control and downstream basket populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates. 162
4.42 Sokal's Euclidean distance index values of corresponding control and downstream basket populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates. 163
4.43 The Pinkham-Pearson index B values of corresponding control and downstream basket populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates. 164
4.44 The average chi-square index values of corresponding control and downstream basket populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates. 165
4.45 The Morisita similarity index values of corresponding control and downstream basket populations of midges colonizing limestones-filled basket substrates. 166
4.46 Sokal's Euclidean distance index values of corresponding control and downstream basket populations of midges colonizing limestones-filled basket substrates. 167
4.47 The Pinkham-Pearson index B values of corresponding control and downstream basket populations of midges colonizing limestones-filled basket substrates. 168
4.48 The average chi-square index values of corresponding control and downstream basket populations of midges colonizing limestones-filled basket substrates. 169
4.49 The Morisita similarity index values of corresponding control and downstream basket populations of macroinvertebrate families colonizing limestones-filled basket substrates. 170
4.50 Sokal's Euclidean distance index values of corresponding control and downstream basket populations of macroinvertebrate families colonizing limestones-filled basket substrates. 171
4.51 The Pinkham-Pearson index B values of corresponding control and downstream basket populations of macroinvertebrates families colonizing limestones-filled basket substrates. 172
4.52 The average chi-square index values of corresponding control and downstream basket populations of macroinvertebrate families colonizing limestones-filled basket substrates. 173
4.53 The EPT data for the basket collections. 174
5.1 The variability in the precision of density estimate. 211
5.2 The Spearman rank correlation between the size of the mean and its relative 95% confidence limit. 212
5.3 The Spearman rank correlation between the size of the mean and its relative 95% confidence limit analyzed based on the spatial arrangement. 213
5.4 The Spearman rank correlation between the mean density and the abundance. 214
5.5 Number of rocks required to attain asymptotic diversity. 215
5.6 The Spearman rank correlation between the number of rocks required to attain asymptotic diversity and a number of suspected causes (abundance, diversity, or the precision). 216
5.7 Total number of individuals, species, genera, families, and orders of macroinvertebrates as well as total number of individuals and species of midges for each basket collection. 217
5.8 Ranking of Brillouin and Hurlbert's diversity values for total macroinvertebrates 218
5.9 Ranking of Hurlbert's diversity values for midges and family level census. 219
5.10 Average qualitative similarity values calculated for chlorination, non-chlorination, and year-long periods with their respective ranking at each station for total macroinvertebrates, midges, and family level census. 220
5.11 Average quantitative similarity/dissimilarity values calculated for chlorination, non-chlorination, and year-long periods with their respective ranking at each station for total macroinvertebrates, midges, and family level census. 221
5.12 Change in abundance and percent distribution (in parenthesis) of benthic macroinvertebrate species collected from station 1 baskets during the period of substrate deployment from October 30, 1987 to August 22, 1988. Only those with substantial abundance and percent composition were listed. 222
5.13 Change in abundance and percent distribution (in parenthesis) of benthic macroinvertebrate species collected from station 2 baskets during the period of substrate deployment from October 30, 1987 to August 22, 1988.
Only those with substantial abundance and percent composition were listed. 223
5.14 Change in abundance and percent distribution (in parenthesis) of benthic macroinvertebrate species collected from station 3 baskets during the period of substrate deployment from October 30, 1987 to August 22, 1988. Only those with substantial abundance and percent composition were listed. 224
5.15 Change in abundance and percent distribution (in parenthesis) of benthic macroinvertebrate species collected from station 4 baskets during the period of substrate deployment from October 30, 1987 to August 22, 1988.
Only those with substantial abundance and percent composition were listed. 225
5.16 Change in abundance and percent distribution (in parenthesis) of benthic macroinvertebrate species collected from station 5 baskets during the period of substrate deployment from October 30, 1987 to August 22, 1988. Only those with substantial abundance and percent composition were listed. 226
5.17 Change in abundance and percent distribution (in parenthesis) of benthic macroinvertebrate species collected on October 17, 1988. Only those with substantial abundance and percent composition were listed. 227
5.18 The Morisita similarity index values for collections of total benthic macroinvertebrates colonizing limestones-filled basket substrates at station 1. 228
5.19 The Morisita similarity index values for collections of total benthic macroinvertebrates colonizing limestones-filled basket substrates at station 2 229
5.20 The Morisita similarity index values for collections of total benthic macroinvertebrates colonizing limestones-filled basket substrates at station 3 230
5.21 The Morisita similarity index values for collections of total benthic macroinvertebrates colonizing limestones-filled basket substrates at station 4 231
5.22 The Morisita similarity index values for collections of total benthic macroinvertebrates colonizing limestone-filled basket substrates at station 5 232
5.23 Morisita similarity index values of macroinvertebrate populations collected with comparable substrates in different seasons. 233
5.24 Potential macroinvertebrate indicator species found at station 2, 60 meters downstream from the sewage outfall, in Lampson Brook. Estimates of sensitivity/tolerance with respective TRC concentrations and their seasonal abundance.234

LIST OF FIGURES

Figure Page
4.1 Average combined chlorine of the five sampling stations and the outfall from September 25 to October 29, 1987 114
4.2 Average combined chlorine of the five sampling stations and the outfall from April 1 to April 14, 1988. 115
4.3 Average combined chlorine of the five sampling stations and the outfall from July 20 to August 20, 1988. 116
4.4 Average combined chlorine of the five sampling stations and the outfall from October 8 to October 15, 1988 117
4.5 Average concentration of phosphorus at different stations for the six sampling periods $(1=9 / 25 / 87-10 / 29 / 87,2=$ $11 / 19 / 87-12 / 17 / 87,3=2 / 25 / 88-3 / 28 / 88,4=4 / 1 / 88-4 / 14 / 88$, $5=7 / 20 / 88-8 / 20 / 88,6=10 / 8 / 88-10 / 15 / 88)$. 118
4.6 Average concentration of ammonia at different stations for the six sampling periods $(1=9 / 25 / 87-10 / 29 / 87,2=$ $11 / 19 / 87-12 / 17 / 87,3=2 / 25 / 88-3 / 28 / 88,4=4 / 1 / 88-4 / 14 / 88$, $5=7 / 20 / 88-8 / 20 / 88,6=10 / 8 / 88-10 / 15 / 88)$. 119
4.7 Average concentration of acidity at different stations forthe six sampling periods $(1=9 / 25 / 87-10 / 29 / 87,2=$$11 / 19 / 87-12 / 17 / 87,3=2 / 25 / 88-3 / 28 / 88,4=4 / 1 / 88-4 / 14 / 88$,$5=7 / 20 / 88-8 / 20 / 88,6=10 / 8 / 88-10 / 15 / 88)$.120

CHAPTER I

INTRODUCTION

A. Use of Artificial Substrates for Collection of Benthic Macroinvertebrates

In a previous study conducted from September 15 to October 30, 1987, limestone fragments were employed to collect biological samples to assess the impact of chlorinated secondary municipal effluent on benthic macroinvertebrates at Lampson Brook, Belchertown, Massachusetts (Coler, 1990). A total of five stations (one control station upstream and four treatment stations downstream from the sewage outfall) were selected. During the period in which the substrates were deployed, water samples were collected weekly at each station and the sewage outfall for analysis of the following chemical, physical, and biological parameters: chlorine (free and combined), temperature, pH , dissolved oxygen, biological oxygen demand, fecal coliforms, acidity, alkalinity, ammonia, nitrate, phosphorus, calcium, hardness, chloride, total solids, and suspended solids.

The level of impact on benthic macroinvertebrates was measured by the loss of sensitive species, dominance of tolerant species, reduction in diversity, and shifts in community structure. Toxicity was tentatively attributed to TRC (total residual chlorine) from the water column and cumulated TOX (total organic halides) from the sediment.

Stream-bed rocks were used to compare with, and standardize against, limestones as colonization substrates. The data showed that stream-bed rocks supported more organisms and greater diversity. Limestone, though more selective, allowed an accurate and rapid estimate of the surface area (Coler, et. al., 1989). Limestone-generated data also showed mitigation of chlorine toxicity. Both substrates produced basically the same trends regarding toxicity effects. To expedite experimental procedures, the limestone fragments were therefore chosen to implement an extensive, replicated year long study to more clearly define the impact of chlorinated domestic sewage on the aquatic biota.

The data generated from the deployment and retrieval of artificial substrates were supported by an extensive chemical database. Quality control and quality assurance ($\mathrm{QC} / \mathrm{QA}$) were incorporated into the study by having the biological identifications confirmed by an EPA/DEP (Environmental Protection Agency/Department of Environmental Protection) taxonomist. Chemical procedures were reviewed by an analyst of the Environmental Engineering Department, University of Massachusetts, Amherst. The stream was impacted by no other sources - point or diffuse.

B. Use of Indices to Analyze Field Data

There are a number of approaches which are currently available to facilitate the analysis of multispecies toxicity field data: LC_{50} 's can be applied to assess the toxicity level, density for individual stones can be calculated to derive 95% confidence interval
(Wrona, et. al., 1986), diversity indices and community comparison indices can be employed to measure changes in community structure and composition (Pratt and Coler, 1976; Pratt, 1977; Godfrey, 1978; Pratt et al., 1981; Perkins, 1983; Pontash and Brusven, 1988; Pontasch et al., 1989). Further, biotic index and EPT (total species of Ephemeroptera, Plecoptera, and Trichoptera), based on the indicator organisms, may be applied to the data to measure the effects of the pollution (Chutter, 1972; Penrose and Overton, 1987). Multivariate techniques, such as factor analysis, cluster analysis or canonical discriminant analysis can be used to evaluate community level of impact (Cairns and Kaesler, 1969; Roback et al., 1969; Kaesler et al., 1971; Osborne and Davies, 1987; Pontasch et al., 1989).

Environmental variables can also be incorporated to predict community changes using stepwise regression analysis or multiple discriminant analysis (Green and Vascotto, 1978; Osborne and Davies, 1987; James and McCulloch, 1990). Ideally, mathematical models should be tested in a defined environment to determine their efficacy. In a field situation where the environmental (physical, chemical, and geological) variables are inherently different, the use of indices may indicate a difference between communities. The cause, however, is not unequivocally clear. Nevertheless, the diversity and community comparison indices have been widely used to assess the impact of pollution both in laboratory and field toxicity situations because they are useful in condensing large volumes of data generated during the study to a simpler number. For example, the diversity indices were used for the biological assessment of pollution by Wilhm (1967, 1970), Cairns et al. (1968), and Haedrich (1975). Community comparison indices were used to assess
macroinvertebrate response to pollutants by Pontasch and Brusven (1988) and Pontasch et al. (1989). As Pontasch et al. (1989) pointed out, no single index is equally effective or adequate in measuring all of the responses of aquatic communities to a particular environmental stress. Most of the indices were developed for the assessment of a particular pollutant family, such as the Trent biotic index and the Chandler biotic score in assessing the degree of organic pollution. Therefore the investigators must consider the limitations of the indices together with their ecological judgement to choose the appropriate indices to interpret their results.

Since communities rely increasingly on surface or aquifer supplies for water needs as well as recreational pursuits, and further, the WPCA 1972, MPRSA 1973, TSCA 1976, and FIFRA 1978 legislation all mandate the application of toxicity testing instead of chemical analyses to determine limits of effluent concentrations (Foster, 1984), it seems inevitable that we will have to, for the foreseeable future, continue to work with the biotic community as a measure of pollution. Unfortunately, most of our pollution control legislation is based on laboratory derived LC_{50} toxicity testing with little ecological significance. On the other hand, the implementation of field-measured toxicity testing is hindered by the inherent difficulty in establishing sufficient replicates and controls to support statistically significant data with quantitative ecological inferences. Additionally, the study of aquatic biota in relation to water quality often involves extensive and exhaustive investment of time and resources. These weaknesses, not withstanding, we must evolve ecologically meaningful measures of stress for water pollution remains fundamentally an ecological problem.

C. Objectives

In this light I propose using the data generated in the Lampson Brook survey to evolve a consistent quantitative biological measure of water quality. The data are not confounded by other sources of pollution and are supported by QC/QA over the entire year. Accordingly, it is my intent to:

1. Evaluate currently used indices for measuring community structure and community structure changes with field macroinvertebrate data generated at Lampson Brook.
2. Compare and evaluate the qualitative and quantitative methodology for assessment of field data.
3. Describe and interpret the impact of chlorinated sewage on benthic macroinvertebrate community inhabiting Lampson Brook.

CHAPTER II

LITERATURE REVIEW

A. Introduction

It is common in pollution studies to collect a certain group of organisms at polluted and non-polluted sites or in a time frame before and after the onset of pollution to identify their respective taxonomic composition, and to compare the corresponding changes in the assemblages of organisms in these collections. Such changes often result from environmental perturbation, either from a natural catastrophe or of anthropogenic origin. The collected samples are analyzed to measure the extent of the change, and subsequently used to compare or refer to the changes in communities. However, a "community" can be defined in many different contexts. For the purpose of my research, I chose Roughgarden and Diamond's (1986) definition of a community as "all the organisms in a prescribed area" to facilitate the comparisons. Accordingly, in order to describe the structure of the members in the community, representative samples must be drawn from the community by an appropriate sampling method.

Assuming that we have a representative sample obtained from a community and we want to know from the sample data, whether a pollutant is affecting the community, we can do this by making temporal or spatial comparisons - is the community at this site similar before and after pollutant exposure? or is the
community at the polluted site similar to a control site sheltered from pollution? Obviously, to answer these questions, we need to quantify the scope of the temporal and spatial difference in community characteristics to achieve a meaningful interpretation of the data derived.

The ecological data acquired from such collections are often composed of a matrix of rows and columns representing the sampling unit (in this instance a limestone fragment of known area) and a list of species or vice versa (in this instance a limestone-filled basket). Each element of the matrix may be represented by individuals, density, or biomass, etc. The interpretation of these data is not without difficulty because of the large volumes of numbers generated during the collection process. Equally important, biologists must convey their findings to administrators and the public, who are not specifically trained to interpret complex sets of ecological data. Thus, a single number characterizing the biological impact of water quality is generally favored by water managers (Thomas, 1976). Ecologists as well as other biologists have long been searching for means to condense the data into a comprehensible number which measures community changes. To meet this need, three categories of indices have evolved - the biotic index, diversity index and community comparison index.

Whether the indices are used to characterize a community or to measure changes, we need to consider if the indices reflect the scope of temporal and spatial differences. If one has of a set of possible events or probabilities, $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$, the individuals in the community could be treated as messages on a piece of paper and a measure calculated as to how much choice was involved in the selection of the event
or how "uncertain one is of the outcome" (Shannon and Weaver, 1949); alternatively their relationship could be considered as the probability of interspecific encounters (Hurlbert, 1971); or as the distance value of a sample from an area of bare ground with no individuals (McIntosh, 1967). In the interest of measurement techniques, the comparisons may be made by arbitrary addition, multiplication, subtraction, or division. The appropriate choice becomes complicated since many of the theories on which indices have been postulated have not yet been tested in real field situations. Clearly, there can be no satisfactory index until we have a universal understanding of how we must characterize a community and measure the structure of its members. One is left to hope that models will emerge that will provide insights similar to the dose-response relationship used to measure the toxicity of a chemical and the Michaelis-Menten model which assesses enzyme kinetics, because we understand the behavior of a chemical or a enzyme in a defined system.

The following review examines the indices (biotic, diversity, and community comparison) that have been developed for both theoretical and practical applications in ecology.

B. Biotic Indices

Biotic indices have been developed to measure the changes brought about by allochthonous input of organic matter in a flowing water system. They are based on the assumption that there are defined faunal communities in clean streams and rivers, that the change in community composition is predictable upon the addition of organic
matter, and that the biggest change occurs, accordingly, with the largest addition of organic matter (Chutter, 1972). The biotic index assigns a value to each organism or groups of organisms on the basis of its or their relative tolerance/sensitivity to low dissolved oxygen in running water (Sladecek, 1973). The sum of these values provides an index to assess perturbation at particular sites. Either qualitative (presence-absence) or quantitative (abundance or density) measures may be used.

The first biotic index (Saprobien system) was devised primarily to classify rivers according to the presence or absence of indicator species of animals and plants in zones characterized by four different oxidation state of organic matter, from less to most oxidized - polysaprobic, α-mesosaprobic, β-mesosaprobic and oligosaprobic respectively (Kolkwitz and Marsson, 1908, 1909; Kolkwitz, 1950). Each zone contained characteristic animal and plant species reflecting the grossly polluted environment, with little or no dissolved oxygen, to the recovery zone with normal oxygen content allowing complete mineralization. The Saprobien system was modified by Liebmann in 1951 by carefully selecting and describing indicator organisms, then later developed by Pantle and Buck (1955) to incorporate the relative abundance of organisms. In this country, a similar system was developed by Wilber (1969) who divided a stream receiving an organic pollutant into zones of degradation, active decomposition, recovery, and finally a clean stream which had been returned to its original unpolluted condition. Each zone had its characteristic organisms. The application of the Saprobien index is very common in Europe, but is less popular in Britain and North America because its usefulness is limited by its rigidity and the similar associations of organisms which appear both in severely polluted waters and
natural waters. Additionally, Hynes (1963) noted that the Saprobien system was "applicable only to the particular conditions produced by heavy sewage pollution in a slow and evenly flowing river". He viewed it as a "clumsy tool" due to its inflexibility in the assessment of water pollution. As he put it, "Nature is not as simple as this, and every example is different". Further, it is not likely that a given species would express equal sensitivity or tolerance against all environmental stressors. A given organism may be very sensitive to low dissolved oxygen but more tolerant to high metal concentrations. Moreover, most biological studies take place in assessing water quality in toxic, intermittent, or mild organic polluted conditions, where changes of chemical parameters are not readily detected by chemical analyses. Equally important, the Saprobic index becomes unsatisfactory because it results in findings which cannot be clearly stated in a comprehensible fashion. Hynes (1963) concluded that tables of comparative numerical data provided the most appropriate way of showing the biological response to pollution. Hawkes (1962), on the other hand, who argued the advantages of a biological index, advanced a line of reasoning which led to the development of a number of new biotic indices after 1962 .

The two indices which are most widely used in Britain are the Trent biotic index (TBI) (Woodiwiss, 1964) and the Chandler biotic score (CBS) (Chandler, 1970). The Trent biotic index developed by Woodiwiss in 1964 requires only the presence or absence of species and species richness. TBI assigns a score according to the total number of groups present in given key organisms. TBI divides the total number of groups into five categories ($0-1,2-5,6-10,11-15,16+$) in six key organisms: Plecoptera, Ephemeroptera, Trichoptera, Gammarus, Asellus, and Tubificid worms
and/or Red Chironomids based on the order of the tendency to disappear as the degree of pollution increases. The score ranges from 0 to 10 indicating the grossly polluted waters where no macroinvertebrates are present to unpolluted water where the macroinvertebrates species are rich. The disadvantage of disregarding abundance data may have a disproportionate effect on the index if a species present is not resident at a given site but adrift from upstream. Also its applicability is greatly reduced in an area for which the system is not originally designed.

In 1970, Chandler produced an index (CBS) by taking into account the abundance and richness of each indicator species. The CBS index divides a sample into five abundance classes, present (1-2), few (3-10), common (11-50), abundant (51100), and very abundant ($100+$) and 26 groupings (1 being the most sensitive to organic pollution, 25 the most tolerant, and 26 indicating no animal life). Each species is assigned a score according to its relative abundance. For example, if 100 organisms are found to belong to a species of group 1, a score of 100 is given, whereas if 100 organisms are found to belong to a Nais sp., a score of 2 is specified. The minimum score is zero indicating no animal life is present, and there is no upper limit.

There are a number of drawbacks to using CBS in the monitoring of water quality: (1) the assignment of a value is based on individual judgement, subject to the investigator's opinion and experience; (2) the index requires counting as well as identification of individual taxa, therefore it is time consuming; (3) the score may vary depending on sampling strategy. Therefore, a number of modifications of CBS have been proposed for different purposes. The score can be transformed to give an
average ranges from 0 to 100 by dividing the total score by the number species (Cook, 1976). Bryce et al. (1978) reduced the number of abundance classes, reorganized taxonomic grouping and revised some of the scores. Hargreaves et al. (1979) also decreased the number of abundance classes and grouping to simplify the score for the use of field study. To minimize the effects of variations in sample size, percent composition was used instead of relative abundance.

The most recent biotic index derived empirically which represents a compromise between ecological validity and practical constraints was adopted by Britain as the BMWP score (Biological Monitoring Working Party) (National Water Council, 1981). The BMWP score combines a number of families of macroinvertebrates and assigns a score. A total of ten categories with a score of 1 to 10 are created. The specimen collected in a sample is identified to the family level and assigned a score according to the scheme. The sum of the individual scores of the specimens yields the BMWP score for that sample. The advantage of this system is its taxonomic simplicity and applicability to a wide range of waters and geographical areas. However it does not consider the abundance or the fact that a family may be represented by a number of different species.

Other biotic indices that have been used in temporal sequence as cited in Washington (1984) include: Wright and Tidd's "oligochaete indicator" (1933), Patrick's histograms (1950), Beck's index (1955), Beak et al.'s "lake" index (1959), Goodnight and Whitleys "oligochaetes" (1960), King and Balls' index (1964), Graham's index (1965), Beak's "river" index (1966), Brinkhurst's index (1966), Sander's Rarefaction method (1968), Palmer's index (1969), Chutter's index (1972),

Heister's modification to Beck's index (1972), The average Chandler biotic score (CBS) (Balloch, 1976), Hilsenhoff's index (1977), and Raffaelli and Mason's index (1981). Washington (1984) provides a detailed review regarding their advantages and disadvantage of their application.

In summation, it is clear that there are inherent limitations to this type of index: (1) Aquatic systems suffer not only organic pollution but also other forms of disturbances such as urban runoff, industrial discharge, and agricultural discharge; (2) Factors other than pollutants may contribute to stream community variation. The sampling method, the area sampled, the season the sample is taken and the taxonomic level of identification all affect community structure without the influence of pollution (Hughes, 1978); (3) Knowledge of the ecological characteristics and requirements of individual species and its identification is often the major obstacle when poor taxonomic tools and little information on life history are available.

C. Diversity Indices

Biotic indices emphasizing principally the impact of organic pollution may not be suitable in assessing other types of pollution. Accordingly, another type of index, the diversity index, is considered to measure the stress in the environment. Diversity is a measurement of heterogeneity and is composed of two components - the number of species (species richness) and the distribution of individuals among those species (equitability). It is based on the concept that in a clean environment the stream is characterized by the presence of a large number of species, each well represented.

When an enviroment tecomes pollured, the rithness and abundance of the communty is restriefei to those forms eapathe of foletating the changed conditions.

Whitaker (1905) classities most diversity indices into mo types: qualitative shecies dilersity indices. of quatrative dommance diversity indices. Species diversity intitees emphasize only the number of taxa present it the enviroment. Dominance diversity indiees consider both the mumber of the taxa and the numbers or biomass distributed among them.

Washington (1984) divides 18 diversity indices into 8 categories according to the approaches that are used to formulate the respective diversity index (Table 2.1). He suggests that among all the diversity indices, only Simpsonts D, Hurlbett's PIE, Cairns SCI, Keefe's TU and possibly Mclntosh's M are found to be applicable to biological system. Shannon and Britlouin diversity, based on information theory, are unsatisfactory due to the lack of exploration of their biological relevance.

The simplest method for the estimation of biological diversity is the Sequential comparison index (SCI) of Cairns (Cairns et al., 1968; Cairns and Dickson, 1971):

$$
\begin{gathered}
S C I=\overline{D I_{1}} \times \text { no.taxa } ; \overline{D I_{1}}=\frac{\sum \frac{\text { no.run }}{n o \cdot s p e c i m e n s}}{N_{S C I}} ; \\
r_{n}=\sum \frac{\text { no.run }}{n o \cdot \text { specimens }}
\end{gathered}
$$

It does not require taxonomic expertise. The only requirement is the capability of the investigator to distinguish differences between consecutive individuals in the sample based on the shape, color, and size. The concept is based on the "sign test" and the "theory of runs". Only two symbols are necessary in a worksheet to represent a change of a current organism analyzed in relation to the previous one. If it is the
same, it forms part of the same run and the symbol does not change. If different, the current organism forms the beginning of a new run and the symbol of the other is utilized. The $S C I$ is equal to the number of runs divided by the number of individuals, times the number of taxa.

The number of taxa is determined after establishing the number of runs. The greater the number of runs per number of individuals being examined, the greater the biological diversity, and so presumably the healthier the environment. Cairns suggests that approximately 250 individuals are necessary to estimate a reliable index for a healthy stations. The resulting $S C I$ value in determining the number of taxa is influenced by the investigator's taxonomic training. Additionally, closely related species with different sensitivity to a given pollutant will not be detected.

Simpson's D and Hurlbert's PIE, though they were grouped into different categories by Washington (1984), are in fact based on the same principle (the probability of choosing two individuals at random and independently from the population whether or not they belong to the same group):

$$
\begin{aligned}
\text { Simpson's } D & =\sum_{i=1}^{s} \frac{n_{1}\left(n_{1}-1\right)}{N(N-1)} \\
\text { Hurlbert's PIE } & =\left(\frac{N}{N-1}\right)\left(1-\sum_{i=1}^{s} p_{1}^{2}\right)
\end{aligned}
$$

Keefe's $T U$ though based on "theory of runs", resembles Simpson's D and Hurlbert's PIE because the formation of a run is related to the probability of picking pairs of individuals from a population which do or do not find themselves in the same group:

$$
\text { Keefe's } T U=1-\left(\frac{n}{n-1}\right)\left(\sum_{1=1}^{k} p_{1}^{2}-\frac{1}{n}\right)
$$

As a result, Simpson's D is equal to 1 minus $P I E$ and $P I E$ is equal to $T U$ (APPENDIX B). If we recall the index proposed by Cairns et al. (1968), r_{n} is designated as the number of observed runs among n organisms. If the population mean number of runs per specimen is denoted by μ_{r} then r_{n} / n can be considered an estimate of μ_{r}. Keefe and Bergersen (1977) use the formula proposed by Mood (1940) based on theory of runs and show that, approximately

$$
\mu_{r}=1-\sum_{i=1}^{k} \pi_{i}^{2}
$$

Keefe and Bergersen (1977) state that clearly an estimate of μ_{r}, say T, can be obtained by simply using the sample taxa proportions in the above formula:

$$
T=1-\sum_{I=1}^{k} p_{i}^{2}
$$

where $p_{i}=n / n, i=1,2, \ldots, k$, and T is erroneously claimed as the maximum likelihood estimate of μ_{r} (T is actually the minimum estimate of μ_{r}).

If the runs are calculated as described by Cairns et al. (1968), neither Keefe's T or $T U$ is a correct or an unbiased estimator of μ_{r}. Mood's formula serves in fact to calculate the probability of summing all the distinct neighbors over all possible permutations. If we designate the sum of all the distinct neighbors of all possible permutations as D_{d}, then an unbiased estimate of the population mean number of runs per specimen, denoted by μ_{r}, can be obtained by the following formula:

$$
\mu_{r}=\frac{D_{d}+\text { permutations of } N}{\text { permutations of } N \times N}
$$

where $N=\sum n_{i}$, and $i=1,2,3, \ldots, s$.
It is unfortunate that neither Simpson's D nor Hurlbert's PIE nor Keefe's $T U$ has been extensively used by aquatic ecologists, because they are built based on a solid biological foundation.

McIntosh's M (1967) treats a community as a point in space and the point is calculated by measuring the distance from the origin of a system with as many axes as there are species. This point is equal to:

$$
\sqrt{\sum_{i=1}^{s}} n_{i}^{2}
$$

McIntosh claims that the above index is dependent upon the number of individuals in the sample and their distribution among the species. Therefore it is a measure of diversity. However, for any number of species in a given total number of individuals, this index gives a theoretical maximum when one species having the most individuals and the rest having a minimum of one individual each and a theoretical minimum when there are as many species as the number of individuals. Thus, McIntosh claims that the above index is actually the complement of diversity and an index directly related to diversity is obtained by subtracting the index from 1 :

$$
1-\sqrt{\sum_{i=1}^{s}} n_{i}^{2}
$$

He tabulates the maximum and minimum diversity values for a sample of 100 individuals with a given number of species according to the above formula. If one would calculate the values from the index for the above example and obtain that complement by subtracting the values from 1 , one would realize that the values listed in McIntosh's table (Table 3) are incorrect. In fact the values are obtained by subtracting the index from N. It implies that the "universe" for his system is N, though McIntosh never defines it, and the "complement" of his index is:

$$
N-\sqrt{\sum_{i=1}^{s} n_{i}^{2}}
$$

To overcome the deficiency of comparing samples of different size, he gives the following formula:

$$
M=\frac{N-\sqrt{\sum_{i=1}^{s} n_{i}^{2}}}{N-\sqrt{N}}
$$

McIntosh claims that this index has the advantage of expressing the observed diversity as a proportion of the absolute maximum diversity at a given N and ranges from 0 if there is only one species to 1 if diversity is maximum. This treatment is similar to the index proposed by Pielou (1966b) and Macarthur (1966) which represents a measure of evenness.

McIntosh's formula can also be expressed as the ratio of observed diversity to maximum possible diversity of a given N and s :

$$
\frac{N-\sqrt{\sum_{i=1}^{S} n_{i}}}{N-\frac{N}{\sqrt{S}}}
$$

or the ratio of observed diversity to minimum possible diversity at any N and s :

$$
\frac{N-\sqrt{\sum_{i=1}^{s} n_{i}}}{N-\sqrt{N-(s-1)^{2}+(s-1)}}
$$

where, at any given s and N, the maximum diversity is given by:

$$
N-\frac{N}{\sqrt{S}}
$$

and the minimum diversity is given by:

$$
N-\sqrt{\left(N-(s-1)^{2}+(s-1)\right.}
$$

McIntosh states that the above three indices served as base points for comparison distributions of individuals among species, and may not be found in most natural communities.

Washington (1984) notes "with pity" that McIntosh's index has not received enough attention in the field of ecology. He states that Hurlbert (1971) does not discuss this index and Liljelund (1977) merely notes the existence of McIntosh's M.

The quantitative indices evolved by Shannon (1948) and Brillouin (1956), based on information theory, are preferentially used by stream biologists over the qualitative TBI and semi-quantitative CBS. The Shannon index $\left(H^{\prime}\right)$ is calculated as: and the Brillouin index (H) as:

$$
\begin{gathered}
H^{\prime}=-\sum_{1=1}^{s} p_{1} \ln p_{1} \\
H=\ln \frac{N!}{N_{1}!N_{2}!N_{3}!\ldots N_{s}!}
\end{gathered}
$$

In a biological collection, the diversity is associated with the degree of uncertainty that exists regarding the specific individual species selected at random from a population. The greater the number of species, the more evenly they are distributed, the greater the uncertainty and hence according to Pielou (1966c) the greater the diversity .

Pielou (1966a, 1967) suggests that the Brillouin index should be applied to situations where the entire community can be identified and counted, and the Shannon index should be used when the diversity is to be estimated from a community where the true population is too large to be counted. Pielou $(1966 \mathrm{~b}, 1967)$ also modifies Shannon's formula to derive her evenness index:

$$
E^{\prime}=\frac{H^{\prime}}{H_{\max }^{\prime}}
$$

and Brillouin's formula to consider the diversity per individual for samples of different size:

$$
H=\frac{1}{N} \ln \frac{N!}{N_{1}!N_{2}!N_{3}!\ldots N_{s}!}
$$

Accordingly, Brillouin's evenness can be expressed as:

$$
E=\frac{H}{H_{\max }}
$$

Pielou $(1967,1975)$ further shows that diversity indices can be partitioned to consider hierarchical nature of biological classification so that they reflect the contribution made by different taxonomic levels of that sample. She (1975) suggests that a sample is more diverse if the species are distributed among several genera as opposed to are congeneric and more diverse still if the genera belong to several families rather than are confamilial.

Hamilton (1975) notes that usually ecologists calculate redundancy as well as diversity. Redundancy associated with Shannon index is given by Hamilton as:

$$
\begin{gathered}
R=\frac{\left(D_{\max }-D\right)}{\left(D_{\max }-D_{\min }\right)} \\
D_{\min }=-\left(\frac{t-1}{N}\right) \log _{2} \frac{1}{N}-\left(\frac{N-t+1}{N}\right) \log _{2}\left(\frac{N-t+1}{N}\right) \\
D_{\max }=-(t-r)\left(\frac{k}{N}\right) \log _{2} \frac{k}{N}-r\left(\frac{k+1}{N}\right) \log _{2}\left(\frac{k+1}{N}\right)
\end{gathered}
$$

where k is the greatest integer less than N / t, and $r=N-k t$. Redundancy associated with Brillouin index can be expressed as:

$$
\begin{gathered}
R^{*}=\frac{\left(D_{\max }^{*}-D^{*}\right)}{\left(D_{\max }^{*}-D_{\min }^{*}\right)} \\
D_{\min }^{*}=\frac{1}{N}\left(\log _{2} N!-\log _{2}(N-t+1)!\right) \\
D_{\max }^{*}=\frac{1}{N}\left(\log _{2} N!-t \log _{2} k!-r \log _{2}(k+1)\right)
\end{gathered}
$$

Redundancy measures the evenness of the distribution of individuals among the taxa and the values fall between 0 (maximum observed diversity) and 1 (minimum observed diversity). Redundancy and evenness were employed as measurement of relative diversity by many researchers (Wilhm and Dorris, 1966; Barrett, 1968; Peet, 1974). However, Hamilton (1975) feels that neither D and R nor D^{*} and R^{*} adequately conveys whatever ecologists meant by the concept of diversity. But he states that most ecologists, whom he has worked with, seem satisfied with using four summarized statistics -diversity, redundancy, number of taxa, and total number of individuals.

Shannon's formula has become increasingly popular so that many researchers (Wilhm, 1967, 1968, 1969, 1970, 1972; Wilhm and Dorris, 1966, 1968; Mathis and Dorris, 1968; Dambach and Olive, 1969; Benson-Evans et al., 1975; Devaux, 1975) have incorporated the Shannon index into their water quality studies. Wilhm and Dorris (1968) calculated diversity for biological communities using Shannon's formula to assess water quality in a range of polluted and unpolluted streams, and suggested that "pollution results in depression in diversity in the biotic community". He concluded that values of more than 3 were for clean water, values between 1 and 3
were zones of moderately pollution, and values less than 1 were characteristic of heavily polluted conditions.

A summary of the main properties of several diversity indices is shown in
Table 2.2. Most of the diversity values fall between the minimum and maximum of 0 and 1 except for Shannon and Brillouin diversities where the maxima approach infinity.

Other indices based on approaches with little biological relevance are relatives of species number, guesses by data fitting and curve fitting approach (See Table 2.1). These indices were reviewed extensively by Washington (1984) but will not be used here for the data analysis.

The abundance and the kinds of organisms are obviously important in assessing the impact of the pollution, but they can also result in the misinterpretation of water quality conditions. Mason (1977) studied macroinvertebrates collected from hypereutrophic and eutrophic lakes. He showed that while in most instances the diversity was lower at the hypereutrophic lake, it was lower at the eutrophic lake in the month of June of both years, due to the rapidly developed population of chironomid larvae Tanytarsus holochlorus. In this situation, Mason concluded that the number of species alone rather than its respective abundance gave a more consistent indication of the eutrophic status of the two lakes. Similar conclusions were arrived at by Winner et al. (1975) in a study of the macroinvertebrate response to a stream polluted with copper. Murphy (1978) demonstrated that the seasonal variations in some of the diversity indices at a given site were greater than the differences between sites along a river. Murphy (1978), therefore, questioned the difficulty of these
indices in differentiating temporal variability from consistent spatial discrimination between sites, subsequently, the usefulness of these indices in reflecting changes in water quality.

Obviously, the diversity index may give misleading results if samples are taken in different seasons. Moreover, the diversity index does not designate the sensitivity or tolerance of each species to a given pollutant. Therefore, a stressed environment consisting of many tolerant species with an ample number of animals may generate an identical diversity value as a clean environment consisting of many sensitive individuals. It is highly undesirable in a pollution survey to derive the same value when two sites share absolutely no common species.

D. Community Comparison Indices

Another type of index, the community comparison index (Table 2.3), which allows the simultaneous comparison of impacted and nonimpacted sites has recently become popular in assessing the impact of pollution. Some community comparison indices utilize only presence-absence data for qualitative studies to assess the differences between communities. These indices include Jaccard's coefficient of community (Jaccard, 1902, 1908, 1912), coefficient of similarity (Kulczynski, 1927), quotient of similarity (Sørensen, 1948), Ochiai's index (1957), Sokal and Michener's simple matching coefficient (Sokal and Michener, 1958), index of similarity (Mountford, 1962), and Fager and McGowan index (1963). In the above coefficients,
low similarities may be negative or zero, while high similarities assume values from near to unity to infinity.

Others incorporate abundance or biomass into the formula for quantitative investigation. The quantitative measures can be grouped into two categories: similarity and dissimilarity measures. Similarity indices include percent similarity (Renkonen, 1938), percentage similarity (Whittaker, 1952), Morisita similarity index (Morisita, 1959), simplified Morisita index (Horn, 1966), cosine or SIMI index (Stander, 1970), and Pinkham-Pearson index B and B_{2} (Pinkham and Pearson, 1976). Dissimilarity indices include Bray-Curtis index (Bray and Curtis, 1957), squared Euclidean distance (Sokal, 1961), Canberra metric (Lance and Williams, 1967), distance measure (Clifford and Stephenson, 1975), collection and percent dissimilarity (Pratt et al., 1981), and the average chi-square (Parrish and Wagner, 1983).

The simplest and oldest similarity index is that of Jaccard's (Jaccard1, 1902 and 1912; Jaccard2, 1908):

$$
\begin{gathered}
J C C 1=\frac{c}{a+b-C} \\
J C C 2=\frac{C}{a+b}
\end{gathered}
$$

Similarity indices with different comparison schemes were proposed by Sørensen (1948) and Sokal and Michener (1958). Sorensen's quotient of similarity is defined as:

$$
I=\frac{2 c}{(a+b)}
$$

Sokal and Michener's simple matching coefficient is defined as:

$$
S M C=\frac{c+d}{d+a+b}
$$

The index proposed by Sørensen in 1948 builds upon the same approach as the index proposed by Jaccard in 1908 (Jaccard2). Values obtained by Sørensen's quotient of similarity are always two times higher than the Jaccard2 index. Similarly, Sokal and Michener's simple matching coefficient (1958) obtain values that are identical to the index proposed by Jaccard in 1902 and 1912 (Jaccard1) if the number of mismatches (the absence of species at both sites) is not included. Jaccard's coefficient of community and Sokal and Michener's simple matching coefficient have been applied extensively to the surveys of protozoa, insects, non-insect macroinvertebrates, fish, and limnological data by many researchers (Cairns and Kaesler, 1969; Roback, et al., 1969; Kaesler, et al., 1971; Cairns and Kaesler, 1971; Kaesler and Cairns, 1972). More recently according to Washington (1984), Jaccard's index is still in use for terrestrial systems by plant ecologists but is seldom used in freshwater, pollution related work.

Indices proposed by Kulczynski (1927), Ochiai (1957), Mountford (1962) and Fager and McGowan (1963) take on a different approach. Kulczynski's index (1927) utilizes a multiplicative rather than an additive (Jaccard's index, Sørensen's index) way of averaging:

$$
I=\frac{C}{2}\left(\frac{1}{a}+\frac{1}{b}\right)
$$

It is clear that the additive calculation behave nicely when the denominators are very small, while the multiplicative one behaves well for large denominators. However, the relation between additive or multiplicative averaging is not always monotone increasing.

Mountford (1962) feels that any similarity index should possess two basic properties: it should be independent of sample size; it should increase with increasing common species and decrease with increasing species at both sites. He states that the underlying theoretical distribution of the species frequencies is necessary to derive an index that possesses these two properties. According to Fisher, Corbet and Williams (1943) the species frequency distribution in a random sample of an animal population follows a logarithmic-series distribution:

$$
\alpha x, \frac{\alpha x^{2}}{2}, \frac{\alpha x^{3}}{3}, \ldots
$$

where $\alpha x^{2} / n$ is the number of species with n individuals. α is a constant for all samples of whatever size from the same population. With the assumption of above species frequency distribution Mountford (1962) derives a similarity index which he claims is less dependent on sample size:

$$
I=\frac{2 c}{2 a b-(a+b) c}
$$

Clifford and Svephenson (1975) explain that the denominator of Ochiais index:

$$
I=\frac{c}{\sqrt{(c+b)(c+a)}}
$$

involves a geometric meen which in some circumstances is likely to be a more eftevtive "standardization" than a sum. Furthemore, an index derived from it, the Fager end M. CGowan index (1963):

$$
I=\frac{c}{\sqrt{(c+b)(c+a)}}-\frac{1}{2 \sqrt{c-b}}
$$

has been associated with a particular form of non-hierarchical inverse "clumping". The association of Fager and McGowan index with the recognition of "recurrent species groups" has been widely used in marine ecology (Fager and Mcgowan, 1963; Sheand. 1965: Fager and Longhurst. 1968; Fager, 1968; Jones, 1969; Longhurst, 1969; Lie and Kelley, 1970; Bayer et al., 1970; Martin et al., 1970; Boesch, 1971; and Bowman, 1971).

Pinitham and Pearson (1976) comment that the above indices calculate only species aumbers not the abundances, therefore, they may not detect changes related to the relative abundances in the communities.

Percent similarity proposed by Renkonen (1938) is the first index to include species ocourrences and relative abundances simultaneously in the formula. This index maesures the differences by summing up the minimum of relative abundances of each species of the compared pairs and can be expressed as:

$$
P S_{C}=\sum_{I=1}^{k} \min \left(I_{1 a}, I_{1 b}\right)
$$

where k is the number of different taxa at stations a and b, and $r_{i a}$ and $r_{i b}$ are the relative abundances of the $i^{i h}$ taxa in stations a and b, respectively.

Pinkham and Pearson (1976) criticize the failure of this index in detecting the differences in absolute abundances. In order to overcome such shortcoming Pinkham and Pearson (1976) continue with the above theoretical approach by comparing the species compositions with the average $X_{i a} \cap X_{i b}$ as opposed to the minimum $X_{i a} \cap X_{i b}$, where $X_{i a}$ and $X_{i b}$ are the numbers of individuals in the $i^{\text {th }}$ taxon for station a and b, respectively. The comparison of two stations is made by dividing the smaller of $X_{i a}$, $X_{i b}$ by the larger $X_{L a}, X_{i b}$; summing over k (the number of comparisons or different taxa in the two stations) and averaging by k. Expressing the above conditions in a formula Pinkham and Pearson gives:

$$
B=\frac{1}{k} \sum_{i=1}^{k} \frac{\min \left(X_{1 a}, X_{1 b}\right)}{\max \left(X_{1 a}, X_{1 b}\right)}
$$

Pinkham and Pearson note that this index can be employed with other indicators of "importance" in pollution surveys such as biomass or relative abundance and is not limited to the number of individuals. However, they feel that when the sample consists of organisms from the same trophic level, the desirability of assigning the same weight to each taxon may be lessened and the dominant taxa may be considered to play a more significant role in that trophic level. They conclude that the relative abundance of each taxon is a good weighing factor that reflects this
dominance and is intuitively the most acceptable. The formula proposed to include the weighing factor is given as:

$$
B_{2}=\frac{1}{k} \sum_{i=1}^{k} \frac{\min \left(X_{1 a}, X_{1 b}\right)}{\max \left(X_{i a}, X_{1 b}\right)}\left(\frac{\frac{X_{1 a}}{N_{a}} \frac{X_{i b}}{N_{b}}}{2}\right)
$$

in which N_{a} and N_{b} are the total numbers of individuals at stations a and b, respectively.

Bray-Curtis index (1957) has been quoted in a number of different contexts. Clifford and Stephenson (1975), Weinstein (1976) and Clifford and Williams (1976) quote Bray-Curtis dissimilarity as:

$$
D=\frac{\sum_{j=1}^{s}\left|x_{1 j}-x_{2 j}\right|}{\sum_{j=1}^{s}\left(x_{1 j}+x_{2 j}\right)}
$$

where $x_{1 j}=$ numbers in species j in quadrant l and $x_{2 j}=$ numbers in species j in quadrant 2. Clifford and Stephenson (1975) note that the above index is sensitive to occasional large numbers because the denominator of this coefficient involves the sum of all individuals of all species at the two sites. If one of the species is exceedingly abundant at one site and not the other, Bray-Curtis index is primarily dominated by that particular species. For example, if site A consists of five species with abundance status of $5,3,1,0$, and 2000 and site B with abundance status of $0,3,5,1,1$ for species $1,2,3,4$, and 5 , respectively, Bray-Curtis index in this case gives a value of 0.99. The influence of a species with 2000 individuals at site A, but not at site B, is
obvious with the above example. Bray-Curtis index has been applied to a number of marine studies (Field, 1969, 1971; Stephenson and Williams, 1971).

Poole (1974) quotes Bray-Curtis dissimilarity as:

$$
D_{i j}=\frac{1}{2} \sum_{j=1}^{s}\left|p_{1 j}-p_{2 f}\right|
$$

This formula was later cited by Dyer (1978), and is actually the "complement" of percentage similarity index discussed by Whittaker in 1952 and used by Whittaker and Fairbanks (1958) to compare copepod communities of small lakes and ponds.

Whittaker's percentage similarity index can be rewritten as percent similarity proposed by Renkonen (1938):

$$
\begin{aligned}
P S_{1 k} & =1-\frac{1}{2} \sum_{j=1}^{s}\left|p_{1 j}-p_{k j}\right| \\
& =\sum_{j=1}^{s} \min \left(P_{1 j}, P_{k j}\right)
\end{aligned}
$$

Bray-Curtis dissimilarity assumes the maximum and minimum values of 1 (when two communities share no common species) and 0 (when two communities share all common species). Both the Bray-Curtis dissimilarity index and its complement have been used to analyze species dissimilarity (Dyer, 1978) and to measure niche overlap (Hurlbert, 1978; Hanski, 1978).

Canberra metric (Lance and Williams, 1967), CM, can be expressed as:

$$
C M=\frac{1}{k} \sum_{i=1}^{s} \frac{\left|n_{1 i}-n_{2 i}\right|}{\left(n_{1 i}+n_{2 i}\right)}
$$

where k is the number of comparisons or different taxa in the two sampling units. This coefficient assumes the maximum value of 1 . It implies that the "universe" of both Bray-Curtis index and Canberra metric is equal to 1 . Therefore, their complements can be expressed as $1-D$ and $1-C M$, respectively. Clifford and Stephenson (1975) note that Canberra metric differs from the Bray-Curtis index in that it is not influenced by outstanding abundant species or an outstanding difference because the coefficient involves the sum of a series of fractions. However, the term:

$$
\frac{\left|n_{11}-n_{21}\right|}{\left(n_{1 i}+n_{21}\right)}
$$

becomes unity when one element of any comparison is zero. Thus, it is suggested that one of the compared elements is replaced by an arbitrary small positive number (Clifford and Stephenson, 1975). When both elements of any comparison are zero, the resulting value is decreased by the devisor (k), particularly when two compared stations share very few species in common. In this instance, the divisor k can be substituted by $k-r$, where r is the number of comparisons involving double zero comparisons (Clifford and Stephenson, 1975).

Morisita (1959) proposes a similarity measure to overcome the influence of sample size that many indices experience:

$$
C_{\lambda}=\frac{2 n_{11} n_{21}}{\left(\lambda_{1}+\lambda_{2}\right) N_{1} N_{2}} ; \lambda_{1}=\frac{n_{11}\left(n_{11}-1\right)}{N_{1}\left(N_{1}-1\right)} ; \lambda_{2}=\frac{n_{21}\left(n_{21}-1\right)}{N_{2}\left(N_{2}-1\right)}
$$

He feels that a difference between two samples may be nothing but a reflection of the difference between densities, not of the true relation if a index is sample size sensitive. He states that this index is almost uninfluenced by the size of N_{1} and N_{2} unless either or both of N_{1} and N_{2} are small. He also notes that the minimum values of C_{λ} is 0 when two communities share no common species, and the maximum, 1 , when these two communities share all common species.

Horn's simplified Morisita index (Horn, 1966) is a simplified form of Morisita similarity index by using an estimate of λ appropriate for a model of sampling with replacement and can be expressed as:

$$
C_{\lambda}=\frac{2 \sum n_{11} n_{21}}{\left(\lambda_{1}+\lambda_{2}\right) N_{1} N_{2}} ; \lambda_{j}=\frac{\sum n_{j i}^{2}}{N_{j}^{2}}
$$

It is suggested that this index be used as an empirical measure as opposed to an estimate of statistical parameter of the population from which the sample is drawn, or as "test" for heterogeneity (Horn, 1966). The minimum and maximum of Horn's simplified Morisita index are also between 0 (share no common species between two communities) and 1 (share all the common species).

Horn (1966) notes that Morisita similarity index, based on Simpson's diversity index, is a measure of the availability of items within certain categories and successive choices are combined multiplicatively. His index, derived from Shannon
index, is designed as a measure of the choices which can be made among items in certain categories and successive choices are combined additively.

Stander (1970) states that comparative studies of ecological systems require an objective measure of the similarity between different populations. Similarity is given in his study by the $S I$ and $S I M I$ measures given below. $S I_{12}$ represents the similarity between collections 1 and 2 . It is given by:

$$
S I_{12}=\sum_{i=1}^{s} p_{11} p_{21}
$$

where $p_{1 i}=$ proportion of $i^{\text {th }}$ species in first collection, $p_{2 i}=$ proportion of $i^{\text {th }}$ species in second collection, and $s=$ number of species over both collections.

SIMI also represents similarity, but it is scaled by the factor $\left(S d_{1}\right)\left(S d_{2}\right)$ so that the value of SIMI ranges from 0 to 1 with maximum similarity occurring at $S I M I=1$, and minimum similarity at $S I M I=0$. The formula is defined by Stander (1970) as:

$$
S I M I_{12}=\frac{S I_{12}}{\left(S d_{1}\right)\left(S d_{2}\right)}
$$

where the $S d$ values are the square root of the $S d^{2}$ values and $S d^{2}$ is defined as:

$$
S d^{2}=\sum_{i=1}^{s} P_{i}^{2}
$$

SIMI values represent the probability that two individuals drawn randomly from each population will belong to the same species, relative to the square root of the probability of randomly drawing them from each population alone.

The concept of Squared Euclidean distance $\left(D^{2}\right)$ derives from representations of taxonomic relationships (Sokal, 1961). The equation can be expressed as follow:

$$
\delta_{1,2}^{2}=\sum_{i=1}^{n}\left(X_{11}-X_{12}\right)^{2}
$$

where $X_{i l}$ is the state code of species I for character i. In comparing biological collections, $X_{i l}$ can be treated as the number of individuals or the proportion of species i in a sample in collection 1. Alternatively, Euclidean distance can be obtained by taking the square root of Squared Euclidean distance and be expressed as:

$$
\delta_{i, 2}=\left[\sum_{i=1}^{n}\left(X_{i 1}-X_{i 2}\right)^{2}\right]^{\frac{1}{2}}
$$

Sokal (1961) feels that among various types of coefficients in numerical taxonomy, the coefficient of distance is more appealing to taxonomists and somewhat simpler to visualize. Clifford and Stephenson (1975) state that the Euclidean distance between entities may vary from zero (completely similarity) to an indefinitely large value depending on the number and magnitudes of the differences involved. The larger the distance the smaller the degree of similarity between taxa, therefore, Euclidean distance is often used as a dissimilarity measure. Also because the maximum can approach infinity there is no direct similarity counterpart to this measure (Clifford and Stephenson 1975). The complement of Squared Euclidean distance and Euclidean distance have been used in computer simulation to test a number of community parameters associated with species richness and equitability (Wolda, 1981; Boyle et al., 1990). The employment of the complement of Squared Euclidean distance $\left(1-D_{1,2}{ }^{2}\right)$ by Wolda is dubious because the "universe" of Squared Euclidean distance approaches infinity.

Pratt et al. (1981) propose a new measure (collection dissimilarity) in their study to assess the effects of urban stormwater runoff on benthic macroinvertebrates. They suggest that the most common species occurring in appropriately matched collections be added to the list until approximately 60% of each collection is accounted for. They feel that a species that does not make the list is relatively uncommon and more prone to sampling error, and as such would have little effect on the overall characterization of either collection. They first adjust the actual abundances for the species from the urban collections $\left(N_{u i}\right)$ when their sum $\left(\sum N_{u i}\right)$ is not equal to the sum of the reference species $\left(\sum N_{r i}\right)$. The adjusted abundances $\left(N_{u i}^{\prime}\right)$ are obtained by multiplying each $N_{u i}$ by $\sum N_{r t} / \sum N_{u i}$. They explain that in order to take into account whether a particular species is in both collections or only in one, as well as the magnitudes of $N_{r i}$ and $N_{u i}^{\prime}$ relative to each other and to $\sum N_{r i}$, the absolute differences between $N_{r i}$ and $N_{u i}^{\prime}$ are adjusted. Their collection dissimilarity (CD) in short can be expressed as:

$$
C D=\frac{1}{s} \sum_{i=1}^{s}\left[\frac{\left|N_{r i}-N_{u i}^{\prime}\right|}{\left(N_{r 1}+N_{u i}^{\prime}\right)}+\frac{\left|N_{r i}-N_{u i}^{\prime}\right|}{\sum_{i=1}^{s} N_{r 1}}\right], \quad N_{u i}^{\prime}=N_{u 1} \times \frac{\sum_{1=1}^{s} N_{r i}}{\sum_{i=1}^{s} N_{u 1}}
$$

where $N_{r i}=$ the observed reference abundance of the $i^{\text {th }}$ species, $N_{u i}^{\prime}=$ the adjusted urban abundance of the $i^{\text {ih }}$ species. $C D$ value ranges from zero (indicating the two collections had the same species predominating in equivalent relative amounts) to maximum of $1+(2 / s)$ (indicating the failure of two collections to shared any of their most common species). Pratt et al. (1981) state that collection dissimilarity can be expressed as a percentage of the maximum dissimilarity:

$$
P D=\frac{C D}{1+(2 / s)}
$$

Dividing $C D$ by $1+(2 / s)$ yields the dissimilarity value that ranges from zero to maximum of 1 as opposed to $1+(2 / s)$. This implies that the "universe" of $P D$ is 1 , therefore, it's possible to find the similarity counterpart (1-PD).

The average chi-square (Parrish and Wagner, 1983) is the most recent dissimilarity index claimed to be sensitive to water pollution. The average chi-square is determined according to the following formula:

$$
\bar{\chi}^{2}=\frac{2}{N} \sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)}{E_{i}}
$$

where E_{i} is the mean of the individuals in a taxon in the communities being compared, O_{i} is the number of individuals in one community, and N is the total number of individuals in both communities. Parrish and Wagner (1983) explain that their method differs from others in that the expected (E) is the mean of the total number of individuals in a taxon in both samples - the assumptions being that both communities are unstressed and identical, with the individuals equally distributed between the samples and frequency differences due to sampling. The resulting values range from 0 (identical samples) to 1 (totally different samples). They claim that the coefficient results in a dimensionless "distance" that is linear and independent of sample size.

A summary of the qualitative and quantitative similarity or dissimilarity indices with their respective formulae is listed in Table 2.3. An attempt is made to unify the notations to avoid confusion. The main properties of these qualitative and quantitative
community comparison indices are shown in Tables 2.4 and 2.5. Most indices have the minimum and maximum values of 0 and 1 . The maximum values of Mountford's index of similarity, Morisita similarity index, and Squared Euclidean distance approach infinity. Jaccard's coefficient of community (1908), Ochiai's index and PinkhamPearson index B_{2} have maximum similarity values of 0.5 .

Similarity indices are more widely employed by terrestrial ecologists, and relatively few have been used by aquatic biologists. The mathematical manipulation of estimating the differences and adding the differences over the two communities being compared often results in discrepancies among the various index values. Most community comparison indices have inherited some kind of bias. Some indices are sensitive for or against rare taxa. Some are biased for dominant species. The results of all possible comparisons yield a matrix that can be shaded differentially according to a different level of similarity. Such pattern can be visually inspected in some cases. When large numbers of comparison are made, multivariate technique such as cluster analysis (Williams, 1971; Pielou, 1984) can be implemented to construct a dendrogram which displays visually the varying degrees of similarity among the samples.

Very often, the investigators tend to make the assumption that the index employed is capable of truthfully and accurately reflecting the similarity or dissimilarity between the two communities in a pollution assessment. Huhta (1979) evaluates various similarity indices using the data generated from the study of arthropod communities succession and finds that the resulting values depend largely on the indices applied. Boyle et al. (1990) analyze nine diversity and seven similarity indices of three communities with different initial structure following three types of
perturbations, using computer simulation techniques, to determine whether the response of these diversity and similarity indices are dependent on the initial structure or on the manner in which the community is changed. He concludes that the similarity indices are dependent on both initial structure and perturbation. In particular, similarity indices should be used in conjunction with other indices. He states that "further statistically based research and field validation" is necessary to develop an understanding of the assumptions that each of the indices makes about measuring community structure.

Therefore, it is important to understand the limitations of the indices when they are applied to data analysis. Indices should be used in conjunction with sound ecological judgement in pollution impact assessments. Sophisticated data treatment should not be a substitute for one's ecological reasoning. One should only draw definite conclusions after using several indices and comparing the results. For example, Johansson and Minns (1987) suggest that the percentage similarity index is the best index for distinguishing community differences. Pinkham and Pearson (1976), however, point out that this index can result in similarity between two communities if eutrophication is the only factor influencing the community structure and composition. Pontasch and Brusven (1988) show that in quantifying differences in macroinvertebrate composition between gas-impacted and a reference area, the Bray-Curtis and average chi-square community comparison indices are the most effective. In quantifying macroinvertebrate response to a complex effluent in laboratory microcosms, the BrayCurtis index is superior to all other community comparison indices in yielding the most meaningful condensation of data (Pontasch, et al., 1989).

E. Chlorine Toxicity

It is estimated that 18,700 tons of chlorine were applied to sewage treatment in the U.S. in 1973. The quantity is a testament to its pervasiveness in the public health domain (Chlorine Institute, 1974). Like most states in U.S., Massachusetts requires the disinfection of wastewater during the months of April to October. However, the discharge of a broad spectrum biocide, such as chlorine, is counter to the goal of "...The protection and propagation of fish, shellfish, and wildlife..." promulgated by the 1972 and 1977 Amendments (the Clean Water Act (CWA)) to the Federal Water Pollution Control Act (FWPCA) of 1948 (Foster, 1984). The irony here is that by mandating the application of chlorine to sewage, the Commonwealth may well be a major offender of these statutes.

When chlorine is added to pure water, two forms of free chlorine are formed: the hypochlorous acid (HOCl) and the hypochlorite ion $\left(\mathrm{OCl}^{-}\right)$. Both HOCl and OCl^{-} provide effective bacterial kills with HOCl being the more toxic. The concentrations of HOCl and OCl^{-}in the water is pH dependent. At pH 7.5 , the concentrations of HOCl and OCl^{-}are equal. At pH above or below $7.5, \mathrm{OCl}^{-}$and HOCl predominate respectively.

In the presence of ammonia, chlorine will react to produce a combination of monochloramines $\left(\mathrm{NH}_{2} \mathrm{Cl}\right)$, dichloramines $\left(\mathrm{NHCl}_{2}\right)$ and trichloramines $\left(\mathrm{NCl}_{3}\right)$. Chloramine speciation is pH and temperature dependent. Although free chlorine is the most reactive and toxic form (Brungs, 1973), all three chloramine compounds are known to be toxic to many macroinvertebrates (Larson et al., 1978; Seegert and

Brooks, 1979). The total amount of measurable free and combined chlorine in the water is referred to as total residual chlorine (TRC). Both free and combined chlorine demonstrate approximately the same order of magnitude of toxicity (Merkens, 1958). Therefore, the measure of total residual chlorine (TRC) is sufficient for the estimation of chlorine toxicity (Doudoroff and Katz, 1950).

In the presence of organic compounds (particularly municipal wastewater where the organic content is high), a number of chlorinated organic byproducts (TOX) are created (Jolly, 1975; Murphy, 1975; Oliver and Visser, 1980; Miller and Uden, 1983; Kinstley et al., 1983; Boyce and Horning, 1983; Trehy et al., 1986). TOX were also found in bleached pulp and papermill effluent (Paasivirta, 1988). One compound, trichloroacetic acid, has been show to increase oxygen consumption and ammonia excretion in the dragonfly nymph Somatochlora cingulata at levels of environmental relevance (i.e. 10-100 $\mu \mathrm{g} / \mathrm{l}$) (Correa et al., 1985). These chlorinated organic byproducts, particularly those that are non-polar in nature, have been shown to persist in the sediment (Larsson, 1985 and 1986).

Chlorine toxicity has been demonstrated to affect all trophic levels of aquatic biota. Such damage to non-target organisms has provided an increase in research to describe the extent of chlorine toxicity. Fish were the first organisms investigated with regard to the toxicity of chlorinated municipal sewage effluent because of their commercial and political importance (Coventry et al., 1935; Merkens, 1958; Tasi, 1969; Arthur and Eaton, 1971; Tsai, 1971; Heath, 1978; Larson and Schlesinger, 1978; Thomas et al., 1980; Trabalka et al., 1980; Ward and DeGraeve, 1978a; Ward and DeGraeve, 1980; Osborne et al., 1981; Brooks and Bartos, 1984). Much of the
research was performed in the laboratory with continuous or intermittent chlorination and focused on determining the tolerance limits of various species to free or/and combined chlorine. Brooks and Seegert (1978) categorized fish, based on the toxicity of intermittent doses of monochloramines, as either sensitive (72-hr LC C_{50} of 0.35 to $0.71 \mathrm{mg} / \mathrm{l}$) or resistant ($72-\mathrm{hr} \mathrm{LC}_{50}$ of 1.15 to $1.50 \mathrm{mg} / \mathrm{l}$). Among the ten species of freshwater fish tested the salmonids (trout and salmon) were found to be the most sensitive. Rainbow trout, Salmo gairdneri, had a $96-\mathrm{hr} \mathrm{LC}_{50}$ of $0.037 \mathrm{mg} / \mathrm{l}$ and this concentration only reflected 19% of that in the original effluent (Ward and Degraeve, 1980).

Physiological parameters have also been selected as endpoints to evaluate the effects of chlorine toxicity on the fathead minnow, Pimephales promelas. Working with trout, Dandy (1972) found disequilibrium to be the point at which removal of the toxicant no longer resulted in recovery. Exposure to chlorine initially caused increase in activity, ventilation, and the "coughing" reflex. The intense activity remained high for several hours followed by slow and spasmodic movement. Eventually the fish tended to lose equilibrium. Grothe and Eaton (1975) found a one hour exposure to 1.5 mg / l monochloramine resulted in a loss of equilibrium. They speculated that the oxidation of hemoglobin to methemoglobin resulted in hypoxia and eventually death. However, Bass and Heath (1977) reported that the physiological response to exposure of residual chlorine caused reduced blood pH , increased lactate levels, lowered arterial pO_{2}, slightly elevated methemoglobin levels. The authors concluded that the increase in methemoglobin probably was not physiologically significant, but rather death was caused by internal hypoxia induced by damage to the gills.

Much of the data collected to date regarding chlorine toxicity with macroinvertebrates has been laboratory oriented (Arthur and Eaton, 1971; Arthur et al., 1975; Gregg, 1974). These laboratory-based toxicity tests have provided median lethal concentrations $\left(\mathrm{LC}_{50}\right)$ for many zooplankton species. The $48-\mathrm{hr} \mathrm{LC}_{50}$ values of TRC for zooplankton range from $0.017 \mathrm{mg} / \mathrm{l}$ for Daphnia magna to $3.2 \mathrm{mg} / \mathrm{l}$ for Aeolosoma headleyi (Clarke et al., 1977; Ward and DeGraeve, 1978b; Cairns et al., 1978).

Laboratory studies also provided LC_{50} for many macroinvertebrate species.
Arthur et al. (1975) found that, in general, the macroinvertebrates had 7-d TL_{50} values from 0.21 to $>0.81 \mathrm{mg} / 1 \mathrm{TRC}$ in wastewater. Amphipods, for example, had a mean long-term no adverse effect level of $12 \mathrm{ug} / \mathrm{l}$. However, $7-\mathrm{d} \mathrm{LC}_{50}$ values as low as 0.01 mg / l have been observed for some invertebrates (Gregg, 1974). The amphipod Hyalella azteca and the crayfish Orconectes australis had 96-hr LC C_{50} values of 0.65 to $0.83 \mathrm{mg} / 1 \mathrm{TRC}$ and $1.08 \mathrm{mg} / 1 \mathrm{TRC}$, respectively (Clarke et al., 1977). Overall, Daphnia magna, with acute LC_{50} 's of 2 to $45 \mathrm{ug} / \mathrm{l}$, were the most sensitive invertebrates (Arthur et al, 1975; Ward and DeGraeve, 1980; EPA, 1985). In general, however, fish and invertebrates demonstrated comparable ranges of sensitivities (EPA, 1985).

Although laboratory studies are reproducible and scientifically rigorous (Odum, 1977; Cairns, 1986), they lack a degree of ecological relevance (Livingston, 1979; Carriker et al., 1982; Bascom, 1982). In particular, it is difficult to draw any conclusion about the ecological impact of a pollutant at the community level (Connell and Sousa, 1983; Likens, 1985; Cairns, 1986; Perry and Troelstrup, 1988).

Unfortunately, very limited field research into the effects of chlorinated municipal
wastewater on the macroinvertebrate community of the receiving stream have been investigated. Simpson (1980) observed the abnormalities in the tracheal gills of the net spinning Tricoptera recovered from the streams that received chlorinated and crude oil wastes. Moore et al. (1980) recorded the mutagenic activity of Sheep River, Alberta that received a chlorinated sewage effluent. Research by Pagel and Langdon (1981) compared the macroinvertebrate communities upstream and downstream of chlorinated sewage discharge for a number of rivers but was limited to a preliminary study "...designed to identify possible areas in which problems were occurring". Osborne (1985) and Osborne and Davies (1987) made intersite comparisons of macroinvertebrate communities. However, the community response was confounded by a thermal discharge just below the sewage outfall. Temperature was shown to exert a profound effect on chlorine toxicity (Capuzzo, 1977; Heath, 1978; Capuzzo, 1979). Research by Lewis (1986) on the impact of a municipal wastewater effluent on macroinvertebrates in the Little Miami River was limited by the scarcity of macroinvertebrates found in their circular Hester-dendy plates. Most recently, chlorine was found to reduce the colonization of amphipod shredders, and consequently reduced litter processing rates (Newman et al. 1987).

Brungs (1973) reviewed chlorine toxicity and recommended continuous TRC concentrations of $0.002 \mathrm{mg} / \mathrm{l}$ to protect most aquatic organisms. To protect salmonids, Brungs suggested TRC should not exceed $0.01 \mathrm{mg} / \mathrm{l}$ for 30 minutes. Mattice and Zittel (1976) recommended the chronic toxicity threshold for freshwater be 0.0015 mg / l TRC. The 1984 ambient water quality criteria for chlorine (EPA, 1985) stipulated a TRC concentration of $0.002 \mathrm{mg} / \mathrm{ml}$ to protect salmonid fish and $0.01 \mathrm{mg} / \mathrm{l}$
to protect general aquatic life. They also recommended that a four-day average TRC concentration of $0.011 \mathrm{mg} / \mathrm{l}$ not be exceeded more than once every three years.

Table 2.1 Diversity indices which are proposed in ecosystem studies, arranged in eight categories according to their theoretical approach. After Washington (1984).
(i) SNMPSONS INDEX
(A) Simpson's D (1949), where

$$
D=\sum_{i=1}^{5} \frac{n_{2}\left(n_{2}-1\right)}{2(n-1)}
$$

(2) RELATIVE OF SPECIES NUMBER
(B) Kothe's species deficit (1962)

$$
\frac{Z_{2}-A_{x}}{A_{1}}=100
$$

(C) Odum's species per thousand individuals (1960)
(3) GLESSES BY DATA FITTLNG
(D) Gleason's iodex (1922)

$$
D=\frac{s}{\ln V}
$$

(E) Margalefs index (1958)

$$
D=\frac{s-1}{\ln l}
$$

(F) Menhinick's index (1964)

$$
D=\frac{B}{\sqrt{N}}
$$

Continued, next page.

Table 2.1 (Continued).
(4) CURVE FITTING APPROACH
(G) Motomura's geometric series (Motomura, 1932; Whittaker, 1965)

$$
y=A C^{(x-1)}
$$

(H) Fisher's

$$
s_{1}=\alpha \ln \left(1+\frac{N}{\alpha}\right)
$$

(I) The modified Yules "characteristic" (Yules, 1944; Williams, 1964)

$$
\frac{M_{1}^{2}}{M_{2}-M_{1}}=\frac{n^{2}}{\sum n(n-1)}
$$

(J) Preston's log-normal "a" (1948), where

$$
y=y_{0} \exp (-a R)^{2}
$$

(5) INFORMATION THEORY
(K) Brillouins H (1951)

$$
H=\frac{1}{N} \ln \frac{N!}{N_{1}!N_{2}!N_{3}!\ldots N_{s}!}
$$

(L) Shannon's H^{\prime} (Shannon and Weaver, 1949)

$$
H^{\prime}=-\sum_{i=1}^{s} \frac{n_{1}}{n} \ln \frac{n_{1}}{n}
$$

(M) Evenness E^{\prime} (Pielou, 1966b; Macarthur, 1966)

$$
E^{\prime}=\frac{H^{\prime}}{H_{\max }^{\prime}}
$$

(N) Redundancy R^{\prime} (Patten, 1962; Hamilton, 1975)

$$
R^{\prime}=\frac{H_{\max }^{\prime}-H^{\prime}}{H_{\max }^{\prime}-H_{\min }^{\prime}}
$$

Table 2.1 (Continued).
(6) HURLBERT’S "ENCOUNTER " INDEX (1971)
(O) Hurlbert's PIE, where

$$
P I E=\left(\frac{N}{N-1}\right)\left(1-\sum_{i=1}^{5} p_{i}^{2}\right)
$$

(7)

MCINTOSH'S 'ECOLOGICAL DISTANCE" RELATIVE (1967)
(P) McIntosh's M

$$
M=\frac{n-\sqrt{\sum_{i=1}^{5} n_{i}^{2}}}{n-\sqrt{n}}
$$

(8) THEORY OF RUNS
(Q) Cairns SCI (Cairns et al., 1968; Cairns and Dickson, 1971)

$$
S C I=\overline{D I_{1}} \times \text { no.taxa } ; \overline{D I_{1}}=\frac{\sum \frac{\text { no.run }}{\text { no.specimens }}}{N_{S C I}}
$$

(R) Keefe's TU (Keefe and Bergersen, 1976; 1977)

$$
T U=1-\left(\frac{n}{n-1}\right)\left(\sum_{i=1}^{k} p_{1}^{2}-\frac{1}{n}\right)
$$

List of terms

$s=$ the number of species in either a "sample" or a "population"
$k=$ number of taxa in either "sample" or a "population"
$N=$ the number of individuals in a population or community
$N_{i}=$ the number of individuals in species i of a population or community
$n=$ the number of individuals in a sample from a population
$n_{i}=$ the number of individuals in a species i of a sample from a population
$p_{i}=$ the fraction of a sample of individuals belonging to species i
$\pi_{i}=$ the fraction of a population of individuals belonging to species i

Table 2.2 Summary of the main properties of several diversity indices.

Diversity Indices	Range of Values Corresponding Diversity Min. Max			Min.	Max
Simpson's D (1949)	0	1	more diverse	less diverse	
Information Theory Indices (1949, 1951) 0 ∞ less diverse	more diverse				
Hurlbert's PIE (1971)	0	1	less diverse	more diverse	
McIntosh's M (1967)	0	1	less diverse	more diverse	
Keefe's TU (1976)	0	1	less diverse	more diverse	
Theory of Run (1994)	0	1	less diverse	more diverse	
Shannon's Redundancy (Patten, 1962)	0	1	more diverse	less diverse	
Brillouin's Redundancy (Hamilton, 1975)	0	1	more diverse	less diverse	
Shannon's Evenness (Macarthur, 1966)	0	1	less diverse	more diverse	
Brillouin's Evenness (Hamilton, 1975)	0	1	less diverse	more diverse	

Table 2.3 Various qualitative and quantitative similarity/dissimilarity indices proposed in ecosystem studies.

QUALITATIVE COMMUNITY COMPARISON INDICES

(1) Jaccard's Coefficient of community $(1902,1912)$

$$
J C C 1=\frac{c}{a+b-c}
$$

(2) Jaccard's Coefficient of community (1908)

$$
J C C 2=\frac{c}{a+b}
$$

(3) Coefficient of Similarity (Kulczynski, 1927)

$$
I=\frac{c}{2}\left(\frac{1}{a}+\frac{1}{b}\right)
$$

(4) Quotient of Similarity (Sarensen, 1948)

$$
I=\frac{2 c}{(a+b)}
$$

(5) Ochiai's Index (1957)

$$
I=\frac{c}{\sqrt{(c+b)(c+a)}}
$$

(6) Sokal and Michener's Simple Matching Coefficient (1958)

$$
\text { SMC }=\frac{c+d}{d+a+b}
$$

(7) Index of Similarity (Mountford, 1962)

$$
I=\frac{2 c}{2 a b-(a+b) c}
$$

(8) Fager and McGowan Index (1963)

$$
I=\frac{c}{\sqrt{(c+b)(c+a)}}-\frac{1}{2 \sqrt{c+b}}
$$

Table 2.3 (Continued).
(9) Revised Fager and McGowan Index (1994)

$$
I=\frac{2 \times c}{\sqrt{(c+b)(c+a)}}-\left(\frac{1}{2 \sqrt{c+b}}+\frac{1}{2 \sqrt{c+a}}\right)
$$

QUANTITATIVE COMMUNITY COMPARISON INDICES

SIMILARITY INDICES

(10) Percent Similarity (Renkonen, 1938)

$$
P S=\sum_{1=1}^{s} \min \left(P_{11}, P_{21}\right)
$$

(11) Morisita Similarity Index (1959)

$$
M S I=\frac{2 \sum_{1=1}^{s} n_{11} n_{21}}{\left(\lambda_{1}+\lambda_{2}\right) N_{1} N_{2}} ; \lambda_{1}=\frac{\sum_{i=1}^{s} n_{11}\left(n_{11}-1\right)}{N_{1}\left(N_{1}-1\right)} ; \lambda_{2}=\frac{\sum_{1=1}^{s} n_{21}\left(n_{21}-1\right)}{N_{2}\left(N_{2}-1\right)}
$$

(12) Simplified Morisita Index (Horn, 1966)

$$
c_{2}=\frac{2 \sum_{i=1}^{s} n_{11} n_{21}}{\left(\lambda_{1}+\lambda_{2}\right) N_{1} N_{2}} ; \lambda_{j}=\frac{\sum_{i=1}^{s} n_{j 1}^{2}}{N_{j}^{2}}
$$

(13) Stander's SIMI (1970)

$$
\text { SIMI }=\frac{\sum_{i=1}^{s} P_{11} P_{21}}{\sqrt{\sum_{i=1}^{s} P_{11} \sum_{i=1}^{s} P_{21}}}
$$

(14) Pinkham-Pearson Index B (1976)

$$
B=\frac{1}{s} \sum_{i=1}^{s} \frac{\min \left(n_{11}, n_{21}\right)}{\max \left(n_{11}, n_{21}\right)}
$$

Table 2.3 (Continued).
(15) Pinkham-Pearson Index B_{2} (1976)

$$
B_{2}=\frac{1}{s} \sum_{1=1}^{s} \frac{\min \left(n_{11}, n_{21}\right)}{\max \left(n_{11}, n_{2 i}\right)}\left[\frac{\frac{n_{11}}{N_{1}} \frac{n_{21}}{N_{2}}}{2}\right]
$$

DISSIMILARITY INDICES

(16) Bray-Curtis Index (1957)

$$
B C=\frac{\sum_{i=1}^{s}\left|n_{1 i}-n_{2 i}\right|}{\sum_{i=1}^{s}\left(n_{11}+n_{2 i}\right)}
$$

(17) Bray-Curtis Index (Poole, 1974)

$$
D=\frac{1}{2} \sum_{i=1}^{s}\left|p_{11}-p_{21}\right|
$$

(18) Squared Euclidean Distance and Euclidean Distance (Sokal, 1961)

$$
\begin{gathered}
\delta_{1,2}^{2}=\sum_{1=1}^{s}\left(n_{11}-n_{21}\right)^{2} ; \\
\delta_{1,2}=\left[\sum_{i=1}^{s}\left(n_{11}-n_{21}\right)^{2}\right]^{\frac{1}{2}}
\end{gathered}
$$

(19) Distance Measure (Clifford and Stephenson, 1975)

$$
\begin{gathered}
d_{1,2}=\left[\sum_{1=1}^{s}\left(p_{11}-p_{21}\right)^{2}\right]^{\frac{1}{2}} ; \\
d_{1,2}^{2}=\sum_{1=1}^{s}\left(p_{11}-p_{21}\right)^{2}
\end{gathered}
$$

(20) Canberra Metric (Lance and Williams, 1967)

$$
C M=\frac{1}{s} \sum_{i=1}^{s} \frac{\left|n_{11}-n_{21}\right|}{\left(n_{11}+n_{21}\right)}
$$

Continued, next page.

Table 2.3 (Continued).
(21) Collection Dissimilarity (Pratt et al., 1981)

$$
\begin{aligned}
& \S D=\frac{C D}{1+\frac{2}{S^{\prime}}} * 100 \\
& C D=S D_{1}+S D_{2}+S D_{3}+\ldots+S D_{1} \\
& S D_{1}=\frac{A D_{1}}{n_{1 i}+n_{2 i}^{\prime}}+\frac{A D_{1}}{\sum_{i=1}^{s^{\prime}} n_{11}} \\
& A D_{1}=\left|n_{11}-n^{\prime}{ }_{21}\right| \\
& n_{21}^{\prime}=n_{21} \times \frac{\sum_{i=1}^{s^{\prime}} n_{1 i}}{\sum_{1=1}^{s^{\prime}} n_{21}}
\end{aligned}
$$

(22) The Average Chi-Square (Parrish and Wagner, 1983)

$$
\bar{\chi}^{2}=\frac{2}{N} \sum_{i=1}^{s} \frac{\left(O_{1}-E_{1}\right)}{E_{i}}
$$

List of terms

$a=$ the number of species in community 1
$b=$ the number of species in community 2
$c=$ the number of matches in which a give species is present in both communities
$d=$ the number of matches in which a give species is absent from both communities
$P_{l i}=$ the proportion of species i in community 1
$P_{2 \mathrm{i}}=$ the proportion of species i in community 2
$n_{1 i}=$ the number of individuals in species i in community 1
$n_{2 \mathrm{i}}=$ the number of individuals in species i in community 2
$N_{1}=$ the total number of individuals in community 1
$N_{2}=$ the total number of individuals in community 2
$s=$ the number of species present in communities 1 and 2
$s^{\prime}=$ the adjusted number of species present in communities 1 and 2
$O_{\mathrm{i}}=$ the number of individuals in species i in one community
$E_{i}=$ the sum of the individuals in species i in both communities divided by 2
$N=$ the total number of individuals in both communities indices usually require intensive calculations.
$N_{r i}=$ the observed reference abundance of the $i^{\text {ih }}$ species
$N_{u i}=$ the observed urban abundance of the $i^{\text {ih }}$ species

Table 2.4 Summary of the main properties of several qualitative community comparison indices.

| Qualitative Community Comparison Indices | Range of Values
 Min. | Corresponding Similarity
 Max. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Min. | Max. | |

Table 2.5 Summary of the main properties of several quantitative community comparison indices.

Quantitative Community	Range of Values Corresponding Similarity Comparison Indices			Min.
Max.	Min.	Max.		
Percent Similarity (Renkonen, 1938)	0	1	less similar	more similar
Morisita Similarity Index (1959)	0	∞	less similar	more similar
Simplified Morisita Index (Horn, 1966)	0	1	less similar	more similar
Stander"s SIMI (1970)	0	1	less similar	more similar
Pinkham-Pearson Index B (1976)	0	1	less similar	more similar
Pinkham-Pearson Index B2 (1976)	0	0.5	less similar	more similar
Bray-Curtis Index (1957)	0	1	more similar	less similar
Euclidean Distance (Sokal, 1961)	0	∞	more similar	less similar
Canberra Metric (Lance and Williams, 1967)	0	1	more similar	less similar
Distance Measure (Clifford and Stephenson, 1975)	0	∞	more similar	less similar
Percent Dissimilarity (Pratt et al., 1981)	0	1	more similar	less similar
Average Chi-Square (Parrish and Wagner, 1983)	0	1	more similar	less similar

CHAPTER III

MATERIALS AND METHODS

A. Study Site

1. Lampson Brook and Belchertown, Massachusetts

The study was conducted at Lampson Brook, a second order stream, located in the west-central portion of Belchertown in the State Reservation (Coler, 1990). The headwaters of Lampson Brook originate in the swamp north of the intersection of State Street and Turkey Hill Road. The stream flows past Belchertown State School and meets with a small tributary, which originates in the small swamp south-west of the intersection of routes 9 (Sargen Street) and 202 (Main Street), passes wastewater treatment plant, then flows under George Hannum Street. The brook enters a swamp about 120 meters below the sewage treatment plant, crosses back under George Hannum Street 900 meters below the outfall, and is joined by Western Brook 900 meters below Hannum Street. It extends 1320 meters to a small pond adherent to Mill Road. Along Mill Road, it passes two private swimming pools, crosses Boardman Street and Rural Street, finally ends, 3680 meters from the outfall, in Forge Pond, Granby (United States Department of the Interior Geological Survey Topo Map, Belchertown, Massachusetts quadrangle).

Belchertown is located in west-central Massachusetts, Hampshire County. It has a population of 7,863 with a land area of 55.4 square miles (Massachusetts

Municipal Profiles, 1987). The general climate is characterized by warm, humid summers and moderately cold winters. The median temperature ranged from $19^{\circ} \mathrm{F}$ to $70^{\circ} \mathrm{F}$ and the total rainfall ranged from 0.95 to 6.80 inches during the study period (Monthly Report of Wastewater Treatment Plant, September, 1987 to October, 1988). The annual average evaporation is 28 inches, and average runoff is 20 inches (Smith, 1975). Stream water recharge occurs between October and April and reaches the lowest levels in the summer due to evaporation.

Above the sewage outfall, the watershed is composed of a combination of agricultural land, areas of dense mixed hardwood and softwood trees (21-40 feet high), as well as Wastewater Treatment Plant-utilized filter bed. The watershed of downstream area consists of a shallow marsh, areas of dense mixed hardwood and softwood trees (21-60 feet high), clustered residential land, unimproved land, and a light density residential area (MacConnell, 1975).

2. Belchertown Wastewater Treatment Plant

The treatment facility is located on State Street, Belchertown. The sewage lines service only the village of Belchertown. It is a secondary sewage treatment facility with a designed flow of 0.5 million gallon per day (MGD). The average daily flow, as of 1987 , was 0.336 MGD with the maximum and minimum of 1.083 and 0.215 respectively. In 1988 the maximum and minimum flows were 0.632 and 0.189 , and the average was 0.302 MGD (Monthly report of Wastewater Treatment Plant, 1987; 1988). Chlorine is applied to disinfect sewage discharge between the months of April and October. The minimum-maximum required chlorine residuals recommended by EPA are $0.5-1.5 \mathrm{mg} / 1$ after 15 minutes contact at peak hourly flow. Effluent
discharge limitations and monitoring requirements are listed in Table 3.1 (Chang, 1989).

3. Stream Quality

Water quality above the sewage outfall is generally good. Below the outfall water quality of Lampson Brook reflects the influence of the discharge from the Wastewater Treatment Plant (WWTP). Between the months of April and October the stream also receives varied concentrations of chlorinated sewage discharge. It reflects a typical organic pollution with elevated BOD and high nutrient levels. Other than chlorine, the most biologically significant effluent constituents are phosphorus and ammonia. The levels of ammonia on the average ranged between 0.07 and $0.55 \mathrm{mg} / 1$ at station 1, between 0.97 and $2.47 \mathrm{mg} / \mathrm{l}$ at the outfall, between 0.30 and $0.91 \mathrm{mg} / \mathrm{l}$ at station 2, between 0.13 and $0.50 \mathrm{mg} / \mathrm{l}$ at station 3 , between 0.10 and $0.47 \mathrm{mg} / \mathrm{l}$ at station 4 , and between 0.09 and $0.40 \mathrm{mg} / \mathrm{l}$ at station 5 respectively for the six sampling period (Tables 4.1 through 4.6). The levels of phosphorus on the average ranged between 0.05 and $0.16 \mathrm{mg} / \mathrm{l}$ at station 1 , between 1.38 and $2.12 \mathrm{mg} / 1$ at the outfall, between 0.43 and $1.57 \mathrm{mg} / 1$ at station 2, between 0.31 and $1.14 \mathrm{mg} / \mathrm{l}$ at station 3, between 0.19 and $1.31 \mathrm{mg} / \mathrm{l}$ at station 4 , and between 0.14 and $0.31 \mathrm{mg} / 1$ at station 5 (Tables 4.1 through 4.6). Clearly, the levels of ammonia and phosphorus exceed the recommended levels of $0.02 \mathrm{mg} / \mathrm{l}$ for ammonia and $0.05 \mathrm{mg} / \mathrm{l}$ for phosphorus, respectively (Table 3.2). All other chemical, physical, and biological parameters exhibit little impact on stream water quality. The criteria of water quality for freshwater aquatic life and public health recommended by EPA are listed in Table 3.2 (EPA, 1986).

4. Selection of Study Site

A control station and four treatment stations along Lampson Brook were chosen to assess the impact of chlorinated sewage on stream benthic macroinvertebrates. The exact locations were selected in an attempt to minimize the differences in current, depth, and insolation among stations. The locations were as follows:

Control (station 1) - $\quad 60$ meters upstream from sewage outfall
Station 2 meters downstream (1 reversing meander) from the sewage outfall

Station $3-830$ meters below sewage outfall at Hannum Street overpass

Station $4 \quad-\quad 150$ meters downstream from Station 3
Station 5 - 2000 meters downstream from Station 4 at Rural Road overpass

B. Experimental Design

1. Chemical-Physical Sampling

a. Field Methods

Water samples were collected weekly from each station and the sewage outfall during the colonization periods and then analyzed for the following chemical, physical, and biological parameters: chlorine (free and combined), temperature, $\mathrm{pH}, \mathrm{D} . \mathrm{O} ., \mathrm{BOD}$, fecal coliform, acidity, alkalinity, ammonia, nitrate, phosphorus, calcium, hardness,
chloride, total solids, and suspended solids during the period that substrates were in place. Heavy metals were not measured routinely because two sets of initial analyses revealed no concentrations above background levels. Water samples were transported to the laboratory in a cooler with ice.
b. Laboratory Methods

All the water samples were placed in the refrigerator at $4^{\circ} \mathrm{C}$ pending analysis. Residual chlorine and D.O. were determined immediately upon return to the laboratory. BOD analysis was initiated within 2 hours and fecal coliform counts within 6 hours. All other tests were completed within 4 days except for temperature and pH which were taken on site. Analytical procedures (Table 3.3) were performed in accordance with those stipulated in Standard Methods of Water and Wastewater Analysis (APHA, 1985).

2. Biological Sampling

a. Field Methods

Wire barbecue baskets, containing 30 limestones of $2^{\prime \prime}$ to $3^{\prime \prime}$ in diameters (except for 10/30/87 stream-bed rocks), were deployed at one station upstream (control) and four stations downstream from the Belchertown Wastewater Treatment Plant outfall. A number of one-meter long steel rods, one centimeter in diameter, were first inserted one foot into the river substrate. Each basket was secured to the steel rod with a two-meters segment of heavy duty rope and placed about five centimeters above the river bed. The baskets were removed from the stream after 5.5 - 6 weeks of colonizations and each individual stone was placed immediately into an

18 oz . whirl-pak containing 70% ethyl alcohol. The substrates were then transported to the laboratory.
b. Laboratory Methods

Upon return to the laboratory, animals were first captured with insect screen by brushing the stone under running water and then separated from the debris by sugar flotation (Fast, 1970; Lackey and May, 1971; Pratt, 1977) and sorted under a 1.7 x magnifier. The samples collected on August 22, and October, 1988 were sorted directly under dissecting microscope at various magnification without sugar flotation. The specimens colonizing each stone substrate were preserved in a separate $7-\mathrm{ml}$ vial containing 70% ethyl alcohol. Chironomid larvae and pupae as well as oligochaetes were mounted on the slides using CMC-10 mounting media. The mounting technique used was in accordance with the protocol suggested by the Department of Environmental Quality Engineering (DEQE), Division of Water Pollution Control, Massachusetts (DEQE, 1989) and a technical series published by the Department of Environmental Regulation, the State of Florida (Beck, 1976). Identifications were made to the lowest taxonomic level possible by using appropriate keys and confirmed by the DEP staff. Each vial of specimen(s) and each slide of mounted material were labeled with the species ID, the station code, date of collection, name of the stream, and location.
c. Sampling Schedules

In all, five experiments were implemented, including the experiment conducted from September 15 to October 30, 1987. The experiments included five deployments and six retrievals. The experiments were carried out as follows:

Experiment 1 consisted of a set of 10 baskets. Two baskets, one containing stream-bed rocks and the other containing limestones of comparable size, were deployed at each station on September 15, 1987 and retrieved on October 30, 1987, while the effluent was still being chlorinated.

Experiment 2 also consisted of 10 baskets. Two baskets, each containing 30 limestones, were deployed at each station on November 10, 1987 and retrieved on December 22, 1987 after the cessation of chlorination.

Experiment 3 consisted of 15 baskets. Three baskets each containing 30 limestones of comparable surface area were deployed on February 18 at each station. Of these, one basket contained individual stones each separated from each other by an embossed plastic floor mat ($12^{\prime \prime}$ by $6^{\prime \prime}$) and one with 30 pieces of limestone, were retrieved on March 29 before the chlorination resumed. The remaining baskets were netted and retrieved on April 14, 1988 after two weeks of chlorination.

Experiment 4 consisted of 5 baskets. One basket, containing 30 limestones, was deployed at each station on July 10,1988 and retrieved on August 22, 1988.

Experiment 5 consisted of a set of 5 baskets, each filled with 30 limestones. These baskets were placed at the control station (station 1) to allow colonization of the macroinvertebrates on August 22, 1988. All the baskets were then netted on October 1, 1988, and four of them were distributed among the four downstream stations. After 17 days of exposure to chlorinated sewage the baskets were retrieved from each station on October 17, 1988.

After all the organisms were identified and counted, the data which resulted consisted of: (1) the number of species on each stone (s); (2) the number of individuals among each species on each stone $\left(n_{i}\right)$, where $i=1,2,3, \ldots, s ;$ (3) the total number of organisms on a stone $(N) ;(4)$ the number of species in each basket $(s b) ;(5)$ the number of individuals among each species in a basket $\left(n b_{i}\right)$, where $i=1,2,3, \ldots$, $s b ;(6)$ total number of organisms in a basket $(N B) ;(7)$ surface area of each stone $(S A)$ (8) total surface area of 30 stones $\left(S A_{\text {total }}\right) ;$ (9) the name of each species.

The identified macroinvertebrate taxa with their respective abundance during chlorination and non-chlorination regimes are listed in APPENDIX A.1. The sorted macroinvertebrates were recorded in two fashions. The first data set was recorded for individual basket which composed of a matrix of rows and columns representing the sampling unit (in this case, the individual stone) and a list of species. The second data set combined all the organisms in a basket and was recorded as a matrix of rows and columns representing a list of species and the basket (APPENDICES A. 2 and A.3). The macroinvertebrate data were retabulated to yield two midge data sets and two family level census data sets according to the above two recording schemes. In all, six distinct data sets were generated. The six data sets were used for the subsequent evaluation of diversity and community comparison indices. The baskets designation is reflected in Table 3.4.

C. Selection of Diversity and Community Comparison Indices

1. Evaluation of Various Diversity Indices

Hurlbert's PIE was computed according to the formula listed in Table 2.1, 6, O. As Hurlbert (1971) points out, his formula when used with sample collections, is a consistent unbiased estimator as long as $\mathrm{n} \geq 2$ and does not require knowledge of the number of species in the community. When using the individual stone as a sampling unit, the exclusion of $n \prec 2$ in many instances will affect the values of the indices, particularly in those collections where the abundances were low and the number of species was high and evenly distributed.

McIntosh's "ecological distance" relative was calculated according to the formula listed in Table 2.1, 7, P. McIntosh's formula, like Hurlbert's, also requires that collections have a sample size greater than two individuals.

Since I have demonstrated Keefe's $T U$ is equal to Hurlbert's PIE, the "run" cannot conform to Keefe's $T U$. If we assume a community has the species distribution $n_{i}, n_{2}, n_{3}, \ldots, n_{s}$, where n_{i} is the number of individuals in species i and $i=$ $1,2,3, \ldots s$. For a given set of distributions, there will be only one possible run if all possible permutations have been considered. The run can be calculated for each permutation and the average obtained by dividing the sum of the runs by the permutations. The formula for calculating the run is shown in APPENDIX C. Unlike Hurlbert's and McIntosh's formulae the "run" formula applies to any collection that contains at least one individual.

Shannon index $\left(\mathrm{H}^{\prime}\right)$ and Brillouin index (H) were calculated according to the formulae listed in Table 2.1, 5, K and L . Their associated indices (evenness, E^{\prime} and E as well as redundancy, R^{\prime} and R) were calculated according to the formulae proposed by Pielou (1966b) and Hamilton (1975) except that the values were obtained by using the natural \log instead of $\log _{2}$.

The above five diversity values were calculated for each sampling unit (i.e. each individual stone). The same formulae were used to calculate diversity for the basket, where N is replaced by $N B$ and n_{i} by $n b_{i}$. In most instances, the number of organisms was not sufficient to calculate evenness and redundancy for the individual stone, therefore, only the values obtained from the basket were used for the analysis.

The pooled diversity was applied when the diversity was calculated from the individual stone as a sampling unit. Pooled diversity was calculated by generating random variables with normal distribution for each stone, and sorted in ascending order according to the random variables. The census of the collections was added cumulatively through the 30 stones. The pooled diversity was obtained by calculating the cumulative diversity. Three pooled diversity values were generated for each basket. The asymptotic diversity was estimated by calculating the differences of the consecutive cumulative diversity. The number of stones was determined when the differences were consistently within 10% of the total diversity of that basket. The maximum number of stones among those three asymptotic diversities was chosen as the minimum requirement of stones to reach asymptotic diversity. This procedure was applied to all the basket collections.

A sample SAS program was coded to calculate the diversity and pooled diversity values for the collected benthic macroinvertebrates (APPENDIX D). A total of 45 programs were generated for the 45 basket collections. The same programs were used to calculate midge and family level diversities.

The Sign test was applied to compare the means of diversity values calculated from the basket and the stones, respectively. The test was performed for Hurlbert's PIE, McIntosh’s "ecological distance" relative, the "run" formula, Shannon diversity, and Brillouin diversity across the 45 basket collections.

Spearman rank correlation was applied to measure the degree of association between all possible pairs of the diversity values (i.e. Hurlbert's PIE, McIntosh's "ecological distance" relative, the "run" formula, Shannon diversity, Brillouin diversity for the basket and the stones; Shannon and Brillouin's evenness and Shannon and Brillouin's redundancy for the basket).

The Sign test and Spearman rank correlation were used to test the differences in mean diversity values and the degree of association among macroinvertebrates, midges, and family level census. This procedure was intended to examine whether a subset of the population or the family level of identification is sufficient to be employed in a pollution study.

2. Evaluation of Various Community Comparison Indices

a. Qualitative Community Comparison Indices

Jaccard's coefficient of community (Jaccard, 1902, 1908), Kulczynski's coefficient of similarity (1927), Sørensen's quotient of similarity (1948), Ochiai's index (1957), Mountford's index of similarity (1962), Fager and McGowan index
(1963), and revised Fager and McGowan index were analyzed according to the formulae listed in Table 2.3. A SAS computer program (APPENDIX E) was used to calculate the values of the above indices for all possible comparisons across 45 basket collections (990 pairs).

An analysis of the relative strength and weakness of each of the formulae was undertaken. Spearman rank correlation was applied to measure the degree of association among all possible pairs of indices using the values calculated from the above SAS program (APPENDIX E).
b. Quantitative Community Comparison Indices

Renkonen's percent similarity (1938), Morisita similarity index (1959), Horn's simplified Morisita index (1966), Stander's SIMI (1970), Pinkham-Pearson index B (1976), Pinkham-Pearson index B_{2} (1976), Bray-Curtis index (1957), Sokal's Euclidean distance $\left(\delta_{1,2}\right)$ (1961), Clifford and Stephenson's distance measure $\left(d_{1,2}{ }^{2}\right)(1975)$, Lance and Williams' Canberra metric (1967), Pratt et al.'s collection and percent dissimilarity (1981), and Parrish and Wagner's average chi-square (1983) were calculated according to the formulae listed in Table 2.3. Hypothetical communities (Table 3.5) were created to examine the differences of these quantitative community comparison indices. SAS computer programs were coded to calculate the values of the above indices for all possible comparisons of the hypothetical communities. The computer programs are similar to those coded in APPENDIX F except for the specification of the magnitude of the variables. Before application of Spearman rank correlation, the repeated comparisons were deleted. The resulting data set consisted of 146 observations instead of 378 . Spearman rank correlation was again applied to measure
the degree of association for all possible pairs of the indices using the data set that contained 146 observations for the hypothetical communities.

SAS computer programs (APPENDIX F) were coded to calculate the quantitative community comparison indices for all possible comparisons across 45 basket collections (990 pairs). All the organisms were included in the calculation, even with Pratt et al.'s collection and percent dissimilarity (1981) where they only included those organisms whose ranked abundance made up the 60% of the collections.

Spearman rank correlation was again applied to measure the degree of association for all possible pairs of the indices using the values calculated from the above SAS program (APPENDIX F) for the 45 basket collections.

D. Interpretation of the Field Data

1. Density of Stone-Dwelling Organisms

Density is defined in terms of individuals per unit area (number of individuals $/ \mathrm{m}^{2}$). The population densities of stone-dwelling organisms are estimated on the basis of the individual stones themselves as the primary sampling units (Wrona, 1986). This procedure is predicated on the accurate and rapid assessment of surface area. The determination of surface area of the limestone was described by Coler et al. (1989).

The population density colonizing artificial substrates was calculated using the formula:

$$
d=(1 / \bar{a}) \bar{x}
$$

where

$$
\begin{aligned}
& \bar{a}=\frac{\left(\sum_{I=1}^{30} a_{r}\right)}{30} \\
& \bar{X}=\frac{\left(\sum_{i=1}^{30} x_{i}\right)}{30}
\end{aligned}
$$

$\bar{a}=$ the mean surface area of the stone in a basket, $\bar{x}=$ the mean number of organisms per stone, $a_{r}=$ the surface area of the $r^{\text {th }}$ replicate stone from a basket. The density estimates were calculated for each basket collection. The approximate 95% confidence intervals were calculated by multiplying the standard error of the mean density with the appropriate student t distribution value (2.045).

2. Abundance and Species Richness

The abundance and species richness were calculated for total macroinvertebrates, midges, and family level census data sets by counting the number of organisms and species for each basket collection.

3. Diversity

Since the Spearman rank correlation indicated that Hurlbert's PIE was highly correlated to McIntosh's "ecological distance" relative and the "run" formula, and further Shannon diversity was highly correlated to Brillouin diversity, therefore, only Hurlbert's PIE and Brillouin diversity were selected for the interpretation of the field data.
a. Brillouin Diversity

The overall diversity of a collection was calculated according to the formula:

$$
H=\frac{1}{N} \ln \frac{N!}{N_{1}!N_{2}!N_{3}!\ldots N_{s}!}
$$

The midge diversity of a collection was calculated according to the formula:

$$
H_{m}=\frac{1}{N} \ln \frac{N!}{N_{1}!N_{2}!N_{3}!\ldots N_{m}!}
$$

The family level diversity was determined by the following equation:

$$
\begin{aligned}
& H_{f}=\frac{1}{N} \ln \frac{N!}{N_{1}!N_{2}!N_{3}!\ldots N_{f}!} ; \\
& i=1,2,3, \ldots, f ; \sum_{i=1}^{f} N_{i}=N
\end{aligned}
$$

The specific diversity within in the $i^{\text {th }}$ family was calculated as:

$$
\begin{aligned}
H_{f, i} & =\frac{1}{N_{i}} \ln \frac{N!}{N_{i 1}!N_{12}!N_{i 3}!\ldots N_{i f_{1}}!} ; \\
j & =1,2,3, \ldots, E_{1} ; \sum_{j=1}^{f_{1}} N_{i j}=N
\end{aligned}
$$

According to Pielou (1967), the overall species diversity of a collection is equal to the sum of the major-taxa diversity of the collection and the within-taxa species diversity for the entire collection:

$$
H=H_{f}+\sum_{i=1}^{f} \frac{N_{1}}{N} H_{f, 1}
$$

Thus, the percent contribution of family level diversity was obtained by dividing the family level diversity by the overall diversity and the percent contribution of the
species diversity (midge diversity) within the $i^{\text {ih }}$ taxon was obtained by multiplying the weighted diversity and divided by the overall diversity.

b. Hurlbert's PIE

Values obtained from Hurlbert's PIE for total macroinvertebrates, midges and family level census were also employed to interpret the field results. However, since Hurlbert's PIE does not possess additive property, only the diversity values (not the percent contribution) were presented.

4. Community Comparison

a. Qualitative Community Comparison

According to the Spearman rank correlation, most of the indices were highly correlated among each other, Jaccard's coefficient of community was absolutely correlated to Sorensen's quotient of similarity, therefore, only two indices, Sørensen's quotient of similarity and revised Fager and McGowan index, were selected to compare upstream vs. downstream communities. These two indices represent two types of averaging - the sum or the geometric mean.
b. Quantitative Community Comparison

Unfortunately, almost every quantitative community comparison index is unique in measuring the "difference" between two communities and not all of them have been analyzed to reflect the response of these indices upon the changes of community parameters, therefore, it is difficult to establish the criteria for selection. Four quantitative (Morisita similarity, Sokal's Euclidean distance, Pinkham-Pearson index B, and Parrish and Wagner's average chi-square) indices were arbitrary chosen to describe the similarity/dissimilarity of upstream vs. downstream communities. The

Morisita similarity index was shown not only to be independent of sample size but also independent of diversity (Wolda, 1981). Sokal's Euclidean distance was shown to be able to distinguish true dissimilarity. Pinkham-Pearson index B gave sensitive, stable and consistent response towards community structure changes (Boyle et al., 1990). Parrish and Wagner's average chi-square is the most recent dissimilarity index derived for water pollution study. Average chi-square was found to be effective in quantifying differences in macroinvertebrate composition between gas-impacted and a reference area (Pontasch and Brusven, 1988). The Morisita similarity index was selected to describe temporal variations for each station and compare baskets collected at the same sampling date.

5. EPT

EPT was calculated by counting the species of Ephemeroptera, Plecoptera and Tricoptera for each basket collection. The abundance of these species was not included in the calculation.

6. Indicator Species

A number of macroinvertebrates were selected as potential indicator species with respect to the TRC concentrations detected at station 2 . The species was considered as tolerant if its abundance was greater than 9 at the time of collection. A species was designated sensitive if its abundance at control station was between 3 and 9, and absence at station 2. A few rare organisms (with their respective abundance less than 3) found at the control but absence at station 2 were also designated as sensitive with some marginal uncertainty.

Table 3.1 Effluent discharge limitations and monitoring requirements of Belchertown Wastewater Treatment Plant.

Effluent Characteristic	Discharge limitations		
	Average monthly	Average weekly	Maximum daily
Flow - m³/day (MGD)			(0.50)
BOD	$30 \mathrm{mg} / 1$	$45 \mathrm{mg} /$	$50 \mathrm{mg} /$
TSS	$30 \mathrm{mg} / \mathrm{l}$	$45 \mathrm{mg} / \mathrm{l}$	$50 \mathrm{mg} / \mathrm{l}$
Settleable solids		$0.1 \mathrm{ml} / 1$	$0.3 \mathrm{ml} / 1$
pH	6.5-8.0 at any time		
Fecal coliform ${ }^{2}$ (per 100 ml)	200	400	400
Chlorine residual	Minimum total chlorine residual $0.5 \mathrm{mg} / \mathrm{l}$, maximum $1.5 \mathrm{mg} / \mathrm{l}$ after 15 minutes contact at peak hourly flow		

Effluent Characteristic	Monitoring Requirement	
	Measurement frequency	Sample type
Flow - m ${ }^{3}$ day (MGD)	Continuous	see footnote 1
BOD	Weekly	Composite - 8 hrs
TSS	Weekly	Composite - 8 hrs
Settleable solids	1/Day	Grab
pH	1/Day	Grab
Fecal coliform ${ }^{2}$ (per 100 ml)	Weekly	Grab
Chlorine residual ${ }^{2}$	1/Day	Grab

1 Report maximum and minimum daily rates and total flow for each operating day.
2 Applicable from April 1 to October 31.

Table 3.2 The criteria of water quality for freshwater aquatic life and public health (EPA, 1986).

Water quality parameter	Criterion
Chlorine	TRC $2.0 \mathrm{ug} / \mathrm{for}$ salmonid fish; $10.0 \mathrm{ug} / \mathrm{l}$ for other freshwater organisms.
Fecal coliform	not to exceed a \log mean of 200 per 100 ml , nor more than 10% of the total samples taken during any 30 day period exceed 400 per 100 ml for bathing waters.
Ammonia	$0.02 \mathrm{mg} / \mathrm{for}$ freshwater aquatic life.
Alkalinity	$20 \mathrm{mg} / \mathrm{l}$ or more as CaCO_{3} for freshwater aquatic life except where natural concentrations are less.
Nitrates; Nitrites	$10 \mathrm{mg} /$ nitrate nitrogen (N) for domestic water supply (health). Total phosphate........ not to exceed an average of $0.05 \mathrm{mg} / \mathrm{l}$ as P during any monthly sampling period for fish and wildlife (Class C in Massachusetts).
Total Phosphate	not to exceed an average of $0.05 \mathrm{mg} / \mathrm{las} \mathrm{P}$ during any monthly sampling period for fish and wildlife (Class C in Massachusetts).
Temperature	A maximum of $90^{\circ} \mathrm{F}$ with maximum permissible rise above the naturally existing temperatures of $5^{\circ} \mathrm{F}$ in stream and $3^{\circ} \mathrm{F}$ in lakes.
pH	6.5-9.0 for freshwater aquatic life; and 5.0-9.0 for domestic water supplies (welfare).
Dissolved oxygen	$5.0 \mathrm{mg} / \mathrm{l}$ for freshwater biota.
Hardness	concentration $0-75 \mathrm{mg} / \mathrm{CaCO}_{3}$ is rated as soft water; $75-150$ as moderately hard; 150-300 as hard; and 300 up as very hard.

Table 3.3 Analytical procedures for chemical, physical, and biological parameters.

Parameter	Analytical methods
Temperature	Thermometer (FISHERbrand 15-043A)
Chlorine	DPD colorimetric method
pH	pH meter ALTEX Expand-Mate
D.O.	Azide modification
BOD	5-day BOD test
Fecal coliform	MILLIPORE application manual AM302
Ammonia	Poleniminary distillation step and Nesslerization method
Acidity	Potentiometric titration (to pH 4.5)
Alkalinity	Persulfate digestion and ascorbic acid method
Nitrate	Mercuric nitrate method
Phosphorus	EDTA titrimetric method
Chloride	EDTA titrimetric method
Calcium	Total solids dried at 103-105 ${ }^{\circ} \mathrm{C}$
Hardness	Total suspended solids dried at 103-105 ${ }^{\circ} \mathrm{C}$
Total solids	
Suspended solids	

Table 3.4 Baskets designation.

	Stations				
Treatment/Basket designation	1	2	3	4	5
$10-30-87$ (Stream bed rock)	1	3	5	7	9
$10-30-87$ (Limestone)	2	4	6	8	10
$12-22-87$ (Replicate 1)	11	13	15	17	19
$12-22-87$ (Replicate 2)	12	14	16	18	20
$3-29-88$ (Individual stones)	21	23	25	27	29
$3-29-88$ (Regular treatment)	22	24	26	28	30
$4-14-88$ (after chlorination)	31	32	33	34	35
$8-22-88$ (summer collection)	36	37	38	39	40
$10-17-88$ (fall collection)	41	42	43	44	45

Table 3.5 Hypothetical communities used to test the differences among various quantitative community comparison indices.

Community		Species			
	A	B	C	D	E
1	1	0	0	0	0
2	1	0	0	0	0
3	1	1	0	0	0
4	1	1	0	0	0
5	1	1	1	0	0
6	1	1	1	0	0
7	2	2	0	0	0
8	2	2	0	0	0
9	2	2	2	0	0
10	2	2	2	0	0
11	2	2	2	2	0
12	2	2	2	2	0
13	3	3	0	0	0
14	3	3	0	0	0
15	3	3	3	0	0
16	3	3	3	0	0
17	3	3	3	3	0
18	3	3	3	3	0
19	4	4	0	0	0
20	4	4	0	0	0
21	4	4	4	0	0
22	4	4	4	0	0
23	0	0	2	2	0
24	0	0	4	4	0
25	3	2	1	0	0
26	1	2	3	0	0
27	1	2	3	4	5
28	5	4	3	2	1

CHAPTER VI

RESULTS

A. Chemical Data

Chemical, physical, and biological data were generated weekly during the entire study. Average values, and their standard deviations from different study periods are shown in Table 4.1 through Table 4.6. At the control station, all the parameters were in compliance with the standards for freshwater aquatic life and public health recommended by EPA (EPA, 1986), except for slightly elevated ammonia and phosphorus levels.

At stations 2 through 5, the stream received a continuous point source of a pollutant (domestic sewage) all year round and a chemical pollutant (chlorine) between the months of April and October. Average combined chlorine and total residual chlorine for the chlorination regime for the four study periods are presented in Figures 4.1, 4.2, 4.3, and 4.4. In general, there was no detectable free chlorine. The concentration of combined chlorines was highest at the effluent and diluted to one half to one third of that level at station 2 (about 60 meters below the outfall) by the stream. No significant free or combined chlorines were found beyond station 3 . Among the combined chlorines, the concentration of monochloramines $\left(\mathrm{NH}_{2} \mathrm{Cl}\right)$ was highest followed by dichloramines $\left(\mathrm{NHCl}_{2}\right)$. No trichloramines $\left(\mathrm{NCl}_{3}\right)$ were detected in any collected water samples. Total residual chlorines were highest at the effluent,
reduced by one half or one third at station 2 , and then dropped below $0.05 \mathrm{mg} / \mathrm{l}$ or occasionally below measurable levels at stations 3, 4, and 5 (Figures 4.1, 4.2, 4.3, 4.4). Average concentration of total phosphorus, ammonia and acidity at control, wastewater effluent, and four downstream stations analyzed from six sampling periods are presented in Figure 4.5 through Figure 4.7. Phosphorus and ammonia levels all exceeded EPA criteria, regardless of the stations or the sampling periods. The limiting nutrient (phosphorus) in freshwater environments discharged from the WWTP at station 2, ranged in concentrations from 0.43 to $1.57 \mathrm{mg} / \mathrm{l}$ during different sampling periods and remained at least 55% above the control at 3040 meters downstream (station 5). Ammonia levels ranged from 0.30 to $0.91 \mathrm{mg} / 1$ at station 2, and dropped to 0.09 to $0.40 \mathrm{mg} / 1$ at station 5 . Acidity, on the other hand, reached the highest levels at either stations $3(1.42 \pm 0.47)$ or $4(1.13 \pm 0.50)$. The other important phenomenon was the low levels of oxygen detected at stations 3 and 4 between July 20th and August 20th sampling period in 1988 (Table 4.5).

B. Biological Data

1. Evaluation of Indices

a. Diversity Indices
. The results of the Sign test for the 45 baskets in comparing the differences in mean diversity values calculated either from the basket or the stones for the total macroinvertebrates, midges, and family level census are shown in Table 4.7. There were significant differences in the mean diversity values in all three census data with
all the diversity indices. Hurlbert's PIE showed a slightly higher values $(0.0446$, 0.0641 , and 0.0412 for total macroinvertebrates, midges, and family level census, respectively) for the basket while McIntosh's ($-0.0702,-0.0562$, and -0.0536) and "run" $(-0.0401,-0.0928$, and -0.2289$)$ values were lower. Shannon $(1.5390,1.3433$, and 0.5486) and Brillouin's ($1.5273,1.2501$, and 0.5455) values for the basket were considerably higher than the values calculated from the stones. Though there were significant differences in the mean, these two means were clearly correlated for Hurlbert's $(0.745,0.591$, and 0.935 for total macroinvertebrates, midges, and family level census, respectively), McIntosh's $(0.768,0.575$, and 0.932$)$, and the "run" $(0.846$, 0.716 , and 0.679) diversity (Tables $4.8,4.9$ and 4.10). For Shannon and Brillouin diversities, the two means were poorly correlated to each other (0.243 and 0.290 for total macroinvertebrates and midges respectively for Shannon; and 0.483 and 0.481 respectively for Brillouin) except for the family level census data. Surprisingly, Shannon and Brillouin's diversity values calculated from the stones were highly correlated to each other with all three census data sets $(0.993,0.837$, and 0.941 for total macroinvertebrates, midges, and family level census). In general, however, these were poorly correlated to all of the other indices with respect to total macroinvertebrates and midges (Tables 4.8 and 4.9).

Furthermore, the diversity values calculated for the basket indicated that Hurlbert's PIE, McIntosh's "ecological distance" relative, and the "run" formula were significantly correlated among each other (0.981 for Hurlbert's PIE and McIntosh's "ecological distance" relative; 1.000 for Hurlbert's PIE and the "run" formula; and 0.981 for McIntosh' "ecological distance" relative and the "run" formula respectively
for total macroinvertebrates; $0.981,0.963$, and 0.957 for midges; and $0.998,0.999$, and 0.999 for family level census), and were less correlated with Shannon and Brillouin diversities with total macroinvertebrates and midges (H1 vs. S1, 0.902 ; H1 vs. B1, 0.703 ; M1 vs. $\mathrm{S} 1,0.839$; M1 vs. $\mathrm{B} 1,0.600$; R1 vs. $\mathrm{S} 1,0.901$ and R 1 vs. $\mathrm{B} 1,0.701$ for total macroinvertebrates, respectively ; H 1 vs. $\mathrm{S} 1,0.877$; H 1 vs. $\mathrm{B} 1,0.657$; M1 vs. S1, 0.812 ; M1 vs. B1, 0.560 ; R1 vs. S1, 0.826 and R1 vs. B1, 0.594 for midges, respectively). However, Shannon and Brillouin diversities were highly correlated to each other $(0.913,0.906$, and 0.993 for macroinvertebrates, midges, and family level census, respectively) (Tables 4.8, 4.9 and 4.10).

One interesting phenomenon observed in the results of Spearman rank correlation was that, though derived from Shannon and Brillouin's index, Shannon and Brillouin's redundancy as well as evenness were more correlated to Hurlbert's, McIntosh's, and the "run" index (SR vs. H1, -0.827 ; BR vs. H1, -0.853 ; SE vs. H1, 0.896 ; BE vs. H1, 0.899; SR vs. M1, -0.790 ; BR vs. M1, -0.818 ; SE vs. M1, 0.952 ; BE vs. M1, 0.954; SR vs. R1, -0.827 ; BR vs. R1, -0.853 ; SE vs. R1, 0.897 ; BE vs. R1, 0.900 for total macroinvertebrates; SR vs. H1, -0.840 ; BR vs. H1, -0.886 ; SE vs. H1, 0.914; BE vs. H1, 0.916; SR vs. M1, -0.803 ; BR vs. M1, -0.832 ; SE vs. M1, 0.965 , BE vs. $\mathrm{M} 1,0.966$; SR vs. R1, -0.783 ; BR vs. R1, -0.811 ; SE vs. R1, 0.899 ; BE vs. R1, 0.899 for midges; SR vs. $\mathrm{H} 1,-0.891$; BR vs. $\mathrm{H} 1,-0.889$; SE vs. $\mathrm{H} 1,0.935$; BE vs. H1, 0.937; SR vs. M1, -0.887 ; BR vs. H1, -0.889 ; SE vs. $\mathrm{H} 1,0.935$; BE vs. H1, 0.937 ; SR vs. M1, -0.887 ; BR vs. M1, -0.883 ; SE vs. M1, 0.940 ; BE vs. M1, 0.943 ; SR vs. R1, -0.891 ; BR vs. R1, -0.889 ; SE vs. R1, 0.937 ; BE vs. R1, 0.940 for family level census, respectively) than Shannon and Brillouin's index (SR vs. S1, -0.731 ; BR
vs. $\mathrm{S} 1,-0.749$; SE vs. $\mathrm{S} 1,0.684$; BE vs. $\mathrm{S} 1,0.688$; SR vs. B1, -0.604 ; BR vs. B1, 0.608; SE vs. B1, 0.406 ; BE vs. B1, 0.412 for total macroinvertebrates; SR vs. S 1 , 0.751 ; BR vs. S1, -0.767 ; SE vs. S1, 0.679 ; BE vs. $\mathrm{S} 1,0.681$; SR vs. B1, -0.688 ; BR vs. B1, -0.690 ; SE vs. B1, 0.399 , BE vs. B1, 0.402 for midges; SR vs. S1, -0.808 ; BR vs. $S 1,-0.808 ;$ SE vs. $S 1,0.870 ;$ BE vs. $S 1,0.867$; SR vs. $B 1,-0.835 ;$ BR vs. $B 1,-$ 0.835 ; SE vs. B1, 0.863 ; BE vs. B1, 0.863 for family level census) for all three census data sets.

To examine whether a particular groups of organisms or the family level of identification would be sufficient to use as an indication in pollution study, the Sign test and Spearman rank correlation were used to compare the differences in mean diversity values and the degree of association. The comparisons were made among macroinvertebrates, midges, and family level census. The results are shown in Tables 4.11 and 4.12. It is clear that there were differences in mean diversity values when using different groups of organisms or different level of identification as tools for analysis $(0.4388,0.4172,0.4327,1.4792,1.2708,-0.3112,-0.3280,0.3194,0.3307$ for Hurlbert's PIE, McIntosh's "ecological distance" relative, the "run" formula, Shannon diversity, Brillouin diversity, Shannon's redundancy, Brillouin's redundancy, Shannon's evenness, and Brillouin's evenness, respectively, for total macroinvertebrates vs. family level census; $0.0685,0.0644,0.0579,0.4068,0.3822$,-$0.028,-0.0318,0.0185$, and 0.0205 for total macroinvertebrates vs midges; 0.3703 , $0.3527,0.3748,1.0724,0.8886,-0.2933,-0.3071,0.3073$, and 0.3169 for midges vs. family level census). The biggest difference was observed between total macroinvertebrates and family level census and much less so for total
macroinvertebrates and midges. The Spearman rank correlation values were the highest between total macroinvertebrates and midges census $(0.853,0.837,0.829$, $0.838,0.806,0.757,0.787,0.852$, and 0.846 for Hurlbert's PIE, McIntosh's "ecological distance" relative, the "run" formula, Shannon diversity, Brillouin diversity, Shannon's redundancy, Brillouin's redundancy, Shannon's evenness, and Brillouin's evenness, respectively) and the lowest between midges and family level census $(0.107$, $0.138,0.160,-0.029,-0.177,-0.016,0.005,0.303$, and 0.287 for Hurlbert's PIE, McIntosh's "ecological distance" relative, the "run" formula, Shannon diversity, Brillouin diversity, Shannon's redundancy, Shannon's evenness and Brillouin's evenness, respectively).

b. Community Comparison Indices

i. Qualitative Community Comparison Indices To examine the degree of

 discrepancy among the qualitative community comparison indices, the Spearman rank correlation was applied to all possible pairs of indices with the values calculated for the combinations of all possible pairs of baskets (i.e. 990 pairs comparisons) and the results shown in Table 4.13. Jaccard1, Jaccard2, and Sørensen were absolutely correlated among each other with Spearman rank correlation values equal to one. The rest of the indices were also highly correlated with correlation values ranging from 0.959 to 0.996 , except for Mountford's index. Mountford's index was much less correlated to the rest of the indices (values ranged from 0.777 to 0.889). The results of the Spearman rank correlation for midges and family level census are shown in Tables 4.14 and 4.15. The same trends were observed. In both instances, Jaccardl, Jaccard2, and Sørensen's quotient of similarity had Spearman rank correlation valuesequal to 1 . With midges, Mountford's values were the least correlated to the rest of the indices (ranged from 0.758 to 0.899). The same phenomenon was observed with family level census with Mountford's values ranged from 0.686 to 0.906 .

ii. Quantitative Community Comparison Indices The differences of various

 quantitative community comparison indices in detecting pairs beyond upper and lower limits of similarity and dissimilarity are shown in Tables 4.16 and 4.17. It is evident that among the similarity indices, Renkonen's percent similarity, Bray-Curtis index, Horn's simplified Morisita index , Pinkham-Pearson index B, and Stander's SIMI failed to distinguish both upper and lower limits. The same is true with dissimilarity measures of Pratt's percent dissimilarity, Lance and Williams' Canberra metric, and Parrish and Wagner's average chi-square. The rest of the indices allowed the distinguishing of either similar or dissimilar pairs with different abundances. Among those, Sokal's Euclidean distance was shown to be the most sensitive, followed by the Morisita similarity index, and the Pinkham-Pearson index B_{2}. Pratt et al.'s collection dissimilarity and Clifford and Stephenson's distance measure shared the same level of sensitivity. Additionally, the Morisita similarity index and the Pinkham-Pearson index B_{2} were able to further differentiate similar pairs with different numbers of taxa. Morisita similarity values increased with the increase in the number of similar pairs of taxa, but decreased with an increase in the magnitude of abundance. Pinkham-Pearson index B_{2} values, however, decreased with an increasing number of similar taxa regardless of the magnitude of abundance. These properties of the Morisita similarity index and the Pinkham-Pearson index B_{2} may not be justified in a biological collection. All the similarity and dissimilarity indices were able to reflect the was able to measure the true dissimilarity.

The results of the Spearman rank correlation fore all possible combinatious of various quantitative community comparison indices for the hypothencal cowomunthes are shown in Table 4.18. Most of the indices were hishly currelated antegis exth other except for the Morisita similarity index (correlation values ranged trum 0.430) 0 0.795) and Sokal's Euclidean distance (correlation values ranged trom -0.500 50 0.817). The next least correlated indices was the Pinkham-Pearion index B (values ranged from 0.430 to -0.981). The discrepancies were more profound than the qualitative ones. Aside from the Morisita similarity index and the Sokal's Euclidean distance, the remaining indices appeared to be correlated among each other with the lowest correlation greater than 0.7 except for one instance (Pinkham-Pearson index B and Stander`s SIMI had Spearman rank correlation value equals to 0.695).

The results of the Spearman rank correlation for the field data with total macroinvertebrates, midges, and family level census are shown in Tables 4.19 through 4.21. It is evident that much lower correlation was observed with field data. It seemed that Sokal's Euclidean distance was index of its own and had very little correlation with the rest of the indices. The low correlations of the Morisita similarity index for the hypothetical communities were not observed in the field data. Correlation dropped considerably across the indices with family level census with the exception of a few correlated indices. The Morisita similarity index, Horn's simplified Morisita index, Renkonen's percent similarity, and Stander's SIMI showed notably high correlation among each other throughout the three data sets. The Bray-Curtis
index and Parrish and Wagner's average chi-square were also highly correlated throughout the three data sets. The same was true with the Pinkham-Pearson index B and Lance and Williams' Canberra metric. These two indices were highly correlated to each other throughout the three census data sets.

Based on the results of the Sign test and Spearman rank correlation and the justification mentioned in the Chapter of Materials and Methods, two diversity indices (Hurlbert's PIE and Brillouin's diversity index), two qualitative community comparison indices (Sørensen's quotient of similarity, revised Fager and McGowan index), and four quantitative community comparison indices (Morisita similarity index, Sokal's Euclidean distance, Pinkham-Pearson index B, and Parrish and Wagner's average chi-square) were chosen to interpret the impact of chlorinated sewage on macroinvertebrate community structure. Additionally, the general census data, abundance, species richness, and EPT were also included in the interpretation.

2. Interpretation of the Field Data

a. General Census Data and Trends

A total of 45 baskets, 8037 benthic macroinvertebrates, 188 taxa, and 40 EPT (a value derived from total identified species of Ephemeroptera, Plecoptera and Tricoptera) were collected from stone-filled basket artificial substrates recovered from the Lampson Brook from October 30, 1987 to October 17, 1988. The general census data for collections of benthic macroinvertebrates from the control and four downstream stations are listed in Table 4.22.

The distribution (number of organisms and number of species belonging to these taxa) of major benthic macroinvertebrates for the entire study is presented in

Tables 4.23 and 4.24. The most prevalent organisms and species were the immature insects with relatively few other invertebrates. They comprised 72.6% to 98.2% of the total abundance and 79.4% to 93.2% of the total species richness, respectively, for a sampling station. Among those, Diptera occupied 64.6% to 92.0% of the total abundance and 56.8% to 63.4% of the total species richness, respectively. Among the Diptera, the chironomids were found to occupy 60.6% to 90.7% of the total abundance and 50.5% to 56.2% of the total species richness. The next most important taxa were, in descending order, Ephemeroptera, Plecoptera, Tricoptera, Coleoptera, Odonata, and Megaloptera. Other than immature insects, Amphipoda and Oligochaeta were also found to be abundant at stations 3 and 4.
b. Density, Abundance and Species Richness
i. Non-chlorination Regime: December 22, 1987 and March 29, 1988 The average substrate densities, at each station, indicated that at station 5, population densities $(736 \pm 153$ and $342 \pm 122)$ had returned to control (station 1) levels $(347 \pm 125$ and 388 ± 157). Both sets of replicates yielded populations of very similar magnitude. There was also agreement between replicates within each set. Analysis of early winter (December 22) substrates showed that the highest density was observed at station 2 $(1607 \pm 259$ and $1999 \pm 433)$. In early spring (March 29), however, the density did not peak until station $3(1686 \pm 349)$ for stones not in mutual contact and $(1726+319)$ for standard exposure (Table 4.25). The abundance followed basically the same trends, with comparable organisms isolated from stations 1 and 5 , and showed that the highest abundance was observed at station 2 during the winter months and at station 3 in early
spring. Species richness on average, though, was highest at station 2 , followed by stations 3, 1, 4, and 5 (Table 4.26).

The abundance and species data for chironomids and their respective percent contribution are presented in Tables 4.27 and 4.28. The chironomids were most abundant at station 2 in December and at station 3 in March. Many fewer chironomids were found at stations 1 and 5 . Species richness was also higher at stations 2 and 3, and lower at stations 1 and 5. It is clear that chironomids occupied a large portion of the population at stations $2(68.9 \%$ to $93.7 \%), 3(69.6 \%$ to $91.5 \%)$, and $4(77.3 \%$ to $97.7 \%)$. At station 1 , only half of the population were chironomids (34.4% to 72.0%). At station 5 the chironomids comprised 58.9% to 80.6% of the population. There was, however, no clear relationship between the abundance and species richness for the chironomid communities for each basket collection. The percent contribution of the species richness relative to its abundance varied from $50.0 \%: 34.4 \%$ (3/29/88 standard exposure) to $52.9 \%: 86.5 \%$ ($12 / 22 / 87$ replicate basket $2)$, respectively.

ii. Chlorination Regime: October 30, 1987 and April 14, August 22, 1988

The macroinvertebrate density values at stations 1,4 , and 5 during chlorination (except August 22) were of the same order of magnitude as during the non-chlorination treatment. During periods of chlorination, the peak values at stations 2 and 3 were depressed to less than half of the densities to their non-chlorinated counterparts (Table 4.25). Species richness was also depressed to one third at stations 2 and 3 (Table 4.26). Though macroinvertebrate abundance remained the same during chlorination
and non-chlorination period at stations 1,4 , and 5 , the species richness, however, were only greatly reduced at station 4 .

When comparing chlorination and non-chlorination collections made during the biologically and hydrologically stable low temperature periods (October 30, 1987 and December 22,1987), the density peaks shifted from station 3 to station 2 and doubled in magnitude following the cessation of chlorination. Interestingly enough, the densities at station 4 and 5 also increased proportionately when chlorination ceased (Table 4.25). Species richness, though, only increased at station 2 and remained approximately the same for the rest of the stations (Table 4.26).

Chironomid populations in general were lower at stations 1 and 5. The population peak values were greatly reduced at station 2 during the chlorination period and less so for station 3. Species richness, however, was lower at station 3 than at station 2 (Table 4.27). The percent contributions of chironomid abundance and species richness during chlorination and non-chlorination regimes stayed about the same degree of magnitude at stations $1,2,3$, and 5 with baskets retrieved before March 29, 1988. Samples collected in April, showed that midges comprised more than 81.0% of the population at all stations except for station 4 . In summer collections, however, midges occupied 94.6% at station 2 , approximately one third at stations 1 and 5, and only less than 20% at stations 3 and 4 (Table 4.28).

The results from the summer samples were different from the samples collected at other times of the year. Densities (Table 4.25) were an order of magnitude greater than fall, winter, and spring samples. The pattern, however, remained essentially unchanged, except that population density decreased only by half of peak values,
whereas the spring and fall values dropped to one fifth of peak values. Species richness was greatest during the summer months. More than 40 species were recovered from all the stations except for station 4 where only 13 species were found. Among these macroinvertebrates species, chironomid species comprised from 7.7\% at station 4 to 71.7% at station 2.
iii. Placement Experiment: October 17, 1988 To more clearly identify the impact of the chlorinated sewage in Lampson Brook, ten substrates that were initially placed at station 1 on August 22 to allow macroinvertebrates to colonize, were netted on October 1, and subsequently removed and redeployed for 17 days at each of the four downstream stations. The observed densities followed the same sequence observed in a treatment one year earlier (October 30, 1987). Though the respective densities were consistently higher at each station, they remained lower than the non-chlorinated counterparts (Table 4.25). The species richness, however, remained high relative to the control station (Table 4.26). Chironomids clearly were reduced by much greater proportion relative to the control with respect to both abundance and species richness (Tables 4.27 and 4.28).
c. Species Diversity

i. Non-chlorination Regime: December 22, 1987 and March 29, 1988 When

applying diversity as a measure of the biological response, a somewhat different picture emerged. Brillouin's diversity did not increase with distance from the outfall (Table 4.29). Diversity peaked at either station 3 (2.0030 and 2.3216) on December 22 or at station 2 (2.8289 and 2.4099) on March 29, but never in that station supporting the highest densities. During the early winter (December 22), diversity
peaked at station 3 (2.0030 and 2.3216) and dropped gradually to below control levels at station 5 (1.3334 and 1.5702). The early spring data revealed the same general trend, a drop in diversity below station 3 (2.0768 and 2.2022 for station 4 and 1.7995 and 2.3473 for station 5 , respectively).

Hurlbert's diversity showed a slightly different picture (Table 4.30). Diversity remained highest at the control station both in winter (0.8987 and 0.8918) and early spring. (0.9733 and 0.9617). In winter the diversity dropped to the lowest level at station 2 (0.6380 and 0.7005), increased to near station 1 at stations 3 (0.8518 and $0.8939)$ and $4(0.8033$ and 0.8585$)$ and dropped again at station $5(0.6563$ and 0.7987$)$. In early spring, the diversity decreased gradually from station $1(0.9733$ and 0.9617$)$ to station 4 (0.8739 and 0.8829) and rose to station 3 level at station 5 (0.8839 and $0.9364)$.

According to Brillouin's diversity values for midges, the percent contributions of this level of diversity were the highest at station 4 (76.0% to 95.0%), intermediate at station $3(67.2 \%$ to $82.2 \%)$, lower at station $2(57.5 \%$ to $78.7 \%)$, and the lowest at stations 1 (23.8% to 63.7%) and 5 (29.2\% to 65.2%) (Table 4.31). Hurlbert's diversity values for the midges gave an entirely different picture (Table 4.32). In winter, the highest diversity occurred at station 3 (0.8238 and 0.8577), the next highest values were observed at stations $1(0.7159$ and 0.8360$)$ and $4(0.7745$ and 0.8196$)$, and the lowest at stations $2(0.5882$ and 0.6020$)$ and $5(0.3210$ and 0.6742$)$. In spring, however, the highest diversity occurred at station 1 (0.9739 and 0.9818) and diversity decreased from the outfall to the lowest level at station 5 (0.8233 and 0.8864).

Brillouin diversity for family level census, on the contrary, in the reverse order, stations $1(34.2 \%$ to $68.0 \%)$ and $5(34.8 \%$ to $70.8 \%)$ shared approximately the same level of percent contributions with their respective total macroinvertebrate populations. Percent contributions of family level diversity decreased from the outfall at stations 2 $(21.1 \%$ to $40.9 \%)$ to intermediate level at station $3(17.8 \%$ to $29.8 \%)$, and to the lowest tevel at station $4(5.0 \%$ to $23.3 \%)$ (Table 4.33). Hurlbert's diversity values basically showed the same trends at family level (Table 4.33), highest values at station 1 (0.4700 to 0.8085), decreased in values, in descending order, at stations 5 (0.3527 to 0.6318), 2 (0.1217 to 0.5164), 3 (0.1629 to 0.4401), and 4 (0.0462 to 0.2198) (Table 4.34).

ii. Chlorination Regime: October 30, 1987 and April 14, August 22, 1988

As during the non-chlorination period the greatest Brillouin's diversity values for total macroinvertebrates (except during the summer, August 22) occurred at stations 2 (2.2503 and 2.2207 for October collection and 2.0944 for April collection) (Table 4.29). Surprisingly, diversity values were generally lower during this period. In October collection Hurlbert's diversity, however, was the highest at station 1 (0.9436 and 0.9300) and decreased from the outfall to the lowest level at station 5 (0.5820 and 0.6129). In spring, the highest diversity occurred at station $5(0.9364)$ and the lowest at station 4 (0.5091) (Table 4.30).

The percent contributions of midge diversity in October collection showed that, in general, stations 2, 3, and 4 had higher values than stations 1 and 5. In April and the summer, the lowest values occurred at station $4(42.8 \%$ and 0.0%, respectively) (Table 4.31). Huribert's diversity values for midges showed exactly
same trends as total macroinvertebrates for October collection. In April, midges were the most diverse at station $5(0.9265)$, and the least at station 3 (0.6764). In summer, no midge diversity was observed at all at station 4 (0.0000), and the highest diversity occurred at station 1 (0.8925) (Table 4.32).

The percent contributions of family level diversity were approximately the same as during the non-chlorination regime except for April and summer collections where the highest values were observed at either stations $2(75.5 \%)$ or $3(57.2 \%$ and 73.9\%) (Table 4.33). Hurlbert's diversity values at the family level indicated that October collections at station $1(0.7603$ and 0.6600$)$ were approximately one third to one half higher than the rest of the stations both in winter and early spring. In summer, the peak occurred at stations 3 (0.7985) and 4 (0.7407) (Table 4.34).
iii. Placement Experiment: October 17, 1988 The results indicated that chlorinated sewage exerted very little impact on total macroinvertebrate with regard to Brillouin diversity (Table 4.29). The biggest drop in diversity (from 2.4490 at control to 2.2882 at station 2) was less than $10 \%(6.56 \%)$, in fact diversity increased at two downstream stations, stations 3 (2.4560) and 5 (2.6052). With Hurlbert's diversity, the biggest drop occurred at station 3 (from 0.9147 at control to 0.8797) and was less than $5 \%(3.83 \%)$ compared to the control station (0.9147). Only station 5 showed an increase in Hurlbert's diversity (Table 4.30).

The percent contributions of midge diversity, though, according to Brillouin diversity, were all depressed at downstream stations compared to the control (Table 4.31). Hurlbert's Diversity for midges only showed depression at stations 2, 3, and 4 (Table 4.32).

The percent contributions of Brillouin's diversity at the family level showed that all downstream stations increased more than one half of that of control (Table 4.33). Hurlbert's diversity also showed increase in diversity values at downstream stations (Table 4.34).

d. Community Comparison

i. Non-chlorination Regime: December 22, 1987 and March 29, 1988 With regard to qualitative community comparison indices (Sorensen's quotient of similarity and revised Fager and McGowan index), both indices gave a similar assessment between upstream and downstream populations of total macroinvertebrates (Tables 4.35 and 4.36). In winter, station 2 was the most similar to station 1, and station 3 was the least similar. In spring, however, station 4 was the most similar to station 1 , and station 5 was the least similar. Both indices also gave consistent assessment of midge populations upstream and downstream (Tables 4.37 and 4.38). In winter, station 2 had the most similar midge populations to station 1 , and station 5 , the least similar. In spring, though, stations 3 or 4 had the most similar midge populations to station 1, and station 5 had the least similar midge populations. Family level similarities, in winter, also showed the highest values at station 2 , and the lowest at station 3. In spring, however, the highest values occurred at station 5, just the opposite to the similarity values for total macroinvertebrates and midges, and the lowest at station 4 (Tables 4.39 and 4.40).

Examination of quantitative community comparison indices (Morisita similarity index, Sokal's Euclidean distance, Pinkham-Pearson index B, and Parrish and Wagner's average chi-square) indicated that there were considerable variations in
assessing the upstream and downstream populations of total macroinvertebrates (Tables 4.41 through 4.44), midges (Tables 4.45 through 4.48), and macroinvertebrate families (Tables 4.49 through 4.52). This is not all surprising because of the poor Spearman rank correlation observed with the field data among these indices.

With regard to Morisita similarity values as an index of evaluation during non-chlorination regime, two different trends were observed during non-chlorination regime. The winter macroinvertebrate populations became increasingly dissimilar from control station with distance from the outfall. It then became more similar at station 5. The spring populations, however, became less similar with distance from the outfall, with the greatest dissimilarity occurring at station 5 (Table 4.41).

In winter, with regard to Sokal's Euclidean distance values, station 2 was the most dissimilar, and stations 3 and 4 were the least dissimilar. In spring, however, the most dissimilar macroinvertebrate populations occurred at station 3, and stations 2 and 5 were the least dissimilar (Table 4.42).

The Pinkham-Pearson index B values indicated that in winter macroinvertebrate populations were the most similar at station 2 and the least similar at station 3 . In spring, station 4 was the most similar to station 1 and either stations 3 or 5 , the least similar (Table 4.43).

The Average chi-square index values showed that, in winter, either stations 2 or 3 were the most dissimilar to station 1 and station 5, the least dissimilar. In spring, station 3 was the most dissimilar to station 1 and station 2 the least dissimilar (Table 4.44).

In winter, midge populations at station 2, according to the Morisita similarity index values, were the most similar to station 1 and the least similar at station 4 . In spring, midge populations at station 3 were the most similar to station 1 and at station 5, the least similar (Table 4.45).

Sokal's Euclidean distance values indicated that, in winter, midge populations at station 2 were the most dissimilar to station 1. In spring station 3 was the most dissimilar to station 1 (Table 4.46)

The Pinkham-Pearson index B values for midge populations showed the highest similarity at either stations 2 or 3 in winter, and the highest similarity at station 4 in spring (Table 4.47).

The average chi-square index values indicated that midge populations at station 2 were the most dissimilar to station 1 in winter, and at station 3 , the most dissimilar in spring (Table 4.48).

The Morisita similarity index values calculated for the macroinvertebrate families were the highest at station 5 in winter. Stations 2,3 , and 4 had the same level of similarity values. In spring, stations 2 and 5 had the highest similarity values and lower at stations 3 and 4 (Table 4.49). The differences between these similarity values were much smaller than the values obtained from total macroinvertebrates and midges data.

The dissimilarity values obtained from Sokal's Euclidean distance for macroinvertebrate families had the similar assessment with those values obtained for total macroinvertebrates and midges, with the highest similarity values at station 2 in winter and at station 3 in spring (Table 4.50).
ii. Chlorination Regime: October 30, 1987 and April 14, August 22,1988

Serensen's quotient of similarity and revised Fager and McGowan index also gave consistent assessment total macroinvertebrate populations upstream and downstream (Tables 4.35 and 4.36). In fall, all the downstream stations had very close similarity values compared to the control. On April 14, 14 days after the chlorination resumed, station 2 were the most similar to station 1. After 4 months of chlorination, in summer, the similarities remained the highest at stations 2 . Same phenomenon was observed for the midge populations and family level census (Tables 4.37 through 4.40).

The same statement can be made with regard to the inconsistency of similarity/dissimilarity assessment of upstream and downstream populations of total macroinvertebrate, midge, and macroinvertebrate family with quantitative community comparison indices during the chlorination regime (Tables 4.41 through 4.52). Overall, the inconsistent trends of similarity/dissimilarity values were observed throughout the indices across all three data sets.

According to Morisita similarity index values, the total macroinvertebrate populations at either stations 2 or 3 were the most similar to station 1 in spring. On April 14, 14 days after chlorination resumed, station 2 still had the most similar macroinvertebrate community. In summer, after 4 months of chlorination, at least half of the populations found at station 1 were replaced by other macroinvertebrates (Table 4.41).

Sokal's Euclidean distance values indicated that macroinvertebrate populations at station 3 were the most dissimilar to station 1 in fall. On April 14, station 2 was
the least dissimilar to station 1 and became the most dissimilar in summer after 4 months of chlorination (Table 4.42).

The Pinkham-Pearson index B values obtained for total macroinvertebrates did not show big differences in similarity among all the stations on October,30 1987 collections. On April 14, 1988, 14 days after chlorination resumed, station 2 was the most similar to station 1 . On August, 22, 4 months after chlorination, station 5 became the most similar to station 1 (Table 4.43).

The average chi-Square index values for total macroinvertebrates also did not show big differences in dissimilarity among all the stations on October, 10, 1987 collections. On April, 14, 1988, macroinvertebrate populations were the most dissimilar at station 5 and the least dissimilar at station 2. On August, 22, however, macroinvertebrate populations were the most dissimilar at station 4 and the least dissimilar at station 5 (Table 4.44)

The Morisita similarity index values for midge populations indicated that, in fall, either stations 2 or 3 were the most similar to station 1 . On April 14, midges populations were the most similar at station 2 and the least similar at station 5 . On August 22, midge populations became the most similar at station 5 and the least similar at station 4 (Table 4.45).

Sokal's Euclidean distance index values showed that, in October, midge populations at station 3 were the most dissimilar to station 1 , and station 2 were the least dissimilar. In April, midge populations remained the most dissimilar at station 3, and the least dissimilar at station 2. In August, however, midge populations became the most dissimilar at station 2 and the least dissimilar at station 3 (Table 4.46).

The Pinkham-Pearson index B values for midge populations showed that, in October, either stations 2 or 5 were the most similar to station 1 . In the following April, station 2 was the most similar to station 1. In August, station 3 was the most similar to station 1 (Table 4.47).

In October, the average chi-square index values, though, showed the highest dissimilarity with midge populations at station 5. In the following April, the highest dissimilarity occurred at station 5 and the lowest at station 2. In August, the highest dissimilarity occurred at station 4 and the lowest at station at station 3 (Table 4.48).

The Morisita similarity index values for macroinvertebrate families constantly showed the highest values at station 5 both in October, April, and August. The least similar station, though, varied at different sampling dates (Table 4.49).

Sokal's Euclidean distance values indicated that, in October and April, station 3 had the most dissimilar macroinvertebrate families and either stations 5 or 2 the least dissimilar in October or April, respectively. In August, station 2 was the most dissimilar and station 4 the least dissimilar (Table 4.50).

The Pinkham-Pearson index B values showed that macroinvertebrate families at station 5 were the most similar to station 1 in October, station 2 in April, and station 5 in August, respectively; stations 3 or 4 were the least similar to station 1 in October, station 3 in April, and station 4 in August (Table 4.51).

The average chi-square index values showed that macroinvertebrate families at station 3 were the most dissimilar to station 1 in October, station 4 in April and in August, respectively. Macroinvertebrate families at station 2 were the least dissimilar to station 1 in October, station 2 in April, and station 5 in August (Table 4.52).
iii. Placement Experiment: October 17, 1988 In summary, most of the indices (Sørensen's quotient of similarity, the Fager and McGowan index, the Morisita similarity index, Sokal's Euclidean distance, the Pinkham-Pearson index B, and the average chi-square) showed basically the similar assessment for the populations of macroinvertebrate or midge, they were the most similar either at station 2 or at station 5 (Tables 4.35 through 4.38 and Tables 4.41 through 4.48). The similarity/dissimilarity values obtained for populations of macroinvertebrate families varied between qualitative and quantitative indices. Sørensen's quotient of similarity and the revised Fager and McGowan index showed that macroinvertebrate families at stations 3 and 5 were more similar to station 1 whereas macroinvertebrate families at stations 2 and 4 were less similar to station 1 (Table s 4.39 through 4.40).

Quantitative community comparison indices also showed consistent assessment among themselves except for Sokal's Euclidean distance. The Morisita similarity index, the Pinkham-Pearson index B and the average chi-square showed that macroinvertebrate families at station 5 were the most similar to station 1 whereas Sokal's Euclidean distance indicated that macroinvertebrate families at station 4 were the most similar to station 1 (Tables 4.49 through 4.52).
e. EPT

It is clear that during the non-chlorination regime, stations 1 and 2 shared approximately the same EPT values (average EPT equal 6 at station 1 and 7.2 at station 2). However, when chlorination resumed, the average EPT value at station 2 was depressed to approximately 10 fold of that of control (Table 4.53). Stations 3, 4, and 5 appeared to have similar average EPT values during chlorination and
non-chlorination periods. There was partial recovery, about two thirds of the control level, of the EPT at station 5.
Table 4.1 Analysis of water quality of selected stations along Lampson Brook from September 25,
1987 to October 29, 1987. All the data are presented as average \pm S.D. in mg / l unless
otherwise indicated.
Station 1
0
12.4 ± 2.8
9.10 ± 0.14
$86+4$
6.84 ± 0.32
6.76 ± 0.05
0.052 ± 0.016
2.585 ± 0.224
0.320 ± 0.093 -
2.957 ± 0.238
0

 $\begin{array}{lll}\text { Station 3 } & \text { Station 4 } & \text { Station } 5 \\ 950 & 1100 & 3100 \\ 11.8 \pm 2.3 & 12.3 \pm 2.6 & 11.6 \pm 2.6 \\ 6.36 \pm 0.85 & 6.40 \pm 0.76 & 9.18 \pm 0.66 \\ 59 \pm 5 & 59 \pm 4 & 84 \pm 4 \\ 6.69 \pm 0.32 & 6.70 \pm 0.40 & 6.92 \pm 0.26 \\ 0 & 0 & 0 \\ 0.005 \pm 0.006 & 0.011 \pm 0.020 & 0.006 \pm 0.012 \\ 0.005 \pm 0.006 & 0.006 \pm 0.007 & 0.003 \pm 0.004 \\ 0 & 0 & 0 \\ 0.010 \pm 0.011 & 0.017 \pm 0.018 & 0.009 \pm 0.014 \\ 12 \pm 7 & 13 \pm 9 & 15 \pm 13 \\ 2.35 \pm 1.62 & 2.28 \pm 1.29 & 2.53 \pm 1.31\end{array}$ $\begin{array}{lll}\text { Station 3 } & \text { Station 4 } & \text { Station } 5 \\ 950 & 1100 & 3100 \\ 11.8 \pm 2.3 & 12.3 \pm 2.6 & 11.6 \pm 2.6 \\ 6.36 \pm 0.85 & 6.40 \pm 0.76 & 9.18 \pm 0.66 \\ 59 \pm 5 & 59 \pm 4 & 84 \pm 4 \\ 6.69 \pm 0.32 & 6.70 \pm 0.40 & 6.92 \pm 0.26 \\ 0 & 0 & 0 \\ 0.005 \pm 0.006 & 0.011 \pm 0.020 & 0.006 \pm 0.012 \\ 0.005 \pm 0.006 & 0.006 \pm 0.007 & 0.003 \pm 0.004 \\ 0 & 0 & 0 \\ 0.010 \pm 0.011 & 0.017 \pm 0.018 & 0.009 \pm 0.014 \\ 12 \pm 7 & 13 \pm 9 & 15 \pm 13 \\ 2.35 \pm 1.62 & 2.28 \pm 1.29 & 2.53 \pm 1.31\end{array}$ $\begin{array}{lll}\text { Station } 3 & \text { Station } 4 & \text { Station } 5 \\ 950 & 1100 & 3100 \\ 11.8 \pm 2.3 & 12.3 \pm 2.6 & 11.6 \pm 2.6 \\ 6.36 \pm 0.85 & 6.40 \pm 0.76 & 9.18 \pm 0.66 \\ 59 \pm 5 & 59 \pm 4 & 84 \pm 4 \\ 6.69 \pm 0.32 & 6.70 \pm 0.40 & 6.92 \pm 0.26 \\ 0 & 0 & 0 \\ 0.005 \pm 0.006 & 0.011 \pm 0.020 & 0.006 \pm 0.012 \\ 0.005 \pm 0.006 & 0.006 \pm 0.007 & 0.003 \pm 0.004 \\ 0 & 0 & 0 \\ 0.010 \pm 0.011 & 0.017 \pm 0.018 & 0.009 \pm 0.014 \\ 12 \pm 7 & 13 \pm 9 & 15 \pm 13 \\ 2.35 \pm 1.62 & 2.28 \pm 1.29 & 2.53 \pm 1.31\end{array}$ $\begin{array}{lll}\text { Station 3 } & \text { Station 4 } & \text { Station } 5 \\ 950 & 1100 & 3100 \\ 11.8 \pm 2.3 & 12.3 \pm 2.6 & 11.6 \pm 2.6 \\ 6.36 \pm 0.85 & 6.40 \pm 0.76 & 9.18 \pm 0.66 \\ 59 \pm 5 & 59 \pm 4 & 84 \pm 4 \\ 6.69 \pm 0.32 & 6.70 \pm 0.40 & 6.92 \pm 0.26 \\ 0 & 0 & 0 \\ 0.005 \pm 0.006 & 0.011 \pm 0.020 & 0.006 \pm 0.012 \\ 0.005 \pm 0.006 & 0.006 \pm 0.007 & 0.003 \pm 0.004 \\ 0 & 0 & 0 \\ 0.010 \pm 0.011 & 0.017 \pm 0.018 & 0.009 \pm 0.014 \\ 12 \pm 7 & 13 \pm 9 & 15 \pm 13 \\ 2.35 \pm 1.62 & 2.28 \pm 1.29 & 2.53 \pm 1.31\end{array}$ $\begin{array}{lll}\text { Station } 3 & \text { Station } 4 & \text { Station } 5 \\ 950 & 1100 & 3100 \\ 11.8 \pm 2.3 & 12.3 \pm 2.6 & 11.6 \pm 2.6 \\ 6.36 \pm 0.85 & 6.40 \pm 0.76 & 9.18 \pm 0.66 \\ 59 \pm 5 & 59 \pm 4 & 84 \pm 4 \\ 6.69 \pm 0.32 & 6.70 \pm 0.40 & 6.92 \pm 0.26 \\ 0 & 0 & 0 \\ 0.005 \pm 0.006 & 0.011 \pm 0.020 & 0.006 \pm 0.012 \\ 0.005 \pm 0.006 & 0.006 \pm 0.007 & 0.003 \pm 0.004 \\ 0 & 0 & 0 \\ 0.010 \pm 0.011 & 0.017 \pm 0.018 & 0.009 \pm 0.014 \\ 12 \pm 7 & 13 \pm 9 & 15 \pm 13 \\ 2.35 \pm 1.62 & 2.28 \pm 1.29 & 2.53 \pm 1.31\end{array}$ $\begin{array}{lll}\text { Station } 3 & \text { Station } 4 & \text { Station } 5 \\ 950 & 1100 & 3100 \\ 11.8 \pm 2.3 & 12.3 \pm 2.6 & 11.6 \pm 2.6 \\ 6.36 \pm 0.85 & 6.40 \pm 0.76 & 9.18 \pm 0.66 \\ 59 \pm 5 & 59 \pm 4 & 84 \pm 4 \\ 6.69 \pm 0.32 & 6.70 \pm 0.40 & 6.92 \pm 0.26 \\ 0 & 0 & 0 \\ 0.005 \pm 0.006 & 0.011 \pm 0.020 & 0.006 \pm 0.012 \\ 0.005 \pm 0.006 & 0.006 \pm 0.007 & 0.003 \pm 0.004 \\ 0 & 0 & 0 \\ 0.010 \pm 0.011 & 0.017 \pm 0.018 & 0.009 \pm 0.014 \\ 12 \pm 7 & 13 \pm 9 & 15 \pm 13 \\ 2.35 \pm 1.62 & 2.28 \pm 1.29 & 2.53 \pm 1.31\end{array}$
$0.515+0.301$
0.076 ± 0.041
0
 $\begin{array}{lll}\text { Station } 3 & \text { Station } 4 & \text { Station } 5 \\ 950 & 1100 & 3100 \\ 11.8 \pm 2.3 & 12.3 \pm 2.6 & 11.6 \pm 2.6 \\ 6.36 \pm 0.85 & 6.40 \pm 0.76 & 9.18 \pm 0.66 \\ 59 \pm 5 & 59 \pm 4 & 84 \pm 4 \\ 6.69 \pm 0.32 & 6.70 \pm 0.40 & 6.92 \pm 0.26 \\ 0 & 0 & 0 \\ 0.005 \pm 0.006 & 0.011 \pm 0.020 & 0.006 \pm 0.012 \\ 0.005 \pm 0.006 & 0.006 \pm 0.007 & 0.003 \pm 0.004 \\ 0 & 0 & 0 \\ 0.010 \pm 0.011 & 0.017 \pm 0.018 & 0.009 \pm 0.014 \\ 12 \pm 7 & 13 \pm 9 & 15 \pm 13 \\ 2.35 \pm 1.62 & 2.28 \pm 1.29 & 2.53 \pm 1.31\end{array}$
$2.28 \pm 1.29 \quad 2.53 \pm 1.31$
Continued, next page.

[^0]Station 2
120
12.8 ± 2.3
8.49 ± 0.95

+
$+\infty$

0.024 ± 0.020 $\begin{array}{lll}\text { Station } 3 & \text { Station 4 } & \text { Station } 5 \\ 950 & 1100 & 3100 \\ 11.8 \pm 2.3 & 12.3 \pm 2.6 & 11.6 \pm 2.6 \\ 6.36 \pm 0.85 & 6.40 \pm 0.76 & 9.18 \pm 0.66 \\ 59 \pm 5 & 59 \pm 4 & 84 \pm 4 \\ 6.69 \pm 0.32 & 6.70 \pm 0.40 & 6.92 \pm 0.26 \\ 0 & 0 & 0 \\ 0.005 \pm 0.006 & 0.011 \pm 0.020 & 0.006 \pm 0.012 \\ 0.005 \pm 0.006 & 0.006 \pm 0.007 & 0.003 \pm 0.004 \\ 0 & 0 & 0 \\ 0.010 \pm 0.011 & 0.017 \pm 0.018 & 0.009 \pm 0.014 \\ 12 \pm 7 & 13 \pm 9 & 15 \pm 13 \\ 2.35 \pm 1.62 & 2.28 \pm 1.29 & 2.53 \pm 1.31\end{array}$ $\begin{array}{lll}\text { Station 3 } & \text { Station 4 } & \text { Station } 5 \\ 950 & 1100 & 3100 \\ 11.8 \pm 2.3 & 12.3 \pm 2.6 & 11.6 \pm 2.6 \\ 6.36 \pm 0.85 & 6.40 \pm 0.76 & 9.18 \pm 0.66 \\ 59 \pm 5 & 59 \pm 4 & 84 \pm 4 \\ 6.69 \pm 0.32 & 6.70 \pm 0.40 & 6.92 \pm 0.26 \\ 0 & 0 & 0 \\ 0.005 \pm 0.006 & 0.011 \pm 0.020 & 0.006 \pm 0.012 \\ 0.005 \pm 0.006 & 0.006 \pm 0.007 & 0.003 \pm 0.004 \\ 0 & 0 & 0 \\ 0.010 \pm 0.011 & 0.017 \pm 0.018 & 0.009 \pm 0.014 \\ 12 \pm 7 & 13 \pm 9 & 15 \pm 13 \\ 2.35 \pm 1.62 & 2.28 \pm 1.29 & 2.53 \pm 1.31\end{array}$
5.27 ± 2.57

8.26 ± 1.00 $\stackrel{+1}{\infty}$
. \qquad

 Table $4.1 \quad$ (Continued).
Measure/Site

Acidity $\left(\mathrm{mg} \mathrm{CaCO}_{3} \mathrm{l}\right)$ $\mathrm{pH}=8.3$
Alkalinity ($\left.\mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{l}\right)$ $\mathrm{pH}=4.5$ Ammonia (mg / l) Nitrate (mg / l) Phosphorus Total (mg/) Calcium (mg Ca/l) Hardness ($\mathrm{mg} \mathrm{CaCO}_{3} \mathrm{ll}$) Chloride (mg/l) Total solids (mg/)
6
E
0
0
0
0
0
0
0
0
0
0
0
n
Table 4.2 Analysis of water quality of selected stations along Lampson Brook from November 19, 1987 to December 17, 1987. All the data are presented as average \pm S.D. in mg / l unless otherwise indicated.

Station 1	WWTP	Station 2	Station 3	Station 4	Station 5
0	60	120	950	1100	3100
5.1 ± 1.8	7.1 ± 2.1	4.9 ± 1.3	$4.8+2.3$	$4.5+2.4$	4.8 ± 2.3
11.17 ± 0.59	9.36 ± 0.53	10.75 ± 0.42	8.62 ± 0.45	8.70 ± 0.47	10.96 ± 0.41
88 ± 4	79 ± 8	86 ± 4	$67+3$	67+3	85+5
6.94 ± 0.12	$6.81 \pm 0,10$	7.00 ± 0.15	6.71 ± 0.12	6.62 ± 0.20	6.84 ± 0.16
----	----	----	----	----	----
----	----	----	----	----	----
----	----	----	----	----	----
----	----	----	----	----	----
	----	----	----	----	----
10 ± 3	236 ± 187	$98+79$	$98+19$	$19+14$	9 ± 2
2.42 ± 0.46	5.33 ± 0.10	$3.43+0.60$	2.13 ± 0.40	2.06 ± 0.53	3.35 ± 0.27

Continued, next page.
Station 3
950
$4.8+2.3$
8.62 ± 0.45
$67+3$.
Station 2
120
4.9 ± 1.3
10.75 ± 0.42
$86+4$
$7.00+0.15$
$9.36+0.53$
79 ± 8 $1 \quad: \quad$ 236 ± 187
5.33 ± 0.1 Station 1
0
5.1 ± 1.8
11.17 ± 0.59
88 ± 4
Table 4
-

 98 ± 19
2.13 ± 0.40
 0
\vdots
+1
\vdots
\vdots 2.42 ± 0.46 Distance (meters)
Temperature $\left({ }^{\circ} \mathrm{C}\right)$
D.O. $(\mathrm{mg} / \mathrm{l})$
$\begin{aligned} & \text { D.O. }(\% \text { saturation }) \\ & \mathrm{pH}\end{aligned}$
Free chlorine $(\mathrm{mg} / \mathrm{l})$
Monochloramine $(\mathrm{mg} / \mathrm{l})$
Dichloramine $(\mathrm{mg} / \mathrm{l})$
Trichloramine $(\mathrm{mg} / \mathrm{l})$
TRC (mg/l)
Fecal coliform
(no. $/ 10 \mathrm{ml})$
B.O.D. $(\mathrm{mg} / \mathrm{l})$ Measure/Site
Distance (meters)
Table $4.2 \quad$ (Continued).

Measure/Site

Alkalinity ($\mathrm{mg} \mathrm{CaCO}_{3}$ l) pH=4.5

Ammonia (mg/l)

Nitrate (mg/l)
Phosphorus Total (mg/) Calcium (mg Ca/l) Hardness ($\mathrm{mg} \mathrm{CaCO}_{3}$ /l)

$$
\begin{aligned}
& \text { Station 1 } \\
& 0 \\
& 5.46 \pm 0.47 \\
& 36.34 \pm 2.52 \\
& 0.10 \pm 0.07 \\
& 0.04 \pm 0.00 \\
& 0.08 \pm 0.02 \\
& 16.72 \pm 0.66 \\
& 67.76 \pm 2.21 \\
& 28.87 \pm 0.63 \\
& 159 \pm 45 \\
& 1.4 \pm 0.4
\end{aligned}
$$

最
E
0
0
0
0
0
0
0
0
0
0
0
Analysis of water quality of selected stations along Lampson Brook from February 25,
Table 4.3 1988 to March 29, 1988. All the data are presented as average \pm S.D. in mg / l unless otherwise indicated.

4.0 ± 0.8
11.42 ± 0.58

Measure/Site	Station 1	WWTP	Station 2	Station 3	Station 4	Station 5
Distance (meters)	0	60	120	950	1100	3100
Temperature (${ }^{\circ} \mathrm{C}$)	4.0 ± 0.8	$6.5+1.1$	5.9+2.2	5.1 ± 2.7	5.4+2.8	4.1 ± 2.1
D.O. (mgl)	11.42 ± 0.58	9.78 ± 0.63	11.02 ± 0.50	10.94 ± 0.37	10.80 ± 0.92	11.58 ± 0.41
D.O. (\% saturation)	90 ± 2	81 ± 1	87 ± 2	86 ± 8	83 ± 6	89 ± 2
pH	7.28 ± 0.11	7.13 ± 0.05	7.29 ± 0.05	6.94 ± 0.06	6.92 ± 0.08	7.06 ± 0.10
Free chlorine (mgl)	----	----	----	----	----	----
Monochloramine (mgl)	----	----	----	----	----	----
Dichloramine (mgl)	----	----	----	----	----	----
Trichloramine (mgl)	----	----	----	----	----	----
TRC (mg/)	----	----	----	----	----	----
Fecal coliform (no. $/ 10 \mathrm{ml}$)	3 ± 6	40 ± 29	17 ± 15	7 ± 9	8 ± 6	2 ± 2
B.O.D. (mg/)	1.63 ± 0.76	5.04 ± 0.62	2.90 ± 0.73	1.89 ± 0.47	2.24 ± 0.70	1.60 ± 0.73

Table 4.4 Analysis of water quality of selected stations along Lampson Brook from April 1, 1988 to April 14, 1988. All the data are presented as average \pm S.D. in mg / l unless otherwise indicated.
Mcasure/Site
Distance (meters)
Temperature $\left({ }^{\circ} \mathrm{C}\right.$)
D.O. (gl)
D.O. (\% saturation)
pH
Free chlorine (mg/l) Monochloramine (mg / l)
Dichloramine (mg / l)
Trichloramine ($\mathrm{mg} /$)
0
0.060 ± 0.085
1 ± 1
$1.45+0.35$
1.48 ± 0.27
Continued, next page.
0.025 ± 0.025
0
1.98 ± 0.57
0.325 ± 0.062
1 ± 1
2.55 ± 0.45
Station 1
0
11.2 ± 1.7
$9.50+0.10$
86 ± 2
7.43 ± 0.05
0.06 ± 0.085
1.168 ± 0.183
0
4.78 ± 0.07
0.187 ± 0.033 0
$1.168+0.183$
0
WWTP
60
14.7 ± 0.9
9.75 ± 1.45
96 ± 16
7.37 ± 0.19 0
0.983 ± 0.176
$0.015+0.007$
0.048 ± 0.011
0
0.325 ± 0.062
1 ± 1
2.55_-
$0.015+0.007$
0
n
0
+1
\vdots
n
Table 4.4 (Continued).

Alkalinity (mg CaCO. 1)

Ammonia (mg/l)
Phosphorus Total (mg/l) Calcium (mg Call)
Hardness (mg CaCO_fl)
Suspended solids (mg/l)

$$
\begin{aligned}
& \text { Station } 1 \\
& 0 \\
& 2.95 \pm 0.47 \\
& 37.10+5.54 \\
& 0.40+0.13 \\
& 0.16 \pm 0.01 \\
& 0.05+0.03 \\
& 16.8 .4+1.68 \\
& 61.00+1.40 \\
& 32.14 \pm 4.50 \\
& 182+51 \\
& 7.0 \pm 1.8
\end{aligned}
$$

$$
\begin{aligned}
& \text { Station } 3 \\
& 950 \\
& 6.59 \pm 0.64 \\
& 33.08+4.72 \\
& 0.23+0.00 \\
& 0.30 \pm 0.10 \\
& 0.40 \pm 0.04 \\
& 15.79+3.53 \\
& 57.20+9.20 \\
& 32.07 \pm 5.58 \\
& 169 \pm 37 \\
& 1.5+0.3
\end{aligned}
$$

Table 4.5
Analysis of water quality of selected stations along Lampson Brook from July, 20,
1988 to August, 20, 1988. All the data are presented as average \pm S.D. in mg/l unless otherwise indicated.

Measure/Site	Station 1	WWTP	Station 2	Station 3	Station 4	Station 5
Distance (meters)	0	60	120	950	1100	3100
Temperature (${ }^{\circ} \mathrm{C}$)	21.4 ± 2.6	25.1 ± 2.4	24.0 ± 2.4	$24.3+2.8$	23.9 ± 3.2	25.4 ± 3.3
D.O. (mg/l)	7.23 ± 0.87	4.78 ± 0.68	5.27 ± 1.03	1.42 ± 0.47	1.13 ± 0.50	6.19 ± 0.33
D.O. (\% saturation)	80 ± 6	57 ± 8	$62+12$	17 ± 5	$13+6$	75 ± 4
pH	7.36 ± 0.15	6.91 ± 0.10	$7.13+0.08$	6.83 ± 0.12	6.72 ± 0.13	7.32 ± 0.15
Free chlorine (mg / l)	0	0	0	0	0	0
Monochloramine (mg / l)	0	0.502 ± 0.235	0.208 ± 0.115	0.018 ± 0.013	0.004 ± 0.007	0.020 ± 0.015
Dichloramine (mg / l)	0	0.128 ± 0.071	$0.046+0.026$	0.014 ± 0.011	0.016 ± 0.012	0.016 ± 0.014
Trichloramine (mg/l)	0	0	0	0	0	0
TRC (mg / l)	0	0.630 ± 0.297	0.254 ± 0.140	0.032 ± 0.024	0.020 ± 0.017	0.036 ± 0.029
Fecal coliform (no. 10 ml)	27 ± 11	60 ± 119	58 ± 90	8 ± 3	6 ± 2	19 ± 5
B.O.D. (mgl)	2.12 ± 0.41	5.98 ± 0.47	3.86 ± 0.49	2.74 ± 0.11	2.68 ± 0.32	2.48 ± 0.40

Continued, next page.
2.74 ± 0.11
3.86 ± 0.49
5.98 ± 0.47
2.12 ± 0.41
B.O.D. (mg/)

Nitrite (1!⿺夂)
Phosphorus Total (hys 1)
Calcimu (mig Cal)
Haniness (HE $\mathrm{CaCO}, 1$)
Chloride (ms 1)
Tomal solids (ing 1)
Suspended solids (Ing: I)
Table 4.6 Analysis of water quality of selected stations along Lampson Brook from October 8 ,
1988 to October 15, 1988. All the data are presented as average \pm S.D. in moll unless otherwise indicated.

WWIP
00
9.8 ± 0.3
$7.63+0.78$
07 ± 0
$7.13+0.24$
0
$0.905+10.025$
$0.470+0.040$
0
$1.370+0.000)$
5 ± 5
$0.23+0.22$
Station 2
120
10.8 ± 1.8

$7.28 \pm(0.14$
0
$0.2+(1)+(1.060)$
0.145 ± 0.025
$0.385+0.085$
52 ± 51
$0.18+0.52$
Station 3
950
$8.3+0.8$
6.05 ± 0.55
57 ± 6
$7.00+0.17$
3
\vdots
3
3
3
$1.73+0.02$
Station 4
$11(x)$
$8.0+1.0$
$5.20 \pm+1(x)$
¥
3
0
0

$=0=0=\frac{\text { en }}{\substack{\text { n } \\ i+1}}$

$3.3+0.52$
$\stackrel{\uparrow}{+1}$
$11.05+0.45$
पनを

Station 3
8
0
\bigcirc
0
0
0
2
2
Station 4 Station 5
7.8 ± 0.8
r

$105+85$
$3.05+1.78$

Mcasure/Site

Distance (nevers) Temperature (cC)
D.O. (ms/)
D.O. (\% saturation) pH Free chlorine (ms/) Monchloramine (mig) Dichloramine (mil) Trichloramine (ms) TKC (Ms) Fecal coliform (no/10 mil)
B.O.D. (ms I)
Station 5
3100
3.80 ± 1.25
36.60 ± 0.45
0.40 ± 0.06
0.12 ± 0.03
0.31 ± 0.10
16.22 ± 0.68
65.62 ± 4.08
42.36 ± 9.37
212 ± 54
1.4 ± 0.3

Station 2
120
6.63 ± 0.85
45.23 ± 7.13
0.91 ± 0.07
0.36 ± 0.07
1.38 ± 0.34
21.29 ± 1.19
82.79 ± 5.61
62.36 ± 8.37
$270 \pm+0$
2.3 ± 1.1

Table 4.6 (Contimued).

```
Measure:Site
```

Distance (meters)
Acidity ($\mathrm{mg} \mathrm{CaCO}_{3}$) $\mathrm{pH}=8.3$
Alkalinity $\left(\mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{l}\right)$
$\mathrm{pH}=4.5$
Ammonia (mg/l)
Nitrate (mg/l)
Phosphorus Total (mg/l)
Phosphorus Total (mgl)
Cakcium (mg Ca/)
Hardness ($\mathrm{mg} \mathrm{CaCO}_{3}$ l)

Figure 4.1 Average combined chlorine of the five sampling stations and the outfall from September 25 to October 29, 1987.

Figure 4.2 Average combined chlorine of the five sampling stations and the outfall from April 1 to April 14, 1988.

Figure 4.3 Average combined chlorine of the five sampling stations and the outfall from July 20 to August 20, 1988.

Figure 4.4 Average combined chlorine of the five sampling stations and the outfall from October 8 to October 15, 1988.

Figure 4.5 Average concentration of phosphorus at different stations for the six sampling periods ($1=9 / 25 / 87-10 / 29 / 87,2=11 / 19 / 87-12 / 17 / 87,3=$ $2 / 25 / 88-3 / 28 / 88,4=4 / 1 / 88-4 / 14 / 88,5=7 / 20 / 88-8 / 20 / 88,6=10 / 8 / 88$ $10 / 15 / 88$).

Figure 4.6 Average concentration of ammonia at different stations for the six sampling periods $(1=9 / 25 / 87-10 / 29 / 87,2=11 / 19 / 87-12 / 17 / 87,3=$ $2 / 25 / 88-3 / 28 / 88,4=4 / 1 / 88-4 / 14 / 88,5=7 / 20 / 88-8 / 20 / 88,6=10 / 8 / 88-$ $10 / 15 / 88$).

Figure 4.7 Average concentration of acidity at different stations for the six sampling periods $(1=9 / 25 / 87-10 / 29 / 87,2=11 / 19 / 87-12 / 17 / 87,3=$ $2 / 25 / 88-3 / 28 / 88,4=4 / 1 / 88-4 / 14 / 88,5=7 / 20 / 88-8 / 20 / 88,6=10 / 8 / 88-$ 10/15/88).

Table 4.7 The results of the Sign test in comparing the differences in mean diversity values calculated either from the basket or the stones for macroinvertebrates, midges, and family level census.

MACROINVERTEBRATES

Index	Difference in Means	Pr > $=1 \mathrm{Ml}^{\prime}$
Hurlbert	0.0446	0.0025
McIntosh	-0.0702	0.0001
Run	-0.0401	0.0001
Shannon	1.5390	0.0001
Brillouin	1.5273	0.0001

MIDGES

Index	Difference in Means	Pr $>=\mid \mathrm{Ml}^{1}$
Hurlbert	0.0641	0.0360
McIntosh	-0.0562	0.0001
Run	-0.0928	0.0001
Shannon	1.3433	0.0001
Brillouin	1.2501	0.0001

FAMILY-LEVEL CENSUS

Index	Difference in Means	Pr > $=\mathrm{LMI}^{1}$
Hurlbert	0.0412	0.0357
McIntosh	-0.0536	0.0001
Run	-0.2289	0.0001
Shannon	0.5488	0.0001
Brillouin	0.5455	0.0001

1 Significant values of the Sign test

Table $4.8 \quad$ (Continued).

List of terms

H1 = Hurlbert's PIE calculated for the basket
H 2 = Hurlbert's PIE calculated for the individual stone
M1 = McIntosh's "ecological distance" relative calculated
M2 = McIntosh's "ecological distance" relative calculated for the individual stone
$\mathrm{R} 1=$ "run" formula calculated for the basket
$\mathrm{R} 2=$ "run" formula calculated for the individual stone
M2 = McIntosh's "ecological distance" relative calculated for the individual stone
R1 = "run" formula calculated for the basket
R2 = "run" formula calculated for the individual stone
R2 $=$ "run" formula calculated for the individual stone
S1 $=$ Shannon diversity calculated for the basket
S2 $=$ Shannon diversity calculated for the individual stone
B1 = Brillouin diversity calculated for the basket
$\mathrm{B} 2=$ Brillouin diversity calculated for the individual stone
SR $=$ Shannon's redundancy calculated for the basket $\mathrm{BR}=$ Brillouin's redundancy calculated for the basket
$\mathrm{SE}=$ Shannon's evenness calculated for the basket
$\mathrm{BE}=$ Brillouin's evenness calculated for the basket

Tab		The r possi	$\begin{aligned} & \text { ults } \\ & \text { e cor } \end{aligned}$		nan			n me	ring s.					
Index	H1	H2	M1	M2	R1	R2	S1	S2	B1	B2	SR	BR	SE	BE
H1	1.000	0.591	0.981	0.617	0.963	0.678	0.877	-0.026	0.657	0.082	-0.840	-0.886	0.914	0.916
H2	0.591	1.000	0.535	0.986	0.600	0.636	0.683	0.252	0.625	0.227	-0.500	-0.522	0.441	0.443
M1	0.981	0.535	1.000	0.575	0.957	0.728	0.812	-0.156	0.560	-0.009	-0.803	-0.832	0.965	0.966
M2	0.617	0.986	0.575	1.000	0.625	0.684	0.680	0.162	0.588	0.149	-0.514	-0.537	0.498	0.500
R1	0.963	0.600	0.957	0.625	1.000	0.716	0.826	-0.084	0.594	0.058	-0.783	-0.811	0.899	0.899
R2	0.678	0.636	0.728	0.684	0.716	1.000	0.481	-0.439	0.203	-0.312	-0.542	-0.575	0.832	0.831
S1	0.877	0.683	0.812	0.680	0.826	0.481	1.000	0.290	0.906	0.275	-0.751	-0.767	0.679	0.681
S2	-0.026	0.252	-0.156	0.162	-0.084	-0.439	0.290	1.000	0.586	0.837	-0.119	-0.101	-0.361	-0.354
B1	0.657	0.625	0.560	0.588	0.594	0.203	0.906	0.586	1.000	0.481	-0.688	-0.690	0.399	0.402
B2	0.082	0.227	-0.009	0.149	0.058	-0.312	0.275	0.837	0.481	1.000	-0.189	-0.183	-0.212	-0.204
SR	-0.840	-0.500	-0.803	-0.514	-0.783	-0.542	-0.751	-0.119	-0.688	-0.189	1.000	0.997	-0.781	-0.78
BR	-0.886	-0.522	-0.832	-0.537	-0.811	-0.757	-0.767	-0.101	-0.690	-0.183	0.997	1.000	-0.806	-0.806
SE	0.914	0.441	0.965	0.498	0.899	0.832	0.679	-0..61	0.399	-0.212	-0.781	-0.806	1.000	1.000
BE	0.916	0.443	0.966	. 500	0.899	0.831	0.681	-0.354	0.402	-0.204	-0.781	-0.806	. 000	. 000

Table 4.9
(Continued).

ist of term

H1 = Hurlbert's PIE calculated for the basket

H2 = Hurlbert's PIE calculated for the individual stone tone M1 = McIntosh's "ecological distance" relative calculated for the basket
M2 $=$ McIntosh's "ecological distance" relative calculated for the individ R1 = "run" formula calculated for the basket R2 $=$ "run" formula calculated for the individual stone S1 = Shannon diversity calculated for the basket S2 $=$ Shannon diversity calculated for the individual stone
$\mathrm{B} 1=$ Brillouin diversity calculated for the basket
$\mathrm{B} 2=$ Brillouin diversity calculated for the individual stone SR $=$ Shannon's redundancy calculated for the basket $\mathrm{BR}=$ Brillouin's redundancy calculated for the basket $\mathrm{SE}=$ Shannon's evenness calculated for the basket
$\mathrm{BE}=$ Brillouin's evenness calculated for the basket
The results of Spearman rank correlation in measuring the degree of association for all possible combination of diversity values for family level census．

जे 훙
8
0
0
．
N
N

$\begin{array}{llllll}- & \infty & \infty & 8 & 8 & \infty \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
$\stackrel{\infty}{\infty}$
$\begin{array}{ll}\infty & \ldots \\ \infty & \infty \\ i & 0 \\ 0\end{array}$
0
∞
0
0
Sn

$\stackrel{\sim}{\infty}$ | n |
| :--- |
| $\stackrel{n}{\circ}$ |

8
O．
$\stackrel{n}{6}$

웅
$\begin{array}{ll}\text { i．} \\ \stackrel{0}{0} & \text {＋} \\ 0 \\ 0\end{array}$
No ज

$\stackrel{\infty}{\infty}$
$\begin{array}{ll}\infty \\ \infty & 0 \\ 0 & 0 \\ i & 0 \\ 0 & 0\end{array}$
－
$\approx \underset{\sim}{\circ}$
$\stackrel{9}{0}$
$\begin{array}{lll}8 & 0 \\ 0 & 8 \\ -1 & 0 & 0\end{array}$
$\begin{array}{ll}\infty & \bar{\theta} \\ \hat{0} & \text { i．}\end{array}$

n	0	
\hat{n}		∞
i		
i		

9
0
0
0
RI
0.999
0.934
0.999
No
交
$\stackrel{\rightharpoonup}{\infty}$
$\stackrel{\infty}{\infty}$
గ్రి
웅
₹
ה
$\begin{array}{ll}\square & \overline{0} \\ 0 & \\ 0\end{array}$
$\begin{array}{ll}\circ & \vec{~} \\ \stackrel{\circ}{\circ} & \vdots \\ i & i\end{array}$
∞
∞
∞
0
$\stackrel{\infty}{\infty}$

$\begin{array}{lll}\infty & \infty & 0 \\ \infty & \infty & \dot{+} \\ i & i & 0\end{array}$
\％ Hz
๗ิ \＆
No
$\stackrel{\infty}{\infty}$
0.934
$\stackrel{n}{\circ}$
だ

$\bar{\infty}$
0
0
N
Table 4.10
ㅍ §
0.685
స
$\begin{array}{ll}\overline{2} & \infty \\ \stackrel{\infty}{\infty} & 0 \\ i & i\end{array}$
No

List of terms

M1 $=$ McIntosh's "ecological distance " relative calculated for the basket M2 $=$ McIntosh's "ecological distance " relative calculated for the basket $\mathrm{R} 1=$ "run" formula calculated for the basket
$\mathrm{R} 2=$ "run" formula calculated for the individual stone
S1 = Shannon's diversity calculated for the basket
$\mathrm{S} 2=$ Shannon's diversity calculated for the individual stone
$\mathrm{B} 1=$ Brillouin's diversity calculated for the basket
$\mathrm{B} 2=$ Brillouin's diversity calculated for the individual stone
SR = Shannon's redundancy
$\mathrm{BR}=$ Brillouin's redundancy
$\mathrm{SE}=$ Shannon's evenness

Table 4.11 The results of the Sign test in comparing the differences in mean diversity values for total macroinvertebrates, midges, and family level census.

TOTAL MACROINVERTEBRATES VS. FAMILY LEVEL CENSUS

Index	Difference in Means	$\mathrm{Pr}>=1 \mathrm{Ml}^{1}$
Hurlbert	0.4388	0.0001
McIntosh	0.4172	0.0001
Run	0.4327	0.0001
Shannon	1.4792	0.0001
Brillouin	1.2708	0.0001
Shannon's R	-0.3112	0.0001
Brillouin's R	-0.3280	0.0001
Shannon's E	0.3194	0.0001
Brillouin's E	0.3307	0.0001

TOTAL MACROINVERTEBRATES VS.MIDGES

Index	Difference in Means	Pr >= $\mathrm{IM1}^{1}$
Hurlbert	0.0685	0.0001
McIntosh	0.0644	0.0001
Run	0.0579	0.0001
Shannon	0.4068	0.0001
Brillouin	0.3822	0.0001
Shannon's R	-0.028	0.0660
Brillouin's R	-0.0318	0.0436
Shannon's E	0.0185	0.0037
Brillouin's E	0.0205	0.0013

MIDGES VS. FAMILY LEVEL CENSUS

Index	Difference in Means	Pr >= lMl^{1}
Hurlbert	0.3703	0.0001
McIntosh	0.3527	0.0001
Run	0.3748	0.0001
Shannon	1.0724	0.0001
Brillouin	0.8886	0.0001
Shannon's R	-0.2933	0.0001
Brillouin's R	-0.3071	0.0001
Shannon's E	0.3073	0.0001
Brillouin's E	0.3169	0.0001

1 Significant values of the Sign test

Table 4.12 The results of Spearman rank correlation in measuring the degree of association among total macroinvertebrates, midges and family level census for a number of diversity values.

Index	macroinvertebrates vs. family-levels census	macroinvertebrates vs. midges	midges vs. family level census
Hurlbert	0.356	0.853	0.107
McIntosh	0.330	0.837	0.138
Run	0.380	0.829	0.160
Shannon	0.441	0.838	-0.029
Brillouin	0.382	0.806	-0.177
Shannon's R	0.204	0.757	-0.016
Brillouin's R	0.227	0.787	0.005
Shannon's E	0.316	0.852	0.303
Brilliance E	0.298	0.846	0.287

Table 4.13 The results of Spearman rank correlation in measuring the degree of association for all possible combination of qualitative similarity values for total macroinvertebrates.

Index	Jaccard1	Jaccard2	Kulczynski Sørensen		Mountford	Ochiai	Fager1	Fager2
Jaccard1	1.000	1.000	0.970	1.000	0.889	0.996	0.959	0.980
Jaccard2	1.000	1.000	0.970	1.000	0.889	0.996	0.959	0.980
Kulczynski	0.970	0.970	1.000	0.970	0.889	0.987	0.964	0.972
Sørensen	1.000	1.000	0.970	1.000	0.889	0.996	0.959	0.980
Mountford	0.889	0.889	0.889	0.889	1.000	0.894	0.777	0.807
Ochiai	0.996	0.996	0.987	0.996	0.894	1.000	0.967	0.984
Fager1	0.959	0.959	0.964	0.959	0.777	0.967	1.000	0.991
Fager2	0.980	0.980	0.972	0.980	0.807	0.984	0.991	1.000

Table 4.14 The results of Spearman rank correlation in measuring the degree of association for all possible combination of qualitative similarity values for midges.

Index	Jaccard1	Jaccard2	Kulczynski Sørensen		Mountford	Ochiai	Fager1	Fager2
Jaccard1	1.000	1.000	0.948	1.000	0.859	0.997	0.964	0.979
Jaccard2	1.000	1.000	0.948	1.000	0.859	0.997	0.964	0.979
Kulczynski	0.948	0.948	1.000	0.948	0.899	0.966	0.937	0.942
Sørensen	1.000	1.000	0.948	1.000	0.859	0.997	0.964	0.979
Mountford	0.859	0.859	0.899	0.859	1.000	0.872	0.758	0.772
Ochiai	0.997	0.997	0.966	0.997	0.872	1.000	0.968	0.981
Fager1	0.964	0.964	0.937	0.964	0.758	0.968	1.000	0.991
Fager2	0.979	0.979	0.942	0.979	0.772	0.981	0.991	1.000

Table 4.15 The results of Spearman rank correlation in measuring the degree of association for all possible combination of qualitative similarity values for family level census.

Index	Jaccard1	Jaccard2	Kulczynski Sørensen	Mountford	Ochiai	Fager1	Fager2	
Jaccard1	1.000	1.000	0.956	1.000	0.886	0.994	0.895	0.966
Jaccard2	1.000	1.000	0.956	1.000	0.886	0.994	0.895	0.966
Kulczynski	0.956	0.956	1.000	0.956	0.906	0.981	0.900	0.942
Sørensen	1.000	1.000	0.956	1.000	0.886	0.994	0.895	0.966
Mountford	0.886	0.886	0.906	0.886	1.000	0.902	0.686	0.773
Ochiai	0.994	0.994	0.981	0.994	0.902	1.000	0.906	0.967
Fager1	0.895	0.895	0.900	0.895	0.686	0.906	1.000	0.953
Fager2	0.966	0.966	0.942	0.966	0.773	0.967	0.953	1.000

Table 4.16 The differences of various quantitative community comparison in detecting the upper and lower limits of similar/dissimilar pairs.

*Community	1	13	11	1	21	9	17	7	3	5	19
*Community	2	14	12	2	22	10	18	8	4	6	20
BRAY		0	0	0	0	0	0	0	0	0	0
CANBERRA		0	0	0	0	0	0	0	0	0	0
CD		0	0	0	0	0	0	0	0	0	0
PD		0	0	0	0	0	0	0	0	0	0
MORISI		1.25	1.75	.	1.2222	1.6667	1.375	1.5		3.15	1.1667
HORN		1	1	1	1	1	1	1	1	1	1
PARRISH		0	0	0	0	0	0	0	0	0	0
PINKHAM1		1	1	1	1	1	1	1	1	1	1
PINKHAM2		0.25	0.125	0.5	0.1667	0.1667	0.125	0.25	0.25	0.1667	0.25
MCINTO		0	0	0	0	0	0	0	0	0	0
RENKON		1	1	1	1	1	1	1	1	1	1
SIMI		1	1	1	1	1	1	1	1	1	1
CLIFFO		0	0	0	0	0	0	0	0	0	0

[^1]* See Table 3.5 for community structure

Table 4.17 The differences of various quantitative community comparison in detecting the upper and lower limits of similar/dissimilar pairs. | | |
| :---: | :--- |
| Community 1 | |
| *Community | 2 |
| | |
| BRAY | |
| CANBERRA | 1 |
| CD | |
| MORISI | |
| HORN | |
| PARRISH | |
| PINKHAM1 | |
| PINKHAM2 | |
| MCINTO | |
| RENKON | |
| SIMI | |
| CLIFFO | |

List of terms

BRAY = Bray-Curtis index; CANBERRA = Canberra metric; CD = collection dissimilarity; Morisita index; PARRISH = Parrish and Wagner's average chi-square; PINKHAM1 = Pinkham-Pearson index B; PINKHAM2 = Pinkham-Pearson index B_{2}; MCINTO = Euclidean distance (Sokal, 1961); RENKON = percent similarity; SIMI = Stander's SIMI index; CLIFFO = distance measure (Clifford and Stephenson, 1975)

* See Table 3.5 for community structure
Table 4.18 The results of Spearman rank correlation in measuring the degree of association for all possible combination of quantitative similarity/dissimilarity values for hypothetical

Index	Bray	Canbe. CD	PD	Moris.	Horn	Parri.	Pinkh1	Pinkh2	McIn.	Renk.	SIMI	Cliff.	
Bray	1.000	0.948	0.815	0.818	-0.439	-0.790	0.965	-0.959	-0.938	0.744	-0.810	-0.776	0.808
Canbe.	0.948	1.000	0.870	0.873	-0.528	-0.795	0.949	-0.981	-0.944	0.710	-0.837	-0.744	0.821
CD	0.815	0.870	1.000	0.979	-0.771	-0.952	0.913	-0.789	-0.842	0.628	-0.976	-0.935	0.978
PD	0.818	0.873	0.979	1.000	-0.772	-0.957	0.919	-0.788	-0.883	0.694	-0.985	-0.942	0.959
Moris.	-0.439	-0.528	-0.771	-0.772	1.000	0.795	-0.582	0.430	0.586	-0.596	0.794	0.794	-0.781
Horn	-0.790	-0.795	-0.952	-0.957	0.795	1.000	-0.893	0.716	0.849	-0.685	0.989	0.997	-0.976
Parri.	0.965	0.949	0.913	0.919	-0.582	-0.893	1.000	-0.915	-0.944	0.761	-0.914	-0.879	0.905
Pinkh1	-0.959	-0.981	-0.789	-0.778	0.430	0.716	-0.915	1.000	0.921	-0.689	0.753	0.695	-0.746
Pinkh2	-0.938	-0.944	-0.842	-0.883	0.586	0.849	-0.944	0.921	1.000	-0.817	0.870	0.841	-0.823
McIn.	0.744	0.710	0.628	0.694	-0.596	-0.685	0.761	-0.689	-0.817	1.000	-0.696	-0.688	0.623
Renk.	-0.810	-0.837	-0.976	-0.985	0.794	0.989	-0.914	0.753	0.870	-0.696	1.000	0.980	-0.980
SIMI	-0.776	-0.744	-0.935	-0.942	0.794	0.997	-0.879	0.695	0.841	-0.688	0.980	1.000	-0.965
Cliff.	0.808	0.821	0.978	0.959	-0.781	-0.976	0.905	-0.746	-0.823	0.623	-0.980	-0.965	1.000

Table 4.18 (Continued).

The results of Spearman rank correlation in measuring the degree of association for all
possible combination of quantitative similarity/dissimilarity values for total macroinvertebrates.
Pinkh1 Pinkh2 McIn. Renk. SIMI Cliff.
焉
0.986 Horn
-0.860
Moris.
-0.853
-0.627
-0.729
-0.738
$\stackrel{\infty}{\stackrel{\infty}{i}}$
8
H
0
0
$\stackrel{\infty}{\infty} \stackrel{+}{\infty}$
o
∞
∞
∞
0

PD
0.827
$\begin{array}{lll}n & 8 & 8 \\ 0 & 8 & 8 \\ 0 & 0 & -1\end{array}$
$\stackrel{\infty}{\stackrel{\infty}{n}}$
-0.733
\zh26ै
$\begin{array}{ll}\text { a } & \text { H } \\ \stackrel{\infty}{0} & \infty \\ i & i\end{array}$
0.342
-0.853
ì
0
n
0 Canbe. CD

ते
∞
∞
∞
0
$\stackrel{\sim}{\infty}$
$\stackrel{\stackrel{5}{\infty}}{\substack{\circ \\ i}}$
๗
${ }_{i}^{\infty}$
$\stackrel{\bar{c}}{\stackrel{1}{\circ}}$
$\stackrel{n}{n}$
0.765
1.000
$\$ 68.0$
898.0
-0.627

N
à
i
$\underset{\substack{\infty \\ 0 \\ i \\ i}}{ }$
त̀
तु
0
-0.714
$\begin{array}{ll}0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$
$61^{\circ} \downarrow$ गqе $_{L}$ Ked $\times \dot{0}$ is -0.739

$\begin{array}{lll}\infty & 0 & n \\ \infty & 0 & n \\ i & 0 & 0 \\ i & 0 & 0\end{array}$

(Continued).
Table 4.19
Bray = Bray-Curtis index Canbe. = Canberra metric $C D=$ collection dissimilarity Moris. = Morisita similarity index
Horn = simplified Morisita similarity index Parri. $=$ the average chi-square Pinkh1 = Pinkham-Pearson index B Pinkh2 $=$ Pinkham-Pearson index B_{2} McIn. = Sokal's Euclidean distance Renk. = percent similarity SIMI = Stander's SIMI index Cliff. $=$ distance measure
Table 4.20 The results of Spearman rank correlation in measuring the degree of association for all
possible combination of quantitative similarity/dissimilarity values for midges.

Index	Bray	Canbe. CD	PD	Moris. Horn	Parri.	Pinkh1	Pinkh2	McIn.	Renk. SIMI	Cliff.			
Bray	1.000	0.751	0.777	0.801	-0.794	-0.821	0.984	-0.726	-0.871	0.389	-0.843	-0.817	0.727
Canbe.	0.751	1.000	0.827	0.862	-0.588	-0.591	0.734	-0.992	-0.808	0.252	-0.673	-0.587	0.578
CD	0.777	0.827	1.000	0.960	-0.754	-0.761	0.800	-0.787	-0.821	0.169	-0.865	-0.754	0.749
PD	0.801	0.862	0.960	1.000	-0.768	-0.767	0.824	-0.823	-0.855	0.284	-0.869	-0.761	0.720
Moris.	-0.794	-0.588	-0.754	-0.768	1.000	0.986	-0.828	0.559	0.867	-0.330	0.949	0.981	-0.904
Horn	-0.821	-0.591	-0.761	-0.767	0.986	1.000	-0.859	0.560	0.895	-0.266	0.961	0.997	-0.880
Parri.	$0 . .984$	0.734	0.800	0.824	-0.828	-0.859	1.000	-0.699	-0.888	0.373	-0.878	-0.856	0.749
Pinkh1	-0.726	-0.992	-0.787	-0.823	0.559	0.560	-0.699	1.000	0.789	-0.255	0.636	0.556	-0.553
Pinkh2	-0.871	-0.808	-0.821	-0.855	0.867	0.895	-0.888	0.789	1.000	-0.220	0.905	0.902	-0.709
McIn.	0.389	0.252	0.169	0.284	-0.330	-0.266	0.373	-0.255	-0.220	1.000	-0.240	-0.254	0.380
Renk.	-0.843	-0.673	-0.865	-0.869	0.949	0.961	-0.878	0.636	0.905	-0.240	1.000	0.956	-0.859
SIMI	-0.817	-0.587	-0.754	-0.761	0.981	0.997	-0.856	0.556	0.902	-0.254	0.956	1.000	-0.859
Cliff.	0.727	0.578	0.749	0.720	-0.904	-0.880	0.749	-0.553	-0.709	0.380	-0.859	-0.859	1.000

Continued, next page.
(Continued)
Horn - simplified Morisita similarity index Parri. - the average chi-squar Pinkhl = Pinkham-Pearson index B Pinkh2 - Pinkham-Pearson index B: Mcln, - Sokal's Euclidean distance Renk. - percent similarity SIMII - Stander's SIMIl index Cliff. = distance measure
The results of Spearman rank correlation in measuring the degree of association for all
possible combination of quantitative similarity／dissimilarity values for family level census．

$\begin{array}{llll}\sum & n & \begin{array}{l}n \\ n \\ i\end{array} & \hat{n} \\ i & \hat{0} & \hat{n} \\ i & i & i\end{array}$
त्र च

※ \％O
$\frac{a}{9}$

N
등 충
8
※
No
1.000
Continued，next page．
$\begin{array}{lll}\text { Pinkh1 } & \text { Pinkh2 } & \text { McIn．} \\ -0.610 & -0.711 & 0.754\end{array}$
$-0.901 \quad 0.414$
$-0.826 \quad 0.265$
$-0.830 \quad 0.342$
-0.239
$\frac{\hat{a}}{9}$
$\stackrel{i}{\hat{i}}$
$\stackrel{-}{m}$
F
$\begin{array}{lll}\text { N } & \text { No } \\ \text { N } \\ \text { O．} & 0 \\ 0 & 0\end{array}$
n n ふ
$\frac{\square}{0}$
8
菏
厄্চ
0.606
U
0
0
-0.990
-0.741
-0.712

8
亏̄े
$\begin{array}{lll}\stackrel{\rightharpoonup}{n} & \frac{1}{m} & \vec{\sim} \\ 0 & 0 & 0 \\ 0\end{array}$
Parsi．
0.978
0.594
0.609
0.664
$\begin{array}{lll}\text { N } & \text { n } \\ i & 0 \\ i & 0 \\ i & 0 \\ 0\end{array}$

$\begin{array}{ll}\infty \\ 0 & 8 \\ 0 & 0 \\ i & 0\end{array}$
$\begin{array}{llll}\text { E } & \overline{0} & \hat{0} & n \\ 0 & 0 \\ 0 & 0 & 0 \\ i & i & i & 0 \\ 0\end{array}$
$\begin{array}{lll}8 \\ 8 & 0 & 0 \\ 0 & n \\ 0\end{array}$
\％
$\frac{\hat{a}}{0}$
ふ
Maris．
-0.491
-0.316
O
on
000 I
8
8
0
N
$\begin{array}{ccc} \pm & \hat{n} & \text { no } \\ 0 & 0 \\ 0 & 0\end{array}$
no $\begin{aligned} & \text { n } \\ & 0 \\ & 0\end{aligned}$

PD
0.594
0.751
0.896
8
0
0
0
0
0
0
0
0

$\stackrel{0}{\infty}$
ホ

ก Cab
Canbe．CD

0.547 0.768 8 \qquad | © |
| :--- |
| 0 |
| 0 |

n
0
0
0
8
8
0
0
$\underset{\substack{~ \\ i \\ i \\ \hline}}{ }$
$\stackrel{0}{\infty}$

$\stackrel{\infty}{\circ}$ $\begin{array}{lllll}\infty & 8 & \infty & n & n \\ 0 & - & n & n & 0 \\ 0 & 0\end{array}$
$\begin{array}{ll}0 & n \\ & 0 \\ i & i\end{array}$
0
0
0
-0.990
ṑ
0.414

o
$\substack{2 \\ i}$

$\stackrel{ \pm}{\vdots}$
co
Table 4.21
Bray
1.000
0.585
0.547
No
-0.491
-0.501
0.978
0
0
0
$\stackrel{\rightharpoonup}{i}$
$\begin{array}{ccc}\stackrel{n}{n} & \frac{n}{n} & n \\ 0 & 0\end{array}$
$\stackrel{\infty}{0}$

List of terms
Bray $=$ Bray-Curtis index
Canbe. = Canberra metric
$C D=$ collection dissimilarity
PD $=$ percent dissimilarity
Moris. = Morisita similarity index
Horn = simplified Morisita index
parri. $=$ the average chi-square
Pinkh1 $=$ Pinkham-Pearson index B Pinkh2 $=$ Pinkham-Pearson index B_{2} McIn. $=$ Sokal's Euclidean distance

Renk. = percent similarity SIMI = Stander's SIMI index

Cliff. = distance measure
General census data for collections of benthic macroinvertebrates isolated from stone-filled basket substrates retrieved from upstream station 1 control) and downstream 4 stations receiving chlorinated sewage of Lampson Brook.
Table 4.22

Station	1 (Control)	2	3	4	5	Total
Baskets processed	9	9	9	9	9	45
Organisms identified	712	3215	1967	820	1323	8037
Average per basket \pm S.D. (minimum, maximum)	79 ± 88	357 ± 621	219 ± 133	91 ± 24	147 ± 246	
Species found	$(25,66)$	$(53,2095)$	$(94,550)$	$(52,128)$	$(21,837)$	
Average per basket \pm S.D.	88	112	97	63	96	188
(minimum, maximum)	23 ± 24	29 ± 30	27 ± 27	17 ± 17	21 ± 21	
Total density	$(14,45)$	$(18,45)$	$(17,43)$	$(8,25)$	$(10,53)$	
Average per basket \pm S.D.	4129	18413	11604	4717	7866	46729
(minimum, maximum)	459 ± 453	$2046+3461$	1289 ± 844	$524+132$	874 ± 1459	
EPT	$(158,1788)$	$(250,11700)$	$(524,3342)$	$(316,724)$	$(135,5074)$	
Average per basket \pm S.D.	24	19	13	8	18	40

Table 4.23 Distribution of major benthic macroinvertebrate taxa inhabiting basket substrates recovered
from the five stations along the Lampson Brook. Expressed as total organisms (species found).

TAXA/STATION	1 (Control)	2	3	4	5
INSECTA ${ }^{\text {Diptera }}$	699:(82)	3050:(100)	1432:(77)	595:(50)	1296:(84)
	460:(50)	2958:(71)	1366:(56)	571:(38)	883:(59)
Chironomidae Simuliidae	452:(48)	2915:(63)	1193:(49)	564:(35)	865:(54)
Ceratopogonidae	0	2:(2)	169:(5)	2:(1)	8:(2)
	0	4:(1)	0	1:(1)	1:(1)
Ephemeroptera $\begin{array}{r}\text { Tipulidae } \\ \text { Other diptera }\end{array}$	${ }^{0}$	5:(3)	1:(1)	0	2:(1)
	$8:(2)$ $119:(10)$	32:(2)	3:(1)	4:(1)	7:(1)
Plecoptera	119:(10)	35:(9)	29:(4)	8:(4)	245:(7)
Tricoptera	63:(7)	22:(5)	2:(2)	4:(1)	80:(7)
Odonata	3:(3)	7:(1)	10:(3)	2:(1)	14:(2)
Coleoptera	19:(4)	12:(7)	6:(3)	3:(2)	7:(3)
Megaloptera $10:(1)$ $4:(1)$ $2:(2)$ MOLLUSCA 0 $4:(1)$					
CRUSTACEA $4:(2)$ 14:(3) 1:(1) 9:(4)					
Amphipoda	1:(1)	5:(1)	242:(1)	89:(1)	1:(1)
ANNELIDA					
Hirudinea	(12.(5)	(50)	27:(3)	24:(1)	1:(1)
NEMATODA	12:(5)	150:(7)	244:(11)	94:(9)	11:(5)
COPEPODA	0	0	1:(1) $7:(1)$	0	0
PUPA	0	2:(1)	0	17:(1)	5:(1)
TOTAL	712:(88)	3215:(112)	1967:(97)	820:(63)	1323:(96)

Table 4.24 Percentage distribution of major benthic macroinvertebrate taxa inhabiting basket substrates

TAXA/STATION		1 (Control)	2	3	4	5
${ }^{\text {INSECTA }}$ Diptera		98.2:(93.2)	94.9:(89.3)	72.8:(79.4)	72.6:(79.4)	98.0:(87.5)
		64.6:(56.8)	92.0:(63.4)	69.4:(57.7)	69.6:(60.3)	66.7:(61.4)
	Chironomidae	63.5:(54.5)	90.7:(56.2)	60.6:(50.5)	68.8:(55.6)	65.3:(56.2)
	Simulidae Ceratopogonidae			8.59:(5.15)		
	Tipulidae					
	Other diptera	1.12:(2.27)				
EphemeropteraPlecoptera		16.7:(11.36)	1.09:(8.04)	1.47:(4.12)	18.5:(7.29)	
		8.85:(7.95)				6.05:(7.29)
Tricoptera Odonata		3.51:(7.95)				4.76:(5.21)
Coleoptera		2.67:(4.54)				
mollusca		1.40:(1.14)				
Gastropoda						
CRUSTACEA						
Amphipoda				12.3:(1.03)	10.8:(1.59)	
ANNELIDA						
Hirudinea Oligochaeta				1.37:(3.09)	2.93:(1.59)	
nematoda		1.68:(5.68)	4.67:(6.25)	244:(11)	11.5:(14.3)	
COPEPODA					2.07:(1.59)	

Table 4.25 The density data for collections of benthic macroinvertebrates colonizing limestones-filled

COLLECTION/STATION	1 (Control)	2	3	4	5	Chlorination
10/30/87 Stream Bed Rocks	166 ± 51	250 ± 111	532 ± 124	478 ± 118	367 ± 141	yes
10/30/87 Limestones	158 ± 63	$458+154$	987 ± 256	329 ± 116	178 ± 102	yes
12/22/87 Replicate Basket 1	347 ± 125	1607 ± 259	524 ± 99	532 ± 144	736 ± 153	no
12/22/87 Replicate Basket 2	388+157	1999 ± 433	606 ± 165	482 ± 122	342 ± 122	по
3/29/88 Stone not in Contact	$161+82$	369 ± 143	1686 ± 349	574 ± 163	236 ± 114	no
3/29/88 Standard Exposure	171 ± 81	688 ± 205	1726 ± 319	724 ± 186	300 ± 118	no
4/14/88 Chlorination Resumed	309 ± 91	324+108	923 ± 263	316+98	135 $\ddagger 62$	yes
8/22/88 Summer Collection	1788 ± 389	11700 ± 1965	3342+591	663 ± 216	5074 ± 886	yes
10/17/88 Placement Experiment	641 ± 184	$1018+230$	1278 ± 296	619 ± 219	498 ± 156	yes

Table 4.26 The abundance and species data for collections of benthic macroinvertebrates colonizing

COLLECTION/STATION	1 (Control)	2	3	4	5	Chlorination
10/30/87 Stream Bed Rocks	40:(19)	63:(18)	130:(23)	115:(16)	94:(18)	yes
10/30/87 Limestones	25:(14)	78:(23)	173:(19)	52:(16)	32:(11)	yes
$\begin{aligned} & 12 / 22 / 87 \\ & \text { Replicate Basket } \end{aligned}$	54:(20)	270:(25)	94:(17)	88:(14)	121:(13)	no
$\begin{aligned} & 12 / 22 / 87 \\ & \text { Replicate Basket } 2 \end{aligned}$	66:(22)	327:(34)	100:(27)	77:(19)	55:(10)	no
3/29/88 Stone not in Contact	25:(18)	53:(25)	237:(27)	86:(18)	31:(14)	no
3/29/88 Standard Exposure	32:(20)	106:(41)	293:(30)	128:(20)	56:(24)	no
4/14/88 Chlorination Resumed	50:(21)	56:(21)	162:(19)	59:(8)	21:(13)	yes
8/22/88 Summer Collection	319:(45)	2095:(46)	550:(43)	108:(13)	837:(53)	yes
10/17/88 Placement Experiment	101:(28)	167:(28)	228:(37)	107:(26)	76:(32)	yes

Table 4.27 The abundance and species data for collections of chironomids colonizing limestones-filled

COLLECTION/STATION	1 (Control)	2	3	4	5	Chlorination
$10 / 30 / 87$ Stream Bed Rocks	$18:(11)$	$56:(15)$	$111:(20)$	$84:(13)$	$76:(12)$	yes
10/30/87						
Limestones						

The percentage of chironomids abundance and species colonizing limestones-filled basket substrates.
Table 4.28

COLLECTION/STATION	1 (Control)	2	3	4	5	Chlorination
10/30/87 Stream Bed Rocks	45.0:(57.9)	88.9:(83.3)	85.4:(87.0)	73.0:(81.2)	80.9:(66.7)	yes
10/30/87 Limestones	56.0:(57.1)	92.3:(82.6)	87.9:(68.42)	86.5:(81.2)	78.1:(54.5)	yes
$\begin{aligned} & 12 / 22 / 87 \\ & \text { Replicate Basket } 1 \end{aligned}$	51.9:(50.0)	93.7:(64.0)	91.5:(70.6)	93.2:(78.6)	66.9:(46.2)	no
$\begin{aligned} & 12 / 22 / 87 \\ & \text { Replicate Basket } 2 \end{aligned}$	50.0:(40.9)	86.5:(52.9)	85.0:(70.4)	77.3:(68.4)	67.3:(70.0)	по
3/29/88 Stone not in Contact	72.0:(77.8)	83.0:(76.0)	79.3:(81.5)	97.7:(88.9)	80.6:(64.3)	по
3/29/88 Standard Exposure	34.4:(50.0)	68.9:(61.0)	69.6:(73.3)	93.0:(80.0)	58.9:(58.3)	no
4/14/88 Chlorination Resumed	82.0:(76.2)	94.6:85.7)	83.3:(63.2)	30.5:(87.5)	81.0:(84.6)	yes
8/22/88 Summer Collection	65.8:(57.8)	94.5:(71.7)	19.3:(44.2)	1.9:(7.7)	63.1:(66.0)	yes
10/17/88 Placement Experiment	78.2:(60.7)	59.3:(64.3)	55.3:(48.6)	57.9:(53.8)	56.6:(46.9)	yes

Brillouin's diversity of total benthic macroinvertebrates colonizing limestones-filled basket substrates.
Table 4.29

COLLECTION/STATION	1 (Control)	2	3	4	5	Chlorination
10/30/87 Stream Bed Rocks	2.2068	2.2503	2.1793	1.8506	1.3349	yes
10/30/87 Limestones	1.8744	2.2207	1.9487	1.9417	1.1824	yes
12/22/87 Replicate Basket 1	2.1061	1.5036	2.0030	1.7633	1.3334	no
$\begin{aligned} & 12 / 22 / 87 \\ & \text { Replicate Basket } 2 \end{aligned}$	2.1549	1.8332	2.3216	1.9776	1.5702	no
3/29/88 Stone not in Contact	2.1098	2.4099	2.4284	2.0768	1.7995	no
3/29/88 Standard Exposure	2.2074	2.8289	2.4047	2.2022	2.3473	no
4/14/88 Chlorination Resumed	2.0224	2.0944	1.8128	1.0109	1.8060	yes
8/22/88 Summer Collection	2.7868	1.7430	2.3233	1.8697	2.4693	yes
10/17/88 Placement Experiment	2.4490	2.2882	2.4560	2.3775	2.6052	yes

Table 4.30 Hurlbert's diversity of total benthic macroinvertebrates colonizing limestones-filled

COLLECTION/STATION	1 (Control)	2	3	4	5	Chlorination
$10 / 30 / 87$						
Stream Bed Rocks						

Table 4.31
Percent

COLLECTION/STATION	1 (Control)	2	3	4	5	Chlorination
$10 / 30 / 87$	1.6848	2.0890	2.0142	1.6520	0.8384	yes
Stream Bed Rocks	(34.4%)	(82.5%)	(78.9%)	(65.2%)	(50.8%)	
10/30/87	1.3949	2.0700	1.7161	1.7245	0.6267	yes
Limestones	(41.7%)	(86.0%)	(77.4%)	(76.9%)	(41.4%)	
12/22/87	1.5367	1.2635	1.7992	1.5971	0.5807	no
Replicate Basket 1	(37.8%)	(78.7%)	(82.2%)	(84.4%)	(29.2%)	
		1.2846	1.3517	2.0253	1.7021	1.1459
12/22/87	(29.8%)	(63.8%)	(74.2%)	(76.0%)	(49.1%)	no
Replicate Basket 2	1.8679	2.1636	2.3079	2.0203	1.4556	no
3/29/88	(63.7%)	(74.5%)	(75.4%)	(95.0%)	(65.2%)	
Stone not in Contact	1.5281	2.3631	2.3193	2.0595	1.8308	no
3/29/88	(23.8%)	(57.5%)	(67.2%)	(86.9%)	(46.0%)	
Standard Exposure	1.7431	1.9861	1.4126	1.4189	1.6378	yes
4/14/88	(70.7%)	(89.7%)	(64.9%)	(42.8%)	(73.4%)	
Chlorination Resumed	2.3900	1.5572	1.6504	0.0000	2.2095	yes
8/22/88	(56.5%)	(84.4%)	(13.7%)	(0.0%)	(51.8%)	
Summer Collection			1.8392	1.9429	1.7224	1.9136
10/17/88	2.0297	(64.8%)	(47.6%)	(43.7%)	(42.0%)	(41.6%)
Placement Experiment					yes	

Table 4.32 Hurlbert's diversity of midges colonizing limestones-filled basket substrates.

COLLECTION/STATION	1 (Control)	2	3	4	5	Chlorination
$10 / 30 / 87$ Stream Bed Rocks	0.9231	0.9084	0.8452	0.7734	0.3768	yes
10/30/87 Limestones	0.8901	0.8783	0.8015	0.8424	0.3667	yes
12/22/87 Replicate Basket 1	0.8360	0.5882	0.8238	0.7745	0.3210	no
12/22/87 Replicate Basket 2	0.7159	0.6020	0.8577	0.8196	0.6742	no
3/29/88 Stone not in Contact	0.9739	0.9239	0.8957	0.8678	0.8233	no
3/29/88 Standard Exposure	0.9818	0.9235	0.8927	0.8665	0.8864	no
4/14/88 Chlorination Resumed	0.8134	0.8781	0.6764	0.8693	0.9265	yes
8/22/88						
Summer Collection	0.8925	0.5748	0.7520	0.0000	0.7763	yes
10/17/88 Placement Experiment	0.8679	0.8058	0.8290	0.8244	0.8848	yes

subsarates. Percent comitribution of the family level diversily imdiented in paremheras.

COLLICTION/STATION	1 (Comerol)	2	1	4	5	Chlorimation
10/30/87 Stream Bed Rocks	$\begin{aligned} & 1.4486 \\ & (65.6 \%) \end{aligned}$	$\begin{aligned} & 0.393 .4 \\ & (17.5 \%) \end{aligned}$	$\begin{aligned} & 0.15195 \\ & (21.1 \%) \end{aligned}$	$\begin{aligned} & 06644 \\ & (3.3 \%) \end{aligned}$	06.570 (1)2 2%)	yea
10/30/87 l.imestones	$\begin{aligned} & 1.0931 \\ & (58.3 \%) \end{aligned}$	$\begin{aligned} & 0.3090 \\ & (11.9 \%) \end{aligned}$	$\begin{aligned} & 0.4(0) \\ & (22.6 \% \%) \end{aligned}$	$\begin{aligned} & 0.4 .493 \\ & (23.1 \%) \end{aligned}$	$\begin{aligned} & 0(0128 \\ & (58.0 \%) \end{aligned}$	$y=0$
12/22/87 Replicate Basket I	$\begin{aligned} & 1.2686 \\ & (60.2 \%) \end{aligned}$	$\begin{aligned} & 0.3170 \\ & (21.1 \%) \end{aligned}$	$\begin{aligned} & 0.3570 \\ & (17.18 \%) \end{aligned}$	$\begin{aligned} & 02751 \\ & (15.6 \%) \end{aligned}$	0.9447 (70.8\%\%)	ii9
12/22/87 Replicate Basket 2	$\begin{aligned} & 1.16 .45 \\ & (0.0 .0 \%) \end{aligned}$	$\begin{aligned} & 0.6297 \\ & (34.3 \%) \end{aligned}$	$\begin{aligned} & 0.5737 \\ & (24.7 \%) \end{aligned}$	$\begin{aligned} & 0.4(0) 1 \\ & (23.3 \%) \end{aligned}$	$\begin{aligned} & 0.7993 \\ & (50.9 \%) \end{aligned}$	(19)
3/29/88 Stone not in Contact	$\begin{aligned} & 0.7210 \\ & (3.2 \%) \end{aligned}$	$\begin{aligned} & 0.6138 \\ & (25.5 \%) \end{aligned}$	$\begin{aligned} & 0.5308 \\ & (21.9 \%) \end{aligned}$	$\begin{aligned} & 0.1035 \\ & (5.0 \%) \end{aligned}$	0.6257 (34.8%)	(19)
3/29/88 Standard Exposure	$\begin{aligned} & 1.4774 \\ & (66.9 \%) \end{aligned}$	$\begin{aligned} & 1.1563 \\ & (40.9 \%) \end{aligned}$	$\begin{aligned} & 0.7168 \\ & (29.8 \%) \end{aligned}$	$\begin{aligned} & 0.2875 \\ & (13.1 \%) \end{aligned}$	$\begin{aligned} & 1.256(0) \\ & (53.5 \%) \end{aligned}$	Iic)
4/14/88 Chlorination Resumed	$\begin{aligned} & 0.5573 \\ & (27.6 \%) \end{aligned}$	$\begin{aligned} & 0.2147 \\ & (10.3 \%) \end{aligned}$	$\begin{aligned} & 0.5528 \\ & (30.5 \%) \end{aligned}$	$\begin{aligned} & 0.5780 \\ & (57.2 \%) \end{aligned}$	$\begin{aligned} & 0.4802 \\ & (20.6 \%) \end{aligned}$	yen
$8 / 22 / 88$ Summer Collection	$\begin{aligned} & 1.1458 \\ & (41.1 \%) \end{aligned}$	$\begin{aligned} & 0.26 .51 \\ & (15.2 \%) \end{aligned}$	$\begin{aligned} & 1.7544 \\ & (75.5 \%) \end{aligned}$	$\begin{aligned} & 1.3821 \\ & (73.9 \%) \end{aligned}$	$\begin{aligned} & 1.18 .35 \\ & (47.9 \%) \end{aligned}$	yes
10/17/88 Placement Experiment	$\begin{aligned} & 0.8318 \\ & (34.0 \%) \end{aligned}$	$\begin{aligned} & 1.1776 \\ & (51.5 \%) \end{aligned}$	$\begin{aligned} & 1.30(x) \\ & (53.0 \%) \end{aligned}$	$\begin{aligned} & 1.2846 \\ & (54.0 \%) \end{aligned}$	$\begin{aligned} & 1.43 .31 \\ & (55.0 \%) \end{aligned}$	yes

Table 4.34 Hurlbert's diversity of macroinvertebrate families colonizing limestones-filled
basket substrates.
 COLLECTION/STATION 1 (Contro
$10 / 30 / 87$
Stream Bed Rocks
10/30/87
Limestones
12/22/87
Replicate Basket 1
$12 / 22 / 87$
Replicate Basket 2
$3 / 29 / 88$
Stone not in Contact
$3 / 29 / 88$
Standard Exposure
4/14/88
Chlorination Resumed
$8 / 22 / 88$
Summer Collection
10/17/88
Placement Experiment
Table 4.35 The Sørensen's quotient of similarity of corresponding control and downstream basket
populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates.
Station 1 (Control) vs.

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks	0.3243	0.4286	0.3429	0.3243	yes
Stream Bed Rocks	Limestones	0.2857	0.2632	0.2857	0.2000	yes
10/30/87	Stream Bed Rocks	0.1250	0.2703	0.2667	0.3125	yes
Limestones	Limestones	0.3243	0.1212	0.2000	0.2400	yes
12/22/87	Replicate Basket 1	0.5778	0.2703	0.2941	0.4242	no
Replicate Basket 1	Replicate Basket 2	0.5556	0.2128	0.3077	0.4000	
12/22/87	Replicate Basket 1	0.5957	0.2564	0.3333	0.3429	no
Replicate Basket 2	Replicate Basket 2	0.6429	0.2041	0.3415	0.2500	
3/29/88	Stone not in Contact	0.4091	0.5778	0.6111	0.3125	no
Stone not in Contact	Standard Exposure	0.3509	0.4583	0.5263	0.3333	
3/29/88	Stone not in Contact	0.3044	0.4255	0.4210		no
Standard Exposure	Standard Exposure	0.3390	0.3600	0.4000	0.2273	no
4/14/88	Chlorination Resumed	0.52389	0.2500	0.2069	0.2353	yes
8/22/88	Summer Collection	0.4444	0.3636	0.1034	0.4694	yes
10/17/88	Placement Experiment	0.5714	0.4615	0.4151	0.5667	yes

The revised Fager and McGowan index of corresponding control and downstream basket
populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates
Table 4.36

Station 1 (Control)		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks	0.2878	0.4185		0.2878	
Stream Bed Rocks	Limestones 0.2528	0.2125	0.2343	0.1016	0.2878	yes
10/30/87	Stream Bed Rocks	-0.0132	0.2244	0.1920	0.2594	
Limestones	Limestones 0.2936	-0.0159	0.0979	0.1340	0.2594	yes
12/22/87	Replicate Basket 1	0.5561	0.2198	0.2441		no
Replicate Basket 1	Replicate Basket 2	0.5685	0.1652	0.2726	0.3653	no
12/22/87	Replicate Basket 1	0.5839	0.2075			
Replicate Basket 2	Replicate Basket 2	0.6410	0.1556	0.3189	$\begin{aligned} & .3111 \\ & 0.1876 \end{aligned}$	no
3/29/88	Stone not in Contact	0.4048				
Stone not in Contact	Standard Exposure	0.3740	0.4671	0.5043	$\begin{aligned} & 0.2594 \\ & 0.3131 \end{aligned}$	no
3/29/88	Stone not in Contact	0.2858	0.4268	0.4004		no
Standard Exposure	Standard Exposure	0.3589	0.3623	0.3824	0.1785	no
4/14/88	Chlorination Resumed	0.5107	0.2002	0.1165	0.1668	yes
8/22/88	Summer Collection	0.2457	0.2016	-0.0168	0.2626	yes
10/17/88	Placement Experiment	0.5765	0.4888	0.4237	0.5781	yes

The Sørensen's quotient of similarity of corresponding control and downstream basket
populations of midges colonizing limestones-filled basket substrates.
Table 4.37

> (

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks	0.4615	0.5161	0.4167	0.4348	yes
Stream Bed Rocks	Limestones 0.4000	0.3333	0.4167	0.1176		
$10 / 30 / 87$	Stream Bed Rocks	0.1739	0.3571	0.3810	0.4000	yes
Limestones	Limestones 0.3704	0.1905	0.2857	0.2896		
$12 / 22 / 87$	Replicate Basket 1	0.5385	0.4546	0.3810	0.3750	no
Replicate Basket 1	Replicate Basket 2	0.5714	0.3448	0.4348	.0 .3529	
12/22/87	Replicate Basket 1	0.5600	0.4762	0.4000	0.4000	no
Replicate Basket 2	Replicate Basket 2	0.6667	0.3571	0.4545	0.2500	
3/29/88	Stone not in Contact	0.5294	0.6667	0.7333	0.4348	no
Stone not in Contact	Standard Exposure	0.4737	0.6111	0.6667	0.4286	
3/29/88	Stone not in Contact	0.4000	0.5625	0.6154	0.2105	no
Standard Exposure	Standard Exposure	0.3529	0.5625	0.5385	0.3333	
$4 / 14 / 88$	Chlorination Resumed	0.5882	0.3571	0.2609	0.2963	yes
$8 / 22 / 88$	Summer Collection	0.5085	0.4889	0.0741	0.5000	yes
$10 / 17 / 88$	Placement Experiment	0.6285	0.4571	0.4667	0.6250	yes

Table 4.38 The revised Fager and McGowan index of corresponding control and downstream basket populations of midges colonizing limestones-filled basket substrates.

Station I (Control) vs		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks	0.4047	0.4845	0.3464	0.3601	yes
Stream Bed Rocks	Limestones	0.3608	0.2506	0.3464	-0.1151	
10/30/87	Stream Bed Rocks	0.0274	0.3160	0.2945	0.3080	yes
Limestones	Limestones	0.3254	0.0394	0.1765	0.1123	
12/22/87	Replicate Basket 1	0.4825	0.3759	0.2893	0.2494	no
Replicate Basket 1	Replicate Basket 2	0.5237	0.2959	0.3616	0.2294	
12/22/87	Replicate Basket 1	0.5005	0.3933	0.3051	0.2664	no
Replicate Basket 2	Replicate Basket 2	0.6024	0.3098	0.3785	0.0846	
3/29/88	Stone not in Contact	0.4999	0.6234	0.6506	0.3648	no
Stone not in Contact	Standard Exposure	0.4621	0.5789	0.6005	0.3764	
3/29/88	Stone not in Contact	0.3653	0.5372	0.5499	0.0531	no
Standard Exposure	Standard Exposure	0.3314	0.5372	0.4825	0.2525	
4/14/88	Chlorination Resumed	0.5487	0.2989	0.1625	0.2210	yes
8/22/88	Summer Collection	0.5260	0.4868	-0.1776	0.5198	yes
10/17/88	Placement Experiment	0.5847	0.4295	0.4251	0.5736	yes

Table 4.40 The revised Fager and McGowan index of corresponding control and downstream basket
populations of macroinvertebrate families colonizing limestones-filled basket substrates.

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks	0.1375	0.1375	0.1650	0.3796	yes
Stream Bed Rocks	Limestones -0.1040	0.2664	-0.0989	0.2664		
10/30/87	Stream Bed Rocks	-0.0842	-0.0842	-0.0732	0.1111	yes
Limestones	Limestones 0.1483	-0.0985	-0.0842	0.1280		yes
12/22/87	Replicate Basket 1	0.6250	-0.1080	0.3213	0.4689	no
Replicate Basket 1	Replicate Basket 2	0.5995	0.0846	0.2664	0.4690	
12/22/87	Replicate Basket 1	0.6346	-0.1180	0.2675	0.3080	no
Replicate Basket 2	Replicate Basket 2	0.6057	0.2027	0.0676	0.2675	
3/29/88	Stone not in Contact	0.1735	0.2584	-0.0264	0.1964	no
Stone not in Contact	Standard Exposure	0.0987	-0.0842	-0.0626	0.3013	
3/29/88	Stone not in Contact	0.2453	0.1375	-0.0919	-0.1080	no
Standard Exposure	Standard Exposure	0.2910	-0.1113	0.1161	0.1974	no
4/14/88	Chlorination Resumed	0.2241	-0.0845	-0.0214	-0.0459	yes
8/22/88	Summer Collection	0.3601	0.2104	0.0560	0.5632	yes
10/17/88	Placement Experiment	0.5000	0.6262	0.5205	0.5960	yes

Table 4.41 The Morisita similarity index values of corresponding control and downstream basket
populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates.

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
$10 / 30 / 87$	Stream Bed Rocks	0.3662	0.3982	0.2926	0.1592	yes
Stream Bed Rocks	Limestones 0.3106	0.3825	0.2681	0.1304		
$10130 / 87$	Stream Bed Rocks	0.4704	0.4807	0.1625	0.1116	yes
Limestones	Limestones 0.5053	0.1540	0.0797	0.0656		
$12 / 22 / 87$	Replicate Basket 1	0.4882	0.4373	0.3601	0.6287	no
Replicate Basket 1	Replicate Basket 2	0.5426	0.5893	0.3982	0.8098	
$12 / 22 / 87$	Replicate Basket 1	0.3564	0.2514	0.2383	0.4440	no
Replicate Basket 2	Replicate Basket 2	0.4126	0.4060	0.2491	0.5839	
3/29/88	Stone not in Contact	0.6574	0.6274	0.5236	0.3434	no
Stone not in Contact	Standard Exposure	0.7063	0.4956	0.5520	0.3480	
3/29/88	Stone not in Contact	0.4614	0.2875	0.2210	0.2219	no
Standard Exposure	Standard Exposure	0.3755	0.2320	0.2136	0.1861	
$4 / 14 / 88$	Chlorination Resumed	0.9085	0.8652	0.1076	0.1172	yes
8/22/88	Summer Collection	0.4374	0.1376	0.0159	0.4152	yes
$10 / 17 / 88$	Placement Experiment	0.7783	0.4329	0.5091	0.7345	yes

Table 4.42 Sokal's Euclidean distance index values of corresponding control and downstream basket
populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates. Table

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks	19.10	44.83	47.59	59.93	yes
Stream Bed Rocks	Limestones 26.04	67.24	20.15	21.68		
10/30/87	Stream Bed Rocks	17.83	44.96	49.03	60.72	yes
Limestones	Limestones 24.52	69.87	20.62	21.42		
12/22/87	Replicate Basket 1	153.64	34.35	37.79	60.22	no
Replicate Basket 1	Replicate Basket 2	169.58	28.88	29.10	16.40	
12/22/87	Replicate Basket 1	155.25	38.99	41.26	63.55	no
Replicate Basket 2	Replicate Basket 2	170.74	33.26	33.45	22.96	
3/29/88	Stone not in Contact	13.11	72.25	29.61	11.92	no
Stone not in Contact	Standard Exposure	22.65	99.17	42.65	15.78	
3/29/88	Stone not in Contact	14.11	73.57	31.27	13.23	no
Standard Exposure	Standard Exposure	23.87	100.23	44.34	16.97	
4/14/88	Chlorination Resumed	12.33	63.44	43.78	19.97	yes
$8 / 22 / 88$	Summer Collection	1244.23	218.52	100.90	276.89	yes
$10 / 17 / 88$	Placement Experiment	41.59	73.26	33.23	23.69	yes

Table 4.43 The Pinkham-Pearson index B values of corresponding control and downstream basket
populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates.

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks	0.1091	0.1332	0.0662	0.1038	yes
Stream Bed Rocks	Limestones 0.0786	0.0463	0.1194	0.0248		
10/30/87	Stream Bed Rocks	0.0167	0.0619	0.0686	0.1049	yes
Limestones	Limestones 0.1229	0.0112	0.0370	0.1091		
12/22/87	Replicate Basket 1	0.2230	0.0912	0.0705	0.1376	no
Replicate Basket 1	Replicate Basket 2	0.2090	0.0712	0.1177	0.1146	
12/22/87	Replicate Basket 1	0.2550	0.0383	0.0771	0.1329	no
Replicate Basket 2	Replicate Basket 2	0.2680	0.0268	0.1075	0.0860	
3/29/88	Stone not in Contact	0.1362	0.1256	0.2494		no
Stone not in Contact	Standard Exposure	0.0989	0.0619	0.1416	0.1404	
3/29/88	Stone not in Contact	0.0778	0.0836	0.1122	0.0391	no
Standard Exposure	Standard Exposure	0.1060	0.0255	0.0916	0.0705	
4/14/88	Chlorination Resumed	0.1854	0.0599	0.0575	0.0622	yes
8/22/88	Summer Collection	0.0917	0.0895	0.0141	0.1049	yes
10/17/88	Placement Experiment	0.2258	0.1447	0.1795	0.2223	yes

Table 4.44 The average chi-square index values of corresponding control and downstream basket
populations of total benthic macroinvertebrates colonizing limestones-filled basket substrates.
Station 1 (Control) vs.
0/30/87
Stream B
Stream Bed Rocks
$\begin{array}{ll}\text { 10/30/87 } & \text { Stream Bed Rocks } \\ \text { Limestones } & \text { Limestones } 0.7549\end{array}$ Stream Bed Rocks
Limestones 0.7548
Stream Bed Rocks
Limestones 0.7549
Replicate Basket 1
Replicate Basket 2
Replicate Basket 1
Replicate Basket 2
Stone not in Contact
Standard Exposure
Stone not in Contact
Standard Exposure
Chlorination Resumed
Summer Collection
Placement Experiment Stream Bed Rocks
Limestones 0.7548
Stream Bed Rocks
Limestones 0.7549
Replicate Basket 1
Replicate Basket 2
Replicate Basket 1
Replicate Basket 2
Stone not in Contact
Standard Exposure
Stone not in Contact
Standard Exposure
Chlorination Resumed
Summer Collection
Placement Experiment Stream Bed Rocks
Limestones 0.7548
Stream Bed Rocks
Limestones 0.7549
Replicate Basket 1
Replicate Basket 2
Replicate Basket 1
Replicate Basket 2
Stone not in Contact
Standard Exposure
Stone not in Contact
Standard Exposure
Chlorination Resumed
Summer Collection
Placement Experiment Stream Bed Rocks
Limestones 0.7548
Stream Bed Rocks
Limestones 0.7549
Replicate Basket 1
Replicate Basket 2
Replicate Basket 1
Replicate Basket 2
Stone not in Contact
Standard Exposure
Stone not in Contact
Standard Exposure
Chlorination Resumed
Summer Collection
Placement Experiment Stream Bed Rocks
Limestones 0.7548
Stream Bed Rocks
Limestones 0.7549
Replicate Basket 1
Replicate Basket 2
Replicate Basket 1
Replicate Basket 2
Stone not in Contact
Standard Exposure
Stone not in Contact
Standard Exposure
Chlorination Resumed
Summer Collection
Placement Experiment Stream Bed Rocks
Limestones 0.7548
Stream Bed Rocks
Limestones 0.7549
Replicate Basket 1
Replicate Basket 2
Replicate Basket 1
Replicate Basket 2
Stone not in Contact
Standard Exposure
Stone not in Contact
Standard Exposure
Chlorination Resumed
Summer Collection
Placement Experiment Stream Bed Rocks
Limestones 0.7548
Stream Bed Rocks
Limestones 0.7549
Replicate Basket 1
Replicate Basket 2
Replicate Basket 1
Replicate Basket 2
Stone not in Contact
Standard Exposure
Stone not in Contact
Standard Exposure
Chlorination Resumed
Summer Collection
Placement Experiment Stream Bed Rocks
Limestones 0.7548
Stream Bed Rocks
Limestones 0.7549
Replicate Basket 1
Replicate Basket 2
Replicate Basket 1
Replicate Basket 2
Stone not in Contact
Standard Exposure
Stone not in Contact
Standard Exposure
Chlorination Resumed
Summer Collection
Placement Experiment Stream Bed Rocks
Limestones 0.7548
Stream Bed Rocks
Limestones 0.7549
Replicate Basket 1
Replicate Basket 2
Replicate Basket 1
Replicate Basket 2
Stone not in Contact
Standard Exposure
Stone not in Contact
Standard Exposure
Chlorination Resumed
Summer Collection
Placement Experiment 10/30187 $12 / 22 / 87$
Replicate Basket 1 12/22/87
Replicate Basket 2 3/29/88 Stone not in Contact 3/29/88 Standard Exposure 4/14/88 8/22/88 10/17/88
Table 4.45 The Morisita similarity index values of corresponding control and downstream basket
populations of midges colonizing limestones-filled basket substrates.

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks	0.7713	0.8457	0.6795	0.1529	yes
Stream Bed Rocks	Limestones 0.6436	0.6206	0.5538	0.1272		
$10 / 30 / 87$	Stream Bed Rocks	0.6838	0.7488	0.2931	0.0359	yes
Limestones	Limestones 0.7197	0.2347	0.1187	0.0154		
$12 / 22 / 87$	Replicate Basket 1	0.7810	0.6762	0.4830	0.6349	no
Replicate Basket 1	Replicate Basket 2	0.8187	0.9053	0.6099	0.7330	
$12 / 22 / 87$	Replicate Basket 1	0.4970	0.3062	0.2480	0.4118	no
Replicate Basket 2	Replicate Basket 2	0.5328	0.4799	0.2916	0.4512	
3/29/88	Stone not in Contact	0.8745	1.0241	0.7182	0.4164	no
Stone not in Contact	Standard Exposure	0.9640	1.0652	0.7430	0.4818	
$3 / 29 / 88$	Stone not in Contact	1.4257	1.1451	0.7195	0.6345	no
Standard Exposure	Standard Exposure	0.9998	1.2002	0.6650	0.5434	
$4 / 14 / 88$	Chlorination Resumed	0.9040	0.9051	0.8455	0.1324	yes
$8 / 22 / 88$	Summer Collection	0.6044	0.3950	0.0344	0.8599	yes
$10 / 17 / 88$	Placement Experiment	0.9193	0.6389	0.5919	0.7905	yes

Sokal's Euclidean distance index values of corresponding control and downstream basket populations of midges colonizing limestones-filled basket substrates.
Table 4.46

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
$10 / 30 / 87$	Stream Bed Rocks	15.94	40.83	37.44	59.35	yes
Stream Bed Rocks	Limestones 24.00	65.56	17.18	20.07		
$10130 / 87$	Stream Bed Rocks	16.25	41.56	39.77	60.28	yes
Limestones	Limestones 23.66	67.73	19.26	20.86		
12/22/87	Replicate Basket 1	153.22	31.18	36.06	58.47	no
Replicate Basket 1	Replicate Basket 2	168.96	24.35	25.34	15.84	
12/22/87	Replicate Basket 1	154.78	36.15	39.64	61.27	no
Replicate Basket 2	Replicate Basket 2	170.24	29.33	30.32	21.63	
3/29/88	Stone not in Contact	12.17	58.55	29.33	10.91	no
Stone not in Contact	Standard Exposure	19.26	64.44	42.01	11.79	
3/29/88	Stone not in Contact	11.87	59.81	30.32	10.49	no
Standard Exposure	Standard Exposure	20.30	65.75	43.29	11.83	
4/14/88	Chlorination Resumed	11.40	61.48	14.39	18.97	yes
8/22/88	Summer Collection	1240.59	68.32	70.11	244.29	yes
$10 / 17 / 88$	Placement Experiment	23.02	42.25	26.96	21.91	yes

The Pinkham-Pearson index B values of corresponding control and downstream basket populations of midges colonizing limestones-filled basket substrates.
Table 4.47

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks Stream Bed Rocks	Limestones 0.1179	0.1692	0.0639	0.1803	0.0747
		0.1398	yes			
10/30/87	Stream Bed Rocks	0.0238	0.0861	0.1049	0.1458	yes
Limestones	Limestones 0.1504	0.0182	0.0556	0.1667		
12/22/87	Replicate Basket 1	0.1541	0.1716	0.1066	0.0559	no
Replicate Basket 1	Replicate Basket 2	0.1302	0.1246	0.1602	0.0537	
$12 / 22 / 87$	Replicate Basket 1	0.1944	0.0814	0.0664	0.1768	no
Replicate Basket 2	Replicate Basket 2	0.2945	0.0513	0.1267	0.0345	
3/29/88	Stone not in Contact	0.1907	0.1535	0.3282	0.1538	no
Stone not in Contact	Standard Exposure	0.1430	0.0916	0.1982	0.2008	
3/29/88	Stone not in Contact	0.1160	0.1128	0.1869	0.0735	no
Standard Exposure	Standard Exposure	0.0814	0.0455	0.1279	0.1250	
$4 / 14 / 88$	Chlorination Resumed	0.2312	0.0912	0.0747	0.0812	yes
$8 / 22 / 88$	Summer Collection	0.0964	0.1532	0.0192	0.0960	yes
$10 / 17 / 88$	Placement Experiment	0.3073	0.1249	0.1626	0.2339	yes

Table 4.48
The average chi-square index values of corresponding control and downstream basket
populations of midges colonizing limestones-filled basket substrates.
Chlorination

0.7142	0.7106	0.8255	yes
0.6413	0.9114		
0.7937	0.7905	0.8556	yes
0.8463	0.8974		
0.5569	0.5874	0.6512	no
0.4876	0.5184	0.5160	
0.6604	0.6960	0.7146	no
0.5774	0.6479	0.6245	
0.7438	0.6111	0.6809	no
0.7666	0.7204	0.6347	
0.8333	0.7533	0.7667	no
0.8333	0.8167	0.7121	
0.5688	0.5799	0.8046	yes
0.5857	0.9478	0.7222	yes
0.4293	0.4592	0.3421	yes

0.6293
0.8158
0.7796
0.9003
0.7241
0.7231
0.7453
0.7475
0.5474
0.6444
0.6456
0.7820
0.3051
0.8198
0.1992
0.1992

Stream Bed Rocks
Limestones 0.6785
Stream Bed Rocks
Limestones 0.7345
Replicate Basket 1
Replicate Basket 2
Replicate Basket 1
Replicate Basket 2
Stone not in Contact
Standard Exposure
Stone not in Contact
Standard Exposure
Chlorination Resumed
Summer Collection
Placement Experiment

Station 1 (Control) vs.
10/30/87
Stream Bed Rocks
10/30/87
Limestones
$12 / 22 / 87$
Replicate Basket 1 $12 / 22 / 87$
Replicate Basket 2 3/29/88 Stone not in Contact

> 3/29/88
Standard Exposure
4/14/88
8/22/88
10/17/88
Table 4.49
The Morisita similarity index values of corresponding control and downstream basket populations of macroinvertebrate families colonizing limestones-filled basket substrates.

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks	0.7761	0.7839	0.7986	0.8490	yes
Stream Bed Rocks	Limestones 0.7608	0.7943	0.7854	0.8599		
10/30/87	Stream Bed Rocks	0.8689	0.8790	0.8877	0.9485	yes
Limestones	Limestones 0.8794	0.8834	0.8797	0.9446		
12/22/87	Replicate Basket 1	0.8143	0.8165	0.8241	0.9716	no
Replicate Basket 1	Replicate Basket 2	0.8474	0.8408	0.8308	0.9866	
12/22/87	Replicate Basket 1	0.8092	0.8134	0.8190	0.9509	no
Replicate Basket 2	Replicate Basket 2	0.8469	0.8394	0.8314	0.9615	
3/29/88	Stone not in Contact	0.9786	0.9550	0.9479	0.9909	no
Stone not in Contact	Standard Exposure	0.9920	0.9199	0.9592	0.9623	
3/29/88	Stone not in Contact	0.6450	0.6357	0.5863	0.6610	no
Standard Exposure	Standard Exposure	0.7374	0.6370	0.6055	0.7418	
4/14/88	Chlorination Resumed	0.9873	0.9830	0.4002	0.9882	yes
8/22/88	Summer Collection	0.9152	0.4182	0.0631	0.9821	yes
10/17/88	Placement Experiment	0.9301	0.8790	0.9302	0.9509	yes

Table 4.50 Sokal's Euclidean distance index values of corresponding control and downstream basket
populations of macroinvertebrate families colonizing limestones-filled basket substrates.

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks	39.41	94.83	72.21	58.53	yes
Stream Bed Rocks	Limestones 54.94	134.83	28.98	10.77		
10/30/87	Stream Bed Rocks	42.64	98.50	75.67	62.43	yes
Limestones	Limestones 58.35	139.07	31.86	12.04		
12/22/87	Replicate Basket 1	225.30	59.83	55.21	54.96	no
Replicate Basket 1	Replicate Basket 2	225.49	59.16	42.53	10.34	
$12 / 22 / 87$	Replicate Basket 1	220.34	55.10	50.38	51.02	no
Replicate Basket 2	Replicate Basket 2	250.42	54.52	37.83	9.43	
$3 / 29 / 88$	Stone not in Contact	28.39	176.42	66.16	8.49	no
Stone not in Contact	Standard Exposure	56.44	202.96	101.49	17.97	
$3 / 29 / 88$	Stone not in Contact	36.26	183.40	73.70	17.46	no
Standard Exposure	Standard Exposure	63.56	209.59	108.63	25.85	
$4 / 14 / 88$	Chlorination Resumed	13.19	96.41	47.42	25.00	yes
$8 / 22 / 88$	Summer Collection	1772.51	243.44	221.97	343.12	yes
$10 / 17 / 88$	Placement Experiment	40.77	76.97	26.68	36.92	yes

Table 4.51 The Pinkham-Pearson index B values of corresponding control and downstream basket
populations of macroinvertebrate families colonizing limestones-filled basket substrates

Station 1 (Control) vs.		Station 2	Station 3	Station 4	Station 5	Chlorination
10/30/87	Stream Bed Rocks Limestones 0.0192	0.1201	0.1140	0.0375	0.0964	0.1892
Stream Bed Rocks			0.1116		yes	
10/30/87	Stream Bed Rocks	0.0250	0.0126	0.0185	0.0570	yes
Limestones	Limestones 0.0694	0.0077	0.0311	0.0873		
12/22/87	Replicate Basket 1	0.3068	0.0233	0.1072	0.2108	no
Replicate Basket 1	Replicate Basket 2	0.3342	0.0712	0.1038	0.3063	
12/22/87	Replicate Basket 1	0.3690	0.0226	0.0886	0.1338	no
Replicate Basket 2	Replicate Basket 2	0.2083	0.1180	0.0772	0.2165	
3/29/88	Stone not in Contact	0.0805	0.0715	0.0357	0.1525	no
Stone not in Contact	Standard Exposure	0.0482	0.0088	0.0189	0.0912	
3/29/88	Stone not in Contact	0.0665	0.0508	0.0119	0.0314	no
Standard Exposure	Standard Exposure	0.1171	0.0036	0.0494	0.0490	
$4 / 14 / 88$	Chlorination Resumed	0.1343	0.0304	0.0732	0.0592	yes
$8 / 22 / 88$	Summer Collection	0.0850	0.0389	0.0165	0.1483	yes
$10 / 17 / 88$	Placement Experiment	0.1564	0.3276	0.3278	0.3472	yes

Table 4.52 The average chi-square index values of corresponding control and downstream basket
populations of macroinvertebrate families colonizing limestones-filled basket substrates.

Table 4.53 The EPT data for the basket collections.

COLLECTION/STATION	1	2	3	4	5	Chlorination
$10 / 30 / 87$ Stream Bed Rocks	6	0	1	2	4	yes
$10 / 30 / 87$ Limestones	4	1	2	0	3	yes
$12 / 22 / 87$ Replicate Basket 1	9	7	1	3	4	no
12/22/87 Replicate Basket 2	10	11	3	3	2	no
3/29/88 Stone not in Contact	4	5	1	0	4	no
3/29/88 Standard Exposure	8	6	0	2	6	no
4/14/88 Chlorination Resumed	5	2	0	0	0	yes
$8 / 22 / 88$ Summer Collection	9	0	4	0	5	yes
10/17/88	5	7.2	1.2	2	0	4

CHAPTER V

DISCUSSION

A. Evaluation of the Qualitative and Quantitative Methodology

1. Individual Stones as Discrete Sampling Units

Wrona's formula in estimating density of stone-dwelling organisms was originally designed for stream-bed rock substrates. Though limestone substrates are less heterogeneous in providing natural habitats for many organisms, the idea of using them as discrete sampling units has provided an opportunity to examine and validate such methodology. There are many advantages of applying Wrona's method to artificial substrates: (1) substrates can be manipulated into the same size class to simplify calculation; (2) the procedures generate data with the same unit for comparison; (3) the methods allow simultaneous quantitative measures of densities and spatial dispersion of a population; (4) the treatment of single stones as sampling units provides flexibility in selecting replicates, thus expediting the experimental process.

In order to better understand the significance of using individual stones as sampling units, the density estimate with its respective 95% confidence interval (Table 4.25) was expressed as the percent precision and summarized in Table 5.1. Spearman rank correlation was applied to examine the relationship between the density estimates and the 95% confidence intervals. The results are shown in Tables 5.2 and 5.3. Though 30 replicate stones provided 29 degree of freedom for estimating the
population density, the percent 95% confidence interval relative to its mean for each basket indicated that considerable variations were found for the macroinvertebrates collections from Lampson Brook (Table 5.1). The values ranged from 16.1% (12/22/87 replicate basket 1) to 57.3% (10/30/87 limestones). Resh (1979) points out that the number of sampling units is dependent on the size of the mean, the degree of aggregation exhibited by the population, and the desired precision of the mean estimate. The determination of sample size can be obtained with the following formula (Elliott, 1977):

$$
n_{\theta s t}=\frac{t^{2} s^{2}}{D^{2} \bar{x}^{2}}
$$

where

$$
\begin{aligned}
\bar{x} & =\frac{\sum x}{n} \\
S^{2} & =\frac{\sum(x-\bar{x})^{2}}{n-1} \\
S E & =\sqrt{\frac{s^{2}}{n}} \\
D & =\frac{S E}{\bar{x}}
\end{aligned}
$$

Thus, if the 95% confidence limits (i.e. the desired precision) and the size of the mean are determined, the more aggregated the population, the greater the number of samples will be required. And if the 95% confidence limits and the degree of aggregation (i.e. the variance) are ascertained, then the larger the size of the mean the smaller number
of samples will be required. Elliott (1977) states that the aggregation, a common phenomenon of insect behavior, may be a function of the size of the sampling unit and the number of samples collected. In this field study, since the sampling units and the sample size were manipulated to yield similar treatment for all the collections, the variations of 95% confidence limits were the results of the degree of aggregation and the size of the mean. The high degree of negative Spearman rank correlation (-0.852) for the 45 basket collections between the size of the mean and its relative 95% confidence limit suggests that the contribution to the variations is from the size of the mean (Table 5.2). When the Spearman rank correlation was analyzed based on the spatial arrangement, a high negative correlation was found at stations 2 and 5 , and to a lesser extent, at station 1. No significant correlation was found at stations 3 and 4 (Table 5.3). These correlations seem to correspond to the range of the size of the mean for that station. At stations 2 and 5 , the ratios of the maximum and minimum of the mean individuals were 46.8 and 37.6 folds, whereas at stations 1,3 , and 4 were 11.3, 6.4 and 2.3 folds, respectively. Apart from this, there was no apparent treatment, season or site specific regularity that contributed to these variations.

Wrona's method, when applied to the limestone substrates, can provide a good estimate of macroinvertebrate density with reasonable D values. Approximately 1018 organisms $/ \mathrm{m}^{2}$ (i.e. 167 organisms/stone) are required to yield $\mathrm{D} \approx 0.20$ (Table 5.1). Since the stone was manipulated into the same size category ($2^{\prime \prime}$ to $3^{\prime \prime}$ in diameter), the number of the organisms per stone is highly correlated to the number of the organisms per square meter (i.e. density) (Table 5.4). This suggests that the standardization of the limestone surface area to give a comparable unit (in this case, per square meter) is
not necessary. The abundance can simply be expressed as "number of organisms per stone". Wrona's method, however, will be very valuable in estimating the density of a stream-bed rock-dwelling benthic population provided that an accurate estimation of surface area can be obtained. As shown in the regression analysis of surface area against volume and weight, the standardization of stream-bed rock surface area is complicated by the lower r^{2} values (Coler et al., 1989). Furthermore, the size of the rock, which is associated with the population density, cannot be manipulated when it is sampled from the stream.

It is also true that the diversity value calculated from each limestone substrate is mostly invalid because the limestone does not provide enough surface area to collect adequate distribution of organisms, as my research indicates. Pratt (1977) showed that diversity and species count are a function of sample size. He demonstrated the asymptotic diversity values for pooled sampling units that are greater than 9 and continuing gradually upward slope for cumulative species count. McIntosh (1967) regards the relationship between the species count and the diversity $\%$ maximum as "redundancy increase"- the uncertainty of the information is reduced by the redundancy or repetition of individuals of the same species. Therefore, more and more individuals are required in order to find new species. When these two parameters reach an equilibrium, the increase in diversity ceases.

The poor correlation of Shannon's and Brillouin's diversity values between the individual stones and the basket largely results from the insufficient collection of organisms on the individual stones. Abundance and species composition may change a great deal by chance when there are not enough representative organisms on the
stone. The minimum number of rocks required to attain asymptotic diversity values vary among the indices and ranges on the average from 1 to 26 rocks, depending on the basket collections (Table 5.5). The number of rocks required is not entirely dependent on either the abundance, or the precision, or the diversity as indicated with Spearman rank correlation (Table 5.6). It would appear that the distribution of the organisms on the rocks has much more impact on the pooled diversity than merely abundance or diversity. Therefore, in any type of collection, the diversity values are only valid if asymptotic diversity can be attained. Once asymptotic values are obtained, any excess random rocks provide an adequate representation of the population (Pielou, 1967). As indicated in Table 5.5, thirty rocks were sufficient to collect representative samples to obtain asymptotic diversity. Thus, the interpretation of the field data with respect to the diversity would preferably be based on basket samples.

2. Diversity Indices

Species diversity has been used for many years as a tool to describe community structure. Several researchers have suggested that diversity indices be used to assess the impact of contaminants on water quality and subsequently on aquatic community structure (Whilm and Dorris, 1968; Zand, 1976). The underlying hypothesis of applying diversity as an indication of environmental stress is that the contaminants reduce abundance and the number of species in such a way that lower diversity results. The advantage of diversity indices is that a large volume of data are condensed to a single number that can be utilized to compare diversity values with other stations. Unfortunately, many diversity indices have been found to have no
biological relevance (Washington, 1984); others were criticized as being dependent on sample size (Washington, 1984) and influenced by the initial structure of the community, as well as the manner in which the community was disturbed (Boyle, 1990). However, in many ecological studies, the size of a sample is in direct relation to the abundance status of a community. Therefore, it is reasonable to include sample size as part of the community characteristics and be considered in the assessment of water quality. Thus, diversity indices that are sample size dependent may not be able to truly reflect the interspecific association of species because such value may merely be a reflection of abundance.

As mentioned in the literature review and demonstrated in APPENDIX B, Simpson's D Hurlbert's PIE and Keefe's TU provide an essentially identical measure of diversity. Therefore, only Hurlbert's PIE is considered in the discussion.

Diversities can be grouped into two major types according to their degree of association - one that is associated with interspecific encounters and the other associated with information theory. When a community is either at the most diverse or the least diverse situations, these two formulae essentially share identical concept. However, within these two limits, these two formulae are not always in agreement as to which is more diverse than the other. Thus, in any examination of a representative sample, when species representation in a sample reaches an intermediate level, the respective indices may be differentiated among those that give one set of diversity indices and a second which give a separate set of diversity indices with limited correlation between sets. It would therefore suggest that a diversity index for populations falling between intermediate levels may simply reflect the internal
structure from which the index derives rather than the actual representation of species at a given sampling point.

With Hurlbert's, McIntosh's or the "run" indices, though a collection need not be large in order to derive values from them, the numbers can be very misleading. For example, if a community comprises only two organisms, there are only two possibilities of species distribution - two species each with one individual or one species having two individuals. In the first instance, Hurlbert's PIE is equal to 1 and the second instance to 0 . However, if we have a community with a total of 4 individuals, there are five possibilities of species distribution - (1) four species each with one individual; (2) one species having two individuals, two species having one individual each; (3) two species each with two individuals; (4) one species having three individuals, one with one individual; (5) one species having 4 individuals. The first instance also gives value of 1 with Hurlbert's PIE, the fifth, value of 0 , and with some intermediate values in between. As we can see, there are definite structural differences between communities with two individuals or four individuals. If we would use only these diversity values to describe community characteristics, at least at two extreme instances, they would be classified into the same category.

The emphasis of interspecific encounter of the members in a community is the probability associated with the "universe" in which it is contained. This "universe" of Hurlbert and related indices is not discriminated and it is always equal to 1. Therefore, abundance becomes an unimportant issue in Hurlbert's index and perturbation in the proportion reduction of abundance, which is very common in the presence of low level toxic substances, will not affect the index values as expected.

Shannon and Brillouin diversities differ from Hurlbert's diversity in that at the most diverse situation where all the individuals are evenly distributed among the species, the diversity values are a monotonic increasing function of N. This is evident as shown in the resulting diversity values obtained with individual stones and baskets. They also differ in the representation of the species abundance and richness reflected in the formulae.

These differences not only contribute to the discrepancy of the derived values but also affect the way the communities are perturbed. As demonstrated with computer simulation, in the perturbation involved in the disproportional loss of abundance of common species or the eliminating the least common species, Hurlbert's index is sensitive to both parameters in certain ranges, whereas the perturbation of community structure is more severely impacted by species loss and less impacted by the abundance with Shannon and Brillouin diversity (Boyle, et al., 1990).

Another drawback of diversity indices is that species are not differentiated. The abundance of Nais communis is as important as the abundance of Eurylophella funeralis, but as is commonly known, their environmental requirements are remarkably different.

Many studies have shown that diversity indices are significant only with major perturbation, subtle changes cannot be identified. In fact, Barrett (1968) described an increase in some arthropod species diversity after exposure to an insecticide. Odum (1975) demonstrated the natural fluctuations in diversity through time and space unrelated to environmental stress. Such fluctuations in species diversity may represent the internal relations of a community dependent on productivity, competition, and
predation (Abugov, 1982). Perkin (1983) evaluated a number of diversity indices with bioassay system to determine the impact of copper on the macroinvertebrate community and found that the decrease in number of species and individuals did not always result in decrease in the diversity. Perkin (1983) concluded that "... Shannon's index is very likely to increase in spite of harmful perturbation".

Hellawell $(1977,1978)$ summarized the possible changes in community structure upon exposure to pollution - the reduction of biomass with no change in community structure; the change in abundance distribution among species with no change in species richness; the changes in abundance distribution and species richness. Accordingly, the extent of the responses will depend upon the nature and severity of the pollution. Murphy (1978) pointed out that the difficulty in many indices in differentiating the spatial differences was due to the extreme temporal variability exhibited by some of the indices. Hughes (1978) listed a number of factors that influence the diversity values unrelated to pollution. Variability in diversity values apart from pollution is obviously undesirable, unless it clearly reflects water quality changes.

It is suggested that taxonomic hierarchical diversity be used to compensate for some of the anonymity inherent in species richness and abundance (Pratt, 1977). In this study, examination of the data, reveals that order level diversity would probably yield a similar pattern to family level diversity because most families belong to different orders. The same statement can be made about genus level and species level diversity because very few species belong to the same genus (Table 5.7). Therefore, only two hierarchical diversities were calculated - family level and species level.

The results indicate that species level diversity give an entirely different pattern from family level diversity. Hughes (1978) calculated Shannon's diversity values at six taxonomic levels with the same data set and concluded that identification to species is unnecessary for detecting intersite differences for River Cynon, South Wales due to the similar pattern observed between order level and species level diversity. Kaesler et al. (1978) reported generic level identification was sufficient to interpret community structure due to the significant correlations between the generic and specific components of the Hierarchical Diversity Index (HDI). Osborne (1977) felt that family level identification would have been adequate to detect intersite diversity differences due to a significant difference in family level diversity between sites. However, seasonal variability was found in the different components of HDI (Osborne, 1980). Therefore, it would suggest that the taxonomic level that will detect intersite differences rests upon a specific collection which is predicated upon many factors. The different HDI pattern in detecting the intersite difference and the variability in contribution of each component of HDI have not yet provided any indisputable empirical regularities thus far. Osborne, et al. (1980) though questioning the ecological meaning of HDI, proposed the use of HDI in future studies because more information was gained through the assessment of the contribution that different taxonomic units make to the total diversity. Pratt (1977) also found the supplement of hierarchical diversity an effective technique for investigating macroinvertebrate populations for inferring environmental quality. Boyle et al. (1984) used the hierarchical approach to measure the changes in community structure induced by environmental stress and found that it provided a more interpretable comprehensive
analysis. Resh and Unzicker (1975), however, strongly argued the importance of species identification in water pollution studies.

Godfrey (1978) pointed out the problems of diversity indices in equating a tubifex-Tendipedidae-Asellus community with a Plecoptera-Ephemeroptera-Trichoptera community. Peet (1974) gave an example of the influence of sample size on Brillouin's formula in inferring equitability, hence an index of heterogeneity. Shannon's formula, though more appropriate in representing equitability, is only valid for an infinite sample (Pielou, 1966a, 1966b, 1966c, and 1967). McIntosh (1967) comments that "...some way of specifying the range of community differentiation included,, is necessary to make the concept of diversity of maximum use in ecological studies. The entity and its scope must be made clear before the measure of diversity takes on useful meaning." Contemplating the limitations, it is clear that it would be a gross simplification to take only diversity indices in the evaluation of water quality on community structure. One must consider: firstly, are there other factors that significantly influence the internal temporal and spatial structure of the community; secondly, should abundance be a constituent of a diversity concept; thirdly, should an "a priori" condition of species diversity be established for a defined community? One must be aware that diversity is only one of the properties of community characteristics and best be used with other attributes of the community to describe the spectrum of the structure changes.

The macroinvertebrate data collected from Lampson Brook indicate that the variations in abundance (21-2095 organisms per rock) have complicated the meaning of Brillouin's diversity values. At station 1, where the habitat was not subjected to
sewage discharge, the Brillouin diversity ranged from 1.8744 to 2.0224 from October, 30, 1987 to April, 14, 1988, and Hurlbert's diversity from 0.8669 to 0.9733 , respectively. An increase in Brillouin's diversity was observed on August, 22 and October, 17 collections, however, such increase were not observed with Hurlbert's diversity. It is evident that Brillouin's diversity increases with the increase in the number of individuals when the species representation is similar. It is, therefore, questionable whether the abundance should be a constituent of the diversity concept, or in using Brillouin's diversity, one must consider the diversity values with collections of comparable sample size. To more clearly visualize the relationship of the diversity values of upstream and downstream stations at a given sampling point, Tables 4.29 through 4.34 were summarized in Tables 5.8 and 5.9 to show the ranking. The results indicate that if we would rank the Brillouin's and Hurlbert's diversity values, Hurlbert's diversity values are more consistent in ranking station 1 as an unstressed environment across all three census, whereas Brillouin's diversity values are not.

Questions which therefore remain and deserve further analysis are the redundancy and evenness indices. Though derived from Shannon and Brillouin's diversity indices, they are more correlated to Hurlbert's index. However, they behave very differently from either Hurlbert's index or Shannon and Brillouin's diversity indices upon perturbation as demonstrated by Boyle et al. (1990). The effects of abundance and species loss do not give a reliable indication of community structure changes. One must assume that in these too the internal structure of the respective formula limits broader consistency.

3. Community Comparison Indices

a. Qualitative Community Comparison Indices

Likewise, for most of the similarity indices the expected maxima provided by the respective formulae also depend more or less strongly on sample size and diversity (Wolda, 1981). A number of indices are also insensitive in measuring community changes (Boyle et al., 1990).

Many contributions to the literature have criticized the fact that qualitative community comparison indices do not take into account the abundances of the various taxa. Thus, a great deal of information about a particular community is ignored. Additionally, as tested in this study, there are a number of limitations to these types of indices. Most of the indices tested are unable to distinguish lower and upper limits of similarity. There are further fundamental flaws in certain indices in that they fail to reflect biological characteristics of the system while satisfying a geometric principle.

Besides the lack of consideration of abundance in this type of index, there are discrepancies in the resulting similarity values with a particular set of a, b, and c, where a and b are the number of species in community A and B , respectively; and c is the common species in both communities.

If there are no common shared species between the two compared communities (communities A and B), the indices give zero values regardless of the arrangement of species richness in A or B. The Fager and McGowan index shows distinction in events corresponding to the number of species in the B site. This is obvious simply by looking at the formula. The added factor

$$
-\frac{1}{2 \sqrt{c+b}}
$$

certainly contributes to this distinction. It is unfortunate that this index does not take into account the number of species in A site as a factor. Both communities should be given the same degree of weighing factor. The same kind of treatment is suggested by Pinkham and Pearson (1976) in their quantitative index. Both communities are given same degree of weight. To overcome this weakness, the same factor is accounted for a and the first part of equation is multiply by 2 to compensate for the substraction. Thus, the revised index can be expressed as:

$$
I=\frac{2 \times c}{\sqrt{(c+b)(c+a)}}-\left(\frac{1}{2 \sqrt{c+b}}+\frac{1}{2 \sqrt{c+a}}\right)
$$

It basically contains two parts - the first part

$$
I=\frac{2 \times c}{\sqrt{(c+b)(c+a)}}
$$

and the second

$$
\frac{1}{2 \sqrt{c+b}}+\frac{1}{2 \sqrt{c+a}}
$$

The first part of the formula resembles Ochiai's index except that the maximum value is 0.5 with Ochiai's index whereas the maximum value of this formula is 1 . The second part is where the complete similarity and dissimilarity are distinguished where no other qualitative community comparison indices are capable of these distinctions. This formula has a number of distinct properties. In differentiating the upper limit of similarity, this formula is consistent with the geometric principle implicit in the
biological collections in that when two communities are complete similar (i.e. when $a=b=c$), the larger the c, the more similar the two communities. Furthermore, when the two communities are not completely similar, for a given c, the closer the a and b, the more similar the two communities. However, in detecting the lower limit of dissimilarity this formula may not possess the property that is desired for biological collections because when there is no common shared species (i.e. when $c=0$), the second part of the formula indicates that the larger the a and b, the more similar the two communities. Thus, it appears that it is highly unlikely that a single formula can be derived that will satisfy all the aspects of describing similarity/dissimilarity of two communities at the same time satisfy the mathematical principle, as is also shown with the quantitative community comparison indices.

The same is true with the upper limit. If communities A and B shared all the common species, then the indices in most cases (except for Fager and McGowan index) give values of 1 regardless of how many species pairs are in A and B.

With Jaccard's and Sorensen's indices, if the ratio of shared common species (numerator) and the sum of the number of species in A and B (denominator) are the multiple of other compared pairs, they would give identical values. However, with Kulczynski's, Mountford's, Ochiai's, and Fager and McGowan's indices, these instances are classified into different similarity values.

Not so obvious, however, are the indices of Kulczynski and Mountford. Upon examining all the qualitative comparison indices, we would notice that there are essentially two major parts in these equations - the numerator and the denominator. Two communities become more similar with increasing numerator values and
decreasing denominator values. If what we intend to derive are the indices corresponding to the values of a, b, and c. According to Kulczynski's formula, the numerator and denominator involves the sum of a and b and the product of a and b, respectively. If we relate a, b and c to a biological collection, mathematically these two indices fail to reflect what they originally intended. It is clear that a biological collection with a constant of common species c, the closer the a and b the more similar the two communities. If we refer to a and b as the sides of a rectangle, then given a fixed area, the closer the number of a and b, the smaller the circumference (i.e. the smaller the sum of a and b), the smaller the numerator, and the less similar. In this regard, Kulczynski's formula fails to show that the increase in the numerator leads to an increase in similarity. The same is true with Mountford's index. The difference is that Mountford's formula places the sum of a and b and the product of a and b in the denominator. According to Mountford's formula, the closer the number of a and b, the larger the denominator, the less similar the two communities.

Particularly troublesome are the values that fall between the lower and upper limits of these indices. It is evident that the indices do not show monotonic increase with regard to increasing common species and decreasing numbers of species in either A or B as demonstrated with Spearman rank correlation. Apart from these unsatisfactory qualities in some of the indices, overall, the remaining indices share considerably high correlation among each other. To demonstrate Sørensen and Fager and McGowan's similarity indices in describing the level of impact on downstream stations, Tables 4.35 through 4.40 were summarized in Table 5.10 to show the chlorination, non-chlorination, and year-long average with respective ranking. The
result reveals that both indices basically give similar assessment. The slight inconsistency due to the way of averaging or the behavior of the mathematical function will be the main determinants of which types of indices may be more ecologically or biologically relevant.
b. Quantitative Community Comparison Indices

Quantitative community comparison indices proposed to date to assess the structural differences between two communities reflect a number of strategies. Many techniques of mathematical manipulation are used to measure the differences - the minimum, the absolute difference, the product, and the distance. The results of such treatments give extreme variability in values and impose a great risk of employing these indices.

When applying the indices to communities that are as simple as the artificially created ones, it seems that these indices generally predict the similarity or dissimilarity between two communities. However, when these indices are applied to field data, one will notice that the inconsistency is greatly magnified. It seems that each index becomes "sui generis" in measuring the differences, particularly Sokal's Euclidean distance, with no definite relation to the other indices in measuring increase or decrease of the differences. To demonstrate the difficulty of these similarity/dissimilarity indices in describing the level of impact on downstream stations, Tables 4.41 through 4.52 were summarized in Table 5.11 to show the chlorination, non-chlorination, and year-long average with respective ranking. These results suggest that in using these indices, with the same data set, one index may tell you that the downstream stations are impacted, while the other index tells you just the
opposite. In fact, none of the four selected similarity/dissimilarity indices (Morisita similarity index, the average chi-square, Pinkham-Pearson index B, and Sokal's Euclidean distance) give the same similarity/dissimilarity assessments between upstream and downstream communities as shown in Table 5.10. Brock (1977) compared Renkonen's percent similarity and Pinkham-Pearson index B and concluded that Pinkham-Pearson index B was too sensitive to rare species and not sensitive enough to variation in dominant forms and therefore might be more prone to sampling error. Renkonen's percent similarity, on the other hand, showed a greater response to variation in dominant forms and relationships between dominant and semidominant species, and hence it might better point out structural-functional differences between communities. Brock (1977) also pointed out the problems with these two indices in differentiating the degree of "transitivity". Thus, two communities which are 70 percent similar to a third one does not imply that the two communities are just as similar to each other. In fact, all the community comparison indices are unable to distinguish the degree of "transitivity". Boyle et al. (1990), however, acknowledged the overall response of Pinkham-Pearson index B towards community structure changes. In this study, the artificial manipulation of the field data to produce some structure changes in community was not executed to test a number of important community structure characteristics. It is clear, however, Sokal's Euclidean distance responds strongly to the abundance. A further analysis of the data will allow us to clarify some strengths and weaknesses of each index.

If we consider the species and the number of individuals in each species as the underlying assemblages of a community, then a data set should yield identical
information in relation to external disturbances however we want to summarize them. But this "identical information" is not reflected in the indices. This dilemma is stated by Patil (1984) "...... 4. So we summarize the information through a set of indices (statistics) so that it would be comprehensible. 5. But now, we do not comprehend quite what the indices exactly mean. 6. And, therefore, we do not (quite) comprehend the situation. 7. Thus, without (all) information, or with (partial) information, or with summarized information, we do not quite comprehend a situation!".

Haedrich (1975) suggested the use of diversity and similarity indices as a useful and quantifiable means in measuring environmental quality. Boyle et al. (1984) provided a method that was capable of detecting hierarchical differences in community changes induced by environmental stress. Boyle et al. (1990) tested seven similarity indices (Jaccard's index, Renkonen's percent similarity, Bray-Curtis D, PinkhamPearson index B, Pinkham-Pearson index B_{2}, Euclidean distance D, and SIMI) and found that only Pinkham and Pearson's B, to a lesser extent, B_{2} and Euclidean distance gave a more consistent behavior with the four basic qualitative parameters (reference condition, sensitivity, stability and consistency) of community change.

Though the information is valuable, it does not address the fundamental problem in the assessment of community differences.

Thus, a central issue in assessing the significance of any index must be a prior consensus on what constitutes a community. The appearance of specimen at random similar or dissimilar from one another at any given sampling point may be only a reflection of what prevails with a given index rather than a meaningful statement of
the spectrum of the species truly reflecting the temporal or spatial elements of that community.

Many key questions need to be answered before we can reach a consensus on measuring the similarity/dissimilarity of the communities. We must ask ourselves: does abundance matter; do we want to distinguish the extent of upper and lower limits of similarity/dissimilarity; which type of standardization" (geometric mean or sum) is more effective in assessing fluctuation; is the sample size important; how the "differences" between two communities should be measured; are the indices able to reflect the external environmental stress; how do they respond to abundance and species increase or loss. Therefore, in order to make reasonable comparisons and meaningful interpretation, not only should the indices be examined but also the ecological concepts need to be understood. The statement by Pontasch et al. (1989) "no single diversity or community comparison index has been proven effective in quantifying all of the responses of aquatic communities to stressors" largely results from our lack of knowledge about the range of temporal and spatial variation in community characteristics.

Due to the specificity of biotic indices and the insensitivity of diversity indices in detecting various forms of pollution, it is apparent that community comparison at the quantitative level of the community structure represents the most valid assessment of differentiating the environmental impact as long as comparable control stations can be established. The core question, therefore, remains: on what basis may the most appropriate index be selected and validated. At this time, it appears that there is no defining principle which will validate one community comparison index as more
preferential to another. Similar conclusions were drawn by Perkins (1983) with regard to community comparison indices. In assessing the impact of copper on macroinvertebrate community, Perkins (1983) stated that "...this study has not shown that one or even a combination of indices can accurately address the issue of magnitude of impact on the community". If we would have a universal consensus about how a "community" should be defined; how the interaction among its members should be demonstrated; and how the "differences" between two communities should be measured, then there may be a universal model to assess the changes in the assemblages of a community. Perhaps, community structure may be better described as the number of links in the food web, or the energy flow at different trophic level, or the functional assessment of a given ecosystem as opposed to simply the number and the species count. Exploitation of such a potentiality merits further analysis.

Contemplating the weakness of the indices, the following interpretation is offered based on all aspects of community parameters (density estimate, species richness, EPT, Hurlbert's diversity, and Morisita's similarity) for making inferences concerning the impact of chlorinated and non-chlorinated sewage on the water quality of Lampson Brook. In this interpretation, I have assumed that the communities are defined as all the organisms collected in a defined area (Roughgarden and Diamond, 1986) and the changes in community structure are, in part, an indication of some environmental changes (in this case, the discharge of chlorinated or non-chlorinated sewage) to that community.

B. Interpretation of the Field Data

Three major components that contribute to the existing community structure of benthic macroinvertebrates in Lampson Brook are temporal and spatial variations as well as long term effects of chlorinated and non-chlorinated sewage. To identify spatial variation apart from the sewage effect is difficult in this study because there is no reference (before the sewage plant was built) to compare to. To infer the treatment effect (sewage) is also difficult because of the pseudoreplicated nature of the experiment (Hurlbert, 1984). To interpret treatment effect based on temporal interaction is only valid if the differences between upstream and downstream locations will remain constant overtime (Hurlbert, 1984). This "difference" is further complicated by arbitrary decisions about how we want to measure it (Hurlbert, 1984). A solution to overcome this complication was proposed by Stewart-Oaten and Murdoch (1986) called "Before the discharge begins and After it has begun, at both the Control and Impact sites $(\mathrm{BACD}) "$. Even with BACI design, the samples should be taken over a period of years to assess the temporal fluctuations. Thus, the discussions presented here are descriptive of the macroinvertebrate response in part due to longterm exposure of chlorinated and non-chlorinated sewage. A multi-year investigations with BACI experimental design will be necessary to distinguish sewage from chlorinated sewage effects.

The following discussions focus on the characterization of community parameters at each station, starting with the description of stream biota with their respective abundance and percent composition. It is their presence that subsequently
affects the numerical number of density, abundance, percent composition, species richness, diversity, and similarity.

1. Station 1 (Control station)

The control station (station 1) was selected as an unstressed reference station that receives no sewage discharge. The variability in species composition and abundance from one season to the next that station 1 experienced suggests a strong temporal effect on stream benthic macroinvertebrate community. Though considerable seasonal changes in density and distribution of benthos populations were apparent at station 1 (Table 5.12), most of the abundant species (such as chironomid Diplocladius sp., Parakiefferiella sp. Parametriocnemus lundbecki, stonefly Isoperla marlynia, Paracapnia opis, and mayfly Ephemerella excrucians, Paraleptophlebia sp.) were pollution intolerant, with the Hilsenhoff Biotic Index (HBI) (Hilsenhoff, 1982) ranging from 1.0 to 2.0 . No species comprised more than 25% of the individuals (except for 4/14/88 collections where chironomid Conchapelopia sp. comprised 34% of the total population).

The density of organisms at station 1 ranged from 158 ± 63 to 388 ± 157 from October, 30, 1987 to April, 14, 1988, and abundance and species richness ranged from 25 to 66 and 14 to 22 , respectively. The increase in the density, abundance, and species richness on August 22 ($1788 \pm 389,319$, and 45 , respectively) and October 17 $(641 \pm 184,101,28)$ was in part due to the sorting procedure. Many smaller size mayflies and chironomids were recovered with microscopic sorting but were lost with sugar flotation and the 1.7 x magnifier sorting process. Apart from these two collections, the density and abundance were slightly higher in winter mainly due to the
increase in number of Conchapelopia sp., Diplocladius sp., Parametriocnemus lundbecki, and Paracapnia opis. Species richness remains approximately at 20, except for the October, 30 limestone collection. It is suspected that stream-bed rocks provide more heterogeneous surface complexity for macroinvertebrates than the limestones (Coler, 1990). In Erman and Erman's (1984) study on the response of stream macroinvertebrates to substrate heterogeneity, it was demonstrated that the surface heterogeneity only supported more individuals, not the number of taxa. Their findings neither support nor oppose the surface complexity of the limestones because in essence their rocks were all collected from the stream banks and bars, and the surface heterogeneity was classified into three categories (quartzite, sandstone, and granite) based on the chemical composition of the rocks. The lower species richness for the limestone collections did not account for the species present on the stream-bed rock collections, rather, there were significant differential preference of the substrates (Coler, 1990). More species were associated with stream-bed rocks than the limestones. Differential preference of macroinvertebrates in substrate types, color, and roughness is well documented (Clements et al., 1989; Clifford et al., 1989).

Six out of nine collections have the highest Hurlbert diversity values ranking. The fluctuations in abundance and species richness do not seem to affect the diversity of macroinvertebrate community at station 1 (Table 5.8). The highest ranking in Hurlbert's diversity is maintained partly by species replacement associated with seasonal changes in environmental conditions which favors different assemblages of species. Similar ranking is also observed for midge diversity, and for the most part, family level diversity (Table 5.9). The netting of the control baskets on April, 14,

August 22 , and October, 17 seems to reduce family level diversity at this station relative to the downstream stations. The lower ranking is due to the presence of other families of downstream macroinvertebrates that do not present at station 1 , mainly families of class Mollusca, Crustacea, and Annelida.

The EPT values at this station is also reasonably maintained throughout the entire study period (minimum of 4 to maximum of 10). Many species of Ephemeroptera, Plecoptera, and Tricoptera are found to be either intolerant or facultative. Their absence may indicate deterioration of minor or moderate levels of organic contaminants (Weber, 1973). Accordingly, the assessment of water quality can be obtained by a quick survey of species of these three orders (Penrose and Overton, 1987).

2. Station 2

The dominant benthos collected from station 2 (Table 5.13) were highly variable with regard to HBI. All three categories (intolerant, facultative, and tolerant) were represented to a substantial extent $(12.3 \%-60.7 \%)$ depending on the sampling dates. The intolerant chironomid species (Diplocladius sp. and Parakiefferiella sp.) were found mostly during the non-chlorination regime. Sewage alone does not affect their abundance. Micropsectra $s p$. is thought to be an intolerant chironomid species, but in this study, their abundance was not affected by either chlorinated or non-chlorinated sewage. The tolerant species, such as Conchapelopia sp., was the most dominant in $10 / 17 / 87,3 / 29 / 88$, and $4 / 14 / 88$ collections and was second only to Polypedilum scalaenum in $8 / 22 / 88$ collections which comprised 60.7% of the population. Aside from seasonal changes a few mayfly species (Eurylophella bicolor,

Eurylophella funeralis, Leptophlebia sp., Paraleptophlebia sp., and Stenonema modestum), a stonefly species (Paracapnia opis), and a caddisfly species (Cheumatopsyche sp.) which existed during the non-chlorination regime either completely disappeared or were substantially reduced during the chlorination regime. Serratella deficiens was not observed at all at this station either during chlorination or non-chlorination period. Isoperla marlynia also seemed to be sensitive to chlorinated and non-chlorinated sewage. The dominant species (Diplocladius sp. and Polypedilum scalaenum) could occupy more than 50% of the total population on December and summer collections.

The increase in density on December 22, 1987 is mostly attributed to the increase in number of Diplocladius sp. and Micropsectra sp.. Such an increase may be a combination of the available nutrients and the stoppage of the chlorination. Since neither of these two variables is held constant to test the other, it is difficult to separate the cause. It is evident, however, the density of these two species is not distressed by non-chlorinated sewage. Similarly, during summer chlorination, the density increased to 11700 ± 1965 in part due to season-related emergence of Polypedilum scalaenum.

The rankings of Hurlbert's diversity for total macroinvertebrates and midges stand mostly at 2 . The low diversity values obtained on December 22, 1987 are the result of abundant Diplocladius sp. and Micropsectra sp. The increase in the number of Polypedilum scalaenum also results in lower total macroinvertebrates (5) and midges (4) diversity ranking on August 22, 1988. Family level diversities, however, rank mostly at 5 , and fewer at 4 , throughout the year due to the abundant chironomids.

Receiving the chlorinated or non-chlorinated sewage discharge, 60 meters downstream from the outfall, the effluent seems to support those chlorine-resistant organisms with rich organic material with a more abundant community than the control station. The effluent from the Belchertown WWTP seems to furnish the stream ecosystem with more available nutrients, which increases the primary production, and subsequently secondary production. After chlorination was applied, however, the chlorinated sewage suppressed the presence of Ephemeroptera, Plecoptera and Trichoptera as indicated by the average of EPT values at this station.

Arthur (1975) demonstrated that the total residual chlorine was the main element that contributed to consistent damaging effects to all the test species. Paller et al. (1988) indicated that removal of the chlorine compounds was more beneficial than the removal of the ammonia. Osborne (1985) demonstrated partial TRC effects on the depressed macroinvertebrate species richness, diversity and evenness, but elevated macroinvertebrates abundance. Later the contribution of TRC toxicity on the depression of macroinvertebrate community structure were separated from temperature effects using multiple discriminant analysis (Osborne and Davies, 1987). In this field survey, however, no depression in the macroinvertebrate species richness and total macroinvertebrate diversity at this station was observed, instead the change in water quality was reflected in the increase in population density, changes in species composition, dominance of chlorine-resistant species, drop in family level diversity throughout the year, and loss of EPT during the chlorination period.

The structural changes in macroinvertebrates community by the replacement of dominant chlorine-resistant species and loss of non-tolerant species was also observed in other studies (Osborne and Davies, 1987; Sheridan and Badger, 1981).

3. Station 3

A completely different dominant biota were found at station 3 compared to station 2 on the same sampling dates. Collection of benthos from station 3 (Table 5.14) comprised mostly tolerant species Conchapelopia sp. and the amphipod, Hyalella azteca. In the fall, mainly four species of chironomids (Conchapelopia sp., Diplocladius sp., Paratanytarsus sp. 2, and Rheotanytarsus exiguus group) and one amphipod species (Hyalella azteca) accounted for more than 50% of the population. In the winter, Conchapelopia sp., and Diplocladius sp. maintained their abundance, Paratanytarsus sp. 2, and Rheotanytarsus exiguus group population were reduced but still substantial in their percent composition. In the spring, the stream was dominated by Paratanytarsus sp. 2 (another chironomid) and a simuliid fly, Stegopterna mutata complex which are also pollution tolerant. In the summer, the stream was mainly dominated by Oligochaetes and Hyalella azteca. A similar phenomenon was observed at this station with regard to the sensitive mayfly and stonefly species. They either vanished or were depressed during the chlorination period.

Density and abundance were generally higher than those of the control. The contributions of each species to the total macroinvertebrate populations, however, varied from season to season, even with those organisms (Conchapelopia sp., Micropsectra sp., and Paratanytarsus sp. 2) that occurred throughout the year.

Hurlbert's diversity ranking for total macroinvertebrates and midges, on the average, approximately stands at 3. However, family level diversity ranking stands at 4 , corresponding to the abundance of chironomids. The EPT values are lower than those of the control, and are of the same level of magnitude during chlorination or non-chlorination regime. The consistently low EPT values at station 3 are mostly likely due to the combination of inherent physical habitat and long term effect of chlorinated and non-chlorinated sewage exposure.

The different macroinvertebrate communities exhibited at this station, evidently are not a consequence of the influence of the TRC because no significant amount of TRC in the water column were detected during the study period. It is suspected, though, that the chlorinated organic by-products, detected between station 2 and station 3 by the Department of Environmental Engineering at UMASS, might have contributed to the changes of macroinvertebrate community structure. Chlorination of water high in organic matter produces many chlorinated organic by-products (TOX) (Jolley, 1975; Murphy, 1975; Kinstley et al., 1983; Trehy et al., 1986). The toxicity of some of these compounds on aquatic animals varies and their ecological effects are not entirely clear. In general, they are less toxic than TRC. Gehrs and Southworth (1976) tested 17 compound mixtures, that identified by Jolley (1973) from chlorinated sewage effluent, and found no significant effect on Daphnia magna at concentrations of $<10 \mathrm{mg} / \mathrm{l}$. Trabalka and Burch (1979) indicated a relatively low or moderate toxicity $\left(\mathrm{LC}_{50}>10-100 \mathrm{mg} / \mathrm{l}\right)$ for 5 -chlorouracil and 4-chlororesorcinol, which were commonly found in chlorinated effluents. Correa et al. (1985) reported an increase in
oxygen consumption and ammonia excretion in the dragonfly nymph Somatochlora cingulata at levels of environmental relevance (10-100 ug / l).

It is known that most of the chlorinated organic products are quite stable under natural conditions (Kringstad et al., 1983), some are lipophilic in nature (Kringstad et al., 1984), and 50% are associated with particles less than $0.45 u \mathrm{~m}$ (McCahill et al., 1980). Furthermore, many non-polar chlorinated organic compounds were found to persist in the sediments for a long period of time (Larsson, 1985 and 1986). These findings suggest that it is possible, after long-term chlorination of the sewage, that these chlorinated organics may have concentrated in the sediment. Sludge beds can be carried further downstream with the first high water after an extended low water period (Tarzwell and Gaufin, 1953). The seasonal recharge of water in Lampson Brook may have initiated such phenomenon. Study of the impact of urban runoff on benthic macroinvertebrates also indicated the disruption was centered in the river bed and thin boundary layer rather than in the overlaying water column (Pratt, 1977). Furthermore, recent investigations at the University of Massachusetts have suggested that the toxicity of chlorinated sewage on aquatic macroinvertebrates may be attributed to the chronic effects of stable chlorinated by-products associated with the sediments (Coler, 1990; Jones, 1991). The ecological significance of chronic effects of these chlorinated organics merits further investigations.

4. Station 4

At station 4 (Table 5.15), different benthic communities were observed. They were represented by tolerant species such as Hyalella azteca (an amphipod), the Rheotanytarsus exiguus group (a chironomid), Dero obtusa (an oligochaete), and

Helobdella stagnalis (a leech). One dominant chironomid species, Orthocladius oliveri, which is designated as pollution intolerant, was found abundant only during the non-chlorination regime at stations 3 and 4 .

Density and abundance fluctuated the least during the entire study period, and were comparable to those in the control. However, many fewer species were collected (a total of 63 species for the year), and fewer species of Ephemeroptera, Plecoptera, and Tricoptera were found. Hurlbert's diversity rank for total macroinvertebrates, on the average, stands at 4 whereas it stands at 3 for midges. Hurlbert's diversity rank for macroinvertebrate families varies at different sampling dates. In general, macroinvertebrate families were more similar to the control during chlorination period and less similar during non-chlorination period (Table 5.9).

With only 150 meters from station 3 , station 4 seems to suffer even greater impact with respect to the suppression of the abundance, species richness, and EPT, and is consequently reflected in Hurlbert's diversity. This fauna response clearly is not the immediate effect of TRC, and chlorinated organics may have assumed the role in such depression as postulated at station 3.

5. Station 5

The dominant chironomid species found at station 5 (Table 5.16) were either intolerant chironomids (Diplocladius sp. and Parakiefferiella sp.) and stoneflies (Paracapnia opis) or facultative chironomids (Tanytarsus $s p$. and the Cricotopus tremulus group). In October and December, Diplocladius sp. comprised more than 50% of the total population, however, they hardly existed in March and August. Paracapnia opis was also abundant in October and December and declined in March
and August. August population were primarily dominated by Paratanytarsus sp. 2 and Tanytarsus sp.

A partial recovery was observed from station 5 with regard to the density, abundance, and EPT. Hurlbert's diversity ranking for total macroinvertebrates and midges, however, constantly depressed from October, 30 to December, 22, 1987. Slight improvement was observed on March, 29, 1988 and ameliorated substantially after that. Hurlbert's ranking for macroinvertebrate families consistently showed a higher diversity. Though many species of Ephemeroptera, Plecoptera, and Tricoptera that were absent at station 2 during chlorination period, reappeared at this station, the macroinvertebrate fauna was still different in their composition and distribution.

6. Placement Experiment

Data derived from October 17, 1988 indicate that there was a shift to tolerant species (Conchapelopia sp., Hemerodromia sp., Hyalella azteca, and Nais communis) at stations 2 and 3 (Table 5.17). There was also an increase in oligochaetes at station 4. Species composition was least impacted at station 5 . Density and abundance increased at stations 2, 3, and 4 due to those tolerant species. Hurlbert's diversity values indicate that station 5 had the most diverse populations of total macroinvertebrates, midges, and macroinvertebrates families. Mayflies species (Paraleptophlebia sp., Eurylophella bicolor, and Eurylophella funeralis) and one stonefly species (Perlinella ephyre/fumipennis) disappeared at stations 2 and 4. Two small mayflies belonged to family (Ephemerellidae) were found at station 4, whereas a total of 11 and 9 mayflies were captured at stations 3 and 5, respectively. The
decimation of mayfly and stonefly species at station 2 is consistently observed during chlorination regime.

7. Temporal Variations of Species Occurrence and Succession

If we choose Morisita similarity index as an example to describe the temporal variations, we observe that the replicate baskets (December 22, 1987) were very similar for all the collection sites $(0.9563,0.9958,0.9546,1.0010,0.9104$ for stations 1,2,3,4, and 5, respectively). Baskets collected in the same season (October, 30, 1987 and March 29, 1988), though not truly replicated, also showed much higher similarity values compared to those not collected at the same time period (0.8385 , $0.9659,0.7171,0.8348$, and 1.0167 on October 30 ; and $0.8083,0.5414,0.9804$, $0.8261,0.6473$ on March 29, 1988 for station 1, 2, 3, 4, and 5, respectively (Tables 5.18 through 5. 22).

If we look at the comparable basket collections from one season to the next (i.e. October 30, 1987 limestone collections; December 22, 1987 replicate baskets 1 and 2, and March 29, 1988 standard exposure), changes in species composition of populations of five sampling stations indicate that the biggest species variations (the successive replacement of some species to others) occurred between spring and summer collections (Tables 5.18 through 5.22).

In December, immediately after the cessation of chlorination, stations 1,3 , and 5 appear to have very similar stream biota. However, more then 50% of the stream biota were replaced at stations 2 and 4. From December to March, stream macroinvertebrates were least replaced at stations 3 and 4 , and a large proportion were displaced at stations 1,2 , and 5 . This suggests that the temporal variation was the
most gradual at station 3 and the least at stations 1 and 5 . The most fluctuation in the stability of species composition also occurred at stations 1 and 5 and the least at station 3, as shown by the percent standard deviations over their respective means (Table 5.23).

8. Indicator Species

The structure of macroinvertebrate community of a stream is the result of the combined physical, chemical, biological, and geological factors of the area in which the stream occurs. Therefore, the presence of a species, particularly when it is abundant, indicates that such environmental conditions are met. Its absence, though, not completely the result of the absence of such environmental conditions, does suggest a probable cause. Many species, therefore, are selected as "indicator species" as an indication of environmental quality. For example, The presence of Pontoporeia hoyi (a benthic amphipod) reflects the oligotrophic status of a lake (Ryder and Edwards, 1985), whereas the presence of Hexagenia limbata (a benthic mayfly) is associated with mesotrophic habitats (Edwards and Ryder, 1990). The idea of applying an "indicator species" approach provides a quick check of the condition of water quality. Given the complexity of the environmental conditions and the differential sensitivity of individual species to different type of stress, it is best to select a group of organisms that may be integrated in detecting different aspects of environmental stress as "indicator species" to address a more defined environmental condition.

Table 5.24 lists a number of potential indicator species, with its designated TRC tolerance/sensitivity, specifically associated with Lampson Brook. The tolerant
species mostly belonged to species of Family Chironomidae and species of Class Oligochaeta. Apparently, they sustained their abundance corresponding to the combination of nutrient availability and their tolerance to chlorine. Many studies also indicate that Oligochaeta are TRC-tolerant (Oliver, 1984; Osborne, 1985; and Sheridan and Badger, 1981). Chironomids as a whole were found to be sensitive to TRC in Osborne's study, however, they were also discovered to be tolerant in an other study (Heckman, 1983). The sensitive species were mostly distributed among the Ephemeroptera, Plecoptera, Tricoptera, and one species of chironomids (Parakiefferiella sp.). A number of chironomid species (Tanytarsus sp. Zavrelimyia sp. 2) were also considered as sensitive to TRC due to the significant reduction of their abundance at station 2 compared to the control at that sampling date. Similar observation regarding the sensitivity of mayflies, stoneflies, and caddisflies was also reported by Osborne (1985).

Using the "indicator species" approach in this study, reveals the control station with common species of mayflies (Paraleptophlebia sp., Serratella deficiens, Eurylophella bicolor, Eurylophella funeralis, and Stenonema modestum), stonefly (Paracapnia opis), caddisflies (Cheumatopsyche sp. and Pycnopsyche sp.), and alderfly (Nigronia serricornis), as an indication of a relatively unstressed environment. The presence of chironomid species such as Chironomus sp., Conchapelopia sp., Micropsectra sp., Parametriocnemus lundbecki, Paratendipes sp., Paratanytarsus sp. 2, Paratanytarsus sp. 3, Polypedilum fallax, Polypedilum laetum, Polypedilum illinoense, Polypedilum scalaenum, Psectrotanypus dyari, Psectrotanypus nr. dyari, and Tribelos poss. jucundum, and a Oligochaete Nais communis is specifically
associated with chlorinated sewage. The specific fauna associated with stations 3,4 , and 5 may be attributed to the chronic effects of chlorinated and non-chlorinated sewage discharge, the exact cause is, however, not entirely clear. It will be necessary to conduct a more detail investigation with regard to these organisms in response to these stressors in order to compile a population list corresponding to these environmental conditions.

9. Conclusion

Assessment of the macroinvertebrate community in a series of stations exposed to chlorinated and non-chlorinated sewage reveals that the distinct ecosystem at each station supported a different assemblage of macroinvertebrates. In effect, the environmental conditions of all the downstream stations were altered due to long-term discharge of chlorinated and non-chlorinated sewage. These differences were evident with regard to all aspects of community parameters such as species assemblage, species composition, density, abundance, diversity, EPT, similarity to control station, species secession, and seasonal fluctuation.

Table 5.1 The variability in the precision of density estimate.

COLLECTION/STATION	1	2	3	4	5	Chlorination
$10 / 30 / 87$ Stream Bed Rocks	30.7%	44.4%	23.3%	24.7%	38.4%	yes
$10 / 30 / 87$ Limestones	39.9%	33.6%	25.9%	35.2%	57.3%	yes
$12 / 22 / 87$ Replicate Basket 1	36.0%	16.1%	18.3%	27.1%	20.8%	no
$12 / 22 / 87$ Replicate Basket 2	40.5%	21.7%	27.2%	25.3%	35.7%	no
3/29/88	50.9%	38.8%	20.7%	28.4%	48.3%	no
Stone not in Contact	47.4%	29.8%	18.5%	25.7%	39.3%	no
3/29/88 Standard Exposure	29.4%	33.3%	28.5%	31.0%	45.9%	yes
$4 / 14 / 88$ Chlorination Resumed	21.8%	16.8%	17.7%	32.6%	17.5%	yes
$8 / 22 / 88$ Summer Collection	28.7%	22.6%	23.2%	35.4%	31.3%	yes
$10 / 17 / 88$						

Table 5.2 The Spearman rank correlation between the size of the mean and its relative 95% confidence limit.

	size of the mean	relative 95% confidence limit
size of the mean	1.000	-0.852
relative 95% confidence limit	-0.852	1.000

[^2]Table 5.3 The Spearman rank correlation between the size of the mean and its relative 95% confidence limit analyzed based on the spatial arrangement.

Site	Spearman rank correlation
station 1	-0.633
station 2	-0.900
station 3	-0.417
station 4	0.067
Station 5	-0.933

Table 5.4 The Spearman rank correlation between the mean density and the abundance.

	mean density	abundance
mean density	0.1000	0.965
abundance	0.965	0.1000

Table 5.5 Number of rocks required to attain asymptotic diversity.

Basket

Collection Estimated Sources

	Hurlbert	McIntosh	Run	Shannon	Brillouin	Average \pm Standard Deviation
1	4	5	4	20	20	11 ± 8
2	14	14	14	12	12	13 ± 1
3	7	7	7	7	7	7 ± 0
4	3	5	1	4	4	3 ± 1
5	3	3	3	4	9	4 ± 2
6	1	3	1	4	4	3 ± 1
7	4	6	4	8	13	7 ± 3
8	8	12	8	11	11	$10+2$
9	13	16	13	13	12	13 ± 1
10	25	>29	25	25	25	26 ± 2
11	4	11	4	8	4	$6+3$
12	3	11	3	10	10	7 ± 4
13	5	6	5	4	4	5 ± 1
14	6	6	6	6	6	6+0
15	5	5	5	3	3	4 ± 1
16	4	5	4	8	8	$\underline{6+2}$
17	6	6	6	7	7	6+0
18	3	5	2	7	5	4 ± 2
19	7	7	7	7	7	7 ± 0
20	10	10	4	15	15	$1 \overline{1}+4$
21	9	9	5	5	4	6 ± 2
22	6	11	1	13	13	$9+5$
23	2	3	2	4	4	3 ± 1
24	1	1	1	2	2	1 ± 0
25	1	3	1	2	3	2 ± 1
26	2	6	1	6	4	4 ± 2
27	2	2	2	2	2	2 ± 0
28	5	5	5	7	7	6 ± 1
29	6	11	6	28	11	$12+8$
30	3	19	3	5	7	7 ± 6
31	7	7	7	12	12	9 ± 2
32	5	10	4	7	7	7 ± 2
33	3	10	3	10	10	7 ± 3
34	11	11	11	11	8	$10+1$
35	9	9	5	12	12	9 ± 3
36	2	3	2	3	3	3 ± 0
37	3	6	3	3	3	$\pm+1$
38	2	2	2	7	7	4 ± 2
39	6	6	6	6	7	6 ± 0
40	3	3	3	2	4	3 ± 1
41	1	5	1	6	6	4 ± 2
42	2	3	2	4	4	3 ± 1
43	3	3	2	4	4	3 ± 1
44	2	2	2	5	6	3 ± 2
45	5	5	5	9	9	7 ± 2

Table 5.6 The Spearman rank correlation between the number of rocks required to attain asymptotic diversity and a number of suspected causes (abundance, diversity, or the precision).

Estimated Sources vs. Suspected Causes	Spearman rank correlation
Hurlbert vs. abundance	-0.567
Hurlbert vs. precision	0.461
McIntosh vs. abundance	-0.582
McIntosh vs. precision	0.583
run vs abundance	-0.397
run vs. precision	0.292
Shannon vs. abundance	-0.632
Shannon vs. precision	0.577
Brillouin vs. abundance	-0.534
Brillouin vs. precision	0.509
Average vs. abundance	-0.634
Average vs. precision	0.563
Hurlbert vs. Hurlbert's diversity	-0.240
Average vs. Hurlbert's diversity	-0.137
Brillouin vs. Brillouin's diversity	-0.428
Average vs. Brillouin's diversity	-0.588

Table 5.7 Total number of individuals, species, genera, families, and orders of macroinvertebrates as well as total number of individuals and species of midges for each basket collection.

Basket Collection	No. Individuals	No. species	No. genera	No. families	No. orders	No. midges	No. midge sp.
1	40	19	18	9	6	18	11
2	25	14	14	7	5	14	8
3	63	18	16	4	3	56	15
4	78	23	22	5	4	72	19
5	130	23	18	4	4	111	20
6	173	19	17	7	4	152	13
7	115	16	15	3	3	84	13
8	52	16	14	4	4	45	13
9	94	18	16	7	5	76	12
10	32	11	11	6	5	25	6
11	54	20	20	9	5	28	10
12	66	22	21	12	7	33	9
13	270	25	23	9	5	253	16
14	327	34	30	14	7	283	18
15	94	17	17	6	4	86	12
16	100	27	23	7	5	85	19
17	88	14	14	4	4	82	11
18	77	19	18	6	5	68	13
19	121	13	13	8	5	81	6
20	55	10	10	4	3	37	7
21	25	18	15	4	4	18	14
22	32	20	18	9	5	11	10
23	53	25	22	7	5	46	19
24	106	39	35	13	7	73	25
25	237	27	19	4	3	188	22
26	293	30	. 24	7	6	204	22
27	86	18	14	3	2	84	16
28	128	20	13	5	5	119	16
29	31	14	13	6	5	25	9
30	56	24	24	10	6	33	14
31	50	21	19	5	4	41	16
32	56	21	17	4	2	53	18
33	162	19	17	6	5	135	12
34	59	8	8	2	2	18	7
35	21	13	12	3	2	17	11
36	319	45	39	13	8	210	26
37	2095	45	35	11	6	1980	33
38	550	43	38	14	11	106	19
39	108	13	13	7	5	2	1
40	837	53	42	17	10	528	35
41	101	28	23	10	7	79	17
42	167	28	25	10	6	99	18
43	228	37	36	15	12	126	18
44	107	25	24	9	8	62	14
45	76	32	30	13	9	43	15

Table 5.8 Ranking of Brillouin and Hurlbert's diversity values for total macroinvertebrates.

| COLLECTION/STATION | 1 | 2 | 3 | 4 | 5 | Chlorination |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

BRILLOUIN'S DIVERSITY RANK

10/30/87 (Stream-bed Rocks)	2	1	3	4	5	yes
$10 / 30 / 87$ (Limestones)	4	1	2	3	5	yes
$12 / 22 / 87$ (Replicate Basket 1)	1	4	2	3	5	no
$12 / 22 / 87$ (Replicate Basket 2)	2	4	1	3	5	no
$3 / 29 / 88$ (Stone not in Contact)	3	2	1	4	5	no
$3 / 29 / 88$ (Standard Exposure)	4	2	1	5	3	no
$4 / 14 / 88$ (Chlorination Resumed)	2	1	3	5	4	yes
$8 / 22 / 88$ (Summer Collection)	1	5	3	4	2	yes
$10 / 17 / 88$ (Placement Experiment)	3	5	2	4	1	yes

HURLBERT'S DIVERSITY RANK						
10/30/87 (Stream-bed Rocks)	1	2	3	4	5	yes
$10 / 30 / 87$ (Limestones)	1	2	4	3	5	yes
$12 / 22 / 87$ (Replicate Basket 1)	1	5	2	3	4	no
$12 / 22 / 87$ (Replicate Basket 2)	2	5	1	3	4	no
$3 / 29 / 88$ (Stone not in Contact)	1	2	3	5	4	no
$3 / 29 / 88$ (Standard Exposure)	1	2	4	4	3	no
$4 / 14 / 88$ (Chlorination Resumed)	3	2	4	5	1	yes
$8 / 22 / 88$ (Summer Collection)	1	5	3	4	2	yes
$10 / 17 / 88$ (Placement Experiment)	2	4	5	3	1	yes

Table 5.9 Ranking of Hurlbert's diversity values for midges and family level census.

COLLECTION/STATION	1	2	3	4	5	Chlorination
MIDGES						
		1	2	3	4	5
10/30/87 (Stream-bed Rocks)	1	2	4	3	5	yes
$10 / 30 / 87$ (Limestones)	1	4	2	3	5	yo
$12 / 22 / 87$ (Replicate Basket 1)	3	5	1	2	4	no
$12 / 22 / 87$ (Replicate Basket 2)	1	2	3	4	5	no
3/29/88 (Stone not in Contact)	1	2	3	5	4	no
3/29/88 (Standard Exposure)	4	2	5	3	1	yes
4/14/88 (Chlorination Resumed)	1	4	3	5	2	yes
8/22/88 (Summer Collection)	2	5	3	4	1	yes
10/17/88 (Placement Experiment)						

$10 / 30 / 87$ (Stream-bed Rocks)	1	5	4	2	3	yes
10/30/87 (Limestones)	1	5	4	3	2	yes
$12 / 22 / 87$ (Replicate Basket 1)	1	5	3	4	2	no
$12 / 22 / 87$ (Replicate Basket 2)	1	4	3	5	2	no
3/29/88 (Stone not in Contact)	1	4	3	5	2	no
$3 / 29 / 88$ (Standard Exposure)	1	3	4	5	2	no
$4 / 14 / 88$ (Chlorination Resumed)	3	5	4	1	2	yes
$8 / 22 / 88$ (Summer Collection)	4	5	1	2	3	yes
$10 / 17 / 88$ (Placement Experiment)	5	4	3	2	1	yes

Table 5.10 Average qualitative similarity values calculated for chlorination, non-chlorination, and year-long periods with their respective ranking at each station for total macroinvertebrates, midges, and family level census.

[^3]Table 5.11 Average quantitative similarity/dissimilarity values calculated for chlorination, non-chlorination, and year-long periods with their respective ranking at each station for total macroinvertebrates, midges, and family level census.

[^4]Table 5.12 Change in abundance and percent distribution (in parenthesis) of benthic macroinvertebrate species collected from station 1 baskets during the period of substrate deployment from October 30, 1987 to August 22, 1988. Only those with substantial abundance and percent composition were listed.

TAXA/COLLECTION	10/30/87N	10/30/87L	12/22/87B1	12/22/87B2	3/29/881	3/29/88R	4/14/88	8/2288
Conchapelopia sp.	3:(7.5\%)	4:(16.0\%)	5:(9.3\%)	8:(12.0\%)	2:(8.0\%)	1:(3.2\%)	17:(34.0\%)	22:(6.9\%)
Diplocladius sp.	1:(2.5\%)	0:(0\%)	9:(16.7\%)	8:(12.1\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)
Micropsectra sp.	0:(0\%)	1:(4.0\%)	2:(3.7\%)	1:(1.5\%)	2:(8.0\%)	1:(3.1\%)	$0:(0 \%)$	5:(1.6\%)
Microtendipes caelum	0:(0\%)	2:(8.0\%)	1:(1.8\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	11:(3.4\%)
Nanocladius sp. 2	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	3:(6.0\%)	1:(0.3\%)
Parakiefferiella sp.	0:(0\%)	3:(12.0\%)	0:(0\%)	0:(0\%)	1:(4.0\%)	2:(6.2\%)	0:(0\%)	3:(0.9\%)
Parametriocnemus lundbecki	3:(7.5\%)	0:(0\%)	6:(11.1\%	16:(24.2\%)	1:(4.0\%)	1:(3.1\%)	5:(10.0\%)	2:(0.63\%)
Polypedilum scalaenum	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	3:(6.0\%)	51:(16.0\%)
Rheotanytarsus exiguus group	3:(7.5\%)	0:(0\%)	1:(1.8\%)	1:(1.5\%)	2:(8.0\%)	1:(3.1\%	2:(4.0\%)	0:(0\%)
Tanytarsus sp.	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	20:(6.3\%)
Thienemanniella sp. 1	0:(0\%)	0:(0\%)	$0:(0 \%)$	$0:(0 \%)$	2:(8.0\%)	1:(3.1\%)	0:(0\%)	0:(0\%)
vrelimyia sp. 2	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	26:(8.2\%)
Ephemerillidae	0:(\%)	0:(0\%)	0:(0\%)	0:(0\%)	2:(8.0\%)	$0:(0 \%)$	0:(0\%)	14:(4.4\%)
Serratella deficiens	3:(7.5\%)	0:(0\%)	2:(3.7\%)	3:(4.5\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)
Ephemerella excrucians	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	3:(9.4\%)	0:(0\%)	$0:(0 \%)$
Paraleptophlebia sp.	0:(\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	5:(10.0\%)	56:(17.6\%)
Isoperla marlynia	0:(0\%)	0:(0\%)	0:(0\%)	5:(7.6\%)	3:(12.0\%	2:(6.2\%)	1:(2.0\%)	2:(0.63\%)
Paracapnia opis	7:(17.5\%)	5:(20.0\%)	13:(24.1\%)	12:(18.2\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)
Cernotina sp.	4:(10.0\%)	0:(0\%)	$0:(0 \%)$	0:(0\%)	$0: 10 \%)$	0:(0\%)	$0:(0 \%)$	0:(0\%)
Cheumatopsyche sp.	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	4:(12.5\%)	0:(0\%)	0:(0\%)
Hydatophylax sp.	0:(0\%)	2:(8.0\%)	2:(3.7\%)	1:(1.5\%)	0:(0\%)	0:(0\%)	$0:(0 \%)$	0:(0\%)
Hydropsyche sp. 1	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	4:(12.5\%)	0:(0\%)	0:(0\%)
Nigronia serricornis	3:(7.5\%)	0:(0\%)	0:(0\%)	1:(1.5\%)	0:(0\%)	0:(0\%)	0:(0\%)	5:(1.6\%)

Table 5.13 collected from station 2 baskets during the period of substrate deployment from October 30, 1987 to August 22, 1988. Only those with substantial abundance and percent composition were listed.

$10 / 30 / 87 \mathrm{~N}$	$10 / 30 / 87 \mathrm{~L}$	$12 / 22 / 87 \mathrm{~B} 1$	$12 / 22 / 87 \mathrm{~B} 2$	$3 / 29 / 88 \mathrm{I}$	$3 / 29 / 88 \mathrm{R}$	$4 / 14 / 88$	$8 / 22 / 88$

 1:(0.0\%) $0:(0 \%)$ 0:(0\%)
24:(1.1\%) 109:(5.2\%) $38:(1.8 \%)$
$30:(1.4 \%)$ 30:(1.4\%)
1:(0.0\%) 17:(0.8\%)
146:(7.0\%) 146:(7.0\%)
85:(4.1\%) 1271:(60.7\%) 5:(0.2\%)
34:(1.6\%) 34:(1.6\%)
0:(0\%) o 0:(0\%) 0:(0\%) 4:(0.2\%)
47:(74.6\%) 55:(70.5\%) 229:(84.8\%) 269:(82.3\%) 35:(66.0\%) 62:(58.5\%) 44:(78.6\%) \quad 1911:(91.2\%)
Change in abundance and percent distribution（in parenthesis）of benthic macroinvertebrate species collected from station 3 baskets during the period of substrate deployment from October 30， 1987 to August 22，1988．Only those with substantial abundance and percent composition were listed． $\begin{array}{llllllll}10 / 30 / 87 \mathrm{~N} & 10 / 30 / 87 \mathrm{~L} & 12 / 22 / 87 \mathrm{~B} 1 & 12 / 22 / 87 \mathrm{~B} 2 & 3 / 29 / 88 \mathrm{I}\end{array}$
$\begin{array}{lll}3 / 29 / 88 \mathrm{R} & 4 / 14 / 88 & 8 / 22 / 88\end{array}$
3／29／88R $\quad 4 / 14 / 88 \quad 8 / 22 / 88$
$\begin{array}{lll}\text { 37：（12．6\％）} & 71:(43.8 \%) & 42:(7.6 \%) \\ 2:(0.7 \%) & 0:(0 \%) & 0:(0 \%) \\ 0:(0 \%) & 0:(0 \%) & 0:(0 \%) \\ 0:(0 \%) & 0:(0 \%) & 1:(0.2 \%)\end{array}$ 3：（0．5\％） $0:(0 \%)$
$0:(0 \%)$
$0:(0 \%)$ $0:(0 \%)$
$0:(0 \%)$
 $0:(0 \%)$ $0:(0 \%)$
$0:(0 \%)$

0 $0:(0 \%)$ | $0:(0 \%)$ |
| :--- |
| $20:(4.0 \%)$ | 22：（4．0\％）

90：（16．4\％） 16：（2．9\％） 2：（0．4\％） 157：（28．5\％）

 30：（31．9\％）22：（22．0\％） 28：（11．8\％）
4：（1．7\％）
$0:(0 \%)$
$0:(0 \%)$
$25:(10.5 \%)$
3：（1．3\％）
$15:(6.3 \%)$
$11:(4.6 \%)$
9：（3．8\％）气㐅⿳亠口冋几
0：（0\％）

 8：（3．4\％） 42：（17．7\％） 1：（0．4\％） 0：（0\％） $0:(0 \%)$ 0：（0\％） 1：（0．4\％） $0:(0 \%)$ o응 1：（0．6\％）
$0:(0 \%)$ 0：（0\％） $9:(5.6 \%)$
$11:(6.8 \%)$
$1:(0.6 \%)$
$3:(1.8 \%)$
$0:(0.5)$
0：（0\％） 0：（0\％） 1：（0．6\％） $0:(0 \%)$
 （\％06L）：6L 0：（31．9\％）
2：（12．8\％） $0:(0 \%) \quad 1:(1.0 \%)$ 3．：3．2\％）3：（3．0\％） 1：（1．0\％） 2：（2．0\％） 0：（0\％） 7：（7．0\％） $0:(0 \%)$
$8:(8.0 \%)$ 1：（1．0\％）
2：（2．0\％）
（： ن $0:(0 \%)$
$0:(0 \%)$
$0:(0 \%)$ $0:(0 \%)$
$0:(0 \%)$
$0:(0 \%)$ $0:(0 \%)$

$0:(0 \%)$ | O응 |
| :--- |
| in |
| in | ©

 © 35：（26．9\％）17：（9．8\％） 13：（10．0\％）$\quad 29:(16.8 \%)$ 0：（0\％） 2：（1．2\％） $0:(0 \%)$ 8：（8．5\％） 0：（0\％） 12：（12．8\％） 0：（0\％） 9：（9．6\％）侖 3：（3．2\％） $0:(0 \%)$ 0：（0\％） $0:(0 \%)$ 0：（0\％） － 1：（1．1\％） 0：（0\％）
117：（90．0\％）160：（92．5\％）87：（92．6\％）79：（79．0\％）217：（91．6\％）267：（91．1\％）154：（95．1\％）490：（89．1\％）
Conchapelopia sp．
Diplocladius sp．
Hydorbaenus pilipes
Meropelopia flavifrons
Micropsectra sp．
Nanocladius sp． 1
Nanocladius sp． 2
Orthocladius oliveri
Parakiefferiella sp．
Paratanytarsus sp． 2
Polypedilum scalaenum
Rheotanytarsus exiguus group
Thienemanniella prob．xena
Thienemanniella sp． 1
Stegopterna mutata complex
Simulium vittatum complex
Helobdella stagnalis
Dero obtusa
Paraleptophlebia sp．
Cheumatopsyche sp．
Hyalella azteca
Oligochaeta
Nais communis
Pristinella osborni
Cle

Paraleptophlebia sp．	$0:(0 \%)$	$0:(0 \%)$
Cheumatopsyche sp．	$1:(0.8 \%)$	$16:(9.2 \%)$
Hyalella azteca	$16:(12.3 \%)$	$1:(0.6 \%)$
Oligochaeta	$0:(0 \%)$	$0:(0 \%)$
Nais communis	$0:(0 \%)$	$0:(0 \%)$
Pristinella osborni	$0:(0 \%)$	$0:(0 \%)$

Table 5.15 Change in abundance and percent distribution (in parenthesis) of benthic macroinvertebrate species
collected from station 4 baskets during the period of substrate deployment from October 30, 1987 (0) August 22, 1988. Only those with substantial abundance and percent composition were listed.

TAXA/COLLECTION	10/30/8\% N	10/30/871.	12/22/8781	12/22/87132	3/29/881	3/29/88R	4/14/88	8/22888
Conchapelopia sp.	12:(10.4\%)	1:(1.9\%)	12:(13.6\%)	14:(18.2\%)	2:(2.3\%)	22:(17.2\%)	5:(8.5\%)	0:(0) \%
Diplocladius sp.	4:(3.5\%)	1:(1.9\%)	16:(18.2\%)	13:(16.9\%)	1:(1.2\%)	0:(0\%)	0:(0\%)	0:(0\%)
Hydrobarnus pillipes	4:(3.5\%)	0:(0\%)	5:(5.7\%)	1:(1.3\%)	0:(0\%)	0:(0)	0:(0)	0:(0\%)
Micropsecira sp.	5:(4.3\%)	4:(7.7\%)	3:(3.4\%)	3:(3.9\%)	14:(16.3\%)	5:(3.9\%)	3:(5.1\%)	0:(0)
Nanocladius sp. I	0:(0\%)	6:(11.5\%)	1:(1.1\%)	1:(1.3\%)	5:(5.8\%)	4:(3.1\%)	0:(0\%)	0:(0\%)
Nanocladius sp. 2	0:(0\%)	1:(1.9\%)	0:(0\%)	0:(0))	4:(4.6\%)	7:(5.5\%)	3:(5.1\%)	0:(0)
Orthocladius oliverl	0:(0\%)	1:(1.9\%)	33:(37.5)	21:(27.3)	10:(11.6\%)	26:(20.3\%)	2:(3.4\%)	0:(0\%)
Paramesriocnemus hundlieckd	1:(0.9\%)	3:(5.8\%)	1:(1.1\%)	1:(1.3\%)	1:(1.2\%)	0:(0\%)	1:(1.7\%)	0:(0\%)
Paratanylarsus sp 2	1.5:(13.0\%)	12:(23.1\%)	7:(8.0\%)	8:(10.4\%)	2.3:(26.7\%)	24:(18.8\%)	3:(5.1\%)	0:(0\%)
Rheotanytarsus exiguus group	35:(30.4\%)	12:(23.1\%)	0:(0))	1:(1.3\%)	2:(2.3\%)	2:(1.6\%)	0:(0)	0:(0\%)
Thienemanniella prob, xena	2:(1.7\%)	0:(0\%)	$0:(0 \%)$	0:(0\%)	10:(11.6\%)	10:(7.8\%)	1:(1.7\%)	0:(0\%)
Hyalella aziesa	28:(24.3\%)	4:(7.7\%)	0:(0\%)	2:(2.6\%)	1:(1.2\%)	6:(4.7\%)	$41:(69.5 \%)$	(0:(0)
Helobidella stagnalis	0:(0\%)	2:(3.8\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	22:(20.4\%)
Dero obtusa	0:(0)	0:(0\%)	0:(0))	$0 ;(0 \%)$	0:(0\%)	0:(0\%)	0:(0\%)	26:(24.1\%)
Oligochacta	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0)	0:(0\%)	9:(8.3\%)
IWCC	0:(0)\%)	0; (0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0) \%	23:(21.3\%)
ICC	0:(0\%)	0; (0%)	0:(0\%)	$0:(0 \%)$	0:(0) \%	0:(0\%)	$0:(0 \%)$	10:(9.3\%)

$106:(92.2 \%) 47:(90.4 \%) \quad 78:(88.6 \%) \quad 65:(84.4 \%) \quad 73:(94.8 \%) \quad 106:(82.8 \%) 59:(100.0 \%) 90:(83.3 \%)$
Table 5.16
Change in abundance and percent distribution (in parenthesis) of benthic macroinvertebrate species collected from station 5 baskets during the period of substrate deployment from October 30, 1987 to August 22, 1988. Only those with substantial abundance and percent composition were listed TAXA/COLLECTION

Conchapelopia sp.	2:(2.1\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	2:(3.6\%)	0:(0\%)	17:(2.0\%)
Cricotopus tremulus group	0:(0\%)	0:(0\%)	11:(9.1\%)	9:(16.4\%)	0:(0\%)	9:(16.1\%)	1:(4.8\%)	8:(1.0\%)
Diplocladius sp.	60:(63.8\%)	20:(62.5\%)	66:(54.5\%)	19:(34.5\%)	0:(0\%)	1:(1.8\%)	0:(0\%)	0:(0\%)
Hydrobaenus pilipes	3:(3.2\%)	0:(0\%)	1:(0.8\%)	5:(9.1\%)	0:(0\%)	1:(1.8\%)	0:(0\%)	0:(0\%)
Labrundinia pilosella	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	9:(1.1\%)
Micropsectra sp.	1:(1.1\%)	1:(3.1\%)	1:(0.8\%)	0:(0\%)	0:(0\%)	2:(3.6\%)	4:(19.0\%)	1:(0.1\%)
Microtendipes caelum	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	1:(4.8\%)	15:(1.8\%)
Microtendipes rydalensis group	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	1:(1.8\%)	2:(9.5\%)	34:(4.1\%)
Nanocladius sp. 1	1:(1.1\%)	0:(0\%)	0:(0\%)	0:(0\%)	1:(3.2\%)	0:(0\%)	0:(0\%)	7:(0.8\%)
Nanocladius sp. 2	1:(1.1\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	1:(4.8\%)	6:(0.7\%)
Orthocladius carlatus group	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	7:(22.6\%)	6:(10.7\%)	1:(4.8\%)	0:(0\%)
Parakiefferiella sp.	$0:(0 \%)$	0:(0\%)	0:(0\%)	0:(0\%)	8:(25.8\%)	4:(7.1\%)	0:(0\%)	0:(0\%)
Paratanytarsus sp. 2	0:(0\%)	0:(0\%)	0:(0\%)	1:(1.8\%)	1:(3.2\%)	1:(1.8\%)	0:(0\%)	189:(22.6\%)
Paratanytarsus sp. 3	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	9:(1.1\%)
Tanytarsus sp.	2:(2.1\%)	0:(0\%)	0:(0\%)	0:(0\%)	3:(9.7\%)	1:(1.8\%)	3:(14.3\%)	157:(18.8\%)
Thienemanniella sp. 2	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	12:(1.4\%)
Tanytarsini	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	8:(1.0\%)
Stegopterna mutata complex	0:(0\%)	0:(0\%)	1:(0.8\%)	0:(0\%)	0:(0\%)	3:(5.4\%)	3:(14.3\%)	0:(0\%)
Paraleptophlebia sp.	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	102:(12.2\%)
Paracapnia opis	10:(10.6\%)	2:(6.3\%)	20:(16.5\%)	13:(23.6\%)	1:(3.2\%)	2:(3.6\%)	0:(0\%)	0:(0\%)
Taeniopteryx maura	0:(0\%)	0:(0\%)	15:(12.4\%)	2:(3.6\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)
Neophylax sp.	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	2:(6.5\%)	8:(14.3\%)	0:(0\%)	0:(0\%)
Ephemerellidae (early instar)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	1:(1.8\%)	0:(0\%)	126:(15.1\%)
Tricoptera (early instar)	1:(1.1\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	0:(0\%)	48:(5.7\%)

Table 5.17 Change in abundance and percent distribution (in parenthesis) of benthic macroinvertebrate species collected on October 17, 1988. Only those with substantial abundance and percent composition were listed.

TAXA/STATION	1	2	3	4	5
Chironomus sp.	$4:(4.0 \%)$	$4:(2.4 \%)$	$0:(0 \%)$	$0:(0 \%)$	$2:(2.6 \%)$
Conchapelopia sp.	$18:(17.8 \%)$	$36:(21.6 \%)$	$12:(5.3 \%)$	$3:(2.8 \%)$	$4:(5.3 \%)$
Micropsectra sp.	$0:(0 \%)$	$1:(0.6 \%)$	$22:(9.6 \%)$	$17:(15.9 \%)$	$1:(1.3 \%)$
Microtendipes caelum	$11:(10.9 \%)$	$21:(12.6 \%)$	$43:(18.9 \%)$	$17:(15.9 \%)$	$5:(6.6 \%)$
Nanocladius sp. 1	$5:(5.0 \%)$	$0:(0 \%)$	$0:(0 \%)$	$0:(0 \%)$	$1:(1.3 \%)$
Polypedilum scalaenum	$19:(18.8 \%)$	$13:(7.8 \%)$	$12:(5.3 \%)$	$10:(9.3 \%)$	$8:(10.5 \%)$
Tanytarsus sp.	$2:(2.0 \%)$	$4:(2.4 \%)$	$9:(3.9 \%)$	$5:(4.7 \%)$	$11:(14.5 \%)$
Hemerodromia sp.	$5:(5.0 \%)$	$24:(14.4 \%)$	$2:(0.9 \%)$	$4:(3.7 \%)$	$7:(9.2 \%)$
Paraleptophlebia sp.	$5:(5.0 \%)$	$0:(0 \%)$	$7:(3.1 \%)$	$0:(0 \%)$	$1:(1.3 \%)$
Dero obtusa	$0:(0 \%)$	$0:(0 \%)$	$5:(2.2 \%)$	$9:(8.4 \%)$	$0:(0 \%)$
Nais communis	$1:(1.0 \%)$	$29:(17.4 \%)$	$4:(1.8 \%)$	$1:(0.9 \%)$	$0:(0 \%)$
Hyalella azteca	$0:(0 \%)$	$0:(0 \%)$	$59:(25.9 \%)$	$7:(6.5 \%)$	$0:(0 \%)$
Tanypodinae (early instar)	$2:(2.0 \%)$	$2:(1.2 \%)$	$7:(3.1 \%)$	$1:(0.9 \%)$	$0:(0 \%)$
Ephemerellidae	$0:(0 \%)$	$0:(0 \%)$	$2:(0.9 \%)$	$2:(1.9 \%)$	$6:(7.9 \%)$
Ablabesmyia annulata	$0:(0 \%)$	$0:(0 \%)$	$7:(3.1 \%)$	$0:(0 \%)$	$0:(0 \%)$
Corynoneura taris	$3:(3.0 \%)$	$0:(0 \%)$	$0:(0 \%)$	$0:(0 \%)$	$3:(3.9 \%)$
Paratanytarsus sp. 2	$3:(3.0 \%)$	$2:(1.2 \%)$	$2:(0.9 \%)$	$0:(0 \%)$	$2:(2.6 \%)$
Eurylophella bicolor	$1:(1.0 \%)$	$0:(0 \%)$	$2:(0.9 \%)$	$0:(0 \%)$	$2:(2.6 \%)$
Eurylophella funeralis	$1:(1.0 \%)$	$0:(0 \%)$	$0:(0 \%)$	$0:(0 \%)$	$0:(0 \%)$
Perlinella ephyreffumipennis	$1:(1.0 \%)$	$0:(0 \%)$	$0:(0 \%)$	$0:(0 \%)$	$0:(0 \%)$
Optioservus sp.	$2:(2.0 \%)$	$0:(0 \%)$	$3:(1.3 \%)$	$2:(1.9 \%)$	$3:(3.9 \%)$
Promoresia sp.	$3:(3.0 \%)$	$2:(1.2 \%)$	$0:(0 \%)$	$0:(0 \%)$	$1:(1.3 \%)$
	$86:(85.1 \%)$	$138:(82.6 \%)$	$200:(87.7 \%)$	$80:(74.8 \%)$	$63:(82.9 \%)$

Table 5.18 The Morisita similarity index values for collections of total benthic macroinvertebrates colonizing limestones-filled basket substrates at station 1.

| COLLECTION | $10 / 30 / 87 \mathrm{~N}$ | $10 / 30 / 87 \mathrm{~L}$ | $12 / 22 / 87 \mathrm{~B} 1$ | $12 / 22 / 87 \mathrm{~B} 2$ | $3 / 29 / 88 \mathrm{I}$ | $3 / 29 / 88 \mathrm{R}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 4 / 14 / 88$

Table 5.19 The Morisita similarity index values for collections of total benthic macroinvertebrates colonizing limestones-filled basket substrates at station 2.

| COLLECTION | $10 / 30 / 87 \mathrm{~N}$ | $10 / 30 / 87 \mathrm{~L}$ | $12 / 22 / 87 \mathrm{~B} 1$ | $12 / 22 / 87 \mathrm{~B} 2$ | $3 / 29 / 88 \mathrm{I}$ | $3 / 29 / 88 \mathrm{R}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 4 / 14 / 88$

Table 5.20 The Morisita similarity index values for collections of total benthic macroinvertebrates colonizing limestones-filled basket substrates at station 3.
\(\left.$$
\begin{array}{lllllll}\hline \text { COLLECTION } & 10 / 30 / 87 \mathrm{~N} & 10 / 30 / 87 \mathrm{~L} & 12 / 22 / 87 \mathrm{B1} 12 / 22 / 87 \mathrm{~B} 2 & 3 / 29 / 88 \mathrm{I} & 3 / 29 / 88 \mathrm{R} & 4 / 14 / 88 \\
\hline \begin{array}{l}\text { 10/30/87 } \\
\text { Stream-bed Rocks }\end{array} & & & & & & \\
\begin{array}{l}10 / 30 / 87 \\
\text { Limestones }\end{array} & 0.7171 & & & & & \\
\begin{array}{l}12 / 22 / 87 \\
\text { Replicate Basket 1 }\end{array} & 0.9283 & 0.7003 & & & & \\
\begin{array}{l}1222 / 87 \\
\text { Replicate Basket 2 }\end{array} & 0.8847 & 0.7186 & 0.9546 & & & \\
\begin{array}{l}\text { 3/29/88 } \\
\text { Stone not in Contact }\end{array} & 0.5270 & 0.5351 & 0.6466 & 0.6235 & & \\
\begin{array}{l}3 / 29 / 88 \\
\text { Standard Exposure }\end{array}
$$ \& 0.4570 \& 0.4069 \& 0.5929 \& 0.5786 \& 0.9804 \&

\begin{array}{l}4/14/88

Chlorination Resumed\end{array} \& 0.7565 \& 0.4200 \& 0.8594 \& 0.6887 \& 0.5996 \& 0.5795\end{array}\right]\)| 8/22/88 |
| :--- |
| Summer Collection |

Table 5.21 The Morisita similarity index values for collections of total benthic macroinvertebrates colonizing limestones-filled basket substrates at station 4.

COLLECTION	10/30/87N	10/30/87L	12/22/87B1	$112 / 22 / 87 \mathrm{~B} 2$	3/29/88I	3/29/88R	4/14/88
10/30/87							
Stream-bed Rocks							
10/30/87	0.8348						
Limestones							
12/22/87	0.1850	0.2284					
Replicate Basket 1							
12/22/87	0.3220	0.3533	1.0010				
Replicate Basket 2							
3/29/88	0.3759	0.7416	0.4756	0.5575			
Stone not in Contact							
3/29/88	0.4189	0.5545	0.7440	0.8498	0.8261		
Standard Exposure							
4/14/88	0.5598	0.2389	0.0880	0.1587	0.1310	0.2291	
Chlorination Resumed							
8/22/88	0.2009	0.2114	0.0826	0.1311	0.2600	0.1386	0.1949
Summer Collection							

Table 5.22 The Morisita similarity index values for collections of total benthic macroinvertebrates colonizing limestones-filled basket substrates at station 5.

| COLLECTION | $10 / 30 / 87 \mathrm{~N}$ | $10 / 30 / 87 \mathrm{~L}$ | $12 / 22 / 87 \mathrm{~B} 1$ | $12 / 22 / 87 \mathrm{~B} 2$ | $3 / 29 / 88 \mathrm{I}$ | $3 / 29 / 88 \mathrm{R}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 4 / 14 / 88$

Table 5.23 Morisita similarity index values of macroinvertebrate populations collected with comparable

10/30/87 Limestone vs. 12/22/87 Replicate Basket 1	0.7995	0.4566	0.7003	0.2284	0.962
10/30/87 Limestone vs. 12/22/87 Replicate Basket 2	0.5035	0.4733	0.7168	0.3533	0.784
12/22/87 Replicate Basket 1 vs. 3/29/88 Standard Exposure	0.1362	0.2104	0.5929	0.744	0.1529
12/22/87 Replicate Basket 2 vs. 3/29/88 Standard Exposure	0.2143	0.2382	0.5786	0.8498	0.3259
3/29/88 Standard Exposure vs. Summer Collection	0.0698	0.1067	0.1725	0.1386	0.1374
Average	0.3447	0.2970	0.5522	0.4628	0.4724
Standard Deviation	0.2713	0.1440	0.1978	0.2832	0.3384
S.DJAverage (\%)	78.7247	48.4888	35.8125	61.1802	71.6280

Table 5.24 Potential macroinvertebrate indicator species found at station 2, 60 meters downstream from the sewage outfall, in Lampson Brook. Estimates of sensitivity/tolerance with respective TRC concentrations and their seasonal abundance.

TRC (mg/)	2.957 ± 0.238 (Fall)	0.630 ± 0.297 (Summer)	Seasonal Occurrence	
Indicator Species	Estimated Tolerance ${ }^{1}$	Fall	Winter	Spring Summer

INSECTA

Diptera
Chironomus sp.
Conchapelopia sp.

+	$*$			$*$
+	$*$	$*$	$*$	$*$
+	$*$	$*$	$*$	$*$
+	$*$		$*$	$*$
+	$*$	$*$	$*$	$*$
+	$*$	$*$	$*$	$*$
+	$*$	$*$	$*$	$*$
+		$*$	$*$	$*$
+	$*$	$*$	$*$	$*$
+		$*$	$*$	$*$
+				$*$
+			$*$	$*$
+			$*$	$*$
+				$*$

Parakiefferiella sp.
Parametriocnemus lundbecki
Paratendipes sp.
Paratanytarsus sp. 2
Paratanytarsus sp. 3
Polypedilum fallax
Polypedilum laetum
Polypedilum illinoense
Polypedilum scalaenum
Psectrotanypus dyari
Psectrotanypus nr. dyari
Tribelos poss. jucundum
Tanytarsus sp.

- (?)

Zavrelimyia sp. 2
Ephemeroptera
Paraleptophlebia sp.
Serratella deficiens
Paracapnia opis
Eurylophella bicolor
Eurylophella funeralis
Stenonema modestum
Cheumatopsyche sp.
Pycnopsyche sp.
Nigronia serricornis

ANNELIDA

Oligochaeta

Tubificida
Nais communis
$1+=$ Tolerant and $-=$ Sensitive

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

A. Summary of Conclusions

1. Evaluation of Qualitative and Quantitative Methodology

1. The practice of censusing individual stones permits generation of confidence intervals and statistically significant observations with regard to density that provide close agreement when replicated.
2. Approximately 1018 organisms per m^{2} (or 167 organisms per stone) are required to obtain a sample with the precision of ≈ 0.20. The field collections indicate that only 9-10 out of 45 baskets reach that threshold.
3. Direct microscopic sorting with various magnifications yields much greater recovery than combination of sugar floating and the 1.7 x magnifier sorting.
4. When using individual stones as a sampling unit to calculate diversity values, an "asymptotic diversity" has be to attained in order to give a reliable diversity value for a given basket collection.
5. Shannon diversity and Brillouin diversity are sample size dependent (the number of organisms in a sample), with similar distribution, the larger the sample, the larger the values derived from them.
6. Brillouin's hierarchical diversity exhibits additive property, whereas Hurlbert's does not. Though not always in agreement, both provide additional information regarding a particular community.
7. Based on the Spearman rank correlation of field data, diversity can be classified into two major groups, one that is associated with interspecific encounter and the other based on information theory. At the two extreme limits, these two diversity values show a close agreement, however, when species representation is in the intermediate level, they show very limited correlation.
8. Shannon's redundancy and evenness as well as Brillouin's redundancy and evenness though derived from Shannon and Brillouin's diversity, are more correlated to Hurlbert-type Diversity with regard to the field data collected in this study.
9. Diversity indices have very limited implication in pollution studies in that they cannot demonstrate species replacement or succession. They are indications of species rarity and are best used as a supplement to other community parameters.
10. Spearman rank correlation indicates that most of the qualitative indices are highly correlated among each other for macroinvertebrates, midges, and family level census except for Mountford's Index. Jaccard1, Jaccard2, and Sørensen's index, if applied to nonparametric analysis, will always give an identical assessment. The actual values may be exaggerated or understated depending upon the scaling factor on the denominator or nominator. Kulczynski and Mountford's indices present some fundamental flaws in that their formulae, when implemented in biological collections, do not conform the basic principle of geometry.
11. Spearman rank correlation for quantitative indices shows a considerably larger variation than the qualitative ones. In some cases, particularly Sokal's euclidean distance, there is no correlation at all. This imposes the possibilities of serious misinterpretation when using these indices to define any laboratory or field results.
12. When the collections consist of samples with great differences in sample size, the dissimilarity measured by the Squared Euclidean Distance clearly corresponds to the size of the sample.
13. Apparently, it is unlikely to derive a formula to satisfy both upper and lower limits of similarity/dissimilarity. If similarity indices are able to distinguish upper limits, then they will not be able to reasonably detect lower limits. The same is true with dissimilarity indices.
14. EPT survey proved to be very effective method in assessing the effect of chlorinated sewage.

2. Interpretation of Field Results

1 Using total organisms collected, species identified, and EPT values to provide an assessment of impact indicates that the magnitude of negative impact is, in descending order, station 4 , station 3 , station 2 , and station 5 .
2. Assessment of the response to non-chlorinated sewage indicates no negative impacts with regard to density. The most dramatic impact is a $5-8$ fold fertilization effect at stations 2 or 3 that decreases to a two fold magnification at station 5 .
3. Exposure to a chlorinated effluent elicits the same general response except that the magnification effect is about half that produced by non-chlorinated sewage
and this magnification does not persist to station 5. It would seem that chlorination exerts a subtle negative impact to 3 km . downstream from the outfall though TRC was not measured below station 3 .
4. Hurlbert's diversity for macroinvertebrate and midge at downstream stations shows a different level of depression during chlorinated and non-chlorinated periods. Hurlbert's diversity for macroinvertebrate families indicates that station 2 is the most impacted.
5. The level of impact with regard to each station is a matter of subjective definition as to which are the most important parameters in describing community structure and community structure changes. Different aspects of change in relation to water quality need to be further tested before imposing any judgement on the extent of impact at each station.

6 The suspected causes of such disruption in aquatic macroinvertebrate community may be attributed to either the immediate impact of TRC in the water column at station 2 or the chronic effects of stable chlorinated byproducts associated with the sediments at stations 3,4 , and 5 .
7. The high correlation between the diversities calculated for macroinvertebrates and midges suggests that chironomids alone may have provided adequate representation for the interpretaion of this pollution study. Family level diversity values were poorly correlated to either macroinvertebrates or midges, and therefore, would not be accurate predictors of the entire macroinvertebrate communities.
8. The Morisita similarity index values indicate that temporal variations are much greater than replicated or not truly replicated variations and the greatest species
variations occurred between spring and summer collections. The values also show that temporal variations and the fluctuation in species composition were the most gradual at station 3 and the least at stations 1 and 5 .
9. Seasonal species occurrence and succession are evident throughout all the selected stations, including the control. Temporal and spatial variations and the presence of sewage, and chlorinated sewage all contributed to some degree of community structure changes.
10. The aquatic insect trophic relations were very similar for the entire study sites with predominant collectors, predators, scrapers, and filter feeders. The majority of benthos found at station 1 were collectors, predators, filter feeders, and detritivores. Increasing number of collectors and scrapers were found downstream four stations below the outfall, indicating the increase availability of fine particulate organic matter and attached algae and associated material.
11. Maximum degradation of stream quality occurred during the summer with regard to D.O. and acidity. Dissolved Oxygen values reached as low as 1.42 ± 0.47 and 1.13 ± 0.50 and acidity reached the maximum high of 6.96 ± 2.58 and 13.91 ± 2.21 at station 3 and 4 , respectively. However, the water quality did not suppress the secondary production of the stream biota.
12. Generally, mayflies, stoneflies, and caddisflies seem more sensitive to chlorinated sewage than non-chlorinated sewage.
13. Oligochaetes are resistant to chlorinated sewage.
14. Midges exhibit a wide spectrum of tolerance to both chlorinated and non-chlorinated sewage. Their HBI does not always agree with the extent of the pollution.
15. Tabulation of community members with regard to their abundance is a more effective means of describing the whole spectrum of the community structure then simply the citation of numbers derived from a statistical summary.

B. Recommendations

1. When using stones as a sampling unit (whether artificial or natural samples), the organisms can be brushed off the stone surface and sorted directly under the microscope at various magnifications. This sorting process provides good recovery of the macroinvertebrates present.
2. A year prior to the initiation of the experiment, a general census of abundance of stream biota is crucial in determining the number of baskets necessary to achieve the desired precision for the survey purpose.
3. Preferably, two reference stations with comparable environmental conditions should be selected to measure the normal structure variation of the macroinvertebrate community in an unstressed environment.
4. Depending on the objectives of the survey, at least three sites should be included - one immediately after the discharge, a second at the end, and a third in the middle.
5. All the sites should be physically similar with regard to depth, insolation, current, and stream substratum.
6. Baskets should be suspended at least two inches above river bed to avoid shifting sediment.
7. Substrates should be left in the stream for a period of 5.5 to 6 weeks to ensure that a large number of macroinvertebrates are colonized.
8. Two collections in each season are recommended to more clearly identify temporal variations.
9. A two-year survey at a minimum should be implemented to distinguish the effect of chlorinated sewage from non-chlorinated sewage on the macroinvertebrate community structure.
10. Microscopic sorting is recommended whenever possible as opposed to sugar flotation and 1.7 x magnifier sort.
11. The use of individual stones as sampling units provides density estimates with statistical significance. More stones (1-26) are required to obtain reliable diversity values. To construct confidence intervals for the diversity, the stones can be pooled or a "bootstrap sample" can be generated.
12. If funding, labor, and expertise are available, the assessment of the whole macroinvertebrate community is the most accurate means of describing a given ecosystem. When such an opportunity is not available, a quick survey of EPT and macroinvertebrate families provides indication of some structural changes in the macroinvertebrate community.
13. Brillouin's diversity is not appropriate in collections with considerable variations in sample size, Hurlbert's diversity is recommended in such instance.
14. Hurlbert's diversity should be used in conjunction with other community parameters such as species richness, density, EPT, and hierarchical diversity to describe a more defined community structure.
15. Sokal's Euclidean distance is also strongly affected by the sample size. This index should be used only if one considers sample size as a very important community characteristic.

APPENDICES

APPENDIX A

BENTHIC MACROINVERTEBRATES DATA

1. Benthic macroinvertebrate species associated with chlorinated or nonchlorinated sewage, collected by basket-type artificial substrates from Lampson Brook.
Benthic macroinvertebrate species associated with chlorinated or non-chlorinated sewage, collected by basket-type artificial substrates from Lampson Brook. Indicated as +++ , abundant (>9); ++, common (3-9); +, rare (<3); or -, absent. October 17, 1988 collections not included.

$\begin{array}{lllll}\text { NON-CHLORINATED } & & & \\ \text { NEWAGE } \\ 1 & 2 & 3 & 4 & 5\end{array}$

PHYLUM ARTHROPODA
Class Insecta
Order Diptera
Family Chironomidae
subfamily Tanypodinae
Genus Ablabesmyia Johannsen, 1905
Ablabesmyia sp.
Ablabesmyia annulata Say, 1823 Ablabesmyia mallochi Walley, 1925 Ablabesmyia tarella Roback, 1971 Ablabesmyia parajanta Roback, 1971
Ablabesmyia philosphagnos Beck and Beck, 1926 Genus Conchapelopia Fittkau, 1913 Conchapelopia sp.
Genus Hudsonimyia Roback, 1979
Hudsonimyia sp.
Genus Labrundinia Fittkau, 1962 Labrundinia pilosella Loew, 1866
Labrundinia becki
Genus Larsia Fittkau, 1962
Larsia sp.
Genus Meropelopia Roback, 1970
Meropelopia flavifrons Johannsen, 1905

GDVMES GGLVNIXOTHO-NON
TAXA
Genus Natarsia Fittkau, 1962
Gersia sp. Paramerina sp.
Paramerina sp.
Genus Procladius Skuse, 1889 Procladius sp.
Genus Psectrotanypus Kieffer, 1909 Psectrotanypus dyari Coquillett, 1902
Psectrotanypus nr. dyari
Genus Rheopelopia Fittkau, 1962 Genus Rheopelopia Fittkau, 1962 Genus Thienemanniella Fittkau, 1957 Thienemanniella prob. xena Roback, 1957 Thienemanniella sp. 1
Genus Trissopelopia Kieffer, 1923 Trissopelopia ogemawi Roback, 1971 Genus Zavrelimyia Fittkau, 1962 Zavrelimyia sp. 1 Zavrelimyia sp. 2 Zavrelimyia sp. 3
subfamily Orthocladiinae
Genus Brillia Kieffer, 1913 Brillia flavifrons Johannsen, 1905 Brillia parva Johannsen, 1934 Genus Corynoneura Winnertz, 1846 Corynoneura taris Roback, 1957

Genus Cricotopus Wulp, 1814 Cricotopus bicinctus group Cricotopus sylvestris group Cricotopus tremulus group Genus Diplocladius Kieffer, 1908 Diplocladius sp. Giplocladius sp.
Genus Eukiefferiella Thienemann, 1926 Eukiefferiella bavarica group Eukiefferiella brevicalar group Eukiefferiella claripennis group Eukiefferiella pseudomotana group Genus Heterotrissocladius Spărck, 1923 Heterotrissocladius marcidus group poss. marcidus Genus Hydrobaenus Sæther, 1977
Hydrobaenus pilipes Malloch, 1915
Genus Nanocladius Kieffer, 1913
Nanocladius sp. 1
Nanocladius sp. 2 Genus Hydrobaenus Sæther, 1977
Hydrobaenus pilipes Malloch, 1915
Genus Nanocladius Kieffer, 1913
Nanocladius sp. 1
Nanocladius sp. 2 Genus Hydrobaenus Sæther, 1977
Hydrobaenus pilipes Malloch, 1915
Genus Nanocladius Kieffer, 1913
Nanocladius sp. 1
Nanocladius sp. 2 Genus Hydrobaenus Sæther, 1977
Hydrobaenus pilipes Malloch, 1915
Genus Nanocladius Kieffer, 1913
Nanocladius sp. 1
Nanocladius sp. 2 Genus Hydrobaenus Sæther, 1977
Hydrobaenus pilipes Malloch, 1915
Genus Nanocladius Kieffer, 1913
Nanocladius sp. 1
Nanocladius sp. 2
Nanocladius spiniplenus saether, 1977 Genus Orthocladius Wulp, 1874 Orthocladius sp.
Orthocladius carlatus group Nanocladius spiniplenus saether, 1977 Orthocladius obumbratus group Orthocladius oliveri Soponis, 1977 Genus Parakiefferiella Thienemann, 1936 Genus Parametriocnemus Goetghebuer, 1932 Parametriocnemus lundbecki Johannsen, 1905

$\begin{array}{ccccc}\text { NON-CHLORINATED SEWAGE } \\ 1 & 2 & 3 & 4 & 5\end{array}$
TAXA
Thienemann and Harnisch, 1932 Rheocricotopus fuscipes group
Genus Tvetenia Kieffer, 1922
Tvetenia bavarica group
subfamily Chironominae
1803
Genus Cryptochironomus Kieffer, 1918 Cryptochironomus fulvus Johannsen, 1905
Genus Dicrotendipes Kieffer, 1913 Dicrotendipes neomodestus Malloch, 1915 Endochironomus niris Kieffer, 19181905 Endochironomus nigricans Johannsen, 1905 Genus Glyptotendipes Kieffer, 1913 Glyptotendipes lobiferus Say, 1823 Genus Kiefferulus Goetghebuer, 1922 Kiefferulus sp.
Genus Microtendipes Kieffer, 1915 Microtendipes caelum Townes, 1945 Microtendipes rydalensis group
$\begin{array}{ccc}\varsigma & \downarrow & \text { \& l } \\ \text { ヨDVMES GGLVNI女OTHD }\end{array}$

STATION
TAXA
Genus Paratanytarsus Bause, 1913 Paratanytarsus sp. 1
Paratanytarsus sp. 2
Genus Rheotanytarsus Bause, 1913 Rheotanytarsus distinctissimus group Rheotanytarsus exiguus group Genus Tanytarsus Wulp, 1874 Tanytarsus sp.
Genus Diamesa Waltl, 1837
Diamesa sp.
Genus Sympotthastia Pagast, 1947 Sympotthastia sp. Family Simuliidae
Simulium therosm 1911 Simulium vittatum complex Say, 1823 Family Tipulidae
Genus Hexatoma Latreille, 1809
Hexatoma sp.
Genus Tipula Linnaeus, 1758 Tipula $s p$.

```
\(\begin{array}{lcccc}\text { NON-CHLORINATED } & \text { SEWAGE } \\ 1 & 2 & 3 & 4 & 5\end{array}\)
```

STATION
TAXA
Family Ceratopogonidae
Family Chaoboridae
Genus Chaoborus Lichtenstein, 1800
Chaoborus sp.
Family Empididae
Genus Hemerodromia Meigen, 1803
Hemerodromia sp.
Family Psychodidae
Genus Telmatoscopas Eaton, 1904
Telmatoscopas sp.
Order Ephemeroptera
Family Baetidae
Genus Baetis Leach, 1815
Baetis brunneicolor McDunnough, 1925
Family Ephemerellidae
Genus Ephemerella Walsh, 1862
Ephemerella excrucians Walsh, 1862
Ephemerella invaria Walker, 1853
Genus Eurylophella Tiensuu, 1935
Eurylophella sp.
Eurylophella bicolor Clemens, 1913
Eurylophella funeralis McDunnough, 1925
Eurylophella temporalis McDunnough, 1924
Genus Serratella Edmunds, 1959
Serratella deficiens Morgan, 1911
Family Oligoneuriidae
Genus Isonychia Eaton, 1871
Isonychia sp.

TAXA
Family Leptophlebiidae
Genus Leptophlebia Westwood, 1840
Leptophlebia sp.
Genus Paraleptophlebia Lestage, 1917
Paraleptophlebia sp.
Family Heptageniidae
Genus Stenonema Traver, 1933
Stenonema modestum Banks, 1910
Order Plecoptera
Agnetina capitata
Family Perlidae
Genus Eccoptura Kalpálek, 1921
Eccoptura xanathenes Newman, 1828
Genus Perlinella Banks, 1900
Perlinella ephyre/fumipennis
(Newman, 1839/Walsh, 1862)
Family Perlodidae
Genus Isoperla Banks, 1906
Isoperla lata Banks, 1906
Isoperla marlynia Needham and Claassen, 1925
Family Nemouridae
Genus Ostrocera Ricker, 1952
Ostrocera sp.
Genus Podmosta Ricker, 1952
Podmosta sp.
Family Capniidae
Genus Paracapnia Hanson, 1946
Paracapnia opis Newport, 1839

$\begin{array}{llllll}\text { NON-CHLORINATED } & & \\ 1 & 2 & 3 & 4 & 5\end{array}$
STATION
TAXA Family Taeniopterygidae
Genus Taeniopteryx Pictet, 1841
Taeniopteryx sp.
Taeniopteryx maura Pictet, 1841
Taeniopteryx parvula Banks, 1918
Family Peltoperlidae
Genus Tallaperla Stark and Stewart, 1981
Tallaperla maria Needham and Smith, 1916
Order Tricoptera
Family Limnephilidae
Family Limnephilidae
Genus Anobolia Stephens, 1837
Anobolia sp.
Genus Hydatophylax Wallengren, 1891 Hydatophylax sp.
Genus Neophylax MacLachlan, 1871
Neophylax sp.
Genus Platycentropus Ulmer, 1905
Platycentropus sp.
Genus Pycnopsyche Banks, 1905 Pycnopsyche sp.
Family Polycentropodidae Genus Cernotina Ross, 1938 Cernotina sp.
Family Hydorpsychidae
Genus Cheumatopsyche Wallengren, 1891
Cheumatopsyche sp.

Coenagrion sp.

STATION
TAXA Genus Hataerina Hagen, 1854
Hataerina sp.
Order Coleoptera
Family Ptilodactylidae
Genus Anchytarsus Guérin-Méneville, 1843
Genus Anchytarsus Guérin-Méneville, 1843
Anchytarsus bicolor Melsheimer, 1846 Family Dytiscidae
Genus Dytiscus Linnaeus, 1758
Dytiscus sp.
Genus Hydroporus Clairville, 1806 Hydroporus sp.
Genus Oredytes Seidlitz, 1887
Oreodytes sp.
Family Psephenidae
Genus Ectopria LeConte, 1853
Ectopria sp.
Ectopria nervosa Melsheimer, 1844 Genus Psephenus Haldeman, 1853
Psephenus sp.
Family Elmidae
Genus Optioservus Sanderson, 1954
Optioservus sp.
Genus Promoresia Sanderson, 1954 Promoresia sp.
Genus Stenelmis Dufour, 1835 Stenelmis sp.
Family Stayphilinidae

STATION
TAXA
Genus Stenus
stenus $s p$.
Order Megaloptera
Family Corydalidae
Genus Chauliodes Latreille, 1796 Chauliodes pectinicornis Linnaeus, 1763
Genus Nigronia Banks, 1908
Nigronia serricornis Say, 1824
Class Crustacea
Order Amphipoda
Family Hyalellidae
Genus Hyalella Smith, 1873
Hyalella azteca Saussure, 1857
Genus Asellus Geoffrey st. Hillaire, 1764
Asellus communis Say, 1818
Fanus Gyraulus 'Agassiz'Charpentier, 1837 Gyraulus sp.
$\begin{array}{lllll}\text { CHLORINATED } & \\ \text { CEWAGE } \\ 1 & 2 & 3 & 4 & 5\end{array}$

TAXA
Family Physidae
Genus Physa Draparnaud, 1801 Physa sp.
Class Bivalvia
Order Veneroidea
Family Sphaeriidae
Genus Musculium Link, 1807
Musculium sp.
Genus Pisidium Pfieffer, 1821
Pisidium sp.

PHYLUM ANNELIDA

Order Pharyngobdellida
Family Erpobdellidae
Genus Dina R. Blanchard, 1892
Dina sp.
Genus Mooreobdella Pawlowski, 1955
Mooreobdella melanostoma Sawyer and Shelley, 1976 Order Phynchobdellida
Family Glossiphoniidae
Genus Helobdella R. Blanchard, 1896 Helobdella stagnalis Linnaeus, 1758 Class Oligochaeta Order Tubificida IWCC

$\begin{array}{llllll}\text { NON-CHLORINATED SEWAGE } \\ 1 & 2 & 3 & 4 & 5\end{array}$

STATION
TAXA
Family Tubificidae
Genus Aulodrilus Bretscher, 1899
Aulodrilus limnosius
Family Naididae
Genus Dero Oken, 1815
Dero obtusa d'Udekem, 1855
Genus Homochaeta Bretscher, 1896
Homochaeta sp.
Genus Nais Müller, 1773
Nais communis Piguet, 1906
Genus Pristina Ehrenberg, 1928
Pristina longiseta longiseta Ehrenberg, 1928
Pristina longisoma Harman, 1977
Pristina sima Marcus, 1944
Genus Pristinella Brinkhurst, 1984
Pristinella jenkinae Stephenson, 1931
Pristinella osborni Walton, 1906
Genus Slavina Vejdovsky, 1883
Slavina appendiculata d'Udekem, 1855
Order Limbriculida
Family Lumbricuridae
PHYLUM NEMATODA
Copepod
Pupa of unidentified insects
2. Data recorded with Individual Stone as a Sampling Unit
Conchapelopia sp.
Conchapelopia sp.
Corynoneura taris
Microtendipes rydalensis group Paramerina sp.
Parametriocnemus lundbecki
Polypedilum aviceps Polypedilum scalaenum
Rheopelopia acra/perda
Rheotanytarsus exiguus group
Tanytarsus sp.
Paraleptophlebia sp. Serratella deficiens Stenonema modestum
Paracapnia opis Tallaperla maria
Cernotina sp. Hataerina sp.
Nigronia serricornis
Nigronia serricornis
Total Organisms
Surface Area

	0	0		0								0		0	0			7494
2	0	0	0	0	0	0		00		0				0	0		4	7772
	0	0	0	0	0	0	0	00	0	0	0	0	0	0	00	0		69
0	0	0	0	0	0	0		00	0	0	0	0	0	0	00		0	6408
0		0	0	0				00		0			0	0	0		3	7872
	0	0	0	0	0	0		0	0	0	0	0	1	0	2	0	3	9353
	0	0	0	0						0				0	00		0	77
	0	0	0	0	0	0		00	0	0	1	0	0	0	0			773
0	0	0	0	0								0		0	0			8390
	0	0	0	0	0					0		0	0	0	00	0	0	6242
	1	0	0	0								0			0			7239
	0	0	0	0	0	0						0	0	0	00			7028
	0	0	1	0											0			8686
	0	0	0	0	0	0		0	0	0		1	0	0	00	0		925
	0	1	0	0	0	0		0	0	0		0	2	0	0			8278
	0	0	0	0	0	00		0	0	0	0	0	0	0	0			67
	0	0	0	0		0	0	0		0	0	1	0	0	0			7434
	0	0	0	1	0	00		0		0		0	0	0	0			9291
	0	0	0	0		0		0		0			0	0	0			6398
	0	0	0	0		0	0			0		0		0	0			
	0	0	0	0	0	0	0	0	0	0		0		0	0			6079
	1	0	0	0	0	00	0	0	10	0	0	0	0	0	00			799
	0	0	0	0	10	0		0		0		0	0	0	00			8852
	0	0	0	0	0	00	0	0	0	0	0	0	0	0	20		2	696
	0	0	0	0	0	0	0	0		0		0		0	0			7053
	0	0	0	0	0	01	10	0	0	0	0	0	0	0	00		2	806
	0	0	0	0	0	00	0	0		0		0	0	0	00			807
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	00		2	727
		0	0	0	0	0	0	0	1	0		0			00			9656
			0									0	0		0			889

Total
Brillia flavifrons
Conchapelopia sp.
Corynoneura taris
Hydrobaenus pilipes
Micropsectra sp.
Microtendipes caelum
Parakiefferiella sp.
Tanytarsus sp.
Telmatoscopas sp.
Paraleptophlebia sp.
Agnetina capitata
Paracapnia opis
Hydatophylax sp.
Ectopria sp.
Total Organisms

Surface Area
$0 \begin{array}{llllllllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 4642\end{array}$

$0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 5737\end{array}$

$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 4690\end{array}$
00000000000000000000006978

000000000000000000000057

$0 \begin{array}{lllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 7177\end{array}$
00000000000000000000006133
$0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 5231\end{array}$
$0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4560\end{array}$
$0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 5366\end{array}$

$0 \begin{array}{lllllllllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 4848\end{array}$
0110000000000000000014883
0000000000000000000004692
$0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 2 & 4674\end{array}$
000000001000000200034719
00000000000000000000005476
00000000000000000000005215
00000000000000000000005830
00000000000000000000005192
$0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 6000\end{array}$
00000000000000000000005179

$\begin{array}{llllllllllllllll}1 & 4 & 1 & 1 & 1 & 2 & 3 & 1 & 1 & 1 & 1 & 5 & 2 & 1 & 25 & 161532\end{array}$ Total

Chironomus sp.
Conchapelopia sp.
Corynoneura taris
Cricotopus sylvestris group
Dicrotendipes neomodestus
Diplocladius sp.
Endochironomus nigricans
Glyptotendipes lobiferus
Hudsonimyia sp.
Hydrobaenus pilipes
Larsia sp.
Meropelopia flavifrons
Micropsectra sp.
Parametriocnemus lundbecki
Paraphaenocladius sp. 2
Polypedilum illinoense
Polypedilum scalaenum
Tanytarsus sp.
Trissopelopia ogemawi
Hemerodromia sp.
Hydatophylax sp.
Anchytarsus bicolor
Hyalella azteca
Total Organisms
Surface Area

	3		0		0														0					4810
	0	0	0	0		0			0							0			0					
	2	0	0	0	0	0	0	0	0	0		0				0			0	0		2		4543
	2	0	0	0	0	0	0	0	0	0				0		0			0					58
	0	0	0	0	0	0	0	0	0	0		1		0	0	1	0		0	0	0	3		6526
	0	0	0	0	0	0	0	0	0	0				0		0	0	0	0					598
	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0	0	1		5909
	1	0	0	0	0	0	0	0	0	0						0			0					631
	0	0	0	0	0	0		0	0	0						0	0	0	0	0				4904
	0	0	0	0	0	0	0		0	0								0	0					5602
	1	0	0	0	1	0	0	0	0	0				0		0	0	0	0	0				660
	3	0	0	0	0	0	0	0	0	0		2						0						5370
	0	0	0	0	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0				6006
	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0				5743
	0	0	1	0	1	0	0	0	0	0			0	0	0	0	1	0	0	0				4914
	0	0	0	0	0	0	0	0	0	0								0						5503
	0	0	0	0	0	0	0	0	0	0		0	0		0	0	0	0	0	0	0			5018
	0	0	0	0	0	0	0	0	0	0		0		0		0	0	0	0	0				6039
	0	0	1	0	0	0	0	0	0	0			0	0	0	0	0	0	0					6263
	0	0	1	0	0	0	0	0	0	0		1		0	0	0	0	0	0	1				63
	0	0	0	0	0	2	0	0	0	0	0		0	0				0	0					511
		0	0	0	0	0	0	0		0				0		0	0	0	0	0				9169
	0	0	0	0	1	0	0	0	0	0	0		0	0	0	0		0	0		0			5399
	0	0	0	0	0	0	0	0	0	0	0		0	0		0		0	0					6178
	0	0	0	0	1	1	0	0		0		0			0	0	0	1	0	0				7797
		0	0		0		0	0	0	0	0		0					0	0					5067
	0	0	0	0	1	0	1	0	0	0	0		0	0	1	0	0	0	0					6330
			0			0				0		0			0	0	0	0		0	0	3		518
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0					671
		0	0	0		0				0			0			0			0					09

[^5]Conchapelopia sp.
Corynoneura taris
Cricotopus bicinctus group
Diplocladius sp.
Heterotrissocladius marcidus group
Hydrobaenus pilipes
Meropelopia flavifrons
Micropsectra sp.
Microtendipes caelum
Microtendipes rydalensis group
Nanocladius sp. 1
Nanocladius sp. 2
Paramerina sp.
Parametriocnemus lundbecki
Paratanytarsus sp. 2
Paratanytarsus sp. 3
Polypedilum illinoense
Polypedilum scalaenum
Rheotanytarsus exiguus group
Tanypodinae (early instar)
Cheumatopsyche sp.
Hydroporus sp.
Hyalella azteca
Total Organisms
Surface Area

$\begin{array}{llllllllllllllllllllllllll}35 & 1 & 1 & 13 & 1 & 5 & 5 & 6 & 1 & 1 & 5 & 1 & 1 & 1 & 9 & 2 & 1 & 1 & 20 & 1 & 1 & 2 & 16 & 130 & 244379 & \text { Total }\end{array}$

0	4	0	0	0	0	0	3	0	0	3	0	1	0	0	0	0	0	0	11	8083
0	1	0	0	0	0	0	2	0	0	1	0	0	0	0	0	0	0	0	4	4141
2	1	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	0	6	6425
0	0	0	0	0	1	0	1	0	0	2	0	0	0	0	0	2	0	1	7	8075
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	2	5523
0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2	5749
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7888
0	2	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	4	4999
0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	4	5098
1	0	0	0	0	0	0	2	0	0	4	0	0	0	0	0	0	0	0	7	6201
3	0	0	1	0	0	1	4	0	0	0	0	0	0	0	0	1	0	0	10	6684
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5892
0	0	0	1	1	0	0	3	0	0	3	0	1	0	0	0	3	0	0	12	5532
1	1	0	0	0	0	0	3	0	0	0	0	0	0	1	0	1	0	0	7	5132
2	1	0	1	0	1	0	1	0	0	4	0	0	0	0	0	0	1	0	11	5612
1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	4	5612
1	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	4	4819
0	1	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	5	5946
1	0	0	1	0	0	0	2	0	0	4	0	0	0	0	0	0	0	0	8	6991
0	3	0	2	0	0	0	5	0	0	1	0	0	0	0	0	4	0	0	15	5501
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	5403
2	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	4	7440
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6477
0	1	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	4	8444
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	6230
1	5	0	0	0	0	0	3	0	0	4	0	0	0	0	0	0	0	0	13	5575
0	1	0	1	0	1	0	1	0	0	3	0	0	0	0	0	1	0	0	8	4827
0	1	0	0	0	0	0	0	1	0	3	0	0	0	0	0	0	0	0	5	5219
0	3	0	0	0	0	0	1	0	0	1	0	0	0	0	0	3	0	0	8	5326
1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	3	5567
17	2	2		1	3	1	8	2	2	4	1	2	1	1	16	1	1	183		

$\begin{array}{lllllllllllllllllll}17 & 29 & 2 & 9 & 1 & 3 & 1 & 38 & 2 & 2 & 45 & 1 & 2 & 1 & 1 & 1 & 16 & 1 & 1 \\ 173 & 180411 & \text { Total }\end{array}$

1	0	0	0	0	1	1	0	0	1	0	0	0	0	0	3	7	8655
0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	6263
1	0	0	0	0	0	1	0	0	1	1	1	0	0	0	1	6	10017
0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	1	3	9556
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7022
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	2	7047
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	7246
0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	3	6504
1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	6518
1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	1	4	7747
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	9111
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3	9474
0	0	0	1	0	0	2	0	0	0	0	0	0	0	0	2	5	9045
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8288
0	0	0	0	0	0	0	1	0	1	1	0	0	2	0	5	10	8541
0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	2	4	7575
2	0	0	0	0	0	0	0	0	1	2	0	0	0	0	1	6	7036
0	0	0	0	0	0	0	0	0	2	3	0	0	0	0	3	8	7838
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8531
1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	7337
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	3	5	7061
0	0	1	2	1	0	0	0	0	4	2	0	0	0	0	0	10	8806
1	0	0	0	0	0	0	0	1	1	2	0	0	0	0	0	5	7009
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	10711
1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	3	8280
0	0	0	1	2	0	0	0	0	0	4	1	0	0	0	0	8	9739
2	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	4	9654
0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	2	6763
0	0	0	0	1	0	0	0	0	0	2	0	0	0	0	0	3	6796
0	0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	3	5894
	1	1	1	4	2	5	1	1	1	3	2		2	18	1	2	

$\begin{array}{llllllllllllllllll}12 & 1 & 1 & 4 & 4 & 2 & 5 & 1 & 1 & 15 & 35 & 2 & 1 & 2 & 1 & 28 & 115 & 240064\end{array}$ Total

0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	2	426
0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	3	456
0	0	1	0	0	0	0	0	1	1	0	2	0	1	0	0	6	5797
0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	3	5152
0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3	4330
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	5797
0	0	0	0	0	0	0	0	2	0	0	0	0	0	1	0	3	4841
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	5592	

$0 \begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 5592\end{array}$
$0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 006425$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$

0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1

$\begin{array}{lllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 6 & 6877\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
$\begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 5 & 5830\end{array}$
$\begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 2 \\ 5760\end{array}$
$\begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 7090\end{array}$
$0 \begin{array}{llllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 5256\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 14452$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
$0 \begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4779\end{array}$
$1 \begin{array}{llllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 5134\end{array}$
$\begin{array}{lllllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 3\end{array} 4873$

$\begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 3 \\ 5 & 521\end{array}$
$0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 066269$
$\begin{array}{lllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 1 & 0 & 6 \\ 0 & 6288\end{array}$
$\begin{array}{llllllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4642\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\end{array} \quad 37747$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6754\end{array}$
$\begin{array}{lllllllllllllllll}0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4\end{array} 4495$
$\begin{array}{llllllllllllllllll}1 & 1 & 4 & 1 & 6 & 1 & 1 & 3 & 12 & 1 & 1 & 12 & 1 & 1 & 4 & 2 & 52 & 162710\end{array}$ Total

0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7598
1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	8902
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7718
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7840
0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	2	0	0	6	8110
0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	3	8589
0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	3	8574
0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3	7743
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	8249
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8734
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	8151
0	10	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	12	8160
0	11	0	1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	14	9092
0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	8238
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7358
0	4	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	5	10222
0	3	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	4	8294
0	4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	5	9042
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7702
0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	9144
0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	3	9299
0	6	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	7	7559
0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	3	7461
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	9090
0	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	9416
0	2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	3	9090
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8769
0	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	3	9517
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7119
0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	8251
2	60	3	1	1	1	1	1	2	1	1	2	1	1	10	4	1	1	94	253031

0000001000000000116665
000000000100000015545
000000000000000005552

0220000000000000026887
$0 \begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4674\end{array}$

$0 \begin{array}{lllllllllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 3 & 8182\end{array}$
$0 \begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 9285\end{array}$
010000000000000014841
$0 \begin{array}{llllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 6172\end{array}$
$0 \begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7706\end{array}$
$\begin{array}{lllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 4771\end{array}$
$0 \begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5880\end{array}$

07110000000000085909
011000000000000016873

00000000000000000681
00000000000000004478
000000000000000066029
03000000000000034827
$\begin{array}{lllllllllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 7816\end{array}$
$0 \begin{array}{lllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6242\end{array}$
000000010000000014441
000000000000000005664
$\begin{array}{lllllllllllll}1 & 20 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 32 & 181669\end{array}$ Total
Conchapelopia $s p$.

Brillia flavifrons
Brillia parva
Conchapelopia sp.
Diplocladius sp.
Parametriocns. lundbecki Parametriocnemus lundbecki
Paraphaenocladius $s p .1$ Rheopelopia acra/perda
Rheotanytarsus exiguus group Baetis brunneicolor Stenonema modestum Eurylophella funeralis
Leptophlebia sp.
Paraleptophlebia sp.
Serratella deficiens
Isoperla marlynia
Paracapnia opis
Taeniopteryx maura
Hydatophylax sp.
Boyeria vinosa
Nigronia serricornis
Asellus communis
Total Organisms

$\begin{array}{llllllllllllllllllllllll}1 & 1 & 2 & 8 & 1 & 16 & 2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 3 & 5 & 12 & 2 & 1 & 1 & 1 & 1 & 66 & 168923\end{array}$ Total
Brillia flavifrons
Chaoborus sp.
Conchapelopia sp.
Conchapelopia sp.
Cricotopus sylvestris group
Cricotopus tremulus group
Diplocladius sp.
Meropelopia flavifrons
Micropsectra sp.
Parametriocnemus lundbecki
Paraphaenocladius sp. 1
Polypedilum aviceps
Polypedilum laetum
Rheopelopia acralperda
Rheotanytarsus distinctissimus group
Tanytarsus sp.
Trissopelopia ogemawi
Baetis brunneicolor
Eurylophella sp.
Paraleptophlebia sp. Stenonema modestum
Paracapnia opis
Taeniopteryx maura Calopteryx maculata Asellus communis

$\begin{array}{llllllllllllllllllllllll}1 & 1 & 10 & 1 & 6 & 152 & 3 & 56 & 9 & 3 & 1 & 1 & 1 & 1 & 5 & 2 & 1 & 1 & 1 & 1 & 3 & 3 & 5 & 1 \\ 2\end{array}$

Total
000000012000020000000100000 002000100000200000000000
 00300004000001100000000000 $\begin{array}{lllllllllllllllllll}0 & 0 & 1 & 0 & 1 & 9 & 1 & 0 & 0 & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array} 0$ 0100000400000000000000000
 $\begin{array}{llllllllllllllllll}0 & 0 & 1 & 0 & 0 & 10 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{llllllllllllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{llllllllllllllllll}0 & 0 & 1 & 0 & 0 & 9 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{llllllllllllllllll}0 & 0 & 1 & 0 & 0 & 14 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 00$
 $0000000 ~ 500003000000000000$ $\begin{array}{llllllllllllllllll}0 & 0 & 1 & 0 & 0 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 00$ $\begin{array}{llllllllllllllllll}0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 00$
 0000000 0000000700002000000000000 $\begin{array}{llllllllllllllllll}0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{lllllllllllllllllll}0 & 0 & 0 & 1 & 0 & 6 & 0 & 1 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array} 1$
 00000003000031000000000010 000000080000111110000000000
 00300032000021100000000100 $0 \begin{array}{llllllllllllllllll}0 & 0 & 1 & 0 & 1 & 3 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array} 0$ 0000011600002110000002100 $0 \begin{array}{lllllllllllllllllll}0 & 0 & 1 & 0 & 14 & 0 & 0 & 0 & 10 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0\end{array}$ 10000001100003000000000000 000000040000000000000000 1118231701315015311124611
Baetis brunneicolor
Leptophlebia sp.
Paraleptophlebia sp.
Stenonema modestum
Isoperla marlynia
Paracapnia opis
Taeniopteryx maura
Taeniopteryx parvula
Cheumatopsyche sp.
Hydatophylax sp.
Pycnopsyche sp.
Calopteryx maculata
Physa sp.
Asellus communis
Total Organisms

Surface Area

0	0	2	0	1	0	0	0	0	0	0	0	1	0	19	5327
0	0	0	1	0	0	0	0	0	0	0	0	0	3	9	3776
0	0	0	0	0	0	1	0	0	0	0	0	0	0	5	4622
0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	5712
0	0	0	0	0	1	0	0	0	0	0	0	0	0	19	5416
0	0	0	0	0	0	0	0	1	0	0	0	0	0	6	5766
0	0	0	0	0	1	0	0	0	0	0	0	0	0	11	6179
0	0	0	1	0	1	0	0	0	0	0	0	0	0	16	5530
1	0	0	0	0	0	0	0	0	0	0	0	0	0	5	6875

$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 15 & 5005\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 20 & 5084\end{array}$
$0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 7104\end{array}$
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 5142\end{array}$
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 & 4601\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 5084\end{array}$
$\begin{array}{llllllllllllllll}0 & 3 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 16 & 5308\end{array}$
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 5030\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 4644\end{array}$
$0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 5 \\ 6586\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 15 & 4958\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 8 & 6022\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 6813\end{array}$
$0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 11 & 6444\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 6597\end{array}$
$\begin{array}{llllllllllllllll}0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 11 & 5683\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 7877\end{array}$
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 14 & 4528\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 32 & 6288\end{array}$
$0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 15 & 5353\end{array}$
$0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 5840\end{array}$
$\begin{array}{llllllllllllllll}1 & 10 & 3 & 2 & 1 & 6 & 4 & 4 & 3 & 1 & 2 & 1 & 1 & 3 & 327 & 169194\end{array}$ Total

0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	4827
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	5098
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	5749
0	0	0	0	0	2	0	1	0	0	0	1	0	0	0	1	0	5	6230
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	5219
0	0	0	0	0	0	0	3	0	0	0	0	1	1	0	0	1	6	7440
1	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	4	5523
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2	5362
1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2	6425
1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3	6201
0	0	0	0	0	0	1	0	0	2	0	0	0	0	0	0	0	3	4141
0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	2	4819
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	6477
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2	5501
0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	3	5567
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	5892
0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	2	7888
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5612
0	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	3	4999
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5403
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	5946
2	2	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	6	5132
1	2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	6991
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	5575
2	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	5	5532
3	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	6	8444
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	8075
0	0	0	0	1	2	0	1	0	1	0	0	0	0	0	0	0	5	8083
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	5612
1	0	1	0	0	0	1	3	0	0	0	0	0	0	0	0	0	6	6684
	12	1	3	3	8	1	1	1	0	1	4	3	1	1	2	1	94	18044

30121333821211914311121194180447 Total

$\begin{array}{llllllllllllllll}12 & 1 & 16 & 5 & 3 & 1 & 33 & 2 & 1 & 7 & 1 & 2 & 3 & 188 & 162547 & \text { Total }\end{array}$

Total

				0								
0												

[^6]

$\begin{array}{lllllllllll}9 & 1 & 19 & 5 & 1 & 1 & 1 & 13 & 2 & 3 & 55 \\ 166112 & \text { Total }\end{array}$
Conchapelopia sp.
Corynoneura taris
Micropsectra sp.
Nanocladius sp. 1
Nanocladius sp. 2
Nanocladius spiniplenus
Orthocladius carlatus group
Orthocladius oliveri
Parakiefferiella sp.
Parametriocnemus lundbecki Paratanytarsus sp. 2 Phor Rheotanytarsus exiguus group
Thienemanniella sp. 1 Thienemanniella sp. 1 Ephemerella invaria Isoperla marlynia
Anobolia sp.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5027
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4854
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5486
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	6869
0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	3919
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4428
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	4346
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	4	5217
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5941
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	5818
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	4457
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4863
0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	2	4307
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5061
0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	0	2	0	6	7476
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	5420
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4414
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	4286
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4134
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	3845
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4142
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4080
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4628
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5199
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3923
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3984
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3682
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	5110
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4181
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4426
2	1	2	1	1	1	1	1	1	1	1	1	2	2	2	1	3	1	2	143523

[^7]
Conchapelopia sp.
Corynoneura taris
Dicrotendipes neomodestus
Diplocladius sp.
Heterotrissocladius marcidus group
Hydrobaenus pilipes
Micropsectra sp.
Nanocladius sp. 1
Nanocladius sp. 2
Nanocladius spiniplenus
Orthocladius obumbratus group
Parachironomus arcuatus group
Parakiefferiella sp.
Parametriocnemus lundbecki
Polypedilum aviceps
Polypedilum illinoense
Rheotanytarsus exiguus group
Robackia sp.
Rheocricotopus fuscipes group
Baetis brunneicolor
Leptophlebia sp.
Isoperla lata
Glossosoma sp.
Cheumatopsyche sp.
Lumbricuridae
Total Organisms
Surface Area

Total

Brillia parva

Dicrotendipes neomodestus
Diplocladius sp.
Endochironomus nigricans
Heterotrissocladius marcidus group Hudsonimyia sp.
Meropelopia flavifrons
Micropsectra sp.
Microtendipes caelum
Nanolus sp. 2
Orthocladius carlatus group Parachironomus arcuatus group
Parakiefferiella sp.
Parametriocnemus lundbecki Polypedilum aviceps Polypedilum illinoense Polypedilum scalaenum
Pseudoorthocladius sp.
Rheotanytarsus exiguus group
Tanytarsus sp.
Trissopelopia ogemawi

| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| :--- | 0

高
Conchapelopia sp.
Diplocladius sp.
Larsia sp.
Micropsectra sp.
Microtendipes caelum
Nanocladius sp. 1
Nanocladius sp. 2
Nanocladius spiniplenus
Orthocladinae
Orthocladius sp.
Orthocladius carlatus group
Orthocladius oliveri
Parakiefferiella sp.
Parametriocnemus lundbecki
Paratanytarsus sp. I
Paratanytarsus sp. 2
Paratanytarsus sp. 3
Rheotanytarsus distinctissimus
Rheotanytarsus exiguus group
Tanytarsus sp.
Thienemanniella prob. xena
Thienemanniella sp. 1
Prosimulium sp.
Stegopterna mutata complex
Simulium vittatum complex
Isoperla marlynia
Hyalella azteca
Total Organisms
Surface Area
100000000000000000000000000000050000064815

 $10000 \begin{array}{lllllllllllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array} 4$ $\begin{array}{llllllllllllllllllllllllll}2 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array} 0$ $\begin{array}{lllllllllllllllllllllllll}2 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 100$
 $\begin{array}{lllllllllllllllllllllllllll}3 & 0 & 0 & 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 18 & 5426\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}5 & 1 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\ 19 & 4052\end{array}$

$\begin{array}{llllllllllllllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 3 & 0 & 1 & 1 & 0 & 3 & 0 & 0\end{array} 0$
$100010 \begin{array}{lllllllllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 & 0 & 8 & 5160\end{array}$
$000010 \begin{array}{llllllllllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
$\begin{array}{lllllllllllllllllllllllllll}1 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 9 & 4079\end{array}$

$0 \begin{array}{lllllllllllllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array} 0$
$\begin{array}{llllllllllllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
$\begin{array}{llllllllllllllllllllllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 3 & 0 & 0\end{array} 0$
$10010 \begin{array}{llllllllllllllllllllll}1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 10 & 5012\end{array}$
28412513151222119123611131218442111237142858

[^8]

Conchapelopia sp.
Micropsectra sp.
Nanocladius sp. 1
Nanocladius sp. 2
Orthocladius sp.
Orthocladius carlatus group
Orthocladius obumbratus group
Orthocladius oliveri
Parakiefferiella sp.
Paratanytarsus sp. 1
Paratanytarsus sp. 2
Paratanytarsus sp. 3
Rheotanytarsus exiguus group
Sympotthastia sp.
Thienemanniella prob. xena
Thienemanniella sp. 1
Stenonema modestum
Paracapnia opis
Ptilostomis sp.
Hyalella azteca
Total Organisms
Surface Area

 $\begin{array}{llllllllllllllllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 2567\end{array}$
 0000000000000

 $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 2 & 0 & 1 & 0 & 2 & 0 & 0 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 4999\end{array}$ $\begin{array}{llllllllllllllllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 0 & 0 & 0 & 0 \\ 7 & 7 & 512\end{array}$ $\begin{array}{llllllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 2 & 2 & 5132\end{array}$

$\begin{array}{lllllllllllllllllllll}2 & 0 & 1 & 1 & 0 & 0 & 0 & 4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 11 \\ 7888\end{array}$

$0 \begin{array}{llllllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 2 & 684\end{array}$

$\begin{array}{llllllllllllllllllll}2 & 1 & 0 & 0 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 12 & 5523\end{array}$

$100010000000 \begin{array}{llllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ 8075\end{array}$
$20010 \begin{array}{lllllllllllllllll}2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 4 & 532\end{array}$
$0 \begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 8883\end{array}$
$010 \begin{array}{llllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 2 & 8 & 8444\end{array}$
225473222621246211021116128180447 Total

N0000000-0000000000000000000-0	Corynoneura taris
0000000000000000000000000000	Eukiefferiella claripe
00000000000000000000	Eukiefferiella pseudomotana group
	Nanocladius sp. 1
VOONOOOOOOOOOOOOOOOOOONNOOOLOO	Orthocladius carlatus group
-00-1000-0	Parakiefferiella sp.
-00000000000000000000000000000-1	Paratanytarsus sp. 2
$\omega 000 \mathrm{NOOOOO} 00010000000000000000$	Tanytarsus sp.
-00000000000000000000-000000000	Thienemanniella prob. xena
-000-00000000000000000000000000	Isonychia sp.
$0000000000000000000-000000$	Ostrocera sp.
-00000000000000000000000-000000	Paracapnia opis
-	Neophylax sp.
-000000000000000100000000000000	Fossaria sp.
	Total Organisms
N్N心	Surface Area

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6506
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5941
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	5629
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	6124
1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	3	5948
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4910
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5109
1	0	0	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	5262
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3938
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	5656
1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	4068
0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	3	4415
1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	3	5194
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4265
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	6674
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	4653
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5840
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5530
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	6066
2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	4	5766
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5202
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7565
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5654
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4147
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4462
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1	0	4	5787
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7849
0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	2	5712
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5030
0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	3	6052
17	1	1	1	3	1	5	1	1	3	1	1	2	1	1	1	1	5	1	1	1	50	164954

3	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	6	8072
3	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	5261
4	1	0	0	0	1	0	0	0	0	0	0	5	1	0	1	0	0	5	18	4989
0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	3	5097
6	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	6374
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3	5899
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	6124
1	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	4	8155
0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5036
2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	4	4981
2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	4	6056
3	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	4	5451
1	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	4950
2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	6401
5	0	0	2	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	9	7664
0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5718
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5186
8	0	0	2	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	13	6074
1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	3	7171
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5725
0	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3	5206
1	0	0	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	4	5772
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	3	5319
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5363
3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	4	6344
5	1	0	1	0	2	1	0	1	0	0	0	0	0	0	0	0	0	0	11	9576
4	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	8	5171
4	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	6	6198
5	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2	9	4965
3	0	0	0	0	2	0	1	1	0	1	0	0	0	0	0	1	0	0	9	4880
71	8	1	19	1	22	3	1	4	1	3	1	9	1	1	3	1	1	11	162	179178

[^9]

$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 4841\end{array}$
$\begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 6 & 7 & 7439\end{array}$
$\begin{array}{llllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 5 & 6 & 7797\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 4810\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5876\end{array}$
$\begin{array}{llllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 3 & 5451\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 7210\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 2 & 5909\end{array}$
$\begin{array}{llllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 4 & 5 & 6330\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 6887\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 5924\end{array}$
000000004484
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 6282\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6006\end{array}$
$\begin{array}{llllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 5612\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 4 & 5 & 7706\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 4674\end{array}$
$\begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 4978\end{array}$
10080
$\begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 5664\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 5948\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 5094\end{array}$
$0 \begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 5183\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 5503\end{array}$
1000800000346711
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5608\end{array}$
$\begin{array}{llllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 5399\end{array}$
$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 2 \quad 0 \quad 0 \quad 2 \quad 5370$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6383\end{array}$
$\begin{array}{llllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4771\end{array}$
$\begin{array}{llllllllll}5 & 3 & 3 & 2 & 1 & 3 & 1 & 41 & 59 & 176560\end{array}$

[^10]

$\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 18 \\ 5177\end{array}$ $0 \begin{array}{llllllllllllllllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 \\ 5516\end{array}$ $0 \begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10 & 7137\end{array}$ $0 \begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ 5359\end{array}$ $0 \begin{array}{lllllllllllllllllll}0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 9\end{array} 7797$ $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 12 \\ 6019\end{array}$ $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 5813\end{array}$ 00000000000000000000000000055871
 001100020000000000000001000466273 $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 1 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 13 \\ 7238\end{array}$ $\begin{array}{llllllllllllllllllllll}0 & 1 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 6454\end{array}$ $0 \begin{array}{lllllllllllllllllllll}0 & 11 \\ 5677\end{array}$
 $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 2 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 14 \\ 5516\end{array}$
 $\begin{array}{llllllllllllllllllll}0 & 0 & 2 & 0 & 0 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 24 & 6504\end{array}$ $0 \begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 24 \\ 6037\end{array}$ $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 5617\end{array}$ $0 \begin{array}{llllllllllllllllllllll}0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 5306\end{array}$ $\begin{array}{llllllllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 10 & 6527\end{array}$ $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 10 & 5299\end{array}$ $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 5 & 7272\end{array}$ $0 \begin{array}{llllllllllllllllllll}0 & 1 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 17 \\ 5231\end{array}$ $\begin{array}{lllllllllllllllllllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 21 & 5791\end{array}$

 $0 \begin{array}{llllllllllllllllllll}0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 15 \\ 5084\end{array}$ $1 \begin{array}{llllllllllllllllllllll}1 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 6224\end{array}$ 000000300000000000000000355820

221411561121131415151512319180832 Total
Chironomini
Chironomus sp. Conchapelopia sp. Cryptochironomus fulvus Kiefferulus $s p$. Larsia sp.
Micropsectra sp.
Microtendipes caelum
Nanocladius sp. 1
Nanocladius sp. 2
Natarsia sp.
Paratendipes sp.
Paratanytarsus sp. 1
Paratanytarsus sp. 2 Paratanytarsus sp. 3
Phaenopsectra sp.
Phaenopsectra flavipes
Polypedilum aviceps
Polypedilum convictum
Polypedilum fallax
Polypedilum laetum
Polypedilum illinoense
Polypedilum scalaenum Procladius sp Psectrotanypus dyari
Psectrotanypus nr. dyari 0230000130000000 3 $\begin{array}{llllllllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 3 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$ 02000000020000000 $0 \begin{array}{lllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$

$$
\begin{array}{llllllllllllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
0100001010010
$$

$$
1200000000000020
$$

$$
0000002020000000
$$

$$
0130000000000000
$$

$$
0 \begin{array}{lllllllllllll}
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}
$$

$$
0222101040000000
$$

$$
0411000040000010
$$

$$
02110010200000140
$$

$$
05010000050100000
$$

$$
02001000010000000
$$

$$
012200000310000030
$$

$$
\begin{array}{lllllllllllll}
0 & 3 & 2 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 4
\end{array} 0
$$

$$
003000000400010020
$$

$$
0113000000300000010
$$

$$
00400006000000
$$

$$
34443427445941111242
$$

21
\square

$$
10
$$

$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 0 & 1 & 1\end{array}$ $\begin{array}{ccccccccccc}0 & 0 & 0 & 0 & 5 & 1 & 3 & 36 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 0 & 10 & 33 & 0 & 0 & 1\end{array}$ $\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 5 & 2 & 0 & 33 & 0 & 1 & 1\end{array}$ $\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 5 & 0 & 0 & 23 & 0 & 1 & 0\end{array}$

$$
\begin{aligned}
& 1 \\
& 3
\end{aligned}
$$ $\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 3 & 0 & 1 & 39 & 0 & 2 & 1\end{array}$ $\begin{array}{lllllllllll}0 & 1 & 0 & 0 & 7 & 1 & 5 & 35 & 0 & 1 & 3\end{array}$ $2000000400218 \quad 0312$ $\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 6 & 1 & 1 & 32 & 1 & 0 & 2\end{array}$ $\begin{array}{lllllllllllll}3 & 1 & 0 & 0 & 0 & 0 & 7 & 2 & 1 & 18 & 0 & 2 & 1\end{array}$ $\begin{array}{lllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 4 & 19 & 0 & 2 & 0\end{array}$ $\begin{array}{lllllllllllll}3 & 1 & 0 & 1 & 0 & 0 & 6 & 0 & 1 & 80 & 0 & 2 & 1\end{array}$

 $\begin{array}{llllllllllll}7 & 1 & 0 & 0 & 0 & 0 & 5 & 1 & 1 & 33 & 0 & 2\end{array} 0$ $1 \begin{array}{llllllllllll}1 & 1 & 0 & 0 & 0 & 0 & 6 & 0 & 2 & 101 & 0 & 0\end{array} 3$
 $\begin{array}{lllllllllllll}3 & 0 & 0 & 0 & 0 & 0 & 6 & 0 & 4 & 85 & 0 & 4 & 2\end{array}$
 $9 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 10 \quad 2 \begin{array}{lllllll} & 5 & 46 & 0 & 2 & 0\end{array}$ $2 \begin{array}{llllllllllll}2 & 0 & 0 & 0 & 1 & 0 & 4 & 1 & 1 & 67 & 0 & 1\end{array} 2$ $\begin{array}{lllllllllllll}2 & 0 & 0 & 0 & 0 & 2 & 3 & 0 & 3 & 56 & 0 & 0 & 0\end{array}$ 913161121461785127123830
Rheotanytarsus exiguus group Tanypodinae (early instar)
Tanytarsus sp.
Tribelos poss. jucundum
Zavrelimyia sp. 1
Hemerodromia sp.
Dytiscus sp.
Hydroporus $s p$.
Optioservus sp.
Nigronia serricornis
Oligochaeta
Dero obtusa
IWCC
Nais communis
Hexatoma sp.
Pupa
Total Organisms

0	0	0	0	0	2	0	1	0	0	0	0	0	0	0	0	4	0	0	75	5558
0	0	0	2	1	0	0	0	0	0	0	0	5	0	0	0	1	0	0	109	8036
0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	2	0	0	58	5466
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	64	4854
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	25	5289
0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	2	0	0	45	4760
0	0	0	1	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	35	6597
0	0	1	3	2	0	0	0	0	0	0	0	0	0	2	0	3	0	0	46	5845
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	108	8328
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	21	5103
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	57	5552
1	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0	2	0	0	65	5620
0	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	52	6275
0	0	0	2	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	38	6497
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	57	4700
0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	66	5879
0	0	0	1	0	1	0	0	0	0	0	0	1	1	1	0	4	0	0	46	6845
0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	3	0	0	54	6812
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	44	5752
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	31	5280
0	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	108	6509
0	0	0	1	0	0	0	0	0	0	0	0	3	0	0	0	3	0	1	111	6179
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	73	8923
0	0	1	3	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	133	5323
0	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	0	66	5301
0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	120	5327
2	0	0	2	1	0	0	0	0	0	0	0	2	0	0	0	6	0	0	113	5543
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	3	1	0	90	5259
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	91	6875
0	0	1	0	1	0	0	0	0	0	0	1	2	0	0	0	3	0	0	94	6357
4	1	5	34	7	9	1	2	4	1	1	1	17	3	4	0	78	1	2	2095	180644

[^11]Conchapelopia sp.

10000000000000000000000000000000000 $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array} 00000$
 $\begin{array}{llllllllllllllllllllll}0 & 2 & 0\end{array} 0$ 1000000000000000000000000000000001

 $0 \begin{array}{llllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$

 0011100000000000000000000000000000 $\begin{array}{llllllllllllllllllllll}6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0\end{array} 0001$
 $\begin{array}{llllllllllllllllllllll}5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{llllllllllllllllllllll}3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array} 0$ 10000000000000000000000000100000000 00000000000000000000000000000000000 $\begin{array}{lllllllllllllllllllllll}2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array} 0$ 00000000000000000000000000000000000 200000000000000200000000000111000 20000100000012220000000000000000 00000000000001000000000000000100000 40000000000000000000000000000100000 0000011000000000000000000000100000

 0000000000000000000000000000000000
$\begin{array}{llllllllllllllllllllllllll}42 & 1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 31 & 2 & 10 & 1 & 2 & 3 & 1 & 1 & 1 & 2 & 1 & 16 & 2 & 1 & 2 & 6\end{array}$ Total

0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3	4910
0	0	4	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	9	5892
1	0	7	0	1	0	11	11	0	0	0	0	0	0	0	3	0	1	38	7249
0	0	4	0	3	0	4	5	0	0	0	0	0	1	0	0	0	1	21	4622
2	0	24	0	1	0	5	8	0	0	0	0	4	0	0	3	0	0	49	6058
1	0	6	0	0	0	2	7	0	0	0	0	1	1	0	2	0	0	22	6066
1	0	10	0	0	0	10	10	0	0	0	0	0	0	0	1	0	0	33	6444
1	0	1	0	0	0	10	0	0	0	0	0	0	0	0	0	0	1	16	4877
0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	4261
0	0	0	0	0	0	8	1	0	0	0	0	0	0	0	0	0	0	27	5998
0	0	5	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	11	4068
0	0	3	0	0	0	1	3	0	0	0	0	0	1	1	0	0	0	11	4375
0	0	8	0	0	0	2	2	0	0	0	1	0	0	0	0	0	0	13	6230
0	1	13	0	4	1	2	0	0	0	1	0	1	0	0	1	0	1	27	5650
0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19	4526
0	0	2	0	1	0	3	3	0	0	0	0	2	0	0	0	0	0	18	5838
0	1	6	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	19	5084
1	0	5	0	0	0	5	2	0	0	0	0	0	0	0	0	0	0	19	5656
0	0	6	0	1	0	1	8	0	0	0	0	1	0	0	0	0	0	19	5030
0	0	4	0	0	0	3	2	1	0	0	0	0	0	0	0	0	0	10	5208
0	0	5	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	14	7463
0	0	4	0	1	0	7	5	0	0	0	0	1	0	0	0	0	0	18	6808
0	0	5	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	14	5109
0	0	7	0	6	0	1	2	0	0	0	0	0	0	0	0	0	1	25	6429
1	0	3	0	0	0	3	2	0	0	0	0	0	0	0	1	0	0	12	4653
0	0	5	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	14	3938
0	0	3	0	0	0	2	5	0	0	0	0	2	0	0	2	0	1	17	5598
0	0	7	0	1	0	1	2	1	2	0	1	0	0	0	0	0	0	18	5202
0	0	2	0	0	0	1	4	0	0	0	0	0	0	0	0	1	0	25	4265
0	0	4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	5	5130
8	2	157	22	1	8	90	2	2	1	2	14	4	1	13	1	6	550	162637	

[^12]Ablabesmyia sp.
Ablabesmyia mallochi
Ablabesmyia tarella
Ablabesmyia parajanta
Ablabesmyia philosphagnos
Cladotanytarsus sp.
Conchapelopia sp.
Corynoneura taris
Cricotopus bicinctus group
Cricotopus tremulus group
Dicrotendipes neomodestus
Labrundinia neopilosella var. 3
Labrundinia pilosella
Micropsectra sp.
Microtendipes caelum
Microtendipes rydalensis group
Nanocladius sp. 1
Nanocladius s. 2
Orthocladiinae
Parachironomus arcuatus group
Paratanytarsus $s p .1$
Paratanytarsus $s p .2$ Paratanytarsus sp. 3
Phaenopsectra sp.
Polypedilum scalaenum
Rheocricotopus fuscipes group
Rheotanytarsus exiguus group
Tanypodinae (early instar)
Tanytarsini

10000000
000000000
000000000 000000000 000000000 00000002 $0 \begin{array}{lllllll}0 & 0 & 0 & 0 & 1 & 0 & 1\end{array}$ 000000000 100000001 000000000 0000000001 00000000 100000000 10000000 $\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$ 200100000 $0 \begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$ 100000000 $0 \begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 000000000 $\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$ 100010000 00110000 $\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$ $\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$ 000000000 $0 \begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 000000000 $\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$
0100000 9221128 Total

[^13]

[^14]

		0						0			0	0	0	0					0				0							
		0									00	0	0	0					3											6377
		0									00		0	0			0		0				0			0				6302
		0									00			0					0											5482
		0									00		0	0			0						0			0				6205
		0									00															1				6311
		0									0		0	0					0	0		0	0			20				
		1									00																			
		0									00		0	0									0			0				
	0	0		0							0	0																		
									0		0			0						0						20				7797
	0	0							0		00	0	0								0		0							
	2	0									1	0																		
	0								0		00															0				
	0	0									0	0	0	0	0	0										0				
	0	0							0		0	0		0	0						0		0			0				
	0	0									0	0									0		0	0		0				
	0	0									0	1									0		0			0				
	0	0									0	0									0			0		0				
	1										0												0			0				
	0	0									0	0									0		0							
	0	0		0							0	0																		
	0										0	1									0			0						4897
	0	1		0							00	0	0						0		0	0	0	0						
																	0				0		0	0		0				4363
	0	0	0	0					0		0	3	0						0		1	0		0		0				
											0										0	0	0	0	0					
	0	0							0		0	0									0	0		0						
																			0		0			0	0	0				

Total
Ablabesmyia annulata
Ablabesmyia parajanta
Ablabesmyia philosphagnos
Chironomini
Conchapelopia sp.
Dicrotendipes neomodestus
Micropsectra sp.
Microtendipes caelum
Nanocladius spiniplenus
Paramerina sp.
Paratanytarsus sp. 2
Phaenopsectra sp.
Polypedilum scalaenum
Tanypodinae (early instar)
Tanytarsini
Tanytarsus sp.
Trissopelopia ogemawi
Zavrelimyia sp. 1
Hemerodromia sp.
Ephemerellidae
Eurylophella bicolor
Paraleptophlebia sp.
Stenonema modestum
$\begin{array}{lllllllllllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$

 $\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array} 1$ $\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 10$ 1000000011200000000000000000000
 $0 \begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 2 & 0 & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array} 0$ $\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{lllllllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{lllllllllllllllllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array} 0$ $0000000011 \quad 1 \quad 0000000000000000000$

 $0 \begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 3 & 1 & 0 & 0 & 1 & 0 & 0 & 0\end{array} 100$ $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 1 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
 $0000000011 \begin{array}{llllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array} 0000$ $0 \begin{array}{lllllllllllllllllllll}0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array} 10$ $\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 01$ $0000000000 ~ 0 ~ 1100000000000000000$ $\begin{array}{llllllllllllllllllllll}1 & 0 & 0 & 0 & 2 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array} 0$
 $\begin{array}{lllllllllllllllllll}7 & 1 & 2 & 1 & 12 & 1 & 22 & 43 & 1 & 2 & 2 & 1 & 12 & 7 & 1 & 9 & 1 & 1 & 2\end{array} 2271$
Eccoptura xanathenes
Optioservus sp.
Nigronia serricornis
Ferrissia sp.
Hyalella azteca
Helobdella stagnalis
Oligochaeta
Dero obtusa
Nais communis
Pristina longiseta longiseta
Pristinella osborni
Slavina appendiculata
Nematode
Copepod
Total Organisms

Surface Area

0	0	0	1	1	0	1	0	0	0	0	0	0	0	6	4623
0	0	0	0	6	0	0	0	0	0	0	0	0	0	13	7810
0	0	0	0	2	0	0	1	0	0	0	1	0	0	12	5469
0	0	0	0	0	0	0	0	2	0	0	0	0	0	5	7702
0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	6075
0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	6007
0	0	0	0	0	0	0	1	0	0	0	1	0	0	8	6991
0	0	0	0	0	0	0	0	0	0	0	0	0	1	7	6330
1	0	0	0	8	0	0	0	1	0	0	0	0	0	15	5583
0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	6905
0	0	0	0	1	0	0	0	0	0	0	0	0	0	6	5260
0	1	0	0	4	0	0	0	0	0	0	0	0	0	16	5267
0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	5473
0	0	0	0	1	0	0	1	1	0	0	0	0	0	7	4859
0	0	0	0	1	0	0	0	0	0	0	0	0	0	4	4863
0	0	0	0	0	1	1	0	0	0	0	0	0	0	6	4994
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	7770
0	0	0	0	5	0	0	1	0	1	0	0	0	0	9	6480
0	0	0	0	10	0	0	1	0	0	0	0	1	0	14	5186
0	0	0	1	0	0	0	0	0	0	0	0	0	0	6	7909
0	1	0	0	3	0	0	0	0	0	0	0	0	0	12	7398
0	0	0	0	9	0	0	0	0	0	0	1	0	0	16	5702
0	0	0	0	0	0	0	0	0	0	1	0	0	0	5	4704
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5087
0	0	0	0	1	0	0	0	0	0	0	0	0	0	3	6682
0	1	0	0	2	0	1	0	0	0	0	0	0	0	10	9488
0	0	0	0	3	0	0	0	0	0	0	0	0	0	9	7282
0	0	1	1	2	0	0	0	0	0	0	1	0	0	6	4914
0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	5261
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7075
1	3	1	3	5	1	3	5	4	1	1	4	1	1	228	18514

$\begin{array}{lllllllllllllllll}1 & 3 & 1 & 3 & 59 & 1 & 3 & 5 & 4 & 1 & 1 & 4 & 1 & 1 & 228 & 185149 & \text { Total }\end{array}$

3. Data Recorded with Basket as a Sampling Unit

	$000000000000 \mathrm{qm} 0000-0 \mathrm{NOOOOOOnO}$ $000000000000-0000000000000000$ $000000000000 \mathrm{n}-000000000000000$
	-
	2 0000000000000000 0000000000000
	I 000000--0000@00Nm00000-00000m
	m 000000-0-000000-0000N゙0000000
	$000000-10000 N 0000000000$
	00000000000000000000000000
	000000000000 N 000000800000
	$000000000000-0000000-00000000$ 000000000000 - -0000000000000
	$0000000000 \mathrm{~m}-100000 \mathrm{~m} 000000-0$
	-000000000-0上-0m00-0rmo000-0-
	0000000000 moNo 0 m 0000 n 00000000 $000000-00000$ t-000000000000000

Taxa
Ablabesmyia sp.
Ablabesmyia sp.
Ablasbesmyia annulata
Ablabesmyia mallochi
Ablabesmyia ornata
Ablabesmyia parajanta
Ablabesmyia philosphagnos
Brillia flavifrons
Brillia parva
Chaoborus sp.
Chironomini
Chironomus sp.
Cladotanytarsus sp.
Conchapelopia sp.
Corynoneura taris
Cricotopus bicinctus group Eukiefferiella claripennis group Eukiefferiella pseudomotana group Glyptotendipes lobiferus Heterotrissocladius marcidus group Hudsonimyia sp.

Taxa

Hydrobaenus pilipes
Kiefferulus sp.
Labrundinia neopilosella var. 3
Labrundinia pilosella
Labrundinia becki
Larsia sp.
Meropelopia flavifrons
Micropsectra sp.
Microtendipes caelum
Microtendipes rydalensis group
Nanocladius sp. 1
Nanocladius sp. 2
Nanocladius spiniplenus
Natarsia sp.
Orthocladiinae
Orthocladius sp.
Orthocladius carlatus group
Orthocladius obumbratus group
Orthocladius oliveri
Parachironomus arcuatus group
Parakiefferiella sp.
Paramerina $s p$.
Parametriocnemus lundbecki
Paraphaenocladius $s p .1$
Paraphaenocladius $s p .2$
Paratendipes $s p$.
Paratanytarsus $s p .1$
Paratanytarsus $s p .2$
Paratanytarsus $s p .3$

高 Rheotanytarsus distinctissimus Rheotanytarsus exiguus group Robackia sp. Saetheria sp. Sympotthastia sp. Tanypodinae (early instar) Tanytarsini Tanytarsus sp. Thienemanniella prob. xena Thienemanniella sp. 1 Thienemanniella sp. 1
Thienemanniella sp. 2 Tribelos poss. jucundum
Tribelos sp. 1 Trissopelopia ogemawi
$00000000000000-00000000-00000$ $0000000000000000 \mathrm{mNO} 0000000 \mathrm{~N}-0$ $000000000000000 \mathrm{NO}-00000000000$ 00000000000000000000000000000 $000000-0000000000000000000000$ $00000000-00000000000000 n-0000$ 00000000000000000000000 N 00000 $0000-000000000000000000000000$ $000000 \mathrm{mo000-00000000000000000}$ $000000-000-000-00000000$ NONOO $00000000000000-0000-000-10-00$ $00000000000000-00000-00 \mathrm{NNM-00}$ $00000000000000-10000-0000-1 \mathrm{NOOO}$ 00000000000000000000000000000 $00000-000000000000-0000000000$ 00000000000000000000000000000 00000000000000000000000000000 $00000-0-000000000000000000000$ 00000000000000000000000000000 $00000000000 \mathrm{molo00000000000000}$ $00000000000 N 00000000000000000$ $000000000000-00000000000-000$ 000000000000000000000000 HNNOO Ephemerella invaria Eurylophella sp. Eurylophella funeralis Eurylophella temporalis Isonychia sp. Leptophlebia sp. Paraleptophlebia sp.
Serratella deficiens Stenonema modestum Agnetina capitata

$0000000000 N 000000000000000$ 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 $0000-000000000000000000000$ 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 $00 N 00000000000000000000000$ 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000 00000000000000000000000000
 0 N00－N000－00N00000－0000000000 $000000-00 \operatorname{ta}+00000000000000000$ $0-0000000 \mathrm{~N}+0 \operatorname{mm00000000000000-1}$ 007ーーー00000NANTON0M0000000000 0000000000 NO 00000000000000000 0 N0000000000 No000－100000000000 000000000 m F 0 Foo 00 F 00000000 NO
 $0000000000000-00-1000000000000$ $000000000000 n 0000000000000000$ $000000000000 \approx 0000000000000000$ $0000000-0000 \mathrm{molo00NOO-00000-0}$ 000000000000 N000－0000000000－0 $000000000000 \mathrm{n} 1009000-100 \mathrm{NOOOO-}$ $0000000000000 \mathrm{NOOOOOOOOOR-1000}$ 000000000000 N 0000000000000000 000000000000 NOOONOOOROOOOOOO $000000000000 \mathrm{~N} 0000000 \mathrm{NOO000000}$ $000000000000 \underset{\mathrm{~N}}{\mathbf{N}} 0000000+00000000$ $0000000-0000$ Imoooo－0m000000NN

Ablabesmyia sp． Ablabesmyia annulata Ablabesmyia mallochi Ablabesmyia tarella Ablabesmyia Parajanta Ablabesmyia philosphagnos Brillia flavifrons Brillia parva Chaoborus sp． Chironomini Chironomus $s p$ ． Cladotanytarsus $s p$ ． Conchapelopia sp． Corynoneura taris Cricotopus bicinctus group Cricotopus sylvestris group Cricotopus tremulus group Cryptochironomus fulvus Dicrotendipes neomodestus Diamesa sp． Diplocladius sp． Endochironomus nigricans Eukiefferiella bavarica group Eukiefferiella brevicalar group Eukiefferiella claripennis group Eukiefferiella pseudomotana group Glyptotendipes lobiferus Heterotrissocladius marcidus group Hudsonimyia sp．
24252627282930313233343536373839404142434445
 $000000 \mathrm{~m}-\mathrm{N} 00000000000-10000-0 \mathrm{NO}$ 00000000 च0n $00000000000-10000 \mathrm{~m} 0$
 00000000000000000000000000000 $00000-1 \mathrm{~m}^{2}-0000-000000-00000 \mathrm{~m}^{\mathrm{N}}$
 $000-100 n=0$ न-00-0-000mNNOO-0 0-0 $0000000 \forall-N 0-0000-00000-000000$ $0000000 \mathrm{~m} 000 \mathrm{~m} 000000 \mathrm{NOOO-0} 000 \mathrm{~m}$
 $000000-0000 \mathrm{m00-0000000n000000}$ $-000000 \mathrm{NO-0000000000+00000010}$
$0000000000-000001000 \infty 000000-0$

 $000000-a-00 N m 000-00$ - 0 M 000000

000000 - n 000000000000 IoN000mo-
$0000000000000-00000000 \mathrm{~m}-00000$
00000000000000000000000100000
$0000000000000-00+00000-\mathrm{mol}-00$
$0-n 007$ - $-00000000000000+00000$ -
00-00-0M00-0-000 N00000-00000-
00000000000000000000001100000
$0000000000000000000000 \mathrm{~m}-00000$
$0000000000000000 \mathrm{NOO-0000N0000}$
$000000-000000000 N 0000000 N 0000$
$000000-000000-0 \mathrm{mO} 00000$ - Na0000
$00 \mathrm{NOOO-m000-0000-00000+00000n}$ Robackia sp.

Sympotthastia sp.
 Tanytarsini

Thienemanniella prob. xena Thienemanniella sp. 1 Thienemanniella sp. 2 Tribelos poss. jucundum lopia ogemawi

$0000-00-000000000000000000000$
$00000000000-00000000000000000$
- 0000000000000000000000000000
00000000000000000000000000000
$0000-100000000000000000000000$
$00000000000 \not 00000-00000000000$
00000000000000000000000000000
$00000000000000 N 00000000-00000$
00000000000000000000000000000
$00000000000 \mathrm{NOOOOO-0000000m00-}$
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
$00-00-0000000000000000000-000$
$000-N 0-00000000000000 \infty 0000000$
$000-10000000000000000 \mathrm{NOOOOOOO}$
$0000-0000000000000000000-0000$
00000000000000000000000000000
$000000000000000000000000000-0$
$00-00000000000000000000000000$
$000000000000000000-0 N 00000000$

Taxa

 0 NV0000000000000000000NOOO Ñ $000000+00-1000000-0000000000$ $0000000000+00 n-00 n 0000000000$ $00000000000000000-0000000000$ 00000000000000000000000000 Fo 0000000000000000000000000010 0000000000000000000000000000 0000000000000000000000000000 $00000000000000000000-00$-1-000 $00000000000000000000-0000000$ 0000000000000000000000000000 $00000000000000000000000000-0$ $0000-000000000000000000000 \mathrm{mo}$ $00000000000000000000000000-0$ $00000000000000-00-00000 \mathrm{NOOOO}$
Taxa Calopteryx maculata
Coenagrionidae
Coenagrion $s p$.
Hataerina $s p$.
Coleoptera
Anchytarsus bicolor
Dytiscus sp.
Ectopria sp.
Ectopria nervosa
Hydroporus sp.
Optioservus sp.
Oreodytes sp.
Psephenus $s p$.
Promoresia sp.
Stenelmis $s p$.
Megaloptera
Chauliodes pectinicornis Nigronia serricornis Gastropoda
Ferrissia $s p$. Fossaria sp. Gyraulus sp. Musculium sp. Physa sp. Pisidium sp. Amphipoda Hyalella azteca Asellus communis

0000 N0MOT00N00000000-0000N
$000000 N 0000 n-N 000000000000$
00000000000000000000000000
00000000000000000000000000
$00-000 \mathrm{moj00-00000000000-00}$
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000 の-0-00000000ー-10000

APPENDIX B
SIMPSON' D, HURLBERT'S PIE AND KEEFE'S TU

To unify the notations let's rewrite Simpson's D as:

$$
D=\sum_{i=1}^{s} \frac{n_{1}\left(n_{1}-1\right)}{N(N-1)}
$$

Hurlbert's "encounter" index as:

$$
\text { PIE }=\left(\frac{N}{N-1}\right)\left(1-\sum_{1=1}^{s} p_{1}^{2}\right)
$$

and Keefe's $T U$ as:

$$
T U=1-\left(\frac{N}{N-1}\right)\left(\sum_{i=1}^{k} p_{1}^{2}-\frac{1}{N}\right)
$$

where n_{i} is the number of individuals in species i, N is the number of individuals in a sample, and $p_{i}=n_{i} / N$.

As mentioned in the literature review, Simpson's D Hurlbert's PIE and Keefe's $T U$ are in principle measuring the exact same thing. This can be proved by solving their mathematical equations.

By solving for Simpson's D :

$$
\begin{aligned}
& D=\sum_{i=1}^{s} \frac{n_{1}\left(n_{1}-1\right)}{N(N-1)} \\
= & \frac{\sum_{i=1}^{s} n_{1}{ }^{2}}{N(N-1)}-\frac{\sum_{i=1}^{s} n_{1}}{N(N-1)} \\
= & \frac{\sum_{i=1}^{s} n_{1}{ }^{2}}{N(N-1)}-\frac{N}{N(N-1)}
\end{aligned}
$$

we get

$$
D=\frac{\sum_{1=1}^{s} n_{1}{ }^{2}}{N^{2}-N}-\frac{1}{(N-1)}
$$

Similarity Hurlbert's PIE:

$$
\begin{aligned}
& \text { PIE }=\left(\frac{N}{N-1}\right)\left(1-\sum_{i=1}^{s} p_{i}^{2}\right) \\
& =\left(\frac{N}{N-1}\right)\left(1-\sum_{i=1}^{s}\left(\frac{N_{1}}{N}\right)^{2}\right) \\
& =\left(\frac{N}{N-1}\right)\left(1-\frac{1}{N^{2}} \sum_{i=1}^{s} N_{i}^{2}\right) \\
& =\frac{N}{N-1}-\left(\frac{N}{N-1} \frac{1}{N^{2}} \sum_{i=1}^{s} N_{i}^{2}\right) \\
& \quad=\frac{N}{N-1}-\frac{\sum_{i=1}^{s} N_{1}^{2}}{N^{2}-N} \\
& \quad=\frac{-1}{N-1}+\frac{\sum_{i=1}^{s} N_{1}^{2}}{N^{2}-N}
\end{aligned}
$$

thus yields

$$
1-P I E=\frac{\sum_{1=1}^{s} N_{1}^{2}}{N^{2}-N}-\frac{1}{N-1}
$$

Rearranging for Keefe's $T U$:

$$
\begin{aligned}
& T U=1-\left(\frac{N}{N-1}\right)\left(\sum_{1=1}^{k} p_{1}^{2}-\frac{1}{N}\right) \\
&=1-\frac{N}{N-1} \sum_{1=1}^{k} p_{1}^{2}+\frac{N}{N-1} \frac{1}{N} \\
&=1-\frac{N}{N-1} \sum_{i=1}^{k} p_{1}^{2}+\frac{1}{N-1} \\
&=1+\frac{1}{N-1}-\frac{N}{N-1} \sum_{1=1}^{k} p_{1}^{2} \\
&= \frac{N-1+1}{N-1}-\frac{N}{N-1} \sum_{1=1}^{k} p_{1}^{2} \\
&=\frac{N}{N-1}-\frac{N}{N-1} \sum_{1=1}^{s} p_{1}^{2} \\
&=\frac{N}{N-1}\left(1-\sum_{1=1}^{k} p_{1}^{2}\right) \\
& \therefore T U=P I E
\end{aligned}
$$

APPENDIX C
FORMULA FOR THEORY OF RUN

$$
\begin{aligned}
& T=1-\sum_{T=1}^{s} p_{1}^{2} \\
&=1-\sum_{1=1}^{s}\left(\frac{n_{1}}{N}\right)^{2} \\
&=\frac{N^{2}-\sum_{i=1}^{s} n_{1}^{2}}{N^{2}} \\
&=\frac{N^{2}-\sum_{i=1}^{s} n_{1}^{2}}{N^{2}} \\
&=\frac{D_{d}}{\text { Permutations of } N X N}
\end{aligned}
$$

$$
\therefore D_{d}=\frac{(\text { Permutations of } N \times N) \times\left(N^{2}-\sum_{i=1}^{s} n_{i}^{2}\right)}{N^{2}}
$$

$$
\therefore D_{d}=\frac{(\text { Permutations of } N) \times\left(N^{2}-\sum_{i=1}^{s} n_{1}^{2}\right)}{N}
$$

$$
\mu_{r}=\frac{D_{d}+\text { permutations of } N}{\text { permutations of } N \times N}
$$

$$
\therefore \mu_{r}=\frac{(\text { Permutations of } N) \times\left(N^{2}-\sum_{i=1}^{s} n_{1}^{2}\right)+(\text { Permutations of } N \times N)}{N}
$$

$$
=\frac{\frac{(\text { Permutations of } N) \times\left(N^{2}-\sum_{i=1}^{s} n_{1}^{2}+N\right)}{N}}{\text { Permutations of } N \times N}
$$

$$
\begin{aligned}
& =\frac{\left(N^{2}-\sum_{1=1}^{s} n_{1}^{2}+N\right)}{N^{2}} \\
& =\frac{N^{2}}{N^{2}}-\sum_{i=1}^{s} \frac{n_{1}^{2}}{N}+\frac{N}{N^{2}} \\
& \therefore=1-\sum_{i=1}^{s} p_{1}^{2}+\frac{1}{N}
\end{aligned}
$$

APPENDIX D

A SAS PROGRAM TO CALCULATE DIVERSITY INDICES OF BENTHIC MACROINVERTEBRATES
libname ming' []';
data temp;
infile 'basket1.dos' LRECL=300;
input c1-c21;
drop c21;
array b1 120$\}$ cl-c20;
array pvar $\{20\}$ p1-p20;
denprod $=0$;
shannon $=0$;
sumtot=sum($\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3, \mathrm{c} 4, \mathrm{c} 5, \mathrm{c} 6, \mathrm{c} 7, \mathrm{c} 8, \mathrm{c} 9, \mathrm{c} 10, \mathrm{c} 11, \mathrm{c} 12, \mathrm{c} 13, \mathrm{c} 14, \mathrm{c} 15, \mathrm{c} 16, \mathrm{c} 17, \mathrm{c} 18, \mathrm{c} 19$);
count $=19$;
$\mathrm{k}=\mathrm{FLOOR}$ (sumtot/count);
$\mathrm{r}=$ sumtot $-(\mathrm{k} *$ count $)$;
do $\mathrm{i}=1$ to 20 ;
fin $=\mathrm{b} 1\{\mathrm{i}\}$;
pvar $\{\mathrm{i}\}=0$;
if fin $=0$ then p var $\{\mathrm{i}\}=0$;
else do $\mathrm{j}=1$ to fin;
$p \operatorname{var}\{\mathrm{i}\}=p \operatorname{var}\{\mathrm{i}\}+\log (\mathrm{j})$;
end;
if $(\mathrm{i}<20)$ then denprod $=\operatorname{denprod}+\operatorname{pvar}\{\mathrm{i}\} ;$
end;
if bl $\{20\}$ EQ 0 then
Shannon=.;
do $\mathrm{i}=1$ to 19 ;
if b1 \{i\} NE 0 then
Shannon $=$ Shannon $+(\mathrm{b} 1\{\mathrm{i}\} /$ sumtot $) * \log (\mathrm{~b} 1\{\mathrm{i}\} /$ sumtot $) ;$
end;
Shannon $=-$ Shannon;
if ($\mathrm{bl}\{20\}$ NE 0) then
Brillou $=1 / \mathrm{c} 20$ * ($\operatorname{pvar}\{20\}-$ denprod);
if (sumtot NE 0) and (((sumtot - count +1$) /$ sumtot) GT 0) then
SMIN $=-((($ count -1$) /$ sumtot $) * \log (1 /$ sumtot $))$

- ((sumtot - count +1$) /$ sumtot) $) \log (($ sumtot - count +1$) /$ sumtot $) ;$
if (sumtot NE 0) and ((k/sumtot) GT 0) then
SMAX $=-($ count -r$) *(\mathrm{k} /$ sumtot $) * \log (\mathrm{k} /$ sumtot $)$
$-\mathrm{r} *((\mathrm{k}+1) /$ sumtot $) * \log ((\mathrm{k}+1) /$ sumtot $) ;$
pvar $1=0$;
do $\mathrm{j}=1$ to (sumtot - count +1);
pvar1 = pvar $1+\log (\mathrm{j})$;
end;
pvar2 $=0$;
do $\mathrm{j}=1$ to k ;
if k NE 0 then
pvar2 $=$ pvar2 $+\log (j)$;
end;
if sumtot NE 0 then
BMIN $=(1 /$ sumtot $) *(\operatorname{pvar}\{20\}-$ pvarl $) ;$
if sumtot NE 0 then
BMAX $=(1 /$ sumtot $) *(\operatorname{pvar}\{20\}-$ count $*$ pvar2 $-\mathrm{r} * \log (\mathrm{k}+1))$;
if (SMAX - SMIN) NE 0 then
ShannonR $=($ SMAX - Shannon) $/($ SMAX - SMIN $) ;$
if (BMAX - BMIN) NE 0 then
BrillouR $=($ BMAX - Brillou) $/($ BMAX - BMIN $) ;$
if SMAX NE 0 then
ShannonE = Shannon / SMAX;
if BMAX NE 0 then
BrillouE = Brillou / BMAX;
run;
proc print data=temp;
var p20 fin denprod Shannon Brillou k r SMIN SMAX BMIN BMAX
ShannonR BrillouR ShannonE BrillouE;
data templ; set temp;
if sumtot $=40$ then delete;
proc means mean STD USS CSS CV STDERR T PRT;
var Shannon Brillou ShannonR BrillouR ShannonE BrillouE;
output out=meansout;
proc print data=meansout;
data templ; set temp;
array bl $\{19\}$ cl-c19;
dentotal $=$ sum($\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3, \mathrm{c} 4, \mathrm{c} 5, \mathrm{c} 6, \mathrm{c} 7, \mathrm{c} 8, \mathrm{c} 9, \mathrm{c} 10, \mathrm{c} 11, \mathrm{c} 12, \mathrm{c} 13, \mathrm{c} 14, \mathrm{c} 15, \mathrm{c} 16, \mathrm{c} 17, \mathrm{c} 18, \mathrm{c} 19)$;
count=19;
numtot $1=0$; numtot $2=0$;

```
do i=1 to 19;
if bl {i} > 0 then
numtot1 = numtot 1 + b1 {i} * (bl {i} - 1);
```

```
numtot \(2=\) numtot \(2+\mathrm{bl}\{\mathrm{i}\} * \mathrm{bl}\{\mathrm{i}\} ;\)
```

end;

```
if dentotal > 1 then
simpson \(=\) numtot \(1 /(\) dentotal \(*(\) dentotal -1\())\);
hurlkeef = 1 - simpson;
```

if (dentotal-sqrt(dentotal)) NE 0 then
mcintosh $=($ dentotal-sqrt(numtot2))/(dentotal-sqrt(dentotal));
if (dentotal-(dentotal/sqrt(count))) NE 0 then
mcinmax $=($ dentotal-sqrt(numtot2))$/($ dentotal $-($ dentotal/sqrt(count)) $)$;
if (dentotal-sqrt((dentotal-count+1)*(dentotal-count +1$)+($ count-1))) NE 0 then mcinmin=(dentotal-sqrt(numtot2))
$/(\text { dentotal-sqrt((dentotal-count }+1)^{*}($ dentotal-count +1$)+($ count-1)));
if dentotal NE 0 then
rntheory $=($ dentotal $*$ dentotal + dentotal - numtot 2$) /($ dentotal $*$ dentotal $)$;
proc print data=templ;
var count dentotal simpson hurlkeef mcintosh mcinmax mcinmin mtheory;
data temp2; set temp1;
if dentotal $=40$ then delete;
proc means mean STD USS CSS CV STDERR T PRT;
var simpson hurlkeef mcintosh mcinmax mcinmin rntheory;
output out=meansout;
proc print data=meansout;
run;
data temp2; set temp;
if $\mathrm{c} 20=40$ then delete;
seed $=0$;
rand=rannor(seed);
proc sort;
by rand;
proc transpose data=temp2 out=trans1 prefix=t;
var c 1-c20;
data temp3; set trans 1 ;
array transp \{30\} t1-t30;
array pool $\{30\}$ pol-po30;

```
pool \(\{1\}=\operatorname{transp}\{1\}\);
do \(\mathrm{i}=1\) to 29 ;
\(\operatorname{pool}\{i+1\}=\operatorname{pool}\{i\}+\operatorname{transp}\{i+1\} ;\)
end;
run;
```

proc transpose data=temp3 out=trans2 prefix=c;
var pol-po30;
proc print data=trans2;
data temp4; set trans2;
array bl \{20\} c1-c20;
array pvar $\{20\}$ p1-p20;
denprod = 0;
shannon $=0$;
sumtot=sum(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19);
count = 19;
$\mathrm{k}=\mathrm{FLOOR}$ (sumtot/count);
$\mathrm{r}=$ sumtot $-(\mathrm{k} *$ count);
do $\mathrm{i}=1$ to 20 ;
fin $=\mathrm{b} 1\{\mathrm{i}\} ;$
$p \operatorname{var}\{\mathrm{i}\}=0$;
if fin $=0$ then $p v a r\{i\}=0$;
else do $j=1$ to fin;
$\operatorname{pvar}\{\mathrm{i}\}=\operatorname{pvar}\{\mathrm{i}\}+\log (\mathrm{j})$;
end;
if $(\mathrm{i}<20)$ then denprod $=$ denprod $+\operatorname{pvar}\{\mathrm{i}\}$;
end;
if $\mathrm{b} 1\{20\}$ EQ 0 then
Shannon=.;
do $\mathrm{i}=1$ to 19 ;
if b1 1 i$\}$ NE 0 then
Shannon $=$ Shannon $+(\mathrm{b} 1\{\mathrm{i}\} /$ sumtot $) * \log (\mathrm{~b} 1\{\mathrm{i}\} /$ sumtot $) ;$
end;
Shannon = - Shannon;
if (b1 \{20\} NE 0) then
Brillou = 1/c20 * (pvar\{20\}-denprod);
if (sumtot NE 0) and (((sumtot - count + 1)/ sumtot) GT 0) then
SMIN $=-((($ count -1$) /$ sumtot $) * \log (1 /$ sumtot $))$

- ((sumtot - count +1$) /$ sumtot) ${ }^{*} \log (($ sumtot - count +1$) /$ sumtot);
if (sumtot NE 0) and ((k/sumtot) GT 0) then
SMAX $=-($ count -r$) *(\mathrm{k} /$ sumtot $) * \log (\mathrm{k} /$ sumtot $)$
$-\mathrm{r} *((\mathrm{k}+1) /$ sumtot $) * \log ((\mathrm{k}+1) /$ sumtot $) ;$
pvar1 $=0$;
do $\mathrm{j}=1$ to (sumtot - count +1);
pvar1 = pvar1 $+\log (\mathrm{j})$;
end;
pvar2 $=0$;
do $\mathrm{j}=1$ to k ;
if k NE 0 then
pvar2 $=p$ var2 $+\log (\mathrm{j})$;
end;
if sumtot NE 0 then
BMIN $=(1 /$ sumtot $) *($ pvar \{20\} - pvarl $) ;$
if sumtot NE 0 then
BMAX $=(1 /$ sumtot $) *(\operatorname{pvar}\{20\}-$ count $*$ pvar2 $-\mathrm{r} * \log (\mathrm{k}+1))$;
if (SMAX - SMIN) NE 0 then
ShannonR $=($ SMAX - Shannon) $/($ SMAX - SMIN $) ;$
if (BMAX - BMIN) NE 0 then
BrillouR $=($ BMAX - Brillou $) /($ BMAX - BMIN $)$;
if SMAX NE 0 then
ShannonE = Shannon / SMAX;
if BMAX NE 0 then
BrillouE = Brillou / BMAX;
run;
proc print data=temp4;
var p20 fin denprod Shannon Brillou k r SMIN SMAX BMIN BMAX
ShannonR BrillouR ShannonE BrillouE;
run;
data temp; set trans 2 ;
count=19;
dentotal $=$
$\operatorname{sum}(\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3, \mathrm{c} 4, \mathrm{c} 5, \mathrm{c} 6, \mathrm{c} 7, \mathrm{c} 8, \mathrm{c} 9, \mathrm{c} 10, \mathrm{c} 11, \mathrm{c} 12, \mathrm{c} 13, \mathrm{c} 14, \mathrm{c} 15, \mathrm{c} 16, \mathrm{c} 17, \mathrm{c} 18, \mathrm{c} 19)$;
array b1 \{19\} c1-c19;
numtot $1=0$; numtot2 $=0$;
do $\mathrm{i}=1$ to 19 ;
if b \{ i$\}>0$ then
numtot $1=$ numtot $1+b 1\{\mathrm{i}\} *(b 1\{i\}-1) ;$
numtot $2=$ numtot $2+\mathrm{b} 1\{\mathrm{i}\} * \mathrm{~b} 1\{\mathrm{i}\} ;$
end;

```
if dentotal > 1 then
simpson \(=\) numtot \(1 /(\) dentotal \(*\) (dentotal -1\()\) );
hurlkeef = 1-simpson;
```

if (dentotal-sqrt(dentotal)) NE 0 then
mcintosh=(dentotal-sqrt(numtot2))/(dentotal-sqrt(dentotal));
if (dentotal-(dentotal/sqrt(count))) NE 0 then
mcinmax $=($ dentotal-sqrt(numtot2))/(dentotal-(dentotal/sqrt(count)));
if (dentotal-sqrt((dentotal-count +1$)^{*}($ dentotal-count +1$)+($ count-1))) NE 0 then
mcinmin=(dentotal-sqrt(numtot2))
$/(\text { dentotal-sqrt((dentotal-count }+1)^{*}($ dentotal-count +1$)+($ count-1)));
if dentotal NE 0 then
mtheory $=($ dentotal $*$ dentotal + dentotal - numtot 2$) /($ dentotal $*$ dentotal $)$;
proc print data=temp;
var count dentotal simpson hurlkeef mcintosh mcinmax mcinmin
mtheory;
data comb; merge temp4 temp;
proc tranpose data=comb out=out1 prefix=t;
var Shannon Brillou Hurlkeef mcintosh rntheory;
data calcu; set out1;
array trans \{30\} t1-t30;
array diff $\{30\} \mathrm{d} 1-\mathrm{d} 30$;
do $\mathrm{i}=1$ to 29 ;
diff $\{\mathrm{i}\}=\operatorname{trans}\{\mathrm{i}+1\}$-trans $\{\mathrm{i}\}$;
end;
proc transpose data=calcu out=differ;
var d1-d30;
proc print data=differ;
data temp6; set temp;
if $\mathrm{c} 20=40$ then delete;
seed $=0$;
rand= $=$ rannor(seed);
proc sort;
by rand;
proc transpose data=temp6 out=trans3 prefix=t;
var c 1-c20;

```
data temp7; set trans3;
array transp{30} t1-t30;
array pool{30} po1-po30;
pool{1}=transp{1};
do i=1 to 29;
pool{i+1}= pool{i} + transp{i+1};
end;
run;
```

proc transpose data=temp7 out=trans4 prefix=c;
var pol-po30;
proc print data=trans4;
data temp8; set trans4;
array b1\{20\} c1-c20;
array pvar $\{20\}$ p1-p20;
denprod $=0$;
shannon $=0$;
sumtot=sum(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19);
count $=19$;
$\mathrm{k}=\mathrm{FLOOR}$ (sumtot/count);
$\mathrm{r}=$ sumtot $-(\mathrm{k}$ * count);
do $\mathrm{i}=1$ to 20 ;
fin $=\mathrm{b} 1\{\mathrm{i}\}$;
$\operatorname{pvar}\{\mathrm{i}\}=0$;
if fin $=0$ then $p v a r\{i\}=0$;
else do $\mathrm{j}=1$ to fin;
$\operatorname{pvar}\{\mathrm{i}\}=\operatorname{pvar}\{\mathrm{i}\}+\log (\mathrm{j})$;
end;
if $(\mathrm{i}<20)$ then denprod $=\operatorname{denprod}+\operatorname{pvar}\{\mathrm{i}\}$;
end;
if b1 120$\}$ EQ 0 then
Shannon=.;
do $\mathrm{i}=1$ to 19 ;
if b1 $\{i\}$ NE 0 then
Shannon $=$ Shannon $+(\mathrm{b} 1\{\mathrm{i}\} /$ sumtot $) * \log (\mathrm{~b} 1\{\mathrm{i}\} /$ sumtot $) ;$
end;
Shannon $=-$ Shannon;
if ($\mathrm{b} 1\{20\}$ NE 0) then
Brillou $=1 / \mathrm{c} 20$ * $(p \operatorname{par}\{20\}$ - denprod);
if (sumtot NE 0) and (((sumtot - count +1$) /$ sumtot) GT 0) then
SMIN $=-((($ count -1$) /$ sumtot $) * \log (1 /$ sumtot $))$

- ((sumtot - count +1$) /$ sumtot) $)^{*} \log (($ sumtot - count +1$) /$ sumtot $) ;$
if (sumtot NE 0) and ((k/sumtot) GT 0) then
SMAX $=-($ count -r$) *(\mathrm{k} /$ sumtot $) * \log (\mathrm{k} /$ sumtot $)$
$-\mathrm{r} *((\mathrm{k}+1) /$ sumtot $) * \log ((\mathrm{k}+1) /$ sumtot $) ;$
pvarl = 0;
do $j=1$ to (sumtot - count +1);
pvarl = pvarl $+\log (\mathrm{j})$;
end;
pvar2 $=0$;
do $\mathrm{j}=1$ to k ;
if k NE 0 then
pvar2 $=$ pvar2 $+\log (j)$;
end;
if sumtot NE 0 then
BMIN $=(1 / \text { sumtot })^{*}($ pvar $\{20\}-p v a r 1) ;$
if sumtot NE 0 then
BMAX $=(1 /$ sumtot $) *(p v a r\{20\}-$ count $* \operatorname{pvar} 2-r * \log (\mathrm{k}+1)) ;$
if (SMAX - SMIN) NE 0 then
ShannonR = (SMAX - Shannon) / (SMAX - SMIN);
if (BMAX - BMIN) NE 0 then
BrillouR = (BMAX - Brillou) / (BMAX - BMIN);
if SMAX NE 0 then
ShannonE = Shannon / SMAX;
if BMAX NE 0 then
BrillouE = Brillou $/ \mathrm{BMAX}$;
run;
proc print data=temp8;
var p20 fin denprod Shannon Brillou k r SMIN SMAX BMIN BMAX
ShannonR BrillouR ShannonE BrillouE;
run;
data temp; set trans4;
count=19;
dentotal =
sum(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19);
array b1 \{19\} c1-c19;
numtotl $=0 ;$ numtot $2=0$;
do $\mathrm{i}=1$ to 19 ;
if $\mathrm{b} 1\{\mathrm{i}\}>0$ then
numtot $1=$ numtot $1+\mathrm{b} 1\{\mathrm{i}\} *(\mathrm{~b} 1\{\mathrm{i}\}-\mathrm{l})$;
numtot $2=$ numtot $2+\mathrm{b} 1\{\mathrm{i}\} * \mathrm{~b} 1\{\mathrm{i}\} ;$
end;
if dentotal > 1 then
simpson $=$ numtot $1 /($ dentotal $*($ dentotal -1$))$;
hurlkeef = 1 - simpson;
if (dentotal-sqrt(dentotal)) NE 0 then
mcintosh=(dentotal-sqrt(numtot2))/(dentotal-sqrt(dentotal));
if (dentotal-(dentotal/sqrt(count))) NE 0 then
mcinmax $=($ dentotal-sqrt(numtot2))/(dentotal-(dentotal/sqrt(count)));
if (dentotal-sqrt((dentotal-count+1)*(dentotal-count +1$)+($ count-1))) NE 0 then mcinmin=(dentotal-sqrt(numtot2))
$/(\text { dentotal-sqrt((dentotal-count }+1)^{*}($ dentotal-count +1$)+($ count-1)));
if dentotal NE 0 then
rntheory $=($ dentotal $*$ dentotal + dentotal - numtot 2$) /($ dentotal $*$ dentotal $) ;$
proc print data=temp;
var count dentotal simpson hurlkeef mcintosh mcinmax mcinmin
mtheory;
data comb; merge temp8 temp;
proc tranpose data=comb out=out1 prefix=t;
var Shannon Brillou Hurlkeef mcintosh rntheory;
data calcu; set out1;
array trans \{30\} t1-t30;
array diff\{30\} d1-d30;
do $\mathrm{i}=1$ to 29 ;
$\operatorname{diff}\{i\}=\operatorname{trans}\{i+1\}$-trans $\{i\}$;
end;
proc transpose data=calcu out=differ;
var d1-d30;
proc print data=differ;
data temp10; set temp;
if $\mathrm{c} 20=40$ then delete;
seed $=0$;
rand=rannor(seed);
proc sort;
by rand;
proc transpose data=temp 10 out=trans5 prefix $=\mathrm{t}$;
var c 1-c20;
data temp11; set trans5;
array transp \{30\} t1-t30;
array pool $\{30\}$ pol-po30;
pool $\{1\}=\operatorname{transp}\{1\}$;
do $\mathrm{i}=1$ to 29 ;
$\operatorname{pool}\{i+1\}=\operatorname{pool}\{i\}+\operatorname{transp}\{i+1\}$;
end;
run;
proc transpose data=temp11 out=trans6 prefix $=c$;
var pol-po30;
proc print data=trans6;
data temp12; set trans6;
array bl $\{20\}$ cl-c20;
array pvar \{20\} pl-p20;
denprod $=0$;
shannon $=0$;
sumtot=sum(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19);
count = 19;
$\mathrm{k}=\mathrm{FLOOR}$ (sumtot/count);
$\mathrm{r}=$ sumtot $-(\mathrm{k} *$ count $)$;
do $\mathrm{i}=1$ to $20 ;$
fin $=\mathrm{b} 1\{\mathrm{i}\}$;
$p \operatorname{var}\{\mathrm{i}\}=0$;
if fin $=0$ then $p v a r\{i\}=0$;
else do $j=1$ to fin;
$\operatorname{pvar}\{\mathrm{i}\}=\operatorname{pvar}\{\mathrm{i}\}+\log (\mathrm{j})$;
end;
if $(\mathrm{i}<20)$ then denprod $=$ denprod $+\mathrm{pvar}\{\mathrm{i}\} ;$
end;
if b1 $\{20\}$ EQ 0 then
Shannon=;
do $\mathrm{i}=1$ to 19 ;
if bl\{i\} NE 0 then

```
    Shannon = Shannon + (bl{i}/sumtot)* log(bl{i}/sumtot);
    end;
    Shannon = - Shannon;
    if (b1{20} NE 0) then
    Brillou = 1/c20 * (pvar{20} - denprod);
    if (sumtot NE 0) and (((sumtot - count + 1)/ sumtot) GT 0) then
SMIN = - (((count - 1)/sumtot) * log(1/sumtot))
- ((sumtot - count + 1)/sumtot) * log((sumtot - count + 1)/sumtot);
if (sumtot NE 0) and ((k/sumtot) GT 0) then
SMAX = - (count -r) * (k/sumtot) * log(k/sumtot)
-r * ((k + 1)/sumtot) * log((k+1)/sumtot);
pvarl = 0;
do j=1 to (sumtot - count + 1);
pvar1 = pvar1 + log(j);
end;
pvar2 = 0;
do j=1 to k;
if k NE 0 then
pvar2 = pvar2 + log(j);
end;
if sumtot NE 0 then
BMIN = (1/sumtot) * (pvar{20} - pvarl);
if sumtot NE 0 then
```



```
if (SMAX - SMIN) NE 0 then
ShannonR = (SMAX - Shannon) / (SMAX - SMIN);
if (BMAX - BMIN) NE 0 then
BrillouR = (BMAX - Brillou) / (BMAX - BMIN})
if SMAX NE 0 then
ShannonE = Shannon / SMAX;
if BMAX NE 0 then
BrillouE = Brillou / BMAX;
run;
proc print data=temp12;
var p20 fin denprod Shannon Brillou k r SMIN SMAX BMIN BMAX
ShannonR BrillouR ShannonE BrillouE;
run;
```

```
    data temp; set trans6;
count=19;
dentotal =
sum(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19);
array bl \{19\} cl-c19;
numtot \(1=0\); numtot \(2=0\);
do \(\mathrm{i}=1\) to 19 ;
if \(\mathrm{bl}\{\mathrm{i}\}>0\) then
numtot \(1=\) numtot \(1+\mathrm{b} 1\{\mathrm{i}\} *(\mathrm{~b} 1\{\mathrm{i}\}-1) ;\)
numtot2 \(=\) numtot \(2+\mathrm{b} 1\{\mathrm{i}\} * \mathrm{~b} 1\{\mathrm{i}\} ;\)
end;
if dentotal > 1 then
simpson \(=\) numtot \(1 /(\) dentotal \(*(\) dentotal -1\())\);
hurlkeef = 1 - simpson;
if (dentotal-sqrt(dentotal)) NE 0 then
mcintosh=(dentotal-sqrt(numtot2))/(dentotal-sqrt(dentotal));
```

if (dentotal-(dentotal/sqrt(count))) NE 0 then
mcinmax $=($ dentotal-sqrt(numtot2))/(dentotal-(dentotal/sqrt(count)));
if $($ dentotal-sqrt((dentotal-count +1$) *($ dentotal-count +1$)+($ count-1))) NE 0 then mcinmin=(dentotal-sqrt(numtot2))
$/($ dentotal-sqrt((dentotal-count+1)*(dentotal-count+1)+(count-1)));
if dentotal NE 0 then
rntheory $=($ dentotal $*$ dentotal + dentotal - numtot 2$) /($ dentotal $*$ dentotal $)$;
proc print data=temp;
var count dentotal simpson hurlkeef mcintosh mcinmax mcinmin mtheory;
data comb; merge temp12 temp;
proc tranpose data=comb out=out1 prefix=t;
var Shannon Brillou Hurlkeef mcintosh rntheory;
data calcu; set out1;
array trans \{30\} t1-t30;
array diff $\{30\}$ d1-d30;
do $\mathrm{i}=1$ to 29 ;
$\operatorname{diff}\{\mathrm{i}\}=\operatorname{trans}\{i+1\}-\operatorname{trans}\{\mathrm{i}\}$;
end;
proc transpose data=calcu out=differ;
var d1-d30;
proc print data=differ; run; libname ming' \square '; options pagesize=56;
data templ;

APPENDEX E

A SAS PROGRAM TO CALCULATE QUALITATIVE COMMUNITY COMPARISON INDICES OF BENTHIC MACROINVERTEBRATES
libname ming ' $]^{\prime}$ ';
infile 'datarev.prn';
input bl-b45;
data temp2; set temp1;
array com $\{45\}$ bl-b45;
array agree $\{44,45\}$ a1-a 1980 ;
do $\mathrm{i}=1$ to 44 ;
ind= $\mathrm{i}+1$;
do $\mathrm{j}=$ ind to 45 ;
agree $\{\mathrm{i}, \mathrm{j}\}=0$;
if ((com\{i\} GT 0) and (com $\{\mathrm{j}\}$ GT 0$)$) then agree $\{\mathrm{i}, \mathrm{j}\}=1$;
end;
end;
do $\mathrm{i}=1$ to 45 ;
if $\operatorname{com}\{\mathrm{i}\}$ GT 1 then $\operatorname{com}\{\mathrm{i}\}=1$;
end;
proc means noprint data=temp2;
var b1-b45 al-a 1980;
output out=totals sum=s1-s45 sal-sa 1980;
data temp3 (keep=Basket i j a b c jaccard1 Jaccard2 Kulczyn Sorensen
Mountfor Ochiai Fager1 Fager2 SMC);
set totals;
array $\operatorname{com}\{45\}$ s1-s45;
array agree $\{44,45\}$ sal-sa 1980 ;
do $\mathrm{i}=1$ to 44 ;
ind=i+1;
do $\mathrm{j}=$ ind to 45 ;
$\mathrm{a}=\mathrm{com}\{\mathrm{i}\}$;
$\mathrm{b}=\operatorname{com}\{\mathrm{j}\}$;
$\mathrm{c}=$ agree $\{\mathrm{i}, \mathrm{j}$;
Basket=i;
if $(a+b-c)$ GT 0 then
Jaccard $1=\mathrm{c} /(\mathrm{a}+\mathrm{b}-\mathrm{c})$;
Jaccard2 = c/(a+b);
if ((a NE 0) and (b NE 0)) then
Kulczyn $=c / 2$ * ((1/a) $+(1 / b))$;
if $(a+b)$ NE 0 then
Sorensen $=(2 * \mathrm{c}) /(\mathrm{a}+\mathrm{b})$;
if $(((2 * a * b)-((a+b) * c))$ NE 0$)$ then
Mountfor $=(2 * c) /((2 * a * b)-((a+b) * c)) ;$
Ochiai $=\mathrm{c} /(\operatorname{SQRT}((\mathrm{c}+\mathrm{b}) *(\mathrm{c}+\mathrm{a})))$;
Fagerl $=(\mathrm{c} /(\operatorname{SQRT}((\mathrm{c}+\mathrm{b}) *(\mathrm{c}+\mathrm{a}))))-(1 /(2 * \operatorname{SQRT}(\mathrm{c}+\mathrm{b})))$;
Fager2 $=(2 * \mathrm{c} /(\operatorname{SQRT}((\mathrm{c}+\mathrm{b}) *(\mathrm{c}+\mathrm{a}))))$ -
$((1 /(2 * \operatorname{SQRT}(\mathrm{c}+\mathrm{b})))+(1 /(2 * \operatorname{SQRT}(\mathrm{c}+\mathrm{a})))) ;$
SMC = Jaccard 1 ;
output;
end;
end;
proc print data=temp3;
run;

APPENDIX F

SAS PROGRAMS TO CALCULATE QUANTITATIVE COMMUNITY COMPARISON INDICES OF BENTHIC MACROINVERTEBRATES

1. Program to Calculate Percent Similarity (Renkonen, 1938), SIMI (Stander, 1970) and Distance Measure (Clifford and Stephenson, 1975).
options pagesize $=56$;
data templ;
infile 'datarev.prn';
input b1-b45;
proc transpose data=templ out=trans prefix=c;
var bl-b45;
data temp2 (keep = f1-f199); set trans;
sumtot $=\operatorname{sum}(\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3, \mathrm{c} 4, \mathrm{c} 5, \mathrm{c} 6, \mathrm{c} 7, \mathrm{c} 8, \mathrm{c} 9, \mathrm{c} 10, \mathrm{c} 11, \mathrm{c} 12, \mathrm{c} 13, \mathrm{c} 14, \mathrm{c} 15$, c16,c17,c18,c19,c20,c21,c22,c23,c24,c25,c26,c27,c28,c29,c30,c31, c32,c33,c34,c35,c36,c37,c38,c39,c40,c41,c42,c43,c44,c45,c46,c47, c48,c49,c50,c51,c52,c53,c54,c55,c56,c57,c58,c59,c60,c61,c62,c63, c64,c65,c66,c67,c68,c69,c70,c71,c72,c73,c74,c75,c76,c77,c78,c79, c80, c81,c82, c83,c84,c85,c86,c87,c88,c89,c90,c91,c92,c93,c94,c95, c96,c97,c98, c99, c100, c101,c102,c103, c104, c105,c106,c107,c108, c109, c110,c111,c112,c113,c114,c115,c116,c117,c118,c119,c120,c121, $\mathrm{c} 122, \mathrm{c} 123, \mathrm{c} 124, \mathrm{c} 125, \mathrm{c} 126, \mathrm{c} 127, \mathrm{c} 128, \mathrm{c} 129, \mathrm{c} 130, \mathrm{c} 131, \mathrm{c} 132, \mathrm{c} 133, \mathrm{c} 134$, c135,c136,c137,c138,c139,c140,c141,c142,c143,c144,c145,c146,c147, c148,c149,c150,c151,c152,c153,c154,c155,c156,c157,c158,c159,c160, c161,c162,c163,c164,c165,c166,c167,c168,c169,c170,c171,c172,c173, c174,c175,c176,c177,c178,c179,c180,c181,c182,c183,c184,c185,c186, c187,c188,c189,c190,c191,c192,c193,c194,c195,c196,c197,c198, c199);
array raw \{199\} cl-c199;
array fract \{199\} f1-f199;
do $\mathrm{i}=1$ to 199 ;
if sumtot NE 0 then
fract $\{i\}=\operatorname{raw}\{i\} /$ sumtot;
end;
proc transpose data=temp2 out=fract prefix=frac;
var f1-f199;
data temp3 (keep $=$ fmin1-fmin 1980 ps 1-ps 1980 d1-d1980
nal-na1980 nb1-nb1980 dis1-dis1980);
set fract;
array frac $\{45\}$ frac 1-frac 45 ;
array $\mathrm{fmin}\{44,45\}$ fmin $1-\mathrm{fmin} 1980$;
array absolu $\{44,45\}$ ab1-ab1980;
array psimilar $\{44,45\}$ ps 1-ps 1980;
array SIMIden $\{44,45\}$ d1-d1980;
array SIMInuA $\{44,45\}$ nal-na1980;
array SIMInuB $\{44,45\}$ nbl-nb1980;
array dist $\{44,45\}$ dis1-dis 1980;
do $i=1$ to $44 ;$
ind $=\mathrm{i}+1$;
do $j=$ ind to 45 ;
if frac $\{i\}$ NE 0 then
$\operatorname{fmin}\{i, j\}=\operatorname{MNN}(\operatorname{frac}\{i\}, \operatorname{frac}\{j\}) ;$
$\operatorname{psimilar}\{\mathrm{i}, \mathrm{j}\}=\mathrm{ABS}(\operatorname{frac}\{\mathrm{i}\}-\operatorname{frac}\{\mathrm{j}\})$;
SIMIden $\{\mathrm{i}, \mathrm{j}\}=\operatorname{frac}\{\mathrm{i}\} * \operatorname{frac}\{\mathrm{j}\} ;$
SIMInuA $\{\mathrm{i}, \mathrm{j}\}=\operatorname{frac}\{\mathrm{i}\} * \operatorname{frac}\{\mathrm{i}\} ;$
SIMInuB $\{\mathrm{i}, \mathrm{j}\}=\operatorname{frac}\{\mathrm{j}\} * \operatorname{frac}\{\mathrm{j}\} ;$
$\operatorname{dist}\{\mathrm{i}, \mathrm{j}\}=(\operatorname{frac}\{\mathrm{i}\}-\operatorname{frac}\{\mathrm{j}\}) *(\operatorname{frac}\{\mathrm{i}\}-\operatorname{frac}\{\mathrm{j}\})$;
end;
end;
run;
proc means noprint data=temp3;
var fmin 1-fmin 1980 ps1-ps1980 d1-d1980 nal-na1980 nb1-nb1980 dis 1-dis 1980;
output out=minout sum=fmin1-fmin 1980 ps1-ps 1980 d1-d1980
na1-na1980 nb1-nb1980 dis1-dis1980;
run;
data temp4 (keep = basket i j Renkonen ComplmtR Wittaker SIMI
ComplmtS Distance); set minout;
array fmin $\{44,45\}$ fmin1-fmin 1980;
array psimilar $\{44,45\}$ ps1-ps1980;
array SIMIden $\{44,45\}$ d1-d1980;
array SIMInuA $\{44,45\}$ na1-na1980;
array SIMInuB $\{44,45\}$ nb1-nb1980;
array dist $\{44,45\}$ dis1-dis 1980 ;
do $\mathrm{i}=1$ to 44 ;
ind = i + 1 ;
do $j=$ ind to 45 ;
basket = i;
Renkonen $=\operatorname{fmin}\{\mathrm{i}, \mathrm{j}\}$;
ComplmtR = 1 - Renkonen;
Wittaker $=1-1 / 2 * \operatorname{psimilar}\{i, j\}$;
SIMI = SIMIden $\{\mathrm{i}, \mathrm{j}\} / \operatorname{SQRT}(\operatorname{SIMInuA}\{\mathrm{i}, \mathrm{j}\} * \operatorname{SIMInuB}\{\mathrm{i}, \mathrm{j}\}) ;$
ComplmtS = 1 - SIMI;
Distance $=\operatorname{dist}\{\mathrm{i}, \mathrm{j}\}$;
output;
end;
end;
proc print data $=$ temp4;
run;
2. Program to Calculate Bray-Curtis Index (1957), Canberra Metric (Lance and Williams, 1967), Collection and Percent Dissimilarity (1981).
options pagesize=56;
data templ;
infile 'datarev.prn';
input bl-b45;
run;
proc means noprint data=templ;
var bl-b45;
output out=sumbout sum=bsum 1-bsum45;
data temp2 (keep $=$ b1-b45 bsum1-bsum45 bray1-bray 1980 ag 1-ag 1980
narr1-narr1980 p1-p1980 a 1-a 1980 c 1-c 1980);
if _n_ = 1 then set sumbout; set templ;
array $\mathrm{NN}\{45$ \} b1-b45;
array agree $\{44,45$) ag 1 -ag 1980 ;
array absolu $\{44,45\}$ a 1-a 1980;
array combine 444,45$\}$ c1-c 1980;
array bray $\{44,45\}$ bray1-bray 1980 ;
array NP 444,45$\}$ narr1-narr 1980;
array Nsum \{45\} bsum 1-bsum45;
array abso $\{44,45\}$ abl-ab1980;
array Part $1\{44,45\}$ paral-para 1980;
array Part2 $\{44,45\}$ parb1-parb 1980;
array $\mathrm{CD}\{44,45\}$ p1-p 1980;
```
do \(\mathrm{i}=1\) to 44 ;
ind = i + 1 ;
do \(\mathrm{j}=\) ind to 45 ;
agree \(\{\mathrm{i}, \mathrm{j}\}=0\);
if ( \(\mathrm{NN}\{\mathrm{i}\}\) GT 0 ) or ( \(\mathrm{NN}\{\mathrm{j}\}\) GT 0\()\) ) then
agree \(\{\mathrm{i}, \mathrm{j}\}=1\);
absolu \(\{\mathrm{i}, \mathrm{j}\}=\mathrm{ABS}(\mathrm{NN}\{\mathrm{i}\}-\mathrm{NN}\{\mathrm{j}\})\);
combine \(\{\mathrm{i}, \mathrm{j}\}=\mathrm{NN}\{\mathrm{i}\}+\mathrm{NN}\{\mathrm{j}\} ;\)
if combine \(\{\mathrm{i}, \mathrm{j}\}\) NE 0 then
bray \(\{\mathrm{i}, \mathrm{j}\}=\operatorname{absolu}\{\mathrm{i}, \mathrm{j}\} /\) combine \(\{\mathrm{i}, \mathrm{j}\}\);
\(\mathrm{NP}\{\mathrm{i}, \mathrm{j}\}=\mathrm{NN}\{\mathrm{j}\}\) * \(\operatorname{Nsum}\{\mathrm{i}\} / \mathrm{Nsum}\{\mathrm{j}\} ;\)
abso \(\{\mathrm{i}, \mathrm{j}\}=\mathrm{ABS}(\mathrm{NN}\{\mathrm{i}\}-\mathrm{NP}\{\mathrm{i}, \mathrm{j}\})\);
if (NN\{i\} + NP\{i,j\}) NE 0 then
Part \(\{\mathrm{i}, \mathrm{j}\}=\operatorname{abso}\{\mathrm{i}, \mathrm{j}\} /(\mathrm{NN}\{\mathrm{i}\}+\mathrm{NP}\{\mathrm{i}, \mathrm{j}\}) ;\)
Part2 \(\{\mathrm{i}, \mathrm{j}\}=\operatorname{abso}\{\mathrm{i}, \mathrm{j}\} /\) Nsum \(\{\mathrm{i}\} ;\)
\(C D\{i, j\}=\operatorname{Part} 1\{i, j\}+\operatorname{Part} 2\{i, j\} ;\)
end;
end;
```

proc means noprint data=temp2;
var bray1-bray 1980 ag1-ag1980 pl-p1980 a1-a 1980 c1-c1980;
output out=sumout sum=sb1-sb1980 sal-sa1980 sp1-sp1980 sabl-sab1980 sc 1-sc 1980;
data temp3 (keep = basket i j agree Bray Braycurt Canberra CD PD); set
sumout;
array sumbray $\{44,45\}$ sb 1-sb 1980;
array sumagree $\{44,45\}$ sa 1 -sa 1980 ;
array sumCD $\{44,45\}$ sp 1-sp 1980;
array sumabso $\{44,45\}$ sab1-sab 1980 ;
array sumcom $\{44,45\}$ sc 1-sc 1980;
do $\mathrm{i}=1$ to 44 ;
ind $=\mathrm{i}+1$;
do $j=$ ind to 45 ;
basket = i;
Bray = sumabso $\{\mathrm{i}, \mathrm{j}\} /$ sumcom $\{\mathrm{i}, \mathrm{j}\}$;
Braycurt = sumbray $\{\mathrm{i}, \mathrm{j}\}$;
agree $=$ sumagree $\{i, j\}$;
if agree NE 0 then
Canberra $=1 /$ agree $*$ braycurt;
$\mathrm{CD}=1 /$ agree $* \operatorname{sumCD}\{\mathrm{i}, \mathrm{j}\}$;
$\mathrm{PD}=\mathrm{CD} /(1+2 /$ agree $)$;
output;
end;
end;
proc print data=temp3;
run;
3. Program to Calculate Morisita Similarity Index (1959) and Simplified Morisita Index (Horn, 1966).
options pagesize $=56$;
data templ;
infile 'datarev.prn';
input b1-b45;
run;
data temp2 (keep = p1-p1980 la1-la 1980 lbl-lb1980 lsa1-lsa 1980 lsb1-lsb1980); set temp1;
array raw \{45\} b1-b45;
array prod $\{44,45\}$ p1-p1980;
array lamdaA $\{44,45\}$ la1-la 1980 ;
array lamdaB $\{44,45\}$ lb1-lb1980;
array lamdaSA $\{44,45\}$ lsa1-lsa1980;
array lamdaSB $\{44,45\}$ lsb1-lsb 1980;
do $\mathrm{i}=1$ to 44 ;
ind $=\mathrm{i}+1$;
do $\mathrm{j}=$ ind to 45 ;
$\operatorname{prod}\{\mathrm{i}, \mathrm{j}\}=\operatorname{raw}\{\mathrm{i}\} * \operatorname{raw}\{\mathrm{j}\}$;
lamdaA $\{\mathrm{i}, \mathrm{j}\}=\operatorname{raw}\{\mathrm{i}\} *(\operatorname{raw}\{\mathrm{i}\}-1)$;
lamdaB $\{\mathrm{i}, \mathrm{j}\}=\operatorname{raw}\{\mathrm{j}\} *(\operatorname{raw}\{\mathrm{j}\}-1)$;
$\operatorname{lamdaSA}\{\mathrm{i}, \mathrm{j}\}=\operatorname{raw}\{\mathrm{i}\} * \operatorname{raw}\{\mathrm{i}\} ;$
$\operatorname{lamdaSB}\{\mathrm{i}, \mathrm{j}\}=\operatorname{raw}\{\mathrm{j}\} * \operatorname{raw}\{\mathrm{j}\} ;$
end;
end;
run;
proc means noprint data=temp2;
var p1-p1980 la1-la1980 lb1-lb1980 lsa1-lsa1980 lsb1-lsb1980;
output out=sumout sum = sp1-sp1980 sla1-sla 1980 slb1-slb1980
slsa 1-slsa 1980 slsb 1-slsb 1980;
proc means noprint data=temp 1 ;
var bl-b45;
output out=sumb sum=sb1-sb45;
data temp4 (keep =basket i j Morisita Horn ComplmtH);
if _n_ = 1 then set sumb; set sumout;
array slamda $A\{44,45\}$ sla1-sla 1980 ;
array slamdaB $\{44,45\}$ slb1-slb1980;
array sprod $\{44,45\}$ sp1-sp 1980;
array slamdaSA $\{44,45\}$ slsa1-slsa 1980 ;
array slamdaSB $\{44,45\}$ slsb1-slsb 1980 ;
array $\mathrm{sb}\{45\}$ sb1-sb45;
do $i=1$ to 44 ;
ind $=\mathrm{i}+1$;
do $\mathrm{j}=$ ind to 45 ;

```
basket = i;
lamdaA = slamdaA {i,j};
lamdaB = slamdaB{i,j};
prod = sprod {i,j};
lamdaSA = slamdaSA {i,j};
lamdaSB = slamdaSB {i,j};
if ((sb{i} * (sb{i}-1)) NE 0) then
flamdaA = lamdaA / (sb{i} * (sb{i} - 1));
if ((sb{j} * (sb{j} - 1)) NE 0) then
flamdaB = lamdaB / (sb{j} * (sb{j} - 1));
flamdaSA = lamdaSA / (sb{i} * sb{i});
flamdaSB = lamdaSB / (sb{j} * sb{j});
if (((flamdaA + flamdaB) NE 0) and (sb{i} NE 0) and (sb{j} NE 0)) then
Morisita = 2* prod / ((flamdaA + flamdaB) * sb{i} * sb{j});
if (((flamdaSA + flamdaSB) NE 0) and (sb{i} NE 0) and (sb{i} NE 0)) then
Horn =2* prod / ((flamdaSA + flamdaSB) * sb{i} * sb{j});
ComplmtH = 1 - Horn;
output;
end;
end;
```

proc print data=temp4;
run;
4. Program to Calculate Squared Euclidean Distance (Sokal, 1961), PinkhamPearson Index B, and Pinkham-Pearson Index B_{2} (1976)
options pagesize=56;
data templ;
infile 'datarev.prn';
input b1-b45;
run;
proc means noprint data=templ;
var bl-b45;
output out=sumbout sum=sb1-sb45;
data temp2 $($ keep $=\operatorname{div1} 1-\operatorname{div} 1980$ a1-a $1980 \operatorname{dis} 1$-dis 1980
fac 1-fac 1980);
if _n_ = 1 then set sumbout; set temp 1;
array raw \{45\} bl-b45;
array total $\{45\}$ sbl-sb45;
array $\operatorname{div}\{44,45\}$ div1-div 1980 ;
array fmax $\{44,45\}$ fmax 1 -fmax 1980 ;
array $\operatorname{fmin}\{44,45\}$ fmin 1 -fmin 1980 ;
array agree $\{44,45\}$ al-a 1980;
array dist $\{44,45\}$ dis 1 -dis 1980 ;
array factor $\{44,45\}$ facl-fac 1980 ;
do $\mathrm{i}=1$ to 44 ;
ind $=\mathrm{i}+1$;
do $\mathrm{j}=$ ind to 45 ;
fmax $\{\mathrm{i}, \mathrm{j}\}=\operatorname{MAX}($ raw $\{\mathrm{i}\}$, raw $\{\mathrm{j}\})$;
$\operatorname{fmin}\{\mathrm{i}, \mathrm{j}\}=\operatorname{MIN}(\operatorname{raw}\{\mathrm{i}\}, \operatorname{raw}\{\mathrm{j}\}) ;$
agree $\{\mathrm{i}, \mathrm{j}\}=0$;
if (raw $\{\mathrm{i}\} \mathrm{NE} 0$) or (raw $\{\mathrm{j}\} \mathrm{NE} 0$) then
agree $\{\mathrm{i}, \mathrm{j}\}=1$;
if fmax $\{i, j\}$ NE 0 then
$\operatorname{div}\{\mathrm{i}, \mathrm{j}\}=\mathrm{fmin}\{\mathrm{i}, \mathrm{j}\} / \mathrm{fmax}\{\mathrm{i}, \mathrm{j}\} ;$
$\operatorname{dist}\{\mathrm{i}, \mathrm{j}\}=(\operatorname{raw}\{\mathrm{i}\}-\operatorname{raw}\{\mathrm{j}\}) *(\operatorname{raw}\{\mathrm{i}\}-\operatorname{raw}\{\mathrm{j}\}) ;$
factor $\{\mathrm{i}, \mathrm{j}\}=((\operatorname{raw}\{\mathrm{i}\} / \operatorname{total}[\mathrm{i}\}) *(\operatorname{raw}\{\mathrm{j}\} / \operatorname{total}\{\mathrm{j}\})) / 2$;
end;
end;
proc means noprint data=temp2;
var div1-div 1980 a1-a 1980 dis1-dis 1980 fac 1-fac 1980;
output out=sumout sum=sd1-sd1980 sal-sa1980 sdis 1 -sdis 1980
sfac 1-sfac 1980;
data temp3 (keep = basket ij div agree Pinkham1 Complmt1
Pinkham2 Clifford); set
sumout;
array sumdiv $\{44,45\}$ sd 1-sd 1980;
array sumagree $\{44,45\}$ sa 1 -sa 1980 ;
array sumdist $\{44,45\}$ sdis 1 -sdis 1980 ;
array sumfac $\{44,45\}$ sfacl-sfac 1980 ;
do $\mathrm{i}=1$ to 44 ;
ind $=\mathrm{i}+1$;
do $\mathrm{j}=$ ind to 45 ;
div $=\operatorname{sumdiv}\{i, j\}$;
agree $=$ sumagree $\{i, j\}$;
distance $=$ sumdist $\{i, j\}$;
factor $=\operatorname{sumfac}\{i, j\}$;
basket=i;
if agree NE 0 then
Pinkham1 $=1$ /agree $* \operatorname{div}$;
Complmt 1 = 1 - Pinkhaml;
Pinkham2 = Pinkham1 * factor;
Clifford = SQRT(distance);
output;
end;
end;
proc print data=temp3;
run;
5. Program to Calculate the Average Chi-Square (Parrish and Wagner, 1983).
options pagesize=56;
data templ;
infile 'datarev.prn';
input bl-b45;
run;
data temp2 (keep = f1-f1980 s1-s 1980); set temp 1;
array raw 445 \} bl-b45;
array average $\{44,45\}$ a 1 -a 1980 ;
array final $\{44,45\}$ f1-f1980;
array sumboth $\{44,45\}$ s1-s 1980 ;
do $\mathrm{i}=1$ to 44 ;
ind $=\mathrm{i}+1$;
do $\mathrm{j}=$ ind to 45 ;
average $\{\mathrm{i}, \mathrm{j}\}=\operatorname{MEAN}(\mathrm{raw}\{\mathrm{i}\}, \operatorname{raw}\{\mathrm{j}\}$);
if (average $\{\mathrm{i}, \mathrm{j}\}$ NE 0) then
final $\{\mathrm{i}, \mathrm{j}\}=((\operatorname{raw}\{\mathrm{i}\}-\operatorname{average}\{\mathrm{i}, \mathrm{j}\}) *(\operatorname{raw}\{\mathrm{i}\}-\operatorname{average}\{\mathrm{i}, \mathrm{j}\})) /$ average $\{\mathrm{i}, \mathrm{j}\}$;
sumboth $\{\mathrm{i}, \mathrm{j}\}=\operatorname{raw}\{\mathrm{i}\}+\operatorname{raw}\{\mathrm{j}\} ;$
end;
end;
proc means noprint data=temp2;
var f1-f1980 s1-s 1980;
output out=sumout sum=sf1-sf1980 sb1-sb1980;
data temp3 (keep = basket ij sumfina sumboth Parrish ComplmtP); set sumout; array $\operatorname{sumf}\{44,45\}$ sf1-sf1980;
array sboth $\{44,45\}$ sb1-sb1980;
do $\mathrm{i}=1$ to 44 ;
ind = i + 1;
do $\mathrm{j}=$ ind to 45 ;
basket $=\mathrm{i}$;
sumfina $=\operatorname{sumf}\{i, j\} ;$
sumboth $=\operatorname{sboth}\{i, j\} ;$
if (sumboth NE 0) then
Parrish $=(2 /$ sumboth $) *$ sumfina;
ComplmtP = $1-$ Parrish;
output;
end;
end;
proc print data=temp3;
run;

LITERATURE CITED

Abugov, R. 1982. Species diversity and phasing of disturbances. Ecology 63(2):289293.

American Public Health Association. 1985. Standard methods for the examination of water and wastewater, 16th ed. Washington, D.C., 1268 pp.

Authur, J.W., Andrew, R.W., Mattson, V.R., Olson, D.T., Glass, G.E., Halligan, B.J. and Walbridge, C.T. 1975. Comparative toxicity of sewage effluent disinfection to freshwater aquatic life. EPA Ecological Research Series. EPA-600/3-75-012.

Authur, J.W. and Eaton, J.G. 1971. Chloramine toxicity to the amphipod Gammarus pseudolimneus, and the fathead minnow Pimephales promelas. Journal of Fisheries Research Board Cannda 28:1841-1845.

Barrett, G.W. 1968. The effects of an acute insecticide stress on a semi-enclosed grassland ecosystem. Ecology 49(6):1019-1035.

Bascom, W. 1982. The effects of waste disposal on the coastal waters of Southern California. Environmental Science \& Technology 16:226A-236A.

Bass, W.M. and Heath, A.G. 1977. Cardiovascular and respiratory changes in rainbow trout, Salmo gairdneri, exposed intermittently to chlorine. Water Research 11:497-502.

Bayer, F.M., Voss, G.L. and Robins, C.R. 1970. Report on the marine fauna and benthic shelf-slope communities of the Isthmian region. Battelle Memorial Institute, Ohio:1-94.

Beck, W.M. Jr. 1976. Biology of the larval chironomids. State of Florida, Department of Environmental Regulation, Technical Series Vol. 2, No. 1.

Benson-Evans, K., Williams, P.F., McLean, R.O. and Prance, N. 1975. Algal communities in polluted rivers of South Wales. Verhandlungen - Internationale Vereinigung fur Theoretische und Angewanete Limnologie 19:2010-2019.

Boesch, D.F. 1971. Distribution and structure of benthic communities in a gradient estuary. Ph.D. dissertation. Virginai Institute of Marine Science, Gloucester Point, Va.

Bowman, T.E. 1971. The distribution of calanoid copepods off the southeastern United States between Cape Hatteras and Southern Florida. Smithsonian Contributions to Zooogy 96:1-58.

Boyce, S.D. and Horning, J.F. 1983. Reaction pathways of trihalomethane formation from the halogenation of dihydroxyaromatic model compounds for humic acid. Environmental Science \& Technology 17:202-211.

Boyle, T.P., Sebaugh, J. and Robinson-Wilson, E. 1984. A hierarchical approach to the measurement of changes in community structure induced by environmental stress. Journal of Testing and Evaluation. JTEVA. 12(4):241-245.

> Boyle, T.P., Smillie, G.M., Anderson, J.C. and Beeson, D.R. 1990. A sensitivity analysis of nine diversity and seven similarity indices. Research Journal of the Water Pollution Control Federation 62(6):749-762.

Bray, J.R. and Curtis, J.T. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs 27:325-349.

Brillouin, L. 1956. Science and Information Theory. Academic Press, New York.
Brock, D.A. 1977. Comparison of community similarity indexes. Research Journal of the Water Pollution Control Federation 49:2488-2494.

Brooks, A.S. and Bartos, J.M. 1984. Effects of free and combined chlorine and exposure duration on rainbow trout, channel catfish, and emerald shiners. Transaction of the American Fisheries Society 116:786-793.

Brooks, A.S. and Seegert, G.L. 1978. The effects of intermittent chlorination on ten species of warmwater fish. Spec. Rep. No. 35, Center for Great Lake Studies, University of Wisconsin, Milwaukee.

Brungs, W.A. 1973. Effects of residual chlorine on aquatic life. Research Journal of the Water Pollution Control Federation 45:2180-2193.

Bryce, D., Caffoor, I.M., Dale, C.R. and Jarrett, A.F. 1978. Macroinvertebrates and the bioassay of water quality: a report based on a survey of the River Lee, Nelpress, London.

Cairns, J. Jr. 1986. Are single species toxicity tests alone adequate for estimating environmental hazard? Hydrobiologia 100:47-57.

Cairns, J. Jr., Albaugh, D.W., Busey, F. and Chancy, M.D. 1968. The sequential comparison index - a simplified method for non-biologists to estimate relative differences in biological diversity in stream pollution studies. Research Journal of the Water Pollution Control Federation 40:1607-1613.

Cairns, J. Jr., Brikema, A.L. Jr., Heath, A.G. and Parker, B.C. 1978. Effects of temperature on aquatic organisms sensitivity to selected chemicals. Bull. No. 106, Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, Blacksburg.

Cairns, J. Jr. and Dickson, K.L. 1971. A simple method for the biological assessment of the effects of waste discharges on aquatic bottom-dwelling organisms. Research Journal of the Water Pollution Control Federation 43:755-772.

Cairns, J. Jr. and Kaesler, R.L. 1969. Cluster analysis of Potomac River survey stations based on protozoan presence-absence data. Hydrobiologia 34:414-432.

Cairns, J. Jr. and Kaesler, R.L. 1971. Cluster analysis of fish in a portion of the upper Potomac River. Transaction of the American Fisheries Society 100:750-756.

Capuzzo, M.J. 1977. The effects of free chlorine and chloramines on growth and respiration rates of larval lobsters (Homarus americanus). Water Research 11:1021-1024.

Capuzzo, M.J. 1979. The effects of halogen toxicants on survival, feeding, and egg production of the rotifer Brachionus plicatilis. Estuarine and Coastal Marine Science 8:307-316.

Carriker, M.R. et al. 1982. In: Ecological stress and the New York Bight: science and management. Mayer, G.F. (Ed.) Estuarine Research Federation. Columbia, S.C. pp. 3-21.

Chandler, J.R. 1970. A biological approach to water quality management. Water Pollution Control 69:415-421.

Chang, Y.Y. 1989. An on-site assessment of chlorination impacts on benthic macroinvertebrates. MS thesis. University of Massachusetts, Amherst, Ma.

Chlorine Institute. 1974. Chlorine supply situation. Revised January 25, 1974. The Chlorine Institute, New York, N.Y.

Chutter, F.M. 1972. An empirical biotic index of the quality of water in south African streams and rivers. Water Research 6:19-30.

Clarke, R. McV., Alexander, D.G., Boychuk, R.W., Chu, B.S.L. and Maciorowski, H.D. 1977. The effect of chlorination on the acute lethal toxicity of Winnipeg municipal wastes. Tech. Rep. No. 712, Fisheries and Marine Services, Research and Development Directorate, Department of The Environment, Winnipeg, Manitoba.

Clements, W.H., Van Hassel, J.H., Cherry, D.S. and Cairns, J. Jr. 1989. Colonization, variability, and the use of substratum-filled trays for biomonitoring benthic communities. Hydrobiologia 173:45-53.

Clifford, H.F., Gotceitas, V. and Casey, R.J. 1989. Roughness and color of artificial substratum particles as possible factors in colonization of stream invertebrates. Hydrobiologia 175:89-95.

Clifford, H.T. and Stephenson, W. 1975. An Introduction to Numerical Classification. Academic Press, New York.

Clifford, H.T. and Williams, W.T. 1976. Similarity measures. In: Pattern Analysis in Agricultural Science. Williams, W.T. (Ed.) CSIRO, Elsevier, New York. pp. 37-46.

Coler, M., Chang, Y.Y. and Coler, R.A. 1989. The determination of limestone rubble surface area by linear regression. Hydrobiologia 184:165-168.

Coler, M. 1990. In-stream assessment of the impact of chlorinated sewage on stonedwelling benthic macroinvertebrates colonizing artificial substrates. MS thesis. University of Massachusetts, Amherst, Ma.

Connell, J.H. and Sousa, W.P. 1983. On the evidence needed to judge ecological stability or persistence. American Naturalist 121:789-824.

Cook, S.E.K. 1976. Quest for an index of community structure sensitive to water pollution. Environmental Pollution 11:269-288.

Correa, N., Calabrese, E.J. and Coler, R.A. 1985. Effects of trichloroacetic acid, a new contaminant found from chlorinating water with organic material, on dragonfly nymphs. Bulletin of Environmental Contamination and Toxicology 34:271-274.

Coventry, F.L. Shelford, V.E. and Miller, L.F. 1935. The conditioning of chloramine treated water supply for biological purposes. Ecology 16:60-66.

Dambach, C.A. and Olive, J.H. 1969. Development of biological indices to pollution levels in streams affected by acid mine drainage and oil field brine waster. Nat. Res. Inst. and the Water Res. Center, Res. Proj. Completion Report. Proj. No. A-003-Ohio. 89 p.

Dandy, J.W.T. 1972. Activity response to chlorine in the Brook Trout. Canadian Journal of Zoology 50:405-510.

DEQE. 1989. Standard operating procedures. Biomonitoring program. Massachusetts Department of Environmental Quality Engineering. Division of Water Pollution Control. iii + 132.

Devaux, J. 1975. Succession Ecologique, diversite specifique et production primaire dans unlac ologotrophe d'Auvergne (France). Verhandlungen - Internationale Vereinigung fur Theoretische und Angewanete Limnologie 19:1165-1171.

Doudoroff, P. and Katz, M. 1950. Critical review of literature on the toxicity of industrial wastes and their components to fish. Sewage and Industrial Wastes 22:1432-1458.

Dyer D.P. 1978. An analysis of species dissimilarity using multiple environmental variables. Ecology 59:117-125.

Elliott, J.M. 1977. Some methods for the statistical analysis of samples of benthic invertebrates (2nd ed.) Freshwater Biological Association, Scientific Publication, No. 25.160 p.

EPA, 1986. The criteria of water quality for freshwater aquatic life and public health.
EPA, 1985. Ambient water quality criteria for chlorine - 1984.
Erman, D.C. and Erman, N.A. 1984. The response of stream macroinvertebrates to substrate size and heterogeneity. Hydrobiologia 108:75-82.

Fager, E.W. 1968. The community of invertebrates in decaying oak wood. The Journal of Animal Ecology 37:121-142.

Fager, E.W. and Longhurst, A.R. 1968. Recurrent group analysis of species assemblages of demersal fish in the Gulf of Guinea. Journal of the Fisheries Research Board of Canada 25:1405-1421.

Fager, E.W. and McGowan, J. 1963. Zooplankton species groups in the North Pacific. Science 140:453-460.

Fast, A.W. 1970. An evaluation of the efficiency of zoobenthos separation by sugar flotation. The Progressive Fish-Culturist. October:212-216.

Field, J.G. 1969. The use of the information statistic in the numerical classification of heterogeneous systems. The Journal of Ecology 57:565-569.

Field, J.G. 1971.A numerical analysis of changes in the soft-bottom fauna along a transect across False Bay, South Africa. Journal of Experimental Marine Biology and Ecology 7:215-253.

Fisher, R.A., Corbet, A.S. and Williams, C.B. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. The Journal of Animal Ecology 12:42-58.

Foster, R.B. 1984. Environmental legislation. In: Fundamentals of Aquatic Toxicology. Rand, G.M. and Petrocelli, S.R. (Eds.) Hemisphere Publishing Corporation, Washington. pp. 587-600.

Gehrs, C.W. and Southworth, G.R. 1976. Proc. of the Conference on the Environmental Impact of Water Chlorination, Oak Ridge, Tennessee, CONF751096, Oct. 22-24, pp. 347-362.

Godfrey, P.L. 1978. Diversity as a measure of benthic macroinvertebrate community response to water pollution. Hydrobiologia 57:111-122.

Green, R.H. and Vascotto, G.L. 1978. A method for the analysis of environmental factors controlling patterns of species composition in aquatic communities. Water Research 12:583-590.

Gregg, B.C. 1974. The effect of chlorine and heat on selected stream invertebrates. Ph.D. dissertation. Virginia Polytechnic Institute and State University, Blacksburg, Va.

Grothe, D.R. and Eaton, J.W. 1975. Chlorine induced mortality in fish. Transaction of the American Fisheries Society 104:800-802.

Haedrich, R.L. 1975. Diversity and overlap as measures of environmental quality. Water Research 9:945-952.

Hamilton, M.A. 1975. Indexes of diversity and redundancy. Research Journal of the Water Pollution Control Federation 47(3):630-632.

Hanski, I. 1978. Some comments on the measurement of niche metrics. Ecology 59(1):168-174.

Hargreaves, J.W., Mason, C.F. and Pomfret, J.R. 1979. A simplified biotic index for the assessment of biologically-oxidizable pollution in flowing waters. Research Journal of the Water Pollution Control Federation 78:98-105.

Hawkes, H.A. 1962. Biological aspects of river pollution. In: River Pollution II Causes and Effects. Klein, L. (Ed.) Butterworths, London.

Heath, A.G. 1978. Influence of chlorine form and ambient temperature on the toxicity of intermittent chlorination to freshwater fish. In: Water Chlorination: Environmental Impact and Health Effects. Vol. 2. Ann Arbor Science Publishers. Ann Arbor, Michigan. p. 123.

Heckman, C.W. 1983. The recovery of the biotic community in a lotic habitat after extensive destruction by chlorine. Internationale Revue der Gesamten Hydrobiologie 68(2):207-226.

Hellawell, J.M. 1977. Biological surveillance and water quality monitoring. In: Biological Monitoring of Inland Fisheries. Alabaster, J.S. (Ed.) Applied Science Publishers, London.

Hellawell, J.M. 1978. Biological surveillance of rivers - a biological monitoring handbook. Water Research Centre.

Hilsenhoff, W.L. 1982. Using a biotic index to evaluate water quality in Streams. Technical Bulletin No. 132. Wisconsin Department of Natural Resources, Madison. 22 p.

Horn, H. 1966. Measurement of "overlap" in comparative ecological studies. American Naturalist 100:419-424.

Hughes, B.D. 1978. The influence of factors other than pollution on the value of Shannon's diversity index for benthic macroinvertebrates in streams. Water Research 12:359-364.

Huhta, V. 1979. Evaluation of different similarity indices as measures of succession in arthropod communities of the forest after clear cutting. Oecologia (Berl) 41:1123.

Hurlbert, S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52(4):577-586.

Hurlbert, S.H. 1978. The measurement of niche overlap and some relatives. Ecology 59(1):67-77.

Hurlbert, S.H. 1984. Psedureplication and the design of ecological field experiments. Ecological Monographs 54(2):187-211.

Hynes, H.B.N. 1963. The Biology of Polluted Waters. Liverpool University Press, Liverpool.

Jaccard, P. 1902. Lois de distribution florale dans la zone alpine. Bulletin de la Societe Vaudoise des Sciences Naturelles 38:69-130.

Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise des Sciences Naturelles 44:223-269.

Jaccard, P. 1912. The distribution of the flora in the alpine zone. The New Phytologist 11:37-50.

James, F.C. and McCulloch, C.E. 1990. Multivariate analysis in ecology and
systematics: panacea or pandora's box? Annual Review of Ecology and
Systematics 21:129-166.

Johansson, O.E. and Minns, C.K. 1987. Examination of association indices and formulation of a composite seasonal dissimilarity index. Hydrobiologia 150:109-121.

Jolley, R.L. 1973. Chlorination effects on organic constituents in effluents from domestic sanitary sewage treatment plants. ORNL/TM-4290. Oak Ridge National Laboratory, Oak Ridge, Tnennessee.

Jolley, R.L. 1975. Chlorine-containing organic constituents in sewage effluents. Research Journal of Water Pollution Control Federation 47:601-618.

Jones, D.S. 1991. An in situ assessment of the impact of chlorinated wastewater on the macroinvertebrates inhabiting the upper hyporheic zone. MS theses. University of Massachusetts, Amherst, Ma.

Jones, G.F. 1969. The benthic macrofauna of the mainland shelf of southern California. Allan Hancock Monographs in Marine Biology 4:1-219.

Kaesler, R.L., Cairns, J. Jr. and Bates, J.M. 1971. Cluster analysis of non-insect macroinvertebrates of the upper Potomac River. Hydrobiologia 37:173-181.

Kaesler, R.L. and Cairns, J. Jr. 1972. Cluster analysis of data from limnological surveys of the upper Potomac River. The American Midland Naturalist 88:5667.

Kaesler, R.L., Herricks, E.E. and Crossman, J. S. 1978. Use of indices of diversity and Hierarchical Diversity in Stream Surveys. In: Biological Data in Water Pollution Assessment: Quantitative and Statistical Analyses. Dickson, K.L., Cairns, J. Jr., and Livingston, R.J. (Eds.) American Society for Testing and Materials, STP652:92-112.

Keefe, T.J. and Bergersen, E.P. 1977. A simple diversity index based on the theory of runs. Water Research 11:689:691.

Kinstley, W., Peyton, G.R., Rawley, R., Saleh, F.Y. and Smith, G. 1983. Analysis of chlorinated organic compounds formed during chlorination of wastewater products. United States Environmental Protection Agency. EPA-600/S4-82-072.

Kolkwitz, R. and Marsson, M. 1908. Ökologie der pflanzlichen Saprobien. Berichte der Deutschen Botanischen Gesellschaft 26:505-519.

Kolkwitz, R. and Marsson, M. 1909. Ökologie der tierische Saprobien. Beitrage zur Lehre von der biologische Gewasserbeurteilung. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 2:126-152.

Kolkwitz, R. 1950. Öekologie der Saprobien. Uber die Beziehungen der Wasserorganismen zur Umwelt. Schriftenreihe des Vereins four Wasser-, Boden- und Lufthygiene 4:64.

Kringstad, K.P., Ljungquist, P.O., de Sousa, F. and Stromberg, L.M. 1983. Contribution of Some Chlorinated Aliphatic Compounds to the Mutagenicity of Spent Kraft Pulp Chlorination Liquors. In: Water Chlorination: Environmental Impact and Health Effects. Vol. 4. Jolley et al. (Eds.) Ann Arbor Science Publishers. Ann Arbor, Michigan. p. 1311.

Kringstad, K.P., de Sousa, F. and Stromberg, L.M. 1984. Evaluation of lipophilic properties of mutagens present in the spent chlorination liquor from pulp bleaching. Envirnmental Sciebce \& Technology 18(3):200-203.

Kulczynski, S. 1927. Die pflanzenassozionationen der Pienimen. Bulletin International. Academie Polonaise des Sciences et des Letters. Glasse des Sciences Mathematiques et Naturelles. Series B 1. Botanique. Supplement 2:57-203.

Lackey, R.T. and May, B.E. 1971. Use of sugar flotation and dye to sort benthic samples. Transaction of the American Fisheries Society 100(4):794-797.

Lance G.N. and Williams, W.T. 1967. Mixed data classificatory programs. 1. Agglomerative systems. Australian Computer Journal 1:82-85.

Larson, G.L. and Schlesinger, D.A. 1978. Toward an understanding of the toxicity of intermittent of total residual chlorine to freshwater fish. In: Water Chlorination: Environmental Impacts and Health Effects. Vol. 2. Jolley, R.L., Gorchev, H., and Hamilton, D.H. (Eds.) Ann Arbor Science Publishers, Ann Arbor, Michigan. p. 111.

Larson, G.L., Warren, C.E., Hutchins, F.E., Lamperti, L.P., Schlesinger, D.A. and Seim, W.K. 1978. Toxicity of residual chlorine compounds to aquatic organisms. Ecological Research Series. EPA-600/3-78-023.

Larsson, P. 1985. Contaminated sediments of lakes and oceans act as sources of chlorinated hydrocarbons for release to water and atmosphere. Nature 317:347349.

Larsson, P. 1986. Zooplankton and fish accumulate chlorinated hydrocarbons from contaminated sediments. Canadian Journal of Fisheries and Aquatic Science 43:1463-1466.

Lewis, M.A. 1986. Impact of a municipal wastewater effluent on water quality, periphyton, and invertebrates in the Little Miami River near Xenia, Ohio. The Ohio Journal of Science 86:2-8.

Lie, U. and Kelley, J.C. 1970. Benthic infauna communities off the coast of Washington and in Puget Sound: Identification and distribution of the communities. Journal of the Fisheries Research Board of Canada 27:621-651.

Liebmann, H. 1951. Handbuch der Frischwasser und Abwasserbiologie. Oldenbourg, Munchen.

Likens, G.E. 1985. An experimental approach for the study of ecosystems. The Journal of Ecology 73:381-396.

Liljelund, L.E. 1977. Diverzitetsindex-en Oversikt. Svensk Botanisk Tidskrrift 71:165176.

Livingston, R.J. 1979. In: Marine pollution: functional responses. Verngerg, W.B., Calabrese, A., Thurberg, F.P. and Vernberg, F.J. (Eds.) Academic Press New York. 389 p.

Longhurst, A.R. 1969. Species assemblages in tropical demersal fisheries. Proceedings of Symposium on the Oceanography and Fisheries Resources of the Tropical Atlantic. UNESCO:147-168.

Macarthur, R.H. 1966. Notes on Mrs. Pielou's comments. Ecology 47:1074.
MacConnell, W.P. 1975. Remote sensing 20 years change in Massachusetts 19521972, classification manual-land-use and vegetative covermapping. The Massachusetts Agricultural Experiment Stations Research. Bulletin number 631.

Martin, W.E., Duke, J.A., Bloom, S.G. and McGinnis, J.T. 1970. Possible effects of a sea-level canal on the marine ecology of the American Isthmian region. Battellle Memorial Institute, Ohio:1-220.

Mason, C.F. 1977. The performance of a diversity index in describing the zoobenthos of two lakes. The Journal of Applied Ecology 14:363-367.

Massachusetts Municipal Profiles, Belchertown (Hampshire County), prepared by information publications, 1987.

Mathis, B.J. and Dorris, T.C. 1968. Community structure of benthic macroinvertebrates in an intermittent stream receiving oil field brines. The Amererican Midland Naturalist 80:428-439.

Mattice, M.J. and Zittel, H.E. 1976. Site-specific evaluation of power plant chlorination. Research Journal of the Water Polluion Control Federation 48(10):2284-2308.

McCahill, M.P., Conroy, L.E., and Maier, W.J. 1980. Determination of organically combined chlorine in high molecular weight aquatic organics. Environmental Science \& Technology 14(2):201-203.

McIntosh, R.P. 1967. An index of diversity and the relation of certain concepts to diversity. Ecology 48(3):392-404.

Merkens, J.C. 1958. Studies on the toxicity of chlorine and chloramines to the rainbow trout. Water and Waste Treatment 7:150-151.

Miller, J.W. and Uden, P.C. 1983. Characterization of nonvolatile aqueous chlorination products of humic substances. Environmental Science \& Technology 17:150157.

Monthly report of Wastewater Treatment Plant, 1987, 1988.
Mood, A.M. 1940. The distribution theory of runs. The Annals of Mathematical Statistics 11:367-392.

Moore, R.L., Osborne, L.L. and Davies, R.W. 1980. The mutagenic activity in a section of Sheep River, Alberta receiving a chlorinated sewage effluent. Water Research 14:917-920.

Morisita, M. 1959. Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science. Kyushu Imperial University. Series E. Biology 3(1):65-80.

Mountford, M.D. 1962. An index of similarity and its application to classificatory problems. In: Progress in Soil Zoology. pp. 43-50. Murphy, P.W. (Ed.) Butterworth, London.

Murphy, K.L. 1975. Effect of chlorination practice on soluble organics. Water Research 9:389-396.

Murphy, P.M. 1978. The temporal variability in biotic indices. Environmental Pollution 17:227-236.

National Water Council. 1981. River quality: the 1980 survey and future outlook. National Water Council, London.

Newman, R.M., Perry, J.A., Tam, E. and Grawford, R.L. 1987. Effects of chronic chlorine exposure on litter processing in outdoor experimental streams. Freshwater Biology 18:415-428.

Ochiai, A. 1957. Zoogeographic studies on the soleoid fishes found in Japan and its neighboring regions. Bulletin of the Japanese Society of Scientific Fisheries 22:526-530.

Odum, E.P. 1975. Diversity as a function of energy flow. In: Unifying Concepts in Ecology. van Kobben, W.H. and Lowe-McConnell, R.H. (Eds.) Junk. The Hague, Holland. pp. 11-14.

Odum, E.P. 1977. The emergence of ecology as a new integrative discipline. Science 195:1289-1293.

Oliver, B.G. and Visser, S.A. 1980. Chloroform production from the chlorination of aquatic humic material: the effect of molecular weight, environment and season. Water Research 14:1137-1141.

Oliver, B.G. 1984. Uptake of chlorinated organics from anthropogenically contaminated sediments by oligochaete worms. Canadian Journal of Fisheries and Aquatic Sciences 41(6):878-883.

Osborne, L.L. 1977. A study of the effects of a small town and a strip mining operation on the species diversity of aquatic insects in Turkey Run, Clarion Co., Pa. MS thesis. Clarion State College, Clarion, Pa.

Osborne, L.L., Davies, R.W. and Linton, K.J. 1980. Use of Hierarchical Diversity Indices in lotic community analysis. The Journal of Applied Ecology 17:567580.

Osborne, L.L. 1985. Response of Sheep River, Alberta, macroinvertebrate communities to discharge of chlorinated municipal sewage effluent. In Water Chlorination: Chemistry, Environmental Impact and Health Effect. Vol. 5. Lewis Publishers, Inc. p. 481.

Osborne, L.L. and Davies, R.W. 1987. The effects of a chlorinated discharge and a thermal outfall on the structure and composition of the aquatic macroinvertebrate communities in the Sheep River, Alberta, Canada. Water Research 21(8):913-921.

Osborne, L.L., Iredale, D.R., Wrona, F.J. and Davies, R.W. 1981. The effects of chlorinated sewage effluents on fish in the Sheep River, Alberta. Transaction of the American Fisheries Society 110:536-540.

Paasivirta, J. 1988. Organic chlorine compounds in lake sediments and the role of chlorobleaching effluents. Chemosphere 17:137-146.

Pagel C.W. and Langdon, R.W. 1981. A preliminary study of the influence of chlorinated wastewater effluents on the biological life of selected rivers and streams of Vermont. Agency of Environmental Conservation, Department of Water Resources and Environmental Engineering, Water Quality Division, Montpelier, Vermont.

Paller, M.H., Lewis, W.M., Heidinger, R.C. and Wawronowicz, L.J. 1983. Effects of ammonia and chlorine on fish in streams receiving secondary discharges. Research Journal of the Water Pollution Control Federation 55(8):1087-1097.

Pantle, R and Buck, H. 1955. Die biologische Uberwachung der Gewasser und die Darstellung der Ergebnisse, Gas-und Wasserfach 96:604.

Parrish, F.K. and Wagner, J.A. 1983. An index of community structure sensitive to water pollution. Journal of Freshwater Ecology 2(2):103-107.

Patil, G.P. 1984. Some perspectives of statistical ecology and environmental statistics. In: Statistics in the Environmental Sciences, Gertz S.M and London, M.D. (Eds.) ASTM Special Technical Publication 845, 1916 Race Street, Philadelphia, Pa. 19103.

Peet, R.K. 1974. The measurement of species diversity. In: Annual Riview of Ecology and Systematics. Vol. 5. Palo Alto, California.

Penrose, D.L. and Overton, J.R. 1987. Qualitative collection techniques for benthic macroinvertebrates: uses for water pollution assessment in North Carolina. Proceeding of the First National Workshop on Biological Criteria, Lincoln Wood, III. Dec. 2-4.

Perkins, J.L. 1983. Bioassay evaluation of diversity and community comparison indexes. Research Journal of the Water Pollution Control Federation 55(5):522530.

Perry, J.A. and Troelstrup, N.H. Jr. 1988. Whole ecosystem manipulation: a productive avenue for test system research? Environmental Toxicology and Chemistry 7:941-951.

Pielou, E.C. 1966a. Shannon's formula as a measure of specific diversity: its use and misuse. American Naturalist 100:463-465.

Pielou, E.C. 1966b. Species-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical Biology 10:370-383.

Pielou, E.C. 1966c. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13:131-144.

Pielou, E.C. 1967. The use of information theory in the study of the diversity of biological populations. Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics, and Probability 4:163-177.

Pielou, E.C. 1975. Indices of diversity and evenness. In: Ecology Diversity. John Wiley and Sons, New York. pp.5-18.

Pielou, E.C. 1984. The interpretation of ecological data. John Wiley \& Sons, New York.

Pinkham, C.F.A. and Pearson, J.G. 1976. Applications of a new coefficient of similarity to pollution surveys. Research Journal of the Water Pollution Control Federation 48(4):717-723.

Pontasch, K.W. and Brusven, M.A. 1988. Diversity and community comparison indices: assessing macroinvertebrate recovery following a gasoline spill. Water Research 22(5):619-626.

Pontasch, K.W., Smith, E.P. and Cairns, J. Jr. 1989. Diversity indices, community comparison indices and canonical discriminant analysis: interpreting the results of multispecies toxicity tests. Water Research 23(10):1229-1238.

Poole, R.W. 1974. An Introduction to Quantitative Ecology. McGraw-Hill, New York. 532 p.

Pratt, J.M. and Coler, R.A. 1976. A procedure for the routine biological evaluation of urban runoff in small rivers. Water Research 10:1019-1025.

Pratt, J.M. 1977. Effects of unrecorded pollution from urban stormwater runoff on benthic macroinvertebrates of the Green River, Massachusetts. Ph.D. dissertation. University of Massachusetts, Amherst, Ma.

Pratt, J.M., Coler, R.A., and Godfrey, P.J. 1981. Ecological effects of urban stormwater runoff on benthic macroinvertebrates inhabiting the Green River, Massachusetts. Hydrobiologia 83:29-42.

Renkonen, O. 1938. Statistisch-olologische untersuchungen uber die terrestische kaferwelt der finnischen ruchmoore. Annales Zoologici Societatis Zoologicae Botanicae Fennicae Vanamo 6:1-231.

Resh, V.H. and Unzicker, J.D. 1975. Water quality monitoring and aquatic organisms: the importance of species identification. Research Journal of the Water Pollution Control Federation 47:9-19.

Resh, V.H. 1979. Sampling variability and life history features: basic considerations in the design of aquatic insect studies. Journal of the Fisheries Research Board of Canada 36:290-311.

Roback, S.S., Cairns, J. Jr. and Kaesler, R.L. 1969. Cluster analysis of occurrence and distribution of insect species in a portion of the Potomac River. Hydrobiologia 34:484-502.

Roughgarden, J. and Diamond, J. 1986. Overview: the role of species interactions in community ecology. In: Community Ecology. Diamond, J. and Case, T.J. (Eds.) Harper \& Row, New York. pp.333-343.

Saether, O.A. 1979. Chironomid communities as water quality indicators. Holarctic Ecology 2:65-74.

Seegert, G.L. and Brooks, A.S. 1979. The effects of monochloramine on selected riverine fishes. Transaction of the American Fisheries Society 108:88-96.

Shannon, C.E. 1948. A mathematical theory of communication. The Bell System Technical Journal 27:379-423; 623-656.

Shannon, C.E. and Weaver, W. 1949. The Mathematical Theory of Communication. The University Of Illinois Press, Urbana, Il.

Sheard, K. 1965. Species groups in the zooplankton of the eastern Australian slope waters, 1938-1941. Australian Journal of Marine and Freshwater Research 16:219-254.

Sheridan, P.F. and Badger, A.C. 1981. Responses of experimental esturine communities to continuous chlorination. Estuarine, Coastal and Shelf Science 13:337-347.

Simpson, K.W. 1980. Abnormalities in the tracheal gills of aquatic insects collected from streams receiving chlorinated and crude oil wastes. Freshwat. Biology 10:581-583.

Sladecek, V. 1973. The reality of three British biotic indices. Water Research 7(7):995-1002

Smith, P.G. 1975. A hydrogeological survey of Belchertown, Massachusetts. MS thesis. University of Massachusetts, Amherst, Ma.

Sokal, R.R. and Michener, C.D. 1958. A statistical method for evaluating systematic relationships. The University of Kansas Science Bulletin 38:1409-1438.

Sokal, R.R. 1961. Distance as a measure of taxonomic similarity. In: Systematic Zoology 10:71-79.

Sørensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter (K. denske indensk. Selske. N.S.) 5:1-34.

Stander, J.M. 1970. Diversity and similarity of benthic fauna off the coast of Oregon. M.S. thesis, Oregon State University, Corvallis, Ore.

Stephenson, W. and Williams, W.T. 1971. A study of the benthos of soft bottoms, Sek Harbour, New Guinea, using numerical analysis. Australian Journal of Marine and Freshwater Research 22:11-34.

Stewart-Oaten, A. and Murdoch, W.W. 1986. Environment impact assessment: "pseudoreplication" in time? Ecology 67(4):929-940.

Tarzwell, C.M. and Gaufin, A.R. 1953. Some important biological effects of pollution often disregarded in stream surveys. Purdue University Engineering Bulletin Proceedings of the 8th Industrial Waste Conference.

Thomas, W.A. 1976. Attitude of professionals in water management towards the use of water quality indices. Journal of Environmental Management 4:325-338.

Thomas, P., Bartos, J.M. and Brooks, A.S. 1980. Comparison of the toxicities of monochloramine and dichloramine to Rainbow Trout, Salmo gairdneri, under various time conditions. In Water Chlorination: Environmental Impacts and Health Effects. Vol. 3. Jolley, R.L., Brungs, W.A., and Cumming, R.B. (Eds.) Ann Arbor Science Publishers. Ann Arbor, Michigan. p. 581.

Trabalka, J.R. and Burch, M.B. 1979. Effects of water-soluble chlorine-containing organics on aquatic environments - another perspective. Toxicology Letters 3(4)201-207.

Trabalka, J.R., Tsai, S.C., Mattice, J.S., and Burch, M.B. 1980. Effects on Carp embryos (Cyprinus carpio) and Daphnia pulex of chlorinated organic compounds produced during control of fouling organisms. In: Water Chlorination: Environmental Impacts and Health Effects. Vol. 3. Jolley, R.L., Brungs, W.A. and Cumming, R.B. (Eds.) Ann Arbor Science Publishers. Ann Arbor, Michigan. p. 599.

Trehy, M.L., Yost, R.A. and Miles, C.J. 1986. Chlorination byproducts of amino acids in natural water. Environmental Science \& Technology 20(11):1117-1122.

Tsai, C.F. 1969. Effects of chlorinated sewage effluents on fish in Upper Patuxent River, Maryland. Chesapeake Science 9:83-93.

Tsai, C.F. 1971. Water quality and fish life below sewage outfalls. Progress Report, Natural Resources Institute, University of Maryland, College Park.
U.S. Geological Society, 1979. Topographical Map, Belchertown, Massachusetts Quadrangle.

Ward, R.W. and DeGraeve, G.M. 1978a. Residual toxicity of several disinfectants in domestic wastewater. Research Journal of the Water Pollution Control Federation 50:46-60.

Ward, R.W. and DeGraeve, G.M. 1978b. Acute residual toxicity of several wastewater disinfectants to aquatic life. Water Resources Bulletin 14:696-709.

Ward, R.W. and DeGraeve, G.M. 1980. Acute residual toxicity of several disinfectants in domestic and industrial waste water. Water Resources Bulletin 16:41-48.

Washington, H.G. 1984. Diversity, biotic and similarity indices. A review with special relevance to aquatic ecosystems. Water Research 18(6):653-694.

Weber, C.I. (ed.). 1973. Biological field and laboratory methods for measuring the quality of surface waters and effluents. U.S. Environmental Protection Agency, National Environmental Research Center, Cincinnati. EPA-670/4-73-001.

Weinstein, B.M. 1976. Comparative evaluation of the Bray-Curtis dissimilarity coefficient. Research Journal of the Water Pollution Control Federation 48:2812.

Whittaker, R.H. 1952. A study of summer foliage insect communities in the Great Smoky Mountains. Ecological Monographs 22:1-44.

Whittaker, R.H. 1965. Dominance and diversity in land plant communities. Science 147:250-260.

Whittaker, R.H. and Fairbanks, C.W. 1958. A study of copepod communities in the Colombia Basins. Southeastern Washington. Ecology 39:46-65.

Wilber, G.G. 1969. The Biological Aspects of Water Pollution. Charles C Thomas, Springfield, Illinois, 269 p.

Wilhm, J.L. 1967. Comparison of some diversity indices applied to populations of benthic macroinvertebrates in a stream receiving organic wastes. Research Journal of the Water Pollution Control Federation 39:1673-1683.

Wilhm, J.L. 1968. Biomass units versus numbers of individuals in species diversity indices. Ecology 49:153-156.

Wilhm, J.L. 1969. Community diversity, p. 8-14. In: The Stream Ecosystem. Amer. Assoc. Adv. Sci. Michigan State Univ. Water Res. Tech. Rep. No. 7.42 p.

Wilhm, J.L. 1970. Range of diversity index in benthic macroinvertebrate populations. Research Journal of the Water Pollution Control Federation 42(5):R221-R224.

Wilhm, J.L. 1972. Graphic and mathematical analyses of biotic communities in polluted streams. Annual Review of Entomology 17:223-252.

Wilhm, J. and Dorris, T.C. 1966. Species diversity of benthic macroinvertebrates in a stream receiving domestic and oil refinery effluents. The American Midland Naturalist 76(2):427-449.

Wilhm, J. and Dorris, T.C. 1968. Biological parameters for water quality criteria. BioScience 18(6):477-481.

Williams, E.T. 1971. Principles of clustering. Annual Review of Ecology and systematics 2:202-326.

Winner, R.W., Van Dyke, J.S., Caris, N. and Farrel, M.P. 1975. Response of the macroinvertebrate fauna to a copper gradient in an experimentally-polluted stream. Verhandlungen - Internationale Vereinigung fur Theoretische und Angewanete Limnologie 19:2121-2127.

Wolda, H. 1981. Similarity indices, sample size and diversity. Oecologia 50:296-302.
Woodiwiss, F.S. 1964. The biological system of stream classification used by the Trent River Board. Chemistry and Industry 11:443-447.

Wrona, F.J., Calow, P.F., Baird, D.J., and Maltby, L. 1986. Estimating the abundance of stone-dwelling organisms: a new method. Canadian Journal of Fisheries and Aquatic Science 43:2025-2035.

Zand, S.M. 1976. Index associated with information theory in water quality. Research Journal of the Water Pollution Control Federation 48(8):2026-2031.

(aded.

Tow

-

[^0]: 1

[^1]: List of terms ISH ; Parrish and Wagner's aver index $B_{;}$; PINKHAM2 = Pinkham-Pearson index B_{2}; MCINTO = Euclidean distance (Sokal, 1961);
 RENKON $=$ percent similarity; SIMI $=$ Stander's SIMI index; CLIFFO RENKON = percent similarity; SIMI = Stander's SIMI index; CLIFFO = distance measure
 (Clifford and Stephenson, 1975)

[^2]: confidence limit

[^3]: 1 similarity ranking between 1 and $4 ; 1$ being the most similar to one another and 4 being the least.

[^4]: 1 similarity ranking between 1 and $4 ; 1$ being the most similar to one another and 4 being the least.

[^5]:
 Total

[^6]: $\begin{array}{llllllllllllll}1166 & 1 & 1 & 1 & 1 & 20 & 15 & 1 & 1 & 1 & 1 & 121 & 166925 & \text { Total }\end{array}$

[^7]: $\begin{array}{lllllllllllllllllllll}2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 1 & 3 & 1 & 25 & 143523\end{array}$
 Total

[^8]: Total

[^9]: $\begin{array}{llllllllllllllllllll}71 & 8 & 1 & 19 & 1 & 22 & 3 & 1 & 4 & 1 & 3 & 1 & 9 & 1 & 1 & 3 & 1 & 1 & 11 & 162 \\ 179178\end{array}$ Total

[^10]: $\begin{array}{lllllllllllllll}1 & 1 & 4 & 1 & 2 & 1 & 1 & 1 & 1 & 3 & 1 & 3 & 1 & 21 & 160227\end{array}$ Total

[^11]: Total

[^12]: $8 \quad 2157122189902121214411316550162637$ Total

[^13]: Total

[^14]: 241831111511321121922215111511123111101156794 Total

