
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1992

Parallel computation of large-scale network equilibria and Parallel computation of large-scale network equilibria and

variational inequalities. variational inequalities.

Dae-Shik Kim
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

Recommended Citation Recommended Citation
Kim, Dae-Shik, "Parallel computation of large-scale network equilibria and variational inequalities." (1992).
Doctoral Dissertations 1896 - February 2014. 6124.
https://scholarworks.umass.edu/dissertations_1/6124

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It
has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_1
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F6124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/6124?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F6124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

PARALLEL COMPUTATION OF LARGE-SCALE NETWORK

EQUILIBRIA AND VARIATIONAL INEQUALITIES

A Dissertation Presented

by

Dae-Shik Kim

Submitted to the Graduate School of the

University of Massachusetts in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 1992

School of Management

© Copyright by Dae-Shik Kim 1992

All Rights Reserved

PARALLEL COMPUTATION OF LARGE-SCALE NETWORK
EQUILIBRIA AND VARIATIONAL INEQUALITIES

A Dissertation Presented

by

Dae-Shik Kim

Approved as to style and content by:

Qalujx% O

Robert Nakosteen, Member

Jkmes Smith, Member

Alexander Eydeland, Member

Ronald Karren, Program Director

Ph.D. Program

School of Management

To my wife Young-Soon

an>d

to my sons Tae- Woo and Jeong- Woo

ACKNOWLEDGMENTS

I would like to thank Prof. Anna Nagurney for her willingness to discuss

Management Science at any time. Her illuminating comments have been essential

to this work. Many useful discussions I had with Prof. Robert Nakosteen, Prof.

James Smith and Prof. Alexander Eydeland are gratefully acknowledged. I am

also grateful to all my committee members for patiently going through my thesis,

making useful comments on the contents, and helping me to finish all requirements

before the last day for the May graduation.

I wish to acknowledge the support, understanding, praying of my parents and

family through challenging times. Most of all, I would like to thank my Lord,

Jesus Christ, who gave me ideas and wisdom throughout this thesis.

This research was supported, in part, by assistantships and summer research

grants from the School of Management, University of Massachusetts, Amherst,

by NSF Grant, RII-8800361, and by cooperative agreement No. 58-3AEN-0-80066

from the Economic Research Service of the United States Department of Agri¬

culture.

This research was conducted at the Cornell National Supercomputing Facility,

a resource of the Center for Theory and Simulation in Science and Engineering

at Cornell University, which is funded in part by the National Science Founda¬

tion, New York State, and by the IBM Corporation, and the Northeast Parallel

Architecture Center (NPAC) at Syracuse University. This support is greatly ac¬

knowledged.

ABSTRACT

PARALLEL COMPUTATION OF LARGE-SCALE NETWORK

EQUILIBRIA AND VARIATIONAL INEQUALITIES

May 1992

DAE-SHIK KIM

B.S., SEOUL NATIONAL UNIVERSITY, SEOUL, KOREA

M.S., KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY

M.S., UNIVERSITY OF MASSACHUSETTS

M.B.A., UNIVERSITY OF MASSACHUSETTS

Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Anna Nagurney

Equilibrium of a network is obtained when each user who competes to optimize

his utility can not improve his utility any further. Equilibrium problems governed

by distinct equilibrium concepts can be formulated in one general framework - that

of variational inequalities. The synthesis of variational inequalities and networks

induces the creation of highly efficient algorithms which are especially suited

for the large-scale equilibrium problems. Motivated by the recent technological

advances in parallel computing architectures, parallel algorithms of large-scale

equilibrium problems were developed using the theory of variational inequalities.

In the case where the feasible constraint set of a network equilibrium problem

can be expressed as a Cartesian product of subsets, the application of variational

vi

inequality decomposition algorithms for the parallel computation becomes possi¬

ble. A new spatial price equilibrium model, which is not based on the path flows,

but, rather, on the link flows to allow the decomposition by time periods, was

developed and used as a prototype of large-scale network equilibrium problems.

The variational inequality formulations were decomposed first by commodities,

then by time periods, and, subsequently, by markets. The coarse grain parallel

architectures used were the IBM 3090-600E and the IBM 3090-600J at the Cor¬

nell Theory Center with six processors each. The maximum speed-ups obtained

were 1.93 for two processors, 3.74 for four processors, and 5.15 for six processors.

The market subproblems were further decomposed by links, resulting in a fine

grain parallel implementation. The Thinking Machine’s Connection Machine,

CM-2, with 32,768 processors was used for the numerical experimentation. The

fine grain parallel algorithm solved input/output matrix problems more than 20

times faster, when compared to the results on the IBM 3090-600J.

It is expected that further enhancements to parallel languages and parallel

architectures will make even more efficient implementations realizable, and that

parallel computing and the theory of variational inequalities can be successfully

applied to solve more efficiently other large-scale problems with an underlying

network structure, such as traffic equilibrium problems, general economic equi¬

librium problems, and financial equilibrium problems.

Vll

Table of Contents

Page
Acknowledgements . v

Abstract. vi

List of Tables. x

List of Figures . xi

Chapter

1. INTRODUCTION . 1

1.1 Background . 4

1.1.1 Parallel Computation. 4

1.1.2 Variational Inequalities. 10

1.2 Large-Scale Network Problems. 14

1.3 Parallel Variational Inequality Decomposition. 17

2. NETWORK EQUILIBRIUM PROBLEMS. 24

2.1 Dynamic Multicommodity Spatial Price Equilibrium Prob¬

lems . 24

2.2 Static Multicommodity Spatial Price Equilibrium Problems . 35

2.3 The Decomposition Procedure. 39

2.3.1 Decomposition by Commodities. 39

2.3.2 Decomposition by Time Periods. 43

2.3.3 Decomposition by Markets. 48

3. NETWORK OPTIMIZATION PROBLEMS. 50

3.1 Constrained Matrix Problems . 50

3.2 Relationship to the Spatial Price Equilibrium Problems ... 56

3.3 The Parallel Splitting Equilibration Algorithm. 59

Vlll

3.3.1 SEA for the General Constrained Matrix Problem . . 59

3.3.2 The Massively Parallel Splitting Equilibration Algo¬

rithm . 64

4. NUMERICAL EXPERIMENTATION. 69

4.1 Data Generation and Collection. 69

4.1.1 Decomposition by Commodities. 69

4.1.2 Decomposition by Time Periods. 73

4.1.3 Decomposition by Markets or by Row/Column 75

4.2 Parallel Implementation Method. 77

4.2.1 Coarse Grain Parallel Implementation. 77

4.2.2 Fine Grain Parallel Implementation. 79

5. RESULTS AND DISCUSSION. 82

5.1 Decomposition by Commodities. 82

5.2 Decomposition by Time Periods. 84

5.3 Decomposition by Rows/Columns. 88

5.4 Fine Grain Parallel Implementation of the Massively Parallel

SEA Algorithm.100

6. SUMMARY AND DIRECTIONS FOR FUTURE RE¬

SEARCH .104

Bibliography .107

IX

List of Tables

Table page

1. Parallel Implementation of the Decomposition Algorithm by Commodi¬

ties with Linear and Nonlinear Cost Functions. 85

2. Serial Implementation of the Decomposition Algorithm by Time Pe¬

riods on Large-Scale Dynamic Market Equilibrium Problems with

Linear Separable Cost Functions. 89

3. Serial Implementation of the Decomposition Algorithm by Time Pe¬

riods on Large-Scale Dynamic Market Equilibrium Problems with

Nonlinear Asymmetric Cost Functions. 92

4. Parallel Implementation of the Decomposition Algorithm by Time Pe¬

riods . 95

5. Coarse Grain Parallel Implementation of SEA. 98

6. Fine-Grain Parallel Implementation of Massively Parallel SEA.101

x

List of Figures

Figure page

1. A Network Representation of the Dynamic Multicommodity Market

Equilibrium Problem. 27

2. A Network Representation of the Dynamic Single Commodity Market

Equilibrium Problem. 34

3. Bipartite Network Representation of Spatial Price Equilibrium Prob¬

lems . 38

4. Overview of the Decomposition Schemes of General Spatial Price Equi¬

librium Problems. 40

5. Parallel Decomposition of the Dynamic Market Equilibrium by Time

Periods. 44

6. The Constrained Matrix Problem. 51

7. Flowchart of Splitting Equilibration Algorithm - the General Case ... 60

8. Decomposition by Supply and Demand Markets. 61

9. Parallel Speedup of the Decomposition Algorithm by Commodities . . 86

10. CPU Behavior of the Decomposition Algorithm by Time Periods for

Smaller Linear Separable Examples. 90

11. CPU Behavior of the Decomposition Algorithm by Time Periods for

Larger Linear Separable Examples. 91

12. CPU Behavior of the Decomposition Algorithm by Time Periods for

Smaller Nonlinear Asymmetric Examples. 93

13. CPU Behavior of the Decomposition Algorithm by Time Periods for

Larger Nonlinear Asymmetric Examples. 94

14. Parallel Speedup of the Decomposition Algorithm by Time Periods . . 96

XI

99 15. Parallel Speedup of SEA Decomposition Algorithm by Row/Column

16. CM Time vs Number of Processors. 102

XII

Chapter i

INTRODUCTION

Network models have been used to formulate many problems in management

science as well as in engineering. The advantages of a network formalism are

twofold: network models can visually represent a wide variety of applications and

can also suggest decomposition algorithms that exploit the underlying problem

structure. Historically, network optimization problems have been studied widely.

Another large class of network models is that of network equilibrium problems.

For example, if more than one user is involved in a system and each user competes

to optimize his utility, then at some point he will not be able to improve his utility

any further; in other words, the properties of the system will not change with time,

that is, the system reaches an equilibrium state.

Equilibrium is, hence, a central concept in diverse problems in management

science as well as in engineering. Examples in management science include:

traffic network equilibrium problems in which users of the congested network

seek routes to minimize travel costs, oligopolistic market equilibrium problems in

which profit-maximizing firms are engaged in the production and sale of one or

more goods, spatial price equilibrium problems in which optimal commodity sup¬

ply and consumption levels and interregional shipments are to be determined, and

1

general economic equilibrium problems. Furthermore, many business application

problems such as financial planning can be formulated as network equilibrium

models. The equilibrium solutions can assist in governmental policy analyses,

where the effects of regulatory instruments such as price controls in the form of

price floors and ceilings, trade restrictions, tariffs, and taxes are to be determined.

Each user can also obtain useful information for personal decision-making under

competitive situations from such models.

Historically, equilibrium models were usually reformulated as optimization

problems, provided that a certain symmetry or integrability assumption held

for the underlying functions. Convex programming algorithms could then, at

least in principle, be used to compute the equilibrium pattern. Utilizing such

an approach, Samuelson [77] and Takayama and Judge [82] introduced a variety

of spatial price equilibrium models, and Beckmann, McGuire, and Winsten [7]

studied traffic network equilibrium models.

Recently, it has been realized that equilibrium problems governed by distinct

equilibrium conditions can be formulated in one general framework - that of vari¬

ational inequalities. Variational inequalities (VI) had originally been introduced

by Hartmann and Stampacchia [36] for the study of partial differential equations,

in which the applications were derived from mechanics. The discovery by Dafer-

mos [15] that the traffic network equilibrium conditions, as stated by Smith [79],

had the structure of a finite-dimensional VI problem opened new vistas not only

for the study of qualitative properties of existence, uniqueness, and sensitivity

of equilibrium solutions, but also for the development of more general, asym-

2

metric multicommodity and multimodal models. Further, VI theory permits the

design of mathematically correct and convergent algorithms for the computation

of solutions to general equilibrium problems for which no equivalent optimization

formulation exists.

Indeed, many equilibrium problems have now been formulated as variational

inequality problems. For example, Gabay and Moulin (1980) formulated the

oligopolistic equilibrium problem governed by Cournot-Nash equilibrium as a VI

problem: Florian and Los [30] formulated the spatial price equilibrium problem

as a VI problem; Border [10] and Dafermos [18], in turn, formulated exchange

price equilibria. More recently, Zhao [88] utilized the VI formulations of the pure

exchange problem and the general economic equilibrium problem with produc¬

tion to develop convergent algorithms for these equilibrium problems under a

monotonicity assumption on the excess demand functions. For the exposition of

the status of the theory, alternative model formulations, and applications, as well

as a comprehensive list of references, see the review articles of Magnanti [45],

Dafermos [19], and Nagurney [52], and the recent thesis of Zhao [88].

Even though many efficient algorithms have been developed, they may not

work as efficiently as the application demands when the problem size increases,

due to the limitation of serial computers. The technological advances in computer

architecture provide new approaches solving such large-scale problems efficiently.

The combination of parallel computing and variational inequality algorithms is

an area, hence, that merits further research. In this thesis, parallel algorithms

for large-scale network equilibrium and optimization problems were developed

3

and implemented. To develop the parallel algorithms, the theory of variational

inequalities was used.

1.1 Background

In this section, two basic concepts of the thesis, parallel computation and

variational inequalities, are briefly introduced. In the first subsection, the need

for parallel computers is highlighted and then some important basic terminologies

of parallel computation are explained. In the second subsection, the theory of

variational inequalities, which is a powerful method to develop parallel algorithms,

is briefly discussed.

1.1.1 Parallel Computation

Traditional serial computers are characterized by the presence of a single locus

of control that determines the next instruction to be executed. The data to be

operated upon, during the execution of each instruction, are fetched from a global

memory, one at a time. Thus, only one instruction is executed at a time and the

speed of computation is slow. As the problem size increases, serial computers

can not solve problems as efficiently as the application may demand. To circum¬

vent this bottleneck, supercomputers with vector facility were developed. More

recently, parallel computers with many cheaper processors have been developed.

Parallel computing systems consist of several processors that are located

within a small distance of each other to execute jointly a computational task.

4

Parallel computation is motivated by a variety of factors. There has been a need

for the solution of very large-scale computational problems, but it is only recently

that technological advances have raised the possibility of massively parallel com¬

putation and have made the solution of such problems possible. Furthermore, the

availability of powerful parallel computers is generating interest in new types of

problems that were not addressed in the past. Accordingly, the development of

parallel algorithms is guided by this interplay between old and new computational

needs on the one hand, and technological progress on the other.

The original needs for fast computation arose in a number of contexts in¬

volving, principally, partial differential equation applications, such as computa¬

tional fluid dynamics and weather prediction, as well as image processing, etc.

In these applications, there is a large number of numerical computations to be

performed. The desire to solve more and more complex problems has always

been running ahead of the capabilities of the time, and has provided a driving

force for the development of faster, and possibly parallel, computing machines.

The above mentioned types of problems can be easily decomposed along a spa¬

tial dimension, and have, therefore, been prime candidates for parallelization,

with a different computational unit (processor) assigned the task of manipulat¬

ing the variables associated with a small region in space, thus leading to the •

design of parallel computers consisting of a number of processors with nearest

neighbor connections. More recently, there has been increased interest in other

types of large-scale computation. Some examples in management science relate to

the solutions of mathematical programming, optimization problems, equilibrium

5

problems, and queuing problems. A common property of such problems, as they

arisi in practice, is that they can be decomposed. After being properly decom¬

posed, each subproblem is assigned to a separate processor, and each processor

runs independently. The details of the parallel algorithms depend upon the types

of problems and the parallel architectures.

Parallel computers can be classified in many different ways. A parallel system

with thousands of processors is called massively parallel, while a system with a

small number of processors is called coarse-grained parallel. By the communi¬

cation method of the data, the parallel computers can be grouped into shared

memory and message passing computers. In a shared memory system, all the

data are in one big memory that is available to all processors. When in such

a machine one processor needs data that must be calculated by another proces¬

sor, then it must know whether the data in the shared memory are already the

required data or whether the other processor is still busy with the calculation.

In a message passing system, the memory is distributed among the processors,

in other words, each processor has its own local memory. Hence, the data are

also distributed and when a processor needs data from another processor it must

send a message asking for those data. Processors communicate through specially

designed interconnection networks and this data communication becomes more

expensive when two processors are spatially very separated.

The most popular classification of parallel architectures is based upon the

level of detail at which the operation of parallel processors is controlled. In a

SIMD (Single Instruction, Multiple Data) machine, each instruction can act on

6

more data streams. For example, in a multi-processor, a number of proceNnorN

al. execute the same instruction but on different data. SIMP system comprises a

master control unit and a number of identical processing elements. The control

unit transmits the same instruction stream to each of the processing elements. In

a MIMD (Multiple Instruction, Multiple Data) machine, a number of independent

processors execute different instructions on different data concurrently.

The innovation of parallel computing has added a new dimension to the design

of algorithms and programs. Parallel programming is not a simple extension of

serial programming. In order to exploit the possibilities offered by parallelism,

programmers need to think in parallel and reconsider the solution process. For

example, the matrix addition can be easily parallelized by assigning each element

addition to each processor, but for matrix multiplication, it is not that easy

to parallelize. Programmers should think in parallel in order to find the most

efhcien: way in which to both construct and implement an algorithm. Experience

has shown that the judgments of the efficiency based on serial techniques can

be easily overturned in a parallel environment. Algorithms that are obsolete

so far as implementation on serial computers is concerned often show a high

degree of parallelism - i.e., they may contain numerous sub calculations that are

independent of one another and may, therefore, be executed simultaneously -

and can. hence, outperform the best serial techniques. In addition to demanding

new techniques of algorithm design, the introduction of extended parallelism also

requires us to rethink what is known about systems, parallel languages, non-

numerical problems, and numerical methods in general.

7

In the applications of parallel programming, the main concerns are cost and

speed: the hardware should not be prohibitively expensive, and the computation

should terminate within an amount of time that is acceptable for the particular

application. There are several issues related to parallelization that do not arise

in a serial context. A first issue is task allocation, that is, the breakdown of the

total workload in smaller tasks assigned to different processors, and the proper

sequencing of the tasks when some of them are interdependent and cannot be

executed simultaneously. A second issue is the communication of data between

the processors. A third issue is the synchronization of the computations of differ¬

ent processors. In synchronous methods’, processors must wait at predetermined

points for the completion of certain computations or for the arrival of certain data.

In asynchronous methods, there is no requirement for waiting at predetermined

points.

Two theoretical indices have been used for measuring the performance of a

developed parallel algorithm; speed-up and efficiency. Speed-up is defined as the

ratio of the time required for the parallel calculation to that of a serial computa¬

tion. The theoretical maximum value of the speed-up is equal to the number of

processors, and it is obtained when the algorithm is fully parallel and the calcula¬

tion is distributed equally among the processors. This would require all the pro¬

cessors to be operable simultaneously, each processor being capable of performing

all the arithmetic operations, and incurring no memory data-movement penalties.

The efficiency is the ratio of obtained speed-up to the theoretical maximum value

of speed-up. When actual performance on particular machines is compared, the

8

number of MFLOPS (Mega Floating Point Operations per Second) and GFLOPS

(Giga Flops) is used.

The speed-up of parallel algorithms will generally increase with the number of

processors. But the efficiency will decrease after a certain number of processors.

This phenomena is explained by Amdahl’s Law (see Riele, Dekker, and Vorst

[76]), where

Speed-up
T,

(l-f).T. + f-T./p’
(1.1)

/ the parallelized fraction, Ts is the serial computing time, and p is the number of

processors of the parallel implementation. When / approaches one, the speed-up

would be close to the maximum value and it increases linearly with the increase

of processors. When / is not close enough to one, speed-up does not increase

linearly. As p increases, the second term of the denominator becomes smaller and

the first term dominates the speed-up. Then the limit of the speed-up will be

Therefore, there is no speed-up if / is zero. To maximize the speed-up, the

parallelized fraction, /, should be close enough to one.

9

I.I~2 Variational Inequalities

In this section, the basic theory of variational inequalities is briefly reviewed.

For amplified discussions, see the book by Kinderlehrer and Stampacchia [41], the

surveys of Magnanti [45], Dafermos [19], Nagumey [52], and the thesis of Zhao

[88].

The finite-dimensional variational inequality problem, heretofore denoted as

VI(jfif, /), is to determine the vector x E FH1 such that

/(x) • (x' — x) > 0, for all x' € K (1.2)

where K is a closed convex subset of K* and /(•) is a known function from K to

JT1. The qualitative theory of variational inequalities in terms of existence and

uniqueness has reached an advanced state. For example, in the case where /(•) is

continuous and the feasible set K is bounded, there exists a solution of inequality

(1.2) . If K is bounded and /(•) is strictly monotone, then there exists a unique

solution of inequality (1.2). If K is unbounded, then strong monotonicity of /(•),

that is,

(/(x1) —/(x2)) • (x1 — x2) > a Hz1—x2||2, for all x1, x2 6 K (1-3)

where a is a positive constant, and || • || denotes the Euclidean norm, guarantees

both existence and uniqueness of the solution x to VIIn terms of appli¬

cations, this condition implies, for example, that /; depends primarily on x; and

less so on the x's, for j ^ i. A necessary and sufficient condition for expression

(1.3) to hold is that the Jacobian of /, [|f] , is positive definite over x' € K.

10

On the other hand, if /(•) is only strictly monotone, that is, the right-hand side

of equation (1.3) is now 0 for all a;1,!2 £ K^x1 ^ r2, and > replaces >, then

the solution is unique, if one exists. Under such monotonicity assumptions, the

theory of variational inequalities becomes particularly powerful.

It should be noted that even in applications where equation (1.3) fails to hold

- in which case there may exist multiple equilibria - or, similarly, the condition

cannot be verified a priori, such VI algorithms can, nevertheless, be applied for

practical purposes. If convergence in such cases is observed, then the solution

obtained will be guaranteed to be a solution of the variational inequality problem

(1.2). Indeed, such computational experience has been recently reported by Mah-

massani and Mouskos [46], who successfully applied the diagonalization method

for large-scale traffic network equilibrium problems in which sufficient conditions

for convergence were known to be violated. Nevertheless, in order to prove the

global convergence of variational inequality algorithms, thus far, equation (1.3)

has often been utilized.

The following relationship holds between variational inequality problems and

often-studied minimization problems: In the special case where the symmetry

condition holds, VI(K,f) is equivalent to the solution of the convex

minimization problem with objective function f f(x)dx over the feasible set K.

In other words, let F(-) be a continuously differentiable scalar-valued function

defined over K and denote its gradient by VjP(-). If there exists an x € K such

that

11

F(x) = Min F(x'), for all x' £ K (1.4)

then x is a solution to the variational inequality

VF{x) • (V - x) > 0, for all x' £ K. (1.5)

On the other hand, if /(•), again on an open neighborhood of K. is the gradi¬

ent of a convex continuously differentiable function F(-), then VI (1.2) and the

minimization problem (1.4) are equivalent; in other words, x solves (1.2) when

x minimizes F(-) over K. Note that /(•) is a gradient mapping if and only if its

Jacobian matrix is symmetric, in which case the objective function is equal to

S f{y)dy.

Moreover, if F(-) is convex, strictly convex, or uniformly convex, then its gra¬

dient mapping is, respectively, monotone, strictly monotone, or strongly mono¬

tone. Therefore, we can see that monotonicity in variational inequality problems

plays a role analogous to that of convexity in minimization problems. However,

there does not exist an equivalent optimization problem under an asymmetric as¬

sumption for the underlying function, /(•). Note that variational inequality (1.2)

can also contain, as special cases, all the classical problems of mathematical pro¬

gramming, such as linear and nonlinear complementarity problems, fixed point

problems, and minimax problems (see Cottle [12]; Kinderlehrer and Stampacchia

[41]; and Lemke [44]). Therefore, variational inequality theory can be said to be

a powerful unifying framework.

The following is a brief review on how to solve variational inequalities. Vari¬

ational inequality problems are usually solved iteratively as mathematical pro-

12

gramming problems. When an initial solution is given, a new solution is found

at the end of the first iteration. The new solution is then used to find the next

solution until the algorithm converges. Each iteration can be described using the

following notation. Let

(+ l) = T(®(*)), * = 0,1,..., (1.6)

where each x(t) is an n-dimensional vector, t is the iteration number, and T is

some mapping function from a set K of Rn into itself. Alternative notation that is

sometimes used in place of (1.6) is x := T(x). Notice that if the mapping function

T is continuous and the sequence {x(t)} generated by the above iteration follows

a contraction

||*t+i “ *t|| < a||*t “ 0 < a < 1, (1.7)

then the iteration converges to a limit x, which is a fixed point of T, that is, it

satisfies x = T(x). Such a mapping is called a contraction mapping, or simply a

contraction, and the iteration (1.6) is called a contracting iteration and the scalar

a is called the modulus of the mapping.

If the strong monotonicity condition (1.3) holds, then the solution of equa¬

tion (1.2) can be computed via a general iterative scheme devised by Dafermos

[17]. This scheme contains, as special cases, the projection method (Dafermos

[15, 16]; Bertsekas and Gafni [8]), which resolves the solution of the variational

inequality into a series of, in general, quadratic programming problems, and the

relaxation/diagonalization method (Florian and Spiess [30]), which resolves the

13

problem into a series of, in general, nonlinear programming problems. For cornpu

tational experience with these methods, see Nagurney [50] [51 j [53|. The overall

scheme of parallel computation to solve variational inequalities will be introduced

in Section 1.3 and the detailed parallel algorithms will be explained in Chapters

2 and 3.

1.2 Large-Scale Network Problems

This thesis focuses on large-scale network problems to which both variational

inequality theory and network theory are applied with a goal of creating effi¬

cient parallel algorithms. In particular, both network equilibrium problems and

network optimization problems are considered.

Spatial price equilibrium problems (Samuelson [77, 78], Takayama and Judge

[81, 82]) were considered in this thesis as prototypes of network equilibrium prob¬

lems. Spatial price equilibrium models have been widely applied in agricultural

commodity and energy markets (see,e.g., Judge and Takayama [39]). In spatial

price equilibrium problems, one seeks to compute the commodity production,

consumption, and trade patterns, satisfying the equilibrium property that trade

takes place between two spatially separated markets if the demand price at the

demand market is equal to the supply price of the commodity at the supply

market plus the cost of transportation between the pair of supply and demand

markets. In real-world applications, the numbers of supply and demand markets

can be very large, and the resulting network will be in large scale.

14

When multiple commodities are considered, the computation of the equilih

rium solution becomes even more difficult due to the even larger scale. One

approach to the solution of such problems is to reformulate the problems (ei

thex linear or nonlinear) as single commodity, asymmetric VI problems via the

construction of appropriate replications (for example, see Dafermos [14] |18|;

Aashtiani and Magnanti [1] [2]; Nagurnev [50] [53]; Nagurney and Aronson [61]).

Other approaches to the solution of linear problems have included Bender’s de¬

composition (Polito, McCarl, and Morin [74]), complementarity theory (Pang

71 : Takayama and Uri [83]), and quadratic programming algorithms for simpler

models ^Takayama and Judge [82]). Published computational experience with

nonlinear multicommodity problems, nonetheless, has been limited to the solu¬

tion of a small cadre of problems with only several markets and commodities (for

example, see Frietz et al. 33]; Pang [72]). In the case of nonlinear multimodal

problems in transportation, only several modes have been treated (Nagurney [50]

51]: Mahmassani and Mouskos [46]).

Other examples of large-scale equilibrium problems are dynamic market equi¬

librium problems, where the optimal commodity production, consumption, trade,

and inventory patterns over space and time are to be computed. Such models

are inherently large-scale and, hence, the development of efficient computational

procedures is essential for the operationalism of such models. Nagurney and

Aronson [62] developed new models and computational procedures for dynamic

spatial price equilibrium problems with gains and losses, that were implemented

on serial computers.

15

In regards to optimization problems, in this thesis, the constrained matrix

problem is used as a prototype. Note that network optimization problems are

special cases of network equilibrium problems. The constrained matrix problem

is a core problem in numerous applications in the social and economic sciences,

as well as engineering. These include: the estimation of input-output tables,

trade tables, and social/national accounts in economics and regional science, the

projection of migration flows over space and time in demography and geography,

the treatment of census data, the analysis of political voting patterns, the esti¬

mation of contingency tables in statistics, the projection of transportation and

telecommunication origin/destination flows , and diagnostic imaging in radiol¬

ogy. The constrained matrix problem, so named by Bacharah [4], is to compute

the best possible estimate X of an unknown matrix, given some information to

constrain the solution set, and requiring either that the matrix X be a minimum

distance from a given matrix, or that X be a functional form of another known

matrix. The constrained matrix problem can be formulated as mathematical pro¬

gramming problems, with an objective function which forces “conservatism” on

the process of rationalizing X from the initial estimate X°. Although the RAS

method, which dates to Deming and Stephan [24], is currently the most widely ap¬

plied computational method in practice for the solution of the constrained matrix

problem, its limitations include the use of a highly specific set of constraints and

objective function and its nonconvergence in applications, such as interregional

trade (see,e.g., Mohr, Crown, and Polenske [49]). In real-world applications, the

matrix X° is very large (several hundred to several thousand rows and columns),

16

with the resulting constrained matrix problem larger still (with the number of

variables on the order of square of the number of rows/columns). The relation¬

ship of the constrained matrix problems with spatial price equilibrium problems

is identified in Section 3.2.

1.3 Parallel Variational Inequality Decomposition

This section is a brief overview of how variational inequalities can be applied

to create parallel decomposition algorithms.

The large-scale nature of constrained matrix problems and multicommod¬

ity and dynamic equilibrium problems makes the application of decomposition

schemes especially appealing - even more so if the resulting subproblems have

special structure that can be further exploited computationally. In the case where

the feasible set of a network equilibrium problem can be expressed as a Cartesian

product of subsets, i.e.,

K =]\Ki (1-8)
t'=l

where each K{ is a subset of i?71*, which is natural for multicommodity/multimodal

equilibrium problems, variational decomposition algorithms can then be applied

under suitable conditions for convergence to compute equilibrium problems in

parallel. Many network equilibrium problems in management science can be

defined over a feasible set as a Cartesian product of subsets. For example, in

multicommodity trade problems, each subset could correspond to the constraints

17

of a particular commodity; in dynamic spatial price equilibrium problems, each

subset could correspond to the constraints of each time period and inventories;

in multimodal traffic networks, each subset could correspond to the constraints

of each transportation mode; in constrained matrix problems, each subset could

correspond to each row and/or each column. Hence, if one can derive alternative

variational inequality reformulations of a given problem over a Cartesian product

of subsets, one can then avail oneself with a plethora of alternative decomposition

algorithms. These, however, must be evaluated both theoretically and empirically.

A key observation for the Cartesian product case is that variational inequality

(1.2) decomposes into n coupled variational inequalities of smaller dimensions.

Here we have a basic theorem for the decomposition of variational inequalities.

For the proof, see page 275 in Bertsekas and Tsitsiklis [9].

Theorem 1:

A vector x E K solves the variational inequality VI(K, /), where K is defined

by (1.8) and / is the vector in Rn with sub vectors (fi E iT*), if and only if

/<(*)• (*t# “*») —0, for all E = 1,... , n. (1-9)

Hence, in the case where the set K is expressed as a Cartesian product of

subsets as (1.8), the iteration procedure to solve VI(if, /), which was briefly

explained in Section 1.1, can be decomposed in the same manner. For example, let

£i(f) denote the zth component of x(t) and let T{ denote the ith component of the

18

mapping function T, to be discussed later. Then, we can write x(t +1) = T(x(i))

as

Xi(t + 1) = Ti(xi(t),... ,zn(*)), i = 1,..., n. (1.10)

The iterative algorithm x := T(x) can be parallelized by letting each one of

n processors update a different component of x according to (1.10). At each

stage, the ith processor knows the value of all components of x(t) on which T-

depends, computes the new value 1), and communicates it directly to other

processors or writes it on the shared memory in order to start the next iteration.

This updating process of X{(t + 1) depends upon the architecture of the parallel

computers. After all Xi(t-\-l),i = 1,... ,n are calculated and communicated, then

the next iteration can start. Such a parallel algorithm is said to be synchronous,

because the start of each iteration is simultaneous for all processors and the end

of the message receptions is simultaneous for all messages. In order to implement

a synchronous algorithm in an inherently asynchronous parallel architecture, we

need a synchronization mechanism, i.e., an algorithm that is superimposed on the

original and by which every processor can detect the end of each iteration.

To solve the variational inequality problem (1.2) using the parallel iterative

algorithm (1.10), one needs to have n distinct processors. Sometimes, for ex¬

ample, when there are fewer processors available, one may wish to employ a

coarse-grained parallelization of the iteration x := T(x). In particular, one de¬

composes the vector space Rn as a Cartesian product of lower dimensional sub¬

spaces Rn>, j = 1 ,...,p, where Ej=i ni = n• Accordingly, any vector x € Rn is

19

decomposed as x — (xi,..., Xj,..., xp), where each Xj is rij-dimensional vector.

called a block-component of x. or simply a component where no confusion can

arise. Similarly, the iteration x{t + 1) = T(x(t)) can be written as

(1.11)

where each Tj is a vector function mapping Rn into Rni. Each one of the p

processors is assigned to update a different block-component according to (1.11).

and the resulting parallel algorithm is said to be block-parallelized.

The vector X^x) of equation (1.10) can be selected to be either linear or

nonlinear. The subproblems induced by a linear function, however, are often

easier to solve (see Nagurney [54]), as will be the situation in the constrained

matrix problems and market equilibrium problems that will be considered in this

thesis, due to the special structure. In a parallel linearization algorithm, hence,

we compute x(t + 1) by solving variational inequalities VI(Ki,fiit(x)) in parallel

instead of VI(K,f), where the linearized function fi t has the form

fi,t(x) = /»(*(<)) + Ai(x{t))(xi(t + 1) - lift)) (1.12)

where A{(*) is block-diagonal for each x. Equivalently, one constructs a vector

x(t + 1) = (*i(< -hi),..., xn(t + 1)) satisfying

(fi(x(t)) + Ai^t^x^t + 1) - Xi(t)))(yi - Xi(t + 1)) > 0,

for all yi £ i = 1 (1.13)

This shows that each linearized variational inequality subproblem with smaller

dimension can be solved independently by a distinct processor.

20

Since variational inequality problems are usually solved iteratively, the overall

efficiency of a variational inequality algorithm depends on the embedded math¬

ematical programming algorithm. In case where A{(x) is a symmetric positive

definite matrix, the iteration method will be the well-known projection method.

In the case where A{[x) = D{(x), where D{(x) is the diagonal of the Jacobian

of /{(•) with respect to 2;, the resulting function becomes a disjoint separable

function. In this thesis, D{(-) is used to get the linearized function and it is

applied to develop parallel algorithms for solving variational inequality problems.

When a parallel decomposition algorithm is developed, one of the most impor¬

tant issues will be its convergence. The convergence of linearized algorithms in

the Cartesian product case is given in Bertsekas and Tsitsiklis [9], pages 276-277.

Theorem 2:

Suppose that the problem VI(K,f) has a solution x and that there exist

symmetric positive definite matrices Gi and some 8 > 0 such that Di(x') — 8Gl is

nonnegative definite for every i and x' E K, and that there exists some 3 € .0,1)

such that

|| G-l{fi{x') - fi(y) - Di(y)(xi - 2/;))l|i < W max ||*/ - Vj\\j,
j

for all x',y E K, (1-14)

where ||z;||; = (xTiGiXi)l/2. Let fi,t(x) be defined now as the linearized function

as following:

fi,t(x) = fi{x(t)) + A(*(0)(*i(< + !) - *<(*))• (1.15)

21

Define X{(t -f 1) as a solution of Vand define the mapping function T{ by

Xi(i + 1) = 7i(a;t(t)), for every i. Then, the iteration mapping T- of the linearized

algorithm has the contracting property

||2i(a;) — ®j|| < /3max \\x/ — Xj\\j, for all x{' 6 Ki,i = 1,... ,n. (1.16)

In particular, when x is the unique solution of VI(Ff,/), the parallel decomposi¬

tion algorithm x(t -f 1) = T(x(t)) converges to x geometrically.

Although VI formulations of equilibrium problems over Cartesian products of

sets have been derived (for example, see Dafermos [16, 18]; Pang [73]; Nagurney

[53]; Nagurney and Aronson [61]) and serial decomposition algorithms imple¬

mented (Pang [72]; Nagurney [53, 54]; Nagurney and Aronson [61]), parallel VI

decomposition algorithms have, heretofore, not been implemented on parallel ar¬

chitectures, nor their relative efficiencies vis a vis serial decomposition algorithms

evaluated.

The recent development of parallel computing systems offers the promise of a

quantum leap in the computing power that can be brought to bear on many im¬

portant problems. When each suitably decomposed subproblem over a subset K{

is allocated to a distinct physical processor and is calculated independently, the

time to solve large-scale network equilibrium problems can drop dramatically.

Therefore, efficient parallel algorithms should be developed to solve large-scale

network equilibrium problems. Coarse grain parallel algorithms, which have sev¬

eral multitasks, can be implemented on a supercomputer such as the IBM 3090-

600 or the Cray Y-MP. Fine grain parallel algorithms, which have a very large

22

number of tasks, can be appropriately implemented on a massively parallel archi¬

tecture such as the Connection Machine with as many as 64K processors in its

full configuration.

Motivated by the recent development of parallel architectures, efficient parallel

algorithms are developed in this thesis for large-scale network equilibrium and

optimization problems using variational inequality theory and are implemented

on the IBM 3090-600 and the Thinking Machine’s CM-2 (Connection Machine)

as mandated by the particular application.

This thesis is organized as follows. In Chapter 2, a new spatial price equi¬

librium model as a prototype of network equilibrium problems is developed. Its

variational inequality formulation and accompanying parallel decomposition al¬

gorithms are also introduced. In Chapter 3, a constrained matrix problem is

outlined as a prototype of (structured) network optimization problems. In Chap¬

ter 4, numerical implementations of the parallel algorithms which are introduced

in Chapters 2 and 3 are explained. In Chapter 5, the numerical results are re¬

ported and discussed and, in Chapter 6, the thesis is summarized and directions

for future research are given.

23

Chapter 2

NETWORK EQUILIBRIUM PROBLEMS

In this chapter, static spatial price equilibrium problems (SPEP) - single com¬

modity and multicommodity - and dynamic SPEP's are considered as prototypes

01 large-scale network equilibrium problems. General dynamic multicommodity

SPEP's are considered Erst, and then static SPEP's. both single and multicom¬

modity, which are special cases of the general model.

2.1 Dynamic Multicommodity Spatial Price Equilibrium Problems

In this section, a new spatial price equilibrium model is developed. The model

allows inventories at supply markets and contains, as special cases, static spatial

price equilibrium models when the number of the finite time periods is equal

to one. This model diners from the ones developed in Xagumey and Aronson

61 62 in a significant way. In particular, the formulation is no longer based

on the path flows, which is memory expensive, but, rather, on the link flows.

Furthermore, this model allows the decomposition by time periods, which is a

natural one based on the structure, as shall be demonstrated.

24

The model is now presented. Consider a finite time horizon and partition the

horizon into discrete time periods t\t — 1,...,T. It is assumed that L different

commodities, typically denoted by A:, are produced at m supply markets and are

consumed at n demand markets. Denote a typical supply market by i and a

typical demand market by j. Number the supply markets from 1 through m and

the demand markets from m + 1 through m + n.

The state of the system will be described by a number of vectors as follows.

A supply column vector s = {5^ : i = 1,..., m; & = 1,..., L\ t = 1,..., T} with

nonnegative supply quantity skt associated with supply market i and commodity

k at time period t.

A demand column vector d = {dkt : j = m + l,...,m + n;A: = 1,..., X; t =

1.. ..,T} with nonnegative demand dk-t associated with demand market j and

commodity k at time period t.

A shipment column vector X = {Xktjt : i = 1,... ,77157 = 711 + 1,.=

1 = 1,...,T} with nonnegative commodity shipment XXt associated

with commodity k between supply market i and demand market j in time period

t.

An inventory column vector I = : i = 1, = 1 =

1.. ..,T — 1} with nonnegative total carryover quantity associated with

supply market 2 and commodity k between time periods t and t + 1.

25

A supply price row vector 7r = {tt^ : i = 1,..., m; k = 1 t = 1,..., T}

with 7rJ denoting the supply price of commodity k at supply market i at time

period t.

A demand price row vector p = {pjt : j = m + 1,..., m + n; k = 1,..., L\ t =

1.. .. ,T} with denoting the demand price of commodity k at demand market

j at time period t.

A transaction cost (which includes the transportation cost) row vector c =

{cnjt : i — = m + 1,... ,m + n; k = 1, t = 1,..., T} with c*tJt

denoting the nonnegative transaction cost associated with shipping commodity k

from supply market i to demand market j in time period t.

An inventorying cost row vector H = : i = 1,..., m; k = 1,..., L\ t =

1.. .., T—1} with denoting the nonnegative inventory cost associated with

carrying over commodity k from time period t to t + 1 at supply market i.

Now the dynamic network equilibrium model is constructed. In particular, L

copies of a single commodity dynamic network for commodity k are considered

as follows (see Figure 1). For each period t\t = m supply market

nodes, denoted by the tuples (It)*,..., (mt)*, represent the supply markets of

commodity k at time period t. Similarly, n demand market nodes, denoted by the

tuples (m + 1, t)fe,..., (m + n, represent the demand markets of commodity

k at time period t. In the model, mn transaction/transportation links with a

typical one originating at node (it)k and terminating at node (jt)k are denoted by

(itjt)k. Hence, the total number of transaction links is LmnT. From each supply

26

Commodity L

Figure 1 A Network Representation of the Dynamic Multicom¬

modity Market Equilibrium Problem

supply market node (it) , an inventorying link (it,i(t + l))fc is constructed and.

then, the total number of inventory links is Lm(T - 1). With each of the links

({itjt') \t' = t) the corresponding transaction cost c^tJt, is associated and with

each of the links ((itit')k:f = i + 1) the inventory cost H*tiv. The flows on these

links correspond, respectively, to X^tjt, and I^tiv.

The supply and demand of each commodity must satisfy the following flow

conservation constraints:

n

4 = Y Xitjt + Ixti(t+1) - Ii{t-i)i«» ^ all z, k,t (2.1)
j=i

and

djt = Y for a11 j,k,t (2.2)
i=l

where

xitjt > 0 and Iktit, > 0, for all z,;, k,t. (2.3)

Denote the set of all feasible (5,Ar,/, d) satisfying constraints (2.1), (2.2), and

(2.3) by K.

Assuming that the underlying mechanism is that of perfect competition, a

dynamic spatial market equilibrium consisting of commodity prices, shipments,

and quantities inventoried, is obtained if the following interregional/intertemporal

conditions are satisfied: a commodity will be produced, traded, and consumed,

28

between a pair of markets if the supply price at the supply market plus the trans¬

action cost is equal to the demand price at the demand market. No commodity

will be produced, traded, and consumed, if the supply price plus the transaction

cost is greater than the demand price. Similarly, the commodity will be invento¬

ried between two time periods if the supply price at the supply market plus the

inventory cost is equal to the supply price at the next time period. The invento¬

rying quantity will be zero if the supply price plus the inventory cost is greater

than the supply price at the next time period.

Mathematically, the dynamic multicommodity market equilibrium conditions

take the form, following Samuelson [78] and Takayama and Judge [82] (see also

Nagumey and Aronson [61]): for all i = 1 = m + 1,..., m + n; k =

1 r.4 _ i t-
A ^ J ■*-/ j U —“ } -A •

= p%{d), if x?tjt > o

> p)t{d\ if Xitjt = 0
(2.4)

and for all i = 1,... ,m; k = 1, t = 1,..., T — 1:

"I" ^tti(t+l)
= *&+!)(*). if > 0

S *f(t+i)(s)> if f«i((+i) = °-
(2.5)

Here the general situation is considered where the supply price function w^t(s)

associated with a supply market i, commodity fc, and time period t may, in

general, depend upon the supply quantity of every commodity at every supply

market in every time period. Similarly, the demand price function pk-t associated

with demand market j, commodity &, and time period t may depend upon, in

29

general, the demand quantity of every commodity at every demand market in

every time period. The transaction and inventory costs S^t+1^ in turn,

may depend, respectively, upon the shipments of every commodity between every

pair of markets within every time period, and upon the quantities inventoried of

every commodity at every supply maxket between every pair of time periods.

The variational inequality formulation of the above equilibrium conditions

(2.4) and (2.5) is presented as follows.

Theorem 3:

A commodity pattern (s,X, 7, d) is in equilibrium, if and only if, it satisfies

the variational inequality problem:

7r(s) . (s' - s) + c(X) • (X' -X) + H(I) • (/' - I) - p(d) • (d! - d) > 0 (2.6)

for all (s', X',r,d!) 6 K.

Proof:

First variational inequality (2.6) is derived from equilibrium conditions (2.4)

and (2.5).

Observe that condition (2.4) implies that for fixed market pair (i,y), com¬

modity fc, and time period t:

(4(<) + - pkM) • (x& - XU * °> for 311 * °- (2-7)

But inequahty (2.7) holds for all pairs (i,j), fe, and t; hence,

T L m+n m

EE E E(*« + 4;<W - PkjAd)) ■ (Xiiit - x!ljt) z 0. (2.8)
t=l k= 1 j=m+l 1=1

30

Also, observe that condition (2.5) implies that

(4(4 - K#+l)(I) - 4.+i>(4) ■ (4*+i) - 4(«+1)) > O.for all /‘;(<+1) > 0,(2.9)

and. therefore.

T \ L m

XI XI XI(Ti<(,S) + — ^it+lC5)) * (litit+l ~ Iitit+1) — (2.10)
t=l *=1 i=l

Combining now inequalities (2.8) and (2.10) and simplifying the resulting

expression by using (2.1) and (2.2), we obtain:

T L m T L m+n m

EZE4(4■ (4-4) + EE E E<*#(*)• (■*&-*£>.)
t=l fc=l i=l t=l Jk=l jf=m+l i=l

T—1 L m T L m+n

E E E flSW7) • (4'i(,+i) - 4(<+d) -EE E 4(4 • (4 - 4) £ o
t=i k=l i=i t=l A=1 j=m+l

1

(2.11)

for all (s',X',r,d‘) e K,

or, equiGently, (2.6).

Now equilibrium conditions (2.4) and (2.5) are derived from variational in¬

equality (2.6). For convenience, the expanded form of the variational inequality

(2.11) is used. At first, fix /^lt+1 = /£it+1, for all i and t. Then (2.11) reduces to:

T L m+n m

E E E E(4(4 + 4,«(*) - 4(4) ■ (*& - *«#) > o.
t=l fc=l j=m+l i=l

(2.12)

31

Note, by setting X^m = for all It'mt" / itjt, inequality (2.12) reduces

to

(*S(*) + 4,(-V) - 4(d)) • (X‘;(- A%) > 0, (2.13)

and. hence, equilibrium condition (2.4) must hold.

Equilibrium condition (2.5) can be shown to hold using similar arguments,

but by. first, setting = Xftjt for all t,j, k, and t.

Existence of a unique equilibrium pattern (s, X, I, d) can be guaranteed from

the theory of variational inequalities under the assumption of strong monotonicity,

that is,

W*‘) - *(**)) • - s') + ('(X1) - c(x2)) ■ (X1 - X2)

+(H(Il) - H(I2)) • (I1 - I2) - (p(d') - p(d2)) ■ {d> - d2)

> a (IKj1 - S2||2 + ||X2 - X2||2 + ||Jl - J2||2 + ||d2 - d2||2) (2.14)

for all (s1,X\I\dl) and (s2,X2,P,<P) 6 K,

where a is a positive constant. Condition (2.14) will hold when the respective

Jacobian matrices fy, ^7, and are positive definite over the feasible set

K. This condition is commonly imposed and means that we can expect that the

supply price of a commodity at a supply market and time period will depend

primarily upon the supply of the commodity at that supply market in that time

period. Similarly, we can expect the demand price of a commodity at a demand

market and time period to depend primarily upon the demand of the commodity

at that demand market in that time period. The analogous dependencies between

32

the transaction and inventorying cost functions and the respective commodity

shipments and inventory quantities can also be expected to hold.

In the special case when the Jacobian matrices are symmetric, as assumed in

the classical models of Samuelson and Takayama and Judge, then it is easy to see

that (s,X, /, d) satisfies (2.6), if and only if, it minimizes the functional

H(I)dI - J p(d)dd (2.15)

over K. In the symmetric case, then, the equilibrium can be constructed by

standard convex programming algorithms.

Dynamic single commodity SPEP’s can be easily obtained from equilibrium

conditions (2.4) and (2.5) by letting the number of commodities, T, be equal to

one. The graphical description (see Figure 2) of this problem is simply obtained by

taking one layer from Figure 1. The equivalent variational inequality formulation

of the above equilibrium conditions (2.4) and (2.5) and the qualitative properties

of equilibria such as existence and uniqueness are then easily obtained. It is

emphasized, that although the model is referred to as a single commodity one,

it is, nevertheless, quite general, in that the supply price of the commodity at a

supply market at a time period may depend upon the supply of the commodity at

every supply market and time period. A similar generality holds for the demand

price functions and the transaction and inventory cost functions.

0(s,X,I,d) = J v(s)ds + J c{X)dX - J

33

Demand Market Nodes

Figure 2 A Network Representation of the Dynamic Single Com¬

modity Market Equilibrium Problem

34

2.2 Static Multicommodity Spatial Price Equilibrium Problems

In static SPEP s, the products produced by spatially separated supply mar¬

kets at different prices are transshipped at different transportation costs to the

spatially separated demand markets which have different demand prices in one

time period. This model is readily obtained from the dynamic multicommodity

model described in the preceding section by letting the number of discrete time

periods, T, be equal to one. The resulting static multicommodity spatial price

equilibrium model is then identical to the multicommodity equilibrium model

introduced by Dafermos [18]. Here the model is briefly outlined.

Assume that L different commodities, typically denoted by k, are produced at

m supply markets and are consumed at n demand markets. The typical supply

and demand markets will be denoted, respectively, by i and j. The state of the

system will be described by a number of vectors as follows:

A supply column vector s = {s*. : k = 1 ,...,£} £ RLm where Sk = {s*;i =

1,... ,m} is a vector £ Rm with nonnegative supply quantity s* associated with

commodity k and market i.

A demand column vector d = {d: k = 1,..., L} £ RLn where d= {d* : j =

1,... ,n} is a vector £ Rn with nonnegative demand quantity dk- associated with

commodity k and market j.

A shipment column vector X = {Xk : k = 1 £ i?Lmn, where AT =

{AT* : i = 1, = l,...,n} is a vector £ Rmn with nonnegative shipment

35

Xjj associated with commodity k between supply market i and demand market

j-

A supply price row vector 7r = {71-*. : k = 1 G .RLm where 7r* = {7r* :

i = is a vector G J?"1 with component r* denoting the supply price of

commodity k at supply market i.

A demand price row vector p = {p*. : k = 1,...,T} G -RLn where p^ = {pj :

j = 1,... ,n} is a vector G -RLn with component pj denoting the demand price of

commodity k at demand market j.

A transaction cost row vector c = {c^ : k = 1G RLrnn where =

{c-,1 = 1,... ,77i; j = 1,... ,n} is a vector G i?mn with component cJ- denoting the

unit transaction cost associated with producing commodity k at supply market i

and consuming it at demand market j.

The above fields are related by the following conservation equations

z = = (2.16)
3

<$ = E*S J = fc = (2.17)
i

where X- > 0, for all x,j, fe. Define X* = (s*.,Xk,dfe), such that (2.16) and (2.17)

hold for fixed fc, X*. > 0, and K = []fc=i Kk-

Again the general situation is considered where the supply price of any com¬

modity at any supply market may, in general, depend upon the supplies of every

commodity associated with every supply market. The demand price functions

and transaction cost functions are also as general as described earlier.

36

Assuming, as before, that the underlying mechanism is that of perfect com¬

petition, the equilibrium is obtained when the supply price of the commodity at

the supply market plus the transaction cost of this commodity associated with

this pair of supply and demand markets is equal to the demand price of this

commodity at the demand market. Mathematically, this state is characterized by

the following equilibrium conditions which must hold for every commodity k and

for all pairs of supply and demand markets (t,j):

= p)(d), if > 0

> p)(d), if X*j — 0.
(2.18)

Equilibrium conditions (2.18) can be obtained from equations (2.4) and (2.5)

by letting T be equal to one. The equivalent variational inequality formulation

of equilibrium condition (2.18), following Dafermos [20], is given by

7r(s) • (s' — s) + c(X) • (X' — X) — p(d) • (d — d) > 0 (2.19)

for all (s',X',<f') 6 K.

Static single commodity equilibrium conditions are easily obtained from the

conditions (2.18) by letting the number of commodities, L, be equal to one. This

simple SPEP is depicted as a bipartite network in Figure 3. The equivalent

variational inequality formulation of the above equilibrium conditions and the

qualitative properties of equilibria such as existence and uniqueness are then

easily obtained.

37

Supply Markets

Demand Markets

Figure 3 Bipartite Network Representation of Spatial Price Equi¬

librium Problems

38

2.3 The Decomposition Procedure

As mentioned in the Introduction in this thesis, parallel computation of the

equilibrium solutions will focus on the construction of parallel decomposition

schemes for which convergence conditions will also be given. As shall be shown

in this section, dynamic multicommodity spatial price equilibrium problems can

be decomposed by commodities, by time periods, and/or by demand and supply

markets. Figure 4 shows the overview of the decomposition scheme and the

detailed decomposition procedures are explained in the following subsections.

2.3.1 Decomposition by Commodities

Multicommodity spatial price equilibrium problem can be decomposed by

commodities. In the case of the multicommodity market equilibrium model out¬

lined in the Section 2.1, the feasible set K can be expressed as a Cartesian prod¬

ucts of subsets, i.e., K = n£=: Kk, where k is a commodity, and the selection

of the mapping function Ak(z) = Dk(z), where Dk(x) is the diagonal part of

Vt/i'z , yields a decomposition of the multicommodity problem into L single

commodity problems.

Now the parallel decomposition algorithm by commodities to solve the varia¬

tional inequality problem (2.6) is presented.

Step 0: Initialization Step

Start with an initial feasible solution (s°, X°. /°, <f°) € K and set the iteration

count t — 1.

39

Decompose
by\

Time Periods

Decompose
X by

Commodities

Figure 4 Overview of the Decomposition Schemes of General Spa¬

tial Price Equilibrium Problems

40

Step 1: Linearization Step

At iteration r, construct new supply price, demand price, transaction cost,

and inventorying cost functions which are linear and given for each commodity k

by

7r !T(4) = (2.20)

for supply markets i = commodities k = 1 and time periods

t — \ T

dp)t

dd%
(<T) • 4 + (2.21)

for demand markets j = commodities k = 1 and time periods

t — l T

dc^-

m{xl
*5.+ 4(*T) -

dc*.
Yk’r
Aijt (2.22)

for supply and demand market pairs (i,j) : i = 1,... ,m; j = 1,... ,n, commodi¬

ties k = and time periods t = 1,..., T,

dHiti(t+1) , rrN rk
-~j-k-U

+ -
^Hitl(t + l) / J-T\ 7-fcT

(2.23)

41

for supply markets i = 1,..., m„ commodities k = 1 and time periods

t = — 1.

Step 2: Equilibration Step

The VI subproblem at iteration r, for commodity fc, is, hence,

E E *Sr(4) • («Sr - 4) + E E E «$(■*«,) • (*5 - *&)
t-1 i=i t=i i=i >=i

EE^«,(4,I+1,)-(/£(t+1)-4((+1))-EEpJT(4)-«-4) > (2-24)
t=i i=i t=1 j=i

for all

The solution to all L subproblems is (sr+1, XT+l, IT+1, dT+l). Note that L decom¬

posed VI subproblems of (2.24) are solved independently and in parallel, where

each subproblem (2.24) is equivalent to an optimization problem.

Step 3: Convergence Verification Step

If the equilibrium conditions (2.4) and (2.5) hold within a prescribed tolerance

e, then terminate. Otherwise, update the functions according to (2.20), (2.21),

(2.22), and (2.23) for all the commodities and go to Step 1.

The convergence of the above decomposition algorithm by commodities is

obtained by applying Theorem 2 in Chapter 1.

In the case of static models, this decomposition algorithm becomes simpler in

that equation (2.23) is then removed. As a result, the resulting L single commod¬

ity static problems have mn shipment variables and a special bipartite network

structure, which can be solved via the supply and demand market equilibration

42

algorithms introduced by Dafermos and Nagurney [22], (see also Nagumey [55,

56]) that have the remarkable property that, at each step, a relaxed market equi¬

librium problem is solved exactly. For a theoretical analysis of such equilibration

algorithms, see Eydeland and Nagurney [28]. Specifically, at each iteration, the

VI decomposition algorithm would yield the functions (2.20), (2.21), and (2.22).

In this case, the ensuing subproblems are also equivalent to the solution of a

quadratic programming problem of the form:

Minimize

over Kk ■Uy)dy jj p>(z)dz' (2.25)

for each k, k = 1,..., L.

2.3.2 Decomposition by Time Periods

The dynamic spatial price equilibrium problems can also be decomposed by

time periods. For simplicity, a single commodity dynamic problem is considered

rather than a multicommodity one. This novel approach - decomposition by time

periods - resolves the dynamic network problem into T static network equilibrium

problems, each with mn shipment variables and with a special bipartite network

structure, for which numerous efficient algorithms exist. The T-f 1-st subproblem,

the inventory problem, is a simple problem in m(T — 1) variables. Figure 5

describes graphically the dynamic market equilibrium problem when decomposed

by time periods. It is emphasized that although our focus is on the parallel nature

of this decomposition scheme, the algorithm can also be implemented in a serial

43

Figure 5 Parallel Decomposition of the Dynamic Market Equilib¬

rium by Time Periods

44

environment using the appropriate adaptations/extensions to any existing code

for static spatial market equilibrium problems. Indeed, the computational results

in the next section are for precisely such an implementation.

First some preliminaries are presented. Note that in view of (2.1) and (2.2), we

may define the functions 7rit(X, 7) = 7rit(s) for all i and t and p'jt(X) = pjt(d) for

all j and t. Hence, the variational inequality (2.11) is equivalent to a variational

inequality in only two vectors of variables X and 7, that is,

T m+n m

E E E(*«(*>n + <**(*) - «»(*)) • (*'«* - x**)
t=1 j=m+l i=l

+ E E(MX,I) + Hui{t+l)(I) - xi(t+1)(X,/)) ■ (riii(t+1) - 4i((+1)) > 0 (2.26)
t=1 1=1

for all (X',F) € K\

where K2 = Kx x K2, where Kx = {X'\X' > 0} and K2 = > 0}.

The algorithm is a linearization scheme which resolves (2.26) into two simpler

subproblems, each of which is a quadratic programming problem; the first sub¬

problem is in variables X only, and the second, in variables 7, only. Each of these

subproblems can be solved simultaneously, and in parallel.

Let fi(X, I) denote the mnT dimensional vector with components {7rtt(X,/) +

Citjt(X) - pjt(X),i = 1,... ,m; jf = m + 1,... ,m + n; t = 1,... ,T} and /2(X,J)

the m(T — 1) dimensional vector with components {^(X, 7) + i7;tt-(t+1)(7) —

7Ti(t+1)(X,7),i = = 1,...,T-1}. Then variational inequality (2.26)

45

can be written succinctly as:

/i(X, I) • (.X' - X) + f2{X, 7) • (7' - 7) > 0 for all (X, 7) € K\ (2.27)

Now the algorithm is presented as follows.

Step 0: Initialization Step

Set X° = 0,7° = 0, r = 1.

Step 1: Linearization Step

(1) Construct the function /^(X) € RmnT which is linear and separable ac¬

cording to:

/r(x) = jD1(xT-1,r-1)• (x) + (/1(xt-1,/t-1) - A(xT-1,r-1) -x1-1) (2.28)

where T)i(-) is the diagonal part of Vi/i(-).

(2) Construct the function f2(I) which is linear and separable according to:

K(I) = 7)2(Xt“1,7t~1) . (7) + (f2(XT~1,IT~l) - D2(Xt-\It~1) ■ 7T_1) (2.29)

where D2(-) is the diagonal part of V2/2(-).

Step 2: Equilibration Step

(1) Solve the variational inequality subproblem,

fi{X) • (X1 - X) > 0, for all X' GXl (2.30)

Let the solution to (2.30) be XT.

46

(2) Solve the variational inequality subproblem,

r2{I) • (/' - I) > 0, for all /' £ K2. (2.31)

Let the solution to (2.31) be IT.

Step 3: Convergence Verification Step

If |*UXT,n + 4tjt(XT) - PTjAXT)\ < e, for all X?tjt > 0;

r) + - Ph > for an XTtjt = 0,

and |*l{X\r) + if,T[i(1+1)(/T) - *r((+1)(XT,r)| < *, for all ^l(t+1) > 0;

+ ^,T«(1+i)(^) - ^(1+1)(Jf',fT) > for aU /;i(1+1) = 0 then

stop;

else, set r = r + 1, and go to Step 1.

It is emphasized that subproblem (2.30) decomposes into T subproblems,

t = 1,..., T, each of which is a static single commodity spatial price equilibrium

problem with a special bipartite network structure and because of the construc¬

tion of the new functions, which are linear, and separable, each subproblem is

equivalent to a quadratic programming problem. Special-purpose algorithms for

the subproblems, called market equilibration algorithms, have been developed in

Dafermos and Nagurney [23] and theoretically analyzed in Eydeland and Nagur-

ney [28]. Subproblem (2.31) is also a quadratic programming problem to which,

for example, a Gauss-Seidel method can be applied. Parts (1) and (2) of Steps 1

and 2 can be solved simultaneously. For a graphical depiction of the parallelism,

see Figure 5.

47

The strong monotonicity condition (2.14) is assumed to hold, thus guaran¬

teeing existence and uniqueness of the equilibrium pattern. Convergence of the

algorithm then holds under the following condition (Bertsekas and Tsitsiklis [9],

Proposition 5.8, Section 3.5).

Theorem 4:

Let Ki = {X'\X' > 0},^ = {-H-/7 > 0}, and K2 = K\ x K2- Suppose that

there exist symmetric positive definite matrices Gi and some 6 > 0 such that

Di(-) — SGi is nonnegative definite for i = 1,2 and y' = (X',/') € K2, and there

exists some /? E [0,1) such that

ll<3,rl(/*(2/') “ fi(z) ~ Di{z) • (j/L - 2t-))||i < 60 maxjWy'j - Zj\\j, (2.32)

for all t/', z E X2

where ||yi||i = (yjGiyi)1^2. Then the above parallel linearization decomposition

algorithm converges to the equilibrium solution.

2.3.3 Decomposition by Markets

Static and single commodity spatial price equilibrium can be further decom¬

posed by supply and demand markets. Dafermos and Nagumey [22] and Nagur-

ney [55] [56] introduced supply and demand market equilibration algorithms,

which are serial algorithms.

In this subsection, a parallel decomposition algorithm by markets to solve

the variational inequality (2.19) is briefly described. In the first, the cost func¬

tions 7r(s),p(d), and c(X) are projected to get the linear diagonal cost functions

48

7r($;),/5(dj), and c(X{j). Then, the resulting variational inequality is equal to a

quadratic problem. Since the supply and demand quantities are unknown and

the cost functions are linear and separable, the linearized variational inequalities

can be solved via the elastic exact algorithm given in Dafermos and Nagumey

[23] and Nagurney [59]. Because this problem is isomorphic to the constrained

matrix problem with unknown row/column totals, the detailed algorithm will be

given in Section 3.3.

49

Chapter 3

NETWORK OPTIMIZATION PROBLEMS

We now turn to the study of a special case of network equilibrium problems,

that is. network optimization problems. (Recall that a network equilibrium with

the symmetry assumption for the underlying functions can be reformulated as a

network optimization problem.) As an example, the general constrained matrix

problem is used. Note that the constrained matrix problem is characterized by a

special bipartite network structure.

3.1 Constrained Matrix Problems

The genera] constrained matrix problem is to compute the best possible esti¬

mate X of an unknown matrix, requiring either that the matrix X be a minimum

distance from a given matrix X°, or that X be a functional form of another known

matrix (see Figure 6). The constrained matrix problem can be considered as a

network optimization problem having a special bipartite structure as depicted in

Figure 3, and this reformulation as a network problem will be used to obtain ef¬

ficient algorithms which exploit this special structure. Recently, researchers have

formulated constrained matrix problems as mathematical programming problems,

50

/ *11 XU ... Xin \
x2l x22 ••• X2n

*
* • • .
• • • #

'•^ml xttl2 xmn /

di do ... dji

Matrix

Estimate X

Figure 6 The Constrained Matrix Problem

with an objective function that forces conservatism on the process of rationaliz¬

ing X from the initial estimate -Y°. In the classical setting, the row and column

totals are known and fixed. However, in certain applications, the row and column

totals are not known a priori, but must be estimated. The relationship of the

constrained matrix problem of unknown row and column totals with the spatial

price equilibrium problem is explained in Section 3.2.

Now the model is described. Consider the given m x tl matrix by X° = (x°-),

and denote the matrix estimate by X = (xtJ). Let 5° denote the row i total,

and S{ the estimate of the row i total. Let d°- denote the column j total, and dj

the estimate of column j total. Let the mn x mn matrix G = (wtjfcf) denote the

imposed weight matrix for the mixed variable terms (Xij — x^) • (x^ — x°z) and

assume the matrix G to be strictly positive definite. Let mxm matrix A = (a**)

xll

X21

\x 0
ml

.0
'12
.0
'22

'm2

Initial

Matrix X°

x°m \

■2 n

.0
'mn /

51

52

S-m

51

denote the imposed weight matrix for the mixed variable terms {si -s°i)-(sk -s°k)

and let the n x n matrix B = (fiji) denote the imposed weight matrix for the

mixed variable terms (dj - dj) • (dt - df). Assume that the matrices A and B are

also strictly positive definite.

Then the general constrained matrix problem can be written as follows:

Minimize - <*«(* - 5?) • (sk - sak) + £ £ £ £ wijkl
Z [i=lk=l i=lj=lk=ll=l

(*« - *«) • (*« - *«) + ttM* ~ <$) ■ (<*< ~«?)} (3-i)
i=i 1=1 J

subject to:

n

Xij — sii

3 = 1

i = 1,... ,m (3.2)

H
 II j = 1,..., n (3.3)

and the nonnegativity conditions. Note that the objective function represents the

weighted squared sums of the deviations.

The objective function (3.1) permits the utilization of mixed-variable weight

terms. This extends the modeling capabilities of the constrained matrix prob¬

lem. An example of possibly fully dense A,B, and G matrices are the inverse of

the respective variance-covariance matrices (see Judge and Yancey [40j). Other

examples may arise when the matrices A, B, and G include subjective weights

based on the expert knowledge of planners.

52

Now, as an illustration, the above constrained matrix problem is described

in the context of input/output (I/O) matrices. An I/O table is constructed

from data obtained for a specific entity, be it a country, region, state, etc. The

economic activity is divided into a number of producing sectors (or industries),

with the exchange of goods between sectors consisting of sales and purchases of

goods. Sectors may be general industrial categories (e.g., the aluminum indus¬

try), or smaller subdivisions (such as aluminum siding), even larger industrial

groups (such as mining ore). The rows of the I/O matrix denote the origin sec¬

tors, i.e., the sellers, whereaLS the columns denote the destination sectors, i.e., the

purchasers. The data required to form the I/O table are the flows of the prod¬

ucts from each of the producing sectors to the consuming sectors. The data are

obtained for a particular time period. The column data represent each sector’s

inputs while the row data represents each sector’s output; thus, the reason for

the nomenclature input/output table. For an overview of input/output tables,

including applications to regional economics, see Miller and Blair 48 .

The constrained matrix problem arises in the context of I/O tables, when one

has a base I/O table for a given time period, typically, a year, and one wishes

to update the table to another time period. Often one is not certain of the row

and column totals at the new time period. For example, usually one is able to

estimate the row and column totals only under certain simplifying assumptions.

Furthermore, in countries or regions with a poor information base, the stated row

and column totals may simply reflect informed conjectures. The above formula-

53

tion takes into account such knowledge gaps directly, thus permitting modeling

flexibility.

In the diagonal case, where a;*. = 0, for k i, Wijki = 0, for kl ^ ij, and

(3ji = 0, for j 7^ /, the objective function (3.1) simplifies to:

-i I m m n n]

Minimize - < £ - s?)2 + £ £ wijij(xij ~ xijf + YlPjj{dj ~ f (3-4)
z [i=i i=i j=i j=i J

subject to the constraints (3.2), (3.3), and the nonnegativity assumption.

The choice of weights is also flexible in this formulation. When the weights

in (3.4) are all equal to one, the problem becomes a constrained least squares

problem, and when an = -V, (3jj = and 7yy = 4r, for all rows i and columns
s. a- x.'i

j, the objective function is the well-known chi-square. Other possible weights,

include an — /3jj = and 7yy = or a niixed weighting scheme.

Of course, when the inverse of the variance-covariance matrix is diagonal, the

objective function (3.4) can also be used.

This diagonal model has been studied by Nagurney [59] who identified its

connection with classical, separable spatial price equilibrium problems and pro¬

posed an equilibration algorithm (albeit serial) for its solution. This model is a

special case of a constrained matrix problem applied to I/O estimation by Harri-

gan and Buchanan [35], who considered interval constraints, rather than equality

constraints (3.2) and (3.3).

Lastly, in the case where the row and column totals are known with certainty,

i.e., Si = s?, for all i, and dj = d], for all j, the above general quadratic model

54

(3.1), (3.2), and (3.3), collapses to the quadratic constrained matrix problem with

fixed row and column totals formulated in Nagumey and Robinson [67] via RC

equilibration.

In particular, the objective function in this case simplifies to:

Minimize 1 £ £ £ - *£) • (*u - *«) (3.5)
Z »=1 J=1 *=1 Z=1

subject to:

n

^2xij — 5i, i — l,...,m
i=i

(3.6)

m

yi xij ~ dYji j= i ? * * • >71 *
»=i

(3.7)

This model may also be applied to the estimation of input/output tables, and

social/national accounting matrices, provided that the row and column totals are

known with certainty, as well as, to the estimation of migration flows. Row and

column totals may be available for a time period in the past, and the matrix

entries which yield those totals are needed, given matrix entries for an earlier

time period.

In the much-studied diagonal constrained matrix problem with fixed row and

column totals, where the ~fijki = 0, for kl ^ ij, the objective function (3.5) further

simplifies to

Minimize i J2 it, “ xijY
z i=i j=i

(3.8)

55

subject to (3.6) and (3.7).

Deming and Stephan [24] considered (3.8) with 7ijtj- = + , subject to con-
xij

straints (3.6) and (3.7), whereas Friedlander [32] considered the case where G = I.

Bachem and Korte [5] treated (3.8) with all of the constraints. Cottle, et.al. [13],

on the other hand, studied Friedlander’s problem with upper and lower bounds.

Ohuchi and Kaji [69] [70] studied the Bachem and Korte problem with upper and

lower bounds. Klincewicz [42] also studied the above diagonal model.

3.2 Relationship to the Spatial Price Equilibrium Problems

As mentioned in the Introduction, the conjecture that a relationship exists be¬

tween spatial price equilibrium problems and constrained matrix problems dates

to Stone [80]. Here the connection between the general constrained matrix prob¬

lem and spatial price equilibrium problems is further explained.

The Kuhn-Tucker optimality conditions for (3.1), (3.2) and (3.3), can be stated

thus: For all rows i, i = 1,..., m and for all columns j, j = 1,..., n, the solution

(s,:c,d) where s = {s^} £ i2m, x £ RmTn is the vectorization of the matrix X, and

d = {dj} £ Rn, satisfies constraints (3.2) and (3.3), and:

Y <*ijSj - Y aiJSj + 12 Wijklxkl - Y WijklXijU
j j Id kl

j = if X{j >0 /o q\

1 > + if = 0. v ;

56

Note that the Kuhn-Tucker conditions above are equivalent to the well-known

Samuelson [77], and Takayamaand Judge [82] spatial price equilibrium conditions.

In this context, the supply price function for the commodity at the supply market

i,7T;, is linear and is given by:

7Ti = 7ri(^) = aijSj ^ atjsji (3.10)
3 3

where Sj denotes the supply of the commodity at the supply market j, the demand

price function for the commodity at the demand market j, pj is also linear and

given by:

Pj = pj(d) = - ^2 fcidi + S Pjttf» t3-11)
i i

where di denotes the demand for the commodity at the demand market / and,

finally, the transportation cost function, cty, associated with shipping the com¬

modity between the supply market i and the demand market j, is also linear and

given by:

Cij = Cij(x) = WijklXijkl - wijkix°ijkl. (3.12)
kl kl

The matrices A, B, and G are assumed to be symmetric and positive definite.

Equations (3.9) through (3.12) state that the commodity shipment X{j is

greater than zero, if the supply price at the supply market i plus the cost is

equal to the demand price and zero if the supply price plus transportation

cost is greater than or equal to the demand price. The above general constrained

57

matrix problem is, hence, isomorphic to symmetric spatial price equilibrium prob¬

lems in the case of linear supply price, demand price, and transportation cost

functions. This isomorphism is used to develop a fine grain parallel algorithm for

such problems which will be described in the next section. Note that, in real-

world applications, the large-scale nature of these problems makes the application

of parallel decomposition schemes appealing.

It is emphasized, however, that the Splitting Equilibration Algorithm which

will be described in the subsequent section, and also be applied to the asymmetric

spatial price equilibrium problem, where A, and G are no longer symmetric.

This enables, for example, the modeling and solution of multicommodity spatial

price equilibrium problems. In the asymmetric case, as discussed in Chapter 2.

the spatial price equilibrium conditions (2.18) can no longer be formulated as an

equivalent quadratic programming problem, but, rather, as a variational inequal¬

ity problem (2.19). Note, however, that the optimal solution to problem (3.1),

nevertheless, always satisfies the variational inequality (2.19), with 7r^pj and cXJ

defined by (3.10), (3.11), and (3.12). The algorithm that will be described decom¬

poses the problem by markets, rather than commodities, and represents, hence,

a new parallelization scheme for asymmetric spatial price equilibrium problems,

and, moreover, as we shall be shown, each subproblem can be further decomposed

by markets yielding a massively parallel decomposition.

58

3.3 The Parallel Splitting Equilibration Algorithm

In this section, first the Splitting Equilibration Algorithm (SEA)is reviewed,

and then the massively parallel SEA algorithm for the computation of the general

quadratic constrained matrix problem is developed. For theoretical results, see

Nagumey and Eydeland [63] and for a graphical depiction of SEA, see Figure 7.

The special network structure of the row and column equilibration step can be

depicted in Figure 8. In the case where the matrices A, P, and G are diagonal,

SEA is a Lagrangean dual method.

3.3.1 SEA for the General Constrained Matrix Problem

The SEA algorithm for the general constrained matrix problem (3.1) through

(3.3) with unknown row/column totals is now reviewed.

When the row and column totals are unknown, the SEA algorithm constructs

a series of diagonal problems of the form (3.4), subject to the constraints (3.2),

(3.3) , and the nonnegativity assumption, via a projection step. This splitting

procedure results in elastic supply and demand subproblems. These elastic sub-

problems, in turn, are then solved via the elastic exact procedure given in Dafer-

mos and Nagumey [23] and Nagurney [59]. They developed serial equilibration

algorithms and applied them to compute the solutions to classical spatial price

equilibrium problems with elastic supplies and demands rather than fixed ones.

For a theoretical analysis including complexity, see Eydeland and Nagurney [28]

and Nagurney and Eydeland [63].

59

Figure 7 Flowchart of Splitting Equilibration Algorithm - the

General Case

60

s
1

s
2

(©0—^n)

*

s
m

(m)

Cl)(?) * * *

Row Equilibration Step

(a)(^) *' * (pv (a)C^) * * * (§)
(T)(5) • • • (rn)

© ©

• • •

fnj

d d d
1 2 a

Column Equilibration Step

Figure 8 Decomposition by Supply and Demand Markets

61

Step 0: Initialization Step

Start with any feasible vector (s1,^1, d1), i.e., one which satisfies constraints

(3.2) and (3.3). Set £ = 2.

Step 1: Projection Step

Given (a*”1, z*-1, d*-1), the objective function (3.1) can be written as follow¬

ing:

Minimize \-sTAs + (As*-1 — s°T A — A.s*-1).s + -xTGx
2 2

+ (Gi4-1 - x°tG - Gx^x + \dTBd + (BS-1 - d°TB - Bd(-')d (3.13)

subject to constraints (3.2) and (3.3). Here A, B, and G denote the diagonal

matrices of A,B, and G, respectively.

Step 2: Initialization Step for Row/Column Equilibration

Let £ Rn = 0. Set r = 1.

Step 3: Row Equilibration

For each row i, i = 1,... ,m, compute the fixed cost terms c-, j = 1,..., n

where

~T _0 AT —1
O'* ■ 111 f « a X • • •
tj J (3.14)

and solve the i-th row equilibrium subproblem:

1 T * nT * 1 T - rT1

Minimize -s As — s A.s H—x Gx + c x
2 2

(3.15)

62

subject to (3.2) via elastic exact equilibration (cf. Dafermos and Nagumey 23],

Evdeland and Nagumey :28l.)

Obtain the Lagrange multiplier fij corresponding to the linear constraint in

(3.2).

Step 4: Column Equilibration

For each column j, j = l,...,n, compute the fixed cost terms c^-,i = 1,...,

where

K) = (3.16)

and solve the j-th column equilibration subproblem:

1 TX -_T 1
Minimize -xTGx + ~c x + -zdrBd — dPTBd

2 2
(3.17)

subject to (3.3) via elastic exact equilibration. Obtain the Lagrange multiplier

Aj corresponding to the linear constraint (3.3).

Step 5: Convergence Test of Equilibration Steps

If \x\- — x?f'\ < for all go to Step 6;

else set r = r + l, and go to Step 3.

Step 6: Convergence Test of Projection

If x\j — Si/11 < e7, for all i.j, then stop;

otherwise, set f = (+ 1, and go to Step 1.

When the cost functions given are linear, then Steps 1 and 6 are deleted.

When the row/column totals are known with certainty, the general constrained

matrix problem simplifies to (3.5) subject to (3.6) -(3.7). In this case, the SEA

63

algorithm again constructs a series of diagonal problems, but of the form (3.8),

subject to the constraint (3.6\ (3.7) and nonnegativity, via a projection step. The

resulting quadratic programming problems are, hence, simpler than the original

problem with objective function given by (3.5). Each of the constructed diagonal

problems, in turn, is then “split** to handle the row constraints (3.6) and then the

column constraints ^3.7). Each such row (supply) or column (demand) equilibrium

subproblem, because of the separability of the diagonal problem and the splitting

of the constraints, can be solved simultaneously, i.e., in parallel, on a distinct

processor and exactly via exact equilibration as outlined in 67]. These problems

correspond then to fixed, rather than elastic, supply and demand subproblems.

Of course, in the diagonal constrained matrix problem with objective function

given by ^3.S), rather than (3.5), no such diagonalization is required, before the

splitting occurs.

Convergence conditions for the outer projection step can be found in Dafermos

17 . An interpretation of row and column equilibration as a dual method and

proof of convergence is given in Xagumey and Eydeland [63].

3.3.2 The Massively Parallel Splitting Equilibration Algorithm

As described in Sections 3.3.1 and 3.3.2, SEA decomposes the constrained

matrix problem into m row subproblems, each of which can be solved indepen¬

dently and simultaneously on a distinct processor using exact equilibration, and

into 7i column subproblems, each of which can be solved independently and si¬

multaneously. In this context, hence, if m = ti then at most m processors would

64

be used for the parallel implementation; this is, indeed, the case with a coarse-

grain architecture. However, in this section, I will construct a massively parallel

implementation of SEA in which the exact equilibration algorithm could exploit

all n x n processors. In a sense such a fine-grain implementation would be on

the “link” level, whereas the coarse-grain implementation would be on the node

level.

The serial exact equilibration algorithm is reviewed first, and then the parallel

exact algorithmis described. Since row equilibration is the mirror image of column

equilibration, only the column equilibration step is explained here.

Serial Exact Equilibration

Suppose that the cost functions are linear, separable, for example, C{j(xt-j) =

gijXij + hij and pj(dj) = —pjdj + qj, where gij, h{j, pj and qj are positive for all i

and j. We seek to compute the solution X{j, i = 1,..., n, j = 1,..., n, satisfying

dj = £?=i Xij, where:

[= ~Pjdj + qj, if > 0

gijxij d" s
1 ^ ~Pjdj “I- gj, if X{j = 0,

is satisfied. The procedure below accomplishes this.

Step 0: Set the demand market index j = 1.

Step 1: Sort the hij1 s, i = l,...,n in nondescending order and relabel the /i{/s

accordingly. Define hn+i,j = °c and set v = 1.

65

Step 2: Compute

ELi “ + 9ij Pj
yv ii.1'
■^t-1 so- pj

(3.18)

Step 3: If hvj < < hv+1><7-, then stop; let the critical s = v, and go to Step 4.

Otherwise, set v = v + 1, and go to Step 2.

Step 4: Set

x

i = 1,..., s

i = s + 1,... ,n.

If j < n, let j = j + 1 and go to Step 1. Otherwise, terminate.

Row subproblems can be solved in the same manner. When the demand is

known with certainty as the equation (3.18) changes to

Ev _1_
1=1 an

(3.19)

Now the parallel exact equilibration algorithm for column equilibration is

described. In the serial exact algorithm, the critical s was calculated in a serial

way (see Steps 2 and 3 above) and all steps are done again for the next demand

market in a serial way until all demand market subproblems are solved. Instead,

in the parallel exact algorithm, all demand subproblems will be solved at the same

time and each demand subproblem is further parallelized. At the beginning, all

hij’s are sorted columnwise in parallel. Then, assume that all links can be the

critical s'1 s one calculates the fiys in parallel. After that, find the critical s for each

66

demand market through the parallel comparison of Step 3 below. The equilibrium

Xij's are, finally, calculated in parallel. The detailed algorithm is as follows.

Parallel Exact Equilibration

Step 1: Sort the htj’s, i = 1 ,...,n,j = l,...,n, columnwise in nondescending

order and relabel the hij's accordingly. This columnwise sorting is done in parallel.

Define hn+ij = oo, for all j = 1,..., n.

Step 2: Assume that all Vj = 1,... ,m, for all j = 1,... ,n, can be the critical s

and compute in parallel

j Si

$ = *u7-1 Ei~rfor ^ vi = J =

^i=1 3S + Pi

(3.20)

Step 3: Find the critical Sj's for all j = 1,... ,n in parallel by the parallel com¬

parison, that is, if hvj < (iV-J < hv+liJ-, then set Sj = Vj. This parallel comparison

will be done using n x n processors.

Step 4: Calculate all *y’s

^»i • t • -j g,j ’ i — 1 ?..., j — 1,..., ti

0, i = + 1,... ,n; j = 1,... ,n.

This parallel exact equilibration algorithm can solve n x n subproblems at the

same time. The parallel exact equilibration of each row can be described in the

same manner. When the demand is fixed, ^ of equation (3.20) is given as in

equation (3.19).

67

The parallel exact algorithm is then embedded into the SEA algorithm to

obtain the massively parallel SEA algorithm. For the implementation of this

algorithm, we need a massively parallel architecture such as Thinking Machine’s

Connection Machine, CM-2. The detailed implementation will be described in

Section 4.2.

68

Chapter 4

NUMERICAL EXPERIMENTATION

In this chapter, the approach to the parallel numerical experimentation is

discussed. This chapter first explains how the data-sets were collected and gen¬

erated, and then how the parallel computations were implemented. Specifically,

multicommodity static and dynamic models were considered for the decomposi¬

tion by commodities, single commodity dynamic models were considered for the

parallel decomposition by time periods, and single commodity static models were

considered for the decomposition by markets. In this way, we can increase the

size of problems to be tested and obtain the correct efficiencies and speed-ups

realized by each parallel decomposition scheme by eliminating the possible joint

effects from complex parallel decomposition schemes.

4.1 Data Generation and Collection

4.1.1 Decomposition by Commodities

For the performance evaluation of the decomposition scheme by commodities,

problems with linear cost functions were considered first, and then those with

nonlinear cost functions.

69

The linear asymmetric supply price, demand price, transaction cost functions,

and inventorying cost functions were given, respectively, by

’r«W = E rUje*jt> + lit (4.1)

pkM) = - E p«A + 4 (4.2)

4-m = E + 4. (4.3)

= ^2 Viti(t+l)Jt'j(t'+l)Ijt'j(t’+l) + Witi(t+1)‘ (4.4)

It was assumed that the functions (4.1)-(4.4) satisfy the strong monotonicity

condition (1.3) to ensure uniqueness of the equilibrium pattern. In terms of

applications, this condition means that the supply price of commodity k at supply

market i during time period t depends primarily upon the supply of commodity

k at supply market i during time period t; the demand price of commodity k

at demand market j during time period t depends primarily upon the demand

for the commodity k at demand market j during time period t\ the transaction

cost for commodity k between supply market i and demand market j during time

period t depends primarily upon the quantity of commodity k shipped between

the pair of supply and demand markets during time period t\ and the inventorying

cost for commodity k at supply market i during time periods t and t -f1 depends

primarily upon the inventory quantity at supply market i during time periods t

and t -f- 1. Example data were generated randomly for 20 supply markets and 20

70

demand markets and 50 supply markets and 50 demand markets, with the number

of commodities being set at 9 and 12 and with the number of time periods being

set at 2 and 5.

Linear, asymmetric, single commodity problems of similar market number di¬

mensions had been solved by Nagurney [53] using serial decomposition by demand

markets and supply markets and the projection method. Pang [71] presented nu¬

merical results with a complementarity algorithm for substantially simpler single-

price spatial price equilibrium problems, in which the transaction cost consists of

only a fixed transaction cost terms hjj, and these terms must satisfy a restrictive

triangle inequality (see also Theise and Jones [84]).

The coefficients of the supply price, demand price, transaction cost, and in¬

ventorying cost functions were generated randomly as follows, so that a strict di¬

agonal dominance condition held in order to guarantee uniqueness of the solution.

The diagonal term, r^t,, in each supply price function was generated uniformly in

the range [100, 30,000]. The remaining cross-terms, r^-t,,l ^ k,j ^ i,t' ^ t, were

generated so that the dependence on the commodities and the supply markets

was uniform, and the sum of these terms was less than the diagonal term. The

fixed supply price term, t**, was generated in the range [100, 1,000]. The diago¬

nal term, — Pjtjt, in each demand price function, was generated uniformly in the

range [-50, -5,500]. The remaining cross-terms, ^ k,i ^ j,t' f, were

generated so that the dependence on the commodities and the demand markets
4

was uniform and the sum of the absolute values of these terms was less than the

absolute value of the diagonal term. The fixed demand price term, qjt, was gener-

71

aied in the range 50. 500.000 . The diagonal term, gin each transaction cost

function, was generated uniformly in the range 20, 6,000 . The remaining cross-

terms- — k.uv ij.H ^ f, were generated so that their dependence on

the commodities and pairs of markets was uniform and the sum of cross-terms was

less than the diagonal term. The fixed transaction cost term, h^Jt, was generated

in the range 50. 500 . The diagonal term, in each inventorying cost

function was generated uniformly in the range defined by 0.075 times the lower

and upper limits of the slope of the supply price function. The remaining cross-

terms. v5nt+i)jt*j{v+i)il r1 7^ f, were generated so that the dependence

on the commodities, the supply markets, and the time periods was uniform, and

the sum of these terms was less than the diagonal term. The fixed inventorying

cost term. was also generated uniformly in the range defined by 0.075

times the lower and upper limits of the intercept of the supply price function.

Nonlinear supply price, demand price, and transaction cost functions were

considered in the form

*a(«) = rL(4) + 21 + 4
iifi

(4.5)

dm = + Z p%Ju + 4 (4.6)

4W = + E 9^,'XL’ + (4.7)

i)(^j — +51 viii(t+i)jtlj(t>+i)Ijt'j(t'+i)+hiti(t+iy (4-8)
jW

72

These functions were also generated to ensure that the strong monotonicity

condition held. In terms of applications, the polynomially nonlinear terms give

more dependency to each cost function upon its main variable. In other words,

each cost function has less effect from the cross-terms. The linear terms in the

function (4.5), (4.6), (4.7), and (4.8), were generated in the same manner as

their counterparts in (4.1), (4.2), (4.3), and (4.4). The nonlinear term, r^tit was

generated uniformly in the range [100, 30,000] xl0~6; the nonlinear term, —p%tjti

uniformly in the range [-50, -5,500] xl0“6; and nonlinear term, uniformly in

the range [20, 60,000] xlO-6; and nonlinear term, uniformly in the

range defined by 0.075 times the lower and upper limits of rftit. The termination

criterion utilized was identical to the one used in the linear tests.

4.1.2 Decomposition by Time Periods

To study the performance of decomposition scheme by time periods, single

commodity dynamic problems were considered rather than multicommodity prob¬

lems due to the memory limitation. The linear diagonal supply price, demand

price, transaction cost, and inventorying cost functions are of the form:

— Titbit 4" ^it (4.9)

Pjt{djt) = —Pjtdjt 4" Qjt (4.10)

Citjt{Xitjt>) = 4" hitjt (4.11)

■^it»(t+l)(Att(t+l)) = Vtt*(t+l)^iit»(t+l) 4" Witi(t+1) (4.12)

73

where Pjti Qjti 9itjti hitjti ^tti(t+i)? *^itt(t+i) 0* Under this assumption, the

equilibrium must be unique, since this is a strictly convex quadratic program¬

ming problem. In terms of application, these linear diagonal cost functions mean

that the supply price at supply market i during the time period t depends only

upon the supply quantity at supply market i during the same time period; the

demand price at demand market j during the time period t depends only upon

the demand quantity at demand market j during the same time period; the trans¬

action cost between supply market i and demand market j depends only upon

the quantity shipped between the pair of markets (i, j); and the inventory car¬

rying cost at supply market i between the time periods depends only upon the

inventory quantity at the same market between the same time periods.

The supply price function coefficients and U{t were generated randomly

and uniformly in the ranges [3, 10] and [10, 25], respectively; the demand price

coefficients pjt and qjt were generated in the ranges [1, 5] and [150, 650], respec¬

tively; the transaction cost function coefficients gnjt and hltjt were generated in

the ranges [1, 16] and [10, 25] respectively; and the inventorying cost coefficients

viti(t+i) and in the ranges .075 x [3, 10] and .075 x [10, 25], respectively.

Problems ranging in size from 5 supply markets and 5 demand markets to 50

supply markets and 50 demand markets with the number of time periods ranging

from 5 to 50 time periods were considered. The convergence tolerance e was set

to 1 and convergence was checked after every other iteration.

For the general nonlinear, asymmetric dynamic single commodity market

problems, the functions were now of the form:

74

(4.13) 4“ ^] I'itit'Sjt' “I- ^it

jt'

Pjt(d) Pjtdjt "1“ Pjtit'dit1 -f* <jjt (4.14)
it1

Citjt{X) = gitjtXftjt + XZ 9itjt,kt'it"Xkt'it" + hnjt (4-15)
kt'kt"

Hiti(t+l)(I) = XI Uiti(t+l),kt'lt"Ikt'lt" + Witi(t+1)* (4-16)
kt'it"

The function coefficients were generated as follows. The fixed coefficients in

functions (4.13)-(4.16) and the diagonal linear terms were generated in the same

manner as their counterparts in (4.9)-(4.12). The off-diagonal terms were then

generated to ensure strict diagonal dominance. The term was generated in

the range [3,10] xlO-5; the term pjt was generated in the range [1,5] xlO-5; and

the term gujt was generated in the range [1,16] xlO-5. The same convergence

tolerance as before was used.

The ranges of the market sizes and number of time periods was as before, with

the number of cross-terms in each of the functions being fixed at five.

4.1.3 Decomposition by Markets or by Row/Column

In the performance evaluation of the decomposition scheme by markets, two

kinds of problems are considered;, static single commodity spatial price equilib¬

rium problems and constrained matrix problems with fixed demands. The latter

being special cases of the general elastic constrained problems, which are isomor-

75

phic to the static single commodity spatial price equilibrium problems (see the

Section 3.2).

To increase the data size, the matrix G of the equation (3.1) was generated

to be diagonal, with each diagonal term generated in the range [.1,10000], to

simulate the wide spread of the initial of the initial data. The weighting terms,

the Wijij's were set to for x?• 0, and to one, otherwise. The selected problem

for computation had a dimension of the X° matrix of 1000 x 1000, with the

corresponding G matrix of dimension 106 x 106. In addition, since the efficiency of

algorithms may depend not only upon the dimensionality of the problem, but, also

upon the difficulty of the problems themselves, each row total was generated

as and each column total P- as 2 xiji 1° represent 100% growth from

the initial time period.

For the numerical results of SEA applied to real-world economic data, three

data sets were used. The first example 1072 was constructed, assuming a 100%

growth factor, from an aggregated 1972 input/output matrix of construction ac¬

tivity in the United States consisting of 485 rows and 485 columns. This I/O

matrix retained the construction sectors in the United States in detail, and ag¬

gregated those sectors in the United States in which the construction inputs were

zero or negligible. The second example, 1077, was constructed from an aggre¬

gated 1977 input/output matrix in the same manner as 1072. The third data-set,

USDA133, was obtained from a social accounting matrix for the United States. A

social accounting matrix(SAM) is a general equilibrium data matrix, consisting

of a series of accounts in the economy of a nation. A SAM is comprised of m rows

76

and m columns, with any particular account, i, represented by row i and column

i. The rows represent the receipts of the accounts, and the individual matrix

entries the transactions in the economy. SAM’s have been widely used for policy

analyses in developing countries (see Pyatt and Round [75]). USDA133, which

is comprised of 133 rows and 133 columns, was a perturbed SAM developed at

the United States Department of Agriculture for 1982 (For a description of its

development, see Hanson and Robinson [34]).

For the unknown row/column totals, two data-sets of spatial price equilib¬

rium problems with linear and separable cost functions were generated. The

equivalence of such spatial price equilibrium problems with diagonal quadratic

constrained matrix problems was described in Section 3.2. SPEP500 x 500 was

comprised of 500 supply markets and 500 demand markets. SPEP750 x 750 was

comprised of 750 supply markets and 750 demand markets.

4.2 Parallel Implementation Method

4.2.1 Coarse Grain Parallel Implementation

The decomposition by time periods, commodities and markets (row/columns)

generate, respectively, parallel subproblems in the number of time periods, com¬

modities and markets. This coarse grain parallel implementation was tested on

the IBM 3090 which has six processors.

Data-sets described in the preceding section were tested using algorithms de¬

veloped in Chapters 2 and 3. In particular, the IBM 3090-600E and the IBM

77

3090-600J were utilized with six processors in a stand-alone environment, with

an exception made for the decomposition by commodities, since it was imple¬

mented in the early stage of this research. Instead, a high Strategic User Priority

v as used, in which up to three processors were allocated to this experiment.

Within the Strategic Users* higher priority, the elapsed wall-clock time was not

significantly affected by the multiuser environment. Parallel Fortran was used to

execute the algorithms and the elapsed wall clock time was measured using the

intrinsic function of Parallel Fortran.

The speed-up measures were defined as follows:

Speedup 5 h.
tn’

(4.17)

where 7\ is the elapsed wall clock time to solve the problem using the best serial

algorithm and Tn is the elapsed time to solve the problem using the parallel

algorithm on N processors. Note that it is very difficult to find the best serial

algorithm for given problems. The alternative measurement would be defined as

Speedup S' =
-ln

(4.18)

where T\ is the elapsed time to solve the problem using the parallel algorithm.

The efficiencies of the parallel implementation using N processors were then

defined as:

it Sat T\

A N TN xN
(4.19)

78

(4.20)
S'n . T\

N NxTn'

In the ideal parallel implementation, the efficiency will be 100%, so the max¬

imum speed-up ratio will be equal to the number of processors. But, in the

practical implementation, we cannot obtain this speedup due to the hardware

limitation.

4.2.2 Fine Grain Parallel Implementation

The decomposition by demand and supply market pairs introduced in Section

3.2 was implemented on a massively parallel architecture, the CM-2. Thinking

Machine’s Connection Machine Model CM-2 has, in its full configuration, 64K

processors which have distributed memories and obtain information through com¬

munication between processors. Since massively parallel implementations are in

the beginning stages, I briefly describe the architecture of the CM-2.

The processors are interconnected as a 12-dimensional hypercube, with each

processor containing a local memory of 8K bytes. Each processing element is

under the control of a microcontroller that sends instructions from a front-end

computer to all of the elements for execution. The mode of computation is data

level parallelism, that is, all processors execute identical operations. Therefore a

CM-2 is called a SIMD machine.

The language used for the implementation was CM FORTRAN version 1.0.

It is a high-level language that compiles into PARIS, the assembly level language

of the machine. It is a very compact language with, for example, the addition of

79

two matrices being expressed in a single step. Since matrix operations must be

conformable, i.e., the operated on matrices must be of the same dimensions, one

may need to change a matrix into a vector, or vice versa; for such transformations

the intrinsic functions “pack” and “unpack” are very useful. Also one may use

the “spread” command to replicate a vector into a matrix.

Some of the intrinsic functions of CM FORTRAN are briefly described here.

These intrinsic functions make CM FORTRAN very suited for implementing the

parallel exact algorithm outlined in Section 3. For example, the intrinsic function

“cmforder” sorts elements of a matrix either row-wise or column-wise and returns

the indices. Since a matrix- can not be used as indices of another matrix, but a

vector can only when there is not collision among the values, the index matrix is

packed first using “pack” command. To avoid collisions among values of indices,

the index matrix was modified by adding some numbers, and then packed to get

the index vectors without collision. Then the sorted matrix h{j was obtained.

The “minval” and “maxval” functions, in turn, return the smallest, respec¬

tively, largest element of a row or a column in an array. These are used to find

critical S’s in Step 3 for the parallel exact algorithm in Chapter 3. The “cshift”

and “eoshift” functions are useful in minimizing the cost of communication be¬

tween processors in which the data elements are located. These shift commands

bring the neighboring fcy, hi+lJ values to the same virtual processor before the

comparison, in order to minimize the communication.

Finally, logic statements, such as the “where, else, end” statement, are avail¬

able to check conditions on vector/matrix elements in.parallel.

80

the “pack- ccr.r.ar.c packs a matrix columnwise, the row equilibration

step requires the “transpose" command before the “pack" command is used.

In order to take advantage of the data level parallelism a large number of

processors are needed to operate on multiple copies of the data simultaneously.

Note tra: in an input output matrix consisting of 500 rows and 500 columns

we would need 251.000 processors which is greater than the number of physical

processors available to us even in a fully configured CM-2. The CM-2, however,

has tde notable feature known as virtual processor that permits a processor to

operate on multiple copies of data. This feature is identical to having multiple

physical processors operating on their own copy of the data. To measure and

analyze tde performance of the massively parallel implementation, CM time is

measured with the number of processors.

81

Chapter 5

RESULTS AND DISCUSSION

In this chapter, all numerical results of the coarse-grain and fine-grain paral¬

lel implementations of the parallel algorithms are reported and discussed. The

detailed algorithms were described in Chapters 2 and 3 and the numerical exper¬

imentation methods were explained in Chapter 4.

5.1 Decomposition by Commodities

In this section, the results of computational experience with the parallel al¬

gorithms introduced in Section 2.3 and Chapter 3 on the IBM 3090-600E in a

production environment with a high Strategic User priority (to eliminate con¬

tention) are presented. In this decomposition, each feasible set Kk corresponds

to a particular commodity k. The six numerical data-sets were generated in the

manner explained in Section 4.1. The first example, MSPl, was a static problem

consisting of 12 commodities, 50 supply markets and 50 demand markets and

with quadratic supply price and demand price functions and quartic transporta¬

tion cost functions. The second example, MSP2, was a static problem consisting

of 9 commodities, 50 supply markets and 50 demand markets and with quadratic

82

supply and demand price functions and quartic transportation cost functions.

Note that the decomposition of the multicommodity static problem results in the

solution of as many static problems of the form of the static single commodity

problems in Figure 2 as there are commodities. For each of the classical bipar¬

tite spatial price equilibrium problems, the equilibration algorithms introduced

in Dafermos and Nagumev 23] were applied. The next four examples, from

DMSP1 to DMSP4, were dynamic spatial price equilibrium problems. The third

example, DMSP1, consisted of 12 commodities, 20 supply markets, 20 demand

markets, and 2 time periods, whereas the fourth example, DMSP2, consisted of

the number of commodities and markets as DMSP1, but had 5 time periods. The

form of the functions was as in the static example, with the cost functions on the

horizontal links now being quadratic. The fifth and sixth examples, DMSP3 and

DMSP4, had the same dimension as DMSP1 and DMSP2, respectively, but their

cost functions were linear. The equilibration algorithm embedded in the dynamic

problems was the one in Nagumey and Aronson [61].

These algorithms were also embedded with Parallel Fortran constructs and

compiled using the Parallel Fortran compiler, optimization level 3. The parallel

runs were conducted under the Strategic Users5 Program on the IBM 3090-600E

and are reported in Table 1 and Figure 9. Additional serial results on the IBM

3090; 600E for the dynamic market equilibrium problems can be found in Nagur-

nev 58 and additional parallel results for the static problems can be found in

Nagumey and Kim 65 . The elapsed wall-clock times were measured, rather than

CPU times since these are the appropriate measurements in parallel processing.

83

Indeed, it is well known that the CPU time will increase in any parallel processing

environment.

The construction of new cost functions for each commodity (cf (2.20), (2.21),

and (2.22)), as well as the subsequent solution of L commodity problems was

parallelized. In this series of experiments, the number of commodities was greater

than, or equal to, the number of processors. In the case where the number of

commodities exceeds the number of processors, the commodity subproblems are

assigned asynchronously to a processor, once it becomes available; otherwise, each

processor is allocated a single commodity subproblem. Table 1 and Figure 9 show

that the speed-up was improved as the number of commodities and the number

of markets increase.

5.2 Decomposition by Time Periods

In this section, the results of computational experience with the parallel al¬

gorithm introduced in the Section 2.2.2 on the IBM 3090-600J in a stand-alone

environment will be given. These are finite time horizon problems with T time

periods in which a commodity is produced at m supply markets, inventoried at

the supply markets, and shipped to the consumers at the n demand markets.

These problems were generated in the manner explained in Section 4.2.

The motivation for the parallel decomposition algorithm by time periods lies

in the special network structure. In particular, recall that the Cartesian product

K wTas defined as the product of two subsets K\ and K.2, where contains all

84

Table 1 Parallel Implementation of the Decomposition Algorithm

by Commodities with Linear and Nonlinear Cost Func¬

tions

Data Number of Wall-Clock Speedup Eff.
Name Processors Time (sec) Ratio <%)

1 128.92
MSP1 2 73.14 1.76 88 %

3 55.73 2.31 77 %

1 124.88
MSP2 2 73.46 1.70 85 %

3 57.28 2.18 73 %

1 34.73
DMSP1 2 19.91 1.74 87 %

3 16.75 2.07 69 %

1 392.22

DMSP2 2 203.42 1.93 96 %
3 149.41 2.63 88 %

1 33.38
DMSP3 2 19.99 1.67 83 %

3 14.76 2.26 75 %

1 358.11
DMSP4 2 194.59 1.84 92 %

3 134.04 2.67 89 %

85

□ :

Number

MSP1 o :

of Processors

MSP2 v : DMSP1

• : DMSP2 o: DMSP3 + : DMSP4

Figure 9 Parallel Speedup of the Decomposition Algorithm by

Commodities

86

the commodity shipment variables (the vertical arcs in Figure 2), whereas K2

contains all the inventory variables (the horizontal arcs). The constraints require

only that these variables be nonnegative. The algorithm then decomposes the

problem into T -f 1 subproblems, of the form depicted in Figure 3; the first T

problems are static spatial equilibrium problems with a special bipartite network

structure inmxn variables each, for which numerous efficient algorithms exists,

whereas the T + 1-st subproblem, is a very simple inventory problem in m(T — 1)

variables, which can be solved using a Gauss-Seidel algorithm.

Large-scale dynamic equilibrium problems with linear separable functions and

with nonlinear asymmetric functions with five cross-terms were considered. Recall

that, in the case of the nonlinear examples, the supply and demand price func¬

tions associated with the nodes were quadratic functions, the transportation cost

functions associated with the vertical arcs were quartic, and the inventory cost

functions associated with the horizontal arcs were linear. Four series of problems

were solved, two of which were linear and two of which were nonlinear, with 25

supply markets and 25 demand markets, and 50 supply markets and 50 demand

markets, ranging from 5 time periods to 50 time periods. The computations were

conducted on the IBM 3090-600J at the Cornell National Supercomputer facility

using a FORTRAN code of the algorithm, which was compiled using FORTVS

compiler, optimization level 3. Tables 2-3 and Figures 10 - 13 depict the CPU

behavior of the algorithm when the algorithm is implemented in serial as the

number of time periods is increased. The linear behavior of the algorithm is to

87

be contrasted with the behavior of earlier algorithms, which is at least quadratic

(see Nagurney and Aronson [61]).

The algorithm was embedded with Parallel constructs provided by Parallel

FORTRAN and compiled using the Parallel Fortran compiler, optimization level

3. Four example data-sets were proceeded to run in a stand-alone environment on

the IBM 3090-600J. The speed-up measures were reported in Table 4 and Figure

14, when the convergence verification was done in serial and after every other

iteration. As can be seen from Figure 14, the linear separable problems exhibited

substantial speedups, whereas the nonlinear, asymmetric problems, lower speed-

ups. This is due, in part, to the serial bottleneck of the convergence verification,

which is more time-consuming for the general problems. However, practitioners

are concerned with obtaining solutions and, hence, convergence verification is

essential. Moreover, these results illustrate a substantial overall savings in elapsed

time on extremely large problems. Indeed, prior to this research, the largest

problems of this form that had been solved consisted of only 20 supply markets,

20 demand markets, and 10 time periods, (see Nagurney and Aronson [61]).

5.3 Decomposition by Rows/Columns

In this section, the results of computational experience with the Splitting

Equilibration Algorithm, which was described in the Section 2.2.3 and Chapter

3 on the IBM 3090-600J, are reported. The algorithm is a general parallelizable

procedure which decomposes a wide spectrum of constrained matrix problems into

88

Table 2 Serial Implementation of the Decomposition Algorithm

by Time Periods on Large-Scale Dynamic Market Equi¬

librium Problems with Linear Separable Cost Functions

Number Percentage of

Number of CPU Number Positive Variables

of Time Time of at Solution

Markets Periods (seconds) Iterations Inventory Transshipment

5 0.1005 36 60.0 73.6
5x5 10 0.2114 38 68.9 66.4

25 0.5797 46 72.5 71.7
50 1.2371 54 72.2 74.2

5 0.7583 62 75.0 63.6

10 x 10 10 1.4543 62 66.7 67.2
25 4.2041 76 65.0 72.3
50 7.7656 70 69.2 67.6

5 9.0560 62 40.0 55.6

25 x 25 10 20.8145 70 32.0 60.4
25 80.3637 116 62.2 60.9

50 161.2377 110 59.0 62.7

5 88.2942 104 56.5 55.6
50 x 50 10 188.6683 122 56.9 52.7

25 470.3525 118 59.0 53.9
50 984.2568 126 58.9 53.9

89

C
P

U

T
im

©

(
s
e
c
o
n
d
s
)

Number of

+ : LS 5X5

Time Periods

o : LS 10X10

Figure 10 CPU Behavior of the Decomposition Algorithm by

Time Periods for Smaller Linear Separable Examples

90

C
P

U

T
im

e

(s
e
c
o
n
d
s
)

X : LS 25X25 o : LS 50X50

Figure 11 CPU Behavior of the Decomposition Algorithm by

Time Periods for Larger Linear Separable Examples

91

Table 3 Serial Implementation of the Decomposition Algorithm

by Time Periods on Large-Scale Dynamic Market Equi¬

librium Problems with Nonlinear Asymmetric Cost Func¬

tions

Number Percentage of

Number of CPU Number Positive Variables

of Time Time of at Solution

Markets Periods (seconds) Iterations Inventory Transshipment

5 0.1385 28 65.0 76.8

5x5 10 0.2665 26 55.6 70.8

25 0.9402 38 60.8 78.2

50 1.9524 38 71.0 76.2

5 1.3423 50 60.0 62.8

10 x 10 10 2.4266 46 65.6 66.9

25 7.9535 60 68.8 72.0

50 15.3436 60 64.7 68.2

5 19.3264 76 72.0 56.0

25 x 25 10 50.7079 98 57.3 64.8

25 119.2013 98 56.0 62.0

50 271.3679 114 62.4 60.7

5 150.8648 114 74.5 57.6

50 x 50 10 282.5073 114 47.3 53.8

25 754.5261 118 57.0 53.1

50 1427.2461 122 58.2 53.7

92

C
P

U

T
im

e

(
s
e
c
o

n
d

s
)

Number of Time Periods

a : NA 5X5 * : NA 10X10

Figure 12 CPU Behavior of the Decomposition Algorithm by

Time Periods for Smaller Nonlinear Asymmetric Ex¬

amples

93

Number of Time Periods

□ : NA 25X25 v : NA 50X50

Figure 13 CPU Behavior of the Decomposition Algorithm by

Time Periods for Larger Nonlinear Asymmetric Exam¬

ples

94

Table 4 Parallel Implementation of the Decomposition Algorithm

by Time Periods

(a) Linear Separable Case

Number of Number of Number of Speedup Efficiency Ex

Markets Time Periods Processors Sw (percentage)

2 1.58 79.12
50 x 50 25 4 2.59 64.67

6 3.31 55.21

2 1.60 80.11
50 x 50 50 4 2.68 67.02

6 3.51 58.46

(b) Nonlinear Asymmetric Case

Number of Number of Number of Speedup Efficiency Es

Markets Time Periods Processors 5/v (percentage)

2 1.498 74.90
50 x 50 25 4 2.271 56.77

6 2.717 45.28

2 1.498 74.91

50 x 50 50 4 2.322 58.05
6 2.823 47.06

95

Number of Processors

o : LS 50X50X25 • : LS 50X50X50
v : NA 50X50X25 v : NA 50X50X50

Figure 14 Parallel Speedup of the Decomposition Algorithm by

Time Periods

96

a series of row/column equilibration problems, each of which can be solved exactly

in closed form and allocated to a distinct processor. SEA splits the constraints

which are of transportation type so that the objective function is considered

subject to either the row constraints, or the column constraints. Its theoretical

analysis is based on its interpretation as a dual method. The selected problem,

FT1000 x 1000 for the fixed row/column totals had a size of the X° matrix of

1000 x 1000, with the corresponding G matrix of dimension 106 x 106. SEA

was also applied to compute the solution to input/output matrix, 1072. Since

these two data-sets were for the fixed row and column totals, the convergence

criterion was based on the relative residuals R(s{) = (]Tj %ij — Si)/si and R(dj) =

(Si xij ~ dj)/dj, with each residual required to be less than .01.

For the elastic row/column totals, two data-sets, SPEP500 x 500 and

SPEP750 x 750, were generated in the same manner as described in Chapter

4. The convergence tolerance was e = .01.

Figure 15 and Table 5 show the speed-ups obtained for SEA on four examples;

first two examples, 1072 and FT1000 x 1000, were for the fixed row and column

totals, and next two examples, SPEP500 x 500 and SPEP750 x 750, were for

the unknown row and column totals. These data-sets were tested on the IBM

3090-600E in a standalone environment. Maximum speed-ups obtained were 1.93

for two processors, 3.74 for four processors, and 5.15 for six processors when 1072

was used. The minimum speed-ups were 1.87 for two processors, 3.19 for four

processors, and 3.86 for six processors, when SPEP750 x 750 was used.

97

Table 5 Coarse Grain Parallel Implementation of SEA

Data
Name

Number of
Processors

Wall-Clock
Time(sec.)

Speedup
Ratio

Eff.
(%)

1 438.52
1072 2 227.12 1.93 96 %

4 117.21 3.74 93 %
6 85.12 5.15 86 %

1 483.20 - -

FT 2 250.37 1.93 96 %
1000X1000 4 135.35 3.57 89 %

6 102.59 4.71 78 %

1 540.71 - -

SPEP 2 290.70 1.86 93 %
500X500 4 153.61 3.52 88 %

6 116.03 4.66 78 %

1 1589.06 - -

SPEP 2 849.76 1.87 94 %
750X750 4 498.14 3.19 80 %

6 411.67 3.86 64 %

98

Number of Processors

o ; 1072 • : FT1000X1000
v : SPEP500X500 □ : SPEP750X750

Figure 15 Parallel Speedup of SEA Decomposition Algorithm by

Row/Column

99

5.4 Fine Grain Parallel Implementation of the Massively Parallel SEA

Algorithm

In this section, the results of the computations on the CM-2 system for a

data-set based on an input/output matrix, 1072, consisting of 485 rows and 485

columns and representing a data-set of a 1972 input/output matrix for the United

States are presented. This problem consisted of 23,225 variables. The problem

was solved using 8K (8,192) processors, 16K (16,384) processors, and finally, 32K

(32,768) processors. Table 6 and Figure 16 show the relationship between the

CM CPU time and the number of processors. Observe that the CM CPU time

decreases approximately linearly as the number of processors is increased. I note

that the same problem was solved on an IBM 3090-600E and required 438.35 CPU

seconds for the serial FORTRAN code, compiled using the FORTVS compiler,

optimization level 3, and 291.54 seconds on an IBM 3090-600J. The number of

iterations required for the convergence was 4 for SEA both on the CM-2 and

on the IBM 3090-600. In terms of the parallel runs on the IBM 3090-600E, the

wall clock time required for the convergence of the parallel implementation of the

Splitting Equilibration Algorithm, compiled using the PF compiler, was 444.18

seconds for one processor, 229.85 seconds for two processors, 118.76 seconds for

four processors, and 86.32 seconds for six processors.

The second data-set, D512, was a randomly generated data-set and consisted

of 512 rows and columns, and had 262,144 variables. The results of its solution

on the CM-2 are reported in Table 10. The problem was solved with 8K and 16K

100

T^bie 6 Fine-Grain ? arallel Implementation of Massively Parallel

SEA

Fin Number of K^il Time CM Tune
Prccs&scr^ (sec.) (sec.)

SK 52.05 51.74
1072 16K 29.S6 29.58

32K 16.76 16.34

D512 SK 10.92 10.90
16K 6.27 6.26

ICT7 SK 5.38 5.36
16K 3.25 2.82

USDA SK 19.49 19.43
16K 9.80 9.73

101

C
M

T
im

e

(
s
e
c
o

n
d

s
)

Number of Processors

o : 1072

Figure 16 CM Time vs Number of Processors

102

processors. The same problem required 150.99 CPU seconds on an IBM 3090-

600J, compiled using the FORT VS compiler, optimization level 3. The number

of iterations for convergence was one for SEA on each of the two architectures.

The third example was an input/output matrix, 1077, consisting of 205 rows

and 205 columns, and was based on a 1977 input/output matrix for the US. This

problem had 42,025 variables. The results for this problem are reported in Table

9. The same problem required 19.37 CPU seconds for the convergence on the

IBM 3090-600J. The number of iterations was two on both architectures.

The final problem, USDA133, was based on a social accounting matrix for

the US, consisting of 133 rows and 133 columns, (see Hanson and Robinson [34]).

This example had 17,689 variables. The results on the CM-2 machine for this

problem are reported in Table 6. The same problem required 17.67 CPU seconds

for the convergence on the IBM 3090-600J. The number of iterations required for

the convergence was eight on the CM-2 and also on the IBM 3090-600J.

Note that SEA exhibits approximately linear speed-ups, as predicted by the

theory in Nagumey and Eydeland [631. The numerical results strongly suggest

that the implementation on the CM-2 using CM FORTRAN is very promising. I

believe that further enhancements to the language will make even more efficient

implementations realizable.

103

Chapter 6

SUMMARY AND DIRECTIONS FOR FUTURE

RESEARCH

In this chapter, the thesis is summarized and directions for future research in

the parallel computation of network problems are given.

A new spatial price equilibrium model, which is not based on path flows, but,

rather, on link flows, was developed for the full range of parallel decomposition.

Variational inequality formulations of this model were derived and the qualitative

properties were discussed in Chapter 2. Existence of a unique equilibrium solu¬

tion is guaranteed under the assumption of strong monotonicity of supply price,

demand price, tranaction cost, and inventorying cost functions. The data-sets

tested were generated under the strong monotonicity assumption using random

number generation, and three data-sets were collected from input/output matri¬

ces and social accounting matrices for the United States.

For the parallel implementation, the variational inequalities were decomposed

first by commodities, then by time periods, then by markets. The coarse grain

parallel architectures used were the IBM 3090-600E and the IBM 3090-600J at the

Cornell Theory Center. The maximum speed-ups of the decomposition algorithm

by commodities were 1.93 for two processors, and 2.67 for three processors on the

104

IBM 3090-600E under the Strategic Users Program. The maximum speed-ups of

the decomposition algorithm by time periods were 1.60 for two processors, 2.68

for four processors, and 3.51 for six processors on IBM 3090-600J under a stand¬

alone environment. The maximum speed-ups of the decomposition algorithm by

markets or row/columns were 1.93 for two processors, 3.74 for four processors,

and 5.15 for six processors.

The row/column equilibration problems were further decomposed by links, re¬

sulting in a fine grain parallel implementation. The Thinking Machine’s Connec¬

tion Machine, CM-2 was used for the numerical experimentation. Input/output

matrix problems with 485 rows and 485 columns were solved in 16.76 seconds

with 32 K processors, and a spatial price equilibrium problem with 512 supply

markets and 512 demand markets with linear separable cost functions was solved

in 6.27 seconds with 16 K processors. Time required to solve the same problems

on the IBM 3090-600J using one processor was 444.18 CPU seconds and 150.99

CPU seconds, respectively.

Several interesting research directions can be suggested based on the results

of this thesis. The algorithms developed in this thesis were synchronous, so all

processors must wait for all other processors to finish the current calculations to

share new information at the end of each iteration. Asynchronous parallel algo¬

rithms, which do not need to wait at the end of each iteration, can be developed

and tested to solve network problems. Before the parallel implementation, how¬

ever, convergence of the asynchronous parallel algorithms needs to be established

mat hematically.

105

In the fine grain parallel implementation, linear separable cost functions were

tested. Since all coefficients of the cost functions, which may be nonlinear and

asymmetric in practice, are stored at each processor, each processor needs to com¬

municate with other processors which are located far away. In future research, to

solve this problem efficiently, the programmer should minimize the communica¬

tion cost in the linearization step.

Similar approaches can be successfully applied to solve other large-scale prob¬

lems with underlying network structure, such as traffic equilibrium problems,

general economic equilibrium problems, and financial equilibrium problems. It

is expected that in the future the theory of variational inequalities along with

parallel computation will continue to yield very effective algorithms for solving

large-scale equilibrium and network problems.

106

BIBLIOGRAPHY

[1] Aashtiani,M.Z. and Magnanti,T.L., Equilibria on a congested transportation

network, SIAM Journal of Algebraic Discrete Methods 2, pp.213-226, 1981.

[2] Aashtiani,M.Z. and Magnanti,T.L., A linearization and decomposition algo¬

rithm for computing urban traffic equilibria, Proceedings of the 1982 IEEE

International Large Scale Systems Symposium, pp.8-19, 1982.

[3] Baase,S., Computer Algorithms - Introduction to Design and Analysis, 2nd

ed., Addison-Wesley Publishing Company, pp.362-386, 1988.

[4] Bacharach,M., Biproportional Scaling and Input-Output Change, Cambridge

University, UK, 1970.

[5] Bachem,A. and Korte,B., Algorithm for quadratic optimization over trans¬

portation polytopes, Zeitschrift fur Angewandte Mathematik und Mechanik

58, pp.459-461, 1978.

[6] Bachem,A. and Korte,B., Minimum norm problems over transportation poly¬

topes, Linear Algebra Application 31, pp.102-118, 1980.

[7] Beckmann,M.J., McGuire,C.B., and Winsten,C.B. Studies in the Economics

of Transportation, New Haven, Conn., Yale University Press, 1956.

[8] Bertsekas,D.P. and Gafni,E., Projection methods for variational inequalities

and the application to the traffic assignment problem, Mathematical Pro¬

gramming Studies 17, pp.139-159, 1982.

[9] Bertsekas,D.P. and Tsitsiklis,J.N., Parallel and Distributed Computation,

Numerical Methods, Prentice Hall, pp.264-292, 1989.

[10] Border,K.C., Fixed Point Theorems with Applications to Economics and

Game Theory, Cambridge, U.K.: Cambridge University Press, 1985.

[11] Byron,R.P., The estimation of large social accounts matrices, Journal of the

Royal Statistical Society Series A 141, pp.359-369, 1978.

107

12 Cottle.R.W., Complementarity and variational inequality problems, Sym¬

posia Mathematica 19, pp.59-70, 1974

13 Cottle.R.W., Duvall,S.G., and Zikan,K., A lagrangian relaxation algorithm

for the constrained matrix problem, Naval Research Logistics Quarterly 33,

pp.55-76, 1986.

14 Dafermos.S., The traffic assignment model with applications to two-way traf¬

fic. Transportation Science 6 pp.73-87, 1972.

15 Dafermos.S., Traffic equilibrium and variational inequalities, Transportation

Science 14, pp.42-54, 1980.

16 Daiermos,S., The general multimodal network equilibrium problem with elas¬

tic demand, Networks 12, pp.57-72, 1982.

17 Dafermos.S., An iterative scheme for variational inequalities, Mathematical

Programming 28, pp.57-72, 1983.

*18 Dafermos,S., Isomorphic multiclass spatial price and multimodal traffic net¬

work equilibrium models, Regional Science and Urban Economics 16, pp.

197-209, 1986.

T9 Dafermos.S., Congested transportation networks and variational inequalities,

In Flow Control of Congested Networks (NATO A SI series), series F: Com¬

puter and Systems Sciences 38, edited by Odoni, Bianco, and Szego, New

York: Springer-Yerlag, 1987.

20 Dafermos.S., Exchange price equilibria and variational inequalities, Mathe¬

matical Programming 46, pp.391-402, 1990.

21 Dafermos.S. and Nagumey,A., Sensitivity analysis for the general spatial

economic equilibrium problem, Operations Research 32, pp.1069-1086, 1984.

22 Dafermos.S. and Nagurney.A., Oligopolistic and competitive behavior of spa¬

tially separated markets, Regional Science and Urban Economics 17, pp.245-

254, 1987.

*23 Dafermos.S. and Nagumey,A., Supply and demand equilibration algorithms

for a class of market equilibrium problems, Transportation Science 23,

pp.118-124, 1989.

'24] Deming,W.E. and Stephen,F.F., On a least-squares adjustment of a sampled

frequency table when the expected marginal totals are known, Annals of

Mathematical Statistics 11. pp.427-444, 1940.

108

[25] Dervis,K., De Melo,J. and Robinson,S., General Equilibrium Models for De¬

velopment Policy, Cambridge University Press, Cambridge, United King¬

dom, 1982.

[26] Erickson,J., On solving linearly constrained maximum entropy problems,

Mathematical Programming 18, pp.146-154, 1980.

[27] Erlander,S., Jomsten,K.O. and Lundgren,J.T., On the estimation of trip

matrices in the case of missing and uncertain data, Transportation Research

19b(2), pp.123-141, 1985.

[28] Eydeland,A. and Nagurney,A., Progressive equilibration algorithms: the case

of linear transaction costs, Computer Science in Economics and Management

2, pp.197-219, 1989.

[29] Florian,M., Nonlinear cost network models in transportation analysis, Math¬

ematical Programming Study 26, pp.167-196, 1986.

[30] Florian,M. and Los,M., A new look at static spatial price equilibrium models,

Regional Science and Urban Economics 12, pp.579-597, 1982.

[31] Florian,M. and Spiess,H., The convergence of diagonalization algorithms

for asymmetric network equilibrium problems, Transportation Science, 16,

pp.477-483, 1982.

[32] Friedlander,D., A technique for estimating a contingency table given the

marginal total and some supplementary data, Journal of the Royal Statistical

Society A 124, pp.412-420, 1961.

[33] Friesz,T.L., Tobin,R.L. and Harker,P.T., A nonlinear complementarity for¬

mulation and solution procedure for the general derived demand network

equilibrium, Journal of Regional Science 23, pp.337-359, 1983.

[34] Hanson,K. and Robinson,S., Data, linkages, and models: U.S. national in¬

come and product accounts in the framework of a social accounting matrix,

Agriculture Service, U.S.Department of Agriculture, Staff Report No.AGES

89-5, 1989.

[35] Harrigan,F. and Buchanan,I., Quadratic programming approach to input-

output estimation and simulation, Journal of Regional Science 24(3),

pp.339-358, 1984.

[36] Hartmann,P. and Stampacchia,G., On some nonlinear elliptic differential

functional equations, Acta Math., pp.271-310, 1966.

109

[37] Hildreth,C., A quadratic programming procedure, Naval Research Logistics

Quarterly 4, pp.79-85, 1957.

[38] Johnston,R.J., Hay,A.M. and Taylor,P.J., Estimating the sources of spatial

change in election results: a multiproportional approach, Environment and

Planning A 14, pp.951-961, 1982.

[39] Judge,G.G. and Takayama,T., Studies in Economic Planning over Space and

Time, North-Holland, Amsterdam, 1973.

[40] Judge,G.G. and Yancey,T.A., Improved Methods of Inference and Exten¬

sions, Prentice-Hall, Englewood Cliffs, N.J., 1985.

[41] Kinderlehrer,D. and Stampacchia,G., An Introduction to Variational In¬

equalities, Academic Press,New York, 1980.

[42] Klincewicz,J., Implementing an exact Newton method for separable convex

transportation problems, Networks 19, pp.95-105, 1989.

[43] Labys,W.C., Takayama,T. and Uri,N.D., Quantitative Methods for Market-

Oriented Economic Analysis over Space and Time, Evebury, Gower Publish¬

ing Co., England, 1989.

[44] Lemke,C.E., A survey of complementarity theory, in Variational Inequalities

and Complementarity Problems, chapter 15, edited by Cottle, Giannessi, and

Lions, New York, Wiley, 1980.

[45] Magnanti,T., Models and algorithms for predicting urban traffic equilib¬

rium, In Transportation Planning Models, edited by M. Florian, Amsterdam,

North-Holland, 1984.

[46] Mahmassani,H.S. and Mouskos,K.C., Some numerical results on the diag-

onalization algorithm for network assignment with asymmetric interactions

between cars and trucks, Transportation Research 22, pp.275-290, 1988.

[47] Mathiesen,L., Computational experience in solving equilibrium models by

a sequence of linear complementarity problems, Operations Research 33,

pp.1225-1250, 1985.

[48] Miller,R.E. and Blair,P.D., Input/Output Analysis: Foundations and Exten¬

sions, Englewood Cliffs, N.J., Prentice-Hall, 1985.

[49] Mohr,M. Crown,W.H. and Polenske,K.E., A linear programming approach

to solving infeasible RAS problems, Journal of Regional Science 27, No. 4,

pp.587-603, 1987.

110

50 Nagumey,A., Comparative tests of multimodal traffic equilibrium methods,

Transportation Research 18B, pp.469-485, 1984.

51 Nagumey.A., Computational comparisons of algorithms for general asym¬

metric traffic equilibrium problems with fixed and elastic demands, Trans¬

portation Research 20B, pp.78-84, 1986.

52 Nagumey.A., Computational comparisons of spatial price equilibrium meth¬

ods. Journal of Regional Science 27, pp.55-76, 1987.

53 Nagumey.A., Competitive equilibrium problems, variational inequalities,

and regional science, Journal of Regional Science 27, pp.503-517, 1987.

54 Nagumey.A., Algorithms for oligopolistic market equilibrium problems, Re¬

gional Science and Urban Economics 18, pp.425-445, 1988.

55 Nagumey.A., Import and export equilibration algorithms for the net import

spatial price equilibrium problem, Journal of Cost Analysis 7, pp.73-88,

1989.

56 Naguraey,A., An algorithm for the solution of a quadratic programming

problem with application to constrained matrix and spatial price equilibrium

problems, Environment and Planning 21, pp.99-114, 1989.

57^ Nagumey.A., Migration equilibrium and variational inequalities, Economic

Letters, 31, pp.109-112, 1989.

58 Nagumey.A., The formulation and solution of large-scale multicommodity

equilibrium problems over space and time, European Journal of Operational

Research 42, pp.166-177, 1989.

59 Naguraey,A., An algorithm for the solution of a quadratic programming

problem with application to constrained matrix and spatial price equilibrium

problems, Environment and Planning A 21, pp.99-104, 1989.

60 Nagumey.A., Nonlinear networks in the social and economic sciences. Fore¬

fronts 2, pp.3-7, Cornell National Supercomputer Facility, Cornell University,

Ithaca, NY, 1990.

61 Naguraev,A. and Aronson,J., A general dynamic spatial price equilibrium

model: Formulation, solution, and computational results. Journal of Com¬

putational and Applied Mathematics 22, pp.359-377, 1988.

"62 Nagumey.A. and Aronson,J., A general dynamic spatial price network equi¬

librium model with gains and losses. Networks 19, pp.751-769, 1989.

Ill

[63] Nagurney,A. and Eydeland,A., A Splitting Equilibration Algorithm for the

computation of large-scale constrained matrix problems: Theoretical analysis

and applications, Advanced Studies in Theoretical and Applied Econometrics

22, Kluwer Publishing Co., pp. 65-105, 1992.

[64] Nagumey,A., Eydeland,A. and Kim,D. Computation of large-scale con¬

strained matrix problems: the Splitting Equilibration Algorithm, Proceed¬

ings of Supercomputing ’90, 1990.

[65] Nagurney,A. and Kim,D., Parallel and serial variational inequality decom¬

position algorithms for multicommodity market equilibrium problems, The

International Journal of Supercomputer Applications 3, pp.34-59, 1989.

[66] Nagumey,A., Kim,D. and Robinson,A., Serial and parallel equilibration of

large-scale constrained matrix problems with application to the social and

economic sciences, The International Journal of Supercomputer Applications

4, pp.49-71, 1990.

[67] Nagumey,A. and Robinson,A., Algorithms for quadratic constrained matrix

problems, Mathematical and Computer Modeling, in press.

[68] Nagumey,A. and Zhao,L., A network equilibrium formulation of market dis¬

equilibrium and variational inequalities, Networks 21, pp.109-132, 1991.

[69] Ohuchi,A. and Kaji,I., An algorithm for the Hitchcock transportation prob¬

lem with quadratic cost functions, Journal of Operational Research Society

Japan 24, pp.170-181, 1981.

[70] Ohuchi,A. and Kaji,I., Lagrangian dual coordinatewise maximization for net¬

work transportation problems with quadratic costs, Networks 14, pp.525-

530, 1984.

[71] Pang,J.S., A hybrid method for the solution of some multicommodity spatial

equilibrium problems, Management Science 27, pp.1142-1157, 1981.

[72] Pang,J.S., Solution of the general multicommodity spatial equilibrium prob¬

lem by variational and complementarity methods, Journal of Regional Sci¬

ence 24, pp.403-414, 1984.

[73] Pang,J.S., Asymmetric variational inequality problems over product sets:

applications and iterative methods, Mathematical Programming 31, pp.206-

219, 1985.

[74] Polito,J., McCarl,B.A. and Morin,T.L., Solution of spatial equilibrium prob¬

lems with Bender’s decomposition, Management Science 26, pp.509-605,

1980.

112

75_ Pvatt,G. and Round,J.I., Social Accounting Matrices: a Basis for Planning,

The World Bank, Washington, D.C., 1985.

76 Riele.H.J,. Dekker,Th.J. and Van Der Vorst,H.A., Special Topic in Super-

computing vol. 3, “Algorithms and Applications on Vector and Parallel

Computers”, Elsevier Science Publishers B.V., North-Holland, 1987.

[77] Samuelson,P.A., A spatial price equilibrium and linear programming, Amer¬

ican Economic Review 42, pp.283-303, 1952.

[78] Samuelson,P.A., Intertemporal price equilibrium: A prologue to the theory

of speculation. Weltwirschaftliches Archiv 79, pp.181-219, 1957.

[79_ Smith,M., An algorithm for solving asymmetric equilibrium problems with

a continuous cost-flow function, Transportation Research 17B, pp.365-371,

1979.

80 Stone,J., Formulation and solution of economic equilibrium problems, Sys¬

tems Optimization Laboratory Technical Report 88-7, Stanford University,

Department of Operations Research, 1988.

81] Takayama,T., Hashimoto,H. and Uri,N.P., Spatial and temporal price and

allocation modeling: Some extensions, Socio-Economic Planning Science 18,

pp.227-234, 1984.

82 Takayama,T. and Judge,G.G., Spatial and Temporal Price and Allocation

Models, North-Holland, Amsterdam, 1971.

[83 Takayama,T. and Uri,N.P., A note on spatial and temporal price and allo¬

cation modeling. Regional Science and Urban Economics 13, pp.455-470,

1983.

84 Theise,E. and Jones,P.C., Alternative implementations of a diagonalization

algorithm for multicommodity spatial price equilibria, Technical Report 88-

06, Northwestern University, Department of Industrial Engineering and Man¬

agement Sciences, 1988.

[85] Thore,S., Spatial disequilibrium, Journal of Regional Science, 26, pp.660-

* 675, 1986.

86 Van der Ploeg,F., Balancing large systems of national accounts, Computer

Science in Economics and Management 1, pp.31-39, 1988.

[87] Van der Sluis,A., Condition numbers and equilibration of matrices, Nu-

merische Mathematik 14, pp.14-23, 1969.

113

[88] Zhao,L., Variational inequalities in general equilibrium: analysis and com

putation, Ph.D. dissertation, Brown University, Division of Applied Mathe

matics, 1989.

114

	Parallel computation of large-scale network equilibria and variational inequalities.
	Recommended Citation

	Parallel computation of large-scale network equilibria and variational inequalities /$$cby Dae-Shik Kim.

