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ABSTRACT 

PARALLEL COMPUTATION OF LARGE-SCALE NETWORK 

EQUILIBRIA AND VARIATIONAL INEQUALITIES 

May 1992 

DAE-SHIK KIM 

B.S., SEOUL NATIONAL UNIVERSITY, SEOUL, KOREA 

M.S., KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY 

M.S., UNIVERSITY OF MASSACHUSETTS 

M.B.A., UNIVERSITY OF MASSACHUSETTS 

Ph.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Anna Nagurney 

Equilibrium of a network is obtained when each user who competes to optimize 

his utility can not improve his utility any further. Equilibrium problems governed 

by distinct equilibrium concepts can be formulated in one general framework - that 

of variational inequalities. The synthesis of variational inequalities and networks 

induces the creation of highly efficient algorithms which are especially suited 

for the large-scale equilibrium problems. Motivated by the recent technological 

advances in parallel computing architectures, parallel algorithms of large-scale 

equilibrium problems were developed using the theory of variational inequalities. 

In the case where the feasible constraint set of a network equilibrium problem 

can be expressed as a Cartesian product of subsets, the application of variational 
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inequality decomposition algorithms for the parallel computation becomes possi¬ 

ble. A new spatial price equilibrium model, which is not based on the path flows, 

but, rather, on the link flows to allow the decomposition by time periods, was 

developed and used as a prototype of large-scale network equilibrium problems. 

The variational inequality formulations were decomposed first by commodities, 

then by time periods, and, subsequently, by markets. The coarse grain parallel 

architectures used were the IBM 3090-600E and the IBM 3090-600J at the Cor¬ 

nell Theory Center with six processors each. The maximum speed-ups obtained 

were 1.93 for two processors, 3.74 for four processors, and 5.15 for six processors. 

The market subproblems were further decomposed by links, resulting in a fine 

grain parallel implementation. The Thinking Machine’s Connection Machine, 

CM-2, with 32,768 processors was used for the numerical experimentation. The 

fine grain parallel algorithm solved input/output matrix problems more than 20 

times faster, when compared to the results on the IBM 3090-600J. 

It is expected that further enhancements to parallel languages and parallel 

architectures will make even more efficient implementations realizable, and that 

parallel computing and the theory of variational inequalities can be successfully 

applied to solve more efficiently other large-scale problems with an underlying 

network structure, such as traffic equilibrium problems, general economic equi¬ 

librium problems, and financial equilibrium problems. 
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Chapter i 

INTRODUCTION 

Network models have been used to formulate many problems in management 

science as well as in engineering. The advantages of a network formalism are 

twofold: network models can visually represent a wide variety of applications and 

can also suggest decomposition algorithms that exploit the underlying problem 

structure. Historically, network optimization problems have been studied widely. 

Another large class of network models is that of network equilibrium problems. 

For example, if more than one user is involved in a system and each user competes 

to optimize his utility, then at some point he will not be able to improve his utility 

any further; in other words, the properties of the system will not change with time, 

that is, the system reaches an equilibrium state. 

Equilibrium is, hence, a central concept in diverse problems in management 

science as well as in engineering. Examples in management science include: 

traffic network equilibrium problems in which users of the congested network 

seek routes to minimize travel costs, oligopolistic market equilibrium problems in 

which profit-maximizing firms are engaged in the production and sale of one or 

more goods, spatial price equilibrium problems in which optimal commodity sup¬ 

ply and consumption levels and interregional shipments are to be determined, and 
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general economic equilibrium problems. Furthermore, many business application 

problems such as financial planning can be formulated as network equilibrium 

models. The equilibrium solutions can assist in governmental policy analyses, 

where the effects of regulatory instruments such as price controls in the form of 

price floors and ceilings, trade restrictions, tariffs, and taxes are to be determined. 

Each user can also obtain useful information for personal decision-making under 

competitive situations from such models. 

Historically, equilibrium models were usually reformulated as optimization 

problems, provided that a certain symmetry or integrability assumption held 

for the underlying functions. Convex programming algorithms could then, at 

least in principle, be used to compute the equilibrium pattern. Utilizing such 

an approach, Samuelson [77] and Takayama and Judge [82] introduced a variety 

of spatial price equilibrium models, and Beckmann, McGuire, and Winsten [7] 

studied traffic network equilibrium models. 

Recently, it has been realized that equilibrium problems governed by distinct 

equilibrium conditions can be formulated in one general framework - that of vari¬ 

ational inequalities. Variational inequalities (VI) had originally been introduced 

by Hartmann and Stampacchia [36] for the study of partial differential equations, 

in which the applications were derived from mechanics. The discovery by Dafer- 

mos [15] that the traffic network equilibrium conditions, as stated by Smith [79], 

had the structure of a finite-dimensional VI problem opened new vistas not only 

for the study of qualitative properties of existence, uniqueness, and sensitivity 

of equilibrium solutions, but also for the development of more general, asym- 
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metric multicommodity and multimodal models. Further, VI theory permits the 

design of mathematically correct and convergent algorithms for the computation 

of solutions to general equilibrium problems for which no equivalent optimization 

formulation exists. 

Indeed, many equilibrium problems have now been formulated as variational 

inequality problems. For example, Gabay and Moulin (1980) formulated the 

oligopolistic equilibrium problem governed by Cournot-Nash equilibrium as a VI 

problem: Florian and Los [30] formulated the spatial price equilibrium problem 

as a VI problem; Border [10] and Dafermos [18], in turn, formulated exchange 

price equilibria. More recently, Zhao [88] utilized the VI formulations of the pure 

exchange problem and the general economic equilibrium problem with produc¬ 

tion to develop convergent algorithms for these equilibrium problems under a 

monotonicity assumption on the excess demand functions. For the exposition of 

the status of the theory, alternative model formulations, and applications, as well 

as a comprehensive list of references, see the review articles of Magnanti [45], 

Dafermos [19], and Nagurney [52], and the recent thesis of Zhao [88]. 

Even though many efficient algorithms have been developed, they may not 

work as efficiently as the application demands when the problem size increases, 

due to the limitation of serial computers. The technological advances in computer 

architecture provide new approaches solving such large-scale problems efficiently. 

The combination of parallel computing and variational inequality algorithms is 

an area, hence, that merits further research. In this thesis, parallel algorithms 

for large-scale network equilibrium and optimization problems were developed 
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and implemented. To develop the parallel algorithms, the theory of variational 

inequalities was used. 

1.1 Background 

In this section, two basic concepts of the thesis, parallel computation and 

variational inequalities, are briefly introduced. In the first subsection, the need 

for parallel computers is highlighted and then some important basic terminologies 

of parallel computation are explained. In the second subsection, the theory of 

variational inequalities, which is a powerful method to develop parallel algorithms, 

is briefly discussed. 

1.1.1 Parallel Computation 

Traditional serial computers are characterized by the presence of a single locus 

of control that determines the next instruction to be executed. The data to be 

operated upon, during the execution of each instruction, are fetched from a global 

memory, one at a time. Thus, only one instruction is executed at a time and the 

speed of computation is slow. As the problem size increases, serial computers 

can not solve problems as efficiently as the application may demand. To circum¬ 

vent this bottleneck, supercomputers with vector facility were developed. More 

recently, parallel computers with many cheaper processors have been developed. 

Parallel computing systems consist of several processors that are located 

within a small distance of each other to execute jointly a computational task. 
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Parallel computation is motivated by a variety of factors. There has been a need 

for the solution of very large-scale computational problems, but it is only recently 

that technological advances have raised the possibility of massively parallel com¬ 

putation and have made the solution of such problems possible. Furthermore, the 

availability of powerful parallel computers is generating interest in new types of 

problems that were not addressed in the past. Accordingly, the development of 

parallel algorithms is guided by this interplay between old and new computational 

needs on the one hand, and technological progress on the other. 

The original needs for fast computation arose in a number of contexts in¬ 

volving, principally, partial differential equation applications, such as computa¬ 

tional fluid dynamics and weather prediction, as well as image processing, etc. 

In these applications, there is a large number of numerical computations to be 

performed. The desire to solve more and more complex problems has always 

been running ahead of the capabilities of the time, and has provided a driving 

force for the development of faster, and possibly parallel, computing machines. 

The above mentioned types of problems can be easily decomposed along a spa¬ 

tial dimension, and have, therefore, been prime candidates for parallelization, 

with a different computational unit (processor) assigned the task of manipulat¬ 

ing the variables associated with a small region in space, thus leading to the • 

design of parallel computers consisting of a number of processors with nearest 

neighbor connections. More recently, there has been increased interest in other 

types of large-scale computation. Some examples in management science relate to 

the solutions of mathematical programming, optimization problems, equilibrium 
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problems, and queuing problems. A common property of such problems, as they 

arisi in practice, is that they can be decomposed. After being properly decom¬ 

posed, each subproblem is assigned to a separate processor, and each processor 

runs independently. The details of the parallel algorithms depend upon the types 

of problems and the parallel architectures. 

Parallel computers can be classified in many different ways. A parallel system 

with thousands of processors is called massively parallel, while a system with a 

small number of processors is called coarse-grained parallel. By the communi¬ 

cation method of the data, the parallel computers can be grouped into shared 

memory and message passing computers. In a shared memory system, all the 

data are in one big memory that is available to all processors. When in such 

a machine one processor needs data that must be calculated by another proces¬ 

sor, then it must know whether the data in the shared memory are already the 

required data or whether the other processor is still busy with the calculation. 

In a message passing system, the memory is distributed among the processors, 

in other words, each processor has its own local memory. Hence, the data are 

also distributed and when a processor needs data from another processor it must 

send a message asking for those data. Processors communicate through specially 

designed interconnection networks and this data communication becomes more 

expensive when two processors are spatially very separated. 

The most popular classification of parallel architectures is based upon the 

level of detail at which the operation of parallel processors is controlled. In a 

SIMD (Single Instruction, Multiple Data) machine, each instruction can act on 
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more data streams. For example, in a multi-processor, a number of proceNnorN 

al. execute the same instruction but on different data. SIMP system comprises a 

master control unit and a number of identical processing elements. The control 

unit transmits the same instruction stream to each of the processing elements. In 

a MIMD (Multiple Instruction, Multiple Data) machine, a number of independent 

processors execute different instructions on different data concurrently. 

The innovation of parallel computing has added a new dimension to the design 

of algorithms and programs. Parallel programming is not a simple extension of 

serial programming. In order to exploit the possibilities offered by parallelism, 

programmers need to think in parallel and reconsider the solution process. For 

example, the matrix addition can be easily parallelized by assigning each element 

addition to each processor, but for matrix multiplication, it is not that easy 

to parallelize. Programmers should think in parallel in order to find the most 

efhcien: way in which to both construct and implement an algorithm. Experience 

has shown that the judgments of the efficiency based on serial techniques can 

be easily overturned in a parallel environment. Algorithms that are obsolete 

so far as implementation on serial computers is concerned often show a high 

degree of parallelism - i.e., they may contain numerous sub calculations that are 

independent of one another and may, therefore, be executed simultaneously - 

and can. hence, outperform the best serial techniques. In addition to demanding 

new techniques of algorithm design, the introduction of extended parallelism also 

requires us to rethink what is known about systems, parallel languages, non- 

numerical problems, and numerical methods in general. 
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In the applications of parallel programming, the main concerns are cost and 

speed: the hardware should not be prohibitively expensive, and the computation 

should terminate within an amount of time that is acceptable for the particular 

application. There are several issues related to parallelization that do not arise 

in a serial context. A first issue is task allocation, that is, the breakdown of the 

total workload in smaller tasks assigned to different processors, and the proper 

sequencing of the tasks when some of them are interdependent and cannot be 

executed simultaneously. A second issue is the communication of data between 

the processors. A third issue is the synchronization of the computations of differ¬ 

ent processors. In synchronous methods’, processors must wait at predetermined 

points for the completion of certain computations or for the arrival of certain data. 

In asynchronous methods, there is no requirement for waiting at predetermined 

points. 

Two theoretical indices have been used for measuring the performance of a 

developed parallel algorithm; speed-up and efficiency. Speed-up is defined as the 

ratio of the time required for the parallel calculation to that of a serial computa¬ 

tion. The theoretical maximum value of the speed-up is equal to the number of 

processors, and it is obtained when the algorithm is fully parallel and the calcula¬ 

tion is distributed equally among the processors. This would require all the pro¬ 

cessors to be operable simultaneously, each processor being capable of performing 

all the arithmetic operations, and incurring no memory data-movement penalties. 

The efficiency is the ratio of obtained speed-up to the theoretical maximum value 

of speed-up. When actual performance on particular machines is compared, the 
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number of MFLOPS (Mega Floating Point Operations per Second) and GFLOPS 

(Giga Flops) is used. 

The speed-up of parallel algorithms will generally increase with the number of 

processors. But the efficiency will decrease after a certain number of processors. 

This phenomena is explained by Amdahl’s Law (see Riele, Dekker, and Vorst 

[76]), where 

Speed-up 
T, 

(l-f).T. + f-T./p’ 
(1.1) 

/ the parallelized fraction, Ts is the serial computing time, and p is the number of 

processors of the parallel implementation. When / approaches one, the speed-up 

would be close to the maximum value and it increases linearly with the increase 

of processors. When / is not close enough to one, speed-up does not increase 

linearly. As p increases, the second term of the denominator becomes smaller and 

the first term dominates the speed-up. Then the limit of the speed-up will be 

Therefore, there is no speed-up if / is zero. To maximize the speed-up, the 

parallelized fraction, /, should be close enough to one. 
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I.I~2 Variational Inequalities 

In this section, the basic theory of variational inequalities is briefly reviewed. 

For amplified discussions, see the book by Kinderlehrer and Stampacchia [41], the 

surveys of Magnanti [45], Dafermos [19], Nagumey [52], and the thesis of Zhao 

[88]. 

The finite-dimensional variational inequality problem, heretofore denoted as 

VI(jfif, /), is to determine the vector x E FH1 such that 

/(x) • (x' — x) > 0, for all x' € K (1.2) 

where K is a closed convex subset of K* and /(•) is a known function from K to 

JT1. The qualitative theory of variational inequalities in terms of existence and 

uniqueness has reached an advanced state. For example, in the case where /(•) is 

continuous and the feasible set K is bounded, there exists a solution of inequality 

(1.2) . If K is bounded and /(•) is strictly monotone, then there exists a unique 

solution of inequality ( 1.2). If K is unbounded, then strong monotonicity of /(•), 

that is, 

(/(x1) —/(x2)) • (x1 — x2) > a Hz1—x2||2, for all x1, x2 6 K (1-3) 

where a is a positive constant, and || • || denotes the Euclidean norm, guarantees 

both existence and uniqueness of the solution x to VIIn terms of appli¬ 

cations, this condition implies, for example, that /; depends primarily on x; and 

less so on the x's, for j ^ i. A necessary and sufficient condition for expression 

(1.3) to hold is that the Jacobian of /, [|f] , is positive definite over x' € K. 
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On the other hand, if /(•) is only strictly monotone, that is, the right-hand side 

of equation (1.3) is now 0 for all a;1,!2 £ K^x1 ^ r2, and > replaces >, then 

the solution is unique, if one exists. Under such monotonicity assumptions, the 

theory of variational inequalities becomes particularly powerful. 

It should be noted that even in applications where equation (1.3) fails to hold 

- in which case there may exist multiple equilibria - or, similarly, the condition 

cannot be verified a priori, such VI algorithms can, nevertheless, be applied for 

practical purposes. If convergence in such cases is observed, then the solution 

obtained will be guaranteed to be a solution of the variational inequality problem 

(1.2). Indeed, such computational experience has been recently reported by Mah- 

massani and Mouskos [46], who successfully applied the diagonalization method 

for large-scale traffic network equilibrium problems in which sufficient conditions 

for convergence were known to be violated. Nevertheless, in order to prove the 

global convergence of variational inequality algorithms, thus far, equation (1.3) 

has often been utilized. 

The following relationship holds between variational inequality problems and 

often-studied minimization problems: In the special case where the symmetry 

condition holds, VI(K,f) is equivalent to the solution of the convex 

minimization problem with objective function f f(x)dx over the feasible set K. 

In other words, let F(-) be a continuously differentiable scalar-valued function 

defined over K and denote its gradient by VjP(-). If there exists an x € K such 

that 
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F(x) = Min F(x'), for all x' £ K (1.4) 

then x is a solution to the variational inequality 

VF{x) • (V - x) > 0, for all x' £ K. (1.5) 

On the other hand, if /(•), again on an open neighborhood of K. is the gradi¬ 

ent of a convex continuously differentiable function F(-), then VI (1.2) and the 

minimization problem (1.4) are equivalent; in other words, x solves (1.2) when 

x minimizes F(-) over K. Note that /(•) is a gradient mapping if and only if its 

Jacobian matrix is symmetric, in which case the objective function is equal to 

S f{y)dy. 

Moreover, if F(-) is convex, strictly convex, or uniformly convex, then its gra¬ 

dient mapping is, respectively, monotone, strictly monotone, or strongly mono¬ 

tone. Therefore, we can see that monotonicity in variational inequality problems 

plays a role analogous to that of convexity in minimization problems. However, 

there does not exist an equivalent optimization problem under an asymmetric as¬ 

sumption for the underlying function, /(•). Note that variational inequality (1.2) 

can also contain, as special cases, all the classical problems of mathematical pro¬ 

gramming, such as linear and nonlinear complementarity problems, fixed point 

problems, and minimax problems (see Cottle [12]; Kinderlehrer and Stampacchia 

[41]; and Lemke [44]). Therefore, variational inequality theory can be said to be 

a powerful unifying framework. 

The following is a brief review on how to solve variational inequalities. Vari¬ 

ational inequality problems are usually solved iteratively as mathematical pro- 
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gramming problems. When an initial solution is given, a new solution is found 

at the end of the first iteration. The new solution is then used to find the next 

solution until the algorithm converges. Each iteration can be described using the 

following notation. Let 

*(* + l) = T(®(*)), * = 0,1,..., (1.6) 

where each x(t) is an n-dimensional vector, t is the iteration number, and T is 

some mapping function from a set K of Rn into itself. Alternative notation that is 

sometimes used in place of (1.6) is x := T(x). Notice that if the mapping function 

T is continuous and the sequence {x(t)} generated by the above iteration follows 

a contraction 

||*t+i “ *t|| < a||*t “ 0 < a < 1, (1.7) 

then the iteration converges to a limit x, which is a fixed point of T, that is, it 

satisfies x = T(x). Such a mapping is called a contraction mapping, or simply a 

contraction, and the iteration (1.6) is called a contracting iteration and the scalar 

a is called the modulus of the mapping. 

If the strong monotonicity condition (1.3) holds, then the solution of equa¬ 

tion (1.2) can be computed via a general iterative scheme devised by Dafermos 

[17]. This scheme contains, as special cases, the projection method (Dafermos 

[15, 16]; Bertsekas and Gafni [8]), which resolves the solution of the variational 

inequality into a series of, in general, quadratic programming problems, and the 

relaxation/diagonalization method (Florian and Spiess [30]), which resolves the 
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problem into a series of, in general, nonlinear programming problems. For cornpu 

tational experience with these methods, see Nagurney [50] [51 j [53|. The overall 

scheme of parallel computation to solve variational inequalities will be introduced 

in Section 1.3 and the detailed parallel algorithms will be explained in Chapters 

2 and 3. 

1.2 Large-Scale Network Problems 

This thesis focuses on large-scale network problems to which both variational 

inequality theory and network theory are applied with a goal of creating effi¬ 

cient parallel algorithms. In particular, both network equilibrium problems and 

network optimization problems are considered. 

Spatial price equilibrium problems (Samuelson [77, 78], Takayama and Judge 

[81, 82]) were considered in this thesis as prototypes of network equilibrium prob¬ 

lems. Spatial price equilibrium models have been widely applied in agricultural 

commodity and energy markets (see,e.g., Judge and Takayama [39]). In spatial 

price equilibrium problems, one seeks to compute the commodity production, 

consumption, and trade patterns, satisfying the equilibrium property that trade 

takes place between two spatially separated markets if the demand price at the 

demand market is equal to the supply price of the commodity at the supply 

market plus the cost of transportation between the pair of supply and demand 

markets. In real-world applications, the numbers of supply and demand markets 

can be very large, and the resulting network will be in large scale. 
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When multiple commodities are considered, the computation of the equilih 

rium solution becomes even more difficult due to the even larger scale. One 

approach to the solution of such problems is to reformulate the problems (ei 

thex linear or nonlinear) as single commodity, asymmetric VI problems via the 

construction of appropriate replications (for example, see Dafermos [14] |18|; 

Aashtiani and Magnanti [1] [2]; Nagurnev [50] [53]; Nagurney and Aronson [61]). 

Other approaches to the solution of linear problems have included Bender’s de¬ 

composition (Polito, McCarl, and Morin [74]), complementarity theory (Pang 

71 : Takayama and Uri [83]), and quadratic programming algorithms for simpler 

models ^Takayama and Judge [82]). Published computational experience with 

nonlinear multicommodity problems, nonetheless, has been limited to the solu¬ 

tion of a small cadre of problems with only several markets and commodities (for 

example, see Frietz et al. 33]; Pang [72]). In the case of nonlinear multimodal 

problems in transportation, only several modes have been treated (Nagurney [50] 

51]: Mahmassani and Mouskos [46]). 

Other examples of large-scale equilibrium problems are dynamic market equi¬ 

librium problems, where the optimal commodity production, consumption, trade, 

and inventory patterns over space and time are to be computed. Such models 

are inherently large-scale and, hence, the development of efficient computational 

procedures is essential for the operationalism of such models. Nagurney and 

Aronson [62] developed new models and computational procedures for dynamic 

spatial price equilibrium problems with gains and losses, that were implemented 

on serial computers. 
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In regards to optimization problems, in this thesis, the constrained matrix 

problem is used as a prototype. Note that network optimization problems are 

special cases of network equilibrium problems. The constrained matrix problem 

is a core problem in numerous applications in the social and economic sciences, 

as well as engineering. These include: the estimation of input-output tables, 

trade tables, and social/national accounts in economics and regional science, the 

projection of migration flows over space and time in demography and geography, 

the treatment of census data, the analysis of political voting patterns, the esti¬ 

mation of contingency tables in statistics, the projection of transportation and 

telecommunication origin/destination flows , and diagnostic imaging in radiol¬ 

ogy. The constrained matrix problem, so named by Bacharah [4], is to compute 

the best possible estimate X of an unknown matrix, given some information to 

constrain the solution set, and requiring either that the matrix X be a minimum 

distance from a given matrix, or that X be a functional form of another known 

matrix. The constrained matrix problem can be formulated as mathematical pro¬ 

gramming problems, with an objective function which forces “conservatism” on 

the process of rationalizing X from the initial estimate X°. Although the RAS 

method, which dates to Deming and Stephan [24], is currently the most widely ap¬ 

plied computational method in practice for the solution of the constrained matrix 

problem, its limitations include the use of a highly specific set of constraints and 

objective function and its nonconvergence in applications, such as interregional 

trade (see,e.g., Mohr, Crown, and Polenske [49]). In real-world applications, the 

matrix X° is very large (several hundred to several thousand rows and columns), 

16 



with the resulting constrained matrix problem larger still (with the number of 

variables on the order of square of the number of rows/columns). The relation¬ 

ship of the constrained matrix problems with spatial price equilibrium problems 

is identified in Section 3.2. 

1.3 Parallel Variational Inequality Decomposition 

This section is a brief overview of how variational inequalities can be applied 

to create parallel decomposition algorithms. 

The large-scale nature of constrained matrix problems and multicommod¬ 

ity and dynamic equilibrium problems makes the application of decomposition 

schemes especially appealing - even more so if the resulting subproblems have 

special structure that can be further exploited computationally. In the case where 

the feasible set of a network equilibrium problem can be expressed as a Cartesian 

product of subsets, i.e., 

K = ]\Ki (1-8) 
t'=l 

where each K{ is a subset of i?71*, which is natural for multicommodity/multimodal 

equilibrium problems, variational decomposition algorithms can then be applied 

under suitable conditions for convergence to compute equilibrium problems in 

parallel. Many network equilibrium problems in management science can be 

defined over a feasible set as a Cartesian product of subsets. For example, in 

multicommodity trade problems, each subset could correspond to the constraints 
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of a particular commodity; in dynamic spatial price equilibrium problems, each 

subset could correspond to the constraints of each time period and inventories; 

in multimodal traffic networks, each subset could correspond to the constraints 

of each transportation mode; in constrained matrix problems, each subset could 

correspond to each row and/or each column. Hence, if one can derive alternative 

variational inequality reformulations of a given problem over a Cartesian product 

of subsets, one can then avail oneself with a plethora of alternative decomposition 

algorithms. These, however, must be evaluated both theoretically and empirically. 

A key observation for the Cartesian product case is that variational inequality 

(1.2) decomposes into n coupled variational inequalities of smaller dimensions. 

Here we have a basic theorem for the decomposition of variational inequalities. 

For the proof, see page 275 in Bertsekas and Tsitsiklis [9]. 

Theorem 1: 

A vector x E K solves the variational inequality VI(K, /), where K is defined 

by (1.8) and / is the vector in Rn with sub vectors (fi E iT*), if and only if 

/<(*)• (*t# “*») —0, for all E = 1,... , n. (1-9) 

Hence, in the case where the set K is expressed as a Cartesian product of 

subsets as (1.8), the iteration procedure to solve VI(if, /), which was briefly 

explained in Section 1.1, can be decomposed in the same manner. For example, let 

£i(f) denote the zth component of x(t) and let T{ denote the ith component of the 
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mapping function T, to be discussed later. Then, we can write x(t +1) = T(x(i)) 

as 

Xi(t + 1) = Ti(xi(t),... ,zn(*)), i = 1,..., n. (1.10) 

The iterative algorithm x := T(x) can be parallelized by letting each one of 

n processors update a different component of x according to (1.10). At each 

stage, the ith processor knows the value of all components of x(t) on which T- 

depends, computes the new value 1), and communicates it directly to other 

processors or writes it on the shared memory in order to start the next iteration. 

This updating process of X{(t + 1) depends upon the architecture of the parallel 

computers. After all Xi(t-\-l),i = 1,... ,n are calculated and communicated, then 

the next iteration can start. Such a parallel algorithm is said to be synchronous, 

because the start of each iteration is simultaneous for all processors and the end 

of the message receptions is simultaneous for all messages. In order to implement 

a synchronous algorithm in an inherently asynchronous parallel architecture, we 

need a synchronization mechanism, i.e., an algorithm that is superimposed on the 

original and by which every processor can detect the end of each iteration. 

To solve the variational inequality problem (1.2) using the parallel iterative 

algorithm (1.10), one needs to have n distinct processors. Sometimes, for ex¬ 

ample, when there are fewer processors available, one may wish to employ a 

coarse-grained parallelization of the iteration x := T(x). In particular, one de¬ 

composes the vector space Rn as a Cartesian product of lower dimensional sub¬ 

spaces Rn>, j = 1 ,...,p, where Ej=i ni = n• Accordingly, any vector x € Rn is 
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decomposed as x — (xi,..., Xj,..., xp), where each Xj is rij-dimensional vector. 

called a block-component of x. or simply a component where no confusion can 

arise. Similarly, the iteration x{t + 1) = T(x(t)) can be written as 

(1.11) 

where each Tj is a vector function mapping Rn into Rni. Each one of the p 

processors is assigned to update a different block-component according to (1.11). 

and the resulting parallel algorithm is said to be block-parallelized. 

The vector X^x) of equation (1.10) can be selected to be either linear or 

nonlinear. The subproblems induced by a linear function, however, are often 

easier to solve (see Nagurney [54]), as will be the situation in the constrained 

matrix problems and market equilibrium problems that will be considered in this 

thesis, due to the special structure. In a parallel linearization algorithm, hence, 

we compute x(t + 1) by solving variational inequalities VI(Ki,fiit(x)) in parallel 

instead of VI(K,f), where the linearized function fi t has the form 

fi,t(x) = /»(*(<)) + Ai(x{t))(xi(t + 1) - lift)) (1.12) 

where A{(*) is block-diagonal for each x. Equivalently, one constructs a vector 

x(t + 1) = (*i(< -hi),..., xn(t + 1)) satisfying 

(fi(x(t)) + Ai^t^x^t + 1) - Xi(t)))(yi - Xi(t + 1)) > 0, 

for all yi £ i = 1 (1.13) 

This shows that each linearized variational inequality subproblem with smaller 

dimension can be solved independently by a distinct processor. 
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Since variational inequality problems are usually solved iteratively, the overall 

efficiency of a variational inequality algorithm depends on the embedded math¬ 

ematical programming algorithm. In case where A{(x) is a symmetric positive 

definite matrix, the iteration method will be the well-known projection method. 

In the case where A{[x) = D{(x), where D{(x) is the diagonal of the Jacobian 

of /{(•) with respect to 2;, the resulting function becomes a disjoint separable 

function. In this thesis, D{(-) is used to get the linearized function and it is 

applied to develop parallel algorithms for solving variational inequality problems. 

When a parallel decomposition algorithm is developed, one of the most impor¬ 

tant issues will be its convergence. The convergence of linearized algorithms in 

the Cartesian product case is given in Bertsekas and Tsitsiklis [9], pages 276-277. 

Theorem 2: 

Suppose that the problem VI(K,f) has a solution x and that there exist 

symmetric positive definite matrices Gi and some 8 > 0 such that Di(x') — 8Gl is 

nonnegative definite for every i and x' E K, and that there exists some 3 € .0,1) 

such that 

|| G-l{fi{x') - fi(y) - Di(y)(xi - 2/;))l|i < W max ||*/ - Vj\\j, 
j 

for all x',y E K, (1-14) 

where ||z;||; = (xTiGiXi)l/2. Let fi,t(x) be defined now as the linearized function 

as following: 

fi,t(x) = fi{x(t)) + A(*(0)(*i(< + !) - *<(*))• (1.15) 
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Define X{(t -f 1) as a solution of Vand define the mapping function T{ by 

Xi(i + 1) = 7i(a;t(t)), for every i. Then, the iteration mapping T- of the linearized 

algorithm has the contracting property 

||2i(a;) — ®j|| < /3max \\x/ — Xj\\j, for all x{' 6 Ki,i = 1,... ,n. (1.16) 

In particular, when x is the unique solution of VI(Ff,/), the parallel decomposi¬ 

tion algorithm x(t -f 1) = T(x(t)) converges to x geometrically. 

Although VI formulations of equilibrium problems over Cartesian products of 

sets have been derived (for example, see Dafermos [16, 18]; Pang [73]; Nagurney 

[53]; Nagurney and Aronson [61]) and serial decomposition algorithms imple¬ 

mented (Pang [72]; Nagurney [53, 54]; Nagurney and Aronson [61]), parallel VI 

decomposition algorithms have, heretofore, not been implemented on parallel ar¬ 

chitectures, nor their relative efficiencies vis a vis serial decomposition algorithms 

evaluated. 

The recent development of parallel computing systems offers the promise of a 

quantum leap in the computing power that can be brought to bear on many im¬ 

portant problems. When each suitably decomposed subproblem over a subset K{ 

is allocated to a distinct physical processor and is calculated independently, the 

time to solve large-scale network equilibrium problems can drop dramatically. 

Therefore, efficient parallel algorithms should be developed to solve large-scale 

network equilibrium problems. Coarse grain parallel algorithms, which have sev¬ 

eral multitasks, can be implemented on a supercomputer such as the IBM 3090- 

600 or the Cray Y-MP. Fine grain parallel algorithms, which have a very large 
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number of tasks, can be appropriately implemented on a massively parallel archi¬ 

tecture such as the Connection Machine with as many as 64K processors in its 

full configuration. 

Motivated by the recent development of parallel architectures, efficient parallel 

algorithms are developed in this thesis for large-scale network equilibrium and 

optimization problems using variational inequality theory and are implemented 

on the IBM 3090-600 and the Thinking Machine’s CM-2 (Connection Machine) 

as mandated by the particular application. 

This thesis is organized as follows. In Chapter 2, a new spatial price equi¬ 

librium model as a prototype of network equilibrium problems is developed. Its 

variational inequality formulation and accompanying parallel decomposition al¬ 

gorithms are also introduced. In Chapter 3, a constrained matrix problem is 

outlined as a prototype of (structured) network optimization problems. In Chap¬ 

ter 4, numerical implementations of the parallel algorithms which are introduced 

in Chapters 2 and 3 are explained. In Chapter 5, the numerical results are re¬ 

ported and discussed and, in Chapter 6, the thesis is summarized and directions 

for future research are given. 
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Chapter 2 

NETWORK EQUILIBRIUM PROBLEMS 

In this chapter, static spatial price equilibrium problems (SPEP) - single com¬ 

modity and multicommodity - and dynamic SPEP's are considered as prototypes 

01 large-scale network equilibrium problems. General dynamic multicommodity 

SPEP's are considered Erst, and then static SPEP's. both single and multicom¬ 

modity, which are special cases of the general model. 

2.1 Dynamic Multicommodity Spatial Price Equilibrium Problems 

In this section, a new spatial price equilibrium model is developed. The model 

allows inventories at supply markets and contains, as special cases, static spatial 

price equilibrium models when the number of the finite time periods is equal 

to one. This model diners from the ones developed in Xagumey and Aronson 

61 62 in a significant way. In particular, the formulation is no longer based 

on the path flows, which is memory expensive, but, rather, on the link flows. 

Furthermore, this model allows the decomposition by time periods, which is a 

natural one based on the structure, as shall be demonstrated. 
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The model is now presented. Consider a finite time horizon and partition the 

horizon into discrete time periods t\t — 1,...,T. It is assumed that L different 

commodities, typically denoted by A:, are produced at m supply markets and are 

consumed at n demand markets. Denote a typical supply market by i and a 

typical demand market by j. Number the supply markets from 1 through m and 

the demand markets from m + 1 through m + n. 

The state of the system will be described by a number of vectors as follows. 

A supply column vector s = {5^ : i = 1,..., m; & = 1,..., L\ t = 1,..., T} with 

nonnegative supply quantity skt associated with supply market i and commodity 

k at time period t. 

A demand column vector d = {dkt : j = m + l,...,m + n;A: = 1,..., X; t = 

1.. ..,T} with nonnegative demand dk-t associated with demand market j and 

commodity k at time period t. 

A shipment column vector X = {Xktjt : i = 1,... ,77157 = 711 + 1,.= 

1 = 1,...,T} with nonnegative commodity shipment XXt associated 

with commodity k between supply market i and demand market j in time period 

t. 

An inventory column vector I = : i = 1, = 1 = 

1.. ..,T — 1} with nonnegative total carryover quantity associated with 

supply market 2 and commodity k between time periods t and t + 1. 
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A supply price row vector 7r = {tt^ : i = 1,..., m; k = 1 t = 1,..., T} 

with 7rJ denoting the supply price of commodity k at supply market i at time 

period t. 

A demand price row vector p = {pjt : j = m + 1,..., m + n; k = 1,..., L\ t = 

1.. .. ,T} with denoting the demand price of commodity k at demand market 

j at time period t. 

A transaction cost (which includes the transportation cost) row vector c = 

{cnjt : i — = m + 1,... ,m + n; k = 1, t = 1,..., T} with c*tJt 

denoting the nonnegative transaction cost associated with shipping commodity k 

from supply market i to demand market j in time period t. 

An inventorying cost row vector H = : i = 1,..., m; k = 1,..., L\ t = 

1.. .., T—1} with denoting the nonnegative inventory cost associated with 

carrying over commodity k from time period t to t + 1 at supply market i. 

Now the dynamic network equilibrium model is constructed. In particular, L 

copies of a single commodity dynamic network for commodity k are considered 

as follows (see Figure 1). For each period t\t = m supply market 

nodes, denoted by the tuples (It)*,..., (mt)*, represent the supply markets of 

commodity k at time period t. Similarly, n demand market nodes, denoted by the 

tuples (m + 1, t)fe,..., (m + n, represent the demand markets of commodity 

k at time period t. In the model, mn transaction/transportation links with a 

typical one originating at node (it)k and terminating at node (jt)k are denoted by 

(itjt)k. Hence, the total number of transaction links is LmnT. From each supply 
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Commodity L 

Figure 1 A Network Representation of the Dynamic Multicom¬ 

modity Market Equilibrium Problem 



supply market node (it) , an inventorying link (it,i(t + l))fc is constructed and. 

then, the total number of inventory links is Lm(T - 1). With each of the links 

({itjt') \t' = t) the corresponding transaction cost c^tJt, is associated and with 

each of the links ((itit')k:f = i + 1) the inventory cost H*tiv. The flows on these 

links correspond, respectively, to X^tjt, and I^tiv. 

The supply and demand of each commodity must satisfy the following flow 

conservation constraints: 

n 

4 = Y Xitjt + Ixti(t+1) - Ii{t-i)i«» ^ all z, k,t (2.1) 
j=i 

and 

djt = Y for a11 j,k,t (2.2) 
i=l 

where 

xitjt > 0 and Iktit, > 0, for all z,;, k,t. (2.3) 

Denote the set of all feasible (5,Ar,/, d) satisfying constraints (2.1), (2.2), and 

(2.3) by K. 

Assuming that the underlying mechanism is that of perfect competition, a 

dynamic spatial market equilibrium consisting of commodity prices, shipments, 

and quantities inventoried, is obtained if the following interregional/intertemporal 

conditions are satisfied: a commodity will be produced, traded, and consumed, 
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between a pair of markets if the supply price at the supply market plus the trans¬ 

action cost is equal to the demand price at the demand market. No commodity 

will be produced, traded, and consumed, if the supply price plus the transaction 

cost is greater than the demand price. Similarly, the commodity will be invento¬ 

ried between two time periods if the supply price at the supply market plus the 

inventory cost is equal to the supply price at the next time period. The invento¬ 

rying quantity will be zero if the supply price plus the inventory cost is greater 

than the supply price at the next time period. 

Mathematically, the dynamic multicommodity market equilibrium conditions 

take the form, following Samuelson [78] and Takayama and Judge [82] (see also 

Nagumey and Aronson [61]): for all i = 1 = m + 1,..., m + n; k = 

1 r.4 _ i t- 
A ^ J ■*-/ j U —“ } -A • 

= p%{d), if x?tjt > o 

> p)t{d\ if Xitjt = 0 
(2.4) 

and for all i = 1,... ,m; k = 1, t = 1,..., T — 1: 

"I" ^tti(t+l) 
= *&+!)(*). if > 0 

S *f(t+i)(s)> if f«i((+i) = °- 
(2.5) 

Here the general situation is considered where the supply price function w^t(s) 

associated with a supply market i, commodity fc, and time period t may, in 

general, depend upon the supply quantity of every commodity at every supply 

market in every time period. Similarly, the demand price function pk-t associated 

with demand market j, commodity &, and time period t may depend upon, in 
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general, the demand quantity of every commodity at every demand market in 

every time period. The transaction and inventory costs S^t+1^ in turn, 

may depend, respectively, upon the shipments of every commodity between every 

pair of markets within every time period, and upon the quantities inventoried of 

every commodity at every supply maxket between every pair of time periods. 

The variational inequality formulation of the above equilibrium conditions 

(2.4) and (2.5) is presented as follows. 

Theorem 3: 

A commodity pattern (s,X, 7, d) is in equilibrium, if and only if, it satisfies 

the variational inequality problem: 

7r(s) . (s' - s) + c(X) • (X' -X) + H(I) • (/' - I) - p(d) • (d! - d) > 0 (2.6) 

for all (s', X',r,d!) 6 K. 

Proof: 

First variational inequality (2.6) is derived from equilibrium conditions (2.4) 

and (2.5). 

Observe that condition (2.4) implies that for fixed market pair (i,y), com¬ 

modity fc, and time period t: 

(4(<) + - pkM) • (x& - XU * °> for 311 * °- (2-7) 

But inequahty (2.7) holds for all pairs (i,j), fe, and t; hence, 

T L m+n m 

EE E E(*« + 4;<W - PkjAd)) ■ (Xiiit - x!ljt) z 0. (2.8) 
t=l k= 1 j=m+l 1=1 
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Also, observe that condition (2.5) implies that 

(4(4 - K#+l)(I) - 4.+i>(4) ■ (4*+i) - 4(«+1)) > O.for all /‘;(<+1) > 0,(2.9) 

and. therefore. 

T \ L m 

XI XI XI(Ti<(,S) + — ^it+lC5)) * (litit+l ~ Iitit+1) — (2.10) 
t=l *=1 i=l 

Combining now inequalities (2.8) and (2.10) and simplifying the resulting 

expression by using (2.1) and (2.2), we obtain: 

T L m T L m+n m 

EZE4(4■ (4-4) + EE E E<*#(*)• (■*&-*£>.) 
t=l fc=l i=l t=l Jk=l jf=m+l i=l 

T—1 L m T L m+n 

E E E flSW7) • (4'i(,+i) - 4(<+d) -EE E 4(4 • (4 - 4) £ o 
t=i k=l i=i t=l A=1 j=m+l 

1 

(2.11) 

for all (s',X',r,d‘) e K, 

or, equiGently, (2.6). 

Now equilibrium conditions (2.4) and (2.5) are derived from variational in¬ 

equality (2.6). For convenience, the expanded form of the variational inequality 

(2.11) is used. At first, fix /^lt+1 = /£it+1, for all i and t. Then (2.11) reduces to: 

T L m+n m 

E E E E(4(4 + 4,«(*) - 4(4) ■ (*& - *«#) > o. 
t=l fc=l j=m+l i=l 

(2.12) 
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Note, by setting X^m = for all It'mt" / itjt, inequality (2.12) reduces 

to 

(*S(*) + 4,(-V) - 4(d)) • (X‘;( - A%) > 0, (2.13) 

and. hence, equilibrium condition (2.4) must hold. 

Equilibrium condition (2.5) can be shown to hold using similar arguments, 

but by. first, setting = Xftjt for all t,j, k, and t. 

Existence of a unique equilibrium pattern (s, X, I, d) can be guaranteed from 

the theory of variational inequalities under the assumption of strong monotonicity, 

that is, 

W*‘) - *(**)) • - s') + ('(X1) - c(x2)) ■ (X1 - X2) 

+(H(Il) - H(I2)) • (I1 - I2) - (p(d') - p(d2)) ■ {d> - d2) 

> a (IKj1 - S2||2 + ||X2 - X2||2 + ||Jl - J2||2 + ||d2 - d2||2) (2.14) 

for all (s1,X\I\dl) and (s2,X2,P,<P) 6 K, 

where a is a positive constant. Condition (2.14) will hold when the respective 

Jacobian matrices fy, ^7, and are positive definite over the feasible set 

K. This condition is commonly imposed and means that we can expect that the 

supply price of a commodity at a supply market and time period will depend 

primarily upon the supply of the commodity at that supply market in that time 

period. Similarly, we can expect the demand price of a commodity at a demand 

market and time period to depend primarily upon the demand of the commodity 

at that demand market in that time period. The analogous dependencies between 
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the transaction and inventorying cost functions and the respective commodity 

shipments and inventory quantities can also be expected to hold. 

In the special case when the Jacobian matrices are symmetric, as assumed in 

the classical models of Samuelson and Takayama and Judge, then it is easy to see 

that (s,X, /, d) satisfies (2.6), if and only if, it minimizes the functional 

H(I)dI - J p(d)dd (2.15) 

over K. In the symmetric case, then, the equilibrium can be constructed by 

standard convex programming algorithms. 

Dynamic single commodity SPEP’s can be easily obtained from equilibrium 

conditions (2.4) and (2.5) by letting the number of commodities, T, be equal to 

one. The graphical description (see Figure 2) of this problem is simply obtained by 

taking one layer from Figure 1. The equivalent variational inequality formulation 

of the above equilibrium conditions (2.4) and (2.5) and the qualitative properties 

of equilibria such as existence and uniqueness are then easily obtained. It is 

emphasized, that although the model is referred to as a single commodity one, 

it is, nevertheless, quite general, in that the supply price of the commodity at a 

supply market at a time period may depend upon the supply of the commodity at 

every supply market and time period. A similar generality holds for the demand 

price functions and the transaction and inventory cost functions. 

0(s,X,I,d) = J v(s)ds + J c{X)dX - J 
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Demand Market Nodes 

Figure 2 A Network Representation of the Dynamic Single Com¬ 

modity Market Equilibrium Problem 
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2.2 Static Multicommodity Spatial Price Equilibrium Problems 

In static SPEP s, the products produced by spatially separated supply mar¬ 

kets at different prices are transshipped at different transportation costs to the 

spatially separated demand markets which have different demand prices in one 

time period. This model is readily obtained from the dynamic multicommodity 

model described in the preceding section by letting the number of discrete time 

periods, T, be equal to one. The resulting static multicommodity spatial price 

equilibrium model is then identical to the multicommodity equilibrium model 

introduced by Dafermos [18]. Here the model is briefly outlined. 

Assume that L different commodities, typically denoted by k, are produced at 

m supply markets and are consumed at n demand markets. The typical supply 

and demand markets will be denoted, respectively, by i and j. The state of the 

system will be described by a number of vectors as follows: 

A supply column vector s = {s*. : k = 1 ,...,£} £ RLm where Sk = {s*;i = 

1,... ,m} is a vector £ Rm with nonnegative supply quantity s* associated with 

commodity k and market i. 

A demand column vector d = {d: k = 1,..., L} £ RLn where d= {d* : j = 

1,... ,n} is a vector £ Rn with nonnegative demand quantity dk- associated with 

commodity k and market j. 

A shipment column vector X = {Xk : k = 1 £ i?Lmn, where AT = 

{AT* : i = 1, = l,...,n} is a vector £ Rmn with nonnegative shipment 

35 



Xjj associated with commodity k between supply market i and demand market 

j- 

A supply price row vector 7r = {71-*. : k = 1 G .RLm where 7r* = {7r* : 

i = is a vector G J?"1 with component r* denoting the supply price of 

commodity k at supply market i. 

A demand price row vector p = {p*. : k = 1,...,T} G -RLn where p^ = {pj : 

j = 1,... ,n} is a vector G -RLn with component pj denoting the demand price of 

commodity k at demand market j. 

A transaction cost row vector c = {c^ : k = 1G RLrnn where = 

{c-,1 = 1,... ,77i; j = 1,... ,n} is a vector G i?mn with component cJ- denoting the 

unit transaction cost associated with producing commodity k at supply market i 

and consuming it at demand market j. 

The above fields are related by the following conservation equations 

z = = (2.16) 
3 

<$ = E*S J = fc = (2.17) 
i 

where X- > 0, for all x,j, fe. Define X* = (s*.,Xk,dfe), such that (2.16) and (2.17) 

hold for fixed fc, X*. > 0, and K = []fc=i Kk- 

Again the general situation is considered where the supply price of any com¬ 

modity at any supply market may, in general, depend upon the supplies of every 

commodity associated with every supply market. The demand price functions 

and transaction cost functions are also as general as described earlier. 
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Assuming, as before, that the underlying mechanism is that of perfect com¬ 

petition, the equilibrium is obtained when the supply price of the commodity at 

the supply market plus the transaction cost of this commodity associated with 

this pair of supply and demand markets is equal to the demand price of this 

commodity at the demand market. Mathematically, this state is characterized by 

the following equilibrium conditions which must hold for every commodity k and 

for all pairs of supply and demand markets (t,j): 

= p)(d), if > 0 

> p)(d), if X*j — 0. 
(2.18) 

Equilibrium conditions (2.18) can be obtained from equations (2.4) and (2.5) 

by letting T be equal to one. The equivalent variational inequality formulation 

of equilibrium condition (2.18), following Dafermos [20], is given by 

7r(s) • (s' — s) + c(X) • (X' — X) — p(d) • (d — d) > 0 (2.19) 

for all (s',X',<f') 6 K. 

Static single commodity equilibrium conditions are easily obtained from the 

conditions (2.18) by letting the number of commodities, L, be equal to one. This 

simple SPEP is depicted as a bipartite network in Figure 3. The equivalent 

variational inequality formulation of the above equilibrium conditions and the 

qualitative properties of equilibria such as existence and uniqueness are then 

easily obtained. 
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Supply Markets 

Demand Markets 

Figure 3 Bipartite Network Representation of Spatial Price Equi¬ 

librium Problems 
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2.3 The Decomposition Procedure 

As mentioned in the Introduction in this thesis, parallel computation of the 

equilibrium solutions will focus on the construction of parallel decomposition 

schemes for which convergence conditions will also be given. As shall be shown 

in this section, dynamic multicommodity spatial price equilibrium problems can 

be decomposed by commodities, by time periods, and/or by demand and supply 

markets. Figure 4 shows the overview of the decomposition scheme and the 

detailed decomposition procedures are explained in the following subsections. 

2.3.1 Decomposition by Commodities 

Multicommodity spatial price equilibrium problem can be decomposed by 

commodities. In the case of the multicommodity market equilibrium model out¬ 

lined in the Section 2.1, the feasible set K can be expressed as a Cartesian prod¬ 

ucts of subsets, i.e., K = n£=: Kk, where k is a commodity, and the selection 

of the mapping function Ak(z) = Dk(z), where Dk(x) is the diagonal part of 

Vt/i'z , yields a decomposition of the multicommodity problem into L single 

commodity problems. 

Now the parallel decomposition algorithm by commodities to solve the varia¬ 

tional inequality problem (2.6) is presented. 

Step 0: Initialization Step 

Start with an initial feasible solution (s°, X°. /°, <f°) € K and set the iteration 

count t — 1. 
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Figure 4 Overview of the Decomposition Schemes of General Spa¬ 

tial Price Equilibrium Problems 
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Step 1: Linearization Step 

At iteration r, construct new supply price, demand price, transaction cost, 

and inventorying cost functions which are linear and given for each commodity k 

by 

7r !T(4) = (2.20) 

for supply markets i = commodities k = 1 and time periods 

t — \ T 

dp)t 

dd% 
(<T) • 4 + (2.21) 

for demand markets j = commodities k = 1 and time periods 

t — l T 

dc^- 

m{xl 
*5.+ 4(*T) - 

dc*. 
Yk’r 
Aijt (2.22) 

for supply and demand market pairs (i,j) : i = 1,... ,m; j = 1,... ,n, commodi¬ 

ties k = and time periods t = 1,..., T, 

dHiti(t+1) , rrN rk 
-~j-k-U 

+ - 
^Hitl(t + l) / J-T\ 7-fcT 

(2.23) 
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for supply markets i = 1,..., m„ commodities k = 1 and time periods 

t = — 1. 

Step 2: Equilibration Step 

The VI subproblem at iteration r, for commodity fc, is, hence, 

E E *Sr(4) • («Sr - 4) + E E E «$(■*«,) • (*5 - *&) 
t-1 i=i t=i i=i >=i 

EE^«,(4,I+1,)-(/£(t+1)-4((+1))-EEpJT(4)-«-4) > (2-24) 
t=i i=i t=1 j=i 

for all 

The solution to all L subproblems is (sr+1, XT+l, IT+1, dT+l). Note that L decom¬ 

posed VI subproblems of (2.24) are solved independently and in parallel, where 

each subproblem (2.24) is equivalent to an optimization problem. 

Step 3: Convergence Verification Step 

If the equilibrium conditions (2.4) and (2.5) hold within a prescribed tolerance 

e, then terminate. Otherwise, update the functions according to (2.20), (2.21), 

(2.22), and (2.23) for all the commodities and go to Step 1. 

The convergence of the above decomposition algorithm by commodities is 

obtained by applying Theorem 2 in Chapter 1. 

In the case of static models, this decomposition algorithm becomes simpler in 

that equation (2.23) is then removed. As a result, the resulting L single commod¬ 

ity static problems have mn shipment variables and a special bipartite network 

structure, which can be solved via the supply and demand market equilibration 
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algorithms introduced by Dafermos and Nagurney [22], (see also Nagumey [55, 

56]) that have the remarkable property that, at each step, a relaxed market equi¬ 

librium problem is solved exactly. For a theoretical analysis of such equilibration 

algorithms, see Eydeland and Nagurney [28]. Specifically, at each iteration, the 

VI decomposition algorithm would yield the functions (2.20), (2.21), and (2.22). 

In this case, the ensuing subproblems are also equivalent to the solution of a 

quadratic programming problem of the form: 

Minimize 

over Kk ■Uy)dy jj p>(z)dz' (2.25) 

for each k, k = 1,..., L. 

2.3.2 Decomposition by Time Periods 

The dynamic spatial price equilibrium problems can also be decomposed by 

time periods. For simplicity, a single commodity dynamic problem is considered 

rather than a multicommodity one. This novel approach - decomposition by time 

periods - resolves the dynamic network problem into T static network equilibrium 

problems, each with mn shipment variables and with a special bipartite network 

structure, for which numerous efficient algorithms exist. The T-f 1-st subproblem, 

the inventory problem, is a simple problem in m(T — 1) variables. Figure 5 

describes graphically the dynamic market equilibrium problem when decomposed 

by time periods. It is emphasized that although our focus is on the parallel nature 

of this decomposition scheme, the algorithm can also be implemented in a serial 

43 



Figure 5 Parallel Decomposition of the Dynamic Market Equilib¬ 

rium by Time Periods 
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environment using the appropriate adaptations/extensions to any existing code 

for static spatial market equilibrium problems. Indeed, the computational results 

in the next section are for precisely such an implementation. 

First some preliminaries are presented. Note that in view of (2.1) and (2.2), we 

may define the functions 7rit(X, 7) = 7rit(s) for all i and t and p'jt(X) = pjt(d) for 

all j and t. Hence, the variational inequality (2.11) is equivalent to a variational 

inequality in only two vectors of variables X and 7, that is, 

T m+n m 

E E E(*«(*>n + <**(*) - «»(*)) • (*'«* - x**) 
t=1 j=m+l i=l 

+ E E(MX,I) + Hui{t+l)(I) - xi(t+1)(X,/)) ■ (riii(t+1) - 4i((+1)) > 0 (2.26) 
t=1 1=1 

for all (X',F) € K\ 

where K2 = Kx x K2, where Kx = {X'\X' > 0} and K2 = > 0}. 

The algorithm is a linearization scheme which resolves (2.26) into two simpler 

subproblems, each of which is a quadratic programming problem; the first sub¬ 

problem is in variables X only, and the second, in variables 7, only. Each of these 

subproblems can be solved simultaneously, and in parallel. 

Let fi(X, I) denote the mnT dimensional vector with components {7rtt(X,/) + 

Citjt(X) - pjt(X),i = 1,... ,m; jf = m + 1,... ,m + n; t = 1,... ,T} and /2(X,J) 

the m(T — 1) dimensional vector with components {^(X, 7) + i7;tt-(t+1)(7) — 

7Ti(t+1)(X,7),i = = 1,...,T-1}. Then variational inequality (2.26) 
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can be written succinctly as: 

/i(X, I) • (.X' - X) + f2{X, 7) • (7' - 7) > 0 for all (X, 7) € K\ (2.27) 

Now the algorithm is presented as follows. 

Step 0: Initialization Step 

Set X° = 0,7° = 0, r = 1. 

Step 1: Linearization Step 

(1) Construct the function /^(X) € RmnT which is linear and separable ac¬ 

cording to: 

/r(x) = jD1(xT-1,r-1)• (x) + (/1(xt-1,/t-1) - A(xT-1,r-1) -x1-1) (2.28) 

where T)i(-) is the diagonal part of Vi/i(-). 

(2) Construct the function f2(I) which is linear and separable according to: 

K(I) = 7)2(Xt“1,7t~1) . (7) + (f2(XT~1,IT~l) - D2(Xt-\It~1) ■ 7T_1) (2.29) 

where D2(-) is the diagonal part of V2/2(-). 

Step 2: Equilibration Step 

(1) Solve the variational inequality subproblem, 

fi{X) • (X1 - X) > 0, for all X' GXl (2.30) 

Let the solution to (2.30) be XT. 
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(2) Solve the variational inequality subproblem, 

r2{I) • (/' - I) > 0, for all /' £ K2. (2.31) 

Let the solution to (2.31) be IT. 

Step 3: Convergence Verification Step 

If |*UXT,n + 4tjt(XT) - PTjAXT)\ < e, for all X?tjt > 0; 

r) + - Ph > for an XTtjt = 0, 

and |*l{X\r) + if,T[i(1+1)(/T) - *r((+1)(XT,r)| < *, for all ^l(t+1) > 0; 

+ ^,T«(1+i)(^) - ^(1+1)(Jf',fT) > for aU /;i(1+1) = 0 then 

stop; 

else, set r = r + 1, and go to Step 1. 

It is emphasized that subproblem (2.30) decomposes into T subproblems, 

t = 1,..., T, each of which is a static single commodity spatial price equilibrium 

problem with a special bipartite network structure and because of the construc¬ 

tion of the new functions, which are linear, and separable, each subproblem is 

equivalent to a quadratic programming problem. Special-purpose algorithms for 

the subproblems, called market equilibration algorithms, have been developed in 

Dafermos and Nagurney [23] and theoretically analyzed in Eydeland and Nagur- 

ney [28]. Subproblem (2.31) is also a quadratic programming problem to which, 

for example, a Gauss-Seidel method can be applied. Parts (1) and (2) of Steps 1 

and 2 can be solved simultaneously. For a graphical depiction of the parallelism, 

see Figure 5. 
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The strong monotonicity condition (2.14) is assumed to hold, thus guaran¬ 

teeing existence and uniqueness of the equilibrium pattern. Convergence of the 

algorithm then holds under the following condition (Bertsekas and Tsitsiklis [9], 

Proposition 5.8, Section 3.5). 

Theorem 4: 

Let Ki = {X'\X' > 0},^ = {-H-/7 > 0}, and K2 = K\ x K2- Suppose that 

there exist symmetric positive definite matrices Gi and some 6 > 0 such that 

Di(-) — SGi is nonnegative definite for i = 1,2 and y' = (X',/') € K2, and there 

exists some /? E [0,1) such that 

ll<3,rl(/*(2/') “ fi(z) ~ Di{z) • (j/L - 2t-))||i < 60 maxjWy'j - Zj\\j, (2.32) 

for all t/', z E X2 

where ||yi||i = (yjGiyi)1^2. Then the above parallel linearization decomposition 

algorithm converges to the equilibrium solution. 

2.3.3 Decomposition by Markets 

Static and single commodity spatial price equilibrium can be further decom¬ 

posed by supply and demand markets. Dafermos and Nagumey [22] and Nagur- 

ney [55] [56] introduced supply and demand market equilibration algorithms, 

which are serial algorithms. 

In this subsection, a parallel decomposition algorithm by markets to solve 

the variational inequality (2.19) is briefly described. In the first, the cost func¬ 

tions 7r(s),p(d), and c(X) are projected to get the linear diagonal cost functions 
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7r($;),/5(dj), and c(X{j). Then, the resulting variational inequality is equal to a 

quadratic problem. Since the supply and demand quantities are unknown and 

the cost functions are linear and separable, the linearized variational inequalities 

can be solved via the elastic exact algorithm given in Dafermos and Nagumey 

[23] and Nagurney [59]. Because this problem is isomorphic to the constrained 

matrix problem with unknown row/column totals, the detailed algorithm will be 

given in Section 3.3. 

49 



Chapter 3 

NETWORK OPTIMIZATION PROBLEMS 

We now turn to the study of a special case of network equilibrium problems, 

that is. network optimization problems. (Recall that a network equilibrium with 

the symmetry assumption for the underlying functions can be reformulated as a 

network optimization problem.) As an example, the general constrained matrix 

problem is used. Note that the constrained matrix problem is characterized by a 

special bipartite network structure. 

3.1 Constrained Matrix Problems 

The genera] constrained matrix problem is to compute the best possible esti¬ 

mate X of an unknown matrix, requiring either that the matrix X be a minimum 

distance from a given matrix X°, or that X be a functional form of another known 

matrix (see Figure 6). The constrained matrix problem can be considered as a 

network optimization problem having a special bipartite structure as depicted in 

Figure 3, and this reformulation as a network problem will be used to obtain ef¬ 

ficient algorithms which exploit this special structure. Recently, researchers have 

formulated constrained matrix problems as mathematical programming problems, 
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Figure 6 The Constrained Matrix Problem 

with an objective function that forces conservatism on the process of rationaliz¬ 

ing X from the initial estimate -Y°. In the classical setting, the row and column 

totals are known and fixed. However, in certain applications, the row and column 

totals are not known a priori, but must be estimated. The relationship of the 

constrained matrix problem of unknown row and column totals with the spatial 

price equilibrium problem is explained in Section 3.2. 

Now the model is described. Consider the given m x tl matrix by X° = (x°-), 

and denote the matrix estimate by X = (xtJ). Let 5° denote the row i total, 

and S{ the estimate of the row i total. Let d°- denote the column j total, and dj 

the estimate of column j total. Let the mn x mn matrix G = (wtjfcf) denote the 

imposed weight matrix for the mixed variable terms (Xij — x^) • (x^ — x°z) and 

assume the matrix G to be strictly positive definite. Let mxm matrix A = (a**) 
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denote the imposed weight matrix for the mixed variable terms {si -s°i)-(sk -s°k) 

and let the n x n matrix B = (fiji) denote the imposed weight matrix for the 

mixed variable terms (dj - dj) • (dt - df). Assume that the matrices A and B are 

also strictly positive definite. 

Then the general constrained matrix problem can be written as follows: 

Minimize - <*«(* - 5?) • (sk - sak) + £ £ £ £ wijkl 
Z [i=lk=l i=lj=lk=ll=l 

(*« - *«) • (*« - *«) + ttM* ~ <$) ■ (<*< ~«?)} (3-i) 
i=i 1=1 J 

subject to: 

n 

Xij — sii 

3 = 1 

i = 1,... ,m (3.2) 

H
 II j = 1,..., n (3.3) 

and the nonnegativity conditions. Note that the objective function represents the 

weighted squared sums of the deviations. 

The objective function (3.1) permits the utilization of mixed-variable weight 

terms. This extends the modeling capabilities of the constrained matrix prob¬ 

lem. An example of possibly fully dense A,B, and G matrices are the inverse of 

the respective variance-covariance matrices (see Judge and Yancey [40j). Other 

examples may arise when the matrices A, B, and G include subjective weights 

based on the expert knowledge of planners. 
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Now, as an illustration, the above constrained matrix problem is described 

in the context of input/output (I/O) matrices. An I/O table is constructed 

from data obtained for a specific entity, be it a country, region, state, etc. The 

economic activity is divided into a number of producing sectors (or industries), 

with the exchange of goods between sectors consisting of sales and purchases of 

goods. Sectors may be general industrial categories (e.g., the aluminum indus¬ 

try), or smaller subdivisions (such as aluminum siding), even larger industrial 

groups (such as mining ore). The rows of the I/O matrix denote the origin sec¬ 

tors, i.e., the sellers, whereaLS the columns denote the destination sectors, i.e., the 

purchasers. The data required to form the I/O table are the flows of the prod¬ 

ucts from each of the producing sectors to the consuming sectors. The data are 

obtained for a particular time period. The column data represent each sector’s 

inputs while the row data represents each sector’s output; thus, the reason for 

the nomenclature input/output table. For an overview of input/output tables, 

including applications to regional economics, see Miller and Blair 48 . 

The constrained matrix problem arises in the context of I/O tables, when one 

has a base I/O table for a given time period, typically, a year, and one wishes 

to update the table to another time period. Often one is not certain of the row 

and column totals at the new time period. For example, usually one is able to 

estimate the row and column totals only under certain simplifying assumptions. 

Furthermore, in countries or regions with a poor information base, the stated row 

and column totals may simply reflect informed conjectures. The above formula- 
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tion takes into account such knowledge gaps directly, thus permitting modeling 

flexibility. 

In the diagonal case, where a;*. = 0, for k i, Wijki = 0, for kl ^ ij, and 

(3ji = 0, for j 7^ /, the objective function (3.1) simplifies to: 

-i I m m n n ] 

Minimize - < £ - s?)2 + £ £ wijij(xij ~ xijf + YlPjj{dj ~ f (3-4) 
z [i=i i=i j=i j=i J 

subject to the constraints (3.2), (3.3), and the nonnegativity assumption. 

The choice of weights is also flexible in this formulation. When the weights 

in (3.4) are all equal to one, the problem becomes a constrained least squares 

problem, and when an = -V, (3jj = and 7yy = 4r, for all rows i and columns 
s. a- x.'i 

j, the objective function is the well-known chi-square. Other possible weights, 

include an — /3jj = and 7yy = or a niixed weighting scheme. 

Of course, when the inverse of the variance-covariance matrix is diagonal, the 

objective function (3.4) can also be used. 

This diagonal model has been studied by Nagurney [59] who identified its 

connection with classical, separable spatial price equilibrium problems and pro¬ 

posed an equilibration algorithm (albeit serial) for its solution. This model is a 

special case of a constrained matrix problem applied to I/O estimation by Harri- 

gan and Buchanan [35], who considered interval constraints, rather than equality 

constraints (3.2) and (3.3). 

Lastly, in the case where the row and column totals are known with certainty, 

i.e., Si = s?, for all i, and dj = d], for all j, the above general quadratic model 
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(3.1), (3.2), and (3.3), collapses to the quadratic constrained matrix problem with 

fixed row and column totals formulated in Nagumey and Robinson [67] via RC 

equilibration. 

In particular, the objective function in this case simplifies to: 

Minimize 1 £ £ £ - *£) • (*u - *«) (3.5) 
Z »=1 J=1 *=1 Z=1 

subject to: 

n 

^2xij — 5i, i — l,...,m 
i=i 

(3.6) 

m 

yi xij ~ dYji j= i ? * * • >71 * 
»=i 

(3.7) 

This model may also be applied to the estimation of input/output tables, and 

social/national accounting matrices, provided that the row and column totals are 

known with certainty, as well as, to the estimation of migration flows. Row and 

column totals may be available for a time period in the past, and the matrix 

entries which yield those totals are needed, given matrix entries for an earlier 

time period. 

In the much-studied diagonal constrained matrix problem with fixed row and 

column totals, where the ~fijki = 0, for kl ^ ij, the objective function (3.5) further 

simplifies to 

Minimize i J2 it, “ xijY 
z i=i j=i 

(3.8) 
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subject to (3.6) and (3.7). 

Deming and Stephan [24] considered (3.8) with 7ijtj- = + , subject to con- 
xij 

straints (3.6) and (3.7), whereas Friedlander [32] considered the case where G = I. 

Bachem and Korte [5] treated (3.8) with all of the constraints. Cottle, et.al. [13], 

on the other hand, studied Friedlander’s problem with upper and lower bounds. 

Ohuchi and Kaji [69] [70] studied the Bachem and Korte problem with upper and 

lower bounds. Klincewicz [42] also studied the above diagonal model. 

3.2 Relationship to the Spatial Price Equilibrium Problems 

As mentioned in the Introduction, the conjecture that a relationship exists be¬ 

tween spatial price equilibrium problems and constrained matrix problems dates 

to Stone [80]. Here the connection between the general constrained matrix prob¬ 

lem and spatial price equilibrium problems is further explained. 

The Kuhn-Tucker optimality conditions for (3.1), (3.2) and (3.3), can be stated 

thus: For all rows i, i = 1,..., m and for all columns j, j = 1,..., n, the solution 

(s,:c,d) where s = {s^} £ i2m, x £ RmTn is the vectorization of the matrix X, and 

d = {dj} £ Rn, satisfies constraints (3.2) and (3.3), and: 

Y <*ijSj - Y aiJSj + 12 Wijklxkl - Y WijklXijU 
j j Id kl 

j = if X{j >0 /o q\ 

1 > + if = 0. v ; 
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Note that the Kuhn-Tucker conditions above are equivalent to the well-known 

Samuelson [77], and Takayamaand Judge [82] spatial price equilibrium conditions. 

In this context, the supply price function for the commodity at the supply market 

i,7T;, is linear and is given by: 

7Ti = 7ri(^) = aijSj ^ atjsji (3.10) 
3 3 

where Sj denotes the supply of the commodity at the supply market j, the demand 

price function for the commodity at the demand market j, pj is also linear and 

given by: 

Pj = pj(d) = - ^2 fcidi + S Pjttf» t3-11) 
i i 

where di denotes the demand for the commodity at the demand market / and, 

finally, the transportation cost function, cty, associated with shipping the com¬ 

modity between the supply market i and the demand market j, is also linear and 

given by: 

Cij = Cij(x) = WijklXijkl - wijkix°ijkl. (3.12) 
kl kl 

The matrices A, B, and G are assumed to be symmetric and positive definite. 

Equations (3.9) through (3.12) state that the commodity shipment X{j is 

greater than zero, if the supply price at the supply market i plus the cost is 

equal to the demand price and zero if the supply price plus transportation 

cost is greater than or equal to the demand price. The above general constrained 
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matrix problem is, hence, isomorphic to symmetric spatial price equilibrium prob¬ 

lems in the case of linear supply price, demand price, and transportation cost 

functions. This isomorphism is used to develop a fine grain parallel algorithm for 

such problems which will be described in the next section. Note that, in real- 

world applications, the large-scale nature of these problems makes the application 

of parallel decomposition schemes appealing. 

It is emphasized, however, that the Splitting Equilibration Algorithm which 

will be described in the subsequent section, and also be applied to the asymmetric 

spatial price equilibrium problem, where A, and G are no longer symmetric. 

This enables, for example, the modeling and solution of multicommodity spatial 

price equilibrium problems. In the asymmetric case, as discussed in Chapter 2. 

the spatial price equilibrium conditions (2.18) can no longer be formulated as an 

equivalent quadratic programming problem, but, rather, as a variational inequal¬ 

ity problem (2.19). Note, however, that the optimal solution to problem (3.1), 

nevertheless, always satisfies the variational inequality (2.19), with 7r^pj and cXJ 

defined by (3.10), (3.11), and (3.12). The algorithm that will be described decom¬ 

poses the problem by markets, rather than commodities, and represents, hence, 

a new parallelization scheme for asymmetric spatial price equilibrium problems, 

and, moreover, as we shall be shown, each subproblem can be further decomposed 

by markets yielding a massively parallel decomposition. 
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3.3 The Parallel Splitting Equilibration Algorithm 

In this section, first the Splitting Equilibration Algorithm (SEA)is reviewed, 

and then the massively parallel SEA algorithm for the computation of the general 

quadratic constrained matrix problem is developed. For theoretical results, see 

Nagumey and Eydeland [63] and for a graphical depiction of SEA, see Figure 7. 

The special network structure of the row and column equilibration step can be 

depicted in Figure 8. In the case where the matrices A, P, and G are diagonal, 

SEA is a Lagrangean dual method. 

3.3.1 SEA for the General Constrained Matrix Problem 

The SEA algorithm for the general constrained matrix problem (3.1) through 

(3.3) with unknown row/column totals is now reviewed. 

When the row and column totals are unknown, the SEA algorithm constructs 

a series of diagonal problems of the form (3.4), subject to the constraints (3.2), 

(3.3) , and the nonnegativity assumption, via a projection step. This splitting 

procedure results in elastic supply and demand subproblems. These elastic sub- 

problems, in turn, are then solved via the elastic exact procedure given in Dafer- 

mos and Nagumey [23] and Nagurney [59]. They developed serial equilibration 

algorithms and applied them to compute the solutions to classical spatial price 

equilibrium problems with elastic supplies and demands rather than fixed ones. 

For a theoretical analysis including complexity, see Eydeland and Nagurney [28] 

and Nagurney and Eydeland [63]. 

59 



Figure 7 Flowchart of Splitting Equilibration Algorithm - the 

General Case 
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Step 0: Initialization Step 

Start with any feasible vector (s1,^1, d1), i.e., one which satisfies constraints 

(3.2) and (3.3). Set £ = 2. 

Step 1: Projection Step 

Given (a*”1, z*-1, d*-1), the objective function (3.1) can be written as follow¬ 

ing: 

Minimize \-sTAs + (As*-1 — s°T A — A.s*-1).s + -xTGx 
2 2 

+ (Gi4-1 - x°tG - Gx^x + \dTBd + (BS-1 - d°TB - Bd(-')d (3.13) 

subject to constraints (3.2) and (3.3). Here A, B, and G denote the diagonal 

matrices of A,B, and G, respectively. 

Step 2: Initialization Step for Row/Column Equilibration 

Let £ Rn = 0. Set r = 1. 

Step 3: Row Equilibration 

For each row i, i = 1,... ,m, compute the fixed cost terms c-, j = 1,..., n 

where 

~T   _0 AT —1 
O'* ■ 111 f « a X • • • 
tj J (3.14) 

and solve the i-th row equilibrium subproblem: 

1 T * nT * 1 T - rT1 

Minimize -s As — s A.s H—x Gx + c x 
2 2 

(3.15) 
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subject to (3.2) via elastic exact equilibration (cf. Dafermos and Nagumey 23], 

Evdeland and Nagumey :28l.) 

Obtain the Lagrange multiplier fij corresponding to the linear constraint in 

(3.2). 

Step 4: Column Equilibration 

For each column j, j = l,...,n, compute the fixed cost terms c^-,i = 1,..., 

where 

K) = (3.16) 

and solve the j-th column equilibration subproblem: 

1 TX -_T 1 
Minimize -xTGx + ~c x + -zdrBd — dPTBd 

2 2 
(3.17) 

subject to (3.3) via elastic exact equilibration. Obtain the Lagrange multiplier 

Aj corresponding to the linear constraint (3.3). 

Step 5: Convergence Test of Equilibration Steps 

If \x\- — x?f'\ < for all go to Step 6; 

else set r = r + l, and go to Step 3. 

Step 6: Convergence Test of Projection 

If x\j — Si/11 < e7, for all i.j, then stop; 

otherwise, set f = ( + 1, and go to Step 1. 

When the cost functions given are linear, then Steps 1 and 6 are deleted. 

When the row/column totals are known with certainty, the general constrained 

matrix problem simplifies to (3.5) subject to (3.6) -(3.7). In this case, the SEA 
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algorithm again constructs a series of diagonal problems, but of the form (3.8), 

subject to the constraint (3.6\ (3.7) and nonnegativity, via a projection step. The 

resulting quadratic programming problems are, hence, simpler than the original 

problem with objective function given by (3.5). Each of the constructed diagonal 

problems, in turn, is then “split** to handle the row constraints (3.6) and then the 

column constraints ^3.7). Each such row (supply) or column (demand) equilibrium 

subproblem, because of the separability of the diagonal problem and the splitting 

of the constraints, can be solved simultaneously, i.e., in parallel, on a distinct 

processor and exactly via exact equilibration as outlined in 67]. These problems 

correspond then to fixed, rather than elastic, supply and demand subproblems. 

Of course, in the diagonal constrained matrix problem with objective function 

given by ^3.S), rather than (3.5), no such diagonalization is required, before the 

splitting occurs. 

Convergence conditions for the outer projection step can be found in Dafermos 

17 . An interpretation of row and column equilibration as a dual method and 

proof of convergence is given in Xagumey and Eydeland [63]. 

3.3.2 The Massively Parallel Splitting Equilibration Algorithm 

As described in Sections 3.3.1 and 3.3.2, SEA decomposes the constrained 

matrix problem into m row subproblems, each of which can be solved indepen¬ 

dently and simultaneously on a distinct processor using exact equilibration, and 

into 7i column subproblems, each of which can be solved independently and si¬ 

multaneously. In this context, hence, if m = ti then at most m processors would 
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be used for the parallel implementation; this is, indeed, the case with a coarse- 

grain architecture. However, in this section, I will construct a massively parallel 

implementation of SEA in which the exact equilibration algorithm could exploit 

all n x n processors. In a sense such a fine-grain implementation would be on 

the “link” level, whereas the coarse-grain implementation would be on the node 

level. 

The serial exact equilibration algorithm is reviewed first, and then the parallel 

exact algorithmis described. Since row equilibration is the mirror image of column 

equilibration, only the column equilibration step is explained here. 

Serial Exact Equilibration 

Suppose that the cost functions are linear, separable, for example, C{j(xt-j) = 

gijXij + hij and pj(dj) = —pjdj + qj, where gij, h{j, pj and qj are positive for all i 

and j. We seek to compute the solution X{j, i = 1,..., n, j = 1,..., n, satisfying 

dj = £?=i Xij, where: 

[ = ~Pjdj + qj, if > 0 

gijxij d" s 
1 ^ ~Pjdj “I- gj, if X{j = 0, 

is satisfied. The procedure below accomplishes this. 

Step 0: Set the demand market index j = 1. 

Step 1: Sort the hij1 s, i = l,...,n in nondescending order and relabel the /i{/s 

accordingly. Define hn+i,j = °c and set v = 1. 
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Step 2: Compute 

ELi “ + 9ij Pj 
yv ii.1' 
■^t-1 so- pj 

(3.18) 

Step 3: If hvj < < hv+1><7-, then stop; let the critical s = v, and go to Step 4. 

Otherwise, set v = v + 1, and go to Step 2. 

Step 4: Set 

x 

i = 1,..., s 

i = s + 1,... ,n. 

If j < n, let j = j + 1 and go to Step 1. Otherwise, terminate. 

Row subproblems can be solved in the same manner. When the demand is 

known with certainty as the equation (3.18) changes to 

Ev _1_ 
1=1 an 

(3.19) 

Now the parallel exact equilibration algorithm for column equilibration is 

described. In the serial exact algorithm, the critical s was calculated in a serial 

way (see Steps 2 and 3 above) and all steps are done again for the next demand 

market in a serial way until all demand market subproblems are solved. Instead, 

in the parallel exact algorithm, all demand subproblems will be solved at the same 

time and each demand subproblem is further parallelized. At the beginning, all 

hij’s are sorted columnwise in parallel. Then, assume that all links can be the 

critical s'1 s one calculates the fiys in parallel. After that, find the critical s for each 
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demand market through the parallel comparison of Step 3 below. The equilibrium 

Xij's are, finally, calculated in parallel. The detailed algorithm is as follows. 

Parallel Exact Equilibration 

Step 1: Sort the htj’s, i = 1 ,...,n,j = l,...,n, columnwise in nondescending 

order and relabel the hij's accordingly. This columnwise sorting is done in parallel. 

Define hn+ij = oo, for all j = 1,..., n. 

Step 2: Assume that all Vj = 1,... ,m, for all j = 1,... ,n, can be the critical s 

and compute in parallel 

_j_ Si 

$ = *u7-1 Ei~rfor ^ vi = J = 

^i=1 3S + Pi 

(3.20) 

Step 3: Find the critical Sj's for all j = 1,... ,n in parallel by the parallel com¬ 

parison, that is, if hvj < (iV-J < hv+liJ-, then set Sj = Vj. This parallel comparison 

will be done using n x n processors. 

Step 4: Calculate all *y’s 

^»i • t • -j g,j ’ i — 1 ?..., j — 1,..., ti 

0, i = + 1,... ,n; j = 1,... ,n. 

This parallel exact equilibration algorithm can solve n x n subproblems at the 

same time. The parallel exact equilibration of each row can be described in the 

same manner. When the demand is fixed, ^ of equation (3.20) is given as in 

equation (3.19). 
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The parallel exact algorithm is then embedded into the SEA algorithm to 

obtain the massively parallel SEA algorithm. For the implementation of this 

algorithm, we need a massively parallel architecture such as Thinking Machine’s 

Connection Machine, CM-2. The detailed implementation will be described in 

Section 4.2. 
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Chapter 4 

NUMERICAL EXPERIMENTATION 

In this chapter, the approach to the parallel numerical experimentation is 

discussed. This chapter first explains how the data-sets were collected and gen¬ 

erated, and then how the parallel computations were implemented. Specifically, 

multicommodity static and dynamic models were considered for the decomposi¬ 

tion by commodities, single commodity dynamic models were considered for the 

parallel decomposition by time periods, and single commodity static models were 

considered for the decomposition by markets. In this way, we can increase the 

size of problems to be tested and obtain the correct efficiencies and speed-ups 

realized by each parallel decomposition scheme by eliminating the possible joint 

effects from complex parallel decomposition schemes. 

4.1 Data Generation and Collection 

4.1.1 Decomposition by Commodities 

For the performance evaluation of the decomposition scheme by commodities, 

problems with linear cost functions were considered first, and then those with 

nonlinear cost functions. 
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The linear asymmetric supply price, demand price, transaction cost functions, 

and inventorying cost functions were given, respectively, by 

’r«W = E rUje*jt> + lit (4.1) 

pkM) = - E p«A + 4 (4.2) 

4-m = E + 4. (4.3) 

= ^2 Viti(t+l)Jt'j(t'+l)Ijt'j(t’+l) + Witi(t+1)‘ (4.4) 

It was assumed that the functions (4.1)-(4.4) satisfy the strong monotonicity 

condition (1.3) to ensure uniqueness of the equilibrium pattern. In terms of 

applications, this condition means that the supply price of commodity k at supply 

market i during time period t depends primarily upon the supply of commodity 

k at supply market i during time period t; the demand price of commodity k 

at demand market j during time period t depends primarily upon the demand 

for the commodity k at demand market j during time period t\ the transaction 

cost for commodity k between supply market i and demand market j during time 

period t depends primarily upon the quantity of commodity k shipped between 

the pair of supply and demand markets during time period t\ and the inventorying 

cost for commodity k at supply market i during time periods t and t -f1 depends 

primarily upon the inventory quantity at supply market i during time periods t 

and t -f- 1. Example data were generated randomly for 20 supply markets and 20 
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demand markets and 50 supply markets and 50 demand markets, with the number 

of commodities being set at 9 and 12 and with the number of time periods being 

set at 2 and 5. 

Linear, asymmetric, single commodity problems of similar market number di¬ 

mensions had been solved by Nagurney [53] using serial decomposition by demand 

markets and supply markets and the projection method. Pang [71] presented nu¬ 

merical results with a complementarity algorithm for substantially simpler single- 

price spatial price equilibrium problems, in which the transaction cost consists of 

only a fixed transaction cost terms hjj, and these terms must satisfy a restrictive 

triangle inequality (see also Theise and Jones [84]). 

The coefficients of the supply price, demand price, transaction cost, and in¬ 

ventorying cost functions were generated randomly as follows, so that a strict di¬ 

agonal dominance condition held in order to guarantee uniqueness of the solution. 

The diagonal term, r^t,, in each supply price function was generated uniformly in 

the range [100, 30,000]. The remaining cross-terms, r^-t,,l ^ k,j ^ i,t' ^ t, were 

generated so that the dependence on the commodities and the supply markets 

was uniform, and the sum of these terms was less than the diagonal term. The 

fixed supply price term, t**, was generated in the range [100, 1,000]. The diago¬ 

nal term, — Pjtjt, in each demand price function, was generated uniformly in the 

range [-50, -5,500]. The remaining cross-terms, ^ k,i ^ j,t' f, were 

generated so that the dependence on the commodities and the demand markets 
4 

was uniform and the sum of the absolute values of these terms was less than the 

absolute value of the diagonal term. The fixed demand price term, qjt, was gener- 
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aied in the range 50. 500.000 . The diagonal term, gin each transaction cost 

function, was generated uniformly in the range 20, 6,000 . The remaining cross- 

terms- — k.uv ij.H ^ f, were generated so that their dependence on 

the commodities and pairs of markets was uniform and the sum of cross-terms was 

less than the diagonal term. The fixed transaction cost term, h^Jt, was generated 

in the range 50. 500 . The diagonal term, in each inventorying cost 

function was generated uniformly in the range defined by 0.075 times the lower 

and upper limits of the slope of the supply price function. The remaining cross- 

terms. v5nt+i)jt*j{v+i)il r1 7^ f, were generated so that the dependence 

on the commodities, the supply markets, and the time periods was uniform, and 

the sum of these terms was less than the diagonal term. The fixed inventorying 

cost term. was also generated uniformly in the range defined by 0.075 

times the lower and upper limits of the intercept of the supply price function. 

Nonlinear supply price, demand price, and transaction cost functions were 

considered in the form 

*a(«) = rL(4) + 21 + 4 
iifi 

(4.5) 

dm = + Z p%Ju + 4 (4.6) 

4W = + E 9^,'XL’ + (4.7) 

i)(^j — +51 viii(t+i)jtlj(t>+i)Ijt'j(t'+i)+hiti(t+iy (4-8) 
jW 
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These functions were also generated to ensure that the strong monotonicity 

condition held. In terms of applications, the polynomially nonlinear terms give 

more dependency to each cost function upon its main variable. In other words, 

each cost function has less effect from the cross-terms. The linear terms in the 

function (4.5), (4.6), (4.7), and (4.8), were generated in the same manner as 

their counterparts in (4.1), (4.2), (4.3), and (4.4). The nonlinear term, r^tit was 

generated uniformly in the range [100, 30,000] xl0~6; the nonlinear term, —p%tjti 

uniformly in the range [-50, -5,500] xl0“6; and nonlinear term, uniformly in 

the range [20, 60,000] xlO-6; and nonlinear term, uniformly in the 

range defined by 0.075 times the lower and upper limits of rftit. The termination 

criterion utilized was identical to the one used in the linear tests. 

4.1.2 Decomposition by Time Periods 

To study the performance of decomposition scheme by time periods, single 

commodity dynamic problems were considered rather than multicommodity prob¬ 

lems due to the memory limitation. The linear diagonal supply price, demand 

price, transaction cost, and inventorying cost functions are of the form: 

— Titbit 4" ^it (4.9) 

Pjt{djt) = —Pjtdjt 4" Qjt (4.10) 

Citjt{Xitjt>) = 4" hitjt (4.11) 

■^it»(t+l)(Att(t+l)) = Vtt*(t+l)^iit»(t+l) 4" Witi(t+1) (4.12) 
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where Pjti Qjti 9itjti hitjti ^tti(t+i)? *^itt(t+i) 0* Under this assumption, the 

equilibrium must be unique, since this is a strictly convex quadratic program¬ 

ming problem. In terms of application, these linear diagonal cost functions mean 

that the supply price at supply market i during the time period t depends only 

upon the supply quantity at supply market i during the same time period; the 

demand price at demand market j during the time period t depends only upon 

the demand quantity at demand market j during the same time period; the trans¬ 

action cost between supply market i and demand market j depends only upon 

the quantity shipped between the pair of markets (i, j); and the inventory car¬ 

rying cost at supply market i between the time periods depends only upon the 

inventory quantity at the same market between the same time periods. 

The supply price function coefficients and U{t were generated randomly 

and uniformly in the ranges [3, 10] and [10, 25], respectively; the demand price 

coefficients pjt and qjt were generated in the ranges [1, 5] and [150, 650], respec¬ 

tively; the transaction cost function coefficients gnjt and hltjt were generated in 

the ranges [1, 16] and [10, 25] respectively; and the inventorying cost coefficients 

viti(t+i) and in the ranges .075 x [3, 10] and .075 x [10, 25], respectively. 

Problems ranging in size from 5 supply markets and 5 demand markets to 50 

supply markets and 50 demand markets with the number of time periods ranging 

from 5 to 50 time periods were considered. The convergence tolerance e was set 

to 1 and convergence was checked after every other iteration. 

For the general nonlinear, asymmetric dynamic single commodity market 

problems, the functions were now of the form: 
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(4.13) 4“ ^ ] I'itit'Sjt' “I- ^it 

jt' 

Pjt(d) Pjtdjt "1“ Pjtit'dit1 -f* <jjt (4.14) 
it1 

Citjt{X) = gitjtXftjt + XZ 9itjt,kt'it"Xkt'it" + hnjt (4-15) 
kt'kt" 

Hiti(t+l)(I) = XI Uiti(t+l),kt'lt"Ikt'lt" + Witi(t+1)* (4-16) 
kt'it" 

The function coefficients were generated as follows. The fixed coefficients in 

functions (4.13)-(4.16) and the diagonal linear terms were generated in the same 

manner as their counterparts in (4.9)-(4.12). The off-diagonal terms were then 

generated to ensure strict diagonal dominance. The term was generated in 

the range [3,10] xlO-5; the term pjt was generated in the range [1,5] xlO-5; and 

the term gujt was generated in the range [1,16] xlO-5. The same convergence 

tolerance as before was used. 

The ranges of the market sizes and number of time periods was as before, with 

the number of cross-terms in each of the functions being fixed at five. 

4.1.3 Decomposition by Markets or by Row/Column 

In the performance evaluation of the decomposition scheme by markets, two 

kinds of problems are considered;, static single commodity spatial price equilib¬ 

rium problems and constrained matrix problems with fixed demands. The latter 

being special cases of the general elastic constrained problems, which are isomor- 
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phic to the static single commodity spatial price equilibrium problems (see the 

Section 3.2). 

To increase the data size, the matrix G of the equation (3.1) was generated 

to be diagonal, with each diagonal term generated in the range [.1,10000], to 

simulate the wide spread of the initial of the initial data. The weighting terms, 

the Wijij's were set to for x?• 0, and to one, otherwise. The selected problem 

for computation had a dimension of the X° matrix of 1000 x 1000, with the 

corresponding G matrix of dimension 106 x 106. In addition, since the efficiency of 

algorithms may depend not only upon the dimensionality of the problem, but, also 

upon the difficulty of the problems themselves, each row total was generated 

as and each column total P- as 2 xiji 1° represent 100% growth from 

the initial time period. 

For the numerical results of SEA applied to real-world economic data, three 

data sets were used. The first example 1072 was constructed, assuming a 100% 

growth factor, from an aggregated 1972 input/output matrix of construction ac¬ 

tivity in the United States consisting of 485 rows and 485 columns. This I/O 

matrix retained the construction sectors in the United States in detail, and ag¬ 

gregated those sectors in the United States in which the construction inputs were 

zero or negligible. The second example, 1077, was constructed from an aggre¬ 

gated 1977 input/output matrix in the same manner as 1072. The third data-set, 

USDA133, was obtained from a social accounting matrix for the United States. A 

social accounting matrix(SAM) is a general equilibrium data matrix, consisting 

of a series of accounts in the economy of a nation. A SAM is comprised of m rows 
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and m columns, with any particular account, i, represented by row i and column 

i. The rows represent the receipts of the accounts, and the individual matrix 

entries the transactions in the economy. SAM’s have been widely used for policy 

analyses in developing countries (see Pyatt and Round [75]). USDA133, which 

is comprised of 133 rows and 133 columns, was a perturbed SAM developed at 

the United States Department of Agriculture for 1982 (For a description of its 

development, see Hanson and Robinson [34]). 

For the unknown row/column totals, two data-sets of spatial price equilib¬ 

rium problems with linear and separable cost functions were generated. The 

equivalence of such spatial price equilibrium problems with diagonal quadratic 

constrained matrix problems was described in Section 3.2. SPEP500 x 500 was 

comprised of 500 supply markets and 500 demand markets. SPEP750 x 750 was 

comprised of 750 supply markets and 750 demand markets. 

4.2 Parallel Implementation Method 

4.2.1 Coarse Grain Parallel Implementation 

The decomposition by time periods, commodities and markets (row/columns) 

generate, respectively, parallel subproblems in the number of time periods, com¬ 

modities and markets. This coarse grain parallel implementation was tested on 

the IBM 3090 which has six processors. 

Data-sets described in the preceding section were tested using algorithms de¬ 

veloped in Chapters 2 and 3. In particular, the IBM 3090-600E and the IBM 
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3090-600J were utilized with six processors in a stand-alone environment, with 

an exception made for the decomposition by commodities, since it was imple¬ 

mented in the early stage of this research. Instead, a high Strategic User Priority 

v as used, in which up to three processors were allocated to this experiment. 

Within the Strategic Users* higher priority, the elapsed wall-clock time was not 

significantly affected by the multiuser environment. Parallel Fortran was used to 

execute the algorithms and the elapsed wall clock time was measured using the 

intrinsic function of Parallel Fortran. 

The speed-up measures were defined as follows: 

Speedup 5 h. 
tn’ 

(4.17) 

where 7\ is the elapsed wall clock time to solve the problem using the best serial 

algorithm and Tn is the elapsed time to solve the problem using the parallel 

algorithm on N processors. Note that it is very difficult to find the best serial 

algorithm for given problems. The alternative measurement would be defined as 

Speedup S' = 
-ln 

(4.18) 

where T\ is the elapsed time to solve the problem using the parallel algorithm. 

The efficiencies of the parallel implementation using N processors were then 

defined as: 

it Sat T\ 

A N TN xN 
(4.19) 
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(4.20) 
S'n . T\ 

N NxTn' 

In the ideal parallel implementation, the efficiency will be 100%, so the max¬ 

imum speed-up ratio will be equal to the number of processors. But, in the 

practical implementation, we cannot obtain this speedup due to the hardware 

limitation. 

4.2.2 Fine Grain Parallel Implementation 

The decomposition by demand and supply market pairs introduced in Section 

3.2 was implemented on a massively parallel architecture, the CM-2. Thinking 

Machine’s Connection Machine Model CM-2 has, in its full configuration, 64K 

processors which have distributed memories and obtain information through com¬ 

munication between processors. Since massively parallel implementations are in 

the beginning stages, I briefly describe the architecture of the CM-2. 

The processors are interconnected as a 12-dimensional hypercube, with each 

processor containing a local memory of 8K bytes. Each processing element is 

under the control of a microcontroller that sends instructions from a front-end 

computer to all of the elements for execution. The mode of computation is data 

level parallelism, that is, all processors execute identical operations. Therefore a 

CM-2 is called a SIMD machine. 

The language used for the implementation was CM FORTRAN version 1.0. 

It is a high-level language that compiles into PARIS, the assembly level language 

of the machine. It is a very compact language with, for example, the addition of 
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two matrices being expressed in a single step. Since matrix operations must be 

conformable, i.e., the operated on matrices must be of the same dimensions, one 

may need to change a matrix into a vector, or vice versa; for such transformations 

the intrinsic functions “pack” and “unpack” are very useful. Also one may use 

the “spread” command to replicate a vector into a matrix. 

Some of the intrinsic functions of CM FORTRAN are briefly described here. 

These intrinsic functions make CM FORTRAN very suited for implementing the 

parallel exact algorithm outlined in Section 3. For example, the intrinsic function 

“cmforder” sorts elements of a matrix either row-wise or column-wise and returns 

the indices. Since a matrix- can not be used as indices of another matrix, but a 

vector can only when there is not collision among the values, the index matrix is 

packed first using “pack” command. To avoid collisions among values of indices, 

the index matrix was modified by adding some numbers, and then packed to get 

the index vectors without collision. Then the sorted matrix h{j was obtained. 

The “minval” and “maxval” functions, in turn, return the smallest, respec¬ 

tively, largest element of a row or a column in an array. These are used to find 

critical S’s in Step 3 for the parallel exact algorithm in Chapter 3. The “cshift” 

and “eoshift” functions are useful in minimizing the cost of communication be¬ 

tween processors in which the data elements are located. These shift commands 

bring the neighboring fcy, hi+lJ values to the same virtual processor before the 

comparison, in order to minimize the communication. 

Finally, logic statements, such as the “where, else, end” statement, are avail¬ 

able to check conditions on vector/matrix elements in.parallel. 
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the “pack- ccr.r.ar.c packs a matrix columnwise, the row equilibration 

step requires the “transpose" command before the “pack" command is used. 

In order to take advantage of the data level parallelism a large number of 

processors are needed to operate on multiple copies of the data simultaneously. 

Note tra: in an input output matrix consisting of 500 rows and 500 columns 

we would need 251.000 processors which is greater than the number of physical 

processors available to us even in a fully configured CM-2. The CM-2, however, 

has tde notable feature known as virtual processor that permits a processor to 

operate on multiple copies of data. This feature is identical to having multiple 

physical processors operating on their own copy of the data. To measure and 

analyze tde performance of the massively parallel implementation, CM time is 

measured with the number of processors. 
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Chapter 5 

RESULTS AND DISCUSSION 

In this chapter, all numerical results of the coarse-grain and fine-grain paral¬ 

lel implementations of the parallel algorithms are reported and discussed. The 

detailed algorithms were described in Chapters 2 and 3 and the numerical exper¬ 

imentation methods were explained in Chapter 4. 

5.1 Decomposition by Commodities 

In this section, the results of computational experience with the parallel al¬ 

gorithms introduced in Section 2.3 and Chapter 3 on the IBM 3090-600E in a 

production environment with a high Strategic User priority (to eliminate con¬ 

tention) are presented. In this decomposition, each feasible set Kk corresponds 

to a particular commodity k. The six numerical data-sets were generated in the 

manner explained in Section 4.1. The first example, MSPl, was a static problem 

consisting of 12 commodities, 50 supply markets and 50 demand markets and 

with quadratic supply price and demand price functions and quartic transporta¬ 

tion cost functions. The second example, MSP2, was a static problem consisting 

of 9 commodities, 50 supply markets and 50 demand markets and with quadratic 
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supply and demand price functions and quartic transportation cost functions. 

Note that the decomposition of the multicommodity static problem results in the 

solution of as many static problems of the form of the static single commodity 

problems in Figure 2 as there are commodities. For each of the classical bipar¬ 

tite spatial price equilibrium problems, the equilibration algorithms introduced 

in Dafermos and Nagumev 23] were applied. The next four examples, from 

DMSP1 to DMSP4, were dynamic spatial price equilibrium problems. The third 

example, DMSP1, consisted of 12 commodities, 20 supply markets, 20 demand 

markets, and 2 time periods, whereas the fourth example, DMSP2, consisted of 

the number of commodities and markets as DMSP1, but had 5 time periods. The 

form of the functions was as in the static example, with the cost functions on the 

horizontal links now being quadratic. The fifth and sixth examples, DMSP3 and 

DMSP4, had the same dimension as DMSP1 and DMSP2, respectively, but their 

cost functions were linear. The equilibration algorithm embedded in the dynamic 

problems was the one in Nagumey and Aronson [61]. 

These algorithms were also embedded with Parallel Fortran constructs and 

compiled using the Parallel Fortran compiler, optimization level 3. The parallel 

runs were conducted under the Strategic Users5 Program on the IBM 3090-600E 

and are reported in Table 1 and Figure 9. Additional serial results on the IBM 

3090; 600E for the dynamic market equilibrium problems can be found in Nagur- 

nev 58 and additional parallel results for the static problems can be found in 

Nagumey and Kim 65 . The elapsed wall-clock times were measured, rather than 

CPU times since these are the appropriate measurements in parallel processing. 
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Indeed, it is well known that the CPU time will increase in any parallel processing 

environment. 

The construction of new cost functions for each commodity (cf (2.20), (2.21), 

and (2.22)), as well as the subsequent solution of L commodity problems was 

parallelized. In this series of experiments, the number of commodities was greater 

than, or equal to, the number of processors. In the case where the number of 

commodities exceeds the number of processors, the commodity subproblems are 

assigned asynchronously to a processor, once it becomes available; otherwise, each 

processor is allocated a single commodity subproblem. Table 1 and Figure 9 show 

that the speed-up was improved as the number of commodities and the number 

of markets increase. 

5.2 Decomposition by Time Periods 

In this section, the results of computational experience with the parallel al¬ 

gorithm introduced in the Section 2.2.2 on the IBM 3090-600J in a stand-alone 

environment will be given. These are finite time horizon problems with T time 

periods in which a commodity is produced at m supply markets, inventoried at 

the supply markets, and shipped to the consumers at the n demand markets. 

These problems were generated in the manner explained in Section 4.2. 

The motivation for the parallel decomposition algorithm by time periods lies 

in the special network structure. In particular, recall that the Cartesian product 

K wTas defined as the product of two subsets K\ and K.2, where contains all 
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Table 1 Parallel Implementation of the Decomposition Algorithm 

by Commodities with Linear and Nonlinear Cost Func¬ 

tions 

Data Number of Wall-Clock Speedup Eff. 
Name Processors Time (sec) Ratio <%) 

1 128.92 
MSP1 2 73.14 1.76 88 % 

3 55.73 2.31 77 % 

1 124.88 
MSP2 2 73.46 1.70 85 % 

3 57.28 2.18 73 % 

1 34.73 
DMSP1 2 19.91 1.74 87 % 

3 16.75 2.07 69 % 

1 392.22 

DMSP2 2 203.42 1.93 96 % 
3 149.41 2.63 88 % 

1 33.38 
DMSP3 2 19.99 1.67 83 % 

3 14.76 2.26 75 % 

1 358.11 
DMSP4 2 194.59 1.84 92 % 

3 134.04 2.67 89 % 
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Figure 9 Parallel Speedup of the Decomposition Algorithm by 

Commodities 
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the commodity shipment variables (the vertical arcs in Figure 2), whereas K2 

contains all the inventory variables (the horizontal arcs). The constraints require 

only that these variables be nonnegative. The algorithm then decomposes the 

problem into T -f 1 subproblems, of the form depicted in Figure 3; the first T 

problems are static spatial equilibrium problems with a special bipartite network 

structure inmxn variables each, for which numerous efficient algorithms exists, 

whereas the T + 1-st subproblem, is a very simple inventory problem in m(T — 1) 

variables, which can be solved using a Gauss-Seidel algorithm. 

Large-scale dynamic equilibrium problems with linear separable functions and 

with nonlinear asymmetric functions with five cross-terms were considered. Recall 

that, in the case of the nonlinear examples, the supply and demand price func¬ 

tions associated with the nodes were quadratic functions, the transportation cost 

functions associated with the vertical arcs were quartic, and the inventory cost 

functions associated with the horizontal arcs were linear. Four series of problems 

were solved, two of which were linear and two of which were nonlinear, with 25 

supply markets and 25 demand markets, and 50 supply markets and 50 demand 

markets, ranging from 5 time periods to 50 time periods. The computations were 

conducted on the IBM 3090-600J at the Cornell National Supercomputer facility 

using a FORTRAN code of the algorithm, which was compiled using FORTVS 

compiler, optimization level 3. Tables 2-3 and Figures 10 - 13 depict the CPU 

behavior of the algorithm when the algorithm is implemented in serial as the 

number of time periods is increased. The linear behavior of the algorithm is to 
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be contrasted with the behavior of earlier algorithms, which is at least quadratic 

(see Nagurney and Aronson [61]). 

The algorithm was embedded with Parallel constructs provided by Parallel 

FORTRAN and compiled using the Parallel Fortran compiler, optimization level 

3. Four example data-sets were proceeded to run in a stand-alone environment on 

the IBM 3090-600J. The speed-up measures were reported in Table 4 and Figure 

14, when the convergence verification was done in serial and after every other 

iteration. As can be seen from Figure 14, the linear separable problems exhibited 

substantial speedups, whereas the nonlinear, asymmetric problems, lower speed- 

ups. This is due, in part, to the serial bottleneck of the convergence verification, 

which is more time-consuming for the general problems. However, practitioners 

are concerned with obtaining solutions and, hence, convergence verification is 

essential. Moreover, these results illustrate a substantial overall savings in elapsed 

time on extremely large problems. Indeed, prior to this research, the largest 

problems of this form that had been solved consisted of only 20 supply markets, 

20 demand markets, and 10 time periods, (see Nagurney and Aronson [61]). 

5.3 Decomposition by Rows/Columns 

In this section, the results of computational experience with the Splitting 

Equilibration Algorithm, which was described in the Section 2.2.3 and Chapter 

3 on the IBM 3090-600J, are reported. The algorithm is a general parallelizable 

procedure which decomposes a wide spectrum of constrained matrix problems into 
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Table 2 Serial Implementation of the Decomposition Algorithm 

by Time Periods on Large-Scale Dynamic Market Equi¬ 

librium Problems with Linear Separable Cost Functions 

Number Percentage of 

Number of CPU Number Positive Variables 

of Time Time of at Solution 

Markets Periods (seconds) Iterations Inventory Transshipment 

5 0.1005 36 60.0 73.6 
5x5 10 0.2114 38 68.9 66.4 

25 0.5797 46 72.5 71.7 
50 1.2371 54 72.2 74.2 

5 0.7583 62 75.0 63.6 

10 x 10 10 1.4543 62 66.7 67.2 
25 4.2041 76 65.0 72.3 
50 7.7656 70 69.2 67.6 

5 9.0560 62 40.0 55.6 

25 x 25 10 20.8145 70 32.0 60.4 
25 80.3637 116 62.2 60.9 

50 161.2377 110 59.0 62.7 

5 88.2942 104 56.5 55.6 
50 x 50 10 188.6683 122 56.9 52.7 

25 470.3525 118 59.0 53.9 
50 984.2568 126 58.9 53.9 
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Table 3 Serial Implementation of the Decomposition Algorithm 

by Time Periods on Large-Scale Dynamic Market Equi¬ 

librium Problems with Nonlinear Asymmetric Cost Func¬ 

tions 

Number Percentage of 

Number of CPU Number Positive Variables 

of Time Time of at Solution 

Markets Periods (seconds) Iterations Inventory Transshipment 

5 0.1385 28 65.0 76.8 

5x5 10 0.2665 26 55.6 70.8 

25 0.9402 38 60.8 78.2 

50 1.9524 38 71.0 76.2 

5 1.3423 50 60.0 62.8 

10 x 10 10 2.4266 46 65.6 66.9 

25 7.9535 60 68.8 72.0 

50 15.3436 60 64.7 68.2 

5 19.3264 76 72.0 56.0 

25 x 25 10 50.7079 98 57.3 64.8 

25 119.2013 98 56.0 62.0 

50 271.3679 114 62.4 60.7 

5 150.8648 114 74.5 57.6 

50 x 50 10 282.5073 114 47.3 53.8 

25 754.5261 118 57.0 53.1 

50 1427.2461 122 58.2 53.7 
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Figure 13 CPU Behavior of the Decomposition Algorithm by 
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Table 4 Parallel Implementation of the Decomposition Algorithm 

by Time Periods 

(a) Linear Separable Case 

Number of Number of Number of Speedup Efficiency Ex 

Markets Time Periods Processors Sw (percentage) 

2 1.58 79.12 
50 x 50 25 4 2.59 64.67 

6 3.31 55.21 

2 1.60 80.11 
50 x 50 50 4 2.68 67.02 

6 3.51 58.46 

(b) Nonlinear Asymmetric Case 

Number of Number of Number of Speedup Efficiency Es 

Markets Time Periods Processors 5/v (percentage) 

2 1.498 74.90 
50 x 50 25 4 2.271 56.77 

6 2.717 45.28 

2 1.498 74.91 

50 x 50 50 4 2.322 58.05 
6 2.823 47.06 
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a series of row/column equilibration problems, each of which can be solved exactly 

in closed form and allocated to a distinct processor. SEA splits the constraints 

which are of transportation type so that the objective function is considered 

subject to either the row constraints, or the column constraints. Its theoretical 

analysis is based on its interpretation as a dual method. The selected problem, 

FT1000 x 1000 for the fixed row/column totals had a size of the X° matrix of 

1000 x 1000, with the corresponding G matrix of dimension 106 x 106. SEA 

was also applied to compute the solution to input/output matrix, 1072. Since 

these two data-sets were for the fixed row and column totals, the convergence 

criterion was based on the relative residuals R(s{) = (]Tj %ij — Si)/si and R(dj) = 

(Si xij ~ dj)/dj, with each residual required to be less than .01. 

For the elastic row/column totals, two data-sets, SPEP500 x 500 and 

SPEP750 x 750, were generated in the same manner as described in Chapter 

4. The convergence tolerance was e = .01. 

Figure 15 and Table 5 show the speed-ups obtained for SEA on four examples; 

first two examples, 1072 and FT1000 x 1000, were for the fixed row and column 

totals, and next two examples, SPEP500 x 500 and SPEP750 x 750, were for 

the unknown row and column totals. These data-sets were tested on the IBM 

3090-600E in a standalone environment. Maximum speed-ups obtained were 1.93 

for two processors, 3.74 for four processors, and 5.15 for six processors when 1072 

was used. The minimum speed-ups were 1.87 for two processors, 3.19 for four 

processors, and 3.86 for six processors, when SPEP750 x 750 was used. 
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Table 5 Coarse Grain Parallel Implementation of SEA 

Data 
Name 

Number of 
Processors 

Wall-Clock 
Time(sec.) 

Speedup 
Ratio 

Eff. 
(%) 

1 438.52 
1072 2 227.12 1.93 96 % 

4 117.21 3.74 93 % 
6 85.12 5.15 86 % 

1 483.20 - - 

FT 2 250.37 1.93 96 % 
1000X1000 4 135.35 3.57 89 % 

6 102.59 4.71 78 % 

1 540.71 - - 

SPEP 2 290.70 1.86 93 % 
500X500 4 153.61 3.52 88 % 

6 116.03 4.66 78 % 

1 1589.06 - - 

SPEP 2 849.76 1.87 94 % 
750X750 4 498.14 3.19 80 % 

6 411.67 3.86 64 % 
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5.4 Fine Grain Parallel Implementation of the Massively Parallel SEA 

Algorithm 

In this section, the results of the computations on the CM-2 system for a 

data-set based on an input/output matrix, 1072, consisting of 485 rows and 485 

columns and representing a data-set of a 1972 input/output matrix for the United 

States are presented. This problem consisted of 23,225 variables. The problem 

was solved using 8K (8,192) processors, 16K (16,384) processors, and finally, 32K 

(32,768) processors. Table 6 and Figure 16 show the relationship between the 

CM CPU time and the number of processors. Observe that the CM CPU time 

decreases approximately linearly as the number of processors is increased. I note 

that the same problem was solved on an IBM 3090-600E and required 438.35 CPU 

seconds for the serial FORTRAN code, compiled using the FORTVS compiler, 

optimization level 3, and 291.54 seconds on an IBM 3090-600J. The number of 

iterations required for the convergence was 4 for SEA both on the CM-2 and 

on the IBM 3090-600. In terms of the parallel runs on the IBM 3090-600E, the 

wall clock time required for the convergence of the parallel implementation of the 

Splitting Equilibration Algorithm, compiled using the PF compiler, was 444.18 

seconds for one processor, 229.85 seconds for two processors, 118.76 seconds for 

four processors, and 86.32 seconds for six processors. 

The second data-set, D512, was a randomly generated data-set and consisted 

of 512 rows and columns, and had 262,144 variables. The results of its solution 

on the CM-2 are reported in Table 10. The problem was solved with 8K and 16K 
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T^bie 6 Fine-Grain ? arallel Implementation of Massively Parallel 

SEA 

Fin Number of K^il Time CM Tune 
Prccs&scr^ (sec.) (sec.) 

SK 52.05 51.74 
1072 16K 29.S6 29.58 

32K 16.76 16.34 

D512 SK 10.92 10.90 
16K 6.27 6.26 

ICT7 SK 5.38 5.36 
16K 3.25 2.82 

USDA SK 19.49 19.43 
16K 9.80 9.73 
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processors. The same problem required 150.99 CPU seconds on an IBM 3090- 

600J, compiled using the FORT VS compiler, optimization level 3. The number 

of iterations for convergence was one for SEA on each of the two architectures. 

The third example was an input/output matrix, 1077, consisting of 205 rows 

and 205 columns, and was based on a 1977 input/output matrix for the US. This 

problem had 42,025 variables. The results for this problem are reported in Table 

9. The same problem required 19.37 CPU seconds for the convergence on the 

IBM 3090-600J. The number of iterations was two on both architectures. 

The final problem, USDA133, was based on a social accounting matrix for 

the US, consisting of 133 rows and 133 columns, (see Hanson and Robinson [34]). 

This example had 17,689 variables. The results on the CM-2 machine for this 

problem are reported in Table 6. The same problem required 17.67 CPU seconds 

for the convergence on the IBM 3090-600J. The number of iterations required for 

the convergence was eight on the CM-2 and also on the IBM 3090-600J. 

Note that SEA exhibits approximately linear speed-ups, as predicted by the 

theory in Nagumey and Eydeland [631. The numerical results strongly suggest 

that the implementation on the CM-2 using CM FORTRAN is very promising. I 

believe that further enhancements to the language will make even more efficient 

implementations realizable. 
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Chapter 6 

SUMMARY AND DIRECTIONS FOR FUTURE 

RESEARCH 

In this chapter, the thesis is summarized and directions for future research in 

the parallel computation of network problems are given. 

A new spatial price equilibrium model, which is not based on path flows, but, 

rather, on link flows, was developed for the full range of parallel decomposition. 

Variational inequality formulations of this model were derived and the qualitative 

properties were discussed in Chapter 2. Existence of a unique equilibrium solu¬ 

tion is guaranteed under the assumption of strong monotonicity of supply price, 

demand price, tranaction cost, and inventorying cost functions. The data-sets 

tested were generated under the strong monotonicity assumption using random 

number generation, and three data-sets were collected from input/output matri¬ 

ces and social accounting matrices for the United States. 

For the parallel implementation, the variational inequalities were decomposed 

first by commodities, then by time periods, then by markets. The coarse grain 

parallel architectures used were the IBM 3090-600E and the IBM 3090-600J at the 

Cornell Theory Center. The maximum speed-ups of the decomposition algorithm 

by commodities were 1.93 for two processors, and 2.67 for three processors on the 
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IBM 3090-600E under the Strategic Users Program. The maximum speed-ups of 

the decomposition algorithm by time periods were 1.60 for two processors, 2.68 

for four processors, and 3.51 for six processors on IBM 3090-600J under a stand¬ 

alone environment. The maximum speed-ups of the decomposition algorithm by 

markets or row/columns were 1.93 for two processors, 3.74 for four processors, 

and 5.15 for six processors. 

The row/column equilibration problems were further decomposed by links, re¬ 

sulting in a fine grain parallel implementation. The Thinking Machine’s Connec¬ 

tion Machine, CM-2 was used for the numerical experimentation. Input/output 

matrix problems with 485 rows and 485 columns were solved in 16.76 seconds 

with 32 K processors, and a spatial price equilibrium problem with 512 supply 

markets and 512 demand markets with linear separable cost functions was solved 

in 6.27 seconds with 16 K processors. Time required to solve the same problems 

on the IBM 3090-600J using one processor was 444.18 CPU seconds and 150.99 

CPU seconds, respectively. 

Several interesting research directions can be suggested based on the results 

of this thesis. The algorithms developed in this thesis were synchronous, so all 

processors must wait for all other processors to finish the current calculations to 

share new information at the end of each iteration. Asynchronous parallel algo¬ 

rithms, which do not need to wait at the end of each iteration, can be developed 

and tested to solve network problems. Before the parallel implementation, how¬ 

ever, convergence of the asynchronous parallel algorithms needs to be established 

mat hematically. 
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In the fine grain parallel implementation, linear separable cost functions were 

tested. Since all coefficients of the cost functions, which may be nonlinear and 

asymmetric in practice, are stored at each processor, each processor needs to com¬ 

municate with other processors which are located far away. In future research, to 

solve this problem efficiently, the programmer should minimize the communica¬ 

tion cost in the linearization step. 

Similar approaches can be successfully applied to solve other large-scale prob¬ 

lems with underlying network structure, such as traffic equilibrium problems, 

general economic equilibrium problems, and financial equilibrium problems. It 

is expected that in the future the theory of variational inequalities along with 

parallel computation will continue to yield very effective algorithms for solving 

large-scale equilibrium and network problems. 
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