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ABSTRACT 

CRANBERRY NUTRIENTS, PHENOLOGY, AND N-P-K FERTILIZATION 

SEPTEMBER 1992 

CAROLYN J. DeMORANVILLE, B. S., UNIVERSITY OF MASSACHUSETTS 

M. S., UNIVERSITY OF MARYLAND 

M. S., YALE UNIVERSITY 

Ph. D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Robert M. Devlin 

The objective of this study was to compile and interpret 

nutritional and developmental data for cranberry (Vaccinium 

macrocarpon Ait.) as the basis for standardizing experimental 

techniques (particularly data collection) and tissue analysis, 

including tissue to sample, time of sampling, and normal element 

concentrations for 'Early Black'. Seasonal nutrient levels were 

determined in tissues of 'Early Black' cranberry under 10N-8.7P-8.3K 

fertilization (0, 170, 335, and 505 kg/ha). After three years, N, P, 

and K concentrations in new shoot tissues were positively affected by 

N-P-K supply. The N-P-K supply had no effect on Ca and Mg 

concentrations in new shoot tissue but B concentrations were lowest in 

unfertilized plants. N, P, K, and Cu concentrations in new shoots 

declined during the season, whereas those of Ca, Mg, B, and Mn rose. 

Element concentrations in the tissues indicated that mobilization of 

elements into new shoots from old leaf and woody stem tissues 

occurred. In an average crop (17 Mg/ha), 8.5 kg N/ha and 14.7 kg K/ha 

were removed from the cranberry bog. 
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Vegetative growth (dry weight, upright length) was positively 

correlated with N-P-K supply, but the highest yields were associated 

with 335 kg N-P-K/ha. Upright density, percent of uprights flowering, 

and fruit set were the important determinants of yield. These 

variables were proposed as standards for data collection. Growing 

degree day (GDD) accumulations were recorded during this study using a 

base temperature of 6.5C (lower than previously recommended). Based 

on GDD accumulations at the canopy level, the correct base temperature 

for cranberries is most likely 4.5C or lower. However, for a single 

location over several years, day number was superior to GDD as a 

predictor of developmental and nutritional status. 

A period of stable element concentration in new shoot tissue (10 

August to 15 September) was identified and recommended as the time to 

collect cranberry tissue samples for analysis. Mixed vegetative and 

flowering new upright tips were recommended as the tissue to sample, 

and standards for 'Early Black' were proposed. Element concentrations 

in 'Howes', 'Stevens', 'Pilgrim', 'Bergman', and 'Franklin' were 

determined and compared to the 'Early Black' standard values. 
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CHAPTER 1 

INTRODUCTION TO THE STUDY: BACKGROUND AND OBJECTIVES 

1.1 Background of the Problem 

During the 1980s, the need for research pertaining to cranberry 

field nutrition and fertilization increased. Technological advances 

in sprinkler irrigation, frost protection, water harvest techniques, 

and pest control during the previous 30 years led to an increase in 

average cranberry yields of more than 150% in Massachusetts (Peterson 

et al., 1968; Anonymous, 1991). With this increase came the need for 

more fertilizer use. Production of the cranberry yields common before 

these technological advances was possible with the use of little or no 

fertilizer. Nutrition was not the factor limiting yield. For this 

reason, no field research regarding Massachusetts cranberry nutrition 

and fertilizer was reported between 1962 and 1980. The work reported 

prior to that time was performed on bogs yielding less than 100 bbl/A 

-- 11.2 Mg/ha (Chandler, 1961). Research regarding the nutritional 

requirements of high productivity cranberry bogs was needed. Further, 

a need existed for basic knowledge regarding cranberry development, 

nutrition, and response to environment so that fertilizer experiments 

could be conducted in a way that made the best use of dwindling 

research resources. The perennial nature of cranberries was an 

additional factor to be taken into consideration as the potential 

existed for nutrient cycling or remobilization. Single season field 

experiments were seldom informative (DeMoranville, 1989), with no 

differences among treatments until at least the second year. 
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The demand existed for tissue analysis standards on which to 

base fertilization for cranberry production. Soil tests seldom have 

been useful for anything more than assessing-cation balance and 

monitoring soil pH on cranberry bogs. Soil test results did not 

correlate well with growth and yield of perennial fruit crops nor did 

soil nutrient levels predict tissue nutrient concentrations (Hanson, 

1987). In cranberry samples analyzed at the University of 

Massachusetts, the values of soil nitrate and ammonium never have 

correlated well with yield or amount of fertilizer applied to the 

bogs. Additionally, Dana (1989a) found that the correlations between 

soil P and K and tissue values for P and K (June sample) were poor 

(r=0.19 and r=0.24, respectively). These poor correlations left 

tissue analysis as the analytical tool with the most promise for use 

by cranberry growers. This agreed with the conclusion by Hanson 

(1987) that soil tests were useful for determining fertilizer needs of 

Vaccinium corymbosum L. only at the time of planting and 

establishment. 

Many modern publications regarding cranberry nutrients have 

concentrated on greenhouse studies with rooted cuttings (Rosen et al., 

1990; Medappa and Dana, 1970; Doughty, 1970; Stieber and Peterson, 

1987; Dana and Steinmann, 1989b; Torio and Eck, 1969). Information 

generated in such studies may be minimally applicable to a commercial 

field situation, except possibly for newly planted bogs. 

Cranberry plants are perennial and eventually cover the entire 

surface of a bog. Because bud development for the following season 

occurs concurrently with development of the present season's fruit, 

fertilizer treatments often have substantial carry-over. This 
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potential for carry-over means that even the most basic field trials 

must be carried out for multiple years (DeMoranvi11e, 1989). Further, 

the method of planting a bog, by discing-in cuttings which are spread 

on the soil surface, leads to vine stands of non-uniform density. 

This lack of uniformity leads to the need for higher numbers of 

replicates than are required for laboratory or greenhouse experiments 

and for a method to standardize the results of sampling. The best 

method for sample standardization appears to be converting the data 

collected so that they are compared on the basis of a standard vine 

density. The preceding factors increase the labor intensity of an 

experiment: a high replication factor coupled with the need to 

document the vine density for each sampling area. All of these 

factors highlighted the need for enough basic information so that the 

most efficient experiments could be designed. 

In addition to the interest of growers and researchers in basic 

information regarding cranberry nutrition, interest was great for 

determining the fate of fertilizer materials applied to cranberries. 

Information regarding the elemental levels in various tissues on a 

seasonal basis, coupled with information on seasonal growth patterns, 

would allow construction of a basic balance sheet for nutrient 

remobilization in the perennial cranberry. This information could 

provide a background for the interpretation of environmental analyses. 

1.2 Description of the Problem 

In order to address questions regarding cranberry nutrition, a 

general knowledge about cranberries grown in commercial settings was 
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needed. This knowledge should include, but not be limited to: 

seasonal levels of essential nutrients in various plant tissues; best 

time and tissue to collect for mineral analysis; cultivar differences 

in nutrient status and growth pattern when environment and management 

are kept constant; biomass accumulation patterns; general 

developmental patterns for the plant, including relationship to 

weather; and developmental patterns for fruit of different commercial 

cultivars. 

Some of this information was gathered from 1930 to 1970. 

However, several innovations in commercial cranberry culture since 

that time have changed the growing conditions on commercial plantings 

to the extent that much of the previous information is outdated and of 

little value as the basis for conducting an appropriate fertility 

experiment today. For example, the Massachusetts average state crop 

in 1950 was 41.2 barrels per acre (4.6 Mg/ha) (Peterson et al., 1968). 

In 1989, that figure was 147.6 barrels per acre (16.5 Mg/ha) 

(Anonymous, 1991). Densities of approximately 3,000 uprights/m^ which 

were recommended in 1968 (Dana, 1968) are about half the standard 

figure for this parameter in today's commercial fields. Further, 

optimum stand density varies with cultivar. The advent of sprinklers 

(for irrigation, frost protection, and application of farm chemicals), 

the introduction of water-harvest technology, and increased 

availability of pest control strategies, account for much of the 

change in production levels. It seemed likely that these changes have 

altered the field habits of cranberries. If data regarding the 

development and nutrition of cranberries in modern field settings were 

available, fertilizer programs might be designed to increase the 
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productivity of marginal bogs and support high productivity levels 

when they occur. 

The general objectives to be addressed in this work were the 

compilation and interpretation of nutritional and developmental data 

to be used as the basis for the future design of efficient cranberry 

fertilizer field experiments and the compilation of grower-usable 

information regarding cranberry tissue nutrient analysis: timing of 

collection, tissue to collect, cultivar differences and 

interpretation. To research the general questions, specific questions 

were formulated. These specific objectives follow. 

1.2.1 Nutrient Levels in New Shoot Tissue of 7Early Black7 Cranberry 

Receiving Four Rates of N-P-K Fertilizer 

Currently, commercial cranberry plantings in Massachusetts are 

fertilized with 'complete' nitrogen, phosphorus, and potassium (N-P-K) 

mixtures. The dose of N-P-K applied is based on the amount of N to be 

delivered; the average planting receives between 20 and 35 kg N/ha per 

season. The most commonly used N-P-K materials have a nutrient ratio 

of 1:2:1 (N:P2O5:K2O). 'Early Black' is the most widely planted 

cultivar in Massachusetts. 

In order to understand the results of 'Early Black' cranberry 

tissue analyses for N, P, and K, the effect of fertilizing with N-P-K 

on the concentrations of those elements and others in the plant should 

be assessed. Did under- or over-fertilization affect the percent of 

N, P, and K found in cranberry tissue samples? Were the amounts of 

other elements in the tissue affected? 
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1-2.2 Biomass Accumulation Patterns in a Commercial 'Early B1ack/ 

Cranberry Planting 

Levels of some nutrient elements in cranberry tissue decline as 

the season progresses. To determine whether this decline is due to 

dilution by growth, simultaneous determinations of biomass 

accumulation and nutrient data were necessary. Fertilizer addition to 

cranberry bogs could be expected to affect biomass accumulation. Data 

were collected to document these effects. After combining data for 

nutrient levels with those for biomass accumulation, a balance sheet 

approach to following the movement of nutrients in cranberry bogs was 

attempted. 

Because information regarding patterns in fruit development 

could form the basis for deciding when to add nutritional supplements 

or irrigation to a cranberry bog to achieve maximum fruit size 

(weight), data were compiled regarding fruit development (fresh and 

dry weight) under 4 levels of N-P-K fertilizer. 

1.2.3 Seasonal and Tissue Changes in Nutrient Element Levels of 

' Early Black' Cranberry 

By documenting changes in nutrient element levels for tissue of 

'Early Black', standards would be available for comparison to tissue 

samples taken to diagnose mineral deficiencies at any time during the 

growing season. Once patterns of change for nutrient element levels 

in the cranberry tissue were established, times of stability in 

nutrient content could be selected as the most appropriate time to 
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collect tissue samples for monitoring nutrient status of the plants. 

Knowledge of nutrient level patterns also could be used as a starting 

point for fertilizer timing experiments, based on periods with minimum 

nutrient levels or times when nutrient levels change significantly 

over short time periods. 

Combining the information on nutrient level changes with 

measured values for change in biomass over time, movement and cycling 

of nutrients in the cranberry plant could be estimated. Amounts of 

elements accounted for in biomass accumulated was one of the 

components needed to construct an environmental balance sheet for 

cranberry bogs. An incomplete nutrient balance sheet for 'Early 

Black' was developed. 

1.2.4 'Early Black' Cranberry Development and Temperature Interactions 

Documenting the timing of developmental stages and comparing the 

timing to the corresponding nutrient levels would make the nutritional 

information gathered in this study more adaptable to cranberry bogs 

throughout the growing region. If certain nutritional conditions 

corresponded to specific developmental stages, the occurrence of the 

developmental stage would become a predictor for nutritional status. 

If developmental events were going to be used as predictors for 

nutritional status changes, then information for predicting 

developmental events would be useful. Predictions would be based on 

calendar date or growing degree day accumulation. 
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1.2.5 Developmental Patterns and Nutrient Levels for Six Commercial 

Cranberry Cultivars 

Large plantings of 6 commercial cultivars were available at the 

experiment site in East Wareham, Massachusetts. In order to compare 

cultivars under a single management plan (including fertilizer dose), 

nutrient levels over time in the new shoot and fruit tissue were 

determined. Times of stable nutrient levels were compared among 

cultivars. Fruit development patterns were investigated for the 6 

cultivars to document differences between 'large fruited' and 'small 

fruited' cultivars (3 of each in this study). 

1.2.6 Determination of Cranberry Nutrient Status: Time to Sample. 

Tissue to Sample. Standard Values for Ten Elements 

In order to use tissue testing for planning fertilizer decisions 

in cranberry production, there was a need to develop standard values 

for N, P, K, Ca, Mg, Zn, B, Mn, Cu, and Fe in cranberry tissue based 

on specific tissue collected at a specific time during the growing 

season. Current season growth was an obvious choice, but there was a 

need to determine whether new shoots (leaves and stems) or new leaves 

were preferable for sampling. Further, new upright shoots may be 

purely vegetative or mixed reproductive and vegetative, bearing 

flowers and fruit. Any differences that existed in nutrient levels 

among these different types of new growth needed to be determined. 

The time of sampling would be determined by stable periods in the 

concentrations of the 10 elements in cranberry tissues. 
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Once time and tissue to sample were selected, standard values 

for the 10 elements were set based on average values and ranges. 

Standards based on correlation of yield with tissue nutrient element 

values were attempted but the results were confounded by the fact that 

the maximum yields predicted by the resulting model were well below 

the maximum cranberry crops achieved in Massachusetts. The proposed 

standard values were compared to available cranberry tissue test 

standards. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Cranberry Growth Habit and Productivity 

Cranberry (Vaccinium macrocarpon Ait. family Ericaceae) is a 

low-growing, woody, evergreen perennial. Horizontal stems (runners) 

lie on the surface of the soil. These runners produce roots and 

vertical stems (uprights) at the nodes. In addition, uprights may 

arise from the terminal or axillary buds of other uprights (Dana and 

Klingbeil, 1966). Uprights may be produced from either vegetative or 

mixed buds. The crop is borne on uprights which arise from these 

mixed buds. Bergman (1954) categorized uprights as "old" - having a 

flower bud or arising from the terminal bud of another upright, or 

"new" - from a runner or upright axillary bud; "new" uprights did not 

flower. This terminology did not distinguish between "old" uprights 

which did and did not flower. Modern terminology distinguishes 

between flowering and nonflowering or vegetative uprights regardless 

of origin. 

Upright density varied with cultivar (Bergman, 1954) but this 

was not always (Tallman and Eaton, 1976). The total number of 

uprights did not consistently correlate with yield, but the numbers or 

percents of flowering uprights could be very important in determining 

yield (Bain, 1946). Filmer (1955) defined 5380 uprights/m2 with at 

least 30% of those flowering as ideal for 'Early Black' in New Jersey. 

However, 2150 to 3200 uprights/m2 were considered ideal for 'Searles' 

in Wisconsin (Roberts and Struckmeyer, 1942). The lengths of the 
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uprights were correlated with upright density for 'Searles/ cranberry 

(Roberts and Struckmeyer, 1942). However, 'Bergman7 and 'McFarlin' 

cranberries had similar upright densities whereas 'McFarlin' uprights 

were significantly longer and less productive (Tallman and Eaton, 

1976). Upright density and upright length were negatively correlated 

for 'Early Black' and 'Howes' (Bergman, 1954). 

Yield component analyses (stepwise multiple regressions) were 

performed on data collected from cranberry bogs in British Columbia 

(Eaton and MacPherson, 1978; Eaton and Kyte, 1978) and in Washington 

(Shawa et al., 1981) for the cultivars 'Bergman', 'McFarlin' and 'Ben 

Lear'. The two most important components of yield in those studies 

were floral induction (flowering upright percent) and fruit set. 

Vegetative properties, length of upright, and number of leaves also 

had effects on yield (Eaton et al., 1983). 

In common with other perennial fruit crops, the flower buds for 

the cranberry are formed in the year prior to flower opening and fruit 

set. Bud development begins in late July and ceases in September 

(Lacroix, 1926). The dormant buds overwinter and in the spring floral 

development is completed and flowers begin to open in June. Cranberry 

requires vernalizing conditions followed by long days to induce 

flowering (Rigby and Dana, 1972). Because buds are forming on 

uprights which in some cases (the flowering uprights) already bear 

fruit, competition for resources exists. Flowering uprights of 

'Searles' flowered in successive years but the intensity of return 

bloom depended on the productivity level of the bog (Roberts and 

Struckmeyer, 1942). Areas of average yield had 35% return bloom while 

only 15-20% of flowering uprights on highly productive bogs bloomed in 
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successive years. Strik et al. (1991) found from 16 to /4% return 

bloom in seven cultivars in four states. Return bloom w*r. lowest, In 

Massachusetts and for 'Early Black'. Vegetative upright.*, were more 

likely than flowering uprights to bloom in the following year. 

Lenhardt and Eaton (1977) found 37% flower bud production In flowering 

uprights and 61% in vegetative uprights of 'McFarlin'. Eaton (1978) 

found that whereas non-flowering uprights produced 80% mixed bud' In 

the cultivar 'Bergman', flowering uprights produced only 25%. The 

difference was attributed to inhibition of floral induction by flowers 

and fruit. 

The number of flowers formed on a flowering upright varies with 

cultivar: 'Searles' averages 2.45 flowers (Bain, 1948), 'Early Black' 

averages 3.24 flowers in New Jersey (Filmer, 1955), and 3.37 flowers 

in Massachusetts (Bergman, 1950), and 'Howes' averages 3.15 flowers 

per flowering upright (Bergman, 1950). Cranberry fruit set in June 

and July and achieve maximum size by mid- to late September (Chandler, 

1952; Demoranville, 1960). The fruits form following fertilization of 

multiple ovules in an inferior ovary. Cranberry is pollinated by bees 

(Eck, 1986). The cranberry fruit mature in 60 to 90 days after 

pollination (Darrow et al., 1924). The weight (Hall and Aalders, 

1965) and volume (Rigby and Dana, 1971) of the fruit are correlated 

with seed number. In a study of fruit size vs. seed number in 

cranberry, Filmer et al. (1958) found only one out of approximately 

8,000 berries with no seeds. Fruit set varied from 25% for 'Early 

Black' and 29% for 'Howes' in Massachusetts (Bergman, 1950) to 40% for 

'Early Black' in New Jersey (Filmer, 1955). The average fruit set 

over several years for 'Searles' in Wisconsin was 37% (Bain, 1948). 
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Most cranberry bogs in Massachusetts are constructed on a peat 

base overlaid with sand. If a peat base is not present, some other 

impervious layer (clay or hardpan) must be present to allow water 

retention for cultural flooding (Deubert and Caruso, 1989). The 

cranberry bog soil is essentially a man-made substrate consisting of 

layers of sand alternating with organic layers made up of fallen 

cranberry leaves and old roots. Growers add layers of sand 

periodically to anchor runners, bury old upright wood, and provide 

aeration and drainage. In addition, burying the organic layer limits 

the nitrogen available from mineralization and limits the incidence of 

over-vegetative growth (Colby, 1947). 

Commercial cranberry bog soil is mainly sand, 1 to 2% organic 

matter, 2% silt and clay (<0.5% clay), with a low (<10 meq/lOOg) CEC 

and a pH of 4.5 to 5 (Deubert and Caruso, 1989). The content of P and 

K in cranberry soil does not correlate well with the P and K 

concentrations in cranberry foliage (Dana, 1981a). When soil and 

tissue tests for P and K from Wisconsin bogs were plotted against one 

another (Roper and Coombs, 1992), the plot consisted of a straight 

horizontal line (no correlation). Low soil organic matter levels (2- 

4%) are acceptable for the growth of Vaccinium species (Korcak, 1987). 

Cranberries are adapted to low soil pH and a weak correlation 

exists between low soil pH and high cranberry yields (Chandler and 

Demoranville, 1961). In solution cultures, cranberries grown at pH 

4.5 had fewer branch roots with many quiescent root initials compared 

to those grown at pH 6.5 (Finn, et al., 1990). This difference may 

have been due to greater root efficiency at low pH with less need for 

high root mass. At low pH, metals such as Fe and Mn are more 
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available to the plant while P availability is low, in part due to 

fixation by Fe and A1 at the root surface (Korcak, 1987; Rosen et al., 

1990). Despite problems with fixation of P, high soil Fe content is 

associated with good cranberry yields (Fisher, 1951). 

In solution culture experiments with rooted cuttings, cranberry 

plants showed high tolerance to Mn, Fe, and Al excesses in the medium 

(Medappa and Dana, 1970). The tolerance mechanism seemed to be via 

accumulation for Mn and avoidance for Fe and Al, based on the content 

of those elements in shoots of cranberries exposed to excesses. Rosen 

et al. (1990) analyzed cranberry roots from plants grown in solution 

culture and found high levels of Mn and extremely high levels of Fe. 

Microscopic analysis showed particles precipitated on the root 

surface, most likely made up of P and Fe and Mn. 

Cranberry plants have a dense, matted, fibrous root system with 

no root hairs (Medappa and Dana, 1970). Roots occurr mainly at the 

soil surface (Darrow et al., 1924) and arise from runners on the 

surface or just below the surface (buried by resanding). New roots 

are produced each year beginning soon after the winter flood is 

withdrawn (Franklin, 1915) and tend to be confined to the top 2 to 10 

cm due to saturation of lower soil layers and stratification due to 

resanding. It has been suggested (Darrow et al., 1924) that root 

growth is greatest in late summer and fall. Franklin (1915) found 

little or no root growth prior to bloom (late June). 

Cranberry is a mycorrhizal plant. Fungal hyphae have been found 

in all tissues (Addoms and Mounce, 1931) and the amount of mycorrhizae 

present has been correlated positively with plant vigor (Addoms and 

Mounce, 1932). However, cranberry plants were capable of growth in 
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peat media and in solution culture with nitrate or ammonium nitrogen 

even if mycorrhizae were not detected in the tissues (Dirr, 1974). 

When cranberry plants were infected with mycorrhizae, the root/shoot 

ratio was adjusted downward to compensate for more efficient N uptake 

and maintain constant internal N concentrations (Hunt, et al., 1975). 

In enrichment studies, the presence of mycorrhizae appeared 

to allow cranberry plants to acquire N sources from the organic 

component in soil which were unavailable to non-mycorrhizal cranberry 

plants (Stribley and Read, 1974). The mycorrhizal cranberry plants 

also could grow more efficiently at low ammonium levels and use amino 

acids as an N source (stribley and Read, 1976 and 1980). The ability 

to utilize amino acids as an N source meant that mycorrhizal 

cranberries could use N from partially decomposed organic matter 

without the need for complete mineralization. This ability was an 

advantage under heathland conditions where mineralization is slow. 

2.2 Cranberry Tissue Nutrients and Response to N-P-K Fertilization 

Tissue nutrient and yield response has been assessed in 

fertility experiments on field-grown cranberry. Eaton (1971) working 

with 'McFarlin' in British Columbia found that the addition of P or K 

gave a dose-dependent increase of that element in leaf tissue. 

Nitrogen addition in the field increased %N in leaf tissue compared to 

samples from untreated plots, but the response was equal for all 

concentrations of N used (Eaton, 1971). Only nitrogen additions had a 

positive effect on yield. No deficiency symptoms were seen. In 

further experiments with 'McFarlin', Eaton and Meehan (1976) found no 
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response in yield or tissue %N to the addition of 20 kg N/ha in field 

studies. Addition of 70 kg K/ha increased leaf K from 0.27 to 0.4% 

(dry weight) with no effect on yield. Evidently tissue N and K were 

not limiting yields in those plots. 

The addition of nitrogen encouraged vegetative growth of new 

cranberry plantings (Eck, 1976) or established bogs (Eck, 1971). The 

addition of between 17 and 51 kg N/ha did not change the %N (0.77- 

0.79) in dry leaf tissue collected in October (Eck, 1976). However, 

leaf tissue sampled in August showed a positive correlation between N 

dose (18-72 kg/ha) and %N in dry leaf (0.92-1.09) (Eck, 1971). 

The addition of phosphorus (11-112 kg/ha) improved growth of 

'Stevens' cranberry on peat soil (Greidanus and Dana, 1972). Leaf 

tissue P (0.05-0.12%) also increased with increased P fertilization. 

At leaf P of 0.08% or less, deficiency symptoms were apparent. 

Attempts have been made to determine sufficiency levels for 

mineral elements in cranberry. Torio and Eck (1969), using sand 

cultures of 'Early Black' in the greenhouse, found that yield was 

unaffected when the leaf tissue ranges of N (0.78-0.98%), P (0.08- 

0.09%), K (0.59-0.74%) and S (0.11-0.13%) were varied by differential 

fertilizer applications. Eaton and Meehan (1973) found maximum yield 

and no visible deficiency in N-P-K factorial experiments associated 

with the following leaf levels: N 1.0%, P 0.1%, K 0.34-0.4%, Ca 0.6- 

0.7%, Mg 0.27%, Fe <50 ppm, Mn <150 ppm. 

Using solution cultures and rooted cuttings, researchers at the 

University of Wisconsin have studied critical nutrient levels in 

cranberry. Dana (1981c) observed deficiency symptoms for 'Stevens' at 

0.17% K, 0.05% Ca, 0.02% Mg, 26 ppm Fe, <1 ppm B, 3.1 ppm Cu, or 3.8 
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ppai In. Dana and Steinmann (1989a) showed that maximum shoot growth 

of NcFarlin' was achieved at 0.1% Ca in leaf tissue with deficiency 

apparent below 0.07% Ca. 'Stevens showed deficiency at leaf K below 

0.27% (Dana and Steinmann, 1989b) during rapid growth. Stieber and 

Peterson (1987) observed deficiency symptoms in 'McFarlin' when %N was 

at or below 0.8% in shoot tissue. However, shoot growth did not cease 

at tissue N levels as low as 0.55%. 

Nutrient ranges in cranberry leaf tissue have been surveyed in 

field samples exhibiting no apparent deficiencies: 'Ben Lear', 

'McFarlin', 'Searles' and 'Howes' in Nova Scotia for August-September 

(Townsend and Hall, 1971); June levels in Wisconsin, cultivars not 

published (Dana, 1981a); seasonal levels in Oregon, cultivar not 

stated (Chaplin and Martin, 1979); and seasonal levels for 'Howes' in 

Massachusetts (DeMoranville and Deubert, 1986). The seasonal patterns 

differed in the different surveys but the August values (time of 

greatest stability) were in rough agreement between the Massachusetts 

and Oregon studies. The published ranges tended to overlap but often 

only at the extreme high or low values. In all samples, the nutrient 

levels were well above the deficiency levels found for solution 

cultured rooted cuttings. The differences between Ca, Mg, B, and Zn 

concentrations at deficiency and those found in field samples were 

extreme. This may have been an indication that those elements were 

not needed in cranberry fertilizers. The concentrations found in 

rooted cuttings may have reflected those found in a newly planted 

cranberry bog where only vegetative structures were produced. 

However, the needs of reproductive plants could be expected to be 

substantially higher, perhaps explaining the discrepancy between 

17 



nutrient concentrations found in cuttings and those found in field 

surveys of cranberry bogs. Presumably, the sufficiency range for 

cranberry nutrition lies between these sets of values. 

2.3 Cranberry Response to Weather 

The range for commercial cranberry growing has long been 

considered to be limited to areas with moderate summer temperatures, 

no warmer than those of New Jersey (Darrow et al., 1924). However, 

cool summer temperatures could lead to an extended bloom period 

(Darrow et al., 1924), which along with daylength constraints may 

determine the northern limit for cranberry production. Pilcher (1985) 

showed that the commercial cranberry growing areas of North America 

were defined by the isotherm for a July daily average maximum 

temperature of 85F. 

2.2.1 Monthly Temperature, Sunlight, and Rainfall 

The relationship of temperature, sunlight, and rainfall to 

cranberry development was examined in Massachusetts (Franklin, 1943; 

Franklin, 1946; Franklin and Cross, 1948) and in New Jersey (Degaetano 

and Shulman, 1987). Franklin (1943) found that fruit size was 

correlated positively with August rainfall. This relationship may no 

longer be as important since the advent of sprinkler irrigation. Warm 

springs promoted early ripening whereas high temperature in August 

inhibited color development. It appeared that while anthocyanin 

production in the fruit was triggered by a change in photoperiod 
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(Hawker and Stang, 1985), cool temperatures were also a factor in 

anthocyanin production (Franklin, 1943). 

Yield in Massachusetts was correlated with monthly temperature, 

rainfall, and sunshine in the crop year and in the preceding year 

(Franklin, 1946; Franklin and Cross, 1948). Crop size was correlated 

positively with sunshine for each month from April through September 

in the year prior to the crop year (Franklin, 1946) and in February of 

the crop year (Franklin and Cross, 1948). The prior-year relationship 

was explained in terms of photosynthetic activity whereas the February 

relationship was judged to involve amelioration of winter kill (oxygen 

deficiency) conditions during the winter flood (Bergman, 1943). Crop 

size correlated with temperature only for the crop year. Crop yield 

was correlated negatively with high temperatures in March, July, and 

September (Franklin, 1946). The reasons proposed were increased frost 

susceptibility, heat injury to blossoms, and loss of fruit quality 

(scald), respectively. Precipitation in the crop year was a factor 

determining crop size. Ideal rainfall from May through August was 2 

to 4 inches/month (Franklin, 1946). This relationship is less likely 

to hold in modern times due to the use of sprinkler irrigation. 

However, excess rainfall may still be a problem. 

Degaetano and Shulman (1987) examined the size of the New Jersey 

cranberry crops since 1906 in relation to temperature, rainfall, 

sunlight hours, and several other weather factors. They examined a 

19-month year beginning in April of the year prior to the crop. Yield 

had the strongest correlation with temperature and sunlight. Crop 

size was correlated positively with temperature for May through June 

in the year prior to the crop (vegetative upright production - such 
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uprights usually flower in the second year) and October through 

November (bud development, which extends later in the year in New 

Jersey than in Massachusetts). The importance of warm temperatures in 

the year prior to the crop is supported by the survey data reported by 

Lacroix (1926) in Massachusetts. The May-June finding (Degaetano and 

Shulman, 1987) complements the finding of Franklin (1946) for the need 

for sunshine in the year prior to crop to promote strong vegetative 

uprights. High temperature in May and June of the crop year had a 

negative effect on yield (increased frost susceptibility, heat stress 

to new growth). This positive or negative impact of spring 

temperature provided a paradox which could explain the tendency 

towards biennial bearing in cranberry, which is especially strong in 

New Jersey. High temperatures in the summer of the crop year also had 

negative effects (blossom blast, scald). The negative temperature 

correlations agreed with those found by Franklin (1946) in 

Massachusetts. In the crop year, sunshine hours in May and June 

(photosynthesis, pollination) were correlated positively with crop 

yield. Low temperature in February and March had a positive effect, 

probably due to lessening of oxygen deficiency injury during the 

winter flood. This low temperature effect complemented the findings 

of Franklin and Cross (1948) regarding the positive effect of February 

sunshine in preventing winter injury. 

2.2.2 Chilling Hours 

Cranberry flower buds are initiated in the year before the crop. 

The end of the floral induction period was determined by removal of 
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mature leaves (source of floral promotion) to occur on July 8 in 

Wisconsin (Roberts and Struckmeyer, 1943) and on July 4 in British 

Columbia (Eaton, 1978). Floral primordia were observed by August 

(Lacroix, 1926; Roberts and Struckmeyer, 1943) and visible changes in 

the developing buds ceased in October (Lacroix, 1926). Floral buds 

remained dormant until after the withdrawal of the winter flood in the 

spring (Lacroix, 1926). 

During the dormant period, chilling units accumulated. Chandler 

and Demoranville (1964) proposed that 2,500 hours below 45F were 

required as a rest period for cranberries prior to bud break and 

normal flowering. At greater than 1,500 hours (but less than 2500) 

some abnormal flowering was observed. However, the chilling hours 

were supplied at continuous low temperature in the dark with 

subsequent bud break in a greenhouse with no light supplement 

(Chandler and Demoranville, 1964). When chilling conditions were 

applied to cranberries under an 8- or 9-hour daylength (Eady and 

Eaton, 1969; Rigby and Dana, 1972) approximately 1,000 hours of 

chilling below 45F was sufficient for subsequent flowering. However, 

longer chilling periods reduced the subsequent time to flowering (Eady 

and Eaton, 1972). It appears that chilling units alone do not account 

for optimum flowering response. A daily period above 45F combined 

with daily hours below 45F and a 9 hour day length allowed a flowering 

response after 1,000 hours of chilling, whereas at constant 

temperatures below 45F, 2,500 hours of chilling were required to get 

the same response (Eady and Eaton, 1972). Rigby and Dana (1972) 

confirmed the importance of heat units accumulated along with chilling 

hours. In addition, rapid transition to flowering after chilling 
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required long days. If day length was limited to 8 hours after the 

completion of chilling, flowering was abnormal (Rigby and Dana, 1972). 

Pilcher (1985) developed a model for chilling units based on the 

data of Eady and Eaton (1972). The model was based on accumulation of 

daily chilling units based on minimum daily temperatures between 51 

and 30F. Chill unit accumulation began when daylength was 14.5 hours 

(Wisconsin) or when minimum daily temperature fell to 51F (lower 

latitudes) and continued until daylength was again 14.5 hours or 

minimum daily temperature rose to 30F. Applying this model to 

Wisconsin conditions, the required number of chilling units was 477 

(Pilcher, 1985). 

2.2.3 Growing Degree Days 

At the end of the period during which chilling units accumulate, 

events leading to bud break and flowering may begin. Pilcher (1985) 

developed equations to determine the "growth units" needed for the 

plant to go from the end of the chilling period to bloom. The same 

equations were used to determine the growth units needed for the 

completion of fruit development. Growth unit accumulation began at 

the beginning of May (14.5 hour daylength, see chilling above) using 

45F and 85F as the low and high cutoff temperatures. From that date 

until the date of full bloom, 472 growth units accumulated under 

Wisconsin conditions (Pilcher, 1985). Another 1,028 units accumulated 

from the time of bloom until the completion of fruit development. 

Hawker and Stang (1985) compared cranberry development to the 

accumulation of growing degree days (GDD) from the end of April at 
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three location in Wisconsin with varying GDD accumulation profiles. 

High and low cutoff temperatures were 32C (90F) and 9C (48F). They 

found that vegetative growth and flowering occurred at the same number 

of GDD at all locations (1,000 GDD to complete shoot elongation, 510 

GDD to open bloom). However, fruit maturity as determined by ethylene 

evolution or anthocyanin production, did not correlate well with GDD, 

occurring any time after 1,500 or 1,650 GDD, respectively. 

Involvement of other environmental cues, specifically daylength, was 

proposed (Hawker and Stang, 1985). The "growth units" calculated by 

Pilcher (1985) to go from bud break to flowering (472) or fruit 

maturity (1,500 total) were in agreement with the observations of 

Hawker and Stang (1985) of flowering at 510 GDD and fruit maturity at 

>1,500 GDD. 
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CHAPTER 3 

APPROACH FOR INVESTIGATING THE PROBLEM 

3.1 'Early Black7 Cranberry Seasonal and Tissue Nutrient Levels, 

Biomass Accumulation, Development, and N-P-K Fertilizer 

A field experiment was established on a commercial 'Early Black' 

cranberry planting in East Wareham, Massachusetts, in 1986. The 

experimental design consisted of 10 pairs of 4.5 by 4.5-m plots: one 

of each pair received no fertilizer, the other received 10N-8.7P-8.3K 

fertilizer at 335 kg/ha (33.5 kg N/ha, 29 kg P/ha, 28 kg K/ha). In 

order to observe the effect of under- and over-fertilizing cranberries 

on subsequent tissue analysis values and biomass accumulation, the 

experiment was modified beginning in 1987. At that time, plots were 

established with 5 replicates and 4 levels of N-P-K treatment (0, 170, 

335, and 505 kg N-P-K/ha -- ION-11.6P-12K). The nutrient sources in 

the fertilizer were ammonium phosphate, ammonium sulfate, ammoniated 

super phosphate, and muriate of potash. The fertilizer was delivered 

to the plots by hand in split applications: 20% at the end of May, 70% 

at the end of June, and 10% in early August. The application timing 

was based on University of Massachusetts Cranberry Experiment Station 

recommendations which were developed based on nutrient patterns 

observed on 'Howes' cranberries from 1980-84 (DeMoranville and 

Deubert, 1986). The plots were each 4.5 by 4.5-m, laid out in a 

randomized complete block design. These plots were treated and 

evaluated through 1989. 
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3.1.1 Sample Collection 

Tissue samples from each plot were collected biweekly for each 

of the 4 seasons (1986-89), beginning in April and continuing until 

harvest (late September), with the exception of weekly collections 

during rapid vegetative growth (late May through June). Developmental 

stages were observed and recorded at each sampling. Sampling 

intervals were based on previously observed nutrient change patterns 

in leaves of 'Howes' cranberry (DeMoranville and Deubert, 1986). Each 

sample was selected by dropping a 15 by 15-cm wire template at random 

within a plot. All above-ground tissue was cut from within the 

template, then a 5 by 5 by 5-cm cube of soil was removed from the 

resulting cleared area in order to collect root tissue. Samples were 

brought to the laboratory and kept below 4C for no longer than 48 h. 

For each sample of above-ground tissue, the numbers of current-season 

and previous-season uprights were counted, separated, and weighed; and 

fruit were counted, removed from the uprights, and weighed. Above¬ 

ground tissues (old leaves, woody stems, new shoots, and fruit) were 

then separated and dried at 60C for 24 h (or until the dry weight was 

stable). Roots were separated from the soil cubes by washing under 

running tap water, weighed, then dried at 60C. After dry weights were 

recorded, the dried tissues were ground with a Wiley mill to pass a 

20-mesh screen and stored below -15C until analyzed. 

Soil samples (top 15 cm) were collected from each plot at the 

beginning of each season and late in each season. Soil was air-dried, 

then passed through a 2-mm sieve. Sheltered daily minimum and maximum 

air temperatures were recorded at the experiment site. Growing degree 
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day accumulations were calculated for base temperatures 4.5, 6.5, 7, 

8, 9, and IOC. The actual base temperature for cranberries was 

unknown. 

3.1.2 Analytical Procedures 

Dried, ground tissue samples were analyzed for 10 elements: N, 

P, K, Ca, Mg, Zn, B, Mn, Cu, and Fe. Analyses for all elements but N 

were run on a dry-ashed portion of each sample at the University of 

Massachusetts Soil and Plant Testing Laboratory using inductively 

coupled plasma spectrometry. 

Total N in dry tissue was determined. Portions (250 mg) of 

dried tissue were digested in a 40 sample block digestor using a 

modification of the method of Isaac and Johnson (1976). A digestion 

mixture (7 ml of H2S04-H2Se03 reagent -- 97g H2Se03 in 100 ml water 

added to 2.5 L concentrated H2SO4) and 2 boiling chips (Hengar 

granules) were added to the sample, followed by 3 ml of 30% H2O2. 

When the initial reaction slowed, the samples were placed in the 

digestor which had been preheated to 400C. The samples were not 

cooled before placement in the block digestor. After 45 min, the 

tubes were removed, cooled for at least 1 hour and the volume adjusted 

to 50 ml with deionized water. The extract was analyzed for ammonium 

N using an automated analyzer (Technicon Industrial Method, 1978). 

The method is based on the reaction of ammonium with salicylate in the 

presence of nitroprusside and chlorine in an alkaline environment to 

form a blue complex. The color intensity was determined by a 

colorimeter set at 660 nm. 
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Soil samples were analyzed by A & L Mid West Laboratories, Inc., 

Omaha, Nebraska. Soil P was determined by the Bray method (Dickman 

and Bray, 1941; Bray and Kurtz, 1945). The concentrations of K, Mg, 

Ca in the soil were determined in ammonium acetate extracts. Values 

for pH and % organic matter were reported. 

3.1.3 Data Processing 

This experiment is a repeated measures or split plot in time 

(Littell, 1989) with replication achieved in randomized complete 

blocks. Analysis of variance (ANOVA) by N-P-K level and by sampling 

date was performed on the data for the concentrations of each of the 

10 elements in new shoots. ANOVA by sampling date was followed by 

profile analysis to determine if significant differences in mineral 

content of new shoots existed between adjacent dates. A further ANOVA 

for repeated measures design grouped by N-P-K level was performed on 

the new shoot nutrient data to determine significance of N-P-K level 

and treatment date interactions. All statistical analyses for the 

project were run on SYSTAT (Wilkinson, 1989). 

New shoot dry weight and fruit fresh and dry weight accumulation 

data were subjected to regression analysis. In addition, an analysis 

of day number vs. log-transformed shoot dry weight data was run in an 

attempt to fit an exponential model. The regression analyses were 

repeated using growing degree days in place of date. Date and growing 

degree days were compared as to suitability as a predictor for 

developmental events (the two were compared for each of 4 years). The 
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effects of N-P-K on biomass accumulation, upright density, fruit 

production, and other components of yield were evaluated by ANOVA. 

For each tissue (new shoots, old leaves, woody stems, roots, and 

fruit) ANOVA for repeated measures with N-P-K level as a grouping 

factor was performed to determine the effect of fertilizer on tissue 

element levels. Next, ANOVA by date for the elements in each tissue 

was run, followed by a profile analysis to determine differences 

between adjacent dates. 

The biomass and nutrient analysis data were combined so that 

each nutrition data point was expressed as the amount of that element 

(in kg) present in that tissue per hectare of bog. These transformed 

data were used to construct an incomplete balance sheet for nutrients 

in a cranberry bog. 

3.2 Developmental Patterns and Nutrient Levels for Six Commercial 

Cranberry Cultivars 

For 3 seasons (1989-1991), weekly samples of above-ground tissue 

were collected from commercial plantings of 6 cultivars at a site in 

East Wareham, Massachusetts. Sampling began at first bloom and 

continued through September. The cultivars were Early Black, Howes, 

Stevens, Pilgrim, Bergman, and Franklin. Development was documented: 

percent flowering uprights, flowers per flowering upright, percent 

fruit set (developed fruit), fresh weight per fruit, and dry weight 

per fruit (1989 and 1990 only) were determined. Fruit development 

data were subjected to regression analysis and the cultivars were 

compared. Distribution and development of fruit size classes with 
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time were investigated in 1991. Fruit samples (180 cm2 area, 4 

replicates) were collected weekly beginning after fruit set (second 

week of July). Fruit were sorted by passing them through 6 stacked 

sieves (5.66 to 19.0 mm). Total weight, number, and weight per fruit 

were determined for fruit in each size class. 

On two dates in September of 1991, samples (four replicates) for 

yield analysis (180 cm2) were collected. Upright density, percent 

fruit set, weight per fruit, percent flowering uprights, number of 

flowers per flowering upright, and yield (kg/ha) were determined. 

Stepwise regression analyses on logarithmically transformed data 

(Jolliffe, et al., 1982) were performed to determine which 

developmental parameters were major determinants of yield. 

In 1989 and 1990, portions of new shoot and fruit tissue were 

dried and ground for elemental analyses (see 3.1.1 and 3.1.2). ANOVA 

was run for each element in new shoot tissue for each cultivar, 

followed by contrast analyses of adjacent dates to determine periods 

of nutrient level stability. Contrast analyses of cultivars 

determined what differences existed. Based on fruit nutrient content 

and fruit dry weight data, nutrient removal in a cranberry crop of 100 

barrels per acre (11.2 Mg/ha) was calculated. 

3.3 Time to Sample. Tissue to Sample, and Standard Values for 

Ten Elements 

The best time to collect samples for assessment of cranberry 

nutrient status was determined by examining the patterns of nutrient 

concentrations in the new shoot tissue with time. The best time to 
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sample would be a period when nutrient element content is stable for 

at least 3 weeks. ANOVA by date was performed on the nutrient data 

from the N-P-K study followed by profile analysis to determine 

differences in nutrient levels between adjacent sampling dates. 

Nutrient data from the 6 cultivar study were also evaluated by ANOVA 

followed by contrast analysis by date. 

New shoot tissue, which was collected for comparison of the 6 

cultivars (see 3.2), was separated into different tissue types for 

nutrient analysis. The tissue types were: mixed vegetative and 

reproductive upright tissue (whole shoot tips -- top 5 cm), new 

uprights -- leaves only, shoot tips from vegetative uprights, and 

shoot tips from reproductive (flowering) uprights. ANOVA by tissue 

was performed on the nutrient-content data followed by contrast 

analysis to determine differences among the tissue types sampled. 

Regression analysis of yield at collection sites with nutrient 

content in the samples at the time of stable values was run using data 

from the N-P-K study and the 6 cultivar study. The resulting 

predictive model did not account for the high yields often found in 

Massachusetts cranberry bogs. Therefore, on the basis of mean values 

and ranges, standard values for N, P, K, Mg, Ca, Zn, B, Mn, Cu, and Fe 

in cranberry shoot tissue were proposed. 
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CHAPTER 4 

NUTRIENT LEVELS IN NEW SHOOT TISSUE OF 'EARLY BLACK' CRANBERRY 

RECEIVING FOUR RATES OF N-P-K FERTILIZER 

4.1 Effect of N-P-K Rate on Cranberry Bog Soil Tests 

Soil samples were collected from each plot at the beginning of 

each season (1987-1989) and after the last fertilizer applications in 

1989. Nitrogen analyses were not performed. The results of the soil 

tests for P and the major cations are shown in Table 4.1. The levels 

of P, K, Mg, and Ca in the soil were similar for all plots at the 

beginning of the study (Apr. 1987) and showed no effect of the N-P-K 

treatments after one season (Apr. 1988). However, after two seasons 

of N-P-K treatments (May 1989), K levels in the soil were lower in the 

plots receiving the lower rates of N-P-K. After three seasons of 

fertilizer applications (July 1989), 0 or 170 kg N-P-K/ha continued to 

be related to low soil K levels, with the effect greater than that 

after two seasons. Regression analysis of the 1989 soil test data 

showed that K levels at the second (July) sampling date were 

significantly different from those at the first 1989 sampling 

(p<0.001). The high rates of N-P-K did not result in increases in 

soil K over time (compare 1987 to 1989). This result may be due to an 

interactive effect of the elements in the N-P-K fertilizer. Cummings 

(1978) found that the addition of N or P to blueberry soils with pH 

similar to that in these cranberry plots caused lower soil test K, 

while the addition of K increased soil test K. The addition of the 
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three elements in combination in this study may have led to one effect 

cancelling the other for no net change in soil K over time. 

The addition of P in the N-P-K treatments had no effect on the P 

levels in the soil. However, the P levels in the soil in these plots 

at the beginning of the study were higher than the proposed normal P 

value for cranberry soil (Greidanus and Dana, 1972). There were no 

differences in Ca and Mg soil levels among treatments at any sampling 

period. Soil pH (4.1) was unaffected by N-P-K treatments. 

Table 4.1 Soil tests of N-P-K treated plots. Values are the mean 
(standard deviation) of 5 replicates. Significance of F from ANOVA. 

N-P-K (kg/ha) Apr. 1987 Apr. 1988 May 1989 July 1989 

ppm P 

0 (0 kg P) 89 (6) 91 (13) 86 (14) 81 (12) 
170 (15 kg P) 88 (11) 90 (17) 92 (20) 78 (18) 
335 (29 kg P) 87 (14) 96 (14) 87 (25) 84 (13) 
505 (44 kg P) 91 (6) 102 (11) 86 (16) 99 (12) 

ppm K 

0 (0 kg K) 13 (1) 13 (1) 12 (2) 7 (1) 
170 (14 kg K) 13 (2) 14 (2) 12 (2) 11 0) 
335 (28 kg K) 14 (1) 13 (3) 15 (3) 12 (2) 
505 (42 kg K) 14 (2) 15 (1) 16 (3) 14 (2) 
sig. of F p>0.05 p>0.05 p=0.04 pcO.001 

ppm Mg 

0 17 (1) 18 (2) 18 (1) 15 (2) 
170 19 (2) 19 (2) 18 (3) 18 (3) 
335 21 (4) 19 (3) 19 (3) 17 (3) 
505 21 (3) 20 (5) 21 (4) 20 (5) 

ppm Ca 

0 64 (6) 80 (43) 65 (6) 54 (8) 
170 74 (16) 103 (72) 72 (24) 75 (21) 
335 82 (26) 90 (39) 74 (14) 76 (22) 
505 82 (22) 82 (22) 86 (33) 82 (25) 
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4.2 Effect of N-P-K Rate on N. P. K, Ca, and Mq in New Shoot Tissue 

In 1986, a preliminary study of the response of cranberry tissue 

nutrient levels to two rates of N-P-K (0 and 335 kg/ha) was conducted. 

Table 4.2 shows the tissue analysis results for N, P, and K in new 

shoot samples collected in mid-August after expansion of new shoots 

had ceased. The plants receiving N-P-K fertilizer had higher levels 

of N, P, and K in the new shoot tissue than did the unfertilized 

plants. This response was similar to that found by Torio and Eck 

(1969) when they added N, P, and K to cuttings of 'Early Black' 

cranberry rooted in sand. Strawberry leaf tissue N and K (but not P) 

also increased after a single season of N-P-K application (Albregts 

and Howard, 1986). Foliar N, P, and K in highbush blueberry increased 

in response to one season of application of the respective elements 

(Cummings, 1978). 

Table 4.2 N, P, and K levels (percent dry weight) in new shoot tissue 
of 'Early Black' cranberry receiving 2 rates of N-P-K fertilizer. 
Samples collected in mid-August; values represent the mean of 10 
replicates. Significance of F from ANOVA. 

N-P-K (kg/ha) N P K 

0 0.93 0.11 0.41 
335 0.96 0.14 0.51 

sig. of F P=0.008 P=0.005 P=0.004 
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4.2.1 Three Years of N-P-K Treatment: Effect on Late-season Tissue 

Nutrients 

In 1987, a new set of plots was established for treatment with 

four levels of N-P-K (0, 170, 335, or 505 kg/ha). The plots were 

treated each season for three seasons. The results of tissue analyses 

for major elements on samples collected late in August of each season 

are shown in Table 4.3. At the end of one season of treatment, N, P, 

and K levels in new shoots were significantly higher in plants 

receiving the highest rate of N-P-K than in those receiving no 
« 

fertilizer (Figures 4.1 to 4.3, p. 42-43). After three years, N, P, 

and K levels in plants receiving no fertilizer or the lowest N-P-K 

rate were lower than those in plants receiving the highest N-P-K rate. 

The differences in N with N-P-K treatment were contrary to the results 

of Eck (1976), who found no differences in N content of cranberries 

treated with 17, 34, or 51 kg N/ha (the same amounts of N provided in 

the N-P-K treatments in this study). He found N values between 0.77 

and 0.79%, similar to those of the plants receiving the 170 kg N-P- 

K/ha rate (17 kg N) in the present study. The increase of N, P, and K 

in 'Early Black' cranberry shoot tissue with increasing N-P-K 

fertilizer rate confirms findings for 'Ben Lear' cranberry (Eaton and 

Meehan, 1973) and 'McFarlin' cranberry (Eaton, 1971). In the 'Ben 

Lear' study N, P, and K were added separately in a factorial design. 

The addition of each element increased its level in the leaves but no 

statistically significant interaction occurred among the effects of 

the elements (Eaton and Meehan, 1973). This makes it likely that each 

element in the N-P-K fertilizer is acting independently on the tissue 
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Table 4.3 N, P, K, Ca, and Mg levels (percent dry weight) in new 
shoot tissue of 'Early Black' cranberry receiving 4 rates of N-P-K 
fertilizer. Samples collected in late August, values represent the 
mean of 5 replicates. Significance of F from regression analyses 
(n=20). 

N-P-K (kg/ha) 1987 1988 1989 

Percent N 

0 (0 kg N) 0.95 0.89 0.72 
170 (17 kg N) 1.06 0.99 0.79 
335 (34 kg N) 1.15 1.03 0.90 
505 (51 kg N) 1.36 1.03 0.97 
Sig. of F p<0.001 p=0.012 pcO.001 

Percent P 

0 (0 kg P) 0.13 0.11 0.09 
170 (15 kg P) 0.14 0.12 0.11 
335 (29 kg P) 0.15 0.12 0.13 
505 (44 kg P) 0.18 0.12 0.13 
Sig. of F p<0.001 p>0.05 pcO.001 

Percent K 

0 (0 kg K) 0.57 0.42 0.35 
170 (14 kg K) 0.62 0.46 0.43 
335 (28 kg K) 0.72 0.43 0.47 
505 (42 kg K) 0.80 0.46 0.53 
Sig. of F pcO.001 p>0.05 p<0.001 

Percent Ca 

0 0.67 0.89 0.69 
170 0.74 0.79 0.70 
335 0.69 0.87 0.74 
505 0.66 0.79 0.59 
Sig. of F p>0.05 p>0.05 p>0.05 

Percent Mg 

0 0.27 0.25 0.21 
170 0.27 0.23 0.21 
335 0.26 0.25 0.21 
505 0.25 0.24 0.22 
Sig. of F p>0.05 p>0.05 p>0.05 
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content of N, P, and K in 'Early Black'. The effect of adding N-P-K 

to the soil was similar for cranberries as that for other Vaccinium 

species. The addition of increasing rates of N-P-K fertilizer to 

rabbiteye blueberries (Spiers, 1987) increased tissue N content but 

did not affect P and K levels. Adding N, P, and K to highbush 

blueberry plantings resulted in increases of all three elements in the 

foliage, with greater effect of dose becoming apparent in later 

treatment years (Cummings, 1978). 

N-P-K fertilizer treatments had no effect on the levels of Ca or 

Mg in late-season new shoot tissue samples (Table 4.3). A decrease in 

one or both of these elements would be expected with increasing N-P-K 

dose due to the addition of K (Eaton and Meehan, 1973 and 1976; Eaton, 

1971). However, in those studies, the addition of K led to an 

increase of foliar K levels concomitant with the decline in Mg and Ca. 

In the present work, K levels were maintained with the higher rates of 

N-P-K fertilizer, and decreased with the lower rates. This lack of 

increase in foliar K may explain the lack of effect of N-P-K on Ca and 

Mg. Spiers (1987) found that the highest foliar Mg levels in 

rabbiteye blueberry were associated with bushes receiving no N-P-K 

fertilizer. This was not true for cranberries in this study. Lack of 

N-P-K fertilizer was associated with low foliar K but had no effect on 

foliar Mg. 
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4.2.2 Three Years of N-P-K Treatments: Effects on Seasonal Nutrient 

Levels in New Shoots 

Samples of new shoot tissue from N-P-K treated 'Early Black' 

cranberry plots were collected throughout each season. The results of 

the analyses for N, P, and K in plots treated with 0 or 335 kg 

N-P-K/ha in 1986 are shown in Figures 4.4, 4.5, and 4.6 (p. 43-44). 

The analytical values were significantly different by treatment for N, 

P, and K (p=0.01 for N, p=0.005 for P, p=0.005 for K) over the season. 

However, date by treatment interactions were not significant. 

When the numbers of N-P-K levels were increased to four in 1987, 

the effect of treatment on N, P, and K in new shoot tissue were again 

significant (p=0.02 for N, p=0.02 for P, p=0.002 for K). The seasonal 

levels for N, P, and K are shown in Figures 4.7, 4.8, and 4.9 (p. 45- 

46). Univariate analysis for repeated measures indicated a 

significant date by treatment interaction for the effects on N, P, and 

K. However, when the sampling dates cover such an extensive period of 

time (here the entire growing season), it is likely that the 

measurements do not have the same variance, a condition required for a 

valid univariate analysis of interactions involving time (Littell, 

1989). A multivariate analysis, which does not require equal 

variances, failed to confirm the date by treatment interaction. 

In the third year of N-P-K applications, the seasonal effect of 

N-P-K level on N, P, and K continued to be apparent (Figures 4.10, 

4.11, and 4.12; p. 46-47). The treatment effect was significant 

(p<0.001 for N, p=0.03 for P, p=0.02 for K). In addition, a 

significant date by treatment interaction for N and P concentration in 
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new shoot tissue occurred (p<0.001), confirmed by both univariate and 

multivariate repeated measures analyses. The effects of N-P-K on new 

shoot N and P became more pronounced as the season progressed. 

4.3 Effects of N-P-K Treatment on B, Cu. Fe. Mn, and Zn in New Shoot 

Tissue 

Cranberries which received N-P-K at 335 kg/ha had higher Mn 

levels in new shoot tissue during the season than did those receiving 

no fertilizer (Figure 4.13, p. 48). The effect of treatment for the 

whole season was significant (p<0.005), but the interaction between 

date of sampling and treatment was not significant. For the samples 

collected in mid-August, at the end of the growing period, a 

difference occurred between Mn levels for the two treatments (p=0.06). 

The seasonal increase of cranberry tissue Mn in response to N-P-K is 

in agreement with the increase of foliar Mn in highbush blueberry 

fertilized with N (Townsend, 1973). However, Eaton and Meehan (1973) 

found that 'Ben Lear' cranberries responded to N fertilizer with 

decreased foliar Mn levels. Further, tissue Mn levels responded to 

the addition of N-P-K in only one year of the three-year study (Table 

4.4). Mn levels in cranberry shoot tissue are normally high and 

variable, tending to obscure any effect of fertilizer treatments. 

4.3.1 Three years of N-P-K: Effects on Late-season Tissue Nutrients 

The levels of five minor elements in new shoot tissue late in 

the season for cranberries treated with N-P-K are shown in Table 4.4. 
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Table 4.4 B, Cu, Fe, Mn, and Zn levels (ppm dry weight) in new shoot 
tissue of 'Early Black' cranberry receiving 4 rates of N-P-K 
fertilizer. Samples collected in late August, values represent the 
mean of 5 replicates. Significance of F from regression analyses 
(n=20). 

N-P-K (kg/ha) 1987 1988 1989 

ppm B 

0 85 53 45 
170 58 42 32 
335 61 52 29 
505 53 34 25 
Sig. of F p>0.05 p>0.05 p<0.001 

ppm Cu 

0 5 4 3 
170 5 5 5 
335 5 5 6 
505 5 5 6 
Sig. of F p>0.05 p=0.033 p=0.005 

ppm Fe 

0 32 53 84 
170 29 65 76 
335 42 63 65 
505 34 66 66 
Sig. of F p>0.05 p>0.05 p>0.05 

ppm Mn 

0 116 205 278 
170 122 192 248 
335 136 245 231 
505 172 222 242 
Sig. of F p=0.029 p>0.05 p>0.05 

ppm Zn 

0 18 23 22 
170 20 23 23 
335 20 27 22 
505 18 25 22 
Sig. of F p>0.05 p>0.05 p>0.05 
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If rabbiteye blueberries were treated with N-P-K (Spiers, 1987), the 0 

treatment level was associated with the highest foliar Zn content. 

Treatment with N-P-K had no effect on Zn or Fe in cranberry tissue. 

N-P-K had an effect on late-season tissue Mn in 1987 (Figure 4.14, p. 

48). If N-P-K fertilizer was withheld, lower levels of Cu occurred in 

the new shoots (Figure 4.15, p. 49). Conversely, B levels were lower 

with increased levels of N-P-K (Figure 4.16, p. 49). The effect of N- 

P-K on Cu is opposite that found when highbush blueberries were 

fertilized with N but the effect on B is similar to that found when 

highbush blueberries were fertilized with N or K (Cummings, 1978). 

Cummings (1978) postulated that the effects of N fertilizer on minor 

element foliar levels were related to changes in soil pH and organic 

matter content caused by the addition of the fertilizer, and leading 

to changes in minor element availability. However, in these cranberry 

plots, N-P-K treatments had no effect on soil pH or organic matter 

content after three seasons. High B concentrations in unfertilized 

plants were most likely due to reduced biomass production in response 

to three years of that treatment. 

4.3.2 Three Years of N-P-K Treatment: Effects on Seasonal Nutrient 

Levels in New Shoots 

The effect of N-P-K treatments on new shoot tissue B levels were 

significant across the entire season (p=0.02 for 1987, pcO.OOl for 

1988 and 1989). The negative effect of N-P-K on new shoot B became 

more apparent late in the season (Figures 4.17, 4.18, and 4.19, p. 50- 

51). The date by treatment interaction was significant in univariate 
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analysis for all three years, but could be confirmed only by 

multivariate repeated measures analysis for 1989 (p<0.001). 

The positive effect of N-P-K treatment on new shoot Cu levels 

(Figure 4.20, p. 51) was significant over the whole season in 1989 

(p=0.007). No significant date by treatment interaction occurred. 

4.4 Summary and Implications 

Treatment of 'Early Black7 cranberries with N-P-K fertilizer led 

to changes in the soil and in new shoot nutrient content. Cropping 

with no fertilizer or underfertilization led to a decline in soil K. 

However, N-P-K level had no effect on other measured soil properties. 

Fertilizing with N-P-K led to an increase in N, P, and K in cranberry 

new shoot tissue, but Mg and Ca in the new shoots were not affected, 

probably because N-P-K treatments did not change soil Ca or Mg levels. 

N-P-K treatment had some effect on the minor element content of 

cranberry new shoot tissue. Decreasing N-P-K led to higher B in the 

new shoot tissue. This may have been due to concentration in the 

smaller underfertilized plants. Lack of N-P-K fertilizer was 

associated with low tissue Cu and Mn levels. 

The results of this study have implications for fertilizer 

practices in cranberry production and for the use of tissue analysis 

for determining the nutritional status of cranberries. Use of N-P-K 

fertilizers has effects on the minor element content of the cranberry 

plants. This means that tissue testing for minor elements should be 

routine for cranberry production in order to monitor for deficiencies 

or excesses which might be induced by the use of N-P-K fertilizer. 
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NITROGEN - NEW SHOOTS 

Figure 4.1 Effect of N-P-K treatment on N in cranberry new shoot 
tissue, August sample. 

PHOSPHORUS - NEW SHOOTS 

Figure 4.2 Effect of N-P-K treatment on P in cranberry new shoot 
tissue, August sample. Regression analysis not significant in 1988. 
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POTASSIUM - NEW SHOOTS 

Figure 4.3 Effect of N-P-K treatment on K in cranberry new shoot 
tissue, August sample. Regression analysis not significant in 1988. 

NITROGEN - NEW SHOOT 

Figure 4.4 Effect of N-P-K treatment on N in cranberry new shoot 
tissue - one year of treatment - 1986. 
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Figure 4.5 Effect of N-P-K treatment on P in cranberry new shoot 
tissue - one year of treatment - 1986. 
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POTASSIUM - NEW SHOOT 

Figure 4.6 Effect of N-P-K treatment on K in cranberry new shoot 
tissue - one year of treatment - 1986. 
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NITROGEN - NEW SHOOT 

Figure 4.7 Effect of N-P-K treatment on N in cranberry new shoot 
tissue in the first year of treatment - 1987. 

PHOSPHORUS - NEW SHOOT 

Figure 4.8 Effect of N-P-K treatment on P in cranberry new shoot 
tissue in the first year of treatment - 1987. 

45 
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Figure 4.9 Effect of N-P-K treatment on K in cranberry new shoot 
tissue in the first year of treatment - 1987. 

NITROGEN - NEW SHOOT 

Figure 4.10 Effect of N-P-K treatment on N in cranberry new shoot 
tissue in the third year of treatment - 1989. 

46 



PHOSPHORUS - NEW SHOOT 

x 
CD 
LU 

5 
£ 
Q 
\— 
X 
LU 
O 
DC 
UJ 
CL 

Figure 4.11 Effect of N-P-K treatment on P in cranberry new shoot 
tissue in the third year of treatment - 1989. 

POTASSIUM - NEW SHOOT 

Figure 4.12 Effect of N-P-K treatment on K in cranberry new shoot 
tissue in the third year of treatment - 1989. 
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MANGANESE - NEW SHOOT 

Figure 4.13 Effect of N-P-K treatment on Mn in cranberry new shoot 
tissue - one year of treatment - 1986. 

MANGANESE - NEW SHOOTS 

Figure 4.14 Effect of N-P-K treatment on Mn in cranberry new shoot 
tissue, August sample. Regression analysis was not statistically 
significant in 1988 and 1989. 
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COPPER - NEW SHOOTS 

KG N-P-K / HA 

Figure 4.15 Effect of N-P-K treatment on Cu in cranberry new shoot 
tissue, August sample. Regression analysis was not statistically 
significant in 1987. 

BORON-NEW SHOOTS 

Figure 4.16 Effect of N-P-K treatment on B in cranberry new shoot 
tissue, August sample. Regression analysis was not statistically 
significant in 1987 and 1988. 
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BORON - NEW SHOOT 

Figure 4.17 Effect of N-P-K treatment on B in cranberry new shoot 
tissue in the first year of treatment - 1987. 

BORON - NEW SHOOT 
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Figure 4.18 Effect of N-P-K treatment on B in cranberry new shoot 
tissue in the second year of treatment - 1988. 
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BORON - NEW SHOOT 

Figure 4.19 Effect of N-P-K treatment on B in cranberry new shoot 
tissue in the third year of treatment - 1989. 

COPPER - NEW SHOOT 

Figure 4.20 Effect of N-P-K treatment on Cu in cranberry new shoot 
tissue in the third year of treatment - 1989. 
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CHAPTER 5 

BIOMASS ACCUMULATION PATTERNS IN A COMMERCIAL 'EARLY BLACK' CRANBERRY 

PLANTING 

5.1 Vegetative and Reproductive Growth of Cranberry Plants 

Growth (dry weight accumulation) of all cranberry plant parts 

was assessed in the N-P-K experimental plots from 1987 to 1989, 

beginning in April and ending in September. The accumulation patterns 

varied during the season, but generally were similar from season to 

season. 

5.1.1 Roots and Shoots 

The patterns for root growth are shown in Figure 5.1 (p.70). 

The data were highly variable due to the difficulties inherent in 

cleaning the soil from cranberry roots, which formed a dense fibrous 

mat in the upper 5 cm of the soil. Repeated measures analyses (ANOVA) 

of the root data showed that the changes in root biomass by date in 

1987 and 1989 were not statistically significant. Root biomass could 

not be described by any regression equation on a seasonal basis. 

New shoot development patterns were much more regular than those 

for roots (Figure 5.2, p.70). New shoot tissue accumulated at a rapid 

rate from late May until late July, then continued to accumulate at a 

lower rate. A steeper rise in new shoot biomass late in the summer 

was most likely due to the stem of the new shoot portion becoming 

lignified. As was expected, repeated measures univariate analysis of 
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new shoot growth showed that the effect of date was significant. 

Sequential regression analyses correlating new growth biomass 

accumulation with day number were performed to describe the 

relationship between growth and sampling date for several years. The 

generated regression equations (Table 5.1) were plotted (Figure 5.3A, 

p.71). The theoretical curves plotted from the regression equations 

fit the actual data fairly well, especially during early season rapid 

growth., Shoot growth in other plants has been assessed by 

correlation with growing degree day accumulation (Johnson and Lasko, 

1985). Using a base temperature of 6.5C, growing degree days were 

calculated from sheltered temperatures (daily maximum and minimum) at 

the experimental site. The same polynomial types which were used to 

compare growth and day number were used to repeat the regression 

analyses for new shoot growth, correlated with accumulated growing 

Table 5.1 Calculated regression equations for new shoot biomass 
development (kg/ha) of cranberry based on day number or growing degree 
days (cumulative, base 6.5C). 

Year Regression eauation R2 

Dav Number 

1986 -31 D2 + 14374 D - 1379117 (n=233) 0.59 

1987 3230 D • 449859 (n=220) 0.74 

1988 -21 D2 + 11106 D - 1134841 (n=200) 0.56 

1989 -34 D2 + 16234 D - 1578021 (n=176) 0.49 

Growing Degree Days 

1986 -0.07 G2 + 309.7 G - 52744 (n=233) 0.59 

1987 129 G - 21747 (n=220) 0.74 

1988 -0.04 G2 + 230.4 G - 11288 (n=200) 0.54 

1989 -0.06 G2 + 300.3 G - 36050 (n=176) 0.49 
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degree days. The theoretical equations (Table 5.1) were plotted 

(Figure 5.3B, p.71). 

The equations based on day number differed from those based on 

growing degree day. However, the coefficients of determination were 

not significantly improved by the change to growing degree days (Table 

5.1, compare values). The differences between the two sets of 

plots were slight (Figures 5.3A and 5.3B, p.71). Based on these 

regression relationships, using growing degree days to predict 

cranberry vegetative growth was not enough of an improvement over 

using calendar dates to justify the time and expense involved in 

collecting the growing degree day data. 

Quadratic equations of log-transformed variables vs. date of 

sampling have been used to describe an exponential model for growth of 

cowpea (Fernandez and Miller, 1987). In an attempt to describe a 

relationship between new shoot growth and date with improved 

correlation for cranberries, regression equations (same types as 

before) correlating day number with log-transformed dry weight data 

were calculated. The resulting equations were plotted (Figures 5.4A, 

5.4B, 5.4C, 5.4D, p.72-73). The log-transformed data gave much 

improved correlation compared to the original dry weights. However, 

the growth trends described by either set of equations were similar 

except for the 1987 data and season's end values in 1986 and 1988. 

5.1.2 Fruit 

4» 

Several parameters describing fruit growth were studied in the 

same plots where vegetative growth was assessed. The changes in fresh 
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and dry weight of individual fruit, as well as those for fruit on an 

area (30x30 cm) basis, were recorded. The seasonal changes in fresh 

weight and dry weight per fruit are shown in Figures 5.5 and 5.6 

(p.74). The patterns were similar, with weight gain rate somewhat 

more rapid (steeper slope) for fresh weight than for dry weight 

accumulation. There was remarkable agreement among the data for the 

three years of the study. In all three years, dry weight accumulation 

rate declined after 20 Aug., although in 1987 the rate did rise again 

in September. Repeated measures ANOVA on the dry weight per fruit 

data showed that the changes by date were significant, so regression 

analyses were performed (Table 5.2). The theoretical relationships 

(quadratic for 1986 and 1988, linear for 1987 and 1989 data) were 

plotted (Figure 5.7, p.75), and showed fair agreement with the actual 

data, although the change in growth rate was not as apparent. The fit 

of the equations, based on coefficient of determination, was much 

better than that for vegetative growth vs. date. 

As was attempted for vegetative growth data, dry weight 

accumulation per fruit was correlated with growing degree days (Table 

5.2 and Figure 5.8, p.75). The relationship between fruit dry weight 

and growing degree days was the same as the relationship of weight 

with date for all years (similar R2). 

The fruit dry weight accumulation on a bog area basis was 

determined (Figure 5.9, p.76). Demoranville (1960) found that fresh 

weight accumulation rate in 'Early Black' cranberry slowed 

dramatically by mid-September. In this study, fresh and dry weight 

accumulation had slowed by early September (Figures 5.5 and 5.6, 

p.74), with the exception of 1987 dry weight. The temperatures 
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Table 5.2 Calculated regression equations for fruit development (dry 
weight each fruit x 105) of cranberry based on day number or growing 
degree days (cumulative, base 6.5C). 

Year Rearession eauation R2 

Dav Number 

1986 -1.998 D2 + 1063.5 D - 132375 (n=92) 0.91 

1987 132.2 D - 24330 (n=119) 0.91 

1988 -1.679 D2 + 92296 D - 117273 (n=120) 0.91 

1989 129.9 D - 23172 (n=138) 0.91 

Growinq Deqree Davs 

1986 -0.003 G2 + 20.02 G - 23434 (n=92) 0.91 

1987 5.66 G - 7498 (n=119) 0.91 

1988 -0.001 G2 + 12.19 G - 14848 (n=120) 0.91 

1989 5.22 G - 6034 (n=138) 0.92 

(growing degree day accumulations) in 1987 were normal and could not 

account for the continued fruit growth of 'Early Black' cranberries in 

that year. The sharp drop in fruit biomass per unit bog late in 1989 

was mostly accounted for by loss of fruit to fungal and insect 

infestations, individual fruit did not lose biomass. 

5.1.3 Seasonal Biomass Change and Partitioning in 'Early Black' 

Cranberry 

Biomass accumulation in all plant parts of cranberry fertilized 

with 335 kg N-P-K/ha was documented for 4 years (Figures 5.10, 5.11, 

5.12, and 15.13, p.76-78). Biomass in old leaves and woody stems 

tended to decline during the season, with the exception of the two 

weeks prior to bud break (beginning of new shoot growth). At that 
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time, biomass in old stem and leaf tissue increased transiently. This 

may have been due to accumulation of carbohydrate which would then be 

used for the production of the new tissues when rapid vegetative 

growth began. New shoot growth began late in May and continued at a 

rapid rate through June. The growth rate of vegetation slowed in July 

and August as fruit began to develop (fruit set at the beginning of 

July). By mid-August, as biomass accumulation rate in fruit declined, 

new shoot biomass rose, perhaps due to tissue 1ignification. Root 

biomass was variable early in the season from year to year but tended 

to decline in April, then rise some in May. Later in the season, root 

biomass declined in June and July, rose in late July and August, 

declined in early September, and finally rose again at harvest (late 

September). Apparently, cranberry roots were short-lived. When roots 

were sampled at low biomass times, many decayed roots were washed away 

during sample preparation. It should be noted that the tissue 

classified as roots in this study was limited to the fibrous mat of 

root tissue and did not include larger woody underground structures 

which are properly classified as underground stems. Many of these 

underground stems actually originated as aerial parts which were 

buried during resanding operations (a cultural practice in which a 

layer of sand was periodically added to the surface of the cranberry 

bog). 

The pattern of biomass accumulation in roots was opposite that 

for vegetation, root biomass rose when shoot growth rate was low and 

declined during rapid increases in shoot biomass. Head (1967) found a 

similar pattern for apple trees, with roots produced around bloom 

(before vegetative growth) and after the cessation of shoot elongation 
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in the fall. New root growth associated with the onset of fruit 

production was also seen in this study of cranberries. Most likely 

new roots were produced at that time in response to hormonal signals 

from the developing fruit. The opposing patterns of shoot and root 

growth have also been documented in peach (Williamson and Coston, 

1989). The authors of that study noted that while root growth ceased 

during rapid shoot growth, the subsequently produced new roots would 

then supply the new vegetation with water and nutrients. In the 

present study, it was shown that cranberry root biomass increased 

after the first flush of new growth and again late in the season after 

the cessation of new shoot growth. 

The ratio of shoots (new and old) to roots (S/R) varied during 

the season from 0.12 to 0.55. The greatest S/R corresponded with the 

end of the first flush of new vegetative growth, just prior to fruit 

set. Pritts and Hancock (1983) found similar changes in S/R in 

goldenrod (Solidago pauciflosculasa Michaux.), a woody perennial, with 

S/R maximum in the summer as new shoots were made and root biomass 

declined, most likely due to carbohydrate depletion. Goldenrod S/R 

declined after fruit production due to increased root production at 

that time. 

At all times of the season more biomass was accounted for in the 

root tissue of cranberry plants than in any other tissue, although the 

percent declined as the season progressed. In May 12% of 'Early 

Black' cranberry biomass was old leaves, 14% was old stems, 1% was new 

shoots, and 73% was root tissue. In July the proportions were 10%, 

16%, 9%, and 65%, and in September the proportions were 7%, 4%, 14%, 

and 64%, respectively. In September, fruit made up 10% of standing 
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biomass. Kappel (1991) claimed that new vegetation was a stronger 

sink for carbohydrates than fruit in sweet cherry, based on the 

finding that of new biomass produced in a season, only 16% was fruit, 

while 41% was leaf and 43% new stems. In comparison, it was found in 

this study that of the new top growth in cranberry, 42% was fruit and 

58% new shoot. Cranberry plants, while woody, did not require large 

amounts of biomass to produce wood when compared to fruit trees. 

Further, cranberry plants are evergreen and do not replace all leaf 

biomass annually. 

5.2 Effects of N-P-K Fertilizer on Cranberry Growth 

The growth data for this study were collected from plots 

receiving four rates of N-P-K fertilizer. Growth of vegetation, 

roots, and fruit was assessed periodically during the season. Using 

N-P-K level as a grouping factor, ANOVA by date (repeated measures 

analysis) was performed on the data. There was no effect of N-P-K 

level on the growth of roots. The growth patterns for that tissue 

were discussed in Section 5.1.1. In none of the analyses (roots, new 

shoots, fruit dry weight by bog area, individual fruit dry weight) was 

there a significant date by treatment interaction. 

In the second and third years of treatment with N-P-K 

fertilizer, biomass accumulation in new vegetation and fruit were 

affected by N-P-K level (Table 5.3). Overfertilized (505 kg N-P-K/ha) 

cranberries had significantly more new growth (Figures 5.14 and 5.15, 

p.78-79) than did those receiving no fertilizer or a less than optimum 

dose (170 kg N-P-K/ha). However, large amounts of biomass in new 
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Table 5.3 Effect of N-P-K fertilizer on the average seasonal growth 
of 'Early Black' cranberry. Biomass in g/30x30 cm, 5 replicates. 
Only plant parts and years with significant effects of fertilizer are 
shown. Significance of F from regression analyses (linear for new 
shoots, quadratic for fruit). 

New shoots (g/30x30 cm) 

N-P-K (kg/ha) 1988 1989 

0 
170 
335 
505 
Sig. of F 

19.9 
26.4 
28.0 
35.8 
p<0.001 
r2=0.14, n=200 

18.0 
27.3 
33.3 
37.4 
p<0.001 
r2=0.24, n=176 

Fruit (g/30x30 cm) 

1988 1989 • 

0 
170 
335 
505 
Sig. of F 

16.0 
18.0 
22.8 
17.8 
p=0.01 
r2=0.07, n=120 

5.86 
9.41 

11 23 
9.27 

p=0.003 
r2=0.08, n=138 

vegetation did not mean good productivity (Figures 5.17 and 5.18, 

p.80). In 1988, a high crop year generally, cranberries receiving the 

highest dose and those receiving no fertilizer had the poorest crops. 

Beckwith (1919) found that 45 kg N/ha led to too much vine growth in 

New Jersey cranberries, while 33 kg N/ha gave more crop than 22 kg 

N/ha. The N doses in the current study were 17, 33, and 50 kg N/ha, 

with the largest crops associated with the 33 kg rate, and the most 

vegetation with 50 kg N/ha. The effect of N-P-K on fruit production 

was not due to an effect on dry weight of individual fruit (Figure 

5.16, p.79), but to an effect on fruit number per area. 
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5.3 Yield Component Relationships 

Yield components were documented along with biomass data. These 

included, on a 30x30 cm area basis, upright density (Uj), number of 

vegetative uprights (U^), number of flowering uprights (Up), percent 

Up, dry weight per upright, length of U^j and Uj, number of flowers, 

number of flowers per Up, number of fruit, fruit per flower (% fruit 

set), fresh weight of fruit, fresh weight per fruit, and yield 

(kg/ha). 

5.3.1 Effects of N-P-K Treatment on Yield Components of Cranberry 

The effects of N-P-K on growth and yield components were 

assessed separately for each year of the experiment. Because 

cranberry is a woody perennial, carryover and cumulative effects were 

expected to make the results different by year. N-P-K fertilizer 

treatments had no significant effects on yield due to high variability 

in the plots. However, yield components were affected (Table 5.4, 

5.5, 5.6). The effects were more apparent over time. 

The data from 1988 (second year) showed increased effect of N-P- 

K on yield components (Table 5.5). As had been found on a seasonal 

basis, the season's end dry weight in new growth was greatest at the 

highest rate of N-P-K, as was the length and weight of the individual 

uprights. The length of the uprights in the 170 and 335 kg treatments 

were within the range previously recommended for cranberries (Roberts 

and Struckmeyer, 1942; Dana, 1968), while that in the 505 kg 

treatments was higher and that in the 0 kg treatments was lower. 
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Table 5.4 Effects of N-P-K fertilizer on yield components of 'Early 
Black' cranberry, one year of treatment, 5 replicates. Upright counts 
and dry weights were based on 30x30 cm bog area sampled in September. 
Significance of F from regression analyses (n=20). 

N-P-K level Dry wt Dry wt Dry wt Flowers Fruit 
old shoot new shoot root (number) (number) 

0 kg/ha 38.4 26.7 236.6 337 74 
170 kg/ha 35.7 36.3 221.8 303 96 
335 kg/ha 30.2 35.6 221.8 414 122 
505 kg/ha 38.0 44.4 239.7 538 175 
Sig. of F p>0.05 p=0.025 p>0.05 p=0.048 p=0.004 

r2=0.25 r2=0.20 r2=0.38 

UT UN UF dry wt/U UF/UT 
(number) (number) (number) 

0 kg/ha 630 498 132 0.041 0.21 
170 kg/ha 688 560 128 0.053 0.18 
335 kg/ha 694 533 161 0.052 0.22 
505 kg/ha 809 600 209 0.056 0.25 
Sig. of F p>0.05 p>0.05 p>0.05 p=0.039 p>0.05 

r2=0.22 

FIower/ fruit/ Fresh wt Yield Wt (g)/ 
Uf f1ower fruit kg/ha fruit 

0 kg/ha 2.55 0.22 48.0 15,352 0.63 
170 kg/ha 2.39 0.29 75.0 15,524 0.79 
335 kg/ha 2.56 0.33 86.5 15,924 0.73 
505 kg/ha 2.67 0.34 118.6 20,992 0.67 
Sig. of F p>0.05 p=0.049 p=0.005 p>0.05 p>0.05 

r2=0.20 r2=0.37 

Upright densities in these 'Early Black' plots were much higher in all 

treatments than those recommended for 'Searles' in Wisconsin (Roberts 

and Struckmeyer, 1942). Increasing N-P-K dose had positive effects on 

the production of vegetative uprights and fruit set, but the 

proportion of uprights flowering was negatively affected. The upright 

effects were related to the promotion of vegetative over reproductive 

growth by high fertilizer doses. The effect on fruit set may have 

been related to lack of essential nutrient elements in unfertilized 
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Table 5.5 Effects of N-P-K fertilizer on yield components of 'Early 
Black' cranberry, two years of treatment, 5 replicates. Upright 
counts and dry weights were based on 30x30 cm bog area sampled in 
September. Upright lengths were mean of 25 per replicate. 
Significance of F from regression analyses (n=20). 

N-P-K level Dry wt Dry wt Dry wt Flowers Fruit 
old shoot new shoot root (number) (number) 

0 kg/ha 18.1 26.7 190.4 1004 261 
170 kg/ha 20.7 35.1 197.9 1043 271 
335 kg/ha 23.7 38.0 158.8 1234 372 
505 kg/ha 19.8 55.3 127.5 830 262 
Sig. of F p>0.05 p<0.001 

r2=0.58 
p>0.05 p>0.05 p>0.05 

UT UN Up dry wt/U UF/UT 
(number) (number) (number) 

0 kg/ha 785 486 299 0.034 0.38 
170 kg/ha 915 584 331 0.038 0.36 
335 kg/ha 921 555 366 0.041 0.40 
505 kg/ha 996 741 255 0.056 0.25 
Sig. of F p>0.05 p=0.013 p>0.05 p<0.001 p=0.04 

r2=0.30 r2=0.65 r2=0.21 

FIower/ Length Length Fresh wt Fruit/ 
Uf Un mm Up mm fruit flower 

0 kg/ha 3.32 50.9 44.3 204.3 0.27 
170 kg/ha 3.15 61.1 48.4 209.4 0.26 
335 kg/ha 3.42 69.7 55.3 282.3 0.30 
505 kg/ha 3.30 89.9 62.4 218.6 0.32 
Sig. of F p>0.05 p<0.001 p<0.001 p>0.05 p=0.002 

r2=0.79 r2=0.72 r2=0.41 

Yield Wt (g)/ 
kg/ha fruit 

0 kg/ha 19,708 0.77 
170 kg/ha 22,029 0.78 
335 kg/ha 30,076 0.76 
505 kg/ha 27,385 0.83 
Sig. of F p>0.05 p>0.05 

and underfertilized plants. Even when not statistically significant, 

most of the important yield components (e.g. flowers, flowering 

uprights, flowers/upright) were greatest in the highest yielding 
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Table 5.6 Effects of N-P-K fertilizer on yield components of 'Early 
Black' cranberry, three years of treatment, 5 replicates. Upright 
counts and dry weights were based on 30x30 cm bog area sampled in 
September. Upright lengths were mean of 25 per replicate. 
Significance of F from regression analyses (n=20). 

N-P-K level Dry wt Dry wt Dry wt Flowers Fruit 
old shoot new shoot root (number) (number) 

0 kg/ha 28.2 20.2 129.5 272 106 
170 kg/ha 33.0 35.5 146.1 435 204 
335 kg/ha 36.9 48.2 142.3 441 212 
505 kg/ha 33.3 59.6 163.1 382 196 
Sig. of F p>0.05 p<0.001 

r2=0.85 
p>0.05 p>0.05 p>0.05 

UT UN uf dry wt/U Uf/Ut 
(number) (number) (number) 

0 kg/ha 607 514 93 0.033 0.16 
170 kg/ha 942 767 174 0.038 0.19 
335 kg/ha 977 819 158 0.049 0.16 
505 kg/ha 1053 930 122 0.057 0.12 
Sig. of F p<0.001 p<0.001 p=0.019 p<0.001 p>0.05 

r2=0.55 r2=0.59 r2=0.37 r2=0.78 

Flower/ Length Length Fresh wt Fruit/ 
Uf Un mm Up mm fruit fl ower 

0 kg/ha 2.89 50.7 40.2 87.1 0.40 
170 kg/ha 2.62 55.9 45.3 178.2 0.47 
335 kg/ha 2.81 68.1 53.8 195.6 0.48 
505 kg/ha 3.00 76.2 59.3 176.7 0.53 
Sig. of F p>0.05 p<0.001 p<0.001 p>0.05 p=0.017 

r2=0.71 r2=0.72 r2=0.28 

Yield wt (g)/ 
kg/ha fruit 

0 kg/ha 5,599 0.82 
170 kg/ha 10,006 0.87 
335 kg/ha 11,780 0.92 
505 kg/ha 10,677 0.91 
Sig. of F p>0.05 p=0.044 

r2=0.21 

treatment (335 kg N-P-K/ha). The yield data shown here were for a 

single sampling early in September. At that time the differences 
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among the treatments were not statistically significant, although over 

the season the yield differences were significant (Table 5.3). 

The effects of N-P-K in the third year of treatment were similar 

to those in the second year. In 1989, total upright density as well 

as that for each type of upright was positively affected by any 

fertilizer treatment compared to no fertilizer. The positive effect 

on flowering uprights as well as vegetative uprights explained the 

lack of an effect on percent flowering uprights in 1989. 

As in the second year, weight of new shoot, upright weight and 

upright length were all affected positively by N-P-K treatment in 

1989. Eck (1976) also found positive effects of increasing N dose on 

length of both upright types in cranberry. After three years of no 

fertilizer, uprights were quite stunted. Limitation on photosynthate 

production due to limited leaf area was likely responsible for reduced 

fruit set, size, and yield in that treatment (Roper, et al., 1992). 

Underfertilization had negative effects on yield and yield 

components. However, overfertilization was equally negative, 

promoting vegetative growth over fruit production. The ideal dose for 

balanced reproductive and vegetative growth at the experimental 'Early 

Black' site was 335 kg N-P-K/ha. 

5.3.2 Correlations Among Yield Components in Cranberry 

Correlation coefficients could be calculated across treatments 

for vegetative and reproductive components within each year (Archbold, 

et al., 1989). This would allow assessment of the effects of the 

yield components on each other and on yield. In both 1988 and 1989, 

65 



Table 5.7 Correlation coefficients among vegetative and reproductive 
variables of 'Early Black' cranberry, 1987. 

Variable 1 2 3 4 5 6 

1) UT 

2) Dry wt new 0.811**z 

3) %UF 0.494 0.102 

4) Flower/Up -0.165 -0.232 -0.013 

5) Fruit/flower 0.146 0.432 -0.096 -0.190 

6) g/fruit -0.114 0.240 -0.304 -0.246 0.593 

7) kg fruit/ha 0.340 0.262 0.342 0.110 0.308 0.062 

z Values significant at **p<0.01 

dry weight of new shoots were positively correlated with upright 

weight, number, and length (data not shown). Correlations among 

components considered to be most important in determining yield 

(Archbold, et al., 1989; Eaton and Kyte, 1978) were tabulated (Tables 

5.7 and 5.8). All of the selected variables were positively 

Table 5.8 Correlation coefficients among vegetative and reproductive 
variables of 'Early Black' cranberry, 1989. 

Variable 1 2 3 4 5 6 

1) UT 

2) Dry wt new 0.854**z 

3) %UF -0.267 -0.335 

4) Flower/Up 0.071 0.082 -0.303 

5) Fruit/flower 0.419 0.535 -0.372 0.012 

6) g/fruit 0.541 0.627 -0.095 -0.244 0.412 

7) kg fruit/ha 0.472 0.511 0.299 0.028 0.211 0.523 

z Values significant at **p<0.01 
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correlated with yield, however, none of the correlation coefficients 

were significant. The only significant correlation among the selected 

variables was that of upright density with dry weight of new shoots 

(positive). The correlation method of determining important 

contributors to yield was not very effective for cranberries. 

5.3.3 Stepwise Regression of Cranberry Yield Components 

Certain components of yield were selected as serially important 

in determining yield (Eaton and Kyte, 1978). The variables were log- 

transformed and then subjected to stepwise regression on yield (Table 

5.9). The components selected for a model without a constant were 

upright density (all years) and percent flowering uprights (1989). If 

a constant was added to the model, percent fruit set was selected in 

addition to the other two components (1987 and 1988). However, the 

models containing a constant had much lower correlation coefficients 

Table 5.9 Stepwise regression models for yield component data. 
Variables chosen from: Uj, %UF, flower/Up, %set, g/fruit, yield. 

Year Model repression equation r 

No constant 

1987 Yield = 1.479 UT 0.999 

1988 Yield = 1.483 UT 0.999 

1989 Yield = 1.549 Uj + 0.749 %Up 0.999 

With constant 

1987 ‘ Yield = 11.266 + 0.556 %UF + 0.569 %set 0.70 

1988 Yield = 8.538 + 0.587 Uj + 0.0554 %Up + 1.476 %set 0.67 

1989 Yield = 1.001 + 1.398 Uj + 0.74 %Up 0.77 
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than did those with no constant. Based on this type of analysis, the 

most important factors determining yield in cranberry were upright 

density and the proportion of those uprights which were reproductive. 

In studies on other cranberry cultivars, percent flowering uprights 

and percent fruit set alone (Eaton and Kyte, 1978) or with upright 

density (Shawa, et al., 1981) were found to be major determinants of 

yield based on stepwise regression analyses. 

Eaton and Kyte (1978) also compiled the successive contributions 

of each component to the coefficient of determination in the yield 

model as they were forced into the model in succession. This analysis 

was performed on the data in the current study (Table 5.10). In 1987 

and 1988, the important determinants of yield were upright density and 

percent fruit set. All selected components were significant in 1989. 

The selection of fruit set in this analysis confirmed the findings of 

Table 5.10 Yield components, logarithmic scale. Independent 
contribution to yield (100 x R2) of each yield component taken in 
succession (%). 

Year Ut %UF Flower/Up %Set g/fruit Yield 

1987 37.l*z 11.0 1.5 49.9* 0 99.5* 

1988 40.5* 6.6 7.8 44.8* 0 99.7 

1989 53.7** 36.8** 1.1** 0.9** 7.5** 100** 

z Values significant at **p<0.01, or *p<0.05 

Eaton and Kyte (1978). However, they found that percent flowering 

uprights was the other important determinant in their model. 
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When regression analyses were run using each successive log- 

transformed component as the dependent variable with the other 

variables independent, certain significant correlations between 

variables were found in 1987 and 1989. In 1987, upright density was 

positively correlated with percent flowering uprights and fruit set 

was positively correlated with weight per fruit. In 1989, upright 

density and weight per fruit were positively correlated. Most likely 

the positive correlation between variables was due to some factor or 

factors which had a common effect on those variables. For example, 

fruit set and weight per fruit could both be affected by pollinator 

activity or pollen viability (Shawa, et al., 1981). Fruit weight has 

been found to be correlated with seed number (Hall and Aalders, 1965), 

which was dependent on pollination. When yield was used as the 

dependent variable in the regression analyses, the significant 

positive correlations were with fruit set (1987 and 1988) and with 

upright density and percent flowering uprights (1989). 

Based on all of the yield analyses attempted in this study, 

upright density, percent flowering uprights, and fruit set would have 

to be considered the most important determinants of yield in 'Early 

Black' cranberry. 
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DRY WEIGHT-ROOTS 

DAY NUMBER 

Figure 5.1 Seasonal changes in biomass of roots of 'Early Black' 
cranberry receiving 335 kg N-P-K/ha. Data points are means of 5 
replicates. 

DRY WEIGHT - NEW SHOOTS 

Figure 5.2 Seasonal changes in biomass of new shoots of 'Early Black' 
cranberry receiving 335 kg N-P-K/ha. Data points are the means of 5 
replicates. 
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DRY WEIGHT - NEW SHOOT 

Figure 5.3 Seasonal change in biomass of new shoots of 'Early Black' 
cranberry, estimated regression lines. Equations shown in Table 5.1. 
A: biomass vs day number; B: biomass vs cumulative growing degree 
days. 
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DAY NUMBER 

Figure 5.4 Regression of log-transformed cranberry shoot dry weight 
(30x30 cm area) data, D=day number. A: 1986; prediction equation: log 
dry weight = -0.000 D2 + 0.114 D - 9.389 (r=0.83). B: 1987; 
prediction equation: log dry weight = -0.000 D2 + 0.202 D - 19.132 
(r=0.92). 
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DAY NUMBER 

DAY NUMBER 

Figure 5.4 Continued. C: 1988; prediction equation: log dry weight = 
0.000 D3 -0.003 D2 + 0.754 D - 53.068 (r2=0.83). D: 1989; prediction 
equation: log dry weight = -0.000 D2 + 0.118 D - 9.476 (r2=0.59). 
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FRUIT FRESH WEIGHT 

Figure 5.5 Seasonal changes in biomass of individual fruit (fresh 
weight) of 'Early Black' cranberry receiving 335 kg N-P-K/ha. Data 
points are the means of 5 replicates. 

FRUIT DRY WEIGHT 

Figure 5.6 Seasonal changes in biomass of individual fruit (dry 
weight) of 'Early Black' cranberry receiving 335 kg N-P-K/ha. Data 
points are the means of 5 replicates. 

74 



FRUIT DRY WEIGHT X 10 
5 

Figure 5.7 Seasonal changes in biomass of individual fruit of 'Early 
Black' cranberry, calculated regression lines correlating biomass and 
day number. Equations shown in Table 5.2. 

FRUIT DRY WEIGHT X 10 5 

Figure 5.8 Seasonal changes in biomass of individual fruit of 'Early 
Black' cranberry, calculated regression lines correlating biomass and 
cumulative growing degree days. Equations shown in Table 5.2. 
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DRY WEIGHT-FRUIT 

Figure 5.9 Seasonal changes in biomass of total fruit of 'Early 
Black' cranberry receiving 335 kg N-P-K/ha. Data points are the means 
of 5 replicates. 

TISSUE BIOMASS-1986 

Figure 5.10 Seasonal changes in tissue biomass of 'Early Black' 
cranberry plantings receiving 335 kg N-P-K/ha. Data points are the 
means of 5 replicates, data collected in 1986. 
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TISSUE BIOMASS -1987 

Figure 5.11 Seasonal changes in tissue biomass of 'Early Black' 
cranberry plantings receiving 335 kg N-P-K/ha. Data points are the 
means of 5 replicates, data collected in 1987. 

TISSUE BIOMASS-1988 

Figure 5.12 Seasonal changes in tissue biomass of 'Early Black' 
cranberry plantings receiving 335 kg N-P-K/ha. Data points are the 
means of 5 replicates, data collected in 1988. 
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TISSUE BIOMASS-1987 

Figure 5.13 Seasonal changes in tissue biomass of 'Early Black' 
cranberry plantings receiving 335 kg N-P-K/ha. Data points are the 
means of 5 replicates, data collected in 1989. 

DRY WEIGHT - NEW SHOOTS 
: 

Figure 5.14 Effects of N-P-K fertilizer on accumulation of new shoot 
biomass in 'Early Black' cranberry. Data points are the means of 5 
replicates, data collected in 1988, second year of treatment. 
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DRY WEIGHT - NEW SHOOTS 

Figure 5.15 Effects of N-P-K fertilizer on accumulation of new shoot 
biomass in 'Early Black' cranberry. Data points are the means of 5 
replicates, data collected in 1989, third year of treatment. 

FRUIT DRY WEIGHT 

DAY NUMBER 

Figure 5.16 Effects of N-P-K fertilizer on dry weight accumulation in 
individual fruit of 'Early Black' cranberry. Data points are the 
means of 5 replicates, third year of treatment. 

79 



DRY WEIGHT-FRUIT 
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Figure 5.17 Effects of N-P-K fertilizer on accumulation of total 
fruit biomass in 'Early Black' cranberry. Data points are the means 
of 5 replicates, data collected in 1988, second year of treatment. 

DRY WEIGHT-FRUIT 

Figure 5.18 Effects of N-P-K fertilizer on accumulation of total 
fruit biomass in 'Early Black' cranberry. Data points are the means 
of 5 replicates, data collected in 1989, third year of treatment. 
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CHAPTER 6 

SEASONAL AND TISSUE CHANGES IN NUTRIENT ELEMENT CONTENT OF 'EARLY 

BLACK' CRANBERRY 

6.1 Seasonal Patterns for Nutrient Elements in Cranberry Tissues 

The concentrations of mineral elements in tissues of cranberry 

plants changed during the growing season. The patterns for three 

years (1987 to 1989), ten elements (N, P, K, Ca, Mg, B, Cu, Fe, Mn, 

Zn), and five tissues (new shoots, old leaves, woody stems, roots, 

fruit) are shown in Figures 6.1 to 6.50 (p. 114-138). Those figures 

were based on results from plots receiving 335 kg N-P-K/ha combined 

with those from other treatments which did not differ significantly 

from the 335 kg/ha plots (see figure legends). Element concentrations 

in root tissue were the most stable, while the seasonal differences in 

new shoot tissue were all statistically significant. By using ANOVA 

and profile analysis, periods of element concentration stability 

during the season were identified for the five tissues. 

6.1.1 Seasonal Trends in Element Content of 'Early Black' Cranberry 

Tissues 

Nitrogen: In all three years, N concentration in new shoot 

tissue declined rapidly (Figure 6.1, p. 114) during the first month of 

new growth (June). The content of N in new shoots then was stable 

with a slight decline associated with the early stages of fruit 

development. The N content of old leaves (those produced in previous 
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seasons) began to decline rapidly at about the same time that new 

growth emerges (Figure 6.2, p. 114). The N pattern for woody stems 

was more variable, with some indication of transient increases which 

may be associated with N movement between other plant parts via the 

stems (Figure 6.3, p. 115). One such transient occurred in 1987 at 

the time of new growth emergence, and another occurred in 1989 at the 

beginning of fruit development. The N content of roots was variable 

(Figure 6.4, p. 115) with minima roughly associated with early 

development of new shoots and fruit. In 1987 there was no significant 

effect of date on the N concentration of roots. The N concentration 

pattern in fruit was similar to that in new shoots, with an initial 

high concentration declining to a stable lower value (Figure 6.5, p. 

116). That type of pattern is most likely due to dilution of N during 

the rapid growth of shoot and fruit, which occur after bud break and 

after fruit set, respectively. A decline in N concentration in 

foliage during the season has been shown for peaches (Batjer and 

Westwood, 1958), grapes (Cummings, 1977), lowbush blueberries (Trevett 

et al., 1968; Townsend and Hall, 1970), plums (Sanchez-Alonso and 

Lachica, 1987b), blackberries (Clark et al., 1988), rabbiteye 

blueberries (Spiers, 1982), apples (Chuntanaparb and Cummings, 1980), 

sweet cherries (Sanchez-Alonso and Lachica, 1987a), and other 

cranberry cultivars (Chaplin and Martin, 1979; Dana, 1981b). As for 

lowbush blueberry leaves (Townsend and Hall, 1970), the general 

pattern of N change in 'Early Black' cranberry tissues held from year 

to year. 

Phosphorus: As for N, the general patterns for P change in 

'Early Black' cranberry tissue held over the three years of the study, 
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although root P concentrations were variable. The pattern of change 

in P concentration in new shoots and fruit (Figures 6.6, p. 116 and 

6.10, p. 118) was similar to that for N, showing dilution by growth. 

The P levels in old leaves (Figure 6.7, p. 117) declined slightly over 

the season, with no apparent change in pattern associated with any 

developmental event with the exception of a slightly greater decline 

in 1987 and 1988 at the time of bud break (new growth emergence). A 

decline in P concentration in foliage during the season also has been 

shown in peaches (Batjer and Westwood, 1958), lowbush blueberries 

(Trevett et al., 1968; Townsend and Hall, 1970), plums (Sanchez-Alonso 

and Lachica, 1987b), blackberries (Clark et al., 1988), grapes 

(Cummings, 1977), rabbiteye blueberries (Spiers, 1982), apples 

(Chuntanaparb and Cummings, 1980), sweet cherries (Sanchez-Alonso and 

Lachica, 1987a), and other cranberry cultivars (Chaplin and Martin, 

1979; Dana, 1981b). The P concentration in woody stems (Figure 6.8, 

p. 117) declined until about 10 days after bud break and then rose for 

the rest of the season. Increases in P concentration in root tissue 

(Figure 6.9, p. 118) were associated with times of root tissue 

production (June and August), with an overall pattern of increase. 

However, date had no statistically significant effect on P 

concentration in roots in 1988 or 1989. 

Potassium: As for N and P, K concentrations in new shoots and 

fruit of 'Early Black' cranberry declined during the season (Figures 

6.11, p. 119 and 6.15, p. 121). However, the slope of the function 

was smaller for K, with the decline in fruit especially being very 

slight. Cranberry, in common with other fruit such as apple, 

accumulate K in fruit tissue so that the concentration in the fruit is 
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greater than that in the leaves. A declining pattern of K in foliage 

during the season also has been shown associated with fruit production 

for peaches (Batjer and Westwood, 1958), lowbush blueberries (Trevett 

et al., 1968), blackberries (Clark et al., 1988), grapes (Cummings, 

1977), sweet cherries (Sanchez-Alonso and Lachica, 1987a), and other 

cranberry cultivars (Chaplin and Martin, 1979; Dana, 1981b). The K 

content in old leaves (Figure 6.12, p. 119) of cranberry declined 

steeply beginning about 15 days prior to bud break. Most likely, K (a 

mobile element) was recycled to newly produced tissues. The pattern 

of K concentration in woody stems (Figure 6.13, p. 120) during the 

season was variable, with no significant effect of date on K 

concentration in 1988. The K content in roots (Figure 6.14, p. 120) 

rose early in the season, declined during rapid new shoot growth, and 

rose again just prior to fruit set. The period of declining K 

concentration in roots occurred during the June period of root 

production, and the decline in K may have been due to dilution by 

growth. 

Calcium: The Ca concentration in 'Early Black' cranberry foliage 

increased during the season (Figures 6.16, p. 121 and 6.17, p. 122). 

The most rapid increase in Ca in new shoots occurred during fruit 

development. Seasonal accumulation of Ca in foliage also occurred in 

peaches (Batjer and Westwood, 1958), lowbush blueberries (Trevett et 

al., 1968; Townsend and Hall, 1970), plums (Sanchez-Alonso and 

Lachica, 1987b), blackberries (Clark et al., 1988), grapes (Cummings, 

1977), apples (Chuntanaparb and Cummings, 1980), sweet cherries 

(Sanchez-Alonso and Lachica, 1987a), and other cranberry cultivars 

(Chaplin and Martin, 1979; Dana, 1981b; DeMoranville and Deubert, 
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1986). Little of the Ca which accumulated in the cranberry foliage 

was mobilized into the developing fruit. The Ca concentration in the 

fruit (Figure 6.20, p. 123) was much lower than that in the new shoots 

and declined rapidly during fruit development. The Ca concentrations 

in woody stems (Figure 6.18, p. 122) varied within a narrow range. 

The date had no effect on Ca concentration in stems in 1989. The Ca 

concentration in roots (Figure 6.19, p. 123) declined early in the 

season to a stable level. The effect of date on Ca concentration in 

roots was not significant in 1988 or 1989. 

Magnesium: The pattern of Mg concentration in new shoots of 

'Early Black' cranberry (Figure 6.21, p. 124) was similar to that for 

Ca. This same pattern of seasonal accumulation of Mg was shown for 

peaches (Batjer and Westwood, 1958), lowbush blueberries (Trevett et 

al., 1968), plums (Sanchez-Alonso and Lachica, 1987b), apples 

(Chuntanaparb and Cummings, 1980), sweet cherries (Sanchez-Alonso and 

Lachica, 1987a), and other cranberry cultivars (Chaplin and Martin, 

1979; Dana, 1981b; DeMoranville and Deubert, 1986). The Mg 

concentration in old leaves increased at a much lower rate (Figure 

6.22, p. 124) than Mg in new shoots, and the date effect on Mg in old 

leaves in 1989 was not significant. The Mg content in woody stems 

(Figure 6.23, p. 125) rose just prior to bud break, then declined as 

new shoots developed. This pattern may indicate recycling of Mg into 

new growth from the stems or through the stems (Mg in the roots 

declined during that same period). The Mg levels in the root remained 

low until the time of fruit development (Figure 6.24, p. 125). The Mg 

concentration patterns for cranberry fruit (Figure 6.25, p. 126) were 

similar to those for N, P, K, and Ca. 
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Boron: B concentration in new or old foliage (Figures 6.26, p. 

126 and 6.27, p. 127) increased during the season. Similar B patterns 

were found in the foliage of lowbush blueberries (Trevett et al., 

1968), grapes (Cummings, 1977), sweet cherries (Sanchez-Alonso and 

Lachica, 1987a), and other cranberry cultivars (Chaplin and Martin, 

1979; Dana, 1981b). The B concentration in woody stems (Figure 6.28, 

p. 127) rose rapidly just prior to fruit set, possibly a recycling 

response. The B concentration in the roots (Figure 6.29, p. 128) was 

variable. Fruit B concentration (Figure 6.30, p. 128) declined 

slightly over time. 

Copper: With some variability, Cu levels in new and old 

cranberry foliage (Figures 6.31 and 6.32, p. 129) declined during the 

season. Similar patterns were found for blackberries (Clark et al., 

1988), grapes (Cummings. 1977), and other cranberry cultivars (Chaplin 

and Martin, 1979; Dana, 1981b). The Cu concentration in woody stems 

(Figure 6.33, p. 130) was stable for most of the season. Cranberry 

roots accumulated Cu at concentrations 100 times that in other tissue 

(Figure 6.34. p. 130). The lowest Cu concentrations in roots occurred 

during rapid new shoot growth. The pattern for Cu concentrations in 

fruit (Figure 6.35, p. 131) was similar to that for the other elements 

in 'Early Black' cranberry fruit. 

Iron: Ins Fe 'evels in cranberry new shoot tissue (Figure 6.36, 

p. 131) were var-abie, but there was little net change in Fe 

concentration by the end of the season. The Fe levels in old leaves 

(Ficure 5.37. p. 132) were very stable and higher than those found in 

-ew snoots. Variable re levels in foliage also have been found in 

'owousn blueberries (Trevett et al., 1968; Townsend and Hall, 1970) 



and grapes (Cummings, 1977). The Fe levels in woody stems (Figure 

6.38, p. 132) increased in the later part of the season and were 

higher than those in the foliage. In addition to accumulating Fe in 

stem tissue, the cranberry plants seemed to accumulate Fe in roots as 

well (Figure 6.39, p. 133). Root Fe concentrations declined only 

during rapid root growth in June. The Fe levels in the fruit (Figure 

6.40, p. 133) were variable. However, cranberry fruit seem to exclude 

Fe, with Fe levels lower than those in any other tissue. 

Manganese: The Mn concentration increased during the season in 

both new shoots and old leaves (Figures 6.41 and 6.42, p. 134), with 

Mn levels higher in old leaves. Seasonal increase in Mn in foliage 

also has been shown for plums (Sanchez-Alonso and Lachica, 1987b) and 

other cranberry cultivars (Chaplin and Martin, 1979; Dana, 1981b). 

The Mn concentrations in woody stems and roots (Figures 6.43 and 6.44, 

p. 135) were variable. The effect of date on stem Mn was not 

significant in 1988 or 1989, and the effect of date on root Mn 

concentration was not significant in 1987 or 1988. The Mn levels in 

new tissues (shoots and roots) were lower than those in old leaves and 

stems. Fruit (Figure 6.45, p. 136) Mn levels declined during 

development, with apparent exclusion of Mn. 

Zinc: Allowing for some variability, Zn concentrations in 

cranberry foliage and woody stems (Figures 6.46, p. 136 and 6.47 and 

6.48, p. 137) remain about the same throughout the season. The 

seasonal pattern for foliage Zn was similar for grapes (Cummings, 

1977). Root Zn concentrations (Figure 6.49, p. 138) were very 

variable but the trend was towards higher values late in the season. 

However, the date effect on root Zn was not significant in 1987 or 

87 



1988. The concentration of Zn, like those of most of the other 

elements, declined in cranberry fruit (Figure 6.50, p. 138). 

6.1.2 Seasonal Changes in Elemental Content of 'Early Black' Cranberry 

Tissues: Stable Periods 

Following the ANOVA for repeated measures analysis of the 

seasonal nutrient data, a profile analysis was performed to contrast 

nutrient values on adjacent dates. The average nutrient values by 

date with the statistically similar values (stable periods) linked by 

an underline are shown in Appendix A, Tables A.1-A.5Q (pp. 254-278). 

The common stable periods over the three years of the study also are 

shown on the graphs of tissue element concentrations (Figures 6.1 to 

6.50, p. 114-138). Common stable periods (all elements) for the five 

tissue studied were as follows: new shoots - 15 August to 15 

September, old leaves and woody stems - 15 to 30 June, roots 1 to 31 

July, and fruit 1 to 14 September. These stable periods are for 

'Early Black' cranberry in Massachusetts and may not hold for other 

cultivars with different developmental timing or in other growing 

areas. Chaplin and Martin (1979) determined a stable period for new 

shoots of Oregon cranberries of 15 August to 1 September for the 

elements N, P, K, Ca, B, Cu and Zn, but Mg, Mn, and Fe were only 

stable from 15 June to 15 July in that study. In mixed new and old 

leaves of 'Howes' cranberry, DeMoranville and Deubert (1986) found 

that N, K, Ca, and Mg concentrations were stable from 15 August to 15 

September, but P concentration was not. The late season stable period 
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for new shoots and fruit is most likely due in part to slowing and 

cessation of biomass production. 

The nutrient ranges in the five cranberry tissues studied at the 

'ate season stable period (three years combined) are shown in Table 

5.1. These values for 'Early Black' cranberry are in fair agreement 

with those published by Dana (1981c) for new shoot tissue of 'Searles' 

cranDerry, by Townsend and Hall (1971) for new shoots of 'Ben Lear', 

'Stevens', and 'Howes' cranberry, and by Bear (1949) for cranberry 

fruit. The values found by Townsend and Hall (1971) were higher for 

N, Ca, and Mn than those found in this study. The difference in N was 

roost likely due to differences in soil organic content between 

Massachusetts and Nova Scotia. Mn content is known to vary widely in 

cranberry plants from different bogs. 

Nutrient levels in the leaves and stems of stands of 

rjckleberries {Vaccinium globulare Rydb.) have been determined (Stark 

et al., 1989). Of the ten elements studied for cranberries, the 

"jckleberry leaves had higher concentrations of all elements but Ca 

(similar) and Zn (lower), whereas the huckleberry stems were higher in 

n, P, K, Mg, and Mn, but lower in Ca and Fe. Levels of B, Cu, and Zn 

ir: stems were similar for huckleberry and cranberry. The generally 

hicner levels of nutrients in huckleberry were interesting, as the 

huckleberries were not fertilized. It appears that cranberries, like 

lowbush blueberries (Trevett et al., 1968), are low nutrient plants, 

even under well fertilized conditions and compared to other Vaccinium 

species. 
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Table 6.1 Nutrient ranges in cranberry - stable nutrient periods. 

Element New shoot Old leaves Woody stems Roots Fruit 

N % 0.95-1.15 0.65-0.75 0.50-0.65 0.55-0.75 0.35-0.50 
P % 0.12-0.15 0.11-0.16 0.09-0.12 0.12-0.16 0.08-0.10 
K % 0.45-0.75 0.30-0.50 0.30-0.40 0.12-0.17 0.75-0.95 
Ca % 0.65-0.85 0.60-0.90 0.20-0.30 0.08-0.13 0.07-0.08 
Mg % 0.22-0.26 0.16-0.22 0.07-0.10 0.06-0.08 0.06-0.07 
B ppm 25-42 38-45 14-17 10-20 12-18 
Cu ppm 4-6 3-6 11-13 160-300 6-8 
Fe ppm 60-70 50-300 300-1000 4000-6000 14-32 
Mn ppm 140-240 200-300 500-650 130-180 12-30 
Zn ppm 20-25 15-30 20-40 40-70 8-12 

6.2 Effect of N-P-K on Seasonal Element Levels in Cranberry Tissues 

The addition of N-P-K fertilizer to cranberry plantings led to 

changes in the mineral element contents of new shoot tissue (see 

Chapter 4). N-P-K fertilizer use also led to changes in other plant 

tissue element levels. These will be discussed in the following 

sections. For some tissues and some elements N-P-K fertilizer had no 

effect. These unaffected tissue elements are listed in Tables 6.2 and 

6.3. Generally, there were few effects on elements other than N, P, 

and K. Of the minor elements, B was the most affected by the use of 

N-P-K fertilizer. 
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Table 6.2 Effects of N-P-K on seasonal major nutrient levels in 
tissues of 'Early Black' cranberry. For each element below, the level 
of the element in the tissues listed was not affected by N-P-K level. 

1987 1988 1989 

old leaves 
woody stems 
roots 
fruit 

Nitroqen 
roots 
new shoots 
fruit 

fruit 

woody stems 
Phosphorus 
new shoots 
fruit 

fruit 

roots 
Potassium 
roots 
new shoots 

roots 

old leaves 
woody stems 
new shoots 
fruit 

Calcium 
roots 
new shoots 
fruit 

roots 
new shoots 

old leaves 
woody stems 
new shoots 

Maqnesium 
woody stems 
new shoots 
fruit 

all tissues 

6.2.1 Effect of N-P-K Treatment on Elements in Old Leaves 

In the first year of N-P-K treatments, only P, K, Cu, and Fe 

levels in old leaves were affected by treatment. The levels of P and 

K were positively correlated with fertilizer treatment (Table 6.4) 

Because these are leaves produced in previous seasons, little effect 

of current season treatments is to be expected. However, in the 

second year, all elements except Cu and Zn were affected by N-P-K 

(Table 6.4) and in the third year all elements but Mg, Cu, and Mn were 
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Table 6.3 Effects of N-P-K on seasonal minor nutrient levels in 
tissues of 'Early Black' cranberry. For each element below, the level 
of the element in the tissues listed was not affected by N-P-K level. 

old leaves 
woody stems 
roots 

Boron 
roots 
fruit 

roots 
fruit 

woody stems 
roots 
fruit 

CoDDer 
all tissues old leaves 

woody stems 
roots 
fruit 

roots 
new shoots 

Iron 
woody stems 
roots 
new shoots 
fruit 

roots 
new shoots 
fruit 

old leaves 
woody stems 
roots 
new shoots 

Manoanese 
woody stems 
roots 
new shoots 
fruit 

old leaves 
woody stems 
new shoots 

old leaves 
woody stems 
roots 
new shoots 

Zinc 
old leaves 
roots 
new shoots 
fruit 

woody stems 
roots 
new shoots 
fruit 

affected by N-P-K levels. As was the case for new shoots, N, P, and K 

in old leaves were positively affected by N-P-K dose. Although N-P-K 

had no effect on Ca or Mg in new shoots, both elements in old leaves 

were negatively affected in 1988, as was Ca in 1989. The Mg levels in 

old leaves of lowbush blueberry also were negatively affected by the 

addition of N-P-K fertilizer (Trevett et al., 1968). As was the case 

for new shoots, B concentration in old leaves was lower in all 

fertilized treatments compared to unfertilized. The old leaves in 

92 



Table 6.4 Element levels in old leaves of 'Early Black' cranberry 
receiving 4 rates of N-P-K fertilizer. Data for tissues and elements 
with significant treatment effects are shown. Values represent the 
mean across all sample dates, 5 replicates. Significance of F from 
linear regression analyses. 

1987 

N-P-K level %P %K ppm Cu ppm Fe 
0 kg/ha 0.11 0.38 13 310 

170 kg/ha 0.12 0.41 11 317 
335 kg/ha 0.12 0.44 4 134 
505 kg/ha 0.12 0.45 2 54 
Sig. of F p=0.002 p=0.008 p=0.028 p=0.015 
n=280 r2=0.03 r2=0.07 r2=0.02 r2=0.02 

1988 

N-P-K level %N %P %K %Ca % Mg 
0 kg/ha 0.76 0.13 0.40 0.86 0.22 

170 kg/ha 0.79 0.14 0.45 0.81 0.22 
335 kg/ha 0.80 0.15 0.46 0.80 0.22 
505 kg/ha 0.85 0.15 0.47 0.72 0.21 
Sig. of F p=0.002 p<0.001 p=0.003 p<0.001 p<0.001 
n=184 r2=0.05 r2=0.16 r2=0.05 r2=0.10 r2=0.07 

ppm B ppm Fe ppm Mn 
0 kg/ha 47 124 246 

170 kg/ha 41 135 237 
335 kg/ha 38 145 263 
505 kg/ha 36 171 307 
Sig. of F p<0.001 p<0.001 p<0.001 
n=184 r2=0.16 r2=0.13 r2=0.08 

1989 

N-P-K level %N %P %K %Ca 
0 kg/ha 0.65 0.09 0.28 0.84 

170 kg/ha 0.68 0.11 0.28 0.87 
335 kg/ha 0.70 0.13 0.32 0.82 
505 kg/ha 0.75 0.13 0.31 0.76 
Sig. of F p<0.001 p<0.001 p=0.001 p=0.018 
n=136 r2=0.10 r2=0.43 r2=0.09 r2=0.04 

ppm B ppm Fe ppm Zn 
0 kg/ha 54 265 24 

170 kg/ha 45 295 24 
335 kg/ha 41 303 29 
505 kg/ha 40 308 28 
Sig. of F p<0.001 p=0.008 p=0.014 
n=136 r2=0.21 r2=0.05 r2=0.04 
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plots receiving 505 kg N-P-K/ha had the highest Fe and Mn levels (1987 

Fe was an exception), although both elements in new shoots were 

unaffected by N-P-K level. 

6.2.2 Effect of N-P-K Treatment on Elements in Woody Stems 

The effects of N-P-K treatments on element levels in cranberry 

woody stems (Table 6.5) were generally similar to those on old leaves. 

N-P-K treated plants had lower Zn levels in stems than those receiving 

no fertilizer. In contrast to old leaves, stems of plants receiving 

N-P-K had less Fe than those which were not fertilized. As expected, 

effects were less common in the first year of treatment and increased 

with succeeding seasons. 

6.2.3 Effect of N-P-K Treatment on Elements in Roots 

Most of the effects of N-P-K treatment on roots were on the 

concentration of P, which was affected positively in all years (Table 

6.6). The concentrations of Ca and Mg were each negatively affected, 

Ca in one year of three and Mg in two years. The effects on Mn, 

although statistically significant, showed no sensible trend. The 

large degree of variability in the root data made it difficult to draw 

any conclusions. The effects on P were interesting. Cranberry is a 

mycorrhizal plant. Often the addition of P containing fertilizers to 

such plants has negative consequences in elemental content and biomass 

production. No such negative effects were found in this study. 
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Table 6.5 Element levels in woody stems of 'Early Black' cranberry 
receiving 4 rates of N-P-K fertilizer. Data for tissues and elements 
with significant treatment effects are shown. Values represent the 
mean across all sample dates, 5 replicates. Significance of F from 
linear regression analyses. 

1987 

N-P-K level %K ppm Fe 
0 kg/ha 0.29 306 

170 kg/ha 0.30 293 
335 kg/ha 0.30 299 
505 kg/ha 0.31 270 
Sig. of F p=0.008 p=0.007 
n=220 r2=0.03 r2=0.03 

1988 

N-P-K level %N %P %K %Ca 
0 kg/ha 0.52 0.09 0.31 0.28 

170 kg/ha 0.54 0.10 0.34 0.27 
335 kg/ha 0.56 0.11 0.35 0.26 
505 kg/ha 0.57 0.11 0.36 0.24 
Sig. of F p=0.016 pcO.OOl pcO.OOl pcO.OOl 
n=196 r2=0.03 r2=0.18 r2=0.10 r2=0.06 

ppm B ppm Zn 
0 kg/ha 17 33 

170 kg/ha 16 31 
335 kg/ha 15 30 
505 kg/ha 16 30 
Sig. of F p=0.026 pcO.OOl 
n=196 r2=0.03 r2=0.06 

1989 

N-P-K level %N %P %K %Ca 
0 kg/ha 0.50 0.08 0.29 0.30 

170 kg/ha 0.49 0.08 0.30 0.26 
335 kg/ha 0.51 0.09 0.34 0.23 
505 kg/ha 0.55 0.10 0.37 0.22 
Sig. of F p=0.005 p<0.001 p<0.001 pcO.OOl 
n=133 r2=0.06 r2=0.13 r2=0.12 r2=0.14 

ppm B ppm Fe 
0 kg/ha 23 1061 

170 kg/ha 21 926 
335 kg/ha 18 846 
505 kg/ha 19 893 
Sig. of F p=0.026 p=0.012 
n=133 r2=0.04 r2=0.05 
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able 6.6 Element levels in roots of "Early Black' cranberry 
receiving 4 rates of N-P-K fertilizer. Data for tissues and elements 
with significant treatment effects shown. Values represent the mean 
across all sample dates, 5 replicates. Significance of F from linear 
regression analyses. 

5.2.4 Errect of N-P-K Treatment on £"aments in Fruit 

The addition of N-P-K fertilizer to cranberry plants led to an 

increase in fruit K concentration in all years of the study (Table 

6.7). This increase was expected due to the fact that cranberry fruit 

were strong sinks for K. When French prunes were fertilized with high 
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Table 6.7 Element levels in fruit of 'Early Black' cranberry 
receiving 4 rates of N-P-K fertilizer. Data for tissues and elements 
with significant treatment effects shown. Values represent the mean 
across all sample dates, 5 replicates. Significance of F from linear 
regression analyses. 

1987 

N-P-K level %P %K %Mg 
0 kg/ha 0.06 0.45 0.04 

170 kg/ha 0.09 0.69 0.05 
335 kg/ha 0.10 0.76 0.05 
505 kg/ha 0.10 0.80 0.08 
Sig. of F p=0.002 p<0.001 p=0.013 
n=59 r2=0.15 r2=0.35 r2=0.10 

ppm B ppm Fe ppm Mn ppm Zn 
0 kg/ha 11 10 8 5 

170 kg/ha 15 13 11 9 
335 kg/ha 15 16 13 • 9 
505 kg/ha 15 18 13 9 
Sig. of F p=0.045 p<0.001 p=0.004 p=0.004 
n=59 r2=0.07 r2=0.20 r2=0.13 r2=0.13 

1988 

N-P-K level %K 
0 kg/ha 0.77 

170 kg/ha 0.83 
335 kg/ha 0.81 
505 kg/ha 0.93 
Sig. of F p<0.001 
n=110 r2=0.10 

1989 

N-P-K level %K %Ca ppm Mn 
0 kg/ha 0.70 0.13 34 

170 kg/ha 0.78 0.11 28 
335 kg/ha 0.82 0.09 25 
505 kg/ha 0.85 0.09 24 
Sig. of F p<0.001 p<0.001 p<0.001 
n=l 16 r2=0.26 r2=0.16 r2=0.17 

K levels, the K concentration in the fruit did not 

(Niederholzer et al., 1991). However, the total K 

change 

content in fruit 
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did increase due to greater fruit biomass being produced in those 

treatments. 

By the third year of treatment, there may have been some 

antagonism of Ca by the K added in the fertilizer. The antagonistic 

effect may also have been due to the high N levels in the fertilizer. 

Cummings and Lilly (1980) found that adding N fertilizer to highbush 

blueberries led to decreased Ca in the fruit. Cranberry fruit tend to 

be low in Ca and N-P-K treatments led to even lower fruit Ca 

concentrations. Calcium deficiency may be the cause for fruit quality 

problems which have been associated with the use of large quantities 

of N-P-K fertilizers on cranberries. This relationship requires 

further investigation before any conclusions can be drawn. 

The use of N-P-K fertilizer tended to lead to higher levels of 

minor elements in the fruit. However, this result did not always hold 

(e.g. 1989 Mn). 

6.3 Nutrient Content of the Plants in a Cranberry Boo 

Based on measurements of plant biomass and nutrient 

concentration in 'Early Black' cranberry during the season, the 

amounts of the elements in the various tissues per unit area (ha) were 

calculated. The data were collected from plots (5 replicates) 

receiving 335 kg N-P-K/ha. Three groups of patterns for element 

content change during the season were found. The data for the 10 

elements in 1987 are shown in Figures 6.51 to 6.60 (p. 139-143). The 

1988 and 1989 data are shown in Appendix B, Figures B.l to B.20 (p. 

280-289). The late season declines in woody stem element content in 
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1988 and 1989 were related to the way biomass was assessed in those 

years. Woody stems were included only if they had leaves attached. 

This method led to an underestimation of the amount of biomass, and 

consequently, the amount of element content present. 

Group I: This group included N, P, K, and Zn (Figures 6.51 and 

6.52, p. 139, 6.53, p. 145, and 6.60, p. 143, respectively). While 

the concentration of the elements in new shoots declined (N, P, and K) 

or remained stable (Zn) during the season, the content (kg/ha) of the 

elements rose throughout the season as biomass accumulated. The 

elemental content in old leaf and woody stem tissues declined, with 

transient increases in the element content in woody stems occurring at 

the time of bud break and fruit set. These increases may have been 

due to movement of elements to growing tissues via the stems. In 

comparison to leaves, Zn accumulated in stem tissue to a greater- 

extent than did N, P, or K. The decline in element content of old 

cranberry leaves was similar to declines in N and K in peach leaves 

late in the season, prior to leaf shed (Batjer and Westwood, 1958). 

Old cranberry leaves were shed during the season rather than all at 

once at season's end. The element content of roots increased in June 

and August, times of increased root biomass production. Most likely, 

new roots were produced at those times in response to hormonal signals 

from newly produced vegetation (June) and fruit (August). The 

seasonal increases in root element content were most pronounced for P, 

which was present at high levels in the soil of these plots. A 

decline in element content in September was associated with a loss of 

root biomass at that time. Although the concentration of N, P, and K 

in root tissue was low, the roots served as a large reservoir for 
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those elements (kg/ha) due to the large amount of root biomass present 

in a cranberry bog. The pattern for fruit element content over the 

season was similar to that for new shoots, with the content increasing 

despite decreasing element concentration in the fruit. N, P, and K 

contents per peach fruit also increased during development, while 

percents of the elements in dry fruit tissue declined (Batjer and 

Westwood, 1958). K content of cranberry fruit was quite high; in 

1988, it was higher than that in new shoots (Figure B.5, pg. 282). 

The K concentration in cranberry fruit also was higher than that in 

new shoots (Table 6.1). Late in the season, K content in new shoots 

leveled out, despite biomass increase. This may be Indicative of K 

being moved from new leaves to developing fruit as fruit accumulated 

K. A similar pattern for K content in leaves and fruit of French 

prune was documented by Niederholzer et al. (1991). They postulated 

that, late in the season, roots might not have the carbohydrate 

reserves to take up K at high rates, so that K was scavenged from the 

leaves to accumulate in the fruit. 

Group II: This group included Ca, Mg, and B (Figures 6.54, p. 

140, 6.55 and 6.56, p. 141, respectively). The basic direction of 

element movement was the same for this group as for the first group. 

However, the rate of increase in element content in new shoots was 

higher for this group, while the rate of loss from old leaves and 

stems was slower. The steeper increase was due to the combination of 

biomass increase and element concentration increase during the season. 

The slow loss in old tissues may have been due to continued deposition 

of Ca, Mg, and B in old tissues. The contents of these elements in 

roots showed patterns similar to the first group. The fruit content 
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pattern differed in that while the concentration declined (as in the 

first group), the content rose only slightly. Biomass production did 

not overcome concentration decreases, especially for Ca and B. The 

slow rate of loss from old tissues and the slow increase of these 

elements in fruit indicated that Ca and B were not mobile in cranberry 

plants. Transient increases in stem Mg may indicate that Mg was more 

mobile than the other elements in the group. 

Group III: This group included Cu, Fe, and Mn (Figures 6.57 and 

6.58, p. 142, and 6.59, p. 143). The patterns for these elements 

showed compensation by the cranberry plants for the high minor element 

availability in acid soils. The concentrations of all three elements 

were lowest in fruit tissue and low in new shoot tissue. These 

elements were concentrated in certain tissues; Cu in roots, Fe in 

roots and somewhat in stems, and Mn in old stems and leaves. The high 

root Cu and Fe levels may have been due to precipitation on the root 

surface. Cranberries grown in solution culture by Rosen et al. (1990) 

also accumulated Fe in root tissue. With x-ray microanalysis, they 

showed that the Fe appeared to be precipitated on the root surface as 

iron phosphate. For new shoots and fruit the element content pattern 

was similar to that for Group I, but with a slower rate of change in 

fruit. 

6.4 Nutrient Movement in a Cranberry Bog 

A summary of biomass produced and lost during the season is 

presented in Table 6.8. Leaves were produced on the new shoot tissue 

and accounted for half the new shoot biomass by the end of the season. 
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Table 6.8 Biomass (dry weight) produced or lost during the growing 
season by 'Early Black' cranberries receiving 335 kg N-P-K/ha. 

Leaves (kg/ha) 

Produced Lost 
1987_1988 1987_1988 
1937 2421 Shed 1722 1507 

Harvest/winter 215 1452 

Notes: 1. Leaf biomass produced is 1/2 of the total new shoot 
production. 2. Harvest/winter loss is calculated by subtracting the 
leaf biomass at the beginning of the following season from the sum 
of old leaves plus leaves produced at season's end. 

Fruit 

1987_1988_1989 
Percent dry weight 12.2 10.4 * 11.3 
Dry weight of 100 bbl/A (kg/ha) 1367 1166 1267 

Note: 100 bbl (barrels) equals 10,000 lb. The bbl is a standard 
measure for cranberries. 

Roots (kg/ha) 

Produced Lost 
1987 1988 1989 1987 1988 1989 

70 10 80 50 70 
40 60 70 70 90 80 
20 40 40 50 80 

total 130 110 150 160 140 210 

Note: Root biomass was produced in June, August, and late September. 
Root biomass declined in May, mid-July, and early September. 

Leaves were lost as old leaves were shed during the season and when 

some leaves were knocked off and removed in harvest and subsequent 

'detrashing' operations. In detrashing, the bog was flooded and 

agitated by passing machinery over the surface. Detached plant tissue 

floated to the surface of the water and was removed from the bog. 
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Approximately 75% of the 'trash' was removed in this operation; the 

remainder staying on the soil surface. 

Fibrous root biomass varied during the season, with increases 

occurring in June, August, and late September. The first two 

increases coincided with periods of high demand for nutrients in the 

production of new shoots and fruit, respectively. The late season 

root increase may be related to the plants entering dormancy, 

accompanied by the transfer of carbohydrates to the roots. Apparently 

root tissue was short-lived, as root biomass declined at three periods 

during the season: May, mid-July, and early September. These decaying 

roots remained in the bog system. 

6.4.1 Nutrients Used in the Production of Cranberry Biomass 

The amount of nutrients required in the production of new shoot 

tissue was calculated from biomass production and nutrient 

concentrations in the new shoot tissue. The results are shown in 

Table 6.9. Biomass production was suppressed in 1987 by frost injury, 

which accounted for the generally lower amounts of nutrients in new 

shoots that year. 

Root tissue had a high content of nutrients due to the large 

amount of biomass present as roots. However, only part of that was 

produced in one season. That fact, coupled with the fact that roots 

were low in concentrations of most elements, explained the lower 

amounts of nutrients which were required to make new root tissue 

(Table 6.10) compared to that needed to make new shoots (Table 6.9). 

103 



Table 6.9 Mineral contents (kg/ha) in newly produced shoot tissue of 
'Early Black' cranberry receiving 335 kg N-P-K/ha. 

Year Nitrogen Phosphorus Potassium Calcium Magnesium 

1987 38 5.8 20 27 9.8 
1988 52 4.7 18 34 9.5 
1989 50 3.8 25 37 11.0 

Year Boron Copper Manganese Iron Zinc 

1987 2.4 0.19 6.9 1.4 0.82 
1988 2.0 0.26 10.2 2.5 1.00 
1989 1.5 0.30 11.7 3.3 1.15 

The combined total N required to make new shoots and roots in a season 

was approximately 48 kg/ha, much higher than the value of 11 kg N/ha 

for these tissues proposed by Dana (1968). 

Nutrients were used in the production of fruit. To limit 

variability in the data due to unevenness of fruit production in 

experimental plots, theoretical nutrient use in fruit production was 

calculated based on actual percent dry weight of fruit and nutrient 

analyses and a theoretical crop of 100 bbl/A (10,000 lb, approximately 

Table 6.10 Mineral contents in newly produced root tissue of 'Early 
Black' cranberry receiving 335 kg N-P-K/ha. Data for N, P, K, Ca, and 
Mg are in kg/ha. All other data are in g/ha. 

Year Nitrogen Phosphorus Potassium Calcium Magnesium 

1987 0.88 0.17 0.18 0.16 0.09 
1988 0.75 0.14 0.15 0.13 0.08 
1989 1.02 0.20 0.21 0.18 0.11 

Year Boron Copper Manganese Iron Zinc 

1987 2.0 25 20 740 7.5 
1988 1.7 21 17 626 6.4 
1989 2.3 29 23 854 8.7 
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Table 6.11 Mineral contents in 100 bbl/A of fruit of 'Early Black' 
cranberry receiving 335 kg N-P-K/ha. Data for N, P, K, Ca, and Mg are 
in kg/ha. All other data are in g/ha. 

Year Nitrogen Phosphorus Potassium Calcium Magnesium 

1987 6.97 1.23 10.12 1.09 0.68 
1988 6.30 1.17 9.68 0.82 0.70 
1989 3.67 0.89 9.63 0.76 0.63 

Year Boron Copper Manganese Iron Zinc 

1987 17.8 8.2 16.4 17.8 12.3 
1988 11.7 8.2 21.0 39.6 11.7 
1989 21.5 8.9 11.7 19.0 10.1 

4535 kg). A 100 bbl/A crop represents low yield, since the actual 

crop for 'Early Black' cranberry is generally 150 bbl/A (16.8 Mg/ha) 

or better. The results are shown in Table 6.11. Cranberry fruit 

production required more K than any other element. The high K levels 

in fruit supported the contention that cranberry fruit are strong 

sinks for K. In contrast, the Ca used in fruit production was only 

one tenth the amount of K needed. 

6.4.2 Nutrient Losses in Biomass During the Season 

Old leaves were shed during the season, and some new leaves were 

lost during harvest and over the winter. The nutrient contents in 

those lost leaves are shown in Table 6.12. N and Ca losses were 

greatest due to the high concentration of these elements in leaf 

tissue. In the period from the beginning of one growing season to the 

beginning of the next, 50% of old leaf biomass was lost. However, the 

nutrient content lost from old leaves was not always 50% of the 
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Table 6.12 Mineral contents in leaves lost from 'Early Black' 
cranberry receiving 335 kg N-P-K/ha. Lost leaves include old leaves 
shed during the season and new leaves lost during harvest and over the 
winter. Data for N, P, K, Ca, and Mg are in kg/ha. All other data 
are in g/ha. 

Year Nitrogen Phosphorus Potassium Calcium Magnesium 

1987 15.1 2.6 8.4 17.9 4.0 
1988 25.8 4.1 10.2 24.5 6.6 

Year Boron Copper Manganese Iron Zinc 

1987 97 8.2 732 218 48 
1988 148 14.7 893 254 68 

original value. More than 50% of N, P, K, Mg, and Cu was lost from 

old leaves (60%, 55%, 70%, 55%, and 55%, respectively), whereas less 

than 50% was lost for B, Fe, and Mn (30%, 40%, and 35%, respectively). 

Ca and Zn losses were 50%. A loss of greater than 50% could be 

explained by remobilization of the elements into other tissues prior 

to leaf shed, whereas losses of less than 50% could have been due to 

continued accumulation of the elements in the leaves not shed. The 

immobile nature of Ca in cranberries was supported by these data. 

Minerals were lost from cranberry plants as root tissue decayed 

(Table 6.13). The amounts of nutrients lost were small due to the low 

concentrations of elements in root tissue. The exception was Fe, 

which was present in high levels in roots. 

While decaying roots remained in the system, leaves which were 

shed and fruit which was harvested were taken out of the system. 
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Table 5.13 Minerals lost from decayed root tissue of "Early Black" 
cranr>erry receiving 335 kg N-P-K/ha. Data for N, P, K, Ca, and Mg are 
in kg/ha. All other data are in g/ha. 

Year Nitrogen Phosphorus Potassium Calcium Magnesium 

1587 1.09 0.21 0.22 0.19 0.11 
1988 0.95 0.18 0.20 0.17 0.10 
1983 1.43 0.27 0.29 0.25 0.15 

Year Boron Copper Manganese Iron Zinc 

1987 2.4 31 25 910 9.3 
1988 2.1 27 22 797 8.1 
1983 3.2 41 32 1195 12.2 

The same amounts of nutrients which were used to produce fruit (Table 

5.11) were removed from the system at harvest. 

5.4.3 ^ovene^t of Nutrients in a Cranberry Bog: An Incomplete Balance 

Sheet 

The calculated amounts of nutrients gained and lost in biomass 

were used to construct incomplete balance sheets for the 10 elements 

studied (Tables 6.14 and 6.15). No attempt was made to include inputs 

from soil nutrients, water nutrients, lightning (nitrogen), or to 

estimate the actual inputs from organic matter decay. According to 

these calculations, more than 55 kg N/ha was used to produce the 

biomass in a cranberry bog in a season. Up to 24 kg/ha of this was 

removed in crop and "trash" leaves. A maximum of about 6 kg N/ha 

could be recovered from decaying biomass. The rest of the N inputs 

would have had to come from organic matter breakdown (organic matter 

besides the current season"s decaying biomass), lightning fixation. 
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Table 6.14 Movement of major nutrients (kg/ha) in a cranberry bog - 
incomplete balance sheet. 

N P K Ca Mq 

BIOMASS PRODUCTION 

new shoots 47.0 4.8 21.0 33.0 10.1 

roots 0.88 0.17 0.18 0.16 0.09 

fruit (150 bbl) 8.48 1.65 14.72 1.34 1.02 

TOTAL 56.36 6.65 35.9 34.5 11.21 

BIOMASS REMOVED 

leaves a) 15.3 2.51 3.83 15.9 3.98 

fruit (150 bbl) 8.48 1.65 14.72 1.34 1.02 

TOTAL 23.78 4.16 18.55 17,24 5.0 

INPUTS b> 

fertilizer 33.5 29.0 28.0 

decaying leaves c) 5.1 0.84 1.28 5.3 1.33 

decaying roots 1.16 0.22 0.24 0.20 0.12 

TOTAL 39.76 30.06 29.52 5.5 1.45 

a) Includes old leaves shed during the season and leaves lost during 
harvest and winter flood. Assumes 75% are removed from the bog in 
detrashing operations. 

b) Assumes inputs from organic matter are all available - maximum 
possible input. 

c) See note a. Assumes 25% of leaves remain on the bog after 
detrashing operations. 

water, and fertilizer. Dana (1968) estimated N loss in old leaves at 

22 kg/ha. This value was similar to the N content in old leaves lost 

in this study. However, the balance sheet assumption was that only 

75% of that was removed from the bog. Colby (1945) estimated that the 

N, P, and K removed in one ton of dry leaves and 100 bbl of fruit was 
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26, 5, and 18 kg/ha, respectively. Based on this balance sheet, the 

same amount of biomass (1 ton leaves, 100 bbl crop) would remove 24 kg 

N/ha, 4 kg P/ha, and 15 kg K/ha. 

The information in these incomplete balance sheets could be used 

to construct more detailed nutrient budgets for cranberry production. 

One fact which was apparent is that the amounts of minor elements 

removed from a bog in crop and leaves is small, much less than one 

kg/ha for most. This means that minor element supplements should not 

be necessary in cranberry production. This is especially true for the 

metals which are very available in acid soils. The balance sheet also 

showed that N and K fertilizer amounts currently used in cranberry 

production (33 and 27 kg/ha, respectively) are necessary to maintain 

production, while P use (29 kg/ha) seems too high. 

To accurately estimate nutrient budgets for cranberry bogs two 

cultural practices, in addition to harvest and detrashing, needed to 

be taken into account. These were resanding and pruning. Neither 

pruning nor resanding, the placement of a 2-3 cm layer of sand over 

the bog surface, was done on the plot areas during the study period. 

If resanding had been done, trailing woody stems would have been 

covered, giving rise to increased new shoot production from the 

covered nodes. Pruning would have removed more biomass from the bog 

than the amount listed in the incomplete balance sheet. Both 

practices could have increased the demand for nutrient input (biomass 

production and removal). 

The 'inputs' section of the balance sheet did not include 

possible remobilization of nutrients from leaves prior to drop. There 

was some indication that this took place, as discussed in section 

109 



Table 6.15 Movement of minor elements (g/ha) in a cranberry bog - 
incomplete balance sheet. 

B Cu Mn Fe Zn 

BIOMASS PRODUCTION 

new shoots 2000 250 9600 2400 990 

roots 2 25 20 740 7.5 

fruit (150 bbl) 25.5 12.6 24.6 38.3 17.1 

TOTAL 2027.5 287.6 9644.6 3178.3 1014.6 

BIOMASS REMOVED 

leaves a) 92 8.6 609 177 44 

fruit (150 bbl) 25.5 12.6 24.6 38.3 17.1 

TOTAL 117.5 21.2 633.6 215.3 61.1 

INPUTS b) 

decaying leaves c) 31 2.9 203 59 15 

decaying roots 2.6 33 26 967 9.9 

TOTAL 33.6 35.9 229 1026 24.9 

a) Includes old leaves shed during the season and leaves lost during 
harvest and winter flood. Assumes 75% are removed from the bog in 
detrashing operations. 

b) Assumes inputs from organic matter are all available - maximum 
possible input. 

c) See note a. Assumes 25% of leaves remain on the bog after 
detrashing operations. 

6.4.2. However, the remobilization remains unproven at this time, and 

was left out of the balance sheet for that reason. 
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6.5 Summary and Implications 

The concentrations of the nutrient elements in cranberry plant 

tissues changed during the season. N, P, K, and Cu concentrations in 

new shoots decreased, and Ca, Mg, B, and Mn concentrations increased. 

The trends for old leaves were similar to those for new growth, except 

for Mg concentrations which were stable in old leaves. Iron and Zn 

levels in new shoots and in old leaves changed little during the 

season. Nutrient concentrations in fruit generally declined as the 

fruit developed. The nutrient concentration trends in woody stems and 

roots were generally more variable. There was some indication that 

nutrient concentrations in roots rose at the time of fruit set, 

perhaps due to increased production of new functional roots in 

response to fruit hormonal signals. Transient changes in woody stem 

nutrient concentrations may have been due to transport through that 

tissue to nutrient sinks. 

The changes in concentrations of nutrients in cranberry tissues 

during the season have implications for the interpretation of tissue 

sample analyses. Samples need to be collected at times when the 

tissue concentrations are stable if comparisons to the values 

established here are to be made. Such stable periods were determined 

using ANOVA for repeated measures and profile analysis of adjacent 

date differences (Section 6.1.3, and Appendix A). 

The use of N-P-K fertilizer had an effect on the nutrient 

concentrations in cranberry tissues. The effects on new shoots were 

covered in Chapter 4. Root element levels were least affected, with 

the exception of P concentration, which was positively affected in all 
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three years. In old leaves and woody stems, N, P, and K 

concentrations were positively correlated with N-P-K dose. In both 

tissues, effects of N-P-K generally became apparent in the second year 

of treatment. Ca, Mg, and B concentrations in the old leaves and 

stems of fertilized plants were generally lower than those in plants 

receiving no N-P-K fertilizer. K concentration in fruit was most 

affected (positively) by the use of N-P-K fertilizer. After three 

years of treatment, Ca concentration in fruit showed a negative 

response to N-P-K fertilizer. N-P-K fertilizer use tended to increase 

the levels of minor elements in the fruit. 

The use of N-P-K fertilizer increased the concentration of those 

three elements in cranberry tissues, as was expected. The increases 

in old tissue N, P, and K concentrations in response to N-P-K 

fertilizer had implications for carryover effects, particularly if the 

elements were remobilized in the plants. The results of this study 

confirm that cranberry fruit are a strong sink for K. Roots 

accumulated P in response to N-P-K fertilizer. The possible effect of 

the fertilizer on mycorrhizal relationships was not determined. 

The seasonal content (per ha) of elements in cranberry tissues 

was determined. The elements could be divided into three groups by 

the patterns of their content in cranberry tissues. Group I (N, P, K, 

and Zn) content in new growth and fruit increased, in spite of 

decreasing concentrations due to biomass production. The content of 

these elements in old leaves and stems declined, with transient 

increases in stems associated with bud break and fruit set. Root 

increases in element content for this group were associated with 

increases in root biomass. Group II (Ca, Mg, and B) was similar to 
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group one in direction of change. However, the increases in content 

in new shoots were steeper (associated with concomitant rises in 

element concentration), and the losses from old tissues were less due 

to immobility of the element and increased concentrations over time. 

Accumulation of these elements in fruit was less than that for Group 

I, again likely due to immobility, especially for Ca and B. Group III 

(Cu, Fe, and Mn) metals were excluded from fruit and to some extent 

from new shoots (compared to other tissues). Cu was sequestered in 

roots, Fe in stems and roots, and Mn in old leaves and stems. Aside 

from the slow accumulation rate in fruit, the patterns for fruit and 

new growth were similar to those of Group I. 

The amounts of nutrients needed to produce new roots, shoots, 

and fruit during a cranberry growing season were calculated. In 

addition, the amounts of nutrients lost in biomass removal of decay 

were determined. Based on this information, an incomplete balance 

sheet covering the biomass-based changes in cranberry bog nutrient 

content was constructed. Based on these data, current industry 

fertilizer practices with N and K could be justified. Those for P 

seemed less justifiable. Cranberries appeared to require very little 

minor element input. The balance sheet data could be used as part of 

the information needed to construct a nutrient budget for cranberry 

production. 
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NITROGEN - NEW SHOOT 

Figure 6.1 Nitrogen (percent dry weight) in new shoot tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
10 (1987 and 1989) or 15 (1988) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

NITROGEN - OLD LEAVES 

Figure 6.2 Nitrogen (percent dry weight) in old leaf tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1987), 15 (1988), or 10 (1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 
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NITROGEN - WOODY STEM 

-figure 6.3 Nitrogen (percent dry weight) in woody stem tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1987 and 1988) or 10 (1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

NITROGEN - ROOTS 

Figure 6.4 Nitrogen (percent dry weight) in root tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 replicates. Horizontal line is the time of statistically 
determined stability in analytical values. 
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NITROGEN - FRUIT 

Figure 6.5 Nitrogen (percent dry weight) in fruit tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 replicates. Horizontal line is the time of statistically 
determined stability in analytical values. 

PHOSPHORUS - NEW SHOOT 

Figure 6.6 Phosphorus (percent dry weight) in new shoot tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1988) or 10 (1987 and 1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 
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PHOSPHORUS - OLD LEAVES 

Figure 6.7 Phosphorus (percent dry weight) in old leaf tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
15 (1987 and 1988) or 10 (1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

PHOSPHORUS - WOODY STEM 

Figure 6.8 Phosphorus (percent dry weight) in woody stem tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1987) or 10 (1988 and 1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 
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PHOSPHORUS - ROOTS 

DAY NUMBER 

Figure 6.9 Phosphorus (percent dry weight) in root tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
15 (1987) or 10 (1988 and 1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

PHOSPHORUS-FRUIT 

180 200 220 240 260 280 

DAY NUMBER 

Figure 6.10 Phosphorus (percent dry weight) in fruit tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1988 and 1989) or 15 (1987) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 
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POTASSIUM - NEW SHOOT 

Figure 6.11 Potassium (percent dry weight) in new shoot tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1988) or 10 (1987 and 1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

DAY NUMBER 

Figure 6.12 Potassium (percent dry weight) in old leaf tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
15 (1987 and 1988) or 10 (1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 
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POTASSIUM - WOODY STEM 

Figure 6.13 Potassium (percent dry weight) in woody stem tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
15 (1987 and 1988) or 10 (1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

POTASSIUM - ROOTS 

Figure 6.14 Potassium (percent dry weight) in root tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1988 and 1989) or 15 (1987) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 
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POTASSIUM - FRUIT 

Figure 6.15 Potassium (percent dry weight) in fruit tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
15 (1987 and 1988) or 10 (1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

CALCIUM-NEW SHOOT 

Figure 6.16 Calcium (percent dry weight) in new shoot tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 replicates. Horizontal line is the time of statistically 
determined stability in analytical values. 
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CALCIUM - OLD LEAVES 

1989 

DAY NUMBER 

Figure 6.17 Calcium (percent dry weight) in old leaf tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1987) or 15 (1988 and 1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

CALCIUM-WOODYSTEM 

Figure 6.18 Calcium (percent dry weight) in woody stem tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1987), 15 (1988), or 10 (1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

122 



CALCIUM - ROOTS 

DAY NUMBER 

Figure 6.19 Calcium (percent dry weight) in root tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1988 and 1989) or 15 (1987) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

CALCIUM - FRUIT 

Figure 6.20 Calcium (percent dry weight) in fruit tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1987 and 1988) or 10 (1989) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 
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MAGNESIUM - NEW SHOOT 

Figure 6.21 Magnesium (percent dry weight) in new shoot tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 replicates. Horizontal line is the time of statistically 
determined stability in analytical values. 

MAGNESIUM - OLD LEAVES 

Figure 6.22 Magnesium (percent dry weight) in old leaf tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1987 and 1989) or 15 (1988) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 

124 



MAGNESIUM - WOODY STEM 

Figure 6.23 Magnesium (percent dry weight) in woody stem tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 replicates. Horizontal line is the time of statistically 
determined stability in analytical values. 

MAGNESIUM - ROOTS 

DAY NUMBER 

Figure 6.24 Magnesium (percent dry weight) in root tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 (1987 and 1989) or 15 (1988) replicates. Horizontal line is the 
time of statistically determined stability in analytical values. 
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MAGNESIUM - FRUIT 

Figure 6.25 Magnesium (percent dry weight) in fruit tissue: 1987 
(squares), 1988 (diamonds), and 1989 (triangles). Values are means of 
20 replicates. Horizontal line is the time of statistically 
determined stability in analytical values. 

BORON - NEW SHOOT 

Figure 6.26 Boron (ppm) in new shoot tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 
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BORON - OLD LEAVES 

Figure 6.27 Boron (ppm) in old leaf tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1988 and 
1989) or 20 (1987) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 

BORON - WOODY STEM 

Figure 6.28 Boron (ppm) in woody stem tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1988 and 
1989) or 20 (1987) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 
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BORON - ROOTS 

DAY NUMBER 

Figure 6.29 Boron (ppm) in root tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 20 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 

BORON - FRUIT 

Figure 6.30 Boron (ppm) in fruit tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1989) or 20 
(1987 and 1988) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 
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COPPER - NEW SHOOT 

Figure 6.31 Copper (ppm) in new shoot tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 

COPPER - OLD LEAVES 

Figure 6.32 Copper (ppm) in old leaf tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1989) or 20 
(1987 and 1988) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 
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COPPER - WOODY STEM 

Figure 6.33 Copper (ppm) in woody stem tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 20 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 

COPPER - ROOTS 

DAY NUMBER 

Figure 6.34 Copper (ppm) in root tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 20 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 
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COPPER - FRUIT 

100 200 220 240 260 280 

DAY NUMBER 

Figure 5.35 Copper (ppm) in fruit tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1987) or 20 
(1988 anc 1989) replicates. Horizontal line is the time of 
statistica*ly determined stability in analytical values. 

IRON-NEW SHOOT 

Figure 6.36 Iron (ppm) in new shoot tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 20 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 
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IRON - OLD LEAVES 

Figure 6.37 Iron (ppm) in old leaf tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1988 and 
1989) or 20 (1987) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 

IRON-WOODY STEM 

Figure 6.38 Iron (ppm) in woody stem tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1987 and 
1989) or 20 (1988) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 
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IRON - ROOTS 

DAY NUMBER 

Figure 6.39 Iron (ppm) in root tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 20 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 

IRON - FRUIT 
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Figure 6.40 Iron (ppm) in fruit tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1987) or 20 
(1988 and 1989) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 
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MANGANESE - NEW SHOOT 

Figure 6.41 Manganese (ppm) in new shoot tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 20 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 

MANGANESE - OLD LEAVES 

Figure 6.42 Manganese (ppm) in old leaf tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1988) or 20 
(1987 and 1989) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 
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MANGANESE - WOODY STEM 

Figure 6.43 Manganese (ppm) in woody stem tissue: 1987 (squares), 
1988 (diamonds), and 1989 (triangles). Values are means of 15 (1987 
and 1989) or 20 (1988) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 

MANGANESE - ROOTS 

DAY NUMBER 

Figure 6.44 Manganese (ppm) in root tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 20 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 
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MANGANESE - FRUIT 

Figure 6.45 Manganese (ppm) in fruit tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1987 and 
1989) or 20 (1988) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 

ZINC-NEW SHOOT 

Figure 6.46 Zinc (ppm) in new shoot tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 20 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 
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ZINC - OLD LEAVES 

100 120 14C 160 180 200 

DAY NUMBER 

Figure 5.47 Zinc (ppa) in old leaf tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1988) or 20 
(1987 and 1989) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 

ZINC - WOODY STEM 
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Figure 6.48 Zinc (ppn) in woody stem tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1988) or 20 
(1987 and 1989) replicates. Horizontal line is the time of 
statistically detemined stability in analytical values. 
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ZINC - ROOTS 

DAY NUMBER 

Figure 6.49 Zinc (ppm) in root tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 20 replicates. 
Horizontal line is the time of statistically determined stability in 
analytical values. 

ZINC - FRUIT 

Figure 6.50 Zinc (ppm) in fruit tissue: 1987 (squares), 1988 
(diamonds), and 1989 (triangles). Values are means of 15 (1987) or 20 
(1988 and 1989) replicates. Horizontal line is the time of 
statistically determined stability in analytical values. 
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DAY NUMBER 

Figure 6.51 Seasonal N content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1987 plots, means of 5 replicates. 

Figure 6.52 Seasonal P content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1987 plots, means of 5 replicates. 
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Figure 6.53 Seasonal K content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1987 plots, means of 5 replicates. 

100 120 140 160 180 200 220 240 260 280 

DAY NUMBER 

Figure 6.54 Seasonal Ca content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1987 plots, means of 5 replicates. 
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Figure 
kg N-P 

Figure 
kg N-P 

6.55 
K/ha. 

Seasonal Mg content in tissues of cranberry 
Data shown are from 1987 plots, means of 5 

receiving 335 
replicates. 

6.56 Seasonal B content in tissues of cranberry receiving 335 
K/ha. Data shown are from 1987 plots, means of 5 replicates. 
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Figure 6.57 
kg N-P-K/ha. 

Seasonal Cu 
Data shown 

content in tissues of cranberry receiving 335 
are from 1987 plots, means of 5 replicates. 

Figure 6.58 
kg N-P-K/ha. 

Seasonal Fe content in tissues of cranberry 
Data shown are from 1987 plots, means of 5 

receiving 335 
replicates. 

142 



Figure 6.59 
kg N-P-K/ha. 

Seasonal Mn content in tissues of cranberry 
Data shown are from 1987 plots, means of 5 

receiving 335 
replicates. 

Figure 6.60 
kg N-P-K/ha. 

Seasonal Zn content in tissues of cranberry 
Data shown are from 1987 plots, means of 5 

receiving 335 
replicates. 
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CHAPTER 7 

'EARLY BLACK' CRANBERRY DEVELOPMENT AND TEMPERATURE INTERACTIONS 

7.1 Timing of Developmental Events 

In recent years, cranberry fertilizer applications have been 

timed according to developmental stages or events such as budbreak, 

roughneck (25 mm new growth extension), bloom, fruit set, and bud 

development. Growers have used a target date to begin scouting for 

the stages at their farms. However, there has been interest in 

forecasting development by growing degree days (GDD) or other heat 

units in order to predict more accurately year to year and location to 

location the onset of the stages. 

7.1.1 Growing Degree Days 

Growth stages were recorded during the four years of the 

nutrient study. The stages were then compared to day number (Table 

7.1), GDD-6.5C (Table 7.2), or GDD-9C (Table 7.3). The GDD were 

accumulated from sheltered ambient upland temperatures at the bog 

location. Coefficient of variation (CV) had been found to be the best 

method for comparing base temperatures for GDD models (Arnold, 1959). 

Based on the CVs for the three types of comparison, day number was a 

better predictor than GDD. If GDD were to be used as predictors for 

cranberry developmental stages, the lower base temperature should be 

used (smaller CVs). In studies of temperate tree fruit crops 
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Table 7.1 Developmental events for 'Early Black' cranberry. Day 
numbers. Coefficient of variation (CV) in percent. 

Developmental 
stage 

1986 1987 1988 1989 CV 

Greening 100 102 105 1.4 
Roughneck 147 147 148 145 0.4 
Hook 154 154 151 153 0.5 
Bloom (1%) 161 161 162 160 0.3 
Bloom (50%) 174 175 177 174 0.4 
Set (90%) 190 186 196 190 1.1 
End growth 245 245 236 1.2 

Table 7.2 Developmental events for 'Early Black' cranberry. Growing 
degree days, base temperature 6.5C. Coefficient of variation (CV) in 
percent. 

Developmental 
stage 

1986 1987 1988 1989 CV 

Greening 63 72 52 9.3 
Roughneck 416 392 363 392 2.8 
Hook 554 579 420 525 6.7 
Bloom (1%) 693 709 585 695 4.3 
Bloom (50%) 927 1033 943 1016 2.7 
Set (90%) 1318 1305 1402 1416 2.1 
End growth 2792 2815 2684 1.5 

Table 7.3 Developmental events for 'Early Black' cranberry. Growing 
degree days, base temperature 9C. Coefficient of variation (CV) in 
percent. 

Developmental 
stage 

1986 1987 1988 1989 CV 

Greening 17 29 13 24.4 

Roughneck 228 222 199 231 3.3 

Hook 339 381 243 336 9.0 

Bloom (1%) 449 483 364 474 6.1 

Bloom (50%) 631 751 662 738 4.2 

Set (90%) 958 979 1046 1074 2.7 

End growth 2230 2262 2158 1.4 
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(Richardson, et al., 1985) low temperatures (4.5C) were recommended in 

models predicting bloom. 

Hawker and Stang (1985) compared GDD to cranberry growth stages 

at three separate Wisconsin locations during a single year, using a 

base temperature of 9C. They found that hook stage (375 GDD), bloom 

(510 GDD), early fruit set (850 GDD), and late fruit set (1,000 GDD) 

occurred at the same number of GDD for each location. A comparison to 

GDD accumulations (Table 7.3) in Massachusetts for four years at one 

location showed that using a base temperature of 9C, the timing of the 

events corresponded well. The average times for hook stage (325 GDD), 

early bloom (443 GDD), and late bloom (696 GDD) in Massachusetts fell 

within about 50 GDD of the Wisconsin prediction. However, fruit set 

(1,014 GDD) was the most closely predicted by the Wisconsin model. 

While there was good prediction of the average GDD for certain events, 

the prediction in a given year showed more variability with the 9C 

base temperature than with 6.5C (Table 7.2). It appeared that GDD 

models for cranberry development were fairly accurate but did not 

justify the expense involved in collecting the data. Day number 

modelling was more accurate and required no special equipment. 

However, this conclusion was based on a comparison of one site over 

years. There may be more value in using GDD as predictors to compare 

several sites with varying microclimates within the same year. 

Based on CV comparisons, a base temperature of 6.5C was a better 

choice than 9C for GDD accumulation for cranberries. These base 

temperatures were compared with data collected in an upland shelter 

adjacent to the bog. GDD data were also collected from the canopy 

level in the bog from 1986 to 1988 with devices which allowed the use 
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Table 7.4 Developmental events for 'Early Black' cranberry. Growing 
degree days, base temperature 9C, at canopy level. Coefficient of 
variation (CV) in percent. 

Developmental 
stage 

1986 1987 1988 CV 

Greening 34 21 29 13.5 
Roughneck 416 274 287 13.9 
Hook 526 417 328 13.5 
Bloom (1%) 633 516 439 10.7 
Bloom (50%) 835 763 721 4.3 
Set (90%) 1144 1041 1101 2.7 

Table 7.5 Developmental events for 'Early Black' cranberry. Growing 
degree days, base temperature 6.5C, at canopy level. Coefficient of 
variation (CV) in percent. 

Developmental 
stage 

1986 1987 1988 CV 

Greening 48 34 48 10.8 
Roughneck 561 397 414 11.4 
Hook 697 569 466 11.6 
Bloom (1%) 832 694 615 8.9 
Bloom (50%) 1086 995 955 3.8 
Set (90%) 1464 1233 1411 5.1 

Table 7.6 Developmental events for 'Early Black' cranberry. Growing 
degree days, base temperature 4.5C, at canopy level. Coefficient of 
variation (CV) in percent. 

Developmental 
stage 

1986 1987 1988 CV 

Greening 71 55 80 10.6 
Roughneck 735 556 605 8.5 
Hook 898 755 670 8.6 
Bloom (1%) 1061 907 870 6.2 
Bloom (50%) 1364 1264 1283 2.4 
Set (90%) 1806 1556 1834 5.1 
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of several base temperatures. Base temperatures of 9C, 6.5C, and 4.5C 

were compared (Tables 7.4, 7.5, and 7.6). Based on CV comparisons, 

the most accurate base temperature in the canopy for predicting 

cranberry development was 4.5C. A comparison of the 9C and 6.5C data 

for canopy vs. sheltered GDDs showed that more GDD accumulated for 

each stage in the canopy model. This would be the expected result if 

the base temperature was too high. The higher daily temperatures at 

canopy level would introduce a larger error in the GDD accumulation 

than would the lower sheltered temperatures (Arnold, 1959). 

Regardless of the location of the temperature sensor, it was apparent 

that a base temperature of 9C for GDD accumulations in cranberry was 

too high. 

7.1.2 Growth Units 

Pilcher (1985) proposed a model for cranberry growth based on a 

lamboid curve. Growth units were accumulated between 7C and 29C. Two 

separate relationships were used to describe the two parts of the 

curve, one between 7C and 18C and the other between 18C and 29C. 

Using this model the calculated growth units (GU) for bloom and fruit 

maturity at Long Beach, Washington were 472 and 1,028, respectively 

(1,500 GU total from budbreak to fruit maturity). The Pilcher (1985) 

model was applied to Massachusetts cranberry growth from 1986 to 1989 

at East Wareham. The results are shown in Table 7.7. The total GU 

needed to reach fruit maturity from budbreak in Massachusetts were 

similar to those for Washington. However, in Massachusetts, more of 

the GU accumulated in the first stage (budbreak to bloom). This may 
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Table 7.7 Growth unit (Pilcher, 1985) accumulation for 'Early Black' 
cranberry in Massachusetts. 

Year Budbreak 
to bloom 

Bloom to 
fruit maturity 

Total 

1986 621 976 1597 
1987 559 997 1556 
1988 554 816 1370 
1989 636 970 1606 

mean 593 940 1533 

be related to differences in average temperature and daylength between 

the two regions, or to the fact that bloom seems to occur about a week 

earlier in Long Beach (Pilcher, 1985) than in East Wareham, based on 

day numbers. 

The GU model required a more complex set of calculations than 

did the GDD model and did not provide a significant improvement in 

predicting development (CV was about the same for the two methods - 

data not shown). Day number, followed by GDD remained the best 

methods for predicting cranberry developmental events. 

7.2 Relationship between Growing Degree Days and Major Element 

Concentrations in Cranberry New Shoot Tissue 

If GDD were to be used as predictors for developmental events in 

cranberry at different locations within a season, it might be useful 

to know how the concentrations of the major elements in the new shoot 

tissue could be expected to vary with GDD. This would be especially 

true if the developmental events were then used to schedule fertilizer 

applications. 
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The data for concentrations of N, P, K, Ca, and Mg in new shoot 

tissue of cranberries receiving 335 kg N-P-K/ha were plotted vs. GDD 

(Figures 7.1 to 7.5, p. 153-155). The plots were compared to those of 

the same data plotted vs. day number (Figures 6.1, p. 114; 6.6, 

p. 116; 6.11, p. 119; 6.16, p. 121; and 6.21, p. 124). The plots for 

N, K, and Mg did not differ in shape or tightness of fit among years 

for either day number or GDD. In fact, there was a peak in Mg 

concentration which did not occur at either the same day number 

(Figure 6.21, p. 124) or the same number of GDD (Figure 7.5, p. 155) 

in the different years. The data for Ca concentration showed a closer 

convergence of year curves based on day number (Figure 6.16, p. 121) 

than based on GDD (Figure 7.4, p. 154). The P concentration data 

plots were similar for both day number and GDD during the later half 

of the season. However, in the early season, there was better 

convergence among years when P concentration was plotted vs. GDD 

(Figure 7.2, p. 153). 

The improvement in fit using GDD in the early season was due to 

the fact that most of the variation in cumulative GDD from year to 

year at the experimental site occurred in April and May (Figure 7.6, 

p. 155). By June the GDD had converged and remained roughly similar 

for the rest of the season (Figure 7.7, p. 156). 

Since in at least one case improved fit was achieved by plotting 

concentrations vs. GDD compared to plotting vs. day numbers, quadratic 

regression equations were generated for percent N in new growth vs. 

day number or GDD (Williams, 1987). Percent N was chosen because no 

improvement with GDD was detected upon visual inspection of the two 

types of graph for that element and because N tissue analyses were 
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Table 7.8 Calculated quadratic equations for seasonal nitrogen 
movement in new growth of cranberry. Equations correlate sampling 
date (D) or growing degree days, base 6.5C (G) and nutrient level. 

Year Regression eauation R2 

1987 0.00015 D2 - 0.06957 D + 8.981 (n=237) 0.63 

1988 0.00017 D2 - 0.07797 D + 9.637 (n=198) 0.77 

1989 0.00013 D2 - 0.05837 D + 7.495 (n=199) 0.72 

3 years 0.00015 D2 - 0.07025 D + 8.895 (n=634) 0.67 

3 years (log) 0.00011 D2 - 0.05047 D + 5.678 (n=634) 0.66 

1987 4xl0'7 G2 - 0.00179 G + 2 709 (n=237) 0.66 

1988 3xl0'7 G2 - 0.00136 G + 2.253 (n=198) 0.73 

1989 3xl0'7 G2 - 0.00117 G + 2.115 (n=199) 0.72 

3 years 3xl0“7 G2 - 0.00139 G + 2.360 (ri=634) 0.66 

3 years (log) 2.3xl0'7 G2 - 0.00100 G + 0.973 (n=634) 0.66 

those most often used in the cranberry industry as the basis for 

fertilizer decisions. The results are shown in Table 7.8. For the 

individual years, there was a slight improvement in the fit of the 

curve when GDD were used in 1987 and 1988 (compare R2 values). 

However, in 1989 or when all years were combined, plotting percent N 

vs. GDD has no better fit statistically then plotting percent N vs. 

day number. Based on the appearance of the curves (Figure 7.1, 

p. 153), a logarithmic relationship was investigated (log-transformed 

concentrations). The fit of the curve was not improved vs. day number 

or GDD by log-transformation of the percent N data (Table 7.8). 

As was the case for predicting developmental events, the use of 

GDD to follow nutrient movement did not significantly improve upon 

comparisons made on the basis of day number. If a nutrient level is 

correlated with a particular developmental stage, then the use of GDD 
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may have limited value between locations within a year. Based on the 

nutrient data gathered in this study, there was a large demand for N, 

P, and K beginning at hook stage for the production of new shoot 

tissue. This demand seemed to increase at fruit set; the levels of N, 

P, and K in the new shoots fell more rapidly at that time, likely due 

to mobilization to the developing fruit. 
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NITROGEN - NEW SHOOTS 

Figure 7.1 Nitrogen (percent dry weight) in new shoot tissue of 
cranberries receiving 335 kg N-P-K/ha: 1987 (diamonds), 1988 (broken 
line), and 1989 (x). Values are means of 5 replicates. 

PHOSPHORUS - NEW SHOOTS 

GROWING DEGREE DAYS 

Figure 7.2 Phosphorus (percent dry weight) in new shoot tissue of 
cranberries receiving 335 kg N-P-K/ha: 1987 (diamonds), 1988 (broken 
line), and 1989 (x). Values are means of 5 replicates. 
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POTASSIUM - NEW SHOOTS 

Figure 7.3 Potassium (percent dry weight) in new shoot tissue of 
cranberries receiving 335 kg N-P-K/ha: 1987 (diamonds), 1988 (broken 
line), and 1989 (x). Values are means of 5 replicates. 

CALCIUM - NEW SHOOTS 

Figure 7.4 Calcium (percent dry weight) in new shoot tissue of 
cranberries receiving 335 kg N-P-K/ha: 1987 (diamonds), 1988 (broken 
line), and 1989 (x). Values are means of 5 replicates. 
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MAGNESIUM - NEW SHOOTS 
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Figure 7.5 Magnesium (percent dry weight) in new shoot tissue of 
cranberries receiving 335 kg N-P-K/ha: 1987 (diamonds), 1988 (broken 
line), and 1989 (x). Values are means of 5 replicates. 
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Figure 7.6 Accumulated growing degree days, 1 April to 31 May. Base 
temperature 6.5C. 
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Figure 7.7 Accumulated growing degree days, 1 April to 30 September. 
Base temperature 6.5C. 
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CHAPTER 8 

DEVELOPMENTAL PATTERNS AND NUTRIENT LEVELS FOR SIX COMMERCIAL 

CRANBERRY CULTIVARS 

8.1 Reproductive Development 

Six cultivars were available for study, all receiving the same 

management practices. The cultivars were "Early Black", 'Howes', 

'Stevens', 'Pilgrim', 'Bergman', and 'Franklin'. 'Early Black' and 

'Howes' account for 90% or more of the Massachusetts crop. Both were 

selections from the wild. 'Stevens', a product of selective breeding 

in the 1960s, has become more popular in recent years due to its large 

fruit and high productivity. 'Pilgrim' and 'Bergman' account for very 

little Massachusetts acreage, but 'Bergman' is one of three major 

cultivars grown in British Columbia (Eaton and Kyte, 1978). 

'Franklin' is a cross between 'Early Black' and 'Howes'. 

During the three years of the study (1989 to 1991), 'Bergman', 

'Early Black', and 'Franklin' had the shortest average fruit 

development periods, 73, 76, and 76 days from 50% open bloom to fruit 

maturity (end of fresh weight accumulation). 'Howes' and 'Pilgrim' 

were 'late-season' cultivars with average development periods of 88 

and 92 days, and 'Stevens' was 'mid-season' at 81 days. The cultivars 

with the shortest fruit development period also had the earliest bloom 

dates. 'Howes' bloomed latest in the season among the six cultivars. 
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8.1.1 Components of Yield 

At the end of each season, certain components of yield were 

determined for each of the six cultivars (Table 8.1). Upright density 

Table 8.1 Cultivar evaluation: yield components. Fruit wt is fresh 
weight for individual fruit and Uj is total uprights per 180 cm2 area. 
Values represent the means of 4 replicates. Means followed by the 
same letter do not differ statistically (Tukey test). 

1989 

Cultivar %UF %Set Flowers/Up 

Early Black 11.2 b 50.7 ab 3.19 ab * 

Howes 20.2 a 57.7 a 2.75 ab 
Stevens 7.2 b 60.0 a 2.41 b 
Pilgrim 7.3 b 52.8 ab 2.43 b 
Bergman 22.1 a 38.1 b 3.43 a 
Franklin 11.2 b 46.2 ab 2.61 ab 
Sig. of F p>0.001 p=0.042 p=0.009 

1990 

Cultivar %UF %Set Flowers/Up Fruit wt 

Early Black 38.3 a 35.1 be 3.71 a 0.70 b 
Howes 43.1 a 56.5 a 3.02 be 0.83 b 
Stevens 41.2 a 27.6 c 3.45 ab 1.40 a 
Pilgrim 25.6 a 28.3 c 3.71 a 1.34 a 
Bergman 41.2 a 33.6 be 3.52 ab 0.93 b 
Franklin 28.5 a 44.6 b 2.69 c 0.84 b 
Sig. of F p>0.05 p<0.001 p<0.001 pcO.001 

1991 

Cultivar %UF %Set Flowers/Up Fruit wt Ut 

Early Black 32.4 ab 25.9 ab 4.26 a 0.85 d 100 ab 
Howes 42.7 a 31.2 a 3.35 be 0.94 d 89 b 
Stevens 38.5 ab 10.8 c 4.03 a 1.77 b 91 ab 
Pilgrim 36.8 ab 13.0 be 3.81 ab 2.24 a 93 ab 
Bergman 30.5 ab 30.2 a 2.72 c 1.17 c 101 a 
Franklin 25.9 b 29.8 a 2.95 c 1.14 c 90 ab 
Sig. of F p=0.028 p<0.001 pcO.001 pcO.001 p=0 01 

158 



(Uj) was determined only in 1991. All of the cultivars had similar 

densities of uprights with the exception of 'Howes', which had lower 

density than 'Bergman'. The proportion of 'Howes' uprights bearing 

flowers and fruit (%Up) was in the first rank for all years. 'Howes' 

had fewer flowers per flowering upright than some of the other 

cultivars, but fruit set in 'Howes' was in the first rank in all three 

years. The 'Howes' section at the experimental site had a history of 

producing high yields. A large proportion of flowering uprights with 

high fruit set seemed to overcome low upright density, average numbers 

of flowers per flowering upright, and low weight per fruit. Low 

upright density with a large percent flowering may have been an 

advantage in allowing adequate pollinator access to flowers leading to 

good fruit set. Moderate numbers of flowers per upright would have 

led to less competition among developing fruit on an upright and 

perhaps less fruit abortion. 

Fruit set in all but 'Bergman' was exceptionally high in 1989. 

In previous studies, fruit set in cranberry was between 30 and 40 

percent (Bain, 1948). One possible explanation was the very low 

numbers of uprights flowering that year. When the total number of 

flowers is low, a high percent must set fruit in order to produce a 

given yield. In other words, high fruit set compensated for small 

numbers of flowers. Eaton and MacPherson (1978) studied seven 

cultivars, including 'Bergman', 'Early Black', and 'Pilgrim' for one 

year in British Columbia. They found no differences in percent set, 

numbers of flowers, or numbers of flowering uprights among the 

cultivars represented in this study. 
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The number of flowers per flowering upright varied from year to 

year for all of the cultivars. However, 'Early Black' consistently 

appeared in the first rank, with three or more flowers each year, and 

'Franklin' consistently had fewer than three flowers per upright. 

'Franklin' had fewer flowers per upright than either of its parent 

strains in all three years. 

Based on visual inspection of fruit, 'Early Black', 'Howes', and 

'Franklin' could be classified as smal1-fruited. This was also true 

based on fruit weight (Table 8.1). 'Stevens' and 'Pilgrim' were 

large-fruited in appearance and weight. 'Bergman' was intermediate, 

with a larger size (volume) than the smal1-fruited cultivars but a 

lower weight than the large-fruited cultivars. The large fruit in 

'Stevens' and 'Pilgrim' were mainly responsible for high yields for 

those cultivars. Both tended to be in the middle rank for upright 

density, flowering, and set, but were significantly greater than the 

other cultivars in weight per fruit. 

High yields could be achieved with any of the cultivars. 

However, vine stand and flowering response as well as fruit set had to 

be maximized in order for small-fruited cultivars to produce large 

crops. With the large-fruited cultivars, average values for other 

components of yield could be overcome by the size (weight) of the 

fruit. 

8.1.2 Fruit Development 

Growth curves for fruit in the six cultivars were constructed. 

Fresh and dry weight accumulations were correlated with day number 
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Table 8.2 Calculated polynomial equations for fruit development of 
cranberry, 6 cultivars. Degree of polynomial chosen based on 
sequential regression analyses. 

Cultivar Regression equation R2 

1989 fresh wt (q)/fruit 

Early Black -0.00010 D2 + 0.0592 D - 7.484 (n-16) 0.97 

Howes -0.00011 D2 + 0.0655 D - 8.215 (n—16) 0.98 

Stevens -0.00018 D2 + 0.1086 D - 13.86 (n-16) 0.94 

Pilgrim 0.0259 D - 4.774 (n-16) 0.95 

Bergman -0.00014 D2 + 0.0824 D - 10.502 (n=14) 0.94 

Franklin -0.00015 D2 + 0.0829 D - 10.26 (n-14) 0.93 

1990 fresh wt (g)/fruit 

Early Black -0.00014 D2 + 0.0762 D - 9.582 (n-14) 0.96 

Howes -0.00015 D2 + 0.0856 D - 10.745 (n-14) 0.98 

Stevens -0.00031 D2 + 0.1701 D - 21.163 (n=14) 0.97 

Pilgrim -0.00025 D2 + 0.1395 D - 17.632 (n-12) 0.97 

Bergman -0.00017 D2 + 0.0964 D - 12.358 (n-13) 0.98 

Frankl in -0.00028 D2 + 0.1447 D - 17.455 (n-10) 0.98 

1991 fresh wt (g)/fruit 

Early Black 0.0128 D - 2.313 (n-9) 0.97 

Howes -0.00020 D2 + 0.1037 D - 12.613 (n-10) 0.99 

Stevens -0.00039 D2 + 0.2052 D - 24.911 (n-10) 0.98 

Pilgrim 0.0266 D - 4.888 (n-10) 0.93 

Bergman -0.00034 D2 + 0.1696 D - 19.831 (n-9) 0.97 

Franklin -0.00027 D2 + 0.1396 D - 16.685 (n-9) 0.99 

using regression analysis. Generally, the relationship was best 

described with a second degree polynomial (Tables 8.2 and 8.3). The 

relationships for fresh weight accumulation in 1989, 1990, and 1991 

(Table 8.2) were plotted (Figures 8.1A and B to 8.3A and B, p. 181- 

182). In all three years, 'Early Black' and 'Howes' had the smallest 

fruit with very similar developmental curves. The hybrid 'Franklin' 
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had a somewhat steeper growth curve and larger final weight than 

either parent. 'Bergman' was grouped with the large-fruited 'Stevens' 

and 'Pilgrim' based on its 1989 growth curve (Figure 8.1A, p. 180). 

In 1989, 'Bergman' kept pace with the growth rates of the other two 

for about half of the developmental period. In 1991, 'Bergman' kept 

pace for only one third of the growth period, and in 1990 its growth 

rate only kept pace with that of 'Pilgrim' for about one week. In two 

of the three years, the best fitting growth curve for 'Pilgrim' was 

linear. The highest early rates of growth seemed to consistently 

translate into the largest fruit at the end of the season. 

Table 8.3 Calculated polynomial equations for fruit development of 
cranberry, 6 cultivars. Degree of polynomial chosen based on 
sequential regression analyses. 

Cultivar Regression eauation R2 

1989 drv wt (q)/fruit 

Early Black -9.6xl0'7 D2 + 0.0057 D - 0.728 (n-14) 0.98 

Howes -9.8xl0‘7 D2 + 0.0059 D - 0.758 (n-14) 0.98 

Stevens -15.8xl0'7 D2 + 0.0963 D - 1.244 (n-14) 0.96 

Pilgrim 0.0025 D - 0.464 (n-14) 0.96 

Bergman 0.0022 D - 0.395 (n—12) 0.94 

Frank!in -17-OxlO'7 D2 + 0.0090 D - 1.139 (n-12) 0.96 

1990 drv wt (al/fruit 

Early Black -8.9xl0‘7 D2 + 0.0056 D - 0.751 (n=14) 0.98 

Howes -11.2xl0"7 D2 + 0.0069 D - 0.911 (n-14) 0.99 

Stevens -17.7xl0'7 D2 + 0.0111 D - 1.479 (n-14) 0.98 

Pilgrim -16.7xl0'7 D2 + 0.0103 D - 1.359 (n-12) 0.97 

Bergman -7.6xl0"7 D2 + 0.0056 D - 0.798 (n-13) 0.99 

Frank!in -20.6xl0'7 D2 + 0.0011 D - 0.415 (n—10) 0.99 
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The 'best-fit' equations for dry weight accumulation in cultivar 

fruit were calculated (Table 8.3). The linear relationships between 

dry weight accumulation and day number were plotted for the 1989 data 

based on the fact that for two of the cultivars, the quadratic 

relationships were not statistically significant (p>0.05). The 

relationships among the cultivars for dry weight-based growth rates in 

1989 (Figures 8.4A and B, p. 183) were similar to those for fresh 

weight-based rates. 'Early Black' and 'Howes' diverged only late in 

the season, but 'Franklin' maintained a steeper growth curve 

throughout the period. As for fresh weight, the 'Bergman' growth rate 

diverged from those of 'Stevens' and 'Pilgrim' about half way through 

the growth period. The regression lines generated from the 1990 dry 

weight data (Figures 8.5A and B, p. 184) were remarkably similar among 

cultivars to those for the fresh weight accumulation in that year 

(Figures 8.2A and B, p. 181). The growth rates for the six cultivars 

in 1990 were quite distinct from one another. It should be noted that 

the regression relationships for fruit development were heavily 

weighted towards the linear component (little contribution of the 

quadratic). However, the quadratic coefficient was significant and 

the values for the equations were improved in going from linear to 

quadratic. 

The early fruit development period growth rate was important in 

determining the final fruit weight. During those early weeks dry 

weight, including mineral elements, accumulated rapidly. Nutrition 

needed to be adequate during that time. Additionally, enough 

carbohydrate reserve must have been available for transport to the 

developing fruit. Adequate, functional foliage needed to be present 
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prior to the onset of fruit development to satisfy the demand for 

photosynthate (Roper et al., 1992). The amount of foliage present in 

turn depended on adequate mineral nutrition early in the season. 

Fruit fresh weight actually declined late in the season in some cases, 

most likely due to water loss associated with over-ripeness. 

The important factors in maximizing fruit harvest weight were 

adequate nutrition to support early fruit development and harvesting 

before the fruit began to decline in weight. For the early cultivars 

('Early Black', 'Bergman', and 'Franklin') harvest should occur by the 

end of September. 

Weekly during the 1991 growing season, developing fruit from the 

six cultivars were separated into six size classes, less than 5.6 mm, 

5.6-8 mm, 8-11.2 mm, 11.2-13.2 mm, 13.2-16 mm, and larger than 16 mm. 

The first collection was done in the second week of July. The size 

classes were determined by the ability of the fruit to pass through 

stacked sieves with openings of the various diameters. The 

percentages of fruit in each size class were calculated on the basis 

of total weight of fruit in the sample (Figures 8.6A to 8.11A, p. 185- 

190) or on the basis of fruit numbers in the sample (Figures 8.6B to 

8.1IB, p. 185-190). Large numbers of fruit in a small size class 

would contribute less to the total weight of fruit than would large 

numbers of larger-sized fruit. 

The six cultivars could be divided into three groups based on 

the developmental patterns for fruit size classes. The first group, 

'Early Black' and 'Howes', had initially large numbers of the smallest 

size fruit and smaller numbers of 5.6-8 mm fruit declining during the 

first five weeks of development (Figures 8.6 and 8.7A and B, p. 185- 
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186). During the first two weeks, 8-11.2 mm fruit increased and then 

began to decline in week three, as the 11.2-13.2 mm and 13.2-16 mm 

fruit increased. These patterns reflect the growth of individual 

fruit which move from one size class to another over time. By the end 

of the season, almost all of the fruit for these cultivars were 

between 11.2 and 16 mm in size. Less than 10% were larger or smaller. 

The second group was comprised of 'Bergman' and 'Franklin'. In 

this group fruit moved out of the two smallest size classes more 

rapidly than did those in the first group (Figures 8.10 and 8.11A and 

B, p. 189-190). By week four, the 11.2-13.2 mm and 13.2-16 mm classes 

were dominant. At the end of the season, most of the fruit were 13.2- 

16 mm in diameter, with 15% (by weight) larger than 16 mm, and the 

same amount 11.2-13.2 mm. Less than 5% were fruit in the three 

smallest classes. 

In the third group, 'Stevens' and 'Pilgrim', the two smallest 

size classes made insignificant contributions to total weight from the 

second week (Figures 8.8 and 8.9A and B, p. 187-188), although they 

were present until week five. Fruit in the 13.2-16 mm size class were 

making significant contributions to total weight by week two, and by 

week five only the three largest size classes were important. At the 

end of the season, all 'Pilgrim' fruit were greater than 16 mm in 

diameter and 'Stevens' were about half that size and half between 13.2 

and 16 mm. 

This study reinforced the previous information regarding fruit 

weight accumulation. Large fruit rapidly became large early in the 

growing period. The important transition time from small to large 

fruit occurred from week 3 to 5 (late July to early August). Any 
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effect of fertilizer on fruit development would have to occur early in 

that period. Most likely later fruit enlargement is due to 

accumulation of water and carbohydrates. 

8.1.3 Yield Analyses 

Yield analyses were performed in 1991 for the six cultivars. 

Samples (30 x 30 cm, 8 replicates) were assessed for upright density 

(Uj), percent of uprights flowering (%Up), flowers per flowering 

upright (flower/Up), percent fruit set, and weight per fruit. Yield 

Table 8.4 Stepwise regression models for yield component data, 
regression with constant. Variables chosen from: Uj, %Up, flower/Up, 
%set, g/fruit, yield. Regression equations chosen based on yield 
component analysis, regression coefficients significant at 5% level. 

Cultivar Variables chosen in steD analysis 

Early Black none 

Howes %Up, %set, g/fruit 

Stevens %Up, flower/Up, %set 

Pilgrim Uj, %Up, %set 

Bergman Uj, %Up, flower/Up, %set, g/fruit 

Frank! in Uj, %Up, flower/Up, %set, g/fruit 

Rearession eauations, Yield= 

E. Black 7.58 + 0.79 UT + 0.99 %Up + 0.74 flower/Up + 1.06 %set 

Howes 11.36 + 0.39 %Up + 0.89 %set + 1.37 g/fruit 

Stevens 12.45 + 0.88 %UF + 0.95 %set 

Pilgrim 6.24 + 1.14 Uj + 0.60 %UF + 0.62 %set 

Bergman 5.77 + 1.08 Uj + 0.93 %Up +1.43 flower/Up +1.17 %set 

Frank!in 10.51 + 1.03 %Up +1.45 flower/Up +0.91 %set 
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Table 8.5 Stepwise regression models for yield component data, 
regression without constant. Variables chosen from: Uj, %Up, 
flower/Up, %set, g/fruit, yield. Regression equations chosen based on 
yield component analysis, regression coefficients significant at 5% 
level. 

Cultivar Variables chosen in steD analysis 

Early Black 

Howes 

Stevens 

Pilgrim 

Bergman 

Frank!in 

Uj, flower/Up 

Uj, %Up , g/fruit 

Uj, %Up, %set, g/fruit 

Uj, %set, g/fruit 

UT 
flower/Up 

Rearession eauations, Yield= 

E. Black 1.528 Ut + 1.854 flower/Up 

Howes 2.236 Uj + 1.749 %UF + 2.311 flower/Up + 1.197 %set 

Stevens 2.523 Uj + 1.816 %UF 

Pilgrim 2.398 Uj + 0.700 %set 

Bergman 1.987 Uj 

Frank!in 2.502 Uj + 1.392 %set 

was determined for each sample area. All of the variables were log- 

transformed for the analyses. 

First, the data were subjected to stepwise regression, with and 

without a constant, to choose variables for a yield model. The 

variables chosen for the six cultivars were not the same (Tables 8.4 

and 8.5, upper half). No variables were selected in this process for 

'Early Black' when regression with a constant in the model was 

attempted. Based on a model including a constant, the stepwise 

regression process selected percent of uprights flowering and percent 

fruit set as determinants of yield for all of the other cultivars and 

selected all of the other variables for three cultivars each. Based 
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on a stepwise regression model which did not include a constant, 

upright density and fruit weight were the most often chosen 

determinants of yield. Not surprisingly, fruit weight was important 

for 'Stevens' and 'Pilgrim'. However, fruit weight was also selected 

as a determinant of yield for 'Howes'. 

When the variables were forced into regression equations in 

order of developmental events, models were selected based on the 

significance (5% level) of the regression coefficients (Jolliffe, et 

al., 1982). In models including a constant, percent flowering 

uprights and fruit set were important determinants of yield for all 

six cultivars (Table 8.4, bottom half). When the constant was removed 

from the model, upright density was selected as a determinant of yield 

for all cultivars (Table 8.5, bottom half). Fruit set was important 

for three of the cultivars. Interestingly, fruit weight was not 

selected in these analyses, even for the large-fruited cultivars. 

Each yield component was used as the dependent variable for 

regression with the previous ones as the independent variables. Based 

on the regression coefficients, certain correlations between variables 

were determined to be significant (5% level). None of the variables 

were correlated for 'Early Black' and 'Stevens'. The number of 

flowers per upright and fruit weight were positively correlated for 

'Bergman'. The positive correlation indicated a common factor that 

affected both variables. Flower bud initiation and ovule 

differentiation within the developing flower buds could have been 

affected by the same climatic or nutritional factors. Seeds produced 

from those ovules would then influence fruit weight. Negative 

correlations between variables were found for the other cultivars. 
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Negative correlations indicated compensation of one component by 

another (Shawa et al., 1981). Upright density was negatively 

correlated with percent flowering uprights and flowers per upright in 

'Howes'. 'Howes' normally have a fairly sparse vine stand (Table 

8.1). Dense vine stands could have been due to excess vegetative 

growth at the expense of flowering response. 'Pilgrim' showed 

negative correlations between fruit weight and percent flowering 

uprights, fruit set, and flowers per upright. Increases in any of 

those factors would be associated with increased fruit production. A 

large load of fruit would then be enough of a drain on plant resources 

to lead to lower weights for individual fruit. Fruit set for 

'Franklin' was negatively correlated with upright density, perhaps due 

to difficulty for pollinators to get to fruit in thick stands. Of 

interest was the finding that none of the correlations among variables 

was shared among the cultivars. This method did not determine 

correlations between the yield component variables and yield 

(insufficient degrees of freedom). 

Analysis of a correlation matrix of the yield component and 

yield data showed no correlations for 'Early Black', 'Pilgrim', and 

'Bergman' variables. Fruit set and yield were positively correlated 

for 'Howes', 'Stevens', and 'Franklin'. The only negative correlation 

by this method was upright density and fruit set for 'Franklin', 

confirming the previous correlation analysis. 

Yield analyses showed that the most important overall 

determinants of yield were fruit set and percent of uprights 

flowering, followed by upright density. Fruit weight was important, 

especially for the large-fruited cultivars. In a study of seven 
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cultivars, fruit weight became an important determinant when comparing 

cultivars (Eaton and MacPherson, 1978). 'Bergman' in British Columbia 

(Eaton and MacPherson, 1978) had flowering uprights, flowers per 

upright, and fruit set as the important determinants of yield. All of 

these components were selected for 'Bergman' by the similar yield 

analysis (using a constant) in this study. The cultivars did not 

all have the same important determinants of yield. This should be 

taken into account in attempts to predict experimental effects across 

cultivars. A treatment which affects a single yield component might 

have a greater effect on yield in one cultivar than in another, 

depending on the importance of that component in determining yield for 

each of the cultivars in question. 

'Howes', 'Pilgrim', and 'Franklin' all showed compensation of 

one yield component by another. This may have been due to competition 

for resources among the different developmental processes (Shawa et 

al., 1981). This was especially likely for 'Pilgrim' where fruit 

weight was negatively correlated with variables that determined fruit 

number. Cranberry growers have maintained that high fruit set was 

associated with small fruit size. This negative relationship was only 

found for 'Pilgrim' in this study. Another possible explanation for 

negative correlations between yield components was some positive 

effect on one component having a negative effect on another. For 

example, excess vegetative response positively affecting upright 

density at the expense of reproductive processes. This would explain 

the negative correlations for 'Howes' and 'Franklin'. If the 

compensation between yield components was due to nutritional effects, 
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'Pilgrim' may have been deficient, while 'Howes' and 'Franklin' were 

exhibiting luxury consumption. 

8.2 Nutrient Element Concentrations 

During each of the study years (1989 and 1990), all six 

cultivars received the same fertilizer dose, 310 kg N-P-K/ha in 1989 

and 270 kg N-P-K/ha in 1990 (10N-8.7P-8.3K). Tissue samples were 

collected every seven to ten days from new uprights (top 5 cm) from 

about four weeks after budbreak until mid-September. Fruit samples 

were collected from two weeks after fruit set until harvest. Samples 

were analyzed for ten mineral elements. 

8.2.1 New Shoots 

At each collection date, four tissue sample types were taken 

from 5 cm shoot tips: vegetative uprights only, flowering uprights 

only, mixed vegetative and flowering uprights, and leaves only from 

mixed uprights. Because analysis of variance (ANOVA) showed no 

significant tissue type by cultivar interaction, the data for tissues 

were pooled within each cultivar for analyses examining cultivar and 

sampling date effects. The seasonal average nutrient element content 

in new shoots varied by cultivar (Table 8.6). In both years, only 

copper concentration was not different among cultivars. Differences 

in K were not significant in 1990. With the exception of Zn in both 

years and P in 1989, 'Stevens' had as high or higher average 

concentrations of all of the elements compared to the other cultivars. 
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Table 8.6 Seasonal average element concentrations in new shoots of 
cranberry, 6 cultivars. Means followed by the same letter do not 
differ statistically (Tukey test). 

1989 

Cultivar %N %P %K %Ca %Mg 

Early Black 0.96 c 0.11 c 0.46 ab 0.57 b 0.20 d 
Howes 1.09 ab 0.13 b 0.45 ab 0.61 ab 0.24 a 
Stevens 1.09 ab 0.13 b 0.49 a 0.59 ab 0.23 ab 
Pilgrim 1.21 a 0.14 a 0.49 a 0.62 ab 0.21 be 
Bergman 0.96 c 0.11 c 0.41 b 0.65 a 0.19 d 
Franklin 1.05 be 0.13 ab 0.47 a 0.57 b 0.21 cd 
Sig. of F p<0.001 p<0.001 p=0.002 p=0.018 p<0.001 

Cultivar ppm B ppm Cu ppm Fe ppm Mn ppm Zn 

Early Black 39 c 6 a 67 c 298 b 18 d 
Howes 38 c 7 a 62 c 170 • d 32 a 
Stevens 47 ab 9 a 99 a 407 a 22 be 
Pilgrim 51 a 7 a 81 b 315 b 24 b 
Bergman 40 c 5 a 74 be 239 c 20 c 
Franklin 46 b 6 a 75 be 221 cd 22 c 
Sig. of F p<0.001 p>0.05 p<0.001 p<0.001 p<0.001 

1990 

Cultivar %N %P %K %Ca %Mg 

Early Black 0.93 b 0.13 b 0.53 a 0.64 be 0.20 cd 
Howes 1.07 a 0.15 ab 0.51 a 0.69 abc 0.23 be 
Stevens 0.99 ab 0.16 a 0.52 a 0.81 a 0.28 a 
Pilgrim 1.06 ab 0.14 ab 0.54 a 0.77 ab 0.23 b 
Bergman 1.02 ab 0.12 b 0.49 a 0.75 ab 0.20 d 
Franklin 1.08 a 0.16 a 0.58 a 0.60 c 0.20 d 
Sig. of F p=0.013 p<0.001 p>0.05 p<0.001 pcO.OOl 

Cultivar ppm B ppm Cu ppm Fe ppm Mn ppm Zn 

Early Black 38 be 6 a 42 d 290 be 18 d 
Howes 35 c 6 a 54 c 226 c 31 a 
Stevens 44 a 6 a 85 a 360 a 25 b 
Pilgrim 42 ab 6 a 68 b 264 be 25 b 
Bergman 44 ab 6 a 62 be 286 be 21 c 
Franklin 45 a 6 a 57 c 304 ab 23 be 
Sig. of F p<0.001 p>0.05 p<0.001 p<0.001 p<0.001 
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This may have been due to the high productivity of this cultivar 

creating a high nutrient demand. The other large-fruited cultivar, 

'Pilgrim', also had high average nutrient concentrations. 'Early 

Black', the cultivar with the smallest fruit, had the lowest average 

nutrient concentrations in both seasons. Cultivar differences were 

significant for all elements except Mn and Cu in red raspberry (John 

and Daubeny, 1972). However, the significant differences in yield 

among the raspberry cultivars studied were not significantly 

correlated with element levels by simple linear regression. 

Similarly, the highest yields in cranberry ('Bergman' in 1989 and 

'Stevens' in 1990) were not necessarily associated with the highest or 

lowest average element contents in the cultivar tissues. It has been 

suggested (John and Daubeny, 1972) that differences in element levels 

among cultivars could be due to differences in ability of roots to 

assimilate nutrients without regard to critical element levels. 

The element concentrations for the six cultivars in 1989 were 

plotted vs. day number (Figures 8.12 to 8.21, p. 191-195). All 

cultivars showed declining patterns for N, P, and K levels and 

increasing patterns for Ca during the season. Levels of Mg rose 

slightly for most of the cultivars during the season. The patterns 

for the minor elements were more variable by cultivar, with the 

exception of Cu. The effect of sampling date was significant for all 

elements tested. The cultivar by sampling date interaction was 

significant for all elements except Cu in 1989. When highbush 

blueberry element levels on various sampling dates for different 

cultivars were examined in a single year, the date effect and the 

cultivar by date interaction were significant for all of the elements 
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examined (Eaton and Meehan, 1971). However, the authors warned that 

the relationships between sampling date, cultivar, and element levels 

might not hold in all years. The sampling date by cultivar 

interactions were not the same for cranberry in 1989 and 1990. The 

1990 element levels showed significant date by cultivar interactions 

for K, Mg, Fe, Mn, and Zn only (data not shown). 

Because all elements except Cu showed significant cultivar by 

date interaction, profile analyses to identify adjacent date 

differences were done using a C-matrix composed of cultivar vs. date 

data. The periods of stable nutrient levels identified were then 

valid across all cultivars (horizontal lines on Figures 8.12 to 8.21, 

p. 191-195). However, because a stable period had to be valid across 

all cultivars to be identified, and because the nutrient patterns 

among the cultivars differed, the common stable periods were often 

short (two weeks or less). Profile analysis within cultivars was not 

possible due to insufficient degrees of freedom. 

8.2.2 Fruit 

The nutrient concentration in fruit from the six cultivars in 

1989 and 1990 were plotted against sampling date (Figures 8.22 to 

8.31A and B, p. 196-205). The patterns of element concentration 

change over time for each element were similar between the two years. 

The shapes of the curves were similar for the different cultivars but 

the actual concentrations were quite different for some of the 

elements. 'Stevens' had the lowest N concentrations in fruit, but 

mid-level N concentrations in shoot tissue (Figure 8.12, p. 191). The 
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concentrations of K in 'Howes7 fruit, but not in 'Howes' shoots 

(Figure 8.14, p. 192), in both years were noticeably lower than those 

in the other cultivars. If the low fruit K levels were related to 

lack of K availability to the plants, it was not apparent in the shoot 

tissue analyses and the 'Howes' bog section had average yields in both 

seasons. 'Bergman' had the highest Ca levels in both fruit and new 

shoots (Figure 8.15, p. 192). The high Ca levels in 'Bergman' fruit 

were not associated with superior fruit quality. Fruit from that 

cultivar tended to be subject to physiological and fungal breakdown 

early in the harvest period. 

Levels of minor elements in the fruit tended to fluctuate more 

during fruit development than did those for major elements. Despite 

the variability, the pattern changes for the cultivars tended to be 

the same. Concentrations of B, Mn, and Zn declined as the fruit 

matured, while Cu and Fe levels remained generally steady with 

occasional peaks (Figures 8.27 to 8.31 A and B, p. 201-205). Only Mn 

levels showed noticeable differences among cultivars (Figures 3.30A 

and B, p. 204). 'Howes' fruit had the lowest Mn in both years, while 

'Early Black' and 'Bergman' had the highest levels. The levels of Mn 

in shoots (Figure 8.20, p. 195) did not parallel those in fruit. 

Yield did not seem to be associated with Mn content of fruit. The two 

highest yielding cultivars in 1989 were 'Bergman' and 'Howes', 

representing the highest and lowest Mn levels for fruit. 

The concentrations of the elements at the end of the fruit dry 

weight accumulation period (or at harvest) were tabulated (Table 8.7). 

The concentration of the major elements in fruit were stable within 

cultivars over the two years of the study with the exception of K in 
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Table 8.7 End of season element concentrations in fruit of cranberry, 
6 cultivars. 'Early Black' = EB, 'Howes' = H, 'Stevens' = S, 
'Pilgrim' = P, 'Bergman' = B, 'Franklin' = F. 

Element Year EB H S P B F 

%N 1989 0.24 0.29 0.27 0.35 0.29 0.29 
1990 0.48 0.38 0.28 0.37 0.45 0.48 

%P 1989 0.08 0.08 0.07 0.08 0.08 0.07 
1990 0.09 0.08 0.08 0.09 0.10 0.10 

%K 1989 0.65 0.51 0.59 0.60 0.65 0.58 
1990 0.67 0.52 0.58 0.61 0.77 0.82 

%Ca 1989 0.07 0.05 0.04 0.05 0.06 0.05 
1990 0.07 0.06 0.06 0.08 0.09 0.07 

%Mg 1989 0.05 0.05 0.05 0.06 0.05 0.04 
1990 0.06 0.04 0.05 0.06 • 0.06 0.06 

ppm B 1989 10 11 13 10 11 11 
1990 14 16 16 11 13 16 

ppm Cu 1989 9 6 4 7 3 16 
1990 6 4 4 6 4 5 

ppm Fe 1989 19 16 24 21 19 22 
1990 15 13 15 20 22 35 

ppm Mn 1989 27 12 17 17 24 16 
1990 21 17 20 20 33 26 

ppm Zn 1989 11 11 8 11 7 21 
1990 7 7 6 9 10 8 

'Frank!in' and N in 'Early Black', 'Howes', 'Bergman', and ' Franklin', 

all of which were high in 1990. Minor element concentrations were 

quite variable between years but less so among cultivars. 

Based on the concentrations (dry weight basis) of the elements 

in the fruit at the end of the season and the percent dry weight of 

fruit from the different cultivars, the amount of mineral elements 

removed from a cranberry bog could be calculated for the six cultivars 
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Table 8.8 Weight of elements (kg/ha or g/ha) removed from a cranberry 
bog in a 100 bbl/A crop, based on percent dry weights. 'Early Black' 
= EB, 'Howes' = H, 'Stevens' = S, 'Pilgrim' = P, 'Bergman' = B, 
'Franklin' = F. 

Element Year EB H S P B F 

N 1989 2.83 3.49 3.13 3.79 3.42 3.62 
(kg/ha) 1990 6.20 5.12 3.73 4.23 5.18 5.52 

P 1989 0.94 0.96 0.81 0.87 0.94 0.87 
(kg/ha) 1990 1.16 1.08 1.07 1.03 1.19 1.15 

K 1989 7.67 6.14 6.83 6.50 7.66 7.23 
(kg/ha) 1990 8.65 7.00 7.73 7.23 9.13 9.44 

Ca 1989 0.83 0.84 0.58 0.54 0.71 0.62 
(kg/ha) 1990 0.90 0.94 0.80 0.95 0.83 0.81 

Mg 1989 0.59 0.60 0.58 0.65 ’ 0.59 0.50 
(kg/ha) 1990 0.77 0.54 0.67 0.69 0.71 0.69 

B 1989 11.8 12.0 12.7 10.8 13.0 13.7 
(g/ha) 1990 18.1 21.6 21.3 12.6 19.0 18.4 

Cu 1989 10.6 10.8 6.9 7.6 3.5 20.0 
(g/ha) 1990 7.7 5.4 5.3 6.9 4.7 5.8 

Fe 1989 22.9 22.9 18.5 22.7 22.4 27.4 
(g/ha) 1990 19.4 17.5 20.0 22.8 26.1 40.3 

Mn 1989 31.8 32.5 13.9 18.4 28.3 20.0 
(g/ha) 1990 27.1 22.9 26.6 22.8 39.1 29.9 

Zn 1989 13.0 13.2 9.3 11.9 8.2 26.2 
(g/ha) 1990 9.0 9.4 8.0 10.3 11.9 9.2 

% dry 1989 10.54 10.75 10.34 9.67 10.52 11.13 
weight 1990 11.53 12.03 11.89 10.20 10.59 10.28 

(Table 8.8). The calculations were based on removal in a 100 bbl/A 

(11.2 Mg/ha) crop. The nutrient removed in the highest amounts from 

the bog was K for all cultivars, followed by N. Calculated removal of 

N was very variable due to the variability in N content of the fruit 

between the two years (Table 8.7). Generally, one kg/ha or less of P, 
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Ca, and Mg were removed. Despite high levels of some of the minor 

elements in cranberry foliage, minor elements did not accumulate in 

fruit (Table 8.7) and at most 30 g/ha were removed in the 100 bbl/A 

crop, confirming the low minor element requirements for this plant. 

The dry weight percent of fruit varied with cultivar and between 

years for the individual cultivars. This could have been related to 

crop load (cultivar differences) or photosynthate availability 

(cultivar and year differences). While the differences in dry weight 

did not have a great impact on the calculated removal of nutrients on 

a 100 bbl/A basis, often cranberry crops, especially for 'Stevens', 

exceed 300 bbl/A. The dry weight percent of 'Pilgrim' was lowest 

among the six cultivars. However, higher element concentrations 

compensated and the calculated removal of elements in a 100 bbl/A crop 

of 'Pilgrim' was similar to that for the other cultivars. 

The amount of elements removed from a bog in a 100 bbl/A crop 

has been calculated previously (Shawa et al., 1984) based on element 

content of fresh fruit. The published values for P, K, and Mg were 

similar to those found here, but the published values for Ca was 

higher and those for Fe, Mn, and Cu were much higher. The higher 

published values could all be accounted for by the higher nutrient 

concentrations (2 to 3 times higher for the minor elements) on which 

those calculations were based. 

Calculations of removal of nutrients in a 100 bbl/A crop of 

'Early Black' were done for the N-P-K experiment (Tables 6.15 and 6.16 

p. 108, 110). The results were similar to those found for 'Early 

Black' in the cultivar study. The calculated N removal for the N-P-K 

study, based on three years of data, is most likely the best estimate, 
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falling between the extremes in the cultivar study. In most years, 

the amount of N removed in a 100 bbl/A crop is between 5 and 6 kg/ha 

and K removal is between 7 and 9 kg/ha. 

Although some differences in nutrient levels and patterns were 

apparent among the six cultivars, the nutrient demand for a given 

level of fruit production seemed to be similar. However, the yield 

potentials for all cultivars were not the same, and it was this fact 

that determined that the fertilizer needs for the six cultivars were 

not necessarily the same. Providing the same dose of fertilizer to 

all six cultivars in 1989 and 1990 may have led to deficiencies or 

excesses. 

179 



X 
CO 
LU 
X 
LL 

Figure 8.1 Fruit development (fresh weight) in 1989. Lines are from 
calculated regression (Table 8.2). A: small fruited cultivars; B: 
large fruited cultivars. 
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Figure 8.2 Fruit development (fresh weight) in 1990. Lines are from 
calculated regression (Table 8.2). A: small fruited cultivars; B: 
large fruited cultivars. 
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Figure 8.3 Fruit development (fresh weight) in 1991. Lines are from 
calculated regression (Table 8.2). A: small fruited cultivars; B: 
large fruited cultivars. 
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Figure 8.4 Fruit development (dry weight) in 1989. Lines are from 
calculated regression (Table 8.3). A: small fruited cultivars; B: 
large fruited cultivars. 
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Figure 8.5 Fruit development (dry weight) in 1990. Lines are from 
calculated regression (Table 8.3). A: small fruited cultivars; B: 
large fruited cultivars. 
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Figure 8.6 'Early Black' fruit development, 1991. Percent of total 
fruit for each size class in a 180 cm^ area, mean of 4 replicates. 
Lines are from calculated regression. A: size and weight; B: size and 
number. 
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Figure 8.7 'Howes' fruit development, 1991. Percent of total fruit 
for each size class in a 180 cm2 area, mean of 4 replicates. Lines 
are from calculated regression. A: size and weight; B: size and 
number. 
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’STEVENS’ FRUIT 

Figure 8.8 'Stevens' fruit development, 1991. Percent of total fruit 
for each size class in a 180 cm^ area, mean of 4 replicates. Lines 
are from calculated regression. A: size and weight; B: size and 
number. 
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’PILGRIM’ FRUIT 

Figure 8.9 'Pilgrim' fruit development, 1991. Percent of total fruit 
for each size class in a 180 cm^ area, mean of 4 replicates. Lines 
are from calculated regression. A: size and weight; B: size and 
number. 
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’BERGMAN’ FRUIT 

Figure 8.10 'Bergman' fruit development, 1991. Percent of total 
fruit for each size class in a 180 cm2 area, mean of 4 replicates. 
Lines are from calculated regression. A: size and weight; B: size and 
number. 
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’FRANKLIN’ FRUIT 

WEEK NUMBER 

Figure 8.11 'Franklin' fruit development, 1991. Percent of total 
fruit for each size class in a 180 cm2 area, mean of 4 replicates. 
Lines are from calculated regression. A: size and weight; B: size and 
number. 
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Figure 8.12 N concentration (dry weight) in new shoots of cranberry, 
6 cultivars, 1989. Horizontal line represents stable concentration 
across cultivars (profile analysis of cultivar x date interaction). 

cn 
j— 

O 
o 
CO 

170 1 90 210 230 250 

DAY NUMBER 

Figure 8.13 P concentration (dry weight) in new shoots of cranberry, 
6 cultivars, 1989. Horizontal line represents stable concentration 
across cultivars (profile analysis of cultivar x date interaction). 
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Figure 8.14 K concentration (dry weight) in new shoots of cranberry, 
6 cultivars, 1989. Horizontal line represents stable concentration 
across cultivars (profile analysis of cultivar x date interaction). 
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Figure 8.15 Ca concentration (dry weight) in new shoots of cranberry, 
6 cultivars, 1989. Horizontal line represents stable concentration 
across cultivars (profile analysis of cultivar x date interaction). 
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Figure 8.16 Mg concentration (dry weight) in new shoots of cranberry, 
6 cultivars, 1989. Horizontal line represents stable concentration 
across cultivars (profile analysis of cultivar x date interaction). 

Figure 8.17 B concentration (dry weight) in new shoots of cranberry, 
6 cultivars, 1989. Horizontal line represents stable concentration 
across cultivars (profile analysis of cultivar x date interaction). 
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Figure 8.18 Cu concentration (dry weight) in new shoots of cranberry, 
6 cultivars, 1989. Horizontal line represents stable concentration 
across cultivars (profile analysis of cultivar x date interaction). 

Figure 8.19 Fe concentration (dry weight) in new shoots of cranberry, 
6 cultivars, 1989. Horizontal line represents stable concentration 
across cultivars (profile analysis of cultivar x date interaction). 
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Figure 8.20 Mn concentration (dry weight) in new shoots of cranberry, 
6 cultivars, 1989. Horizontal line represents stable concentration 
across cultivars (profile analysis of cultivar x date interaction). 

Figure 8.21 Zn concentration (dry weight) in new shoots of cranberry, 
6 cultivars, 1989. Horizontal line represents stable concentration 
across cultivars (profile analysis of cultivar x date interaction). 
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Figure 8.22 N concentration (dry weight) in fruit of cranberry, 
6 cultivars. A: 1989; B: 1990. 
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Figure 8.23 P concentration (dry weight) in fruit of cranberry, 
6 cultivars. A: 1989; B: 1990. 
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Figure 8.24 K concentration (dry weight) in fruit of cranberry, 
6 cultivars. A: 1989; B: 1990. 
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Figure 8.25 Ca concentration (dry weight) in fruit of cranberry, 
6 cultivars. A: 1989; B: 1990. 
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Figure 8.26 Mg concentration (dry weight) in fruit of cranberry, 
6 cultivars. A: 1989; B: 1990. 
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Figure 8.27 B concentration (dry weight) in fruit of cranberry, 
6 cultivars. A: 1989; B: 1990. 
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Figure 8.28 Cu concentration (dry weight) in fruit of cranberry, 
6 cultivars. A: 1989; B: 1990. 

202 



FE
 (

P
P

M
) 

- 
FR

U
IT
 

F
E
 (

PP
M

) 
- 

FR
U

IT
 

140 

120 

100 

80 

60 

40 

20 

200 220 240 260 280 

190 210 230 250 270 290 

DAY NUMBER 

Figure 8.29 Fe concentration (dry weight) in fruit of cranberry, 
6 cultivars. A: 1989; B: 1990. 
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Figure 8.30 Mn concentration (dry weight) in fruit of cranberry, 
6 cultivars. A: 1989; B: 1990. 
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Figure 8.31 Zn concentration (dry weight) in fruit of cranberry, 
6 cultivars. A: 1989; B: 1990. 
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CHAPTER 9 

DETERMINATION OF CRANBERRY NUTRIENT STATUS: TISSUE TO SAMPLE, TIME TO 

SAMPLE, AND STANDARD VALUES FOR TEN ELEMENTS IN 'EARLY BLACK' 

9.1 Tissue to Sample 

Tissue samples for nutrient analysis in cranberry had previously 

been collected from new shoots. However, confusion existed regarding 

which new shoots or parts thereof should be used. Eaton and Meehan 

(1973) used leaves only from entire new uprights (vegetative and 

flowering mixed). Eck (1971) analyzed vegetative uprights, flowering 

uprights, and leaves from runners separately. Dana (1981c) proposed 

the use of whole shoot tips from uprights for routine tissue testing 

of cranberries. DeMoranville and Deubert (1986) collected leaves only 

from upright shoots. 

Eck (1971) showed that N content of runner leaves, vegetative 

uprights, and flowering uprights all increased with increasing N 

fertilizer level. However, the N concentrations in the different 

tissues at a single fertilizer level were different. Based on these 

results, the possibility existed for errors in the interpretation and 

comparison of cranberry tissue analyses due to lack of a universal 

standard for collecting the sample material. 

Four types of tissue samples from the top 5 cm of new upright 

shoots were compared as part of the study of cultivar nutrient 

differences. The tissue sample types were vegetative uprights (whole 

tips), flowering uprights (whole tips), a mixture of vegetative and 

flowering uprights (whole tips), and leaves stripped from the mixed 
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uprights. Analysis of variance (ANOVA) for each of the ten analyzed 

elements for 1989 and 1990 by cultivar, tissue, and sampling date 

showed significant (p<0.05) effects of cultivar, date, and tissue but 

no significant cultivar by tissue interaction (except for B in 1990). 

Based on the lack of significant tissue by cultivar interaction, 

further statistical tests were performed on tissue data pooled across 

cultivars. 

The average elemental concentrations in the different tissues 

were not the same (Table 9.1). The most common difference was between 

flowering and vegetative uprights. The differences were more apparent 

when the values over the whole season were compared (Figures 9.1 to 

9.10 A and B, p. 222-231). Up to the time of fruit set (early July), 

the concentrations of the elements were the same in both upright 

types. From that time on, N and K concentrations in flowering 

uprights were lower than those in vegetative uprights (Figures 9.1 and 

9.3 A and B, p. 222 and 224). The lower N concentration in flowering 

uprights confirms the differences found by Eck (1971). The 

concentrations of P in flowering uprights fell below those in 

vegetative uprights (Figure 9.2 A and B, p. 223), but not until later 

in the season. The concentrations of Ca, Mg, B (1989 only), Fe, and 

Mn were higher in flowering uprights than in vegetative uprights after 

fruit set. No differences in concentrations of Cu or Zn occurred 

between the two upright types. 

The low concentrations of N and K in flowering uprights were 

most likely due to the demand for those elements in the developing 

fruit. Because those two elements were present in the highest 

concentrations in fruit tissue, it was possible that uptake from the 
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Table 9.1 Nutrient levels in 4 tissues from new shoots of cranberry. 
Means followed by the same letter do not differ statistically (Tukey 
test). 

1989 

Tissue %N %P %K %Ca %Ma 

Uf 
UN 
Mixed U 
Leaves 
Sig. of F 

0.98 b 
1.06 ab 
1.06 ab 
1.14 a 
p<0.001 

0.12 a 
0.13 a 
0.13 a 
0.13 a 
p>0.05 

0.40 b 
0.50 a 
0.47 a 
0.46 a 
p<0.001 

0.66 a 
0.54 c 
0.59 be 
0.63 ab 
p<0.001 

0.23 a 
0.20 c 
0.20 be 
0.22 ab 
p<0.001 

DDm B DDm Cu DDm Fe DDm Mn DDm Zn 

Uf 
UN 
Mixed U 
Leaves 
Sig. of F 

r r --—-— 

46 a 
40 c 
42 be 
45 ab 
p=0.001 

6 a 
6 a 
8 a 
7 a 
p>0.05 

79 a 
73 a 
75 a 
77 a 
p>0.05 

344 a 
250 be 
279 b 
228 c 
p<0.001 

23 a 
23 a 
23 a 
22 a 
p>0.05 

1990 

Tissue %N %P %K %Ca %Mq 

uf 
uN 
Mixed U 
Leaves 
Sig. of F 

0.95 b 
1.03 ab 
1.02 ab 
1.11 a 
p=0.001 

0.14 a 
0.14 a 
0.14 a 
0.14 a 
p>0.05 

0.51 a 
0.55 a 
0.55 a 
0.51 a 
p>0.05 

0.74 a 
0.66 a 
0.68 a 
0.76 a 
p>0.05 

0.23 a 
0.21 a 
0.22 a 
0.23 a 
p>0.05 

ppm B DDm Cu DDm Fe DDm Mn ppm Zn 

uf 
UN 
Mixed U 
Leaves 
Sig. of F 

40 a 
42 a 
39 b 
44 a 
p=0.018 

6 a 
6 a 
6 a 
7 a 
p=0.041 

63 a 
59 a 
61 a 
64 a 
p>0.05 

351 a 
267 b 
288 b 
250 b 
p<0.001 

24 a 
23 a 
24 a 
24 a 
p>0.05 

roots could not keep pace with demand in the fruit. The elements 

which were present in higher concentration in flowering uprights (Ca, 

Mg, B, Fe, and Mn) may have accumulated as a result of increased root 

activity (or an increase in new root production) in response to 

fruiting, such that while demand for N and K was not met, demand for 

the other elements was exceeded. 
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The low levels of N and K in flowering uprights may be one of 

the -actors responsible for the biennial bearing of cranberry uprights 

Eaton, 1978; Strik et al., 1991). Eaton (1978) showed that flower 

bud incuction for the following season occurred at about the same time 

as fruit set in the current season and that removal of the developing 

fruit early in the period led to an increase in flower bud production 

on flowering uprights. He suggested that the developing buds were 

competing with existing fruit for nutrients. If that were the case, 

depletion of N and K in flowering uprights may have been a factor in 

the low incidence of return bloom in cranberry uprights (Strik et al., 

1991). Eck (1977) found that biennial bearing highbush blueberries 

had higher N and lower Ca in the 'off' year. This would correspond to 

the higher N and lower Ca in vegetative cranberry uprights in this 

study. 

Element concentrations in samples of mixed vegetative and 

flowering uprights tended to fall between those of the separately 

sampled uprights (Table 9.1). Based on the seasonal average, the 

concentrations in mixed samples were statistically similar to those in 

vegetative uprights. Over the entire season, N, B, and Fe (Figures 

9.11 to 9.13, p. 232-233), concentrations held that pattern. The 

relationships among the patterns for P were more variable (Figure 

9.14, p. 233), while the concentrations of K, Ca, Mg, and Mn (Figure 

9.15 to 9.18, p. 234-235) in mixed samples tended to fall between 

those of the two other types. The tendency for the mixed sample to 

more resemble the vegetative uprights was due to the higher 

proportions of vegetative uprights in a randomly collected mixed 
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sample. The percent of flowering uprights in this study varied 

between 10 and 45, usually averaging about 30-35%. 

Mixed upright samples consisting of whole shoot tips were 

compared to just leaves from mixed upright tips. The average seasonal 

element concentrations in the two tissue types were generally not 

different (Table 9.1). However, over the course of the season, the 

tissue types diverged. Concentrations of N, Ca, Mg, and B were higher 

in leaf only samples (Figure 9.19 to 9.22, p. 236-237); concentrations 

of K and Mn were lower in leaf only samples (Figure 9.23 and 9.24, p. 

238); and the tissue types did not differ in P, Cu, Fe, or Zn 

concentrations. 

Based on all of the differences found in element concentrations 

among tissue types, a single type should be chosen and used throughout 

the cranberry industry and among cranberry researchers so that results 

can be properly interpreted and compared. The choice should be based 

on ease of collection and how meaningful the test results would be. 

Leaf only sampling was eliminated in order to simplify sample 

collecting. However, cranberry shoots do become woody late in 

September. Shoot tip samples collected after the stems become woody 

may show lower than expected element concentrations due to the lower 

concentrations in woody stem tissue, which would then make up a 

significant portion of the sample weight. 

Mixed vegetative and flowering upright tip samples were selected 

for future sampling. If samples were collected before fruit set, 

there were no differences among the three upright sample types and 

collecting a mixed sample was less labor intensive. After fruit set, 

the mixed upright sample gave a compromise (middle-range) value 
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between those of the other two types. Samples collected after fruit 

set would be used to determine nutritional needs for bud development 

and the following season. The relative contribution of vegetative 

uprights to both the mixed sample results and the following crop 

(Eaton, 1978) were similar, with the vegetative uprights making a 

larger contribution than the flowering uprights. A sample of purely 

vegetative uprights would take longer to collect and would have the 

potential for underestimating the need for N and K. A sample of 

purely flowering uprights would not be representative of the needs of 

the bog. These uprights only accounted for 30-35% of the current 

stand and only about 25% of them would produce flower buds for the 

following season (Strik et al., 1991). 

9.2 Time to Sample 

Changes in the concentrations of the elements were observed 

during the season and were discussed in Chapters 6 and 8. These 

changes made the choice of a standard sampling time (date range) 

necessary if the results of cranberry nutrient analyses were to be 

compared to one another and to standard values. The sample time 

period should be a time when nutrient element concentrations were not 

changing for at least two weeks. John and Daubeny (1972) suggested 

that raspberry tissue samples should be collected after the first 

flush of new growth had ended and before remobilization of elements 

during leaf senescence. While cranberry leaves did not drop in the 

fall, some remobilization prior to dormancy could be expected. 

Periods of element concentration stability for six cultivars were 
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Table 9.2 Dates of stable element concentrations in cranberry new 
shoot tissue, six cultivars. The last sample dates were 6 September, 
1989 and 25 September, 1990. 

Element 1989 1990 

N 2 Aug.-6 Sept. 30 July-13 Aug. 
10-25 Sept. 

P 16 Aug.-6 Sept. 30 July-25 Sept. 

K 16 Aug.-6 Sept. 3-16 July 
30 July-25 Sept. 

Ca 9-23 Aug. 
29 Aug.-6 Sept. 

10-25 Sept. 

Mg 19-28 June 
9 Aug.-6 Sept. 

16 July-25 Sept. 

B 19 June-26 July 
9 Aug.-6 Sept. 

30 July-25 Sept. 

Cu 19 June-12 July 
19 July- 6 Sept. 

30 July-25 Sept. 

Fe 19 June-12 July 
26 July-6 Sept. 

19 June-27 Aug. 
27 Aug.-25 Sept. 

Mn 16 Aug.-6 Sept. 13 Aug.-25 Sept. 

Zn 19 June-23 Aug. 
29 Aug.-6 Sept. 

13 Aug.-27 Aug. 
27 Aug.-25 Sept. 

determined using difference contrasts and profile analyses following 

ANOVA by date of sampling. The stable periods for each element in 

1989 and 1990 were roughly similar (Table 9.2). Based on these stable 

periods, 10 August to 15 September was selected as a common sampling 

period for the six cultivars. This period avoided rapid new growth in 

June and July and dormancy-related events in late-September. 

Based on the results of profile analyses of the data from the N- 

P-K experiment (see Tables A.l to A.10, p. 254-259), a sampling period 
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of 5 August to 15 September was chosen for 'Early Black'. Because 

this cultivar matures fruit and becomes dormant earlier than many 

others, sampling early during this period would be preferred (e.g. 

mid- to 1 ate August). 

Chaplin and Martin (1979) found stable periods for nutrient 

element concentrations in 'McFarlin' cranberry. A stable period in 

late August was found for all elements except Mg, Mn and Fe, which had 

stable levels in June and July. They recommended separate sampling 

periods for the two groups of elements. DeMoranville and Deubert 

(1986) found stable element concentrations in 'Howes' cranberry late 

in the summer. The concentrations of N, K, Ca, and Mg were stable 

from 15 August to 10 September, while that of P was only stable from 

15 July to 15 August. All available research on cranberry tended to 

support a late August sampling period for tissue analyses. 

9.3 Standard Nutrient Concentration Values for 'Early Black' Cranberry 

Once standard time and tissue to sample had been chosen, 

standard values for element concentration in that tissue had to be 

established. Simple linear regression of yield of 'Early Black' vs. 

element concentration in new shoot tips (mixed sample collected late 

in August) was attempted, using the data from the N-P-K experiment. 

The relationships for P, K, Cu, Fe, and Mn were not significant. All 

of the other elements tested showed significant positive linear 

relationships between yield and element concentration. Quadratic 

relationships were then calculated for those elements (Table 9.3). In 

all cases the quadratic equations were associated with higher 
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Table 9.3 Quadratic equations relating yield (kg/ha) to element 
concentration in 'Early Black' cranberry new shoots. All equations 
were significant at a maximum of p=0.02, n=60. 

Element R2 

N Y = - 40932 + 100905 (%M) - 41352 (%N)2 0.137 

P NS 

K NS 

Ca Y = 59490 - 146796 (%Ca) + 118308 (%Ca)2 0.184 

Mg Y = - 180048 + 1604056 (%Mg) - 3205049 (%Mg)2 0.276 

B Y = - 8766 + 1020 (ppm B) - 9 (ppm B)2 0.129 

Cu NS 

Fe NS 

Mn NS 

Zn Y = - 37282 + 4110 (ppm Zn) - 71 (ppm Zn)2 0.217 

values than the corresponding linear equations. While the R2 values 

for the equations were not large, the regression relationships were 

statistically significant. Eaton and Meehan (1973) found significant 

positive linear relationships between yield of 'Ben Lear' cranberry 

and both Ca and Mg concentration in upright leaves, with similar low 

R2 values (approximately 0.1). They also found a significant negative 

linear relationship between yield and K concentration. The 

relationship between 'Early Black' yield and K concentration in 

upright tips was also negative in this study but not statistically 

significant. John and Daubeny (1972) found no significant linear 

relationships between yield and element concentration in raspberry. 

The estimated values for yield vs. element concentration were 

plotted for those elements with significant relationships to yield 

(Figures 9.25 to 9.29, p. 239-241). In theory, the upward slope of 
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the curve represents less than optimum nutrient content, whereas the 

downward sloping range represents excess. However, the maximum yields 

predicted in these relationships were not as high as the actual yields 

in many of the plots, a definite problem, considering the fact that 

the plot yields were well below the maximum cranberry yields achieved 

in commercial settings. Based on these calculations, the standard 

ranges for the five elements should be 1.05-1.20% N, >0.9% Ca, 0.23- 

0.26% Mg, 50-60 ppm B, and 27-30 ppm Zn. All of these ranges were 

high in comparison to mean values from 287 'Early Black' samples 

collected during the stable periods from 1987 to 1990 (Table 9.5). 

The calculated ranges did roughly correspond to published standards 

for cranberries in the Pacific Northwest (Shawa et al., 1984). 

However, those standards had very wide ranges (e.g. 0.96-1.4% N, 0.61- 

1.6% Ca, and 26-60 ppm B) and were probably not too meaningful. The 

calculated values were outside the much narrower ranges recommended 

for 'Searles' cranberry in Wisconsin (Dana, 1981c; Roper and Coombs, 

1992). 

While the ranges of observed element concentrations in 'Early 

Black' were fairly wide, most of the values were clustered around the 

means (low CV, Table 9.5). For this reason, standard values were 

selected based on bracketing the mean values. The standard ranges for 

N, P, and K were made to include higher values above the mean than 

were the standards for the other elements, to compensate for the fact 

that many of the samples used to generate the means were from 

underfertilized plots (lower than standard levels of N-P-K 

fertilizer). The proposed standards (Table 9.4) differed somewhat 

from those previously published for cranberry. In comparison to the 
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Table 9.4 Recommended element concentrations for 'Early Black' 
cranberry new shoot tips sampled between 5 August and 15 September. 

Element Low Normal High 

N (%) <0.90 0.95-1.05 >1.20 

P (%) <0.09 0.11-0.14 >0.18 

K {%) <0.30 0.40-0.65 >0.80 

Ca (X) <0.50 0.60-0.80 >0.90 

Mg (%) <0.20 0.20-0.25 >0.26 

B (ppm) <20 30-50 >70 

Cu (ppm) <4 4-7 >10 

Fe (ppm) <30 40-80 >100 

Mn (ppm) <100 150-250 >400 

Zn (ppm) <15 15-30 >35 

standards for 'Searles' cranberry in Wisconsin (Dana, 1981c; Roper and 

Coombs, 1992), the proposed standards were lower for P and K and 

higher for N, Ca, Mg, and B. The Wisconsin standards (Dana, 1981c) 

were formulated based on the same methods used for these Massachusetts 

'Early Black' standards. Compared to major element standards for 

'Howes' in Massachusetts (DeMoranville and Deubert, 1986), the 

proposed standards for 'Early Black' were lower for N and Ca. The 

proposed standards for 'Early Black' fell within the rather wide range 

proposed for cranberries in the Pacific Northwest (Shawa et al., 1984) 

with the exception of K (higher in Massachusetts) and Cu (lower). 

The results of published research were compared to the proposed 

standard values. Eck (1971) found 0.95% N in flowering uprights and 

1.0% N in vegetative uprights of 'Early Black' cranberry fertilized 

with 33 kg N/ha and growing normally. In culture experiments with 
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rooted cuttings Stieber and Peterson (1987) showed N deficiency 

symptoms at 0.8% N in cranberry shoots. Eaton and Meehan (1973) 

proposed values of 1% N, 0.1% P, 0.34-0.40% K, 0.6-0.7% Ca, and 

greater than 0.31% Mg for 'Ben Lear' cranberry based on balancing the 

effects of element levels in the foliage on fruit sugar content, fruit 

anthocyanin content, and yield. They found that foliar concentrations 

of Fe >50 ppm or Mn >150 ppm had adverse effects on fruit soluble 

solid content. Based on field and laboratory experiments, Greidanus 

and Dana (1972) proposed 0.11% as the critical level for P. Based on 

the performance of 'Early Black' cuttings in sand culture, Torio and 

Eck (1969) suggested critical levels of >0.076% for P and <0.56% for 

K. Dana and Steinmann (1989b) proposed a critical value for K of 

0.26% based on research with rooted 'Stevens' cuttings in solution 

culture. The agreement between the proposed standards for 'Early 

Black' and these research results was quite good. The exceptions were 

the proposed K critical value (Dana and Steinmann, 1989b) which was 

developed using purely vegetative cuttings and the proposed values of 

Eaton and Meehan (1973) for 'Ben Lear'. Those values were lower for P 

and K and higher for Mg than those proposed here. However, the P and 

K standards for 'Ben Lear' were proposed based on effect on fruit 

chemical composition, not growth or yield response. 

9.4 Nutrient Concentration Ranges in Six Cranberry Cultivars 

The concentration ranges for ten elements in new shoot tips of 

six cranberry cultivars collected between 10 August and 15 September 

were tabulated (Tables 9.5, 9.6, and 9.7). The mean values for 'Early 
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Table 9.5 Element concentrations in cranberry new shoot tips. 
Samples collected between 5 August and 15 September, 187 samples for 
'Early Black', 8 for 'Howes'. 

Element Mean Range C V 

'Early Black' 

N (%) 0.97 0.64-1.46 1.18 

P (%) 0.12 0.06-0.20 1.59 

K (%) 0.50 0.28-0.93 1.79 

Ca (%) 0.73 0.41-1.20 1.38 

Mg (%) 0.23 0.09-0.32 1.02 

B (ppm) 43 19-102 2.53 

Cu (ppm) 6 2-28 2.90 

Fe (ppm) 61 19-130 2.02 

Mn (ppm) 200 59-430 2.44 

Zn (ppm) 22 13-43 1.41 

'Howes' 

N (%) 0.98 0.81-1.15 4.71 

P (%) 0.13 0.11-0.16 5.29 

K (%) 0.43 0.31-0.55 6.84 

Ca (%) 0.73 0.55-0.89 5.61 

Mg (%) 0.25 0.22-0.31 3.94 

B (ppm) 40 30-56 6.68 

Cu (ppm) 6 5-7 4.35 

Fe (ppm) 60 47-82 6.87 

Mn (ppm) 249 183-335 7.23 

Zn (ppm) 33 29-41 5.02 

Black' (Table 9.5) tissue elements were used to formulate the 

standards discussed in the previous section. If the 'Early Black' 

standard values were applied to the other five cultivars, not all mean 
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Table 9.6 Element concentrations in cranberry new shoot tips. 
Samples collected between 5 August and 15 September, 8 samples for 
each cultivar. 

Element Mean Range CV 

'Stevens' 

N (%) 0.98 0.81-1.15 3.55 

P (%) 0.13 0.11-0.15 3.70 

K (%) 0.40 0.34-0.48 4.25 

Ca (%) 0.80 0.61-1.12 7.28 

Hg (%) 0.26 0.22-0.32 4.77 

B (ppm) 49 35-58 4.80 

Cu (ppm) 5 4-6 5.97 

Fe (ppm) 102 81-132 6.59 

Mn (ppm) 426 337-583 6.47 

Zn (ppm) 24 20-33 6.05 

'Pilgrim' 

N (%) 0.99 0.89-1.10 3.03 

P (%) 0.13 0.11-0.14 2.52 

k m 0.44 0.32-0.56 5.76 

Ca (%) 0.78 0.60-1.04 8.34 

Mg (%) 0.23 0.20-0.27 3.96 

B (ppm) 51 39-66 6.00 

Cu (ppm) 6 4-7 7.16 

Fe (ppm) 78 60-104 5.99 

Mn (ppm) 312 209-406 7.88 

Zn (ppm) 27 21-40 7.44 

values fell within the normal range. The 'Howes' Zn level was 

slightly above the 'Early Black' norm. The Mn levels in all of the 

other cultivars except 'Howes' were above the range proposed for 
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Table 9.7 Element concentrations in cranberry new shoot tips. 
Samples collected between 5 August and 15 September, 8 samples for 
each cultivar. 

Element Mean Range CV 

'Bergman' 

N (%) 0.91 0.74-1.07 4.51 

P (%) 0.11 0.09-0.11 2.55 

K (%) 0.35 0.27-0.42 5.87 

Ca (%) 0.81 0.61-1.07 6.31 

Mg (%) 0.21 0.18-0.24 3.22 

B (ppm) 45 33-61 7.73 

Cu (ppm) 5 4-6 5.76 

Fe (ppm) 73 53-61 8.96 

Mn (ppm) 315 159-394 8.27 

Zn (ppm) 23 18-30 6.87 

'Frank! in' 

N (%) 0.98 0.79-1.22 5.55 

P (%) 0.13 0.10-0.15 4.63 

K (%) 0.45 0.34-0.56 6.60 

Ca (%) 0.67 0.54-0.84 5.37 

Mg (%) 0.22 0.18-0.24 3.49 

B (ppm) 49 37-57 4.77 

Cu (ppm) 5 3-6 7.77 

Fe (ppm) 63 41-80 7.53 

Mn (ppm) 269 210-360 7.39 

Zn (ppm) 21 17-25 4.74 

'Early Black'. This is of interest when one considers the finding of 

Eaton and Meehan (1973) that high Mn levels could be deleterious. The 

sections from which the samples were collected were not particularly 
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high-yielding (below the Massachusetts average). In addition, the 

'Stevens' had high Fe levels. However, anecdotal evidence from 

Massachusetts indicated that high bog Fe content was associated with 

high yields. Presumably, the tissues of cranberry plants in those 

bogs contained high Fe levels as well. It should be noted that there 

has never been clear evidence that high tissue concentrations of Mn or 

Fe were associated with poor yields. The 'high' levels for those 

elements in any proposed standards for cranberry were not necessarily 

deleterious to cranberry production. 

Dana (1981c) published ranges for elements found in shoots of 

cranberries from Wisconsin marshes. Concentrations of Ca, Mg, B, and 

Mn above the Wisconsin range and K concentrations below the Wisconsin 

range were routinely found for all six Massachusetts cranberry 

cultivars studied. This emphasized the difficulty in using 

information from other growing areas in the culture of cranberries in 

Massachusetts. 

The levels of K in 'Bergman' tissue were low. However, the 

'Bergman' planting was one of the highest yielding in this study. 

Fruit quality (firmness) was poor for 'Bergman'. Poor quality may 

have been related to low K levels in the plants, although Ca 

deficiencies are more likely to be associated with poor fruit quality. 

While none of the cultivar sections in this study was high yielding, 

the element means and ranges presented here (Tables 9.5 to 9.7) could 

be used as a guideline for the minimum acceptable element 

concentration values for those cultivars. Further research with a 

wider range of yields would be needed to establish more definitive 

standards for the cultivars other than 'Early Black'. 
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Figure 9.1 N concentration (dry weight) in vegetative and flowering 
(reproductive) new uprights of cranberry, top 5 cm. Data points are 
the mean of 6 cultivars. Solid line = flowering. A: 1989; B: 1990. 
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Figure 9.2 P concentration (dry weight) in vegetative and flowering 
(reproductive) new uprights of cranberry, top 5 cm. Data points are 
the mean of 6 cultivars. Solid line = flowering. A: 1989; B: 1990. 
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Figure 9.3 K concentration (dry weight) in vegetative and flowering 
(reproductive) new uprights of cranberry, top 5 cm. Data points are 
the mean of 6 cultivars. Solid line = flowering. A: 1989; B: 1990. 
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Figure 9.4 Ca concentration (dry weight) in vegetative and flowering 
(reproductive) new uprights of cranberry, top 5 cm. Data points are 
the mean of 6 cultivars. Solid line = flowering. A: 1989; B: 1990. 
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Figure 9.5 Mg concentration (dry weight) in vegetative and flowering 
(reproductive) new uprights of cranberry, top 5 cm. Data points are 
the mean of 6 cultivars. Solid line = flowering. A: 1989; B: 1990. 
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Figure 9.6 B concentration (dry weight) in vegetative and flowering 
(reproductive) new uprights of cranberry, top 5 cm. Data points are 
the mean of 6 cultivars. Solid line = flowering. A: 1989; B: 1990. 
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Figure 9.7 Cu concentration (dry weight) in vegetative and flowering 
(reproductive) new uprights of cranberry, top 5 cm. Data points are 
the mean of 6 cultivars. Solid line = flowering. A: 1989; B: 1990. 
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Figure 9.8 Fe concentration (dry weight) in vegetative and flowering 
(reproductive) new uprights of cranberry, top 5 cm. Data points are 
the mean of 6 cultivars. Solid line = flowering. A: 1989; B: 1990. 
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Figure 9.9 Mn concentration (dry weight) in vegetative and flowering 
(reproductive) new uprights of cranberry, top 5 cm. Data points are 
the mean of 6 cultivars. Solid line = flowering. A: 1989; B: 1990. 
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Figure 9.10 Zn concentration (dry weight) in vegetative and flowering 
(reproductive) new uprights of cranberry, top 5 cm. Data points are 
the mean of 6 cultivars. Solid line = flowering. A: 1989; B: 1990. 
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Figure 9.11 N concentration (dry weight) in new cranberry upright 
tissue, top 5 cm. Data points are mean of 6 cultivars, 1989. Broken 
line represents mixed vegetative and flowering uprights. 

Figure 9.12 B concentration (dry weight) in new cranberry upright 
tissue, top 5 cm. Data points are mean of 6 cultivars, 1989. Broken 
line represents mixed vegetative and flowering uprights. 
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Figure 9.13 Fe concentration (dry weight) in new cranberry upright 
tissue, top 5 cm. Data points are mean of 6 cultivars, 1989. Broken 
line represents mixed vegetative and flowering uprights. 

Figure 9.14 P concentration (dry weight) in new cranberry upright 
tissue, top 5 cm. Data points are mean of 6 cultivars, 1989. Broken 
line represents mixed vegetative and flowering uprights. 
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Figure 9.15 K concentration (dry weight) in new cranberry upright 
tissue, top 5 cm. Data points are mean of 6 cultivars, 1989. Broken 
line represents mixed vegetative and flowering uprights. 

Figure 9.16 Ca concentration (dry weight) in new cranberry upright 
tissue, top 5 cm. Data points are mean of 6 cultivars, 1989. Broken 
line represents mixed vegetative and flowering uprights. 
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Figure 9.17 Mg concentration (dry weight) in new cranberry upright 
tissue, top 5 cm. Data points are mean of 6 cultivars, 1989. Broken 
line represents mixed vegetative and flowering uprights. 

Figure 9.18 Mn concentration (dry weight) in new cranberry upright 
tissue, top 5 cm. Data points are mean of 6 cultivars, 1989. Broken 
line represents mixed vegetative and flowering uprights. 
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Figure 9.19 N concentration (dry weight) in new shoot tissues of 
cranberry, mixed vegetative and flowering uprights. Data points are 
the mean of 6 cultivars, 1989. Solid line = leaves only. 

Figure 9.20 Ca concentration (dry weight) in new shoot tissues of 
cranberry, mixed vegetative and flowering uprights. Data points are 
the mean of 6 cultivars, 1989. Solid line = leaves only. 
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Figure 9.21 Mg concentration (dry weight) in new shoot tissues of 
cranberry, mixed vegetative and flowering uprights. Data points are 
the mean of 6 cultivars, 1989. Solid line = leaves only. 

Figure 9.22 B concentration (dry weight) in new shoot tissues of 
cranberry, mixed vegetative and flowering uprights. Data points are 
the mean of 6 cultivars, 1989. Solid line = leaves only. 
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Figure 9.23 K concentration (dry weight) in new shoot tissues of 
cranberry, mixed vegetative and flowering uprights. Data points are 
the mean of 6 cultivars, 1989. Solid line = leaves only. 

Figure 9.24 Mn concentration (dry weight) in new shoot tissues of 
cranberry, mixed vegetative and flowering uprights. Data points are 
the mean of 6 cultivars, 1989. Solid line = leaves only. 
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Figure 9.25 Curvilinear relationship between yield of 'Early Black' 
cranberry and %N in new shoots (mid-August sample). 

PERCENT CA 

Figure 9.26 Curvilinear relationship between yield of 'Early Black' 
cranberry and %Ca in new shoots (mid-August sample). 
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Figure 9.27 Curvilinear relationship between yield of 'Early Black' 
cranberry and %Mg in new shoots (mid-August sample). 
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Figure 9.28 Curvilinear relationship between yield of 'Early Black' 
cranberry and B (ppm) in new shoots (mid-August sample). 
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Figure 9.29 Curvilinear relationship between yield of 'Early Black' 
cranberry and Zn (ppm) in new shoots (mid-August sample). 
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CHAPTER 10 

CRANBERRY NUTRITION, PHENOLOGY, AND N-P-K FERTILIZER: A SUMMARY 

10.1 The Use of N-P-K Fertilizer: Effects on Tissue Nutrients, Growth. 

and Productivity 

In this study, 'Early Black' cranberries were treated with four 

levels of N-P-K fertilizer -- 0, 170, 335, and 505 kg N-P-K/ha. These 

levels included the fertilizer doses commonly used on that cultivar in 

commercial production in Massachusetts as well as higher and lower 

doses. In order to properly interpret tissue analyses from commercial 

cranberry bogs, it was necessary to find out how fertilizer use could 

affect the element concentrations in the cranberry tissues. 

As the N-P-K level increased, N, P, and K concentrations in 

cranberry new shoot tissue rose. After three years of treatment, the 

underfertilized (0 and 170 kg N-P-K/ha) plants could be separated from 

those receiving adequate (335 kg N-P-K/ha) and excess (505 kg N-P- 

K/ha) fertilizer on the basis of the N, P, and K content of new 

shoots. However, the overfertilized plants showed extremely high N 

concentrations in the new shoots only in the 1987 season when yields 

were lowest in all treatments. That season, vegetative growth also 

was retarded by frost so that there could be no dilution of excess N 

by increased new shoot tissue production. Based on these findings, it 

seemed likely that tissue testing would not necessarily detect N 

fertilizer excesses. 

There was no antagonistic effect of N-P-K on Ca or Mg levels in 

new shoots, but both elements declined in old leaves as N-P-K level 
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increased. Additionally, Ca content in fruit tissues declined with 

increased N-P-K fertilization. This Ca decline may explain the 

tendency for fruit quality to decline with excess N-P-K fertilizer 

use. There was an interaction of tissue B levels with N-P-K 

fertilizer levels. In underfertilized plants, B concentrations were 

significantly higher than in those receiving adequate or excess N-P-K 

fertilizer. The higher concentrations may have been due to 

preferential accumulation in leaf tissues, failure of B concentrations 

to be diluted by growth in underfertilized plants, or increased uptake 

of B by those plants. Although the total root biomass of the 

cranberry plants in the different N-P-K treatments did not differ 

statistically, the underfertilized plants did tend to have more roots 

in the second year of treatment and in all years had higher root/shoot 

ratios than fertilized plants due to decreased production of above¬ 

ground biomass. If root activity increased in those plants for uptake 

of adequate amounts of N, P, and K, B uptake may have increased 

coincidentally. An alternative explanation involving changes in minor 

element availability due to N-P-K fertilizer modification of soil 

chemistry was less likely. No changes in soil pH or organic matter 

were found during the study and no other minor elements accumulated in 

the tissues of underfertilized plants. 

Based on this study, tissue tests of cranberries should be 

interpreted with caution. These tests may not detect N overuse if 

high N availability leads to excess growth and subsequent dilution of 

the N content of the tissue. High tissue test levels of B may 

indicate too little fertilizer was used. Calcium and Mg 

concentrations in new tissues did not decline in response to 
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fertilizer overuse, but the levels in old leaves were lower. This may 

mean that over a longer time period (more than the three years studied 

here) induced deficiencies of those elements could occur. Overuse of 

N-P-K was associated with lower Ca in cranberry fruit. Testing just 

new shoots for mineral concentration was of limited value unless the 

results were interpreted in light of fertilizer use and other cultural 

practices. 

The lowest and highest N-P-K levels were associated with the 

poorest crops, with the highest yields at 335 kg N-P-K/ha. The 

differences were mainly due to effects on the numbers of fruit 

produced, with only a minor effect on the size of individual fruit. 

The lack of effect of N-P-K on fruit size has implications in the use 

of N-P-K fertilizer as an agent to promote cranberry fruit sizing. 

Based on dry weight accumulations, the size of the individual fruit 

did not respond to N-P-K fertilizer. 

Vegetative growth was most responsive to N-P-K application. The 

density of uprights, the weight of uprights, the total weight of new 

growth, and the length of uprights each were positively correlated 

with N-P-K level. The length of the uprights was the most sensitive 

variable with the most significant separation of the treatment means. 

The growth response of uprights was a much better indicator of 

response to N-P-K fertilizer than were tissue test N values. This 

result has implications for commercial cranberry growers. Monitoring 

length of uprights is a simple and inexpensive way to monitor response 

to added fertilizer. Use of this method could allow the grower to use 

tissue analyses less frequently, although testing for other elements 

would still be of value. For research, the use of upright length as 
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an experimental variable would be more costly than using tissue 

analyses, due to the need to collect accurate, replicated data (in 

comparison, growers would just use visual estimates). A possible 

alternative would be the use of upright weights. This variable is not 

quite as sensitive as upright length, but the labor involved in 

counting and weighing a set of uprights to get average weight would be 

much less than that needed to measure the lengths of those uprights. 

One drawback to the use of upright weight was the increase in weight 

late in the season due to 1ignification of the stem portion. That 

weight increase was not accompanied by further increase in length. 

Therefore, by late August, the correlation between the length of 

uprights and their weight was not as good. Regardless of the choice 

of variable, the inclusion of a determinant of vegetative response is 

desirable, especially in experiments with N fertilizers. 

In this study, upright density was an important determinant of 

yield. This had implications in terms of data collection methods in 

cranberry field experiments. There was inherent variability in vine 

stand in cranberry bogs due to the method use in planting and due to 

subsequent affects of weed and mechanical injuries (eg. during 

harvest). In order to filter out the effect of stand variability, 

density counts should be included in data collection from cranberry 

field experiments if yield determination is required. 

Other important determinants of 'Early Black' cranberry yield 

were percent of uprights flowering and percent fruit set. In field 

experiments, knowledge of effects of the treatments on these variables 

could be important. Data collection for percent flowering uprights 

would require little extra effort if upright density is going to 
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assessed in the experiment. Percent fruit set determinations were 

much more time consuming. A comparison of fruit numbers to the number 

of uprights flowering could be an alternative to collecting fruit set 

data in experiments where the dominant effect is not expected to be on 

fruit set. 

During the course of this study, information regarding methods 

of data collection was shared with other researchers working with 

cranberry. As a result, an effort has been made to standardize the 

methods of data collection in cranberry fertility experiments in the 

various growing areas. 

10.2 Cranberry Plant Development 

Biomass accumulated in roots, new shoots, and fruit during the 

season. The pattern of root growth was cyclical with periods of dry 

weight accumulation alternating with periods of dry weight loss. 

Early in the season, root dry weight declined, likely due to movement 

of carbohydrate reserves into growing shoots. The earliest increases 

in root biomass followed the first flush of new shoot growth. Root 

biomass also increased at the time of fruit development (in response 

to high nutrient demand of developing fruit) and after harvest (most 

likely mobilization of carbohydrates into root tissue in preparation 

for dormancy). The two earlier periods of root increase were most 

likely associated with production of new root tissue. Therefore, 

adequate nutritional support should be present in the soil in June and 

August. 
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Budbreak occurred in mid-May and by the end of May new shoots 

were elongating rapidly. New shoots continued to accumulate dry 

weight until July. High concentrations of nutrients accumulated in 

the juvenile new shoots. Some dilution in concentration occurred 

during the early flush of vegetative growth but the total element 

content in new shoots continued to rise. This indicated a continuing 

demand for nutrients throughout the growth period. Late in the 

summer, dry weight of shoots rose as the stem portions became 

lignified. The early growth period of the new shoots was critical in 

order to have enough photosynthetic area present for mobilization of 

carbohydrates into developing fruits. Fruits gained dry weight 

rapidly from fruit set (mid-July) until mid-August. Most of the 

mineral content in the fruits was acquired during the earliest stages 

of fruit enlargement. After the initial acquisition of nutrients 

subsequent to fruit set, the element concentrations in fruits declined 

due to dilution by growth. Availability of mineral elements in July 

was critical. 

The earliest stages of fruit development were the most critical 

in defining large vs. small fruit. The early growth rates and 

ultimate fruit weights of fruit from 'Stevens' and 'Pilgrim' were 

highest among the six cultivars studied. Again, this stresses the 

importance of adequate nutritional support during that period. 

At the end of the season, almost 50% of the standing above¬ 

ground biomass of the cranberry plants was fruit. With so much of the 

plants resources going into the production of crop, any variable which 

affected photosynthetic capacity could be expected to have an effect 

on fruit production. However, overfertilization and longer uprights 
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(more photosynthetic area) was associated with a lower crop, perhaps 

due to diversion of resources to vegetation at the expense of 

reproduction, indicating that a balance between the two must be 

maintained to maximize cropping. 

In the study of six cultivars, percent of uprights flowering and 

percent fruit set again were the most important determinants of yield. 

Upright density also was important but not always as a positive 

influence. For 'Howes' high upright density was correlated with 

decreased flowering uprights. Weight per fruit was important in 

determining yield for the large-fruited 'Stevens' and 'Pilgrim'. The 

differences in yield determinants among the cultivars may explain 

cultivar effects in cranberry field experiments. As Massachusetts 

moves away from a two cultivar cranberry industry, knowledge of the 

differences in cultivar response will become more important. 

In this study, all six cultivars received the same N-P-K dose. 

Too much fertilizer could explain why 'Howes' and 'Franklin' showed 

compensation between variables defining vegetative response (eg. 

upright density) and those defining reproduction (eg. percent 

flowering and fruit set). Too little fertilizer could explain the 

negative correlations among reproductive variables in 'Pilgrim' 

(compensation). The shoot and fruit tissues of 'Pilgrim' had among 

the highest nutrient concentrations in the study. If 'Pilgrim' was 

not receiving enough fertilizer, its tissue concentration requirements 

must be greater than those of the other cultivars. 'Stevens' also had 

high concentrations of elements in its new shoot tissue. Both of 

those cultivars bore the largest fruit and had the most robust vines 
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(thicker stems, larger leaves). The normal tissue element levels for 

'Stevens' and 'Pilgrim' may be higher than for the other cultivars. 

In an attempt to predict nutrient concentration and 

developmental changes in cranberry, modelling vs. day number and 

growing degree days (GDD) was attempted. Changes in 'Early Black' 

cranberry development and nutrition at a single location were best 

defined by day number when comparing one year with another. The 

possibility existed that GDD could be a useful predictor for 

differences among locations within a single year. 

10.3 Nutrient Requirements of Cranberry Bogs 

Based on the nutrient concentrations in 'Early Black' cranberry 

tissues and biomass production during the season (3 years averaged), 

the amounts of the elements used to produce a season's biomass were 

calculated. For production of root and shoots, the amounts needed in 

kg/ha were N - 48, P - 5, K - 21, Ca - 33, Mg - 10, B - 2, Cu - 0.3, 

Fe - 3, Mn - 10, and Zn - 1. The high values for the minor elements 

reflected accumulation in stems and roots and were not necessarily 

requirements. 

The removal of elements from an 'Early Black' cranberry bog in 

fallen leaves and fruit (150 bbl/A crop) also was calculated. The 

removal per ha was N - 24 kg, P - 4 kg, K - 19 kg, Ca - 17 kg, Mg - 5 

kg, B - 117 g, Cu - 21 g, Fe - 215 g, Mn - 634 g, and Zn - 61 g. 

The removal of elements from a bog in fruit only was calculated 

for six cultivars based on 100 bbl/A of fruit. The cultivars were 

roughly similar, with about 5 kg N/ha, 1 kg P/ha, 8 kg K/ha, 0.8 kg 
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Ca/ha, and 0.6 kg Mg/ha removed in a 100 bbl/A crop. Removal of minor 

elements amounted to less than 35 g/ha each. 

Taken together, these removal calculations indicated that 

cranberries had a low nutrient requirement. The elements required in 

the highest amounts were N and K. The plants requirements should be 

met with the N-P-K fertilizers currently being used. In fact, it 

would appear that much more P is being used than should be based on 

the requirements of the plants. Minor element supplements should not 

be required generally. 

10.4 Using Cranberry Tissue Analyses 

In order for growers and researchers to interpret and compare 

cranberry tissue analyses, sampling techniques needed to be 

standardized. The best time to collect a tissue sample would be when 

the tissue is not rapidly growing or senescing (remobilization of 

nutrients, lignification, carbohydrate loading) so that biomass and 

internal nutrient concentrations would be stable. By using various 

statistical techniques, periods during which the element 

concentrations in new shoot tissues of cranberry were stable 

(statistically similar) were defined. The stable period for 'Early 

Black' was 5 August to 15 September. A common stable period for 

element concentrations in new shoots of six cranberry cultivars 

occurred from 10 August to 15 September. Sampling in the third week 

of August was preferred due to maximum numbers of elements being 

stable at that time. The wider time ranges represent a more realistic 
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recommendation for field situations when many samples at many 

locations need to be collected. 

The tissue to sample chosen was whole shoot tips from new 

uprights, vegetative and flowering mixed. The minor differences found 

when just the leaves from this tissue were analyzed did not justify 

the increased time needed in sample preparation. Vegetative and 

flowering uprights had different element concentrations. For that 

reason, a sample consisting of just one upright type could under- or 

overestimate the nutrient requirements of the cranberries. The mixed 

samples reflected the total nutritional picture for the bog. 

Standard (normal) values for element concentrations in 'Early 

Black' new shoot tissue were proposed. These values were in agreement 

with those published for 'Searles' cranberry in Wisconsin (Dana, 

1981c) for some of the elements. However, Ca and K values were quite 

different reflecting the differences in the levels of those elements 

commonly found in cranberry tissues in samples collected from the two 

different areas. 

When the mean element levels in the tissues from other cultivars 

were compared to the proposed standards for 'Early Black', the 

correspondence was quite high. Levels of Fe and Mn in some of the 

other cultivars were outside the range proposed. However, this might 

not be too meaningful considering the fact that cranberries can 

accumulate Mn and Fe depending on soil levels of those elements and 

soil pH. 
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10.5 Future Directions 

Tissue analysis standards for cultivars other than 'Early Black' 

in Massachusetts need to be studied further. Values proposed for 

'Howes' (DeMoranville and Deubert, 1986), were based on samples 

collected from mixed old and new leaves, leading to inflated values 

for N and Ca. 'Stevens' are being planted preferentially in 

Massachusetts. Beyond the limited information on 'Stevens' presented 

here, little is known about their nutritional requirements under 

Massachusetts conditions. The 'Stevens' planting used in this study 

produced lower than average yields. Information regarding nutrient 

levels in higher yielding 'Stevens' plantings remains to be gathered. 

Future fertilizer studies should include the collection of data 

on the effects of the treatments on yield components, particularly in 

cross cultivar experiments. Fertilizer timing studies should focus on 

the period prior to bloom when photosynthetic area to support fruit is 

produced. The early fruit development period also merits further 

study. 

Phosphorus bears further study in cranberries. Growers 

routinely use high assay P fertilizers on a crop which, based on this 

study, has a very low P requirement. Furthermore, soil tests (Bray 

method) of cranberry bogs show high P levels in many cases. It seems 

that applying large doses of P in N-P-K fertilizer may not be the most 

effective means to deliver P to this crop. A field trial with P 

applied separately from N and K and in different forms (besides triple 

superphoshate) has been initiated. 
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APPENDIX A 

SEASONAL NUTRIENT LEVELS IN TISSUES OF 'EARLY BLACK' CRANBERRY, 

PROFILE ANALYSES 

Repeated measures ANOVA was performed on the 'Early Black' 

cranberry nutrient data for each of the 10 elements, in each of the 3 

years, for each of the 5 tissues. Post hoc profile analyses 

contrasting adjacent dates were then run. The results are given in 

Tables A.l to A.50. The stable periods for all years combined, 

defined in the analyses are shown graphically in Figures 6.1 to 6.50 

(p. 114-138) as horizontal lines. 
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APPENDIX B 

NUTRIENT CONTENT IN TISSUES OF 'EARLY BLACK' CRANBERRY 

The content of N, P, K, Ca, Mg, B, Cu, Fe, Mn, and Zn in the 

plants on a cranberry bog (kg/ha basis) during the season was 

determined for three years. The results for 1987 are shown in Chapter 

6 in Figures 6.51 to 6.60 (p. 139-143). The results for 1988 and 1989 

are shown in the following Figures (B.l to B.20). 
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Figure B.l Seasonal N content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1988 plots, means of 5 replicates. 

Figure B.2 Seasonal N content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1989 plots, means of 5 replicates. 
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Figure B.3 Seasonal P content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1988 plots, means of 5 replicates. 

Figure B.4 Seasonal P content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1989 plots, means of 5 replicates. 
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Figure B.5 Seasonal K content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1988 plots, means of 5 replicates. 

Figure B.6 Seasonal K content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1989 plots, means of 5 replicates. 
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Figure 
kg N-P 

Figure 
kg N-P 

B.7 Seasonal Ca content in tissues of cranberry receiving 335 
K/ha. Data shown are from 1988 plots, means of 5 replicates. 

B.8 Seasonal Ca content in tissues of cranberry receiving 335 
K/ha. Data shown are from 1989 plots, means of 5 replicates. 
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Figure B.9 Seasonal Mg content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1988 plots, means of 5 replicates. 

Figure B.10 Seasonal Mg content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1989 plots, means of 5 replicates. 
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DAY NUMBER 

Figure B.ll Seasonal B content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1988 plots, means of 5 replicates. 

Figure B.12 Seasonal B content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1989 plots, means of 5 replicates. 
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Figure B.13 Seasonal Cu content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1988 plots, means of 5 replicates. 

Figure B.14 Seasonal Cu content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1989 plots, means of 5 replicates. 
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Figure B.15 Seasonal Fe content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1988 plots, means of 5 replicates. 

DAY NUMBER 

Figure B.16 Seasonal Fe content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1989 plots, means of 5 replicates. 
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Figure B.17 
kg N-P-K/ha. 

Seasonal Mn 
Data shown 

content in tissues of cranberry receiving 335 
are from 1988 plots, means of 5 replicates. 
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Figure B.18 Seasonal Mn content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1989 plots, means of 5 replicates. 
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Figure B.19 Seasonal Zn content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1988 plots, means of 5 replicates. 

Figure B.20 Seasonal Zn content in tissues of cranberry receiving 335 
kg N-P-K/ha. Data shown are from 1989 plots, means of 5 replicates. 
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