
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1989

Front-end planning with early test plan scenarios : a strategy to Front-end planning with early test plan scenarios : a strategy to

improve systems development in the culturally diverse, improve systems development in the culturally diverse,

technologically complex workplace of the 1990's. technologically complex workplace of the 1990's.

Dorothy J. Eastman
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

Recommended Citation Recommended Citation
Eastman, Dorothy J., "Front-end planning with early test plan scenarios : a strategy to improve systems
development in the culturally diverse, technologically complex workplace of the 1990's." (1989). Doctoral
Dissertations 1896 - February 2014. 6072.
https://scholarworks.umass.edu/dissertations_1/6072

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It
has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_1
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F6072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/6072?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F6072&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

FRONT-END PLANNING WITH EARLY TEST PLAN SCENARIOS:

A STRATEGY TO IMPROVE SYSTEMS DEVELOPMENT

IN THE CULTURALLY DIVERSE, TECHNOLOGICALLY COMPLEX

WORKPLACE OF THE 1990'S

A Dissertation Presented

by

DOROTHY J. EASTMAN

Submitted to the Graduate School of the

University of Massachusetts in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 1989

School of Management

Copyright by Dorothy Jean Eastman 1989

All Rights Reserved

FRONT-END PLANNING WITH EARLY TEST PLAN SCENARIOS:

A STRATEGY TO IMPROVE SYSTEMS DEVELOPMENT

IN THE CULTURALLY DIVERSE, TECHNOLOGICALLY COMPLEX

WORKPLACE OF THE 1990’S

A Dissertation Presented

by

DOROTHY J. EASTMAN

Approved as to style and content by:

~l/(bn ClL
Van Court Hare, Jr., Chairperson of Committee

r
Susan E. Grady, Member

Michael G. Ketcham, Member

Ronald J. Karren, Acting Graduate Program Director,
School of Management

ACKNOWLEDGMENTS

Many people contributed to this thesis. I would like to thank the

chairperson of my committee, Dr. Van Court Hare, for his help and

advice throughout my PhD studies, and my committee members, Dr. Susan

Grady, Dr. Conrad Wogrin and Dr. Michael Ketcham, for their patience

and effort that helped me focus on the important issues in this

thesis. I would also like to thank Dr. Tony Butterfield and Dr. Linda

Smircich for their continued support—they both were instrumental in

the development of this thesis. Several other people contributed

insight to the development that underpins this thesis: Marilyn Cross,

John Tutt, Bob Frank, Walt Tucker, Bruce Bosworth, Larry Reboulet,

Arjun Ayer, Sandy Lavine and Howard Johnson. Special thanks to Dr.

George Detlefson, who helped me recognize the most significant result

of computerized systems—their social impact.

I would like to give special thanks to my parents John and

Genevieve Krawczyk, and friends, particularly Gary and Sylvia Galvan-

0'Connor for their encouragement.

I would especially like to thank my family, who helped so much

during the last six years, particularly during the years of research

when I often spent weeks away from home, and the intense months spent

writing this thesis. Thank you Amber, Kevin, Craig and Julie.

Most of all, I thank my husband, Bruce Eastman, who supported my

goals, tolerated my ventures, believed in me, and helped me evaluate

priorities. Throughout the past six years, he helped us all survive,

and grow, as a family. This thesis is dedicated to my family, in

acknowledgment and appreciation of their support and dedication.

IV

ABSTRACT

FRONT-END PLANNING WITH EARLY TEST PLAN SCENARIOS:

A STRATEGY TO IMPROVE SYSTEMS DEVELOPMENT

IN THE CULTURALLY DIVERSE, TECHNOLOGICALLY COMPLEX

WORKPLACE OF THE 1990’S

MAY 1989

DOROTHY J. EASTMAN, B.A., UNIVERSITY OF MASSACHUSETTS

Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Van Court Hare

Front-end planning with early test plan scenarios is an effective

management strategy for systems development within the more diverse,

more complex American workplace of the 1990's. In the 1980's, over

seventy-five percent of our system developments failed. Ineffective

user-developer collaboration and an undisciplined development

environment contributed to this dismal record.

One major challenge is to overcome cultural barriers and develop

more effective ways of working together. Within ten years, eighty

percent of our new workers will be women, minorities and newly arrived

immigrants. In many schools, more than fifty percent of our graduate

students in systems development are from other countries.

v

Another challenge comes from international competition. American

corporations try to remain competitive in the world market by

increasing productivity and quality. They need new, integrated systems

that improve operations as well as process information.

This early test plan scenario thesis develops a strategy and

describes a disciplined approach that lets users and developers work

together more effectively. In particular, early test plan scenarios

reduce cultural misunderstanding (rarely addressed in the world of

systems) by describing each abstract system task in concrete, physical

terms. Scenarios uncover ambiguities, inaccuracies and insufficiencies

in system design. Users and developers collaborate to identify

operational errors in design and to improve system usefulness.

Even when there are no users, explicit test scenarios reduce

misunderstandings between collaborating development teams and among

members of the same development team. Finally, scenarios are a

powerful tool for ensuring compatibility between integrated systems.

Front-end planning with early test plan scenarios improve systems

during the most cost efficient development phase—before coding.

Traditional development methods make these improvements during the most

expensive phase—after the system becomes operational.

Early test plan scenarios become the development agreement. Clear

descriptions of active system operations reduce ambiguity, thereby

improving programmer productivity and system quality. Measurable

development goals reduce customer-developer conflict.

Early test plan scenarios are an effective systems development

strategy for the workplace of the 1990's—they promote a productive,

disciplined environment while encouraging people to work together.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS .

ABSTRACT .

LIST OF TABLES .

LIST OF FIGURES .

Chapter

1 CULTURE, SYSTEMS AND OPERATIONS—THE CHALLENGES OF
THE 1990'S .

1.1 Statement of Thesis . 1

1.1.1 Multi-Discipline Approach . 1
1.1.2 Add Cultural Differences . 2

1.2 Two Major Changes in the American Workplace of
the 1990's. 3

1.2.1 The Increasing Diversity of Our Workforce
in the 1990's. 4

1.2.2 The Increased Complexity of Integrated
Systems . 6

1.3 Culture, the Underlying Theme of this Thesis ... 7

1.3.1 Cultural Misunderstanding. 8
1.3.2 Workforce Cultures . 8
1.3.3 Culture in the Development Setting . 9

1.4 The Test Scenario. 10

1.4.1 Creating the Test Scenario. 10
1.4.2 Why Early Test Plan Scenarios Work. 11
1.4.3 Guideline for Use: Adapt. 12

Page

iv

v

.xviii

xix

. . .1

Page
1.4.4 Special Advantages of Early Test Plan

Scenarios. 12

1.4.4.1 Management Advantage . 13
1.4.4.2 Users Contribute . 13
1.4.4.3 Developers Produce . 13
1.4.4.4 Continuity Preserved . 14
1.4.4.5 Quality Improves . 14
1.4.4.6 Acceptance Assured . 15
1.4.4.7 Rework Reduced . 16
1.4.4.8 Total Costs Reduced . 16
1.4.4.9 Scenarios Recycled . 17
1.4.4.10 Marketing Opportunity . 17

1.5 Early Test Plan Scenarios Complement Other
Methodologies . 17

1.5.1 Comparing Early Test Plan Scenarios to
Prototyping. 18

1.5.2 Comparing Early Test Plan Scenarios to
Modular Top-Down Design . 18

1.6 Test Plan Scenarios—the Missing Link in Complex
Developments . 19

1.7 A Personal Note. 19

2 EARLY TEST PLAN SCENARIOS SUPPORT FRONT-END PLANNING . . 22

2.1 Front-End Planning . 22

2.2 System Force. 23

2.3 Successful Management Brings Users and
Developers Together . 23

2.4 Management of Front-End Planning . 24

2.5 Four Planning Views. 24

2.6 Each Planning Phase Asks Different Questions ... 26

Page
2.7 Early Test Plan Scenarios Integrate

Different Views . 28

2.8 System Planning—Burden or Benefit? . 30

3 A FRONT-END PLANNING TUTORIAL THAT HIGHLIGHTS EARLY
TEST PLAN SCENARIOS. 32

3.1 Two Integrated Developments Underpin Tutorial. . . 32

3.1.1 Systems Designed to Improve Productivity
and Quality. 32

3.1.2 Extensive Development Research . 33
3.1.3 A Gentle Warning: Use Common Sense and

Creativity . 33

3.2 Early Test Plan Scenarios—Highlight of Front-End
Planning. 34

3.3 Phase One: Viewing System Objectives . 35

3.3.1 What Are the System Objectives?. 35

3.3.1.1 How Does the Organization Operate Now? 37
3.3.1.2 Which Current Systems Will the

New System Affect?. 37
3.3.1.3 How Will the System Help the

Organization? . 38

3.3.2 What Resources Will the Organization
Allocate?. 38

3.3.3 When Should the System Be Operational? ... 39
3.3.4 Who Will Develop the System?. 40
3.3.5 How Will the Development of the System

Be Managed?. 40
3.3.6 How Will the Development Be Phased? 41

3.4 Phase Two: Viewing System Functionality . 43

3.4.1 Who Determines Functionality? . 43
3.4.2 What Are the Functional Parts of the System? 43
3.4.3 Decimal Linkage Scheme . 44
3.4.4 Technical Description of the System 48

Page
3.5 Phase Three: Viewing the Structural Design 49

3.5.1 Using the SADT Method. 49
3.5.2 Matching Structured Design to the

Functionality . 52
3.5.3 Does the Structured Design Support the

Functional Analysis? . 53
3.5.4 Trouble-Shooting with the Discrepancy

Document. 53

3.5.4.1 Identifying Ambiguous Interpretations. 55
3.5.4.2 Discrepancies Escalate Conflict ... 56
3.5.4.3 Managing Discrepancy Resolution ... 57
3.5.4.4 Overcoming Cultural Misunderstandings. 57

3.6 Phase Four: Viewing Operations with Early Test
Plan Scenarios. 58

3.6.1 Role of Traditional Test Plans. 58
3.6.2 Role of Early Test Plan Scenarios. 58

3.6.2.1 Early Test Plan Scenarios Match Design
to Functionality . 59

3.6.2.2 Script Format: A Powerful
Communication Tool. 60

3.6.2.3 "Moving Pictures" Increase
Understanding . 61

3.6.2.4 Early Test Plan Scenarios Increase
Personal Responsibility . 61

3.6.2.5 Stricter Control of Functionality . . 62
3.6.2.6 Controlling the Change Process 62
3.6.2.7 Early Test Plan Scenarios Guide Coding 65
3.6.2.8 Early Test Plan Scenarios Become

Acceptance Agreements. 65

3.6.3 Attributes of Early Test Plan Scenarios . . 65

3.6.3.1 Early Test Plan Scenarios Based in
Activity Cycles . 66

3.6.3.2 Importance of Timeliness . 66
3.6.3.3 Normal and Exceptional Conditions

Tested. 67
3.6.3.4 Early Test Plan Scenarios Reduce

Impact of Disagreements . 68
3.6.3.5 Users Identify Unanticipated

Problems. 68
3.6.3.6 Early Test Plan Scenarios Linked to

Functionality and Design . 69

Page
3.6.4 Testing the Usefulness of System

Functionality and Design . 69
3.6.5 Developing Early Test Plan Scenarios 70

3.6.5.1 Define Test Sequential Segments
A.4.2.1. 71

3.6.5.2 Assign Specific Functionality to Test
Sections A.4.2.2 . 72

3.6.5.2.1 Initial Outline of Functionality 72
3.6.5.2.2 Develop a Detailed Outline of

Each Hour's Functional Activity. 73
3.6.5.2.3 Hatch Requirements, Structure

and Test Plans. 74

3.6.5.3 Assign Data for Testing and Calculate
Values A.4.2.3 74

3.6.6 Produce Explicit, Detailed Test Plan
Scenarios A.4.2.4 . 76

3.6.7 Develop Stress Test for Operational
Capacities A.4.2.5 82

3.6.8 Troubleshoot Activation of Functionality . . 83
3.6.9 Improve Early Test Plan Scenarios. 85
3.6.10 Formal Signoff of Early Test Plan Scenarios 86

4 FRONT-END PLANNING WITH EARLY TEST PLAN SCENARIOS
IMPROVES COMPLEX SYSTEMS DEVELOPMENT . 87

4.1 The Enigma of Systems Development. 87

4.2 The Nature of Complex Systems. 87

4.2.1 A Definition of "Complex System". 88
4.2.2 Complex Systems Often Disrupt Operations . . 88

4.2.2.1 Invisible Impact. 88
4.2.2.2 Malleable Logic. 89
4.2.2.3 Hominization 89

4.3 The Nature of System Maintenance. 90

4.3.1 Software Maintenance Corrects
Design Blunders . 90

Page
4.3.1.1 "Bugs" in Logic . 91
4.3.1.2 Errors in Meaning . 91

4.3.2 Maintenance Improves Usefulness . 92

4.3.2.1 Functionality Added . 92
4.3.2.2 Functionality Deleted . 93
4.3.2.3 Complexity Simplified . 93
4.3.2.4 Unanticipated Changes . 93

4.3.3 Is It Maintenance or Is It Compulsion? ... 94

4.3.3.1 Reactive Maintenance . 94
4.3.3.2 Perfection Unrealistic . 95

4.3.4 Reducing Future Maintenance with Test
Plan Scenarios. 95

4.3.4.1 Reducing Errors in System Structure
and Concepts. 95

4.3.4.2 Rigor of Early Test Plan Scenarios
Identifies Errors . 96

4.3.4.3 New Approaches Required to Reduce
Errors. 96

4.4 Theories of Systems Development . 96

4.4.1 Folkwisdom of Hints not Rules. 97

4.4.1.1 Approaches that Work—Sometimes ... 97
4.4.1.2 Avoid Choosing a Terrible Way 98

4.4.2 Systems Development Life Cycle Theory ... 98
4.4.3 Multiview Specification Methodologies . . . 100

4.4.3.1 DSK and SEK Models.100
4.4.3.2 PQRST Model . 100

4.4.4 Interactive Design Teams . 101

4.5 Specifications Underpin Systems Development . . . 102

4.5.1 Specification Blunders Are the Most
Expensive Errors . 102

4.5.2 Who Specifies?.102

Page
4.5.2.1 Who Manages Specifications? . 103
4.5.2.2 Developer's Traditional

Responsibilities . 103
4.5.2.3 Adding User Responsibility.104

4.5.2.3.1 Participation Not Sufficient . . 104
4.5.2.3.2 Understanding Needed . 105

4.5.3 Real People Specify.105

4.5.3.1 Most Approaches Ignore People 105
4.5.3.2 A Few Observers See Real People . . . 106

4.5.4 Collaboration Among Individuals . 106

4.5.4.1 Supporting Operational Priorities . . 106
4.5.4.2 Recognizing Political Factors 107

4.5.4.2.1 Systems Research Focuses on
Developer's Job.107

4.5.4.2.2 Successful Integrated Systems
Also Focus on User's Job 107

4.5.5 Early Test Plan Scenarios Manage
Collaboration . 108

4.5.5.1 Social Interaction Crucial During
Systems Specification . 108

4.5.5.2 Out-of-Control Interaction Disrupts . 109
4.5.5.3 Successful Collaboration Improves . . 109
4.5.5.4 The Language of Collaboration 110

4.6 The Languages of Requirement Specifications . . . 110

4.6.1 Different Languages for Different Folks . . 110

4.6.1.1 Ambiguity of Natural Language 110
4.6.1.2 Formal Languages Hide Operational

Blunders.. Ill

4.6.2 This Thesis Suggests Using Several Languages 111

4.7 Improving the System . 113

Page
4.7.1 Transforming Operational Needs into Systems. 113

4.7.1.1 Developers Transform with Logic. . . . 114
4.7.1.2 Users Transform with Operations . . . 114
4.7.1.3 Developers' Logic Overwhelms Users'

Operations.114
4.7.1.4 Unique Nature of Developer-User

Communication . 115
4.7.1.5 Controlling Transformation . 115
4.7.1.6 Managed Collaboration Controls

Transformation . 116

4.7.2 Evaluating the Usefulness of a Specified
System.116

4.7.2.1 Developers' Freedom to Evaluate
Design.117

4.7.2.2 How Affects What.117
4.7.2.3 Collaboration Improves the How and

the What.117

4.7.3 Early Test Plan Scenarios Customize Systems. 118
4.7.4 Promoting System Quality . 119

4.7.4.1 Different Quality Criteria . 119
4.7.4.2 Tools Improve Quality . 120
4.7.4.3 Statistics Improve Quality . 120
4.7.4.4 Problems with Tools and Statistics . . 121

4.7.4.4.1 Tools May Discourage Innovation. 121
4.7.4.4.2 Quality May Be Assumed . 122

4.7.4.5 Discipline and Front-End Planning
Improves Quality . 122

4.8 Knowing When to Stop Specifying and Start Coding . 123

4.8.1 Defining When Specifications Are Complete . 123
4.8.2 Complete Specifications Identify Start and

End Point.123
4.8.3 Complete Specifications Completely Describe

Operations.124

Page
4.8.4 Agreement that Specifications Are Complete . 125

4.8.4.1 Reviews to Promote Consensus . 125
4.8.4.2 Reviews Improved when Preparation

Required.125

4.8.5 Improving Systems Requires Individual
Responsibility . 126

4.9 Cost Justification of Early Test Plan Scenarios . 127

4.9.1 Cost of Poorly Defined Systems.127
4.9.2 Reducing Total Costs with Early Test

Plan Scenarios.127

4.9.2.1 Early Test Plan Scenarios Improve
Process.128

4.9.2.2 Early Test Plan Scenarios Effectively
Allocate Costs . 129

5 FRONT-END PLANNING WITH EARLY TEST PLAN SCENARIOS
IMPROVES OTHER DEVELOPMENT METHODOLOGIES . 130

5.1 Developers Avoid Planning . 130

5.1.1 Traditional Development Methods Start
At Coding.130

5.1.2 Early Test Plan Scenarios Ensure Quality
Before Coding . 131

5.2 Comparing System Development Methodologies 131

5.2.1 Five Comparison Questions.131
5.2.2 Six Categories of Specification

Methodologies . 132

5.3 Selecting One Process from Each Method.133

5.3.1 The Traditional/Classical Approach:
Traditional Life Cycle . 134

5.3.2 Systems Development Life Cycle Approach
(SDLC): Jensen-Tonies Methodology . 135

Page
5.3.3 The Structured Approach: SADT {Structured

Analysis and Design Technique) . 137
5.3.4 The Automated Approach: CASE (Computer

Aided System Engineering) . 140
5.3.5 The Prototyping Approach: Scharer

Methodology.144
5.3.6 Information Center: RML (Requirements

Model).146

6 CONTINUING TO RESEARCH EARLY TEST PLAN SCENARIOS 149

6.1 Research to Evaluate Systems Development
Methodologies.149

6.2 Case Study Research.151

6.3 Empirical Research . 154

6.3.1 Survey Research.154
6.3.2 Scientific Research.155
6.3.3 Triangulation.157
6.3.4 Controlled Experiments . 160

6.4 Theoretical Research . 162

6.5 Interactive Research . 167

7 EARLY TEST PLAN SCENARIOS IMPROVE THE SYSTEMS
DEVELOPMENT CONTRACT . 169

7.1 Problems with Current Software Development
Contracts.169

7.2 Assumptions of Traditional Development Contracts . 169

7.3 Provisions of an Early Test Plan Scenario
Development Contract . 172

7.4 Contracting for Goods or for Services?.174

7.5 Legal Views on Systems Development . 177

Page

7.5.1 Naive Users and Unconscionability.178
7.5.2 Customer and Vendor—Interdependent or

Collaborators? . 181
7.5.3 Rolling Estoppel—Refuting the Right of

the Vendor to Fail.183

7.6 Contract as Promise to Collaborate . 184

7.6.1 Contracts for Complex Developments . 185
7.6.2 System Development Contracts as

Promise among Experts.186
7.6.3 Contracts for Correct, Useable and

Useful Systems . 186
7.6.4 Rules of Collaboration: "I Owe You" and

"You Owe Me".188
7.6.5 Principles of Restitution.189
7.6.6 Vendor Malpractice . 191

8 IMPROVING SYSTEMS DEVELOPMENT IN THE 1990’S—AND BEYOND. 194

BIBLIOGRAPHY.196

LIST OF TABLES

Table 1.1 Projected Work-Force Growth Rates . 4
Table 1.2 Current and Projected Labor Force Shares by

Age, Gender, Race, and Hispanic Origin . 5
Table 1.3 Percent of Foreign Students in MIS Programs ... 6
Table 1.4 Software Costs Versus Results . 7
Table 1.5 Four Steps in Test Scenarios. 11
Table 1.6 PIMS Project* and Industry Comparison. 15

Table 2.1 Front-End Planning's Questions, Documents
and Formats. 26

Table 2.2 Contribution of Four Planning Phases. 27

Table 3.1 Five Tasks to Develop Objectives. 35
Table 3.2 Questions to Ask About a System's Functionality. . 44
Table 3.3 Organization of the Discrepancy Document . 55
Table 3.4 Conditions for Successful Evaluation of

Specifications . 60
Table 3.5 Attributes of Test Plan Scenarios. 66
Table 3.6 Evaluating Early Test Plan Scenarios. 84

Table 4.1 Phases of Life Cycle Developments. 99
Table 4.2 Contribution of Script to Specification Languages. 112
Table 4.3 Early Test Plan Scenarios Customize Systems. . . . 119

Table 5.1 Five Comparison Questions.132
Table 5.2 Approaches to Develop Information Systems.133
Table 5.3 Representative Methods of Specification.133
Table 5.4 The Conventional Life Cycle Approach.135
Table 5.5 The Jensen-Tonies Methodology.136
Table 5.6 Seven Fundamental Concepts of SADT.138
Table 5.7 Four Phases of Prototyping.145

Table 6.1 Barlow's Project Management Steps.164
Table 6.2 Factors Affecting Project Managers and

Project Success . 165

Table 7.1 Traditional Assumptions of Software Development. . 170
Table 7.2 Early Test Plan Scenario Contracts for

Developments . 174
Table 7.3 Impact of Limited Viewpoints on Software

Development.182
Table 7.4 Questions Asked by a Front-End Planning Contract . 185
Table 7.5 Comparing Vendor and Sponsor Contract

Obligations.187

xvm

LIST OF FIGURES

Figure 2.1 Front-End Planning with Early Test Plan Scenarios . 25

Figure 3.1 Identify Objectives A.l . 36
Figure 3.2 Define Functionality A.2 45
Figure 3.3 Describe Functionality A.2.2 . 46
Figure 3.4 Sample of Linkage Scheme . 47
Figure 3.5 Structured Analysis and Design A.3 . 50
Figure 3.6 Describe Structure and Design A.3.2 51
Figure 3.7 Sample Data Definition Table . 52
Figure 3.8 Sample of Function - Structure Table . 54
Figure 3.9 Sample of Discrepancy Document . 56
Figure 3.10 Early Test Plan Scenarios Improve System Usefulness 59
Figure 3.11 Early Test Plan Scenarios Help Improve Systems

Before Coding A.4.63
Figure 3.12 Develop Early Test Plan Scenarios A.4.2 . 64
Figure 3.13 Sequential Cycles of a Manufacturing

Corporation.66
Figure 3.14 Sample of Test Segments for a Manufacturing System. 71
Figure 3.15 Manufacturing System's Initial Functional

Outline.72
Figure 3.16 Detailed Outline of Functional Activity . 73
Figure 3.17 Matching Functionality, Structure and

Test Plans.74
Figure 3.18 Data for Material Handling Test Plan.75
Figure 3.19 Overview of Functionality in Test Plan Segment. . . 77
Figure 3.20 Prerequisites for One Segment of Test Plan.78
Figure 3.21 Summary of Functionality in Test Plan.79
Figure 3.22 Outline of Functionality in Test Plan.80
Figure 3.23 Procedure Page in Test Plans.81
Figure 3.24 File Description After Completion of Test . 82

Figure 4.1 Role of Maintenance in the Life Cycle Process ... 99

Figure 6.1 Research Methods within Burrell and Morgan's
Sectors.150

Figure 7.1 Comparing Early Test Plan Scenario Contracts to
Traditional Contracts.172

CHAPTER 1

CULTURE, SYSTEMS AND OPERATIONS—THE CHALLENGES OF THE 1990'S

I know a little about nature and hardly anything about men. Einstein

1.1 Statement of Thesis

My thesis: If you design a complex system that (1) integrates

physical activity with computer technology, (2) requires expertise from

several disciplines during the design process, and (3) must satisfy

organizational objectives and operational constraints, then the system

design sequence should place test plan scenarios (described later in

this thesis) early in the development process, before program coding.

Traditional development methods test systems after program code

completion, not before.

This early test plan scenario thesis statement may at first appear

trite or obvious, but it is not. Its approach incorporates the

fundamental strengths of quality control, artificial intelligence,

management by objectives, and contract law. As its particular

contribution to systems development research, my thesis also includes

essential concepts from anthropology and related social sciences.

1.1.1 Multi-Discipline Approach

Quality control strategy continually strives to improve a product

by: (1) early recognition of product defects, (2) up front adjustment

2

of production processes, (3) assuring that added value is not wasted on

defective products, (4) avoiding expensive rework of the "finished"

product, and (5) putting everyone to work to create the best possible

product [Mann, 1988, p. 10].

The early use of test plan scenarios lets users identify errors in

system design that, if left uncorrected, later interfere with the

successful use of the system. Identifying errors before system coding

follows basic tenets of artificial intelligence: Early pruning of

decision trees minimizes wasted effort.

Similarly, both management by objectives and contract law urge

parties to an agreement to specify exactly what shall be done, when it

shall be completed, and how much it shall cost. These agreements

describe measurable objectives. Deviations from these objectives can

be detected and corrected—or the objectives changed—in an orderly,

controlled manner. Once test scenarios have been approved, they become

the measurable objectives for the development agreement, program

coding, acceptance testing, and operational implementation.

1.1.2 Add Cultural Differences

Such reasons alone might be enough to justify the use of early

test plan scenarios in the systems development process. It is the

purpose of this early test plan scenario thesis to demonstrate other

reasons why this approach improves systems development: (1) The need to

recognize ambiguous interpretations of functional specifications, (2)

The importance of resolving cultural misunderstandings in the design

3

process—before conflicting values and goals are designed into a

system, and (3) The value of overcoming cultural barriers that impede

user-developer collaboration.

The underlying topic of this early test plan scenario thesis is

social interaction. This organizational approach—which uses wisdom

taken from both technical and social disciplines—offers a new

contribution to the systems development field. Early test plan

scenarios establish effective user-developer collaboration early in

the development process, in order to detect and correct operational

problems in the system design.

Most extra costs during complex systems developments come from

blunders made at the beginning of the development process. Due to

major changes in the American workplace, in the next decade these

blunders are likely to be more frequent—and even more costly.

1.2 Two Major Changes in the American Workplace of the 1990's

By the turn of the century, American organizations will be faced

with two major changes: (1) Workforces will be significantly older and

more culturally diverse, and (2) Higher productivity and quality

requirements will force the development of a new generation of systems

that integrate physical operations with information processing.

This early test plan scenario thesis accommodates these changes.

Most traditional development research acknowledges the importance of

effective user-developer interaction—but focuses research efforts on

improving technologies, tools and design methodologies. This early

4

test plan scenario thesis complements traditional research by focusing

on improving user-developer interaction.

1.2.1 The Increasing Diversity of Our Workforce in the 1990's

At the end of the next decade, "baby boomers" will still be the

largest group in our workforce. By then, they will be in their 40's

and 50's. Our workforce has never before been dominated by older

workers.

At the same time, there will be a higher demand for new workers.

Eighty percent of these new workers will be "women, minorities and

immigrants" [Schwartz, 1989, p. 68]. Among these new members of the

American workforce, Hispanics and Asians are expected to double their

1986 representation (see Table 1.1 and Table 1.2). Government

forecasts predict that by the turn of the century, nearly thirty

percent of our new workers will be Hispanic and twelve percent will be

Asian [Hymowitz, 1989, p. Bl].

Table 1.1 Projected Work-Force Growth Rates.

Group_
All women
Blacks
Asians
Hispanics
White women
White men

1976-1986
62.0%
14.5%

6.9%
17.8%
43.5%
18.1%

1986-2000
63.2%
17.4%
11.4%
28.7%
34.8%

8.5%

Source: Bureau of Labor Statistics
[Hymowitz, 1989, p. Bl].

5

Table 1.2 Current and Projected Labor Force Shares
Age, Gender, Race, and Hispanic Origin.

Group 1986 2000
16-24 years old 19.8% 16.3%
55 and older 12.6% 11.1%
Female 44.5% 47.3%
White 86.4% 84.1%
Black 10.8% 11.8%
Asian and Other8 2.8% 4.1%
Hispanic Origin15 6.9% 10.2%
Median Age 31.5yrs 38.9yrs

a. Includes American Indians, Pacific Islanders, and
Alaskan Natives.

b. Hispanics also included in both white and black
population groups.

[Leonard, 1989, p. 30]

Moreover, an increasing number of our newest workers have weak job

skills (thirty million Americans are illiterate and innumerate). Many

newer workers will use English as their second language. Legally and

logistically, companies will be less able to require new employees to

be fluent in English [Leonard, 1989, p. 30].

Cultural diversity among systems developers is increasing. They

also come from diverse backgrounds—many use English as their second

language. In American colleges, among students who are majoring in

Management Information Systems, an average of twenty-five percent of

master's level students, and over fifty percent of doctoral level

candidates are foreign students (see Table 1.3). A similar situation

exists in Computer Science and Engineering disciplines.

User-developer interaction becomes increasingly challenging as

users and developers have even more obstacles to overcome to clearly

understand and appreciate each other's capabilities and requirements.

6

Table 1.3 Percent of Foreign Students in MIS Programs.

Percent of degree candidates who are foreign students

School_
Boston University
University of Arizona
Georgia State University
UCLA
use
University of Texas at Austin
Indiana University
University of Minnesota
University of Pittsburgh
MIT

Master's level Doctoral level
30% 70%
33% 20%
25% 30%
N/A 57%
20% 25%
22% 60%
25% 30%
15% 50%
20% 60%

15-30% 56%

[Rifkin, 1989, p. 66]

1.2.2 The Increased Complexity of Integrated Systems

To make matters worse, systems continue to increase in size and

complexity. Most systems in the 1980's are of the "first generation".

They simply collect, process, store and transfer information. The

next, "second generation" of systems—Computer Aided Manufacturing

(CAM)—increase speed, quality and flexibility by integrating

information processing technology with physical operations. We are

just beginning to learn how to merge computer technology with human and

mechanical operations [Gold, 1989, p. 139].

Even today, the track record of systems implementation is dismal.

For example, a government study found only 2% of developments (see

Table 1.4) were fully successful. Recent research suggests that 75% of

major developments are failures. They are too costly, are not useful

or simply do not work [Foreman and Hess, 1988, p. 65].

7

Table 1.4 Software Costs Versus Results.

Software Results Costs Percent
Paid for but not delivered $3.2M 47%
Delivered but not used $2. OM 29%
Abandoned or reworked $1.3M 19%
Used after rework $0.2M 3%

Used as delivered $0.1M 2%

Reports of nine ($6.8M) federal software projects.
The U.S. Government Accounting Office 1979 Report
(FGMSD-80-4) [Cox, 1987, p. 4].

In March, 1989, the Department of Defense submitted to Congress a

list of twenty-two technologies that it considers critical to the long

term superiority of the U.S. weapons systems. Improving software

producibility ranked third on this list [Norman, 1989, p. 1543].

Systems development is difficult now. Integrated systems of the

1990's will intensify this difficulty. Unless we are able to develop

better ways of working with each other, the increasing diversity of our

workforce will compound the risks of this already treacherous process.

1.3 Culture, the Underlying Theme of this Thesis

Culture is the underlying theme which holds this early test plan

scenario thesis together. Although the content of this thesis supports

techniques that improve the quality and productivity of a development,

this early test plan scenario thesis is important because it improves

the interaction between users and developers—two groups that often

have divergent cultures.

3

1.3.1 Cultural Misunderstanding

By definition, people who share the same culture have a common

storehouse of memories, experiences and traditions. They speak the

same language. They comfortably share similar values and goals.

Ambiguity vanishes as they share mutual understanding. They are "at

home" with each other.

Persons who have acquired different cultures may misinterpret each

other's intentions. We see through the lens of our own culture and

hear what our culture teaches us to hear. The more unsettled we are in

each other's presence, the more apt we are to "mis-hear" each other.

Cultural differences elicit emotional responses which may impair

hearing and block understanding [Murphy, 1988, p. 43]. Strangers can

share (or be easily taught) mutual understanding of concrete objects,

such as a "table" or "chair." Disagreement emerges from differences in

interpretation of abstract terms. "Good" and "fair" have different

meanings in different cultures. An abstract term in one culture, may

trigger unanticipated, and unappreciated, responses in another culture.

1.3.2 Workforce Cultures

In particular, workforce cultures can conflict. Accountants see

the world in terms of rows and columns, managers view it in terms of

strategies and policies. Electrical engineers see the world

electrically, mechanical engineers view it mechanically.

Programmers look through an abstract cultural lens and see a

fantasy world of logic and analogies. Users look through a physical

9

cultural lens and see a concrete world of things and actions.

Differences in workforce cultures have always caused problems during

developments because developers have difficulty "understanding the

users' needs."

Even if no users are involved, the problem persists. Customers

who pay for systems may assume that developers fully understand their

(the customers') goals and values, even if these goals and values are

never explicitly defined.

Networking, telecommunication and systems integration give rise to

a further obstacle. Teams of developers, often members of different

organizations (and frequently located thousands of miles apart) must

build systems that work together. Cultural misunderstandings intensify

the difficulties of working separately to build systems that must

eventually join and work together.

Finally, cultural misunderstandings may divide members of a

development team. Systems people are not a standardized group—they

are themselves of different cultures (refer back to Table 1.3).

Conflict among team members devastates a systems development project.

1.3.3 Culture in the Development Setting

Accordingly, developers and users who sit together to design

systems are often dissimilar. When cultural differences interfere with

user-developer collaboration, the final system often fails because it

is not useable within its intended environment.

10

1.4 The Test Scenario

Organizations need a tool that will permit clear and timely

communication in complex situations characterized by cultural

diversity. That tool is the early test plan scenario of this thesis.

A detailed description of early test plan scenarios and their use

appears in the next two chapters. Chapter 4 through Chapter 6 describe

how early test plan scenarios fit into the overall System Development

Life Cycle and into systems development research.

The effect of early test plan scenarios is to reduce the number

and variety of misunderstandings. Early test plan scenarios convert

abstract concepts into concrete, measurable actions. The result of

early test plan scenarios is an improved likelihood that the system

will be used and will have positive benefits.

The use of early test plan scenarios assures the operational

acceptability of the system design, forestalls design blunders, and

provides a clear and measurable work specification. In short, early

test plan scenarios stabilize the system development work process.

1.4.1 Creating the Test Scenario

Briefly, to create a test scenario, we define the basic sequence

of operations within the system's intended environment. In the

illustrative case used in Chapter 3 (the tutorial within this thesis),

the operational sequences are: (1) Hours, (2) Half-shifts (four hours),

(3) Shifts (eight hours), (4) Days, and (5) Weeks. We cite every task

the system must perform during each sequence. Each task is then broken

11

down into a series of concrete action test units. The process of

creating and using scenarios incorporates four steps (see Table 1.5).

Table 1.5 Four Steps in Test Scenarios.

1. Describe Action - What, when, where and how people, machines
and systems will physically act.

2. Define Results - What the developers' think should happen.

3. Evaluate - Group discussion among users and developers
to predict what actually will happen.

4. Improve - Correct and modify system design to make it
more useful.

1.4.2 Why Early Test Plan Senarios Work

The Software Engineering Institute (formed at Carnegie Mellon

University by the Defense Department) researches systems developments

throughout America. They have found three indicators that separate the

two percent of developments which succeed from the ninety-eight percent

which fail: (1) Clear system definition, (2) Quantified process

measurement, and (3) Systems process control [Humphrey, 1988, p. 73].

Early test plan scenarios work because they support a clearly

defined, disciplined development environment. Please consider the two

essential characteristics of early test plan scenarios that define,

measure and control the system development process:

(1) Clear goals and corrective mechanisms described in
operational terms.

(2) Early resolution of potential conflicts and blunders.

12

1.4.3 Guideline for Use: Adapt

Discipline improves the development process. But care must be

taken when implementing methods that increase discipline. If methods

that work in one development are adopted, without change, into a

different development environment, discipline may quickly become

regimentation [Humphrey, 1988, p. 78]. To preserve flexibility and

creativity and yet maintain discipline, developers must adapt methods

to fit the unique character of a new development situation.

This early test plan scenarios thesis is a guideline. It offers

ideas that can help projects succeed. The detail incorporated within

the tutorial (Chapter 3), may initially overwhelm the reader. This

tutorial is similar to a programmer's manual. It contains ideas that

have improved actual complex developments—but it also includes

extensive detail for completeness.

Common sense dictates that developers select and adapt only those

portions of this tutorial that improve a particular development

situation. Otherwise, the early test plan scenario method—that could

promotes disciplined creativity—becomes a regimented, unwieldly trap.

1.4.4 Special Advantages of Early Test Plan Scenarios

Please note the many advantages of the early test plan scenario

approach when it is applied before program coding begins:

13

1.4.4.1 Management Advantage

From a management perspective, the set of verified test plan

scenarios provides the basis for management by objectives. Individual

test scenarios become mini-contracts, which are then combined into an

overall development contract. See Chapter 7 for a further discussion

of this management and legal advantage.

1.4.4.2 Users Contribute

When users participate in early test plan scenario evaluation,

they develop an in-depth understanding of the system that reduces

training requirements. Users who understand a system make fuller use

of a system's inherent capabilities.

Technological innovation is continuous. When users understand

their systems, they are more likely to suggest enhancements that

increase the usefulness of future versions of the system.

1.4.4.3 Developers Produce

Early test plan scenarios help people develop and meet schedules-

they stabilize the work process. An initial review of this early test

plan scenario thesis might lead one to assume that the time required

for analysis and documentation, for developing test scenarios, and for

scenario review, would decrease developer productivity. In practice,

this approach significantly increases productivity.

14

To illustrate, (see Table 1.6, p. 15) one development team used a

version of early test plan scenarios and increased its productivity

from the national average of seven lines per day to twenty-nine lines

per day—a 300 percent increase in productivity! Engineers delivered a

substantially better product (i.e. with fewer customer-discovered

errors) in a significantly shorter time [Poston and Bruen, 1987, p.60].

1.4.4.4 Continuity Preserved

A single system's development may span several years. Managers,

developers, and users, who originally defined operational requirements

often leave the development team. If the new team members form faulty

interpretations of operational requirements, disruptions and errors

increase. The concrete descriptions of system activity in early test

plan scenarios preserve continuity of operational intent.

1.4.4.5 Quality Improves

Early test plan scenarios improve system quality by reducing

failure density (refer again to Table 1.6, p. 15). Failure density

measures the number of customer-identified errors per thousand lines of

delivered code. When early test plan scenarios are reviewed, users

identify operational errors in system design. The design is corrected

before programmers concretize the design into system code.

15

Table 1.6 PIMS Project* and Industry Comparison.

Characteristic Measure
PIMS Industry-

Project reported
Size Pages of documentation 2,680

Delivered lines of code 27,719
Number of test cases 1,056

Complexity Real-time process control average

Quality Development failure data
Total failures 12
Failure density** 0.43 5-30
Testing comprehensiveness***

Customer failure data
1

Total failures (first year) 2
Failure density** 0.072 1.3

Cost Staff-hours 7,627

Productivity Deliverable lines of code
per staff-day

29 7

Schedule Calendar months 9

* Process Information Management Subsystem (PIMS) Trending
Project at Leeds&Northrup Systems in North Vales, PA, 1986

** Failure density=number of failures per thousand lines of code.
***If comprehensiveness is unknown, the development-based failure

density number has no meaningful reference point (for example,
a low failure density could be due to poor testing).

[Poston and Bruen, 1987, p. 60]

1.4.4.6 Acceptance Assured

Early test plan scenarios act to assure acceptance of the system.

Users, sponsors and developers understand, evaluate, improve and

approve the acceptability of a system's design. Test plan scenarios

become the measurable development agreement.

16

1.4.4.7 Rework Reduced

When faulty design commitments are made, they propogate. Early

mistakes solidify. We are left with hard, frozen designs, extensive

program code and escalating personal and financial investments. When

users eventually identify the errors, the system is often dropped.

Early test plan scenarios reduce rework by uncovering design

blunders before programmers transform the design into code. Early test

plan scenarios permit productive process control: (1) Discover the

blunder, (2) Improve the design, and (3) Code the design.

1.4.4.8 Total Costs Reduced

The most expensive phase of systems development begins after

developers have "completed" their work and the system becomes

operational. System "rework" to correct design blunders (discovered

during system operations) are expensive. A modification required after

a system begins operations may cost one hundred times as much as that

same modification made before system coding. Over the entire life

cycle of a system, the cost of rework normally exceeds the total cost

of the entire pre-operational development [Carroll, 1989, p. 1].

Early test plan scenarios reduce rework, thereby reducing the

total cost of modifications. Thus, any extra cost or delay caused by

early test plan scenarios will be repaid—with dividends—over the

entire life of the systems development life cycle.

17

1.4.4.9 Scenarios Recycled

Developers can catalogue and recycle early test plan scenarios.

Libraries of scenarios improve subsequent developments. Novice users

shorten learning curves by examining recycled scenarios. New customers

review recycled test plan scenarios to evaluate and select potential

operational attributes before the actual specification process.

Developers reduce costs by modifying (rather than recreating)

recycled test plan scenarios. When test plan scenarios are explicitly

linked to functional and design documents (as described in the next two

chapters), these documents are more easily recycled. Linking test plan

scenario modules to program modules further improves productivity.

1.4.4.10 Marketing Opportunity

Catalogued test plan scenarios (as described in the previous

section) are valuable marketing resources. Building contractors use

photographs of houses to market their services. Similarly, systems

developers, marketing their services to potential customers, can use

recycled test plan scenarios to illustrate the value of their product.

1.5 Early Test Plan Scenarios Complement Other Methodologies

Early test plan scenarios complement other methodologies. Each

development situation is unique. Different developers prefer different

techniques. Generation and evaluation of early test plan scenarios,

12

before system coding, improve quality and productivity, regardless of

which other development techniques are used.

1.5.1 Comparing Early Test Plan Scenarios to Prototyping

Prototyping increases user involvement early in the program

development cycle. This early test plan scenario thesis expands the

prototyping philosophy to incorporate user expertise early in the

complex systems development cycle.

In other words, prototyping improves the interaction between users

and developers who are designing programs that process information.

Early test plan scenarios improve the interaction between developers

and users who are designing complex systems that integrate information

processing with physical operations.

1.5.2 Comparing Early Test Plan Scenarios to Modular Top-Down Design

Modular top-down design encourages the development of reliable and

flexible system structures by building a solid foundation before adding

intricate details. Vhen top-down design is rigorously enforced, the

final system has a quality that permits gracious modifications.

The early use of test plan scenarios allows the system's

fundamental design to be modified at an early stage—during a time in

which the restructuring of its modular top-down design can be carefully

planned and monitored.

19

Unfortunately, the most damaging errors discovered by customers

are not errors in program logic but errors in operational impact. Post-

operational system modifications, aimed at fixing these errors, can

sabotage the original design. The early use of test plan scenarios

preserves the fundamental goodness of modular top-down design by

reducing the number and severity of post-operational modifications.

1.6 Test Plan Scenarios—the Missing Link in Complex Developments

When test plan scenarios are developed and reviewed prior to

system coding, they provide an early link between users and developers

that is missing from traditional development approaches. Early test

plan scenarios overcome cultural obstacles to user-developer

interaction. User expertise is incorporated early into the system

design during the critical, pre-coding phases of complex developments.

These scenarios provide structure and focus that improve developer

productivity and system quality.

1.7 A Personal Note

I have had the opportunity to be part of many different cultures.

As a child, I grew up in an multi-lingual environment in which English,

Polish and Russian were spoken. I subsequently studied, and used,

several other languages. As a teenager, I worked with Dr. Martin

Luther King and Rev. Jim Robinson, founder of Crossroads Africa.

20

My doctoral reseach involved nearly three years of participatory

observation in a subsidiary plant of a major corporation, during the

development of two, multi-million dollar, integrated systems. The

plant is located in an inner city. Ninety-five percent of the plant's

workers and management are minorities, primarily Blacks and Hispanics.

The millions of dollars allocated to these two developments were meant

to increase the quality and productivity of this plant's operations.

The first development (for a Storage/Delivery system) was

initially a "failure." Users did not participate in the design. After

fifteen staff-years of effort and $15 million (a 300% escalation in

budgeted time and cost) there was no useable system.

This project became successful only after the plant staff

appointed a new project manager. Users became involved in a re-design

of the system. We wrote extensive test plan scenarios for users and

developers to evaluate. The evaluations helped to improve the system's

design. Scenarios were revised to reflect these improvements. When

the final scenarios were approved, they became a clear guide for all

subsequent programming. These test scenarios became acceptance tests,

the measurable objectives of the development agreement. With minor

revisions, the test plans scenarios were converted into user manuals.

Another group within the plant developed a Receiving/Order system

to link production with the warehouse. The approach presented in this

thesis was throughout this development. The final result was a useful

system, developed within time and cost expectations. Both systems are

still in use.

21

During the course of this research, I gathered and catalogued

several thousand pages of documents, notes, communications, letters,

interviews and observations.

An unanticipated bonus is that users who were involved in this

development were challenged and motivated by their participation. They

have become an enthusiastic group who are dramatically increasing their

skills, aspirations and contributions to their plant and to each other.

It was successes of this type that motivated me to propose the

early test plan scenario thesis.

CHAPTER 2

EARLY TEST PLAN SCENARIOS SUPPORT FRONT-END SYSTEMS PLANNING

It must be remembered that there is nothing more difficult to plan,
more doubtful of success, nor more dangerous to manage, than the
creation of a new system. For the initiator has the enmity of all
who would profit by preservation of the old institutions and merely
lukewarm defenders in those who would gain by the new ones.
Machiavelli

2.1 Front-End Planning

Front-end planning (planning which occurs before coding) manages

the course of a systems development by planning before coding. Front-

end planning is basic to successful development of integrated systems

(which integrate information processing with operations). Research

sponsored by the Department of Defense studied several hundred software

development organizations. Only two percent of these organizations

attained even a medium level of quality, when quality was measured by

developing useable systems, on time, and within estimated costs. Of

the two percent of developers who produced quality systems, all used

extensive front-end planning.

Traditionally, systems developers resist planning. Developers who

work on integrated systems (as described in the preceding chapter) no

longer have the luxury of using individual approaches to systems

development. The need has become too critical for continued system

development failures [Norman, 1988, p. 1543].

23

2.2 System Force

When a complex system becomes active within an organization, it is

no longer simply a set of programs. It becomes a dynamic force. An

active system is a conduit for communication. It is a filter and

modifier of information. An active system changes an organization's

operational environment by altering the interaction of its people,

machines and other systems. Without thorough front-end planning,

programmers who code the system determine its operational impact.

2.3 Successful Management Brings Users and Developers Together

Successful systems development management ensures that questions

which determine a system's useability are asked at the right time—and

that people who have the relevant expertise are allowed to answer these

questions. Often in systems development, people with the most relevant

expertise, the users, do not evaluate the usefulness of a system until

it is activated within the organization.

Successful systems development management does not simply help

developers "determine the users needs." Successful management lets

users and developers work together at the drawing table [Schrage, 1989,

p. 10]. Early test plan scenarios are a powerful management tool.

In the typical jargon of software developers, "testing" means
"proving" a design. Usability testing, on the other hand, is done to
find out what is wrong with a design. This shift in purpose
necessarily causes a change in attitude toward users and the product
being tested [Potosnak, November 1988, p. 83].

24

2.4 Management of Front-End Planning

This early test plan scenario thesis presents a front-end planning

approach which incorporates early test plan scenarios. Front-end

planning includes four phases: (1) Describing objectives, (2) Analyzing

functionality, (3) Defining structure, and (4) Evaluating organ¬

izational impact. Using the feedback tactics of quality assurance,

each phase includes five tasks: (1) Plan, (2) Produce, (3) Test, (4)

Improve, and (5) Approve. Each phase produces documents which are

specifically designed to support subsequent phases. Figure 2.1

describes these phases and the tasks associated with each phase.

2.5 Four Planning Views

Each planning phase uses a different view of the planned system.

The objective view defines the purpose of the system, the reasons why

an organization plans to allocate resources to this effort. The

functional view describes the components of the system, exactly what

activities it must be capable of accomplishing. The structural view

defines how all components will fit together to form a stable system.

The dynamic scenarios of the operational view demonstrate how the

structured components should act within the organization's environ¬

ment. Will the system, as it is currently specified, be useful and

useable within the temporal, physical and sequential conditions of the

actual organization?

25

TASK 1 . TASK 2 . TASK 3 . TASK 4 . TASK 5
0 1 PLAN : DO TEST IMPROVE : COMPLETE
B | Identify : Write D.I.l
J j problems. : Objectives
E 1 Specify : Documents,
C 1 Objectives,: defining
T 1 Resources, : objectives,
I | Time & Cost: benefits,
V | Limitations: costs.
E 1 A.1.1 A.1.2

Trouble-
Shoot
Objectives.
Will the
system be
useful &
useable?
A.1.3

Brainstorm.: Sponsors
Challenge, : Sign-off
propose, : Objectives
evaluate, : Document.
& accept :
improvement:

• •
A.1.4 A.1.5

1
| Analyze :

F 1 functional :
U 1 processes, :
N 1 data, logic:
C 1 hardware, :
T 1 needed to :
I | meet system:
0 | objectives :
N | required. :

1 A.2.1

<-- <— <-- <—
Write
Functional
Analysis.
Describe
Processes,
algorithms,
data,soft/
hardware

Requirements
A.2.2

Walkthrough
Functional
Analysis.
Is it clear
unambiguous
consistent
accurate &
complete?

A.2.3

Improve : Users and
analysis. : sponsors
Simplify, : sign-off
reduce cost: Functional
make more : Analysis
productive.: Documents.

• •
• •
• •

A.2.4 A.2.5
1 <— <-- <— <--

S 1 Analyze
T & 1 structure.
R | Design a
U D | logical,
C E 1 complete
T S | system to
U I 1 satisfy all
R G | functional
E N i needs.

1
1
1 A.3.1

Produce
Structured
Design.
Use tables
diagrams,
flowcharts
pseudo code
Link each
element to
function.

A.3.2

Prove
Structured
Analyses
Will they
correctly
completely
support all
parts of
Functional
Analysis
Documents?
A.3.3

Challenge : Developers
& improve : sign-off
analysis. : Structured
What parts : Design
of design : Documents,
are missing:
incomplete :
inaccurate :
too complex:
redundant? :

• •
A.3.4 A.3.5

1 <— <— <— <—
T 1 Activate
E 1 analysis.
S S | Describe
T C 1 physcial

E 1 interaction
P N 1 of system
L A | with people
A R 1 machines &
N I | all systems

0 | in actual
S 1 operational

| environment
1 A.4.1

Write
Operational
Test Plan
Scenarios
using all
sequential
spatial,
temporal
conditions
of normal &
exceptional
operations.
A.4.2

Team walk¬
through of
scenarios.
Personal
review by
users of
portions of
test which
impact
their own
organiza¬
tional role
A.4.3

Rigorous : All sign-
exercise of: off Test
scenarios. : Scenarios
Brainstorm : Users: the
to discover: System will
flaws. What: be useable,
can improve: Sponsors:
usefulness,: System will
useability,: be useful,
of system : Developers:
in organ- : System can
ization? : be built.
A.4.4 A.4.5

| To PRODUCE

Figure 2.1 Front-End Planning With Early Test Plan Scenarios.

26

2.6 Each Planning Phase Asks Different Questions

Each phase supports different questions. The tutorial (presented

in the next chapter) suggests guidelines for asking the most useful and

appropriate questions during each phase. The answers are presented in

documents, using formats selected to facilitate communication (see

Table 2.1). These formats are designed to help users and developers

understand, challenge and modify plans during the early stages of

systems development. Each component (of each phase's documents) is

formally linked to corresponding components in documents of the other

phases. Rigorous linkage decreases ambiguity while increasing

traceability and consistency in the design.

Table 2.1 Front-End Planning's Questions, Documents and Formats.

MAJOR QUESTIONS DOCUMENT FOR ANSWERS FORMAT
I. How should the new
system affect the
organization?

D.I System
Objectives
Documents

Narrative

II. What should the
parts of the system
do?

D.II Functional
Requirements
Documents

Text,
Tables,
Algorithms

III. How should the
parts of the system
fit with each other &
with the organization
to form a stable system?

D. Ill Structured
Analysis
Documents

Blocks, Charts
Diagrams

IV. How should the system
interact with the people
machines & systems of the
operational environment?

D. IV Test Plan
Scenarios of
Operations

Script,
"Screen Plays"

27

Successful systems development integrates these four views into a

single, cohesive system. The management of systems development, and

particularly the management of the requirement specification process,

is difficult because the language, evaluation criteria, communication

methods and cognitive understanding tools are different for each view.

A crucial factor in the development process is the ability of the

participants to challenge system plans. Without a firm structure for

questioning and improving problems in the initial plans, these problems

often remain undetected. When problems surface during acceptance

testing or operations, they are often so costly to correct that the

system itself is scrapped. These four phases ensure that each view

receives sufficient attention and that people who best understand each

view are able to contribute their unique expertise (see Table 2.2).

Table 2.2 Contribution of Four Planning Phases.

1. Recognizes the unique importance of each of four views:
Objective, Functional, Structural, Operational.

2. Establishes questioning as a fundamental process in systems
development, clarifying ambiguities and promoting improvements.

3. Manages a collaborative structure which enables people with
different skills, responsibilities and understandings to work
together, complementing each other's efforts.

4. Selects document formats which increase understanding of views.

5. Enforces a rigorous linkage system which ensures that the
products of different views form a cohesive entity.

28

2.7 Early Test Plan Scenarios Integrate Different Views

Early test plan scenarios are scripts that integrate the three

preceding views into a unified whole. Test plan scenarios exploit the

expertise of users by enabling them to imagine the active system and to

infer the operational effects of the system. Scenarios describe each

action of the system, and each expected response of the people,

machines and other systems that interact with the system.

Scenarios are screenplays. They include all of the prerequisites

for the actual test, detail the content, location and condition of all

required data, material, machinery and persons. Scenarios clearly

describe all relevant activities, movements and changes, using the

actual sequence in which they occur. Scenarios explicitly describe the

exact response, or the acceptable range of responses, to each of the

system's actions.

Scenarios present events using a clear, simple format. Scenarios

describe expected responses in quantified, measurable terms. The

evaluators of the test scenarios assess the usefulness, within the

organization, of the characteristics, effects, constraints and

limitations of the planned system. Scripts let users improve the

system's usefulness by inferring the actual operationalization of the

system.

Operational test plan scenarios help users objectively evaluate a

proposed system's useability. When the user is asked to evaluate a

system, or a portion of a system, which is already operational, the

user merely approves a design [Potosnak, November 1988].

29

When users evaluate early test plan scenarios, they evaluate,

modify and improve the design itself, using her/his expertise in the

actual operational environment.

We have little understanding of those processes by which people

perceive and infer. Researchers of cognitive perception express their

"humble appreciation of the enormity of our ignorance about how these

mechanisms work" [Wilding, 1983, p. 277], We do know that the script

format is a traditional and powerful method for people to communicate

plans and concepts concerning proposed activities.

For thousands of years, people have used scripts to describe

interaction in screenplays. Script integrates separate entities,

(whether people, machines or systems), which have different motives,

plans and possibilities. Scripts allow and direct the focus of

attention to be directed towards the interaction of separate people,

structures and things.

To be useful, a system must improve the interaction of people,

machines and systems within an organization's operational environment

[Lucas, 1975]. Most forms of specification are capable of addressing

only the isolated, internal and individual characteristics of a

program. Some methods are able to document the flow of information

among programs and between programs and the "outside world".

These formats for documentation are essential for defining the

internal characteristics and the interface communication channels of

systems. Scenarios do not replace formal specifications, tables,

charts and diagrams. Scenarios illustrate how a system, defined and

specified with these traditional system development tools, will

dynamically interact within an organization.

30

Detailed scenarios, which provide more elaborate, and thus more
expensive, operational descriptions, are even more effective than
simple scenarios in clarifying a system's human engineering aspects
[Boehm, 1984a, p. 81].

When a system is considered to be an active entity within a dynamic

organization, system developers become playwrights who establish the

rules of interaction among people, things and systems. Scripts force a

director of a play to exactly follow an author's plans.

Once early test plan scenarios are formally approved, programmers

must follow the directions of the system planners [Poston and Bruen,

1987, p. 59]. When difficulties arise during coding, programmers

collaborate with users and sponsors to resolve conflicts between code

and concepts.

Early test plan scenarios become the acceptance tests for

evaluating the successful completion of the system. When early test

plan scenarios are formally approved, prior to system coding, they

establish quantified and unambiguous measurements for evaluating the

system itself.

2.8 System Planning—Burden or Benefit?

System developers often argue that detailed planning is neither

necessary nor possible. Planning is seen as interfering with the

creative process and limiting the potential goodness of the final

system. A variety of "reasonable" excuses are found to skip quickly

through the planning stage and plunging into the exciting, challenging,

and more satisfying phase of system coding. Programmers offer many

31

excuses: "Users do not know what they want", "Until you begin work you

cannot identify what should be done", and "Planning delays the real

work". When programmers bypass the planning stage, the puzzles are

greater, more interesting and more fun to solve—and the price of

systems development increases.

Programming systems can, of course, be built without plans....But
since there is no general theory of the whole system, the system
itself can be only a more or less chaotic aggregate of subsystems
whose influence on one another's behavior is discoverable only piece¬
meal and by experiment. [Weizenbaum, 1976, p. 119].

CHAPTER 3

A FRONT-END PLANNING TUTORIAL THAT HIGHLIGHTS EARLY TEST PLAN SCENARIOS

Invention, it must be humbly admitted, does not consist in creating
out of void, but out of chaos; the materials must, in the first
place, be afforded: it can give form to dark, shapeless substances,
but cannot bring into being the substance itself. Mary Shelley,
Frankenstein.

3.1 Two Integrated Developments Underpin Tutorial

A major, multi-national corporation sponsored the two, multi¬

million dollar system developments that underpin this tutorial. Both

developments produced integrated systems (systems that merge

information processing with operational control as discussed in Chapter

1). The developments spanned several years during the mid-1980's.

3.1.1 Systems Designed to Improve Productivity and Quality

Both systems were designed to increase the productivity and quality

of the manufacturing processes within an urban subsidiary of this

corporation. The first system supports automated production control:

(1) Inventory management, (2) Job control, and (3) Production order

control. The second system supports automated material storage and

delivery: (1) Rotary Rack Storage, (2) Empty tote control, and (3)

Automated guided vehicle delivery.

33

3.1.2 Extensive Development Research

Several thousand pages of documents, letters, memoes, meeting

notes, interviews, and detailed, daily summaries were gathered during

nearly three years of full-time participant observation with these two

developments. This research occurred both at the plant (located in a

New England city) and on-site in California (location of the system

development organization responsible for the major material handling

and controls software).

All of the documents are catalogued. A detailed case study was

written, focusing on the interaction of the participants during these

three years of systems development. Additional site visits and

interviews were made during the final writing of this thesis.

3.1.3 A Gentle Warning: Use Common Sense and Creativity

The potential user of this tutorial is urged to use her/his common

sense and creativity to select and adapt components. Extensive detail

is included in this tutorial to thoroughly explain how decisions were

made and documents designed—not to define every step which the user of

this tutorial must follow. Structured flow diagrams are included to

illustrate the relationship between human activity, decisions and

documents during the course of this front-end planning approach not to

concretize the tasks.

Methods which support disciplined development environments promote

regimentation if they are simply lifted from one project and adopted by

another [Humphrey, 1989, p. 78]. Each development situation is unique—

34

approaches which succeed in one situation must be adapted to meet the

unique requirements of another situation. Regimentation caused by

simply adopting a methodology stifles creativity.

This tutorial uses specific tools, such as SADTtm. These tools and

techniques are used to demonstrate the planning requirements of each

phase. Each development process is unique—each developer has her/his

own favorite sets of tools. The use of SADT, or any other specific

approach, is not meant to imply that these are the best tools. These

tools are included because they were successful during the two

developments researched for this thesis.

The ideas represented within this tutorial emerged from the

extensive effort, creative abilities, and prolonged (and intense)

interaction of many people. These ideas helped a diverse group of

people, situated on each side of America, work together to successfully

build a useful integrated system.

3.2 Early Test Plan Scenarios—Highlight of Front-End Planning

This tutorial offers guidelines for the front-end planning of four

development phases. Each phase represents a different view of the

system being planned. This tutorial discusses the process of front-end

planning associated with each view.

Views are presented in the same sequence in which they are

accomplished: Objective, Functional, Structural, and Operational. The

highlight of this thesis is the fourth, operational view that develops

early test plan scenarios.

35

3.3 Phase One: Viewing System Objectives

Front-end planning begins by defining an organization's objectives,

asking how a system could improve the organization. Objectives may be

described simply, in a single document, or require a complex, multi¬

volume set of documents.

The objective view identifies the impact a system will have on an

organization (see Figure 3.1). Objective Documents describe current

operations, evaluate problems and needs, and define the benefits of the

system. Five tasks help develop objectives (see Table 3.1).

Table 3.1. Five Tasks to Develop Objectives.

(1) Plan Objectives - Identify problems for the system to
address. Define specific goals for the system to meet.

(2) Describe Objectives - Write the System Objectives Document,
D.A.l. Describe problems to solve, goals,benefits.

(3) Test Objectives - Trouble-shoot the Objectives Document.
(4) Improve Objectives - Brainstorm, propose and improve.
(5) Approve Objectives - Sign-off Objectives Document, D.A.l.

3.3.1 What Are the System Objectives?

Section D.A.1.1 of the Objectives Document states the overall

objective of the system within the organization—and the proposed

methods for reaching this objective.

D.A.1.1
The task of establishing- a comprehensive warehouse system for ABC
Corporation is to bring about the capability of carrying a minimum
amount of inventory and the distribution of material to product lines
in orderly fashion. This goal will be met through implementation o
a totally integrated system comprised of a variety of automated
mechanical equipment controlled by the software to be developed.

36

i i : ; i
I A. PLAN -> B.PRODUCE ->C. MAINTAIN
I_! !_: i_

I I : :
IA.l IDENTIFY -> A.2 DEFINE
I OBJECTIVES I ! FUNCTIONALITY!
!_I 1_/_I

> A.3 STRUCTURED -> A.4 TEST PLAN
ANALYSIS ! ! SCENARIOS

Organization 's
Operational
Environment

D.I.I. System
Objectives Documents
./\.

1 \/ ! 1 i i
1 Sponsors identify 1 I Sponsors signoff 1
I system objectives: 1 I Objectives Document I
I problems to solve. i i ! D. I.I., agreeing I
| personnel, cost, 1 | to accept system |
| time and equipment 1 | when it satisfies |
| constraints. 1

i
I all objectives. I
1 ! i

1 A.1.1 PLAN SYSTEM
i
1

1
1 A.

1
.1.5 APPROVE 1

1 OBJECTIVES 1 1 OBJECTIVES 1

1 1 1 _A 1
• • 09 • • 99
• • 99 • •
mm 99 • •

\/ 1 1 1
Write Objectives | j Trouble-shoot | Brainstorm.

Document, 1.1.1. I I Objectives. Will | Propose & evaluate

With text, describel I any system which | new ideas. Promote

problems to solve, I I meets objectives, | responsible changes

system goals and I I help organization | which improve

benefits, resource | | solve its problems | objectives.

& cost limitations.! I & achieve its goals 1
1

1 1
A.1.2 DESCRIBE 1 1 A.1.3. TEST | A.1.4 IMPROVE

OBJECTIVES
1 1

OBJECTIVES • • ::::> OBJECTIVES

1 1

A.l IDENTIFY OBJECTIVES

Figure 3.1 Identify Objectives A.l.

37

3.3.1.1 How Does the Organization Operate Now?

Section D.A.1.2 of the Objective Document summarizes current

operations within the organization. This section describes its current

activity using text to highlight specific problems and inadequacies in

the operational environment.

D.A.1.2
This section is an overview of current material processing methods
used at the Main Street location of the ABC Corporation. The
operations described are conducted in Building 10.

3.3.1.2 Which Current Systems Will the New System Affect?

One section of the document is reserved for each active system

within the organization that will be affected by the new system. An

understanding of all systems currently active within the operating

environment is needed to plan a new system which will replace, modify

or interact with other systems within the organization.

D.A.1.2.1
Receiving - Material is received from various vendors at the
receiving docks and a visual audit is made using the freight bill.

D.A.1.2.2
Putaway - Materials are put away in high bay storage and entries are
made in the computer based locator system.

38

3.3.1.3 How Will the System Help the Organization?

Section D.A.1.3 summarizes the system's benefits and defines the

system's impact on the organization. The addition of new benefits or

the elimination of current problems should be specified. Before the

specification process begins, sponsors should have an explicit list of

benefits which they expect the organization will receive from the

system. These benefits may involve hardware, software and processes.

In many cases, developers, particularly if outside of the

sponsoring organization, will not yet be working under a development

contract, but under a limited, pre-development specification contract.

D.A.1.3
The proposed system, for ABC Corporation, will permit scheduled Just
In-Time delivery of parts to manufacturing.

D. A.1.3.1 Hardware:
- Self-guided, Self-propelled Delivery Carts to reduce delivery

time from a current average of 30 minutes to a maximum of 20 minutes

D.A.1.3.2 Software:
- Real time control of carts using micro-processers to increase

responsiveness of delivery while reducing delivery personnel by 20%.

3.3.2 What Resources Will the Organization Allocate?

What personnel, dollars, and equipment resources are available

during the design, development, implementation, modification and

operation of the final system? Resource guidelines should include

expenditure boundaries.

D.A.1.4 Costs
- This project is expected to conform to the expenditure limits of
the organization’s second level of priority projects.

39

3.3.3 When Should the System Be Operational?

It is premature during this initial stage to assign specific

implementation dates. Forcing a development to meet inappropriate

schedule demands disrupts the production process, increasing its risks

and consequent delays. It is important to establish time boundaries

which represent actual organizational needs, and to assign levels of

importance to each boundary.

During development, decisions will be made which balance the time

required to develop, test or implement a particular function with the

expected benefit of the function. Realistic and prioritized time

boundaries assist in determining which functionality to develop and

which to eliminate, modify or postpone. In some situations, the

schedule is critical and functionality will have to be sacrificed.

Othertimes, close adherence to a schedule is less critical than full

development of functionality.

In a development environment in which sponsors, users and producers

are communicating openly and are mutually directing their efforts

towards the successful completion of the system, issues of scheduling,

functionality and associated costs are evaluated objectively. When

conflicts develop between groups, issues of schedule and functionality

may erupt as a major impediment to development success.

D.A.1.5
On July 1, 1990, the ABC Corporation must begin production of a new
product line. It is essential that the system be operational before
this date, even is some functionality must be ommitted.

40

3.3.4 Who Will Develop the System?

Section D.A.1.6 defines who will develop the system. Organizations

have several choices when selecting developers. Will the system be

developed in-house, or will outside vendors be hired? Will a turn-key

system be purchased which is developed by a software house totally

independent from the sponsoring organization? Who will participate in

the development process? Will workers, managers, MIS persons,

engineers, executives be involved? To what extent is participation of

each group expected during development?

D.A.1.6 The basic system will be developed by a consulting firm. ABC
corporation will assign a team of three warehouse supervisors and
three warehouse users to participate, on a full time basis. These
six people, under the direction of the warehouse manager, will be
full members of the development team, working closely with systems
developers from the consulting firm.

3.3.5 How Will the Development of the System Be Managed?

Most management strategies assume that teamwork by sponsors, users

and producers is required for successful system development. Once a

project manager is selected, it is the manager who determines the

management philosophy of the development. When developments flounder,

new management is often assigned to the project, and the project

management techniques are changed. The disruption caused by a change

in personnel is aggravated by a change in managerial control.

Evaluation of system management considerations, prior to the

development itself, reduces some of these risks.

41

To promote a controlled development, the membership, authority and

communication routes of the development team should be determined at

the onset of the development. The team's composition should reflect

the organization's management philosophy and be appropriate for the

nature of the system and the conditions of the development environment.

D.A.1.7 The project team will use Collaborative Management. The
project management team will consist of three users, two sponsors and
one producer. All decisions will be made by majority vote of the
team. In the case of a stalemate, the project manager, to be
assigned from the user group, will cast the deciding vote.

3.3.6 How Will the Development Be Phased?

Strategies concerning phases alter a development's priorities and

risks. Three basic ways to phase a development are monolithic,

incremental and evolutionary [Melichar, 1980).

A monolithic approach establishes all functional requirements, to a

detailed level of analysis, for all system functions, prior to any

system development. This method works well if the system requirements

are known and firmly bounded, if the operating environment is stable,

and if the hardware and software used are proven and reliable.

Incremental development establishes overall system requirements

prior to development but recognizes that the completion and

implementation of one set of functional processes may change the

operating environment in unanticipated ways. The use of automated

delivery carts may suggest changes to the anticipated system. The

operational environment may change during the development. Corporate

priorities may shift, drastically altering the system requirements.

42

The incremental approach is appropriate for a dynamic environment

in which long-range objectives are established, but short-range

conditions change. Long-range objectives are divided into

subprojects. When one subproject is accomplished, the next subproject

is re-evaluated.

Evolutionary project management is an interactive process involving

design, development and implementation. While this method appears to

permit increased creativity and innovation, this appearance may be

deceptive. As the driving decisions for the development occur at the

detailed analysis level, there is no longer overall control at the

level of organizational requirements. When the focus is on immediate

technological innovation, the nature and impact of the system as a

whole entity, and as an integrated element within the organization, may

be ignored. For people caught up in the excitment of evolutionary

development, it is difficult to shift gears and view the development

from an organizational perspective.

In evolutionary development, a rigorous process of regular reviews

and assessments must be established to monitor the development, assess

its impact on the organization and to determine whether to continue or

change the current development course of activity.

D.A.1.8 An Incremental approach will be utilized. The first phase to
be developed will be the automated carousel storage. Upon
satisfactory operationalization of this phase, the AGV (Automated
Guided Vehicle) system will be developed. When the AGV system is
operational, an automated palletization system will be developed.

43

3.4 Phase Tvo: Viewing System Functionality

Once the organization's objectives have been established, and the

current operations understood and documented, work begins to develop a

systea's functionality (see Figure 3.2 and Figure 3.3). Development of

the functionality requires intense effort. Users, sponsors and

producers contribute to this process. If the work is completed by

members of a single group, crucial omissions or inaccurate assumptions

weaken the soundness of the system.

3.4.1 Who Determines Functionality?

Sponsors and users are often excluded from this process because of

tiaidity or the belief that non-technicians do not have the required

skills. Some people may consider themselves, or their supervisees "too

busy" to participate. The system suffers when users and sponsors do

not participate in front-end planning.

3.4.2 Vhat Are the Functional Parts of the Systen?

The Functional Description is a narrative about what enters the

system, how it enters the system, what happens to it within the system

and how it leaves the system during normal and abnormal conditions (see

Table 3.2). Physical layouts are described and displayed with scaled

44

layouts. Processes which require decisions may be described using flow

diagrams which concisely express the functional options.

Table 3.2 Questions to Ask About a System's Functionality.

1.) What goes into the system?

2.) What does the system do with this input?

3.) What does the system use to accomplish its activity?

4.) What parts are released from the system?

3.4.3 Decimal Linkage Scheme

A decimal linkage scheme labels each component within the

Functional Description. Each component is assigned a sequential,

hierarchical label (see Figure 3.4). Each functional component's label

is later assigned to the structured analysis blocks, the test plan

scenarios, and tables and charts which may be produced to evaluate or

improve functionality.

Cross-tables ensure that each functional component is correctly

represented in all subsequent development activity. This linkage

scheme reduces the number of structures which duplicate functionality,

prevents the possibility of overlooking functionality, and ensures that

all functionality is adequately tested and evaluated.

This decimal linkage scheme is particularly valuable during complex

developments. Managing complexity is a task we are just starting to

understand.

45

I I I
! A. PLAN -> B.PRODUCE ->C. MAINTAIN
I ii ii
•_i i i

: i ii
A. 1 IDENTIFY-> A.2 DEFINE ->

OBJECTIVES ! | FUNCTIONALITY! !
_ I I

\/
Users identify
all functional
characteristics
of a system which
meets objectives
of organization.

A.2.1 ANALYZE
FUNCTIONALITY

i i i i
A.3 STRUCTURED -> A.4 TEST PLAN

DESIGN I j SCENARIOS
/\ ! !

: D.I.2. Functional :
: Analysis Documents :
:./\.:

• •
• •

Users signoff
Functional Analysis
Documents, D.I.2.,
agreeing that they
will be able to use
this functionality.

A.2.5 APPROVE
ANALYSIS
/

\/ I
Write Functional I
Analysis Documents I
* Process Analysis |
* Data Descriptions|
* Logical Algorithm!
* Software Specs !
* Hardware Specs !

A.2.2 DESCRIBE I
ANALYSIS ::

_I

I Rigorous review !
I and walk-through |
! of Functional !
| Documents. Are |
| they complete, |
! realistic, clear I
| and unambiguous? !

I A.2.3.TEST I
:> ANALYSIS ::
I_I

! Brainstorm. Improve
| the functionality.
I Challenge existing
! plans. Collaborate
| to envision a more
! useful & less
! costly system.

I A.2.4 IMPROVE
:> ANALYSIS
I_

A.2 DEFINE FUNCTIONALITY

Figure 3.2 Define Functionality A.2.

46

I A. PLAN -> B.PRODUCE-> C. MAINTAIN i

!A.1 IDENTIFY —> A.2 DEFINE —> A.3 STRUCTURED —> A.4 TEST PLAN!
! OBJECTIVES i I FUNCTIONALITY I ! DESIGN ! 1 SCENARIOS !

A.2.1 ! IA.2.2 I IA.2.3 I IA.2.4 ! IA.2.5
DEFINE -> DESCRIBE ->TEST — > IMPROVE — > APPROVE
FUNCTIONS ! !FUNCTIONS I !FUNCTIONS I j FUNCTIONS ! !FUNCTIONS

:: /\

D.I.2. Functional
Analysis Documents
..../\.

1 \/ 1
| Write Process |
I Analysis. Use text |
| to describe flow of|
| all processes. Show|
| relationships among|
| processes. Label. |

1 1
I A.2.2.1 WRITE 1
1 PROCESS ANALYSIS 1
1 DOCUMENTS 1

1
Users signoff |
Functional Analysis!
Documents, D.I.2., |
agreeing that they |
will be able to use|
this functionality.|

!
A.2.2.5 APPROVE 1

ANALYSIS |
/\ 1

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

\/ 1 1 ! 1
Describe required | 1 Rigorous review 1 ! Brainstorm. Improve

Data characteristic! | and walk-through 1 | the functionality.

Data Dictionaries, I I of Functional 1 ! Challenge existing

Record Descriptions! | Documents. Are ! | plans. Collaborate

File size, Database! | they complete. 1 | to envision a more

Describe data with I I realistic, clear 1 ! useful & less

charts/tables/text | I
1 1

and unambiguous? 1
i

! costly system.
1 1 1

A.2.2.2 WRITE DATA i 1 A.2.2.3. TEST
i
1 | A.2.2.4 IMPROVE

ANALYSIS FOR DATA ANALYSIS • • • • • • • • :> ANALYSIS

DESCRIPTION & FLOW 1 1 1 1

A.2.2 DESCRIBE FUNCTIONALITY

Figure 3.3 Describe Functionality A.2.2

47

I. Warehouse System Maintenance
Operators must be able to start up and shut down system.

1.1 System Start-Up
The material handling system will not be active at all times, but
will alternate between being active and being shut down.

1.1.1 Types of System Start-Up
The start-up process needs to accommodate normal daily start-ups
normal weekly start-ups and start-ups after abnormal shut downs.

1.1.2 Evaluate System Status Conditions
The start-up process should evaluate the status of all sub¬
systems, (Material Storage, Order Processing, Material Delivery).

1.1.3 Send start-up message to INCS (Inventory Control System)
When the start-up process is complete, an MSA (Material System
Active) message is sent to the Inventory Control System.

1.2. De-activate Portions of System
The operators need to be able to de-activate any part of system.

1.3. System Shutdown
The operators need the capability to shut down the system. There
are four types of normal shutdowns: end-of-day shutdown, end-of-
week shutdown, end-of-year shutdown, and planned maintenance
Shutdown. There are two types of abnormal shutdowns: controlled
emergency shutdown and uncontrolled system abort shutdown.

II. Store Material
The Material Handling System controls automated storage.

11.1 Process Material Announcements
The system receives ANRs, (Advanced Notification of Receipt),
messages from INCS (Inventory Control System) which list tote
(containter) numbers, part numbers, and quantity of parts.

11.1.1 Evaluate ANR messages

11.1.2 Accept Valid ANRs

11.1.3 Reject Invalid ANRs

11.2 Receive Material

11.3 Find Storage Location

11.4 Putaway Material

11.5 Acknowledge Material Receipt

Figure 3.4 Sample of Linkage Scheme.

48

3.4.4 Technical Description of the System

The technical characteristics of the hardware and software required

to support the functionality are described in four subsections:

(1) Functions
(2) Interfaces with other systems
(3) Physical configurations
(4) System operations.

A complex system has multiple subsystems that must be integrated

with other systems. These subsystems are listed and defined separately

and then integrated in a hierarchical organizational chart. The

different forms of hardware required to support these systems are also

documented in charts.

The interface between systems often starts as an apparently simple

exchange of data. If the transferred data is in the form of messages,

an initial table of messages, their meaning, instigating time and

condition, and response is prepared. When systems are related in a

strictly one-way exchange and receipt of data, the interface may be

simple, particularly if the exchange of data is always in a batch mode,

and never has real-time consequences.

When there is an interchange of data, systems both receive and send

messages or data files. When the interchange occurs in real-time, the

functioning of each of the integrated systems is constrained and

dependent upon the time, meaning and consequences of the interchange.

Slight miscalculations or ambiguous interpretations of the timing

or subtle differences in expectations or interpretations of the meaning

49

and ramifications of messages may destroy the stability and integrity

of both systems. With the increasing technological capacity for

integrated systems, the problems associated with defining the

requirement specifications of the interface interdepencies become

increasingly complex. The interface between two systems may evolve

into a third system, more complex than either of the original systems.

3.5 Phase Three: Viewing the Structural Design

In objective-directed design, the organization's objectives are the

foundation of functional requirements. The analysis and design of the

structure of the system supports and influences but does not determine

the nature of the functionality. The operational implications of the

proposed system's functionality derive from organizational objectives

not from technological possibilities (see Figure 3.5 and Figure 3.6).

3.5.1 Using the SADT Method

There are three major stages in this phase. The first stage

defines functional modules and data categories. The second phase

structures the logical flow of system activity and of data. The third

stage develops the requirements of programs which accomplish the

activity and data flow processes. A powerful technique for structured

analysis is the SADTtm methodology, developed by Douglas Ross (1976).

With SADT, the system's functionality is categorized into three to

six primary functional modules interconnected with directed paths of

data flow, influencing factors and mechanisms.

50

I I i ! !
I A. PLAN -> B.PRODUCE ->C. MAINTAIN
I_I !_i !_

i i

A.1 IDENTIFY -> A.2 DEFINE
OBJECTIVES ! ! FUNCTIONALITY

i i
i i _

i !

i I
! I

A.3
I !

STRUCTURED —> A.4 TEST PLAN
DESIGN I ! SCENARIOS
I !/_

\/ I
Combine all parts i
of Functional
Requirements into
a labeled,complete
organized,structure
and design.

A.3.1 ANALYZE
STRUCTURE & DESIGN

: D.I.3. Structure :
: & Design Documents :
:.:

Users signoff
Structured Design
Documents, D.I.3.,
Approve structure
which determines
nature of system.

A.3.5 APPROVE
STRUCTURE & DESIGN
/

\/ I
Write Structured I
Design Documents I
* Function-Actor |
* Process Flow I
* Data Flow Chart I
* System/Interface I
* Pictorial Macro I

Views. |
A.3.2 DESCRIBE I
STRUCTURE & DESIGN :
_I

I
| Prove Structured
| Analysis Documents.
| Do they describe a
| logical, complete
| accurate system
| that meets all
| functional needs?

I
I A.3.3.TEST
> STRUCTURE & DESIGN:
I_

Brainstorm. Improve
the structure &
Design. What is
missing, inaccurate
or unnecessarily
comples. Are all
relevant interfaces
included?
A.3.4 IMPROVE

:::> STRUCTURE & DESIGN
I I__

A.3 STRUCTURED ANALYSIS AND DESIGN

Figure 3.5 Structured Analysis and Design A.3.

51

i A. PLAN-> B.PRODUCE->C. MAINTAIN i

! A. 1 IDENTIFY > A.2 DEFINE -> A.3 STRUCTURED —> A.4 TEST PLAN!
I OBJECTIVES ! j FUNCTIONALITY! I DESIGN i 1 SCENARIOS !

A.2.1 ! I A.2.2 I !A.2.3 ! 1A.2.4 I !A.2.5
ANALYZE -> DESCRIBE ->TEST —>IMPROVE —>APPROVE
STRUCTURE ! I STRUCTURE! !STRUCTURE ! {STRUCTURE ! !STRUCTURE

:: /\

D.I.3. Structure
& Design Documents
./\.

\/ 1 1 1
Develop Table that | | Develop system |
matches function I I macro view displays|
with action, with | | which offer simple,!
actor (person, | I pictorial views of |
machine,system) I | system's operations!
with data,programs | 1 1
A.3.2.1 WRITE I I A.3.2.5 DEVELOP 1
FUNCTION-ACTOR-DATA 1 ! PICTORIAL SYSTEM !
PROGRAM TABLE. 1 ! MACRO VIEW 1
DOCUMENTS 1 ! DOCUMENTS. /\ !

\/
Develop structured
diagrams that
describe all system
functionality. Use
labeling technique.

A.3.2.2 WRITE I
STRUCTURED PROCESS::
FLOW DIAGRAMS I

| Design structured |
| data flow diagrams |
| to describe move- I
I ment, storage, I
| impact,transfor- I
| mation of all data |
| processed by I
| system. I
| A.3.2.3. DEVELOP I
:> DATA FLOW :::
1 DIAGRAMS_I

| Brainstorm. Improve
| the functionality.
| Challenge existing
| plans. Collaborate
| to envision a more
| useful & less
| costly system.

I
| A.3.2.4 DEVELOP

::> SYSTEM FLOW &
1 INTERFACE CHART

A.3.2 DESCRIBE STRUCTURE AND DESIGN

Figure 3.6 Describe Structure and Design A.3.2.

52

The structured view fits the parts of the system (as defined in the

functional analysis), together into a logically complete and

structurally cohesive system. First, the functional modules are

defined. Then a definition of the data which feeds these modules is

developed to identify and define exactly what characteristics must be

possessed by that data which enters the system (see Figure 3.7).

DATA DATA START END
NAME TYPE FORMAT POINT POINT DEFINITION REQUIRED?
Box# Num 999999 010000 999999 Cart Number Yes
Part# Alph XX-999 AA-001 ZZ-999 Part Number Yes
Cost Dec ZZ9.99 000.00 999.99 Part Cost No
Numb Int ZZZZZ9 000000 999999 Number of Parts Yes

Figure 3.7 Sample of Data Definition Table.

As the system's architecture develops, detailed inter-relationships

and data definitions are expressed. When the structure is completed,

the system is fully described in terms of its data, activity flow, data

flow and hierarchical integration.

3.5.2 Matching Structured Design to the Functionality

Structured diagrams describe functionality using hierarchical

blocks connected by processes represented by arrows. These blocks are

labeled with a linkage system which clearly specifies each block's

position in the overall scheme of the system. No functionality,

originally included, is unintentionally modified or omitted in

subsequent phases of systems development. By using the same numbering

scheme in the functional documents, the structured blocks and the test

53

plans, a one-to-one realationship between functional and structural

components is rigorously maintained. Each design component is matched

to a functional component.

3.5.3 Does the Structured Design Support the Functional Analysis?

Front-end planning evaluates the integration of functionality with

structure. The developers design a macro structure of programs which

captures the structured analysis envisioned in the SADT diagrams.

Pseudo code defines functionality inherent in each individual program.

The data definitions, program specifications and design structures

are compared with functional requirements to ensure compatibility. The

process of fitting the structure to the conceptual is always led by

functionality. The Function-Structure Table serves as a checklist for

this fitting process (see Figure 3.8).

3.5.4 Trouble-Shooting with the Discrepancy Document

The Discrepancy Document is a tool for identifying, analyzing and

resolving discrepant concepts. Ttrouble-shooting is a form of brain¬

storming which increases the system quality.

The development of a Discrepancy Document is a tedious yet critical

process, requiring an observer who concentrates on innuendoes as well

as overt statements (see Table 3.3). The process of discrepancy

development involves a review of prior documents, notes and comments

which occcured during the development. Scrutiny uncovers ambiguous

interpretations of functionality and structure.

54

FUNCTION - STRUCTURE TABLE

Heading: Section 1.2.1 Topic: De-Activate Rotary Rack Shelf #1

Actors Activitv Function Module Program File Fields
Op -> A Stop Rackl 1.2.1 A.2.1 P01051 St at Posit

Loc
A -> TC
TC-> RR
RR-> TC Rackl Off
TC-> A Rackl Off P01052 St at Posit
A -> Op Display

Rackl Off P01053

Notes on Function - Structure Table:

Each section heading in the functional analysis is represented in
this table. The "ACTOR" column identifies the actor(s)
accomplishing each activity. Actors may be people, machines or
system processes. For brevity, abbreviations are used to
identify the actor: Op (Operator); A (System A); TC (Tracking
Controller); RR (Rotary Rack)

Message

HRN
EN1
0KEN1
0KR1H

If the action involves one actor, acting alone, the single
initial appears under the heading of Actor. If the action
involves interaction between actors, the initials are linked by
arrows which indication the direction of the interaction:

Actor
Op
(Operator
Acting
Alone)

Actor
Op->A
(Operator
Affecting
System A)

Actor
TC<->RR (Tracking
Controller sending
messages to Rotary
Rack & Rotary Rack
sending signals to
Tracking Controller)

Actor
A->Op
A->TC
(System A sending
messages to both
Operator & Tracking
Controller.

The Activity Column describes the activity which is occurring.
The Function Column lists the label of the section of the
Functional Analysis which describes the functionality being
accomplished. The Module, Program, File, Field columns link the
activity to the specific elements of the system architecture
which accomplishes the function. Message refers to the label of
any message which is sent between programs or systems.

Figure 3.8 Sample of Function - Structure Table.

55

Table 3.3 Organization of the Discrepancy Document.

Section l...List of identified problems which need resolution.

Section 2 — Summarizes differences between concepts in functional
document and interpretations of functionality.

Section 3 — Correlates text from conceptual functional diagrams
with comments of development participants who
identify discrepant interpretations.

Section 4...Summary of decisions concerning discrepancies.

3.5.4.1 Identifying Ambiguous Interpretations

The essence of the specification process is human understanding,

innovation, communication and judgment. The discrepancy process

requires the additional ability to discern ambiguous interpretation of

functionality. It offers a format for expressing functional

differences which will be resolved during development (see Figure 3.9).

The person(s) responsible for identifying the discrepancies

attempts to thoroughly understand the different interpretations, using

an unbiased approach. Discrepancies exist—the challenge is to

discover and resolve them before they disrupt the development.

Resolution of differences occurs by default if no attention is

given to their resolution. Rhe resolution occurs by edict if a single

person has unquestioned authority to resolve differences.

Programmers promote their own interpretations, often unaware of

conflicts between their interpretations and that of users and of

sponsors. When attempts are made to activate a system, discrepant

interpretations surface at the most inconvenient and costly times.

56

Function.II. 1.2 Reject Invalid ANR (Advanced Notification
of Receipt) messages.

Problem.System A's error handling differs from System B's
expectation.

Differences. System A refuses to accept error messages.

System B expects System A to accept error messages,
placing them on hold until the problem is resolved.

Functionality_II. 1.2 Reject Invalid ANRs
"Reject implies do not store in data base" (System

A 's programmer).

"Reject implies store but do not process" (System
B's programmer).

History.09/05/88 Programmers of System A developed details
of ANR rejection message.

09/10/88 Programmers of System A wrote programs
which ignore invalid ANRs. After the Rejection
message is sent, the initial ANR no longer exists.

09/15/88 Designed System B to remedy problem and
send remedy back to System A.

Figure 3.9 Sample of Discrepancy Document.

3.5.4.2 Discrepancies Escalate Conflict

When discrepancies remain hidden or are ignored during the

specification stage, the opportunity for constructive resolution is

lost. When the discrepancies emerge at the end of development, the

resolution is often destructive. The sponsors and users must either

accept a system with faulty functionality (one which does not work

acceptably within the operating environment), allocate additional

resources to rebuild part of an existing system, or drop the system.

57

With complex systems development, the cost of discrepancy resolution

is one of "pay a little now or pay a lot later."

3.5.4.3 Managing Discrepancy Resolution

The approach used to resolve discrepancies determines whether the

development thrives or fractures into disarray. The challenge of

project management is to allow discrepancy identification, analysis and

resolution—and to allow reconciliation of diverse viewpoints.

The Discrepancy Document resolves discrepancies. Different people

review the document and insert hand written comments. These comments

become ongoing commentary in the document, with the commentor clearly

identified. The discrepancy resolution process focuses attention on

differences early in the development process and permits a resolution

based on analysis, not on political maneuvering.

3.5.4.4 Overcoming Cultural Misunderstandings

This process is particularly useful when the relationship among

participants becomes charged with emotion because of cultural

misunderstanding. Often overlooked in systems literature is the

intense nature of the relationships among systems development

participants. The structure of front-end planning lets people work

together, even when their ideas and interpretations conflict. Front-

end planning focuses attention on concrete facts. People are no longer

competing with one another, trying to promote their own viewpoint.

58

Instead, people focus on a clearly specified issue, with a variety of

alternative interpretations. The task is to resolve a concrete issue,

not to argue over misinterpretations.

Discrepancies indicate that people are thinking, incorporating

stated functionality with their personal storehouse of knowledge.

Without different viewpoints, and the resolution of these differences,

there would be little need for people in the development process.

3.6 Phase Four: Viewing Operations with Early Test Plan Scenarios

The fourth phase of front-end planning is the development of early

test plan scenarios which activate the system design.

3.6.1 Role of Traditional Test Plans

The purpose of testing a system is to determine if the system does

what it is supposed to do. Traditionally, system testing determines

whether program code satisfies program design.

3.6.2 Role of Early Test Plan Scenarios

Early test plan scenarios determine whether a system, based on the

functionality and design, would be useful (see Figure 3.10).

59

TRADITIONAL APPROACH EARLY TEST PLAN SCENARIO APPROACH

ROLE OF SPONSORS & USERS

ROLE OF SYSTEM DEVELOPERS

ROLE OF SPONSORS & USERS

ROLE OF SYSTEM DEVELOPERS

• • • • • • i i i • i • • • • • • •
• •

0

• •

F

• •

U

i i
i
i

• i •

i o

..
Pv,

• •

U
b u s i i ! b u s
3 n e M I ! j n A I e M
e c o i ! e c c m 0
c t D C T d i 1 c t t P d
t i e 0 e i ! ! t i D i r C T i
i 0 s d s f I I i 0 e V 0 0 e f
V n i e t y i ! v n s a V d s Y
e a g

i i ! e a i t e e t
s 1 n i i ! s 1 g e

i i i i i i n
t i i i i t

Y i i
i i

1
i i

Y

i i i i

Figure 3.10 Early Test Plan Scenarios Improve System Usefulness.

3.6.2.1 Early Test Plan Scenarios Match Design to Functionality

When early test plan scenarios are developed before coding, they

match the design to functional requirements. These same test plans are

used to develop procedure manuals and documentation. After system

coding, the test plan scenarios become system acceptance tests.

Examining the "fit" between a developed system and the operational

environment traditionally occurs during system start-up. The system is

activated within the environment. If it works satisfactorily, the

development is successful. If the system fails to work satisfactorily

within the environment at start-up time, the results are painful and

60

expensive: the environment must be changed, the system changed or the

system removed from the environment.

Early test plan scenarios activate specifications, asking how well

the specifications will work within the organization's environment.

People are needed who understand the organization's conditions (both

normal and exceptional) and its unique characteristics. The useability

of a system is measured by how successfully the people, machines and

systems within this operational environment work together.

3.6.2.2 Script Format: A Powerful Communication Tool

The script format used to activate requirements and design is a

powerful communication tool. This script language of screenplays

satisfies several requirements for specification evaluation (see Table

3.4).

Table 3.4 Conditions for Successful Evaluation of Specifications.

(1) The functionality represented within the Requirement Specifi¬
cations must be presented in a format which can be understood by
those people knowledgeable in the operating environment.

(2) The functionality must be represented using a format which
enables people to merge an understanding of the specifications with
the operating environment.

(3) The functionality must be presented in a way that inidividual
patterns of activity as well as overall processes can be evaluated.

(4) Individuals must be able to use their unique areas of expertise
and scrutinize those sections of the functionality which directly
concern their responsibilities.

(5) Persons evaluating specifications must have time, opportunity,
motivation and concern to be careful, thoughtful and thorough.
in their work.

61

Using a script format satisfies all of these conditions. People

understand information when it is presented within a familiar

metaphor. Test plans are scripts set within the organization's actual

environment. Using the actual environment as the presentation

metaphor, people can use their expertise and understanding of the

environment when they evaluate the proposed system.

3.6.2.3 "Moving Pictures" Increase Understanding

Reviewing the overall tests presents a "moving picture" for

evaluation. To trace an her/his particular responsibility, the

individual is able to follow the activities of a single "character"

within the script, to assess whether the activities associated with

that individual are valid, and as useful and easy as they might be.

The familiar setting of these "moving pictures," and the simple

language used to describe actions increase understanding—particularly

important when users and developers speak different languages or are of

different cultures.

3.6.2.4 Early Test Plan Scenarios Increase Personal Responsibility

Those people who scrutinize the test plans are the same people who

will run the tests after the programs have been developed, and who will

eventually operate the system itself. By collaborating during this

planning stage, people are able to contribute to the design of their

future work, to improve the present plans by suggesting changes which

will increase the system's usefulness (see Figure 3.11).

62

When people have to personally sign-off portions of a test plan,

they become accountable, they assume personal responsibility. People

who will run the tests and will operate the system must sign test plans

indicating that if the system, when developed, acts according to these

test plans, they will be able to successfully test the system and to

productively operate the system.

3.6.2.5 Stricter Control of Functionality

Early test plan scenarios, developed to evaluate functionality and

structure, provide stricter controls of functionality during program

development. The what of a system should not be defined by the

technological how. The how may influence the what by limiting or

expanding the functional and operational possibilities, but should

not, in seclusion or by default, determine the what of a system which

has the potential to change the nature of the organization itself.

3.6.2.6 Controlling the Change Process

Early test plan scenarios are dynamic. If technical requirements

must change the nature of the system, the test plans must be modified

to reflect that change. A critical constraint of the change process is

that each modification to the test plan must be clearly identified,

reviewed and accepted by sponsors, users and developers who initially

accepted the test plan (see Figure 3.12). Early test plan scenarios

support changes, but force control onto the change process.

63

I I ! ! !
I A. PLAN -> B.PRODUCE ->C. MAINTAIN
I_I !_! !_

II II |
It II I I |

A.1 IDENTIFY -> A.2 DEFINE -> A.3 STRUCTURED -> A.4 TEST —> B
OBJECTIVES ! ! FUNCTIONALITY! I DESIGN j | SCENARIOS I

• • i i

: Test Plan : i PRODUCE !
Scenarios...: !

/\
• • • •

1 \/ 1 1 1
1 Operationalize all | I Users, Sponsors 1
1 parts of system's | | and Developers 1
1 functionality as | I formally sign-off 1
1 it will work in the| 1 test plan scenarios 1
1 actual conditions I 1 which become devel- 1
1
1

of organization. |
1

I opment agreement.
1

1
i 1

1 A.4.1 ACTIVATE I
i
1 A.4.5 APPROVE EARLY

l
1

1 FUNCTIONALITY I 1 TEST PLAN SCENARIOS 1
1 1 1 /\ 1

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

\/ 1 1 1 1
Develop Early Test 1 | Team walk-through 1 1 Brainstorm. Uncover
Plan Scenarios. 1 | of test scenarios & 1 1 problems, blunders,
Divide test into 1 | Individual review 1 1 errors. What can go
sequences with 1 | Are all activities 1 1 wrong? What could
increasing 1 | useful, possible 1 1 improve system,make
complexity. Use 1 | and measurable? 1 1 it simpler, more
script format. 1 1 1 1 flexible, more

1 1 1 1 useful?
A.4.2 DEVELOP EARLY1 1 A.4.3. TEST AND 1 1 A.4.4 IMPROVE EARLY
TEST PLAN SCENARIOS:::> EVALUATE SCENARIOS::::) TEST PLAN SCENARIOS
_I I_I I_

A.4 EARLY TEST PLAN SCENARIOS HELP IMPROVE SYSTEMS BEFORE CODING

Figure 3.11 Early Test Plan Scenarios Help Improve Systems Before
Coding A.4.

64

I A. PLAN —> B.PRODUCE —)C. MAINTAIN !

!A.1 IDENTIFY —> A.2 DEFINE —-> A.3 STRUCTURED —> A.4 TEST PLAN I
1 OBJECTIVES I ! FUNCTIONALITY! ! DESIGN 1 { SCENARIOS {

A.2.1 ! IA.4.2 I IA.4.3 ! IA.4.4 ! IA.4.5
ACTIVATE — > DEVELOP ->TEST — >IMPROVE ->APPROVE

FUNCTIONAL I !TEST PLANS! !TEST PLANS ! 1 TEST PLANS! }TEST PLANS
:: /\

D.I.4. Early Test
Plan Scenarios

..../\.

\/ 1 i I
Define sequential | | Develop test |
segments for test. | | sections to stress |
Divide test into | | system's capacity |
acts for each cycle| | to survive high |
and any other I | volumes&exceptional|
critical situations! | conditions. I

1 1 A.4.2.5 DEVELOP 1
A.4.2.1 DEFINE 1 1 STRESS TESTS FOR 1
TEST SEGMENTS. ! 1 SYSTEM 1

1 1 CAPACITY. /\ 1

I \/ I
| Assign all parts of|
| Functionality to |
I one or more segment|
| Include what should|
i labeling technique. I
| and what should not|
| occur. I
I I
I A.4.2.2 ASSIGN I
I FUNCTIONALITY TO ::
1 TEST SECTIONS. 1

I Assign data values I
| that represent I
| range & variety I
| expected in actual |
j operations. I
| Calculate all data |
I values system will |
| later calculate I
I A.4.2.3. ASSIGN I
:> DATA AND ::
1 CALCULATE CHANGES I

I Complete detailed
I scenarios of all
| test functionality.
| Who does what to
| whom, where, when,
| for how long. Link
| acts to functions
| with labelis.
I A.4.2.4 PRODUCE
:> DETAILED TEST
I PLAN SCENARIOS.

A.4.2 DEVELOP EARLY TEST PLAN SCENARIOS

Figure 3.12 Develop Early Test Plan Scenarios A.4.2.

65

3.6.2.7 Early Test Plan Scenarios Guide Coding

Many of the programmers who code a system do not participate in

setting system objectives, the functional analysis or the system

design. These programmers must rely on their personal interpretation

of functional and design documents. It is the programmer who

determines when she/he needs assistance in interpreting a condition.

Test scenarios offer additional, explicit guidelines which reduce

programmer misinterpretation of system requirements.

3.6.2.8 Early Test Plan Scenarios Become Acceptance Agreements

The early development of test plans establishes quantitative and

explicit measurement criteria to evaluate the successful completion of

the system's development. As seen above, these tests help guide the

coding process to support the functional and design decisions.

Early test plan scenarios effectively guide coding because they are

acceptance agreements—the formal acceptance tests of the entire

development. Early test plan scenarios are used by programmers to

interpret specifications because the quality of their work will be

directly measured by how well their programs satisfy these tests.

3.6.3 Attributes of Early Test Plan Scenarios

The early test plan scenario's view incorporates operational

considerations such as time, location, choice, variation, volume and

exceptional conditions, into the system plans (see Table 3.5).

66

Table 3.5 Attributes of Test Plan Scenarios.

Temporal
Sequence
Time
Timing

Spatial_ Environmental Volume
Location Exceptions Size
Physical motion Power Failures Number
Change in loca- Delays Frequency
tion of parts.

Choice_
Flexibility
Errors
Changes

3.6.3.1 Early Test Plan Scenarios Based in Activity Cycles

The bases of early test plan scenarios are cycles of activities.

Before developing test plans, the critical cycles within an operating

environment must be identified. An initial plan is designed to test the

activity which occurs during the shortest cycle. This test is expanded

to incorporate all other relevant cycles (see Figure 3.13).

Cycles of a Manufacturing Corporation

1. Fiscal year
2. Calendar months

3. Work weeks
4. Shifts

5. Half-shift
6. Hours

Figure 3.13 Sequential Cycles of a Manufacturing Corporation.

3.6.3.2 Importance of Timeliness

Early test plan scenarios incorporate an operational environment's

measure of timeliness importance. In an environment where the system

has real-time functionality, the timeliness of the system's response is

67

crucial. One hour of the test must duplicate the variety, volume,

sequence and time requirements of interactive activities which will

occur in a single, operational hour. If the environment's activity is

structured into hours and shifts, the test may represent the activities

of each hour in a single shift, the start-up and ending activities of a

day, a week, a month and a year.

In a real-time environment, the system activity must successfully

be started and completed, adhering to a particular sequence, within

time boundaries of minutes and often seconds. In a batch mode

environment, time boundaries may be extended to units of days, weeks,

and sometimes months. Sequences of activities within batch modes

remain critical—the system cannot print payroll checks until the hours

worked have been entered into the system.

The test plan includes additional functional complexity in each

iteration of a temporal cycle. The successful completion of one

segment is assumed to occur prior to the start of all subsequent

cycles. During the initial review of the tests, people track the

system's operation and evaluate the organizational impact of these

operations. When these test plans are used later in the development,

they will include tools which permit the simulation of the successful

accomplishment of prior steps.

3.6.3.3 Normal and Exceptional Conditions Tested

Depending upon the organization's operations, tests are developed

to test the system's capacity to handle required volumes, to recover

68

from external problems such as power loss, to adjust to changes in

requirements, and to handle problems such as system crashes.

Operational test plan scenarios are designed to exercise the

system's capacity to operate under normal environmental conditions.

The tests are also designed to submit the system to abnormal, disrup¬

tive conditions. The inclusion of potential disruptions becomes a

guide for the subsequent system development and for establishing system

acceptance criteria. A system should be able to accomodate some, but

not all, potential disasters. If power fails, the system may need to

be able to switch into a manual mode.

3.6.3.4 Early Test Plan Scenarios Reduce Impact of Disagreements

The potential for major disagreements and conflicts between

developers, users and sponsors is reduced when the system's expected

response to problem situations is agreed upon prior to, and included

within, the final system production contract.

3.6.3.5 Users Identify Unanticipated Problems

People who understand the operating environment contribute to the

brain-storming required to identify potential exceptional conditions.

There are often situations, beyond expected mistakes or fluctuations,

which occur in an environment which outsiders do not anticipate. In a

manufacturing system, there may be highly volatile material which

cannot be placed onto a conveyor. A shipment of parts from a vendor

69

may be labeled as containing fifty pieces per box, but when opened,

after the box has entered the system, may have only forty pieces in

each box.

If the unusual situation is commonplace (for example the wrong

number of parts in a vendor's box), then the organization will have to

address the problem prior to implementing the system. If the system

recovery for this condition is slow in the proposed system, the

development team will have to decide on alternate recovery schemes.

The alternative might be to redesign the system to more quickly

accommodate problems. Additional functionality, which may slow down

the overall processing time, may be needed.

3.6.3.6 Early Test Plan Scenarios Linked to Functionality and Design

Early test plan scenarios are linked to the functional analysis

documents through the rigorous inclusion of the same linkage labeling

techniques which matched the system structural documents with the

functional analysis documents. Each scenarios is also directly linked

to the corresponding design component.

In an era of automated tools, this linkage can be simple to

maintain. This linkage strengthens the traceability of system concepts-

-and the discipline of the development environment.

3.6.4 Testing the Usefulness of System Functionality and Design

Early test plan scenarios test a system's functionality and design

during the most efficient phase—before coding. Blunders are not

70

perpetuated and concretized in code. Mistakes and errors are corrected

before they disrupt the development process and the system itself.

Early Test Plan Scenarios activate the system's functionality with

the organization's people, machines and other systems. The developers

of the test plan construct detailed scenarios of the system's actions

and interactions with people, machines and systems as they occur in the

organization's operational environment. During the Acceptance Test

process, when tests are exercising the actual programs, reviewers ask

how well the system's programs satisfy the test expectations.

During this earlier phase, of requirement specification testing,

the reviewers’ focus is essentially different. Reviewers focus on the

useability of the functionality described by the test plans. Do the

scenarios correctly fit the nature of the operational environment and

satisfy the objectives of the organization?

Will a system which is able to satisfactorily pass all of the

conditions expressed in this test, "work"? Will such a system improve

and not harm the current organizational activities? Will the system be

useful? Will the system be useable? Will the system be used?

Specifications are challenged, and evaluated to ensure their adequacy

for meeting the needs of the organization itself.

3.6.5 Developing Early Test Plan Scenarios

Early test plan scenarios are developed in the same, structured

manner that the system's objectives, functionality and structure were

developed. The components of the test plan are exactly linked to

71

components of the prior planning documents. The front-end approach of

planning, doing, evaluating, improving and approving is repeated during

the development of early test plan scenarios.

Each of the following subsection titles will include the label

associated with the task. The full diagram of this phase was

previously described in Figure 3.12.

3.6.5.1 Define Test Sequential Segments A.4.2.1

The first step in writing early test plan scenarios is to define

test wequential segments (or ’’acts") which match cycles within the

operating environment. Segments represent cycles that characterize the

operational environment. Additional segments are defined to represent

significant events such as the end of the fiscal and/or calendar year,

weekly start-up or shut-down and truncated weeks (see Figure 3.14).

SEGMENTS: Hours of Half-shifts.

PURPOSE: The normal cycle for material storage, ordering and
delivery are defined by hours. All orders must be
closed within the 4 hour half-shift.

SECTIONS: Hour 1..System Start-up; Initial load of material.

Hour 2..Complete ordering cycle.

Hour 3..Complete ordering cycle.

Hour 4..Complete ordering cycle; Close out all orders;
System shutdown.

Hour 5..Change storage location algorithm; Change
delivery algorithm; End of year processing.

Figure 3.14 Sample of Test Segments for a Manufacturing System.

72

3.6.5.2 Assign Specific Functionality to Test Sections A.4.2.2

Assign each functional requirement (represented in the Functional

Analysis Documents) to one or more segments. Include conditions for

what should and should not occur. Begin simply, with single, normal

functions. As the test progresses, overlap functions and introduce

changes, error conditions and exceptions which represent expected

situations within the actual operating environment.

3.6.5.2.1 Initial Outline of Functionality

Create an initial test outline which organizes functionality within

the cycles of the test (see Figure 3.15). The first segment includes

the basic, initial input into the system. Subsequent segments increase

the number, combinations and complexity of activities occurring during

a cycle. A final segment closes all activities. Other segments are

developed to exercise occasional events such as fiscal year close¬

outs. Exceptional conditions are interspersed throughout the test. The

first hour/segment is reserved for normal, unexceptional conditions.

Error and problem conditions are incorporated into subsequent segments.

Initial
Hour Repeat
1 Initial

Initial
Initial
Initial
Initial

Occasional
Regular

Exception
Problem Functional Activity __
Occasional Start-up System
Regular Receive valid Tote Announcement Message
Regular Receive valid Totes
Regular Putaway totes into automated storage
Regular Send Material Receipt Acknowledgement Message

Figure 3.15 Manufacturing System's Initial Functional Outline.

73

3.6.5.2.2 Develop a Detailed Outline of Each Hour's Functional Activity

Using the initial functional outline as a guide, expand the

original outline with more details on each functional requirement.

Labels used to identify requirements in the functional analysis are

included in this detailed outline (see Figure 3.16).

Matching- Test Segment to Functional Label and Functional Description

Test Function
Segment Label Functional Description

Hour 1

H.1.0 1.1.0 Send System Available Message.

H.1.1.1 1.1.1 Receive valid Advanced Notification of Receipt
(ANR) messages.

H.l.1.2 1.2.1 Receive valid totes which were announced.

H. 1.2.1 1.3.1 Find storage location for received totes.

H.l.2.2 1.4.1 Order totes putaway into storage location.

H.l. 2.3 1.5.1 Acknowledge putaway completion.

H.l.2.4 1.6.1 Send Material Receipt Acknowledgement (MRA) messages

Hour 2

H.2.1.1 1.1.1 Receive valid and invalid ANR messages.

H.2.1.2 1.1.2 Reject ANRs with tote It's outside of valid range.

H.2.1.2.1 1.2.1 Reject invalid 5" tote numbers.

H.2.1.2.2 1.2.2 Reject invalid 9" tote numbers.

H.2.1.2.3 1.2.3 Reject invalid 12" tote numbers

H.2.1.3.1 1.1.1 Receive valid totes which were announced.

H.2.1.3.2 1.2.2 Reject totes which were not announced by messages.

H.2.2.1 1.3.1 Find storage location for received totes.

H.2.2.2 1.4.1 Order putaway of received totes into storage location

H. 2.2.3.1 1.5.1 Acknowledge putaway completion.

H. 2.2.3.2 1.3.1 Locate new putaway location if first location

is inaccessible.

H. 2.2.4.1 1.6.1 Send MRA messages.

H.2.2.4.2 1.6.2 Send MRA for delayed location completions.

(Note: There are three additional hours of detailed outline in the
actual test).

Figure 3.16 Detailed Outline of Functional Activity.

74

3.6.5.2.3 Match Requirements, Structure and Test Plans

The purpose of early test plan scenarios is to improve a system's

plans. It is critical that all of the functionality represented in the

Functional Analysis Documents is directly represented in the test

plans. After the detailed outline of the test plan is completed, a

table is constructed which lists all sections of the Functional

Analysis Documents and identifies the section(s) of the test plan where

that functionality is specifically tested (see Figure 3.17).

Functional
Description

Receive valid ANR (Advanced
Notification of Receipt) messages

Reject ANRs with tote it's outside
of valid range:

5" totes: 5000 - 8999
9" totes: 9000 - 11999

12" totes: 12000 - 12999

Functional
Analysis

Structured Operational
Analysis Test Plans

1.1.1 A.1.1.1 H.2.1.1.

1.1.2 A.1.2 H.2.1.2.
1.1.2.1 A.1.2.1. H.2.1.2.1.
1.1.2.2 A.1.2.2. H.2.1.2.2.
1.1.2.3 A.1.2.3. H.2.1.2.3.

Figure 3.17 Matching Functionality, Structure and Test Plans.

3.6.5.3 Assign Data for Testing and Calculate Values A.4.2.3

Assign specific data values which represent the range and variety

of values expected during operating conditions. All values that the

system is expected to generate, are calculated by the test designers.

The definition of these input materials should involve those users,

75

sponsors and producers who know the possibilities, within the operating

environment, for the normal range of values and for erroneous,

redundant and exception data.

When constructing a table of input materials, include material

which is characteristic of normal input into the system as well as

material which exhibits all characteristics of exception input which

should be considered (see Figure 3.18). Exception input includes data

and material which the system should reject as well as that unusual

input which it must accept. Test material is explicitly described.

Because the test will be used to evaluate the system, all test material

must be acquired and reserved for the acceptance test process.

ANRs (Advanced Notification of Receipt Messages) for Test Hour 1:

ANR# TOTE# INVENTORY# QUANTITY PALLET#
401 5401 AB-12345 50 400
402 5402 AB-12345 50 400
403 8403 AB-12345 50 400
404 5404 50 400
405 5406 XY-23456 50 400
406 5435 AB-99999 50 400
407 5800 AB-12345 50 405
408
409

9001
12001

DD-11111 5 1405

Totes for Test Hour 2:

ToteSize Tote# Contents Pallet# Commen ts/Condi tion Accept?

5" 5001 60 - part AVC 100 Yes

5" 5002 59 - part AVC 100 1/2 label ripped off Yes

5" 5002 60 - part AVC 100 Duplicate label No

9" 5800 60 - part AXZ 100 Invalid tote# for 9" No

9" 9001 25 - part X231 100 Yes

12" 12001 100- part S99 100 Yes

12" 12099 100- part RRE — No pallet No

Figure 3.18 Data for Material Handling Test Plan.

76

3.6.6 Produce Explicit, Detailed Test Plan Screnarios A.4.2.4

Test plan scenarios describe who/what does what to whom/what, when,

where, how, why, when, and for how long. All test plan activity is

linked to functional requirements and structured analysis via labels

and functionality cross-tables. The test plan includes the explicit

ranges of acceptable values and boundaries for all scenarios.

The process of developing test scenarios activates the system's

requirements and structure. It forces the developers to rigorously

describe the step-by-step operationalization of each specification.

Each segment of the test plan begins with an overview of function¬

ality in the segment (see Figure 3.19). By focusing attention on the

new functionality, new elements are highlighted while repeat require¬

ments are retested in more complex ways.

Test procedures associated with each section of the test segment

describe prerequisites (see Figure 3.20), summaries of functionality

(see Figure 3.21.), outline of functionality (see Figure 3.22),

procedures (see Figure 3.23) and status of all relevant files after the

completion of the test segment (see Figure 3.24).

The test plan author writes a scenario. The scenario must be clear

enough for people to understand, and detailed enough to define exactly

what actions should occur. The test plans for complex systems will be

extensive. The initial early test plan scenarios required six months

of preparation. Automated test plan generators and re-cycled scenarios

can reduce this time by eighty percent. The six volumes of tests

represented six hours of system operations. These tests became the

final acceptance test for the entire development [Eastman, 1986].

77

HOUR 2 OF SYSTEM A'S PROCESSING

Hour 2 is divided into three sections to process the receipt of
messages announcing material and orders, to pick the material and to
receive the material.

The functionality introduced in Hour 2 is the receipt of messages
requesting order deliveries, and system generated requests to pick
the ordered material from storage.

2.1. - Process ANRs & MDRs

In section 2.1, ANR (Advanced Notification of Receipt) and MDR
(Material Delivery Request) messages are received from System B and
processed. Processing an MDR includes allocating material to the MDR
and assigning the material to a Pseudo Pallet which will trigger the
inclusion of the material in the pick process.

Some of the MDRs in Section 2.1 require material which will be stored
in section 2.3. These will be delayed until the third test hour.

2.2. - Picking Material

In section 2.2, material is picked from System A storage in pseudo
pallet sequence. The picked material is then palletized, acute
picked or cycle counted. After picking, material destined for
delivery outside of System A is palletized and delivered to its
assigned Pick-up and Delivery Destination.

2.3. Receive Material into System A

In section 2.3, additional material is received into System A's
storage from System B. Tests 2.1 and 2.3 occur simultaneously.
System A's functionality requires the postponement of allocation as
long as possible, yet still meet the two hour delivery requirement.
Therefore, some of the material received during test 2.3 should be
stored early enough for allocation during this hour.

Figure 3.19 Overview of Functionality in Test Plan Segment.

78

PREREQUISITES TO 2.2.1. - ACTIVATE PICKING PHASE

1. Operators are at palletizing stations ready to begin palletizing
totes as they arrive on conveyors.

2. Operators are at the flow rack palletizing stations ready to begin
palletizing boxes as they arrive on the flow rack conveyors.

3. Operators are at the flow rack acute pick stations ready to begin
processing acute pick and cycle count orders.

4. Operator is at the tote acute pick station ready to begin
processing tote acute pick orders.

5. Operator is at the tote cycle count station ready to begin
processing tote cycle count orders.

6. Two 5" totes, i13904 and i13905 are at the tote acute pick area.

7. Two containers, i 108536 and 108537 are taken to the flow rack
acute pick area.

8. Status of Container File prior to test 2.2.2:

Palleti Totei HT-VD-LN Parti Loti Qty Status
PP-502 11698 05-12-17 M892600 1101 10 ALLOC
PP-502 11701 05-12-17 M892600 1101 10 ALLOC

PP-502 11702 05-12-17 M892600 1101 10 ALLOC
PP-502 11877 05-12-17 M892600 1101 10 ALLOC

13904 05-12-17 — 0 Empty

13905 05-12-17 — 0 Empty

(Note: Actual test contains several hundred entries in this file and
several other files to explicitly describe all data in all files
before the test begins).

Figure 3.20 Prerequisites for One Segment of Test Plan.

78

PREREQUISITES TO 2.2.1. - ACTIVATE PICKING PHASE

1. Operators are at palletizing stations ready to begin palletizing
totes as they arrive on conveyors.

2. Operators are at the flow rack palletizing stations ready to begin
palletizing boxes as they arrive on the flow rack conveyors.

3. Operators are at the flow rack acute pick stations ready to begin
processing acute pick and cycle count orders.

4. Operator is at the tote acute pick station ready to begin
processing tote acute pick orders.

5. Operator is at the tote cycle count station ready to begin
processing tote cycle count orders.

6. Two 5" totes, #13904 and #13905 are at the tote acute pick area.

7. Two containers, # 108536 and 108537 are taken to the flow rack
acute pick area.

8. Status of Container File prior to test 2.2.2:

Pallet# Tote# HT-VD-LN Part# Lot# Qty Status
PP-502 11698 05-12-17 M892600 1101 10 ALLOC
PP-502 11701 05-12-17 M892600 1101 10 ALLOC

PP-502 11702 05-12-17 M892600 1101 10 ALLOC

PP-502 11877 05-12-17 M892600 1101 10 ALLOC
13904 05-12-17 — 0 Empty
13905 05-12-17 — 0 Empty

(Note: Actual test contains several hundred entries in this file and
several other files to explicitly describe all data in all files
before the test begins).

Figure 3.20 Prerequisites for One Segment of Test Plans.

79

SUMMARY OUTLINE OF HOUR 2, SEGMENT 2 OF TEST PLAN - PICKING MATERIAL

Step 2.2.1 Activate Picking Phase

Material will be picked in pseudo pallet sequence. During the Site
Acceptance Test, the picks for the rotary racks and the flow racks
will be tested simultaneously.

Step 2.2.2 Acute Picks

A "Source" tote is the tote from which the material is picked during
the acute pick process. The source totes for the acute picks should
be the first totes picked from the rotary rack during a pick cycle.

Step 2.2.3.1 Picking of material from the rotary rack

No operator intervention is required during routine picking of
material from the rotary rack. Operators must handle all totes which
are sent to the rotary rack jackpot because of faulty processing.

Step 2.2.3.2 Picking of material from the flow rack

Pick lists will be printed to direct the manual picking of material
from the flow rack.

Step 2.2.4.1 Manual palletization in the robotic palletizer area

At start up, there will not be robotic palletizers in use. However,
the manual palletization process, which will be tested in the site
acceptance tests, will duplicate the sequence and directions for the
robopal. The system will control the exact sequence in which the
totes are fed to the robotic palletization station.

Step 2.2.4.2 Manual palletization in the flow rack area

The palletization process in the flow rack area differs from the tote
palletization. The system does not control the sequence of material
to a palletization station.

Figure 3.21 Summary of Functionality in Test Plan.

80

OUTLINE OF FUNCTIONALITY OF 2.2.2 — ACUTE PICK PROCESS PART 1/2

Acute Pick Process

1. Allocation process has selected a source tote/container.
1. Source tote/container has been inserted into a pseudo

pallet record (record which contains pallet plan).
2. Pseudo pallet record for source tote/container is the first

pseudo pallet to be processed.

2. Source container is picked from rotary rack.
1. Source tote delivered to rotary rack acute pick station.
2. Source tote arrives prior to start of test.

3. Source container is picked from flow rack.
1. Operator requests pick ticket.
2. Pick ticket is printed which gives location of the source

container in the flow rack.
3. Operator removes source container from flow rack.

1. Operator places source container on flow rack conveyor.
2. Conveyor delivers source container to flow rack acute

pick station.

4. Operator wands license number (bar code) of source tote/container
(with optical scanner).
1. System tells operator that the tote/container is for an

acute pick.
2. System asks operator to wand empty tote/container.
3. Operator wands empty tote/container.

5. System tells operator how much to put into empty tote/container.
1. Operator confirms actual quantity picked.
2. Operator can adjust acute pick count.
3. The empty tote/container which received material from the

source tote/container becomes the acute pick tote/container.

6. System directs putaway of acute pick tote.
1. System locates new rack location for acute pick tote.
2. System tells operator to put acute pick tote on conveyor.
3. System stores tote.

7. Acute pick container remains in flow rack area.

Figure 3.22 Outline of Functionality in Test Plan.

81

PROCEDURE FOR 2.2.2 — ACUTE PICK PROCESS PART 1/3

Action Expected Response_ Actual Response

1. Operator awaits source
tote in rotary rack
acute pick area.

System delivers tote# 1.
11877 to acute pick
area.

1.

2. Operator wands source
tote# 11877.

2. System indicates acute 2.
pick and tells operator
to wand empty tote.

3. Operator wands empty
tote# 13904.

3. System tells operator 3.
to place 3 pieces into
tote# 13904.

4. Operator confirms the
placement of 3 pieces
in tote# 13904.

5. Operator re-wands
source tote license.

6. Operator wands
tote# 13905.

7. Operator confirms
the placement of 5
pieces into tote#
13905.

4. System locates rotary 4.
rack storage for
tote# 13904 and tells
the operator to place
tote# 13904 on rack's
con veyor.

5. System indicates that 5.
another pick remains
and tells operator to
wand another tote.

6. System tells operator 6.
to put 5 pieces into
tote# 13905.

7. System locates rack 7.
storage for 13905 and
tells operator to place
tote# 13905 onto rack's
conveyor.

Figure 3.23 Procedure Page in Test Plans.

82

RESPONSE 2.2.2 AFTER HOUR 2 OF ACUTE PICK PROCESS PART 1/8

Status of Container File after test 2.2.2:

Pallet# Tote# HT-WD-LN
PP-502 11698 05-12-17
PP-502 11701 05-12-17
PP-502 11702 05-12-17
PP-502 11877 05-12-17

Part# Lot# Qty Status
M892600 1101 10 ALLOC
M892600 1101 10 ALLOC
M892600 1101 10 ALLOC
M892600 1101 2 Avail

13904 05-12-17
13905 05-12-17

3 Alloc
5 Alloc

(Note, there are hundreds of entries in this file, in actual test).

Figure 3.24 File Description After Completion of Test.

3.6.7 Develop Stress Test for Operational Capacities A.4.2.5

Each system is vulnerable to certain types of stress. Material

handling systems are vulnerable to large volumes of material which need

to be processed within a short period of time. Systems which interface

with other systems are vulnerable to breakdowns of the other systems.

Systems which interact with machinery are dependent upon the machinery

acting within certain boundaries. An accounting system may be

particularly vulnerable to process interruption such as power cut-off

during a general ledger update. Brainstorming develops "worst-case"

scenarios for the proposed system.

Special tests may need to be constructed to test conditions which

are expected to stress the system. These tests are run after the basic

functionality has been proved. For example, a time-volume test for a

material handling system will test the ability of the system to process

high volumes of material within specified time boundaries.

83

The design of the time-volume tests follows the same format as the

basic functionality tests, often using the same data and material. The

difference between the two versions is that the basic functionality

test has limited input in order to scrutinize specific parts of

functionality while the stress test is scrutinizing the ability of the

system to maintain functional viability while being stressed with high

volumes or extreme time pressures.

3.6.8 Troubleshoot Activation of Functionality

During the development of early test plans scenarios, the

functionality is scrutinized by the test plan designers. They

"activate" each requirement, describing each functional element in

terms of its operations.

The crucial stage of front-end planning occurs once the early test

plan scenarios are written. Representatives of all groups who will be

affected by the system troubleshoot the system's functionality, as it

is activated by the scenarios.

The composition of the brainstorming team is critical. All people

who have contributed to earlier viewpoints on system requirements are

needed to ensure that the system supports all objectives, functional

needs and structured analyses. This team includes representatives from

each job function which will be needed to operate the actual system.

Representatives must be knowledgeable about the operations. They

should be the same people who will perform the acceptance tests after

the system has been developed. Representatives should be the same

people who will operate the system.

84

Each member of the troubleshooting team asks questions, trying to

find problems with the described functionality (see Table 3.6). As

each member of the team evaluates the overall acceptability of the

proposed system, members are also assigned specific sections to examine

extremely carefully.

Table 3.6 Evaluating Early Test Plan Scenarios.

(1) Do the test scenarios satisfy prior specification documents?

(2) Are all activities in the test plan scenarios possible?

(3) Are all activities in the test plan scenarios useful?

(4) Are all activities in the test plan scenarios measureable?

(5) What can go wrong?

(6) What problems will occur when people use the system?

(7) What risks will increase with this system?

(8) How is the system vulnerable?

(9) Would this system be used?

Those people who will (eventually) run the acceptance tests and

operate the activated system are responsible for the useability of all

sections of the test which will affect their work. Each individual

team member signs off one or more segments of the test plan. Signing

off confirms agreement with the operationalization of the future

system, as it is represented in the accepted version of the test plan.

85

3.6.9 Improve Early Test Plan Scenarios

Troubleshooting early test plan scenarios rigorously exercise the

simulated system operations to uncover problems, flaws and weaknesses.

The next step addresses problems identified during the troubleshooting,

and improves functionality and design.

The management of this stage requires the careful nuturing of an

atmosphere of diligent team search for improvements. Individuals will

disagree about potential improvements. An improvement according to one

viewpoint will create new problems for another viewpoint. Individuals

who designed parts of the specifications may not want to have their

creations changed or eliminated.

The task of improving requirement specifications may be the most

difficult aspect of system development. People evaluate specifications

as they are represented, not as they are be personally envisioned.

People have to challenge concepts, challenge scenarios. The concept

of "fourth dimensional thinking" applies. Reviewers envision the

system, as described in the early test plan scenarios, in the future

environment of the organization. This vision merges the formally

written scenarios with all of the information an individual has

accumulated about the operational environment.

Skepticism, creativity and innovation are needed to envision how

the system could operate more successfully than currently planned, and

to translate these improvements into reasonable modifications.

86

Earlier specifications may be modified to reflect improvements.

Extensive modifications will require substantial time. However, the

time, cost and disruption required for modification of the system's

design during this early stage will be substantially lower than if the

same problems were identified after the system became operational.

3.6.10 Formal Siqnoff of Early Test Plan Scenarios

The signoff of the operational test plan scenario documents

establishes a contract between sponsors, users and producers. The

sponsors agree that the functionality represented in the test plans

supports their organizational objectives. The users agree that the

functionality will be useable during operations.

The developers agree that they will be able to develop a system,

using the design established in the structured analysis documents, that

will satisfactorily perform all of the actions and interactions

described in the early test plans scenarios.

CHAPTER 4

FRONT-END PLANNING WITH EARLY TEST PLAN SCENARIOS

IMPROVES COMPLEX SYSTEMS DEVELOPMENT

The real nature of things, that we shall never know, never. Einstein

4.1 The Enigma of Systems Development

Systems development remains an enigma. Most systems developments

are failures—yet we still invest billions of dollars annually into

these developments. System theories are rigid structures—yet

programmers are notoriously unstructured. System researchers argue

that poor specifications cause development failures—yet most research

examines post-specification phases of coding and implementation.

Systems are created by, for and of the people—and yet most development

approaches concentrate on the technology.

4.2 The Nature of Complex Systems

The complexity of a computer system is measured in different ways.

A complex system may be a "real time" system which responds immediately

to a request from a person or other system. A complex system may be

measured by the number of lines of code of its programs - when a

program has more than a thousand lines of code, the program is

"complex". A complex system may be interacting sets of programs.

88

4.2.1 A Definition of "Complex System"

The definition of "complex system" used in this thesis is: A set of

programs, implemented on one or more computers, which affects the

interaction of people, machines and other systems in an organization,

and which is developed by one or more groups of persons who are not the

actual users of the system.

4.2.2 Complex Systems Often Disrupt Operations

The injection of complex systems often disrupts the operations of

an organization. "It is very difficult for automation to compete

against a well-managed, highly-motivated work force" [White, 1987, p.

25]. Some complex systems help organizations, others disrupt

organizations.

4.2.2.1 Invisible Impact

A complex system has an invisible impact [Moor, 1985, p. 273].

The invisibility of a system's data manipulation frees people from the

necessity of constant attentiveness to overwhelming, redundant detail.

Invisibility also leaves people vulnerable. People depend upon the

results of unseen data manipulation without knowing the exact nature of

the methods used to obtain these results, and with few tools to test

the viability of these results. In 1988, the American presidential

election was dependent upon complex vote tabulation systems which are

not available for public scrutiny. The system's logical structure, the

89

source code of all the directions for vote calculations, is owned by a

private corporation, with no current opportunity for public scrutiny.

4.2.2.2 Malleable Logic

Complex systems have malleable logic [Moor, 1985, p. 269]. Data

can be accepted and rejected, manipulated and presented in any way

which is logically correct, with logic being defined strictly by a set

of rules, devoid of meaning. A logically "correct” vote tabulation

program could add one extra vote to a candidate's total whenever the

total for the opposing candidate was evenly divisible by 63.

4.2.2.3 Hominization

A challenge facing developers is to specify systems which use the

logical power of computers to help people more fully exploit human

judgment, intuition and creativity. Hominization, (treating a machine

as if it were human), occurs when users feel a system is displaying

independent, human, or super-human, thought [Weizenbaum, 1976].

If users of complex systems do not understand the internal logic of

a system and cannot predict the actions of a system, the mechanical,

predetermined nature of computer logic seems overwhleming and appears

to indicate a profound, independent nature. If users attribute thought

to a system, the system replaces the person as the decision-maker.

This hominization of systems presents a dilemma to users. How can

the users determine when to rely on a system's output, and when to

challenge a system's omnipotence by using human judgment? The United

90

State's downing of an Iranian airline and the launching of the space

shuttle during poor weather conditions [Stapleton and Putre, 1988] are

tragic examples of the dilemma of needing to both trust and challenge

complex systems.

If we fail to put logic machines in their proper place, as aids
to human beings with expert intuition, then we shall end up
servants supplying data to our competent machines. Should
calculative rationality triumph, no one will notice that
something is missing, but now, while we still know what expert
judgment is, let us use that expert judgment to preserve it.
[Dreyfus and Dreyfus, 1986, p. 206].

4.3 The Nature of System Maintenance

A major portion of the time and cost associated with complex

systems development occurs after a system is operational. System

maintenance refers to those changes which fix or improve the useability

of software which is in operation.

Software is extremely tractable. Simple changes often have

unpredictable results which disrupt an entire system [Bryan and Siegel,

1984, p. 59]. A single, minor change may have the effect of a tiny

hole in a dike which, once opened, destroys the integrity of the dike.

4.3.1 Software Maintenance Corrects Design Blunders

Software maintenance corrects design blunders—it is different from

maintenance of most other types of products. Maintenance of non¬

software products includes replacing malfunctioning or obsolete parts.

When system software is "maintained, its structure is changed. This

91

"patch-work evolution" deteriorates the structural integrity and

quality of the software system [Grady, 1987, p. 35].

4.3.1.1 "Bugs" in Logic

Complex programs contain "bugs" or errors in the logic of program

code. Systems maintenance corrects logical errors. Logical errors

reflect technical problems which may be discovered and corrected by

skilled technicians.

While some logical errors are noticed early in a system's

operations, others may not be revealed until the system has been

running for months, or even years. A payroll system, running

successfully for years, fails when an unexpected combination of data

values occurs. Users are unable to run the payroll until the program

is "maintained."

4.3.1.2 Errors in Meaning

When developers have incorrect interpretations of users' needs,

they write programs which contain errors in meaning. "Productivity" in

a health agency's management reports may mean "Staff Hours Worked"

divided by "Staff Available Hours". The agency's director considers

"Staff Available Hours" to be FTE (Full Time Equivalency) multiplied by

the number of work days in a particular month, including the number of

leave hours taken by the staff person during the month. The programmer

92

assumes that a staff person's available hours excludes any authorized

leave time taken.

The programmer's assumption increases the productivity of every

staff person who uses authorized leave time. When errors in meaning

are discovered, the user must accept the system's meaning, or pay the

programmer to "maintain" the system.

4.3.2 Maintenance Improves Usefulness

The usefulness of a system may be improved in several ways. An

existing function may be modified to make it more useful. The director

of an agency which has several clinics may find that productivity

reports, produced separately for each clinic, are useful only if they

are consolidated. If manual consolidation is inefficient, the system

is more useful after "maintenance" provides consolidated reports.

4.3.2.1 Functionality Added

Systems may require additional functionality which was unrecognized

during the period of system specification. An organization may need to

allocate expenses to a variety of cost centers based on fluctuating

percentages. At the time of initial specification, the need for

percentages was identified, but no member of the specification team

recognized the organization's need to change these percentages. The

need to permit fluctuation became obvious once the system became

operational. Users were unable to adjust percentages. Because the

93

initial system was based on non-fluctuating percentages, expensive

modifications were required to "maintain" the system [Eastman, 1987],

4.3.2.2 Functionality Deleted

Systems may include too much functionality. Designers often

resemble Mark Twain's man with a new hammer — everything resembles a

nail which should be hit. Systems with superflous "bells and whistles"

functionality, no matter how technically intriguing and impressive,

run slower and are more cumbersome to operate than simple systems which

include only required functionality. Accounting systems which create

useless reports waste time and resources. "Maintenance" is needed to

reduce this system-imposed waste of resources.

4.3.2.3 Complexity Simplified

Communication between two systems may be too complex, requiring

more counter-checks than are necessary for system validity. Super¬

fluous error checks may force the selection of inappropriate options,

disrupting an organization's operations. "Safeguards" to protect the

system from human mistakes, may prevent people from acting responsibly

in situations which need human judgment.

4.3.2.4 Unanticipated Changes

Changes in requirements may be anticipated or unexpected. Changes

may be known but overlooked during specification. Unexpected changes

94

destroy a rigid system. The market demand for a product changes.

Technological advances make current operations obsolete. A parent

organization alters the mission of a divisional plant. Unless a

system's design is flexible enough to accommodate these changes, a

costly rebuilding or total scrapping of the system may be the only

options available.

4.3.3 Is It Maintenance or Is It Compulsion?

Some developers of complex systems believe that system start-up

begins the major phase of development. "Tweaking" (adjusting) a working

system is more exciting than the hard work of planning.

Programming offers immediate gratification. Programming can become

a compulsive activity. An intriguing addiction afflicts many of us who

become involved with computers. There are few compulsive planners, but

there are a great many compulsive programmers [Weizenbaum, 1976].

4.3.3.1 Reactive Maintenance

Traditionally, systems developers assume a reactive approach to

software maintenance, developing and using a system before attempting

to increase the useability and effectiveness of the system [Grady,

1987, p. 35]. Reactive maintenance tends to reduce the quality of the

system [Grady, 1987, p. 35]. Proactive maintenance, prior to system

coding, can improve the quality of a system by decreasing complexity

and increasing cohesiveness.

95

4.3.3.2 Perfection Unrealistic

Perfection is an unrealistic goal for developers of complex

systems. The cost of building a "perfect" systems would be prohibitive

[Bersoff, 1984, p. 79]. The goal is to build systems which are "good

enough" to use. The realistic task of systems planning is to minimize,

not eliminate, systems maintenance.

4.3.4 Reducing Future Maintenance with Test Plan Scenarios

Maintenance is the most expensive phase of systems development.

Test plan scenarios reduce three major components of the maintenance

phase by: (1) Correcting errors both in structure and in concept; (2)

Customizing the system to be useful within the operating environment of

the organization; (3) Improving the system through adding, deleting and

modifying system functionality.

4.3.4.1 Reducing Errors in System Structure and Concepts

Errors in system concepts occur when developers are unable to build

a useable system because they have an insufficient understanding of the

functionality required by users. Reducing errors in system concepts

receives little attention in systems research. Researchers appear to

assume that erroneous concepts become visible as the users and sponsors

review the developers' system descriptions. With complex systems, the

system's description can fill several volumes. Structure and flow

appear logically correct with an overwhelming amount of paths, patterns

96

and detail. It is difficult to assess the system as a whole. We cannot

evaluate the forest, only trees.

4.3.4.2 Rigor of Early Test Plan Scenarios Identifies Errors

The rigor of the test plan development and review identifies basic

errors in concept and structure. Early test plans force participants

to question the operational correctness of the system's specified

structure and design.

4.3.4.3 New Approaches Required to Reduce Errors

Most systems development theories—and the associated research—

focus on the logical correctness of the system and its development

methodology.

The integrated systems of the 1990's force the focus onto

operations. The increasing cultural diversity of the 1990's require

that system development approaches acknowledge the individuality of

participants. The overwhelming degree of system failure mandates that

we learn how to improve the interaction of people during the

development of complex systems.

4.4 Theories of Systems Development

There are many theories of system development. Formal, structured

theorists argue that the purpose of systems development research is to

discover, establish, and enforce rules and standards which could make

97

the process of systems development free of human error [Mathiassen and

Munk-Madsen, 1985]. Less traditional theorists consider systems

development a craft which requires technical expertise, creative

innovation and user-developer interaction [Macro and Buxton, 1987].

Researchers who focus on the interactive, social nature of systems

development [Scacchi, 1984] argue that it is fundamentally a political

process [Floyd, 1985] .

4.4.1 Folkwisdom of Hints not Rules

Developers during the 1970's and 1980's favor hints of folkwisdom

over rules of formal methodology. Unfortunately, these hints are too

vague to manage the complex developments of the 1990's.

4.4.1.1 Approaches that Work—Sometimes

The enigmatic nature of software development forces researchers to

acknowledge that their findings are based on their own experiences and

are only guidelines, "approaches that work, sometimes" [Daly, 1977, p.

242]. Researchers offer principles to improve systems development.

Gilb [1988] based his principles on insights he developed during a

multi-million dollar system development failure by VOLVO of Sweden.

* The invisible target principle. All critical system
attributes must be specified clearly. Invisible targets are hard
to hit (except by chance).

* The Clear-the-Fog-from-the-Target Principle. All critical
attributes can be specified in measurable, testable terms, and
the worst-acceptable level can be identified.

* The Fail-Safe Minimization Principle. If you don't know what
you're doing, don't do it on a large scale [Gilb, 1988, p. 163].

98

4.4.1.2 Avoid Choosing a Terrible Way

Others who are concerned with improving the systems development

process reject claims of "best" methods and try to help developers

"avoid choosing a terrible way" [Lampson, 1984, p. 11]. Observations

offer insights to help a developer chart his/her own course. These

"hints" form a growing body of "folk wisdom" [Lampson, 1984, p. 11].

* Too many automated systems are designed "for show not dough".

* Systems are often designed on the basis of state-of-the-art
solutions that exist currently or_in anticipation of advances
in the state of the art. They are "solution driven" systems
instead of "requirements driven" systems [White, 1987, p. 25].

4.4.2 Systems Development Life Cycle Theory

Software engineering produced the Life Cycle Theory, the first,

most widely supported, theory of systems development. The Life Cycle

theory assumes that the development of software programs can be

understood and improved by application of scientific methodology.

Software Engineering: The practical application of scientific
knowledge in the design and construction of computer programs and
the associated documentation required to develop, operate and
maintain them [Boehm, 1976, p. 1226].

Software engineering tries to develop systems which are reliable,

understandable, efficient and modifiable, using technical tools and

principles such as modularity and confirmability [Ross, Goodenough and

Irvine, 1975, p. 17]. The Life Cycle theory assumes that quality

systems are developed by completing a sequential series of tasks (see

99

Table 4.1). The economic motive for the Life Cycle process is that the

cost of software changes increases substantially as the development

progresses from plan to code to operations [Boehm, 1984a, p. 4].

Table 4.1 Phases of Life Cycle Developments.

5 Phase Plan
1) Planning
2) Specification
3) Design
4) Coding
5) Testing

[Daly, 1976, p. 237]

7 Phase Plan_
1) Feasibility
2) Plans and Requirements
3) Product Design
4) Programming
5) Integration and Test
6) Maintenance
7) Phaseout
[Boehm, 1984a, p. 4]

Most Life Cycle theories of systems development do not view change

as an integral part of systems development. Those that do acknowledge

the need for improvements, place maintenance after operationalization

(see Figure 4.1).

Design Develop-
Customer Review Program ment
Requirements Cycle Coding Baseline
1-> 2-> 3-> 3/4-
/\ /\ /\
::<::Verification&Validation ::
:: Change Requests

/\
Maintenance

4-

/\

Customer
Demonstration

/\

Testing ::
> 5-> 6

/\

Operational
Baseline

/\ ::
• • • • • • • •

Emergency ::
Patches Operational

Incidents

CTEC's Software Development and Change Control Process
[Bryan and Siegel, 1984, p. 63]

Figure 4.1 Role of Maintenance in the Life Cycle Process.

100

4.4.3 Multiview Specification Methodologies

The front-end planning approach described in this thesis suggests

that the process of developing integrated systems which merge

information processing with operations is too complex to rely on either

folkwisdom or single-approach methods. Integrated systems development

is improved with a multi-view specification process.

4.4.3.1 DSK and SEK Models

Arango and Freeman suggest two models for system specification.

The DSK, Domain-Specific Knowledge model, represents the knowledge of

those users and sponsors who understand the problem which must be

solved. The SEK, Software Engineering Knowledge model, represents the

software solutions for problems. Arango and Freeman argue that much of

the difficulty associated with building useable systems is caused by

incomplete DSK and SEK models, and the lack of integration between the

two models [Arango and Freeman, 1985, p. 63]. This thesis uses early

test plan scenarios to integrate the DSK and SEK models.

4.4.3.2 PQRST Model

Botting [1985] views software development as a multi-faceted

undertaking which substantiates the existence and importance of

different viewpoints during the systems development process. Botting

assumes that an appreciation of different perspectives strengthens the

development process by ensuring a more complete analysis, specification

101

and design of the system prior to the actual construction of the

system. Botting's eclectic approach, PQRST, requires different

specifications for Purpose, Quality, Reality (static and dynamic

factors of the environment), System (processes which will be improved

by software) and Techniques/Technology.

This thesis improves Botting's eclectic methodology by integrating

the five different specifications, verifying that they are compatible

and mutually support a system which is useable within its operational

environment.

4.4.4 Interactive Design Teams

Programmers alone should not make business decisions and users

alone are unable to transform their needs into systems. Interactive

design teams of users and programmers can be the catalyst for improving

the planning and design phases of systems development [Leventhal,

1986, p. 49]. These teams emphasize collaboration among people with

different skills, priorities and responsibilities.

A factor in systems failures, when users are isolated from the

development process, is the perception of developers and sponsors that

users are "individuals who need order and guidance in their lives and

who are motivated by financial rewards rather than opportunities for

personal growth" [Dagwell and Weber, 1983, p. 987].

Viable user participation requires users who are well-trained.

"Participation is little more than hostage-taking, if the users are not

given a training over and above the technical training traditionally

offered by software vendors" [Bjorn-Andersen, 1985, p. 845].

102

4.5 Specifications Underpin Systems Development

Specifications underpin systems development. When specifications

are incomplete, ambiguous or inaccurate, programmers build the system

according to technical priorities. Technically "sound" systems are

often unuseable [Potosnak, September 1987, p. 87].

4.5.1 Specification Blunders Are the Most Expensive Errors

Specification blunders are the most expensive errors made during

systems development. Delays in identifying and correcting these errors

substantially increase the cost of the development process. Escalated

cost results from the difficulty of: (1) Uncovering errors, (2)

Defining and analyzing problems, (3) Designing solutions which will not

disrupt the rest of the system, (4) Coding to correct the error, (5)

Adjusting the system to accommodate the modified code, (6) Testing the

changes, and (7) Documenting the corrections [Lipow, 1979].

4.5.2 Who Specifies?

Researchers rarely ask "who specifies?" Few people question how a

specification develops [Fickas and Nagarajan, 1988, p. 37]. Users are

characterized as not "knowing what they need." Sponsors prefer to let

the often highly paid developers "do the work." Sponsors may not want

employees to leave their regular work for the lengthy period of time

required for system specification [Gould and Lewis, 1985].

103

The supplier is often asked to do "free design" and quote a price
for satisfying a user's needs, without those needs being
specified quantitatively in terms of performance requirements. In
a cost competitive environment, less attention to detail results
and critical flaws creep into the design [White, 1987, p. 25].

4.5.2.1 Who Manages Specifications?

The specification process is a system which develops another

system [Hamilton and Zeldin, 1979, p. 29]. Who leads this process?

This critical question is ignored in most systems literature. Little

attention is given to the management of the process.

It remains to be seen if the various bodies who interact in a
system, those who use it, those that pay for it and those that
build, maintain and evolve it, can cooperate to ensure that the
systems have a maximum useful life span and that systems that are
created are also subsequently controlled [Yavneh, 1985, p. 137].

4.5.2.2 Developer's Traditional Responsibilities

Traditional literature assumes that the developer is responsible

for determining the user's requirements. The user is not viewed as the

decision-maker, but simply as a repository of some information which is

needed by the "real" decision-maker, the systems developer. The user

becomes an object which is being evaluated by the developer. Most

systems specification literature focuses on telling the developer "how

best to extract the necessary detail about real user requirements"

[Macro and Buxton, 1987, p. 52].

Traditionally, programmers interview users to determine their

needs, then design systems to meet these needs. Once the coding phase

of systems development begins, programmers interpret users needs,

104

decide how to prioritize users' needs and balance users' needs with

technical requirements [Leventhal, 1986, p. 49].

As the impact of systems increases, users may feel that they have

better understanding, but less control to fix problems [Bjorn-

Andersen, 1985, p. 841].

4.5.2.3 Adding User Responsibility

Socio-technical theories of systems development give the user a

more responsible role. As a participant in the process of defining

needs and evaluating how the system is meeting these requirements, the

user must understand the details of a system in order to control it.

4.5.2.3.1 Participation Not Sufficient

The practice of specification remains faulty when users and

sponsors are assigned a participatory role in the process yet remain

unable to fully contribute. Users and sponsors, overwhelmed by system

complexity, are subtly placed in a subservient role. Technical

priorities supercede the organization's needs. The expertise of users

and sponsors is ignored, when developers' expertise dominates.

Getting useful design information from prospective users is not
just a matter of asking. Many users have never considered
alternate or improved ways of performing their tasks and are
unaware of the options available for a new design. Further, in
trying to communicate, designers may unwittingly intimidate
users, and users may unfortunately become unresponsive [Gould and
Lewis, 1985, p. 303].

105

4.5.2.3.2 Understanding Needed

Until the users and sponsors understand how the system will

interact within the organization, they are not in a position to fully

contribute their knowlege and expertise.

Participation is little more than hostage-taking, if the users
are not given a training over and above the technical training
traditionally offered by systems vendors. This training is first
and foremost oriented towards appreciation and operation of the
system. More elaborate training programs are called for in order
that users may be trained to understand, evaluate and even design
systems [Bjorn-Andersen, 1985, p. 845].

4.5.3 Real People Specify

Real, individual people specify systems. Real, individual people

use systems. These people are alive, they have cultures, they have

abilities, they have priorities, they have values. Some people like

each other—others dislike each other. Some people understand each

other—other people misunderstand each other.

4.5.3.1 Most Approaches Ignore People

Most approaches to systems development ignore the real, individual

nature of each people. Traditional theories of systems development

assume that, in a well-structured development, the individuality of

participants and of their interactive relationships is irrelevant.

Even when the systems development process is based on current tools,

techniques and tasks, such as the CASE methodology (Computer Aided

Software Engineering), there is a basic assumption that the primary

task of systems development management is to force adherence to the

underlying task structure.

106

4.5.3.2 A Few Observers See Real People

A few systems observers see real people specifying systems. These

researchers question the assumption that people should and will conform

to pre-determined technological goals.

What is missing from the areas cited above (CASE tools, expert
systems)? People. Software-development productivity will not
just have a technological solution_the area of management
strategies for CASE is an important partner to the software
technology [Chikofsky and Rubenstein, 1988, p. 17].

4.5.4 Collaboration Among Individuals

Individuals who are technical experts can collaborate with

individuals who are operational experts. The integrated systems of the

1990's require this collaboration.

4.5.4.1 Supporting Operational Priorities

An expert developer's strength lies in building technically

superior systems, not in operational decisions. When developers place

technical requirements above operational needs during the design of

systems, the systems become ends in themselves. They fail because they

are not designed to "support the realization and management of the real

activities (the organizational processes)" [Essink, 1986, p. 57].

107

4.5.4.2 Recognizing Political Factors

The specification of system requirements is not simply a matter of

judiciously selecting the most logically sound ways of meeting obvious

needs. A system is the end product of political negotiations. An

important factor during the development of quality systems within

organizations is the successful fostering of productive, social

innovation between very diverse groups.

4.5.4.2.1 Systems Research Focuses on Developer's Job

The focus of nearly all systems development research is on the jobs

of system designers and programmers. The top goal of this research is

to improve the work of the systems designers and programmers.

Negotiating with users makes the life of a systems designer more

difficult. Programmers who must accommodate user priorities are

frustrated with limitations on their technological flexibilities.

4.5.4.2.2 Successful Integrated Systems Also Focus on User's Job

Successful integrated systems merge information processing with

operations. The design of these systems requires that the focus is

also on operations—the jobs of the users.

Technological systems can enrich or weaken workers' jobs [Bjorn-

Andersen, 1985]. Socio-technical theories emphasize the value of

worker-determined organizational priorities.

108

In Europe there is an emphasis on democracy in the work place.

Norway has federal laws which enforce the rights of workers for self-

determination. Workers have the right to determine the impact of

technology on their own jobs [Elden, 1986].

Some American businesses, attempting to bolster productivity and

quality, incorporate worker-involvement in decision-making. Worker

involvement becomes a critical factor within organizations who attempt

to build integrated systems to improve productivity and quality.

Change thrives where workers as well as managers are involved,
where everyone realizes why the improvement is needed,
participates in the design, understands what's required to
operate it, and feels secure that management's real intentions
are to help them help their company [Goddard, 1987, p. 67].

4.5.5 Early Test Plan Scenarios Manage Collaboration

Early test plan scenarios, developed prior to system coding, ensure

that software code meets user needs [Bryan and Siegel, 1984, p. 64] by

managing collaboration between users, sponsors and developers.

"A formal education in computer science is not an adequate - not
even an appropriate - background for those who must design and
install large-scale computer systems in business environments."
(Education - 1974) This statement was made by Mr. George Glaser,
president of the American Federation of Information Processing
Societies, Inc. [Wasley, 1975, p. 105].

4.5.5.1 Social Interaction Crucial During Systems Specification

The design of complex systems which change an organization, reflect

an organization's political order and its patterns of communication

109

[Scacchi, 1983, p. 52]. The manner in which people interact, the

complex "web of social arrangements", is a crucial element in defining

the nature of a system [Scacchi, 1983, p. 58].

4.5.5.2 Out-of-Control Interaction Disrupts

When interaction among team members is out of control, it will

disrupt a development. If team members do not have a single topic to

focus upon, different viewpoints conflict and disrupt innovative work.

Managing collaboration is difficult. If individuals are threatened by

diversity, they may reject the views of others rather than use these

different perspectives to increase the success of the entire team.

4.5.5.3 Successful Collaboration Improves

The paradox of collaboration between diverse people is that the same

differences which produce discord can stimulate innovation. For

collaboration to succeed, sponsors, users and developers need to

overcome the separation caused by the boundaries of their separate

groups, and redefine a new group, a group of collaborators, with a

boundary which encompasses members of all three groups [Smith and Berg,

1987, p. 104].

If the new group becomes viable, another situation may occur. When

the boundaries of the development team become strong, users, having

learned new skills, may lose their appreciation for the difficulties

the system presents for the novice user [Gould and Lewis, 1985, p.

303].

110

4.5.5.4 The Language of Collaboration

Collaboration among users and developers requires the use of a

language which everyone understands in the same manner. Many

researchers are trying to develop a "best" methodology for providing a

unified model of a system which team members may use to evaluate the

specifications and develop the system [Krasner, 1985, p. 22).

4.6 The Languages of Requirement Specifications

Specifications which focus on visible, external characteristics of

a system describe activities a system must perform. Formal, abstract

program specifications describe a system's internal mathematical

relationships. Specifications of user needs describe properties which

the system must exhibit.

4.6.1 Different Languages for Different Folks

Different communication formats are used for specifications.

Natural language is used to specify user needs. Technical languages

are used to specify developer's needs.

4.6.1.1 Ambiguity of Natural Language

Although user's familiarity with natural language improves the

user's understanding, natural language hides ambiguous interpretations

Ill

[Poston, 1985, p. 63]. Users, sponsors and developers incorporate

their personal viewpoints when interpreting words.

Ambiguity is insiduous when it remains hidden. When each

participant is secure in his/her own interpretation, it becomes

extremely difficult to identify the existence of ambiguity. Complex

systems development requires unambiguous, formal specifications.

4.6.1.2 Formal Languages Hide Operational Blunders

Formal languages improve ambiguity but they hide operational blunders.

Mathematical languages, notations and charts are designed to be

unambiguous. Formal specifications may "lead the specifier to raise

questions that might have remained unasked, and thus unanswered, in an

informal approach" [Meyer, 1985, p. 22].

A problem with formal languages is that abstract, logical structures

may appear so strong that reviewers assume they must support viable

systems.

Rigorous mathematical languages are used to represent numeric

programs, not to represent operational situations. There appears to be

no language system which successfully represents complex systems

[Krasner, 1985, p. 123].

4.6.2 This Thesis Suggests Using Several Languages

This thesis suggests using several languages. Different languages

are approapriate for different system specification phases.

112

Natural language is appropriate for specifying objectives. Natural

language, helped by tables and charts, is appropriate for analyzing

functionality. Formal languages are required for specifying structure

and design. The script language of scenarios is powerful when

specifying system operations.

This thesis uses detailed script to develop test plan scenarios

which uncover ambiguities (see Table 4.2). Scenarios integrate

different system views into one understandable view.

Table 4.2 Contribution of Script to Specification Languages.

Capabilities of Traditional Language Classes

Class Subject matter Language Semantic Capability
Requirements The problem,

user needs,
environmental
constraints

Natural language Expert knowledge

System
Specification

External, known
characteristics
of system

Notations from
engineering,
relational data
bases, math
models

Control state
change, multi¬
processes, data
relationships,
performance
measurements

Abstract
program
specification

An abstract
operational
description

Predicate
calculus,
recursive
functions

Input/effeet/output
of operations,
absract data types
formal proofs

[Abbot and Moorhead, 1982, p. 298]

Contribution of Script Used in Early Test Plan Scenarios
Class Subject matter Language Semantic capability

Test Plan
Scenarios

Active system,
time sequences,
simultaneous
interaction,
movement

Natural language
script, layouts
screenplays,
action, diagrams
tables, charts

Demonstrate inter¬
action of system
with people, sys¬
tems, machines of
environment

113

This scenario view lets users, sponsors and developers evaluate how

the operations supported by the design [Boehm, 1984a, p. 81]. The

concrete, simple actions used in scripts reduce the potential for

ambuiguity and misinterpretation.

4.7 Improving the System

Test plans, developed from functional analysis and system structure

documents, contribute two subtle improvements to the specification

process. First, the system is presented in an operational context

rather than a system development context. Second, users and sponsors

have a responsibility to improve, rather than simply approve, the

system specifications.

4.7.1 Transforming Operational Needs into Systems

The development process involves a series of transformations.

People translate an operational situation into needs. People then

envision solutions. These solutions are transformed into requirements,

specifications, structural designs and code. Each transformation

simultaneously changes the presentation format and the content of the

planned system. As each transformation brings the planned system

closer to the condition it will be in when it is operational, each

transformation also travels further from the original operational

environment. Users who are involved only in the final transformations

are presented with a system which often is far removed from the

original operational context [Sievert and Mizell, 1985, p. 56].

114

4.7.1.1 Developers Transform with Logic

The developers who accomplish these transformations focus on the

rational logic of computer languages. Their vision of the system,

their foundation for making decisions concerning the system, is based

on this rational logic.

As long as programmers use the current paradigm, which focuses
on code, we will never achieve the orders-of-magnitude gain in
productivity needed to end the software crisis [Sievert and
Mizell, 1985, p. 57].

4.7.1.2 Users Transform with Operations

Early test plan scenarios shift the programmers' decision base from

the rational logic of program code, to the operational functionality of

test plans. Once a system is operational, users and sponsors are able

to identify areas in which the system can be made more useable.

The development of complex systems within organizations is a

process of social innovation. Although some observers of the

development process still assume that systems development is best

performed by a few experts aided by sophisticated techniques and

computerized tools, many current researchers recognize the importance

of sponsor and user contribution during the development process.

4.7.1.3 Developers' Logic Overwhelms Users' Operations

Most development literature ignores the power exercised by

developers over users and sponsors. Whether this power is openly or

115

subtly exercised, it interferes with the full exploitation of user and

sponsor expertise during systems development. When developers

interview users, when they make hardware decisions, when they determine

software selection, they are limiting the opportunities for

contribution by users and sponsors. The exercise of power by

developers can diminish the users' contributions [Markus and Bjorn-

Andersen, 1987].

4.7.1.4 Unique Nature of Developer-User Communication

Software engineering is significantly different from other forms of

engineering because of the nature of the communication between users

and developers which is required during the development of systems

[Macro and Buxton, 1987, p. 27]. The power of developers, during

initial phases, resides in "tentative acts of influence" by which

developers control the content and format of communication between

users, sponsors and developers [Macro and Buxton, 1987, p. 27].

4.7.1.5 Controlling Transformation

Controlling the transformation of operational needs into

technological systems becomes increasingly difficult with integrated

systems. A rapidly escalating problem in the development of complex

systems is the maintenance of "intellectual control over the

development of large software systems that exist in many versions

(through time) and many configurations (concurrently)" [Shaw, 1985, p.

116

215]. Intellectual control over large systems requires the

collaboration of many people.

4.7.1.6 Managed Collaboration Controls Transformation

Collaborative innovation requires "group exploration" [LeFevre,

1987]. Individuals must be able to access information known by other

collaborators. A management structure must exist to enable

collaboration, to provide a cohesive structure for the work and to

permit evaluation of the development process. A single model must be

available to all collaborators. A control process must be established

which allows this single model to be used by all collaborators and

controls the methods by which this model is modified by the

collaborators.

The use of early test plan scenarios manages this collaboration by

providing the single, consistent model on which the collaborators can

focus their activities [Richter, 1985, p. 193].

4.7.2 Evaluating the Usefulness of a Specified System

Traditionally, developers themselves evaluate how well their

designs fulfill requirements [Potosnak, 1987, p. 91]. When developers

evalute the usefulness of a system design, there is an assumption that

the design of a system merely transforms specifications into programs

[Branstad and Powell, 1984, p. 75].

117

4.7.2.1 Developers* Freedom to Evaluate Design

Developers may insist that they have absolute freedom in design

evaluation, arguing that how a system is developed does not change what

is developed. Some argue that developers must be free from "user

interference" during the design and coding of a system.

Including design information in requirements specification is
wrong because it restricts design trade-offs. If you tell a
person what is required in a product as well as how to build it,
you have specified requirements and designed the product. Design
information is sometimes considered extra rather than wrong
information, but however it is classified, it doesn't belong with
requirements [Poston, September 1987, p. 83].

4.7.2.2 How Affects What

Particularly with integrated systems which merge information

technology and operations, how a system is designed affects what the

system does operationally. The use of early test plan scenarios gives

users and sponsors the opportunity of assessing the operational impact

of a system's design.

4.7.2.3 Collaboration Improves the How and the What

A function which is operationally simple may be technically complex

[Roman, 1985, p. 15]. When there is no user or sponsor review of func¬

tionality after it is affected by design, programmers make decisions

concerning the inclusion, modification or omission of functionality.

Programmers, not usually qualified to make business-oriented decisions,

118

use system-oriented priorities [Leventhal, 1986, p. 49]. Decisions

concerning useability are made by programmers whenever the system's

useability is not explicitly stated in operationally measureable terms

prior to systems coding.

Design development opens new possibilities for functionality. When

developers, users and sponsors review the functionality, after the

design has been established, new possibilities are available for

improving the system at the most economical stage — prior to coding.

We recommend that potential users become part of the design team
when their perspectives can have the most influence, rather than
using them post hoc as part of an "analysis team (of) end user
representatives" [Gould and Lewis, 1985, p. 302].

4.7.3 Early Test Plan Scenarios Customize Systems

Prototyping has emerged as a powerful tool in early customization

of system-operator interface characteristics. When developers and

users collaborate to develop screen displays and operational sequences,

the system's functionality is being customized to fit the unique

characteristics of the users' environment.

Early test plan scenarios continue this customization process by

providing a vehicle for user-sponsor-developer collaboration for the

entire system scenario. Collaboration on forms, screens, and

individual programs are necessary, but insufficient. User-sponsor-

developer collaboration activities for complex systems must address the

system's interaction with people, machines and other systems (see Table

4.3). Test plans help customize the system. Test plans extend user-

developer collaboration beyond forms and prototypes.

119

Table 4.3 Early Test Plan Scenarios Customize Systems.

Customization
Product_ Process - Type of Interaction Being Evaluated

Forms Customization of forms for users and sponsors.
Interaction of new system's inputs & outputs with
users.

Prototypes Customization of operator screens for users.
Interaction of new system with users.

Test Plan Customization of system for organization.
Interaction of new system with users, machines,
existing systems, temporal and spatial conditions
of operating environment.

4.7.4 Promoting System Quality

Quality standards improve requirement specifications. Although

researchers develop and promote standards to improve the systems

development process, only those methods, structures and terminologies

which are tried, found useful and adopted by developers are actually

accepted as standards [Poston, 1985, p. 64]. Some researchers claim

that the development process is so dependent upon the domain of the

development situation, that no universal standards can be developed

[Blum, 1985, p. 21].

4.7.4.1 Different Quality Criteria

Different participants in the development process may use different

criteria to measure the quality of a specification. Users may be

120

concerned about a system's responsiveness, its risks to operations,

and the flexibility they will have to modify the system. Sponsors may

be concerned about the final impact of the system, meeting schedules,

the total cost of the development, and the compatibility of the system

with other systems. Developers view quality by the feasibility of the

system, the simplicity of the system, the efficiency of the system and

the achievability of the system within hardware, time and resource

constraints [Evans and Marciniak, 1987].

4.7.4.2 Tools Improve Quality

As the cost of developments escalate, there is a proliferation of

technical tools to promote quality. These tools are attractive to

developers who want to improve their productivity and to managers who

find comfort in their apparent usefulness. Tools automate many areas

of systems development: specification, analysis, prototyping, design,

programming, testing, verification, documentation, project managment,

measurement of quality [Cavano and LaMonica, 1987, p. 30].

4.7.4.3 Statistics Improve Quality

Statistical certification of software reliability can evaluate the

cohesiveness of the software as development progresses, determining

whether changes and additions are helping or destroying the structural

soundness of a system [Mills, Dyer and Linger, 1987].

121

When statistical techniques are "tools", used to increase the

logical correctness of coding and design, they may improve the

development. When statistical techniques replace human judgment, they

prevent users and sponsors from contributing their expertise to the

development. While tools abound in the academic community, there are

still no widely accepted tools used in industry [Kishida, Teramoto,

Torii, Urano, 1987, p. 11].

4.7.4.4 Problems with Tools and Statistics

Subtle problems may exist with these tools. The creative process

is complex. We do not know whether "mundane" tasks waste time, or

whether they actually contribute to performance by forcing a deliberate

slowdown during which the developer is able to gain new insights into

the system's development.

4.7.4.4.1 Tools May Discourage Innovation

Efficient tools may discourage innovation and improvement. People

tend to accept their value without questioning their impact. When

developers have sophisticated tools, it may be harder for users and

sponsors to challenge the impact of a design.

Future environment tools will analyze data as development
progresses, providing control early on. Entire systems will be
evaluated and potential software-quality problems will be
identified as quality analyzers predict and assess a project's
cost, schedule and quality at each development stage [Cavano and
LaMonica, 1987, p. 32].

122

4.7.4.4.2 Quality May Be Assumed

The parable of the emperor's new clothes applies to development

situations. If tailors state that new clothes have quality, they

acquire "quality." When systems designers state that a system design

has quality, particularly when sophisticated tools are used to "ensure"

that quality, users and sponsors may be lulled into agreeing with the

developers and accepting the "truth" of the tools. Only one little

child trusted himself enough to remain unfazed by the words of the

tailor. The adults eagerly accepted the tailors' pronouncements.

A similar situation can occur when well-paid professionals develop

systems. Most users and sponsors accept the developers' conclusions.

The occasional doubter, the "child" who questions, may be dismissed as

being well-meaning, but ignorant [Eastman, 1986]. Only when attempts

are made to activate the system, do the sponsors and users recognize

that the system has serious faults — that the emperor is really naked.

4.7.4.5 Discipline and Front-End Planning Improves Quality

People who will build integrated systems in the 1990's will not

have the luxury of experimenting with quality. The Department of

Defense places improving the quality of systems development third in

its list of critical priorities [Norman, 1989, p. 1543].

Extensive research sponsored by the Department of defense has found

that a disciplined development environment and front-end planning are

essential for systems quality. Early test plans were used by every

123

single developer recognized by this research as having established a

record of developing quality systems [Humphrey, 1988].

4.8 Knowing When to Stop Specifying and Start Coding

A difficult problem with requirement specifications is determining

when the specifications are "good" enough to proceed to the next phase

of development. Most specification methodologies fail to explicitly

state how the quality of the specifications will be measured.

4.8.1 Defining When Specifications Are Complete

Basili's research on software development supports a development

process which begins with explicit definitions of quality and then

considers which process to use to achieve that measure of quality

[Basili, 1988b]. Quality objectives must be defined operationally

"relatively to the customer, project and organization" [Basili, 1988a,

p. 88]. System development which focuses on quality requires

additional, rigorous effort, planning and collaboration. With the cost

of maintenance, the prevalence of software failures, and the increasing

complexity of hardware and software, there may be no other choice.

4.8.2 Complete Specifications Identify Start and End Point

The specification provides both the starting and ending point for

the developer. The developer uses the specification as the basis for

developing the structure and content of the system design. During

124

development, the specification should offer guidelines to the developer

for most decisions affecting the operational characteristics of the

system. Finally, the developer validates the completed system by

comparing it with the specification of the intended behavior of the

system [DeMillo, McCracken, Martin, Passafiume, 1987, p. 3], Explicit

measureability of the useability of a system's operations should be a

fundamental part of specification "quality". Yet usually in systems

development, operational tests are written, reviewed and used only

after most, or all, of software coding is complete [DeMillo, McCracken,

Martin, Passafiume, 1987, p. 23].

4.8.3 Complete Specifications Completely Describe Operations

Early test plan scenarios support quality with explicit,

measureable demonstrations of the operational useability of the

system. The specific, measureable functionality of a system

demonstrated in test plans supplies specific system objectives to

determine when the specification is "good enough" to proceed.

When useability is not defined using quantitatively measureable

terms, "less attention to detail results and critical flaws creep into

the design" [White, 1987, p. 25]. Early test plan scenarios translates

general objectives into specific, measurable terms. Concrete,

measureable standards for useability provide the specific objectives

which improve the software development process and the final system

[Potosnak, 1988, p. 89].

125

4.8.4 Agreement that Specifications Are Complete

A primary function of managment is to ensure that decisions are

made by the right people, using the right criteria. The decision that

specifications are complete must be made by both users and developers.

The criteria must include both technical and operational factors.

4.8.4.1 Reviews to Promote Consensus

A valuable management tool to enable collaboration and promote

consensus is the formal review process. Formal reviews reduce

ambiguity and decrease misunderstandings, omissions and discrepancies

which occur during complex developments [Parnas and Weiss, 1987, p.

259]. The participation of team members is necessary to rigorously

challenge the specification. The purpose of these reviews is to

identify problems with the specifications which will decrease or

prevent the system's operational useability.

What is required is a usability test, not a selling job. People
who have developed a system think differently about its use, do
not make the same mistakes and use it differently from novices
[Gould and Lewis, 1985, p. 302].

4.8.4.2 Reviews Improved when Preparation Required

Time can be saved, and the quality of the review improved, when

individuals make written comments after their initial review of a

document, and these comments are consolidated by a person who is

126

responsible for the acquisition and categorization of these comments.

Non-controversial errors are corrected prior to the team review session

and notification is sent to all team members. During the review, team

members focus on those problem areas with controversial resolutions

[Fryer, 1985, p. 67].

Reviewing system requirements which have been influenced by the

design, prior to coding, focuses attention on particular aspects of the

functionality. Delegating responsibility for the useability of a

system reduces errors and improves development quality [Parnas and

Weiss, 1987, p. 264].

4.8.5 Improving Systems Requires Individual Responsibility

Individual responsibility, of users and developers, improves the

specification process and the final system. Early test plan scenarios

promote individual responsibility.

Test plans require individual and team scrutiny of the system's

design. Some developers who try to involve others in the requirement

specification process become frustrated by the apparent lack of concern

and commitment by users and sponsors to this process. Users and

sponsors may argue that it will be easier for them to evaluate the

system after it is "completed."

When users and sponsors do not "own" development problems, their

energy is focused on complaining about the development rather than on

solving problems. "Taking the risk to own or be responsible for the

solution to a problem is a necessary prerequisite for an environment of

effective problem solving" [Slaughter, 1980, p. 17].

127

4.9 Cost Justification of Early Test Plan Scenarios

Sponsors of projects are concerned about excessive time demands on

their employees if the employees are to participate in systems

development [Gould and Lewis, 1985, p. 304], More research is needed

to measure the cost savings which occurs with improved user

participation.

4.9.1 Cost of Poorly Defined Systems

The cost and time involved in iteration, negotiation and review of

specifications needs support from additional case study and research

work to convince sponsors of the ultimate value of such activities

[Buckley, 1984, p. 39]. There is little research about methods to

validate functional specifications [Chandrasekhara, Dasarathy and

Kishimoto, 1985, p. 71]. Much more work is needed to develop

techniques to understand, test and evaluate complex systems.

When complicated software is combined with intricate electronic
machines, elaborate communications systems and the quirks of
users, a typical computer system represents an exceedingly high
level of complexity. Such systems can fail in many different and
unexpected ways. "Simply put, modern-day, complex mechanisms do
not work properly," Morris (Robert Morris, chief scientist at the
National Security Agency) says. "We have to learn to cope with
complexity" [Peterson, 1988, p. 199].

4.9.2 Reducing Total Costs with Early Test Plan Scenarios

Total costs, over the entire life cycle of a system, are reduced

when test plan scenarios are developed before system coding. When

128

presented with a completed system, users often find that the system

does not perform as they had expected. Even when specifications are

carefully prepared, the users' interpretations of these formal

specifications are often critically different from the interpretations

of the system developers.

Getting concise requirements to design a system and a method to
document them that is understandable to both the user and develop¬
ment technicians is the difficulty [Zeimetz, 1988, p. 160].

4.9.2.1 Early Test Plan Scenarios Improve Process

The process used to create complex systems may be as error-prone as

the systems themselves [Poston, March 1988, p. 86]. Before the system

becomes operational, the primary method of uncovering its errors is

through software testing. When the process used to produce these

tests is faulty, the tests themselves can create additional problems

for the development process. When the process of creating tests has

problems, these problems are compounded in the final system. The

process of creating tests involves defining what to test, when to test

and how to test. Important questions concerning the test plan process

are: when to develop the test, who should develop the test and how to

evaluate the test plans.

If developers know how the product will be tested before coding
begins, they are likely to design out the most-probable errors
[Poston and Bruen, 1987, p. 59].

129

4.9.2.2 Early Test Plan Scenarios Effectively Allocate Costs

Early test plan scenarios effectively allocated costs by

prioritizing system functionality. A frequent error when designing

tests is to ignore critical functionality or to redundantly retest the

same functionality [Poston, March 1988, p. 86]. Early test plan

scenarios link each portion of the test to a specific section of the

functional analysis, ensuring that all sections of the functional

analysis are tested.

The process of developing functional tests can be improved by

closely matching the test environment to the user's operational

environment, having the user participate in test development, and

including expected problem situations in the tests. [Poston, March

1988, p. 86].

There is no denying that (early) user testing still has a price.
It is nowhere near as high as is commonly supposed, however, and
it is a mistake to imagine that one can save by not paying this
price. User testing will happen anyway: If it is not done in the
developer's lab, it will be done in the customer's office [Gould
and Lewis, 1985, p. 306].

Chapter 5

FRONT-END PLANNING WITH EARLY TEST PLAN SCENARIOS

IMPROVES OTHER DEVELOPMENT METHODOLOGIES

Long before the program editor is invoked, substantial time must
be invested in painstaking up-front planning. Frankly, planning
is not much fun, and without good analytical tools, developers
are easily tempted to skip on this stage or skip it entirely.
Planning certainly does not deliver the short-term feedback that
comes from stepwise development — adding code incrementally,
testing it and seeing the new code run to completion.
[Anderson, J., 1988, p. 9]

5.1 Developers Avoid Planning

Although most researchers and practitioners acknowledge that

inadequate requirement specifications are the primary cause of system

development failure, software developers tend to avoid planning. It is

"easier" for users to identify problems in operating software than to

uncover ambiguities, inaccuracies and deficiencies in abstract

functional specifications and designs [Poston, August 1988, p. 2].

Developers get paid for their work, whether it is before or after a

system becomes operational.

5.1.1 Traditional Development Methods Start At Coding

Traditional development methodologies and tools focus on the later

phases of the development process, helping with coding, program testing

and debugging [Anderson, J., 1988, p. 9]. Software development rarely

follows the basic rule of quality control—find and fix blunders early.

131

5.1.2 Early Test Plan Scenarios Ensure Quality Before Coding

The front-end planning approach presented in this thesis improves

system quality at the most effective—and least costly time—before

program coding. In particular, early test plan scenarios ensure that

all design blunders which can be identified, are identified—and

corrected—before a system is concretized in code. Early test plan

scenarios improve the specification process by making the requirements

themselves more "physical" [Poston, August, 1988, p. 2],

5.2 Comparing System Development Methodologies

This thesis argues that systems development is improved when developers

include front-end planning with early test plan scenarios in their

development methodology. Development approaches may be organized into

six different categories: (1) Systems Development Life Cycle, (2)

Traditional/Classical, (3) Structured, (4) Automated, (5) Prototyping,

(6) Information Center. Front-end planning with early test plan

scenarios can be adapted to improve any of these six approaches.

5.2.1 Five Comparison Questions

The front-end planning approach using early test plan scenarios

may be compared to other methodologies by answering five questions

which reveal underlying assumptions fundamental to each methodology

(see Table 5.1).

132

Table 5.1 Five Comparison Questions.

1. Who participates in the specification process?
Front-end planning with early test plan scenarios promotes
collaborative innovation among sponsors, users and developers.

2. How should the specification process be structured?
The four phases (in front-end planning with early test plan
scenarios) are stating: (1) Objectives, (2) Analyzing functional
needs, (3) Designing the system structure, and (4) Developing
operational test plan scenarios.

3. What terminology is used to document the specifications?
Front-end planning with early test plan scenarios uses different
formats for different phases. Natural language is used to state
objectives and functional needs. Structured languages and formal
mathematical terms are used to define a system's structure.
Script is used to represent the activated operations of the
system in measureble terms.

4. How are components of successive phases linked together?
Front-end planning with early test plan scenarios uses a rigorous
numbering system to link components of a single phase with each
other and with corresponding components of other phases.

5. How is quality in the specifications defined and measured?
Early test plan scenarios, developed prior to coding, are the
explicit, quantitative standards which are used to evaluate the
useability of the requirement specifications and to later
determine the "goodness" and "completeness" of the final system.

5.2.2 Six Categories of Specification Methodologies

Current system specification approaches may be assigned to one of

six major categories (see Table 5.2). Organizations frequently

consolidate several approaches into a single development process.

Front-end planning wity early test plan scenarios fits within the

Systems Development Life Cycle (SDLC) approach, yet can incorporate

approaches from each of the other five categories. Most developments

utilize a variety of specification methods [Necco, Gordon and Tsai,

1987, p. 466]

133

Table 5.2 Approaches to Develop Information Systems.

Approach
Number
Using

Percent
Using
(n=97)

Number
Considering
Using

Percent
Considering
Using
(n=non users)

* Systems Development
Life Cycle. ...67 69% 2 7%

* Traditional/Classical 67 69% 4 13%
* Structured.60 62% 8 22%
* Automated.56 58% 22 54%
* Prototyping.45 46% 15 29%
* Information Center...73 75% 11 46%

[Necco, Gordon and Tsai, 1987, p. 466]

5.3 Selecting One Process from Each Method

Many variations of specifications approaches are represented in

each category. To compare the front-end planning with early test plan

scenario process with other methodologies, one representative process

is selected from each category (see Table 5.3).

Table 5.3 Representative Methods of Specification.

CATEGORY_
1. Traditional/Classical

2. Systems Development Life Cycle

3. Structured

4. Automated

5. Prototyping

REPRESENTATIVE PROCESS_
Life Cycle Method

Jensen, Tonies Methodology

SADT (Structured Analysis Design
Technique)

CASE (Computer Aided System
Engineering)

Scharer Prototype Methodology

RML (Requirements Model) 6. Information Center

134

5.3.1 The Traditional/Classical Approach: Traditional Life Cycle

During the early 1950's, systems analysts and operations

researchers were usually engineers. They patterned the traditional/

classical approach after their mechanical training. The first major

systems development method, the Life Cycle approach, emerged from this

tradition. It phases systems study into preliminary design, detailed

design and programming/installation (see Table 5.4). In 1963, Laden

and Gildersleeve expanded this basic structure to include a feasibility

study, objective definition, system design, programming, filemaking,

documentation and testing [Agresti, 1986, p. 4].

The traditional/classical approach views systems development as an

engineering task, emphasizing the expertise of the developer. Front-

end planning with early test plan scenarios views systems develoement

as collaborative innovation, which emphasizes the expertise of the user

and sponsor as well as the expertise of the developer. Traditional

life-cycle models focus on design and coding [Boehm, 1976] with less

emphasis on the specification phase.

Front-end planning with early test plan scenarios uses a variety of

formats; the traditional/classical approach uses first-generation

tools, natural lanuage descriptions, flowcharts and file layouts to

describe the requirements of a proposed system [Necco, Gordon and Tsai,

1987, p. 462]. The traditional approach assumes an evolution of one

phase into another phase and does not require the component linkage

control promoted in this thesis. Quality in front-end planning with

early test plan scenarios is evaluated by the useability; quality in

the life cycle process is measured by adherence a rigid schedule.

135

Table 5.4 The Conventional Life Cycle Approach.

Phase 1: Specification.
A statement of "what" the software will do,
following a detailed analysis of the requirements.

Phase 2: Design.
"How" the software will meet the requirements;
the structure of software units that
perform specified functions.

Phase 3: Code.
Implementation of the design in a programming
language.

Phase 4: Test.
Verification that the code executes without
failure, and validation that the completed software is
acceptable to the users.

[Agresti, 1986, p. 2]

5.3.2 Systems Development Life Cycle Approach (SDLC): Jensen-Tonies

Methodology

The SDLC approach develops specific phases, tasks and products to

organize the systems development process. Early SDLC approaches

expanded the Life Cycle methodology by assigning specific tasks,

products and tools to each phase. SDLC methods often integrate

processes from other approaches such as the structured, automated and

prototyping methods [Necco, Gordon and Tsai, 1987, p. 463].

While SDLC methods retain the basic theme of the traditional Life

Cycle approach, the Jensen-Tonies methodology limits the design phase

to only conceptual design, incorporating the structural design with the

code phase, and adds an operations and maintenance phase to the end of

the life cycle (see Table 5.5).

136

Table 5.5 The Jensen-Tonies Methodology

Phase 1: Research.
Required operational capability document;
engineering studies; experimental development
activities.

Phase 2: Conceptual Phase.
Concept evaluation; systems requirements review;
system decomposition & allocation;
system design review; software requirements.

Phase 3: Design & Development Phase.
preliminary software2 analysis & design;
preliminary design review; detailed software
analysis & design; critical design review;
coding and debug.

Phase 4: Software Code Testing.
Software subsystem integration & testing;
software system integration & testing;
software/hardware integration & testing; system
performance testing; functional configuration audit;
acceptance test & evaluation; customer delivery &
physical configuration audit; operational testing &
evaluation; operation & maintenance.

[Agresti, 1986, p. 3].

The SDLC approach highlights the role of the developers during

system development. As with traditional approaches, most SDLC

methodologies focus on coding a system. A major weakness of current

SDLC practices is that less than 15% of development time is allocated

to defining requirement specifications. In their hurry to begin

designing and coding a system, 33% of SDLC developers do not specify

requirements. [Necco, Gordon, Tsai, 1987, p. 68].

Front-end planning with early test plan scenarios and SDLC both

promote an organized, sequential approach to systems development that

describes how to measure the completion of each phase. They both

define products and activities that must be completed before one phase

137

ends and another begins. Front-end planning with early test plan

scenarios requires that components of one phase are explicitly linked

to components of other phases; SDLC methods have no standard linkage

requirement. The quality of software developed with front-end planning

with early test plan scenarios is measured quantitatively. Traditional

SDLC methods define and measure quality by the successful completion of

each task and activity associated with the specification phase.

5.3.3 The Structured Approach: SADT (Structured Analysis and Design

Technique)

SADTtm is a systems description language and methodology which was

developed by Douglas Ross (of MIT), in the late 1950's [Marca and

McGowan, 1988]. It has been used to model systems, particularly the

requirement specification of systems, for thousands of commercial

developments (see Table 5.6). Under the name of IDEFO, (Integrated

Computer-Aided Manufacturing Program), SADT is a standard for the U.S

Department of Defense and has been used in hundreds of military and

industrial systems developments.

SADT may model any system. It reveals, with a single viewpoint,

the overall structure of a system and the interrelationships of all

system components. SADT improves user-developer collaboration with an

author-reader cycle. SADT requires the contribution of user expertise.

Recognizing that users have limited time to devote to a project,

SADT incorporates a review/reiteration process which tries to maximize

user-developer cooperation by maximizing user understanding and

feedback while minimizing user time requirments.

138

Table 5.6 Seven Fundamental Concepts of SADT.

(1) SADT attacks a problem by building a model or a
representation of the problem_Multiple SADT models of a
system from different viewpoints may be required for complete
understanding.

(2) Analysis of any problem is top-down, modular, hierarchic and
structured.

(3) SADT differentiates_between the creation first of a
functional model...and then the creation of a design model.

(4) SADT models both things and happenings. The complete SADT
model of a problem must show both aspects properly related.

(5) The language of SADT is a diagramming technique which shows
component parts, interrelationships between them, and how
they fit into a hierarchic structure.

(6) SADT methods support disciplined, coordinated teamwork, which
is required in order to produce results which reflect the
best thinking of a team.

(7) SADT methods require that all analysis and design decisions
and comments thereon be in written form.

[Ross, 1976, p. 2.1] .

SADT is used to understand and represent a system through a set of

diagrams which fit together to form a model with a single view of a

system. Several complementary models may be created for a single

system, each with a unique viewpoint. Each model should represent only

a single viewpoint for the SADT method to accurately model a system.

Most complex systems developments using the SADT methodology have

one complete SADT model to represent the system from the data flow

viewpoint and one complete model from a procedural viewpoint.

A major strength of SADT is that it forces the definition of the

boundary between the system and the non-system world. SADT then forces

the definition of boundaries and hierarchical relationships between

139

each of the system's subcomponents. This rigorous structuring of the

system establishes a solid foundation for the later concretization by

coding portion of the development.

Rigorously structured SADT diagrams facilitate post-operational

modifications. When the basic system structure is clear and the

relationship of the components is firmly established, it is easier for

analysts to determine where maintenance modifications are needed and

how best to fit these changes into the tightly interrelated system.

SADT can incorporate automated CASE tools. But automation is not

critical for successful use of SADT. Douglas Ross, the originator of

SADT, still prefers to construct SADT diagrams with pencil and paper.

SADT can be successfully integrated into front-end planning with

early test plan scenarios. The initial development of researched for

this thesis used SADT to create two complete models of the complex

development. One model traced the flow of data and one model

represented the interaction of procedural components.

SADT's emphasis on user-developer collaboration was a major

influence during the during this research. SADT uses explicit, clear

diagrams as the focus of communication among participants in the

development process. This approach underpinning this thesis borrows

the concept of a focal point for collaboration from SADT. Each phase

of this thesis's approach uses specific documents to focus the

collaborative activities.

SADT's process links all subcomponents into a hierarchical scheme.

Front-end planning with early test plan scenarios uses this linkage

scheme and further develops it to link together the components of other

phases of the development process.

140

SADT is a powerful tool for structuring a system. It is not meant

to operationalize or measure a system. A critical premise of the front-

end planning with early test plan scenarios methodology is that there

are different aspects of specifying a system, and each aspect is best

accomplished by using specific tools. The best tools for one aspect

are often not appropriate for another aspect.

The development of complex systems is hampered by attempts to make

a particular tool the universal tool. Front-end planning with early

test plan scenarios does not require specific tools for any phase of

the specification process.

The selection of the particular tools to be used within each phase

should be based on the requirements of the phase, the development

conditions, the capabilities of currently available tools, and the

developer's preferences.

5.3.4 The Automated Approach: CASE (Computer Aided System

Engineering)

The CASE (Computer Aided System Engineering) methodology uses

computer tools to structure user requirements and to design the system

from the top down. Starting with the highest level design, CASE tools

help developers automate design decomposition from the highest macro

level into detailed sub-divisions [Anderson, J., 1988, p. 9].

CASE tools are at the forefront of those developments which attempt

to "forge a creative partnership" [Yourdon, 1988, p. 740] between

people and automation. The CASE based process is designed to

facilitate user-developer communication, by providing descriptions of

141

the system in several different formats including flow charts and

structured diagrams. Although CASE developers advocate helping users

understand the system structure, the developer remains the expert

extracting information from the user [Martin, 1988, p. 3]. CASE

methodologies use a top-down approach implemented with one or more

computerized tools to develop the system structure.

The most prominent variations of the CASE approach base their top-

down design strategies on data flow, information interaction or

operational procedures. While all three of these variations may be

integrated into a single development, the CASE tools which support

procedural analysis may be most directly used by front-end planning

with early test plan scenarios.

The first development researched for this thesis included both data

and information analyses which supported, and were integrated into, the

procedural analysis. CASE includes a variety of tools which could be

useful when using front-end planning with early test plan scenarios to

develop a complex system. While some developers feel there remains an

advantage to manually diagramming a system, others prefer to use CASE

tools to automate the pictorial representation of a system.

CASE tools can be used to simulate screens and to generate reports

which can be incorporated into the operational test plans. CASE tools

for data dictionaries, project management information, syntax checking

and documentation generation attempt to computerize some of the time-

consuming activities which occur during complex systems development.

Although CASE tools claim to be total development methodologies,

their actual role normally begins after the developer and user have

defined the objectives and scope of the system [Topper, 1988, p. 71].

142

CASE tools are not used to define basic organizational objectives

of the system development. While some tools claim to help develop the

functional analysis, their primary role during this process appears to

be that of documenting the work which is accomplished by people.

CASE tools could be used during the structural design of the

system. Tools to decompose a system, to computerize the process of

diagramming a system's structure, may increase the productivity of a

developer.

The developer must continue to participate in the structural

analysis, to ensure that the process is sensible. It is easy to become

so infatuated with CASE tools, that the hard thought and judgment

involved in structural analysis is bypassed.

A modification of currently available CASE tools would be

particularly useful in controlling the linkages between different

components of different iterations of the system.

There is no explicit function within CASE to measure quality of

specifications by evaluating the useability of the system. Proponents

of CASE argue that users are able to evaluate a system by understanding

the diagrams and pictorial representations of the system which can be

produced with CASE tools. CASE methods have no formal measurement

criteria for the final system. Early test plan scenarios exercise the

proposed system within the spatial, temporal and physical conditions of

its future operational environment. CASE tools do not evaluate the

useability of specifications. Front-end planning with early test plan

scenarios establishes operational test plans as the official, formally

approved measurement criteria to determine when the system has been

adequately developed and should be accepted.

143

In 1984, Robert Poston, of Programming Environments Inc., began the

development of an automatic test generator (which belongs within the

CASE category). Funded by grants from the Small Business Innovative

Research Program and the US Department of Defense, PEI was supported

through three phases of development. Phase I, the feasibility study,

was simple because PEI already had a working version of the test

generator. Phase II ported the system to Unix and VMS systems. Phase

III assisted in the commercialization of the system [Poston, January,

1988, p. 1]. T includes functionality to measure the quality of

software, to determine when it is "good enough." Testing comprehen¬

siveness is measured through formulas which determine the ratio of what

has been demonstrated to what should be demonstrated [Poston, April

1988, p. 3].

T has been designed as a specification tool to generate test cases

which measure the useability of specifications before any coding

begins. Developers of T consider its most effective impact to be the

capturing and communication of the physicalness of the system, which is

easier to understand than requirement statements or structural diagrams

[Poston, August, 1988, p. 2],

Users of T include the US Army and AT&T. By developing test cases,

prior to testing, users have measured an 85% reduction in testing time,

a 47% reduction in programmer-discovered bugs and a 95% reduction in

customer-discovered bugs. By incorporating test plans into the

specification process, users of T have moved a significant portion of

system maintenance to the less costly front end of systems development.

144

It is likely that historians in the future, looking back on the
extraordinary evolution of computing, will say that the true
computer revolution was the one that automated the processes of
design and programming. Manual structured techniques were a
necessary preliminary to the automation but were not by
themselves the true revolution [Yourdon, 1988, pp. 742-743].

5.3.5 The Prototyping Approach: Scharer Methodology

A prototype is an early version of a program that exhibits features

of an operational system [Alavi, 1984, p. 556]. Prototyping creates a

working system to help users define their needs and help developers

understand users' needs [Taylor and Standish, 1984, p. 39]. It is based

on a brief statement of user needs followed by a rapidly produced,

operational model of a program which addresses these needs (see Table

5.7). Fourth generation languages and prototype languages such as PSDL

are used to produce the prototype [Luqi, Ketabchi, 1988, p. 66].

Technologies are being developed to automate the transformation of a

prototype program into an operational version of a program [Balzer,

Green, and Cheatham, 1983].

The prototype approach which is successful for single programs and

simple systems has limited use for complex developments. It gives no

indication of how a system will react when it is stressed by large

volumes of material or data, or by tiem and sequences. It does not

evaluate the interaction of programs or systems. Components are not

formally linked together but are simply transformed into new versions

[Balzar, Green and Cheatham, 1983, p. 40].

145

Table 5.7 Four Phases of Prototyping.

Phase 1: Preliminary fact-finding.
Study business problem;
Generate alternatives.

Phase 2: Pregeneration Design.
Identify and define data elements;
Define "flat file" arrangement of data; Design
high-level system flow; Describe procedural
responsibilities; List transactions by type and effect;
List reports, inquiries, updates.

Phase 3: Prototype Generation.
Task; Generate baseline prototype

Phase 4: Prototype Refinement Interactions.
Demonstrate prototype to users and record user comments;
Add to functional scope of prototype;
Supplement physical model with written descriptions

[Scharer, 1983, p. 37].

While front-end planning with early test plan scenarios requires

the development of operational test plans to define the measurement

criteria of a system before a system is coded, prototyping is a process

which eliminates testing. [Balzar, Cheatham and Green, 1983, p. 40].

The risks of failure in a complex systems development increase when

there are no quantitative measurement tests. An agreement to "produce

a quality system which meets user needs" is an agreement to disagree

during the final assessment of the quality and of the useability of an

activated system.

Front-end planning with early test plan scenarios can use

prototyping during the development of requirements for specific

portions of complex systems, but not to represent an entire system.

146

Prototypes can simulate user-terminal interfaces successfully

enough to enable viable user evaluation on a proposed function.

However, the evaluation of complex systems requires a broad merging of

temporal, spatial, informational and environmental factors which are

not amenable to prototyping. While parts may be evaluated with

prototypes, the critical aspect of complex systems which must be tested

is the interaction of the parts with each other and with other entities

in the operational environment.

5.3.6 Information Center: RML (Requirements Model)

Information center approaches to systems development were first

used by IBM Canada to reduce system development backlogs by involving

users in the process of defining and modifying computer applications

[Necco, Gordon, Tsai, 1987]. Specialized languages are being

developed to direct users in formally stating the "information" which

should be represented in a system's database. Information-based

systems developed attempts to be self-building. As users employ the

information represention language to model the system and the

environment in which it will operate, the system's foundation is

defined and constructed.

Many researchers consider the management of information to be the

weakest link in the development of complex systems. They claim that

NASA's failures are directly linked to faulty information management

which results in incompatible systems, delays of years in transfer of

some information, and the lack of an overall system architecture to

coordinate the interaction of critical space systems.

147

The effects of bad information management permeate and pollute
every level of NASA, driving away the best scientists and
discouraging new recruits...NASA critics point to (faulty)
information systems as a prime culprit in the agency's inability
to exploit space....(NASA's) haphazard approach to computing in
which incompatible systems isolate scientists from their fellow
workers [Stapleton and Puttre, 1988, p. 8].

RML was initially designed to be a stand-alone tool for specifying

requirements. (Borgida, Greenspan, Mylopoulos, 1985). Information

methodologies are not able to evaluate the differences between the real

world and the modeled world [Borgida, Greenspan, Mylopoulos, 1985].

While the model may contain some of the relationships which exist in

the real world, it can never contain all of the relationships which

exist. If a model were to exactly replicate the real world, the model

would be the real world. Information methodologies can not yet

determine when the information model is "good enough" to be useful.

It is not that such conclusions were necessarily wrong; more to
the point is that one could not know them to be correct. The
problem arises when taking them for granted results in over¬
looking a different line of inquiry that might have led in a more
meaningful direction [Eberhart, 1988, 72].

The improvement of software development practices requires a

methodology which increases productivity while increasing reliability

and adaptability of software. (Boehm, Standish, 1983, p. 30].

Development methodologies need to smoothly integrate all important

facets of development.

We are convinced that success in combatting the software demand-
supply gap can come only if we learn to manage a large number of
variables skillfully and if the components to the overall
solution integrate well. Completeness and integration are,
therefore, two key concepts in our vision. [Boehm, Standish,
1983, p. 30].

148

Front-end planning with early test plan scenarios integrates each

of the forms of development methodologies into a single, powerful

approach. Rigorous control of information is essential for unambiguous

specifications. Structured analysis, such as SADT, requires that the

definition of an information entity is consistent and correctly

categorized within the overall informational hierarchy. Terms are

explicitly and directly linked with their representations within the

system's data dictionary, glossary, and its structural diagrams [Marca

and McGowan, 1988, p. 135]. CASE tools such as T and protoyping can

enhance front-end planning with early test plan scenarios. The

approach of this thesis is a further refinement of the Life Cycle

method. Front-end planning with early test plan scenarios does not

replace any other methodology—it improves them.

CHAPTER 6

CONTINUING TO RESEARCH EARLY TEST PLAN SCENARIOS

The most incomprehensible thing about the universe is that it is
comprehensible. Einstein

6.1 Research to Evaluate Systems Development Methodologies

As computer technology continues to accelerate its power and

possibilities, there is a struggle to develop and evaluate

methodologies to harness this potential into useful systems for

organizations. While many methodolgies claim to offer great

productivity benefits, software developments themselves continue to

fail to meet anticipated time, cost and useability goals.

Researchers use historical development statistics to validate their

findings with "experimental data and other empirically derived guide¬

lines" [Daly, 1977, p. 235]. Uncertainty characterizes research on

systems development. The young field does not universally accept

particular research methods as valid. Systems professionals who are

actively building systems are interested in case histories of successes

or failures, viewing them as a source of insights. People who build

systems are often wary of "proven" rules, preferring principles which

help them accomplish their activities. "The essential thing is that we

continue confronting our theories with new data and that we not be

afraid to modify theories in light of such confrontations" [Attewell

and Rule, 1984, p. 1191].

150

Five major research methodologies are currently being used to

evaluate development methodologies: (1) Case studies of project

developments; (2) Empirical surveys of developments; (3) Controlled

experiments; (4) Theoretical analyses; (5) Interactive research.

There are differences between the purpose and the impact of these

research approaches. Burrell and Morgan [1985] identified parameters

to categorize research methodologies (see Figure 6.1).

REGULATION

Case studies
(observe interactions)

Empirical surveys of
project developments

(Qualitative & quantitative evaluation)

Controlled experiments
(Uncover true cause & effects)

SUBJECTIVE OBJECTIVE

Interactive research Theoretical analyses

(Participate to improve) (Propose new theories/methods
to improve)

CHANGE

Based on Burrell & Morgan's four sociological paradigms.

[Burrell and Morgan, 1985, p.29]

Figure 6.1 Research Methods within Burrell & Morgan's Sectors.

151

Qualitative research highlights subjective, non-quantifiable

factors while quantitative research is limited to measureable,

objective data. Regulative research argues that there are solid,

unchangeable laws which regulate behavior, with the purpose of research

being to improve a situation by discovering these cause-effect laws.

Interactive research argues that human volition can create changes,

that human activity is not restricted by underlying sets of laws. The

purpose of interactive research is to bring about change, to improve a

situation through proactive research.

6.2 Case Study Research

Case study research involves intensive studies of a single case or

comparative studies of two or more cases. Case studies, although

representing only a small portion of published research on systems

development, are acknowledged to be rich sources of hypotheses. Case

studies of individual cases were the foundation of organizational

behavior. "One wonders what the impact on the field would be if

another period of such case studies occurred [Lundberg, C., 1984, p.

39]. Lucas, one of the founders of research on the development of

information system, recognized in the early 1970's that organizational

behavior was a critical element in the development of successful

information systems.

152

It is our contention that the major reason most information
systems have failed is that we have ignored organizational
behavior problems in the design and operation of computer-based
information systems [1975, p. 6].

While many case studies focus on the adaptation of users to new

information systems, few examine the development process. If case

studies are particularly effective in developing new insights in

situations which involve the behavior of individuals in the

organizational situation, and if the development of successful

information systems is accomplished by individuals in an organizational

situation, then case studies are a source of valuable information on

improving the systems development process.

Poston and Bruen published a case study which examined the use of

the T automated test generator during a systems development project at

Leeds & Northrup Systems. This case describes current problems

associated with development errors, and the improvements in quality and

productivity which resulted from the use of the T software generator

prior to coding. The case describes the organizational factors, the

technical factors and the economic factors which influenced the

development. Leeds & Northrup's state of practices before the use of

the T software was compared to the state of their practices with the

use of T. Details of the project plans and actual schedules were

presented. When industry-reported values were available, quantitative

measures of project size, failures, time and cost were compared with

industry-average values.

153

The Leeds & Northrup Systems case study included five techniques

for improving the development process. Before the case study, the

researchers and practitioners decided that there was no need for

separate studies to determine the contribution of each technique as

each one had a history of commercial successes. The important question

for Leeds & Northrup, and for the researchers, was the total impact of

all techniques executed together [Poston and Bruen, 1987].

A case study was the foundation of the front-end planning early

test plan scenario approach [Eastman, 1986]. A complex systems

development was failing after three years of effort. When the approach

described in this thesis was integrated into the development process, a

dramatic turn-around in the development process occurred.

Organizations such as the US Army and AT&T use front end planning

and early test plans. Senior design engineers at Digital Equipment

Corporation, trying to improve the practice of systems development, are

use early test plans. There is opportunity for additional case studies

to increase understanding of systems development.

Case studies may be both qualitative and quantitative [Swanson and

Beath, 1988]. While many case studies emphasize qualitative insights,

some case studies describe mostly quantitative results. If case

studies of complex developments were produced more frequently, there

would be a wealth of information available for comparative studies.

Swanson and Beath [1988] used case study data in a controlled

research situation in which they compared several developments. They

used quantitative data gathered in standard questionnaires in order to

compare the results of the studies. While Swanson and Beath's approach

offers standardized information to compare the impact of different

154

development methodologies, the structure of their research design

limited the issues explored. By using standard questionnaires, and

specified people being questioned, the case studies may not identify

the significant issues which are changing the situation.

In Swanson and Beath's study, only systems developers were

questioned. In the development situation, the sponsors and users play

a significant role. The developers' opinions, although relevant, may

obscure significant problems which are obvious to sponsors or users.

6.3 Empirical Research

Empirical research applies quantitative methods to observe, measure

and define things and events of the "real" world. Several forms of

empirical research could contribute to research: survey research,

scientific research, triangulation, and controlled experiments.

6.3.1 Survey Research

Some empirical research does not attempt to develop or the prove

theories, but only to understand the current condition of project

development. These studies are necessary to ensure that the academic

world of systems research is not isolated from the world of systems

practice. Necco, Gordon and Tsai [1987] surveyed ninety-seven

organizations to determine which technologies they were currently

using, of these, which they found useful, and of those which they were

not currently using, which techniques they were planning on using.

Necco, Gordon and Tsai's research revealed a systems development

155

environment in which a variety of tools are currently being used.

Structured approaches, prototyping, and information center approaches

were not seen as separate techniques which replaced traditional

methods, but rather as tools which complemented the traditional Life

Cycle approach.

Survey research is appropriate for methodologies (such as the one

presented in this thesis) which employ a variety of techniques,

performed in a sequential order. Of particular interest would be the

current position of operational test plan development in projects.

There are indications that many corporate developments are moving test

plan development to earlier stages of the development cycle. A survey

could be used to confirm this observation.

Front-end planning with early test plan scenarios is a flexible

approach that can be improved through practice and research. The

sequence of activities and the combination of approaches are critical

factors in the front-end planning early test plan scenario approach

which were not discussed in Necco, Gordon and Tsai's research. Survey

research is be a powerful tool to understand not only what tools system

developers are using, but also the sequence of these tools and the

methods used to combine these approaches.

6.3.2 Scientific Research

Some theorists researching systems development assume that a

careful compilation of data will reveal fundamental variables, which

have stable causal relationships. They assume that the process of

systems development can be understood through scientific methods.

156

These theorists consider the current status of systems development to

be faulty because of a lack of understanding of the fundamental

development variables. These theorists assume that "scientifically"

derived understandings will reveal underlying relationships.

The more clearly we as software engineers can understand the
quantitative and economic aspects of our decision situations, the
more quickly we can progress from a pure seat-of-the-pants
approach on software decisions to a more rational approach which
puts all of the human and economic decision variables into clear
perspective. Once these decision situations are more clearly
illuminated, we can then study them in more detail to address the
deeper challenge: achieving a quantitative understanding of how
people work together in the software engineering process [Boehm,
1984a, p. 20].

Development projects normally require documentation of change

requests to correct code or design problems. Basili and Perricone

[1984] collected all of these change requests on a medium sized project

to analyze the types and quantities of errors which occur at different

times during a project. The method they used did not interfere with

the project itself—these change forms were a normal part of the

development process.

Basili and Perricone, through detailed analysis of the change data

which represented errors in requirement specification as well as design

and coding, found that modifying an existing module resulted in an

increase in errors of commission while creating new modules resulted in

an increase in errors of omission. Surprisingly, errors in large

modules were less frequent than errors in small modules [Basili and

Perricone, 1984, p. 49].

157

The error detection methodology used by Basili and Perricone is an

effective tool to understand the impact of systems development tech¬

niques, when the quantitative analysis is superimposed on a qualitative

case study. After the research for this thesis was completed, an error

analysis was completed using Basili and Perricone's technique.

This error analysis confirmed that the most costly errors were

based in incomplete specifications. The most significant finding of

this error analysis was that major specification errors were detected

during the development and review of the early test plan scenarios

[Eastman, 1986] .

This use of error analysis, performed on data from existing case

studies, is a valuable tool in increasing our understanding of the most

effective techniques, and sequence of techniques, for counteracting the

impact of inaccurate, ambiguous and incomplete specifications.

6.3.3 Trianqulation

While academic journals tend to support research which is either

qualitative or quantitative, some researchers support triangulation, a

combination of methodologies used in research [Jick, 1988, p. 364].

Most of the studies which use quantitative research methods examine

systems designers, systems developers and their tools. The role of the

user and of the sponsor in systems development research is largely

avoided. While researchers are gathering more information on the

isolated work of systems developers, they are neglecting the most

costly problem of all—producing systems which not only work well, but

are also useful.

158

Card, McGarry and Page [1987] studied teams of engineers working on

twenty-two projects. They found that the use of technologies such as

structured code, design schedules and documentation, increased the

reliability of the software but had no impact on the productivity of

the development team.

Alavi [1984] used questionnaires and interviews to obtain

qualitative and quantitative information from project managers and

systems analysts participating in twelve development projects in six

different organizations. Alavi selected a group of small to medium

sized projects for financial, management and transportation management

functions. Although the questions focused on whether the users were

enthusiastic, understood the prototypes, and shared the reference

points of the developers, no users participated in this research.

Alavi was really asking developers for their impressions of user

involvement, not obtaining information from the users themselves.

In a systems development situation where the major problem is the

failure to produce systems which are useable in the actual operational

environment, users are the experts. Research which ignores users, and

does not prioritize the direct questioning of users, may be failing to

address the major problem confronting systems developers.

Norcio and Chmura [1988] monitored, evaluated and compared software

development techniques used on two major projects. Their study

required engineers to submit detailed, weekly reports on their

progress. Because this submission was not a normal activity for these

engineers, the act of collecting the data itself would influence the

project and bias the research. By forcing engineers to consider the

159

type of work they were accomplishing, to take time to consider and

record their work, and by increasing their awareness that their work

was being closely monitored, the researchers biased their results by

forcing engineers to change their work process.

Norcio and Chmura offer extensive information on hours devoted to

development tasks, and a variety of information on progress ratios.

Their case study attempted to demonstrate the effectiveness of software

development techniques during a software cost reduction project and

several projects which involved software technology evaluation [Norcio

and Chmura, 1988, p. 165]. Norcio and Chmura focus on quantitative

measurments, particularly a progress indicator ratio (PIR) to indicate

when a design phase is complete. Norcio and Chmura's PIR compares the

accumulated amount of time spent discussing a system's design with the

amount of time spent creating a system's design. When this PIR ratio

becomes constant, they contend that the design is complete.

Does this ratio reflect the "gut feeling" that many systems

developers have when they determine that the design is sufficiently

complete to proceed to the coding stage? If so, there remain problems

with the ratio.

"Completeness" contributes to, but is not the sole variable, in

"goodness" in system specification. With early test plan scenarios,

"goodness" is measured by the measurability, completeness and

useability of the system's design. Neither the sophistication of the

design nor the evaluation of the designer is sufficient to determine

the adequacy of the design. Users and sponsors are needed to evaluate

the impact of the design on the useability of the system.

160

Care should be taken when performing research which attempts to

measure progress or success with different development methodologies.

Different methods have different basic assumptions concerning what

variables influence "goodness". Measures which prove successful while

researching some developments may be unsatisfactory when researching

developments in different environments using different techniques.

If the process of filling out forms does not actually contribute to

successful developments, then an alternative method of obtaining

quantitative data would be to videotape some of the systems development

activity. Using the videotapes, impartial scorers could identify the

type of activity and the amount of time spent by each participant.

The quantitative evaluation of videotaped activity would be

particularly useful in determining which activities could be automated,

and which forms of automation would be most useful. This form of

research could help determine the most prudent forms of automation,

focusing on enhancing, rather than replacing, human judgment.

6.3.4 Controlled Experiments

Laboratory settings may be used for controlled experiments which

examine sub-components of complex systems developments. The process of

developing a complex system is too massive, expensive and lengthy to be

an appropriate subject for laboratory experiments. Much of the

laboratory research on programming uses students for subjects.

Students with a few years of classroom programming are the "experts"

and students with little exposure to computers are the "novices."

161

While many of these research studies claim to be evaluating

programmers, a better label would be "Empirical Studies of Student

Programming" [Curtis, 1986, p. 257].

Many controlled experiments do not address the macro issues

associated with complex systems, concentrating on issues of cognition,

not on project development. Researchers conducting laboratory

experiments may themselves be familiar only with individual programming

problems, and novices in the complex field of systems development. Too

often, researchers assume that their findings are transportable to real-

life systems developments.

Current research investigates how people express solutions, but
not how they learn what the real problem was to begin with. In
fact, one of the greatest problems on large projects is that
customers do not state their full requirements, because they are
unable to determine them. Research on helping people elaborate
their full desires (i.e. more fully defining the problem
structure) may have dramatic payoff to real programming
environments [Curtis, 1986, p. 258].

Laboratory experiments could be useful in refining early test plan

scenarios. There could be controlled experiments which focus on

determining what techniques are most useful in increasing productive

communication and innovation. Particularly amenable to laboratory

testing would be techniques for simulation and for graphic displays of

relationships between structures. The laboratory is not the place to

determine if simulation, test plans, or structured analysis is useful

during project developments. But the laboratory is a reasonable place

to develop better techniques for manually and technically accomplishing

the tasks needed to facilitate communication and innovation.

162

Mantha [1987] conducted a study of twenty professional systems

analysts to evaluate the impact of two methods of modeling a system

design from a case study of a user situation. Ten of the analysts used

a data flow model and ten used a data structure model to design a

system. These participants were mostly MBA graduates who had five to

ten years of systems development experience. While the data structure

analysts developed more complete designs, an understanding of the flow

of data was essential for an adequate representation of the required

system. The importance of this form of research is that it offers

insights into the real problems faced by real systems developers.

Particularly relevant for research on front-end planning is the

importance of both data flow and data structure modeling. The

laboratory is an appropriate setting to develop the most effective

sequence of these data manipulation activities. Controlled experiments

may assist in understanding which areas of this process could, should

and should not be automated. The laboratory setting could be a

fruitful location for developing effective teaching methodologies to

transfer data building skills to programmers.

Why does structural modeling seem to be more difficult to teach
and learn? What are the best strategies for training people in
using these approaches? What are the typical problems they will
encounter [Mantha, 1987, 542]?

6.4 Theoretical Research

Theoretical analysis proposes answers to questions raised by

empirical experiences and research. The proposed methods and theories

attempt to change and improve existing practices. Research on systems

163

development is particularly volatile because technology is constantly

changing. While research attempts to identify what is occurring, the

situation itself changes.

The frantic pursuit of repeatability and statistically signif¬
icant correlations is based upon the belief that science is a
search for laws. This has blinded many scientists to the need
for careful description and analysis of what can occur and for
the explanation of its possibility. Instead they try to find out
what always occurs_and usually fail [Sloman, 1976, p. 17].

Many people who have been engaged in the practice or observation of

systems development, analyze their experiences and the experiences of

others. These people propose new methods and theories to address

problems which were identified by empirical research. Theoretical

analysis, originally based in empirical work, has progressed to the

exploratory stage of innovation.

Boyd and Pizzarello [1975], supported by an Air Force contract,

developed the WELLMADEtm Design Methodology as a mathematically founded

design discipline which could improve software development. Boyd and

Pizzarello emphasize requirement specifications which are sufficiently

complete to develop abstract program designs. "These specifications

are obtained by constructing the program state space and the necessary

assertions to define the input and output subspaces for all the

required operations" [Boyd and Pizzarello, 1978, p. 277].

Barlow [1981] emphasizes the importance of project management on

the success of a system development. Barlow produced a check list of

events which must be satisfactorily managed by the successful project

manager (see Table 6.1) prior to the actual development of a system.

164

Table 6.1 Barlow's Project Management Steps.

Step 1: Define project objectives and goals.
Step 2: Appoint the project manager.
Step 3: Define scope of work & assign responsibilities.
Step 4: Establish project organization and interfaces.
Step 5: Define cooperation required.
Step 6: Establish & document major work packages in project.

[Barlow, 1981, pp. 57-59].

The difference in perspective between Barlow, Boyd and Pizzarello

exemplifies the complexity of the systems development process, and the

importance of considering organizational, managerial, technical and

logical perspectives when evaluating this process. Awareness of the

diverse variables associated with successful systems development

prompted Boehm to stress completeness and integration in his answer to

the question, "How (can we) achieve a state-of-practice in the 1990's

where we can build embedded computer system software with adequate

levels of productivity, adaptability and reliability" [Boehm, 1983, p.

30]. Boehm considers economic, technical and organizational factors.

Procurement policies will become more important as packaged software

and third party developers become more commonly used. Boehm's analysis

finds that the most critical need for the improvement of software

development is improvement of its process rather than its products.

Ruskin and Estes [1986] analyze the helpful and harmful effects of

organizational factors in systems development, proposing actions which

could improve the development process by enhancing the positive and

reducing the negative impact of these organizational factors. Ruskin

and Estes, finding that the organizational environment determines the

165

success or failure of a project development, theorize that project

managers can "enhance their overall chance of success by understanding

how organizations affect projects" [Ruskin and Estes, 1986, p. 4].

They list factors, helpful effects, adverse effects and possible

counteractions for adverse effects of seven organizational factors (see

Table 6.2).

Table 6.2 Factors Affecting Project Managers and Project Success.

(1) Organizational structure
(2) Staffing
(3) Client relations
(4) Attitudes toward risk
(5) Communications between users, sponsors and developers
(6) Expectations of all participants (economic, project

usefulness, personal performance, personal reward,
hours worked, satisfaction)

[Ruskin and Estes, 1986, p. 4]

Taking an opposing viewpoint on the development process, Blum

[1987] asks how full automation could improve the systems development

process by eliminating human error and imperfect work. Blums's

analysis of the system process virtually eliminates all organizational

considerations and all possibilities of human innovation, individual or

social, during systems development. Blum's analysis produces a theory

which envisions a development environment where the production of a

system is totally divorced from the process of defining system

requirements. Blum foresees a rise in the importance of the software

factory. The software factory concept, widely used in Japan by firms

such as Hitachi, promotes team work among systems developers. Any

166

member of a team of thousands of developers should be able to satis¬

factorily develop a system, using an integrated set of automated tools.

Shemer, [1987] reviewing the problems associated with information

systems development seeks the appropriate model for systems analysis.

While many methods and processes focus on individual elements of the

process, Shemer theorizes that developers should have a broader

awareness of the severity of systems development process failures.

Shemer theorizes developments could be improved if the

specification process included an analysis of organizational goals,

components of the system, environmental constraints, resources, inputs

and outputs and interrelationships between the components [Shemer,

1987, p. 509].

Theoretical analysis is not separate from, but complementary to,

other forms of research. Basili and Rombach [1988] ask how we can

develop sofware engineering processes which "integrate sound planning

and analysis into the construction process" [Basili and Rombach, 1988,

p. 770]. Basili and Rombach developed a model which contains

principles which they "learned during a dozen years of analyzing

software engineering processes and products" [Basili and Rombach, 1988,

p. 770] .

Their model stresses an awareness of the current status of a project,

integrating planning for improvement into the project plans, and

accomplishing project plans. A fundamental characteristic of front end

planning with early test plan scenarios is the continued emphasis on

the process of reviewing which improves, rather than simply approves.

167

6.5 Interactive Research

Software development researchers are often participant observers

who actively participate in the activities which they are observing.

They develop principles, derive implications from their principles, and

become actively involved in the development process.

Participant observers address the same problems faced by empiricist

researchers—unclear specification of critical system attributes, lack

of appropriate engineering to achieve these attributes, and lack of

appreciation for the dynamic and interactive nature of systems

development [Gilb, 1988, p. 163]. Even empiricist researcher's

principles, analyses and insights are "substantiated" by the author's

statement of size and number of projects with which he/she worked.

Daly's sets of principles were derived from "2,000,000 hours of

software development experience" [Daly, 1976, p. 229].

In Europe, participative research is more prevalent than in the

United States. In Norway, Max Elden performed research which involved

empowering worker participation during the systems development process

(1986). Elden's research involved observing, training and encouraging

the active change of the roles of the workers. Norway has federal laws

stating that employees have a right to approve any automation plan

which will affect their jobs before that automation plan is installed.

Workers have the legal right to participate in the process of designing

the automated systems which will impact their work. Elden received

funding to research and implement training processes to build worker

skills to the level required for viable participation.

168

The current role of the users and sponsors is in many American

corporations is reactive. Once a system is running they react,

identifying problems and suggesting improvements. The front-end

planning early test plan scenario approach methodology is successful

only when users and sponsors assume a proactive role in which they

identify problems and suggest improvements during the initial, planning

phases of systems development.

CHAPTER 7

EARLY TEST PLAN SCENARIOS IMPROVE THE SYSTEMS DEVELOPMENT CONTRACT

It would be possible to describe everything- scientifically, but
it would make no sense; it would be without meaning, as if you
described a Beethoven symphony as a variation of wave pressure.
Einstein.

7.1 Problems with Current Software Development Contracts

Tens of billions of dollars are spent by corporate America each

year for the development of computer systems which are "typically 100%

over budget and a year behind schedule" [Carroll, 1988, p. 1]. General

Motors Corporation spends $3 billion and ITT Corporation spends $1

billion each year on software systems. Most complex systems are

developed, under contract, by third party vendors. The massive number

of dollars spent annually on software development, coupled with a high

probability of major cost escalations, significant delays, and failed

systems, have "spawned a proliferation of lawsuits rivaling the growth

of the computer industry itself" [Mislow, 1985, p. 124].

7.2 Assumptions of Traditional Development Contracts

Courts struggle reactively with contract disputes in the form of

lawsuits brought by disastisfied, often financially ruined, customers

170

of software systems. Writers in the field of legal literature are

trying to improve existing software contracts that support traditional

assumptions of software development (see Table 7.1).

Table 7.1 Traditional Assumptions of Software Development.

(1) A software development contract describes the provisions
of an exhange of money for a specific product.

(2) The software vendor has sole responsibility for the
quality and timely delivery of the product.

(3) A more accurate and complete description of what should
be delivered is the primary method of improving software
development contracts.

The first assumption, that a contract describes a product, is

supported by those who argue for an increase in warranty account¬

ability for software vendors. Under the Uniform Commercial Code (UCC),

vendors of goods can be held liable for their breach of either express

or implied warranties, or both [Mislow, 1988, p. 125]. Vendors of

services, where no tangible goods are produced, are considered to be

legally responsible under rules of professional liability, not under

the warranty provisions of the UCC [Freed, 1977, p. 281]. Legal debate

continues concerning whether different forms of software development

contracts should be considered the sale of services or the sale of

goods. Although software development may be partially a service, and

not fall under UCC regulations, some argue that all software should be

subject to warranties. Mislow [1985, p. 124] is particularly concerned

about the precendents that the courts are setting by absolving vendors

of warranty accountability.

171

The second assumption, that software development vendors should be

personally liable for the software they create, is receiving increasing

attention [Chretien-Dar, 1987, p. 499]. This approach assumes that the

software developer is similar to a skilled surgeon operating on an

unconscious patient.

The third assumption is that the functionality of the planned

system can be completely described before it is designed. This

assumption is supported by those who attempt to solve the development

crisis by increasing the accuracy and completeness of the description

of the end product [Werstermeir and Millstein, 1988]. Those who argue

that increasing the detail of the What of the contract will improve the

development, deny that How a system is developed changes What is

developed (see Figure 7.1).

The early test plan scenario approach challenges these three basic

assumptions by asserting that the software development contract should

be a promise to collaborate to develop a structure to modify an

organization's current operational environment. When organizations

contract with software developers, they promise to participate in a

temporary, collaborative partnership. The development contract

establishes the characteristics of this collaborative partnership and

the process by which sponsors, users and vendors will work together to

produce the system.

172

Early Test Plan
Scenario Contract Traditional Contract

1. How a system is developed 1. How should support but never
affects What is developed. change the What.

WHY

\/_

HOW <->

\/
i— i

! WHO !

\/_\/_\/

WHAT

WHY

WHAT
i_ _i

• •
• •

\/_

WHO i
I

_I
• •
• •

\/_

HOW

2. The successful development
of complex systems requires the
collaboration of sponsors, users
and developers throughout the
entire development process.

2. The sponsors determine Why,
sponsors and users determine WHAT,
developers alone determine HOW.

3. The purpose of the contract
is to establish the boundaries,
rules and controls of the
collaborative process.

3. The purpose of the contract is
to define the characteristics,
costs and deadlines of the
final product.

Figure 7.1 Comparing Early Test Plan Scenario Contracts to
Traditional Contracts.

7.3 Provisions of an Early Test Plan Scenario Development Contract

A software development contract, influenced by the early test plan

scenario approach, would establish the boundaries and structure for the

173

entire development process, including a sequence of activities and

criteria for measuring the successful completion of each sequence. The

contract should include explicit agreements concerning the management

of the systems development process, including the procedures for

resolving conflicts and for establishing the specific conditions of

each sequence.

The contract would establish the mutual responsibilities of the

collaborators, with provisions for monitoring these provisions. The

exact balance of accountability would be different, and separately

specified, for each sequential phase of the development process.

The main development contract establishes the development phases,

and guidelines for producing each subcontract. At least eight sub¬

contracts are needed for a development (see Table 7.2). Different

vendors may be selected for each subcontract. Products of prior phases

support activities of subsequent phases. The main development contract

could be with a vendor who is not the vendor for any subcontracts,

similar to a building contractor who arranges all subcontracts.

The early test plan scenario contract is more rigorous, has more

subcontracts, and requires more specific allocations of

responsibilities among users, sponsors and developers than does the

traditional contract. The initial cost of the early test plan

scenario contract would be higher than the initial cost of the

traditional systems contract.

The economic benefits of the early test plan scenario contract,

should be measured by the costs required for the timely, successful

174

completion of the entire project. The economic benefits of early test

plan scenarios are based in lower total costs for systems that become

useful within organizations.

Table 7.2 Early Test Plan Scenario Contracts for Developments.

Early Test Plan Scenario Main Contract

A. Establish the characteristics of the development process.

B. Establish the rules of the collaborative process.

C. Establish the methods of forming each subcontract.

D. Establish the monitoring and control mechanisms.

E. Establish the process of permitting change.

Early Test Plan Scenario Subcontracts

1. Definition of objectives.
2. Description of functional needs.
3. Analysis and design of system structure.
4. Test plan development and review.
5. Coding of software.
6. Testing of software.
7. Fit system into operational environment.
8. Modify (maintain) system.

7.4 Contracting for Goods or for Services?

Much legal attention is focused on determining whether systems

development contracts are for services or goods. The legal system

provides more stringent vendor accountability for goods, through the

UCC, (Uniform Commercial Code). Under the provisions of the UCC, the

vendor of goods is held liable for both express and implied warranties

of the goods that he/she sells. The courts define goods as "moveable

175

things.” Contracts in which developers actually deliver programs on

disks or tape to a customer are considered to be for "goods" while

those in which developers work directly on the customer's computers are

considered to be for "services."

Confounding the issue are current powerful communication and

network technologies. A vendor in California can spend months

developing a system directly on the Massachusetts customer's computer.

A few years ago, the vendors, performing exactly the same work, would

work on their own computers and deliver tapes that contained the

finished software to the customer. Technology continues to outdistance

the legal system's interpretations.

Whether the development contract is considered by the courts to be

for "services" or for "goods" has a significant impact on the outcome

of disputes. "Goods" are covered under the UCC. "Services" are

governed by the laws of general contract law. If software is "goods",

and falls under the UCC, it automatically has implied warranties, which

are in effect unless expressly and carefully disclaimed. "U.C.C.

article 2-314 (1982) supplies the warranty of 'merchantability that

arises when the seller is a merchant as to goods of that kind and

requires that goods be merchantable'" [Chretien-Dar, 1987, p. 478]. To

be "merchantable", goods should "(a) pass without objection in the

trade, and (b) in the case of fungible (exchangeable) goods, be of fair

average quality,...(c) be fit for the ordinary purpose for which such

goods are used" (Chretien-Dar, 1987, p. 479]. Services, governed by

contract law, have no such implied warranties.

176

The UCC code transforms most vendor statements into express

warranties, with the customer not having to prove that the vendor

intended her/his statements to be interpreted as warranties. These

express warranties are applicable only to development contracts that

the court rules are for "goods", not for contracts for "services."

Express warranties are created by: "any affirmation of fact or

promise relating to the goods, (2) any description of the goods, or (3)

any sample or model" [Chretien-Dar, 1987, p. 479]. While the courts do

not allow software vendors to disclaim all express warranties in a

blanket statement, they do allow specific disclaimers which have the

effect of blanket disclaimers. In APLications, Inc. v. Hewlett-Packard

Co., both implied and express warranties were considered by the courts

to be sufficiently disclaimed by the words: "NO OTHER WARRANTY IS

EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTY OF

MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE" [Chretien-Dar,

1987, p. 490].

Contracts which support early test plan scenarios would include a

main contract for the process of systems development and subcontracts

for services and goods. These contracts focus on the overall process

of systems development. Certain subcontracts are for goods,

specifically the subcontract which is for the actual code. Other

subcontracts are very clearly for services. One conflict inherent

within the traditional contract, and its interpretation under the UCC,

is that any contract which involves a good, is considered to be, in its

entirety, a contract for a good.

177

The end product, the software code, is simply the final step in a

complex process. Most systems developers consider the actual coding of

the system to be the simplest activity of the entire process. When

the preceding phases have been skillfully and thoroughly accomplished,

a development contract could actually omit the "final product", leaving

the actual coding activity to the customers.

The attempts by many legal researchers to improve the traditional

software development contract improves the subcontract for the actual

coding of the designed system. During the coding stage, the primary

responsibility is for programmers to finalize the system by adding the

technical detail to the overall structure and design. The programmers,

during coding, are following directions and firm guidelines in the

concretization of a system. Programmers can be held accountable for

the reliability of their code - but not for the design and impact and

useability of the system itself.

7.5 Legal Views on Systems Development

Articles on contract law support the viewpoint that expert software

vendors develop and deliver something, either a good or a service, to a

user, in exchange for a predetermined sum of money. There are

assumptions in this approach which can directly increase customer-

vendor conflict and decrease the potential for successful systems

developments. This approach, which views the final, coded system as

the primary object of the contract, contributes to the tremendous

surge of legal conflicts resulting from failed development contracts.

178

7.5.1 Naive Users and Unconscionability

The vision of a naive user buying either a good or a service from

an expert developer perpetuates the notion that software development is

simply a sales transaction between two independent parties. One offers

money and "blueprints” [Chu, 1982] for a product, and the other

produces the product which fits these "blueprints". The user is urged

to make the best "bargain" while the vendor focuses on acquiring the

greatest reward with the least effort. The denial of essential

collaboration becomes an integral part of the traditional contract, and

reduces the opportunity for a successful development process.

Customers are naive when they believe that the expenditure of funds

to a skilled software developer will solve an organization's problems.

Customers are naive when they choose not to recognize the critical

importance of their expertise and contribution to the system

development process.

The doctrine of unconscionability, a provision under the UCC, gives

courts the authority to void some or all of a contract, if it finds

that the terms of a contract are "unreasonably favorable" [Levin, 1986,

p. 2108] to one party. In the past, the courts have reserved this

doctrine for "disadvantaged consumers, typically in installment

contracts" [Levin, 1986, p. 2108]. Courts do not find unconscionabilty

in most business situations, considering businesspeople to be

sophisticated and aware when they sign contracts.

Recently courts have become more liberal in their application of

unconscionability to software contracts [Levin, 1986, p. 2109]. When

courts apply the doctrine of unconscionability, they often find that

179

the purchaser of software did not know enough to make a valid choice,

and therefore the terms of the contract were unfair to the customer.

Some legal researchers argue that unconscionability could be found

"in commercial transactions for computer products where the vendee

lacks the sophistication necessary to create bargaining equality"

[Levin, 1986, 2110]. When system development is viewed as a

collaboration, requiring effort and commitment on the part of both

customer and vendor, the issue of unconscionability is fundamentally

different. The obligations and responsibilities of both customers and

vendors are to increase each other's understanding and participation,

to continually evaluate and improve, to work together to create the

best possible system.

A limited view of systems development, which freely applies

unconscionability to a contract situation, may be compared to a medical

situation. An overweight person asks a doctor for a diet pill, and

pays the doctor a fee. Assuming that the pill will cure his problem,

the overweight person reduces his exercise and eats even more. When

the person gains weight, he sues the doctor because the pills did not

work. When software is viewed as a "diet pill" which will work if the

customer's needs are sufficiently described, if the customer pays a

sufficient amount, and if the vendor is sufficiently skilled, the

crucial role of customer participation is ignored.

Recent court decisions which promote unconscionability and stress

consumer rights and satisfaction obscure consumer responsibility.

These decisions relieve customers of an obligation to become involved

in the design and development of their systems. Systems development

contracts fail when they ignore the collaborative nature of complex

180

systems development. Court remedies to address systems development

contract failures should not impede or diminish the responsibility of

the customers to collaborate with vendors during the development of

systems which will impact the customers' organizations.

Levin argues that the relative bargaining powers of the parties

involved in a contract must be assessed to determine if a court ruling

should alter the terms of a contract. In complex developments, both

customers and vendors are both astute businesspersons. The argument

that a customer of a complex system is naive, is invalid. Decision

makers in organizations which have sufficient resources to sponsor

complex developments (and often employ lawyers) are not naive.

There are three important tests to determine whether a corrective
rule achieves the optimal balance between upholding freedom of
contract and compensating for imperfect market conditions: (1)
whether the scope of the proposed rule fits the scope of the
existing problem; (2) whether the effective life of the rule will
coincide with the duration of the problem; and (3) whether the
rule reduces the incidence of problematic transactions by
encouraging the free flow of information throughout the industry
[Levin, 1986, p. 2120].

When courts find unconscionability in situations where there is

disparity in technological sophistication between the parties, they may

be limiting the potential for improving the system development

situation [Levin, 1986, p. 2139]. Systems fail when they are not

useful. While vendors may be the tecnical experts, customers remain

the experts in useability.

Laws, such as the Molina Bill #1507 in California, attempt to

require the inclusion of warranties in all sales and leases of computer

products and in their advertised claims. The bill mandates that there

181

can be no time limitation on warranties, and that a sponsor can revoke

acceptance of a system at any time [Levin, 1986]. This bill, and other

similar attempts at protecting customers, will deteriorate the system

development process if it encourages customers to refrain from

participation, assured of their ability to sue the vendor if they do

not like the product.

7.5.2 Customer and Vendor—Interdependent or Collaborators?

The traditional systems development contract considers the customer

and vendor to be interdependent on each other. Interdependency

encourages each party to protect their own interests, to distrust the

motives of the other party, and to attempt to shift the balance of

rewards and costs to their own favor. Traditional development

contracts which are founded in interdependency promote disputes and

conflicts (see Table 7.3).

The development process of custom computer systems is burdened with

recurring problems that create disputes between the user and vendor,

and often lead to litigation. First, because customers generally know

less about complex computer systems than do vendors, customers tend to

play a passive role in the development process, relying on the skill of

the vendor. This reliance hinders the development process. The vendor

needs significant input from the user to design and develop a system

which fulfills the user's needs.

182

Table 7.3 Impact of Limited Viewpoints on Software Development.

Limited Viewpoint

1. Software
development contracts
are for goods or for
services.

2. A naive customer
buys a complex
product from an
expert developer.

3. Users define what,
developers define how.

4. When a development
is complete, its
value can be measured
be determining how
completely the final
system satisfies the
original functional
requirements.

5. The developer is
the only expert.

6. Critical contract
question is "How
should the proposed
system work?"

Overlooked Viewpoint

1. Software Development
is a process which
creates a system which
changes an organization.

2. Expert customers
share responsibility
and work with expert
system developers.

3. The how changes
the what.

4. The value of a
software development is
measured by how useful
the final system is to
the organization.

5. Successful system
developments requires
the expertise of users,
sponsors and developers.

6. Critical contract
question is "How should
the development process
be structured, managed,
and documented.

Impact of Limitation

1. The usefulness of
a system is ignored
when its impact is
being established.

2. Law perpetuates
the myth of "them"
against "us".

3. Users do not
contribute to the
system design.

4. When system is
logically correct
and operational,
conflict develops
as users, sponsors
and developers
have different
interpretations of
functionality.

5. Total development
cost and time
escalate greatly if
sponsors and users
do not evaluate a
system's usefulness
until after it is
operational.

6. When the focus
is on the final
product instead of
the interactive
development process,
the final system
may disrupt the
organization.

183

Even the technologically unsophisticated customer should play an

active role in defining requirements, making design decisions that

affect the system's cost or ease of use, and performing system testing

(see Table 7.3).

The customer's failure to participate in the systems development

process may promote customer-vendor disputes. The customer may develop

unrealistic expectations about the performance of the system, or the

vendor may misinterpret the customer's needs. The customer may not

understand the final system, thus reducing its effectiveness and

accuracy [Anderson, B., 1985, p. 1547].

7.5.3 Rolling Estoppel—Refuting the Right of the Vendor to Fail

"Rolling estoppel" is a concept which may be added into a software

development contract, particularly one which will extend over a lengthy

period of time. Rolling estoppel requires "a party to object at

certain intervals if it is aware of a problem or delay, regardless of

whether that party is at fault. A party that fails to object is

estopped from complaining later about that problem or delay" [Gordon

and Starr, 1985, p. 490]. Including rolling estoppel in a contract

supports collaboration among vendors and customers. The contract can

contain specific requirements for periodic project status meetings,

during which all parties must present information on each of those

delays and problems of which they are aware, regardless of the source

of the problem or of the person responsible for the problem. Rolling

184

estoppel in a computer contract forces any party who notices a problem

to identify that problem, regardless of the source of the problem

[Gordon and Starr, 1985].

If there is no clause in a development contract for rolling

estoppel, the sponsor may deliberately refrain from identifying

problems caused by a vendor, thereby guaranteeing the "right of a

vendor to fail." With traditional contracts, it can benefit the

customer to let the vendor fail. If the customer no longer wants the

system, the customer can subtly but deliberately refrain from

identifying misconceptions or other vendor errors. When these "errors"

are contained in the final system, the customer can sue the vendor for

creating an "unquality system." Political games thrive in contracted

developments.

7.6 Contract as Promise to Collaborate

The front-end planning with early test plan scenario approach of

this thesis considers the main contract of systems development to be a

contract for innovative collaboration. The underlying premise of this

approach is that customers and vendors promise to work together, to

respect the expertise of each other and to devote their energies,

skills and experiences to the collaborative effort (see Table 7.4.).

The concept of "contract as promise" [Fried, 1981] fits this approach.

185

Table 7.4 Questions Asked by a Front-End Planning Contract.

(1) How will the customer-vendor relationship be structured to
enable and enforce customer-vendor understanding, evaluation
and improvement throughout the development process,
particularly during the design of the software?

(2) What are the explicit responsibilities and contributions
required of the customers and vendors during the development?

(3) What are the operational scenarios the system must satisfy?
When will the system be "good enough" for the pre-operational
phases to end?

(4) How will customer-vendor responsibilities change over the
course of the development?

(5) What development structures and standards will be followed to
facilitate post-operational modifications?

7.6.1 Contracts for Complex Developments

Complex developments are inherently different from simple programs.

We have reached a stage, technologically, where we are able to create

monster systems which we are unable to either understand or control.

Many legal remedies attempt to improve development contracts.

These remedies are useful but insufficient. It is useful to improve

contracts for the coding activity. It is inappropriate to apply the

same concepts to the entire development. A common remedy for

development failures is to improve the accuracy, completeness and

clarity of functional specifications [Gordon and Starr, 1985, p. 493].

Improving specifications is necessary but insufficient. Interpre¬

tations of specifications will differ. Collaboration must occur

throughout the development process to ensure that vendors and customers

are sharing the same interpretations.

186

7.6.2 System Development Contracts as Promise among Experts

Law is based on underlying, unifying structures which are moral

principles. The Promise Principle, the respect for self-imposed

obligations, is fundamental to contract law [Fried, 1981]. The

traditional contract's premise is that the customer promises to pay the

vendor, and the vendor promises to fulfill the needs of the customer.

The front-end planning with early test plan scenarios contract

supplements these promises with additional, self-imposed obligations

which support vendor-customer collaboration.

Collaboration implies equality in expertise. Traditional contracts

try to help the "inexpert" customer. Mislow argues that new theories

of legal liability are needed to "provide an effective remedy for naive

users who purchase deficient computer systems" [Mislow, 1985, p. 129].

The approach used in this thesis rejects the concept of a "naive"

user. The user is the expert in the organization's operations. The

developer is the expert in computer technology. Together they

collaborate to develop a technical system which improves the

organization's operations (see Table 7.5).

7.6.3 Contracts for Correct, Useable and Useful Systems

The vendor in the traditional contract promises to create systems

which correctly meet the user's functional requirements. In the front-

end planning with early test plan scenarios contract, the vendor still

promises to build a "correct" system.

187

Table 7.5. Comparing Vendor and Sponsor Contract Obligations.

Traditional Contract Front-End Planning with Early
Test Plan Scenarios Contract

Vendor Obligations: Vendor Obligations:

1. Satisfy needs of customers
by using own expertise to
build a system which meets
the needs of the customer.

1. Satisfy needs of customers by
contributing own expertise
to the collaborative effort
focused on building a system
which meets customers' needs.

2. Ensure customers are able to
evaluate their needs.

3. Ensure customers are able to
understand their options.

4. Ensure customers are able to
evaluate the cost and
usefulness of each option.

5. Fully share personal skills,
expertise and experience to
enhance customers' efforts.

6. Ensure that customers are
aware of costs and benefits
of process, technical and
standards options.

7. Formally confirm agreements.

Customer Obligations: Customer Obligations:

1. Pay the vendor.
2. Give the vendor

sufficient information
to produce a system.

1. Pay the vendor.
2. Actively collaborate with

the vendor to uncover all
information on organization
necessary to design a system
which will improve its
operational environment.

3. Require and permit active
participation of all relevant
employees.

4. Understand the operational
impact of all proposals.

5. Evaluate the useability of
system proposals.

6. Improve the usefulness of
system proposals.

7. Formally confirm agreements.

188

In addition, the vendor and customer, both promise to collaborate

to develop a system which is not only correct, but is also useable and

useful. A useful system is often less elaborate, less complex, less

automated - designed to improve rather than to disrupt an

organization's operational environment.

When collaboration is an essential part of a contract, the quality

and success of the vendor's effort is measured by the fruitfulness of

customer’s collaboration. Vendors are successful when customers

participate fully in the development process, using the vendor's

expertise to produce the best possible system to improve the

operational environment of their organization.

7.6.4 Rules of Collaboration: "I Owe You" and "You Owe Me"

There are no widely accepted rules or conventions which govern

collective innovation in our current social and economic environment.

In the absence of generally accepted conventions, front-end planning

with early test plan scenarios offers a rigorous set of procedures and

rules to define and to enforce the obligations during the critical

first stages of the collaborative effort. Including a set of

procedures in systems development contracts offers a set of guidelines

for promoting, fulfilling and evaluating the collaborative obligations.

The contract can formally state the "I Owe You" and "You Owe Me"

obligations between customers and vendors. These mutual obligations

provide the structure and boundaries needed to guide the type of

innovative collaboration which produces systems which are correct,

useable and useful within the organization.

189

7.6.5 Principles of Restitution

There are two principles which apply to restitution when contracts

are considered willful promises. The victim of the breach is entitled

to no more or less gain than would have occurred had there been no

contract. The second principle is that restitution should cover

restitution for harm which was caused by one party relying on the other

party's promise [Fried, 1981, p. 17].

In a traditional development, the failure of a system to operate

correctly is a condition for restitution, with little consideration for

the causes of the system failure. Only if the customer withheld vital

information from the vendor, might the vendor not be held legally

responsible for the failure [Westermeier and Millstein, 1988, p. 85].

In a collaborative contract, restitution for the failure of the end

product requires many considerations. The contract is for the entire

development process. There is a great deal to be gained during the

process as well as from the final product. Failure of the final

product may instigate the rapid development of a much better product.

In 1982, a state agency, the SKILLS Center in Springfield,

Massachusetts, contracted with a software vendor for the development of

a computer system which could be used to match people who were being

trained by the agency with organizations who had available jobs. After

two years of work, the software vendor's system was inoperable. The

analyst who had been developing the system left the employ of the

vendor, leaving behind poorly documented software which had to be

scrapped. When the SKILLS Center contracted with another software

190

vendor, a single analyst produced a useful, operable system, which

fully met all of the agency's requirements, in less than two months

[Eastman, 1987].

The second vendor was not twelve times more skillful than the

initial vendor—but the customer had two years of experience, working

with the initial vendor, understanding the agency's needs and

evaluating the agency's options.

The two years contributed significantly to the successful merging

of a system into the agency's operations. The failure of the first

system simply delayed operations by two months. The new system,

designed from the beginning as a collaborative effort, benefitted from

the expertise developed by the agency during their two years of work

with the initial vendor.

The principle of restitution is dramatically altered by the

collaboration principle. The approach offered in this thesis (and its

explicit collaborative innovation), is not designed to protect either

customer or vendor in the event of system failure. The approach is,

instead, designed to prevent the failure itself. If either party

reneges on the opportunity and the responsibility for encouraging

active involvement and viable collaboration, the system development

process itself suffers.

A fundamental function of an front-end planning with early test

plan scenarios contract is the formal statement of obligations, of

lists of "I Owes." These obligations are rules of collaboration which

are formally included in a development contract to guide the

191

development, to measure each participant's contribution, and to be the

basis for evaluating restitution and culpability if the development

flounders.

Front-end planning with early test plan scenarios improves

traditional contracts by formalizing the relationship between the

customers and vendors. The agreement of the two parties to work

together is often labeled as "good will" or "care and concern." The

approach of this thesis formalizes intent into measureable actions,

reducing the ambiguity of traditional development contracts. The front-

end planning with early test plan scenarios approach is a set of rules

that structure the activities associated with the will of the parties.

The language of mistake suggests certainty is the paradigm, but
in fact contracts are largely a deliberate attempt to deal with
uncertainty_The straight forward point is that two parties,
though they seemed to have agreed, had not agreed in fact. And
this - not mistakes or risks - is at the heart of these cases.
There is just no agreement as to what is or turns out to be an
important aspect of the arrangement...The one basis on which
these cases cannot be resolved is on the basis of the agreement,
that is of the contract as promise. The courts cannot enforce
the will of the parties because there are no concordant wills.
Judgment must therefore be based on principles external to the
will of the parties" [Fried, 1981, pp. 59-60].

7.6.6 Vendor Malpractice

Many attempts to address the tremendous burden of systems

development ignore the complexity, the difficulty and the extreme

effort which must be committed to the development of complex systems.

This commitment is not trivial, it requires a level of intensity and

expertise which is not amenable to attempts to find easy solutions.

192

One "easy" solution which is becoming increasingly popular, is an

attempt to hold the systems developer professionally liable for systems

development failures. The systems developer would be subject to the

same malpractice suits as the surgeon [Mislow, 1985, p. 129].

Professionals find this particular movement a serious threat to

improving the development process. A doctor's skills and training is

based on knowing how the human body functions and on understanding

techniques for improving its functions. In successful software

developments, there is collaboration between three groups: users,

sponsors and developers.

When developments fail, customers lose not only the resources given

to the vendors, but other resources spent as the organization prepared

its people, machines and other systems for the new acquisition. When

systems are delayed, there are additional costs for developing

temporary operations to carry the organization until the system is

available. Frequently, these temporary operations become fully

integrated into the operational environment, totally eliminating the

need for the delayed system. The complex system, finally operational

after lengthy delays and massively escalated costs, is no longer needed

and is scrapped.

Courts struggle with allocating financial responsibility for the

billions of dollars spent on faulty developments [Westermeier and

Millstein, 1988]. The legal profession has fascinating, new situations

to explore. But the process of developing systems is not improving.

193

The front-end planning with early test plan scenarios approach

requires active collaboration between vendors and customers, is not an

easy way out of the current, very expensive turmoil. Participants in

the development process have to be proactive, they have to plan, they

have to listen, they have to evaluate, they have to improve. Both

customers and vendors have to respect each other while actively

contributing their expertise. Customers and vendors both have to work

extremely hard, with collaborative innovation, to produce a successful

system.

CHAPTER 8

IMPROVING SYSTEMS DEVELOPMENT IN THE 1990'S, AND BEYOND

Where we are going, we don't know. But we are going there.
Philippe Kahn.

People accomplish more when they work together than when they work

apart. Management's task is "to make people capable of joint

performance, to make their strengths effective and their weaknesses

irrelevant" [Drucker, 1988, p. 75]. Cultural diversity and

technological complexity will make working together in the 1990's even

more critical and even more challenging. Individuals will need to

assume personal responsibility, be creative, and collaborate with

others [Reich, 1988].

Prior to the Industrial Revolution, craftspeople and tradespeople

worked directly with their customers, providing customized services to

meet unique needs. The Industrial Revolution, especially the process

of mass production, created separate, well-barricaded groups.

The Customer, the Salesperson, the Planner, the Designer, the

Worker, the Carrier and the Accountant were separated from each other.

The Planner selected Customers. Salespersons determined Customer's

needs. Designers created solutions to meet the Salesperson's deter¬

mination of the Customer's needs. Workers built products according to

the Designer's specifications. Carriers delivered the products to the

Customer. Accountants handled payments and receipts.

195

Technological possibilities make this separatist philosophy

obsolete. To meet world-wide competition, American organizations are

incorporating "world class manufacturing" techniques [Schonberger,

1986] which promote collaboration and innovation to increase quality,

flexibility and responsiveness.

Computer technologies allow small organizations to succeed in world

competition. As companies re-establish close ties between producers

and customers, they shift their focus away from "product features back

to service to customers" [Hayes and Jaikumar, 1988, p.81].

In the 1980's, communication between customers and developers of

complex systems remains separatist. Customer-developer interaction

focuses on establishing product features rather than on collaboration

and service. This focus increases costs, misunderstandings, and

conflict during the system development process.

Disparate cultures, education, work situations, social status, and

languages exacerbate communication difficulties between developers and

users of computer systems. To make matters worse, programmers and

system developers traditionally work alone, believing that independence

is essential for creativity.

At the end of the 1980's, most systems developments fail. Social,

technical and economic challenges of the 1990's are forcing us to find

better ways of managing this increasingly difficult process.

The early test plan scenarios of this thesis encourage us to work

together, while preserving our individual freedom to create—it is an

effective tool for the 1990's and beyond.

BIBLIOGRAPHY

Abbott, R.J. and Moorhead, D.K. "Software Requirements and
Specifications: A Survey of Needs and Languages." The Journal of
Systems and Software. Vol 2., 1981, pp. 297-316.

Abelson, Robert P. "Psychological Status of the Script Concept."
American Psychologist, July 1981, pp. 715-729.

Adelson, Beth. "When Novices Surpasses Experts: The Difficulty of a
Task May Increase With Expertise." In Human Factors in Software
Development, ed. Bill Curtis. IEEE Computer Society Order Number
577. Los Angeles: IEEE Computer Society Press, 1985, pp. 55-67.

Adelson, Beth and Soloway, Elliot. "The Role of Domain Experience in
Software Design." In Human Factors in Software Development,
ed. Bill Curtis. IEEE Computer Society Order Number 577.
Los Angeles: IEEE Computer Society Press, 1985, pp. 233-251.

Agresti, William W. New Paradigms for Software Development.
Washington: IEEE Computer Society Press, 1986.

Agusa, Kiyoshi, Kishimoto, Yoshinori and Ohno, Yutaka. "A Supporting
System for Software Maintenance." In Teichroew, D. and G. David,
eds. System Description Methodologies, eds. D. Teichroew and G.
David. Amsterdam: North-Holland, 1985, pp. 481-501.

Alavi, Maryam. "An Assessment of the Prototyping Approach to
Information Systems Development." Communications of the ACM,
Vol. 27, No. 6, pp. 556-563.

Alexander, H. "ECS - A technique for the formal specification and
rapid prototyping of human-computer interaction." In People and
Computers: Designing For Usability. Cambridge: Cambridge
University Press, 1986, pp. 157-179.

Alford, Mack. "SREM at the Age of Eight; The Distributed Computing
Design System." Computer, April 1985, pp. 36-54.

Ambriola, Vincenzo and Notkin, David. "Reasoning About Interactive
Systems." IEEE Transactions on Software Engineering, Vol. 14,
No. 2, February 1988, pp. 272-276.

Anderson, Brian C. "A Comprehensive Statute of Limitations for
Litigation Arising from Defective Custom Computer Systems."
Stanford Law Review, July, 1985, pp. 1539-1572.

197

Anderson, Julie. "Tailored Applications." PC Tech Journal, Vol 6
No. 8, 1988, pp. 9-10.

Anderson, Nancy S. and Olson, Judith Reitman. eds. Methods For
Designing Software to Fit Human Needs and Capabilities.
Proceedings of the Workshop on Software Human Factors. Washington:
National Academy Press, 1985.

Anderson, S. "Proving properties of interactive systems." In People
and Computers: Designing For Usability. Cambridge: Cambridge
University Press, 1986, pp. 402-416.

Arango, Guillermo and Freeman, Peter. "Modeling Knowledge for Software
Development." IEEE Software, Mar. 1985, pp. 63-66.

Attewell, Paul and Rule, James. "Computing and Organizations: What We
Know and What We Don't Know." Communications of the ACM,
Dec. 1984, Vol. 27, No. 12, pp. 1184-1192.

Avizienis, A. "Discussion Session 3: Reliability." In Methodologies
For Computer System Design. Ed. Wolfgang K. Giloi and Bruce D.
Shriver. Amsterdam:North-Holland, 1985, pp. 161-164.

Awani, Alfred 0. Data Processing Project Management. Princeton:
Petrocelli Books, 1986.

Babb, II, Robert G. "A Data Flow Approach to Unifying Software
Specification, Design, and Implementation." In Third
International Workshop on Software Specification and Design.
Washington, D.C.: IEEE Computer Society Press, 1985, pp. 9-13.

Balbin, I., Poole, P.C., and Stuart, C.J. "On The Specification and
Manipulation of Forms." In Teichroew, D. and G. David, eds.
System Description Methodologies, eds. D. Teichroew and G. David.
Amsterdam: North-Holland, 1985, pp. 239-252.

Balzer, R., Green, C. and Cheatham, T. "Software Technology in the
1990s Using a New Paradigm." Computer, Nov. 1983. pp. 39-45.

Balzer, R. et al., "Operational Specification as a Basis for
Specification Validation," Theory and Practice of Software
Technology. D. Ferrari, M. Bologani and J. Goguen, eds., North-
Holland, Amsterdam, 1983.

Barlow, Kenneth J. "Effective Management of Engineering Design."
Journal of Management in Engineering, Vol. 2, No. 1, Jan. 1985,
pp. 51-66.

198

Basili, Victor R. "Changes and Errors as Measures of Software
Development." In Tutorial on Models and Metrics for
Software Management and Engineering. Ed. V.R. Basili. New York:
IEEE Computer Society, 1980a.

_. "Data Collection, Validation and Analysis."
In Tutorial on Models and Metrics for Software Management and
Engineering. Ed. V.R. Basili. New York: IEEE Computer Society,
1980b.

_. "An Investigation of Human Factors in Software
Development." In Tutorial on Models and Metrics for
Software Management and Engineering. Ed. V.R. Basili. New York:
IEEE Computer Society, 1980c.

_. "Product Metrics." In Tutorial on Models and
Metrics for Software Management and Engineering. Ed. V.R. Basili.
New York: IEEE Computer Society, 1980d.

_. "Quantitative Software Complexity Models: A Panel
Summary." In Tutorial on Models and Metrics for Software
Management and Engineering. Ed. V.R. Basili. New York:
IEEE Computer Society, 1980e.

_. "Resource Models." In Tutorial on Models and Metrics
for Software Management and Engineering. Ed. V.R. Basili.
New York:IEEE Computer Society, 1980f.

_. "Tailoring SQA to fit your own life cycle." IEEE
Software, March 1988, pp. 87-88.

_. "The TAME Project: Towards Improvement-Oriented
Software Environments." IEEE Transactions on Software Engineering,
Vol.14, No. 6, June 1988, pp. 758-773.

_. ed. Tutorial on Models and Metrics for Software
Management and Engineering. Papers presented COMPSAC80.
New York:IEEE Computer Society, 1980g.

Basili, Victor R. and Perricone, Barry T. "Software Errors and
Complexity." Communications of the ACM, Jan 1984, Vol. 27 No. 1,
Jan. 1984, pp. 42-52.

Basili, Victor R. and Rombach, H. Dieter. "Implementing Quantitative
SQA: A Practical Model." IEEE Software, September 1987, pp. 6-8.

Basili, Victor R. and Weiss, D.M. "Evaluation of a Software
Requirements Document by Analysis of Change Data." Proceedings of
the 2nd International Conference on Software Engineering, March,
1981, pp. 314-324.

199

Basili, Victor R. and Zelkowitz, Marvin V. "Analyzing Medium-scale
Software Development." In Tutorial on Models and Metrics for
Software Management and Engineering. Ed. V.R. Basili. New York:
IEEE Computer Society, 1980.

Bate, R. R. and Ligler, G. T. "An Approach to Software Testing
Methodology and Tools, " Proceedings of COMPSAC 78. November 13-
16, 1978. Chicago, IL, pp. 476-480.

Beck, Larry. "Carousels Boost Productivity by 60%." Modern Materials
Handling, February 1987, pp. 58-61.

_• "Here's How We Stayed Within 10% of Budget." Modern
Materials Handling, May 1986, pp. 63-64.

Berry, Daniel and Berry, Orna. "The Programmer-Client Interaction In
Arriving at Program Specifications: Guidelines and Linguistic
Requirements." In Teichroew, D. and G. David, eds. System
Description Methodologies, eds. D. Teichroew and G. David.
Amsterdam: North-Holland, 1985, pp. 275-293.

Bersoff, Edward H. "Elements of Software Configuration Management."
IEEE Transactions on Software Engineering, Vol. SE-10, No. 1,
Jan. 1984, pp. 79-87.

Bielski, J. P. and Blankertz, W. H. "The General Acceptance Test
System (GATS)." Proceedings of COMPCON 77, Feb 28 - Mar 3, 1977,
San Francisco, pp. 207-210.

Bigelow, Robert P. "The Challenge of Computer Law." Western New
England Law Review. Vol. 7, Issue 3, 1985, pp. 397-404.

Birrell, N. D. and Ould, M. A. A Practical Handbook for Software
Development. Cambridge: Cambridge University Press, 1985.

Bjorn-Andersen, Niels. In Human-Computer Interaction-INTERACT
*84. Ed. B. Shackel. Amsterdam:Elsevier Science Publishers B.V.,
(North-Holland), 1985, pp. 839-846.

Blackler, F. H. M. and Brown, C. A. Job Redesign and Management
Control: Studies in British Leyland and Volvo. Westmead, England:
Saxon House, 1978.

Blum, Bruce I. "On How We Get Invalid Systems." In Third
International orkshop on Software Specification and Design.
Washington, D.C.: IEEE Computer Society Press, 1985, pp. 20-21.

_. "A Paradigm for Developing Information Systems." IEEE
Transactions on Software Engineering, Vol. SE-13, No. 4,
April 1987, pp. 432-439.

200

Bockrath, Joseph. Dunham and Yount's Contracts, Specifications and
Law for Engineers. New York: McGraw-Hill, Inc., 1986.

Bodart, Francois, Hennebert, Anne-Marie, Leheureux, Jean-Marie,
Masson, Olivier, Pigneur, Yves. "DSL/DSA: A System For
Requirements Specification, Prototyping and Simulation." In
Teichroew, D. and G. David, eds. System Description
Methodologies, eds. D. Teichroew and G. David. Amsterdam: North-
Holland, 1985, pp. 203-218.

Boehm, Barry W. "Industrial Software Metrics Top 10 List". IEEE
Software. Sept. 1987, p. 84.

_. "Software Design and Structure.", Horowitz, ed.
Practical Strategies for Developing Large Software Systems.
Reading, MA: Addison-Wesley, 1975.

_. "Software Engineering." IEEE Transactions on
Computers, Vol. C-25, No. 12, Dec. 1976, pp. 1226-1241.

_. "Software Engineering Economics." IEEE Transactions
on Software Engineering, Vol SE-10, No.l, Jan. 1984a, pp. 4-21.

_. "Software and Its Impact: A Quantitative Assessment".
DATAMATION, May, 1973, pp. 48-59.

_. "Verifying and Validating Software Requirements and
Design Specifications." IEEE Software, Jan. 1984b, pp. 75-88.

Boehm, Barry W., Brown, J.R., Lipow, M. "Quantitative Evaluation of
Software Quality." In Tutorial on Models and Metrics for
Software Management and Engineering. Ed. V.R. Basili. New York:

IEEE Computer Society, 1980.

Boehm, Barry W., Gray, Terrence E. and Seewaldt, Thomas. "Prototyping
Versus Specifying:A Multiproject Experiment." In Human Factors in
Software Development, ed. Bill Curtis. IEEE Computer Society Order
Number 577. Los Angeles: IEEE Computer Society Press, 1985,

pp. 298-311.

Boehm, Barry W., Standish, Thomas A. "Software Technology in the
1990's: Using an Evolutionary Paradigm." Computer, Nov. 1983,

pp. 30-37.

Boland, Richard J. "Control, Causality and Information System
Requirements." Accounting, Organizations and Society, Vol. 4,

No. 4, 1979, pp. 259-272.

201

Borgida, Alexander, Greenspan, Sol and Mylopoulos, John. "Knowledge
Representation as the Basis for Requirements Specifications."
Computer, April 1985, pp. 82-91.

Botting, Richard J. "An Eclectic Approach to Software Engineering."
IEEE Software, Mar. 1985, pp. 25-29.

Boyd, Donald L. and Pizzarello, Antonio. "Introduction to the WELLMADE
Design Methodology." IEEE Transactions on Software Engineering,
Vol. SE-4, No. 4, July 1978, pp. 276-282.

Branstad, Martha and Powell, Patricia B. "Software Engineering
Project Standards." IEEE Transactions on Software Engineering,
Vol. SE-10, No. 1, Jan. 1984, 73-78.

Bratman, Harvey and Court, Terry. "The Software Factory." Computer,
May 1975, pp. 28-37.

Brooke, J.B., and Duncan, K.D. "Experimental Studies of Flowchart Use
at Different Stages of Program Debugging." In Human Factors in
Software Development, ed. Bill Curtis. IEEE Computer Society Order
Number 577. Los Angeles: IEEE Computer Society Press, 1985
pp. 335-364.

Brooks, Jr., Frederick P. "No Silver Bullet - Essence and Accidents of
Software Engineering." Computer, April, 1987, pp. 10-19.

Brooks, Ruven E. "Studying Programmer Behavior Experimentally: The
Problems of Proper Methodology." In Human Factors in Software
Development, ed. Bill Curtis. IEEE Computer Society Order Number
577. Los Angeles: IEEE Computer Society Press, 1985, pp. 682-688.

Bryan, William and Siegel, Stanley. "Making Software Visible,
Operational, and Maintainable in a Small Project Environment."
IEEE Transactions on Software Engineering, Vol. SE-10, No.l,

Jan. 1984, 59-67.

Buckley, Fletcher J. "Software Quality Assurance." IEEE Transactions
On Software Engineering, Vol. SE-10, No. 1, Jan. 1984, pp. 36-41.

Burrell, Gibson and Morgan, Gareth. Sociological Paradigms and
Organisational Analysis. Portsmouth, New Hampshire: Heinemann

Educational Books Inc., 1985.

Card, David N., McGarry, Frank E. and Page, Gerald T. "Evaluating
Software Engineering Technologies." IEEE Transactions on Software
Engineering, Vol. SE-13, No. 7, July 1987, pp. 845-851.

Card, D. N. and Agresti, W. W. "Measuring Software Design Complexity."
The Journal of Systems and Software 8, 1988, pp. 185-197.

202

Carpenter, M.B. and Hallman, H. K. "Quality Emphasis at IBM's
Software Engineering Institute." IBM Systems Journal, Vol. 24,
Nos. 3/4, 1985, pp. 121-133.

Carrier, Roger E., Hensey, Melville and Popovich, Rich. "Anatomy of a
Successful Productivity Effort." Journal of Management in
Engineering, Vol. 2, No. 1, Jan. 1985, pp. 47-55.

Carroll, J. M. and Thomas, John C. "Metaphor and the Cognitive
Representation of Computing Systems." IEEE Transactions on
Systems, Man and Cybernetics, Vol. 12, 1982, pp. 107-116.

Carroll, John M., Thomas, John C., Miller, Lance A., Friedman, Herman
P. "Aspects of Solution Structure in Design Problem Solving." In
Human Factors in Software Development, ed. Bill Curtis. IEEE
Computer Society Order Number 577. Los Angeles: IEEE Computer
Society Press, 1985, pp. 272-283.

Carroll, John M., Thomas, John C. and Malhotra, Ashok. "Presentation
and Representation in Design Problem Solving." In Human Factors
in Software Development, ed. Bill Curtis. IEEE Computer Society
Order Number 577. Los Angeles: IEEE Computer Society Press, 1985,
pp. 261-271.

Carroll, Paul B. "Computer Glitch - Patching Up Software Occupies
Programmers and Disables Systems." Wall Street Journal,
January 22, 1989, pp. 1, 13.

Cavano, Joseph P. and Frank S. LaMonica. "Quality Assurance in Future
Development Environments." IEEE Software, September 1987,
pp. 26-34.

Chandrasekharan, M., Dasarathy, B. and Kishimoto, Z.. "Requirements-
Based Testing of Real-Time Systems: Modeling for Testability."
Computer, April, 1985, pp. 71-80.

Chikofsky, Elliot J. "Application of an Information Systems Analysis
and Development Tool to Software Maintenance." In Teichroew, D.
and G. David, eds. System Description Methodologies, eds. D.
Teichroew and G. David. Amsterdam: North-Holland, 1985,
pp. 503-516.

_. "Software Technology People Can Really Use." IEEE
Software, March 1988, pp. 8-10.

Chikofsky, Elliot J. and Rubenstein, Burt L. "CASErReliability
Engineering for Information Systems." IEEE Software, March 1988,

p. 11-17.

203

Cho, Chin-Kuei. Quality Programming, Developing and Testing Software
With Statistical Quality Control. New York: John Wiley & Sons,
Inc., 1987.

Chretien-Dar, Barbara. "Uniform Commercial Code: Disclaiming the
Express Warranty in Computer Contracts - Taking the Byte Out of
the UCC." Oklahoma Law Review, Fall 1987, Vol. 40 No. 3,
pp. 471-500.

Chu, Yaohan. Software Blueprint and Examples. Lexington, MA: Lexington
Books, 1982.

Chumura, Louis J. and Ledgard, Henry F. Cobol With Style,
Programming Proverbs. Rochelle, N.J.: Hayden Book Company, Inc,
1976.

Cohen, B., Harwood, W. T. and Jackson, M. I. The Specification of
Complex Systems. Reading, MA: Addison-Wesley Publishing Company,
1986.

Collingridge, David. The Social Control of Technology. New York: St.
Martin's Press, Inc., 1980.

Cox, Brad J. Object Oriented Programming, An Evolutionary Approach.
Reading, MA: Addison Wesley Publishing Company, 1987.

Cunningham, R.J., Finkelstein, A., Goldsack, S., Maibaum, T. and
Potts, C. In Third International Workshop on Software
Specification and Design. Washington, D.C.: IEEE Computer Society
Press, 1985, pp. 186-191.

Curtis, Bill. "By the Way, Did Anyone Study Any Real Programmers?"
In Empirical Studies of Programmers. Eds. Soloway, Elliot and
Sitharama Iyengar. Norwood, New Jersey: Ablex Publishing
Corporation, 1986, pp. 256-262.

_. "Foundations for a Measurement Discipline." IEEE
Software, November 1987, pp. 89, 92.

Curtis, Bill, ed. Human Factors in Software Development. IEEE Computer
Society Order Number 577. Los Angeles: IEEE Computer Society
Press, 1985.

Dagwell, Ron, and Webber, Ron. "System Designers' User Models: A
Comparative Study and Methodological Critique." Communications
of the ACM, Nov. 1983, Vol. 26, No. 11, pp. 987-997.

204

Daly, Edmund B. "Management of Software Development." IEEE
Transactions on Software Engineering. May 1977, pp. 229-242.

David, G. "Attributes of Sustem Design Methods." In Methodologies For
Computer System Design. Ed. Wolfgang K. Giloi and Bruce D.
Shriver. Amsterdam:North-Holland, 1985, pp. 333-338.

Davis, Alan M. "The Design of a Family of Application-Oriented
Requirements Languages." Computer, May 1982, pp. 21-28.

deKleer, J. and Brown, J. S. "Assumptions and Ambiguities in
Mechanistic Mental Models." In D. Gentner and A. S. Stevens, eds..
Mental Models. Hillsdale, NJ: Lawrence Erlbaum, 1983.

Demetrovics, J., Knuth, E. and Rado, P. "Specification Metasystems."
Computer, April 1982, pp. 20-35.

DeMillo, Richard A., McCracken, W. Michael, Martin, R. J.,
Passafiume, John F. Software Testing and Evaluation. Menlo Park:
TheBenjamin/Cummings Publishing Company, Inc., 1987.

DeRemer, F. and Kron, H. H. "Programming-in-the-Large Versus
Programming-in-the-Small." IEEE Trans. Software Engineering,
June, 1976.

DeSena, Art. "Design for Testability - DOD Drafts Integrated
Diagnostics Into Service." Computer Design, April 1, 1988,
pp. 90-91.

Dietz, Jan. "Towards an Information System Development Environment."
In Teichroew, D. and G. David, eds. System Description
Methodologies, eds. D. Teichroew and G. David. Amsterdam: North-
Holland, 1985, pp. 27-34.

Digital Consulting Inc. Catalog of Seminars and Conferences. Andover,
MA: Digital Consulting Inc., 1988.

Doherty, W. J. and Pope, W. G. "Computing as a Tool For Human
Augmentation." IBM Systems Journal, Vol. 24, Nos. 3/4, 1985,
pp. 306-320.

Dreyfus, Hubert L. and Dreyfus, Stuart E. Mind Over Machine, The
Power of Human Intuition and Expertise in the Era of the Computer.
New York: The Free Press, 1986.

Drucker, Peter. "Management and the World's Work." Harvard Business
Review, September-October 1988, No.5, pp. 65-76.

205

Druffel, Larry E., Redwine, Jr., Samuel T. and Riddle, William E.
"The STARS Program: Overview and Rationale." Computer, Nov. 1983,
pp. 21-29.

Duffy, T.M., Curran, T. E. and D. Sass, D. "Document Design for
Technical Job Tasks: An Evaluation." Human Factors. V. 25, 1983,
pp. 143-160.

Dunham, J.R. and Druesi, E. "The Measurement Task Area." Computer,
Nov. 1983, pp. 47-54.

Eastman, D.J. "The Game of the Gods: A Mosaic of Views on Systems
Development." Research Paper for PhD Studies. 1987.

Eastman, D.J. "The Struggle to Automate: A Case Study." Research
Paper for PhD Studies. 1986.

Eberhart, Jonathan. "The Sayings of Science." Science News, Vol.133,
January 30, 1988, pp. 72-73.

Elden, Max. "Sociotechnical Systems Ideas as Public Policy in
Norway: Empowering Participation Through Worker-Managed
Change." The Journal of Applied Behavioral Science, Vol. 22,
No. 3, 1986, pp. 239-255.

Endres, Albert. "An Analysis of Errors and Their Causes in System
Programs." In Tutorial on Models and Metrics for Software
Management and Engineering. Ed. V. R. Basili. New York:
IEEE Computer Society, 1980.

Epple, Wolfgang K. and Koch, Guenter R. "Specification of Process
Control Systems with SATS." In Teichroew, D. and G. David, eds.
System Description Methodologies, eds. D. Teichroew and G. David.
Amsterdam: North-Holland, 1985, pp. 141-155.

Essink, Leo J.B. "A Modelling Approach to Information System
Development." In Information Systems Design Methodologies:
Improving the Practice. Eds. T. W. Olle, H. G. Sol and A. A.
Verrijn-Stuart. Amsterdam: Elsevier Science Publishers B. V.,
1986, pp. 55-84.

Estrin, G. "The Story of SARA." In Methodologies For Computer System
Design. Ed. Wolfgang K. Giloi and Bruce D. Shriver. Amsterdam:
North-Holland, 1985, pp. 29-46.

Evans, Michael W. and Marciniak, John J. Software Quality Assurance
and Management. New York: John Wiley & Sons, 1987.

206

Eveking, H. "A Structured Methodology for the Verification of
Multilevel Hardware Descriptions." In Methodologies For Computer
System Design. Ed. Wolfgang K. Giloi and Bruce D. Shriver.
Amsterdam: North-Holland, 1985, pp. 71-86.

Felker, D. C., ed. Document Design: A Review of the Relevant
Research. American Institute for Research. Technical Report
75002-4/80, Washington, D.C., 1980.

Fickas, Stephen and Nagarajan, P. "Critiquing Software
Specifications." IEEE Software, November 1988, pp. 37-47.

Fitter, M. and Green, T. R. G. "When do Diagrams make Good Computer
Languages?" In Human Factors in Software Development, ed. Bill
Curtis. IEEE Computer Society Order Number 577. Los Angeles: IEEE
Computer Society Press, 1985, pp. 374-395.

Floyd, Christiane. "On the Relevance of Formal Methods to Software
Development." In Formal Methods and Software Development, eds.
Hartmut Ehrig, Christiane Floyd, Maurice Nivat and James Thatcher.
Berlin: TAPsoft, 1985, pp. 1-11.

Forman, Fred L. and Hess, Milton S. "Form Precedes Function."
Computerworld, September 5, 1988, pp. 65-70.

Frank, Geoffrey A., Redwine, Jr., Samuel T. and Squires, Stephen L.
"The Systems Task Area." Computer, November, 1983, pp. 71-76.

Fraser, S.D. and Silvester, P. P. "An Interactive Empirical Approach
to the Validation of Software Package Specifications." In Third
International Workshop on Software Specification and Design.
Washington, D. C.: IEEE Computer Society Press, 1985, pp. 60-62.

Freed, Roy N. "Products Liability in the Computer Age." Jurimetrics
Journal, Summer, 1977, pp. 270-285.

Fried, Charles. Contract as Promise A Theory of Contractual
Obligation. Cambridge: Harvard University Press, 1981.

Fryer Sandra R. "Reviewing Software Specifications." In Third
International Workshop on Software Specification and Design.
Washington, D.C.: IEEE Computer Society Press, 1985, pp. 67-69.

Gehani, Narain and McGettrick, Andrew. Software Specification
Techniques. Reading, MA: Addison-Wesley Publishing Company, 1986.

207

Giese, Clarence. "Partitioning Considerations for Complex Computer
Based Weapon Systems." The Journal of Systems and Software.
Vol. 1, 1979, pp. 3-18.

Gilb, Tom. "The Pre-Natal Death of the CIS ProjectrA Software Disaster
Story." The Journal of Systems and Software 8, 1988, pp. 161-163.

Giloi, W.K. and Shriver, B. D. "An Overview of the Computer System
Design Process." In Methodologies For Computer System Design. Ed.
Wolfgang K. Giloi and Bruce D. Shriver. Amsterdam:North-Holland,
1985, pp. 1-10.

Glass, Robert L. "Software Productivity Improvement: Who's Doing
What?" The Journal of Systems and Software 8, 1988, pp. 159-160.

Goddard, Walter E. "How to use 'People Power' to Upgrade Your
Operations." Modern Materials Handling, December 1987,
pp. 67-69.

Gold, Bela. "Computerization in Domestic and International
Manufacturing." California Management Review, Winter, 1989,
Vol. 31, No. 2, p. 129-143.

Goldberg, R. "Software Engineering: An Emerging Discipline." IBM
Systems Journal, Vol. 25, 1986, pp. 334-353.

Goos, G. and Hartmanis, J. eds. Lecture Notes in Computer Science
186 Formal Methods and Software Development. Heidelberger:
Springer-Verlag, 1985.

Gordon, Mark L. and Starr, Steven B. "Emerging Issues in Computer
Procurements." Computer Law Journal, Vol. VI, No. 1, Summer 1985,
pp. 119-142.

_. "Software Development Contracts
and Consulting Arrangements: A Structure for Enforceability and
Practicality." Western New England Law Review, Vol. 7, Issue 3,
1985, pp. 487-853.

Gould, John D. and Lewis, C. "Designing for Usability of Key
Principles and What Designers Think." Communications of the ACM
28. New York: Association of Computing Machinery, 1985,
pp. 300-311.

Gould, John D. and Boies, Stephen J. "Human Factors Challenges in
Creating a Principal Support Office System—The Speech Filing
System Approach." ACM Transactions on Office Information Systems,
Vol. 1, No. 4, October 1983, pp. 273-298.

208

___. "Speecch Filing System.” IBM
Systems Journal, Vol. 23, No. 1, 1984, pp. 65-66.

Gould, L. and Finzer, W. "Programming by Rehearsal.” Byte, June,
1984, pp. 187-210.

Grady, Robert B. "Measuring and Managing Software Maintenance.” IEEE
Software, September 1987, pp. 35-45

Gray, David. "The Formal Specification of a Small Bookshop
Information System." IEEE Transactions on Software Engineering
Vol. 14, No. 2, February 1988, pp. 263-272.

Gruman, Galen. "Software engineers face fundamental challenges."
IEEE Software, November 1987, pp. 93-96.

Gueth, R. and Kriz, J. "Semiformal Specification and Design of
Multilevel Computer Systems." In Methodologies For Computer
System Design. Ed. Wolfgang K. Giloi and Bruce D. Shriver.
AmsterdamrNorth-Holland, 1985, pp. 273-290.

Haas, Volkmar H. and Koch, Gunter R. "Application-Oriented
Specifications. Computer, May 1982, pp. 10-11.

Hamilton, M. and Zeldin, S. "The Relationship Between Design and
Verification." The Journal of Systems and Software, Vol. 1, 1979,
pp. 29-56.

Hanau, P. R. and Lenorovitz, D. R. "A Prototyping and Simulation
Approach to Interactive Computer System Design." in Proceedings
of the 17th Design Automation Conference, Minneapolis, Minn.
1980, pp. 23-25.

Haney, F. M. "What It Takes to Make MAC, MIS and ABM Fly". DATAMATION,
June, 1974, pp. 168-169.

Harrison, M.D. and Monk, A. F. eds. People and Computers: Designing
For Usability. Cambridge: Cambridge University Press, 1986.

Hashimoto, Keiji. "System Analysis by Extended Data Flow Diagram with
Events and Timing.' In Proceedings COMPSAC87. New York: Computer
Society Press, 1987, pp. 117-123.

Hayes, Robert H. and Jaikumar, Ramchandran. "Manufacturing's Crisis:
New Technologies, Obsolete Organizations." Harvard Business
Review, September-October 1988, No.5, pp. 77-85.

Head, R. V. "Automated System Analysis." DATAMATION, August 15, 1971,
pp. 22-24.

209

Hein, K. P. "Information System Model and Architecture Generator."
IBM Systems Journal, Vol. 24, Nos. 3/4, 1985, pp. 213-235.

Heninger, K. L. "Specifying Software Requirements for Complex Systems:
New Techniques and Their Applications." IEEE Transactions of
Software Engineering, Vol. SE-6(1), Jan 1982, pp. 2-12.

Henry, G. G. "IBM Small-System Architecture and Design—Past, Present
and Future." IBM Systems Journal, Vol. 25, 1986, pp. 321-333.

Hewett, T. T. "The Role of Iterative Evaluation in Designing Systems
for Usability." In People and Computers: Designing For
Usability. Cambridge: Cambridge University Press, 1986,
pp. 196-214.

Hirsch, P. "GAO Hits Wimmix Hard; FY'72 Funding Prospects Fading
Fast." DATAMATION, March 1, 1971, p. 41.

Hirschhein, R., Land, F. and Smithson, S. In Human-Computer
Interaction-INTERACT '84. Ed. B. Shackel. Amsterdam: Elsevier
Science Publishers B.V., (North-Holland), 1985, pp. 855-860.

Hoeker, D.G. and Pew, R. W. "User Input to the Design and Evaluation
of Computer-Assisted Service Delivery." Report # 4358.
Cambridge: Bolt Beranek and Newman, Inc., 1980.

Hoffnagle, G. F. and Beregi, W. E. "Automating the Software
Development Process." IBM Systems Journal, Vol. 24, Nox. 3/4,
1985, pp. 102-120.

Howden, William E. "The Theory and Practice of Functional Testing."
IEEE Software. September 1985, pp. 6-17.

Humphrey, Watts S. "Characterizing the Software Process: A Maturity
Framework." IEEE Software, March 1988, pp. 73-79.

_. "The IBM Large-Systems Software Development
Process: Objectives and Direction." IBM Systems Journal, Vol. 24,
Nos. 3/4, 1985, pp. 76-78.

_. Managing for Innovation: Leading Technical People,
Englewood Cliffs, N.J.: Prentice-Hall, 1987.

Humphrey, Watts S. and Kitson, D. H. "A Method for Assessing the
Software Engineering Capability of Contractors." Tech. Report SEI-
87-TR-23, Pittsburgh: Software Engineering Institute, Sept. 1987.

Hymowitz, Carol. "One Firm's Bid to Keep Blacks, Women. WalJ;—Street
Journal, February 16, 1989, p. Bl.

210

Ikadai, Mieko, Ikadai, Yukio and Nobe, Yoshikazu. "Requirements
Specification with M-Box." In Third International Workshop on
Software Specification and Design. Washington, D.C.: IEEE Computer
Society Press, 1985, pp. 109-113.

"Increasing Productivity With Integrated Handling Systems." Modern
Materials Handling, Dec. 10, 1984, pp. 53-57.

Information Systems Design Methodologies: A Comparative Review. Olle,
E. W., Sol, H. G. and Verrijn-Stuart, A. A., eds. Amsterdam:
North-Holland, 1982.

Jacob, Robert J.K. "Using Formal Specifications in the Design of a
Human-Computer Interface." Communications of the ACM, April 1983,
Vol. 26, No. 4, pp. 259-264.

Jick, T. D. "Mixing Qualitative and Quantitative Methods:
Triangulation in Action." In Method and Analysis in
Organizational Research, eds. Bateman, Thomas S. and Gerald R.
Ferris. Reston, Virginia: Reston Publishing Company, Inc., 1984,
pp. 35-42.

Jones, J. "MacCadd - an enabling software method support tool." In
People and Computers: Designing For Usability. Cambridge:
Cambridge University Press, 1986, pp. 132-154.

Kalinsky, David and Levy, Eyal. "A Functional Approach to Software
Specification and Design." In Third International Workshop on
Software Specification and Design. Washington, D. C.: IEEE
Computer Society Press, 1985, pp. 118-119.

Kant, Elaine and Newell, Allen. "Problem Solving Techniques for the
Design of Algorithms." In Human Factors in Software
Development, ed. Bill Curtis. IEEE Computer Society Order Number
577. Los Angeles: IEEE Computer Society Press, 1985, pp. 211-232.

Kenfield, Dexter L. "Remedies in Software Copyright Cases." Computer
Law Journal, Vol VI, 1985, pp. 1-33.

Kishida, Kouichi, Teramota, Masanori, Torii, Koji and Urano,
Yoshiyori. "Quality-Assurance Technology in Japan." IEEE Software,
September 1987, pp. 11-17.

Kiss, G. and Pinder, R. "The Use of Complexity Theory in Evaluating
Interfaces." In People and Computers: Designing For Usability.
Cambridge: Cambridge University Press, 1986, pp. 447-463.

211

Klein, Henry. "Methodology for System Description Using the Software
Design & Documentation Language." In System Description
Methodologies. Eds. D. Teichroew and G. David. Amsterdam: North-
Holland, 1985, pp. 111-138.

Kloster, Gregory and Tischer, Kristine. "Man-Machine Interface Design
Process." In Human-Computer Interaction-INTERACT '84. Ed. B.
Shackel. Amsterdam: Elsevier Science Publishers B.V.,
North-Holland, 1985, pp. 889-894.

Koomen, C. J. "From Specification Towards Implementation - A
Methodological Viewpoint." In Methodologies For Computer System
Design. Ed. Wolfgang K. Giloi and Bruce D. Shriver.
Amsterdam: North-Holland, 1985, pp. 105-122.

Koretz, Gene. "How the Hispanic Population Boom Will Hit the
Workforce." Business Week, February 20, 1989, p. 21.

Knirk, Dwayne. "Specialty." The Letter T, Vol. 2, No. 1, January 1988,
pp. 3-4.

Krasner, Herb. "Modeling Software Systems as Unified Views." In Third
International Workshop on Software Specification and Design.
Washington, D.C.: IEEE Computer Society Press, 1985, pp. 122-124.

Krepchin, Ira P. "The Human Side of Competitiveness." Modern Materials
Handling, February 1988, pp. 64-67.

_. "We Simulate All Major Projects." Modern Materials
Handling, August 1988, pp. 83-88.

Kruesi, Elizabeth. "The Human Engineering Task Area." Computer.
November 1983, pp. 86-93.

Lampson, Butler W. "Hints for Computer System Design." IEEE
Software. January 1984, pp. 11-28.

Lauber, Rudolf. "Development Support Systems." Computer, May 1982,
pp. 36-46.

LeFevre, Karen Burke. Invention as a Social Act. Carbondale and
Edwardsville: Southern Illinois University Press, 1987.

Lehman, J.D. and Yavneh, N. "The Total Life Cycle Model." In Third
International Workshop on Software Specification and Design.
Washington, D.C.: IEEE Computer Society Press, 1985, pp. 135-138.

Lehman, M. M. "Program Evaluation." In System Description
Methodologies. Eds. D. Teichroew and G. David. Amsterdam: North-
Holland, 1985, pp. 3-25.

212

Leonard, Jonathan S. "The Changing Face of Employees and Employment
Regulation." California Management Review, Winter, 1989, Vol. 31,
No. 2, p. 29-38.

Levene, A. A. and Mullery, G. P. "An Investigation of Requirement
Specification Languages: Theory and Practice." Computer. Vol
15(5), May, 1982, pp. 50-59.

Leventhal, Naomi S. "Systems Designing-What is Wrong?" MIS Week,
March 10, 1986, pp. 48-49.

Levidow, Les and Young, Bob, ed. Science, Technology and the Labour
Process. Atlantic Highlands, NJ: CSE Books, 1981.

Levin, Sandra J. "Examining Restraints on Freedom to Contract as an
Approach to Purchaser Dissatisfaction in the Computer Industry."
California Law Review. Vo. 74, No. 6, December, 1986.

Linn, J. L. "Discussion Session 2: Language Issues in System Design
Methods." In Methodologies For Computer System Design. Eds.
Wolfgang K. Giloi and Bruce D. Shriver. Amsterdam: North-Holland,
1985, pp. 123-126.

Linnell, Dennis. "SAA: IBM's Road Map to the Future." PC Tech Journal,
Vol. 6 No. 4, April 1988, pp. 86-105.

Lipow, Myron. "Prediction of Software Failures." The Journal of
Systems and Software. Vol. 1, 1979, pp. 71-75.

Lissandre, Michel, Lagier, Pierre and Skalli, Ahmed. "SAS - A
Specification Support System." In System Description
Methodologies. Eds. D. Teichroew and G. David. Amsterdam: North-
Holland, 1985, pp. 221-238.

Long, J. B. People and Computers: Designing For Usability. Cambridge:
Cambridge University Press, 1986.

Lucas, Henry C. A Casebook For Management Information Systems. New
York: McGraw-Hill, 1986.

_. Why Information Systems Fail. New York: Columbia
University Press, 1975.

Ludewig, Jochen Ludewig. "Computer-Aided Specification of Process
Control Systems." Computer, May 1982, pp. 12-20.

_. "A Note on Abstraction in Software
Descriptions." In System Description Methodologies. Eds. D.
Teichroew and G. David. Amsterdam: North-Holland, 1985,
pp. 535-543.

213

Lundberg, Bengt. "On Relative Strength of Information Models."
In System Description Methodologies. Eds. D. Teichroew and G.
David. Amsterdam: North-Holland, 1985, pp. 403-415.

Lundberg, Craig C. "Hypothesis Creation in Organizational Behavior
Research." In Method and Analysis in Organizational Research.
Eds. Bateman, Thomas S. and Gerald R. Ferris. Reston, Virginia:
Reston Publishing Company, Inc., 1984, pp. 35-42.

Luqi and Ketabchi, Mohammad. "A Computer-Aided Prototyping System
IEEE Software, March 1988, pp. 66-71.

Lynch, Bruce W. "Mapping the Program Development Cycle." Programmer's
Update, Vol. 6, No. 3, July/August 1988, pp. 62-63.

MacLean, A., Barnard, P., and Wilson, M. "Rapid Prototyping of
Dialogue for Human Factors Research: the EASIE approach." In
People and Computers: Designing For Usability. Cambridge:
Cambridge University Press, 1986, pp. 180-195.

Macro, Allen and John Buxton. The Craft of Software Engineering.
Reading, MA: Addison-Wesley Publishing Company, 1987.

Maiocchi, Marco. "The Use of Petri Nets in Requirements and
Functional Specification." In System Description Methodologies.
Eds. D. Teichroew and G. David. Amsterdam: North-Holland, 1985,
pp. 253-274.

Mann, Nancy R. "Why It Happened in Japan and Not in the U.S." Chance:
New Directions for Statistics and Computing, Summer, 1988, Vo. 1,
No. 3, p. 8-15.

Mantha, Robert W. "Data Flow and Data Structure Modeling for
Database Requirements Determination: A Comparative Study."
MIS Quarterly, Dec. 1987, pp. 531-545.

Marca, David A. and Cashman, Paul M. "Towards Specifying Procedural
Aspects of Cooperative Work." In Third International Workshop on
Software Specification and Design. Washington, D.C.: IEEE Computer
Society Press, 1985, pp. 151-154.

Marca, David A. and McGowan, Clement L. SADT, Structured Analysis and
Design Technique. New York: McGraw-Hill Book Company, 1988.

Marcellino, James J. "Expert Witnesses in Software Copyright
Infringement Actions." Computer Law Journal, Vol. VI, 1985,
pp. 35-54.

214

Marcellino, James J. and Kenfield, Dexter L. "How to Handle Copyright
Suits over Infringement of Software." Boston Bar Journal.
Vol. 29, No. 5, Nov./Dec., 1985, pp. 12-14.

Markus, M. Lynne and Bjorn-Andersen, Niels. "Power Over Users: Its
Exercise By System Professionals." Communications of the ACM,
Vol. 30, No. 6, June 1987, pp. 498-504.

Marmor-Squires, Ann B., Riddle, William E., Sumrall, George E. and
Wileden, Jack C. "The Support Systems Task Area." Computer,
Nov. 1983, pp. 97-104.

Mason, Paul E. and Foley, Denise. "International Protection of
Computer Software: The Japanese Experiment." Boston Bar Journal,
Vol. 29, No. 5, Nov./Dec., 1985, pp. 28-34.

Mason, R. E. A. "Concrete Use of Abstract Development Formalisms." In
System Description Methodologies. Eds. D. Teichroew and G. David.
Amsterdam: North-Holland, 1985, pp. 75-89.

Martin, James and McClure, Carma. Structured Techniques: The Basis
for CASE. Englewood Cliffs, NJ: Prentice Hall, 1988.

Mathiassen, Lars and Munk-Madsen, Andreas. "Formalization in Systems
Development" In Formal Methods and Software Development, eds.
Hartraut Ehrig, Christiane Floyd, Maurice Nivat and James Thatcher.
Berlin: TAPsoft, 1985, pp. 101-116.

Matsumura, Kazuo, Mizutani, Hiroyuki and Arai, Masahiko. "An
Application of Structural Modeling to Software Requirements
Analysis and Design." IEEE Transactions on Software Engineering,
Vol. SE-13, No. 4, April 1987, pp. 461-471.

Mayer, Richard E., "Comprehension as Affected by Structure of Problem
Representation." In Human Factors in Software Development. Ed.
Bill Curtis. IEEE Computer Society Order Number 577. Los Angeles:
IEEE Computer Society Press, 1985, pp. 320-326.

Mays, R. G., Orzech, L. S., Ciarfella, W. A. and Phillips, R. W.
"PDM: A Requirements Methodology for Software System
Enhancements." IBM Systems Journal, Vol. 24, Nos. 3/4, 1985,
pp. 134-149.

McAllister, A. J. "Metasystem Support for Specification
Environments." Tech. Report 88-1, Computational Science Dept.,
Univ. of Saskatchewan, Saskatoon, Sask., Canada, Jan. 1988.

McCoy, Charles F. and Schmitt, Richard B. "United Education's
Computer Blunders Form Vortex of Big Student Loan Fiasco."
Wall Street Journal, Marcch 10, 1989, p. A6.

215

McClure, Carma. "The CASE for Structured Development." PC Tech
Journal, Vol. 6, No. 8, pp. 51-67.

McGill, James P. "The Software Engineering Shortage: A Third Choice."
IEEE Transactions on Software Engineering, Vol. SE-10, No. 1,
Jan. 1984, pp. 42-49.

Melichar, Paul R., Management Strategies for High-Risk Project.
Chicago: IBM Systems Science Institute, 1980.

Methodologies For Computer System Design, Proceedings of the IFIP WG
10.1 Workin Conference on Methodologies for Computer System
Design,Lille, France, 15-17 September, 1983. Amsterdam: North-
Holland, 1985.

Meyer, Bertrand. "On Formalism in Specifications." IEEE Software.
January 1985, pp. 6-26.

Miller, D.C. and Pew, R. W. "Exploiting User Involvement in
Interactive System Development." In Proceedings of the Human
Factors Society Annual Meeting. Santa Monica, CA: Human Factors
Society, 1983, pp. 45-49.

Miller, L. A. "Natural Language Programming: Styles, Strategies and
Contrasts." In Human Factors in Software Development. Ed. Bill
Curtis. IEEE Computer Society Order Number 577. Los Angeles: IEEE
Computer Society Press, 1985, pp. 400-431.

Mills, Harlan D. "Software Development." In Tutorial on Models and
Metrics for Software Management and Engineering. Ed. V. R. Basili.
New York: IEEE Computer Society, 1980.

Mills, Harlan D., Dyer, Michael and Linger, Richard C. "Cleanroom
Software Engineering." IEEE Software, September 1987, pp. 19-25.

Mills, Miriam K., "Luddites at the Terminal and Other Renegades."
Rutgers Computer & Technology Law Journal, Vol. 10, No. 1, 1983,
pp. 115-126.

Mislow, Christopher M. "Reducing the High Risk of High Tech: Legal
Planning for the Marketing of Computer Systems." American
Business Law Journal, Vol. 23/1, Spring 1985, pp. 123-139.

Mizuno, Y. "Software Quality Improvement." Computer, March 1983,
pp. 66-72.

Moor, James H. "What is Computer Ethics?" Metaphilosophy. Vol. 16,
No. 4, October 1985, pp. 266-275.

216

Morgan, Gareth. Images of Organization. Beverly Hills: Sage
Publications, 1986.

Morris, Daniel A. "Contracting for the Acquisition of Computer
Hardware and Software." Case & Comment, Nov./Dec. 1985, Vol. 91,
No. 6, pp. 32-41.

Murphy, Kevin J. "Listening Makes a Difference." Modern Materials
Handling, March, 1988, p. 43.

Narayanaswamy, K. and Scacchi, Walt. "A Database Foundation to
Support Software System Evolution." The Journal of Systems and
Software, Vol. 7, 1987, pp. 37-49.

Naumann, J. D., Davis, G. B. and McKeen, J. D. "Determining
Information Requirements: A Contingency Method for Selection of A
Requirements Assurance Strategy." Journal of Systems and
Software, Vol.1(4), 1980, pp. 273-282.

Necco, Charles R., Gordon, Carl L. and Tsai, Nancy. "Systems Analysis
and Design: Current Practices." MIS Quarterly, Dec. 1987, 461-476.

Neches, Robert, Balzer, Bob, Goldman, Neil, Wile, David. "Transferring
Users' Responsibilities to a System: The Information Management
Computing Environment." In Human-Computer Interaction-INTERACT
'84. Ed. B. Shackel. Amsterdam: Elsevier Science Publishers B.V.,
North-Holland, 1985, pp.421-426.

Nelson, R. Ryan. "Training End Users: An Exploratory Study."
MIS Quarterly, Dec. 1987, pp. 547-559.

Norcio, A. F. and Chmura, L. J. "Designing Complex Software." The
Journal of Systems and Software 8, 1988, pp. 165-184.

Nord, Melvin. Legal Problems in Engineering. New York: Chapman &
Hall, Limited, 1956.

Norman, Colin. "DOD Lists Critical Technologies." Science, March
March 24, 1989, Vol. 243, p. 1543.

Norman, Donald A. and Draper, Stephen W. User Centered System Design,
New Perspectives on Human-Computer Interaction. Hillsdale, New
Jersey: Lawrence Erlbaum Associates, Publishers, 1986.

Oglesby, Charles E. and Urban, Joseph E. "The Human
Resources Task Area." Computer, Nov. 1983, pp. 65-70.

Olive, Antoni. "Conceptual Languages for Information Systems
Modelling." In System Description Methodologies. Eds. D. Teichroew
and G. David. Amsterdam: North-Holland, 1985, pp. 389-401.

217

Olle, T. W., Sol, H. G. and Verrijn-Stuart, A. A. Information Systems
Design Methodologies: Improving the Practice. Amsterdam: North-
Holland, 1986.

Osgood, C. E., Suci, G. J. and Tannenbaum, P. J. The Measurement of
Meaning. Champaign-Urbana: University of Illinois Press, 1957.

Osterweil, Leon J., Brown, John R. and Stucki, Leon G. "ASSET: A Life
Cycle Verification and Visibility System." The Journal of Systems
and Software. Vol. 1, 1979, pp. 77-86.

Ostrand, Thomas J. "The Use of Formal Specifications in Program
Testing." In Third International Workshop on Software
Specification and Design. Washington, D.C.: IEEE Computer Society
Press, 1985, pp. 253-255.

Pacini, G. and Turini, F. "Animation of Software Requirements."
Industrial Software Technology. Ed. R.J. Mitchel. London: P.
Peregrinus Ltd., 1987.

Parnas, D. L. and Weiss D. M. "Active Design Reviews: Principles and
Practices." Journal of Systems and Software, 7, 1987, pp. 259-265.

Parr, F. N. "An Alternative to the Rayleigh Curve Model for Software
Development Effort." In Tutorial on Models and Metrics for
Software Management and Engineering. Ed. V.R. Basili. New York:
IEEE Computer Society, 1980.

Perardi, F., Cerchio, L., Scrignaro, D. and Modesti, M. "ISDN: A
System Designed According to an SDL Based Methodology." In
System Description Methodologies. Eds. D. Teichroew and G. David.
Amsterdam: North-Holland, 1985, pp. 561-576.

Perrolle, Judith A. Computers and Social Change. Belmont, CA:
Wadsworth Publishing Company, 1987.

Petersen, I. "The Complexity of Computer Security." Science News,
Vol. 134. No. 13, September 24, 1988, p. 199.

Petschenik, Nathan H. "Practical Priorities in System Testing." IEEE
Software, September 1985, pp. 16-23.

Phan, Dien, Vogel, Douglas and Nunamaker, Jay. "The Search for Perfect
Project Management." Computerworld, September 26, 1988, Vol. XXII,
No.39, pp. 95-100.

Poston, Robert. "Looking for a Test Comprehensiveness Measure." IEEE
Software, November 1985, p. 78.

218

IEEE Software
"Preventing the Most-Probable Errors in Testing
, July 1987, pp. 86-88.

II

-Preventing the Most-Probable Errors in Testina "
IEEE Software. September 1987, pp. 81-83. g*

-. "Preventing the Most-Probable Errors in Testing "
IEEE Software, March 1988, pp. 86-88.

-. "Software Test Coverage Measure Automated in T " The
Letter T. Vol. 2, No. 2, April 1988, pp. 2-3. -

—-. "Using T to Get Requirements Right." The Letter T.
Vol. 2, No. 3, August 1988, pp. 2-3.

_• "Workaday Software Requirements Specifications."
IEEE Software, September 1985, pp. 63-65.

Poston, Robert M. and Knirk, Dwayne L. "PEI Testing Methodology,
Rev.3," Tech, report. Programming Environments, Inc., Tinton
Falls, N.J., June 1986.

Poston, Robert M. and Bruen, Mark W. "Counting Down to Zero Software
Failures." IEEE Software. September, 1987, pp. 54-61.

Potosnak, Kathleen. "Creating Software that People Can and Will
Use." IEEE Software, Sept. 1987, pp. 86-87.

___• "Recipe for a Usability Test." IEEE Software,
November 1988, pp. 89-90.

__. "Setting Objectives for Measurably Better
Software." IEEE Software, March 1988, pp. 89-90.

_. "Where Human Factors Fits in the Design Process."
IEEE Software, November 1987, pp. 90-91.

Puncello, P. Paolo, Torrigiani, Piero, Pietri, Francesco, Burlon,
Riccardo, Cardile, Bruno and Conti, Mirella. "ASPIS: A Knowledge-
Based CASE Environment." IEEE Software, March 1988, p. 58-65.

Putnam, Lawrence H. "A General Empirical Solution to the Macro
Software Sizing and Estimating Problem." In Tutorial on Models
and Metrics for Software Management and Engineering. Ed. V.R.
Basili. New York: IEEE Computer Society, 1980.

Quirk, W. J., ed. Verification and Validation of Real Time Software.
Berlin: Springer-Verlag, 1985.

219

Radice, R.A., Harding, J. T., Munnis, P. E., Phillips, R. W. "A
Programming Process Study." IBM Systems Journal, Vol. 24, Nos.
3/4, 1985, pp. 91-101.

Radice, R. A., Roth, N. K., O'Hara, Jr., A. C., Ciarfella, W. A. "A
Programming Process Architecture." IBM Systems Journal. Vol. 24,
Nos. 3/4, 1985, pp. 79-90.

Ramanathan, Jayashree and Sarkar, Soumitra. "Providing Customized
Assistance for Software Lifecycle Approaches." IEEE Transactions
On Software Engineering, Vol. 14, No. 6, June 1988, pp. 749-757.

Ramsey, H. Rudy, Atwood, Michael E. and Van Doren, James R.
"Flowcharts Versus Program Design Languages: An Experimental
Comparison." In Human Factors in Software Development. Ed. Bill
Curtis. IEEE Computer Society Order Number 577. Los Angeles: IEEE
Computer Society Press, 1985, pp. 315-319.

Ramsey, H. Rudy., Atwood, M. E. and Willoughby, J. K. "Paper
Simulation Techniques in User Requirements Analysis for
Interactive Computer Systems." In Proceedings of the Human Factors
Society Annual Meeting. Santa Monica, CA: Human Factors Society,
1979, pp. 64-68.

Ratcliff, Bryan and Siddiqi, Jawed I. A. "An Empirical Investigation
into Problem Decomposition Strategies used in Program Design."
In Human Factors in Software Development. Ed. Bill Curtis. IEEE
Computer Society Order Number 577. Los Angeles: IEEE Computer
Society Press, 1985, pp. 284-297.

Reich, Robert B. "Teaching to Win in the New Economy." Technology
Review, August/September, 1988, pp. 24-25.

Reifer, Donald J. "Specification and Design Technology: Is Enough
Enough?" In Third International Workshop on Software Specification
and Design. Washington, D.C.: IEEE Computer Society Press, 1985,
p. 192.

Richter, Charles. "Toward More Exploration in Large-Scale Software
Development." In Third International Workshop on Software
Specification and Design. Washington, D.C.: IEEE Computer Society
Press, 1985, pp. 193-194.

Rifkin, Glenn. "MIS Education Assumes a Foreign Accent."
Computerworld, March 13, 1989. Vol. XXIII, No. 11, pp. 1, 66.

Rigo, J. T. "How to Prepare Functional Specifications." DATAMATION,
May 1974, pp. 78-80.

220

Rodau, Andrew. "Computer Software: Does Article 2 of the Uniform
Commercial Code Apply?" Emory Law Journal, Vol. 35, No. 3,
Summer, 1986, pp. 853-920.

Rodriguez, Jorge E. and Greenspan, Sol J. "Directed Flowgraphs: The
Basis of a Specification and Construction Methodology for Real-
Time Systems". The Journal of Systems and Software. Vol. 1, 1979,
pp. 19-27.

Roman, Gruia-Catalin. "A Taxonomy of Current Issues in Requirements
Engineering." Computer, April 1985, pp. 14-22.

Rosenblum, Howard S. "Software Escrows: Legal Concerns." Boston Bar
Journal, Vol. 29, No. 5, Nov./Dec., 1985, pp. 22-27.

Ross, Douglas T. "Applications and Extensions of SADT." Computer,
April 1985, pp. 25-33.

_. An Introduction to SADTtm Structured Analysis and
Design Technique. Waltham, MA: Softech, Inc., 1976.

_. "Structured Analysis: A Language for Communicating
Ideas." IEEE Software, Jan. 1977, pp. 16-34.

Ross, Douglas T., Goodenough, J. B. and Irvine, C. A. "Software
Engineering: Process, Principles and Goals." Computer, May 1975,
pp. 17-27.

Ross, Douglas T. and Shoman, K. E. "Structured Analysis for
Requirements Definition." IEEE Trans. Software Engineering, Jan.
1977, pp. 6-15.

Ruskin, Arnold M. and Estes, W. Eugene. "Organizational Factors in
Project Management." Journal of Management in Engineering,
Vol. 2, No. 1, Jan. 1985, pp. 3-9.

Rzepka, William and Ohno, Yutaka. "Requirements Engineering
Environments: Software Tools for Modeling User Needs." Computer,
April 1985, pp. 9-12.

Saracco, R., Cerchio, L. and Bagnoli, P. L. "Specification and Design
Methodologies." In System Description Methodologies. Eds. D.
Teichroew and G. David. Amsterdam: North-Holland, 1985, pp. 35-44.

Schacter, Esther Roditti. "Techniques
Contracting for Computer Systems."
Law Journal, Vol. 10, No. 1, 1983,

for Litigation Avoidance in
Rutgers Computer & Technology
pp. 109-114.

221

Scharer, Laura. "The Prototyping Alternative." ITT Programming,
Vol. 1, No. 1, 1983, pp. 34-43.

Schleifer, Liane A. "Damage Awards and Computer Systems—Trends."
Emory Law Journal, Vol. 35, No. 1, Winter, 1986, pp. 255-290.

Schlender, Brenton R. "Missed Deadline: Its Failure to Deliver On
Promised Software Hits Microsoft Hard." March 8, 1989,
p. Al, A6.

Schmidt, E. Controlling Large Software Development in a Distributed
Environment, Ph.D. thesis, University of California, Berkeley,
1982.

Schneiderman, Ben. "Control Flow and Data Structure Documentation: Two
Experiments." In Human Factors in Software Development. Ed. Bill
Curtis. IEEE Computer Society Order Number 577. Los Angeles: IEEE
Computer Society Press, 1985, pp. 365-372.

Schonberger, Richard J. World Class Manufacturing - The Lessons of
Simplicity Applied. New York: The Free Press, 1986.

Schoumacher, Bruce. Engineers and the Law, An Overview. New York: Van
Nostrand Reinhold Company, 1986.

Schrage, Michael. "Customers May Be Your Best Collaborators." Wall
Street Journal, February 27, 1989, p. A10.

Schrama, C.J. "Computer Aided Requirements Gathering and Prototyping."
In System Description Methodologies. Eds. D. Teichroew and G.
David. Amsterdam: North-Holland, 1985, pp. 103-109.

Schwartz, Felice N. "Management Women and the New Facts of Life."
Harvard Business Review, January-February, 1989, Number 1,
p. 67-76.

Second Software Engineering Standards Application Workshop. Silver
Spring, MD: IEEE Computer Society Press, 1983.

Seewaldt, T. and Estrin, G. "A Multilevel Design Procedure to Foster
Functional and Informational Strength." In Methodologies For
Computer System Design. Ed. Wolfgang K. Giloi and Bruce D.
Shriver. Amsterdam: North-Holland, 1985, pp. 11-28.

Selby, Richard W. "Cleanroom Software Development: An Empirical
Evaluation." IEEE Transactions on Software Engineering.
Vol. SE-13, No. 9, September 1987, pp. 1027-1037.

222

Shaw, Mary. "What Can We Specify? Issues in the Domains of Software
Specifications." In Third International Workshop on Software
Specification and Design. Washington, D.C.: IEEE Computer Society
Press, 1985, pp. 214-215.

Shen, Vincent. "A Little Quality Time." IEEE Software, September
1987, p. 84.

Shemer, Itzhak. "Systems Analysis: A Systemic Analysis of a Conceptual
Model." Communications of the ACM, Vol. 30, No. 6, June 1987,
pp. 506-512.

Sheppard, Sylvia B., Kruesi, Elizabeth and Curtis, Bill. "The Effects
of Symbology and Spatial Arrangement on the Comprehension of
Software Specifications." In Human Factors in Software
Development. Ed. Bill Curtis. IEEE Computer Society Order Number
577. Los Angeles: IEEE Computer Society Press, 1985, pp. 327-334.

Sievert, Gene E. and Mizell, Terrence A. "Specification-Based Software
Engineering with TAGS." Computer, Aprio 1985, pp. 56-65.

Skwirzynski, Jozef K. Software System Design Methods, The Challenge
of Advanced Computing Technology. Heidelberg: Springer-Verlag,
1985.

Slaughter, Gary. The Team Approach to DP Productivity (TAP).
Bethesda: Gary Slaughter Corporation, 1980.

Sloman, A. "What are the Aims of Science?" Radical Philosophy, No. 13,
1976, pp. 7-17.

Smedinghoff, Thomas J. The Legal Guide to Developing, Protecting, and
Marketing Software, Dealing with Problems Raised by Customers,
Competitors and Employees. New York: John Wiley & Sons, 1985.

Smolenski, R. J. "Test Plan Development." Journal of System
Management, Vol. 32(2), February 1981, pp. 32-37.

Software: An Emerging Industry. Paris: Organisation for Economic
Co-operation and Development, 1985.

Soloway, Elliot and Iyengar, Sitharama. Empirical Studies of
Programmers. Norwood, N.J.: Ablex Publishing Corporation, 1986.

Soloway, Elliot and Ehrlich, Kate. "Empirical Studies of Programming
Knowledge." In Human Factors in Software Development. Ed. Bill
Curtis. IEEE Computer Society Order Number 577. Los Angeles: IEEE
Computer Society Press, 1985, pp. 68-82.

223

Sorenson, Paul G., Tremblay, Jean-Paul and McAllister, Andrew J. "The
Metaview System for Many Specification Environments." IEEE
Software, March 1988, pp. 30-38.

Sorenson, Paul G. and Tremblay, Jean-Paul. "SPSL/SPSA:A Minicomputer
Database System for Structured Systems Analysis and Design."
Proc. ACM SIG-Small Database Systems. ACM: New York, 1981,
pp. 109-118.

Swanson, E. Burton and Beath, Cynthia M. "The Use of Case Study Data
in Software Management Research." The Journal of Systems and
Software, Vol. 8, 1988, pp. 63-71.

Stankovic, John. "A Technique to Identify Implicit Information
Associated with Modified Code." In System Description
Methodologies. Eds. D. Teichroew and G. David. Amsterdam: North-
Holland, 1985, pp. 457-480.

Stapleton, Lisa and Puttre, Michael. "NASA's MIS Crashes" Information
Week, March 21, 1988, pp. 8-10.

Teichroew, D. "PSL/PSA — A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing Systems."
Proceedings of Second International Conference on Software
Engineering, 1976.

Teichroew, D. and David, G., eds. System Description Methodologies.
Amsterdam: North-Holland, 1985.

Teichroew, D. and Sayani, H. "Automation of System Building."
DATAMATION, August 15, 1971, pp. 25-30.

Teitelman, W. "Do What I Mean: The Programmer’s Assistant." Computers
and Automation, 1972, V. 21(4) pp. 8-11.

Thomas, R. J. "Systems Education." In System Description
Methodologies. Eds. D. Teichroew and G. David. Amsterdam: North-
Holland, 1985, pp. 615-616.

Topper, Andrew. "Excelling with CASE." PC Tech Journal, August 1988,
pp. 70-79.

TRAIDEX Needs and Implementation Study. (Final Report) DARPA Contract
#MDA903-75-C-0224 by SofTech, Inc., May 1976.

Tully, Colin J. "Toward a Conceptual Framework for Systems
Methodologies." In System Description Methodologies. Eds. D.
Teichroew and G. David. Amsterdam: North-Holland, 1985,
pp. 609-612.

224

Udwadia, F. E. "Organizational Management—A look Beyond the Rational
View." Journal of Management in Engineering. Vol. 2, No. 1, Jan.
1985, pp. 57-68.

van Lamsweerde, Axel, Delcourt, Bruno, Delor, Emmanuelle, Schayes,
Marie-Claire and Champagne, Robert . "Generic Lifecycle Support in
the ALMA Environment." IEEE Transactions on Software Engineering.
Vol. 14, No. 6, June 1988, pp. 720-741.

Vernon, M.K. and Estrin, G. "The UCLA Graph Model of Behavior:
Support for Performance-Oriented Design." In Methodologies For
Computer System Design. Ed. Wolfgang K. Giloi and Bruce D.
Shriver. Amsterdara:North-Holland, 1985, pp. 47-66.

Verity, John W. "Is It Real or Is It Information?" Datamation,
May 15, 1986, p. 23.

Vessey, Iris and Weber, Ron. "Research on Structured Programming: An
Empiricist's Evaluation." In Human Factors in Software
Development. Ed. Bill Curtis. IEEE Computer Society Order Number
577. Los Angeles: IEEE Computer Society Press, 1985, pp. 474-484.

Vitarli, Nicholas P. and Dickson, Gary W. "Problem Solving for
Effective Systems Analysis: An Experimental Exploration."
In Human Factors in Software Development . Ed. Bill Curtis. IEEE
Computer Society Order Number 577. Los Angeles: IEEE Computer
Society Press, 1985, pp. 252-260.

Von Staa, A. and da Rocha, A. R. C. "Towards a Model For Evaluating
Specifications." In System Description Methodologies. Eds. D.
Teichroew and G. David. Amsterdam: North-Holland, 1985,
pp. 295-311.

Walker, Theodore D. Perception and Environmental Design. West
Lafayette, Indiana: PDA Publishers, 1971.

Wasley, Robert S. "Learning to Live Together." The Australian
Computer Journal, Vol. 7, No. 3, Nov. 1975, pp. 105-108.

Wasserman, A. I. "The User Software-Engineering Methodology: An
Overview." Proc. IFIP Working Group 8.1 Conf. Comparative Reviews
of Information Systems Design Methodologies. IFIP, Geneva, 1982,
pp. 591-628.

Weinberg, Gerald M. and Freedman, Daniel P. "Reviews, Walkthroughs
and Inspections." IEEE Transactions on Software Engineering,
Vol. SE-10, No. 1, January 1984, pp. 68-72.

225

Westermeier, J. T. and Millstein, Julian S. "Combined Hardware and
Software ("Turnkey") Contracts." In Computer Contracts and
Current Issues, 8th Annual New England Computer Law Conference
19M- Sponsored by Massachusetts Continuing Legal Education, Inc.
Boston: Bateman and Slade, 1988, pp. 57-164.

Weiss, David M. "Evaluating Software Development by Error Analysis:
The Data from the Architecture Research Facility." In Tutorial on
Models and Metrics for Software Management and Engineering. Ed.
V. R. Basili. New York: IEEE Computer Society, 1980.

Weizenbaum, Joseph. Computer Power and Human Reason. New York: W.H.
Freeman and Company, 1976.

Westin, Alan F. Information Technology in a Democracy. Cambridge:
Harvard University Press, 1971.

White, John A. "Automation: A New Perspective." Modern Materials
Handling. Jan. 1987, p. 25.

White, Stephanie. "Requirements Modeling for Embedded Systems." In
Third International Workshop on Software Specification and Design.
Washington, D.C.: IEEE Computer Society Press, 1985, pp. 238-240.

Wilding, John M. Perception, From Sense to Object. New York: St.
Martin's Press, 1983.

Wing, Jeannette M. "Specification Firms: A Vision for the Future."
In Third International Workshop on Software Specification and
Design. Washington, D.C.: IEEE Computer Society Press, 1985,
pp. 241-243.

Young, R.M. and Harris, J. E. "A Viewdata-Structure Editor Designed
Around a Task/Action Mapping." In People and Computers: Designing
For Usability. Cambridge: Cambridge University Press, 1986,
pp. 435-446.

Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs, NJ:
Yourdon Press, 1989.

Zeimetz, Jordene. "Professional Viewpoint." PC Tech Journal, Vol. 6
No. 8, August 1988, p. 160.

Zinman, Marion J. "Computer Arbitration: The Program of the Future."
Rutgers Computer & Technology Law Journal, Vol. 10, No. 1, 1983,
pp. 103-108.

	Front-end planning with early test plan scenarios : a strategy to improve systems development in the culturally diverse, technologically complex workplace of the 1990's.
	Recommended Citation

	Front-end planning with early test plan scenarios :$$ba strategy to improve systems development in the culturally diverse, technologically complex workplace of the 1990's /$$cby Dorothy J. Eastman.

