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ABSTRACT 

FRONT-END PLANNING WITH EARLY TEST PLAN SCENARIOS: 

A STRATEGY TO IMPROVE SYSTEMS DEVELOPMENT 

IN THE CULTURALLY DIVERSE, TECHNOLOGICALLY COMPLEX 

WORKPLACE OF THE 1990’S 

MAY 1989 

DOROTHY J. EASTMAN, B.A., UNIVERSITY OF MASSACHUSETTS 

Ph.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Van Court Hare 

Front-end planning with early test plan scenarios is an effective 

management strategy for systems development within the more diverse, 

more complex American workplace of the 1990's. In the 1980's, over 

seventy-five percent of our system developments failed. Ineffective 

user-developer collaboration and an undisciplined development 

environment contributed to this dismal record. 

One major challenge is to overcome cultural barriers and develop 

more effective ways of working together. Within ten years, eighty 

percent of our new workers will be women, minorities and newly arrived 

immigrants. In many schools, more than fifty percent of our graduate 

students in systems development are from other countries. 

v 



Another challenge comes from international competition. American 

corporations try to remain competitive in the world market by 

increasing productivity and quality. They need new, integrated systems 

that improve operations as well as process information. 

This early test plan scenario thesis develops a strategy and 

describes a disciplined approach that lets users and developers work 

together more effectively. In particular, early test plan scenarios 

reduce cultural misunderstanding (rarely addressed in the world of 

systems) by describing each abstract system task in concrete, physical 

terms. Scenarios uncover ambiguities, inaccuracies and insufficiencies 

in system design. Users and developers collaborate to identify 

operational errors in design and to improve system usefulness. 

Even when there are no users, explicit test scenarios reduce 

misunderstandings between collaborating development teams and among 

members of the same development team. Finally, scenarios are a 

powerful tool for ensuring compatibility between integrated systems. 

Front-end planning with early test plan scenarios improve systems 

during the most cost efficient development phase—before coding. 

Traditional development methods make these improvements during the most 

expensive phase—after the system becomes operational. 

Early test plan scenarios become the development agreement. Clear 

descriptions of active system operations reduce ambiguity, thereby 

improving programmer productivity and system quality. Measurable 

development goals reduce customer-developer conflict. 

Early test plan scenarios are an effective systems development 

strategy for the workplace of the 1990's—they promote a productive, 

disciplined environment while encouraging people to work together. 

vi 
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CHAPTER 1 

CULTURE, SYSTEMS AND OPERATIONS—THE CHALLENGES OF THE 1990'S 

I know a little about nature and hardly anything about men. Einstein 

1.1 Statement of Thesis 

My thesis: If you design a complex system that (1) integrates 

physical activity with computer technology, (2) requires expertise from 

several disciplines during the design process, and (3) must satisfy 

organizational objectives and operational constraints, then the system 

design sequence should place test plan scenarios (described later in 

this thesis) early in the development process, before program coding. 

Traditional development methods test systems after program code 

completion, not before. 

This early test plan scenario thesis statement may at first appear 

trite or obvious, but it is not. Its approach incorporates the 

fundamental strengths of quality control, artificial intelligence, 

management by objectives, and contract law. As its particular 

contribution to systems development research, my thesis also includes 

essential concepts from anthropology and related social sciences. 

1.1.1 Multi-Discipline Approach 

Quality control strategy continually strives to improve a product 

by: (1) early recognition of product defects, (2) up front adjustment 
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of production processes, (3) assuring that added value is not wasted on 

defective products, (4) avoiding expensive rework of the "finished" 

product, and (5) putting everyone to work to create the best possible 

product [Mann, 1988, p. 10]. 

The early use of test plan scenarios lets users identify errors in 

system design that, if left uncorrected, later interfere with the 

successful use of the system. Identifying errors before system coding 

follows basic tenets of artificial intelligence: Early pruning of 

decision trees minimizes wasted effort. 

Similarly, both management by objectives and contract law urge 

parties to an agreement to specify exactly what shall be done, when it 

shall be completed, and how much it shall cost. These agreements 

describe measurable objectives. Deviations from these objectives can 

be detected and corrected—or the objectives changed—in an orderly, 

controlled manner. Once test scenarios have been approved, they become 

the measurable objectives for the development agreement, program 

coding, acceptance testing, and operational implementation. 

1.1.2 Add Cultural Differences 

Such reasons alone might be enough to justify the use of early 

test plan scenarios in the systems development process. It is the 

purpose of this early test plan scenario thesis to demonstrate other 

reasons why this approach improves systems development: (1) The need to 

recognize ambiguous interpretations of functional specifications, (2) 

The importance of resolving cultural misunderstandings in the design 



3 

process—before conflicting values and goals are designed into a 

system, and (3) The value of overcoming cultural barriers that impede 

user-developer collaboration. 

The underlying topic of this early test plan scenario thesis is 

social interaction. This organizational approach—which uses wisdom 

taken from both technical and social disciplines—offers a new 

contribution to the systems development field. Early test plan 

scenarios establish effective user-developer collaboration early in 

the development process, in order to detect and correct operational 

problems in the system design. 

Most extra costs during complex systems developments come from 

blunders made at the beginning of the development process. Due to 

major changes in the American workplace, in the next decade these 

blunders are likely to be more frequent—and even more costly. 

1.2 Two Major Changes in the American Workplace of the 1990's 

By the turn of the century, American organizations will be faced 

with two major changes: (1) Workforces will be significantly older and 

more culturally diverse, and (2) Higher productivity and quality 

requirements will force the development of a new generation of systems 

that integrate physical operations with information processing. 

This early test plan scenario thesis accommodates these changes. 

Most traditional development research acknowledges the importance of 

effective user-developer interaction—but focuses research efforts on 

improving technologies, tools and design methodologies. This early 
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test plan scenario thesis complements traditional research by focusing 

on improving user-developer interaction. 

1.2.1 The Increasing Diversity of Our Workforce in the 1990's 

At the end of the next decade, "baby boomers" will still be the 

largest group in our workforce. By then, they will be in their 40's 

and 50's. Our workforce has never before been dominated by older 

workers. 

At the same time, there will be a higher demand for new workers. 

Eighty percent of these new workers will be "women, minorities and 

immigrants" [Schwartz, 1989, p. 68]. Among these new members of the 

American workforce, Hispanics and Asians are expected to double their 

1986 representation (see Table 1.1 and Table 1.2). Government 

forecasts predict that by the turn of the century, nearly thirty 

percent of our new workers will be Hispanic and twelve percent will be 

Asian [Hymowitz, 1989, p. Bl]. 

Table 1.1 Projected Work-Force Growth Rates. 

Group_ 
All women 
Blacks 
Asians 
Hispanics 
White women 
White men 

1976-1986 
62.0% 
14.5% 

6.9% 
17.8% 
43.5% 
18.1% 

1986-2000 
63.2% 
17.4% 
11.4% 
28.7% 
34.8% 

8.5% 

Source: Bureau of Labor Statistics 
[Hymowitz, 1989, p. Bl]. 
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Table 1.2 Current and Projected Labor Force Shares 
Age, Gender, Race, and Hispanic Origin. 

Group 1986 2000 
16-24 years old 19.8% 16.3% 
55 and older 12.6% 11.1% 
Female 44.5% 47.3% 
White 86.4% 84.1% 
Black 10.8% 11.8% 
Asian and Other8 2.8% 4.1% 
Hispanic Origin15 6.9% 10.2% 
Median Age 31.5yrs 38.9yrs 

a. Includes American Indians, Pacific Islanders, and 
Alaskan Natives. 

b. Hispanics also included in both white and black 
population groups. 

[Leonard, 1989, p. 30] 

Moreover, an increasing number of our newest workers have weak job 

skills (thirty million Americans are illiterate and innumerate). Many 

newer workers will use English as their second language. Legally and 

logistically, companies will be less able to require new employees to 

be fluent in English [Leonard, 1989, p. 30]. 

Cultural diversity among systems developers is increasing. They 

also come from diverse backgrounds—many use English as their second 

language. In American colleges, among students who are majoring in 

Management Information Systems, an average of twenty-five percent of 

master's level students, and over fifty percent of doctoral level 

candidates are foreign students (see Table 1.3). A similar situation 

exists in Computer Science and Engineering disciplines. 

User-developer interaction becomes increasingly challenging as 

users and developers have even more obstacles to overcome to clearly 

understand and appreciate each other's capabilities and requirements. 
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Table 1.3 Percent of Foreign Students in MIS Programs. 

Percent of degree candidates who are foreign students 

School_ 
Boston University 
University of Arizona 
Georgia State University 
UCLA 
use 
University of Texas at Austin 
Indiana University 
University of Minnesota 
University of Pittsburgh 
MIT 

Master's level Doctoral level 
30% 70% 
33% 20% 
25% 30% 
N/A 57% 
20% 25% 
22% 60% 
25% 30% 
15% 50% 
20% 60% 

15-30% 56% 

[Rifkin, 1989, p. 66] 

1.2.2 The Increased Complexity of Integrated Systems 

To make matters worse, systems continue to increase in size and 

complexity. Most systems in the 1980's are of the "first generation". 

They simply collect, process, store and transfer information. The 

next, "second generation" of systems—Computer Aided Manufacturing 

(CAM)—increase speed, quality and flexibility by integrating 

information processing technology with physical operations. We are 

just beginning to learn how to merge computer technology with human and 

mechanical operations [Gold, 1989, p. 139]. 

Even today, the track record of systems implementation is dismal. 

For example, a government study found only 2% of developments (see 

Table 1.4) were fully successful. Recent research suggests that 75% of 

major developments are failures. They are too costly, are not useful 

or simply do not work [Foreman and Hess, 1988, p. 65]. 
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Table 1.4 Software Costs Versus Results. 

Software Results Costs Percent 
Paid for but not delivered $3.2M 47% 
Delivered but not used $2. OM 29% 
Abandoned or reworked $1.3M 19% 
Used after rework $0.2M 3% 

Used as delivered $0.1M 2% 

Reports of nine ($6.8M) federal software projects. 
The U.S. Government Accounting Office 1979 Report 
(FGMSD-80-4) [Cox, 1987, p. 4]. 

In March, 1989, the Department of Defense submitted to Congress a 

list of twenty-two technologies that it considers critical to the long 

term superiority of the U.S. weapons systems. Improving software 

producibility ranked third on this list [Norman, 1989, p. 1543]. 

Systems development is difficult now. Integrated systems of the 

1990's will intensify this difficulty. Unless we are able to develop 

better ways of working with each other, the increasing diversity of our 

workforce will compound the risks of this already treacherous process. 

1.3 Culture, the Underlying Theme of this Thesis 

Culture is the underlying theme which holds this early test plan 

scenario thesis together. Although the content of this thesis supports 

techniques that improve the quality and productivity of a development, 

this early test plan scenario thesis is important because it improves 

the interaction between users and developers—two groups that often 

have divergent cultures. 
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1.3.1 Cultural Misunderstanding 

By definition, people who share the same culture have a common 

storehouse of memories, experiences and traditions. They speak the 

same language. They comfortably share similar values and goals. 

Ambiguity vanishes as they share mutual understanding. They are "at 

home" with each other. 

Persons who have acquired different cultures may misinterpret each 

other's intentions. We see through the lens of our own culture and 

hear what our culture teaches us to hear. The more unsettled we are in 

each other's presence, the more apt we are to "mis-hear" each other. 

Cultural differences elicit emotional responses which may impair 

hearing and block understanding [Murphy, 1988, p. 43]. Strangers can 

share (or be easily taught) mutual understanding of concrete objects, 

such as a "table" or "chair." Disagreement emerges from differences in 

interpretation of abstract terms. "Good" and "fair" have different 

meanings in different cultures. An abstract term in one culture, may 

trigger unanticipated, and unappreciated, responses in another culture. 

1.3.2 Workforce Cultures 

In particular, workforce cultures can conflict. Accountants see 

the world in terms of rows and columns, managers view it in terms of 

strategies and policies. Electrical engineers see the world 

electrically, mechanical engineers view it mechanically. 



Programmers look through an abstract cultural lens and see a 

fantasy world of logic and analogies. Users look through a physical 
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cultural lens and see a concrete world of things and actions. 

Differences in workforce cultures have always caused problems during 

developments because developers have difficulty "understanding the 

users' needs." 

Even if no users are involved, the problem persists. Customers 

who pay for systems may assume that developers fully understand their 

(the customers') goals and values, even if these goals and values are 

never explicitly defined. 

Networking, telecommunication and systems integration give rise to 

a further obstacle. Teams of developers, often members of different 

organizations (and frequently located thousands of miles apart) must 

build systems that work together. Cultural misunderstandings intensify 

the difficulties of working separately to build systems that must 

eventually join and work together. 

Finally, cultural misunderstandings may divide members of a 

development team. Systems people are not a standardized group—they 

are themselves of different cultures (refer back to Table 1.3). 

Conflict among team members devastates a systems development project. 

1.3.3 Culture in the Development Setting 

Accordingly, developers and users who sit together to design 

systems are often dissimilar. When cultural differences interfere with 

user-developer collaboration, the final system often fails because it 

is not useable within its intended environment. 
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1.4 The Test Scenario 

Organizations need a tool that will permit clear and timely 

communication in complex situations characterized by cultural 

diversity. That tool is the early test plan scenario of this thesis. 

A detailed description of early test plan scenarios and their use 

appears in the next two chapters. Chapter 4 through Chapter 6 describe 

how early test plan scenarios fit into the overall System Development 

Life Cycle and into systems development research. 

The effect of early test plan scenarios is to reduce the number 

and variety of misunderstandings. Early test plan scenarios convert 

abstract concepts into concrete, measurable actions. The result of 

early test plan scenarios is an improved likelihood that the system 

will be used and will have positive benefits. 

The use of early test plan scenarios assures the operational 

acceptability of the system design, forestalls design blunders, and 

provides a clear and measurable work specification. In short, early 

test plan scenarios stabilize the system development work process. 

1.4.1 Creating the Test Scenario 

Briefly, to create a test scenario, we define the basic sequence 

of operations within the system's intended environment. In the 

illustrative case used in Chapter 3 (the tutorial within this thesis), 

the operational sequences are: (1) Hours, (2) Half-shifts (four hours), 

(3) Shifts (eight hours), (4) Days, and (5) Weeks. We cite every task 

the system must perform during each sequence. Each task is then broken 



11 

down into a series of concrete action test units. The process of 

creating and using scenarios incorporates four steps (see Table 1.5). 

Table 1.5 Four Steps in Test Scenarios. 

1. Describe Action - What, when, where and how people, machines 
and systems will physically act. 

2. Define Results - What the developers' think should happen. 

3. Evaluate - Group discussion among users and developers 
to predict what actually will happen. 

4. Improve - Correct and modify system design to make it 
more useful. 

1.4.2 Why Early Test Plan Senarios Work 

The Software Engineering Institute (formed at Carnegie Mellon 

University by the Defense Department) researches systems developments 

throughout America. They have found three indicators that separate the 

two percent of developments which succeed from the ninety-eight percent 

which fail: (1) Clear system definition, (2) Quantified process 

measurement, and (3) Systems process control [Humphrey, 1988, p. 73]. 

Early test plan scenarios work because they support a clearly 

defined, disciplined development environment. Please consider the two 

essential characteristics of early test plan scenarios that define, 

measure and control the system development process: 

(1) Clear goals and corrective mechanisms described in 
operational terms. 

(2) Early resolution of potential conflicts and blunders. 
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1.4.3 Guideline for Use: Adapt 

Discipline improves the development process. But care must be 

taken when implementing methods that increase discipline. If methods 

that work in one development are adopted, without change, into a 

different development environment, discipline may quickly become 

regimentation [Humphrey, 1988, p. 78]. To preserve flexibility and 

creativity and yet maintain discipline, developers must adapt methods 

to fit the unique character of a new development situation. 

This early test plan scenarios thesis is a guideline. It offers 

ideas that can help projects succeed. The detail incorporated within 

the tutorial (Chapter 3), may initially overwhelm the reader. This 

tutorial is similar to a programmer's manual. It contains ideas that 

have improved actual complex developments—but it also includes 

extensive detail for completeness. 

Common sense dictates that developers select and adapt only those 

portions of this tutorial that improve a particular development 

situation. Otherwise, the early test plan scenario method—that could 

promotes disciplined creativity—becomes a regimented, unwieldly trap. 

1.4.4 Special Advantages of Early Test Plan Scenarios 

Please note the many advantages of the early test plan scenario 

approach when it is applied before program coding begins: 
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1.4.4.1 Management Advantage 

From a management perspective, the set of verified test plan 

scenarios provides the basis for management by objectives. Individual 

test scenarios become mini-contracts, which are then combined into an 

overall development contract. See Chapter 7 for a further discussion 

of this management and legal advantage. 

1.4.4.2 Users Contribute 

When users participate in early test plan scenario evaluation, 

they develop an in-depth understanding of the system that reduces 

training requirements. Users who understand a system make fuller use 

of a system's inherent capabilities. 

Technological innovation is continuous. When users understand 

their systems, they are more likely to suggest enhancements that 

increase the usefulness of future versions of the system. 

1.4.4.3 Developers Produce 

Early test plan scenarios help people develop and meet schedules- 

they stabilize the work process. An initial review of this early test 

plan scenario thesis might lead one to assume that the time required 

for analysis and documentation, for developing test scenarios, and for 

scenario review, would decrease developer productivity. In practice, 

this approach significantly increases productivity. 
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To illustrate, (see Table 1.6, p. 15) one development team used a 

version of early test plan scenarios and increased its productivity 

from the national average of seven lines per day to twenty-nine lines 

per day—a 300 percent increase in productivity! Engineers delivered a 

substantially better product (i.e. with fewer customer-discovered 

errors) in a significantly shorter time [Poston and Bruen, 1987, p.60]. 

1.4.4.4 Continuity Preserved 

A single system's development may span several years. Managers, 

developers, and users, who originally defined operational requirements 

often leave the development team. If the new team members form faulty 

interpretations of operational requirements, disruptions and errors 

increase. The concrete descriptions of system activity in early test 

plan scenarios preserve continuity of operational intent. 

1.4.4.5 Quality Improves 

Early test plan scenarios improve system quality by reducing 

failure density (refer again to Table 1.6, p. 15). Failure density 

measures the number of customer-identified errors per thousand lines of 

delivered code. When early test plan scenarios are reviewed, users 

identify operational errors in system design. The design is corrected 

before programmers concretize the design into system code. 
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Table 1.6 PIMS Project* and Industry Comparison. 

Characteristic Measure 
PIMS Industry- 

Project reported 
Size Pages of documentation 2,680 

Delivered lines of code 27,719 
Number of test cases 1,056 

Complexity Real-time process control average 

Quality Development failure data 
Total failures 12 
Failure density** 0.43 5-30 
Testing comprehensiveness*** 

Customer failure data 
1 

Total failures (first year) 2 
Failure density** 0.072 1.3 

Cost Staff-hours 7,627 

Productivity Deliverable lines of code 
per staff-day 

29 7 

Schedule Calendar months 9 

* Process Information Management Subsystem (PIMS) Trending 
Project at Leeds&Northrup Systems in North Vales, PA, 1986 

** Failure density=number of failures per thousand lines of code. 
***If comprehensiveness is unknown, the development-based failure 

density number has no meaningful reference point (for example, 
a low failure density could be due to poor testing). 

[Poston and Bruen, 1987, p. 60] 

1.4.4.6 Acceptance Assured 

Early test plan scenarios act to assure acceptance of the system. 

Users, sponsors and developers understand, evaluate, improve and 

approve the acceptability of a system's design. Test plan scenarios 

become the measurable development agreement. 
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1.4.4.7 Rework Reduced 

When faulty design commitments are made, they propogate. Early 

mistakes solidify. We are left with hard, frozen designs, extensive 

program code and escalating personal and financial investments. When 

users eventually identify the errors, the system is often dropped. 

Early test plan scenarios reduce rework by uncovering design 

blunders before programmers transform the design into code. Early test 

plan scenarios permit productive process control: (1) Discover the 

blunder, (2) Improve the design, and (3) Code the design. 

1.4.4.8 Total Costs Reduced 

The most expensive phase of systems development begins after 

developers have "completed" their work and the system becomes 

operational. System "rework" to correct design blunders (discovered 

during system operations) are expensive. A modification required after 

a system begins operations may cost one hundred times as much as that 

same modification made before system coding. Over the entire life 

cycle of a system, the cost of rework normally exceeds the total cost 

of the entire pre-operational development [Carroll, 1989, p. 1]. 

Early test plan scenarios reduce rework, thereby reducing the 

total cost of modifications. Thus, any extra cost or delay caused by 

early test plan scenarios will be repaid—with dividends—over the 

entire life of the systems development life cycle. 
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1.4.4.9 Scenarios Recycled 

Developers can catalogue and recycle early test plan scenarios. 

Libraries of scenarios improve subsequent developments. Novice users 

shorten learning curves by examining recycled scenarios. New customers 

review recycled test plan scenarios to evaluate and select potential 

operational attributes before the actual specification process. 

Developers reduce costs by modifying (rather than recreating) 

recycled test plan scenarios. When test plan scenarios are explicitly 

linked to functional and design documents (as described in the next two 

chapters), these documents are more easily recycled. Linking test plan 

scenario modules to program modules further improves productivity. 

1.4.4.10 Marketing Opportunity 

Catalogued test plan scenarios (as described in the previous 

section) are valuable marketing resources. Building contractors use 

photographs of houses to market their services. Similarly, systems 

developers, marketing their services to potential customers, can use 

recycled test plan scenarios to illustrate the value of their product. 

1.5 Early Test Plan Scenarios Complement Other Methodologies 

Early test plan scenarios complement other methodologies. Each 

development situation is unique. Different developers prefer different 

techniques. Generation and evaluation of early test plan scenarios, 
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before system coding, improve quality and productivity, regardless of 

which other development techniques are used. 

1.5.1 Comparing Early Test Plan Scenarios to Prototyping 

Prototyping increases user involvement early in the program 

development cycle. This early test plan scenario thesis expands the 

prototyping philosophy to incorporate user expertise early in the 

complex systems development cycle. 

In other words, prototyping improves the interaction between users 

and developers who are designing programs that process information. 

Early test plan scenarios improve the interaction between developers 

and users who are designing complex systems that integrate information 

processing with physical operations. 

1.5.2 Comparing Early Test Plan Scenarios to Modular Top-Down Design 

Modular top-down design encourages the development of reliable and 

flexible system structures by building a solid foundation before adding 

intricate details. Vhen top-down design is rigorously enforced, the 

final system has a quality that permits gracious modifications. 

The early use of test plan scenarios allows the system's 

fundamental design to be modified at an early stage—during a time in 

which the restructuring of its modular top-down design can be carefully 

planned and monitored. 
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Unfortunately, the most damaging errors discovered by customers 

are not errors in program logic but errors in operational impact. Post- 

operational system modifications, aimed at fixing these errors, can 

sabotage the original design. The early use of test plan scenarios 

preserves the fundamental goodness of modular top-down design by 

reducing the number and severity of post-operational modifications. 

1.6 Test Plan Scenarios—the Missing Link in Complex Developments 

When test plan scenarios are developed and reviewed prior to 

system coding, they provide an early link between users and developers 

that is missing from traditional development approaches. Early test 

plan scenarios overcome cultural obstacles to user-developer 

interaction. User expertise is incorporated early into the system 

design during the critical, pre-coding phases of complex developments. 

These scenarios provide structure and focus that improve developer 

productivity and system quality. 

1.7 A Personal Note 

I have had the opportunity to be part of many different cultures. 

As a child, I grew up in an multi-lingual environment in which English, 

Polish and Russian were spoken. I subsequently studied, and used, 

several other languages. As a teenager, I worked with Dr. Martin 

Luther King and Rev. Jim Robinson, founder of Crossroads Africa. 
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My doctoral reseach involved nearly three years of participatory 

observation in a subsidiary plant of a major corporation, during the 

development of two, multi-million dollar, integrated systems. The 

plant is located in an inner city. Ninety-five percent of the plant's 

workers and management are minorities, primarily Blacks and Hispanics. 

The millions of dollars allocated to these two developments were meant 

to increase the quality and productivity of this plant's operations. 

The first development (for a Storage/Delivery system) was 

initially a "failure." Users did not participate in the design. After 

fifteen staff-years of effort and $15 million (a 300% escalation in 

budgeted time and cost) there was no useable system. 

This project became successful only after the plant staff 

appointed a new project manager. Users became involved in a re-design 

of the system. We wrote extensive test plan scenarios for users and 

developers to evaluate. The evaluations helped to improve the system's 

design. Scenarios were revised to reflect these improvements. When 

the final scenarios were approved, they became a clear guide for all 

subsequent programming. These test scenarios became acceptance tests, 

the measurable objectives of the development agreement. With minor 

revisions, the test plans scenarios were converted into user manuals. 

Another group within the plant developed a Receiving/Order system 

to link production with the warehouse. The approach presented in this 

thesis was throughout this development. The final result was a useful 

system, developed within time and cost expectations. Both systems are 

still in use. 



21 

During the course of this research, I gathered and catalogued 

several thousand pages of documents, notes, communications, letters, 

interviews and observations. 

An unanticipated bonus is that users who were involved in this 

development were challenged and motivated by their participation. They 

have become an enthusiastic group who are dramatically increasing their 

skills, aspirations and contributions to their plant and to each other. 

It was successes of this type that motivated me to propose the 

early test plan scenario thesis. 



CHAPTER 2 

EARLY TEST PLAN SCENARIOS SUPPORT FRONT-END SYSTEMS PLANNING 

It must be remembered that there is nothing more difficult to plan, 
more doubtful of success, nor more dangerous to manage, than the 
creation of a new system. For the initiator has the enmity of all 
who would profit by preservation of the old institutions and merely 
lukewarm defenders in those who would gain by the new ones. 
Machiavelli 

2.1 Front-End Planning 

Front-end planning (planning which occurs before coding) manages 

the course of a systems development by planning before coding. Front- 

end planning is basic to successful development of integrated systems 

(which integrate information processing with operations). Research 

sponsored by the Department of Defense studied several hundred software 

development organizations. Only two percent of these organizations 

attained even a medium level of quality, when quality was measured by 

developing useable systems, on time, and within estimated costs. Of 

the two percent of developers who produced quality systems, all used 

extensive front-end planning. 

Traditionally, systems developers resist planning. Developers who 

work on integrated systems (as described in the preceding chapter) no 

longer have the luxury of using individual approaches to systems 

development. The need has become too critical for continued system 

development failures [Norman, 1988, p. 1543]. 
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2.2 System Force 

When a complex system becomes active within an organization, it is 

no longer simply a set of programs. It becomes a dynamic force. An 

active system is a conduit for communication. It is a filter and 

modifier of information. An active system changes an organization's 

operational environment by altering the interaction of its people, 

machines and other systems. Without thorough front-end planning, 

programmers who code the system determine its operational impact. 

2.3 Successful Management Brings Users and Developers Together 

Successful systems development management ensures that questions 

which determine a system's useability are asked at the right time—and 

that people who have the relevant expertise are allowed to answer these 

questions. Often in systems development, people with the most relevant 

expertise, the users, do not evaluate the usefulness of a system until 

it is activated within the organization. 

Successful systems development management does not simply help 

developers "determine the users needs." Successful management lets 

users and developers work together at the drawing table [Schrage, 1989, 

p. 10]. Early test plan scenarios are a powerful management tool. 

In the typical jargon of software developers, "testing" means 
"proving" a design. Usability testing, on the other hand, is done to 
find out what is wrong with a design. This shift in purpose 
necessarily causes a change in attitude toward users and the product 
being tested [Potosnak, November 1988, p. 83]. 
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2.4 Management of Front-End Planning 

This early test plan scenario thesis presents a front-end planning 

approach which incorporates early test plan scenarios. Front-end 

planning includes four phases: (1) Describing objectives, (2) Analyzing 

functionality, (3) Defining structure, and (4) Evaluating organ¬ 

izational impact. Using the feedback tactics of quality assurance, 

each phase includes five tasks: (1) Plan, (2) Produce, (3) Test, (4) 

Improve, and (5) Approve. Each phase produces documents which are 

specifically designed to support subsequent phases. Figure 2.1 

describes these phases and the tasks associated with each phase. 

2.5 Four Planning Views 

Each planning phase uses a different view of the planned system. 

The objective view defines the purpose of the system, the reasons why 

an organization plans to allocate resources to this effort. The 

functional view describes the components of the system, exactly what 

activities it must be capable of accomplishing. The structural view 

defines how all components will fit together to form a stable system. 

The dynamic scenarios of the operational view demonstrate how the 

structured components should act within the organization's environ¬ 

ment. Will the system, as it is currently specified, be useful and 

useable within the temporal, physical and sequential conditions of the 

actual organization? 
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TASK 1 . TASK 2 . TASK 3 . TASK 4 . TASK 5 
0 1 PLAN : DO TEST IMPROVE : COMPLETE 
B | Identify : Write D.I.l 
J j problems. : Objectives 
E 1 Specify : Documents, 
C 1 Objectives,: defining 
T 1 Resources, : objectives, 
I | Time & Cost: benefits, 
V | Limitations: costs. 
E 1 A.1.1 A.1.2 

Trouble- 
Shoot 
Objectives. 
Will the 
system be 
useful & 
useable? 
A.1.3 

Brainstorm.: Sponsors 
Challenge, : Sign-off 
propose, : Objectives 
evaluate, : Document. 
& accept : 
improvement: 

• • 
A.1.4 A.1.5 

1 
| Analyze : 

F 1 functional : 
U 1 processes, : 
N 1 data, logic: 
C 1 hardware, : 
T 1 needed to : 
I | meet system: 
0 | objectives : 
N | required. : 

1 A.2.1 

<-- <— <-- <— 
Write 
Functional 
Analysis. 
Describe 
Processes, 
algorithms, 
data,soft/ 
hardware 

Requirements 
A.2.2 

Walkthrough 
Functional 
Analysis. 
Is it clear 
unambiguous 
consistent 
accurate & 
complete? 

A.2.3 

Improve : Users and 
analysis. : sponsors 
Simplify, : sign-off 
reduce cost: Functional 
make more : Analysis 
productive.: Documents. 

• • 
• • 
• • 

A.2.4 A.2.5 
1 <— <-- <— <-- 

S 1 Analyze 
T & 1 structure. 
R | Design a 
U D | logical, 
C E 1 complete 
T S | system to 
U I 1 satisfy all 
R G | functional 
E N i needs. 

1 
1 
1 A.3.1 

Produce 
Structured 
Design. 
Use tables 
diagrams, 
flowcharts 
pseudo code 
Link each 
element to 
function. 

A.3.2 

Prove 
Structured 
Analyses 
Will they 
correctly 
completely 
support all 
parts of 
Functional 
Analysis 
Documents? 
A.3.3 

Challenge : Developers 
& improve : sign-off 
analysis. : Structured 
What parts : Design 
of design : Documents, 
are missing: 
incomplete : 
inaccurate : 
too complex: 
redundant? : 

• • 
A.3.4 A.3.5 

1 <— <— <— <— 
T 1 Activate 
E 1 analysis. 
S S | Describe 
T C 1 physcial 

E 1 interaction 
P N 1 of system 
L A | with people 
A R 1 machines & 
N I | all systems 

0 | in actual 
S 1 operational 

| environment 
1 A.4.1 

Write 
Operational 
Test Plan 
Scenarios 
using all 
sequential 
spatial, 
temporal 
conditions 
of normal & 
exceptional 
operations. 
A.4.2 

Team walk¬ 
through of 
scenarios. 
Personal 
review by 
users of 
portions of 
test which 
impact 
their own 
organiza¬ 
tional role 
A.4.3 

Rigorous : All sign- 
exercise of: off Test 
scenarios. : Scenarios 
Brainstorm : Users: the 
to discover: System will 
flaws. What: be useable, 
can improve: Sponsors: 
usefulness,: System will 
useability,: be useful, 
of system : Developers: 
in organ- : System can 
ization? : be built. 
A.4.4 A.4.5 

| To PRODUCE 

Figure 2.1 Front-End Planning With Early Test Plan Scenarios. 
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2.6 Each Planning Phase Asks Different Questions 

Each phase supports different questions. The tutorial (presented 

in the next chapter) suggests guidelines for asking the most useful and 

appropriate questions during each phase. The answers are presented in 

documents, using formats selected to facilitate communication (see 

Table 2.1). These formats are designed to help users and developers 

understand, challenge and modify plans during the early stages of 

systems development. Each component (of each phase's documents) is 

formally linked to corresponding components in documents of the other 

phases. Rigorous linkage decreases ambiguity while increasing 

traceability and consistency in the design. 

Table 2.1 Front-End Planning's Questions, Documents and Formats. 

MAJOR QUESTIONS DOCUMENT FOR ANSWERS FORMAT 
I. How should the new 
system affect the 
organization? 

D.I System 
Objectives 
Documents 

Narrative 

II. What should the 
parts of the system 
do? 

D.II Functional 
Requirements 
Documents 

Text, 
Tables, 
Algorithms 

III. How should the 
parts of the system 
fit with each other & 
with the organization 
to form a stable system? 

D. Ill Structured 
Analysis 
Documents 

Blocks, Charts 
Diagrams 

IV. How should the system 
interact with the people 
machines & systems of the 
operational environment? 

D. IV Test Plan 
Scenarios of 
Operations 

Script, 
"Screen Plays" 
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Successful systems development integrates these four views into a 

single, cohesive system. The management of systems development, and 

particularly the management of the requirement specification process, 

is difficult because the language, evaluation criteria, communication 

methods and cognitive understanding tools are different for each view. 

A crucial factor in the development process is the ability of the 

participants to challenge system plans. Without a firm structure for 

questioning and improving problems in the initial plans, these problems 

often remain undetected. When problems surface during acceptance 

testing or operations, they are often so costly to correct that the 

system itself is scrapped. These four phases ensure that each view 

receives sufficient attention and that people who best understand each 

view are able to contribute their unique expertise (see Table 2.2). 

Table 2.2 Contribution of Four Planning Phases. 

1. Recognizes the unique importance of each of four views: 
Objective, Functional, Structural, Operational. 

2. Establishes questioning as a fundamental process in systems 
development, clarifying ambiguities and promoting improvements. 

3. Manages a collaborative structure which enables people with 
different skills, responsibilities and understandings to work 
together, complementing each other's efforts. 

4. Selects document formats which increase understanding of views. 

5. Enforces a rigorous linkage system which ensures that the 
products of different views form a cohesive entity. 
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2.7 Early Test Plan Scenarios Integrate Different Views 

Early test plan scenarios are scripts that integrate the three 

preceding views into a unified whole. Test plan scenarios exploit the 

expertise of users by enabling them to imagine the active system and to 

infer the operational effects of the system. Scenarios describe each 

action of the system, and each expected response of the people, 

machines and other systems that interact with the system. 

Scenarios are screenplays. They include all of the prerequisites 

for the actual test, detail the content, location and condition of all 

required data, material, machinery and persons. Scenarios clearly 

describe all relevant activities, movements and changes, using the 

actual sequence in which they occur. Scenarios explicitly describe the 

exact response, or the acceptable range of responses, to each of the 

system's actions. 

Scenarios present events using a clear, simple format. Scenarios 

describe expected responses in quantified, measurable terms. The 

evaluators of the test scenarios assess the usefulness, within the 

organization, of the characteristics, effects, constraints and 

limitations of the planned system. Scripts let users improve the 

system's usefulness by inferring the actual operationalization of the 

system. 

Operational test plan scenarios help users objectively evaluate a 

proposed system's useability. When the user is asked to evaluate a 

system, or a portion of a system, which is already operational, the 

user merely approves a design [Potosnak, November 1988]. 
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When users evaluate early test plan scenarios, they evaluate, 

modify and improve the design itself, using her/his expertise in the 

actual operational environment. 

We have little understanding of those processes by which people 

perceive and infer. Researchers of cognitive perception express their 

"humble appreciation of the enormity of our ignorance about how these 

mechanisms work" [Wilding, 1983, p. 277], We do know that the script 

format is a traditional and powerful method for people to communicate 

plans and concepts concerning proposed activities. 

For thousands of years, people have used scripts to describe 

interaction in screenplays. Script integrates separate entities, 

(whether people, machines or systems), which have different motives, 

plans and possibilities. Scripts allow and direct the focus of 

attention to be directed towards the interaction of separate people, 

structures and things. 

To be useful, a system must improve the interaction of people, 

machines and systems within an organization's operational environment 

[Lucas, 1975]. Most forms of specification are capable of addressing 

only the isolated, internal and individual characteristics of a 

program. Some methods are able to document the flow of information 

among programs and between programs and the "outside world". 

These formats for documentation are essential for defining the 

internal characteristics and the interface communication channels of 

systems. Scenarios do not replace formal specifications, tables, 

charts and diagrams. Scenarios illustrate how a system, defined and 

specified with these traditional system development tools, will 

dynamically interact within an organization. 
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Detailed scenarios, which provide more elaborate, and thus more 
expensive, operational descriptions, are even more effective than 
simple scenarios in clarifying a system's human engineering aspects 
[Boehm, 1984a, p. 81]. 

When a system is considered to be an active entity within a dynamic 

organization, system developers become playwrights who establish the 

rules of interaction among people, things and systems. Scripts force a 

director of a play to exactly follow an author's plans. 

Once early test plan scenarios are formally approved, programmers 

must follow the directions of the system planners [Poston and Bruen, 

1987, p. 59]. When difficulties arise during coding, programmers 

collaborate with users and sponsors to resolve conflicts between code 

and concepts. 

Early test plan scenarios become the acceptance tests for 

evaluating the successful completion of the system. When early test 

plan scenarios are formally approved, prior to system coding, they 

establish quantified and unambiguous measurements for evaluating the 

system itself. 

2.8 System Planning—Burden or Benefit? 

System developers often argue that detailed planning is neither 

necessary nor possible. Planning is seen as interfering with the 

creative process and limiting the potential goodness of the final 

system. A variety of "reasonable" excuses are found to skip quickly 

through the planning stage and plunging into the exciting, challenging, 

and more satisfying phase of system coding. Programmers offer many 
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excuses: "Users do not know what they want", "Until you begin work you 

cannot identify what should be done", and "Planning delays the real 

work". When programmers bypass the planning stage, the puzzles are 

greater, more interesting and more fun to solve—and the price of 

systems development increases. 

Programming systems can, of course, be built without plans....But 
since there is no general theory of the whole system, the system 
itself can be only a more or less chaotic aggregate of subsystems 
whose influence on one another's behavior is discoverable only piece¬ 
meal and by experiment. [Weizenbaum, 1976, p. 119]. 



CHAPTER 3 

A FRONT-END PLANNING TUTORIAL THAT HIGHLIGHTS EARLY TEST PLAN SCENARIOS 

Invention, it must be humbly admitted, does not consist in creating 
out of void, but out of chaos; the materials must, in the first 
place, be afforded: it can give form to dark, shapeless substances, 
but cannot bring into being the substance itself. Mary Shelley, 
Frankenstein. 

3.1 Two Integrated Developments Underpin Tutorial 

A major, multi-national corporation sponsored the two, multi¬ 

million dollar system developments that underpin this tutorial. Both 

developments produced integrated systems (systems that merge 

information processing with operational control as discussed in Chapter 

1). The developments spanned several years during the mid-1980's. 

3.1.1 Systems Designed to Improve Productivity and Quality 

Both systems were designed to increase the productivity and quality 

of the manufacturing processes within an urban subsidiary of this 

corporation. The first system supports automated production control: 

(1) Inventory management, (2) Job control, and (3) Production order 

control. The second system supports automated material storage and 

delivery: (1) Rotary Rack Storage, (2) Empty tote control, and (3) 

Automated guided vehicle delivery. 
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3.1.2 Extensive Development Research 

Several thousand pages of documents, letters, memoes, meeting 

notes, interviews, and detailed, daily summaries were gathered during 

nearly three years of full-time participant observation with these two 

developments. This research occurred both at the plant (located in a 

New England city) and on-site in California (location of the system 

development organization responsible for the major material handling 

and controls software). 

All of the documents are catalogued. A detailed case study was 

written, focusing on the interaction of the participants during these 

three years of systems development. Additional site visits and 

interviews were made during the final writing of this thesis. 

3.1.3 A Gentle Warning: Use Common Sense and Creativity 

The potential user of this tutorial is urged to use her/his common 

sense and creativity to select and adapt components. Extensive detail 

is included in this tutorial to thoroughly explain how decisions were 

made and documents designed—not to define every step which the user of 

this tutorial must follow. Structured flow diagrams are included to 

illustrate the relationship between human activity, decisions and 

documents during the course of this front-end planning approach not to 

concretize the tasks. 

Methods which support disciplined development environments promote 

regimentation if they are simply lifted from one project and adopted by 

another [Humphrey, 1989, p. 78]. Each development situation is unique— 
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approaches which succeed in one situation must be adapted to meet the 

unique requirements of another situation. Regimentation caused by 

simply adopting a methodology stifles creativity. 

This tutorial uses specific tools, such as SADTtm. These tools and 

techniques are used to demonstrate the planning requirements of each 

phase. Each development process is unique—each developer has her/his 

own favorite sets of tools. The use of SADT, or any other specific 

approach, is not meant to imply that these are the best tools. These 

tools are included because they were successful during the two 

developments researched for this thesis. 

The ideas represented within this tutorial emerged from the 

extensive effort, creative abilities, and prolonged (and intense) 

interaction of many people. These ideas helped a diverse group of 

people, situated on each side of America, work together to successfully 

build a useful integrated system. 

3.2 Early Test Plan Scenarios—Highlight of Front-End Planning 

This tutorial offers guidelines for the front-end planning of four 

development phases. Each phase represents a different view of the 

system being planned. This tutorial discusses the process of front-end 

planning associated with each view. 

Views are presented in the same sequence in which they are 

accomplished: Objective, Functional, Structural, and Operational. The 

highlight of this thesis is the fourth, operational view that develops 

early test plan scenarios. 
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3.3 Phase One: Viewing System Objectives 

Front-end planning begins by defining an organization's objectives, 

asking how a system could improve the organization. Objectives may be 

described simply, in a single document, or require a complex, multi¬ 

volume set of documents. 

The objective view identifies the impact a system will have on an 

organization (see Figure 3.1). Objective Documents describe current 

operations, evaluate problems and needs, and define the benefits of the 

system. Five tasks help develop objectives (see Table 3.1). 

Table 3.1. Five Tasks to Develop Objectives. 

(1) Plan Objectives - Identify problems for the system to 
address. Define specific goals for the system to meet. 

(2) Describe Objectives - Write the System Objectives Document, 
D.A.l. Describe problems to solve, goals,benefits. 

(3) Test Objectives - Trouble-shoot the Objectives Document. 
(4) Improve Objectives - Brainstorm, propose and improve. 
(5) Approve Objectives - Sign-off Objectives Document, D.A.l. 

3.3.1 What Are the System Objectives? 

Section D.A.1.1 of the Objectives Document states the overall 

objective of the system within the organization—and the proposed 

methods for reaching this objective. 

D.A.1.1 
The task of establishing- a comprehensive warehouse system for ABC 
Corporation is to bring about the capability of carrying a minimum 
amount of inventory and the distribution of material to product lines 
in orderly fashion. This goal will be met through implementation o 
a totally integrated system comprised of a variety of automated 
mechanical equipment controlled by the software to be developed. 
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Figure 3.1 Identify Objectives A.l. 
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3.3.1.1 How Does the Organization Operate Now? 

Section D.A.1.2 of the Objective Document summarizes current 

operations within the organization. This section describes its current 

activity using text to highlight specific problems and inadequacies in 

the operational environment. 

D.A.1.2 
This section is an overview of current material processing methods 
used at the Main Street location of the ABC Corporation. The 
operations described are conducted in Building 10. 

3.3.1.2 Which Current Systems Will the New System Affect? 

One section of the document is reserved for each active system 

within the organization that will be affected by the new system. An 

understanding of all systems currently active within the operating 

environment is needed to plan a new system which will replace, modify 

or interact with other systems within the organization. 

D.A.1.2.1 
Receiving - Material is received from various vendors at the 
receiving docks and a visual audit is made using the freight bill. 

D.A.1.2.2 
Putaway - Materials are put away in high bay storage and entries are 
made in the computer based locator system. 
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3.3.1.3 How Will the System Help the Organization? 

Section D.A.1.3 summarizes the system's benefits and defines the 

system's impact on the organization. The addition of new benefits or 

the elimination of current problems should be specified. Before the 

specification process begins, sponsors should have an explicit list of 

benefits which they expect the organization will receive from the 

system. These benefits may involve hardware, software and processes. 

In many cases, developers, particularly if outside of the 

sponsoring organization, will not yet be working under a development 

contract, but under a limited, pre-development specification contract. 

D.A.1.3 
The proposed system, for ABC Corporation, will permit scheduled Just 
In-Time delivery of parts to manufacturing. 

D. A.1.3.1 Hardware: 
- Self-guided, Self-propelled Delivery Carts to reduce delivery 

time from a current average of 30 minutes to a maximum of 20 minutes 

D.A.1.3.2 Software: 
- Real time control of carts using micro-processers to increase 

responsiveness of delivery while reducing delivery personnel by 20%. 

3.3.2 What Resources Will the Organization Allocate? 

What personnel, dollars, and equipment resources are available 

during the design, development, implementation, modification and 

operation of the final system? Resource guidelines should include 

expenditure boundaries. 

D.A.1.4 Costs 
- This project is expected to conform to the expenditure limits of 
the organization’s second level of priority projects. 
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3.3.3 When Should the System Be Operational? 

It is premature during this initial stage to assign specific 

implementation dates. Forcing a development to meet inappropriate 

schedule demands disrupts the production process, increasing its risks 

and consequent delays. It is important to establish time boundaries 

which represent actual organizational needs, and to assign levels of 

importance to each boundary. 

During development, decisions will be made which balance the time 

required to develop, test or implement a particular function with the 

expected benefit of the function. Realistic and prioritized time 

boundaries assist in determining which functionality to develop and 

which to eliminate, modify or postpone. In some situations, the 

schedule is critical and functionality will have to be sacrificed. 

Othertimes, close adherence to a schedule is less critical than full 

development of functionality. 

In a development environment in which sponsors, users and producers 

are communicating openly and are mutually directing their efforts 

towards the successful completion of the system, issues of scheduling, 

functionality and associated costs are evaluated objectively. When 

conflicts develop between groups, issues of schedule and functionality 

may erupt as a major impediment to development success. 

D.A.1.5 
On July 1, 1990, the ABC Corporation must begin production of a new 
product line. It is essential that the system be operational before 
this date, even is some functionality must be ommitted. 
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3.3.4 Who Will Develop the System? 

Section D.A.1.6 defines who will develop the system. Organizations 

have several choices when selecting developers. Will the system be 

developed in-house, or will outside vendors be hired? Will a turn-key 

system be purchased which is developed by a software house totally 

independent from the sponsoring organization? Who will participate in 

the development process? Will workers, managers, MIS persons, 

engineers, executives be involved? To what extent is participation of 

each group expected during development? 

D.A.1.6 The basic system will be developed by a consulting firm. ABC 
corporation will assign a team of three warehouse supervisors and 
three warehouse users to participate, on a full time basis. These 
six people, under the direction of the warehouse manager, will be 
full members of the development team, working closely with systems 
developers from the consulting firm. 

3.3.5 How Will the Development of the System Be Managed? 

Most management strategies assume that teamwork by sponsors, users 

and producers is required for successful system development. Once a 

project manager is selected, it is the manager who determines the 

management philosophy of the development. When developments flounder, 

new management is often assigned to the project, and the project 

management techniques are changed. The disruption caused by a change 

in personnel is aggravated by a change in managerial control. 

Evaluation of system management considerations, prior to the 

development itself, reduces some of these risks. 
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To promote a controlled development, the membership, authority and 

communication routes of the development team should be determined at 

the onset of the development. The team's composition should reflect 

the organization's management philosophy and be appropriate for the 

nature of the system and the conditions of the development environment. 

D.A.1.7 The project team will use Collaborative Management. The 
project management team will consist of three users, two sponsors and 
one producer. All decisions will be made by majority vote of the 
team. In the case of a stalemate, the project manager, to be 
assigned from the user group, will cast the deciding vote. 

3.3.6 How Will the Development Be Phased? 

Strategies concerning phases alter a development's priorities and 

risks. Three basic ways to phase a development are monolithic, 

incremental and evolutionary [Melichar, 1980). 

A monolithic approach establishes all functional requirements, to a 

detailed level of analysis, for all system functions, prior to any 

system development. This method works well if the system requirements 

are known and firmly bounded, if the operating environment is stable, 

and if the hardware and software used are proven and reliable. 

Incremental development establishes overall system requirements 

prior to development but recognizes that the completion and 

implementation of one set of functional processes may change the 

operating environment in unanticipated ways. The use of automated 

delivery carts may suggest changes to the anticipated system. The 

operational environment may change during the development. Corporate 

priorities may shift, drastically altering the system requirements. 
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The incremental approach is appropriate for a dynamic environment 

in which long-range objectives are established, but short-range 

conditions change. Long-range objectives are divided into 

subprojects. When one subproject is accomplished, the next subproject 

is re-evaluated. 

Evolutionary project management is an interactive process involving 

design, development and implementation. While this method appears to 

permit increased creativity and innovation, this appearance may be 

deceptive. As the driving decisions for the development occur at the 

detailed analysis level, there is no longer overall control at the 

level of organizational requirements. When the focus is on immediate 

technological innovation, the nature and impact of the system as a 

whole entity, and as an integrated element within the organization, may 

be ignored. For people caught up in the excitment of evolutionary 

development, it is difficult to shift gears and view the development 

from an organizational perspective. 

In evolutionary development, a rigorous process of regular reviews 

and assessments must be established to monitor the development, assess 

its impact on the organization and to determine whether to continue or 

change the current development course of activity. 

D.A.1.8 An Incremental approach will be utilized. The first phase to 
be developed will be the automated carousel storage. Upon 
satisfactory operationalization of this phase, the AGV (Automated 
Guided Vehicle) system will be developed. When the AGV system is 
operational, an automated palletization system will be developed. 
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3.4 Phase Tvo: Viewing System Functionality 

Once the organization's objectives have been established, and the 

current operations understood and documented, work begins to develop a 

systea's functionality (see Figure 3.2 and Figure 3.3). Development of 

the functionality requires intense effort. Users, sponsors and 

producers contribute to this process. If the work is completed by 

members of a single group, crucial omissions or inaccurate assumptions 

weaken the soundness of the system. 

3.4.1 Who Determines Functionality? 

Sponsors and users are often excluded from this process because of 

tiaidity or the belief that non-technicians do not have the required 

skills. Some people may consider themselves, or their supervisees "too 

busy" to participate. The system suffers when users and sponsors do 

not participate in front-end planning. 

3.4.2 Vhat Are the Functional Parts of the Systen? 

The Functional Description is a narrative about what enters the 

system, how it enters the system, what happens to it within the system 

and how it leaves the system during normal and abnormal conditions (see 

Table 3.2). Physical layouts are described and displayed with scaled 
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layouts. Processes which require decisions may be described using flow 

diagrams which concisely express the functional options. 

Table 3.2 Questions to Ask About a System's Functionality. 

1. ) What goes into the system? 

2. ) What does the system do with this input? 

3. ) What does the system use to accomplish its activity? 

4. ) What parts are released from the system? 

3.4.3 Decimal Linkage Scheme 

A decimal linkage scheme labels each component within the 

Functional Description. Each component is assigned a sequential, 

hierarchical label (see Figure 3.4). Each functional component's label 

is later assigned to the structured analysis blocks, the test plan 

scenarios, and tables and charts which may be produced to evaluate or 

improve functionality. 

Cross-tables ensure that each functional component is correctly 

represented in all subsequent development activity. This linkage 

scheme reduces the number of structures which duplicate functionality, 

prevents the possibility of overlooking functionality, and ensures that 

all functionality is adequately tested and evaluated. 

This decimal linkage scheme is particularly valuable during complex 

developments. Managing complexity is a task we are just starting to 

understand. 
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I. Warehouse System Maintenance 
Operators must be able to start up and shut down system. 

1.1 System Start-Up 
The material handling system will not be active at all times, but 
will alternate between being active and being shut down. 

1.1.1 Types of System Start-Up 
The start-up process needs to accommodate normal daily start-ups 
normal weekly start-ups and start-ups after abnormal shut downs. 

1.1.2 Evaluate System Status Conditions 
The start-up process should evaluate the status of all sub¬ 
systems, (Material Storage, Order Processing, Material Delivery). 

1.1.3 Send start-up message to INCS (Inventory Control System) 
When the start-up process is complete, an MSA (Material System 
Active) message is sent to the Inventory Control System. 

1.2. De-activate Portions of System 
The operators need to be able to de-activate any part of system. 

1.3. System Shutdown 
The operators need the capability to shut down the system. There 
are four types of normal shutdowns: end-of-day shutdown, end-of- 
week shutdown, end-of-year shutdown, and planned maintenance 
Shutdown. There are two types of abnormal shutdowns: controlled 
emergency shutdown and uncontrolled system abort shutdown. 

II. Store Material 
The Material Handling System controls automated storage. 

11.1 Process Material Announcements 
The system receives ANRs, (Advanced Notification of Receipt), 
messages from INCS (Inventory Control System) which list tote 
(containter) numbers, part numbers, and quantity of parts. 

11.1.1 Evaluate ANR messages 

11.1.2 Accept Valid ANRs 

11.1.3 Reject Invalid ANRs 

11.2 Receive Material 

11.3 Find Storage Location 

11.4 Putaway Material 

11.5 Acknowledge Material Receipt 

Figure 3.4 Sample of Linkage Scheme. 
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3.4.4 Technical Description of the System 

The technical characteristics of the hardware and software required 

to support the functionality are described in four subsections: 

(1) Functions 
(2) Interfaces with other systems 
(3) Physical configurations 
(4) System operations. 

A complex system has multiple subsystems that must be integrated 

with other systems. These subsystems are listed and defined separately 

and then integrated in a hierarchical organizational chart. The 

different forms of hardware required to support these systems are also 

documented in charts. 

The interface between systems often starts as an apparently simple 

exchange of data. If the transferred data is in the form of messages, 

an initial table of messages, their meaning, instigating time and 

condition, and response is prepared. When systems are related in a 

strictly one-way exchange and receipt of data, the interface may be 

simple, particularly if the exchange of data is always in a batch mode, 

and never has real-time consequences. 

When there is an interchange of data, systems both receive and send 

messages or data files. When the interchange occurs in real-time, the 

functioning of each of the integrated systems is constrained and 

dependent upon the time, meaning and consequences of the interchange. 

Slight miscalculations or ambiguous interpretations of the timing 

or subtle differences in expectations or interpretations of the meaning 
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and ramifications of messages may destroy the stability and integrity 

of both systems. With the increasing technological capacity for 

integrated systems, the problems associated with defining the 

requirement specifications of the interface interdepencies become 

increasingly complex. The interface between two systems may evolve 

into a third system, more complex than either of the original systems. 

3.5 Phase Three: Viewing the Structural Design 

In objective-directed design, the organization's objectives are the 

foundation of functional requirements. The analysis and design of the 

structure of the system supports and influences but does not determine 

the nature of the functionality. The operational implications of the 

proposed system's functionality derive from organizational objectives 

not from technological possibilities (see Figure 3.5 and Figure 3.6). 

3.5.1 Using the SADT Method 

There are three major stages in this phase. The first stage 

defines functional modules and data categories. The second phase 

structures the logical flow of system activity and of data. The third 

stage develops the requirements of programs which accomplish the 

activity and data flow processes. A powerful technique for structured 

analysis is the SADTtm methodology, developed by Douglas Ross (1976). 

With SADT, the system's functionality is categorized into three to 

six primary functional modules interconnected with directed paths of 

data flow, influencing factors and mechanisms. 
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STRUCTURE & DESIGN 

: D.I.3. Structure : 
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Users signoff 
Structured Design 
Documents, D.I.3., 
Approve structure 
which determines 
nature of system. 

A.3.5 APPROVE 
STRUCTURE & DESIGN 
_/\_ 

\/ I 
Write Structured I 
Design Documents I 
* Function-Actor | 
* Process Flow I 
* Data Flow Chart I 
* System/Interface I 
* Pictorial Macro I 

Views. | 
A.3.2 DESCRIBE I 
STRUCTURE & DESIGN : 
_I 

I 
| Prove Structured 
| Analysis Documents. 
| Do they describe a 
| logical, complete 
| accurate system 
| that meets all 
| functional needs? 

I 
I A.3.3.TEST 
> STRUCTURE & DESIGN: 
I_ 

Brainstorm. Improve 
the structure & 
Design. What is 
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or unnecessarily 
comples. Are all 
relevant interfaces 
included? 
A.3.4 IMPROVE 

:::> STRUCTURE & DESIGN 
I I__ 

A.3 STRUCTURED ANALYSIS AND DESIGN 

Figure 3.5 Structured Analysis and Design A.3. 
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Figure 3.6 Describe Structure and Design A.3.2. 
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The structured view fits the parts of the system (as defined in the 

functional analysis), together into a logically complete and 

structurally cohesive system. First, the functional modules are 

defined. Then a definition of the data which feeds these modules is 

developed to identify and define exactly what characteristics must be 

possessed by that data which enters the system (see Figure 3.7). 

DATA DATA START END 
NAME TYPE FORMAT POINT POINT DEFINITION REQUIRED? 
Box# Num 999999 010000 999999 Cart Number Yes 
Part# Alph XX-999 AA-001 ZZ-999 Part Number Yes 
Cost Dec ZZ9.99 000.00 999.99 Part Cost No 
Numb Int ZZZZZ9 000000 999999 Number of Parts Yes 

Figure 3.7 Sample of Data Definition Table. 

As the system's architecture develops, detailed inter-relationships 

and data definitions are expressed. When the structure is completed, 

the system is fully described in terms of its data, activity flow, data 

flow and hierarchical integration. 

3.5.2 Matching Structured Design to the Functionality 

Structured diagrams describe functionality using hierarchical 

blocks connected by processes represented by arrows. These blocks are 

labeled with a linkage system which clearly specifies each block's 

position in the overall scheme of the system. No functionality, 

originally included, is unintentionally modified or omitted in 

subsequent phases of systems development. By using the same numbering 

scheme in the functional documents, the structured blocks and the test 
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plans, a one-to-one realationship between functional and structural 

components is rigorously maintained. Each design component is matched 

to a functional component. 

3.5.3 Does the Structured Design Support the Functional Analysis? 

Front-end planning evaluates the integration of functionality with 

structure. The developers design a macro structure of programs which 

captures the structured analysis envisioned in the SADT diagrams. 

Pseudo code defines functionality inherent in each individual program. 

The data definitions, program specifications and design structures 

are compared with functional requirements to ensure compatibility. The 

process of fitting the structure to the conceptual is always led by 

functionality. The Function-Structure Table serves as a checklist for 

this fitting process (see Figure 3.8). 

3.5.4 Trouble-Shooting with the Discrepancy Document 

The Discrepancy Document is a tool for identifying, analyzing and 

resolving discrepant concepts. Ttrouble-shooting is a form of brain¬ 

storming which increases the system quality. 

The development of a Discrepancy Document is a tedious yet critical 

process, requiring an observer who concentrates on innuendoes as well 

as overt statements (see Table 3.3). The process of discrepancy 

development involves a review of prior documents, notes and comments 

which occcured during the development. Scrutiny uncovers ambiguous 

interpretations of functionality and structure. 
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FUNCTION - STRUCTURE TABLE 

Heading: Section 1.2.1 Topic: De-Activate Rotary Rack Shelf #1 

Actors Activitv Function Module Program File Fields 
Op -> A Stop Rackl 1.2.1 A.2.1 P01051 St at Posit 

Loc 
A -> TC 
TC-> RR 
RR-> TC Rackl Off 
TC-> A Rackl Off P01052 St at Posit 
A -> Op Display 

Rackl Off P01053 

Notes on Function - Structure Table: 

Each section heading in the functional analysis is represented in 
this table. The "ACTOR" column identifies the actor(s) 
accomplishing each activity. Actors may be people, machines or 
system processes. For brevity, abbreviations are used to 
identify the actor: Op (Operator); A (System A); TC (Tracking 
Controller); RR (Rotary Rack) 

Message 

HRN 
EN1 
0KEN1 
0KR1H 

If the action involves one actor, acting alone, the single 
initial appears under the heading of Actor. If the action 
involves interaction between actors, the initials are linked by 
arrows which indication the direction of the interaction: 

Actor 
Op 
(Operator 
Acting 
Alone) 

Actor 
Op->A 
(Operator 
Affecting 
System A) 

Actor 
TC<->RR (Tracking 
Controller sending 
messages to Rotary 
Rack & Rotary Rack 
sending signals to 
Tracking Controller) 

Actor 
A->Op 
A->TC 
(System A sending 
messages to both 
Operator & Tracking 
Controller. 

The Activity Column describes the activity which is occurring. 
The Function Column lists the label of the section of the 
Functional Analysis which describes the functionality being 
accomplished. The Module, Program, File, Field columns link the 
activity to the specific elements of the system architecture 
which accomplishes the function. Message refers to the label of 
any message which is sent between programs or systems. 

Figure 3.8 Sample of Function - Structure Table. 
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Table 3.3 Organization of the Discrepancy Document. 

Section l...List of identified problems which need resolution. 

Section 2 — Summarizes differences between concepts in functional 
document and interpretations of functionality. 

Section 3 — Correlates text from conceptual functional diagrams 
with comments of development participants who 
identify discrepant interpretations. 

Section 4...Summary of decisions concerning discrepancies. 

3.5.4.1 Identifying Ambiguous Interpretations 

The essence of the specification process is human understanding, 

innovation, communication and judgment. The discrepancy process 

requires the additional ability to discern ambiguous interpretation of 

functionality. It offers a format for expressing functional 

differences which will be resolved during development (see Figure 3.9). 

The person(s) responsible for identifying the discrepancies 

attempts to thoroughly understand the different interpretations, using 

an unbiased approach. Discrepancies exist—the challenge is to 

discover and resolve them before they disrupt the development. 

Resolution of differences occurs by default if no attention is 

given to their resolution. Rhe resolution occurs by edict if a single 

person has unquestioned authority to resolve differences. 

Programmers promote their own interpretations, often unaware of 

conflicts between their interpretations and that of users and of 

sponsors. When attempts are made to activate a system, discrepant 

interpretations surface at the most inconvenient and costly times. 
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Function.II. 1.2 Reject Invalid ANR (Advanced Notification 
of Receipt) messages. 

Problem.System A's error handling differs from System B's 
expectation. 

Differences. System A refuses to accept error messages. 

System B expects System A to accept error messages, 
placing them on hold until the problem is resolved. 

Functionality_II. 1.2 Reject Invalid ANRs 
"Reject implies do not store in data base" (System 

A 's programmer). 

"Reject implies store but do not process" (System 
B's programmer). 

History.09/05/88 Programmers of System A developed details 
of ANR rejection message. 

09/10/88 Programmers of System A wrote programs 
which ignore invalid ANRs. After the Rejection 
message is sent, the initial ANR no longer exists. 

09/15/88 Designed System B to remedy problem and 
send remedy back to System A. 

Figure 3.9 Sample of Discrepancy Document. 

3.5.4.2 Discrepancies Escalate Conflict 

When discrepancies remain hidden or are ignored during the 

specification stage, the opportunity for constructive resolution is 

lost. When the discrepancies emerge at the end of development, the 

resolution is often destructive. The sponsors and users must either 

accept a system with faulty functionality (one which does not work 

acceptably within the operating environment), allocate additional 

resources to rebuild part of an existing system, or drop the system. 
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With complex systems development, the cost of discrepancy resolution 

is one of "pay a little now or pay a lot later." 

3.5.4.3 Managing Discrepancy Resolution 

The approach used to resolve discrepancies determines whether the 

development thrives or fractures into disarray. The challenge of 

project management is to allow discrepancy identification, analysis and 

resolution—and to allow reconciliation of diverse viewpoints. 

The Discrepancy Document resolves discrepancies. Different people 

review the document and insert hand written comments. These comments 

become ongoing commentary in the document, with the commentor clearly 

identified. The discrepancy resolution process focuses attention on 

differences early in the development process and permits a resolution 

based on analysis, not on political maneuvering. 

3.5.4.4 Overcoming Cultural Misunderstandings 

This process is particularly useful when the relationship among 

participants becomes charged with emotion because of cultural 

misunderstanding. Often overlooked in systems literature is the 

intense nature of the relationships among systems development 

participants. The structure of front-end planning lets people work 

together, even when their ideas and interpretations conflict. Front- 

end planning focuses attention on concrete facts. People are no longer 

competing with one another, trying to promote their own viewpoint. 
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Instead, people focus on a clearly specified issue, with a variety of 

alternative interpretations. The task is to resolve a concrete issue, 

not to argue over misinterpretations. 

Discrepancies indicate that people are thinking, incorporating 

stated functionality with their personal storehouse of knowledge. 

Without different viewpoints, and the resolution of these differences, 

there would be little need for people in the development process. 

3.6 Phase Four: Viewing Operations with Early Test Plan Scenarios 

The fourth phase of front-end planning is the development of early 

test plan scenarios which activate the system design. 

3.6.1 Role of Traditional Test Plans 

The purpose of testing a system is to determine if the system does 

what it is supposed to do. Traditionally, system testing determines 

whether program code satisfies program design. 

3.6.2 Role of Early Test Plan Scenarios 

Early test plan scenarios determine whether a system, based on the 

functionality and design, would be useful (see Figure 3.10). 
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Figure 3.10 Early Test Plan Scenarios Improve System Usefulness. 

3.6.2.1 Early Test Plan Scenarios Match Design to Functionality 

When early test plan scenarios are developed before coding, they 

match the design to functional requirements. These same test plans are 

used to develop procedure manuals and documentation. After system 

coding, the test plan scenarios become system acceptance tests. 

Examining the "fit" between a developed system and the operational 

environment traditionally occurs during system start-up. The system is 

activated within the environment. If it works satisfactorily, the 

development is successful. If the system fails to work satisfactorily 

within the environment at start-up time, the results are painful and 
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expensive: the environment must be changed, the system changed or the 

system removed from the environment. 

Early test plan scenarios activate specifications, asking how well 

the specifications will work within the organization's environment. 

People are needed who understand the organization's conditions (both 

normal and exceptional) and its unique characteristics. The useability 

of a system is measured by how successfully the people, machines and 

systems within this operational environment work together. 

3.6.2.2 Script Format: A Powerful Communication Tool 

The script format used to activate requirements and design is a 

powerful communication tool. This script language of screenplays 

satisfies several requirements for specification evaluation (see Table 

3.4). 

Table 3.4 Conditions for Successful Evaluation of Specifications. 

(1) The functionality represented within the Requirement Specifi¬ 
cations must be presented in a format which can be understood by 
those people knowledgeable in the operating environment. 

(2) The functionality must be represented using a format which 
enables people to merge an understanding of the specifications with 
the operating environment. 

(3) The functionality must be presented in a way that inidividual 
patterns of activity as well as overall processes can be evaluated. 

(4) Individuals must be able to use their unique areas of expertise 
and scrutinize those sections of the functionality which directly 
concern their responsibilities. 

(5) Persons evaluating specifications must have time, opportunity, 
motivation and concern to be careful, thoughtful and thorough. 
in their work. 
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Using a script format satisfies all of these conditions. People 

understand information when it is presented within a familiar 

metaphor. Test plans are scripts set within the organization's actual 

environment. Using the actual environment as the presentation 

metaphor, people can use their expertise and understanding of the 

environment when they evaluate the proposed system. 

3.6.2.3 "Moving Pictures" Increase Understanding 

Reviewing the overall tests presents a "moving picture" for 

evaluation. To trace an her/his particular responsibility, the 

individual is able to follow the activities of a single "character" 

within the script, to assess whether the activities associated with 

that individual are valid, and as useful and easy as they might be. 

The familiar setting of these "moving pictures," and the simple 

language used to describe actions increase understanding—particularly 

important when users and developers speak different languages or are of 

different cultures. 

3.6.2.4 Early Test Plan Scenarios Increase Personal Responsibility 

Those people who scrutinize the test plans are the same people who 

will run the tests after the programs have been developed, and who will 

eventually operate the system itself. By collaborating during this 

planning stage, people are able to contribute to the design of their 

future work, to improve the present plans by suggesting changes which 

will increase the system's usefulness (see Figure 3.11). 
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When people have to personally sign-off portions of a test plan, 

they become accountable, they assume personal responsibility. People 

who will run the tests and will operate the system must sign test plans 

indicating that if the system, when developed, acts according to these 

test plans, they will be able to successfully test the system and to 

productively operate the system. 

3.6.2.5 Stricter Control of Functionality 

Early test plan scenarios, developed to evaluate functionality and 

structure, provide stricter controls of functionality during program 

development. The what of a system should not be defined by the 

technological how. The how may influence the what by limiting or 

expanding the functional and operational possibilities, but should 

not, in seclusion or by default, determine the what of a system which 

has the potential to change the nature of the organization itself. 

3.6.2.6 Controlling the Change Process 

Early test plan scenarios are dynamic. If technical requirements 

must change the nature of the system, the test plans must be modified 

to reflect that change. A critical constraint of the change process is 

that each modification to the test plan must be clearly identified, 

reviewed and accepted by sponsors, users and developers who initially 

accepted the test plan (see Figure 3.12). Early test plan scenarios 

support changes, but force control onto the change process. 
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A.4 EARLY TEST PLAN SCENARIOS HELP IMPROVE SYSTEMS BEFORE CODING 

Figure 3.11 Early Test Plan Scenarios Help Improve Systems Before 
Coding A.4. 
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Figure 3.12 Develop Early Test Plan Scenarios A.4.2. 
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3.6.2.7 Early Test Plan Scenarios Guide Coding 

Many of the programmers who code a system do not participate in 

setting system objectives, the functional analysis or the system 

design. These programmers must rely on their personal interpretation 

of functional and design documents. It is the programmer who 

determines when she/he needs assistance in interpreting a condition. 

Test scenarios offer additional, explicit guidelines which reduce 

programmer misinterpretation of system requirements. 

3.6.2.8 Early Test Plan Scenarios Become Acceptance Agreements 

The early development of test plans establishes quantitative and 

explicit measurement criteria to evaluate the successful completion of 

the system's development. As seen above, these tests help guide the 

coding process to support the functional and design decisions. 

Early test plan scenarios effectively guide coding because they are 

acceptance agreements—the formal acceptance tests of the entire 

development. Early test plan scenarios are used by programmers to 

interpret specifications because the quality of their work will be 

directly measured by how well their programs satisfy these tests. 

3.6.3 Attributes of Early Test Plan Scenarios 

The early test plan scenario's view incorporates operational 

considerations such as time, location, choice, variation, volume and 

exceptional conditions, into the system plans (see Table 3.5). 
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Table 3.5 Attributes of Test Plan Scenarios. 

Temporal 
Sequence 
Time 
Timing 

Spatial_ Environmental Volume 
Location Exceptions Size 
Physical motion Power Failures Number 
Change in loca- Delays Frequency 
tion of parts. 

Choice_ 
Flexibility 
Errors 
Changes 

3.6.3.1 Early Test Plan Scenarios Based in Activity Cycles 

The bases of early test plan scenarios are cycles of activities. 

Before developing test plans, the critical cycles within an operating 

environment must be identified. An initial plan is designed to test the 

activity which occurs during the shortest cycle. This test is expanded 

to incorporate all other relevant cycles (see Figure 3.13). 

Cycles of a Manufacturing Corporation 

1. Fiscal year 
2. Calendar months 

3. Work weeks 
4. Shifts 

5. Half-shift 
6. Hours 

Figure 3.13 Sequential Cycles of a Manufacturing Corporation. 

3.6.3.2 Importance of Timeliness 

Early test plan scenarios incorporate an operational environment's 

measure of timeliness importance. In an environment where the system 

has real-time functionality, the timeliness of the system's response is 
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crucial. One hour of the test must duplicate the variety, volume, 

sequence and time requirements of interactive activities which will 

occur in a single, operational hour. If the environment's activity is 

structured into hours and shifts, the test may represent the activities 

of each hour in a single shift, the start-up and ending activities of a 

day, a week, a month and a year. 

In a real-time environment, the system activity must successfully 

be started and completed, adhering to a particular sequence, within 

time boundaries of minutes and often seconds. In a batch mode 

environment, time boundaries may be extended to units of days, weeks, 

and sometimes months. Sequences of activities within batch modes 

remain critical—the system cannot print payroll checks until the hours 

worked have been entered into the system. 

The test plan includes additional functional complexity in each 

iteration of a temporal cycle. The successful completion of one 

segment is assumed to occur prior to the start of all subsequent 

cycles. During the initial review of the tests, people track the 

system's operation and evaluate the organizational impact of these 

operations. When these test plans are used later in the development, 

they will include tools which permit the simulation of the successful 

accomplishment of prior steps. 

3.6.3.3 Normal and Exceptional Conditions Tested 

Depending upon the organization's operations, tests are developed 

to test the system's capacity to handle required volumes, to recover 
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from external problems such as power loss, to adjust to changes in 

requirements, and to handle problems such as system crashes. 

Operational test plan scenarios are designed to exercise the 

system's capacity to operate under normal environmental conditions. 

The tests are also designed to submit the system to abnormal, disrup¬ 

tive conditions. The inclusion of potential disruptions becomes a 

guide for the subsequent system development and for establishing system 

acceptance criteria. A system should be able to accomodate some, but 

not all, potential disasters. If power fails, the system may need to 

be able to switch into a manual mode. 

3.6.3.4 Early Test Plan Scenarios Reduce Impact of Disagreements 

The potential for major disagreements and conflicts between 

developers, users and sponsors is reduced when the system's expected 

response to problem situations is agreed upon prior to, and included 

within, the final system production contract. 

3.6.3.5 Users Identify Unanticipated Problems 

People who understand the operating environment contribute to the 

brain-storming required to identify potential exceptional conditions. 

There are often situations, beyond expected mistakes or fluctuations, 

which occur in an environment which outsiders do not anticipate. In a 

manufacturing system, there may be highly volatile material which 

cannot be placed onto a conveyor. A shipment of parts from a vendor 
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may be labeled as containing fifty pieces per box, but when opened, 

after the box has entered the system, may have only forty pieces in 

each box. 

If the unusual situation is commonplace (for example the wrong 

number of parts in a vendor's box), then the organization will have to 

address the problem prior to implementing the system. If the system 

recovery for this condition is slow in the proposed system, the 

development team will have to decide on alternate recovery schemes. 

The alternative might be to redesign the system to more quickly 

accommodate problems. Additional functionality, which may slow down 

the overall processing time, may be needed. 

3.6.3.6 Early Test Plan Scenarios Linked to Functionality and Design 

Early test plan scenarios are linked to the functional analysis 

documents through the rigorous inclusion of the same linkage labeling 

techniques which matched the system structural documents with the 

functional analysis documents. Each scenarios is also directly linked 

to the corresponding design component. 

In an era of automated tools, this linkage can be simple to 

maintain. This linkage strengthens the traceability of system concepts- 

-and the discipline of the development environment. 

3.6.4 Testing the Usefulness of System Functionality and Design 

Early test plan scenarios test a system's functionality and design 

during the most efficient phase—before coding. Blunders are not 
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perpetuated and concretized in code. Mistakes and errors are corrected 

before they disrupt the development process and the system itself. 

Early Test Plan Scenarios activate the system's functionality with 

the organization's people, machines and other systems. The developers 

of the test plan construct detailed scenarios of the system's actions 

and interactions with people, machines and systems as they occur in the 

organization's operational environment. During the Acceptance Test 

process, when tests are exercising the actual programs, reviewers ask 

how well the system's programs satisfy the test expectations. 

During this earlier phase, of requirement specification testing, 

the reviewers’ focus is essentially different. Reviewers focus on the 

useability of the functionality described by the test plans. Do the 

scenarios correctly fit the nature of the operational environment and 

satisfy the objectives of the organization? 

Will a system which is able to satisfactorily pass all of the 

conditions expressed in this test, "work"? Will such a system improve 

and not harm the current organizational activities? Will the system be 

useful? Will the system be useable? Will the system be used? 

Specifications are challenged, and evaluated to ensure their adequacy 

for meeting the needs of the organization itself. 

3.6.5 Developing Early Test Plan Scenarios 

Early test plan scenarios are developed in the same, structured 

manner that the system's objectives, functionality and structure were 

developed. The components of the test plan are exactly linked to 
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components of the prior planning documents. The front-end approach of 

planning, doing, evaluating, improving and approving is repeated during 

the development of early test plan scenarios. 

Each of the following subsection titles will include the label 

associated with the task. The full diagram of this phase was 

previously described in Figure 3.12. 

3.6.5.1 Define Test Sequential Segments A.4.2.1 

The first step in writing early test plan scenarios is to define 

test wequential segments (or ’’acts") which match cycles within the 

operating environment. Segments represent cycles that characterize the 

operational environment. Additional segments are defined to represent 

significant events such as the end of the fiscal and/or calendar year, 

weekly start-up or shut-down and truncated weeks (see Figure 3.14). 

SEGMENTS: Hours of Half-shifts. 

PURPOSE: The normal cycle for material storage, ordering and 
delivery are defined by hours. All orders must be 
closed within the 4 hour half-shift. 

SECTIONS: Hour 1..System Start-up; Initial load of material. 

Hour 2..Complete ordering cycle. 

Hour 3..Complete ordering cycle. 

Hour 4..Complete ordering cycle; Close out all orders; 
System shutdown. 

Hour 5..Change storage location algorithm; Change 
delivery algorithm; End of year processing. 

Figure 3.14 Sample of Test Segments for a Manufacturing System. 
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3.6.5.2 Assign Specific Functionality to Test Sections A.4.2.2 

Assign each functional requirement (represented in the Functional 

Analysis Documents) to one or more segments. Include conditions for 

what should and should not occur. Begin simply, with single, normal 

functions. As the test progresses, overlap functions and introduce 

changes, error conditions and exceptions which represent expected 

situations within the actual operating environment. 

3.6.5.2.1 Initial Outline of Functionality 

Create an initial test outline which organizes functionality within 

the cycles of the test (see Figure 3.15). The first segment includes 

the basic, initial input into the system. Subsequent segments increase 

the number, combinations and complexity of activities occurring during 

a cycle. A final segment closes all activities. Other segments are 

developed to exercise occasional events such as fiscal year close¬ 

outs. Exceptional conditions are interspersed throughout the test. The 

first hour/segment is reserved for normal, unexceptional conditions. 

Error and problem conditions are incorporated into subsequent segments. 

Initial 
Hour Repeat 
1 Initial 

Initial 
Initial 
Initial 
Initial 

Occasional 
Regular 

Exception 
Problem Functional Activity __ 
Occasional Start-up System 
Regular Receive valid Tote Announcement Message 
Regular Receive valid Totes 
Regular Putaway totes into automated storage 
Regular Send Material Receipt Acknowledgement Message 

Figure 3.15 Manufacturing System's Initial Functional Outline. 



73 

3.6.5.2.2 Develop a Detailed Outline of Each Hour's Functional Activity 

Using the initial functional outline as a guide, expand the 

original outline with more details on each functional requirement. 

Labels used to identify requirements in the functional analysis are 

included in this detailed outline (see Figure 3.16). 

Matching- Test Segment to Functional Label and Functional Description 

Test Function 
Segment Label Functional Description 

Hour 1 

H.1.0 1.1.0 Send System Available Message. 

H.1.1.1 1.1.1 Receive valid Advanced Notification of Receipt 
(ANR) messages. 

H.l.1.2 1.2.1 Receive valid totes which were announced. 

H. 1.2.1 1.3.1 Find storage location for received totes. 

H.l.2.2 1.4.1 Order totes putaway into storage location. 

H.l. 2.3 1.5.1 Acknowledge putaway completion. 

H.l.2.4 1.6.1 Send Material Receipt Acknowledgement (MRA) messages 

Hour 2 

H.2.1.1 1.1.1 Receive valid and invalid ANR messages. 

H.2.1.2 1.1.2 Reject ANRs with tote It's outside of valid range. 

H.2.1.2.1 1.2.1 Reject invalid 5" tote numbers. 

H.2.1.2.2 1.2.2 Reject invalid 9" tote numbers. 

H.2.1.2.3 1.2.3 Reject invalid 12" tote numbers 

H.2.1.3.1 1.1.1 Receive valid totes which were announced. 

H.2.1.3.2 1.2.2 Reject totes which were not announced by messages. 

H.2.2.1 1.3.1 Find storage location for received totes. 

H.2.2.2 1.4.1 Order putaway of received totes into storage location 

H. 2.2.3.1 1.5.1 Acknowledge putaway completion. 

H. 2.2.3.2 1.3.1 Locate new putaway location if first location 

is inaccessible. 

H. 2.2.4.1 1.6.1 Send MRA messages. 

H.2.2.4.2 1.6.2 Send MRA for delayed location completions. 

(Note: There are three additional hours of detailed outline in the 
actual test). 

Figure 3.16 Detailed Outline of Functional Activity. 
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3.6.5.2.3 Match Requirements, Structure and Test Plans 

The purpose of early test plan scenarios is to improve a system's 

plans. It is critical that all of the functionality represented in the 

Functional Analysis Documents is directly represented in the test 

plans. After the detailed outline of the test plan is completed, a 

table is constructed which lists all sections of the Functional 

Analysis Documents and identifies the section(s) of the test plan where 

that functionality is specifically tested (see Figure 3.17). 

Functional 
Description 

Receive valid ANR (Advanced 
Notification of Receipt) messages 

Reject ANRs with tote it's outside 
of valid range: 

5" totes: 5000 - 8999 
9" totes: 9000 - 11999 

12" totes: 12000 - 12999 

Functional 
Analysis 

Structured Operational 
Analysis Test Plans 

1.1.1 A.1.1.1 H.2.1.1. 

1.1.2 A.1.2 H.2.1.2. 
1.1.2.1 A.1.2.1. H.2.1.2.1. 
1.1.2.2 A.1.2.2. H.2.1.2.2. 
1.1.2.3 A.1.2.3. H.2.1.2.3. 

Figure 3.17 Matching Functionality, Structure and Test Plans. 

3.6.5.3 Assign Data for Testing and Calculate Values A.4.2.3 

Assign specific data values which represent the range and variety 

of values expected during operating conditions. All values that the 

system is expected to generate, are calculated by the test designers. 

The definition of these input materials should involve those users, 
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sponsors and producers who know the possibilities, within the operating 

environment, for the normal range of values and for erroneous, 

redundant and exception data. 

When constructing a table of input materials, include material 

which is characteristic of normal input into the system as well as 

material which exhibits all characteristics of exception input which 

should be considered (see Figure 3.18). Exception input includes data 

and material which the system should reject as well as that unusual 

input which it must accept. Test material is explicitly described. 

Because the test will be used to evaluate the system, all test material 

must be acquired and reserved for the acceptance test process. 

ANRs (Advanced Notification of Receipt Messages) for Test Hour 1: 

ANR# TOTE# INVENTORY# QUANTITY PALLET# 
401 5401 AB-12345 50 400 
402 5402 AB-12345 50 400 
403 8403 AB-12345 50 400 
404 5404 50 400 
405 5406 XY-23456 50 400 
406 5435 AB-99999 50 400 
407 5800 AB-12345 50 405 
408 
409 

9001 
12001 

DD-11111 5 1405 

Totes for Test Hour 2: 

ToteSize Tote# Contents Pallet# Commen ts/Condi tion Accept? 

5" 5001 60 - part AVC 100 Yes 

5" 5002 59 - part AVC 100 1/2 label ripped off Yes 

5" 5002 60 - part AVC 100 Duplicate label No 

9" 5800 60 - part AXZ 100 Invalid tote# for 9" No 

9" 9001 25 - part X231 100 Yes 

12" 12001 100- part S99 100 Yes 

12" 12099 100- part RRE — No pallet No 

Figure 3.18 Data for Material Handling Test Plan. 
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3.6.6 Produce Explicit, Detailed Test Plan Screnarios A.4.2.4 

Test plan scenarios describe who/what does what to whom/what, when, 

where, how, why, when, and for how long. All test plan activity is 

linked to functional requirements and structured analysis via labels 

and functionality cross-tables. The test plan includes the explicit 

ranges of acceptable values and boundaries for all scenarios. 

The process of developing test scenarios activates the system's 

requirements and structure. It forces the developers to rigorously 

describe the step-by-step operationalization of each specification. 

Each segment of the test plan begins with an overview of function¬ 

ality in the segment (see Figure 3.19). By focusing attention on the 

new functionality, new elements are highlighted while repeat require¬ 

ments are retested in more complex ways. 

Test procedures associated with each section of the test segment 

describe prerequisites (see Figure 3.20), summaries of functionality 

(see Figure 3.21.), outline of functionality (see Figure 3.22), 

procedures (see Figure 3.23) and status of all relevant files after the 

completion of the test segment (see Figure 3.24). 

The test plan author writes a scenario. The scenario must be clear 

enough for people to understand, and detailed enough to define exactly 

what actions should occur. The test plans for complex systems will be 

extensive. The initial early test plan scenarios required six months 

of preparation. Automated test plan generators and re-cycled scenarios 

can reduce this time by eighty percent. The six volumes of tests 

represented six hours of system operations. These tests became the 

final acceptance test for the entire development [Eastman, 1986]. 
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HOUR 2 OF SYSTEM A'S PROCESSING 

Hour 2 is divided into three sections to process the receipt of 
messages announcing material and orders, to pick the material and to 
receive the material. 

The functionality introduced in Hour 2 is the receipt of messages 
requesting order deliveries, and system generated requests to pick 
the ordered material from storage. 

2.1. - Process ANRs & MDRs 

In section 2.1, ANR (Advanced Notification of Receipt) and MDR 
(Material Delivery Request) messages are received from System B and 
processed. Processing an MDR includes allocating material to the MDR 
and assigning the material to a Pseudo Pallet which will trigger the 
inclusion of the material in the pick process. 

Some of the MDRs in Section 2.1 require material which will be stored 
in section 2.3. These will be delayed until the third test hour. 

2.2. - Picking Material 

In section 2.2, material is picked from System A storage in pseudo 
pallet sequence. The picked material is then palletized, acute 
picked or cycle counted. After picking, material destined for 
delivery outside of System A is palletized and delivered to its 
assigned Pick-up and Delivery Destination. 

2.3. Receive Material into System A 

In section 2.3, additional material is received into System A's 
storage from System B. Tests 2.1 and 2.3 occur simultaneously. 
System A's functionality requires the postponement of allocation as 
long as possible, yet still meet the two hour delivery requirement. 
Therefore, some of the material received during test 2.3 should be 
stored early enough for allocation during this hour. 

Figure 3.19 Overview of Functionality in Test Plan Segment. 
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PREREQUISITES TO 2.2.1. - ACTIVATE PICKING PHASE 

1. Operators are at palletizing stations ready to begin palletizing 
totes as they arrive on conveyors. 

2. Operators are at the flow rack palletizing stations ready to begin 
palletizing boxes as they arrive on the flow rack conveyors. 

3. Operators are at the flow rack acute pick stations ready to begin 
processing acute pick and cycle count orders. 

4. Operator is at the tote acute pick station ready to begin 
processing tote acute pick orders. 

5. Operator is at the tote cycle count station ready to begin 
processing tote cycle count orders. 

6. Two 5" totes, i13904 and i13905 are at the tote acute pick area. 

7. Two containers, i 108536 and 108537 are taken to the flow rack 
acute pick area. 

8. Status of Container File prior to test 2.2.2: 

Palleti Totei HT-VD-LN Parti Loti Qty Status 
PP-502 11698 05-12-17 M892600 1101 10 ALLOC 
PP-502 11701 05-12-17 M892600 1101 10 ALLOC 

PP-502 11702 05-12-17 M892600 1101 10 ALLOC 
PP-502 11877 05-12-17 M892600 1101 10 ALLOC 

13904 05-12-17 — 0 Empty 

13905 05-12-17 — 0 Empty 

(Note: Actual test contains several hundred entries in this file and 
several other files to explicitly describe all data in all files 
before the test begins). 

Figure 3.20 Prerequisites for One Segment of Test Plan. 
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SUMMARY OUTLINE OF HOUR 2, SEGMENT 2 OF TEST PLAN - PICKING MATERIAL 

Step 2.2.1 Activate Picking Phase 

Material will be picked in pseudo pallet sequence. During the Site 
Acceptance Test, the picks for the rotary racks and the flow racks 
will be tested simultaneously. 

Step 2.2.2 Acute Picks 

A "Source" tote is the tote from which the material is picked during 
the acute pick process. The source totes for the acute picks should 
be the first totes picked from the rotary rack during a pick cycle. 

Step 2.2.3.1 Picking of material from the rotary rack 

No operator intervention is required during routine picking of 
material from the rotary rack. Operators must handle all totes which 
are sent to the rotary rack jackpot because of faulty processing. 

Step 2.2.3.2 Picking of material from the flow rack 

Pick lists will be printed to direct the manual picking of material 
from the flow rack. 

Step 2.2.4.1 Manual palletization in the robotic palletizer area 

At start up, there will not be robotic palletizers in use. However, 
the manual palletization process, which will be tested in the site 
acceptance tests, will duplicate the sequence and directions for the 
robopal. The system will control the exact sequence in which the 
totes are fed to the robotic palletization station. 

Step 2.2.4.2 Manual palletization in the flow rack area 

The palletization process in the flow rack area differs from the tote 
palletization. The system does not control the sequence of material 
to a palletization station. 

Figure 3.21 Summary of Functionality in Test Plan. 
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OUTLINE OF FUNCTIONALITY OF 2.2.2 — ACUTE PICK PROCESS PART 1/2 

Acute Pick Process 

1. Allocation process has selected a source tote/container. 
1. Source tote/container has been inserted into a pseudo 

pallet record (record which contains pallet plan). 
2. Pseudo pallet record for source tote/container is the first 

pseudo pallet to be processed. 

2. Source container is picked from rotary rack. 
1. Source tote delivered to rotary rack acute pick station. 
2. Source tote arrives prior to start of test. 

3. Source container is picked from flow rack. 
1. Operator requests pick ticket. 
2. Pick ticket is printed which gives location of the source 

container in the flow rack. 
3. Operator removes source container from flow rack. 

1. Operator places source container on flow rack conveyor. 
2. Conveyor delivers source container to flow rack acute 

pick station. 

4. Operator wands license number (bar code) of source tote/container 
(with optical scanner). 
1. System tells operator that the tote/container is for an 

acute pick. 
2. System asks operator to wand empty tote/container. 
3. Operator wands empty tote/container. 

5. System tells operator how much to put into empty tote/container. 
1. Operator confirms actual quantity picked. 
2. Operator can adjust acute pick count. 
3. The empty tote/container which received material from the 

source tote/container becomes the acute pick tote/container. 

6. System directs putaway of acute pick tote. 
1. System locates new rack location for acute pick tote. 
2. System tells operator to put acute pick tote on conveyor. 
3. System stores tote. 

7. Acute pick container remains in flow rack area. 

Figure 3.22 Outline of Functionality in Test Plan. 
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PROCEDURE FOR 2.2.2 — ACUTE PICK PROCESS PART 1/3 

Action Expected Response_ Actual Response 

1. Operator awaits source 
tote in rotary rack 
acute pick area. 

System delivers tote# 1. 
11877 to acute pick 
area. 

1. 

2. Operator wands source 
tote# 11877. 

2. System indicates acute 2. 
pick and tells operator 
to wand empty tote. 

3. Operator wands empty 
tote# 13904. 

3. System tells operator 3. 
to place 3 pieces into 
tote# 13904. 

4. Operator confirms the 
placement of 3 pieces 
in tote# 13904. 

5. Operator re-wands 
source tote license. 

6. Operator wands 
tote# 13905. 

7. Operator confirms 
the placement of 5 
pieces into tote# 
13905. 

4. System locates rotary 4. 
rack storage for 
tote# 13904 and tells 
the operator to place 
tote# 13904 on rack's 
con veyor. 

5. System indicates that 5. 
another pick remains 
and tells operator to 
wand another tote. 

6. System tells operator 6. 
to put 5 pieces into 
tote# 13905. 

7. System locates rack 7. 
storage for 13905 and 
tells operator to place 
tote# 13905 onto rack's 
conveyor. 

Figure 3.23 Procedure Page in Test Plans. 
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RESPONSE 2.2.2 AFTER HOUR 2 OF ACUTE PICK PROCESS PART 1/8 

Status of Container File after test 2.2.2: 

Pallet# Tote# HT-WD-LN 
PP-502 11698 05-12-17 
PP-502 11701 05-12-17 
PP-502 11702 05-12-17 
PP-502 11877 05-12-17 

Part# Lot# Qty Status 
M892600 1101 10 ALLOC 
M892600 1101 10 ALLOC 
M892600 1101 10 ALLOC 
M892600 1101 2 Avail 

13904 05-12-17 
13905 05-12-17 

3 Alloc 
5 Alloc 

(Note, there are hundreds of entries in this file, in actual test). 

Figure 3.24 File Description After Completion of Test. 

3.6.7 Develop Stress Test for Operational Capacities A.4.2.5 

Each system is vulnerable to certain types of stress. Material 

handling systems are vulnerable to large volumes of material which need 

to be processed within a short period of time. Systems which interface 

with other systems are vulnerable to breakdowns of the other systems. 

Systems which interact with machinery are dependent upon the machinery 

acting within certain boundaries. An accounting system may be 

particularly vulnerable to process interruption such as power cut-off 

during a general ledger update. Brainstorming develops "worst-case" 

scenarios for the proposed system. 

Special tests may need to be constructed to test conditions which 

are expected to stress the system. These tests are run after the basic 

functionality has been proved. For example, a time-volume test for a 

material handling system will test the ability of the system to process 

high volumes of material within specified time boundaries. 
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The design of the time-volume tests follows the same format as the 

basic functionality tests, often using the same data and material. The 

difference between the two versions is that the basic functionality 

test has limited input in order to scrutinize specific parts of 

functionality while the stress test is scrutinizing the ability of the 

system to maintain functional viability while being stressed with high 

volumes or extreme time pressures. 

3.6.8 Troubleshoot Activation of Functionality 

During the development of early test plans scenarios, the 

functionality is scrutinized by the test plan designers. They 

"activate" each requirement, describing each functional element in 

terms of its operations. 

The crucial stage of front-end planning occurs once the early test 

plan scenarios are written. Representatives of all groups who will be 

affected by the system troubleshoot the system's functionality, as it 

is activated by the scenarios. 

The composition of the brainstorming team is critical. All people 

who have contributed to earlier viewpoints on system requirements are 

needed to ensure that the system supports all objectives, functional 

needs and structured analyses. This team includes representatives from 

each job function which will be needed to operate the actual system. 

Representatives must be knowledgeable about the operations. They 

should be the same people who will perform the acceptance tests after 

the system has been developed. Representatives should be the same 

people who will operate the system. 
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Each member of the troubleshooting team asks questions, trying to 

find problems with the described functionality (see Table 3.6). As 

each member of the team evaluates the overall acceptability of the 

proposed system, members are also assigned specific sections to examine 

extremely carefully. 

Table 3.6 Evaluating Early Test Plan Scenarios. 

(1) Do the test scenarios satisfy prior specification documents? 

(2) Are all activities in the test plan scenarios possible? 

(3) Are all activities in the test plan scenarios useful? 

(4) Are all activities in the test plan scenarios measureable? 

(5) What can go wrong? 

(6) What problems will occur when people use the system? 

(7) What risks will increase with this system? 

(8) How is the system vulnerable? 

(9) Would this system be used? 

Those people who will (eventually) run the acceptance tests and 

operate the activated system are responsible for the useability of all 

sections of the test which will affect their work. Each individual 

team member signs off one or more segments of the test plan. Signing 

off confirms agreement with the operationalization of the future 

system, as it is represented in the accepted version of the test plan. 
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3.6.9 Improve Early Test Plan Scenarios 

Troubleshooting early test plan scenarios rigorously exercise the 

simulated system operations to uncover problems, flaws and weaknesses. 

The next step addresses problems identified during the troubleshooting, 

and improves functionality and design. 

The management of this stage requires the careful nuturing of an 

atmosphere of diligent team search for improvements. Individuals will 

disagree about potential improvements. An improvement according to one 

viewpoint will create new problems for another viewpoint. Individuals 

who designed parts of the specifications may not want to have their 

creations changed or eliminated. 

The task of improving requirement specifications may be the most 

difficult aspect of system development. People evaluate specifications 

as they are represented, not as they are be personally envisioned. 

People have to challenge concepts, challenge scenarios. The concept 

of "fourth dimensional thinking" applies. Reviewers envision the 

system, as described in the early test plan scenarios, in the future 

environment of the organization. This vision merges the formally 

written scenarios with all of the information an individual has 

accumulated about the operational environment. 

Skepticism, creativity and innovation are needed to envision how 

the system could operate more successfully than currently planned, and 

to translate these improvements into reasonable modifications. 
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Earlier specifications may be modified to reflect improvements. 

Extensive modifications will require substantial time. However, the 

time, cost and disruption required for modification of the system's 

design during this early stage will be substantially lower than if the 

same problems were identified after the system became operational. 

3.6.10 Formal Siqnoff of Early Test Plan Scenarios 

The signoff of the operational test plan scenario documents 

establishes a contract between sponsors, users and producers. The 

sponsors agree that the functionality represented in the test plans 

supports their organizational objectives. The users agree that the 

functionality will be useable during operations. 

The developers agree that they will be able to develop a system, 

using the design established in the structured analysis documents, that 

will satisfactorily perform all of the actions and interactions 

described in the early test plans scenarios. 



CHAPTER 4 

FRONT-END PLANNING WITH EARLY TEST PLAN SCENARIOS 

IMPROVES COMPLEX SYSTEMS DEVELOPMENT 

The real nature of things, that we shall never know, never. Einstein 

4.1 The Enigma of Systems Development 

Systems development remains an enigma. Most systems developments 

are failures—yet we still invest billions of dollars annually into 

these developments. System theories are rigid structures—yet 

programmers are notoriously unstructured. System researchers argue 

that poor specifications cause development failures—yet most research 

examines post-specification phases of coding and implementation. 

Systems are created by, for and of the people—and yet most development 

approaches concentrate on the technology. 

4.2 The Nature of Complex Systems 

The complexity of a computer system is measured in different ways. 

A complex system may be a "real time" system which responds immediately 

to a request from a person or other system. A complex system may be 

measured by the number of lines of code of its programs - when a 

program has more than a thousand lines of code, the program is 

"complex". A complex system may be interacting sets of programs. 
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4.2.1 A Definition of "Complex System" 

The definition of "complex system" used in this thesis is: A set of 

programs, implemented on one or more computers, which affects the 

interaction of people, machines and other systems in an organization, 

and which is developed by one or more groups of persons who are not the 

actual users of the system. 

4.2.2 Complex Systems Often Disrupt Operations 

The injection of complex systems often disrupts the operations of 

an organization. "It is very difficult for automation to compete 

against a well-managed, highly-motivated work force" [White, 1987, p. 

25]. Some complex systems help organizations, others disrupt 

organizations. 

4.2.2.1 Invisible Impact 

A complex system has an invisible impact [Moor, 1985, p. 273]. 

The invisibility of a system's data manipulation frees people from the 

necessity of constant attentiveness to overwhelming, redundant detail. 

Invisibility also leaves people vulnerable. People depend upon the 

results of unseen data manipulation without knowing the exact nature of 

the methods used to obtain these results, and with few tools to test 

the viability of these results. In 1988, the American presidential 

election was dependent upon complex vote tabulation systems which are 

not available for public scrutiny. The system's logical structure, the 
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source code of all the directions for vote calculations, is owned by a 

private corporation, with no current opportunity for public scrutiny. 

4.2.2.2 Malleable Logic 

Complex systems have malleable logic [Moor, 1985, p. 269]. Data 

can be accepted and rejected, manipulated and presented in any way 

which is logically correct, with logic being defined strictly by a set 

of rules, devoid of meaning. A logically "correct” vote tabulation 

program could add one extra vote to a candidate's total whenever the 

total for the opposing candidate was evenly divisible by 63. 

4.2.2.3 Hominization 

A challenge facing developers is to specify systems which use the 

logical power of computers to help people more fully exploit human 

judgment, intuition and creativity. Hominization, (treating a machine 

as if it were human), occurs when users feel a system is displaying 

independent, human, or super-human, thought [Weizenbaum, 1976]. 

If users of complex systems do not understand the internal logic of 

a system and cannot predict the actions of a system, the mechanical, 

predetermined nature of computer logic seems overwhleming and appears 

to indicate a profound, independent nature. If users attribute thought 

to a system, the system replaces the person as the decision-maker. 

This hominization of systems presents a dilemma to users. How can 

the users determine when to rely on a system's output, and when to 

challenge a system's omnipotence by using human judgment? The United 
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State's downing of an Iranian airline and the launching of the space 

shuttle during poor weather conditions [Stapleton and Putre, 1988] are 

tragic examples of the dilemma of needing to both trust and challenge 

complex systems. 

If we fail to put logic machines in their proper place, as aids 
to human beings with expert intuition, then we shall end up 
servants supplying data to our competent machines. Should 
calculative rationality triumph, no one will notice that 
something is missing, but now, while we still know what expert 
judgment is, let us use that expert judgment to preserve it. 
[Dreyfus and Dreyfus, 1986, p. 206]. 

4.3 The Nature of System Maintenance 

A major portion of the time and cost associated with complex 

systems development occurs after a system is operational. System 

maintenance refers to those changes which fix or improve the useability 

of software which is in operation. 

Software is extremely tractable. Simple changes often have 

unpredictable results which disrupt an entire system [Bryan and Siegel, 

1984, p. 59]. A single, minor change may have the effect of a tiny 

hole in a dike which, once opened, destroys the integrity of the dike. 

4.3.1 Software Maintenance Corrects Design Blunders 

Software maintenance corrects design blunders—it is different from 

maintenance of most other types of products. Maintenance of non¬ 

software products includes replacing malfunctioning or obsolete parts. 

When system software is "maintained, its structure is changed. This 
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"patch-work evolution" deteriorates the structural integrity and 

quality of the software system [Grady, 1987, p. 35]. 

4.3.1.1 "Bugs" in Logic 

Complex programs contain "bugs" or errors in the logic of program 

code. Systems maintenance corrects logical errors. Logical errors 

reflect technical problems which may be discovered and corrected by 

skilled technicians. 

While some logical errors are noticed early in a system's 

operations, others may not be revealed until the system has been 

running for months, or even years. A payroll system, running 

successfully for years, fails when an unexpected combination of data 

values occurs. Users are unable to run the payroll until the program 

is "maintained." 

4.3.1.2 Errors in Meaning 

When developers have incorrect interpretations of users' needs, 

they write programs which contain errors in meaning. "Productivity" in 

a health agency's management reports may mean "Staff Hours Worked" 

divided by "Staff Available Hours". The agency's director considers 

"Staff Available Hours" to be FTE (Full Time Equivalency) multiplied by 

the number of work days in a particular month, including the number of 

leave hours taken by the staff person during the month. The programmer 
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assumes that a staff person's available hours excludes any authorized 

leave time taken. 

The programmer's assumption increases the productivity of every 

staff person who uses authorized leave time. When errors in meaning 

are discovered, the user must accept the system's meaning, or pay the 

programmer to "maintain" the system. 

4.3.2 Maintenance Improves Usefulness 

The usefulness of a system may be improved in several ways. An 

existing function may be modified to make it more useful. The director 

of an agency which has several clinics may find that productivity 

reports, produced separately for each clinic, are useful only if they 

are consolidated. If manual consolidation is inefficient, the system 

is more useful after "maintenance" provides consolidated reports. 

4.3.2.1 Functionality Added 

Systems may require additional functionality which was unrecognized 

during the period of system specification. An organization may need to 

allocate expenses to a variety of cost centers based on fluctuating 

percentages. At the time of initial specification, the need for 

percentages was identified, but no member of the specification team 

recognized the organization's need to change these percentages. The 

need to permit fluctuation became obvious once the system became 

operational. Users were unable to adjust percentages. Because the 
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initial system was based on non-fluctuating percentages, expensive 

modifications were required to "maintain" the system [Eastman, 1987], 

4.3.2.2 Functionality Deleted 

Systems may include too much functionality. Designers often 

resemble Mark Twain's man with a new hammer — everything resembles a 

nail which should be hit. Systems with superflous "bells and whistles" 

functionality, no matter how technically intriguing and impressive, 

run slower and are more cumbersome to operate than simple systems which 

include only required functionality. Accounting systems which create 

useless reports waste time and resources. "Maintenance" is needed to 

reduce this system-imposed waste of resources. 

4.3.2.3 Complexity Simplified 

Communication between two systems may be too complex, requiring 

more counter-checks than are necessary for system validity. Super¬ 

fluous error checks may force the selection of inappropriate options, 

disrupting an organization's operations. "Safeguards" to protect the 

system from human mistakes, may prevent people from acting responsibly 

in situations which need human judgment. 

4.3.2.4 Unanticipated Changes 

Changes in requirements may be anticipated or unexpected. Changes 

may be known but overlooked during specification. Unexpected changes 
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destroy a rigid system. The market demand for a product changes. 

Technological advances make current operations obsolete. A parent 

organization alters the mission of a divisional plant. Unless a 

system's design is flexible enough to accommodate these changes, a 

costly rebuilding or total scrapping of the system may be the only 

options available. 

4.3.3 Is It Maintenance or Is It Compulsion? 

Some developers of complex systems believe that system start-up 

begins the major phase of development. "Tweaking" (adjusting) a working 

system is more exciting than the hard work of planning. 

Programming offers immediate gratification. Programming can become 

a compulsive activity. An intriguing addiction afflicts many of us who 

become involved with computers. There are few compulsive planners, but 

there are a great many compulsive programmers [Weizenbaum, 1976]. 

4.3.3.1 Reactive Maintenance 

Traditionally, systems developers assume a reactive approach to 

software maintenance, developing and using a system before attempting 

to increase the useability and effectiveness of the system [Grady, 

1987, p. 35]. Reactive maintenance tends to reduce the quality of the 

system [Grady, 1987, p. 35]. Proactive maintenance, prior to system 

coding, can improve the quality of a system by decreasing complexity 

and increasing cohesiveness. 
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4.3.3.2 Perfection Unrealistic 

Perfection is an unrealistic goal for developers of complex 

systems. The cost of building a "perfect" systems would be prohibitive 

[Bersoff, 1984, p. 79]. The goal is to build systems which are "good 

enough" to use. The realistic task of systems planning is to minimize, 

not eliminate, systems maintenance. 

4.3.4 Reducing Future Maintenance with Test Plan Scenarios 

Maintenance is the most expensive phase of systems development. 

Test plan scenarios reduce three major components of the maintenance 

phase by: (1) Correcting errors both in structure and in concept; (2) 

Customizing the system to be useful within the operating environment of 

the organization; (3) Improving the system through adding, deleting and 

modifying system functionality. 

4.3.4.1 Reducing Errors in System Structure and Concepts 

Errors in system concepts occur when developers are unable to build 

a useable system because they have an insufficient understanding of the 

functionality required by users. Reducing errors in system concepts 

receives little attention in systems research. Researchers appear to 

assume that erroneous concepts become visible as the users and sponsors 

review the developers' system descriptions. With complex systems, the 

system's description can fill several volumes. Structure and flow 

appear logically correct with an overwhelming amount of paths, patterns 
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and detail. It is difficult to assess the system as a whole. We cannot 

evaluate the forest, only trees. 

4.3.4.2 Rigor of Early Test Plan Scenarios Identifies Errors 

The rigor of the test plan development and review identifies basic 

errors in concept and structure. Early test plans force participants 

to question the operational correctness of the system's specified 

structure and design. 

4.3.4.3 New Approaches Required to Reduce Errors 

Most systems development theories—and the associated research— 

focus on the logical correctness of the system and its development 

methodology. 

The integrated systems of the 1990's force the focus onto 

operations. The increasing cultural diversity of the 1990's require 

that system development approaches acknowledge the individuality of 

participants. The overwhelming degree of system failure mandates that 

we learn how to improve the interaction of people during the 

development of complex systems. 

4.4 Theories of Systems Development 

There are many theories of system development. Formal, structured 

theorists argue that the purpose of systems development research is to 

discover, establish, and enforce rules and standards which could make 
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the process of systems development free of human error [Mathiassen and 

Munk-Madsen, 1985]. Less traditional theorists consider systems 

development a craft which requires technical expertise, creative 

innovation and user-developer interaction [Macro and Buxton, 1987]. 

Researchers who focus on the interactive, social nature of systems 

development [Scacchi, 1984] argue that it is fundamentally a political 

process [Floyd, 1985] . 

4.4.1 Folkwisdom of Hints not Rules 

Developers during the 1970's and 1980's favor hints of folkwisdom 

over rules of formal methodology. Unfortunately, these hints are too 

vague to manage the complex developments of the 1990's. 

4.4.1.1 Approaches that Work—Sometimes 

The enigmatic nature of software development forces researchers to 

acknowledge that their findings are based on their own experiences and 

are only guidelines, "approaches that work, sometimes" [Daly, 1977, p. 

242]. Researchers offer principles to improve systems development. 

Gilb [1988] based his principles on insights he developed during a 

multi-million dollar system development failure by VOLVO of Sweden. 

* The invisible target principle. All critical system 
attributes must be specified clearly. Invisible targets are hard 
to hit (except by chance). 

* The Clear-the-Fog-from-the-Target Principle. All critical 
attributes can be specified in measurable, testable terms, and 
the worst-acceptable level can be identified. 

* The Fail-Safe Minimization Principle. If you don't know what 
you're doing, don't do it on a large scale [Gilb, 1988, p. 163]. 
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4.4.1.2 Avoid Choosing a Terrible Way 

Others who are concerned with improving the systems development 

process reject claims of "best" methods and try to help developers 

"avoid choosing a terrible way" [Lampson, 1984, p. 11]. Observations 

offer insights to help a developer chart his/her own course. These 

"hints" form a growing body of "folk wisdom" [Lampson, 1984, p. 11]. 

* Too many automated systems are designed "for show not dough". 

* Systems are often designed on the basis of state-of-the-art 
solutions that exist currently or_in anticipation of advances 
in the state of the art. They are "solution driven" systems 
instead of "requirements driven" systems [White, 1987, p. 25]. 

4.4.2 Systems Development Life Cycle Theory 

Software engineering produced the Life Cycle Theory, the first, 

most widely supported, theory of systems development. The Life Cycle 

theory assumes that the development of software programs can be 

understood and improved by application of scientific methodology. 

Software Engineering: The practical application of scientific 
knowledge in the design and construction of computer programs and 
the associated documentation required to develop, operate and 
maintain them [Boehm, 1976, p. 1226]. 

Software engineering tries to develop systems which are reliable, 

understandable, efficient and modifiable, using technical tools and 

principles such as modularity and confirmability [Ross, Goodenough and 

Irvine, 1975, p. 17]. The Life Cycle theory assumes that quality 

systems are developed by completing a sequential series of tasks (see 



99 

Table 4.1). The economic motive for the Life Cycle process is that the 

cost of software changes increases substantially as the development 

progresses from plan to code to operations [Boehm, 1984a, p. 4]. 

Table 4.1 Phases of Life Cycle Developments. 

5 Phase Plan 
1) Planning 
2) Specification 
3) Design 
4) Coding 
5) Testing 

[Daly, 1976, p. 237] 

7 Phase Plan_ 
1) Feasibility 
2) Plans and Requirements 
3) Product Design 
4) Programming 
5) Integration and Test 
6) Maintenance 
7) Phaseout 
[Boehm, 1984a, p. 4] 

Most Life Cycle theories of systems development do not view change 

as an integral part of systems development. Those that do acknowledge 

the need for improvements, place maintenance after operationalization 

(see Figure 4.1). 

Design Develop- 
Customer Review Program ment 
Requirements Cycle Coding Baseline 
1-> 2-> 3-> 3/4- 
/\ /\ /\ 
::<::Verification&Validation :: 
:: Change Requests 

/\ 
Maintenance 

4- 

/\ 

Customer 
Demonstration 

/\ 

Testing :: 
> 5-> 6 

/\ 

Operational 
Baseline 

/\ :: 
• • • • • • • • 

Emergency :: 
Patches Operational 

Incidents 

CTEC's Software Development and Change Control Process 
[Bryan and Siegel, 1984, p. 63] 

Figure 4.1 Role of Maintenance in the Life Cycle Process. 
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4.4.3 Multiview Specification Methodologies 

The front-end planning approach described in this thesis suggests 

that the process of developing integrated systems which merge 

information processing with operations is too complex to rely on either 

folkwisdom or single-approach methods. Integrated systems development 

is improved with a multi-view specification process. 

4.4.3.1 DSK and SEK Models 

Arango and Freeman suggest two models for system specification. 

The DSK, Domain-Specific Knowledge model, represents the knowledge of 

those users and sponsors who understand the problem which must be 

solved. The SEK, Software Engineering Knowledge model, represents the 

software solutions for problems. Arango and Freeman argue that much of 

the difficulty associated with building useable systems is caused by 

incomplete DSK and SEK models, and the lack of integration between the 

two models [Arango and Freeman, 1985, p. 63]. This thesis uses early 

test plan scenarios to integrate the DSK and SEK models. 

4.4.3.2 PQRST Model 

Botting [1985] views software development as a multi-faceted 

undertaking which substantiates the existence and importance of 

different viewpoints during the systems development process. Botting 

assumes that an appreciation of different perspectives strengthens the 

development process by ensuring a more complete analysis, specification 



101 

and design of the system prior to the actual construction of the 

system. Botting's eclectic approach, PQRST, requires different 

specifications for Purpose, Quality, Reality (static and dynamic 

factors of the environment), System (processes which will be improved 

by software) and Techniques/Technology. 

This thesis improves Botting's eclectic methodology by integrating 

the five different specifications, verifying that they are compatible 

and mutually support a system which is useable within its operational 

environment. 

4.4.4 Interactive Design Teams 

Programmers alone should not make business decisions and users 

alone are unable to transform their needs into systems. Interactive 

design teams of users and programmers can be the catalyst for improving 

the planning and design phases of systems development [Leventhal, 

1986, p. 49]. These teams emphasize collaboration among people with 

different skills, priorities and responsibilities. 

A factor in systems failures, when users are isolated from the 

development process, is the perception of developers and sponsors that 

users are "individuals who need order and guidance in their lives and 

who are motivated by financial rewards rather than opportunities for 

personal growth" [Dagwell and Weber, 1983, p. 987]. 

Viable user participation requires users who are well-trained. 

"Participation is little more than hostage-taking, if the users are not 

given a training over and above the technical training traditionally 

offered by software vendors" [Bjorn-Andersen, 1985, p. 845]. 
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4.5 Specifications Underpin Systems Development 

Specifications underpin systems development. When specifications 

are incomplete, ambiguous or inaccurate, programmers build the system 

according to technical priorities. Technically "sound" systems are 

often unuseable [Potosnak, September 1987, p. 87]. 

4.5.1 Specification Blunders Are the Most Expensive Errors 

Specification blunders are the most expensive errors made during 

systems development. Delays in identifying and correcting these errors 

substantially increase the cost of the development process. Escalated 

cost results from the difficulty of: (1) Uncovering errors, (2) 

Defining and analyzing problems, (3) Designing solutions which will not 

disrupt the rest of the system, (4) Coding to correct the error, (5) 

Adjusting the system to accommodate the modified code, (6) Testing the 

changes, and (7) Documenting the corrections [Lipow, 1979]. 

4.5.2 Who Specifies? 

Researchers rarely ask "who specifies?" Few people question how a 

specification develops [Fickas and Nagarajan, 1988, p. 37]. Users are 

characterized as not "knowing what they need." Sponsors prefer to let 

the often highly paid developers "do the work." Sponsors may not want 

employees to leave their regular work for the lengthy period of time 

required for system specification [Gould and Lewis, 1985]. 
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The supplier is often asked to do "free design" and quote a price 
for satisfying a user's needs, without those needs being 
specified quantitatively in terms of performance requirements. In 
a cost competitive environment, less attention to detail results 
and critical flaws creep into the design [White, 1987, p. 25]. 

4.5.2.1 Who Manages Specifications? 

The specification process is a system which develops another 

system [Hamilton and Zeldin, 1979, p. 29]. Who leads this process? 

This critical question is ignored in most systems literature. Little 

attention is given to the management of the process. 

It remains to be seen if the various bodies who interact in a 
system, those who use it, those that pay for it and those that 
build, maintain and evolve it, can cooperate to ensure that the 
systems have a maximum useful life span and that systems that are 
created are also subsequently controlled [Yavneh, 1985, p. 137]. 

4.5.2.2 Developer's Traditional Responsibilities 

Traditional literature assumes that the developer is responsible 

for determining the user's requirements. The user is not viewed as the 

decision-maker, but simply as a repository of some information which is 

needed by the "real" decision-maker, the systems developer. The user 

becomes an object which is being evaluated by the developer. Most 

systems specification literature focuses on telling the developer "how 

best to extract the necessary detail about real user requirements" 

[Macro and Buxton, 1987, p. 52]. 

Traditionally, programmers interview users to determine their 

needs, then design systems to meet these needs. Once the coding phase 

of systems development begins, programmers interpret users needs, 
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decide how to prioritize users' needs and balance users' needs with 

technical requirements [Leventhal, 1986, p. 49]. 

As the impact of systems increases, users may feel that they have 

better understanding, but less control to fix problems [Bjorn- 

Andersen, 1985, p. 841]. 

4.5.2.3 Adding User Responsibility 

Socio-technical theories of systems development give the user a 

more responsible role. As a participant in the process of defining 

needs and evaluating how the system is meeting these requirements, the 

user must understand the details of a system in order to control it. 

4.5.2.3.1 Participation Not Sufficient 

The practice of specification remains faulty when users and 

sponsors are assigned a participatory role in the process yet remain 

unable to fully contribute. Users and sponsors, overwhelmed by system 

complexity, are subtly placed in a subservient role. Technical 

priorities supercede the organization's needs. The expertise of users 

and sponsors is ignored, when developers' expertise dominates. 

Getting useful design information from prospective users is not 
just a matter of asking. Many users have never considered 
alternate or improved ways of performing their tasks and are 
unaware of the options available for a new design. Further, in 
trying to communicate, designers may unwittingly intimidate 
users, and users may unfortunately become unresponsive [Gould and 
Lewis, 1985, p. 303]. 
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4.5.2.3.2 Understanding Needed 

Until the users and sponsors understand how the system will 

interact within the organization, they are not in a position to fully 

contribute their knowlege and expertise. 

Participation is little more than hostage-taking, if the users 
are not given a training over and above the technical training 
traditionally offered by systems vendors. This training is first 
and foremost oriented towards appreciation and operation of the 
system. More elaborate training programs are called for in order 
that users may be trained to understand, evaluate and even design 
systems [Bjorn-Andersen, 1985, p. 845]. 

4.5.3 Real People Specify 

Real, individual people specify systems. Real, individual people 

use systems. These people are alive, they have cultures, they have 

abilities, they have priorities, they have values. Some people like 

each other—others dislike each other. Some people understand each 

other—other people misunderstand each other. 

4.5.3.1 Most Approaches Ignore People 

Most approaches to systems development ignore the real, individual 

nature of each people. Traditional theories of systems development 

assume that, in a well-structured development, the individuality of 

participants and of their interactive relationships is irrelevant. 

Even when the systems development process is based on current tools, 

techniques and tasks, such as the CASE methodology (Computer Aided 

Software Engineering), there is a basic assumption that the primary 



task of systems development management is to force adherence to the 

underlying task structure. 

106 

4.5.3.2 A Few Observers See Real People 

A few systems observers see real people specifying systems. These 

researchers question the assumption that people should and will conform 

to pre-determined technological goals. 

What is missing from the areas cited above (CASE tools, expert 
systems)? People. Software-development productivity will not 
just have a technological solution_the area of management 
strategies for CASE is an important partner to the software 
technology [Chikofsky and Rubenstein, 1988, p. 17]. 

4.5.4 Collaboration Among Individuals 

Individuals who are technical experts can collaborate with 

individuals who are operational experts. The integrated systems of the 

1990's require this collaboration. 

4.5.4.1 Supporting Operational Priorities 

An expert developer's strength lies in building technically 

superior systems, not in operational decisions. When developers place 

technical requirements above operational needs during the design of 

systems, the systems become ends in themselves. They fail because they 

are not designed to "support the realization and management of the real 

activities (the organizational processes)" [Essink, 1986, p. 57]. 
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4.5.4.2 Recognizing Political Factors 

The specification of system requirements is not simply a matter of 

judiciously selecting the most logically sound ways of meeting obvious 

needs. A system is the end product of political negotiations. An 

important factor during the development of quality systems within 

organizations is the successful fostering of productive, social 

innovation between very diverse groups. 

4.5.4.2.1 Systems Research Focuses on Developer's Job 

The focus of nearly all systems development research is on the jobs 

of system designers and programmers. The top goal of this research is 

to improve the work of the systems designers and programmers. 

Negotiating with users makes the life of a systems designer more 

difficult. Programmers who must accommodate user priorities are 

frustrated with limitations on their technological flexibilities. 

4.5.4.2.2 Successful Integrated Systems Also Focus on User's Job 

Successful integrated systems merge information processing with 

operations. The design of these systems requires that the focus is 

also on operations—the jobs of the users. 

Technological systems can enrich or weaken workers' jobs [Bjorn- 

Andersen, 1985]. Socio-technical theories emphasize the value of 

worker-determined organizational priorities. 
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In Europe there is an emphasis on democracy in the work place. 

Norway has federal laws which enforce the rights of workers for self- 

determination. Workers have the right to determine the impact of 

technology on their own jobs [Elden, 1986]. 

Some American businesses, attempting to bolster productivity and 

quality, incorporate worker-involvement in decision-making. Worker 

involvement becomes a critical factor within organizations who attempt 

to build integrated systems to improve productivity and quality. 

Change thrives where workers as well as managers are involved, 
where everyone realizes why the improvement is needed, 
participates in the design, understands what's required to 
operate it, and feels secure that management's real intentions 
are to help them help their company [Goddard, 1987, p. 67]. 

4.5.5 Early Test Plan Scenarios Manage Collaboration 

Early test plan scenarios, developed prior to system coding, ensure 

that software code meets user needs [Bryan and Siegel, 1984, p. 64] by 

managing collaboration between users, sponsors and developers. 

"A formal education in computer science is not an adequate - not 
even an appropriate - background for those who must design and 
install large-scale computer systems in business environments." 
(Education - 1974) This statement was made by Mr. George Glaser, 
president of the American Federation of Information Processing 
Societies, Inc. [Wasley, 1975, p. 105]. 

4.5.5.1 Social Interaction Crucial During Systems Specification 

The design of complex systems which change an organization, reflect 

an organization's political order and its patterns of communication 
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[Scacchi, 1983, p. 52]. The manner in which people interact, the 

complex "web of social arrangements", is a crucial element in defining 

the nature of a system [Scacchi, 1983, p. 58]. 

4.5.5.2 Out-of-Control Interaction Disrupts 

When interaction among team members is out of control, it will 

disrupt a development. If team members do not have a single topic to 

focus upon, different viewpoints conflict and disrupt innovative work. 

Managing collaboration is difficult. If individuals are threatened by 

diversity, they may reject the views of others rather than use these 

different perspectives to increase the success of the entire team. 

4.5.5.3 Successful Collaboration Improves 

The paradox of collaboration between diverse people is that the same 

differences which produce discord can stimulate innovation. For 

collaboration to succeed, sponsors, users and developers need to 

overcome the separation caused by the boundaries of their separate 

groups, and redefine a new group, a group of collaborators, with a 

boundary which encompasses members of all three groups [Smith and Berg, 

1987, p. 104]. 

If the new group becomes viable, another situation may occur. When 

the boundaries of the development team become strong, users, having 

learned new skills, may lose their appreciation for the difficulties 

the system presents for the novice user [Gould and Lewis, 1985, p. 

303]. 
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4.5.5.4 The Language of Collaboration 

Collaboration among users and developers requires the use of a 

language which everyone understands in the same manner. Many 

researchers are trying to develop a "best" methodology for providing a 

unified model of a system which team members may use to evaluate the 

specifications and develop the system [Krasner, 1985, p. 22). 

4.6 The Languages of Requirement Specifications 

Specifications which focus on visible, external characteristics of 

a system describe activities a system must perform. Formal, abstract 

program specifications describe a system's internal mathematical 

relationships. Specifications of user needs describe properties which 

the system must exhibit. 

4.6.1 Different Languages for Different Folks 

Different communication formats are used for specifications. 

Natural language is used to specify user needs. Technical languages 

are used to specify developer's needs. 

4.6.1.1 Ambiguity of Natural Language 

Although user's familiarity with natural language improves the 

user's understanding, natural language hides ambiguous interpretations 
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[Poston, 1985, p. 63]. Users, sponsors and developers incorporate 

their personal viewpoints when interpreting words. 

Ambiguity is insiduous when it remains hidden. When each 

participant is secure in his/her own interpretation, it becomes 

extremely difficult to identify the existence of ambiguity. Complex 

systems development requires unambiguous, formal specifications. 

4.6.1.2 Formal Languages Hide Operational Blunders 

Formal languages improve ambiguity but they hide operational blunders. 

Mathematical languages, notations and charts are designed to be 

unambiguous. Formal specifications may "lead the specifier to raise 

questions that might have remained unasked, and thus unanswered, in an 

informal approach" [Meyer, 1985, p. 22]. 

A problem with formal languages is that abstract, logical structures 

may appear so strong that reviewers assume they must support viable 

systems. 

Rigorous mathematical languages are used to represent numeric 

programs, not to represent operational situations. There appears to be 

no language system which successfully represents complex systems 

[Krasner, 1985, p. 123]. 

4.6.2 This Thesis Suggests Using Several Languages 

This thesis suggests using several languages. Different languages 

are approapriate for different system specification phases. 
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Natural language is appropriate for specifying objectives. Natural 

language, helped by tables and charts, is appropriate for analyzing 

functionality. Formal languages are required for specifying structure 

and design. The script language of scenarios is powerful when 

specifying system operations. 

This thesis uses detailed script to develop test plan scenarios 

which uncover ambiguities (see Table 4.2). Scenarios integrate 

different system views into one understandable view. 

Table 4.2 Contribution of Script to Specification Languages. 

Capabilities of Traditional Language Classes 

Class Subject matter Language Semantic Capability 
Requirements The problem, 

user needs, 
environmental 
constraints 

Natural language Expert knowledge 

System 
Specification 

External, known 
characteristics 
of system 

Notations from 
engineering, 
relational data 
bases, math 
models 

Control state 
change, multi¬ 
processes, data 
relationships, 
performance 
measurements 

Abstract 
program 
specification 

An abstract 
operational 
description 

Predicate 
calculus, 
recursive 
functions 

Input/effeet/output 
of operations, 
absract data types 
formal proofs 

[Abbot and Moorhead, 1982, p. 298] 

Contribution of Script Used in Early Test Plan Scenarios 
Class Subject matter Language Semantic capability 

Test Plan 
Scenarios 

Active system, 
time sequences, 
simultaneous 
interaction, 
movement 

Natural language 
script, layouts 
screenplays, 
action, diagrams 
tables, charts 

Demonstrate inter¬ 
action of system 
with people, sys¬ 
tems, machines of 
environment 
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This scenario view lets users, sponsors and developers evaluate how 

the operations supported by the design [Boehm, 1984a, p. 81]. The 

concrete, simple actions used in scripts reduce the potential for 

ambuiguity and misinterpretation. 

4.7 Improving the System 

Test plans, developed from functional analysis and system structure 

documents, contribute two subtle improvements to the specification 

process. First, the system is presented in an operational context 

rather than a system development context. Second, users and sponsors 

have a responsibility to improve, rather than simply approve, the 

system specifications. 

4.7.1 Transforming Operational Needs into Systems 

The development process involves a series of transformations. 

People translate an operational situation into needs. People then 

envision solutions. These solutions are transformed into requirements, 

specifications, structural designs and code. Each transformation 

simultaneously changes the presentation format and the content of the 

planned system. As each transformation brings the planned system 

closer to the condition it will be in when it is operational, each 

transformation also travels further from the original operational 

environment. Users who are involved only in the final transformations 

are presented with a system which often is far removed from the 

original operational context [Sievert and Mizell, 1985, p. 56]. 
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4.7.1.1 Developers Transform with Logic 

The developers who accomplish these transformations focus on the 

rational logic of computer languages. Their vision of the system, 

their foundation for making decisions concerning the system, is based 

on this rational logic. 

As long as programmers use the current paradigm, which focuses 
on code, we will never achieve the orders-of-magnitude gain in 
productivity needed to end the software crisis [Sievert and 
Mizell, 1985, p. 57]. 

4.7.1.2 Users Transform with Operations 

Early test plan scenarios shift the programmers' decision base from 

the rational logic of program code, to the operational functionality of 

test plans. Once a system is operational, users and sponsors are able 

to identify areas in which the system can be made more useable. 

The development of complex systems within organizations is a 

process of social innovation. Although some observers of the 

development process still assume that systems development is best 

performed by a few experts aided by sophisticated techniques and 

computerized tools, many current researchers recognize the importance 

of sponsor and user contribution during the development process. 

4.7.1.3 Developers' Logic Overwhelms Users' Operations 

Most development literature ignores the power exercised by 

developers over users and sponsors. Whether this power is openly or 
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subtly exercised, it interferes with the full exploitation of user and 

sponsor expertise during systems development. When developers 

interview users, when they make hardware decisions, when they determine 

software selection, they are limiting the opportunities for 

contribution by users and sponsors. The exercise of power by 

developers can diminish the users' contributions [Markus and Bjorn- 

Andersen, 1987]. 

4.7.1.4 Unique Nature of Developer-User Communication 

Software engineering is significantly different from other forms of 

engineering because of the nature of the communication between users 

and developers which is required during the development of systems 

[Macro and Buxton, 1987, p. 27]. The power of developers, during 

initial phases, resides in "tentative acts of influence" by which 

developers control the content and format of communication between 

users, sponsors and developers [Macro and Buxton, 1987, p. 27]. 

4.7.1.5 Controlling Transformation 

Controlling the transformation of operational needs into 

technological systems becomes increasingly difficult with integrated 

systems. A rapidly escalating problem in the development of complex 

systems is the maintenance of "intellectual control over the 

development of large software systems that exist in many versions 

(through time) and many configurations (concurrently)" [Shaw, 1985, p. 
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215]. Intellectual control over large systems requires the 

collaboration of many people. 

4.7.1.6 Managed Collaboration Controls Transformation 

Collaborative innovation requires "group exploration" [LeFevre, 

1987]. Individuals must be able to access information known by other 

collaborators. A management structure must exist to enable 

collaboration, to provide a cohesive structure for the work and to 

permit evaluation of the development process. A single model must be 

available to all collaborators. A control process must be established 

which allows this single model to be used by all collaborators and 

controls the methods by which this model is modified by the 

collaborators. 

The use of early test plan scenarios manages this collaboration by 

providing the single, consistent model on which the collaborators can 

focus their activities [Richter, 1985, p. 193]. 

4.7.2 Evaluating the Usefulness of a Specified System 

Traditionally, developers themselves evaluate how well their 

designs fulfill requirements [Potosnak, 1987, p. 91]. When developers 

evalute the usefulness of a system design, there is an assumption that 

the design of a system merely transforms specifications into programs 

[Branstad and Powell, 1984, p. 75]. 
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4.7.2.1 Developers* Freedom to Evaluate Design 

Developers may insist that they have absolute freedom in design 

evaluation, arguing that how a system is developed does not change what 

is developed. Some argue that developers must be free from "user 

interference" during the design and coding of a system. 

Including design information in requirements specification is 
wrong because it restricts design trade-offs. If you tell a 
person what is required in a product as well as how to build it, 
you have specified requirements and designed the product. Design 
information is sometimes considered extra rather than wrong 
information, but however it is classified, it doesn't belong with 
requirements [Poston, September 1987, p. 83]. 

4.7.2.2 How Affects What 

Particularly with integrated systems which merge information 

technology and operations, how a system is designed affects what the 

system does operationally. The use of early test plan scenarios gives 

users and sponsors the opportunity of assessing the operational impact 

of a system's design. 

4.7.2.3 Collaboration Improves the How and the What 

A function which is operationally simple may be technically complex 

[Roman, 1985, p. 15]. When there is no user or sponsor review of func¬ 

tionality after it is affected by design, programmers make decisions 

concerning the inclusion, modification or omission of functionality. 

Programmers, not usually qualified to make business-oriented decisions, 
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use system-oriented priorities [Leventhal, 1986, p. 49]. Decisions 

concerning useability are made by programmers whenever the system's 

useability is not explicitly stated in operationally measureable terms 

prior to systems coding. 

Design development opens new possibilities for functionality. When 

developers, users and sponsors review the functionality, after the 

design has been established, new possibilities are available for 

improving the system at the most economical stage — prior to coding. 

We recommend that potential users become part of the design team 
when their perspectives can have the most influence, rather than 
using them post hoc as part of an "analysis team (of) end user 
representatives" [Gould and Lewis, 1985, p. 302]. 

4.7.3 Early Test Plan Scenarios Customize Systems 

Prototyping has emerged as a powerful tool in early customization 

of system-operator interface characteristics. When developers and 

users collaborate to develop screen displays and operational sequences, 

the system's functionality is being customized to fit the unique 

characteristics of the users' environment. 

Early test plan scenarios continue this customization process by 

providing a vehicle for user-sponsor-developer collaboration for the 

entire system scenario. Collaboration on forms, screens, and 

individual programs are necessary, but insufficient. User-sponsor- 

developer collaboration activities for complex systems must address the 

system's interaction with people, machines and other systems (see Table 

4.3). Test plans help customize the system. Test plans extend user- 

developer collaboration beyond forms and prototypes. 
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Table 4.3 Early Test Plan Scenarios Customize Systems. 

Customization 
Product_ Process - Type of Interaction Being Evaluated 

Forms Customization of forms for users and sponsors. 
Interaction of new system's inputs & outputs with 
users. 

Prototypes Customization of operator screens for users. 
Interaction of new system with users. 

Test Plan Customization of system for organization. 
Interaction of new system with users, machines, 
existing systems, temporal and spatial conditions 
of operating environment. 

4.7.4 Promoting System Quality 

Quality standards improve requirement specifications. Although 

researchers develop and promote standards to improve the systems 

development process, only those methods, structures and terminologies 

which are tried, found useful and adopted by developers are actually 

accepted as standards [Poston, 1985, p. 64]. Some researchers claim 

that the development process is so dependent upon the domain of the 

development situation, that no universal standards can be developed 

[Blum, 1985, p. 21]. 

4.7.4.1 Different Quality Criteria 

Different participants in the development process may use different 

criteria to measure the quality of a specification. Users may be 
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concerned about a system's responsiveness, its risks to operations, 

and the flexibility they will have to modify the system. Sponsors may 

be concerned about the final impact of the system, meeting schedules, 

the total cost of the development, and the compatibility of the system 

with other systems. Developers view quality by the feasibility of the 

system, the simplicity of the system, the efficiency of the system and 

the achievability of the system within hardware, time and resource 

constraints [Evans and Marciniak, 1987]. 

4.7.4.2 Tools Improve Quality 

As the cost of developments escalate, there is a proliferation of 

technical tools to promote quality. These tools are attractive to 

developers who want to improve their productivity and to managers who 

find comfort in their apparent usefulness. Tools automate many areas 

of systems development: specification, analysis, prototyping, design, 

programming, testing, verification, documentation, project managment, 

measurement of quality [Cavano and LaMonica, 1987, p. 30]. 

4.7.4.3 Statistics Improve Quality 

Statistical certification of software reliability can evaluate the 

cohesiveness of the software as development progresses, determining 

whether changes and additions are helping or destroying the structural 

soundness of a system [Mills, Dyer and Linger, 1987]. 
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When statistical techniques are "tools", used to increase the 

logical correctness of coding and design, they may improve the 

development. When statistical techniques replace human judgment, they 

prevent users and sponsors from contributing their expertise to the 

development. While tools abound in the academic community, there are 

still no widely accepted tools used in industry [Kishida, Teramoto, 

Torii, Urano, 1987, p. 11]. 

4.7.4.4 Problems with Tools and Statistics 

Subtle problems may exist with these tools. The creative process 

is complex. We do not know whether "mundane" tasks waste time, or 

whether they actually contribute to performance by forcing a deliberate 

slowdown during which the developer is able to gain new insights into 

the system's development. 

4.7.4.4.1 Tools May Discourage Innovation 

Efficient tools may discourage innovation and improvement. People 

tend to accept their value without questioning their impact. When 

developers have sophisticated tools, it may be harder for users and 

sponsors to challenge the impact of a design. 

Future environment tools will analyze data as development 
progresses, providing control early on. Entire systems will be 
evaluated and potential software-quality problems will be 
identified as quality analyzers predict and assess a project's 
cost, schedule and quality at each development stage [Cavano and 
LaMonica, 1987, p. 32]. 
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4.7.4.4.2 Quality May Be Assumed 

The parable of the emperor's new clothes applies to development 

situations. If tailors state that new clothes have quality, they 

acquire "quality." When systems designers state that a system design 

has quality, particularly when sophisticated tools are used to "ensure" 

that quality, users and sponsors may be lulled into agreeing with the 

developers and accepting the "truth" of the tools. Only one little 

child trusted himself enough to remain unfazed by the words of the 

tailor. The adults eagerly accepted the tailors' pronouncements. 

A similar situation can occur when well-paid professionals develop 

systems. Most users and sponsors accept the developers' conclusions. 

The occasional doubter, the "child" who questions, may be dismissed as 

being well-meaning, but ignorant [Eastman, 1986]. Only when attempts 

are made to activate the system, do the sponsors and users recognize 

that the system has serious faults — that the emperor is really naked. 

4.7.4.5 Discipline and Front-End Planning Improves Quality 

People who will build integrated systems in the 1990's will not 

have the luxury of experimenting with quality. The Department of 

Defense places improving the quality of systems development third in 

its list of critical priorities [Norman, 1989, p. 1543]. 

Extensive research sponsored by the Department of defense has found 

that a disciplined development environment and front-end planning are 

essential for systems quality. Early test plans were used by every 



123 

single developer recognized by this research as having established a 

record of developing quality systems [Humphrey, 1988]. 

4.8 Knowing When to Stop Specifying and Start Coding 

A difficult problem with requirement specifications is determining 

when the specifications are "good" enough to proceed to the next phase 

of development. Most specification methodologies fail to explicitly 

state how the quality of the specifications will be measured. 

4.8.1 Defining When Specifications Are Complete 

Basili's research on software development supports a development 

process which begins with explicit definitions of quality and then 

considers which process to use to achieve that measure of quality 

[Basili, 1988b]. Quality objectives must be defined operationally 

"relatively to the customer, project and organization" [Basili, 1988a, 

p. 88]. System development which focuses on quality requires 

additional, rigorous effort, planning and collaboration. With the cost 

of maintenance, the prevalence of software failures, and the increasing 

complexity of hardware and software, there may be no other choice. 

4.8.2 Complete Specifications Identify Start and End Point 

The specification provides both the starting and ending point for 

the developer. The developer uses the specification as the basis for 

developing the structure and content of the system design. During 
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development, the specification should offer guidelines to the developer 

for most decisions affecting the operational characteristics of the 

system. Finally, the developer validates the completed system by 

comparing it with the specification of the intended behavior of the 

system [DeMillo, McCracken, Martin, Passafiume, 1987, p. 3], Explicit 

measureability of the useability of a system's operations should be a 

fundamental part of specification "quality". Yet usually in systems 

development, operational tests are written, reviewed and used only 

after most, or all, of software coding is complete [DeMillo, McCracken, 

Martin, Passafiume, 1987, p. 23]. 

4.8.3 Complete Specifications Completely Describe Operations 

Early test plan scenarios support quality with explicit, 

measureable demonstrations of the operational useability of the 

system. The specific, measureable functionality of a system 

demonstrated in test plans supplies specific system objectives to 

determine when the specification is "good enough" to proceed. 

When useability is not defined using quantitatively measureable 

terms, "less attention to detail results and critical flaws creep into 

the design" [White, 1987, p. 25]. Early test plan scenarios translates 

general objectives into specific, measurable terms. Concrete, 

measureable standards for useability provide the specific objectives 

which improve the software development process and the final system 

[Potosnak, 1988, p. 89]. 
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4.8.4 Agreement that Specifications Are Complete 

A primary function of managment is to ensure that decisions are 

made by the right people, using the right criteria. The decision that 

specifications are complete must be made by both users and developers. 

The criteria must include both technical and operational factors. 

4.8.4.1 Reviews to Promote Consensus 

A valuable management tool to enable collaboration and promote 

consensus is the formal review process. Formal reviews reduce 

ambiguity and decrease misunderstandings, omissions and discrepancies 

which occur during complex developments [Parnas and Weiss, 1987, p. 

259]. The participation of team members is necessary to rigorously 

challenge the specification. The purpose of these reviews is to 

identify problems with the specifications which will decrease or 

prevent the system's operational useability. 

What is required is a usability test, not a selling job. People 
who have developed a system think differently about its use, do 
not make the same mistakes and use it differently from novices 
[Gould and Lewis, 1985, p. 302]. 

4.8.4.2 Reviews Improved when Preparation Required 

Time can be saved, and the quality of the review improved, when 

individuals make written comments after their initial review of a 

document, and these comments are consolidated by a person who is 
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responsible for the acquisition and categorization of these comments. 

Non-controversial errors are corrected prior to the team review session 

and notification is sent to all team members. During the review, team 

members focus on those problem areas with controversial resolutions 

[Fryer, 1985, p. 67]. 

Reviewing system requirements which have been influenced by the 

design, prior to coding, focuses attention on particular aspects of the 

functionality. Delegating responsibility for the useability of a 

system reduces errors and improves development quality [Parnas and 

Weiss, 1987, p. 264]. 

4.8.5 Improving Systems Requires Individual Responsibility 

Individual responsibility, of users and developers, improves the 

specification process and the final system. Early test plan scenarios 

promote individual responsibility. 

Test plans require individual and team scrutiny of the system's 

design. Some developers who try to involve others in the requirement 

specification process become frustrated by the apparent lack of concern 

and commitment by users and sponsors to this process. Users and 

sponsors may argue that it will be easier for them to evaluate the 

system after it is "completed." 

When users and sponsors do not "own" development problems, their 

energy is focused on complaining about the development rather than on 

solving problems. "Taking the risk to own or be responsible for the 

solution to a problem is a necessary prerequisite for an environment of 

effective problem solving" [Slaughter, 1980, p. 17]. 
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4.9 Cost Justification of Early Test Plan Scenarios 

Sponsors of projects are concerned about excessive time demands on 

their employees if the employees are to participate in systems 

development [Gould and Lewis, 1985, p. 304], More research is needed 

to measure the cost savings which occurs with improved user 

participation. 

4.9.1 Cost of Poorly Defined Systems 

The cost and time involved in iteration, negotiation and review of 

specifications needs support from additional case study and research 

work to convince sponsors of the ultimate value of such activities 

[Buckley, 1984, p. 39]. There is little research about methods to 

validate functional specifications [Chandrasekhara, Dasarathy and 

Kishimoto, 1985, p. 71]. Much more work is needed to develop 

techniques to understand, test and evaluate complex systems. 

When complicated software is combined with intricate electronic 
machines, elaborate communications systems and the quirks of 
users, a typical computer system represents an exceedingly high 
level of complexity. Such systems can fail in many different and 
unexpected ways. "Simply put, modern-day, complex mechanisms do 
not work properly," Morris (Robert Morris, chief scientist at the 
National Security Agency) says. "We have to learn to cope with 
complexity" [Peterson, 1988, p. 199]. 

4.9.2 Reducing Total Costs with Early Test Plan Scenarios 

Total costs, over the entire life cycle of a system, are reduced 

when test plan scenarios are developed before system coding. When 



128 

presented with a completed system, users often find that the system 

does not perform as they had expected. Even when specifications are 

carefully prepared, the users' interpretations of these formal 

specifications are often critically different from the interpretations 

of the system developers. 

Getting concise requirements to design a system and a method to 
document them that is understandable to both the user and develop¬ 
ment technicians is the difficulty [Zeimetz, 1988, p. 160]. 

4.9.2.1 Early Test Plan Scenarios Improve Process 

The process used to create complex systems may be as error-prone as 

the systems themselves [Poston, March 1988, p. 86]. Before the system 

becomes operational, the primary method of uncovering its errors is 

through software testing. When the process used to produce these 

tests is faulty, the tests themselves can create additional problems 

for the development process. When the process of creating tests has 

problems, these problems are compounded in the final system. The 

process of creating tests involves defining what to test, when to test 

and how to test. Important questions concerning the test plan process 

are: when to develop the test, who should develop the test and how to 

evaluate the test plans. 

If developers know how the product will be tested before coding 
begins, they are likely to design out the most-probable errors 
[Poston and Bruen, 1987, p. 59]. 
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4.9.2.2 Early Test Plan Scenarios Effectively Allocate Costs 

Early test plan scenarios effectively allocated costs by 

prioritizing system functionality. A frequent error when designing 

tests is to ignore critical functionality or to redundantly retest the 

same functionality [Poston, March 1988, p. 86]. Early test plan 

scenarios link each portion of the test to a specific section of the 

functional analysis, ensuring that all sections of the functional 

analysis are tested. 

The process of developing functional tests can be improved by 

closely matching the test environment to the user's operational 

environment, having the user participate in test development, and 

including expected problem situations in the tests. [Poston, March 

1988, p. 86]. 

There is no denying that (early) user testing still has a price. 
It is nowhere near as high as is commonly supposed, however, and 
it is a mistake to imagine that one can save by not paying this 
price. User testing will happen anyway: If it is not done in the 
developer's lab, it will be done in the customer's office [Gould 
and Lewis, 1985, p. 306]. 



Chapter 5 

FRONT-END PLANNING WITH EARLY TEST PLAN SCENARIOS 

IMPROVES OTHER DEVELOPMENT METHODOLOGIES 

Long before the program editor is invoked, substantial time must 
be invested in painstaking up-front planning. Frankly, planning 
is not much fun, and without good analytical tools, developers 
are easily tempted to skip on this stage or skip it entirely. 
Planning certainly does not deliver the short-term feedback that 
comes from stepwise development — adding code incrementally, 
testing it and seeing the new code run to completion. 
[Anderson, J., 1988, p. 9] 

5.1 Developers Avoid Planning 

Although most researchers and practitioners acknowledge that 

inadequate requirement specifications are the primary cause of system 

development failure, software developers tend to avoid planning. It is 

"easier" for users to identify problems in operating software than to 

uncover ambiguities, inaccuracies and deficiencies in abstract 

functional specifications and designs [Poston, August 1988, p. 2]. 

Developers get paid for their work, whether it is before or after a 

system becomes operational. 

5.1.1 Traditional Development Methods Start At Coding 

Traditional development methodologies and tools focus on the later 

phases of the development process, helping with coding, program testing 

and debugging [Anderson, J., 1988, p. 9]. Software development rarely 

follows the basic rule of quality control—find and fix blunders early. 
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5.1.2 Early Test Plan Scenarios Ensure Quality Before Coding 

The front-end planning approach presented in this thesis improves 

system quality at the most effective—and least costly time—before 

program coding. In particular, early test plan scenarios ensure that 

all design blunders which can be identified, are identified—and 

corrected—before a system is concretized in code. Early test plan 

scenarios improve the specification process by making the requirements 

themselves more "physical" [Poston, August, 1988, p. 2], 

5.2 Comparing System Development Methodologies 

This thesis argues that systems development is improved when developers 

include front-end planning with early test plan scenarios in their 

development methodology. Development approaches may be organized into 

six different categories: (1) Systems Development Life Cycle, (2) 

Traditional/Classical, (3) Structured, (4) Automated, (5) Prototyping, 

(6) Information Center. Front-end planning with early test plan 

scenarios can be adapted to improve any of these six approaches. 

5.2.1 Five Comparison Questions 

The front-end planning approach using early test plan scenarios 

may be compared to other methodologies by answering five questions 

which reveal underlying assumptions fundamental to each methodology 

(see Table 5.1). 
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Table 5.1 Five Comparison Questions. 

1. Who participates in the specification process? 
Front-end planning with early test plan scenarios promotes 
collaborative innovation among sponsors, users and developers. 

2. How should the specification process be structured? 
The four phases (in front-end planning with early test plan 
scenarios) are stating: (1) Objectives, (2) Analyzing functional 
needs, (3) Designing the system structure, and (4) Developing 
operational test plan scenarios. 

3. What terminology is used to document the specifications? 
Front-end planning with early test plan scenarios uses different 
formats for different phases. Natural language is used to state 
objectives and functional needs. Structured languages and formal 
mathematical terms are used to define a system's structure. 
Script is used to represent the activated operations of the 
system in measureble terms. 

4. How are components of successive phases linked together? 
Front-end planning with early test plan scenarios uses a rigorous 
numbering system to link components of a single phase with each 
other and with corresponding components of other phases. 

5. How is quality in the specifications defined and measured? 
Early test plan scenarios, developed prior to coding, are the 
explicit, quantitative standards which are used to evaluate the 
useability of the requirement specifications and to later 
determine the "goodness" and "completeness" of the final system. 

5.2.2 Six Categories of Specification Methodologies 

Current system specification approaches may be assigned to one of 

six major categories (see Table 5.2). Organizations frequently 

consolidate several approaches into a single development process. 

Front-end planning wity early test plan scenarios fits within the 

Systems Development Life Cycle (SDLC) approach, yet can incorporate 

approaches from each of the other five categories. Most developments 

utilize a variety of specification methods [Necco, Gordon and Tsai, 

1987, p. 466] 
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Table 5.2 Approaches to Develop Information Systems. 

Approach 
Number 
Using 

Percent 
Using 
(n=97) 

Number 
Considering 
Using 

Percent 
Considering 
Using 
(n=non users) 

* Systems Development 
Life Cycle. ...67 69% 2 7% 

* Traditional/Classical .... 67 69% 4 13% 
* Structured. ....60 62% 8 22% 
* Automated. ....56 58% 22 54% 
* Prototyping. ....45 46% 15 29% 
* Information Center... ....73 75% 11 46% 

[Necco, Gordon and Tsai, 1987, p. 466] 

5.3 Selecting One Process from Each Method 

Many variations of specifications approaches are represented in 

each category. To compare the front-end planning with early test plan 

scenario process with other methodologies, one representative process 

is selected from each category (see Table 5.3). 

Table 5.3 Representative Methods of Specification. 

CATEGORY_ 
1. Traditional/Classical 

2. Systems Development Life Cycle 

3. Structured 

4. Automated 

5. Prototyping 

REPRESENTATIVE PROCESS_ 
Life Cycle Method 

Jensen, Tonies Methodology 

SADT (Structured Analysis Design 
Technique) 

CASE (Computer Aided System 
Engineering) 

Scharer Prototype Methodology 

RML (Requirements Model) 6. Information Center 
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5.3.1 The Traditional/Classical Approach: Traditional Life Cycle 

During the early 1950's, systems analysts and operations 

researchers were usually engineers. They patterned the traditional/ 

classical approach after their mechanical training. The first major 

systems development method, the Life Cycle approach, emerged from this 

tradition. It phases systems study into preliminary design, detailed 

design and programming/installation (see Table 5.4). In 1963, Laden 

and Gildersleeve expanded this basic structure to include a feasibility 

study, objective definition, system design, programming, filemaking, 

documentation and testing [Agresti, 1986, p. 4]. 

The traditional/classical approach views systems development as an 

engineering task, emphasizing the expertise of the developer. Front- 

end planning with early test plan scenarios views systems develoement 

as collaborative innovation, which emphasizes the expertise of the user 

and sponsor as well as the expertise of the developer. Traditional 

life-cycle models focus on design and coding [Boehm, 1976] with less 

emphasis on the specification phase. 

Front-end planning with early test plan scenarios uses a variety of 

formats; the traditional/classical approach uses first-generation 

tools, natural lanuage descriptions, flowcharts and file layouts to 

describe the requirements of a proposed system [Necco, Gordon and Tsai, 

1987, p. 462]. The traditional approach assumes an evolution of one 

phase into another phase and does not require the component linkage 

control promoted in this thesis. Quality in front-end planning with 

early test plan scenarios is evaluated by the useability; quality in 

the life cycle process is measured by adherence a rigid schedule. 
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Table 5.4 The Conventional Life Cycle Approach. 

Phase 1: Specification. 
A statement of "what" the software will do, 
following a detailed analysis of the requirements. 

Phase 2: Design. 
"How" the software will meet the requirements; 
the structure of software units that 
perform specified functions. 

Phase 3: Code. 
Implementation of the design in a programming 
language. 

Phase 4: Test. 
Verification that the code executes without 
failure, and validation that the completed software is 
acceptable to the users. 

[Agresti, 1986, p. 2] 

5.3.2 Systems Development Life Cycle Approach (SDLC): Jensen-Tonies 

Methodology 

The SDLC approach develops specific phases, tasks and products to 

organize the systems development process. Early SDLC approaches 

expanded the Life Cycle methodology by assigning specific tasks, 

products and tools to each phase. SDLC methods often integrate 

processes from other approaches such as the structured, automated and 

prototyping methods [Necco, Gordon and Tsai, 1987, p. 463]. 

While SDLC methods retain the basic theme of the traditional Life 

Cycle approach, the Jensen-Tonies methodology limits the design phase 

to only conceptual design, incorporating the structural design with the 

code phase, and adds an operations and maintenance phase to the end of 

the life cycle (see Table 5.5). 
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Table 5.5 The Jensen-Tonies Methodology 

Phase 1: Research. 
Required operational capability document; 
engineering studies; experimental development 
activities. 

Phase 2: Conceptual Phase. 
Concept evaluation; systems requirements review; 
system decomposition & allocation; 
system design review; software requirements. 

Phase 3: Design & Development Phase. 
preliminary software2 analysis & design; 
preliminary design review; detailed software 
analysis & design; critical design review; 
coding and debug. 

Phase 4: Software Code Testing. 
Software subsystem integration & testing; 
software system integration & testing; 
software/hardware integration & testing; system 
performance testing; functional configuration audit; 
acceptance test & evaluation; customer delivery & 
physical configuration audit; operational testing & 
evaluation; operation & maintenance. 

[Agresti, 1986, p. 3]. 

The SDLC approach highlights the role of the developers during 

system development. As with traditional approaches, most SDLC 

methodologies focus on coding a system. A major weakness of current 

SDLC practices is that less than 15% of development time is allocated 

to defining requirement specifications. In their hurry to begin 

designing and coding a system, 33% of SDLC developers do not specify 

requirements. [Necco, Gordon, Tsai, 1987, p. 68]. 

Front-end planning with early test plan scenarios and SDLC both 

promote an organized, sequential approach to systems development that 

describes how to measure the completion of each phase. They both 

define products and activities that must be completed before one phase 
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ends and another begins. Front-end planning with early test plan 

scenarios requires that components of one phase are explicitly linked 

to components of other phases; SDLC methods have no standard linkage 

requirement. The quality of software developed with front-end planning 

with early test plan scenarios is measured quantitatively. Traditional 

SDLC methods define and measure quality by the successful completion of 

each task and activity associated with the specification phase. 

5.3.3 The Structured Approach: SADT (Structured Analysis and Design 

Technique) 

SADTtm is a systems description language and methodology which was 

developed by Douglas Ross (of MIT), in the late 1950's [Marca and 

McGowan, 1988]. It has been used to model systems, particularly the 

requirement specification of systems, for thousands of commercial 

developments (see Table 5.6). Under the name of IDEFO, (Integrated 

Computer-Aided Manufacturing Program), SADT is a standard for the U.S 

Department of Defense and has been used in hundreds of military and 

industrial systems developments. 

SADT may model any system. It reveals, with a single viewpoint, 

the overall structure of a system and the interrelationships of all 

system components. SADT improves user-developer collaboration with an 

author-reader cycle. SADT requires the contribution of user expertise. 

Recognizing that users have limited time to devote to a project, 

SADT incorporates a review/reiteration process which tries to maximize 

user-developer cooperation by maximizing user understanding and 

feedback while minimizing user time requirments. 
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Table 5.6 Seven Fundamental Concepts of SADT. 

(1) SADT attacks a problem by building a model or a 
representation of the problem_Multiple SADT models of a 
system from different viewpoints may be required for complete 
understanding. 

(2) Analysis of any problem is top-down, modular, hierarchic and 
structured. 

(3) SADT differentiates_between the creation first of a 
functional model...and then the creation of a design model. 

(4) SADT models both things and happenings. The complete SADT 
model of a problem must show both aspects properly related. 

(5) The language of SADT is a diagramming technique which shows 
component parts, interrelationships between them, and how 
they fit into a hierarchic structure. 

(6) SADT methods support disciplined, coordinated teamwork, which 
is required in order to produce results which reflect the 
best thinking of a team. 

(7) SADT methods require that all analysis and design decisions 
and comments thereon be in written form. 

[Ross, 1976, p. 2.1] . 

SADT is used to understand and represent a system through a set of 

diagrams which fit together to form a model with a single view of a 

system. Several complementary models may be created for a single 

system, each with a unique viewpoint. Each model should represent only 

a single viewpoint for the SADT method to accurately model a system. 

Most complex systems developments using the SADT methodology have 

one complete SADT model to represent the system from the data flow 

viewpoint and one complete model from a procedural viewpoint. 

A major strength of SADT is that it forces the definition of the 

boundary between the system and the non-system world. SADT then forces 

the definition of boundaries and hierarchical relationships between 
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each of the system's subcomponents. This rigorous structuring of the 

system establishes a solid foundation for the later concretization by 

coding portion of the development. 

Rigorously structured SADT diagrams facilitate post-operational 

modifications. When the basic system structure is clear and the 

relationship of the components is firmly established, it is easier for 

analysts to determine where maintenance modifications are needed and 

how best to fit these changes into the tightly interrelated system. 

SADT can incorporate automated CASE tools. But automation is not 

critical for successful use of SADT. Douglas Ross, the originator of 

SADT, still prefers to construct SADT diagrams with pencil and paper. 

SADT can be successfully integrated into front-end planning with 

early test plan scenarios. The initial development of researched for 

this thesis used SADT to create two complete models of the complex 

development. One model traced the flow of data and one model 

represented the interaction of procedural components. 

SADT's emphasis on user-developer collaboration was a major 

influence during the during this research. SADT uses explicit, clear 

diagrams as the focus of communication among participants in the 

development process. This approach underpinning this thesis borrows 

the concept of a focal point for collaboration from SADT. Each phase 

of this thesis's approach uses specific documents to focus the 

collaborative activities. 

SADT's process links all subcomponents into a hierarchical scheme. 

Front-end planning with early test plan scenarios uses this linkage 

scheme and further develops it to link together the components of other 

phases of the development process. 
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SADT is a powerful tool for structuring a system. It is not meant 

to operationalize or measure a system. A critical premise of the front- 

end planning with early test plan scenarios methodology is that there 

are different aspects of specifying a system, and each aspect is best 

accomplished by using specific tools. The best tools for one aspect 

are often not appropriate for another aspect. 

The development of complex systems is hampered by attempts to make 

a particular tool the universal tool. Front-end planning with early 

test plan scenarios does not require specific tools for any phase of 

the specification process. 

The selection of the particular tools to be used within each phase 

should be based on the requirements of the phase, the development 

conditions, the capabilities of currently available tools, and the 

developer's preferences. 

5.3.4 The Automated Approach: CASE (Computer Aided System 

Engineering) 

The CASE (Computer Aided System Engineering) methodology uses 

computer tools to structure user requirements and to design the system 

from the top down. Starting with the highest level design, CASE tools 

help developers automate design decomposition from the highest macro 

level into detailed sub-divisions [Anderson, J., 1988, p. 9]. 

CASE tools are at the forefront of those developments which attempt 

to "forge a creative partnership" [Yourdon, 1988, p. 740] between 

people and automation. The CASE based process is designed to 

facilitate user-developer communication, by providing descriptions of 
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the system in several different formats including flow charts and 

structured diagrams. Although CASE developers advocate helping users 

understand the system structure, the developer remains the expert 

extracting information from the user [Martin, 1988, p. 3]. CASE 

methodologies use a top-down approach implemented with one or more 

computerized tools to develop the system structure. 

The most prominent variations of the CASE approach base their top- 

down design strategies on data flow, information interaction or 

operational procedures. While all three of these variations may be 

integrated into a single development, the CASE tools which support 

procedural analysis may be most directly used by front-end planning 

with early test plan scenarios. 

The first development researched for this thesis included both data 

and information analyses which supported, and were integrated into, the 

procedural analysis. CASE includes a variety of tools which could be 

useful when using front-end planning with early test plan scenarios to 

develop a complex system. While some developers feel there remains an 

advantage to manually diagramming a system, others prefer to use CASE 

tools to automate the pictorial representation of a system. 

CASE tools can be used to simulate screens and to generate reports 

which can be incorporated into the operational test plans. CASE tools 

for data dictionaries, project management information, syntax checking 

and documentation generation attempt to computerize some of the time- 

consuming activities which occur during complex systems development. 

Although CASE tools claim to be total development methodologies, 

their actual role normally begins after the developer and user have 

defined the objectives and scope of the system [Topper, 1988, p. 71]. 
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CASE tools are not used to define basic organizational objectives 

of the system development. While some tools claim to help develop the 

functional analysis, their primary role during this process appears to 

be that of documenting the work which is accomplished by people. 

CASE tools could be used during the structural design of the 

system. Tools to decompose a system, to computerize the process of 

diagramming a system's structure, may increase the productivity of a 

developer. 

The developer must continue to participate in the structural 

analysis, to ensure that the process is sensible. It is easy to become 

so infatuated with CASE tools, that the hard thought and judgment 

involved in structural analysis is bypassed. 

A modification of currently available CASE tools would be 

particularly useful in controlling the linkages between different 

components of different iterations of the system. 

There is no explicit function within CASE to measure quality of 

specifications by evaluating the useability of the system. Proponents 

of CASE argue that users are able to evaluate a system by understanding 

the diagrams and pictorial representations of the system which can be 

produced with CASE tools. CASE methods have no formal measurement 

criteria for the final system. Early test plan scenarios exercise the 

proposed system within the spatial, temporal and physical conditions of 

its future operational environment. CASE tools do not evaluate the 

useability of specifications. Front-end planning with early test plan 

scenarios establishes operational test plans as the official, formally 

approved measurement criteria to determine when the system has been 

adequately developed and should be accepted. 
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In 1984, Robert Poston, of Programming Environments Inc., began the 

development of an automatic test generator (which belongs within the 

CASE category). Funded by grants from the Small Business Innovative 

Research Program and the US Department of Defense, PEI was supported 

through three phases of development. Phase I, the feasibility study, 

was simple because PEI already had a working version of the test 

generator. Phase II ported the system to Unix and VMS systems. Phase 

III assisted in the commercialization of the system [Poston, January, 

1988, p. 1]. T includes functionality to measure the quality of 

software, to determine when it is "good enough." Testing comprehen¬ 

siveness is measured through formulas which determine the ratio of what 

has been demonstrated to what should be demonstrated [Poston, April 

1988, p. 3]. 

T has been designed as a specification tool to generate test cases 

which measure the useability of specifications before any coding 

begins. Developers of T consider its most effective impact to be the 

capturing and communication of the physicalness of the system, which is 

easier to understand than requirement statements or structural diagrams 

[Poston, August, 1988, p. 2], 

Users of T include the US Army and AT&T. By developing test cases, 

prior to testing, users have measured an 85% reduction in testing time, 

a 47% reduction in programmer-discovered bugs and a 95% reduction in 

customer-discovered bugs. By incorporating test plans into the 

specification process, users of T have moved a significant portion of 

system maintenance to the less costly front end of systems development. 
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It is likely that historians in the future, looking back on the 
extraordinary evolution of computing, will say that the true 
computer revolution was the one that automated the processes of 
design and programming. Manual structured techniques were a 
necessary preliminary to the automation but were not by 
themselves the true revolution [Yourdon, 1988, pp. 742-743]. 

5.3.5 The Prototyping Approach: Scharer Methodology 

A prototype is an early version of a program that exhibits features 

of an operational system [Alavi, 1984, p. 556]. Prototyping creates a 

working system to help users define their needs and help developers 

understand users' needs [Taylor and Standish, 1984, p. 39]. It is based 

on a brief statement of user needs followed by a rapidly produced, 

operational model of a program which addresses these needs (see Table 

5.7). Fourth generation languages and prototype languages such as PSDL 

are used to produce the prototype [Luqi, Ketabchi, 1988, p. 66]. 

Technologies are being developed to automate the transformation of a 

prototype program into an operational version of a program [Balzer, 

Green, and Cheatham, 1983]. 

The prototype approach which is successful for single programs and 

simple systems has limited use for complex developments. It gives no 

indication of how a system will react when it is stressed by large 

volumes of material or data, or by tiem and sequences. It does not 

evaluate the interaction of programs or systems. Components are not 

formally linked together but are simply transformed into new versions 

[Balzar, Green and Cheatham, 1983, p. 40]. 
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Table 5.7 Four Phases of Prototyping. 

Phase 1: Preliminary fact-finding. 
Study business problem; 
Generate alternatives. 

Phase 2: Pregeneration Design. 
Identify and define data elements; 
Define "flat file" arrangement of data; Design 
high-level system flow; Describe procedural 
responsibilities; List transactions by type and effect; 
List reports, inquiries, updates. 

Phase 3: Prototype Generation. 
Task; Generate baseline prototype 

Phase 4: Prototype Refinement Interactions. 
Demonstrate prototype to users and record user comments; 
Add to functional scope of prototype; 
Supplement physical model with written descriptions 

[Scharer, 1983, p. 37]. 

While front-end planning with early test plan scenarios requires 

the development of operational test plans to define the measurement 

criteria of a system before a system is coded, prototyping is a process 

which eliminates testing. [Balzar, Cheatham and Green, 1983, p. 40]. 

The risks of failure in a complex systems development increase when 

there are no quantitative measurement tests. An agreement to "produce 

a quality system which meets user needs" is an agreement to disagree 

during the final assessment of the quality and of the useability of an 

activated system. 

Front-end planning with early test plan scenarios can use 

prototyping during the development of requirements for specific 

portions of complex systems, but not to represent an entire system. 



146 

Prototypes can simulate user-terminal interfaces successfully 

enough to enable viable user evaluation on a proposed function. 

However, the evaluation of complex systems requires a broad merging of 

temporal, spatial, informational and environmental factors which are 

not amenable to prototyping. While parts may be evaluated with 

prototypes, the critical aspect of complex systems which must be tested 

is the interaction of the parts with each other and with other entities 

in the operational environment. 

5.3.6 Information Center: RML (Requirements Model) 

Information center approaches to systems development were first 

used by IBM Canada to reduce system development backlogs by involving 

users in the process of defining and modifying computer applications 

[Necco, Gordon, Tsai, 1987]. Specialized languages are being 

developed to direct users in formally stating the "information" which 

should be represented in a system's database. Information-based 

systems developed attempts to be self-building. As users employ the 

information represention language to model the system and the 

environment in which it will operate, the system's foundation is 

defined and constructed. 

Many researchers consider the management of information to be the 

weakest link in the development of complex systems. They claim that 

NASA's failures are directly linked to faulty information management 

which results in incompatible systems, delays of years in transfer of 

some information, and the lack of an overall system architecture to 

coordinate the interaction of critical space systems. 
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The effects of bad information management permeate and pollute 
every level of NASA, driving away the best scientists and 
discouraging new recruits...NASA critics point to (faulty) 
information systems as a prime culprit in the agency's inability 
to exploit space....(NASA's) haphazard approach to computing in 
which incompatible systems isolate scientists from their fellow 
workers [Stapleton and Puttre, 1988, p. 8]. 

RML was initially designed to be a stand-alone tool for specifying 

requirements. (Borgida, Greenspan, Mylopoulos, 1985). Information 

methodologies are not able to evaluate the differences between the real 

world and the modeled world [Borgida, Greenspan, Mylopoulos, 1985]. 

While the model may contain some of the relationships which exist in 

the real world, it can never contain all of the relationships which 

exist. If a model were to exactly replicate the real world, the model 

would be the real world. Information methodologies can not yet 

determine when the information model is "good enough" to be useful. 

It is not that such conclusions were necessarily wrong; more to 
the point is that one could not know them to be correct. The 
problem arises when taking them for granted results in over¬ 
looking a different line of inquiry that might have led in a more 
meaningful direction [Eberhart, 1988, 72]. 

The improvement of software development practices requires a 

methodology which increases productivity while increasing reliability 

and adaptability of software. (Boehm, Standish, 1983, p. 30]. 

Development methodologies need to smoothly integrate all important 

facets of development. 

We are convinced that success in combatting the software demand- 
supply gap can come only if we learn to manage a large number of 
variables skillfully and if the components to the overall 
solution integrate well. Completeness and integration are, 
therefore, two key concepts in our vision. [Boehm, Standish, 
1983, p. 30]. 
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Front-end planning with early test plan scenarios integrates each 

of the forms of development methodologies into a single, powerful 

approach. Rigorous control of information is essential for unambiguous 

specifications. Structured analysis, such as SADT, requires that the 

definition of an information entity is consistent and correctly 

categorized within the overall informational hierarchy. Terms are 

explicitly and directly linked with their representations within the 

system's data dictionary, glossary, and its structural diagrams [Marca 

and McGowan, 1988, p. 135]. CASE tools such as T and protoyping can 

enhance front-end planning with early test plan scenarios. The 

approach of this thesis is a further refinement of the Life Cycle 

method. Front-end planning with early test plan scenarios does not 

replace any other methodology—it improves them. 



CHAPTER 6 

CONTINUING TO RESEARCH EARLY TEST PLAN SCENARIOS 

The most incomprehensible thing about the universe is that it is 
comprehensible. Einstein 

6.1 Research to Evaluate Systems Development Methodologies 

As computer technology continues to accelerate its power and 

possibilities, there is a struggle to develop and evaluate 

methodologies to harness this potential into useful systems for 

organizations. While many methodolgies claim to offer great 

productivity benefits, software developments themselves continue to 

fail to meet anticipated time, cost and useability goals. 

Researchers use historical development statistics to validate their 

findings with "experimental data and other empirically derived guide¬ 

lines" [Daly, 1977, p. 235]. Uncertainty characterizes research on 

systems development. The young field does not universally accept 

particular research methods as valid. Systems professionals who are 

actively building systems are interested in case histories of successes 

or failures, viewing them as a source of insights. People who build 

systems are often wary of "proven" rules, preferring principles which 

help them accomplish their activities. "The essential thing is that we 

continue confronting our theories with new data and that we not be 

afraid to modify theories in light of such confrontations" [Attewell 

and Rule, 1984, p. 1191]. 
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Five major research methodologies are currently being used to 

evaluate development methodologies: (1) Case studies of project 

developments; (2) Empirical surveys of developments; (3) Controlled 

experiments; (4) Theoretical analyses; (5) Interactive research. 

There are differences between the purpose and the impact of these 

research approaches. Burrell and Morgan [1985] identified parameters 

to categorize research methodologies (see Figure 6.1). 

REGULATION 

Case studies 
(observe interactions) 

Empirical surveys of 
project developments 

(Qualitative & quantitative evaluation) 

Controlled experiments 
(Uncover true cause & effects) 

SUBJECTIVE OBJECTIVE 

Interactive research Theoretical analyses 

(Participate to improve) (Propose new theories/methods 
to improve) 

CHANGE 

Based on Burrell & Morgan's four sociological paradigms. 

[Burrell and Morgan, 1985, p.29] 

Figure 6.1 Research Methods within Burrell & Morgan's Sectors. 
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Qualitative research highlights subjective, non-quantifiable 

factors while quantitative research is limited to measureable, 

objective data. Regulative research argues that there are solid, 

unchangeable laws which regulate behavior, with the purpose of research 

being to improve a situation by discovering these cause-effect laws. 

Interactive research argues that human volition can create changes, 

that human activity is not restricted by underlying sets of laws. The 

purpose of interactive research is to bring about change, to improve a 

situation through proactive research. 

6.2 Case Study Research 

Case study research involves intensive studies of a single case or 

comparative studies of two or more cases. Case studies, although 

representing only a small portion of published research on systems 

development, are acknowledged to be rich sources of hypotheses. Case 

studies of individual cases were the foundation of organizational 

behavior. "One wonders what the impact on the field would be if 

another period of such case studies occurred [Lundberg, C., 1984, p. 

39]. Lucas, one of the founders of research on the development of 

information system, recognized in the early 1970's that organizational 

behavior was a critical element in the development of successful 

information systems. 
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It is our contention that the major reason most information 
systems have failed is that we have ignored organizational 
behavior problems in the design and operation of computer-based 
information systems [1975, p. 6]. 

While many case studies focus on the adaptation of users to new 

information systems, few examine the development process. If case 

studies are particularly effective in developing new insights in 

situations which involve the behavior of individuals in the 

organizational situation, and if the development of successful 

information systems is accomplished by individuals in an organizational 

situation, then case studies are a source of valuable information on 

improving the systems development process. 

Poston and Bruen published a case study which examined the use of 

the T automated test generator during a systems development project at 

Leeds & Northrup Systems. This case describes current problems 

associated with development errors, and the improvements in quality and 

productivity which resulted from the use of the T software generator 

prior to coding. The case describes the organizational factors, the 

technical factors and the economic factors which influenced the 

development. Leeds & Northrup's state of practices before the use of 

the T software was compared to the state of their practices with the 

use of T. Details of the project plans and actual schedules were 

presented. When industry-reported values were available, quantitative 

measures of project size, failures, time and cost were compared with 

industry-average values. 
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The Leeds & Northrup Systems case study included five techniques 

for improving the development process. Before the case study, the 

researchers and practitioners decided that there was no need for 

separate studies to determine the contribution of each technique as 

each one had a history of commercial successes. The important question 

for Leeds & Northrup, and for the researchers, was the total impact of 

all techniques executed together [Poston and Bruen, 1987]. 

A case study was the foundation of the front-end planning early 

test plan scenario approach [Eastman, 1986]. A complex systems 

development was failing after three years of effort. When the approach 

described in this thesis was integrated into the development process, a 

dramatic turn-around in the development process occurred. 

Organizations such as the US Army and AT&T use front end planning 

and early test plans. Senior design engineers at Digital Equipment 

Corporation, trying to improve the practice of systems development, are 

use early test plans. There is opportunity for additional case studies 

to increase understanding of systems development. 

Case studies may be both qualitative and quantitative [Swanson and 

Beath, 1988]. While many case studies emphasize qualitative insights, 

some case studies describe mostly quantitative results. If case 

studies of complex developments were produced more frequently, there 

would be a wealth of information available for comparative studies. 

Swanson and Beath [1988] used case study data in a controlled 

research situation in which they compared several developments. They 

used quantitative data gathered in standard questionnaires in order to 

compare the results of the studies. While Swanson and Beath's approach 

offers standardized information to compare the impact of different 
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development methodologies, the structure of their research design 

limited the issues explored. By using standard questionnaires, and 

specified people being questioned, the case studies may not identify 

the significant issues which are changing the situation. 

In Swanson and Beath's study, only systems developers were 

questioned. In the development situation, the sponsors and users play 

a significant role. The developers' opinions, although relevant, may 

obscure significant problems which are obvious to sponsors or users. 

6.3 Empirical Research 

Empirical research applies quantitative methods to observe, measure 

and define things and events of the "real" world. Several forms of 

empirical research could contribute to research: survey research, 

scientific research, triangulation, and controlled experiments. 

6.3.1 Survey Research 

Some empirical research does not attempt to develop or the prove 

theories, but only to understand the current condition of project 

development. These studies are necessary to ensure that the academic 

world of systems research is not isolated from the world of systems 

practice. Necco, Gordon and Tsai [1987] surveyed ninety-seven 

organizations to determine which technologies they were currently 

using, of these, which they found useful, and of those which they were 

not currently using, which techniques they were planning on using. 

Necco, Gordon and Tsai's research revealed a systems development 
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environment in which a variety of tools are currently being used. 

Structured approaches, prototyping, and information center approaches 

were not seen as separate techniques which replaced traditional 

methods, but rather as tools which complemented the traditional Life 

Cycle approach. 

Survey research is appropriate for methodologies (such as the one 

presented in this thesis) which employ a variety of techniques, 

performed in a sequential order. Of particular interest would be the 

current position of operational test plan development in projects. 

There are indications that many corporate developments are moving test 

plan development to earlier stages of the development cycle. A survey 

could be used to confirm this observation. 

Front-end planning with early test plan scenarios is a flexible 

approach that can be improved through practice and research. The 

sequence of activities and the combination of approaches are critical 

factors in the front-end planning early test plan scenario approach 

which were not discussed in Necco, Gordon and Tsai's research. Survey 

research is be a powerful tool to understand not only what tools system 

developers are using, but also the sequence of these tools and the 

methods used to combine these approaches. 

6.3.2 Scientific Research 

Some theorists researching systems development assume that a 

careful compilation of data will reveal fundamental variables, which 

have stable causal relationships. They assume that the process of 

systems development can be understood through scientific methods. 
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These theorists consider the current status of systems development to 

be faulty because of a lack of understanding of the fundamental 

development variables. These theorists assume that "scientifically" 

derived understandings will reveal underlying relationships. 

The more clearly we as software engineers can understand the 
quantitative and economic aspects of our decision situations, the 
more quickly we can progress from a pure seat-of-the-pants 
approach on software decisions to a more rational approach which 
puts all of the human and economic decision variables into clear 
perspective. Once these decision situations are more clearly 
illuminated, we can then study them in more detail to address the 
deeper challenge: achieving a quantitative understanding of how 
people work together in the software engineering process [Boehm, 
1984a, p. 20]. 

Development projects normally require documentation of change 

requests to correct code or design problems. Basili and Perricone 

[1984] collected all of these change requests on a medium sized project 

to analyze the types and quantities of errors which occur at different 

times during a project. The method they used did not interfere with 

the project itself—these change forms were a normal part of the 

development process. 

Basili and Perricone, through detailed analysis of the change data 

which represented errors in requirement specification as well as design 

and coding, found that modifying an existing module resulted in an 

increase in errors of commission while creating new modules resulted in 

an increase in errors of omission. Surprisingly, errors in large 

modules were less frequent than errors in small modules [Basili and 

Perricone, 1984, p. 49]. 
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The error detection methodology used by Basili and Perricone is an 

effective tool to understand the impact of systems development tech¬ 

niques, when the quantitative analysis is superimposed on a qualitative 

case study. After the research for this thesis was completed, an error 

analysis was completed using Basili and Perricone's technique. 

This error analysis confirmed that the most costly errors were 

based in incomplete specifications. The most significant finding of 

this error analysis was that major specification errors were detected 

during the development and review of the early test plan scenarios 

[Eastman, 1986] . 

This use of error analysis, performed on data from existing case 

studies, is a valuable tool in increasing our understanding of the most 

effective techniques, and sequence of techniques, for counteracting the 

impact of inaccurate, ambiguous and incomplete specifications. 

6.3.3 Trianqulation 

While academic journals tend to support research which is either 

qualitative or quantitative, some researchers support triangulation, a 

combination of methodologies used in research [Jick, 1988, p. 364]. 

Most of the studies which use quantitative research methods examine 

systems designers, systems developers and their tools. The role of the 

user and of the sponsor in systems development research is largely 

avoided. While researchers are gathering more information on the 

isolated work of systems developers, they are neglecting the most 

costly problem of all—producing systems which not only work well, but 

are also useful. 
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Card, McGarry and Page [1987] studied teams of engineers working on 

twenty-two projects. They found that the use of technologies such as 

structured code, design schedules and documentation, increased the 

reliability of the software but had no impact on the productivity of 

the development team. 

Alavi [1984] used questionnaires and interviews to obtain 

qualitative and quantitative information from project managers and 

systems analysts participating in twelve development projects in six 

different organizations. Alavi selected a group of small to medium 

sized projects for financial, management and transportation management 

functions. Although the questions focused on whether the users were 

enthusiastic, understood the prototypes, and shared the reference 

points of the developers, no users participated in this research. 

Alavi was really asking developers for their impressions of user 

involvement, not obtaining information from the users themselves. 

In a systems development situation where the major problem is the 

failure to produce systems which are useable in the actual operational 

environment, users are the experts. Research which ignores users, and 

does not prioritize the direct questioning of users, may be failing to 

address the major problem confronting systems developers. 

Norcio and Chmura [1988] monitored, evaluated and compared software 

development techniques used on two major projects. Their study 

required engineers to submit detailed, weekly reports on their 

progress. Because this submission was not a normal activity for these 

engineers, the act of collecting the data itself would influence the 

project and bias the research. By forcing engineers to consider the 
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type of work they were accomplishing, to take time to consider and 

record their work, and by increasing their awareness that their work 

was being closely monitored, the researchers biased their results by 

forcing engineers to change their work process. 

Norcio and Chmura offer extensive information on hours devoted to 

development tasks, and a variety of information on progress ratios. 

Their case study attempted to demonstrate the effectiveness of software 

development techniques during a software cost reduction project and 

several projects which involved software technology evaluation [Norcio 

and Chmura, 1988, p. 165]. Norcio and Chmura focus on quantitative 

measurments, particularly a progress indicator ratio (PIR) to indicate 

when a design phase is complete. Norcio and Chmura's PIR compares the 

accumulated amount of time spent discussing a system's design with the 

amount of time spent creating a system's design. When this PIR ratio 

becomes constant, they contend that the design is complete. 

Does this ratio reflect the "gut feeling" that many systems 

developers have when they determine that the design is sufficiently 

complete to proceed to the coding stage? If so, there remain problems 

with the ratio. 

"Completeness" contributes to, but is not the sole variable, in 

"goodness" in system specification. With early test plan scenarios, 

"goodness" is measured by the measurability, completeness and 

useability of the system's design. Neither the sophistication of the 

design nor the evaluation of the designer is sufficient to determine 

the adequacy of the design. Users and sponsors are needed to evaluate 

the impact of the design on the useability of the system. 
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Care should be taken when performing research which attempts to 

measure progress or success with different development methodologies. 

Different methods have different basic assumptions concerning what 

variables influence "goodness". Measures which prove successful while 

researching some developments may be unsatisfactory when researching 

developments in different environments using different techniques. 

If the process of filling out forms does not actually contribute to 

successful developments, then an alternative method of obtaining 

quantitative data would be to videotape some of the systems development 

activity. Using the videotapes, impartial scorers could identify the 

type of activity and the amount of time spent by each participant. 

The quantitative evaluation of videotaped activity would be 

particularly useful in determining which activities could be automated, 

and which forms of automation would be most useful. This form of 

research could help determine the most prudent forms of automation, 

focusing on enhancing, rather than replacing, human judgment. 

6.3.4 Controlled Experiments 

Laboratory settings may be used for controlled experiments which 

examine sub-components of complex systems developments. The process of 

developing a complex system is too massive, expensive and lengthy to be 

an appropriate subject for laboratory experiments. Much of the 

laboratory research on programming uses students for subjects. 

Students with a few years of classroom programming are the "experts" 

and students with little exposure to computers are the "novices." 
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While many of these research studies claim to be evaluating 

programmers, a better label would be "Empirical Studies of Student 

Programming" [Curtis, 1986, p. 257]. 

Many controlled experiments do not address the macro issues 

associated with complex systems, concentrating on issues of cognition, 

not on project development. Researchers conducting laboratory 

experiments may themselves be familiar only with individual programming 

problems, and novices in the complex field of systems development. Too 

often, researchers assume that their findings are transportable to real- 

life systems developments. 

Current research investigates how people express solutions, but 
not how they learn what the real problem was to begin with. In 
fact, one of the greatest problems on large projects is that 
customers do not state their full requirements, because they are 
unable to determine them. Research on helping people elaborate 
their full desires (i.e. more fully defining the problem 
structure) may have dramatic payoff to real programming 
environments [Curtis, 1986, p. 258]. 

Laboratory experiments could be useful in refining early test plan 

scenarios. There could be controlled experiments which focus on 

determining what techniques are most useful in increasing productive 

communication and innovation. Particularly amenable to laboratory 

testing would be techniques for simulation and for graphic displays of 

relationships between structures. The laboratory is not the place to 

determine if simulation, test plans, or structured analysis is useful 

during project developments. But the laboratory is a reasonable place 

to develop better techniques for manually and technically accomplishing 

the tasks needed to facilitate communication and innovation. 
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Mantha [1987] conducted a study of twenty professional systems 

analysts to evaluate the impact of two methods of modeling a system 

design from a case study of a user situation. Ten of the analysts used 

a data flow model and ten used a data structure model to design a 

system. These participants were mostly MBA graduates who had five to 

ten years of systems development experience. While the data structure 

analysts developed more complete designs, an understanding of the flow 

of data was essential for an adequate representation of the required 

system. The importance of this form of research is that it offers 

insights into the real problems faced by real systems developers. 

Particularly relevant for research on front-end planning is the 

importance of both data flow and data structure modeling. The 

laboratory is an appropriate setting to develop the most effective 

sequence of these data manipulation activities. Controlled experiments 

may assist in understanding which areas of this process could, should 

and should not be automated. The laboratory setting could be a 

fruitful location for developing effective teaching methodologies to 

transfer data building skills to programmers. 

Why does structural modeling seem to be more difficult to teach 
and learn? What are the best strategies for training people in 
using these approaches? What are the typical problems they will 
encounter [Mantha, 1987, 542]? 

6.4 Theoretical Research 

Theoretical analysis proposes answers to questions raised by 

empirical experiences and research. The proposed methods and theories 

attempt to change and improve existing practices. Research on systems 
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development is particularly volatile because technology is constantly 

changing. While research attempts to identify what is occurring, the 

situation itself changes. 

The frantic pursuit of repeatability and statistically signif¬ 
icant correlations is based upon the belief that science is a 
search for laws. This has blinded many scientists to the need 
for careful description and analysis of what can occur and for 
the explanation of its possibility. Instead they try to find out 
what always occurs_and usually fail [Sloman, 1976, p. 17]. 

Many people who have been engaged in the practice or observation of 

systems development, analyze their experiences and the experiences of 

others. These people propose new methods and theories to address 

problems which were identified by empirical research. Theoretical 

analysis, originally based in empirical work, has progressed to the 

exploratory stage of innovation. 

Boyd and Pizzarello [1975], supported by an Air Force contract, 

developed the WELLMADEtm Design Methodology as a mathematically founded 

design discipline which could improve software development. Boyd and 

Pizzarello emphasize requirement specifications which are sufficiently 

complete to develop abstract program designs. "These specifications 

are obtained by constructing the program state space and the necessary 

assertions to define the input and output subspaces for all the 

required operations" [Boyd and Pizzarello, 1978, p. 277]. 

Barlow [1981] emphasizes the importance of project management on 

the success of a system development. Barlow produced a check list of 

events which must be satisfactorily managed by the successful project 

manager (see Table 6.1) prior to the actual development of a system. 
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Table 6.1 Barlow's Project Management Steps. 

Step 1: Define project objectives and goals. 
Step 2: Appoint the project manager. 
Step 3: Define scope of work & assign responsibilities. 
Step 4: Establish project organization and interfaces. 
Step 5: Define cooperation required. 
Step 6: Establish & document major work packages in project. 

[Barlow, 1981, pp. 57-59]. 

The difference in perspective between Barlow, Boyd and Pizzarello 

exemplifies the complexity of the systems development process, and the 

importance of considering organizational, managerial, technical and 

logical perspectives when evaluating this process. Awareness of the 

diverse variables associated with successful systems development 

prompted Boehm to stress completeness and integration in his answer to 

the question, "How (can we) achieve a state-of-practice in the 1990's 

where we can build embedded computer system software with adequate 

levels of productivity, adaptability and reliability" [Boehm, 1983, p. 

30]. Boehm considers economic, technical and organizational factors. 

Procurement policies will become more important as packaged software 

and third party developers become more commonly used. Boehm's analysis 

finds that the most critical need for the improvement of software 

development is improvement of its process rather than its products. 

Ruskin and Estes [1986] analyze the helpful and harmful effects of 

organizational factors in systems development, proposing actions which 

could improve the development process by enhancing the positive and 

reducing the negative impact of these organizational factors. Ruskin 

and Estes, finding that the organizational environment determines the 
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success or failure of a project development, theorize that project 

managers can "enhance their overall chance of success by understanding 

how organizations affect projects" [Ruskin and Estes, 1986, p. 4]. 

They list factors, helpful effects, adverse effects and possible 

counteractions for adverse effects of seven organizational factors (see 

Table 6.2). 

Table 6.2 Factors Affecting Project Managers and Project Success. 

(1) Organizational structure 
(2) Staffing 
(3) Client relations 
(4) Attitudes toward risk 
(5) Communications between users, sponsors and developers 
(6) Expectations of all participants (economic, project 

usefulness, personal performance, personal reward, 
hours worked, satisfaction) 

[Ruskin and Estes, 1986, p. 4] 

Taking an opposing viewpoint on the development process, Blum 

[1987] asks how full automation could improve the systems development 

process by eliminating human error and imperfect work. Blums's 

analysis of the system process virtually eliminates all organizational 

considerations and all possibilities of human innovation, individual or 

social, during systems development. Blum's analysis produces a theory 

which envisions a development environment where the production of a 

system is totally divorced from the process of defining system 

requirements. Blum foresees a rise in the importance of the software 

factory. The software factory concept, widely used in Japan by firms 

such as Hitachi, promotes team work among systems developers. Any 
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member of a team of thousands of developers should be able to satis¬ 

factorily develop a system, using an integrated set of automated tools. 

Shemer, [1987] reviewing the problems associated with information 

systems development seeks the appropriate model for systems analysis. 

While many methods and processes focus on individual elements of the 

process, Shemer theorizes that developers should have a broader 

awareness of the severity of systems development process failures. 

Shemer theorizes developments could be improved if the 

specification process included an analysis of organizational goals, 

components of the system, environmental constraints, resources, inputs 

and outputs and interrelationships between the components [Shemer, 

1987, p. 509]. 

Theoretical analysis is not separate from, but complementary to, 

other forms of research. Basili and Rombach [1988] ask how we can 

develop sofware engineering processes which "integrate sound planning 

and analysis into the construction process" [Basili and Rombach, 1988, 

p. 770]. Basili and Rombach developed a model which contains 

principles which they "learned during a dozen years of analyzing 

software engineering processes and products" [Basili and Rombach, 1988, 

p. 770] . 

Their model stresses an awareness of the current status of a project, 

integrating planning for improvement into the project plans, and 

accomplishing project plans. A fundamental characteristic of front end 

planning with early test plan scenarios is the continued emphasis on 

the process of reviewing which improves, rather than simply approves. 
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6.5 Interactive Research 

Software development researchers are often participant observers 

who actively participate in the activities which they are observing. 

They develop principles, derive implications from their principles, and 

become actively involved in the development process. 

Participant observers address the same problems faced by empiricist 

researchers—unclear specification of critical system attributes, lack 

of appropriate engineering to achieve these attributes, and lack of 

appreciation for the dynamic and interactive nature of systems 

development [Gilb, 1988, p. 163]. Even empiricist researcher's 

principles, analyses and insights are "substantiated" by the author's 

statement of size and number of projects with which he/she worked. 

Daly's sets of principles were derived from "2,000,000 hours of 

software development experience" [Daly, 1976, p. 229]. 

In Europe, participative research is more prevalent than in the 

United States. In Norway, Max Elden performed research which involved 

empowering worker participation during the systems development process 

(1986). Elden's research involved observing, training and encouraging 

the active change of the roles of the workers. Norway has federal laws 

stating that employees have a right to approve any automation plan 

which will affect their jobs before that automation plan is installed. 

Workers have the legal right to participate in the process of designing 

the automated systems which will impact their work. Elden received 

funding to research and implement training processes to build worker 

skills to the level required for viable participation. 
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The current role of the users and sponsors is in many American 

corporations is reactive. Once a system is running they react, 

identifying problems and suggesting improvements. The front-end 

planning early test plan scenario approach methodology is successful 

only when users and sponsors assume a proactive role in which they 

identify problems and suggest improvements during the initial, planning 

phases of systems development. 



CHAPTER 7 

EARLY TEST PLAN SCENARIOS IMPROVE THE SYSTEMS DEVELOPMENT CONTRACT 

It would be possible to describe everything- scientifically, but 
it would make no sense; it would be without meaning, as if you 
described a Beethoven symphony as a variation of wave pressure. 
Einstein. 

7.1 Problems with Current Software Development Contracts 

Tens of billions of dollars are spent by corporate America each 

year for the development of computer systems which are "typically 100% 

over budget and a year behind schedule" [Carroll, 1988, p. 1]. General 

Motors Corporation spends $3 billion and ITT Corporation spends $1 

billion each year on software systems. Most complex systems are 

developed, under contract, by third party vendors. The massive number 

of dollars spent annually on software development, coupled with a high 

probability of major cost escalations, significant delays, and failed 

systems, have "spawned a proliferation of lawsuits rivaling the growth 

of the computer industry itself" [Mislow, 1985, p. 124]. 

7.2 Assumptions of Traditional Development Contracts 

Courts struggle reactively with contract disputes in the form of 

lawsuits brought by disastisfied, often financially ruined, customers 
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of software systems. Writers in the field of legal literature are 

trying to improve existing software contracts that support traditional 

assumptions of software development (see Table 7.1). 

Table 7.1 Traditional Assumptions of Software Development. 

(1) A software development contract describes the provisions 
of an exhange of money for a specific product. 

(2) The software vendor has sole responsibility for the 
quality and timely delivery of the product. 

(3) A more accurate and complete description of what should 
be delivered is the primary method of improving software 
development contracts. 

The first assumption, that a contract describes a product, is 

supported by those who argue for an increase in warranty account¬ 

ability for software vendors. Under the Uniform Commercial Code (UCC), 

vendors of goods can be held liable for their breach of either express 

or implied warranties, or both [Mislow, 1988, p. 125]. Vendors of 

services, where no tangible goods are produced, are considered to be 

legally responsible under rules of professional liability, not under 

the warranty provisions of the UCC [Freed, 1977, p. 281]. Legal debate 

continues concerning whether different forms of software development 

contracts should be considered the sale of services or the sale of 

goods. Although software development may be partially a service, and 

not fall under UCC regulations, some argue that all software should be 

subject to warranties. Mislow [1985, p. 124] is particularly concerned 

about the precendents that the courts are setting by absolving vendors 

of warranty accountability. 
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The second assumption, that software development vendors should be 

personally liable for the software they create, is receiving increasing 

attention [Chretien-Dar, 1987, p. 499]. This approach assumes that the 

software developer is similar to a skilled surgeon operating on an 

unconscious patient. 

The third assumption is that the functionality of the planned 

system can be completely described before it is designed. This 

assumption is supported by those who attempt to solve the development 

crisis by increasing the accuracy and completeness of the description 

of the end product [Werstermeir and Millstein, 1988]. Those who argue 

that increasing the detail of the What of the contract will improve the 

development, deny that How a system is developed changes What is 

developed (see Figure 7.1). 

The early test plan scenario approach challenges these three basic 

assumptions by asserting that the software development contract should 

be a promise to collaborate to develop a structure to modify an 

organization's current operational environment. When organizations 

contract with software developers, they promise to participate in a 

temporary, collaborative partnership. The development contract 

establishes the characteristics of this collaborative partnership and 

the process by which sponsors, users and vendors will work together to 

produce the system. 
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Early Test Plan 
Scenario Contract Traditional Contract 

1. How a system is developed 1. How should support but never 
affects What is developed. change the What. 
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2. The successful development 
of complex systems requires the 
collaboration of sponsors, users 
and developers throughout the 
entire development process. 

2. The sponsors determine Why, 
sponsors and users determine WHAT, 
developers alone determine HOW. 

3. The purpose of the contract 
is to establish the boundaries, 
rules and controls of the 
collaborative process. 

3. The purpose of the contract is 
to define the characteristics, 
costs and deadlines of the 
final product. 

Figure 7.1 Comparing Early Test Plan Scenario Contracts to 
Traditional Contracts. 

7.3 Provisions of an Early Test Plan Scenario Development Contract 

A software development contract, influenced by the early test plan 

scenario approach, would establish the boundaries and structure for the 
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entire development process, including a sequence of activities and 

criteria for measuring the successful completion of each sequence. The 

contract should include explicit agreements concerning the management 

of the systems development process, including the procedures for 

resolving conflicts and for establishing the specific conditions of 

each sequence. 

The contract would establish the mutual responsibilities of the 

collaborators, with provisions for monitoring these provisions. The 

exact balance of accountability would be different, and separately 

specified, for each sequential phase of the development process. 

The main development contract establishes the development phases, 

and guidelines for producing each subcontract. At least eight sub¬ 

contracts are needed for a development (see Table 7.2). Different 

vendors may be selected for each subcontract. Products of prior phases 

support activities of subsequent phases. The main development contract 

could be with a vendor who is not the vendor for any subcontracts, 

similar to a building contractor who arranges all subcontracts. 

The early test plan scenario contract is more rigorous, has more 

subcontracts, and requires more specific allocations of 

responsibilities among users, sponsors and developers than does the 

traditional contract. The initial cost of the early test plan 

scenario contract would be higher than the initial cost of the 

traditional systems contract. 

The economic benefits of the early test plan scenario contract, 

should be measured by the costs required for the timely, successful 
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completion of the entire project. The economic benefits of early test 

plan scenarios are based in lower total costs for systems that become 

useful within organizations. 

Table 7.2 Early Test Plan Scenario Contracts for Developments. 

Early Test Plan Scenario Main Contract 

A. Establish the characteristics of the development process. 

B. Establish the rules of the collaborative process. 

C. Establish the methods of forming each subcontract. 

D. Establish the monitoring and control mechanisms. 

E. Establish the process of permitting change. 

Early Test Plan Scenario Subcontracts 

1. Definition of objectives. 
2. Description of functional needs. 
3. Analysis and design of system structure. 
4. Test plan development and review. 
5. Coding of software. 
6. Testing of software. 
7. Fit system into operational environment. 
8. Modify (maintain) system. 

7.4 Contracting for Goods or for Services? 

Much legal attention is focused on determining whether systems 

development contracts are for services or goods. The legal system 

provides more stringent vendor accountability for goods, through the 

UCC, (Uniform Commercial Code). Under the provisions of the UCC, the 

vendor of goods is held liable for both express and implied warranties 

of the goods that he/she sells. The courts define goods as "moveable 
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things.” Contracts in which developers actually deliver programs on 

disks or tape to a customer are considered to be for "goods" while 

those in which developers work directly on the customer's computers are 

considered to be for "services." 

Confounding the issue are current powerful communication and 

network technologies. A vendor in California can spend months 

developing a system directly on the Massachusetts customer's computer. 

A few years ago, the vendors, performing exactly the same work, would 

work on their own computers and deliver tapes that contained the 

finished software to the customer. Technology continues to outdistance 

the legal system's interpretations. 

Whether the development contract is considered by the courts to be 

for "services" or for "goods" has a significant impact on the outcome 

of disputes. "Goods" are covered under the UCC. "Services" are 

governed by the laws of general contract law. If software is "goods", 

and falls under the UCC, it automatically has implied warranties, which 

are in effect unless expressly and carefully disclaimed. "U.C.C. 

article 2-314 (1982) supplies the warranty of 'merchantability that 

arises when the seller is a merchant as to goods of that kind and 

requires that goods be merchantable'" [Chretien-Dar, 1987, p. 478]. To 

be "merchantable", goods should "(a) pass without objection in the 

trade, and (b) in the case of fungible (exchangeable) goods, be of fair 

average quality,...(c) be fit for the ordinary purpose for which such 

goods are used" (Chretien-Dar, 1987, p. 479]. Services, governed by 

contract law, have no such implied warranties. 
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The UCC code transforms most vendor statements into express 

warranties, with the customer not having to prove that the vendor 

intended her/his statements to be interpreted as warranties. These 

express warranties are applicable only to development contracts that 

the court rules are for "goods", not for contracts for "services." 

Express warranties are created by: "any affirmation of fact or 

promise relating to the goods, (2) any description of the goods, or (3) 

any sample or model" [Chretien-Dar, 1987, p. 479]. While the courts do 

not allow software vendors to disclaim all express warranties in a 

blanket statement, they do allow specific disclaimers which have the 

effect of blanket disclaimers. In APLications, Inc. v. Hewlett-Packard 

Co., both implied and express warranties were considered by the courts 

to be sufficiently disclaimed by the words: "NO OTHER WARRANTY IS 

EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTY OF 

MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE" [Chretien-Dar, 

1987, p. 490]. 

Contracts which support early test plan scenarios would include a 

main contract for the process of systems development and subcontracts 

for services and goods. These contracts focus on the overall process 

of systems development. Certain subcontracts are for goods, 

specifically the subcontract which is for the actual code. Other 

subcontracts are very clearly for services. One conflict inherent 

within the traditional contract, and its interpretation under the UCC, 

is that any contract which involves a good, is considered to be, in its 

entirety, a contract for a good. 
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The end product, the software code, is simply the final step in a 

complex process. Most systems developers consider the actual coding of 

the system to be the simplest activity of the entire process. When 

the preceding phases have been skillfully and thoroughly accomplished, 

a development contract could actually omit the "final product", leaving 

the actual coding activity to the customers. 

The attempts by many legal researchers to improve the traditional 

software development contract improves the subcontract for the actual 

coding of the designed system. During the coding stage, the primary 

responsibility is for programmers to finalize the system by adding the 

technical detail to the overall structure and design. The programmers, 

during coding, are following directions and firm guidelines in the 

concretization of a system. Programmers can be held accountable for 

the reliability of their code - but not for the design and impact and 

useability of the system itself. 

7.5 Legal Views on Systems Development 

Articles on contract law support the viewpoint that expert software 

vendors develop and deliver something, either a good or a service, to a 

user, in exchange for a predetermined sum of money. There are 

assumptions in this approach which can directly increase customer- 

vendor conflict and decrease the potential for successful systems 

developments. This approach, which views the final, coded system as 

the primary object of the contract, contributes to the tremendous 

surge of legal conflicts resulting from failed development contracts. 
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7.5.1 Naive Users and Unconscionability 

The vision of a naive user buying either a good or a service from 

an expert developer perpetuates the notion that software development is 

simply a sales transaction between two independent parties. One offers 

money and "blueprints” [Chu, 1982] for a product, and the other 

produces the product which fits these "blueprints". The user is urged 

to make the best "bargain" while the vendor focuses on acquiring the 

greatest reward with the least effort. The denial of essential 

collaboration becomes an integral part of the traditional contract, and 

reduces the opportunity for a successful development process. 

Customers are naive when they believe that the expenditure of funds 

to a skilled software developer will solve an organization's problems. 

Customers are naive when they choose not to recognize the critical 

importance of their expertise and contribution to the system 

development process. 

The doctrine of unconscionability, a provision under the UCC, gives 

courts the authority to void some or all of a contract, if it finds 

that the terms of a contract are "unreasonably favorable" [Levin, 1986, 

p. 2108] to one party. In the past, the courts have reserved this 

doctrine for "disadvantaged consumers, typically in installment 

contracts" [Levin, 1986, p. 2108]. Courts do not find unconscionabilty 

in most business situations, considering businesspeople to be 

sophisticated and aware when they sign contracts. 

Recently courts have become more liberal in their application of 

unconscionability to software contracts [Levin, 1986, p. 2109]. When 

courts apply the doctrine of unconscionability, they often find that 
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the purchaser of software did not know enough to make a valid choice, 

and therefore the terms of the contract were unfair to the customer. 

Some legal researchers argue that unconscionability could be found 

"in commercial transactions for computer products where the vendee 

lacks the sophistication necessary to create bargaining equality" 

[Levin, 1986, 2110]. When system development is viewed as a 

collaboration, requiring effort and commitment on the part of both 

customer and vendor, the issue of unconscionability is fundamentally 

different. The obligations and responsibilities of both customers and 

vendors are to increase each other's understanding and participation, 

to continually evaluate and improve, to work together to create the 

best possible system. 

A limited view of systems development, which freely applies 

unconscionability to a contract situation, may be compared to a medical 

situation. An overweight person asks a doctor for a diet pill, and 

pays the doctor a fee. Assuming that the pill will cure his problem, 

the overweight person reduces his exercise and eats even more. When 

the person gains weight, he sues the doctor because the pills did not 

work. When software is viewed as a "diet pill" which will work if the 

customer's needs are sufficiently described, if the customer pays a 

sufficient amount, and if the vendor is sufficiently skilled, the 

crucial role of customer participation is ignored. 

Recent court decisions which promote unconscionability and stress 

consumer rights and satisfaction obscure consumer responsibility. 

These decisions relieve customers of an obligation to become involved 

in the design and development of their systems. Systems development 

contracts fail when they ignore the collaborative nature of complex 
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systems development. Court remedies to address systems development 

contract failures should not impede or diminish the responsibility of 

the customers to collaborate with vendors during the development of 

systems which will impact the customers' organizations. 

Levin argues that the relative bargaining powers of the parties 

involved in a contract must be assessed to determine if a court ruling 

should alter the terms of a contract. In complex developments, both 

customers and vendors are both astute businesspersons. The argument 

that a customer of a complex system is naive, is invalid. Decision 

makers in organizations which have sufficient resources to sponsor 

complex developments (and often employ lawyers) are not naive. 

There are three important tests to determine whether a corrective 
rule achieves the optimal balance between upholding freedom of 
contract and compensating for imperfect market conditions: (1) 
whether the scope of the proposed rule fits the scope of the 
existing problem; (2) whether the effective life of the rule will 
coincide with the duration of the problem; and (3) whether the 
rule reduces the incidence of problematic transactions by 
encouraging the free flow of information throughout the industry 
[Levin, 1986, p. 2120]. 

When courts find unconscionability in situations where there is 

disparity in technological sophistication between the parties, they may 

be limiting the potential for improving the system development 

situation [Levin, 1986, p. 2139]. Systems fail when they are not 

useful. While vendors may be the tecnical experts, customers remain 

the experts in useability. 

Laws, such as the Molina Bill #1507 in California, attempt to 

require the inclusion of warranties in all sales and leases of computer 

products and in their advertised claims. The bill mandates that there 
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can be no time limitation on warranties, and that a sponsor can revoke 

acceptance of a system at any time [Levin, 1986]. This bill, and other 

similar attempts at protecting customers, will deteriorate the system 

development process if it encourages customers to refrain from 

participation, assured of their ability to sue the vendor if they do 

not like the product. 

7.5.2 Customer and Vendor—Interdependent or Collaborators? 

The traditional systems development contract considers the customer 

and vendor to be interdependent on each other. Interdependency 

encourages each party to protect their own interests, to distrust the 

motives of the other party, and to attempt to shift the balance of 

rewards and costs to their own favor. Traditional development 

contracts which are founded in interdependency promote disputes and 

conflicts (see Table 7.3). 

The development process of custom computer systems is burdened with 

recurring problems that create disputes between the user and vendor, 

and often lead to litigation. First, because customers generally know 

less about complex computer systems than do vendors, customers tend to 

play a passive role in the development process, relying on the skill of 

the vendor. This reliance hinders the development process. The vendor 

needs significant input from the user to design and develop a system 

which fulfills the user's needs. 
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Table 7.3 Impact of Limited Viewpoints on Software Development. 

Limited Viewpoint 

1. Software 
development contracts 
are for goods or for 
services. 

2. A naive customer 
buys a complex 
product from an 
expert developer. 

3. Users define what, 
developers define how. 

4. When a development 
is complete, its 
value can be measured 
be determining how 
completely the final 
system satisfies the 
original functional 
requirements. 

5. The developer is 
the only expert. 

6. Critical contract 
question is "How 
should the proposed 
system work?" 

Overlooked Viewpoint 

1. Software Development 
is a process which 
creates a system which 
changes an organization. 

2. Expert customers 
share responsibility 
and work with expert 
system developers. 

3. The how changes 
the what. 

4. The value of a 
software development is 
measured by how useful 
the final system is to 
the organization. 

5. Successful system 
developments requires 
the expertise of users, 
sponsors and developers. 

6. Critical contract 
question is "How should 
the development process 
be structured, managed, 
and documented. 

Impact of Limitation 

1. The usefulness of 
a system is ignored 
when its impact is 
being established. 

2. Law perpetuates 
the myth of "them" 
against "us". 

3. Users do not 
contribute to the 
system design. 

4. When system is 
logically correct 
and operational, 
conflict develops 
as users, sponsors 
and developers 
have different 
interpretations of 
functionality. 

5. Total development 
cost and time 
escalate greatly if 
sponsors and users 
do not evaluate a 
system's usefulness 
until after it is 
operational. 

6. When the focus 
is on the final 
product instead of 
the interactive 
development process, 
the final system 
may disrupt the 
organization. 



183 

Even the technologically unsophisticated customer should play an 

active role in defining requirements, making design decisions that 

affect the system's cost or ease of use, and performing system testing 

(see Table 7.3). 

The customer's failure to participate in the systems development 

process may promote customer-vendor disputes. The customer may develop 

unrealistic expectations about the performance of the system, or the 

vendor may misinterpret the customer's needs. The customer may not 

understand the final system, thus reducing its effectiveness and 

accuracy [Anderson, B., 1985, p. 1547]. 

7.5.3 Rolling Estoppel—Refuting the Right of the Vendor to Fail 

"Rolling estoppel" is a concept which may be added into a software 

development contract, particularly one which will extend over a lengthy 

period of time. Rolling estoppel requires "a party to object at 

certain intervals if it is aware of a problem or delay, regardless of 

whether that party is at fault. A party that fails to object is 

estopped from complaining later about that problem or delay" [Gordon 

and Starr, 1985, p. 490]. Including rolling estoppel in a contract 

supports collaboration among vendors and customers. The contract can 

contain specific requirements for periodic project status meetings, 

during which all parties must present information on each of those 

delays and problems of which they are aware, regardless of the source 

of the problem or of the person responsible for the problem. Rolling 



184 

estoppel in a computer contract forces any party who notices a problem 

to identify that problem, regardless of the source of the problem 

[Gordon and Starr, 1985]. 

If there is no clause in a development contract for rolling 

estoppel, the sponsor may deliberately refrain from identifying 

problems caused by a vendor, thereby guaranteeing the "right of a 

vendor to fail." With traditional contracts, it can benefit the 

customer to let the vendor fail. If the customer no longer wants the 

system, the customer can subtly but deliberately refrain from 

identifying misconceptions or other vendor errors. When these "errors" 

are contained in the final system, the customer can sue the vendor for 

creating an "unquality system." Political games thrive in contracted 

developments. 

7.6 Contract as Promise to Collaborate 

The front-end planning with early test plan scenario approach of 

this thesis considers the main contract of systems development to be a 

contract for innovative collaboration. The underlying premise of this 

approach is that customers and vendors promise to work together, to 

respect the expertise of each other and to devote their energies, 

skills and experiences to the collaborative effort (see Table 7.4.). 

The concept of "contract as promise" [Fried, 1981] fits this approach. 
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Table 7.4 Questions Asked by a Front-End Planning Contract. 

(1) How will the customer-vendor relationship be structured to 
enable and enforce customer-vendor understanding, evaluation 
and improvement throughout the development process, 
particularly during the design of the software? 

(2) What are the explicit responsibilities and contributions 
required of the customers and vendors during the development? 

(3) What are the operational scenarios the system must satisfy? 
When will the system be "good enough" for the pre-operational 
phases to end? 

(4) How will customer-vendor responsibilities change over the 
course of the development? 

(5) What development structures and standards will be followed to 
facilitate post-operational modifications? 

7.6.1 Contracts for Complex Developments 

Complex developments are inherently different from simple programs. 

We have reached a stage, technologically, where we are able to create 

monster systems which we are unable to either understand or control. 

Many legal remedies attempt to improve development contracts. 

These remedies are useful but insufficient. It is useful to improve 

contracts for the coding activity. It is inappropriate to apply the 

same concepts to the entire development. A common remedy for 

development failures is to improve the accuracy, completeness and 

clarity of functional specifications [Gordon and Starr, 1985, p. 493]. 

Improving specifications is necessary but insufficient. Interpre¬ 

tations of specifications will differ. Collaboration must occur 

throughout the development process to ensure that vendors and customers 

are sharing the same interpretations. 
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7.6.2 System Development Contracts as Promise among Experts 

Law is based on underlying, unifying structures which are moral 

principles. The Promise Principle, the respect for self-imposed 

obligations, is fundamental to contract law [Fried, 1981]. The 

traditional contract's premise is that the customer promises to pay the 

vendor, and the vendor promises to fulfill the needs of the customer. 

The front-end planning with early test plan scenarios contract 

supplements these promises with additional, self-imposed obligations 

which support vendor-customer collaboration. 

Collaboration implies equality in expertise. Traditional contracts 

try to help the "inexpert" customer. Mislow argues that new theories 

of legal liability are needed to "provide an effective remedy for naive 

users who purchase deficient computer systems" [Mislow, 1985, p. 129]. 

The approach used in this thesis rejects the concept of a "naive" 

user. The user is the expert in the organization's operations. The 

developer is the expert in computer technology. Together they 

collaborate to develop a technical system which improves the 

organization's operations (see Table 7.5). 

7.6.3 Contracts for Correct, Useable and Useful Systems 

The vendor in the traditional contract promises to create systems 

which correctly meet the user's functional requirements. In the front- 

end planning with early test plan scenarios contract, the vendor still 

promises to build a "correct" system. 
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Table 7.5. Comparing Vendor and Sponsor Contract Obligations. 

Traditional Contract Front-End Planning with Early 
Test Plan Scenarios Contract 

Vendor Obligations: Vendor Obligations: 

1. Satisfy needs of customers 
by using own expertise to 
build a system which meets 
the needs of the customer. 

1. Satisfy needs of customers by 
contributing own expertise 
to the collaborative effort 
focused on building a system 
which meets customers' needs. 

2. Ensure customers are able to 
evaluate their needs. 

3. Ensure customers are able to 
understand their options. 

4. Ensure customers are able to 
evaluate the cost and 
usefulness of each option. 

5. Fully share personal skills, 
expertise and experience to 
enhance customers' efforts. 

6. Ensure that customers are 
aware of costs and benefits 
of process, technical and 
standards options. 

7. Formally confirm agreements. 

Customer Obligations: Customer Obligations: 

1. Pay the vendor. 
2. Give the vendor 

sufficient information 
to produce a system. 

1. Pay the vendor. 
2. Actively collaborate with 

the vendor to uncover all 
information on organization 
necessary to design a system 
which will improve its 
operational environment. 

3. Require and permit active 
participation of all relevant 
employees. 

4. Understand the operational 
impact of all proposals. 

5. Evaluate the useability of 
system proposals. 

6. Improve the usefulness of 
system proposals. 

7. Formally confirm agreements. 
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In addition, the vendor and customer, both promise to collaborate 

to develop a system which is not only correct, but is also useable and 

useful. A useful system is often less elaborate, less complex, less 

automated - designed to improve rather than to disrupt an 

organization's operational environment. 

When collaboration is an essential part of a contract, the quality 

and success of the vendor's effort is measured by the fruitfulness of 

customer’s collaboration. Vendors are successful when customers 

participate fully in the development process, using the vendor's 

expertise to produce the best possible system to improve the 

operational environment of their organization. 

7.6.4 Rules of Collaboration: "I Owe You" and "You Owe Me" 

There are no widely accepted rules or conventions which govern 

collective innovation in our current social and economic environment. 

In the absence of generally accepted conventions, front-end planning 

with early test plan scenarios offers a rigorous set of procedures and 

rules to define and to enforce the obligations during the critical 

first stages of the collaborative effort. Including a set of 

procedures in systems development contracts offers a set of guidelines 

for promoting, fulfilling and evaluating the collaborative obligations. 

The contract can formally state the "I Owe You" and "You Owe Me" 

obligations between customers and vendors. These mutual obligations 

provide the structure and boundaries needed to guide the type of 

innovative collaboration which produces systems which are correct, 

useable and useful within the organization. 
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7.6.5 Principles of Restitution 

There are two principles which apply to restitution when contracts 

are considered willful promises. The victim of the breach is entitled 

to no more or less gain than would have occurred had there been no 

contract. The second principle is that restitution should cover 

restitution for harm which was caused by one party relying on the other 

party's promise [Fried, 1981, p. 17]. 

In a traditional development, the failure of a system to operate 

correctly is a condition for restitution, with little consideration for 

the causes of the system failure. Only if the customer withheld vital 

information from the vendor, might the vendor not be held legally 

responsible for the failure [Westermeier and Millstein, 1988, p. 85]. 

In a collaborative contract, restitution for the failure of the end 

product requires many considerations. The contract is for the entire 

development process. There is a great deal to be gained during the 

process as well as from the final product. Failure of the final 

product may instigate the rapid development of a much better product. 

In 1982, a state agency, the SKILLS Center in Springfield, 

Massachusetts, contracted with a software vendor for the development of 

a computer system which could be used to match people who were being 

trained by the agency with organizations who had available jobs. After 

two years of work, the software vendor's system was inoperable. The 

analyst who had been developing the system left the employ of the 

vendor, leaving behind poorly documented software which had to be 

scrapped. When the SKILLS Center contracted with another software 
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vendor, a single analyst produced a useful, operable system, which 

fully met all of the agency's requirements, in less than two months 

[Eastman, 1987]. 

The second vendor was not twelve times more skillful than the 

initial vendor—but the customer had two years of experience, working 

with the initial vendor, understanding the agency's needs and 

evaluating the agency's options. 

The two years contributed significantly to the successful merging 

of a system into the agency's operations. The failure of the first 

system simply delayed operations by two months. The new system, 

designed from the beginning as a collaborative effort, benefitted from 

the expertise developed by the agency during their two years of work 

with the initial vendor. 

The principle of restitution is dramatically altered by the 

collaboration principle. The approach offered in this thesis (and its 

explicit collaborative innovation), is not designed to protect either 

customer or vendor in the event of system failure. The approach is, 

instead, designed to prevent the failure itself. If either party 

reneges on the opportunity and the responsibility for encouraging 

active involvement and viable collaboration, the system development 

process itself suffers. 

A fundamental function of an front-end planning with early test 

plan scenarios contract is the formal statement of obligations, of 

lists of "I Owes." These obligations are rules of collaboration which 

are formally included in a development contract to guide the 
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development, to measure each participant's contribution, and to be the 

basis for evaluating restitution and culpability if the development 

flounders. 

Front-end planning with early test plan scenarios improves 

traditional contracts by formalizing the relationship between the 

customers and vendors. The agreement of the two parties to work 

together is often labeled as "good will" or "care and concern." The 

approach of this thesis formalizes intent into measureable actions, 

reducing the ambiguity of traditional development contracts. The front- 

end planning with early test plan scenarios approach is a set of rules 

that structure the activities associated with the will of the parties. 

The language of mistake suggests certainty is the paradigm, but 
in fact contracts are largely a deliberate attempt to deal with 
uncertainty_The straight forward point is that two parties, 
though they seemed to have agreed, had not agreed in fact. And 
this - not mistakes or risks - is at the heart of these cases. 
There is just no agreement as to what is or turns out to be an 
important aspect of the arrangement...The one basis on which 
these cases cannot be resolved is on the basis of the agreement, 
that is of the contract as promise. The courts cannot enforce 
the will of the parties because there are no concordant wills. 
Judgment must therefore be based on principles external to the 
will of the parties" [Fried, 1981, pp. 59-60]. 

7.6.6 Vendor Malpractice 

Many attempts to address the tremendous burden of systems 

development ignore the complexity, the difficulty and the extreme 

effort which must be committed to the development of complex systems. 

This commitment is not trivial, it requires a level of intensity and 

expertise which is not amenable to attempts to find easy solutions. 
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One "easy" solution which is becoming increasingly popular, is an 

attempt to hold the systems developer professionally liable for systems 

development failures. The systems developer would be subject to the 

same malpractice suits as the surgeon [Mislow, 1985, p. 129]. 

Professionals find this particular movement a serious threat to 

improving the development process. A doctor's skills and training is 

based on knowing how the human body functions and on understanding 

techniques for improving its functions. In successful software 

developments, there is collaboration between three groups: users, 

sponsors and developers. 

When developments fail, customers lose not only the resources given 

to the vendors, but other resources spent as the organization prepared 

its people, machines and other systems for the new acquisition. When 

systems are delayed, there are additional costs for developing 

temporary operations to carry the organization until the system is 

available. Frequently, these temporary operations become fully 

integrated into the operational environment, totally eliminating the 

need for the delayed system. The complex system, finally operational 

after lengthy delays and massively escalated costs, is no longer needed 

and is scrapped. 

Courts struggle with allocating financial responsibility for the 

billions of dollars spent on faulty developments [Westermeier and 

Millstein, 1988]. The legal profession has fascinating, new situations 

to explore. But the process of developing systems is not improving. 
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The front-end planning with early test plan scenarios approach 

requires active collaboration between vendors and customers, is not an 

easy way out of the current, very expensive turmoil. Participants in 

the development process have to be proactive, they have to plan, they 

have to listen, they have to evaluate, they have to improve. Both 

customers and vendors have to respect each other while actively 

contributing their expertise. Customers and vendors both have to work 

extremely hard, with collaborative innovation, to produce a successful 

system. 



CHAPTER 8 

IMPROVING SYSTEMS DEVELOPMENT IN THE 1990'S, AND BEYOND 

Where we are going, we don't know. But we are going there. 
Philippe Kahn. 

People accomplish more when they work together than when they work 

apart. Management's task is "to make people capable of joint 

performance, to make their strengths effective and their weaknesses 

irrelevant" [Drucker, 1988, p. 75]. Cultural diversity and 

technological complexity will make working together in the 1990's even 

more critical and even more challenging. Individuals will need to 

assume personal responsibility, be creative, and collaborate with 

others [Reich, 1988]. 

Prior to the Industrial Revolution, craftspeople and tradespeople 

worked directly with their customers, providing customized services to 

meet unique needs. The Industrial Revolution, especially the process 

of mass production, created separate, well-barricaded groups. 

The Customer, the Salesperson, the Planner, the Designer, the 

Worker, the Carrier and the Accountant were separated from each other. 

The Planner selected Customers. Salespersons determined Customer's 

needs. Designers created solutions to meet the Salesperson's deter¬ 

mination of the Customer's needs. Workers built products according to 

the Designer's specifications. Carriers delivered the products to the 

Customer. Accountants handled payments and receipts. 
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Technological possibilities make this separatist philosophy 

obsolete. To meet world-wide competition, American organizations are 

incorporating "world class manufacturing" techniques [Schonberger, 

1986] which promote collaboration and innovation to increase quality, 

flexibility and responsiveness. 

Computer technologies allow small organizations to succeed in world 

competition. As companies re-establish close ties between producers 

and customers, they shift their focus away from "product features back 

to service to customers" [Hayes and Jaikumar, 1988, p.81]. 

In the 1980's, communication between customers and developers of 

complex systems remains separatist. Customer-developer interaction 

focuses on establishing product features rather than on collaboration 

and service. This focus increases costs, misunderstandings, and 

conflict during the system development process. 

Disparate cultures, education, work situations, social status, and 

languages exacerbate communication difficulties between developers and 

users of computer systems. To make matters worse, programmers and 

system developers traditionally work alone, believing that independence 

is essential for creativity. 

At the end of the 1980's, most systems developments fail. Social, 

technical and economic challenges of the 1990's are forcing us to find 

better ways of managing this increasingly difficult process. 

The early test plan scenarios of this thesis encourage us to work 

together, while preserving our individual freedom to create—it is an 

effective tool for the 1990's and beyond. 
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