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ABSTRACT 

PROTOPLAST ISOLATION AND CULTURE OF COOL SEASON TURFGRASSES 

February, 1988 

Ousama M.F. Zaghmout, B.S., UNIVERSITY OF DAMASCUS/SYRIA 

M.S., UNIVERSITY OF MINNESOTA 

Ph.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Dr. William A. Torello 

In monocots, regeneration of whole, viable plants from callus, 

suspension cultures and protoplasts is a prerequisite which must be 

met prior to the application of somatic hybridization or 

transformation techniques. The development of such systems for cool 

season turfgrasses such as red fescue (Festuca rubra L.) or perennial 

ryegrass (Lolium perenne L.) have not been reported. 

Embryogenic callus and suspension cultures of red fescue and 

perennial ryegrass were initiated and maintained by physically 

reducing a large percentage of non-embryogenic cells by density 

separations or size filtration. Manipulation of inorganic and organic 

media constitutents as well as various growth regulator types and 

concentrations resulted in growth media which not only enhanced growth 

rates, but also the degree of somatic embryogenesis in both callus and 

suspension cultures. Plants were regenerated from callus and 

suspension cultures of both species. Rapidly growing embryogenic 

vi 



suspension cultures were used as the primary source for isolating 

protoplasts for further culturing. 

A highly efficient enzyme-isolation solution was developed in 

which great numbers of protoplasts could be isolated with minimal 

damage. Results indicate that this enzyme solution is effective in 

isolating protoplasts from suspension cultures without agitation and, 

therefore, greatly reduces the degree of damage normally associated 

with fragile protoplasts during isolation. Increasing the frequency 

of cell suspension subculture events prior to protoplast isolation 

also enhanced protoplast isolation. 

Protoplasts were cultured in liquid media micro-droplets, plated 

directly in liquid media overlying solid media and cultured with or 

without conditioned media. Cell division and micro-colony formation 

occurred more frequently in conditioned media for both methods but 

remained very low. The use of liquid nurse culture media on 

protoplasts embedded in thin agarose layers or placed within feeder 

wells surrounded by nurse culture media significantly improved the 

degree of cell division. Microcalli up to 3.0 mm diameter developed 

rapidly and were transferred to liquid culture media. Currently, 

suspension cultures derived from protoplasts are being cultured. 

• • 
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CHAPTER I 

INTRODUCTION 

Review of Somatic Embryogenesis and Plant Regeneration 

Plant regeneration from cell cultures is an essential step prior 

to the application of many genetic manipulation techniques. Grasses 

and cereals are known to be comparatively recalcitrant with regard to 

regeneration of viable plants from tissue cultures. 

Organogenesis is the direct formation of shoots and roots from 

cultures and is characterized by the development of adventious buds 

on segments of cultured shoots or by the direct organization of shoot 

meristems, in cell cultures (3,11,12,18,48,50,59,83). Organogenesis 

has also been reported to -occur by derepression of existing shoot 

primordia in cultures (60,63-67). In monocots, regeneration by 

organogenesis has been reported to cease or become sporadic and 

transient after short culture periods (83). 

Somatic embryogenesis is a mode of regeneration where complete 

plants are produced from embryos formed in culture. Within the past 

ten years, there has been much effort directed at establishing 

embryogenic cultures from numerous cereal crops and other grass 

species (67). Somatic embryogensis is comparatively stable and offers 

the advantage of regenerating plants during extended periods of 

culture. Furthermore, all evidence indicates that regeneration 

somatic embryos arise from single cells (64,65). As such, somatic 
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embryogenesis provides a high level of genetic stability, although 

exceptions do occur. For instance, embryos from sorghum (Sorghum 

bicol or L.) cultures have been reported to have a multicellular 

origin (81). The potentiality for plant regeneration through somatic 

embryogenesis is wide spread within the Gramineae and has suggested 

that embryogenesis might be the most preferable and common method for 

in vitro plant formation (1,2,3,5-10,13-22,65). 

Embryogenesis and Plant Regeneration From Callus Cultures 

Growth Regulators 

The primary plant growth regulator used in cereal and grass 

cultures is 2,4-dichiorophencxyacetic acid (2,4-D). It has been 

reported that 2,4-D is the most important external factor which 

universally controls the induction of somatic embryogenesis (64). At 

optimal levels, 2,4-D is believed to be required for the acquisition 

of embryogenic potential at the time when the explant proliferates 

into callus tissue. The presence of 2,4-D prevents development of 

embryos, and results in unorganized growth. Conversly, if 2,4-D is 

removed from the culture medium, embryogenesis has been shown to 

proceed further (63-65). However, in certain forage grasses, such as 

Dactyl is glomerata L., 2,4-D does not prevent the initiation of 

embryogenesis in suspension cultures (19,22,43). 

The optimal concentration depends upon the type of tissue explant 

and genotype. In most cases, supraoptimal 2,4-D levels (exceeding 10 

mg/1) inhibit culture growth whereas, suboptimal concentrations favor 

the rapid growth of non-embryogenic (NE) cells over embryogenic (E) 

cells (31,32). Optimal 2,4-D levels must be determined for each 

species since NE cell types normally grow faster than E cells. 
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Somatic embryos have been shown to germinate on regeneration 

media lacking 2,4-D (63,64,65,67). In a few cases, the media were 

supplemented with either gibberellic acid (GA) or abscisic acid (ABA) 

to either promote embryo germination or to encourage the normal 

maturation of the embryos respectively (36,37,39,67). In other 

instances, 6-benzyl aminopurine (BA), kinetin, or zeatin were 

incorporated into regeneration media to promote embryo germination 

(67). In general, a hormone-free medium stimulates plant regeneration 

in monocots and cytokinins, for the most part, are not required. 

Nitrogen source 

The form and concentration of nitrogen in growth media may 

significantly affect the extent of somatic embryogenesis. The 

addition of casein hydrolysate (CH) was found to be critical for the 

development of embryogenic cell suspensions in orchardgrass (Dactylis 

glomerata L.) (13). The embryogenic responses in these suspension 

cultures were reliably turned on or off by adding or deleting CH. 

Liquid suspension media lacking CH resulted in only root-bearing 

aggregates when transferred to regeneration medium. Similar results 

have been reported in cultures of other Gramineous species (67). 

Type of explant 

Embryogenic cell cultures have been obtained from explants of 

immature embryo (17,20,34,38,44,45,59,63), young inflorescences 

(3,6,59,79,81,82,85), mature embryos (2,5,61,62,67), young leaves 

(3,24,66,84), and roots (1,46) of many cereals and grasses. However, 

immature embryos and immature inflorescences have been reported to be 

the most reliable source of explants (7,11,40,56,67). 
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When immature embryos are cultured, callus is typically formed 

from the surrounding cells of the scutellum at its coleorhizal end 

(28,39,42,59,62,66,73,74,80). Normally, the immature embryos were 

cultured 10-14 days post-pollination (17,20,34,44,45,59,60). During 

that period, all the characteristic organs of the embryos have already 

been formed. Several researchers have found that it is necessary to 

place embryos in a face down position on the culture medium, leaving 

the scutellum exposed (2,5,14,20,28,32,38,44,45,59,75,76). 

Immature inflorescences (IIF) are more important for clonal 

propagation, for maintenance of a desirable genotype and for embryo 

production than immature embryos. However, little attention has been 

focused on the 11F as opposed to immature embryo on embryoids 

production. The optimal time to use 11F in tissue culture is when 

individual floral primordia have started forming (7,8,13,15,18,19,44, 

59,72,79,84). Normally, the inflorescences are sterilized when they 

are still enclosed by the surrounding leaves. Therefore, the 

concentration of commercial bleach and its duration of exposure might 

be reduced without risk of contamination. In contrast to immature 

embryos, the orientation of the I IF segments on the medium were not 

reported to be critical for the induction of embryogenic callus (9). 

When immature inflorescences are used, callus is proliferated from 

meristematic cells of the floral primordia and cells around the 

peripheral vascular bundles in the infloresences axis (59,72,79,84). 

With leaf mesophyll explants, embryogenic cells usually arise 

from the lower epidermis between vascular bundles (24,25,36,76,86). 

Normally, the activity of intercalary meristems ceases early during 
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leaf development. As such, the older the leaf, the the callus that 

will be formed. Joarder et al. (30) studied the callusing frequency 

in relation to the leaf segment position and age and found that in 

successive one milliliter sections from an immature Lolium perrene L. 

leaf base, callus formed from only the first and second sections and 

not from the third or subsequent positions. The frequency of 

callusing from such explants decreased with distance from the base of 

the leaf and with the increased in the age of the leaf. They 

attributed such a relationship to the status of the mitotic index in 

the plants. Wernike and Brettell (82) noted that during 

differentiation the leaf tissue rapidly loses the ability to respond 

to convential tissue culture techniques. A similar response was 

observed in wheat by Wernicke and Milkoovtis (84) where cells the 

most basal leaf sections were highly meristematic and readily divided 

in culture. Vasil et al. (66,67) noted that little or no embryogenic 

tissue was produced if the explant contained fully differentiated 

vascular tissues. 

Callus obtained from the above mentioned explants are reported 

to be compact, opaque, and nodular in appearance with a whitish pale 

or dark yellow in color typical of embryogenic cell types (E) callus. 

These cal 1i are often surrounded by a translucent, friable, and soft 

tissue which is characteristically non-embryogenic cell types (NE) 

(1,67). NE tissue proliferate more rapidly in cereals and grasses 

(67). Nabors et al. (43) have reported that NE cells may be converted 

back to E cells, but such results are not repeatable for all species. 

In all systems, E cells (from which embryoids are eventually 

produced) are small, rapidly dividing meristematic cells 
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characterized by a dense cytoplasm with large nuclei, prominent 

nucleoli and small vacuoles full of starch granules (67,73). The 

regenerative capacity of embryogenic callus often shows a progressive 

decline and sometimes a complete loss of embryogenic potential as 

cultures are maintained for long periods (43,67). Such decline in the 

ability to regenerate plants might be attributed to: 

1. Genetic defects: Implying that decline may be due to nuclear 

changes (including polyploidy, aneuploidy, and chromosomal 

rearrangements) which normally takes place in long-term 

cultures (27,33,35,56). Such defects may be irreversible. 

2. Physiological defects: The normal balance of metabolism 

within the cells or tissues may be altered and, may be 

become sensitive or insensitive to exogenous growth 

regulators (61,67). Embryogenic capacity may be restored by 

the addition of various media components (9,10,47,49,53). 

According to Steward et al. (55), both processes described above 

may be involved in the decline and final loss of embryogenesis during 

prolonged serial subcultures. On the basis of the above information, 

if NE cell types are at a selective advantage for growth in the medium 

used, (as shown in repeated subcultures), the percentage of NE cells 

would increase while percentage of E cell types decline gradually 

(67). If a stage was attained in which callus or suspension cultures 

did not contain any embryogenic cells, the restoration of 

embryogenesis might be impossible (67). Conversely, if cultures 

contained E cells but were unable to express their E potential due to 

the presence of inhibitory substances, it may be possible to restore E 
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capacity by changing the composition of the growth medium in a way 

which would favor the growth of E over NE cells (53). 

Embryogenic Cell Suspension Culture 

Steward et al. (55) was the first to report plant regeneration 

through the process of embryogenesis in suspension cultures of carrot 

(Daucus carota L.). Thereafter, somatic embryogenesis was found to 

take place in many members within the Gramineae. In earlier reports, 

only NE suspension cells were observed in a number of crop species 

(67). These suspension cultures were composed mainly of proliferating 

root meristems containing large, vacuolated, and generally non¬ 

dividing cells originating from the surface of the explant calli 

(63,64,65,67). Plants could not be regenerated from these cell 

cultures. Gamborg et al. (21) were the first to report regeneration 

from suspension culture of a grass, Bromus inermis L. All regenerated 

plants were, however, albino. It was not until 1981 that embryogenic 

suspension cultures were induced and viable plants were regenerated by 

Vasil et al. in Panicum maximum L. (37,38), and Sacharrum officinarum 

L. (29). Embryogenic suspension cultures have been useful in 

propagation (37,39,46,47,71), isolation of genetic variants (58), or 

mutant cell lines, and as a source of protoplasts. Embryogenic 

suspension cultures are currently the only source of totipotent 

protoplasts in cereals and grasses (68,69). As such, it is essential 

that fast-growing embryogenic suspension cultures be initiated and 

maintained for future use in hybridization or transformation work. 
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CHAPTER II 

SOMATIC EMBRYOGENESIS AND PLANT REGENERATION FROM PERENNIAL 
RYEGRASS CALLUS CULTURES 

Introduction 

The application of tissue culture methods for crop improvement 

has been, for the most part, limited by the inability to regenerate 

complete and viable plants from cell cultures. There have been 

several studies concerning callus initiation and plant regeneration 

from grass species which have a dual role as a turf or forage grass 

(2,4,6,11,19,22). In 1956, Norstorg (15) reported the establishment 

of callus cultures of perennial ryegrass (Lolium perenne L.) from 

immature embryo explants, but plant regeneration was not accomplished. 

Ahloowalia (1) reported plant regeneration from callus cultures of a 

tripoloid hybrid non-viable triploid (2n = 21) between perennial 

ryegrass and annual ryegrass (Lolium multiflorum L.); a hybrid which 

is normally lethal. Recently, Torello and Symington (18) reported 

callus induction and plant regeneration via organogenesis from 

'Yorktown II' perennial ryegrass. As yet, the induction of 

embryogenic callus and plant regeneration through somatic 

embryogenesis in perennial ryegrasses have not been reported. Vasil 

et al. (20) have reported that plant regeneration through somatic 

embryogenesis is considered more reliable than organogenesis, 

producing a greater number of shoots over extended periods of culture. 

Regeneration through embryogenesis generally yields non-chimeric 

15 
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genetically stable plants in contrast to organogenesis (10,19,21,22). 

There have been many reports implicating ethylene with decreased shoot 

formation (9,12,16). Grady and Brassahm (9) reported that shoot 

producing tobacco callus tissues have significantly reduced amounts 

of ethylene precursor ACC (1-aminocyclo propane-l-carboxylic acid) and 

typically produce very little ethylene compared with callus incapable 

of shoot formation. Similar results were obtained by Huxter et al. 

(12) in inhibiting the development of shoot primordia when ACC was 

applied exogenously to the callus cultures. 

The objectives of this study were to develop a tissue culture 

system for the induction of embryogenic callus and to regenerate 

plants through somatic embryogenesis. 

Materials and Methods 

Callus Induction and Maintenance 

Mature, dehusked caryopses or 1-1.25 cm crown sections of 

'Diplomat' perennial ryegrass (Lolium perenne L.) were used as explant 

sources. Induction and maintenance medium was composed of half¬ 

strength Murashige and Skoog (MS) (14) basal salts supplemented with 6 

mg/1 of 2,4-dichlorophenoxyacetic acid (2,4-D), B-5 vitamins (8), 30 
a. 

g/1 sucrose and 8 g/1 tissue culture agar (Carolina Biological Co.). 

The pH was adjusted to 5.7 prior to autoclaving at 121 °C for 20 min. 

Following autoclaving, 5 ml of induction medium was dispensed into 

35x10 mm plastic petri plates. Approximately 10-15 dehusked caryopses 

were placed into each plate. 

For callus induction from crown tissues, seeds were surface 

sterilized and germinated on hormone-free induction medium. Crown 
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segments were excised from 15-day-old seedlings and plated on callus 

induction media. 

All cultures were incubated in the dark for 6 weeks at 26 °C + 

2.0. Cal 1i were subcultured every 6 weeks by subdividing into small 

size with an average initial fresh weight of 1 g. 

A second experiment was initiated to enhance the embryogenic 

capacity and plant regeneration of callus having very low regenerative 

ability. Cefotaxime, an antibiotic used to remove Agrobacteriurn 

tumefaciens contamination during co-cultivation experiments and 

implicated as a stimulant to embryo formation (13), was tested at 20, 

40, 60, 80, 100, 200, 400, 600, or 800 mg/1 callus maintenance medium 

as a pretreament prior to regeneration. Cultures were incubated under 

the same conditions as described above. Following a 6-week incubation 

period, visual assessment of the degree of embryogenesis was made and 

shoots arising from precocious germination of somatic embryos were 

counted. 

Plant regeneration 

Calli used in regeneration experiments had been subcultured 

periodically for the previous 18 months on callus maintenance medium. 

The following regeneration treatments all contained half-strength MS 

salts, B-5 vitamins, 45 g/1 sucrose, and 8 g/1 agar. Tewenty pieces 

of calli were transferred to different types of regeneration media: 

1. Media concentrations of BA, kinetin, or zeatin at 0.0, 0.5, 

1.0, 1.5, or 2.0 mg/1. 
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2. Abscisic acid (ABA) levels of 0.0, 0.8, 0.24, 0.32, 0.48, 

0.66, 0.8, 2.65, 5.29, 7.9, 10.8, 15.9, 23.8, 47.6, or 71 

mg/1. All media in this study contained 0.5 mg/1 BA. 

3. Media supplemented with either 10, 20, or 30 mg/1 silver 

nitrate or 1, 2, or 3% activated charcoal (AC). All 

treatments were supplemented with 0.5 mg/1 BA. 

4. Media supplemented with 0.5 mg/1 of fi1 ter-steri 1 ized 

fluridone at 0.0, 0.5, 1.0, 1.5, or 2.0 mg/1 BA for 2, 4, or 

6 weeks prior to were transfer to fluridone free-regeneration 

with or without 2% AC. 

5. Same as treament 4 except these compounds were incorporated 

directly to regeneration media. 

6. Calli were pre-treated on callus maintenance medium 

supplemented with 60 mg/1 cefotaxime for 6 weeks prior to 

transfer to regeneration media containing BA at either 0.0, 

0.5, 1.0, 1.5, or 2.0 mg/1, with 0.5 mg/1 fluridone, with or 

without 2% AC. 

Every treatment was repeated twice with at minimum of 10 
% 

replications per treatment. Regeneration was compared by counting the 

number of shoots (albino and green) regenerated per g callus (initial 

fresh weight). All cultures were incubated at 26 °C + 2.0 under a 16 

hr light diurnal cycle (16.3 W.m"^ provided by- f1uorescent 

irradiation). 

Results and Discussion 

Calli were induced from both mature caryopses and crown tissues 5 

weeks after placement on induction media. Two morphologically 
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distinct callus tissues were apparent in both sources. Embryogenic 

(E-type) calli were nodular, compact, white or opaque in appearance 

and surrounded by non-embryogenic (NE-type) calli which appeared 

yellowish to translucent, crystalline, and friable. Similar results 

have been reported for most cereal and grass cultures (20). 

Crown explants produced more embryogenic callus tissue compared 

with mature caryopsis explants. The degree of embryogenesis for 

perennial ryegrass callus, however, was not as extensive as reported 

for red fescue Festuca rubra L. (19). Embryogenic callus tissue was 

also rapidly "diluted out" after each subculturing event, since NE 

callus tissue grew much faster than E-callus tissue. 

Cefotaxime pretreatments to as high as 400 mg/1 resulted in a 

gradual increase in E callus production. These results are in 

agreement with those reported by Mathias and Boyd (13) where 

cefotaxime was used as an alternative to carbenici 1 ine in co¬ 

cultivation experiments with Agrobacterium tumeficiences due to its 

less toxic effect on cultured tissue. In this report, the addition of 

cefotaxime was found to have a stimulatory effect on the formation of 

embryogenic cultures and plant regeneration. Although calli were 

highly embryogenic, regeneration was extremely low. 

Among the cytokinins, BA at 0.5 mg/1 provided more shoot 

regeneration compared with either zeatin or kinetin (Table 1). All 

shoots regenerated were, however, albino. 

Silver nitrate had no effect, at any concentration, on plant 

regeneration (Table 1). These results are in contrast to those 

reported for Triticum aestevum (16) and Nicotiana piumbaginifolia (16) 
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callus cultures, where silver nitrate effectively promoted shoot 

formation from cal 1i with low regenerative capacities. 

Fluridone, a carotene and ABA inhibitor, has been reported to 

induce preharvest sprouting or vivipary in Zea mays L. (7) and to 

enhance the growth of plantlets from callus-derived protoplasts of 

Saccharum officinarum L. (17). There was an increase in the number 

of plants produced from callus pretreated with fluridone for 6 weeks 

compared with calli pretreated for only 2 or 4 weeks of exposure 

(Table 2). The number of plants produced per g of callus was slightly 

greater when fluridone pretreated calli were placed on regeneration 

media with AC (Table 2). While most of the plants regenerated were 

albino, a green plants were obtained. Therefore, on the basis of the 

above results, the inclusion of fluridone enhanced the inducition of 

embryo germination (Fig. 1). 

The addition of cefotaxime enhanced the number of embryogenic 

sectors in growing callus. However, it is interesting to note that 

callus grown on callus maintenance medium and supplemented with 6 mg/1 

2,4-D and 60 mg/1 cefotaxime induced embryo germination which 

normally requires the total removal of 2,4-D from the medium. A great 

numbers of plants were regenerated when callus was pretreated with 60 

mg/1 cefotaxime for 6 weeks prior to transfer to regeneration medium 

supplemented with 0.5 mg/1 fluridone and 0.5 mg/1 BA (Table 3). The 

type and not the concentration of cytokinin was found to be critical 

for regeneration of shoots. More green and albino plants were 

obtained when cultures were directly placed on regeneration media 

supplemented with 0.5 mg/1 fluridone and 0.5 mg/1 BA (Table 4).. 
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Table 1. The effect of cytokinins, activated charcoal (AC) and silver 
nitrate (AgN03) on plant regeneration from perennial 
ryegrass after 6 weeks in culture. Standard regeneration 
medium (SRM) was of hormone-free medium, 1/2 strength MS, B- 
5 vitamins, 45 g/1 sucrose, and 8 g/1 agar. Every 
experiment was repeated at least twice. 

Treatment 
{mg/7) 

Mean albino shoot number9 

SRM 0b 

Zeatin 
0.5 2.1 + 1.3C 
1.0 2.2 + 1.0 
2.0 1.4 + 1.0 

BA 
0.5 6.9 + 2.4 
1.0 4.8 + 1.0 
2.0 2.8 + 2.2 

Kinetin 
0.5 2.1 + 2.0 
1.0 2.8 + 2.1 
2.0 1.5 + 1.0 

AgN03 +0.5 mg/1 BA 

10 6.4 + 3.0 
20 7.3 + -1.0 
30 6 

Activated charcoal (1%) 
+0.5 mg/1 BA 

1 1.1 + 1.0 
2 3.3 + 1.3 
3 3.4 + 2.2 

aAll plants were albino. 

bShoot numbers are per g of callus (initial fresh weight). 

cMean + SE. 
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Table 2. Extent of plant regeneration between 2, 4, and 6 weeks 
pretreatment with flundone and BA prior to placement on 
standard regeneration medium and with or without 2% 

activated charcoal (AC). All regeneration media contained 
0.5 mg/1 fluridone. Numbers represent the mean shoot 
number per g callus (fresh weight). 

Pretreatment media 

Means of 
plants regenerated 

+AC -AC 

Green Albino Green Albino 

2-week-pretreatment 

0.0 mg/1 BA 0 0 0 0 
0.5 0.8 + 0.3a 3.9 + 2.1 0 3.9 + 1.0 
1.0 0.4 + 0.3 4.5 + 2.5 0 2.9 + 1.2 
1.5 0 1.6 + 1.2 0 2.6 + 1.1 
2.0 0 1.5 + 1.1 0 2.6 + 1.3 

4-week-pretreatment 

0.0 BA mg/1 0 0 0 0 
0.5 0 4.1 + 2.2 0 5.6 + 1.1 
1.0 0 8.5 + 1.1 0 7.3 + 2.3 
1.5 0 4.8 + 2.1 0 4.4 + 1.4 
2.0 0 1.6 + 1.7 0 2.6 + 1.3 

6-week-pretreatment 

0.0 BA mg/1 0 0 0 0 
0.5 0 17.3 + 3.2 0.4 + 0.1 14.9 + 3.4 
1.0 0 24.7 + 5.1 0 14.8 + 2.8 
1.5 0 14.5 + 3.9 0 6.5 + 2.5 
2.0 0 11.0 + 3.4 0 4.8 + 1.8 

aMean + SE. 
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Table 3. The effect of cytokinins and flundone on plant regeneration 
from perennial ryegrass. 

Treatment Number of 
(mg/1) ' green plants 

Number of 
albino plants 

+a b + 

SRM (control) 
0.5 BA 
+0.5 fl undone 

0.5 kinetin 
+0.5 fl undone 

0.5 zeatin 
+0.5 fl undone 

0 

1.1 + 0.4C 

0 

0 

0 

5.2 + 2.0 

5.4 + 3.3 

0 

15.3 + 4.0 

3.3 + 1.9 

5.6 + 3.2 

0 

16.2 + 3.2 

11.1 + 5.5 

8.2 + 4.8 

aCultures were maintained on a medium supplemented with 60 mg/1 
cefotaxime for 6 weeks prior to transfer to regeneration medium 
supplemented with cytokinins and 0.5 mg/1 fluridone. 

bWithout cefotaxime. 

cMean + SE. 
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Table 4. Effect of 6-benzyl ami no purine (BA) and activated charcoal 
(AC) concentration in standard regeneration medium (SRM) on 
shoot formation. Number represent the mean shoot number per 
g callus (fresh weight). All media contained 0.5 mg/1 
fluridone. 

Mean shoot formation*5 

Regeneration treatment +ACa -AC 
(BA mg/1) 

0.5 23.4 + 4.1c 14.3 + 3.9 
1.0 24.6 + 4.5 11.7 + 4.4 
1.5 11.0 + 1.3 6.2 + 2.1 
2.0 7.1 + 2.3 4.9 + 1.5 

a2% AC in SRM. 

^All regenerated plants were albino. 

cMean + SE. 



Figure 1. The effect of fluridone on plant regeneration 
from embryogenic callus of perennial ryegrass. 
(A) Without fluridone. (B) with 0.5 mg/liter 
fluridone. 
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CHAPTER III 

ENHANCED PLANT REGENERATION IN LONG-TERM CALLUS CULTURES OF 
RED FESCUE BY PRE-TREATMENT WITH ACTIVATED CHARCOAL 

Introduction 

Additions of activated charcoal (AC) to culture media have been 

shown to either enchance or inhibit growth and morphological 

development of different tissues in vitro. The beneficial effects of 

AC on embryogenesis and plant regeneration have been reported to be 

due to adsorption of inhibiting substances such as various phenolic 

compounds which accumulate during culture (3,6,11). Activated 

charcoal may also bind 1,5-hydroxy-methyl-furfural, a toxic compound 

derived from sucrose dehydration during autoclaving (10). 

Inhibitory responses of AC have been • reported to be due to the 

adsorption of various hormones, vitamins or other media constituents 

(1,10,11). As such, higher levels of these media components must be 

added to overcome inhibition by AC. 

It is well established that 2,4-D is necessary for initiating and 

maintaining callus and suspension cultures for most cereal and grass 

species. However, 2,4-D and other growth regulators are normally 

deleted from regeneration media for optimum results (7,8). Therefore, 

additions of AC may quicken and/or enhance plant regeneration by 

adsorbing and reducing the residual activity of 2,4-D which may be 

retained in callus tissues after transfer to regeneration media. The 

effects of AC on 2,4-D activity have not, as yet, been reported. 

28 
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The extent of somatic embryogenesis and the capacity for plant 
i 

regeneration from our long-term callus cultures of red fescue (Festuca 

rubra L. 'Dawson') were greatly reduced after a 5 year period of 

maintenance. Therefore, the objectives of this research were to 1) 

evaluate the effects of AC pre-treatment on plant regeneration from 

long-term callus cultures of red fescue; and 2) determine if AC and 

reduces the activity of elevated and inhibitory levels of 2,4-D in 

culture media. 

Materials and Methods 

Callus Maintenance and Plant Regeneration 

Embryogenic callus cultures of 'Dawson' red fescue used in this 

study were periodically subcultured (every 6-8 weeks) for over 5 years 

with the extent of embryogenesis and subsequent plant regeneration 

noticeably declining within the previous 6-month period. Cultures 

were maintained on a modified Murashige and Skoog (MS) (5) media 

supplemented with 5 mg/liter 2,4-D (7). The optimum regeneration 

media used periodically throughout the previous 5 year period was a 

hormone-free, 1/2 strength MS media supplemented with 10 g/liter 

sucrose and 8 g/liter of tissue culture grade agar (8). 

Pre-treatment Effects of Activated Charcoal 

Activated charcoal was added to callus maintenance media at 0.0, 

10.0, 20.0 or 30.0 g/liter levels to evaluate the effects of AC pre¬ 

treatment on plant regeneration after transfer of cal 1 i to standard 

regeneration media. For each AC treatment, six calli weighing 

approximately 0.2 g (fresh weight) were placed on each of 20 petri- 
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plates of 100x15 mm for every AC treatment and were incubated in the 

dark at 26 °C + 2.0 for 6 weeks before transfer to regeneration media. 

The extent of precocious germination of somatic embryos was visually 

assessed by comparison to controls at the end of the 6-week incubation 

period. Immediately following the AC pre-treatment period, cal 1i from 

all treatments were transferred to regeneration media and incubated 

for 6-weeks under 16.3 W.nT^ provided by cool-white fluorescent 

irradiation. The effects of AC pre-treatment on regeneration were 

determined by comparing shoot number, root number, shoot length and 

root length on a per g callus (fresh weight) basis between all 

treatments. 

Effect of Activated Charcoal on 2,4-D Activity 

Embryogenic calli were cultured , as described previously but 

containing either 10 or 15 mg/liter 2,4-D with and without 20 g/liter 

AC. Exposure of red fescue callus to such elevated 2,4-D levels is 

inhibitory and results in a cessation of growth and discoloration of 

callus tissue (unpublished data). The effects of AC on elevated 2,4-D 

levels were assessed by comparison of overall regeneration capacity 

(previously described) between treatments with or without 20 g/liter 

AC. 

Results and Discussion 

A pre-treatment culture period on media containing AC 

significantly improved the extent of regeneration from long-term 

embryogenic red fescue callus cultures. Both shoot and root numbers 

per g of callus and shoot length were greater at all AC levels tested 

over controls (Table 5). Although callus growth was suppressed during 
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pre-treatment exposure to AC, a high degree of precocious germination 

of somatic embryos was apparent in AC treated calli. Such results 

were most likely due to the adsorption and/or reduction in activity of 

2,4-D by AC. An increase in precocious germination and a reduction in 

callus growth are typical responses for red fescue cultured at sub- 

optimal 2,4-D levels (7). However, the extent of precocious 

germination and the capacity for plant regeneration had been greatly 

reduced in our 5-year old callus cultures. The increase in precocious 

germination was, therefore, due to AC addition to pre-treatment media 

which may also have adsorbed inhibiting compounds originating from 

callus tissue or the growth media. Several reports have implicated AC 

with adsorbtion of substances inhibitory to morphogenesis allowing for 

a greater capacity for plant regeneration (2,3,4,11). 

The ability of AC to adsorb and reduce the activity of 2,4-D is 

shown on Table 6 where elevated and inhibitory levels of 2,4-D were 

used alone or with 20 g/liter AC. Significant and positive 

regeneration responses for shoot number, shoot length and root length 

resulted from the addition of AC to pre-treatment culture media. In 
* 

treatments without AC, the overall regeneration capacity declined as 

2,4-D concentrations were increased with shoot numbers being greatly 

decreased. 

It is well established that 2,4-D is the preferred auxin source 

for cereal and grass cultures and that optimum plant regeneration 

occurs in the absence of 2,4-D. Recent evidence has shown that 2,4-D 

inhibits normal expression of cell differentiation keeping actively 

growing cultures in a relatively suppressed, non-morphogenic state 

which is reversed when cultures are transferred to 2,4-D-free media 
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(12,13). Although AC has been implicated in 2,4-D adsorption in this 

study, a reduction in 2,4-D activity cannot be fully responsible for 

the increase in the extent of regeneration. Control cultures (AC-free 

pre-treatment media) transferred to 2,4-D-free regeneration media 

exhibited a much reduced capacity for regeneration than has previously 

been obtained with this long-term culture. As such, the increased 

regeneration capacity induced by AC pre-treatment was most likely due 

to the adsorption of inhibiting substances characteristic of older 

cultures as well as the adsorbtion and/or reduction of 2,4-D activity. 
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Table 5. Effects of activated charcoal (AC) concentration on callus 
growth and plant regeneration in long-term callus cultures 
of red fescue. 

AC level 
(g/liter) Shoot number Root number 

Shoot length 
(cm) 

Root length 
(cm) 

0.0 6.7a 2.8 4.7 2.6 

10.0 11.6 5.6 5.5 2.7 

20.0 21.8 3.8 6.5 3.2 

30.0 17.3 3.8 3.9 2.9 

Significance 

Treatment ** ** ** NS 

Linear ** NS NS NS 

Quadratic * ** ** NS 

Cubic * ★ NS NS 

aShoot (or root) numbers per g callus tissue ( initial fresh wt.). 

*,**,^Ssignificant at 5% and 1% level and not significant respectively 
following an analysis of variance . Data represent the 
mean of 20 replications. 
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Table 6. The effects of elevated 2,4-D levels and activated charcoal 
(AC) pre-treatment on plant regeneration in red fescue. 

Treatment 
Shoot Root Shoot Root 

2,4-D 
(mg/liter) 

AC 
(g/liter) 

Number Number Length 
(cm) 

Length 
(cm) 

5.0 0.0 6.7a 2.8 4.7 2.6 

20.0 21.8 3.8 6.5 3.2 

10.0 0.0 4.6 5.0 5.3 3.5 

20.0 6.2 4.1 3.8 2.5 

15.0 0.0 2.0 2.4 2.3 0.5 

20.0 4.6 4.9 4.2 2.1 

Significance 

2,4-D ** NS NS NS 

AC ** NS * 

2,4-D X AC ** ** * ** 

aShoot (or root) numbers per g callus tissue (initial fresh wt.). 

** ,* »NS$.j gn j fj cant at 1% and 5% level and not significant 
respectively. Data represents the mean of 20 replications. 
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CHAPTER IV 

ENHANCEMENT OF SOMATIC EMBRYOGENESIS AND PLANT REGENERATION 
WITH ELEVATED SUCROSE CONCENTRATIONS 

Introduction 

The most reliant mode of plant regeneration within the Gramineae 

has been somatic embryogenesis, in which embryogenic cultures 

maintain their regenerative capacity for extended periods (7,18,19). 

In many instances, however, the ability to regenerate plants may 

become sporadic and possibly lost over with extended subculturing 

(2,7,18,19). Reduction in regeneration capacity may be due to 

chromosomal abberations (15), the prolific growth of non-embryogenic 

over embryogenic cell types (19) or the accumulation of inhibitory 

substances. Barbara and Nickell (2) have reported a reduction in 

regeneration capacity of sugarcane callus after only several 

subcultures. Similar reductions in regenerative capacities have been 

reported for Triticum aestivum L. (4) and Hordeum vulgare L. (3). 

Torello and Symington (18) reported extensive plant regeneration 

through somatic embryogenesis in red fescue (Festuca rubra L.) from 

long-term callus cultures. The extent of somatic embryogenesis and 

regenerative capacity from these cultures has been greatly reduced 

after a 5 year culture period. 

Increased sucrose concentrations have been shown to enhance 

somatic embryogenesis in Daucus carota L. (20), Solanum melongena L. 

(6), Coix lacryma-jobi L. (17), Picea abies L. (1), Pinus taeda (21) 
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and Zea mays L. (10). In related studies, Rapela (14) found that 

sucrose enhanced organogenesis and somatic embryogenesis in inbreds of 

Zea mays L.. On the other hand, in Medicago sativa L., elevated 

levels of maltose was responsible for the enhancement of embryogenesis 

(16). It is not known, however, whether the stimulating effect of 

increased sucrose levels is due to nutritional or osmotic effects. 

The objective of this study was to determine the interactive 

effects of high sucrose levels with various different basal media on 

embryogenesis and subsequent plant regeneration in long-term cultures 

of red fescue exhibiting a reduced regenerative capacity. 

Materials and Methods 

Culture Conditions 

Initiation, maintenance and regeneration conditions for long term 

callus and suspension cultures of 'Dawson' red fescue have been 

previously reported (18). Embryogenic callus cultures were sub¬ 

cultured every 8 weeks for over 5 years. 

In the first experiment, sucrose was added to either Murashige 

and Skoog basal salt (MS) (12), B-5 medium (5) or Gamborg, Miller and 

Ojima basal salt media (B5 basal salt) (5) media at 20, 30, 40, 50, or 

60 g/1 concentrations. Mannitol was added in other treatments at 5.5 

and 21.9 g/1 concentrations and supplemented with 20 g/1 sucrose. All 

media used were supplemetned with 5 mg/1 2,4-dichlorophenxyacetic acid 

(2,4-D), B-5 vitamins (5) and 8 g/1 agar. Two calli, each 

approximately 200 mg (fresh wt)were placed on each plate and were 

incubated in the dark at 26 °C + 2.0 for 6 weeks prior to transfer to 
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regeneration medium. At least 10 replicates (plates) were used for 

each treatment. 

In a second study, sucrose was added at 30, 45, or 60 g/1 to MS 

liquid medium and embryogenic cell suspensions were used instead of 

callus. Initiation and maintenance of embryogenic suspension 

cultures of red fescue have been described in chapter 6. Suspension 

cultures were initiated from long -term callus cultures and were 

subcultured every 7 days for approximatly 1 year on 1/2 -strength MS 

medium supplemented with 4 mg/1 2,4-D and B-5 vitamins (5). 

All suspension cultures were placed on a gyratory shaker (100 

rpm) and incubated at 26 °C + 2.0. The effect of pre-conditioning 

with sucrose on overall culture growth was determined by comparing the 

packed cell volume (PCV) of the control (30 g/1 sucrose) with other 

treatments. Immediately following the pretreatment period, 

approximetly 2 g of cell aggregates with an average diameter of 2.5 

mm, were transferred to regeneration medium containing the 

corresponding sucrose concentration (30, 45, or 60 g/1) and incubated 

as described below. 
* 

Plant Regeneration 

The standard regeneration medium was hormone-free, half-strength 

MS basal medium supplemented with 10 g/1 sucrose, and 8 g/1iter agar 

(18). In experiment one, the degree of embryogenesis and precocious 

germination on callus cultures was assessed by visual comparison to 

control cultures 6 weeks after pretreatment with sucrose and prior to 

placement on regeneration medium. The extent of plant regeneration 

for both callus and suspension derived cultures was assessed after 6 
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weeks of incubation. Cultures were kept at 26 °C + 2.0 with a 16 h 

light period (16.3 Wm~^) by counting the number of shoots and roots 

and measuring shoot and root length. Regeneration conditions for 

suspension cultures were similar to those for callus cultures but 

contained higher sucrose concentrations as described above for 

pretreatment conditions. 

Results and Discussion 

The results of this study indicate that pretreatment with 

elevated levels of sucrose greatly enhanced the regeneration capacity 

of long-term embryogenic callus (Table 7) and suspension cultures 

(Table 8) of red fescue. 

Figure 2 illustrates the degree of precocious germination from 

callus cultures 6 weeks after pretreatment with elevated 

concentrations of sucrose. The highest degree of embryogenesis and 

precocious germination occurred when MS basal medium was supplemented 

with 40 g/1 sucrose. 

Throughout this study, an Ml basal medium was shown to yield the 

best overall results with elevated sucrose concentrations. Increasing 

sucrose levels during pretreatment above the standard levels (30 g/1) 

significantly reduced the degree of albinism (Fig. 3) and enhanced the 

numbers and lengths of both shoots and roots regenerated on a gram 

callus fresh weight basis (Figs. 4-7). The optimal sucrose level for 

increased shoot numbers (which is considered more important than shoot 

length) was 40 g/1 used in combination with the Ml basal media. 

Although shoot lengths were greatest at 60 g/1 for B5 medium and B5 

basal medium, shoot numbers at this relatively high level of sucrose 
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were fewer compared to MS basal media at 40 g/1 sucrose. Similar 

results were obtained for root numbers in that 40 g/1 sucrose was 

optimal for all 3 media tested but higher (50 g/1) sucrose levels 

yielded greater root lengths with MS basal media was the least 

effective. Root length, however, is also considered ’less important 

than the number of roots which are regenerated. 

Results indicate that mannitol could not be substituted for the 

beneficial effects of sucrose (unpublished data). Supplemental 

addition of mannitol and concurrent reduction of sucrose resulted in 

discoloration and eventual death of callus tissues. Similar results 

obtained when mannitol was supplemented to the growth medium of 

sugarcane (11,12). In contrast to our results, Kavi Kishor and Keedy 

(8) found that callus derived from roots and embryos of rice 

exhibited better growth on Linsmaier and Skoog basal medium (9) if 2% 

sucrose was supplemented with 3% mannitol or 3% sorbitol. 

The growth curve for suspension cultures at all sucrose levels is 

shown in Figure 8. The highest PCV was obtained if 45 g/1 sucrose was 

added to the growth medium, followed by 30 and 60 g/1 sucrose. 

However, the highest number of roots regenerated and the greatest 

shoot and root length occurred when 60 g/1 sucrose was added to 

regenertion medium (Table 8). Plant regeneration derived from sucrose 

pre-treated callus tissue maintained after plating on standard 

regeneration medium with a normal level of sucrose. In contrast, no 

regeneration was observed for embryogenic suspension aggregates when 

they were placed on similar regeneration medium. Therefore, higher 

concentrations of sucrose were used in regeneration media for 

suspension cultures. 
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The results of this study indicate that it is possible to renew 

lost embryogenic and regeneration capacities in red fescue callus and 

suspension cultures if they are pretreated and regenerated on a medium 

supplemented with high levels of sucrose. 



Table 7. Analysis of variance on the effects of sucrose concentration 
and three different basal media (MS basal salt, B5 medium, 
and B5 basal medium) on plant regeneration from long-term 
callus cultures of red fescue. 

Mean Squares 

Source df 

Albino 
shoot 
number 

Shoot 
number 

Root 
number 

Shoot 
length 

Root 
length 

Media 2 96** 722* 72** 4NS 3** 

Sucrose 4 183** 2038** 55** g** 0.5* 

Linear 1 464** 15167** 54** 29** O.S* 

Quadratic 1 86* 2036** 49** 0. INS 0.6NS 

Cubic 1 153** 714** IONS 2NS 0.6NS 

Sucrose x 

Media 7 45* 588** 9NS 3NS 2NS 

Error 136 17 164 4.6 2 0.16 

* ,** .NSj-j f-j 

(NS). 
at the 5% (*) or n (**) level or not significan 

v 
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Table 8. The effect of elevated sucrose concentration pretreatments 
on subsequent shoot and root regeneration from embryogenic 
suspension cultures of red fescue2. 

Sucrose 
level 
(g/i) 

Mean 
shoot 
number 

Mean 
root 
number 

Mean 
shoot 
length 

(cm) • 

Mean 
root 
length 

(cm) 

30 4.7 7.5 6.9 1.1 

45 23.3 13.0 14.0 2.3 

60 34.8 17.0 17.5 3.8 

LSD (0.05) 12.5 3.7 2.8 0.7 

Represents the mean of 10 replications. 
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CHAPTER V 

SOMATIC EMBRYOGENESIS AND PLANT REGENERATION FROM SUSPENSION 
CULTURES OF PERENNIAL RYEGRASS 

Introduction 

Improvement of many crop species through somatic hybridization is 

limited by sporadic plant regeneration from cell cultures. With few 

exceptions, it has been especially difficult to regenerate plants from 

suspension cultures and protoplasts of cereals and grasses 

(8,11,12,13,20,29). 

Plant regeneration through organogenesis has been reported to be 

multicellular in origin and, as such, plants produced may be chimeral 

(29). Furthermore, organogenesis is unstable and typically ceases or 

becomes sporadic after a few subculture periods in maize (2), wheat 

(2), oats (2), Lolium (4), Festuca (4), Phleum (4), Dactyl is (4) and 

many others (29). In contrast, plant regeneration through somatic 

embryogenesis is of single cell origin (9) with a high degree of 

genetic stability (11,19). High .regeneration rates over prolonged 

culture periods have also been reported for regeneration through 

somatic embryogenesis (24,25,26,28,30). 

Plant regeneration via somatic embryogenesis has been reported 

for many turf, forage and cereal grasses such as Echinochloa muricata 

L. (1), Echinochloa crusgal1i L. (1), Festuca rubra L. (23), Dactylis 

glomerata L. (8), Loliurn multiflorum L. (3,5), Panicum maximum L. 

(11), Saccharum officinarum L. (12) and Triticum aestivum L. (19). 

Perennial ryegrasses (Lolium perenne L.) is a forage grass with a dual 
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role as a turf grass. Norstorg (18) has reported the establishment of 

tissue cultures of perennial ryegrass using immature embryo explants, 

but no regeneration was reported. Torello and Symington (22) reported 

plant regeneration from callus cultures through organogenesis. The 

induction of embryogenic callus and plant regeneration of perennial 

ryegrass through somatic embryogenesis has been described in Chapter 

II. 

The limited successes in protoplast culture of grasses have 

depended primarily on the use of embryogenic suspension cells 

(20,24). Therefore, the objectives of this report were to induce the 

formation of a rapidly growing embryogenic suspension culture of 

perennial ryegrass and to evaluate the effect of various growth 

regulators and other media components on plant regeneration. 

Materials and Methods 

Callus Induction and Maintenance 

Mature, dehusked caryopses of perennial ryegrass (Lolium perenne 

L. 'Diplomat') were cultured on callus maintenance medium which 

consisted of Murashige and Skoog basal medium (MS) (17) containing B-5 

vitamins (7), 5 mg/1 2,4-D, 30 g/1 sucrose, and 8 g/1 tissue culture 

agar (Carolina Biological Co.). Embryogenic callus was induced 3-4 

weeks after plating and was subcultured every 6-8 weeks for 18 months. 

Induction and Maintenance of Embryogenic Suspension Cultures 

Approximately 2 g of embryogenic callus were placed into 250-ml 

Erlenmyer flasks containing 50 ml of callus maintenance medium without 

agar. The medium pH was adjusted to 5.7 prior to autoclaving. 

Cultures were placed on a gyratory shaker at 100 rpm with a 16 h light 
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cycle at 26 °C + 2.0. The resulting suspension culture was composed 

of mostly elongated, highly vacuolated and irregular shaped non- 

embryogenic cell types (NE) with very few embryogenic cells (E). 

Therefore, efforts were directed toward selectively increasing the 

percentage of E cells. The addition of numerous media components had 

no effect on selectively enhancing the growth of E cells in 

suspension. Therefore, separating cell types on the basis of physical 

characteristics became the only viable alternative for eliminating NE 

cell types. The first method tested was based upon differences in 

density between E and NE cell types and entailed the use of a 

discontinous Percoll gradient. Percoll gradients were sequentially 

layered from top to bottom at 5, 10, 15, 20, 25, 30, and 35% (v/v) 

concentrations in 50 ml centrifuge tubes. Five ml of suspension 

culture were placed onto Percoll gradients after filtering the 

suspension through a 75 urn nylon mesh. Tubes were then centrifuged 

for 10 min at 80 x g to separate cells based on density. The highest 

proportion of single and embryogenic cells were sedimented cells at 

the 20-30% percoll boundries. These cells were removed with a sterile 

Pasteur pipette and then transferred to 50 ml centrifuge tubes. 

The second method for separating cell types was based upon 

differences in size between E and NE cells. The average E cells of 

perennial ryegrass are small, ranging between 10-20 urn in diameter, 

compared to non-embryogenic cells which are usually greater than 30 

urn. As such, this method entailed passing suspension through a nylon 

mesh with a 31 um pore size. Filtered cells were washed three times 

with a hormone-free medium by centrifuging for 80 x g for 10 min. 
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Sedimented cells were then resuspended in a hormone-free medium and 

used as stock culture. 

The effect of cell density ranging approximately between 102-10^ 

cell s/ml of culture medium were studied to determine the optimal cell 

density for enhancing the formation of embryogenic cell clusters. 

Media used in this study was the same as in initial experiments except 

various concentrations of casein hydrolysate (CH) (1 or 3 g/1), 

cocount water (CW) (5 or 10%), or combinations of both were tested. 

Following the formation of embryogenic cell clusters, the effect of 

2,4-D at concentrations ranging from 2 to 10 mg/1 were evaluated to 

determine the optimal level for suspension growth. The effect of 

inoculum density at 5, 10, 15, 20, or 25 ml cell suspension to 45, 40, 

35, 30, or 25 ml of fresh medium respectively was determined. The 

effect of elevated sucrose levels at 30 , 45, 60 g/1 were also 

evaluated. The medium used in the sucrose and dilution ratio studies 

was similar to that previously described except 3 g/1 CH and 6 mg/1 

2,4-D were used. Suspension growth was assessed by counting cells 

with a hemacytometer and/ or by packed cell volume (PCV). The method 

used for determing the doubling time is shown in Appendix B. 

Every experiment was repeated at least 3 times and every 

treatment was replicated with 3 flasks. All cultures were placed on a 

gyratory shaker at 100 rpm and incubated at at 26 °C + 2.0. 

Plant Regeneration 

To induce somatic embryo germination and plant regeneration, E 

suspension cell clusters and cell clumps (0.1-3.0 mm diameter) were 

plated on solidified half-strength MS basal medium supplemented with 
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45 g/1 sucrose, B-5 vitamins, 8 g/1 agar, 0.5 mg/1 fluridone, and 

either 0.5 mg/1 of benzylaminopurine (BA), 6-furfurylaminopurine 

(kinetin), or (6-[4-Hydroxy-3-methylbut-2-enylaminojaminopurine) 

(zeatin). 

The effects of silver nitrate added to regeneration media at 10, 

20, or 30 mg/1 was tested for possible enhancement of shoot 

regeneration. In a seperate test, cefotaxime was added to suspension 

culture media at 60 ml/1 medium 4 weeks prior to regeneration 

pretreament of cultures with cefotaxime was used to enhance embryo 

germination and plant regeneration. All cultures were incubated for 8 

weeks under 16.3 Wm"^ of flourescent lighting with a 12-hr dark/12-hr 

light diurnal cycle at 26 °C + 2.0. 

Results and Discussion 

Embryogenic suspension cells of Lolium perenne L. were comprised 

of 2 types of cells. Embryogenic cells (E) were small, rounded, with 

an average diameter of 10-20 urn, and possessing a dense cytoplasm with 

a low level of vacuolation, whereas non-embrycgenic cells (NE) were 

highly vacuolated, comparatively large and elongated or ellipsoidal in 

shape. Embryogenic cells were also more dense than non-embryogenic 

cells. Newly initiated suspension cultures contained a high level of 

NE cells and relatively few E cells. Numerous media components were 

tested to increase the percentage of E cells. The addition of various 

compounds such as proline, sucrose, mannitol, abscisic acid (ABA), 

CH, and CW have been reported to enhance embryogenisis in other 

cultures within the Gramineae (27,28,29). Preliminary tests at wide 

concentration ranges for each of these compounds had no beneficial 
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effect and the percentage of NE cells remained high. Altering the 

dilution ratio of fresh medium to stock suspension has also been used 

to "dilute out" a high ratio of NE to E cells. Our results indicate 

that elimination of NE cells was successful only through the use of 

either a discontinuous pecoll gradient or filtering through a 31-um 

mesh screen which eliminated most of the large and highly vacuolated 

NE cells (unpublished data). Resultant suspensions from either method 

were composed predominantly of single cells with an average diameter 

of 10-20 urn with less than 10 percent of the suspension being small 

cell clusters composed of 2-4 cells. 

The effect of cell density at initiation was found to be 

critical in relation to the enhancement of cell division and 

embryogenic cell cluster formation. When the cell density was 10^ 

cell s/ml of media or greater, embryogenic clusters were formed within 

two weeks (unpublished data). The beneficial effects of high cell 

densities are similar to those obtained by Haplerin (10). The 

presence of a high cell density and the addition of CH were essential 

for stimulating cell division and shortening the time required for 

embryogenic cluster formation. The addition of CH was essential in 

maintaining fast-growing embryogenic suspension cultures (Table 9). 

Several unsuccessful attempts were made to replace this undefined 

medium component with combinations of glutamine, glycine, or 

aspargine. Gray et al. (8) reported that replacement of CH with 

glutamine, a major component of CH, resulted in the death of Dactyl is 

glomerata L. embryogenic cell suspensions. In general, the 

omission of CH has yielded root bearing clumps without the production 

of somatic embryos for a number of grass species (2,8,16). 
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The effect of dilution ratio during subculture was assessed by 

using five different suspension/new media ratios. All five ratios 

tested resulted in rapid growth within the first 9 days after 

subculturing (Fig. 9). As expected, the maximum amount of PCV was 

higher when higher cell volumes (20 ml or 25 ml) were used since the 

initial density was higher. However, the results obtained in this 

experiment indicate that a low ratio of 10 ml:40 ml (stock 

culture:fresh medium) had a shorter doubling time along with a total 

PCV which was similar to higher ratios within 6 days of culture (Fig. 

9). As such, this relatively dilute suspension/media ratio was used 

throughout the remainder of this study. 

Higher suspension/media ratios were also shown to greatly 

increase the production of a mucilagenous substance. Mucilaginous 

materials were also produced if suspension cultures were left without 

subculturing for long periods (longer than 15 days). Similar results 

have been obtained for other grass cultures (8,22-28). Embryogenic 

capacity can also decrease due to the presence of mucilagenous 

materials in suspension (8,24,25,26). 

The concentration of 2,4-D had a significant effect on the growth 

rate of suspension cultures (Fig. 10). The shortest doubling time 

and maximum PCV were observed with 6 mg/1 2,4-D. In a similar study. 

Gray et al. (8) reported that complete somatic embryo development of 

Dactyl is glomerata L. was obtained even at relatively high 2,4-D 

concentrations in culture. In this study, somatic embryo develop was 

not inhibited by a relatively high 2,4-D concentration (Fig. 10). 
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There have been several reports concerning the beneficial effect 

of high sucrose levels on somatic embryogenesis (13,29,30,32). As 

such, the effect of sucrose on the degree of cell division and 

doubling time expressed as an increase in PCV was evaluated. 

Figure 11 shows the comparison of PCV between cell suspensions 

subjected to 30, 45, or 60 g/1 sucrose. Both 45 and 60 g/1 levels 

resulted in more rapid growth rates than the typical 30 g/1 level. 

Elevated sucrose levels have also been shown to enhance the degree of 

embryo-genesis in callus cultures of red fescue (Festuca rubra L.) as 

shown in chapter 4. 

The stages of somatic embryo development in perennial ryegrass 

suspension cultures were similar to those which have been reported to 

take place in zygotic embryo development (Figure 12). The doubling 

time for suspension cultures was greater when embryogenic clumps 

(0.1-0.3 mm diameter) developed in suspension. The development of 

embryogenic clumps in suspension was characteristic of fast growing 

cultures but numerous single cells were always present. 

Although a large number of embryos at various stages of 

development were observed in embryogenic suspension cultures, very few 

embryos germinated to form plants. Abscisic acid and gibbrellie acid 

have been reported to promote embryo maturation and to enhance embryo 

germination (29). Neither growth regulator was found to be beneficial 

in this study when each was tested alone or in combination. The 

addition of various cytokinins to the standard regeneration medium 

(SRM) was beneficial but resulted in only albino plant formation 

(Table 10). A few green plants were produced when 0.5 mg/1 fluridone 

was added to SRM. Fluridone is an inhibitor of carotene and ABA 
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synthesis (6). Srinivasan et al. (20) reported that fluridone 
t 

increased the number of leaves in shoots produced from protoplast- 

derived callus of sugarcane. Addition of AgN03 only increased the 

number of albino plants regenerated. Some green plants were 

regenerated when suspensions were pretreated with 60 ml/I cefotaxime 

for 4 weeks prior to transfer to SRM supplemented with 0.5 mg/1 BA and 

0.5 mg/1 fluridone (Table 10). The extent of embryogenesis was 

enhanced and the number of shoots regenerated increased with 

cefotaxime pretreament but, again, most shoots were albino. Mathias 

and Boyd (14) have reported similar results in that cefotaxime 

increased the number of regenerated plants significantly from wheat 

callus. It may be that the age of these suspension cultures (18 

months) is responsible for the high degree of albinisim. Further work 

is underway in promoting green plant formation from perennial ryegrass 

suspension cultures. 
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Table 9. The effect of casein hydrolysate (CH) and coconut water (CW) 
on the formation of embryogenic clumps (expressed as PCV) 
from cell filtered through a 31-um nylon mesh. The PCV was 
determined 15 days after subculturing. 

Addenda used Mean packed cell volume (ml) 

control(no addition) 0.1 

CH(1%) 3.0 

CH(3%) 5.0 

CW( 5%) 0.5 

CW( 10%) 0.5 

CH(1%)+CW(5%) 3.0 

CH(1X)+CW(10%) 3.0 

CH(3%)+CW(5%) 5.2 

CH(3%)+CW(10%) 5.5 

LSD (0.05) 0.25 
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Table 10. The effect of cytokinins, fluridone and silver nitrate 
(AgN03) on plant regeneration from embryogenic suspension 
cultures of perennial ryegrass and the effect of a 4-week 
culture pretreament with 60 ml/1 cefotaxime prior to 
transfer to regeneration media. 

Treatment Mean green Mean albino 
(mg/1) shoot number shoot number 

SRM (control) oa 0 

Zeatin 
0.5 0 3.0 + 2.1 
1.0 0 4.2 + 2.2 
2.0 0 3.2 + 1.4 

BA 
0.5 0 3.1 + 0.0 
1.0 0 3.6 + 1.3 
2.0 0 6.9 + 1.1 

Kinetin 
0.5 0 0 
1.0 0 4.3 + 2.0 
2.0 0 6 

FI undone 
0.5 BA and 
0.5 fluridone 3.1 + 1.0 7.2 + 1.0 

0.5 kinetin and 
0.5 fluridone 0 0 

0.5 zeatin and 
0.5 fluridone 0 0 

AqNOo +0.5 mq/1 BA 
10 - 0 10.2 + 4.0 
20 0 7.5 + 4.0 
30 0 6 

Cefotaxime pretreament 
0.5 BA and 

12.1 + 2.2 0.5 fluridone 2.1 + 2.2 

0.5 kinetin and 
0.5 fluridone 0 4.2 + 1.4 

0.5 zeatin and 
0.5 fluridone 0 0 

aShoot numbers are per 1 ml of PCV. 
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CHAPTER VI 

SOMATIC EMBRYOGENESIS AND PLANT REGENERATION FROM SUSPENSION 
CULTURES OF RED FESCUE 

Introduction 

The application of genetic transformation techniques for plant 

improvment of monocot species is limited by the difficulty in 

regenerating whole, viable plants from cell cultures. As such, it is 

essential to develop culture systems for plant regeneration from 

single cells and/or protoplasts (2,4,8,9,11-16). 

Plant regeneration via somatic embryogenesis offers the 

advantages of long-term regeneration potential with a high 

regeneration rate (7,11,15,16). In monocots, plants regenerated 

through somatic embryogenesis are usually genetically stable, as 

opposed to regeneration through organogenesis where regeneration can 

become sporadic after 3-5 subcultures with a concomitant higher 

degree of genetic instability (5,7). 

Plant regeneration from monocot species, especially grasses and 

cereals, has proven to be much more difficult compared to dicot 

species. Somatic embryogenesis has, however, recently been reported 

for numerous grasses and cereals (17) and is considered the most 

reliable mode for plant regeneration. Torello and Symington (11) have 

reported regeneration of whole viable plants through somatic 

embryogenesis from callus culture of red fescue (Festuca rubra L.). 
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The capacity for embryogenesis in red fescue was also shown to be 

stable following long periods of culture (11). 

The objectives of this study were to establish a freely- 

suspended, fast-growing embryogenic suspension culture and to provide 

detailed observations of the various stages of embryo development 

leading to plant regeneration. 

* Materials and Methods 

Callus Induction and Maintenance 

Detailed procedures on the initiation and maintenance of red 

fescue callus cultures have previously been described (11). In 

general, embryogenic callus cultures were induced by placing mature, 

dehusked caryopses on a half-strength Murashige and Skoog basal medium 

(MS) (10) supplemented with 100 mg/liter inositol, 5 mg/1 2,4- 

dichlorophenoxy acetic acid (2,4-D), and 8 g/liter tissue culture agar 

(Carolina Biological Co.). Embryogenic callus was subcultured every 

6-8 weeks for the previous 5 years. Plant regeneration was 

periodically performed by placement of embryogenic callus on a 

hormone-free ha 1f-strength MS basal medium supplemented with 10 

g/liter sucrose and 8 g/liter agar. 

Induction and Maintenance of Suspension Cultures 

Preliminary attempts to initiate suspension cultures were 

achieved by placing approximately 2 g of embryogenic callus into 50 ml 

of agar-free callus culture medium (as described above) The resultant 

suspension culture was prolific but highly heterogenous in regard to 

cell type and had less than 1% embryogenic (E) cells. In an effort to 

selectively enhance the percentage of E cells while gradually 
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decreasing the total number of nonembryogenic (NE) cells, the effects 

of various levels of, 1-naphthalene acetic acid (NAA), 6- 

benzylaminopurine (BA), 6-furfurylaminopurine (kinetin), 6[4-Hydroxy- 

3-methylbut-2-enylamino]purine (zeatin) and abscisic acid (ABA) were 

tested at various concentrations and found to be ineffective (Appendix 

A). In further preliminary studies, concentrations of selected amino 

acids (proline, serine, glutamine, glycine, arginine, alanine, lysine, 

tryptophane), sugars (sucrose, glucose, galactose, fructose, mannitol, 

or sorbitol), or undefined organic compounds such as casien 

hydrolysate (CH), coconut water (CW), or yeast extract (YE) were 

evaluated (Appendix A). Efforts were directed toward physically 

separating E from NE cells using either discontinuous percol gradients 

(5, 10, 15, 20, 25, 30, and 35 % (v/v) layers) or a filtering method 

using a 31 urn screen mesh. Cells sedimenting at the 15-25% boundary 

layer of the percoll gradient were collected with a sterile pasteur 

pipette and transferred to 50-ml centrifuge tubes. Sedimented as well 

as filtered cells were centrifuged for 10 min at 80 x g, after which 

the supernatant was decanted off and the pellet resuspended in culture 

medium. The percentage of E to NE cells was estimated using a 

haemocytometer and found to be greater than 90% for both methods. 

Filtered suspensions were used as stock cultures in all further work. 

The effect of cell densities (ranging between 10^-10^ cell s/ml), 

culture media, and the media components (previously described) were 

tested using filtered, freely-suspended embryogenic cell cultures in 

an effort to enhance the formation and growth of embryogenic cell 

clumps (50-500 urn diameter). The medium used during these tests was a 
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half-strength MS basal medium supplemented with B-5 vitamins (3) and 

30 g/1 sucrose. The effects of 2,4-D at concentrations ranging from 

2 to 10 mg/1 and the effects of CH at 1 or 3 g/1 with or without CW at 

5 or 10% were evaluated. 

After suspensions had grown to produce cell clusters or clumps, 

the effect of dilution ratio was evaluated, using 5, 10, 15, 20, or 25 

ml suspension medium to 45, 40, 35, 30, or 25 ml of fresh media, 

respectively. The method used fro determinig the doubling time is 

shown in Appendix B except 6 mg/1 2,4-D was replaced with 4 mg/1 

2,4-D. 

Every experiment was repeated at least 3 times and every 

treatment was replicated at 3 flasks. All cultures were placed on a 

gyratory shaker with 100 rpm and incubated at 26 °C + 2.0. 

Plant Regeneration 

Plant regeneration was accomplished by transferring embryogenic 

cell clusters (averaging 1-5 mm in diameter) which developed over a 4- 

week period in suspension culture to the surface of a hormone-free 1/2 

strength MS basal salt medium supplemented with B-5 vitamins, 30 g/1 

sucrose, and 8 g/1iter tissue culture agar. Ten ml of that media were 

dispensed into 100x15 mm petri dish. Thereafter, cell aggregates were 

spread evenly on the surface of the above mentioned medium. All 

cultures were incubated under 16.3 W.m"^ provided by fluorescent 

irradiation) with a 12 h diurnal cycle at 26°C + -2.0. 

Results and Discussion 

Among all treatments tested only CH has enhanced cell division in 

suspension culture. The percentage E to NE cells was, however, still 



75 

unacceptably low no matter what media components were used. In the 

numerous preliminary tests, suspension cultures retained a very low 

percentage of E cells. Embryogenic cells have been described as being 

spherical with an average diameter of between 10-25 urn,,with numerous 

starch granules and highly cytoplasmic with a negligible degree of 

vacuolation (Fig.15. Plate A). Non-embryogenic cells with an average 

diameter greater than 30-um were most prevalent, more vacuolated, and 

comparatively more elongated. Initial attempts to increase the 

percentage of E to NE cells by manipulating the cell density during 

subculture or addition of the many previously described compounds were 

not successful. Suspensions remained highly heterogenous in regard to 

cell type and consisted mainly of NE cells. 

The use of both the percoll dicontinuous gradients and 31-um 

filtering method resulted in removing more than 90% of the NE cells. 

Separation by the percoll gradient method which is based upon cell 

density, was more tedious and time- consuming and cell division was 

slow and somewhat less synchronized. 

Haplerin (6) has reported that the initial cell density per unit 

of fresh medium during subculturing was critical for inducing 

embryogenic clump formation in carrot. Similar results were obtained 

in this report, provided that the cell density during subculture was 

higher than 106 cell s/ml media. Pre-filtered embryogenic cells had a 

tendency to agreggate and form clumps but many single cells were 

present during all phases of culture. 

The addition of CH at either 1 or 3% increased culture growth and 

enhanced the proliferation of embryogenic clumps (Table 11). Similar 
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results were obtained for Dactyl i s qlomerata L. by Gray et al. (4). 

Attempts to replace CH with other combinations of amino acids which 

have been reported to be present in CH were not successful (1). 

Coconut water has been reported to promote culture induction and 

enhance embryogenic cluster formation in grasses (4,8,9,12). Cocount 

water alone or in combination with CH had no beneficial effect on cell 

division or clump formation (Table 11). 

The 2,4-D concentration had a significant effect on the growth of 

embryogenic cell suspensions. The fastest growth rate and maximum 

packed cell volumes (PCV) were attained at 4.0 mg/1 2,4-D (Figure 13). 

The effect of dilution ratio during subculture (cell cluster 

volume/volume of subculture media) is shown in Figure 14. All five 

diltution ratios showed increases in PCV over time. Although the PCV 

for the dilute 5:45 and 10:40 ml ratios were initially low, they 

exhibited very fast rates of cell division and and comparatively 

shorter doubling times. All dilution treatments eventually had a 

similar PCV after 18 days in culture. The importance of dilution 

ratio was demonstrated by Ho and Vasil (8), Lu and Vasil (9) and 

Vasil and Vasil (12-16) where the addition of 8 ml stock culture into 

40 ml of fresh media resulted in a suspension with a higher rate of 

division. The Figure 15 shows various stages of development of embryo 

formation in suspension culture. The result of various methods used 

for plating the freely-suspended cells is shown in Appendix C. 

Plant Regeneration 

Approximately 3 days after plating, green areas were noticed on 

the surface of most clumps from which shoots eventually emerged. All 
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regenerated plants were green and normal. Although prolific, the 

number of plants regenerated did not equal the number of embryos 

observed on the plated cell clumps which were, in essence, small 

calli. Non-synchronization of suspension growth might be responsible 

for incomplete regeneration, since the developmental stage of embryos 

in suspension was not the same. 

After 18 months in suspension culture, all regenerated plants 

were appeared phenotypically stable (Fig. 16). Somatic embryogenesis 

in red fescue also provides the advantage of regenerating numerous 

plants after prolonged culture periods. Embryogenic suspension 

cultures of red fescue are currently being used for protoplasts 

isolation and culture, and should prove useful for the production of 

totipotent protoplasts from which a complete and successful plants 

regeneration can be produced. 
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Table 11. The effect of casein hydrolysate (CH) and coconut water (CW) 
on the formation of embryogenic clumps from cell suspensions 
initially filtered through 31 urn nylon mesh. All media 
contained half-strength MS salts, B-5 vitamins, and 4.0 mg/1 
2,4-D. Packed cell volumes were determined 30 days after 
subculturing. 

Treatment Packed cell volume (ml) 

Control 0.2Z 

CH(0.1%) 2.8 

CH(0.3%) 3.9 

CW(5S!) 0.35 

CW(10%) 0.35 

CH(0.1X)+CW(5%) 3.0 

CH(0.15S)+CW(10*) 3.3 

CH(0.3%)+CW(5%) 4.1 

CH(0.3%)+CW(10%) 4.3 

LSD (0.05) 0.13 

Represents the mean of 3 replicates. 



2 
m

g/
1 

2.
4-

D
 

79 

(tui) aiuniOA iiao pa>ped 

! 

F
ig

u
re
 

1
3
. 

T
h
e
 
e
f
f
e
c
t 

o
f 

v
a
r
io

u
s
 

2
,4

-D
 
le

v
e
ls
 

o
n
 

th
e
 

g
ro

w
th
 

o
f 

s
u
s
p
e
n
s
io

n
 

c
u

lt
u

r
e
s
 

o
f 

’D
a
w

so
n

' 
re

d
 

f
e
s
c
u
e
. 

V
e
r
ti

c
a
l 

li
n
e
 

o
n
 

e
a
c
h
 
b

a
r 

r
e
p

r
e
s
e
n

ts
 

s
ta

n
d

a
rd
 
e
r
r
o

r
 

o
f 

th
e
 

m
e
a
n
. 



80 

(p) auiniOA IP3 pa>ped 

F
ig

u
re
 

1
4

. 
T

h
e
 
e
f
f
e
c
t 

o
f 

v
a
ri

o
u
s
 
d

il
u

ti
o

n
 
r
a
ti

o
n
 

o
n
 

th
e
 

g
ro

w
th
 

o
f 

s
u
s
p
e
n
s
io

n
 

c
u

lt
u

r
e
s
 

o
f 

'D
a
w

s
o

n
' 

re
d
 

fe
s
c
u
e
. 



31 

*0 
a) 

«— CL 
<4- (D O 
O *i— i— 

+j aj 
CO -i- > 

<u c qj 
S- i—i *a 
O 

r— CQ r— 

c • 
O O —s 
•r-OU 
to C\J V— 
c: 
a> x 
o. 
CO o 
O * O 
CO C r-H 

o 
cr -r- x 

•t— +p 
03 

+-> N • 
C -I- X 
a> c o 
E re (/) 
C. O')- 
O t- 

<— O E 
O) =3 
> r— r- 

Ol tc r- 

-u-ocu 
•i- +-> 

4-0 0 
o >> O 

i- CO 
CO -Q 

O) E -O 
cr. D c 
03 l n3 

+-» O 
CO £_ -— 

Cl i. 
Co o 
---- 
o <c 

•r— '—‘ 03 
NO 

CO *r— O 
> *r rH 

a> s_ 
+-> o o x 
03 O <D 

CO i— 

to a> o • 
OLl U o 

>> 
S- -O 4- S- 

X) CJ o J3 
E OX E 
cu c aj 

- o 
CJ E v- O 

•>— O +->•(- 
■P to aj -P 
« 2 E o 
E 03 X- E 
O O o O 

CO - 4— CO 

I 

- 



Plant regeneration from embryogenic cell suspension 
culture aggregates of red fescue. 
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CHAPTER VII 

REVIEW OF PROTOPLAST ISOLATION AND CULTURE 

Introduction 

Numerous forage grass species have a dual role as turf-type 

grasses. Increased forage production and quality is essential to 

productivity within the meat, milk and wool industries. The multi¬ 

billion dollar turfgrass industry relies increasingly upon the 

introduction of new cultivars capable of performing under minimal 

maintenance and stressful! environmental conditions. A major 

advantage to cell culture procedures is found in providing new genetic 

variability which would be difficult or impossible to achieve by 

conventional methods of plant breeding. Therefore, there is no doubt 

of the potential rewards of protoplast technology are great. 

There has been much interest in the application of protoplast 

technology for crop improvement by numerous methods, including direct 

genetic transformation. However, in monocots, most transformation or 

manipulative methodology must be preceded by the development of 

successful and repeatable protocols for protoplast isolation and 

culture followed by plant regeneration. 

Since the initial successes of Takebe et al. (50) and Nagata and 

Takabe (40) in regenerating plants from mesophyll protoplasts of 

tobacco (Nicotiana tabaccum L.), numerous attempts have been made to 

obtain plants from protoplasts of other plant species. 
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Dicots have been found to be much more responsive to plant 

regeneration and somatic hybridization techniques than are monocots. 

Despite prolonged and extensive efforts, protoplasts of Graminaceous 

crops, including the cereals and grasses, continue to be relatively 

unresponsive, with rare exception, to treatment to induce plant 

regeneration (61). 

The present position of protoplast culture in monocots from 

published reports can be summarized as follows: 

A. There has been no notable progress toward the reproducable and 

sustained division of protoplasts isolated directly from 

differentiated plant tissue. 

B. There have been a number of reports of protoplasts derived 

from cell cultures forming non-morphogenic cell cultures 

(5,8,32,60). 

t. Several instances have been reported on plant regeneration 

from protoplasts isolated from embryogenic cell suspension 

cultures (2,60). 

The regeneration of plants from protoplasts of Panicum maximum L. 

(38) and Pennisetum purpureum (59) has been very encouraging, athough 

regenerated plants did not progress beyond the small plantlet state. 

Recently, plant regeneration from protoplasts which developed into 

mature plants have been reported for Oryza sativa L. (14,37,60) and 

Saccharcum officinarum L. (49). The source of protoplasts in both 

cases was from embryogenic cell cultures. Procedures for maintaining 

morphogenic potential in suspension cultures and plant regeneration 

from protoplasts derived from them appears to be repeatable for these 

two species but varies considerably within other grass species. 
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Because of the general intractability of monocot protoplasts 

isolated directly from differentiated tissues, little information can 

be drawn from results of experiments concerning the effects of 

different treatments and procedures although numerous unsuccessful 

protocols have been reported. Information from model species 

(tobacco, petunia, potato, etc.) is undoubtedly valuable for 

application of protoplast techniques in difficult species. While the 

genetic principles seem to be similar for both, it is a mistake to 

assume that culture conditions and procedures are transferable. Such 

assumptions risk limiting our thinking and approaches to what are, in 

many respects, fundamentally different tissue culture systems. 

A number of stages are required for protoplast culture and 

successful plant regeneration. Most of the variables (and they are 

numerous) have been approached empirically. There is rarely any clear 

idea of what is important and why certain treatments work and others 

do not. 

1. Effects of Plant Genotype. There is considerable evidence 

for genetic control of cultured tissue and protoplast responses. It 

has been shown that certain families (e.g. Solanaceae), genera, 

species and even cultivars are more or less responsive than others to 

in-vitro treatment (30,48). Although there is much evidence of such 

variable responses, there are no reports on why some genotypes respond 

and others do not. 

2. Environmental Effects. Plant growth and development is 

influenced by the surrounding environment and, therefore, it is not 

surprising that cells and protoplasts taken from plants exposed to 
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different conditions react differently. As such, previous growing 

conditions of donor plants will most likely have significant effects 

upon the potential for developing successful tissue culture protocols. 

Such effects have been reported for a wide range of pre-culture 

conditions (4). 

3. Source of Protoplasts and Culture Conditions. Several 

thousands of culture conditions have been tested using differentiated 

mesophyll protoplasts isolated from numerous grasses and cereals (46). 

Only in one instance has cell division been sustained (47) leading to 

the formation of a callus culture which was non-morphogenic. There 

may be a novel growth regulator or a particular set or series of 

conditions which might induce mature mesophyll protoplasts to respond. 

For example, it has been noted that polyamines, which have been found 

to induce higher levels of nuclear division in isolated oat mesophyll 

protoplasts, may become recognized as important growth substances. 

However, isolated mesophyll protoplasts remain highly recalcitrant. 

All evidence regarding the response of monocot explants in tissue 

culture suggests that meristematic plant tissues would most likely 

yield the most responsive protoplasts (60). A report of root forming 

cultures derived from protoplasts isolated from immature leaf sheaths 

of rice supports this concept (15). However, reproducible division of 

protoplasts from meristematic regions has not yet been achieved and 

may be a reflection of either difficulties in obtaining a sufficiently 

large yield of protoplasts or problems associated with morphogenetic 

competence (15). 

4. Morphogenetic Competence of Cells. Numerous reports have 

shown that only a relatively small number of cells in a large culture 
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population are able to rapidly divide and differentiate after 

prolonged culture periods (57, 58). As such, only a small number of 

cells are "competent" enough to respond to imposed treatments for 

regeneration of whole plants. A similar phenomenon is observed in 

intact plants, where shoot and root apical meristems produce cells 

which eventually differentiate to form different functional and 

anatomical tissues. Differential gene expression may be largely 

responsible for the fact that only certain cells respond to external 

stimuli while others do not. Therefore, particular growth substances 

can have very different effects when acting upon cells and tissues of 

different origins within the plant (e.g. variation in hormone 

receptors). 

Variation in the response of different explant tissues is well 

known in tissue culture. Within the Gramineae, a high degree of 

differentiation is usually associated with the loss of the ability to 

form callus. The response of immature leaf explants illustrate this 

point. At the base of leaves, callus is readily induced and is 

usually embryogenic and highly regenerable (63). In contrast, mature 

and older upper leaf segments usually loose the ability to form callus 

under similar conditions (63). Therefore, it must be assumed that as 

cells and tissues differentiate they become committed to particular 

functions and lose the ability to respond in culture (63). Vasil and 

Vasil (58) have obtained relatively large numbers of competent cells 

in embryogenic suspension cultures using an approach which could 

eventually be the best general method for a range of recalcitrant 

species, providing that genetic stability can be controlled. Such an 
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approach may be the only way to provide a large population of 

responsive protoplasts in species which lose their competence as 

tissues mature. The difficulty with their approach is in being able 

to recognize and define the cell types necessary to maintain 

morphogenetic competence in suspension cultures of different grass 

species. Recently, there has been a large number of reports on the 

induction of somatic embryogenesis from numerous grass species. This 

has been due, in small part, to the ability of workers to recognize 

early on the types of callus tissue capable of embryogenesis. 

The work with protoplasts isolated from cereal and grass 

suspension cultures clearly demonstrates the mitotic integrity of the 

protoplasts and their morphogenetic competence. However, the problems 

currently faced in obtaining mature plants from protoplast-derived 

calli and somatic embryos must be resolved before a system can be 

effectively utilized in somatic hybridization or genetic 

transformation work. For the present and immediate future, 

embryogenic cell suspension cultures provide the most promising system 

for cultures of cereal and grass protoplasts. Such cell lines are 

currently available in Pennisetum americanum (57), j\_ purpureum (59), 

Panicum maximum (38), and Zea mays (4,47). Totipotent cell suspension 

cultures have also been reported in Loliurn multif1orum (32) and 

Saccharum officinarum (49). 

Protoplast Isolation, Culture and Plant Regeneration 
Mi thin the Gramineae 

Protoplast isolation 

Although a great deal of literature has been published on the 

isolation, culture and fusion of protoplasts, comparatively little 
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work has been carried out with cereal and grass species. Early 

studies of plant protoplasts were hindered due to the lack of methods 

available in obtaining adequate quantities of protoplasts. Such 

problems have been overcome with the use of various fungal enzymes 

used to digest cell wall materials (17,18). After cell wall removal, 

protoplasts could be stimulated to regenerate cell wall material, form 

callus tissue, and then differentiate to form complete plants which in 

general exhibit the characteristics of the original plant (18,28). 

Many physiological, biochemical and genetic problems which had 

previously been unapproachable could, be studied using protoplast 

isolation and culture techniques (17). 

The ability of the plasma membrane to undergo fusion has received 

considerable attention and this phenomenon has yielded the advantage 

of the formation of hybrid cells, which might ultimately lead to 

somatic hybrids (17,42). The amount of literature on this subject has 

become too vast to completely review, however, comprehensive reviews 

are available (2,11,23,24,26,60). 

Procedures used to isolate protoplasts can greatly influence the 

properties of protoplasts affect their suitability for maintaining 

viability and subsequent cell division (18,60). Essential in the 

procedures for protoplast isolation is the removal of cell walls 

without causing irreversible damage to the protoplast (17). Prior to 

removal of cell walls, it is essential that cells be maintained in a 

solution of suitable osmotic potential (17). Mechanical procedures 

were initially used to isolate protoplasts, however, techniques have 

been developed for the removal of the cell wall by enzymatic digestion 
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which are now the predominant methods employed (2,17,18). Treatment 

of cells with cell wall degrading enzymes has resulted not only in the 

removal of cell walls but also other effects on protoplasts have been 

noted (e.g. increases in transaminase activity) (17). The most common 

enzymes used in the isolation of protoplasts appear to be 

"Macerozyme," a pectinase complex used to separate cells in 

combination with "Onozuka R-10," a cellulase complex for the 

degradation of cell wall materials (2,17,18,26,60). Protoplast 

isolation can be achieved between one and 18 hours depending upon the 

plant material, enzyme source and concentration, method of 

preperation, purification (16,18,26). 

There are numerous cellulases, hemicellulases and pectinases from 

various biological sources now commercially available for protoplast 

research. Some enzymes are available as purified preparations such as 

Onozuka R-10. However, it has been shown that the effectiveness of. 

crude and less costly preparations can be improved by gel filtration 

(11). Some enzyme preparations contain various contaminates, such as 

nucleases and/or proteases, which can adversely affect protoplast 

viabi1ity. 

Protoplast isolation solutions consist of mixtures of enzymes 

dissolved in media containing osmotic stabilizers, the latter 

composed usually of various not metabolizable polyols, calcium and/or 

phosphate salts, and a buffer. The optimum conditions of osmolarity, 

pH, and enzymes required for protoplast isolation from a particular 

tissue are usually established empirically. The most common osmotic 

stabilizers were mannitol, sorbitol, glucose or mixtures of inorganic 

salts (60). Additions of potassium dextran sulfate have also shown to 
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be beneficial in stabilizing protoplasts (12,41). Solutions usually 

include a phosphate or MES (2-(N-morpholino)ethanesulfonic acid) 

buffer to minimize acidic shifts which may occur during digestion 

(11,23,28,60). 

Various procedures have been employed for protoplast isolation. 

The tissue may first be treated with pectinase to loosen or release 

cells followed by incubation with one or more cellulases to digest 

cell walls (45). Explant tissues can also be subjected to a partial 

vacuum prior to incubation to facilitate infiltration of enzymes 

within tissues (51). 

Organs or tissues may be placed in a plasmolyzing solution for a 

period of time, or transferred directly to the digestion mixture. 

Protoplasts were isolated enzymatically from seedling roots, 

hypocotyls and cotyledons of flax (Linum usitatissimum L.) (3). The 

cotyledons were cut into approximately 1 mm wide strips and hypocotyls 

and roots were cut longitudinally. The tissues for each explant were 

plasmolyz.ed in a salt solution containing 13% (w/v) mannitol for 2 

hours then incubated in an enzyme solution of 2.0% (w/v) Rhozyme Hp- 

150, 4.0% (w/v) meicelase and 0.3% (w/v) macerozyme in CPW salt 

solution with 13% (w/v) mannitol. Enzyme incubation lasted 18 hours 

at 25 °C on a rotary shaker (30-40 rpm) (32). Vasil and Vasil (58) 

reported th.e isolation of protoplasts by mixing 10 ml of a 4-5 day-old 

embryogenic suspension culture (originated from immature embryos) of 

pearl millet (Pennisetum americanum L.) with 60 ml of a filter 

sterilized enzyme mixture (2.0% cellulysin, 1.0% macerozyme, 0.5% 

driselase, 0.5% Rhozyme, 0.25 M sorbitol, 0.25 M mannitol, 250 mg/1 
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glucose, 3 mM MES buffer prepared in a hormone-free medium at pH 5.6), 

incubated for 1 hr at room temperature followed by 19 hr at 14 °C in 

the dark (56). 

After incubation, undigested tissue is removed by gravity 

filtering through a stainless steel (or nylon) filter and protoplasts 

are then collected and washed several times (in culture media) by 

centrifugation at ca 100 X g. The finer cell debris including fibers, 

tracheids etc. can be difficult to remove. Procedures designed to 

separate protoplasts from debris include floating on a 20% sucrose 

solution (15), aqueous dextran or a polyethylene glycol two-phase 

system (34), as well as numerous other methods (9,11,14,18,26, 

29,37,60). 

Lu et al. (39) have also reported the isolation of protoplasts 

from embryogenic suspension cultures derived from immature embryos and 

inflorescences of Guinea grass (Panicum maximum Jacq.) by mixing 0.75- 

1.5 mil of a 4-5 day-old suspension culture with 8-10 ml of a filter 

sterilized enzyme solution (2.0% Onozuka R-10, 0.15% pectolyase, 0.25% 

driselase, 0.5% Rhozyme, 0.15 M mannitol, 0.15 M sorbitol, 7.0 mM 

CaCl2> 0.7 mM NaH2P04 and 3.0 mM MES buffer at pH 5.6). Results have 

shown that protoplasts isolated from immatuTe embryo and 

inflorescence-derived suspensions behaved similarly in culture (39). 

A large number of protoplasts divided and grew in a liquid culture 

medium to form hundreds of embryogenic cell aggregates and many 

globular proembryoids. Upon transfer to an agar medium, embryogenic 

callus was obtained which produced numerous embryoid-1ike structures. 

These embryoids germinated precociously to form green plants (39). 
v . _ 

The importance of using embryogenic cell suspensions as a source ot 
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totipotent protoplasts from cereals and grasses have been noted in 

many reports (39,50,54-60). Jones and Dale (33) have also isolated 

viable protoplasts from embryogenic suspension cultures originating 

from embryogenic callus derived from immature embryos of Italian 

ryegrass (Lolium multiflorum L.). Protoplasts were isolated from 

suspension cultures during the log phase of growth (4 to 5 days after 

subculture). The isolation mixture was based on conditioned- media and 

consisted of 10.0% mannitol, 1.0% meicelase, 1.0% cellulase R-10, 0.3% 

macerozyme and 0.1% pectolyase Y23. Chourey and Sharpe (7) described 

procedures for the establishment of cell suspension cultures from 

three cultivars of Sorghum bicolor. Protoplasts derived from these 

cultures showed sustained divisions leading to callus formation. The 

same authors reported that in several instances such cal 1i have been 

returned to liquid medium giving rise to "protoclone" cell suspension 

cultures (7). Protoplasts from sorghum were isolated by the method 

described for maize [2.0% (w/v) cellulysin, 1.0% (w/v) driselase and 

0.5% (w/v) pectinase dissolved in an osmoticum containing 0.2 M 

mannitol, 80.0 mM CaCl2 and 0.5% w/v MES buffer at pH 5.8] (7). Vasil 

and Vasil (61) isolated protoplasts from an embryogenic cell 

suspension culture of Pennisetum purpureum which divided and produced 

globular embryoids and embryogenic masses. Cell masses continued 

growth on agar medium to form compact calli with embryoidal structures 

that eventually gave rise to green plants. The protoplasts were 

isolated from a 3-4 day-old suspension culture and the enzyme mixture 

consisted of cellulase R-10 (2.5%), mannitol (0.2 M), sorbitol (0.2 

M), CaCl2 (7.0 mM), NaH2P04 (0.7 mM), and MES buffer (3.0 mM), at pH 
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5.7. Although somatic embryos and plantlets have now been obtained 

from protoplasts of P_;_ ameri canum (55), P_;_ maximum (39) and P. 

purpureum (59), it has not been possible in any case to grow the 

plantlets to maturity. Somatic embryos of Gramineae species formed in 

callus and cell suspension cultures germinate and grow into mature 

plants, but protoplast derived embryoids have thus far failed to do 

the same (55). Furthermore, somatic embryos formed in callus cultures 

are apparently easier to regenerate into plants than those which 

develop from plated suspension cultures. Increasing dissociation of 

cells from callus to cell suspensions to protoplasts appear to make it 

progressively difficult for the organization and maturation of somatic 

embryos and their subsequent development into mature plants 

(39,55,60). Heyser (30) described a system for the regeneration of 

callus and albino plantlets from protoplasts of proso millet (Panicum 

mil iaceum L.). Protoplasts (2 x 10^/g freshweight) were released from 

filtered cell clumps with 0.5-1.0% cellulysin and 0.1-0.2% Rhozyme in 

600 mM KC1, 2.0 mM NH4NO3, 3.0 mM CaCl2, 1.0 mM KH2P04 at pH 5.5 

diluted with conditioned LS medium. 

Protoplast Culture 

The recent upsurge in interest in plant cell and tissue culture 

and its applications toward plant improvement is a result of the 

development of numerous novel techniques associated with somatic 

genetic manipulation (60). Protoplasts can be cultured in liquid and 

occasionally on solidified media (32). When cultured in a liquid 

medium protoplasts may be incubated in 25-50 ml flasks (32). A 

convenient procedure consists of culturing suspensions of protoplasts 
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in liquid droplets (11,35). The protoplasts are suspended in culture 

medium at ca 104/ml which is usually distributed in 50-100 ul drops in 

petri dishes sealed with Parafilm and incubated in humidified plastic 

boxes at 25-28 °C under low light intensity or darkness (11). After 

cell wall regeneration and division has been initiated, fresh media 

with a lower osmolarity is added. Eventually a cell suspension 

culture may be formed. Alternatively, cells grown in liquid can be 

transferred to agar media by mixing with an equal volume of agar 

nutrient medium cooled to about 40 °C (11,42). Aliquots are then 

poured into petri dishes which are sealed with parafilm and incubated 

(59). The advantage of this procedure is the fixed or embedded 

position of cells which facilitates further observation of individual 

cells or cell clusters. 

Protoplasts have nutritional requirements similar to those of 

cultured plant cells. The mineral salt levels established for plant 

cell cultures have been modified to meet the particular requirements 

of protoplasts (24,25). A typical medium consists of: 

1. Osmotic stabilizers: mannitol and sorbitol have been the 

compounds most frequently used to maintain osmolarity and are 

used separately or in combination. Very little is known 

about the rate of absorption and metabolism of these 

compounds by plant cells, but sorbitol can be utilized by 

cell cultures as a carbon source (10). Glucose could also be 

used as an osmotic stabilizer as well as various combinations 

of mineral salts. 

2. Inorganic nutrients.: mineral salts supply the inorganic 

nutrients required by plant cells. Protoplasts have been 



cultured on a range of mineral salt media varying widely in 

total salt concentration (25). It has proven beneficial to 

increase the calcium concentration of protoplast media by 2-3 

times over that normally used for plant cells (4-6 mM) 

(7,24,60). After cell regeneration and division have been re- 

established, regular plant cell culture media are 

satisfactory. 

3. Carbon sources: Glucose is perhaps the preferred and most 

reliable carbon source. Plant cells grow about equally well 

on glucose and sucrose, however, sucrose alone may not always 

be satisfactory for plant protoplasts (35). Some media 

contain 1-3 mM ribose or (some other pentose) as supplementary 

carbon sources (35,36,45). 

4. Vitamins: The vitamins used for protoplast culture generally 

include only those present in standard plant tissue culture 

media. If protoplasts are to be cultured at very low 

densities in defined media, there may be a requirement for 

additional vitamins (36). 

5. Organic nitrogen supplements: Protoplast media frequently 

contain one or more amino acids. A convenient approach is to 

add casein hydrolysate (36,43,44) which appears to meet the 

needs of protoplasts if inorganic nitrogen is inadequate. 

Additions .of 1-5 mM L-glutamine can improve growth (6,22) and 

coconut milk at 1-5% (v/v) can have beneficial effects on the 

survival and growth of protoplasts (16,36). 
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6. Growth hormones: Auxins and cytokinins are required to induce 

cell division and plant regeneration from protoplasts. Auxins 

which have proven effective include 2,4-dichlorophenoxyacetic 

acid (2,4-D) and napthaleneacetic acid (NAA). Indole-3-acetic 

acid (IAA) has been used less frequently which may relate to 

its instability and possible adverse effect on protoplasts . 

Cytokinins have been shown to be required for protoplast 

division (22,60). The effective cytokinins include kinetin 

(35), benzyl adenine (43 ,60), zeatin (16) and isopentenyl 

adenosine (1). 

Mesophyll Protoplast Culture 

There have been many attempts to culture protoplasts of grasses 

from mesophyll tissue. Early successes in protoplast culture were 

achieved with relative ease with mesophyll protoplasts of Solanaceous 

species. Unfortunately, the success with model genera such as 

Nicotiana and Petunia proved to be of little value for the culture of 

mesophyll protoplasts within the Gramineae (48,60). The most 

exhaustive and persistant efforts were made by Potrykus et al. (48) 

who used tens of thousands of variations in culture media but met with 

little success. A similar and equally disappointing experimental 

method was used by Galston et al. (21) for the culture of protoplasts 

of Avena sativa L.. Those experiences, unfortunate and disappointing 

though they were, highlighted the problems faced in the culture of 

grass mesophyll protoplasts in which variations in culture media do 

not seem to overcome the extreme recalcitrance of mesophyll 

protoplasts within the Gramineae. 
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Occasionally, reports of mesophyll protoplasts undergoing 1 or 2 

cell divisions have appeared in the literature. By all accounts, 

these were isolated and unpredictable events. The sustained cell 

divisions which have been reported from protoplasts isolated from 

young stem tissues of Zea mays (48) were later found not to be 

reproducible. A similar claim of callus formation from shoot apex 

derived protoplasts of Saccharum spp. (20) was also unconvincing and 

required further documentation. To date, there is not a single 

unequivocal demonstration of sustained divisions induced in mesophyll 

protoplasts of any species with the Gramineae (60). 

Protoplasts From Cell Cultures 

In contrast to problems faced in the culture of mesophyll 

protoplasts within the Gramineae, protoplasts isolated from cell 

cultures have been successfully cultured in many grass species. 

Non-Morphogenic Cell Cultures. Protoplasts isolated from callus 

tissues of Qryza sativa (14) and from suspension cultures of Sorghum 

bicolor (5) and Lolium multiflorum (33) have been cultured to obtain 

callus tissues. In most cases, consistently high plating efficiencies 

for grass protoplasts (15-25%) have been obtained. Since the original 

donor cell cultures were not morphogenetically competent, protoplasts 

derived from those cal 1i have also failed to undergo any organ 

formation. 

Morphogenic Cell Cultures. Vasil and Vasil (55,60) have reported 

success in culturing protoplasts derived from morphogenic cell 

suspension cultures of Pennisetum americanum. Similar reports with 

other species within the Gramineae (58-61) led Vasil and his group to 
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believe that protoplasts isolated from morphogenically competent cell 

cultures may be capable of forming callus tissue from which plants 

could be regenerated (55). Since the isolation of protoplasts from 

compact morphogenic callus cultures proved to be difficult and 

inefficient. Vasil and Vasil (56) isolated protoplasts from cell 

suspension cultures of P_;_ americanum which were shown to be 

embryogenic. Subsequent culture of these protoplasts gave rise to 

plants by somatic embryogenesis. Embryogenic cal 1i, somatic embryos 

and plantlets have been obtained from protoplasts isolated from other 

embryogenic cell suspension cultures within the Gramineae (60). These 

results have been repeated several times during subsequent years (60). 

Vasil and Vasil (55) reported that in initial experiments, the plating 

efficiency of protoplasts was only 1-2% and were not suitable for 

genetic manipulation experiments. However, they were able to increase 

these low percentages considerably. Nevertheless, plantlets obtained 

from germinating embryoids have failed to develop into mature plants 

and there was no single instance where the plantlets could be 

transferred to soil. In general, plantlets became brown and necrotic 

after forming several leaves and roots (55). 

The early success in plant regeneration from protoplasts of 

Panicum americanum have been repeated in miliacum (30), maximum 

(39), purpureum (59), 0ryza sativa (13,38,51) and Saccharum 

officinarum (49) with significant improvement in plating efficiency. 

Such advances were made possible by improving the nature of the cell 

suspension cultures which were more finely dispersed and homogenous in 

nature, and were neither heterogenous nor contained any meristemoids. 

Embryogenic cal 1i, somatic embryos and green plantlets were obtained 
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from protoplasts derived from 2 species which were isolated from 

embryogenic cell suspension cultures (39,59,60). As in P. americanum, 

the protoplast-derived plantlets did not continue growth beyond the 

formation of several green leaves and roots, and could not be 

transferred to soil and grown to maturity (58). 

The inability of protoplast-derived plantlets to continue growth 

appears to be related to the physiological and developmental maturity 

of the precociously germinating embryoids (39,60). It should be noted 

that the embryoids from callus and plated cell suspension cultures 

gave rise to plantlets which were grown to maturity. Furthermore, it 

has been shown to be much easier to regenerate plants from embryogenic 

cal 1 i compared to those formed in plated cell suspension cultures 

(55). Therefore, there seems to be less potential for regeneration as 

cultures become more dissociated. Walker et al. (61) reported that a 

diameter of 105 urn represents• the lower limit for callus aggregates 

that are morphogenetically competent in alfalfa (Medicago sativa L.). 

Single cells and smaller aggregates may become competent with further 

divisi on. 

A significant factor in increasing the plating efficiency of 

cultured protoplasts in the above mentioned grasses was the use of 

embryogenic cell suspension cultures which consisted predominantly of 

small, dense embryogenic cells (55). Such cell lines were obtained by 

the manipulation of dilution ratios and the duration of each sub¬ 

culture (7,30,39,40,58,59). 
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CHAPTER VIII 

PROTOPLAST ISOLATION AND CULTURE FROM EMBRY06ENIC SUSPENSION 
CULTURES OF PERENNIAL RYEGRASS 

Introduction 

Crop improvement via somatic hybridization techniques will depend 

on development of efficient and reliable procedures for plant 

regeneration from protoplasts or single cells. In cereals and 

grasses, embryogenic cell suspension cultures have been the only 

proven source of totipotent protoplasts (9,13,14). Plant regeneration 

from protoplasts of embryogenic cultures of Pennisetum americanum (L). 

K. Schum (12), Panicum maximum Jacq. (6), Pennisetum purpureum Schum 

(14), and Saccharum officinarum L. (9) have been reported. 

Regenerants from these species could not be grown to full maturity. 

Attempts to regenerate plants from protoplasts from Panicum me!ianum 

Schum (2) and Lol ium mu! tiflorium L. (3) have been limited to the 

regeneration of albino plants or callus respectively. Recently, 

Yamada et al. (15) and Kyozuka (5) successfully regenerated mature 

plants from protoplasts of various cultivars of rice. Srinivasan and 

Vasil (9) also regenerated viable plants from protoplasts of Sacharum 

officinarum L.. Vasil and Vasil (14) have been successful in producing 

somatic embryos from protoplasts of Zea mays L.. To date, rice 

(5,8,11,15) and sugarcane (9) are the only plants within the Gramineae 

which have been regenerated from protoplasts and grown to full 

maturity. 
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Protoplast isolation and culture are influenced by a large array 

of factors including the particular growth phase of calli or 

suspension cultures, quality and age of cultures, type and 

concentration of isolating enzymes and osmotica, pH, and numerous 

other media amendments. The culture conditions as well as the methods 

used in protoplast isolation can greatly affect the viability of 

protoplasts, the degree of cell division, colony formation, and 

regeneration. 

At present, no information has been reported on protoplast 

isolation or culture from perennial ryegrass (Loliurn prenne L.). 

Isolation, maintenance and plant regeneration from embryogenic callus 

and suspension cultures of perennial ryegrass has been described in 

Chapter II and III. 

The objectives of this study were to develop a protocol for rapid 

protoplast isplation from embryogenic tissues and secondly, to develop 

a culture media which would support cell division. 

Materials and Methods 

Callus Cultures 

Detailed procedures for the formation and culture of embryogenic 

callus of 'Diplomat' perennial ryegrass have previously been described 

in Chapter II. Embryogenic callus cultures used in this study were 

periodically subcultured (every 4-6 weeks) for over 12 months. The 

ability for plant regeneration from such cultures has been reported in 

Chapter II. Cultures have been maintained on a modified Murashige and 

Skoog basal medium (7) supplemented with 4 mg/1 2,4-dichlorophenoxy 

acetic acid (2,4-D), 30 g/1 sucrose, and B-5 vitamins (1) and 8 g/1 
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agar (Carolina Biological Co.)* The optimum regeneration medium 

consists of a hormone-free, half strength MS medium supplemented with1 

0.5 mg/1 fl undone, 0.5 mg/1 benzylamino purine (BA), B-5 vitamins, 30 

g/1 sucrose and 8 g/1 of tissue culture grade agar. 

Cell Suspension Culture 

Approximately 2 g of embryogenic callus tissue were placed in 250 

ml flasks containing 50 ml of a half strength MS basal medium 

supplemented with 6 g/1 2,4-D, B-5 vitamins, and 45 g/1 sucrose. 

Media pH was adjusted to 5.7 prior to autoclaving. Cultures were 

placed on a gyratory shaker at 100 rpm and incubated at 26 °C + 2.0. 

Suspensions were routinely subcultured every 7 days by dispensing 5 ml 

of cell suspension to 45 ml of fresh medium. 

Protoplast Isolation 

Protoplasts were isolated ‘from embryogenic cell suspension 

cultures. Two weeks prior to protoplast isolation, cell suspensions 

were subcultured every 48 h in order to maintain a high degree of cell 

division. After centrifugation, 5 ml of packed cells were placed in 

60x15 mm petri dishes containing 5 ml of protoplast isolation medium 

(Table 12). The enzyme mixture was dissolved in distilled water and 

the pH was adjusted to 5.7 (unless otherwise mentioned). The 

isolation mixture was incubated for 5-6 h without agitation. 

Protoplasts were separated from undigested cells and cell clumps by 

passing them through a 31-um nylon mesh with 5 volumes of protoplast 

culture medium (Table 13, medium A). After centrifugation (80 x g), 

pelleted protoplast were washed 3 times in protoplast culture medium 

by centrifuging at 80 x g for 3 min at each washing. Kao and Michaluk 
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vitamins (KM) (4), dimethyl sulfoxide (DMSO), and the various 

phytohormones used were filtered- sterilized (Nalgene, 0.2 urn pore 

size) prior to addition to culture media. This procedure was found to 

be the most effective method of isolation and was routinely used 

unless otherwise mentioned. The number of protoplasts released was 

estimated using a haemocytometer (American Optical, U.S.A.), and the 

number of protoplasts released per ml of packed cells was calculated. 

Protoplast viability was estimated quantitively after 5-6 h of 

incubation by either exclusion of Evans blue or by staining with 

phenosafranin at a 0.01% final concentration to assess the percentage 

of dead protoplasts. At least 1000 protoplasts were scored in every 

viability determination. 

Calcofluor White stain (Sigma Chemical Co.) (0.1%) dissolved in 

0.3 M mannitol was mixed with an equal volume of protoplast suspension 

to confirm the absence of undigested cell wall material after washing 

or to detect the reformation of cell walls after plating. 

Conditioned Media 

Conditioned media was obtained by centrifuging 50 ml of freely 

suspended embryogenic suspension cells taken at either 2, 4, 6, 8 or 

10 days after subculturing. The supernatant (conditioned media) was 

then filtered through a 0.2 urn sterile disposable syringe. Conditioned 

media taken between 3 and 5 days after subculture (exponential growth 

phase) supported the highest degree of protoplast division and, 

therefore, was used throughout the study. 
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Protoplast Culture 

Protoplasts were cultured by 4 methods. The first was a single 

droplet method with conditioned or nonconditioned media. The 

protoplasts were suspended in 200 ul droplets (5x10^-10^ 

protoplast/ml) and were dispensed onto petri dishes (60x15 mm) and 

sealed with parafilm strips. 

In the second method, 400 ul of protoplast suspensions were 

plated onto a shallow layer of solidified conditioned or 

nonconditioned media in petri dishes (35x10 mm) and then sealed with 

parafilm. 

The third method was a nurse culture technique utilized the 

"Ultraclone growth chambers" (UGC) (Earl-Clay Labrotories, Inc. 890 

Lamont Avenue, Novato, CA 94947 ) which are semi-permeable, and 

flexible semi-solid culture wells. Protoplasts in UGC wells can be 

concentrated into a specific growth area and separated from 

surrounding nurse cells by a semi-permeable barrier. Droplets of 

protoplast suspension (100 ul) were placed inside Ultraclone growth 

chambers which were then placed in petri dishes. The components of the 

suspension culture medium where the nurse cells grew was similar to 

the protoplasts culture medium. Suspension culture media was similar 

to protoplast culture media. Two UGC units were placed in the center 

of each petri plate then parafilm sealed and incubated. 

The fourth method was the Mixed Nurse Method developed by Kyozuka 

et al. (5) where 0.5 ml of protoplast suspension was mixed with an 

equal volume of molten low melting agarose culture medium (2% agarose, 

Bethesda Research Lab) in 35x10 mm plastic petri dishes. Protoplasts 

were embedded at the bottom of the agarose media after solidification 
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to provide a close solid-liquid interface and to facilitate 

observation with an inverted microscope. Agarose containing embedded 

protoplasts was solidified for at least 1 hour before being 

transferred to nurse culture media to ensure that no suspension cells 

would become accidentally embedded in the agarose. Solidified agarose 

cultures were then cut into squares (5 mm x 5 mm) and transferred to 

60 x 15 mm Petri dishes containing cell suspensions. 

In the third and the fourth culturing methods. Nurse cells 

(approximately 50 mg/plate) were taken from suspension cultures 

growing at an exponential growth phase and were washed at least three 

times with a hormone-free protoplast washing/culture medium (Table 13, 

medium A) before corresponding concentrations of hormones were added. 

Ten ml of fresh Nurse culture media were dispensed into Petri plating 

surrounding the UGC wells or the agarose squares. Liquid medium 

containing nurse cells was changed every 8-10 days. Plates were 

incubated on a shaker at very low speed (ca. 10 rpm) in the dark at 26 

°C + 2.0. After two weeks of culture, the osmotic stabilizers in the 

nurse liquid medium (Table 13, medium A) were removed and replaced 

with the final culture media (Table 13, medium B). 

Various concentrations of 2,4-D, BA, and kinetin were evaluated 

for their effect on cell division and colony formation. 

Results and Discussion 

Protoplast Isolation 

High protoplast yield was observed after 5-6 h using of 

incubation in the isolation solution. After filtering and washing, 

clean protoplast suspensions (10^-5xl0^/ml) devoid of contaminating 
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cells were obtained. Isolated protoplasts were, for the most part, 

densely cytopl asmi c ,• wi th very small vacuoles, and a high starch 

content and varied in size between 10-30 um (Fig. 17. plate A). 

The yield of protoplasts was influenced by the growth conditions 

of embryogenic suspension cells and period of subculturing. The 

amount of protoplasts isolated from cell suspensions subcultured every 

48 hr was greater with a higher percentage of viability when compared 

with suspensions which were subcultured every 7 days. The age of 

suspension cultures had a great effect on the size of the protoplasts 

with these cells yielding large protoplasts (20-40 um) which were 

more vacuolated and contained fewer starch granules. In general, 

larger protoplasts took a longer time, to divide or were unable to 

enter division. In contrast, protoplasts isol a ted from cells 

subcultured every 48 h were highly cytoplasmic, less vacuolated, 

smaller (12-25 um) and divided more readily. The addition of 

pectolyase Y-23 to the isolation mixture was essential for obtaining 

a great number of viable protoplasts and could not be replaced by 

macerase, pectinase, Rhozyme-HP-150, or their various combinations. 

There was also a higher protoplast yields from embryogenic suspension 

cells compared to embryogenic callus. 

Agitation during incubation was necessary to obtain high 

protoplast yields from callus cultures but was not required when 

embryogenic suspensions were used. Isolation without agitation 

resulted in less protoplast damage and greatly reduced the extent of 

undigsted cells, partially digested, or cellular debris, thus making 

the washing sequence much more efficient (Fig. 18). The viability and 
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yield of protoplasts was greatly affected by the type and 

concentrations of enzymes, osmotica, and inorganic salts. Among the 

numerous cellulases tested, cellulysin at 1.25% (w/v) in combination 

with driselase 1.25% (w/v), and (w/v) cellulase type VII (Penicill ium 

funiculosum) 3.5% (w/v) incubation yielded the best results (Fig. 

12). 

The age of the suspension culture and growth phase had a 

substantial effect on the yield, viability, and degree of damage 

during the washing of protoplasts. There was a rapid increase in the 

number of suspension cells in culture every 48 h as expressed by 

packed cell volume (Fig. 14). Cell walls in these cultures were 

comparatively thin, and the isolation of protoplasts from such cells 

was more efficient, showing a higher frequency of protoplasts with 

resumed division (Fig. 17, 19). 

The ratio of packed suspension cell volume and enzyme solution 

volume also affected protoplast yield and their ability to withstand 

changes in osmotic pressure. The greatest protoplast populations were 

obtained when 0.2 ml of packed cells were used with 1.0 ml of 

isolation mixture (Table 14). The rest of the parameters which have 

been evaluated in the course of optimizing the isolation solution for 

embryogenic cell suspension and embryogenic callus tissues are shown 

in appendices D and 6 respectively. 

Protoplast Culture 

The use of the mixed nurse method (5) resulted in the increasing 

the percentage of protoplasts reforming cell walls, budding, and 

resuming cell division. Such method has provided a higher percentage 
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of protoplasts with resumed cell division than the other methods 

tested (data not presented). The presence of nurse cells in the 

bathing medium around agarose squares was more effective than the UGC- 

well method. The UGC method was, however, more effective compared to 

the liquid droplet method or plating protoplasts on thin layers of 

conditioned or non conditioned media. UGC wells have an important 

advantage over the mixed nurse method, however, in that nurse cells 

can be changed without disturbing protoplast cultures. 

Cell division was noticed as early as 24 hr after protoplasts 

were embedded in 2% agarose using the mixed nurse cell method compared 

to 2-3 days for other methods tested. After 2-3 weeks of culture, 

several visually apparent colonies were formed in mixed nurse cultures 

compared to 3-4 weeks for the UGC method was used. Nurse cells were 

kept in contact with protoplasts for 14 days with the mixed nurse 

method and about 20 days with the UGC method. An experiment is 

currently in a progress to test the relationship between the 

concentration and time exposure of nurse cells and the efficiency of 

cell division. 

The effects of various concentrations of 2,4-D alone and in 

combination with 0.5 mg/1 BA, zeatin and kinetin were investigated. 

The effect of BA in combination with 2,4-D was more effective in 

increasing the percentage of protoplasts forming cell walls, budding, 

and dividing (Table 16). In contrast, 2,4-D alone had no effect at 

all concentrations tested and zeatin were kinetin were less effective 

in inducing cell division than BA. The percentage of protoplasts 

reforming cell walls and dividing decreased steadily with levels of 

2,4-D greater than 0.25 mg/1. The resynthesis of cell walls and 
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division were evident among a large percentage of protoplasts 24-48 h 
< 

after plating (Table 15). The pecentage of protoplasts that 

eventually regenerated into visually apparent colonies has, however, 

remained low (around 3%). 

Efforts continue to center upon the enhancement of colony 

formation and growth, with the ultimate goal of plant regeneration. 



Table 12. Protoplast Isolation Mixture 

1.25 % (w/v) cellulysine (Sigma Chemical Co.) 

1.25 % (w/v) Driselase (Kyowa Harko Hogyo Co., 
Tokyo, Japan) 

0.025 % (w/v) Pectolyase (Sigma Chemical Co.) 

3.5 % Cellulase type VII (Sigma Chemical Co.) 

0.3 M Mannitol 

2.0 % (w/v) Glycine 

0.3 mM MES(2[N-Morpholino)ethane sulfonic acid) 

3.0% (w/v) Sodium Thiosulfate 
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Table 13. Composition of washing and culture medium required for the 
culture of perennial ryegrass protoplasts. 

Ingredient First 2 weeks 
Medium A 

Final medium 
Medium B 

MS basal salt 1/2 strength 1/2 strength 
Vitamins KM (4) B-5 (1) 

Sugars and sugar alcohols (g/1): 
Mannose 0.25 
Fructose 0.25 
Ribose 0.25 
Xylose 0.25 
Rhamnose 0.25 
Cel 1ibiose 0.25 
G1ucose 36.024 
Sucrose 20.0 30 
Mannitol 36.445 

Stabilizers (g/1): 
KCl 18.64 
MgSOo 9.19 
CaCl 2 15.41 
Sodium thiosulfate 15.0 
MES(buffer) 
(2[N-Morpholino) 
ethanesulfonic acid) 

2.79 

Organic nitrogen (g/1): 
Casein hydrolysate 0.2 3 
Glycine 10.0 

s 

Growth regulator (mg/1): 
2,4-D 0.25 6 
BA 0.5 

Agarose 20.0 g/1 
DMSO 
(Dimethyl sulfoxide) 

2% 

Coconut water 5% 

aVarious levels of 2,4-D, NAA, BA, zeatin, and kinetin were 
incorporated to this medium, pH 5.7 (KOH). All vitamins, DMSO and 
growth regulators were filtered sterilized. 
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Table 14. The effect of packed cell volume/enzyme mixture ratio on the 
efficiency of protoplasts released and degree of damage from 
perennial ryegrass embryogenic suspension cells after 6 h 
of incubation without agitation. 

Packed cell volume 
(PCV/ ml) 

Protoplast yield per mla 

0.2 Ix7xl05 

0.4 1.4xl06 

0.6 1.7xl06 

0.8 2.2x10® 

1.0 2.2xl06 

1.2 1.4xl06 

aDegree of protoplast damage estimated visually at the end of 
incubation period was negligible. 
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Table 15. The combined effect of 2,4-D with kinetin, zeatin, or BA on 
cell wall formation, budding, and division from perennial 
ryegrass cv. Diplomat protoplasts using the mixed nurse 
method. Data were collected 21 days after plating and 
represent the mean of 3 replications. 

2,4-D 
(mg/1) 

Cytokinins 
(0.5 mg/1) 

% Cell wall 
formation 

% budding % division 

0.1 Kinetin 59 + 10a 44 + 4 10 + '2 
Zeatin 55 + 5 47 + 9 10 + 4 
BA 80 + 17 57 + 15 25 + 6 

0.25 Kinetin 72 + 4 49 + 2 12 + 2 
Zeatin 61 + 6 52 + 6 10 + 2 
BA 93 + 16 64 + 4 29 + 5 

0.5 Kinetin 63 + 9 46 + 7 8 + 2 
Zeatin 55 + 5 39 + 10 9 + 3 
BA 82 + 11 52 + 9 19 + 4 

1.0 Kinetin 51 + 6 31 + 4 4 + 1 
Zeatin 39 + 4 18 + 2 5 + 1 
BA 67 + 10 27 + 6 10 + 2 

2.0 Kinetin 44 + 6 16 + 3 4 + 1 
Zeatin 22 + 2 11 + 2 3 + 1 
BA 52 + 12 20 + 4 5 + 2 

3.0 Kinetin 32 + 3 11 + 2 4 + 1 
Zeatin 20 + 2 . 6 + 1 3 + 1 
BA 45 + 3 16 + 3 3 + 1 

4.0 Kinetin 21 + 3 8 + 4 3 + 1 
Zeatin 17 + 4 13 + 2 3 + 1 
BA 41 + 6 14 + 3 3 + 1 

5.0 Kinetin 17 + 3 6 + 1 2 + o 
Zeatin 17 + 3 13 + 2 2 + 0 
BA 29 + 7 14 + 4 2 + 0 

aMean + standard error. 
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Table 16. The effect of protoplast culture methods on the percent of 
protoplasts with cell division and colony formation. Data 
represents the average of 3 replications. Data were 
collected 21 days after plating. Microcalli ranged in size 
from 0.1 to 0.5 mm in diameter. 

Culture method % Protoplasts dividing 
(Visual estimate) 

% Colony formation 
(Visual estimate) 

Mixed nurse method 16-18 2-3 

Ultraclone growth chamber 2-5 0.5 

Liquid droplet: 

In conditioned medium 1 _z 

In nonconditioned medium < 0.5 - 

Liquid thin layer: - 

In conditioned medium 1 - 

In nonconditioned medium < 0.5 - 

zThe degree of colony formation was negligible. 
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Figure 17. (A) Protoplasts isolated from embryogenic suspension 
cultures of oerennial ryegrass. (B) Cultural 
protoplasts undergoing first divisions. 



Figure 13. The effect of agitation during isolation on 
orotoplast integrity. (A) No agitation, 
numerous intact protoplasts. (B) With 
agitation, a high degree of damage. 
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Figure 19. (C) Protoplast division and development of cell 
clusters during Drotoplast culture. X 200. 
(D) Formation of micro-calli from nrotoplasts 
of oerennial ryegrass. X 100. 
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CHAPTER IX 

PROTOPLAST ISOLATION AND CULTURE FROM EMBRYOGENIC SUSPENSION 
CULTURES OF RED FESCUE 

Introduction 

Crop improvement certain various somatic hybridization and 

genetic transformation techniques cannot be realized until single 

cells or protoplasts can be successfully cultured and regenerated into 

viable plants. Many important advances have been reported for 

protoplast isolation and culture within various families, particularly 

within the Solanaceae. For many dicot species, leaf mesophyll tissue 

is the primary source for protoplast. In contrast, protoplasts 

isolated from mesophyll tissue of monocots species cannot, as yet, be 

successfully cultured (11). The use of non-embryogenic grass and 

cereal cell cultures as sources for protoplasts have resulted only in 

the formation of non-morphogenic callus tissue which has been 

incapable of plant regeneration (1,10,11). Embryogenic cell 

suspension cultures have been the only proven source of totipotent 

protoplasts resulting in plant regeneration (8,12,13,15,16,17). 

At present, no information has been reported on protoplast 

isolation and culture from red fescue (Festuca rubra L.). Induction, 

maintenance and plant regeneration from embryogenic callus and 

suspension cultures of red fescue has been described by Torello et al. 

(13) and in Chapter VI respectively. The extent and duration of 

embryogenesis and plant regeneration from this turfgrass species is 
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also known to be prolific for long culture periods (14). Therefore, 

the objectives of this study were to develop protocols for the rapid 

isolation of viable protoplasts from embryogenic suspension cultures 

and to develop protoplast culture conditions which would support cell 

divison. 

Materials and Methods 

Callus Induction and Maintenence 

Embryogenic callus cultures were initiated from mature caryopses 

of "Dawson" red fescue and maintained on a medium consisting of a 1/2 

strength Murashige and Skoog basal media and vitamins (MS) (9) 

supplemented with 4 mg/1 2,4-D, 30 g/1 sucrose and 8 g/1 tissue 

culture agar (Carolina Biological Co.). Callus has been subcultured 

every 6-8 weeks for the previous 5 years. 

Induction and Maintenance of Suspension Cultures 

Embryogenic suspension cultures of red fescue were obtained by 

placing 2 g of callus tissue into a liquid medium consisting of 1/2 MS 

salts supplemented with 4 mg/1 2,4-D, B-5 vitamins (2), 3 g/1 casein 

hydrolysate, and 45 g/1 sucrose. Suspension cultures were placed on a 

gyratory shaker at 100 rpm and incubated at 26 °C + 2.0. All cultures 

were subcultured every 7 days by adding 10 ml of suspension culture 

into 40 ml of fresh medium in 250 ml Erlenmyer flasks. Plant 

regeneration from embryogenic suspension cultures of red fescue has 

been reported in Chapter VI. 
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Protoplast Isolation 

Subculture frequency for suspension cultures was increased to 2- 

day intervals to enhance the rate of cell division prior to protoplast 

isolation. Cells and cell clusters were harvested by centrifuging 50 

ml of the suspension culture at 80 x g, removing the supernatant and 

immersing the pellet in 5 ml of the enzyme isolation mixture (Table 

12). Protoplast isolation mixtures were incubated at 26 °C + 2.0 

without agitation for 4 h. Released protoplasts were separated from 

undigested cells and debris by filtration through a 31-um pore size 

nylon mesh followed by centrifugation for 3 min at 80 x g. The enzyme 

solution was decanted off and the pellet was washed and resuspended 

with 5 ml of solution (A) (Table 17) and centrifuged again as 

described above. The procedures were repeated with washing solution B 

and solution C. Protoplast numbers were estimated with a 

hemocytometer. Protoplast viability was determined with Evans Blue as 

well as phenosafranin staining (18). Calcofluor white was used to 

determine if all cell wall material had been removed and to assess the 

progress of cell wall formation during culture. 

Protoplast Culture 

Protoplast plating (culture) techniques evaluated were the mixed 

nurse cell method (7), Ultraclone Growth Chambers (UCG), liquid media 

droplet and liquid media thin layer with or without conditioned media. 

Agarose embedded protoplasts as well as UGC wells were immersed in 

60x15 mm petri dishes containing 10 ml of suspension cultures 

supplemented with media components described for the protoplast 

culture medium. The effects of various concentrations of 2,4-D alone 
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and in combination with 0.5 mg/1 BA, zeatin or kinetin were also 

investigated. Detailed descriptions of these culture methods have been 

described in previous chapter. The period between plating of 

protoplasts and the gradual reduction of osmotic stabilizers was 

approximately 3 weeks. Efforts to decrease the levels of these 

compounds earlier than 3 weeks have failed due to the great sensivity 

of protoplasts to change in osmotic pressure. Therefore, protoplasts 

were initially cultured on medium A (Table 18) for 3 weeks prior to 

being transferred to the final culture medium (Table 18, medium B). 

All media components were filter sterilized (0.2 urn pore size) and 

adjusted to a pH of 5.7. 

Conditioned media was taken between 2-3 days after subculture of 

suspension (exponential growth phase). Nurse cells were taken from 

the same growth phase. The concentration of osmotic stabilizers were 

similar to protoplast culture media for conditioned media and nurse 

cells cultures. 

Results and Discussion 

Protoplast Isolation 

Large numbers of protoplasts (exceeding 5 x 10^ protoplasts/ml) 

were isolated from embryogenic suspension cultures. The viability of 

isolated protoplasts always exceeded 95%. These results were obtained 

without agitation during isolation which led to considerably less 

protoplast damage and debris accumulation (Fig 20, plate A). 

The growth phase of embryogenic suspension cultures used in 

isolation affected protoplast yield (Table 19). Protoplasts were more 

easily isolated from cultures subcultured every 2 days compared to 
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those subcultured at 7-day intervals. In general, 2-day intervals 

yielded smaller cells having thinner cell walls and a higher rate of 

division. Furthermore, protoplasts isolated from cultures having 7- 

day subculture intervals showed a greater percentage of lysis during 

protoplast washing. 

The ratio of harvested suspension cells [packed cell volume 

(PCV)] to enzyme solution volume also affected protoplast yield. The 

maximum number of viable protoplasts were obtained when a 1/1 ratio 

(V/V) was. used. The enzyme isolation solution was, therefore, 

considered highly efficient since ratios of 1:10 or greater are 

usually necessary for most grass/cereal cultures (4,5,15,16,17). 

Higher volumes of this isolation mixture proved to be detrimental in 

regard to protoplast yield, viability and increased quantities of 

cellular debris which was difficult to remove. 

Agitation during isolation had a negative effect on the overall 

number and viability of protoplasts as well as increasing the extent 

of hard to remove cellular debris. Longer isolation periods and 

higher speeds of agitation resulted in higher levels of damage (Table 

19). The rest of the parameters which have evaluated in the course of 

optimizing the isolation mixture from embryogenic cell suspension and 

embryogenic callus tissues are shown in appendices E and F 

respectively. 

Protoplast Culture 

Protoplasts were initially cultured in a medium where the osmotic 

pressure was maintained relatively high with inorganic salts (solution 

A in Table 17) plus other compounds (Table (18) with the osmoticum and 
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stabilizers omitted). In this media, protoplasts remained intact 

without any apparent changes' for about 3-4 days before they began to 

degenerate. Therefore, to induce cell wall formation and cell 

division, protoplasts were transferred gradually, in a series of 

washing steps, through a reduction of salt concentration while 

increasing the concentration of glucose and sucrose (Table 17). After 

washing through these three media, protoplasts were cultured for 3 

weeks in medium A transferred to medium B (Table 18). 

In preliminary attempts, protoplasts were cultured in liquid 

micro-droplets or liquid thin layers. After a 4 week incubation 

period, a few small micro-colonies (100-300 urn diameter) of callus 

were formed which did not proceed beyond that stage of growth for both 

culture methods. Unsuccessful attempts were made to enhance the 

percentage of protoplasts with resumed cell division and colony 

formation by evaluating various concentrations of amino acids, growth 

regulators, carbohydrates and numerous other compounds. In general, 

culture of protoplasts in a single droplet resulted in a higher 

frequency of cell division compared to plating protoplasts in a 

higher volume of liquid media plated on thin layer solid medium. 

These results may be attributed to more rapid media conditioning or 

less growth factor dispersal and a greater capacity for oxygen 

replenishment in the micro-drop method. 

Increased cell wall formation and division frequency were 

observed for both the liquid drop and thin layer method when condition 

media was utilized (Table 20). The particular growth phase of the 

suspensions culture from which conditioned medium was taken had a 

significant effect on the frequency of colony formation. The best 
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results were obtained when conditioned medium was taken from cell 

suspension 2-3 days after subculturing. Cell division and micro¬ 

colony formation was further increased by embedding protoplasts in an 

agarose medium or with the use of U6C wells. The mixed nurse method 

included the use of nurse cells (suspension media) and have been 

previously described. Protoplasts of red fescue were very sensitive 

to the reduction in the levels of various osmotica and stabilizers 

present in the protoplast culture medium and the surrounding 

suspension. After 3 weeks of culture, protoplasts were moved to 

standard suspension culture media. The percentage of protoplasts with 

resumed cell divsion and colony formation was greater with protoplast 

embedded in agarose compared to UGC inserts (Table 20). These 

differences may be attributed to the inability of certain metabolites 

from the nurse culture to cross through the UGC wall and/or to the 

presence of unknown or toxic substances associated with these culture 

wells. Increased plating efficiencies for rice were also reported by 

Kyozuka et al. (7) using the agarose-mixed nurse culture method. 

The addition of 0.5 mg/1 BA was found to be essential for colony 

formation (Table 21). Figure 20, plate B shows protoplasts with 

resumed cell division 48 hr after plating. The growth of protoplasts 

were negligible when 2,4-D was used alone or in combination with 

zeatin or kinetin. The percentage of protoplasts reforming cell walls 

and dividing decreased steadily with increasing levels of 2,4-D 

greater than 0.1 mg/1. 

The addition of DMSO to protoplast culture media for all plating 

methods, resulted in in shortening of the time\interval between 
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plating and cell divsion and increased the percentage of protoplasts 

with resumed cell division (Table 20). The effects of DMSO were also 

reported to enhance the frequency of cell divison for Saccharum 

officinarum L. (13) and Hibiscus rosa-sinensis L. (3) protoplasts. 

Hahne and Hoffmann (4) attributed the enhancement of cell division of 

protoplasts of Hibiscus rosa-sinensis to the effects of DMSO which 

supported the reinstallation of a net of cortical microtubules in the 

protoplast which was considered critical for inducing consecutive 

divisions. Similar results were obtained in this research where the 

addition of DMSO was very essential for resuming cell division and 

obtaining colony formation. However, it is important to note that 

DMSO had no effect if applied to protoplasts isolated from suspension 

cultures at the end of the exponential phase growth (7 days after 

subculture) (Unpublished data). 

The quality and particular growth phase of suspension cultures 

from which protoplasts were isolated had a great effect on the number, 

viability and culturing success indicated in this study. It has been 

apparent that young, fast growing embryogenic suspension cultures are 

necessary for a reasonably high degree of cell division and micro- 

calli production from red fescue protoplasts. Work is currently 

underway to culture microcalli as suspension cultures for ultimate 

goals of embryogenesis and plant regeneration. 
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Table 17. The sequences of washing steps used to transfer Festuca 
rubra L. protoplasts from high inorganic solutions to the 
appropriate culture medium. 

Washing solutions 

Ingredients 
A B C 

Mannitol 50 mM 0.2 M 

Sorbitol 50 mM 

Sucrose 15 mM 58 mM 

G1ucose 0.2 M 

KCl 0.3 M 0.2 M 0.1 M 

CaC 1 £ 30 mM 30 mM 30 mM 

MgS04 30 mM 30 mM 30 mM 

Sodium thiosulfate 120 mM 120 mM 120 mM 

MES (buffer) 3 mM 3 mM 3 mM 

pH 5.7 5.7 5.7 
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Table 18. Composition of washing and culture medium required for the 
culture of red fescue protoplasts. 

Ingredient First 3 weeks 
(medium A) 

Final medium 
(medium B) 

MS basal salt 1/2 strength 1/2 strength 
Vitamins KM (6) B-5 (2) 

Sugars and sugar alcohols (g/1) 
Mannose 0.25 
Fructose 0.25 
Ribose 0.25 
Xylose 0.25 
Rhamnose 0.25 
Cellibiose 0.25 
G1ucose 36.024 
Sucrose 20.0 30 
Mannitol 36.445 

Stabilizers (g/1) 
KCl 18.64 - 

MgSo4 9.19 
CaCl2 15.41 
Sodium thiosulfate 15.0 
MES(buffer) 
(2[N-Morpholino) 
ethanesulfonic acid ) 

2.79 

Organic nitrogen (g/1) 
Casein hydrolysate 0.2 3 
Glycine 10.0 

Growth regulator (mg/1) 
2,4-D 0.1 4 
BA 0.5 

Agarose 10.0 g/1 
DMSO 
(Dimethyl sulfoxide) 

2% 

Coconut water 5% 

aVarious levels of 2,4-D, NAA, BA, zeatin, and kinetin were 
incorporated to this medium, pH 5.7(KOH). All vitamins, DMSO and 
growth regulators were filtered sterilized. 
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Table 19. The effect of subculturing period on the efficiency of 
protoplasts released and degree of damage from red fescue 
embryogenic suspension cells after 6 h of incubation with no 
agitation 26 °C + 2.0. 

Subculturing 
period (days) 

Incubation period 
(h) 

Protoplasts 
yield per ml 

Degree of damage 

Shakinq (lOOrpm) 

2 1 6x10® +++a 
3 4x10® ++++ 
6 5x10® ++++ 
9 3x10® ++++ 
12 8xl03 ++++ 

7 1 3x10® +++ 
3 1x10® ++++ 
6 3x10® ++++ 
9 3xl03 ++++ 
12 lxlO3 ++++ 

No shakinq 

2 1 6x10® _ 

3 1x10® - 

6 3x10® - 

9 5x10® - 

12 8x10® - 

7 1 2x10® — 

3 6x10® - 

6 1x10® - 

9 3x10® - 

12 4x10® — 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 20. The effect of protoplast culture methods on percent division 
and colony. Data represents the average of 3 replications. 
Data were collected 21 days after plating. Microcalli 
ranged in size from 0.1 to 0.5 mm in diameter. 

Culture method % Protoplasts dividing 
(Visual estimate) 

+DMS0 -DMSO3 

% Colony 
(Visual 

+DMS0 

formation 
estimate) 

-DMSO 

Mixed nurse method 10 3 1 < 0.25 

Ultraclone growth chamber 2 0.5 _b 
- 

Liquid droplet: 

In conditioned medium 2 - - 

In nonconditioned medium - - - 

Liquid thin layer: 

In conditioned medium >0.25 - - - 

In nonconditioned medium - - - 

aThe same protoplast culture medium shown in Table 18 except DMSO was 
omitted. 

^The degree of cell division colony formation was negligible. 
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Table 21. The combined effect of 2,4-D with kinetin, zeatin, or BA on 
cell wall formation, budding, and division from red fescue 
cv. Dawson protoplasts using the mixed nurse method. Data 
represent the average of three replications. Data were 
taken 21 days after plating. 

2,4-D 
(mg/1) 

Cytokinins 
(0.5 mg/1) 

% Cell wall 
formation 

% budding % division 

0.1 Kinetin 10 + 2a 2 + 0.0 . 

Zeatin 6 + 1 2 + 0.0 - 

BA 75 + 9 49 + 6 10 + 1.0 

0.25 Kinetin 13 + 2 4 + 1 1 + 1.0 
Zeatin 8 + 2 3 + 2 - 

BA 63 + 8 33 + 3 5 + 2 

0.5 Kinetin 4 + 1 1 + 0.0 — 

Zeatin 4 + 0.0 1 + 0.0 - 

BA 55 + 9 29 + 5 5 + 3 

1.0 Kinetin 4 + 1 mm 

Zeatin 3 + 1 - - 

BA 44 + 4 27 + 3 3 + 1 

2.0 Kinetin — • 

Zeatin 2 + 0.0 - - 

BA 30 + 3 8 + 2 1 + 0.0 

CO
 

• o
 

Kinetin mm 

Zeatin 2 + 0.5 - - 

BA 27 + 3 3 + 0.0 - 

4.0 Kinetin mm mm — 

Zeatin 1 + 0.0 - - 

BA 20 + 3 1 + 0.0 - 

5.0 Kinetin — — 

Zeatin 1 + 0.0 - - 

BA 20 + .3 1 + 

o
 • 

o
 • 

- aMean + standard error. 
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Figure 20. (A) Protoplasts isolated from embryogenic 
suspension cultures of red fescue. (B) 
Cultural protoplasts undergoing first 
divisions. 
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Figure 21. (A) Protoplast division and development of cell clusters 
during protoplast culture. X 209. (B) Formation of 
micro-calli from protoplasts of red fescue. X 100. 



CHAPTER X 

CONCLUSION 

Stable embryogenic cell suspension cultures are difficult to 

establish. Availability of highly embryogenic callus is critical for 

the establishment of suspension cultures. Embryogenic callus of both 

red fescue and perennial ryegrass were obtained and it was observed 

that calli derived from crown tissue were more embryogenic than when 

mature caryopses were used as explants. Plant regeneration was easily 

achieved in red fescue by transferring to a hormone free medium. 

Although the embryogenic potential in perennial ryegrass was high, 

plant regeneration was hard to achieve. These results indicate that 

there is most likely a difference between embryo induction and embryo 

germination mechanisms and is probably genotype dependent. The 

failure of perennial ryegrass somatic embryos to germinate may also be 

attributed to the presence of some inhibitors which have to be reduced 

or eliminated prior to successful regeneration. The addition of some 

other substances used to enhance plant regeneration, such as activated 

charcoal, casien hydrolysate, sucrose, proline and others, have not 

improved embryo germination in perennial ryegrass. Only the addition 

of either cefotaxime or fluridone in combination with BA in the 

regeneration media have enhanced plant regeneration. The mode of 

action of these substances is not yet known, but it may be related to 

negating the effect of inhibitors. 

145 
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Somatic embryogenesis has been shown to be a reliable and 

efficient method for the regeneration of plants from forage grasses. 

Therefore, protoplasts isolated from embryogenic tissue would be more 

likely to retain a greater morphogenetic capacity. The embryogenic 

capacity of the callus used in this study showed a progressive decline 

in its morphogenic capacity through repeated subcultures. Addition of 

activated charcoal (AC) resulted in an increase in the percentage of 

plants regenerated per callus. The favorable effect of AC was 

attributed to its ability to adsorb various inhibitors such as ABA, 

phenolics, or other compounds which might be present in culture, 

especially if cultures were left for long periods of time without 

transferring to fresh medium. The pretreatment of cultures with 

elevated sucrose levels dramatically re-instated high levels of 

embryogenesis and plant regeneration in long-term cultures of red 

fescue. These effects have been attributed to nutritional rather than 

osmotic factors as evidenced by the decrease in growth and appearance 

of necrotic tissue when mannitol was used at similar levels. 

This research has also provided alternative methodology for 

separating embryogenic cell (E) types from non-embryogenic cell (NE) 

types in suspension cultures. The first method was a percoll 

discontinuous gradient which was based on the difference in density 

between E and NE cell types. The second method was based on the 

difference in size between E and NE cell types and entailed filtration 

through 31-um nylon mesh. Cells collected from both of these methods 

have resulted in an almost total elimination of NE cells. Both 

separation techniques have proven essential in the production of E 
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cell clusters and colonies. The addition of a wide range of compounds 

which have been reported to enhance E cell development have resulted 

in either enhancing or suppressing both E and NE cells. 

The isolation and culture of protoplasts from embryogenic 

• suspension cultures of both species has not been reported. Normally, 

an isolation mixture is very specific and limited to individual 

species. Results of this work provides the first isolation mixture 

which has proven effective for protoplast isolation from cell cultures 

of different species (red fescue and perennial ryegrass). 

Furthermore, agitation of isolation mixtures is a common practice to 

enhance the release of protoplasts. With the isolation mixture 

developed, agitation was not required for the isolation of high 

populations of viable protoplasts. During agitation, large amounts of 

protoplasts are released but a high percentage retain cell wall 

fragments. Moreover, agitation always results in high levels of cell 

debris which is very hard to eliminate during the protoplast washing 

sequence and, as such, overall numbers and viability are decreased. 

Although a callus or suspension culture can undergo rapid cell 

division, the same cells usually do not divide after their cell walls 

are removed. It seems that cells lose their ability to undergo 

mitosis when their protoplasts are isolated. As yet, no explanation 

for this phenomenon is known, but some possibilities may include the 

following: 

1. The enzyme preparations used to remove the cell walls may 

contain impurities and enzymatic activities that may damage 

cells. 
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2. Changes in the cell shape are known to disorganize arrays of 

cortical microtubles and the cells are then unable to repair 

the disrupted microtubles. 

3. Enzymatic digestion of the cell walls may liberate molecules 

of low molecular weight that are take up and trigger the 

reaction in protoplasts such as depolymerization of 

microtubles. 

The above-mentioned factors might be dependent on the genotype of 

the explant. The best example is the requirement for the inclusion of 

dimethyl sulfoxide (DMSO) to stimulate cell division of protoplasts of 

red fescue while DMSO was not as essential for perennial ryegrasses. 

The effect of DMSO might be attributed to its direct effect on the 

properties of plasma membranes including lipid composition, fluidity 

and permeability of ions. 

The results presented in this dissertation provide the first 

steps toward the improvement of these species through the use of 

somatic hybridization, microinjection, electroporation, and various 

DNA uptake techniques. More work must, however, be directed towards 

the regeneration of viable plants from protoplasts prior to the use of 

these methods. 
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Table 22. The source and the concentration of the compounds which have 
been tested to enhance the percentage of embryogenic cell 
(E) type over the nonembryogenic cell (NE) type. All of 
these compounds have not resulted in selective enhancement 
of the E cell types over N cell types when tested alone or 
in various combination. 

Compound Level tested 

Phytohormones: 

NAA 0.1,0.5,1.0,2.0,3.0,4.0,5.0 mg/1 

2,4-D 1,2,3,4,5,6,7,8,9,10 mg/1 

BA 0.1,0.3,0.5 mg/1 

Kinetin 0.1,0.3,0.5 mg/1 

Zeatin 0.1,0.3,0.5 mg/1 

ABA 10,20 ,30,40,60,80,100,200,300,400-800 ug/1 

Amino acids: 

Alan in 25,50,75,100 mM 

Arginine 25,50,75,100 mM 

Glycine 25,50,75,100 mM 

G1utamine 25,50,75,100 mM 

Lysine 25,50,75,100 mM 

Proline 25,50,75,100 mM 

Serine 25,50,75,100 mM 

Tryptophane 25,50,75,100 mM 

Sugars: 

iu ,^u ,ou ,4U ,t>0,60,70 g/1 

Glucose 10,20,30,40,50,60,70 g/1 

Galactose 10,20,30,40,50,60,70 g/1 

Fructose 10,20,30,40,50,60,70 g/1 
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Table 22. (Continued) 

Sugar alcohol: 

Sorbitol 

Mannitol 

Organic compounds: 

CH 

YE 

CW 

25,50,75,100,200,300-1000 mM 

25,50,75,100,200,300-1000 mM 

0.5,1.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0 g/1 

0.5,1.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0 

5,10,15,20,25 ml/1 
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Determination of The Doubling Time For 
Embryogenic Suspension Cultures 

Ten ml of suspension cells were dispensed into each of the 21 

Erlenmyer flasks (250 ml) containing 40 ml of fresh medium. The PCV 

was determined every 3 days. Fast-growing freely-suspended cells used 

in the above mentioned studies, were taken at the exponential phase 

and were used in all experiments. All media used in the above 

studies contained 6 'mg/1 2,4-D. The pH of all media was adjusted to 

5.7 prior to autoclaving. Every experiment was repeated at least 

three times and with three flasks for every treatment. Every culture 

was placed on a gyratory shaker at 100 rpm and 26 °C + 2.0. 
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Plating Techinques 

Embryogenic suspension cells used in the following studies were 

taken from culture growing at the exponential phase. Culture were 

filtered through a 105-um nylon mesh and cells were concentrated to 

the desired density by centrifuging for 10 min at 80 x g before 

plating. Every treatment was represented with 3 plates and every 

plating method was repeated at least three times. Petri dishes were 

sealed with a parafilm strips and were placed in the dark at 26-28 °C 

+ 2.0. 

Muliple Drop Culture Techniques 

Five drops (100-ul) of each treatment under investigation were 

placed in the middle of 100x15 mm plastic petri dish with Eppendroff 

digital micropipet. Similar volumes of embryogenic cells (ca. 10^) 

were added to the drop of the corresponding treatment in the Petri 

dish. 

Cell Culture in Liquid Medium 

The relationship between cell density and the frequency of cell 

division and clump formation was evaluated by the addition of 5 to 25 

ml of suspension cells and bringing the combination up to 50 ml. 

Cultures were placed on a gyratory shakers at 100 rpm and at 26 °C + 

2.0. Packed cell volume was measured at 3-day intervals after 

subculturing. 

Cell Plating in a Stationary Liquid Medium 

Five ml of solidified medium with 8 g/1 agar was poured into 

60xl5-mm Falcon Petri dish, and 1 ml of suspension cells (106) were 

placed on the top of the agar. 
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Cell Plating in Agar 

200 ul of unsolidified medium of each treatment was poured in 

60xl5-mm Falcon Petri dish. Another 200 ml of freely-suspended cells 

(10^/ml) was mixed with the warm agar. 

Table 23. Effect of plating methods on cell division in suspension 
cultures, expressed as an increase in packed cell volume 
determined 15 days after plating. All media contained 2 mg/1 
2,4-D. 

Plating method: Packed cell volume (PCV) 

Multiple drop culture technique 0.25 

Cell culture in liquid medium 5.5 

Cell plating in thin stationary z 
liquid medium 

Cell plating in agar z 

zNo colony formation was noticed. 
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Table 24. The effect of mellibiose on the efficiency of protoplast 
released and degree of damage from perennial ryegrass 
embryogenic suspension cells after 6 h of incubation with no 
agitation at 26 °C + 2.0. 

Mel 1ibiose Protoplast Degree of 
concentration yield per damage3 

(*) ml 

0.3 2.2xl06 + 

0.5 2.9xl06 + 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 25. The effect of calcium chloride on the efficiency of 
protoplast released and degree of damage from perennial 
ryegrass embryogenic suspension cells after 6 h of 
incubation with no agitation at 26 °C + 2.0. 

CaCl p 
(Mr 

Protoplast yield 
per ml 

Degree of damage3 

0.2 3.0xl06 + 

0.3 8.0xl06 - 

0.4 l.OxlO7 - 

0.5 7.0xl06 - 

0.6 5.0x10s - 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 26. The effect of macerase on the efficiency of protoplast 
released and degree of damage from perennial ryegrass 
embryogenic suspension cells after 6 h of incubation with no 
agitation at 26 °C + 2.0. 

Macerase 
concentration 

(« 

Protoplast yield 
per ml 

Degree of damage3 

0.2 1.2xl06 - 

0.4 1.9x10® + 

0.6 2.7xl06 - 

0.8 3.9x10® - 

1.0 2.7x10® ++ 

aDegree of protoplast damage estimated visually at the end of each 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 27. The effect of mannitol on the efficiency of protoplast 
released and degree of damage from perennial ryegrass 
embryogenic suspension cells after 6 h of incubation with no 
agitation at 26 °C + 2.0. 

Mannitol 
(M) 

Protoplast yield 
per ml 

Degree of damage3 

0.2 1.5xl06 + 

0.3 4.2X106 - 

0.4 3.6xl06 - 

0.5 3.1X106 + 

0.6 2.0x10s + 

0.7 9.0x10s + 

0.8 5.0x10s + 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 28. The effect of subculturing period on the efficiency of 
protoplast released and degree of damage from perennial 
ryegrass embryogenic suspension cells after various periods 
of incubation with no agitation at 26 °C + 2.0. 

Subculturing Incubation period Protoplast Degree of damage3 
period (days) (h) yield 

per ml 

Shakinq (100 rpm) 

2 1 5.6x10® +++ 
3 4.0x10® ++++ 
6 9.0x10? ++++ 
9 8.0x10;? ++++ 

12 5.0x10® ++++ 

7 days 1 1.1x10® ++ 
3 3.0x10? ++++ 
6 1.5x10? ++++ 
9 1.1x10? ++++ 

12 1.0x10® ++++ 

No Shakinq 

2 1 2.4x10® _ 

3 6.1x10? - 

6 2.5x10? - 

9 4.7x10? - 

12 6.7x10® - 

7 1 6.2x10® 
• 3 2.3x10? - 

6 2.8x10? - 

9 1.5x10? - 

12 2.9x10® — 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++20% 
damage; +, 10% damage; - no damage. 
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Table 29. The effect of sodium thiosulfate on the efficiency of 
protoplasts released and degree of damage from perennial 
ryegrass embryogenic suspension cells after various periods 
of incubation with the enzyme mixture at 26 oC + 2.0 on a 
gyratory shaker at 100 rpm. 

Sodium thiosulfate 
concentration 

d%) 

Incubation 
period 
(min) 

Protoplast 
y i e 1 d 
per ml 

Degree of 
damage5 

0.0 r A /-v„tr>5 
* e. w * + 

30 1.1x10° ++ 

60 7.0xl05 ++++ 

3 15 6.0x10s - 

30 3.0xl06 - 

60 5.6xl06 + 

4 15 9.0x10s - 

30 3.1x10s - 

60 5.4x10s + 

5 15 7.0x10s - 

30 3.4x10s - 

60 5.1x10s + 

6 15 4.0x10s - 

30 3.0x10s - 

60 4.9x10s + 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 
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Table 30. The effect of sodium thiosulfate on the efficiency of the 
protoplast released and degree of damage from perennial 
ryegrass embryogenic suspension cells after 6 h of 
incubation without agitation at 26 °C + 2.0. 

Sodium thiosulfate 
(*) 

Protoplast 
yield 
per ml 

Degree of 
damage3 

0.0 7.OxlO5 + 

3.0 5.1xl06 - 

4.0 4.OxlO6 - 

5.0 3.5xl06 - 

6.0 2.4xl06 - 

aDegree of 
incubation 
damage; +, 

protoplast damage estimated visually 
period. ++++, maximum damage; 30% maximum 
10% damage; - no damage. 

at the end of 
damage; ++, 20% 
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Table 31. The effect of cellulysine on the efficiency of the 
protoplast released and degree of damage from perennial 
ryegrass embryo genic suspension cells after 6 h of 
incubation without agitation at 26 °C + 2.0. 

Cel 1ulysine 
concentration 

{%) 

Protoplast yield 
per ml 

Degree of damage3 

1.0 2.0xl06 - 

1.25 4.5xl06 - 

1.5 3.5xl06 + 

1.75 2.8x10® + 

2.0 2.2xl06 + 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 
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Table 32. The effect of pH on the efficiency of the protoplast 
released and degree of damage from perennial ryegrass 
embryogenic suspension cells after 6 h of incubation without 
agitation at 26 °C + 2.0. 

pH of the 
enzyme mixture 

Protoplasts yield 
per ml 

Degree of damage8 

4.0 3.6xl06 - 

4.5 2.3xl06 - 

5.0 4.0xl06 - 

5.5 4.3X106 - 

6.0 2.4xl06 - 

6.5 1.3x10® - 

7.0 3.0x10® - 

7.5 6.0x10® - 

8.0 3.5x10® - 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 
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Table 33. The effect of mellibiose on the efficiency of protoplasts 
released and degree of damage from red fescue embryogenic 
suspension cells after 6 h of incubation with no agitation 
26 °C + 2.0. 

Mel 1ibiose Protoplast Degree of 
concentration yield damage3 

(*) per ml 

0.3 5.0x10® + 

0.5 6.5xl06 ++ 

aDegree of protoplast damage estimated visually at the end of 
incubation period, + +++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 34. The effect of mannitol on the efficiency of protoplasts 
released and degree of damage from red fescue embryogenic 
suspension cells after 6 h of incubation with no agitation 
26 bC + 2.0. 

Mannitol 
(M) 

Protoplast yield 
per ml 

Degree of damage3 

0.2 4.0xl06 + 

0.3 9.OxlO6 - 

0.4 7xl06 - 

0.5 4xl06 - 

0.6 2xl06 - 

0.7 8xl05 + 

0.8 5xl05 + 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 35. The effect of calcium chloride on the efficiency of 
protoplasts released and degree of damage from red fescue 
embryogenic suspension cells after 6 h of incubation with no 
agitation 26 °C + 2.0. 

CdC 1 o 
(Mr 

Protoplast yield 
per ml 

Degree of damage9 

0.2 3.0xl06 - 

0.3 7 .OxlO6 - 

0.4 l.OxlO7 - 

0.5 7.OxlO6 - 

0.6 5.OxlO6 - 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 36. The effect of macerase on the efficiency of protoplasts 
released and degree of damage from red fescue embryogenic 
suspension cells after 6 h of incubation with no agitation 
26 °C + 2.0. 

Macerase 
concentration 

(*) 

Protoplast yield 
per ml 

Degree of damage3 

0.2 5.0xl06 + 

0.4 5.0x10® + 

0.6 6.0xl06 + 

0.8 3.0xl06 + 

1.0 3.0x10® + 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 37. The effect of sodium thiosulfate on the efficiency of 
protoplasts released and degree of damage from red fescue 
embryogenic suspension cells after various periods of 
incubation with the enzyme mixture at 26 °C + 2.0 on a 
gyratory shaker at 100 rpm . 

Sodium thiosulfate 
concentration 

w 

Incubation 
period 

Protoplast 
yield 
per ml 

Degree of 
damage3 

0.0 15 5.0x10® + 
30 2.0x10® ++ 
60 6.0x10® ++++ 

1.0 15 1.1x10® mm 

30 4.0x10® - 

60 2.0x10® + 

2 15 3.0x10® mm 

30 4.0x10® - 

60 8.0xl06 + 

3 15 6.0x10® 
30 9.0x10® - 

60 9.0x10® + 

4 15 6.0x10® + 
30 7.0x10® + 
60 5.0x10® + 

5 15 3.0x10® + 
30 7.0x10® + 

• 60 5.0x10® + \ 

6 15 3.0x10® + 
30 7.0x10® + 
60 2.0x10® + 

aDegree of protoplast damage estimated visually at .the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 



173 

Table 38. The effect of sodium thiosulfate on the efficiency of the 
protoplast released and degree of damage from red fescue 
embryogenic suspension cells after 6 h of incubation without 
agitation at 26 °C + 2.0. 

Sodium thiosulfate 
(« 

Protoplast 
yield 
per ml 

Degree of 
damage3 

0.0 7.OxlO5 +a 

1.0 1.0x10® - 

2.0 2.8xl06 - 

3.0 8.0xl06 - 

4.0 9.0x10® - 

5.0 7.0x10® - 

6.0 4.0x10® - 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 
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Table 39. The effect of cellulysine on the efficiency of the 
protoplast released and degree of damage from red fescue 
embryogenic suspension cells after 6 h of incubation without 
agitation at 26 °C + 2.0. 

Cel 1ulysine 
concentration 

(*) 

Protoplasts yield 
per ml 

Degree of damage3 

1.0 4.0x10® - 

1.25 9.0xl06 - 

1.5 7.0X106 - 

1.75 7.0x10® - 

2.0 5.0x10® + 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 
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Table 40. The effect of pH on the efficiency of the protoplast 
released and degree of damage from red fescue embryogenic 
suspension cells after 6 h of incubation without agitation 
at 26 °C + 2.0. 

pH Protoplast yield Degree of damage3 
per ml 

4.0 5.0x10° - 

4.5 4.0xl06 - 

5.0 4.3xl06 - 

5.5 8.0xl06 - 

6.0 5.0x10® - 

6.5 4.4x10® - 

7.0 2.0x10® - 

7.5 8.0x10® - 

8.0 4.0x10® _ 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 
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Table 41. The effect of packed cell volume/enzyme mixture ratio on the 
efficiency of the protoplast released and degree of damage 
from red fescue embryogenic suspension cells after 6 h of 
incubation without agitation at 26 °C + 2.0. 

Packed cell volume 
(PCV/ml) 

Protoplast 
yield 
per ml 

Degree of damage3 

0.2 l.OxlO6 _a 

0.4 2.0xl06 - 

0.6 6.0xl06 - 

0.8 7.0xl06 - 

1.0 
o 

9.0x10s - 

1.2 7.0x10s - 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 
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Table 42. The effect of mellibiose on the efficiency of protoplasts 
released and degree of damage from red fescue embryogenic 
callus culture after 4 h of incubation at 100 rpm at 26 °C + 
2.0. 

Mel 1ibiose Protoplast yield Degree of damage3 
concentration per ml 

(*) 

0.3 4.0x10® ++ 

0.5 6.0x10® + 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 

V 
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Table 43. The effect of calcium chloride on the efficiency of 
protoplasts released and degree of damage from red fescue 
embryogenic callus culture after 4 h of incubation at 100 
rpm at 26 °C + 2.0. 

CaC 1 p 
(nr 

Protoplast yield 
per ml 

Degree of damage3 

0.2 2.0xl05 + 

0.3 6.0x10s - 

0.4 9.0x10s - 

0.5 4.0x10s - 

0.6 3.0X103 - 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 

s 
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Table 44. The effect of macerase 
released and degree of 
callus culture after 4 h 
2.0. 

on the efficiency of protoplasts 
damage from red fescue embryogenic 
of incubation at ICO rpm at 26 °C + 

Macerase 
concentration 

(*) 

Protoplast yield 
per ml 

Degree of damage3 

0.2 3.0xl05 _a 

0.4 6.0xl05 - 

0.6 6.0x10s - 

0.8 6.0x10s - 

1.0 5.0x10s - 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +,10% damage; - no damage. 
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Table 45. The effect of mannitol on the efficiency of protoplasts 
released and degree of damage from red fescue embryogenic 
callus culture after 4 h of incubation at 100 rpm at 26 °C + 
2.0. 

Mannitol 
(M) 

Protoplast yield 
per ml 

Degree of damage9 

0.2 2.0xl05 - 

0.3 5.0x10s - 

0.4 7.0x10s - 

0.5 3.0x10s + 

0.6 1.0x10s + 

0.7 5.0xl04 + 

0.8 2.0xl04 + 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 46. The effect of subculturing period on the efficiency of 
protoplasts released and degree of damage from red fescue 
embryogenic callus culture after 4 h of incubation at 100 
rpm at 26 °C + 2.0. 

Subculturing 
period 
(days) 

Protoplast yield 
per ml 

Degree of damage9 

2 7.5xl02 + 

4 8.0xl02 + 

6 l.OxlO3 + 

8 l.OxlO3 - 

10 3.0xl03 - 

12 6.0xl03 - 

14 8.0xl04 - 

16 l.OxlO5 - 

18 6.0xl05 + 

20 4.0xl05 ++ 

aDegree of protoplast damage estimated visually 
incubation period, ++++ maximum damage; +++ 30% 
damage; +, 10% damage; - no damage. 

at the end of 
damage, ++ 20% 
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Table 47. The effect of callus ratio/enzyme mixture ratio on the 
efficiency of protoplast released and degree of damage from 
red fescue embryogenic cal,1 us after 4 hrs of incubation with 
the enzyme mixture at 26 °C + 2.0 with agitation at 100 rpm. 

Callus weight 
(g/ml) 

Protoplast yield 
per ml 

Degree of damage3 

0.2 7.0x10s - 

0.4 l.lxlO6 - 

0.6 1.3xl06 + 

0.8 8.0x10s + 

1.0 4.0x10s + 

1.2 1.4x10s ++ 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 

% 
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Table 48. The effect of cellulysine on the efficiency of protoplast 
released and degree of damage from red fescue embrycgenic 
callus after 4 hrs of incubation with the enzyme mixture at 
26 °C + 2.0 with agitation at 100 rpm. 

Cel 1ulysine 
concentration 

(%) 

Protoplast yield 
per ml 

Degree of damage3 

1.0 3.0xl05 - 

1.25 8 .OxlO5 - 

1.5 8.0x10s - 

1.75 5.0x10s + 

2.0 1.0x10s + 

aDegree of 
incubation 
damage; +, 

protoplast damage estimated visually at the end of 
period. ++++, maximum damage; 30% maximum damage; ++, 20% 
10% damage; - no damage. 
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Table 49. The effect of pH on the efficiency of protoplast released 
and degree of damage from red fescue embryogenic callus 
after 4 hrs of incubation with the enzyme mixture at 26 °C + 
2.0 with agitation at 100 rpm. 

pH of the Protoplasts yield Degree of damagea 
enzyme mixture per ml 

4.0 2.0x10s + 

4.5 4.0x10s + 

5.0 5.0x10s + 

5.5 5.0x10s - 

6.0 5.0x10s - 

6.5 3.0x10s - 

7.0 8.0xl04 - 

7.5 6.0xl04 - 

8,0 5.0xl04 — 

aDegree of 
incubation 
damage; +, 

protoplast damage estimated visually at the end of 
period. ++++, maximum damage; 30% maximum damage; ++, 20% 
10% damage; - no damage. 
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Table 50. The effect of mellibiose on the efficiency of protoplasts 
released and degree of damage from perennial ryegrass 
embryogenic callus culture after 6 h of incubation without 
agitation at 26 °C + 2.0. 

Mel 1ibiose Protoplast yield Degree of damage3 
concentration per ml 

(%) 

0.3 9.0xlC5 + 

0.5 1.1x10s - 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 51. The effect of calcium chloride on the efficiency of 
protoplasts released and degree of damage from perennial 
ryegrass embryogenic callus culture after 6 h of incubation 
without agitation at 26 °C + 2.0. 

CaCl p 
wr 

Protoplast yield 
per ml 

Degree of damage3 

0.2 5.0x10s - 

0.3 2.0xl06 - 

0.4 1.0x10s - 

0.5 8.0x10s + 

0.6 4.0x10s ++ 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 52. The effect of macerase on the efficiency of protoplasts 
released and degree of damage from perennial ryegrass 
embryogenic callus culture after 6 h of incubation without 
agitation at 26 °C + 2.0. 

Macerase 
concentration 

(%) 

Protoplast yield 
per ml 

Degree of damage3 

0.2 1.0x10s - 

0.4 9.0xl05 - 

0.6 7.0x10® - 

0.8 3.0x10s + 

1.0 l.OxlO3 ++++ 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 53. The effect of mannitol on the efficiency of protoplasts 
released and degree of damage from perennial ryegrass 
embryogenic callus culture after 6 h of incubation without 
agitation at 26 °C + 2.0. 

Mannitol 
(M) 

Protoplast yield 
per ml 

Degree of damage3 

0.2 5.0xl05 
f 

0.3 2.0xl06 - 

0.4 l.OxlO6 - 

0.5 7.0x10® - 

0.6 5.0xl05 + 

0.7 1.0x10® + 

0.8 1.0x10® + 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 54. The effect of subculturing periods on the efficiency of 
protoplasts released and degree of damage from perennial 
ryegrass embryogenic callus culture after 6 h of incubation 
without agitation at 26 °C + 2.0. 

Subculture 
period 
(days) 

Protoplast yield 
per ml 

Degree of damage3 

2 3.0xl03 - 

4 4.0xl04 - 

6 6.0xl04 - 

8 l.OxlO5 - 

10 7.0xlC7 - 

12 9.0x10s - 

14 5.0x10s - 

16 3.0x10s + 

18 9.0xl04 + 

20 6.0xl04 + 

aDegree of protoplast damage estimated visually at the end of 
incubation period, ++++ maximum damage; +++ 30% damage, ++ 20% 
damage; +, 10% damage; - no damage. 
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Table 55. The effect of sodium thiosufate on the efficiency of 
protoplast released and degree of damage from perennial 
ryegrass embryoqenic callus after various periods of 
incubation at 26 °C + 2.0 with agitation at 100 rpm. 

Sodium thiosulfate 
concentration 

(*) 

Incubation 
period 
(min) 

Protoplast 
yield 
per ml 

Degree of damage3 

0.0 15 1.0x10® + 
30 7.oxio; ++ 
60 4.0xl04 +++ 

1.0 15 5.0x10;? 
30 1.0x10° - 

60 8.0x10° ++ 

2.0 15 1.0x10*? — 

30 3.0x10° - 

60 8.0x10° + 

3.0 15 2.0x10® 
30 3.0x10° - 

60 3.0x10° + 

4.0 15 5.0x10® _ 

30 8.0x10° - 

60 6.0x10° + 

5.0 15 9.0x10® — 

30 3.0x10° - 

60 1.0x10° + 

b.U 15 b.uxiu^ — 

- 30 1.0x10° - 

60 9.0x10° + 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 
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Table 56. The effect of sodium thiosulfate on the efficiency of the 
protoplasts released and degree of damage from perennial 
ryegrass embryogenic callus after 6 h of incubation in 
enzyme mixture without agitation at 26 °C + 2.0. 

Sodium thiosulfate 
(« 

Protoplast 
yield 
per ml 

Degree of 
damage3 

0.0 3.0xl05 + 

1.0 6.0x10s - 

2.0 8.0x10s - 

3.0 1.0x10s - 

4.0 8.0x10s - 

5.0 4.0x10s - 

6.0 1.0x10s - 

aDegree of protoplast damage estimated visually at the 
incubation period. ++++, maximum damage; 30% maximum damage; 
damage; +, 10% damage; - no damage. 

end of 
++, 20% 

L 
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Table 57. The effect of cellulysine on the efficiency of the 
protoplasts released and degree of damage from perennial 
ryegrass embryogenic callus after 6 h of incubation in 
enzyme mixture without agitation at 26 °C + 2.0. 

Cel 1ulysine 
concentration 

(« 

Protoplast yield 
per ml 

Degree of damage3 

1.0 8.0xl05 + 

1.25 2.0x10® - 

1.5 1.0x10® + 

1.75 8.0x10® + 

2.0 4.0x10® + 

aDegree of 
incubation 
damage; +, 

protoplast damage estimated visually at the end of 
period. ++++, maximum damage; 30% maximum damage; ++, 20% 
10% damage; - no damage. 
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Table 58. The effect of pH on the efficiency of the protoplasts 
released and degree of damage from perennial ryegrass 
embryogenic callus after 6 h of incubation in enzyme mixture 
without agitation at 26 °C + 2.0. 

pH of the 
enzyme mixture 

Protoplast yield 
per ml 

Degree of damage3 

4.0 4.0xl05 - 

4.5 7.0x10s - 

5.0 7.0x10s - 

5.5 7.0x10s - 

6.0 7.0x10s - 

6.5 2.0x10s - 

7.0 1.0x10s - 

7.5 4.0xl04 - 

8.0 2.0xl04 - 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 
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Table 59. The effect of callus enzyme mixture ratio on the efficiency 
of the protoplasts released and degree of damage from 
perennial ryegrass embryogenic callus after 6 h of 
incubation in enzyme mixture without agitation at 26 °C + 
2.0. 

Callus weight 
(g) 

Protoplast yield 
per ml 

Degree of damage3 

0.2 5.0xl05 - 

0.4 8.0xl05 - 

0.6 6.0X105 - 

0.8 3.0xl05 - 

1.0 l.OxlO5 - 

1.2 6.0xl04 - 

aDegree of protoplast damage estimated visually at the end of 
incubation period. ++++, maximum damage; 30% maximum damage; ++, 20% 
damage; +, 10% damage; - no damage. 

I 
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