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ABSTRACT 

Confirmatory Analysis of Market Segments: 

An Information Theoretic Approach 

(February 1986) 

Ajith Kumar, B.Sc. (Hons.), Indian Institute of Technology, Kharagpur 

P.G.D.M., Indian Institute of Management, Calcutta 

Ph.D., University of Massachusetts 

Directed by: Dr. William R. Dillon 

This dissertation develops a model-based framework for the 

analysis/identification of market segments. Following earlier work, the 

segmentation problem is conceptualized as the specification of two sets 

of variables—a basis set used to form segments and a descriptor set 

used to discriminate among segments. The problem of using descriptor 

sets consisting of categorical variables is the focus of research. The 

evaluation of descriptor sets, in terms of their performance in discrim¬ 

inating among segments, is conceptualized as a sequence of tests of 

nested models. 

The information theoretic approach is shown to be a suitable one 

for estimating model parameters and simultaneously assessing the 

goodness-of-fit of the model to the data. The methodology is imple¬ 

mented using the variable metric method of minimization. 

A simulation study establishes the satisfactory performance of both 

the methodology and the algorithm used in implementation. An example 

illustrating the use of the methodology is also presented. 
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CHAPTER I 

INTRODUCTION 

This dissertation focuses on the development of a methodology to 

evaluate sets of variables (descriptors) in terms of their efficacy in 

discriminating among previously defined market segments. The choice of 

variables is restricted to those which are categorical in nature. 

In Chapter II, a review of the literature on segmentation reveals 

important gaps in approaches to segmenting markets especially with 

regard to the specification of descriptor sets. An alternate approach 

to segmentation is then presented which treats the segmentation problem 

as a dual problem of clustering and discrimination. 

Chapter III introduces and describes the problem of evaluating 

descriptor sets consisting of categorical variables. The evaluation 

problem is reformulated as a set of models/hypotheses posited to hold in 

the population under study, and the estimation of certain unknown popu¬ 

lation parameters. Under certain specified conditions, the estimation 

problem is shown to reduce to a nonlinear programming problem. The use 

of the Minimum Discrimination Information statistic provides for the 

simultaneous estimation of parameters and the assessment of the goodness- 

of-fit of the model under which the estimation is carried out. Illus¬ 

trative examples of possible models/hypotheses which could be tested in 

the context of the segmentation problem are also provided. 

The implementation of the nonlinear programming problem is 

described in Chapter IV. The method of sequential unconstrained 
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minimization is briefly presented, with details of the exterior penalty 

function method. The large number of variables involved and the needed 

computational requirements dictate the use of the Davidon-Fletcher- 

Powell variable metric method for minimization. 

Chapter V describes the results of a simulation study carried out 

to assess the performance of the methodology and the algorithm used to 

implement it. In addition an example illustrating the use of the meth¬ 

odology in a segmentation context is presented. 

The final chapter contains a summary of the conclusions which 

emerged from the empirical investigations and provides recommendations 

for extensions of the methodology, both within and outside the marketing 

disci piine. 



CHAPTER II 

SEGMENTATION: THEORY AND PRACTICE 

Segmentation has long been recognized by academics and practition¬ 

ers alike as being a dominant concept of marketing. In one of the 

earliest articles on segmentation, Wendell Smith (1956) sought to draw a 

distinction between product differentiation and market segmentation as 

alternative strategies available to the firm. Both strategies implicit¬ 

ly assume the existence of several demand curves for a single product, 

where each curve graphs the response of a subset of consumers. The 

strategy of product differentiation describes attempts by the firm to 

bring about convergence on the demand side to a single product while the 

strategy of market segmentation requires several product offerings, with 

each product meeting the requirements of a specific sub-group of con¬ 

sumers rather than the total market. 

Changes in the marketplace, both on the supply side and the demand 

side, have made market segmentation the dominant strategy and in many 

instances, the strategy of product differentiation is no longer a viable 

alternative. While Smith (1956) provides an elegant conceptualization 

of segmentation, no framework or model is offered which could be used to 

develop a theory or methodology of segmentation. 

In examining the literature, one is struck by the gap between aca¬ 

demically oriented research and managerial applications. As noted by 

Wind (1978), theories of segmentation that have been proposed are norma¬ 

tive (e.g., Claycamp and Massy, 1968; Mahajan and Jain, 1978; Tollefson 
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and Lessig, 1978) and virtually ignore the practical difficulties 

involved in implementation. 

Before attempting to analyze the theoretical literature on segmen¬ 

tation in greater detail, it is necessary to establish a general frame¬ 

work within which the analysis can be carried out. This framework is 

provided by the segmentation model, which, following Wind (1978), 

requires the specification of two sets of variables--one set forming a 

basis for segmentation and the other set consisting of variables which 

serve to describe the segments. It should be noted that there exists no 

consensus in the segmentation literature on the use of terminology. 

Sometimes the terms dependent variables and independent variables are 

used to denote the basis set and the descriptor set respectively (e.g., 

Frank, Massy and Wind, 1972). The terms basis and descriptor variables 

will be used herein since the labeling of variables as dependent and 

independent typically tends to imply the existence of structural or 

causal relationships between the two sets. 

A review of the literature shows that most segmentation studies do 

not maintain the distinction between basis variables and descriptors. 

Indeed, as noted by Wind, "the variables used as basis for and descrip¬ 

tors of segments have included all variables suggested in the consumer 

behavior literature" (1978, p. 319). This suggests one of two possi- 

bilities--that the distinction is vacuous or that it needs to be expli¬ 

cated in greater detail if it is to prove useful. The position taken 

herein is that the distinction is useful, and as will be shown later, 

conceptually and methodologically important. 
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Studies attempting to provide a perspective on segmentation have, 

for the most part, adopted what might be termed a taxonomic approach. 

The objective of such approaches was to classify segmentation studies 

into two or more groups on the basis of some criterion variable. Thus 

Wind's (1978) review of segmentation research classifies segmentation 

studies as a priori or clustering based segmentation designs, which 

appears to differ very little from Green's (1977) dichotomy of a priori 

and post hoc segmentation designs. 

An alternative classification of approaches to segmentation was 

provided by Assael and Roscoe (1976), where two dichotomous variables 

were used simultaneously to cross-classify segmentation studies. One 

dichotomy was the definition of response behavior as univariate or 

multivariate. The other dichotomy was the specification of the behav¬ 

ioral criterion as response level at a given point in time versus 

response elasticity over time. 

Another distinction which has been made is between behaviorist and 

decision oriented schools of market segmentation research (Frank, Massy 

and Wind, 1972). Behavioral research seeks to identify and document 

group differences, searches for predictors of such differences and 

attempts to provide a theoretical explanation for the existence of such 

group differences. Decision oriented research, on the other hand, pre¬ 

supposes the existence of group differences and focuses on forming mean¬ 

ingful segments. As with behavioral research, predictors of group dif¬ 

ferences are specified, and in addition, procedures are sought to be 

developed for the allocation of marketing resources to various segments. 



The essential difference between the two schools is the presence or 

absence of a theoretical framework which postulates the existence of 

structural/causal relationships (in contradistinction to the theory 

characterizing normative approaches). However, a review of the segmen¬ 

tation and consumer behavior literature shows the absence of any accept¬ 

able, unifying theoretical framework and it may be safely assumed that 

any theoretical developments in segmentation would probably occur on the 

normative side, making the above classification unnecessary. 

> Critique 

As pointed out earlier, most of the previous analyses of segmenta¬ 

tion studies took the form of classification of the studies on the basis 

of some criterion variable. Wind's (1978) classification of studies as 

a priori or clustering based segmentation designs focuses on one half of 

the segmentation model--the delineation of segments using some set of 

variables as a basis. The same comment holds for Green's (1977) dicho¬ 

tomy of a priori and post hoc segmentation designs. 

While the need to take cognizance of customer characteristics is 

pointed out, descriptor variables are not explicitly incorporated into 

the two way classification of segmentation studies by Assael and Roscoe 

(1976). 

A fundamental gap in the above approaches to segmentation research 

is that they tend to highlight the basis part of the segmentation model 

and virtually ignore the problems of descriptor set specification. A 

notable departure from this trend is found in the more recent work of 
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Green and his colleagues who have introduced flexible and componential 

segmentation designs which incorporate both product and consumer charac¬ 

teristics (Green and Wind, 1973; Green, Carroll and Carmone, 1977). 

From a managerial standpoint effective segmentation requires the 

specification of both the basis variables and the descriptor set. 

Situations may arise where the choice of a suitable basis set yields 

well-defined and meaningful segments. At the same time, the lack of a 

suitable descriptor set permitting the decision maker to discriminate 

among those segments may result in the basis set being rejected and 

alternative bases being examined. In addition to segmenting the market, 

it is important to evaluate each segment to ascertain the feasibility of 

marketing to a particular segment. It is' in this context that descrip¬ 

tors play an important role in segmentation. These managerial consi¬ 

derations dictate an alternative approach to the segmentation problem. 

An Alternative Approach 

In simple terms the segmentation problem can be described as fol¬ 

lows. It is assumed that the total market for a product is composed of 

sub-groups where each sub-group is characterized by similar needs and 

wants. This is a precondition for segmentability of the market. Thus 

one can specify variables such that for each variable every consumer has 

a preference for some level of that variable. If the preferred level 

for every variable is known, then each consumer can be represented as a 

point in the joint space with the variables as coordinates. Then the 

problem of specifying a basis set reduces to a problem of selecting a 
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set of variables which yield clusters of consumers in the joint space. 

Once a suitable basis yielding meaningful clusters has been found, the 

task becomes one of selecting a set of descriptors which enables the 

decision maker to discriminate among the clusters, that is, to identify 

the segments. 

From a managerial standpoint, the basis set should be chosen from 

the set of controllable variables in the marketing.mix, that is, those 

variables whose levels can be varied freely by the decision maker, or 

variables which are surrogates for the controllable variables. 

Similarly, the descriptor set should be chosen from variables which 

help to identify consumers or from surrogates of these variables. Thus 

market segmentation is a dual problem of clustering and discrimination. 

In this framework, the previously proposed classifications of segmenta¬ 

tion studies are seen to be classifications of clustering procedures 

depending on the choice of variables and/or methods. In addition, this 

framework preserves the conceptual distinction between basis variables 

and descriptors, and a particular variable can belong to only one of the 

two sets. 



CHAPTER III 

THE PROBLEM OF SEGMENT EVALUATION 

USING CATEGORICAL DATA 

Any product offering can be viewed as embodying a bundle of attri¬ 

butes. From a practical standpoint, it makes sense to consider only 

those attributes which are elements of the marketing mix. Therefore any 

product can be represented as a vector whose elements are the levels of 

various attributes. 

The set of products in a market can be represented in terms of 

attribute vectors. However, each attribute vector may not represent a 

distinct market segment. It is possible that two or more attribute 

vectors may be similar enough to represent the same market segment. 

Here it is assumed that the set of products has been partitioned 

such that each member of the partition represents a distinct market 

segment. It is necessary to characterize the consumers in the different 

segments in much the same way as the segments themselves can be charac¬ 

terized by attribute vectors. 

Just as products are characterized as attribute vectors, individual 

consumers can be represented by measurements on a predetermined set of 

descriptor variables. Ideally, the set of descriptor variables should 

be chosen such that each vector of these variables can be uniquely 

assigned to one (and only one) market segment; that is, all consumers 

with identical measurements on the descriptor variables set should 

belong to the same market segment. The set of all descriptor variable 

9 
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vectors assigned to a particular market segment serve to define the 

consumers belonging to that segment. 

In practice, however, it is found that such unique assignments are 

not possible, that is, consumers with the same measurements on the set 

of descriptors may not belong to the same segment. In such instances, 

the assignments of descriptor variable vectors have to be made probabil¬ 

istically. In other words, given a particular vector of measurements on 

the descriptor set, there is a probability that a consumer with those 

measurements on the descriptor variables will belong to any particular 

market segment. The probability may be zero for some market segments. 

The probabilistic assignment reflects the fact that the set of 

descriptor variables are not perfect indicators of the market segments. 

In the absence of a theory linking consumer preferences with a set of 

descriptors, the choice of a descriptor set tends to be somewhat ad hoc 

and therefore necessarily imperfect. 

In the case where the variables constituting the descriptor set are 

continuous, and the market segments are specified a priori, the tech¬ 

nique of discriminant analysis can be used to classify consumers into 

distinct market segments. Typically a linear discriminant function is 

employed to effect the classification. When the variables in the 

descriptor set are categorical, a variety of methods have been adopted 

to develop classification schemes. These include: (1) treating the 

categorical variables as if they were continuous and using Fisher's 

linear discriminant function or some variant thereof; (2) reparameteri¬ 

zation of the full multinomial model to achieve a more parsimonious 
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representation of the data (e.g., loglinear and logit models); and 

(3) the use of procedures based on distributional distances (Matusita, 

1954). 

The purpose of this study is to develop a method by which sets of 

descriptor variables can be evaluated in terms of their effectiveness in 

discriminating among consumers belong to different segments. The study 

is restricted to variables which are categorical in nature. Prior to 

the elucidation of the method proposed, it is necessary to redefine the 

problem for the special case of categorical variables. 

Notation 

Let . X denote the categorical variable that indi- 
9 cates an individual's membership of a market 

segment 

X., X., X, and X„ denote an individual's "measurements" on the 
J L variables in the descriptor set 

g=l ,2,...,G 
i=l ,2,... ,1 
j=l,2,... ,J 
k=l,2,... ,K 
Z=1,2,...,L 

For expository purposes, only four variables are included in the 

descriptor set. The extension of the method to descriptor sets of 

larger or smaller sizes is straightforward. 

With reference to all the variables mentioned above, it is assumed 

that an individual is assigned to only one category of each variable, 

that is, the classification is mutually exclusive and collectively 

exhaustive. The total number of profiles generated by the descriptor 

variable set is IxJxKxL. 
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Let X. .. ^ = (i,j,k,£) denote the typical profile with respect 
J to the descriptor set alone 

= 0,1,1,1), (1,1,1,2), (I,J,K,L) 

X .... = (g,i,j,k,Jl) denote the individual's profile with 
9 J respect to the descriptor set and the market 

segment indicator 

(g,i,j,k,£) = (1,1,1,1,1), (1,1,1,1,2), ..., (G,I,J,K,L) 

Given the a priori specification of market segments, the segmentation 

problem becomes one of choosing a descriptor set such that each profile 

in the descriptor set, that is, each (i,j,k,£) can be uniquely assigned 

to one (and only one) market segment. Mathematically the problem be¬ 

comes one of choosing variables X., X., X^, and X^ such that 

D/w |Y \ _ rl for only one value of X 
g1 Aijkr 10 for other values of X 9 

V 

for all IxJxKxL profiles. In the above, P(Xg| X^j^) represents the con¬ 

ditional probability of being in the gth category of Xg given that the 

individual has profile (i,j,k,Ji). 

However, in practice such unique assignments are not possible, and 

one finds that the conditional probability tends to be non-zero for more 

than one value of g. The question then arises as to what classification 

schemes might be optimal in such situations. One approach would be to 

assign each profile in the descriptor set to that category of Xg for 

which the conditional probability is the highest among all categories of 

Xg. Should there be more than one such category, the assignment is to 

be done randomly to one category from among those for which the tie 

occurs. 
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If the descriptor set profile and the market segment membership of 

every individual in the relevant population is known, then the approach 

outlined above can be implemented in a fairly straightforward manner and 

some estimate can be obtained of the errors in classification. In terms 

of discriminating among segments, alternative descriptor sets can be 

compared on the basis of their relative error rates. 

In most practical situations, however, the population probabilities 

have to be estimated from observations made on a random sample. In the 

case where no assumptions are made about the descriptor set profiles and 

their relationships to the market segments, the sample-based probabili¬ 

ties are taken to be the estimates of the corresponding population prob¬ 

abilities, and the assignments of descriptor set profiles to market 

segments are made accordingly, and estimates of classification errors 

are obtained. 

However, situations could arise where additional information is 

available to the decision maker which could be utilized in conjunction 

with the sample observations for estimating the population parameters. 

The additional information takes the form of relationships hypothesized 

to hold among the descriptor set profiles and the market segments. 

The method to be proposed can utilize any information which can be 

expressed as a linear combination of the population probabilities. This 

approach differs from the approach of estimating the population prob¬ 

abilities from the corresponding sample probabilities in that the popu¬ 

lation values are estimated subject to one or more linear constraints. 
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In a particular segmentation problem, the set of linear constraints can 

be viewed as a model or underlying mechanism generating the data. 

The constraints used in the estimation process fall into two cate¬ 

gories— those which are known to hold in the population and those repre¬ 

senting hypotheses postulated by the decision maker. An example of the 

former is a situation where the market shares of all the brands con¬ 

cerned are known. This information can usefully be incorporated into 

the estimation process in the form of certain equality constraints on 

some marginal probabilities, as will be shown later. 

As an example of the second category, the decision maker might 

hypothesize that a particular variable in the descriptor set does not 

discriminate among the market segments given the other variables in the 

descriptor set. As with the previous example, this hypothesis can be 

translated into a set of constraints on certain population probabili¬ 

ties. 

Although a model in a typical problem would consist of constraints 

belonging to both categories, the distinction is important when evaluat¬ 

ing the adequacy of the models in terms of how well they fit the data. 

The estimation of population probabilities involves the minimization of 

a certain function subject to the constraints implied by the model. The 

estimation process, in addition to providing estimates of population 

probabilities, also provides a test statistic which can be used to 

assess the goodness-of-fit between the model and the data. While accep¬ 

tance of the null hypothesis (the model) would imply empirical support 
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for the entire model, rejection of the null hypothesis would only imply 

rejection of the constraints representing the untested hypotheses. 

Estimation 

The problem as described previously requires the selection of a set 

of probabilities, satisfying the constraints imposed by the model, as 

estimates of the population values. In general, many different sets of 

probabilities are feasible solutions, that is, more than one set of 

probabilities will satisfy the set of constraints implied by the model. 

Therefore, a criterion is required by which a solution can be chosen 

from the feasible set. 

The criterion proposed to be used is the discrimination information 

function (Gokhale and Kullback, 1978) defined by 

I (n: p) = £ii((juUn(n(a))/p(u))) 
n 

where p(.w) are the observed sample cell probabilities, II(w) is any set 

of probabilities satisfying the model constraints, and the summation is 

carried out over all cells in the multiway contingency table. The set 

of probabilities chosen as the estimate of the population values is that 

which minimizes the function described above. In other words, the solu¬ 

tion chosen from the feasible set is that which is "nearest" to the 

observed sample probabilities. 

In the special case where no constraints are placed on the popula¬ 

tion probabilities, the estimates minimizing the function will be equal 

to the corresponding sample probabilities, and the value of the function 
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will be zero since £n(n(a))/p(a))) = £n 1=0, for all terms in the summa¬ 

tion. 

Another special case is the situation where all the constraints in 

the model equate some of the population probabilities to the correspond¬ 

ing sample marginals. The estimates obtained in such cases would be 

identical to those obtained using the equivalent loglinear models. 

Hypothesis Testing 

If in the expression 

I(n:p) = In(u>)zn(n(co)/pU)) 

cell frequencies/counts are substituted for the corresponding probabili¬ 

ties, the function can be alternatively expressed as 

I (X*: X) = £X*(w)£ n(X*(a))/X(aj)) 
ft 

where X*(u)) = Nil (ca) 

X(oo) = Np (co) 

N = sample size 

The function 21(X*:X) is distributed asymptotically as a central 

chi-square random variable with degrees of freedom equal to the number 

of linearly independent equality constraints in the model. This does 

not include the equality constraint which specifies the probabilities to 

sum to one. Large values of the test statistic would lead to the rejec¬ 

tion of the model. In this approach, parameter estimation and hypothe¬ 

sis testing are carried out simultaneously. 
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Some Illustrative Examples 

Notation 

Let n(gijk£) be the probability (in the population) that an indi¬ 
vidual belongs to the gth category of X , the ith 
category of X., the jth category of X.,ythe kth 
category of X^, and the Uh category of X£. 

nCgi/jkil) be the probability that the individual belongs to 
the gth category of X and the ith category of X. 
given that he/she belongs to the jth, kth, and &th 
categories of Xj, Xk, and X£ respectively. 

P(gijk£) and P(gi/jk£) be the sample based probabilities 
corresponding to the population probabilities 
described above. 

Example 1: The Test that a Specified Descriptor 
Set Does Not Discriminate Among Market Segments 

Consider a typical descriptor set profile (ijk£). The profile 

cannot be assigned, except randomly, to any group g if 

n(g/ijkA) = 1/G for all categories of Xg 

This implies that 

n(1/ljkA) = n(2/ijki) = ... = n(G/ljka) 

However 

n(g/ijk£) = n(gijk£)/n(ijk£) 

Therefore 

n(lljkJl) = H(21jkA) = ... = n(Gijk£) 

is an equivalent hypothesis. 

The above hypothesis is reformulated in terms of linear constraints 

as follows. 
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n(lijla) - n(2ijk£) = 0 

n(2ijk£) - n(3ijkH) = 0 

n[(G-l)i jkJi] - n(Gijk£) = 0 

For each (ijk£) we have G-l linearly independent restrictions, yielding 

a total of IxJxKxl_x(G-l) restrictions in all. 

Example 2: Improving Estimates of Population Probabilities 
when Additional Information is Available 

Let the market shares of various brands be known and for illustra¬ 

tive purposes let each brand represent a distinct segment, that is, a 

distinct category of X . Letting c denote the market share of the gth 

brand, the following restrictions can be imposed. 

^ = ijk?giJU = Cg 9=1,2’--"G 

In the above case, if the numerical value of the test statistic turns 

out to be significantly large, then the sample has to be rejected as 

being unrepresentative of the population since the model only contains 

constraints known to hold in the population. 

Example 3: Detection of “Significant" Profiles 

In certain situations, when a model is rejected, the decision maker 

might wish to ascertain the extent to which a subset of the profiles 

contributes to the rejection of the model. Here a model is fitted (Ml) 

where the restrictions are applied to all profiles. Then another model 

(M2) is fitted where the restrictions are applied to all profiles other 
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than those belonging to the specified subset. Each model yields a chi- 

square test statistic. Since the models are nested, the difference in 

chi-square values is itself distributed as a chi-square random variate 

with degrees of freedom equal to the difference in the degrees of free¬ 

dom for the two models. 



CHAPTER IV 

ESTIMATION BY SEQUENTIAL UNCONSTRAINED MINIMIZATION 

For the sake of clarity in exposition, a different notation will be 

used in this chapter. 

Let s be the total number of cells in the complete multiway table 

p. be the observed probability (in the sample) for the ith cell 

n. be the population probability for the ith cell 

l 1,2,...,s 

First the estimation process is described for the single sample 

case. The extension to the multi-sample case, which is fairly straight¬ 

forward, is then briefly presented. 

The estimation of parameters under the hypotheses given in Chapter 

III can be subsumed under the mathematical programming problem given 

below. 

Minimize 

I(n:p) = l ILtnOl./pJ 
i=l 1 1 1 

subject to 

I n. = l 
i=l 1 

s 
l c..n. = 0. j=l ,2,... ,m itks 

i=l J' 1 J 

20 
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1|1d^iTIi - n£ 1 l,2,...,q 

n. j> 0 i=l,2,... ,s 

where c.. 0., d.., and n0 are known constants. 
J I J Xj I A/ 

The objective function is strictly convex for IT^>0, while the con¬ 

straints are linear. Hence the estimation process simplifies to a con¬ 

vex programming problem, guaranteeing the existence of a unique minimum, 

Rewriting the constraints as follows 

I n - i = o 
1=1 1 

s 
} c,.n. - 0. = 0 j=l,2,...,m m<s 

ji i j 

n. < o i-i ,2,... ,s 

and let 

<(-n.)> = max {(-n.),0} i=l,2,...,s 

s s 
<(n£-J^djll.ni)> = max {(nA- ,0} £=l,2,...,q 

The objective function and the constraints are utilized to form the 

following auxiliary function 
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s 
Q(jJi,Yk) = J H^nUlj/p.) + yk 

+ Y 

m s 2 + Yk V ( Y c..n.-e.) 

where Yk is an increasing sequence of positive real numbers 

(k=l,2,3,...) and is termed the penalty parameter. 

Following Rao (1984) the estimation proceeds as follows. 

(i) Set k=l. Start with a set of values for the n.'s and a suit¬ 

able value for y.. 

(ii) Find the vector jj* that minimizes Q0j,Yk)« 

(iii) Test whether the point JJ* satisfies all the constraints. If 

JJ* is indeed feasible, then it is the desired minimum. Other¬ 

wise, set k=2 and choose the next value of the penalty param¬ 

eter which satisfies the relation 

Vi > \ 

(iv) Go to step (ii). 

The choice of the exterior penalty function method (over the inter¬ 

ior penalty function method) is made on grounds of expediency. The use 

of the interior penalty function method requires the specification of a 

vector from the feasible set as start values. In problems with a large 

number of constraints, finding an appropriate vector of start values 

itself becomes a mathematical programming problem. 
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The constraints specifying nonnegativity of parameter estimates, 

that is, n.>0, may be redundant since the objective function is defined 

only for positive values of the n.'s. Another point to be noted is that 

the function n.£n(n./p.j) is not defined when is exactly equal to 

zero. In implementing the optimization problem, insufficiency of arith¬ 

metic precision may cause some parameter to be estimated at zero (say 

nk). In such cases, it is proposed to set the corresponding summand in 

the objective function (i^ntn^/p^)) to zero, consistent with the limit¬ 

ing behavior of the function as 

For each value of the penalty parameter the unconstrained mini¬ 

mization is to be carried out using the Davidon-Fletcher-Powell variable 

metric method (Davidon, 1959; Fletcher and Powell, 1963). This method 

is preferred in cases where the number of variables in the objective 

function is large. In the present problem, the number of variables is 

equal to the number of cells in the multiway contingency table. The 

Davidon-Fletcher-Powell method does not require the evaluation of the 

matrix of second order partial derivatives of the auxiliary function. 

Further, being a conjugate gradient method, it is quadratically conver¬ 

gent. 

Following Rao (1984) the iterative procedure of the method is as 

follows. 

(i) Start with an initial vector n. and an sxs positive definite 

symmetric matrix , where s is the number of parameters to be 

estimated, that is, the number of cells in the contingency 

table. Usually is taken as the identity matrix I. Set 

iteration number n=l. 
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(ii) Compute the gradient of the function (VQ ) and at the point 

JJ and set 

(iii) Find the optimal step length A* in the direction £n and set 

^n+1 ^n + ^n^n 

Civ) Test the new point for optimality. If JJn+^ is optimal, 

terminate the iterative process. Otherwise go to step (v). 

(v) Update the H matrix as 

^n+1 ttn + Wn + Wn 

where 

*n Xn77 
£n£n 

and 

n 

$n V^n+1 ’ V(^n 

(vi) Increase the iteration number by one unit and go to step (ii) 

The computation of the gradient vector, the search direction, and 

the matrices Jj, jjj, and Jjl is straightforward. However, the efficient 

use of the method requires the accurate determination of the optimal 

step length A* at each iteration. The optimal step length is to be 

determined as follows. 
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Let$n = (Sm’S2n’-"’Ss n) where s is the number of cells in the 

table 

Then Gn+l = fin + X$n 

and *£+1 = (nln+XnSln’II2n+XnS2n.nsn+XnSsn^ 

Then the problem of finding the optimal step length reduces to finding 

the value of An which minimizes Q(jJn+A S), for fixed JJn and £ . 

Since A is the only variable, and since the function has continu¬ 

ous first and second order partial derivatives with respect to A , a 

Newton-Raphson procedure can be employed to determine the optimal step 

length. 

/ 

Extension to n Samples 

It is assumed that the samples are drawn independently. 

Let s^ denote the total number of cells in the kth sample (multi¬ 

way table) 

k = 1,2,... ,n 

p.k denote the observed probability (in the kth sample) for the 

ith cell) 

i = 1,2,.. ,s 

IIik denote the population probability (in the kth population) 

for the ith cell 

w^ denote a set of known weights, that is, 

n 
\ w. = 1 and 0 £ w, < 1 

k=l * K 



The estimation problem then becomes 

Minimize 

n sk 
I(H-P) ~ £ £ nik^n^ik^ik^ 

k 1 l 1 

subject to 

bk 

i nik 
i=l 1K 

= 1 k=l,2,... ,n 

i|1CjikTIik 9jk • ,mk mk<sk 

l 
i=l dJ’ikIIik - nJtk Z 1)2)... 

_> 0 i=l ,2,... jS^; k=l,2,...,n 

where c^^, 9j^, d^, and are known constants. 

The auxiliary function is 

n sk 

Q^ik’V “ k|1wki|iIIik5'n^TIik/p-ik^ 

n qk sk n sk 
+ Yh I l <(rij,k- l dj,iknik)> + Yh I I <(-n 

n k=l 4=1 !tK i=l 161K 1K nk=l i=l 

n sk o n m sk 
+ Y^ I ( I ^ik“l) + Y^ 1 I ( I cjikrTik"ejk^ 

nk=l i=l 1K nk=l ,i=l i=l J1K 1K JK 

where is the penalty parameter at the hth interation. 



CHAPTER V 

SIMULATION AND DATA ANALYSIS 

This chapter describes a simulation which was conducted to assess 

the practical utility of the methodology, and presents an illustrative 

example of how the methodology can be applied in a segmentation context. 

Simulation 

Although the nature of the non-linear programming problem and the 

use of the variable metric minimization method assures theoretical con¬ 

vergence to the global minimum, it is still necessary to assess the 

methodology from a practical standpoint. Numerical errors and the arbi¬ 

trary specification of the parameters of the algorithm (e.g., specifica¬ 

tions of convergence and termination criteria) may lead to lack of 

convergence or convergence to a sub-optimal feasible solution. For 

example, efficient use of the variable metric minimization method 

requires accurate determination of the step length. However, too much 

accuracy may result in convergence to sub-optimal solutions (Box, 1966). 

An important practical consideration is the rate of convergence. If the 

rate of convergence is inadequate even for problems of reasonable size, 

then alternative algorithms (minimization methods) should be studied. 

For any particular problem, the parameters of the algorithm can be spe¬ 

cified by trial and error to provide reasonably accurate solutions. 

However, the assessment of a methodology (in its implementation) re¬ 

quires that its performance be monitored over a wide variety of problems 

27 
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which form a representative sample drawn from the domain of application 

of the methodology. This requirement provided the rationale for the 

simulation design and the analysis of simulation results. 

Simulation Design 

Although the methodology can be applied to solve a variety of prob¬ 

lems in different disciplines, the focus of this dissertation is on the 

analysis of market segments. Therefore, the domain of application was 

restricted to segmentation issues in designing the simulation study. 

In the segmentation area alone several models can be hypothesized 

and tested. The appropriateness of a particular model or subset of 

models is a function of the specific problem situation and the manager¬ 

ial requirements, if any. However, one model which is of interest in 

almost all situations is an assessment of the extent to which a speci¬ 

fied set of descriptor variables serve to discriminate among segments. 

This assessment is carried out by estimating parameters (cell probabili¬ 

ties) under a model which hypothesizes that the descriptors jointly pro¬ 

vide no discrimination among market segments. Tests of and estimation 

under other models are meaningful only if the above hypothesis is 

rejected. Should the hypothesis not be rejected, the decision maker has 

to specify an alternative descriptor set for segment identification/ 

evaluation. Therefore, the model which tests the hypothesis of no dis¬ 

crimination among market segments was chosen for the simulation study. 

Given the above model, there exists infinitely many population 

structures (discrete probability distributions) from which random 
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samples can be drawn for use in the simulation. However, from the 

segmentation standpoint, these distributions can be placed on a bipolar 

continuum with one endpoint consisting of distributions which provide 

absolutely no discrimination and the other consisting of probability 

distributions which discriminate perfectly among segments. Mathematic¬ 

ally, the endpoints can be described as follows. 

Let n(g/ijk2,) be the conditional probability of being in the gth 

group (i.e., gth category of X ) given the ith, jth, kth and ith levels 

of descriptor variables X., Xj, X^ and X^ respectively, 

g = 1,2,...,6 

i = 1,2,...,1 

Z = 1,2,... ,L 

Then the end-point consisting of distributions which provide abso¬ 

lutely no discrimination is the set of all distributions which satisfy 

the condition 

nO/ijkZ) = n(2/ijkJl) = ... * H(g/ijkz) = ... = n(G/ijk*) 

V (ijkJl) 

Similarly, the end-point consisting of distributions which discrim¬ 

inate perfectly among segments is the set of all distributions which 

satisfy the condition 

_/ f 1 for one category of X„ 
-(g/ijk£) for 0ther categories 8f X^ 

V (ijki) 

In order to generate random samples for the simulation it was de¬ 

cided to specify two population structures/distributions. .ne *irst 
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distribution provided absolutely no discrimination among groups. The 

number of groups was fixed at two. The second distribution was speci¬ 

fied by the condition 

n(l/ijia) = .8 

n(2/ijk£) = .2 

\/ (ijk£) 

which provides reasonably good discrimination. It was not considered 

necessary to vary the number of groups for reasons given later. 

Given the above models, the size of the problems can be varied by 

changing the number of descriptor variables or the number of categories 

associated with each descriptor variable. Insofar as the models are 

concerned, the method by which the problem size is altered is immaterial 

since the only effect is that the cell probabilities decrease as the 

number of cells in the complete multiway table increase. Therefore, 

rather than consider the number of descriptor variables or the number of 

categories for each variable, the problem was reformulated in terms of 

varying the total number of cells. It follows from the above that vary¬ 

ing the number of groups would only serve to change the total number of 

cells; hence the decision not to incorporate the number of groups as a 

factor in the study. Thus the effect of varying the problem size was 

incorporated by specifying three levels of problem size-64 cells, 32 

cells, and 16 cells. Assuming that the number of groups is fixed at two 

and that all descriptor variables are dichotomous, these cell sizes 

correspond to problems having 5, 4, and 3 descriptor variables respec¬ 

tively. While an upper limit of 64 cells might appear small, it appears 



unlikely that a confirmatory approach such as the one adopted in this 

dissertation can be implemented with large problems since the decision¬ 

maker has to specify a model by positing constraints on cell probabili¬ 

ties. Except possibly for the initial hypothesis of no discrimination 

among groups most models incorporate constraints which are essentially 

derived from the intuitions and knowledge of the decision-maker. Conse¬ 

quently the cognitive strain of model specification increases rapidly 

with increasing problem size. On the other hand, if the problem is 

large and the set of constraints relatively few in number, the methodol¬ 

ogy is unlikely to yield estimates which differ meaningfully from those 

observed in the sample. 

In addition to the above, the effect of varying sample size was' 

explicitly incorporated by specifying three levels of sample size--100, 

500, and 1,000 respectively. The upper limit reflects what is usually 

observed in practice. This factor was incorporated to examine the 

effect of variability due to sampling. As the sample size increases, 

the distribution observed in the sample can be expected to conform more 

closely to the underlying population structure. Thus the simulation 

design used was a three-way layout with eighteen cells—two population 

structures (uniform and discriminant), three levels of problem size 

(16, 32, and 64 cells), and three levels of sample size (100, 500, and 

1,000), completely crossed with one another. The number of replications 

in each of the eighteen cells was set at 100. For all cells, the esti¬ 

mation of cell probabilities was carried out under the model that the 
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descriptor variable set did not provide for any discrimination between 

the two groups. 

Specification of Dependent Measures 

As mentioned earlier, an important practical consideration is the 

rate of convergence. There exist several criteria which could be used 

to assess this. The implementation of the methodology required three 

different types of iterations (each type being nested in the type imme¬ 

diately following)—a one-dimensional minimization using the cubic 

interpolation method to determine the optimal step length, the uncon¬ 

strained minimization of the penalty function itself for a predetermined 

value of the penalty parameter, and iteration of the above for a se¬ 

quence of penalty parameter values. The third type of iteration, that 

is, the number of times the penalty function was minimized (KITER) was 

chosen as the measure of the rate of convergence. The choice was a 

logical consequence of the program implementation. For the sake of 

efficiency the maximum number of iterations allowed for the uncon¬ 

strained minimization of the penalty function was set equal to the 

number of variables (i.e., the number of cells in the multiway table). 

Therefore this number varied with the problem size and could not be used 

as a measure of the rate of convergence. Since the iterations of the 

optimal step-length determination were nested within the above, that 

measure could not be used either. 

A second measure, designed to assess the methodology (i.e., the 

information-theoretic approach) rather than the algorithm used, was the 
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average absolute deviation of the cell probability estimates (ABSDEV) 

from a predesignated probability distribution. The averaging was done 

over the number of cell probabilities estimated. The baseline distribu¬ 

tion (from which absolute deviations were computed) was taken to be the 

population model of no discrimination between groups, for all cells in 

the simulation design. The rationale for choosing this measure is 

described below. The constraints in the model do not require the algo¬ 

rithm to recover the population structure. However, the model con¬ 

straints would require that probability estimates be close to the above 

baseline distribution at least to the extent the sample mimics the popu¬ 

lation structures used for sample generation. 

In summary, two dependent measures were specified--the number of 

times the penalty function was minimized (hereinafter referred to as 

"KITER") and the average absolute deviation of the cell probability 

estimates from the baseline distribution (hereinafter referred to as 

"ABSDEV"). 

Simulation Results 

The analysis of results obtained from simulation are reported for 

the two dependent measures separately. In both cases, the data were 

analyzed in an ANOVA framework. Some additional analysis was carried 

out using the second measure (ABSDEV) to investigate its distribution 

about the baseline distribution. The alpha level was set at .10 for all 

statistical tests of significance. 
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Results for KITER (the Measure 
of the Rate of Convergence 

Table 1 provides the ANOVA table for the dependent measure KITER. 

Although the table provides results of all main effects and interac¬ 

tions, any explanation of the findings should begin with the highest 

order interaction which is found to be significant and focus on the 

simple main effects associated with that particular interaction term. 

Interpretation of lower order interactions and main effects is not mean¬ 

ingful and provides no additional information. In the present case, 

the three-way interaction is not statistically significant. However 

all two-way interactions are significant. Hence the analysis is based 

on the simple mai-n effects associated with these interaction terms. 

Table 2 provides the cell means necessary to analyze these simple main 

effects. 

The general framework used for the analysis of simple main effects 

is as follows. If a kth order interaction is the highest significant 

effect in an n-way (n>k) layout (which implies that the nth order inter¬ 

action is the highest possible) then variations in cell means across 

levels of one factor are analyzed for fixed levels of the remaining k-1 

factors appearing in that interaction term. This is repeated for each 

of the k factors. Thus the results provided in Table 2 can be inter¬ 

preted as follows. For every level of sample size, the discriminant 

model required more iterations than the uniform model. This is as 

expected since the estimation in all cases was carried out under the 

model hypothesizing no discrimination between groups. The samples 
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TABLE 1 

ANOVA RESULTS FOR KITER 

Source of Variation 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F 

Main effects 

(i) Sample size 3-21.01 2 160.51 1085.07 

(ii) Model 246.42 1 246.42 1665.86 

(ill) Problem size 14.06 2 7.03 47.52 

(iv) Total 
[(iMiiMiu)] 581.49 5 116.30 786.21 

Two-way interactions 0 
• 

(i) Sample size x 
Model 5.52 2 2.76 18.67 

(ii) Sample size x 
Problem size 142.78 4 35.70 241.31 

(iii) Model x Problem 
size 100.05 2 50.03 338.19 

(iv) Total 
248.35 8 31.04 209.87 

Three-way interactions 0.273 4 .07 0.46* 

Residual 263.60 1782 .15 

*Not significant at the pre-specified alpha level of .10 
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TABLE 2 

CELL MEANS FOR THE ANALYSIS OF SIMPLE MAIN EFFECTS (KITER) 

Model 

Sample size Uniform Discriminant 

100 
500 

1000 

8.11 9.01 
7.34 8.00 
7.33 7.99 

(b) Problem Size 

Sample size 16 32 64 

100 8.11 8.52 9.05 
500 8.00 7.50 7.50 

1000 8.00 7.50 7.49 

Problem Size 

Model 16 32 64 

Uniform 8.00 7.31 7.47 
Discriminant 8.07 8.37 8.56 
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generated using the uniform model would, on average, be more similar to 

the hypothesized model, and therefore be expected to converge more 

readily. For both levels of the model KITER decreases with increasing 

sample size. While the result is not unexpected for the uniform model, 

the plausible explanation for the occurrence of the same in the case of 

the discriminant model is that with increasing sample size, the proba¬ 

bility of observing cells with zero counts (given the population struc¬ 

ture used to generate the samples) decreases. It is likely that the 

logarithmic component of the objective function affects the rate of 

convergence for samples with cell probabilities in the neighborhood of 

zero. 

In examining the simple main effects associated with the other two 

interactions certain anomalies manifest themselves. In the case of the 

interaction between sample size and the problem size KITER decreases 

with increasing problem size for sample sizes of 500 and 1,000 and 

increases with increasing problem size when the sample size is 100. 

This suggests that a sample size of 500 is adequate at least for prob¬ 

lems of sizes incorporated into the simulation design. This is further 

substantiated by the observation that for every level of problem size 

KITER decreases as the sample size is increased from 100 to 500 and 

remains fairly stable thereafter. An inexplicable anomaly occurs in the 

interaction of problem size and model variations. While KITER increases 

with increasing problem size for the discriminant model, in the case of 

the uniform model it decreases as problem size increases from 16 to 32 

cells and then increases. In the absence of any other probable cause. 
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this can only be interpreted as a sampling artifact. However, for all 

levels of problem size KITER is higher for the discriminant model. 

Results for ABSDEV (the Measure of Deviation 
from the Baseline Distribution) 

Table 3 presents the ANOVA table for the dependent measure ABSDEV. 

Since the three-way interaction is significant, the analysis is done for 

the associated simple main effects. The appropriate cell means are 

provided in Table 4. 

The analysis of simple main effects yields the following general 

conclusions. ABSDEV is less, on average, for the uniform model compared 

to the discriminant model although the differences tend to diminish with 

increasing sample size. With smaller sample sizes one can expect to 

find more zero cells (i.e., cells with zero counts) in samples generated 

from the discriminant population structure. In samples generated from 

either population structure ABSDEV tends to decrease with increasing 

sample size. Contrary to expectations, for fixed levels of sample size 

and model, ABSDEV did not vary as problem size was varied in three of 

the six comparisons. This may well be a sampling artifact. Another 

counterintuitive observation is that for sample size of 500 ABSDEV 

increases with decreasing problem size for both uniform and discriminant 

models. The same phenomenon occurs to a lesser extent with sample size 

of 1000. 

Distribution of ABSDEV. In another attempt to assess the perfor¬ 

mance of the methodology, the distribution of ABSDEV in each cell of the 

simulation design was studied. Within each cell the 100 replications 
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TABLE 3 

ANOVA RESULTS FOR ABSDEV 

Source of Variation 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F 

Main effects 

(i) Sample size 0.057 2 0.029 3436.14 

(ii) Model 0.004 1 0.004 534.11 

(iii) Problem size 0.002 2 0.001 127.24 

(iv) Total 
[OWIIMUO] 0.064 5 0.013 1532.17 

Two-way interactions 
• 

(i) Sample size x 
Model 0.004' 2 0.002 223.39 

Cii) Sample size x 
Problem size 0.000 4 0.000 1.65* 

(iii) Model x Problem 
size 0.000 2 0.000 4.33 

(iv) Total 
[(i)+(ii)+(iii)] 0.004 8 0.000 57.76 

Three-way interactions 0.000 4 0.000 3.49 

Residual 0.015 1782 0.000 

*Not significant at the pre-specified alpha level of .10 
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TABLE 4 

CELL MEANS FOR THE ANALYSIS OF SIMPLE MAIN EFFECTS (ABSDEV) 

(a) Problem size = 16 

Sample size 

100 
500 

1000 

Model 

Uniform 

0.01 
0.01 
0.00 

Discriminant 

0.02 
0.01 
0.01 

(b) Problem size = 32 

Sample size 

100 
500 

1000 

Model 

Uniform 

0.01 
0.00 
0.00 

Piscriminant 

0.02 
0.01 
0.00 

(c) Problem size = 64 

Sample size 

Model 

Uniform Discriminant 

100 
500 

1000 

0.01 
0.00 
0.00 

0.02 
0.00 
0.00 
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available were used to compute the standard deviation. Each value of 

ABSDEV was then compared to the standard deviation corresponding to that 

cell to assess the nature of the distribution. Using the standard 

deviation as the unit of measurement, the frequency of occurrence of 

ABSDEV in different intervals (ranges) was computed. The results are 

presented in Table 5 for each of the eighteen cells. 

From the correspondence that exists between each sample (replica¬ 

tion) and the set of cell probability estimates associated with that 

sample it is clear that the distribution of the solutions would bear a 

direct relation to the distribution of the samples. However, the meas¬ 

ure ABSDEV is an average deviation where the averaging is done over the 

cell probabilities. Therefore, it is reasonable to expect the Central 

Limit Theorem to hold and consequently about 68% of the values of 

ABSDEV can be expected to lie within the range of one standard devia¬ 

tion. On average this expectation is largely fulfilled. The two most 

serious aberrations in this regard are the two cells characterized by 

the treatment combinations of (1) Uniform model, problem size = 64, 

sample size = 100 and (2) Discriminant model, problem size = 16, sample 

size = 1000. Overall, the results suggest that the variations in the 

solutions obtained are a direct consequence of sampling variations. It 

should be noted that the standard deviation used above was a sample- 

based estimate rather than the true population value since the latter 

was unknown. 
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TABLE 5 

DISTRIBUTION OF ABSDEV 

Model 
Problem 

Si ze 
Sample 

Si ze a b 

Range* 

c d e 

Uniform 16 100 35 11 15 16 23 

Uniform 16 500 31 18 20 13 18 

Uniform 16 1000 30 16 17 17 20 

Uniform 32 100 34 6 25 18 17 

Uniform 32 100 34 6 25 18 17 

Uniform 32 1000 29 18 11 22 20 

Uniform 64 100 42 10 15 14 19 

Uniform 64 500 30 15 13 21 21 

Uniform 64 1000 32 14 16 30 18 

Discriminant 16 100 28 13 16 16 27 

Discriminant 16 500 33 15 16 17 19 

Discriminant 16 1000 41 9 13 15 22 

Discriminant 32 100 37 7 19 13 24 

Discriminant 32 500 32 11 19 15 23 

Discriminant 32 1000 37 9 13 16 25 

Discriminant 64 100 27 22 29 0 22 

Discriminant 64 500 35 12 20 20 13 

Discriminant 64 1000 34 17 12 21 16 

*a - greater than one standard deviation 
b - between 75% and 100% of standard deviation 
g - between 50% and 75% of standard deviation 
d - between 25% and 50% of standard deviation 
e - within 25% of standard deviation 
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Summary of Simulation Results 

Two measures of performance were used--one to assess the perfor¬ 

mance of the algorithm (KITER) and another to assess the performance of 

the methodology (ABSDEV). The analysis of simulation results shows that 

on both counts the performance was satisfactory, and with few excep¬ 

tions, in accordance with expectations. While the ANOVAs showed signif¬ 

icant effects due to varying levels of different factors, the tests 

should be interpreted with some caution. An important assumption in the 

analysis of variance is that of variance homogeneity across treatments. 

This assumption is clearly violated at least in treatments with differ¬ 

ing sample sizes and has implications for how the F-tests for the sta¬ 

tistical significance of various main and interaction effects should be 

interpreted. On the other hand, the relatively large number of observa¬ 

tions (1800 in all) may have a countervailing effect since the F-test is 

relatively robust to variance heterogeneity when sample sizes are large. 

However, large sample sizes make the F-test relatively powerful with the 

result that differences in means which are found to be statistically 

significant may have no practical significance whatsoever. At least 

with one measure (KITER) this appears to be the case especially consi¬ 

dering that only integer valued differences are meaningful from a prac¬ 

tical standpoint. Also no direct correspondence should be made between 

variations (or lack thereof) in KITER and computer time required since 

the number of iterations in the middle loop (i.e., the iterations to 

minimize the penalty function for a fixed value of the penalty 



parameter) was allowed to vary in accordance with the requirements of 

the algorithm. 
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An Illustrative Example 

Description of Data 

The data for the illustrative example are taken from Goldstein and 

Dillon (1978) and previously reported in an abridged form by Dash, 

Schiffman and Berenson (1977). Data on information-seeking activities 

were used to discriminate between two groups—shoppers who patronized a 

full-line department store and shoppers who patronized an audio equip¬ 

ment specialty store. The descriptor set consisted of four dichotomous 

variables related to information-seeking activities and is described 

below (Goldstein and Dillon, 1978). 

Variable 1: (Information Seeking) 

1 if the individual sought information from friends 
x, = and/or neighbors before purchase 

0 otherwise 

Variable 2: (Information Transmitting) 

1 if the individual has recently been asked for an 
x2 = opinion about buying any audio product 

0 otherwise 

Variable 3: (Prior Shopping Experience) 

1 if the individual has shopped in any stores for 
x3 = audio equipment before making a decision 

0 otherwise 

Variable 4: (Catalog Experience) 

1 if the individual had sought information from 
x. = manufacturers' catalogs before purchase 

0 otherwise 
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The complete cross-classification of all respondents in the sample as 

reported by Goldstein and Dillon (1978, p. 16) is given in Table 6. 

Goldstein and Dillon (1978) used the data to illustrate the similari¬ 

ties/differences in the classification of states to one of the two 

groups using different methods such as the ful1-multinomial, nearest 

neighbor and first-order independence rules. 

Reanalysis of the Data 

The first step in the reanalysis was to test the hypothesis (H^) 

that the four descriptor variables did not provide any discrimination 

between the two groups. Tests of other hypotheses are meaningful only 

if the above hypothesis is rejected. To test the hypothesis of no 

discrimination between groups, the estimation of the population cell 

probabilities was done subject to the following constraints. Letting 

n(gijk£) denote the joint probability of being in the gth group and the 

ith, jth, kth, and £th categories of the descriptor set X., X., X^, X^ 

respectively, the constraints are given by 

n(nill) - n(2im) = o 

n(imo) - n(2ino) = o 

• • • 

• • • 

• • • 

11(10000) - 11(20000) = 0 

In general 

n(lljkJt) - n(2ijkj>) = 0 V (ijkJl) 
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TABLE 6 

DATA PRESENTED BY GOLDSTEIN AND DILLON (1978) 

(X 1 

State 
X2 X3 

Full-1ine 
Department Store 

Audio Equipment 
Specialty Store 

1111 

1110 

110 1 

110 0 

10 11 

10 10 

10 0 1 

10 0 0 

0 111 

0 110 

0 10 1 

0 10 0 

0 0 11 

0 0 10 

0 0 0 1 

0 0 0 0 

5 

2 

15 

4 

3 

3 

3 

5 

14 

8 

26 

12 

2 

3 

32 

17 

86 

22 

23 

11 

3 

4 

4 

3 

33 

6 

30 

5 

8 

6 

8 

6 
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The value of the objective function at the minimum was .2230, 

which, when multiplied by twice the sample size, is distributed as a 

central chi-square with degrees of freedom equal to the number of 

linearly independent equality constraints in the model. This excludes 

the equality constraint which requires the cell probabilities to sum to 

unity. The number of relevant equality constraints in the model is 16. 

The value of the chi-square random variable is approximately 183.75 

(2x412x.2230) and therefore the hypothesis of no discrimination between 

groups is unambiguously rejected. In the present case this finding is 

hardly surprising since visual examination of the sample data would 

serve to indicate such an outcome. Given the rejection of the model, 

the estimates of cell probabilities are not meaningful and therefore are 

not reported. Having established that the descriptor set provides dis¬ 

crimination between the two groups, the logical step is to determine 

whether there exists some managerially meaningful structure/model under¬ 

lying the data. In the present case, closer examination of the sample 

data reveals that not all profiles (that is, states described by the 

descriptor set alone) contribute to discrimination between the two 

groups. Thus from a managerial standpoint it would be useful to sepa¬ 

rate the profiles which discriminate well between the two groups from 

those which do not. A framework which provides for such a partition of 

the profiles is described below. 

It is clear even from a cursory examination of the audio equipment 

market that consumers exhibit varying degrees of involvement. Given the 

nature of the variables in the descriptor set, the degree of involvement 
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can be characterized by the number of variables to which the individual 

responds positively. For example, the profiles denoted by (1111) and 

(0000) describe individuals with the highest and lowest degrees of 

involvement respectively. If it is assumed that all four variables 

describe the degree of involvement equally well (i.e., they are equally 

weighted), then any two profiles can be ordered (by the degree of in¬ 

volvement) by comparing the number of ones appearing in each profile. 

Thus profiles (1100) and (0101) would imply the same degree of involve¬ 

ment whereas (1100) implies a lesser degree of involvement compared to 

(0111). In this framework the midpoint is characterized by profiles 

with two zeros and two ones. 

The above framework is used to develop a sequence of nested hypo¬ 

theses as follows. The first hypothesis (H2) in the sequence is that 

only states (1111) and (0000) serve to discriminate between segments. 

This implies the set of constraints 

n(lijkit) - n(2ijk£) = 0 

for all (ijk£) except (1111) and (0000). There are fourteen constraints 

in all and the model comprising these is nested in the model described 

earlier, that is, the hypothesis that no profile in the descriptor set 

discriminates between segments. The minimum value of the objective 

function was .757 yielding a chi-square value of approximately 62.38 

with 14 degrees of freedom which leads to rejection of the hypothesis. 

The next hypothesis, (_H3), nested in the previous two, is that only 

states with at least three zeros (or ones) provide discrimination 

between the two segments. The constraints are 
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n(lljkJi) - n(2ijk£) = o 

for all (ijk£) with exactly two ones (or equivalently, exactly two 

zeros). This gives a model with six constraints. The value of the 

objective function at the minimum was .0102 and the chi-square value was 

8.4 with 6 degrees of freedom. The critical value at the .10 level is 

10.645. Therefore the hypothesis is supported. The estimates of cell 

probabilities corresponding to the hypothesis are given in Table 7. 

The table shows certain interesting features. All unconstrained 

probabilities are close to but higher than the corresponding observed 

values. The same phenomenon occurred with the cell probability esti¬ 

mates corresponding to the previous hypothesis (H2). The effect of sam¬ 

ple size on the rejection or acceptance of hypotheses is highlighted by 

the fact that even though most probability estimates are close to the 

observed values, the chi-square value is fairly high. However, the 

utility of the estimates can best be illustrated in using them to allo¬ 

cate the states to one of the two groups using the following rule. 

Assign state (ijk£) to n-j if n(lijk£)>n(2ijk£) and to n2 if 

n(lijk£)<n(2ijk£). The assignment is to be made randomly if equality 

holds. The assignments are given in Table 8. For comparison purposes 

the allocation according to the full multinomial model (see Goldstein 

and Dillon, 1978) is also presented. 

Except for those states for which assignments are to be made at 

random and the state (1101) the two rules are in agreement. The allo¬ 

cation using the estimated cell probabilities appears to be more conser¬ 

vative. With both rules an anomaly occurs with state (0010). Contrary 
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TABLE 7 

ESTIMATES OF CELL PROBABILITIES UNDER HYPOTHESIS H3 

State 

Full-1ine 
Department 
Observed 

Store (n,) 
Estimated 

Specialty 
Observed 

Store (n2) 
Estimated 

1111 .0121 .0123 .2087 .2108 

1110 .0048 .0049 .0534 .0539 

1101 .0364 .0368 .0558 .0564 

nooa .0097 .0163 .0267 .0163 

ion .0073 .0074 .0073 .0074 

101 oa .0073 .0085 .0097 .0085 

1001a .0073 .0085 .0097 .0085 

1000 .0121 .0123 .0073 .0074 

0111 .0340 .0343 .0801 .0809 

onoa .0194 .0170 .0146 .0170 

0101a .0631 .0685 .0728 .0685 

0100 .0291 .0294 .0121 .0123 

001 la .0048 .0098 .0194 .0098 

0010 .0073 .0074 .0146 .0147 

0001 .0777 .0784 .0194 .0196 

0000 .0413 .0417 .0146 .0147 

aindicates states with equality constraints 

The probabilities may not sum to one due to rounding error. 
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TABLE 8 

ALLOCATION OF STATES TO POPULATIONS 

State Allocation 
Allocation by full 
multinomial model 

nn n2 n2 

mo n2 n2 

1101 n2 nl 

noo Random n2 

ion Random nl 

1010 Random 

1001 Random nl 

1000 ni nl 

0111 n2 n2 

0110 Random nl 

0101 Random nl 

0100 ni nl 

0011 Random n2 

0010 n2 n2 

0001 ni *1 

0000 nl nl 
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to expectation, the state is assigned to population n2, and may repre¬ 

sent a sampling artifact. 

Summary of Reanalysis 

The reanalysis of the data presented by Goldstein and Dillon (1978) 

illustrates the potential of the methodology for model building and 

hypothesis testing. The methodology is sufficiently flexible for a 

wide variety of models to be hypothesized and tested. In addition the 

methodology permits the development of models which provide for conser¬ 

vative allocation rules in discrimination problems. 



CHAPTER VI 

CONCLUSIONS 

This dissertation develops a model-based approach to the analysis 

and evaluation of market segments. The segmentation problem was formu¬ 

lated as one of specifying two sets of variables--a basis set and a 

descriptor set. The basis set consists of variables-which enable the 

decision maker to form managerially meaningful segments. The descriptor 

set serves to discriminate among segments. 

From a methodological standpoint, the segmentation task was concep¬ 

tualized as a dual problem of clustering and discrimination. A norma¬ 

tive framework for discriminating among segments using descriptor sets 

consisting of categorical variables was developed. The use of the 

information theoretic approach made it possible to perform statistical 

estimation and hypothesis testing simultaneously. 

A simulation study was designed to assess the performance of the 

methodology and the efficiency of the algorithm used to implement the 

methodology. The results showed that the methodology performed satis¬ 

factorily in uncovering any underlying structure. For problems of 

reasonable size, the algorithm was found to be reasonably efficient. 

The methodology was applied to a particular data set to show how the 

problem of discriminating among segments could be specified as a 

sequence of tests of nested models/hypotheses. 

While the methodology was developed in the context of discriminat¬ 

ing among segments, it is applicable in a wide variety of problem 

53 
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settings. There are two general conditions under which the methodology 

can be used. First, the variables used are categorical in nature. 

Second, a model can be specified, that is, a set of relationships 

posited to hold among population parameters/probabilities. The estima¬ 

tion of population parameters is then carried out under the null hypo¬ 

thesis that the model holds in the population concerned. A significant 

value of the chi square test statistic would indicate lack of support 

for the null hypothesis, that is, the model. 

There are many other areas in marketing itself where this methodol¬ 

ogy could be fruitfully applied. One important application is to the 

analysis of brand switching data and the inference of market structure. 

Another possible extension is to latent class analysis which is present¬ 

ly modeled as a special case of- the general framework of log!inear 

models. 
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