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ABSTRACT 

Nitrogenous and Phosphorous Nutrition of Soybean in Symbiotic 

Association with Mycorrhizae and Rhizobia 

February, 1986 

Ramanie Shantha Karunaratne, B.S., M.S., University of Sri Lanka 

Ph.D., University of Massachusetts 

Directed by: Professor John H. Baker 

Soybean forms a symbiotic association with rhizobial bacteria, 

and vesicular-arbuscular-mycorrhizal (VAM) fungi. This tripartite 

association of soybean-Rhizobium-VAM fungi could enhance crop 

production by increasing the efficiency of plant nutrition. 

A series of sand culture experiments were carried out in a 

greenhouse at the University of Massachusetts at Amherst to determine 

the influence of P and N nutrition on VAM infection and VAM-induced 

growth benefits. Nodulating and nonnodulating isolines of soybeans 

(Glycine max Merr. cv Clay) were supplied with hydroxyapatite or 
9 

dicalcium phosphate with N nutrition from 100% NO3", 25% NH^ and 75% 

NO3", or 50% urea and 50% NO3". Treatments containing NH^ and urea 

will be referred to as the ammonium and urea regimes. 

Plants treated with the urea regime exhibited the highest 

percentage of VAM infection, and the infection increased the tissue N 

content of these plants relative to the nonmycorrhizal plants. 

Enhancement of tissue P accumulation through VAM was greater with 

hydroxyapatite than with dicalcium phosphate. Since they received 



adequate N, nonnodulating plants benefitted more from mycorrhizal 

infection than nodulating plants. Nodulating soybeans exhibited 

mycorrhizal benefits when the following factors were met: (1) greater 

than 70% infection with VAM; (2) availability of a reduced N form (3) 

a root N/P ratio approaching 15 and (4) a soil pH approaching 7. 

These conditions were met best by urea nutrition. For the 

nonnodulating isoline, a neutral pH was not essential for determining 

VAM benefits. Ammonium or urea nutrition met the first 3 conditions 

for these plants. 

Effects of foliar or soil applications of P on the establishment 

and progression of mycorrhizal infection were investigated. High 

levels of P, either in soil or foliarly applied, inhibited VAM 

infection. The action of soil P in inhibiting VAM infection was 

limited to the of establishment of infection. 

Kinetic parameters of phosphate uptake were determined. 

Mycorrhizally infected roots depleted culture solution P faster than 

nonmycorrhizal roots and were characterised by lower P efflux values 

than nonmycorrhizal roots. Mycorrhizal roots had a higher Vmax value 

than nonmycorrhizal roots but did not exhibit a higher affinity for 

phosphate than nonmycorrhizal roots. 
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INTRODUCTION 

Soybean (Glycine max Merr. cv Clay) is a major protein supplying 

grain legume. Approximetely 40 to-45 percent and 18 to 20 percent of 

the soybean seed is made up of proteins and oils respectively. In 

spite of its low oil content, the output of oil per acre of soybean is 

often higher than that of other oilseeds. In the U.S. over 56 million 

acres are presently under soybean cultivation, and the current average 

yields are 1610 kg/ha (Boyer, 1982). Production of soybeans on low 

fertility soils is limited by inefficient recovery of nutrients of 

which P is of particular importance. 

Soybeans usually form symbiotic associations with nodulating 

bacteria and mycorrhizal fungi. The symbiotic association with 

Rhizobium species allows the plant access to atmospheric nitrogen. 

The association with vesicular-arbuscular mycorrhizal fungi (VAM) 

allows the plant an increased access to limited nutrients and water. 

The P nutrition of the plant is of special significance in this 

regard. Phosphorous (Daft and Nicolson, 1966; Mosse, 1973), zinc 

(Gilmore, 1971), and copper (Ross and Harper, 1970; Daft and 

Hacskaylo, 1975) are found in higher concentrations in mycorrhizal 

than in non-mycorrhizal plants. These elements influence nodulation 

and N£ fixation of leguminous plants (Van Schreven, 1958). 

In addition to an enhanced access to phosphate and other 

nutrients, VAM fungi are believed to make a crop more tolerant to A1 

or Mn toxicity (Harley and Smith, 1983). These factors bear a special 

1 
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relevance to the naturally acidic soils of the northeastern U.S., 

including those in Massachusetts (Brady, 1974; Van Wambeke, 1976). 

Some of the unfavorable conditions arising from soil acidity includes 

low availability of P along with excessive A1 and or Mn cocentrations 

(Baker, 1976; Jackson, 1967). Studies on VAM would benefit developing 

and underdeveloped countries where soils are commonly deficient in 

phosphate and the cost and the rapid fixation of soluble P fertilizers 

preclude their use. Mycorrhizae also enable an increased utilization 

of cheaper sources of P such as rock phosphate, and a maximum growth 

response to be obtained with smaller applications of P. 

The tripartite association of soybean-Rhizobium and VAM fungi, 

when properly exploited could help increase crop production. Maximum 

benefits from the fungus is obtained at a reasonably low level of P 

supply. At supra optimal levels the mycorrhizal fungus may behave as 

a carbon drain, instead of a P enriching source. Combined nitrogen in 

general has an inhibitoty effect on nodule initiation, nodule 

development and fixation. However, small amounts of combined N 

stimulate the symbiosis. 

Strategies for achieving an efficient functioning of the 

symbionts therefore require a knowledge of the adequate amounts of N 

and P fertilizers that would enhance the symbiont's efforts without 

inhibiting them. This in fact would alleviate problems of further 

acidification resulting from higher N fertilizer applications to 

already acidic soils. 

This work is aimed at determining the influence of P and N 
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nutrition on VAM infection and VAM induced growth benefits, in 

nodulating and nonnodulating soybeans. Effects of foliar and soil 

applications of P fertilizer on the establishment of mycorrhizal 

infection were investigated. In addition kinetic parameters of 

phosphate uptake were determined in mycorrhizal plants. 



CHAPTER I 

LITERATURE REVIEW 

Structure and Occurrence of Mycorrhizal Fungi 

Mycorrhizae belong in two major categories of fungal, root 

associations, the ectomycorrhizae and the endomycorrhizae. A third 

but minor category, ectendomycorrhizae, which is intermediate in type, 

is present on certain tree species and under specific ecological 

conditions. The fungal associate of ecto-or the sheathing type of 

mycorrhizae penetrates the root intercellularly and partially replaces 

the middle lamella between the cortical cells. The hyphal arrangement 

formed is called the Hartig net (Bjorkman, 1970). The infected roots 

appear enlarged due to the formation of an external fungal sheath. 

The dichotomous branching of these mycorrhizal roots makes them easily 

identifiable with the naked eye. The majority of ectomycorrhizal 

fungi are classified among the higher Basidiomycetes (Marx, 1972). A 

few species belong among the Ascomycetes. Ectendomycorrhizae resemble 

ectomycorrhizae in forming a Hartig net and a fungal mantle. They 

resemble endomycorrhizae in that cortical tissues are intracellularly 

penetrated. Very little is known about the fungi responsible, and 

these are currently unclassified (Marx, 1972). Endomycorrhizas 
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include three distinct groups that do not form a fungal sheath around 

roots, and their presence is determined only microscopically. One, 

formed mainly by a group of cup fungi, is known only in the Ericales. 

Another confined to orchid protocorms is formed by certain 

Basidiomycetes. The third is the vesicular-arbuscular type formed by 

phycomycetous fungi of the family Endogonaceae. Briefly the 

vesicular-arbuscular mycorrhizae (VAM) have three components, the host 

root cells, the endophytic fungal hyphae, and hyphae growing outside 

the root. Arbuscules are profusely branched organs forming dense 

clumps of fine hyphae which fill cortical cells of the root early in 

the infection. Arbuscules become subjected to degeneration after a 

period of 4 to 15 days. The same cortical cells may be reinvaded by 

newly forming arbuscules (Cox and Tinker, 1976). Vesicles develop 

later than arbuscules and may be found as oil-filled, terminal 

swellings on both external and intercellular hyphae. 

Vesicular-arbuscular mycorrhizal fungi are found in all climatic 

zones. While ecctomycorrhizae occur more frequently on tree species 

in temperate climates, the VAM occur on a far greater variety of 

plants including tropical tree species. Certain host species may have 

both endo-and ectomycorrhizae at the same time. Some families such as 

Cruciferae and Chenopodiaceae are rarely infected by VAM fungi 

(Kruckelmann, 1975). 
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Functions of Mycorrhizae 

Phosphorous Nutrition 

A large proportion of soil phosphate is in forms (organic or 

inorganic) not readily available to plants. Phosphate is very 

immobile in soil and tends to be adsorbed readily on to soil colloids. 

In addition, levels of available phosphate are subject to considerable 

fluctuations in some soils. These factors contribute to the 

complexity of P availability to roots. 

Phosphorous application gives rise to profitable yield responses 

when the soil is low in available P and when other nutrients are 

adequately supplied (Miller et al., 1964). Phosphorous has been seen 

to increase nodule and soybean seed weight. This response depends on 

variety, seasonal conditions, and stage of development (de Mooy and 

Pesek, 1966). Soybeans absorb P predominantly during flowering 

(Hanway,1962). 

Vesicular-Arbuscular Mycorrhizae and Phosphorous Nutrition 

Mycorrhizae are of benefit to the P nutrition of plants, under 

conditions of limited P availability. The mycorrhizal situation is 

essentially similar to the possession of extra root hairs by the plant 

(Baylis, 1972). Mycorrhizae increase the root soil contact and hence 
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the volume of soil exploited by the mycorrhizal root. Since the root 

absorbs phosphate ions more rapidly than the ions can be replenished 

by diffusion, phosphate depletion zones constantly arise around the 

root. By extending several centimeters into the soil VAM fungi gain 

access to P beyond these depleted zones. Therefore the fungi offer a 

means of overcoming the diffusive impedence around the roots, in a 

manner similar to root hairs. It is believed that responses to VAM 

infection are greater in species with unbranched roots and few root 

hairs (e.g. A11ium, Coprosma, Citrus). This phenomenon is described 

as 'mycotrophy' (Baylis, 1972,1975). 

High P availability precludes mycorrhizal benefits. Externally 

applied inorganic phosphate, whether soil applied (Mosse, 1973; 

Hayman, 1975; Jasper, Robson and Abbott, 1979) or applied as a liquid 

feed (Daft and Nicolson, 1969) decreases the level of VAM infection in 

many host species. Effects of P on fungal growth may be mediated via 

the root or directly on fungal growth in the soil. Mosse (1973) 

discounted the second possibility on the basis that in many cases 

hyphae growing on the surface of the root looked normal. Sanders 

(1975) injected a phosphate solution into the hollow leaves of onion 

plants and observed a drop in VAM infection. Amount of external 

mycelium produced per cm of infected root was reduced from 3.5 to 2 

mg. Changes in the anatomy of infections similar to those seen by 

Mosse (1973) were observed. Based on these data, Sanders concluded 

that the effects of soil P in reducing infection were root-mediated. 

Split-root techniques and transplanting experiments suggest that high 
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tissue P reduced the fungal infection. Menge, Steirle et al., (1978) 

supplied high P to one-half of a split-root system (750 mg per kg 

soil) and found a reduction in mycorrhizal infection in the other 

half, even though it grew in a separate container of relatively low P 

soil. When plants were transplanted from sterilized soil low in P to 

a soil high in P, infection was reduced (Jasper et al., 1969), but a 

similar effect was not observed when plants from sterilized soil high 

in P were transferred to soil low in phosphorous cabable of infection. 

Increasing the P content of the soils into which plants were 

transferred reduced the percentage of VAM infection (Azcon et al., 

1978). Results of transplanting experiments are hard to interpret. 

Increased growth in length of roots when tissue P is high (whether 

soil applied or foliarly applied) might be the only contributing 

factor in the reduction of percentage infection. 

The host endophyte balance changes from mutualism to that of 

parasitism, depending on the nutritional status of the soil. 

Mycorrhizae promoted the growth of some grasses when the P content of 

soil was 4 mg P per kg, but became parasitic on the same grass in a 

soil having 8 mg P per kg (Crush, 1973). An unfavourable effect of 

some endophytes was observed on pasture legumes at high levels of 

added superphosphate (Crush, 1976). In nature, symbiotic imbalances 

would be less likely as the system tends to be self regulatory. 

Jensen and Jakobson (1980) did not observe significant differences in 

shoot P of plants grown in widely varying soluble P. Differerences in 

soil P, apparently were offset by adjustmnts of mycorrhizal infection. 
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Low P nutrition increases root membrane permeability leading to a 

net loss of root metabolites. The latter sustains the germination and 

growth of the mycorrhizal fungus during pre-and post-host infection. 

The subsequent mycorrhizal infection brings about an improvement of 

root P nutrition, and a reduction in membrane-mediated loss of root 

metabolites (Graham, Leonard and Menge, 1981). 

Insoluble Sources Of Phosphorous 

A great deal of research has been done on the uptake of P from 

low solubility sources by VAM plants (Hayman and Mosse, 1972; Mosse et 

al., 1973, Powell, 1975; Pichot and Binh, 1976; Sanders and Tinker, 

1979; Swaminathan, 1979; Gianinazzi-Pearson et al; 1981). The maximum 

growth reached with rock phosphate is less than that with 

superphosphate. Rock phosphate may be deleterious to plants on 

account of contaminants present in it (Pairunam et al., 1980). 

Different combinations of crops and fungi appear to respond 

differently to the supply of insoluble phosphorous(Jackson, 1966; 

Graw, 1979). It is now confirmed that the VAM plants do not render 

wholy unavailable sources useful, but they can accelerate the uptake 

from low-solubility sources (Hayman and Mosse 1972; Barrow et al., 

1977). Rock phosphate became available to a plant species in acid 

soils, but it did not improve the growth of the same plant species in 
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neutral or alkaline soils (Sims, 1959; Jackson, 1966). In acid soils, 

adding rock phosphate increased P uptake, and in addition, utilization 

of the added phosphate was increasd greatly by mycorrhizal infection 

(Mosse, Powell, and Hayman, 1976). In neutral and alkaline soils, the 

rock phosphate remained unavailable to mycorrhizal or non-mycorrhizal 

plants. Mycorrhizal infection greatly increasd both P uptake and 

plant growth in three alkaline and one neutral soil, but in such 

soils, a more soluble source of phosphate was needed to maintain soil 

fertility. A detailed study of the relationship of soil pH and the 

availability of various phosphates to mycorrhizal and nonmycorrhizal 

plants was done using two species of the Compositae (Graw, 1979). 

Complex results were obtained with the two species giving quite 

different results, in spite of inoculation with the same strain of 

Glomus macrocarpus. At a pH of 4.3, VAM did not help absorption of P 

by Guizotia abyssinica from several compounds of P, with resultant 

inhibition of its growth, whereas mycorrhizal Tagetes minuta did well 

at this pH in the presence of monocalcium phosphate, hydroxyapatite, 

or aluminum phosphate. Phosphorous uptake and growth of mycorrhizal 

Guizotia was improved at pH 5.6 and surpassed the performance of non¬ 

mycorrhizal plants at pH 6.6. Growth of mycorrhizal Tagetes was 

reduced at pH 5.6 in the presence of monocalcium phosphate or 

hydroxyapatite but was improved at pH 6.6 in all treatments with the 

exception of hydroxyapatite as P source. Mosse (1971) obtained 

infection with Coprosma robusta in two soils with pH 5.6 and 7.0 but 

not in acid soils of pH 3.3 to 4.6. Strzemska (1973) found strong 
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development of VAM in the roots of fenugreek and soybean at pH 4.5. 

Nyabenda (1977) found that the mycorrhizal effect varied with soil 

temperature and with form of phosphate. The relative value of 

infection was greatest with insoluble phosphates, but this effect was 

also highly temperature dependent. In experiments carried out to test 

the ability of tomatoes and maize to utilize tricalcum phosphate, 

hydroxyapatite, and rock phosphate, the benefits gained from YAM was 

greatest with tricalcium phosphate, lesser with phosphate rock, and 

least with soluble phosphate additions (Daft and Nicolson, 1966; 

Murdoch et al., 1967). In contrast to this result, soybeans did not 

respond to additions of Ca3(P04)2 whether mycorrhizal or not 

(Gianinazzi-Pearson et al., 1981). There was no increase in phosphate 

inflow into mycorrhizal or non mycorrhizal Trifolium subterraneum in 

short-term experiments using Ca3(P04)2* A slight growth response was 

detected in long-term experiments (Smith et al., 1984). Soybeans have 

shown significant growth responses to a number of other P compounds, 

including Fe and Al phosphates (Ross and Gilliam, 1973). In pot 

experiments carried out on a range of soils to test the effect of 

phosphate rock on legume crops with or without mycorrhizae, it was 

found that VAM could improve but not confer, the ability to use 

phosphate rock efficiently (Mosse et al., 1976; Mosse, 1977). 
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Kinetics Of Phosphorous Uptake 

Phosphorous uptake exhibits complex kinetics (Bieleski, 1973) in 

an extended concentration range (0 to 10 mM). In cultivated soils, 

the available P is in uM range (Arnon et al., 1942; Barber, 1984) and 

in these uptake kinetics follow a simple hyperbolic pattern (Bieleski, 

1973) with a Km of about 5 uM. In the lower concentration range, the 

phosphate transport system exhibits an intrinsic sensitivity to pH 

(Sentenac and Grignon, 1985). The transport system conforms to a low 

activity state around pH 6 and is switched to a state of high activity 

approaching pH 4. The relatively high concentration of H2PO4’ around 

pH 4 provides further evidence that the phosphate uptake involves the 

H2PO4’ ion (Bieleski, 1973). 

Phosphorous influx into plant roots conforms to Michaelis-Menten 

Kinetics (Epstein, 1972). Edwards and Barber (1976) reported soybean 

to have the highest Vmax value approaching pod-setting stage, the 

value declining thereafter. 

Uptake by Mycorrhizal Fungi 

A number of practical problems are involved in obtaining accurate 

measurements of ion uptake by VAM fungi. The uptake mechanisms of the 
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fungi closely follow those of higher plants (Harley and Smith, 1983). 

The data of Sanders and Tinker (1973) indicates a P influx of up to 

10‘12 mol. cm*2 s*1 for hyphae of around 8um diameter. Gray and 

Gerdemann (1967) observed a more rapid uptake of P by mycorrhizal 

roots than by uninfected ones in solution culture. The amounts of P 

taken up by excised roots of VA mycorrhizal plants are not very 

different from non-infected excised roots (Bowen et al., 1974). Using 

classical Epstein-Hagen kinetic analysis Cress et al., (1979) measured 

the uptake of P by excised tomato roots with or without VAM. An 

increase in the maximum rate of uptake (Vmax) was not noticed for 

mycorrhizal roots. The affinity constant Km showed an increase of 2 

to 3 fold for mycorrhizal roots implying a more efficient uptake 

mechanism in the fungus than in the root at low concentrations. 

Uptake measurements by mycorrhizal roots has some inherent weaknesses 

due to uncertainty in quantity of external mycelium remaining on the 

root. The extent to which stirring ensures that there are no 

gradients in the static layer of solution surrounding root can only be 

speculated (Walker et al., 1979; Tinker and Gildon, 1983). The 

internal fungal structures could act as a strong local sink or a 

source of P, confounding the results. Phosphorous uptake by roots in 

P-deficient soils shows that it is the diffusion impedance in the soil 

and not the physiology of the root which limits the rate of P uptake 

by the root (Nye and Tinker, 1977) 

Kinetic analysis shows that two mechanisms may be important in P 

absorption by VAM. Phosphate uptake by tomato roots was studied at 
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concentrations between 1 and 100 uM KH2P04. The concentrations upto 

30 uM correspond to the levels of P in soil and are important in 

interpreting the mycorrhizal effects on plant growth in the soil. At 

both high and low P concentrations the Michael is constant (Km) for 

phosphate uptake is lower for mycorrhizal plants. This result 

indicates that a higher affinity for phosphate ions may exist in 

mycorrhizal roots. Mycorrhizal plants also exhibit a higher Vmax than 

non- mycorrhizal plants at higher P concentrations (Cress et al; 

1979). This observation implies that in situations where P 

availibility is plentiful, the increase in the number of uptake sites 

provided by the fungus could contribute substantially to the total 

uptake, thereby lowering the threshold for effective phosphate 

absorption from soil (Mosse, Hayman and Arnold, 1973). 

Transloction Of Phosphorous 

Reportedly Ca, P, S, and Zn are translocated by VAM hyphae(Rhodes 

and Gerdemann, 1978a; 1973b, Cooper and Tinker, 1978). Maximum fluxes 

of P through VAM hyphae have been calculated to be of the order of 

10“® mol. cm s“l# Buildup of inorganic phosphates during periods 

of rapid uptake are prevented due to synthesis of polyphosphates (Cox 

and Tinker, 1976)), which are concentrated in granules of less than lu 

in diameter within the small vacuoles. Cytochalasin, the inhibitor of 



13 

protoplasmic streaming, stops translocation of ? in hyphae (Cooper and 

Tinker, 1981). Translocation is highly-temperature sensitive and is 

dependent on plant transpiration. A combined bulk flow and 

protoplasmic streaming mechanism, operating on P concentrations aided 

by the formation of polyphosphate granules account for the high rates 

of ? tanslocation in VAM. Maintenance of concentration gradients 

along the hyphal path could occur through mediation of "sources" and 

"sinks" by conversion of polyphosphates to soluble phosphates. 

Bidirectional translocation of nutrients in hyphae is explained if 

cytoplasmic streaming acts as a stirring mechanism. The stirring 

would lead to increased rates of translocation down concentration 

gradients between loading and unloading sites in the hyphae. 

Arbuscules are believed to be the sites of breakdown of the 

polyphosphate granules (White and Brown, 1979). The enzyme alkaline 

phosphatase is responsible in breakdown of polyphosphate granules. 

Alkaline phosphatase, which is of fungal origin reaches peak activity 

in young arbuscular infections. Presence of active arbuscules and 

alkaline phosphatase activity are correlated (Gianinazzi-Pearson and 

Gianinazzi, 1978). 
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Carbohydrate Physiology of Vesicular-Arbuscular 

Mycorrhizal Fungi 

Bevege and Bowen (1975) found ^C-labelled photosynthate to 

appear in external hyphae after ^C-carbon dioxide was supplied to the 

leaves of the plant. Unlike ectomycorrhizae, VAM do not convert host 

photosynthate to the fungal carbohydrates, trehalose and mannitol, of 

which mannitol is not readily usable by the heterotroph (Hayman, 

1974). A "carbohdrate-sink" that prevents the reciprocal flow of 

carbohydrates between autotroph and heterotrp'n does not exist in the 

VAM situation, nor do they possess a fungal sheath that may prove a 

substantial carbon sink. However, alternative sinks may operate in 

VAM. Lipids are major storage compounds in VAM (Cox et al., 1975) and 

mycorrhizal roots contain significantly more lipid than uninfected 

roots (Cooper and Losel, 1979). The lipid component of mycorrhizal 

roots become labelled when plants photosynthesize using 14C0o (Losel 

and Cooper, 1979). The concept of VAM fungi creating a significant 

carbon drain on the host remains a controversial issue. Mycorrhizal 

infection raises cytokinin levels (Allen et al., 1980) which in turn 

would raise the photosynthetic activity (Herold, 1980). Thus the 

small carbon drain that does exist could be offset by increased 

photosynthesis (Kucey and Paul, 1982). Cooper (1975) did not consider 

the fungal biomass associated with VAM roots as sufficient in terms of 

a substantial carbon drain. 
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Mycorrhizal Effects On Growth and Distribution Of Dry Matter. 

Vesicular arbuscular mycorrhizae could have beneficial or 

deleterious effects on the growth of the host depending on 

environmental conditions. Mycorrhizal plants sometimes show a lower 

root/shoot ratio than similar non-mycorrhizal plants (Hunt et al., 

1975). The low root/shoot ratio may partly be interpreted as a 

response to improved mineral nutrition. Increased soil P (Bowen and 

Cartwright, 1977) or N (Jenkinson et al., 1972) reduce the root/shoot 

ratio regardless of mycorrhizal infection. The dry matter increases 

in shoots and roots of VAM plants together with changes in the 

distribution of dry matter between root and shoot may be viewed as a 

feed-back response to nutrient uptake by the VAM (Smith, 1980). 

Transitory depressions of growth occur in the early stage of the 

VAM symbiosis (Baylis, 1971; Furlan and Fortin, 1973; Cooper, 1975). 

This depression is attributed to the fact that the fungus and 

autotroph are competing for a limited supply of food at this stage. 

The mycorrhizal stimulus to plant growth is depressed or reversed by 

low light intensity. This effect probably is due to the reduction in 

the photosynthate available for destruction. Crush (1976) attributed 

the transitory growth depressions that is seen under low soil P as due 

to competition between fungus and host for the soil P, rather than the 

supply of photosynthate. Competition for P has been shown to be 



important in other situations where P is in short supply (Gabrielson 

and Masden, 1960). 
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Soybean and Nitrogen Requirements 

The soybean plant cannot meet its total N requirement from N2 

fixation alone (Harper, 1974). Low amounts of N fertilizer given 

during the early growth of soybean enhances its growth and N2 fixation 

(Harper, 1974). Beyond an optimum value the N applied brings about 

depressions in N2 fixation (Sinclair and de Wit, 1976). The 

stimulatory effect of N on the symbiotic response, at low levels of 

applied N, varies depending on the form and amount of N, species, and 

cultivar (Gibson and Nutman, 1960; Dart and Wildon, 1970). Greenhouse 

experiments have demonstrated that applied N in the range of 30 to 180 

mg N per plant are optimal for soybean N2 fixation (Eaglesham et al., 

1980). The strongest synergism occured in soybean with urea at 30 mg 

per plant; for every milligram of urea-N absorbed, an additional 15 mg 

of N were fixed symbiotically. Clearly these pot studies bear a 

relevance to field conditions only where soils are extremely deficient 

in available N. Fertilization with N under normal field conditions, 

is more likely to inhibit N2 fixation than to stimulate it. When N 

was applied at 56 kg N per ha as NH4NO3 it had no effect on N2 

fixation; when the applied rates exceeded 244 kg per ha, N2 fixation 
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declined to zero. 

There is a direct relationship between photosynthetic flow to 

nodules and N2 fixation in soybeans (Latimore et al., 1976). Nitrogen 

in NH^+ or forms decreased nodular photosynthetic import and 

capacity of soybeans to fix N£. Both sources are thought to be equal 

in reducing the energy flow to nodule bacteria. Ammonia appears to 

decrease N2 fixation in part at least by decreasing the synthesis of 

nitrogenase of the bacteria (Bishop et al., 1975). Nitrate-N brings 

about inhibitory effects by interfering with root curling, which is an 

initial step in rhizobium infection (Thornton, 1936). Nitrate in the 

external medium also catalyzed the destruction of indoleacetic acid 

(IAA), whereas NH^-N decreased the amount of trytophan converted to 

IAA (Tanner and Anderson, 1963). Both ions interfere with root hair 

curling. Inorganic N may exercise its effects in decreasing N2 

fixation in other ways (Stewart, 1966). 

Conflicting reports exist as to the stage at which maximum N2 

fixation occurs in soybean. Harper and Hageman (1972) showed N2 

fixation to be maximum during pod filling, declining rapidly during 

the final three weeks of growth. Hardy et al., (1976) found N2 

fixation to reach a maximum at pod-filling, and remain constant until 

pod filling was complete. The seasonal N2 fixation profile of soybean 

was described by Brun (1978) as having three phases; the first occurs 

during the vegetative period, when rate of fixation is low; the second 

occurs sometime after flowering, when fixation rate increases rapidly 

and reaches a peak during the vegetative period, and the third sets in 
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at the early seed filling period when fixation rate declines rapidly. 

Peat et al, (1981) emphasized the importance of young reproductive 

structures in promoting N2 fixation around the time of flowering. 

However, the cause of this marked increase in the rate of fixation 

around flowering is not known despite the fact that it is of wide 

occurrence. This increase is reported in pea (Pisum sativum), cowpea 

(Vigna unguiculata), soybean, peanut (Arachis hypogea), broad bean 

(Vicia faba) and clover (Trifolium repens) (Hardy et al., 1971; Lawn 

and Brun, 1974; Masterson and Murphy, 1976; Bethlenfalvay and 

Phillips, 1977). Ability of the soybean plant to use nitrate 

diminishes at pod-filling. This decrease is indicated by a sharp drop 

in nitrate reductase activity within 2 to 3 weeks after flowering, and 

this activity continues to decrease through mid-pod filling (Thibodeau 

and Jaworski, 1975). 

The drop in the efficiency at obtaining sufficient N is critical 

for the soybean plant, since it also occurs at a time of greatest 

demand for N (Harper, 1971; Harper and Hageman, 1972). In order to 

compensate for this loss of ability in fulfilling its N requirements, 

the plant resorts to a process of internal remobilization of N 

compounds. Important enzymes become subjected to hydrolysis at this 

stage, and the resultant amino acids are used to meet the demands of 

reproductive organs (Sinclair and de Wit, 1976). The plant suffers a 

loss of photosythetic capacity especially as a result of the breakdown 

of ribulose bisphosphate carboxylase. A premature senescence of the 

leaves occurs as a result of these events. The soybean plant has come 



to be known as a "self destuctive" crop due to the nature of events 

that leads to its early death (Sinclair and de Wit, 1976). 
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Soybean and Ureide Metabolism 

The ureides allantoin and allantoic acid are the major 

nitrogenous compounds in soybean and several other legumes growing 

symbiotically (McClure and Israel, 1979; Herridge et al., 1978). 

Ureides become synthesized rapidly from the early products of N2 

fixation, ammonia and glutamine, via purine synthesis and degradation 

(Ohyama & Kumazawa, 1978; Triplett et al., 1980). Several enzymes 

involved in the assimilation of ammonia as well as key enzymes of 

purine synthesis and degradation increase severalfold in the nodule 

cytosol in parallel with increases in nitrogenase activity In the 

bacteroid (Reynolds et al., 1982). The use of ureides rather than 

amides for N-transport from root to shoot results In an Improved 

carbon economy of the plant. Improved economy results from the low 

C:N ratio of the ureides. 

Storage and assimilation of ureides occur mainly In the shoot. 

For soybeans relying entirely on fixation for its N supply, 86 

percent of the total sap N is in the form of allantoin and allantoic 

acid (Israel and McClure, 1982). In a nonnodulatlng legume, the 

percentage contribution of ureides to the total sap N varied from 13 
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to 42 percent depending on the inorganic N-source fed to the plant 

(Thomas et al., 1980). It is hypothesized (Ishizuka, 1977) that the 

application of fertilizer N results in an increased amount of 

vegetative growth but in a decrease in the number of pods retained on 

the plant, whereas the ureides arising from fixation are stored in 

stems and leaves as materials for use later in pod formation. The 

hypothesis calls for further investigation since it is not known how 

vegetative growth is influenced by the composition of the plant N. 

Ureides may play a key role in the detoxification of ammonia in 

root tissues (Reinbothe and Moth, 1962). Many of the legumes which 

have a high nitrogen requirement for seed production per g of 

available photosynthate (Sinclair and de Wit, 1971) e.g. soybean, 

cowpea, and Phaseolus sp., also use ureides as major transport forms 

of nitrogen. This phenomenon suggests a role for ureides as being 

particularly important in ammonia detoxification and conservation of 

carbon. 

Nitrogen Nutrition and Vesicular-Arbuscular 

Mycorrhizal Fungi. 

Reports on the effect of combined N on VAM-host plant 

relationships are scarce. Only a few of these reports distingish 

between effects of NH4+ and NO3" ions. These ions differ in their 
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mobility in soil (Fried and Broeshart, 1967; Haynes and Goh, 1978) as 

well as in their assimilatory pathways in plants (Huber and Watson, 

1974). These different assimilatory pathways bear different 

implications on the organic and inorganic composition of the plant 

tissues (Wadleigh and Shive, 1939), which include production or 

consumption of H+ ions and biochemical events associated with pH 

regulation, (Dijkshoorn, 1969; 1971; 1973; Barker and Jackson, 1966a; 

Barker et al., 1966b, Raven and Smith, 1976; Raven et al; 1978). 

Plants grown on NH^ extrude H+ ions from their roots, with a 

consequent drop in the pH of the culture solutions (Kirkby and Mengel, 

1967), NO3” assimilation produces an alkaline medium (Dijkshoorn, 

1962). Acid pH is more inhibitory than alkaline pH for the 

development of certain VAM species (Green et al; 1976). The low 

rhizosphere pH, resulting from NH^+ assimilation, results in a 

reduction in the number of entry points and subsequent colonization of 

the root by these VAM species. Rhizobium prefers a pH of around seven 

(Vincent, 1965; de Mooy and Pesek, 1966). Amino acids and amides 

especially glutamate, glutamine, aspartate and asparagine predominate 

in the exudates of NH^-fed plants, while carboxylic acids predominate 

in the exudates of f^'fed plants (Raven and Smith, 1976). 

Information on how VAM might utilize such compounds is lacking in the 

literature. The lower mobility of NH4+ in soil in comparison to that 

of NO3” implies that its uptake could be enhanced by VAM in a manner 

similar to that of P. The ease of mobilty of NO3' in soil makes it 

unlikely that zones of depletion of NO3’ would form around roots. 
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Nitrogen and Phosphorous Interactions 

Increases in N concentrations were observed in roots and shoots 

of legumes infected by VAM (Mosse et al., 1976; Smith and Daft, 1977). 

Increases in N were attributed to enhanced nodulation and nitrogenase 

activity, rather than to increased uptake of NO3" or NH^ from soil 

(Mosse et al., 1976). Increased N2 fixing ability has been attributed 

mainly to improved P nutrition and plant growth (Smith et al., 1979). 

The stimulatory effects of VAM on nodulation of the legumes lucerne 

and clover precede visible growth effects. This result suggested that 

the nodules acted as stronger sinks for phosphate, than the remaining 

plant organs (Smith and Daft, 1977; Smith et al; 1979). The 

importance between N and P interactions in legumes is emphasized by 

results with soybeans, in which VAM improved growth of a nodulating 

but not of a nonnodulating isoline (Schenck and Hinson, 1973). 

Mycorrhizal effects on legume nodulation, N2 fixation, and plant 

growth are usually similar to the effects of adding phosphate (Munns 

and Mosse, 1980). Certain efficient endophytes have been seen to 

enhance growth much more than additions of 40 kg superphosphate per 

hectare (Hayman and Page, 1981). 

Hepper (1983) observed that mycorrhizal infection shows parallel 

increases with increases in N supply, at all P levels. Increasing 

amounts of applied P generally depresses infection. However, the 
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extent to which mycorrhizal infection increases depends on the 

nitrogen to phosphorous balance. When high levels of N were provided, 

increased P concentratons did not harm the growth of the fungus within 

the root (Mosse, 1973; Hepper, 1983). 

Plant N Nutritional Status versus VAM 

The influence of the nitrogen nutritional status of the host on 

VAM infection has received less attention. Ammonium nitrate applied 

at lOOmg N per kg soil depressed nodulation as well as mycorrhizal 

infection in Pisum sativum (Lanowska, 1966). Initial applications of 

(NH4)2S04 or NaN03 in excess of 2 meq per pot (460 or 480 g of soil) 

reduced the level of infection in nodulating clover plants. This 

reduction was attributed partially to inhibition of the preinfection 

phase of the fungus (Chambers et al., 1980). In contrast, Wang and 

Hayman (1982) found that NH4NO3 did not affect mycorrhizal infection 

in Trifolium repens although it did reduce infection levels in onion 

roots. Applications of NH4NO3 or NaN03 decreased the level of 

mycorrhizal infection in soil-grown Lolium perenne (Buwalda and Goh, 

1982). Infection levels of lettuce roots fell with increasing 

applications of NaNC^, NH4NO3, or (Nh^^SC^ (Owusu-Bennoh and Mosse, 

1979). Calcium nitrate has been observed to reduce VAM infection 

(Mosse and Clark, 1978). Application of urea to field plots resulted 

in a decrease in VAM infection of Araucaria, when soil P levels were 

high (Bevege, 1971). At intermediate P levels, however, the infection 
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increased with increased urea application. In a comparison of the 

effects of foliar or soil applied nitrate on VAM infection, the plants 

with soil-applied nitrate always developed much less infection (Azcon 

et al., 1982). Thus soil nitrate may be inhibiting the establishment 

of infection rather than its spread within the root. In contrast to 

these results Brown, Schultz, and Kormanick (1981) found that 

application of nitrate or ammonium resulted in higher levels of 

mycorrhizal infection in sweet gum seedlings compared to minus N 

controls. Bowen and Smith (1981) examined the subject of uptake of N 

by mycorrhizal plants. Other review papers have suggested that either 

mycorrhizal fungi have a potentially important role in acquisition of 

N by plants (Raven et al, 1978; Smith, 1980) or that VAM fungi are not 

involved in uptake and transport of N (Rhodes and Gerdemann, 1980; 

Hayman, 1982). 

These conflicting views have resulted from considerations of the 

form and availability of N in agronomic conditions or native plant 

communities. In cultivated soils where the readily mobile NO3" ion 

predominates, VAM hyphal transport of N is of little importance 

(Rhodes and Gerdemann, 1980). In a climax community, however, the 

major portion of N occurs in bound organic form, and NH4+ constitutes 

the primary source of N available to plants (Clark and Paul, 1970; 

Raven et al., 1978; Bowen and Smith, 1981). Ion transport through VAM 

hyphae could be more important for the plant, where the only source of 

N is the relatively immobile NH4+ ion. 

The N content of mycorrhizal plants, relative to controls, are 
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reported to be higher (Wallace, Mcnaughton, and Coughenour, 1982), 

lower (Nemec and Meredith, 1981; Hays et al., 1982) or of no 

difference (Schenck and Hinson, 1973; Carling et al., 1978). These 

diverse results could have resulted from the levels and forms of N 

supplied to the plants. Certain crops though well-infected with VAM 

fungi may not benefit from the mycorrhizae because N is limiting (Hall 

et al., 1984). Crush (1973), Cooper (1975) and Hall (1978) detected 

little response to VAM in ryegrass, when N was limiting. Powell 

(1974; 1977) and Powell and Daniel (1978) found a marked response to 

VAM in situations where soil was supplemented with nitrogen. 

Nitrogen application stimulates growth and raises the shoot N/P 

ratios. This elevation probably accompanies lowering of plant P status 

and could be the reason why mycorrhizal fungi stimulate growth, when N 

was supplied. Ectomycorrhizae (France and Reid, 1979) and VAM (Bowen 

and Smith, 1981) are believed to have a preference for NH+-N over NO3- 

N. Ames et al. (1983) used the ^N isotope of N in examining the 

source of N acquired by mycorrhizal and non-mycorrhizal celery (Apium 

graveolens L.). The labelled N in mycorrhizal plants was correlated 

significantly with percent mycorrhizal fungal colonization and total 

length of hyphae per gram of soil. Mycorrhizae did not help in the 

uptake of the organic N source. 
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Conclusions 

It is amply documented that VA mycorrhizae can improve plant 

growth through increased uptake of phosphorous (Mosse et al., 1973; 

Gerdemann, 1975). The effects of combined nitrogen on mycorrhizal 

infection and consequent nutrition of the host however, is not well 

known (Chambers et al., 1979; Brown, Schultz, and Kormanik, 1981). 

Preferential uptake of NH4+ over N03" by roots, hyphae of VA symbiont, 

or both may be partly responsible for the superior growth obtained 

with NH4+-N. Although NH^-N is known to be a major source of N for 

some mycorrhizal fungi, it is not known whether Glomus mosseae in 

association with soybean exhibits preference for different forms of N. 

Since mycorrhizal root systems are able to meet phosphorous needs of 

plants sufficiently even at low soil P concentrations, nitrogen 

availability is probably a more critical factor than phosphorous 

availability in achieving optimum growth of mycorrhizal soybean. 

Nitrogen source, level of N application, and their interaction 

have highly significant effects on mycorrhizal development and 

arbuscule formation (Brown, Schultz, and Kormanick, 1981). Seedlings 

grown at N supplies optimum for plant growth have the highest 

infection intensities in their roots. NH^ has a less severe effect 

upon nodulation and acetylene reduction (Chambers et al., 1971) than 

NO3", when applied N levels were low. Inhibition of mycorrhiza 

formation by NH^+, NO?" or other ions may have a significant impact 
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upon nutrient uptake by plants from nutritionally poor soils. Sanders 

(1975) showed that reduction in mycorrhizal infection, induced by 

foliarly applied phosphate, results in decreased phosphate uptake from 

the soil. Reduction in mycorrhizal infection by other mechanisms 

(e.g., application of combined N to the soil) would have the same 

effect. It is often overlooked that NH4+ may be an important source 

of N in natural or cultivated soils (Rice and Poncholy, 1974; Haynes 

and Goh, 1978). There is increasing interest in the use of NH4NO3 

fertilizers and in reducing nitrification (Barker, 1982), which could 

raise soil NH4+ to levels which might affect mycorrhiza formation. 

Reportedly NH4+ nourished plants have reduced root systems (Kirkby, 

1969; Chambers et al., 1979). Indeed, in such situations mycorrhiza 

may compensate by extending the absorbing surface in the soil. 

Interactions between NH4+ and P nutrition (Riley and Barber, 1971) and 

changes in activity of N assimilating enzymes may have a bearing on 

the extent of mycorrhizal infection. A depressed rhizosphere pH is a 

consequence of NH4+ nutrition. Lowered rhizosphere pH can be 

important in the control of root infecting fungi which are sensitive 

to pH (Smiley, 1975; 1978). Glomus mosseae may prefer a neutral pH 

(Mosse, 1972). Plants fed on urea do not face the problem of root 

zone acidity and yet have access to NH4+ ions. The nitrogen-form 

preference of the soybean-Glomus mossea-rhizobial system is worthwhile 

investigating, since data gathered may help to optimize mycorrhizal 

benefits to the soybean plant. 

In addition an understanding of the P uptake characteristics of 
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mycorrhizal soybean roots is important for developing practices that 

improve VAM efficiency. 



CHAPTER II 

EFFECTS OF N AND P INTERACTIONS ON ESTABLISHMENT OF 

MYCORRHIZAL INFECTION 

Materials and Methods 

A greenhouse experiment was conducted to compare the effects of 

NH4NO3 or urea on establishment of mycorrhizal infection in 

nonnodulating soybean (Glycine max Merr. cv Clay) over a range of 

phosphate levels. Both N sources were supplied with a 50% NO3" 

background. 

Pot cultures of mycorrhizal inoculum were established and 

maintained as follows. A 3:1 soil:sand mixture was passed through a 2 

mm sieve and then steam sterilized in bulk for an hour on each of three 

consecutive days. This mixture was placed in 1.8-liter sterilized 

plastic pots and then brought to 12% moisture content w/w by addition of 

water and stored for 6 days in the greenhouse. Prewetting ensures 

prompt mycorrhizal infection of seedlings. Paper towels were placed 

over the pot drainage holes to prevent soil loss. Mycorrhizal inoculum 

(Glomus mosseae) obtained from the Department of Agronomy, University of 

California at Davis, California (air-dried, sealed in plastic bags and 

stored at 5°C) was added to the pots 1/2 of the way up from the bottom 

of the pot. Sudan grass seeds were surface-steri1ized in 0.26% sodium 
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hypochlorite for 30 min, rinsed in deionized water and were planted 6 

seeds per pot. Because of its rapidly growing, fibrous root system, 

Sudan grass makes an ideal "trap plant". However, the roots often grow 

out of pot drainage holes onto the bench itself, which could cause 

contamination of the culture. Roots were confined to the pots by 

placing a loose aluminum foil barrier around drainage holes. Beginning 

three to four months after planting, cultures were sampled periodically 

to determine maturity of new spores. 

Soybean seeds were surface-steri1ized in 75% ethyl alcohol, and 

rinsed in several changes of deionized water. These were then 

germinated on filter paper soaked in 0.2 mM CaC12 solution at 28°C in 

the dark. After two days, seedlings were selected for uniformity and a 

seedling was planted in each pot. The growth medium consisted of 2.6 

liter of a perlite sand mixture (2:1, v/v) covered by a 2.5-cm layer of 

perlite. The medium was washed throughly with a solution of 0.2 mM 

CaC12 and 0-2 mM KC1. Upon drying, hydroxyapatite was added to the pots 

at 70, 140, 210, 280, or 350 mg per pot and mixed well. Mycorrhizal 

inoculum was introduced from a Glomus mosseae pot culture by a funnel 

inoculation technique (Gerdemann, 1955), which ensures that the roots 

contact the inoculum. The inoculum which consisted of soil, roots, and 

spores was added at a rate of 20 g per pot. Plants were watered with a 

nutrient solution (pH 5.8) which was equivalent to 1/4-strength 

Johnson's solution (Johnson et al., 1957). Phosphorous was excluded 

from the nutrient solution. The experiment was started in mid-March, 

flower initiation occurred in the middle of April. The plants were 
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harvested in early May, at the stage of pod set. The greenhouse 

temperature varied diurnally, with a mean day temperature of 30°C, and 

a mean night temperaure of 20°C. Most of the days of the experimental 

period were sunny. Daylength was extended to 16 hours by sodium lamps 

mounted overhead in parabolic reflectors and arranged to provide 

uniform supplementary light. Nutrient solution was provided 5 days a 

week, and the medium was flushed with deionized water on the remaining 

two days. Each treatment was replicated four times. Mycorrhizal 

infection was determined as described below. Data were analyzed for 

homogeniety of variance, and one way analysis of variance was carried 

out. If the F test was significant at P< 0.01 or P< 0.05, pairwise 

comparisons among treatment means were made. 

Rating of Mycorrhizal Infection. 

Approximately 1 to 2 g (fresh weight) of the feeder roots were 

placed in reusable Tissue-Tek capsules (Fisher Scientific Co., 

Pittsburg, Pa.). The plastic capsules enable a considerable reduction 

in handling of the individual root samples, once when the samples are 

placed in the capsule and once when they are placed in the destaining 

solution. These were cleared and stained by modifications of the 

methods of Kormanik, Bryan, and Schultz (1980) and Phillips and Hayman 

(1970). The capsules were placed in 10% K0H and heated at 90°C for 30 

min. The K0H solution clears the host cytoplasm and nuclei 
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facilitating stain penetration. The KOH solution was then poured off, 

and the capsules were rinsed in a beaker using 3 complete changes of 

tap water or until no brown color appeared in the rinse water. Roots 

were then bleached in freshly prepared alkaline H2O2 (3 ml NH4OH, 30 

ml 10% H2O2, and 567 ml tap water) at room temperature for 10 min and 

rinsed 3 times in tap water to remove the H202 and acidified with 1% 

HC1 for 3 to 4 min. The acid was then poured off, and the roots were 

stained for 20 min at 90°C with 0.05% Trypan blue in lactic acid 

solution (875 ml lactic acid, 63 ml glycerin, and 62 ml tap water). 

Excess stain was removed by soaking the segments in pure lactoglycerin 

overnight. One hundred root pieces were rated for mycorrhizal 

infection. Each infected root piece was given a "+" rating. The 

number of ratings per 100 counts was determined to be the % infection. 

Results and Discussion 

Roots of Nh^NC^-or urea-treated plants exhibited a high degree of 

mycorrhizal infection (Fig. 2.1), at the lowest level of P supplied. 

Roots of urea-treated plants maintained this high level of infection 

throughout the range of P supplied. Mycorrhizal infection of the 

roots of NH4N03“treated plants exhibited a sharp decline, when P 

supply was increased beyond 75mg/pot, and infection was virtually 
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% INFECTION 

Figure 2.1 Percentage of mycorrhizal infection as 
affected by a N source and P regime. Lsd( qi)= 
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absent in roots of NH4NO3 treated plants, at the higher levels of P 

supply. Lanowska, (1966) reported depressed mycorrhizal infection in 

Phaseolus vulgaris treated with NH4NO3. Alternately, application of 

NH^ salts produced improved response to mycorrhizal infection in 

sweetgum seedlings, than application of a non-reduced-N source. 

NH4NO3 was the better source of NH4+ than NH4SO4 since treatment with 

the latter lead to enhanced soil acidity (Brown, Schultz and 

Kormanick, 1981). Where improvements of growth of mycorrhizal plants 

were observed with ammonium fertilizers previously, the P supply may 

not have exceeded the limits that are inhibitory to infection. As P 

supply was increased, the concomitant increase in root P accumulation 

could have prevented the establishment of VAM infection in NH4+ 

treated plants in this experiment. An abundance of heavily staining 

large globular vesicles characterized zhe root infection in urea- 

treated plants (Fig. 3.39). Determination of arbuscular presence was 

difficult in urea-treated plants, since arbuscules stain very lightly 

and are easily obscured by overlapping vesicles. Frequent 

degeneration of arbuscules make their detection difficult in macerated 

root sections. Arbuscules are thought to be the exchange sites, and 

vesicles the organs of storage of VA mycorrhizae (Harley and Smith, 

1983). An abundance of vesicles are speculated (though not proved) to 

express a parasitic tendency by the symbiont (Harley and Smith, 1983). 

Bevege, (1971) observed a high percentage of infection in urea treated 

plants at intermediate levels of P, the infection diminishing at the 

higher levels of P he used. The higher level of infection in urea 
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treated plants in this experiment may be attributed to the low root P 

percentage of these plants (Chapter III) that are concomitantly 

associated with high root N/P ratios (Chapter III). 

On the basis of these observations, the experiment designed in 

Chapter III was performed to determine the effectiveness of N-sources 

in conferring VAM growth benefits. 



CHAPTER III 

GROWTH AND NUTRITION OF MYCORRHIZAL SOYBEANS ARE INFLUENCED BY 

N SOURCE AND N AND P INTERACTION 

Materials and Methods 

A greenhouse experiment was designed to investigate the 

interactive effects of N source and P regime on growth of mycorrhizal 

or nonmycorrhizal and nodulating or nonnodulating soybean (Glycine max 

Merr. cv. Clay) isolines. The isolines are genetically alike in 

characters other than their ability or inability to nodulate. 

Treatments involved 2 sources of P and 3 regimes of N; 100% N03", 25% 

NH4+ and 75% N03‘ or 50% urea and 50% N03~. 

The plants were grown in 1.8 litre plastic pots filled with a 1:2 

mixture of fine and coarse quartz sand. The sand was washed several 

times with a solution of 0.2mM CaCl3 and 0.2mM KC1. Upon drying, 75 

mg of hydroxyapatite or tricalcium phosphate were added to the pots 

and mixed well. Mycorrhizal inoculum was introduced in a manner, 

similar to that described in Chapter II, except that in this 

experiment the inoculum was spread in a layer two third of the way up 

from the bottom of the pot. The funnel inoculation technique 

(Gerdemann, 1955) was not used in this experiment as it makes root 
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recovery laborious due to adhering filter paper. The controls were 

supplied with an equal amount of soil from pots in which Sudan grass 

was grown in sterilized soil without mycorrhizal inoculum. At the 

start, these pots of Sudan grass had received a microbial suspension 

prepared by mixing pot culture material (500 ml) and sterile water 

(1:2 v/v), incubating this suspension for 12 hours at room temperature 

and then using a Buchner funnel passing it through a millipore filter 

paper (5um). 

Soybean seeds were surface sterilized for 5 minutes using 75% 

ethanol and then washed for 15 minutes in deionized water. The seeds 

were inoculated with a peat slurry of commercial Rhizobium japonicum 

inoculant at planting (Nitragin Co., Milwauke, WI). Six seeds were 

planted in each container, irrigated with water until 2 healthy 

cotyledons and a growing point was present and then were thinned to 

1 plant per pot. Nutrient treatments were commenced approximately 

2 weeks after seedling emergence. The composition of the nutrient 

solutions were as in Table 3.1. Concentration of N received by 

nodulating plants was approximately 1/3 of that received by the 

nonnodulating plants. 

The experiment was started in early Spring. Temperature varied 

diurnally, with a mean day temperature of 30°C and a mean night 

temperature of 15°C. About 1/4 of the days during the experimental 

period was overcast or partly overcast. Daylength was extended to 16 

hours by sodium lamps mounted overhead in parabolic reflectors and 

arranged to provide uniform supplementary light. Nutrient solution 
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Table 3.1 
Composition of the nutrient solutions. 

K Ca Mg nh4 so4 no3 Cl Urea 
mM/L 

Nonnodulating 

Nl* 4 3 1 1 10 
N2 4 4 1 5 1 5 14 
N3 4 2.5 1 1 5 5 

Nodulating 

Nl 5 2.5 1 1 3 7 
N2 5 2.5 1 1. 5 1 1.5 
N3 6 1 1 1 1.5 1.5 

*N1,N2 and N3 stand for 100% NO,, 50%N0o+50%NH4 
and 50%N03 anc^ 50% urea respectively. 

MICRONUTRIENT CONCENTRATIONS • 

B Mn Zn Cu Mo Co Fe Ni 
uM 

50 10 2 1 .5 .322 100 2.7 
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was provided 5 days a week, and the medium was flushed with deionized 

water on the remaining two days. Five replications were used, and 

positional differences in the greenhouse were minimized by daily 

rotation of pots. Plants were harvested on initiation of pod set. 

Leachates were collected by the Pour-through method (Yeager et al., 

1983) 2 days prior to harvest and were analysed for P colorimetrically 

with ammonium molybdate-ascorbic acid (Zandstra, 1968). The pH of the 

leachates was determined. Roots and shoots were separated and dried 

at 75°C for 1 day in a forced-draft oven and ground in a Wiley mill to 

pass a 40-mesh stainless steel screen. Total N was measured using 

200-mg subsamples by wet digestion with sulfuric acid and a K2SO4- 

CUSO4 catalyst mixture followed by steam distillation (Gewelling, 

1976). Phosphorous content was determined by a colorimetric assay 

employing molybdovanadophosphoric acid (Kittson and Mellon, 1944) 

after 100 mg subsamples of the ground material were dry-ashed in a 

muffle furnace. VAM infection was rated as described in Chapter II. 

A completely randomized design was used. Data were analysed for 

homogeneity of variance. Treatment effects were analysed by Analysis 

of Variance. If the F test was significant at P< 0.01 or P< 0.05, 

pairwise comparisons among treatment means were undertaken. Where 

more than, two means had to be compared, the means were ranked and 

analysed by the Duncans Multiple Range Test. A linear correlation 

analysis was run to determine the association between growth benefits 

due to mycorrhizal infection and shoot N/P ratios. 
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Results and Disscussion 

Nodulating Isoline 

The nodulating plants treated with KNO3 were stunted, spindly and 

showed interveinal chlorosis (Fig. 3.1). The NH^NC^-treated plants 

showed cupping and chlorosis of leaves accompanied by incipient 

necrosis (Fig. 3.2). In contrast, plants treated with urea appeared 

healthy and did not show symptoms of nutritional disorders (Fig. 3.3). 

The plants treated with KNO3 or NH4NO3 also had lower shoot dry 

weights and accumulated less N (Fig. 3.4 and 3.5) than those treated 

with urea (Fig. 3.4 and 3.5 ). Root dry weights did not depend on N 

source (Fig. 3.6). All nodulating soybean plants were nitrogen 

deficient, as indicated by the N percentages (Fig. 3.7 and Fig. 3.3) 

that were below sufficiency levels i.e. 4.5 to 5.2% (Small and 

Ohlrogge, 1977). Roots of all nodulating plants had nodules that were 

apparently healthy (Fig. 3.9), and the nodules were most abundant on 

the roots of urea-treated plants (Fig. 3.10 ). 

Shoot N accumulation was highest for urea-treated plants and 

least for KN03-treated plants (Fig. 3.5). 

One or more of the following factors could have contributed to 

the poor growth and N accumulation associated with nitrate nutrition 

of nodulating plants. Nodule growth and N2 fixation are inhibited by 

the N03‘ ion (Tanner and Anderson, 1963; Sinclair and de Wit, 1976; 



Figure 3.1 Chlorotic, stunted, and pale yellowish 
leaves of the nodulating, mycorrhizal plants 
treated with KNO3. 
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Figure 3.2 Cupping and chlorosis of the leaves 
of mycorrhizal nodulating soybean plants treated 
with NH4NO3. 
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Figure 3.4 Shoot dry weight as affected by the nitrogen 
source within soybean isoline. Mean separation within 
isolines by Duncan's New Multiple Range test, 1% level. 
Each bar represents the mean of 20 observations. 
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Figure 3.5 Shoot nitrogen accumulation as affected by 
nitrogen source and soybean isoline. Means separa¬ 
tion by Duncan's New Multiple Range test, 1% level. 
Each bar represents the mean of 20 observations. 
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Figure 3.6 Root dry weights as affected by nitrogen source 
within soybean isoline. Mean separation within isoline by 
Duncan's New Multiple Range test, 5% level. Each bar 
represents the mean of 20 observations. 
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Figure 3.7 Shoot N percentage of mycorrhizal or nonmyco- 
rrhizal plants as affected by phosphorous regime and 
nitrogen source. One SE shown at top of each bar. Each 
bar represents the mean of 5 observations. PI and P2 
denote hydroxyapatite and dicalcium phosphate, respec¬ 
tively. VAM denotes vesicular- arbuscular mycorrhizae. 
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Figure 3.8 Root N% of mycorrhizal or nonmycorrhizal 
nodulating and nonnodulating plants as affected by 
phosphorous regime and nitrogen source. One SE 
shown at top of each bar. -Each bar represents the 
mean of 5 obsevations. PI and P2 denote hydroxyapa¬ 
tite and dicalcium phosphate, respectively. VAM de¬ 
notes vesicular-arbuscular mycorrhizae. 



Figure 3.9 Roots of the Modulating and nonnodulating myco- 
rrhizal plants treated with the different N sources. 
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Figure 3.10 Urea-treated, nodulating plants exhibit abun¬ 
dant nodulation. 
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Latimore et al., 1977; Streeter, 1985a; 1985b). Reliance on NO3" as 

the sole N source is not conducive to effective induction of nitrate 

reductase activity, because the induction of nitrate reductase 

requires a reduced N source. Nitrate reductase activity can proceed 

only at a suboptimal level when this condition is not fulfilled 

(Polacco, 1976). Alternately, nodulating soybean is a ureide- 

producing plant. Such plants transport the N products of root nodules 

as allantoin or allantoate (Tajima and Yamamoto, 1977; Thomas et al., 

1980; Thomas et al., 1981; Reynolds et al., 1982)). The C:N ratio of 

ureides is lower than glutamine or asparagine-forms of N commonly 

transported by plants (McClure and Israel, 1979), which gives the 

plant an advantage in the carbon economy of N transport. Metabolism 

of ureides however depends on availability of methionine, an amino 

acid critical for the synthesis of urease. Feeding plants on nitrate 

alone results in impaired methionine synthesis. Impaired methionine 

synthesis would lead to an inadequate supply of urease, which is not 

conducive to effective nitrogen metabolism of nodulating soybean 

(Polacco, 1976; 1977; Tajima and Yamamoto, 1977). Furthermore, 

nitrate reduction has a high energy requirement. When NO3' reduction 

is associated with N2 fixation, demands on carbohydrate reserves are 

doubled (Oghoghorie and Pate, 1971; Latimore et al., 1976). Because C 

is being used in the NC^' assimilatory pathway (Oghoghorie and Pate, 

1971) "photosynthetic deprivation" of nodules occurs. Reportedly, 

reliance on N03" as the sole N source leads to a phenomenon called NO3 

induced Fe deficiency (Haynes and Goh, 1978). The high level of 
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organic acids accumulating under nitrate nutrition could chelate the 

Fe, making Fe unavailable to the plant. 

The reduced shoot dry weights and N accumulation of nodulating 

plants treated with NH4NO3 (Fig. 3.4 and 3.5) also could be attributed 

to one or more factors. The decreased pH accompanying NH^ nutrition 

(Fig. 3.11) would be expected to inhibit rhizobial activity (Loneragan 

and Dowling, 1958; Vincent, 1965). Acid inhibition of rhizobial 

activity is aggravated when P is limiting (Jensen, 1944). Cupping of 

the leaves and the incipient necrosis shown by the ^^-treated 

plants (Fig. 3.2) resembles NH^ toxicity (Bennett, 1974). The demand 

for energy and carbon skeletons of NH4+ detoxification and N2 fixation 

could exhaust the energy inputs of photosynthesis, a situation which 

is further aggravated by a low level of P supply to the plants. A low 

level of P was supplied in this experiment because a higher level, 

especially when combined with NH4+ nutrition inhibits VAM infection 

(Chapter II). Alternately, supplies of barely adequate carbohydrate 

reserves or phosphorous lead to NH4+ toxicity, as a consequence of 

protein breakdown (Rabe and Lovatt, 1984; 1985). The nonprotein 

fraction of arginine rises when a plant is either carbohydrate or 

phosphorous stressed (Rabe and Lovatt, 1985). Accumulation of 

arginine is coupled with a reduction of other amino acids present in 

the protein fraction. These phenomena may have caused the symptoms of 

NH4+ toxicity and chlorosis of the nodulating plants treated with 

NH4NO3. 

Unlike the other two nitrogen sources urea, does not inhibit N2 
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Figure 3.11 pH of the sand leachate as af¬ 
fected by nitrogen source. Mean separation 
by Duncan's New Multiple Range test, 1% level. 
Each bar represents the mean of 40 observa¬ 
tions. 
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fixation (Vigue et al., 1977; Eaglesham et al., 1983). Indeed urea 

has been reported to promote nitrogen fixation in nodulating soybean 

(Vigue et al., 1977). The benefits of urea to nodulating plants may 

have a basis in the fact that it provides the plant with a reduced N 

source, without causing a reduction in pH as is the situation with a 

NH4NO3 fed plant (Fig. 3.11). Urea can be taken up as a neutral 

molecule and gradually degraded to NH4+. Also a plant under urea 

nutrition does not have to expend energy for charge balance in ion 

uptake, as is the case with an NH4+ or NO3’ fed plant (Raven and 

Smith, 1976). 

Within the nodulating isoline, P accumulation was greatest for 

urea-treated plants, and KNO3 and ^NC^-treated plants showed 

similarity in P accumulation (Fig. 3.12). Nodulating plants receiving 

dicalcium phosphate (Fig. 3.13) had higher shoot P totals than the 

plants that received hydroxyapatite. Nodulating plants treated with 

dicalcium phosphate and urea had higher shoot dry weights than 

nodulating plants that were treated with dicalcium phosphate and 

NH4NO3 (Fig. 3.14). Treatment of nodulating plants with urea and 

dicalcium phosphate may provide the plant with a better P:N balance 

than treatment with NH4NO3 and dicalcium phosphate. 

Nonnodulating Isoline 

Symptoms of mineral disorders were absent in the nonnodulating 

plants treated with KN03 or NH4NO3 and their appearance was similar to 
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Figure 3.12 Shoot phosphorous accumulation as affected 
by the nitrogen source within soybean isoline. Mean 
separation within isoline by Duncan's New Multiple Range 
test, 5% (lower case letters) level 
letters)level. Each bar represents 
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Figure 3.13 Shoot phosphorous accumulation as affected by phospho¬ 
rous source within isoline. **Significant at 1%(**) level. Each 
bar represents the mean of 30 observations. 
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•< NODULATING >• «NONNODULATING» 

Figure 3.14 The shoot dry weights as affected by nitrogen 
source, within phosphorous regime, and soybean isoline. 
Mean separation within phosphorous regime, and isoline, 
by Duncan's New Multiple Range test, 5% (lower case letters) 
level or 1% (uppercase letters) level. Each bar repre¬ 
sents the mean of 10 observations. PI and P2 denote hy¬ 
droxyapatite and dicalcium phosphate, respectively.. 
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Figure 3.15 KN03-treated nonnodulating mycorrhizal plants. 
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Figure 3.16 J^MO^-treated nonnodulating mycorrhizal plants. 
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Figure 3.17 Urea-treated, nonnodulating mycorrhizal plants. 
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Figure 3.18 Shoot dry weights as affected by nitrogen source 
within phosphorous source. Mean separation within phospho¬ 
rous source by Duncan's New Multiple Range test, 5% (lowercase 
letters) level or 1% (uppercase letters) level. Each bar 
represents the mean of 20 observations. PI and P2 denote 
hydroxyapatite and dicalcium phosphate, respectively. VAM 
denotes vesicular-arbuscular mycorrhizae. 
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Figure 3.19 Shoot dry weights of mycorrhizal or nonmycorrhizal 
and nodulating or nonnodulating plants as affected by phosphorous 
regime and nitrogen source. One SE shown at top of each bar. 
Each bar represents the mean of 5 observations. PI and P2 denote 
hydroxyapatite and dicalcium phosphate respectively. VAM denotes 
vesicular-arbuscular mycorrhizae. 
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the plants treated with urea (Fig. 3.15, 3.16, 3.17). Presumably this 

result was due to independance of the nonnodulating isoline of N2 

fixation and consequently a reduced demand for carbon reserves. 

Barely 10% of the N assimilation in nonnodulating soybean is dependent 

upon the metabolism of ureides (Thomas and Schrader, 1975). Because 

the dependence on ureide metabolism is low, N03~ inhibition of ureide 

metabolism is less of a problem to the nonnodulating isoline. 

Highest N totals were found in the urea-treated plants, and 

lowest N totals were found in the KNC^-treated plants (Fig. 3.6). The 

nitrogen percentages of the urea treated plants fell within the N 

sufficiency range of 4.5- 5.2% (Small and Ohlrogge, 1977), while those 

of the nitrate treated plants (Fig 3.7 and Fig. 3.8) fell below the 

adequate range. 

The NH^NC^-treated, nonnodulating plants had significantly 

greater shoot dry weights than those of the urea or KNC^-treated, 

nonnodulating plants, when the source of P supply was hydroxyapatite 

(Fig. 3.14). Over the 3 N sources, however, dicalcium phosphate 

proved to be the most favorable fertilizer for the nonnodulating 

isoline (Fig. 3.18). The dramatic enhancement of P accumulation seen 

in the I^NC^-treated, nonnodulating plants compared to the urea- 

treated, nonnodulating plants.(Fig. 3.13 ) could be the reason why the 

nonnodulating isoline responded best to NH4+ nutrition. The increases 

in P accumulation usually associated with NH4+ nutrition (Grunes, 

1959; Riley and Barber, 1971; Bieleski, 1973), are related to the low 

pH accompanying NH4+ nutrition. Depressions in pH favor P uptake 
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because abundance of the I^PO^" ion, the form of P more commonly taken 

up by plants, increases under low pH (Sentenac and Grignon, 1985) and 

the lowered pH would enhance the solubility of dicalcium phosphate and 

hydroxyapatite, especially the hydroxyapatite (Lindsay and Moreno, 

1978). 

Comparison of the growth of Modulating and Nonnodulating 

Isolines 

Growth of the nonnodulating plants was superior to the nodulating 

plants as reflected in the shoot dry weights, and in N, and P 

accumulation (Fig. 3.19, 3.20, 3.21). Limited P supply may have been 

a factor in the poor overall growth of the nodulating plants compared 

to the nonnodulating plants(Fig. 3.22 and 3.23). Nonnodulting plants 

may have had a lower P requirement since they did not fix ^ hence, 

the restricted P supply apparently satisfied their demands. Superior 

overall growth of these plants may be evidence of this low P 

requirement. 

Potassium nitrate was the least favorable fertilizer for 

nodulating or nonnodulating isolines, as reflected in the shoot dry 

weights, and in N, and P accumulation (Fig. 3.25, 3.26 and 3.27). 

Reliance on NO3" as the sole N source leads to an imbalance in the 

amino acid composition of the plant (Domska, 1974). The high pH 

associated with NC^' feeding also is not conducive to P uptake 

(Sentenac and Grignon, 1985). Urea was the most favorable fertilizer 
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Figure 3.20 Shoot nitrogen accumulation of mycorrhizal and 
nonmycorrhizal, nodulating and nonnodulating soybean as 
affected by nitrogen source and phosphorous regime. One SE 
shown at top of each bar. Each bar represents the mean of 
5 observations. PI and P2 denote hydroxyapatite and di- 
calcium phosphate, respectively. VAM denotes vesicular- 
arbuscular mycorrhizae. 
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Figure 3.21 Shoot phosphorous totals as affected 
by phosphorous regime, nitrogen source, nodula- 
tion, and mycorrhizal infection. One SE shown at 
top of each bar. Each bar represents the mean 
of 5 observations. PI and P2 denote hydroxyapa¬ 
tite and dicalcium phosphate, respectively. VAM 
denotes vesicular-arbuscular mycorrhizae. 
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Figure 3.22 Root phosphorous totals of the nodulating 
and nonnodulating, mycorrhizal and nonmycorrhizal plants 
as affected by phosphorous source and nitrogen regime. 
One SE shown at top of each bar. Each bar represents 
the mean of 5 observations. PI and P2 denote hydroxy¬ 
apatite, and dicalcium phosphate, respectively. VAM 
denotes vesicular-arbuscular mycorrhizae. 
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Figure 3.23 Shoot phosphorous percentage of the nodula- 
ting and nonnodulating mycorrhizal and nonmycorrhizal 
plants as affected by nitrogen source and phosphorous 
regime. One SE shown at top of each bar. Each bar re¬ 
presents the mean of 5 observations. PI and P2 denote 
hydroxyapatite, and dicalcium phosphate, respectively. 
VAM denotes vesicular-arbuscular mycorrhizae. 
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Figure 3.25 Effect of N sources on shoot dry weights. 
Each bar represents the mean of 40 observations. Mean 
separation by Duncan's New Multiple Range test, 1% level. 
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Fi gure 3.26 Shoot nitrogen accumulation as affected by nitrogen 
source. Each bar represents the mean of 40 observations. 
Mean separation by Duncan's New Multiple Range test, \% level. 
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Figure i.'/J Shoot phosphorous accumulation as af¬ 
fected by nitrogen source. Mean separation by 
Duncan's He* Multiple Range test, 1% level. Fach 
bar represents the mean of 40 observations. 
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for the nodulatlng Isollne. The higher shoot dry weights, and N and P 

accumulation being evidence of urea being the most favorable 

fertilizer (Fig. 3.4, 3.5 and 3.12). In contrast, NH4NO3 proved to be 

the most desirable fertilizer for the nonnodulatlng Isollne (Fig. 

3.4). In spite of the fact that nitrogen accumulation was maximal 

under urea nutrition (Fig. 3.5), growth of the nonnodulatlng plants on 

urea was restricted due to the Inadequacy of P accumulation under urea 

nutrition (Fig. 3.12). The pH of / associated with urea nutrition 

again being unfavourable for P uptake ('.entenac and Grlgnon, 1985). 

Plants treated with NH4NQ3 had the highest shoot and root P 

totals: urea-treated plants had an Intermediate value (Fig. 1.22, 

3.23, 3.42). 

The absence of an enhancement In P accumulation In the NH^NO^- 

treated, nodulatlng plants compared to the NH4NQ3-treated, 

nonnodulatlng plants (fig. M4) may be attributed to the overriding 

harmfuI tffaett of low pH (Fly. J.ll) (ersated by NH4' nutrition) on 

fl*, fixation, fhe resulting Impaired Mg fl/atlon could have blocked 

the pH enhancement of P accumulation. 

Within both Isollnes, the dlcalclum phosphate-treated plants had 

higher P totals than the hydro/yapatlte-treated plants (Fig. M3). 

Presumably, this obse/atlon was due to the fact that dlcalclum 

phosphate was the more available P source (I Indsa/ and Moreno, I960), 

fhe Increase In P totals however was greater for the nonnodulatlng 

Isollne than for the nodulatlng Isollne, which may be explained as due 

to Us better overall growth. 
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Percentage of mycorrhizal infection was lower in urea-treated 

nodulating plants than in the roots of urea-treated nonnodulating 

plants (Fig. 3.28). The decresed root N percentage (Fig. 3.8) of 

urea-treated nodulating plants relative to the urea treated 

nonnodulating plants could account for the decreased infection 

percentage of the urea-treated nodulating plants. Reportedly low root 

nitrogen levels are not conducive to mycorrhizal infection (Hepper, 

1983). 

Comparison of Mycorrhizal and Nonmycorrhizal Plants 

Presence of VAM lead to increases in growth of nodulating or 

nonnodulating plants (Fig. 3.29). Percentage of VAM infection was 

highest for the urea-treated plants and least for the KNC^-treated 

plants (Fig. 3.30). Degree of VAM benefits depended upon N source, P 

source and interactions among N source, P source, and soybean isoline 

(Fig. 3.31, 3.32, 3.33). 

Within all nitrogen regimes, shoot dry weights of the mycorrhizal 

plants were higher than those of the nonmycorrhizal plants (Fig. 

3.31). The increase for the NH4MO3 and urea-treated plants was 

significant at the 1% level while the increase for the KNO3 treated 

plants was significant at the 5% level (Fig. 3.30). 

Root dry weights of the urea-treated, mycorrhizal plants were 

higher than those of the nonmycorrhizal plants (Fig. 3.34). In 

contrast, root dry weights of the KN03-and NH4N03-treated mycorrhizal 
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Figure 3.29 Shoot dry weight as affected by mycorrhizal infec¬ 
tion within isoline. ** at 1% level. Each bar represents 
the mean of 30 observations. 
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Figure 3.31 Shoot dry weight as affected by mycorrhi- 
zal infection within nitrogen source. *,**Signficant 
at at 5% (*) level, or 1% (**) level. Each bar repre¬ 
sents the mean of 20 observations. 
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Nonsignificant (ns) or significant at 1%(**) level. Each 
bar represents the mean of 10 observations. 
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Figure 3.34 Root dry weight as affected by mycorrhizal infec¬ 
tion within nitrogen source. ns,**Nonsignficant (ns), or sig 
nificant at 1% (**) level. Each bar represents the mean of 
20 observations. 
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plants did not differ from the root dry weights of the nonmycorrhizal 

plants (Fig. 3.34). 

Within the nodulating isoline VAM growth benefits were limited to 

the urea-treated plants (Fig. 3.33). Both urea-and Nb^NC^-treated 

plants exhibited VAM growth enhancements within the nonnodulating 

isoline (Fig. 3.33). 

The N source interacted with VAM to affect the shoot and root N 

composition. Urea-treated, mycorrhizal plants had higher shoot and 

root N totals than those of the urea-treated, nonmycorrhizal plants 

(Fig. 3.35 and 3.36). Root N totals of the mycorrhizal, NH4NO3- 

treated plants (Fig. 3.35) were depressed significantly compared to 

the Nb^NC^-treated nonmycorrhizal plants. Shoot P totals of both 

NH4NO3 and urea-treated, mycorrhizal plants were higher than those of 

the Nb^NC^-and urea-treated nonmycorrhizal plants (Fig. 3.37). 

Irrespective of nodulation, mycorrhizal plants had significantly 

depressed root N totals when treated with NH4NO3 and hydroxyapatite 

(Fig. 3.38). Supply of hydroxyapatite and urea to the mycorrhizal 

plants led to a significant enhancement of root N totals (fig. 3.38). 

The root P totals of the nonnodulating isoline treated with NH4NO3 was 

significantly increased under both P regimes (Fig. 3.39). The higher 

root P content of Nb^NC^rtreated plants would have partly contributed 

to the reduction in VAM infection associated with NH4+ nutrition (Fig. 

3.29). 

Nodulating or nonnodulating, mycorrhizal plants had higher shoot 

P totals than nonmycorrhizal plants, under both P regimes (Fig. 3.32). 
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Figure 3.35 Shoot nitrogen accumulation as affected by mycorrhizal 
infection within nitrogen source, ns, **Nonsignficant (ns), or 
significant at 1% (**) level. Each bar represents the mean of 20 
observations. 
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Figure 3.37 Shoot phosphorous accumulation as affected by 
mycorrhizal infection within nitrogen source, ns, 
**Nonsignficant (ns), or significant at 1% (**) level. 
Each bar represents the mean of 20 observations. 
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figure 3.39 Root P accumulation as affected by nitrogen source, 
within phosphorous source and soybean isoline. Mean separation 
within phosphorous source and isoline by Duncan's New Multiple 
Range test, 1% level. Each bar represents the mean of 10 
obser/ations. 
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This VAM-induced tissue P enhancement was higher for the 

hydroxyapatite-treated plants than for the dicalcium phosphate-treated 

plants (Fig. 3.32), confirming the theory that mycorrhizal growth 

benefits are greater under situations of less available P (Harley and 

Smith, 1984). 

The observation of enhanced growth response of the nonnodulating 

plants to mycorrhizal infection disagrees with previous reports. 

Schenck (1972) and Carling et al; (1978) found a positive growth 

response to mycorrhizal infection in nodulating soybean but did not 

find a similar response to mycorrhizal infection in nonnodulating 

soybean. Schenck and others (Asai, 1944; Schenck and Hinson, 1972; 

Abbott and Robson, 1977; Mosse, 1977; Redente and Reeves, 1981) 

suggested that a specific synergism existed between mycorrhizal fungi 

and ^-fixing bacteria. This hypothesis was supported by reports that 

several legumes did not become established in sterilized soils, unless 

YAM was present (Asai, 1944). Sterilization of soil could lead to Mn 

or NH4+ toxicity (Russel and Russel, 1976). The role of VAM in these 

instances may have been an enhanced tolerance to Mn or NH^ toxicity. 

High concentrations of zinc and copper are found in mycorrhizal plants 

(Gilmore, 1971; Ross, 1971). Perhaps mycorrhizal establishment led to 

a correction of either Cu or Zn deficiency in these plants. Both of 

these elements influence nodulation and nitrogen fixation (Van 

Schreven, 1958). 

Nitrogen availability is more critical than P availability in 

achieving optimum growth of mycorrhizal plants (Koucheki and Read, 
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1975; Brown, Schultz, and Kormanik, 1981). This may partly be related 

to the fact that nitrogen deficient conditions lead to reduced root 

exudation (Bowen, 1969) as opposed to P deficient conditions which 

lead to enhanced root exudation (Rathnayake et al., 1978). If the 

amount of fungal colonization is regulated by root exudation, as 

suggested by Rathnayake et al. (1978), then N and P starvation have 

contrasting effects on the success of mycorrhizal infection. The 

response of nonnodulating plants to mycorrhizal infection in my 

experiment can be attributed to the supplement of inorganic nitrogen. 

In other experiments comparing nodulating and nonnodulating 

plants, nitrogen supplements were withheld from the nodulating plants 

in order to standardize experimental conditions (Schenck and Hinson, 

1972; Carling et al; 1978). Results of such experiments may be flawed 

(1); an accurate standardization is not possible in this situation, 

because the nodulating plants have access to atmospheric nitrogen and 

exhibit a superior overall metabolism whereas the metabolism of the 

nonnodulating plants was curtailed severely due to N starvation. It 

is not surprising that the nonnodulating plants lacked a positive 

growth response to mycorrhizal infection in this situation. The 

imposition of a symbiont (an additional carbon drain) on a N-stresed 

plant would increase the.severity of its problems. 

Nodulating plants treated with urea and hydroxyapatite exhibited 

the highest degree of mycorrhizal benefits (Fig. 3.19). Within the 

nonnodulating isoline maximum mycorrhizal benefits were derived by 

plants treated with a combination of urea and dicalcium phosphate 
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(Fig. 3.19). With low P, urea caused enhancements in root dry weights 

of the mycorrhizal nodulating and nonnodulating plants. With the 

higher P regime, only the urea-treated, nonnodulating plants exhibited 

an increase in root dry weights (Fig. 3.40). 

According to the results of this experiment, the maximum 

advantage of Glycine-Glomus-Rhizobium symbiosis may be gained when 

urea is used as the N fertilizer with a 50% NO3 background. Supplying 

N in the form of urea ensures a maximal tissue N level, and the 

mycorrhizal infection ensures a higher tissue P content. Urea was the 

most beneficial fertilizer for the nodulating isoline. Both NH4NO3 or 

urea proved to be highly beneficial to the nonnodulating isoline. 

Earliar reports that VAM did not help increase tissue N in the 

nonnodulating isoline (Schenck and Hinson, 1972; Carling et al., 

1978), perhaps was a direct result of the inadequacy of N supply to 

these plants. This experiment shows that, when adequate N is 

available, VAM infection increases the tissue N levels of 

nonnodulating plants (Fig. 3.7 and Fig. 3.8). 

The higher benefits of the reduced N sources in the expression of 

growth enhancements due to mycorrhizae may be explained partly as 

follows. A reduced N source, while providing nitrogen also is a means 

of energy economy to the.plant. Because a symbiotic system imposes 

burdens on the energy budgeting of the plant, the efficiency of such a 

system would be facilitated by a reduced N source. Mycorrhizal fungi 

reportedly have a preference for NH4-N over NO3-N (Bowen and Smith, 

1981). Nitrate fertilization of soil also diminishes mycorrhizal 
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development (Richards, 1965). Nitrate may have an inhibitory effect 

on some mycorrhizal fungi (Harley and Smith, 1983). These studies are 

in agreement with my results in which the percentage of VAM infection 

and the growth enhancements due to mycorrhizae were least with nitrate 

nutrition. The mycelium of the mycorrhizae and the vesicles could 

serve as additional sites of ammonia detoxification, which in turn 

could make a supply of amino acids readily available to the plant. 

There is evidence for the transfer of glutamine from the fungal 

mycelium to the host (Lewis, 1976). The higher percentage of 

infection and the larger size of the vesicles (Fig. 3.41) associated 

with urea nutrition perhaps is important in this respect in explaining 

the superiority of urea fertilizer in obtaining VAM benefits. 

The different N sources also led to differences in nitrogen and 

phosphorous partitioning between the root and the shoot of the plant. 

P concentrations were lower in the root systems of urea-treated plants 

than in the root systems of NH4N03“treated plants (Fig. 3.42). 

Associated with the low root P concentration was a significant 

enhancement of root N totals of urea treated mycorrhizal plants (Fig. 

3.36). A high root N/P ratio reportedly is conducive to VAM benefits 

(Hepper, 1983). The positive correlation of root N/P ratios to the 

growth enhancements due to mycorrhizae of this experiment (Fig. 3.44) 

supports this hypothesis. Plants treated with urea exhibited the 

highest root N/P ratios, compared to the plants treated with the other 

N sources (Table 3.2). The high root N/P ratios of urea-treated 

plants may explain to a great extent, the susceptibility of these 



Figure 3.41 Large internal vesicles of the roots of urea- 
treated plants. 
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Figure 3.42 Root phosphorous accumulation as 
affected by nitrogen source. Mean separa¬ 
tion by Duncan's New Multiple Range test, 1% 

level. Each bar represents the mean of 40 
observations. 
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Figure 3.43 Root nitrogen accumulation as affected 
by nitrogen source. Mean separation by Duncan's 
New Multiple Range test, 1% level. Each bar represents 
the mean of 40 observations. 
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Figure 3.44 Relationship between mycorrhizal benefits (expres¬ 
sed as increase in shoot dry weight due to mycorrhizal infec¬ 
tion) and root N/P ratio. * Siginificance of the correlation 
coefficient (r) at 5% level *. 
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Table 3.2 Effect 
root N/P ratio. 

of soybean isoline, and N source on 

Isoline kno3 nh4no3 UREA 

Nodulating 17.13A 15.45A 21.11B 

Nonnodulating 22.44B 13.55A 36.53C 

Row mean separation by Duncan's New Multiple Range 
test, 1% level. 



Table 3. 
root N/P 

3 Effects of N 
ratio. 

source, and P regime on 

HYDROXYAPATITE DICALCIUM PHOSPHATE 

kno3 23.48** 16.08 

nh4no3 16.07* 12.93 

UREA 37.14** 20.51 

*,**Signficant at 5% and 1% levels, rows. 
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plants to VAM infection. Within the nonnodulating isoline, 

treated plants had lower root N/P ratios than KN03-treated plants. 

However, the VAM growth enhancements of l^f^-treated plants were 

higher than for the KN03-treated plants. The benefits of a high root 

N/P ratio may tend to be lost when the N source is non reducing. 

Higher root N/P ratios were obtained with the hydroxyapatite treated 

plants than with the dicalcium phosphate treated plants (Table 3.3) 

implying the potential for greater mycorrhizal benefits under the less 

available P source. 

According to this experiment, the efficiency of the Glomus, 

Glycine, and Rhizobial tripartite symbiosis appear to depend upon the 

supply of (1). Reduced N (2). high root N/P ratio and (3). and a 

neutral root environment pH. Superiority of urea in enhancing VAM 

benefits may be because urea fulfills these 3 requirements best. Urea 

was also the only reduced N source under which VAM association led to 

enhanced shoot N totals (Fig. 3.35). 

This experiment suggests that, under conditions of sufficient N 

availability and when P is not limiting, the N/P ratio of the roots 

may be a major determinant of the degree of susceptibility of soybean 

to VAM infection. The percentage of infection, by itself, does not 

reflect the potential VAM benefits if either N or P is severely 

limiting. A high percentage of VAM infection (Fig. 3.28) and the 

absence of VAM growth benefits in nodulating NH^N03-treated plants 

(Fig. 3.33) are evidence of this. Alternately, mycorrhizal infection 

caused growth reductions in soybean (Glycine max "Kent"), and bean 
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(Phaseolus vulgaris L. cv. Dwarf), inoculated with Glomus Fasciculatus 

(Bethlenfalvay et al; 1982a; 1982b). Intersymbiont competition for P 

and photosynthate reportedly was responsible for these growth 

reductions (Bethlenfalvay et al; 1982a; 1982b). VAM benefits of the 

urea-treated, nodulating plants in this experiment may have been 

increased if the P availability was greater (through indirect 

enhancement of r^-fixation). One of the possible restrictions of this 

experiment can be removed by increasing the P supply. However, in 

this case the options for using N fertilizers will be limited to urea 

and KNO3, since VAM infection is inhibited in r^f^-treated plants, 

at high levels of P (Chapter II). 

The available phosphorous in the growth medium ranged from 3 to 

30ppm (Fig. 3.45). Reportedly mycorrhizal growth benefits occur best 

at corresponding levels of soil P (Harley and Smith, 1983). The upper 

limit of this range may have been more conducive to mycorrhizal 

benefits, as the highest response to VAM infection was obtained with 

urea treated plants. 

A comparative study of how urea and KNO3 affect the N/P ratios of 

roots grown with different P concentrations will help to determine 

what concentrations of these fertilizers are more appropriate in 

situations where VAM growth benefits are desired. The fertilizer 

combination that will give the highest root N/P ratio, in a situation 

in which the N supply is neither restricting nor excessive to plant 

growth, may be also the situation in which highest VAM growth growth 

benefits will be derived. Alternately, application of P has to be 
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Figure 3.45 Phosphorous concentration in 
the sand leachate as affected by source 
of nitrogen. Mean separation by Duncan's 
Hew Multiple Range test, 1% level. Each bar 
represents the ”nean of 40 observations. 
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manipulated in order that P supply does not restrict plant growth or 

exceed the limits that prevent mycorrhizal benefits. 



CHAPTER IV 

EFFECTS OF N SOURCE AND N AND P INTERACTION ON THE N AND P 

COMPOSITION OF NODULATING AND NONNODULATING SOYBEANS 

Materials and Methods 

A greenhouse experiment was designed to investigate the effects 

of low and high levels of 2 sources of N: 100% N03* or 50% urea with 

50% N03~, combined with a low and a high level of dicalcium phosphate 

on nodulating or nonnodulating soybean. 

Preparation of growth medium was similar to that described in 

Chapter II. Dicalcium phosphate was added to the sand at the rate of 

250 or 500 mg per pot. Seeds were surface-sterilized, and nodulating 

plants were inoculated with rhizobia (Chapter III). Four seeds were 

planted in each pot, watered until 2 healthy cotyledons and a growing 

point emerged, and then thinned to 1 plant per pot. Nutrient 

treatments were commenced 2 weeks after seedling emergence. Nutrients 

were provided as recommended by Johnson et al. (1957) except for N. 

Nodulating plants were supplied with 5mM or lOmM N, while 

nonnodulating plants received double this stength of N. The 2 sources 

of N applied will be referred to as nitrate or urea regimes. 

The experiment was started in late October. Temperature varied 

105 
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diurnally, mean day temperature was 25°C, and mean night temperature 

was 10°C. About half of the days during the experimental period were 

overcast. Supplementary light was provided throughout the 

experimental period (Chapter II). Nutrient solution was provided 5 

days a week and the medium was leached with deionized water on the 

remaining two days. Plants were harvested in early-December at the 

onset of podset. Each treatment was replicated 5 times. Pots were 

rotated daily to avoid positional effects of the greenhouse. 

Statistical analyses was carried out similar to that described in 

Chapter III. After harvest tissues were dried, weighed and analysed 

for P and N according to the procedures described in Chapter III. 

Results and Discussion 

Nodulating Plants 

Nodulating plants treated with urea exhibited more vigorous 

growth than those treated with nitrate (Fig. 4.1). Incipient 

chlorosis occurred in the older leaves of the nitrate-treated, 

nodulating plants, and these symptoms were more pronounced in the 

plants treated with the higher level of nitrate than those treated 

with the lower level of nitrate(Fig. 4.1). A nitrate-induced, Fe 

deficiency (Haynes and Goh, 1978) may be a possible reason for these 



Figure 4.1 Nodulating plants treated with high and low 
levels of KNO3 or urea. Older leaves of the KNO3 

treated plants (left) show chlorosis. Symptoms of min¬ 
eral disorder are absent in the urea-treated plants 
(right). Low and high levels of N refer to 5mM and 10 
mM N. 
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igure 4.2 Shoot dry weights as affected by nitrogen source 
within soybean isoline. *, **Significant at 5% or 1% level. 
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symptoms. Urea-treated nodulating plants had higher shoot dry weights 

than the nitrate-treated nodulating plants (Fig. 4.2). Application of 

a higher level of urea led to increased shoot dry weights of the 

nodulating plants, but the application of a higher level of nitrate 

did not elicit a similar response (Fig. 4.3). Root dry weights were 

not increased by the higher level of nitrogen (Fig. 4.4). 

Plant nitrogen composition. Nodulating plants treated with the 

higher level of urea showed higher shoot N totals than the plants 

treated with the lower level of urea (Fig. 4.5), but a similar 

response was not shown by the KNC^-treated nodulating plants. 

Nodulating plants showed improved growth with the higher level of urea 

under both P regimes (Fig. 4.5). The favorable effect of urea 

compared to nitrate in N accumulation and in enhancing shoot dry 

weights may be because urea promotes N2 fixation in nodulating soybean 

(Vigue et al., 1977). The poorer growth obtained with NO3" nutrition 

(Fig. 4.2), can be attributed to the inhibitory effects of NO3" ion on 

N2 fixation. The lower shoot and root N totals of the NC^-treated 

plants compared to the urea-treated plants is evidence of this nitrate 

inhibition of N2 fixation (Table 4.1). 

Plant phosphorous composition. Higher levels of N increased the 

shoot and root P totals (Fig. 4.6 and 4.7). Therefore availability of 

N must determine the efficiency of P accumulation. When the 

interaction of N source, N level, and P regime was considered, it was 

seen that the higher level of urea increased the shoot P totals, under 

both P regimes (Fig. 4.8). The higher level of nitrate increased the 
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Table 4.1 Shoot and root nitrogen and phosphorous percentages as 
affected by nitrogen source, nitrogen rate and phosphorous regime. 

N source N rate 
mM 

P rate 
ppm 

shoot NX root NX shoot PX root PX 

Nodulating Isoline 

KN03 5 100 3.16 2.52 0.41 0.26 
urea 5 100 4.29 2.74 0.45 0.21 

KN03 5 200 3.19 2.66 0.47 0.28 
urea 5 200 3.81 2.75 0.40 0.22 

KN03 10 100 3.75 2.90 0.54 0.44 
urea 10 100 4.79 3.02 0.47 0.24 

KN03 10 200 3.29 3.10 0.44 0.33 
urea 10 200 4.72 3.10 0.47 0.27 

Nonnodulating isoline 

KN03 10 100 4.13 2.67 0.44 0.25 
urea 10 100 4.65 3.13 0.32 0.22 

KN03 10 200 3.64 2.82 0.30 0.25 
urea 10 200 4.73 3.11 0.33 0.24 

KN03 20 100 4.53 3.096 0.52 0.29 
urea 20 100 6.40 5.20 0.38 0.26 

KN03 10 200 4.47 3.24 0.46 0.26 
urea 10 200 6.50 5.02 0.32 0.20 

LSD 05 .32 ns .18 .13 

LSD;gf .42 ns .24 .17 



Ill 

^ NODULATING ► « NONNODULATING^ 

Figure 4.3 Shoot dry weights as affected by nitrogen rate, 
within nitrogen source and soybean isoline. Mean separa¬ 
tion within nitrogen source and soybean isoline by Lsd 
, 57o (lowercase letters) level: 0.45, or 1% (uppercase 
letters) level: 0.59. Low and high levels of N correspond 
to lOmM and 5mM N for nodulating plants, and lOmM and 20 
mM N for nonnodulating plants. 
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Figure 4.4 Root dry weights as affected by ni 
soybean isoline. Insert Lsd . Low and high 
to 5mM and lOmM N for nodulating plants and 
nonnodulating plants. 

trogen rate within 
levels of N refer 
lOmM and 20mM N for 
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Figure 4.6 Shoot P accumulation as affected by N rate within 
soybean isoline. **Significant at 1% level. 



Figure 4.7 Root phosphorous accumulation as affected by 
nitrogen rate, within soybean isoline. **Significant 
at 1% level. Low and high levels of N refer to 5mM 
and lOmM N for nodulating plants and lOmM and 20mM N 
for nonnodulating plants. 



shoot P totals, under the lower P regime (Fig. 4.8) but did not raise 

the shoot P totals under the higher P regime. Failure of shoot P 

totals to increase under the higher P regime may be attributed to an 

unfavorable shoot N/P ratio that arose when KNO3 and P supply were 

raised at the same time. 

Urea-treated, nodulating plants showed a significant reduction in 

root P totals, compared to the NO^-treated plants (Fig. 4.9). N 

source appeared to play a major role in the partitioning of P between 

the shoot and the root-a result suggested by the first experiment as 

well and confirmed by the results of this experiment which was carried 

out under P sufficient-conditions. Reduction in root P content of 

plants subjected to urea nutrition (Fig. 4.9) may be of major 

importance in making these plants susceptible to VAM infection. 

Nonnodulating Plants 

Plants treated with the lower levels of nitrate or urea lacked 

symptoms of mineral disorder (Fig. 4.10). Symptoms of ammonium 

toxicity appeared in the plants treated with the higher level of urea 

(Fig. 4.11), and these exhibited reduced shoot dry weights. They also 

ceased height growth prematurely (Fig.4.3). Urea-treated, 

nonnodulating plants had higher shoot dry weights than the nitrate- 

treated, nonnodulating plants (Fig. 4.4). 

Plant Nitrogen Composition. Urea-treated plants had higher shoot 

and root N totals than the (^"-treated plants (Fig. 4.12 and Table 
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rigjre 4.9 Effect of ’i source witin soybean isoline on 
root P accumulation. ns, **Monsignficant or significant 
at 1% level. 
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Figure 4.10 Nodulating (left) and nonnodulating (right) plants 
treated with high and low levels of nitrate. High and low levels 
of nitrate refer to 5mM and lOmM N for nodulating plants and 
lOmM and 20mM N for nonnodulating plants. 

I 



Figure 4.11 Younger leaves of the nonnodulating plants treated 
with the higher level of urea. Dark green color, cupping and 
malformation symptomatic of ammonia toxicity. Higher level 
of urea refer to 20mM of N. 
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Figure 4.12. Root N totals as affected by nitogen source 
within soybean isoline, ns, **Nonsignficant or signifi¬ 
cant at 1% level. 
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4.1). Plants treated with a higher level of urea however had their 

root and shoot N percentages increased to a degree (Table 4.2) that 

exceeded the sufficiency levels of nitrogen 4.26 to 5.5% (Small and 

Ohlrogge, 1977) for normal growth. Increased tissue N content of 

plants treated with the higher level of urea (Table 4.2) was 

associated with a sharp drop in shoot dry weights and shoot N totals 

(Table. 4.1). 

The N percentage of plants treated with the higher level of NO3 

did not show increases parallel to the increases in N percentage of 

the plants treated with the higher level of urea (Table 4.2). Neither 

did the plants treated with the higher level of KNO3 show a depression 

in growth, as did the plants treated with the higher level of urea 

(Fig. 4.3 and Table 4.5). Apparently urea is the more beneficial form 

of N than KNO3 to plants, when tissue N levels are not raised beyond 

the N sufficiency range. However, when the 2 nitrogen sources are 

provided at levels comparable to the higher levels of N supplied in 

this experiment, the benefits of urea tend to get lost due to ammonium 

toxicity. The less vigorous growth, flaccidity, dark green color, 

cupping and malformation of leaves (Bennett, 1974) of the 

nonnodulating plants treated with the higher level of urea were 

evidence of the ammonium toxicity. Higher P availability led to 

overall increases in shoot N totals (Fig. 4.13). 

Plant phosphorous composition. The nitrogen source did not cause 

a difference in the root P totals of the nonnodulating isoline (Fig. 

4.9). Plants treated with a higher urea level and a higher P supply. 
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Table 4.2 Shoot and root nitrogen and phosphorous percentages as 
affected by nitrogen source, nitrogen rate and phosphorous regime. 

N source N rate 
mM 

P rate 
ppm 

Shoot 
dry wt. 
g/plant 

Root 
dry wt. 
g/plant 

Shoot N 
total 
mg/plant 

Root N 
total 
mg/plant 

Nodulating Isoline 
KN03 5 100 2.07 0.61 65 13 
urea 5 100 1.99 0.49 85 13 

KN03 5 200 2.24 0.60 78 16 
urea 5 200 2.60 0.66 98 18 

KN03 10 100 2.47 0.55 84 14 
urea 10 100 2.80 0.72 134 20 

KN03 10 200 2.48 0.64 82 18 
urea 10 200 2.78 0.70 131 22 

Nonnodulating isoline 

KN03 10 100 2.60 0.78 107 21 
urea 10 100 3.43 0.92 159 29 

KN03 10 200 2.58 1.06 94 29 
urea 10 200 4.04 1.28 190 39 

KN03 20 100 2.00 0.62 91 19 
urea 20 100 2.71 0.74 174 39 

KN03 20 200 2.30 0.76 107 25 
urea 20 200 2.34 0.76 152 39 

LSD.05 ns ns 57 ns 
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NODULATING NONNODULATING 

Figure 4.13 Shoot N accumulation as affected by P regime 
within soybean isoline. *Significant at 5% level. 
Low and high levels of N refer to 5mM and lOmM N for 
nodulating plants and lOmM and 20mM N for nonnodulating 
plants. 
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showed a dramatic reduction in shoot P totals , paralleling a 

reduction in shoot N totals (Fig. 4.5 and 4.8). 

The depressions in tissue P percentage that accompanied the 

higher level of P supply (Table 4.2) could not be accounted for by a 

tissue dilution effect, since shoot dry weights also decreased (Table 

4.1). These decreases in shoot dry weights were coupled with sharply 

increased N percentages of the root and shoot that clearly exceeded 

the sufficient N (4.26-5.5%) range (Small and Ohlrogge, 1977). 

Presumably, the elevated N levels, lead to nutritional imbalances 

(Hiatt and leggget, 1976), that were detrimental to the plant. 

Lowered P accumulation and sharply depressed growth were evidence of 

these nutritional imbalances (Fig. 4.3 and 4.8). 

Comparison of Growth of Nodulating and Nonnodulatinq Plants 

The nonnodulating isoline had higher shoot dry weights than the 

nodulating isoline (Fig. 4.14). The higher level of supply did 

not lead to increased shoot dry weights, shoot N totals, or shoot P 

totals of either isoline (Fig. 4.3, 4.5, and 4.8). The higher level 

of urea supply led to increased shoot dry weights, shoot N totals, and 

shoot P totals of the nodulating plants (Fig. 4,5 and 4.8). 

Presumably, any advantage gained by increased nitrate supply to the 

nodulating plants was offset by the inhibitory effect of NO3” on N2 

fixation (Streeter, 1985). Supply of a higher level of urea must have 

been deleterious to the nonnodulating isoline, since it led to 
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decreased shoot dry weights and shoot and root N totals (Fig. 4.5, and 

4.8). The improved growth of the nodulating plants, associated with 

the higher level of urea nutrition, supports the theory of synergism 

between urea nutrition and nitrogen fixation. Nodulating soybean 

showed enhancements of shoot dry weights and shoot N and P totals 

under both P regimes, when urea was provided at the higher level 

(Fig. 4.5 and 4.8 and Table 4.1). Failure of shoot dry weights of the 

nodulating soybean to increase when the nitrate supply was increased, 

in spite of an enhanced P level may be because the tissue N levels did 

not increase parallel to the increae in tissue P levels (Fig. 4.5 and 

4.8). Adverse effects of nitrate ion on N2 fixation and other 

metabolic events could account for the absence of a positive response 

to increased nitrate supply by the nodulating plants treated with the 

higher level of nitrate (Haynes and Goh, 1977; Streeter, 1985). 

When nodulating and nonnodulating plants were fertilized with 

identical concentrations of N in the form of urea, nodulating plants 

showed the poorer shoot dry weights (Fig. 4.15). This observation 

cannot be attributed to P limitation since P percentage of these 

plants fell within the adequate range unlike the previous experiment. 

Possibly less energy is available for increases in dry matter in the 

nodulating plants since some energy is used for N2 fixation. The 

recently confirmed reports of denitrification by rhizobial bacteria 

may account for some lack of fertilizer efficiency of this isoline 

(O'Hara and Daniel, 1985). Nonnodulating isolines have been reported 

previously to give greater increases in attributes such as seed and 
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NODULATING 

^ NONNODULATING 

Figure 4.15 Effect of N source and soybean isoline on 
shoot dry weights of the nodulating and nonnodulating 
plants supplied by identical concentrations of nitrogen, 
ns, **Nonsignficant or significant at 1% level. 
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dry matter yields, seed size and plant height relative to nodulating 

isolines, when increased amounts of N were supplied, under the same 

conditions (Weber, 1966). However, these attributes of the two 

isolines are reported to become equalized with stresses for moisture, 

N or both. 

Shoot P accumulation of both isolines depended upon a significant 

3-way interaction of soybean isoline, N source, and level of N. When 

P supply was low, all plants treated with the higher level of N had 

significantly enhanced shoot and root P totals (Fig. 4.15 and 4.16) 

relative to the plants treated with the lower level of N. When P 

supply was high, level of N did not have a significant influence on 

the shoot P totals (Fig. 4.16). Root P totals, however, were 

decreased in parallel with increased N supply under the high P regime 

(Fig. 4.17). Thus under conditions of restricted P supply, enhancing 

the N supply led to a greater accumulation of P. Nitrogen and 

phosphorous uptake appear to be synergistic, when P is limiting. 

A delicate balance among the N source, its availability, and P 

regime appeared to govern the capacity of the soybean plant to 

accumulate P and N. The results reveal the following fertilizer 

combinations to be effective for nodulating soybean:(1). A lower NO3" 

level combined with a higher P regime, or (2). A higher urea level 

combined with a lower P regime. The lower level of N combined with 

the higher P regime was more effective for the nonnodulating soybean. 

An explanation for the preference of a lower NO3" level by the 

nodulating plants is available since higher NO3" levels are inhibitory 
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Figure 4.16 Shoot P accumulation as affected by N rate 
within P regime, ns,Nonsignificant or significant 
at 5% (*) level. Low and high levels of N refer to 5mM 
and lOmM N, for nodulating plants and lOmM and 20mM N for 
nonnodulating plants. 
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Figure 4.17 Effect of N rate within P regime on root P 
accumulation. 
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to N2 fixation. Concomitantly, a higher P regime would supply more 

energy for N2 fixation. Alternately, urea would be preferred at 

enhanced levels by the nodulating plants, since urea supplements the 

plant with N, without inhibiting N2 fixation. For the nonnodulating 

plants the lower level of N obviously was preferable, since the higher 

level of N led to less growth (Fig. 4.3). 

Root N/P Ratios 

Root N/P ratio of urea-treated plants were higher within both 

isolines, than the root N/P ratios of nitrate-treated plants (Table 

4.3). Within the nodulating isoline, the lower levels of both N 

sources favored the higher root N/P ratios (Table 4.4). Although a 

drastic increase in root N/P ratio occurred in the nonnodulating, 

urea-treated plants, when they were subjected to the higher p regime, 

positive conclusions cannot be drawn from this result, since the 

plants suffered ammonium toxicity at this stage. Generally, the 

higher P supply did not cause a significant difference to the root N/P 

ratios (Table 4.5). 

The mechanism by which the root N/P balance was adjusted in 

response to N source differed for the 2 isolines. In the 

nonnodulating isoline, the increase in root N/P ratios in response to 

urea ntrition was brought about by an increase in the root N totals 

(Fig. 4.12), while the root P totals remained the same as with nitrate 

nutrition (Fig. 4.9). In the nodulating isoline, this increase in 



Table 4.3 Effects of soybean isoline, 
source on root N/P ratios. 

and N 

kno3 UREA 

Nodulating 8.51 12.31** 

Nonnodu 1 at i ng 11.31 17.89** 

**Signficant at 1% level, rows. 



134 

Table 4.4 Effects of 
and nitrogen rate on 

soybean isoline, 
root N/P ratio. 

nitrogen source 

N source N rate Nodulating Nonnodulating 

KNOo 1 9.65 10.97 
2 7.37 11.65 

urea 1 13.00 13.70 
2 11.57 22.07 

Lsd( = 1.43, for soybean isoline, and nitrogen 
rate. 1 and 2 refer to low and high levels of N, 
corresponding to 5 and lOmM for nodulating plants, 
and 10 and 20mM for nonnodulating plants. 



Table 4.5 Effects of soybean isoline, nitrogen 
rate and phosphorous rate on root N/P ratio. 

N source N rate LOW P HIGH P 

Modulating isoline 

kno3 5 9.63 9.66 
10 6.14 8.60 

UREA 5 13.39 12.62 
10 12.32 10.83 

Nonnodulating isoline 

kno3 10 10.86 11.09 
20 10.95 12.37 

UREA 10 14.43 12.98 
20 19.70 24.44 

Lsd( qi\ = 2.0234, rows. Low P and high P 
refer to 100 and 200 ppm, phosphorous supplied 
as dicalcium phosphate. 
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root N/P ratios was accomplished by a reduction in root P totals while 

root N totals remained the same, as with nitrate nutrition (Fig. 4.9 

and 4.12). 

The final root N:P balance derived under a urea/low P combination 

may be a unique physiological factor that give urea-treated plants a 

specific vulnerability to VAM infection. A low root P status and a 

high root N content are the favored prerequisites for successful VAM 

infection (Hepper, 1983). Soybean plants supplied with urea appear to 

achieve this favorable root N:P composition, as indicated by the 

previous experiment and confirmed by the results of this experiment 

where plants were grown under P sufficiency. 



CHAPTER V 

ROLE OF FOLIAR OR SOIL APPLIED PHOSPHOROUS ON ESTABLISHMENT OF 

MYCORRHIZAL INFECTION 

Materials and Methods 

Greenhouse experiments were conducted to compare the effect of 

foliar P and soil P on establishment of mycorrhizal infection in 

nodulating (experiment 1), and nonnodulating (experiment 2), soybean 

plants. Foliar P applications were used to raise tissue P levels 

without affecting the level of P in the soil. 

Surface-steri1ized seeds were germinated in sand and inoculated 

with mycorrhizae according to the procedures given in Chapters II and 

III. Nutrients other than P were supplied to all plants as 

recommended by Johnson et al. (1957). Nutrient solutions were 

supplied to the plants 5 days of the week, and the medium was flushed 

with water on 2 days of the week. Foliar sprays contained 0.01% Tween 

80, a surfactant to facilitate uniform spreading and penetration. 

Stomatal penetration with associated water logging of leaf tissue was 

not observed. The spray was maintained at pH 5. Foliar spraying was 

started at the 7-leaf stage. Application of foliar fertilizer were 

made 3 times a day with a hand sprayer, early morning, late afternoon, 

137 



138 

and night. Upper and under surfaces of leaves were sprayed to runoff. 

A portion of the solution added was retained by the leaves, and the 

rest dripped off. To prevent drops of solution falling off the leaves 

reaching the soil, the pots were covered with plastic sheets at the 

time of application. All plants were given a basic soil dressing of 

150 mg of hydroxyapatite per pot, to ensure that the foliar P supplied 

plants were not P deficient at the juvenile stage, when P demand was 

highest and leaf surface area a minimum. Also foliar P applications 

were not begun until the 7 leaf stage. Solutions for the low and high 

foliar applications of P contained 0.05 percent and 0.1 percent P. 

Low and high soil P applictions contained ImM and 2 mM solutions of 

KH2PO4. Plants were harvested biweekly beginning the fourth week. 

Final harvest was at the mid-podset stage. Roots and shoots were 

separated and analyzed for P as described in Chapter III. Tissue zinc 

levels were measured by atomic absorption spectrophotometry after dry 

ashing the tissue and dissolving the ash in HC1. Data were analysed 

using Analysis of Variance. If the F test was significant at P< 0.01 

or P< 0.05, pairwise comparisons among treatment means were undertaken 

using the method of Least Significant Difference. 

Results and Discussion 

Trends in the establishment of VAM infection were similar in 
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nodulating and nonnodulating plants in response to the different 

treatments applied. 

Tissue P levels in plants treated with high soil P (Table 5.1 and 

Table 5.2 ) exceeded levels of P favourable for normal growth (Small 

and Ohlrogge, 1977). These plants also exhibited symptoms of a 

mineral disorder (Fig. 5.1) similar to Zn deficiency. Reportedly 

soybean plants with excessively high tissue P contents suffer Zn 

deficiency (Paulsen and Rotimi, 1968). Analysis for zinc however did 

not indicate deficient shoot or root zinc levels (Table 5.3 and 5.4). 

Sharpe et al. (1984) observed a linear reduction in soybean leaf zinc 

with increasing levels of applied P, but the tissue Zn levels did not 

fall below the sufficiency range. Takkar et al. (1975) found the P-Zn 

disorder to be related to the P/Zn ratio in different parts of the 

plant than either with the P or Zn content of tissues. An incipient 

chlorosis appeared in the tips of older leaves treated with foliar P 

at the high rate (Fig. 5.2). Symptoms of mineral disorder however 

were absent in the plants treated with foliar P at the low rate (Fig. 

5.2). 

The consistently low percentage of VAM infection found in plants 

treated with soil P at the high rate (Table 5.5 and 5.6) can be 

attributed to a combination of a high tissue P level and a high soil P 

level. 

The intramatrical mycelium of the roots with high root P contents 

appeared less clear (Fig. 5.3) and stained more lightly than the 

mycelium of the roots treated with lower levels of P (Fig. 5.4). 



Table 5.1 Shoot phosphorous concentration in nodulating 
isoline as affected by harvest, foliar or soil feeding 
and, concentration of phosphorous applied. 

Treatment Harvest 

1 2 3 4 

Foliar low P 0.27 0.31 0.28 0.30 

Soil low P 0.28 0.32 0.28 0.32 

Foliar high P 0.44 0.52 0.40 0.51 

Soil high P 0.48 0.57 0.62 0.64 

LSD( Q5) = .04, columns. 
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Table 5.2 Shoot phosphorous concentration in nonnodulating 
isoline, as affected by harvest, foliar or soil phosphorous 
feeding, and concentration of phosphorous applied. 

Treatment Harvest 

1 2 3 4 

Foliar low P 0.25 0.30 0.33 or 

Soil low P 0.28 0.32 0.37 0.36 

Foliar high P 0.39 0.37 0.37 0.38 

Soil high P 0.39 0.40 0.56 0.67 

LSD( oi) = *04> columns. 
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Figure 5.1 Plant treated with soil P at the high rate 
exhibits symptoms of mineral disorder. Plant treated 
with foliar P at the high rate lack deficiency symp¬ 
toms, to a large extent. 
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Table 5.3 Shoot 
in the nodulating 

and root 
isoline. 

zinc concentrations 

Treatment Harvest 

1 2 3 4 
_PPm 

Shoot 

Foliar low P 32 37 49 37 

Soil low P 31 53 46 30 

Foliar high P 30 46 53 37 

Soil high P 28 28 37 20 

Root 

Foliar low P 41 43 45 40 

Soil low P 48 43 34 34 

Foliar high P 41 33 45 43 

Soil high P 30 42 28 32 
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Table 5.4 Shoot and root zinc concentrations 
in the nonnodulating isoline. 

Treatment Harvest 

1 2 
_PPm 

3 4 

Shoot 

Foliar low P 41 33 35 60 

Soil low P 33 30 67 49 

Foiar high P 59 33 59 46 

Soil high P 27 18 59 40 

Root 

Foliar low P 52 38 43 47 

Soil low P 41 37 39 46 

Foliar high P 53 36 61 59 

Soil high P 40 33 39 35 



Figure 5.2 Symptoms of mineral disorder are absent 
from the plant treated with foliar P at the low 
rate. Plant treated with foliar P at the high 
rate exhibit incipient necrosis at the tips of older 
leaves. 
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Table 5.5 Percentage of VAM infection in the nodulating isoline 
as affected by harvest, foliar or soil phosphorous feeding and 
concentration of phosphorous applied. 

HI H2 H3 H4 

Foliar low P 39 57 70 

00 
i"- 

Soil low P 22 44 60 67 

Foliar high P 18 41 45 22 

Soil high P 11 13 11 11 

LSD( Q5) =7, columns. 
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Table 5.6 Percentage of VAM infection in the nonnodulating iso¬ 
line, as affected by harvest, foliar or soil phosphorous feeding 
and concentration of phosphorous applied. 

HI H2 H3 H4 

Foliar low P 31 50 62 74 

Soil low P 18 30 53 65 

Foliar high P 14 26 25 25 

Soil high P 05 09 09 08 

Lsd( oi) = columns. 



Figure 5.3 Roots of plant having high root P levels, 
show lightly stained mycelium. 
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Figure 5.4 Roots of plant having low P levels, 
show darkly stained mycelium. 

I 
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Mosse (1973) reported similar results and attributed the lighter stain 

to thinner walls of the internal mycelium of roots treated with a high 

level of P. 

At the first harvest infection percentage was highest for plants, 

that received the low foliar application of P, and were lowest for 

plants that received the high soil application of P (Table 5.5 and 

5.6). Root P concentrations were similar, in plants that received P 

foliarly and as a soil dressing at the low rate (Table 5.7 and 5.8). 

In spite of the similar root P concentration, VAM infection was lower 

in the plants that received P as a soil dressing (Table 5.5 and 5.6). 

Infection percentage should have been similar in the low foliar P and 

low soil P treated roots, if tissue P was the only factor that 

determined VAM infection. 

The infection pattern for the second harvest was similar to that 

of the first harvest. The plants supplied with P foliarly at the low 

rate had the highest pecentage of VAM infection (Table 5.5 and 5.6). 

Plants treated with P foliarly at the high rate and plants treated 

with P as a soil dressing at the low rate had similar levels of 

infection (Table 5.5 and 5.6). 

At the third harvest, plants having lower root P percentages 

(Table 5.7 and 5.8) had higher infection levels (Table 5.5 and 5.6) 

than the plants that had higher root P percentages. Unlike the first 

two harvests the plants treated with low soil P (having relatively low 

tissue P) now had higher infection percentage than plants that 

received high P foliarly (having relatively high tissue P) (Table 5.5 



151 

Table 5.7 Root phosphorous concentration in nodulating 
plants as affected by harvest, foliar or soil phospho- 
ous feeding, and concentration of phosphorous applied. 

HI H2 H3 H4 
Foliar low P 0.24 0.29 0.23 0.28 

Soil low P 0.26 0.32 0.26 0.32 

Foliar high P 0.39 0.42 0.32 0.47 

Soil high P 0.48 0.49 0.43 0.58 

Lsd( 05) = -05» columns. 
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Table 5.8 Root phosphorous concentration in nonnodulating 
plants as affected by harvest, foliar or soil phosphorous 
feeding, and concentration of phosphorous applied. 

Foliar low P 0.22 0.27 TT0 07Z7 

Soil low P 0.23 0.28 0.31 0.31 

Foliar high P 0.35 0.37 0.42 0.43 

Soil high P 0.51 0.49 0.55 0.49 

LSD( oi) = -08» columns. 
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and 5.6). Apparently, at this stage soil P was less important in 

inhibiting VAM infection perhaps because increase of infection mainly 

was due to spread of already established infection cushions. The 

trends in infection pattern obtained at the third harvest were 

unaltered at the final harvest indicating that tissue P was the 

primary factor in the determination of infection spread (Table 5.5 and 

5.6), when infection was advanced. 

Results of this experiment indicate that soil P or foliar P can 

exert inhibitory effects on infection. The inhibitory effects due to 

high soil P may operate indirectly via an inhibition on infection 

establishment. Mechanisms of inhibition due to soil P or tissue P may 

exist in a state of dynamic equilibrium. The stage of development of 

the mycorrhizal root presumably determines the dominance of one 

mechanism over the other, e.g., at the 3rd and 4th harvests, tissues 

with lower P concentrations had consistently higher VAM infection 

percentages. At the 1st and 2nd harvests, however, soil P apparently 

exerted a greater inhibitory effect than tissue P because the 

infection remained low in the plants that recived P as a soil dressing 

at the low rate, in spite of low root P levels (Table 5.7 and 5.8). 

Infection percentages of the roots of these plants were similar to the 

infection percentages of.the roots of plants that received P foliarly 

at a high rate and which also contained higher tissue P levels (Table 

5.7 and 5.8). 

Sanders (1975) supplied P as a foliar dressing to onion plants 

and observed a substantial reduction in VAM infection. Based on his 
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data, Sanders concluded that the effects of soil P in reducing 

infection were root mediated. Menge et al. (1978) applied P to one 

half of a split root system, and found a reduction in VAM infection in 

the half of the root to which P was not applied. These experiments 

supported the hypothesis that high tissue P inhibited VAM infection. 

Increasing the P content of the soils into which plants were 

transferred reduced the percentage of VAM infection (Azcon et al., 

1982) implying an inhibition of VAM infection by soil P. 

Sanders (1975) described the process of development of 

mycorrhizal root system, in terms of three phases: an establishment 

phase, a phase when infection increases rapidly, and an equlibrium 

phase when percentage infection tends to a constant value. The 

sequence of infection seen in the plants treated with P foliarly at 

the high rate and those treated with soil P at the low rate may be 

explained in light of these observations. Since establishment of 

infection plays a major role in early infection stages, it is possible 

that soil P exerted stronger control than tissue P in inhibiting 

infection at this early stage. The lower infection of the plants 

treated with low soil P in spite of a low root P content is evidence 

of this. At the first two harvests, the plants treated with foliar P 

at the high rate had infection levels similar to the plants treated 

with soil P at the low rate even though the root tissue P was lower. 

This difference may have been because, VAM establishment was 

facilitated in the plants treated with foliar P at the high rate due 

to a lack of inhibition by externally applied phosphate. Importance 
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of tissue P as an inhibitory factor of VAM infection gained importance 

during the later stages, when infection failed to increase 

significantly in spite of high early establishment. In the plants 

treated with soil P at the low rate however infection continued to 

increase beyond the 3rd harvest, since tissue P was not an inhibitory 

factor here. 

The lower level of infection of the plants treated with high soil 

P, than the plants treated with high foliar P cannot be attributed to 

soil P inhibition alone. The high soil P treated plants had higher 

levels of root P, in spite of the efforts made to maintain tissue P 

levels comparable. Uptake of P through the leaves is not as effective 

as uptake through the roots, for at least three reasons: 1, solution 

runs off when spraying, and consequently the short duration of contact 

between the fertilizer and leaves 2, phosphorous does not readily 

penetrate the cuticle, and 3, poor translocation of P from treated 

areas of soybean leaves (Neaumann, 1979). Sensitivity of soybean to 

foliar applied P does not allow application of high levels of foliar P 

(Barel and Black, 1979). Comparable root P levels however were 

obtained in the case of plants treated with soil P and foliar P at the 

low rate (Table 5.7 and 5.8). 



CHAPTER VI 

PHOSPHATE UPTAKE BY MYCORRHIZAL AND NONMYCORRHIZAL ROOTS OF 

(GLYCINE MAX MERR. CV CLAY) 

Materials and Methods 

Phosphorous influx was studied on mycorrhizal and nonmycorrhizal 

roots of soybean (Glycine max Merr. cv. Clay). Seeds were surface- 

sterilized as described in Chapter III. Plants were grown in 1.8 

litre plastic pots, filled with a coarse quartz sand that had been 

washed repeatedly with a solution of 0.2mM CaC12 and 0.2mM KC1. 

Mycorrhizal inoculum was introduced as described in Chapter II. 

Several surface sterilized seeds were planted in each pot, irrigated 

with water until healthy cotyledons and growing points emerged and 

then thinned to 5 plants per pot. Plants were watered for 15 days and 

thereafter were provided with a nutrient solution as recommended by 

Johnson et al., (1957). Phosphorous was supplied at 1/4 the 

recommended level. At the end of 39 days (when substantial 

mycorrhizal infection was established in the roots), plants were 

uprooted from the sand, with minimum disturbance to the extramatrical 

mycelium. Roots were washed free of sand using deionized water. Five 

plants each were transplanted to pots containing 2.6 liter of aerated 

15^ 
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nutrient solution (Table 6.1). The plants were grown according to the 

procedure given by Nielsen and Barber (1973). The electrical 

conductivity of the nutrient solution was maintained at O.Snrhos at 

25°C. This conductivity was reestablished daily oy additions of 

solution 11 (Table 6.1), in which the ratios between nutrients were 

selected considering the ratio at which these nutrients are aosorcec 

by plants. Solution pH was measured daily and adjusted to 5.5 with 

NaOH or HCL. The pH change did not deviate more than 0.5 pH units. 

The plants were grown in the greenhouse during March, Acril, and ,Jaj 

for the first part of the experiment and transferred to a controlled 

climate chamber for the uptake study. The growth chamber temperature 

was 28°C during the 16 hour day and 21°C during the night. The 

greenhouse temperatures were similar, and supplemental lignt was used 

to give a 16-hour day. 

When 54-days-old (15 days after transplanting to nutrient 

solution), the plants were transferred to a pretreatment solution (-P) 

in a controlled climate chamber. After 24 hours of pretreac~ent, 

plants were transferred to a solution containing 30uM of phosphorous. 

Uptake of P was measured by determining depletion of the ion £rcr 

solution similar to that used by Olsen (1955). The solution was 

sampled every 15 min for.the first 2 hours and tnen sampled every 20 

min upto the eighth hour. The P concentration determined using the 

method of Olsen and Watanabe (1955) reached a minimum after about 5 

hours. The sampling was continued for an additional 1 to 2 hours. 

The solution volume was maintained constant by replacing the amount of 
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Table 6.1 Composition of nutrient solutions 1 and 2. 

Solution K Ca Mg nh4 
mM 

no3 so4 Fe Mn Zn Cu 
uM 

B Mo 

1 1 1 1 1 5 0.5 70 10 1 0.5 40 0.5 

2 38 2 3 10 50 4 130 20 2 1 74 1 

(Edwards and Barber, Ag. J.) 
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sample removed with deionized water. At the completion of the 

experiment, the plants were harvested and root fresh weights were 

determined. Root lengths were determined by the line intercept 

procedure, of Tennnant (1975). In this procedure, roots are spread 

over grid squares, and the number of interceptions of roots with 

horizontal and vertical grid lines are counted. When the grid 

dimension is 1 cm, the number of intercept times 11/14 gives the root 

length in cm. Mean root radius can be calculated by assuming that 

fresh roots have a density of lMg/rn^. 

The nutrient-depletion procedure of Claasen and Barber (1974) was 

used to measure the P absorption parameters Vmax, maximal P influx 

rate; Km, the concentration where influx was 0.5 Vmax. Terms used to 

describe ion movement are: influx, movement of ions from the external 

solution into the root; I, the rate of influx per unit length of root; 

efflux, the movement of ions out of the root into the external 

solution; E, the rate of efflux per unit length of root and In, the 

net rate of influx per unit root length which is equal to I-E. When 

plants are grown in a solution of a constant volume, v, the decrease 

in ion content of the solution measures the net amount of the 

respective ions absorbed. The amount of ions in the nutrient 

solution, Q, is given by.the equation 1 where c is the ion 

concentration in solution. 

Q = cv (1) 

A plot of Q versus time, gives a curve showing the depletion of 

the ion from solution resulting from plant absorption and is called 
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the depletion curve. The net influx per pot at any point on this 

curve is given by -dQ/dt. A rate equation can be developed that 

relates -dQ/dt to the flux parameters and integrated to obtain Q = 

f(t). The integrated rate equation can be fit to the experimental 

data of the depletion curve to estimate the parameters that 

characterize ion uptake kinetics. The degree to v/hich the proposed 

rate equation describes ion uptake kinetics will be indicated by how 

well the experimental data follow the curve predicted from its 

integration. 

When influx is expressed per unit root length, L, 

In = -I dQ / L dt (2) 

3y definition: 

In = I - E (3) 

To use the rate equation procedure one needs to know the relation 

between I and c (which is Q/v) and E and c to substitute into equation 

3. For many ions, influx over the low concentration range (for P < 1 

mM) follows Michaelis-Menten kinetics (Epstein, 1972). Therefore the 

use of this model to calculate I is justified, 

* = Vmaxc/Km * c ^ 

Relation between E and c has not been estaolished. Michaelis- 

Menten kinetics assumes no efflux occurs by the carrier mechanism. 

Tentatively E has been assigned a constant value, since it is a 

passive process along the electrochemical gradient(Pitman and Saddler, 

1967; Macklon and Higinbotham, 1970). 

By using a constant value for E, combining equations 2, 3, and 4, 



substituting Q/v for c as shown in equation 1, and rearranging, we 

obtain the expression describing the rate equation: 

dQ/dt = -L(Vmax Q/v)/(Km + Q/v) + LE (5) 

Equation 5 can also be expressed in terms of c where v remains 

constant. 

dc/dt = -L/v (Vmaxc)/(Km + c) + LE (6) 

Integration of equation 5 gives a function that when fit to the 

experimental data by a least-squares procedure describes the depletion 

curve. The rate equation, equation 5, was integrated numerically and 

the experimental data were fit by coupling the numerical integration 

procedure to a nonlinear regression program. The output gave 

predicted values of Q and values of Vmax, Km, and E. The values of 

Vmax» Km» an(^ ^ wers substituted into the expanded form of equation 4: 

^n " (Vmaxc/Km + c) " ^ (^) 

to generate a curve of In versus c. The maximum In is Vmax -E and Km 

is equal to c where I equals one-half Vmax and not where In equals 

one-half Vmax -E. 

Results and Discussion 

Mycorrhizal soybean roots showed a substantial level of infection 

that ranged from 60 to 70%. Noninoculated roots were free of 

mycorrhizal infection. The mycorrhizal roots depleted the P of the 
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nutrient solution, at a faster rate, than the nonmycorrhizal plants 

(Fig. 6.1). Also, the lowest level to which roots can reduce P 

concentrations in solution was lower for the mycorrhizal plants than 

for the nonmycorrhizal plants indicating effective utilization of P by 

mycorrhizal plants when solution P concentrations are minimal. The 

enhanced rate of P depletion by mycorrhizal plants relative to the 

nonmycorrhizal plants was reflected partly in increased Vmax values 

that were 4 to 5 times higher in mycorrhizal plants than in 

nonmycorrhizal plants (Table 6.2). Because, increases of Vmax would 

accompany enhanced Km values, the higher Km values observed in this 

experiment partly is a consequence of the enhanced Vmax values of the 

mycorrhizal plants for H2PO4" ions. 

The lower efflux exhibited by the mycorrhizal plants at the lower 

end of the concentration range, relative to the controls (Fig. 6.2) 

could confer on the mycorrhizal plants a greater capability of P 

retention in situations of very poor P availability, because the 

mycelium would act as an efficient mop for phosphate ions. 

Phosphorous forms sparingly soluble compounds with divalent and 

trivalent cations in soil. Because of these reactions, the amount of 

P in soil solution (even in sufficiently well-fertilized soils) is 

very small at any given time. The soil solution needs to be renewed 

several times a day, in order that crop requirements for P are met 

during the growing season, (Barber, 1962). A limiting soil factor in 

P uptake by plants is likely to be renewal of the soil solution near 

the plant roots by processes of dissolution and diffusion (Thomas and 
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Figure 6.1 Depletion of Phosphorous from 
2 litres of solution by mycorrhizal (M) 
and nonmycorrhizal (NM) soybean roots 
with time. The curve was calculated 
using an expression based on Michaelis 
-Menten kinetics. 
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Table 6.2 Kinetic constants of initial rates of P absorption by 
mycorrhizal and nonmycorrhizal soybean roots. 

Concentration Range 

1 to 30 uM KH2P04 

Km i 
umol L 1 

V F 
vmax -1-2 i nmol sec x m c nmol -1 -2 sec 1 m c 

Nonmycorrhizal 
plants 

3.5 19 3.8 

Mycorrhizal 
plants 

20.0 58 1.70 
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Figure 6.2 ‘-lean I»j of mycorrhizal (M) and noamycorrhi- 
zal (NM) soybean' roots as a function of solution P 
concentration. The curve was calculated using Michae- 
lis-Menten kinetics. = Net P influx. 
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Peaslee, 1973). Under such cicumstances, ability at greater retention 

of P (through decreased efflux of phosphate ions by mycorrhizae) will 

be advantageous to the plant. 

Ion uptake studies have been done on mycorrhizal plants, and the 

increased uptake observed was attributed to the greater surface area 

offered by the fungi (Gray and Gerdemann, 1967; Bowen et al., 1974). 

These studies however rarely have addressed the issue of kinetic 

parameters of mycorrhizal plants. Cress et al. (1979) applied the 

classical Epstein-Hagen Kinetics (Epstein, 1973) to examine the 

absorption of P by mycorrhizal plants. Their experiment was carried 

out at 2 different concentration ranges. The results show that Vmax, 

the maximum rate of uptake was not changed by mycorrhizal infection, 

but that the Km of mycorrhizal plants was 2 to 3 times smaller than 

that of the nonmycorrhizal plants at the lower concentration range. 

Since apparent affinity (Km) is independent of the surface area 

(Vmax)» they hypothesised that the mycorrhizal system did not depend 

exclusively on exploration of an increased soil volume. At the higher 

concentration range that they used, (>30uM KH2PO4), increased uptake 

sites (higher Vmax) contributed to the efficiency of uptake by VAM 

while enhanced affinity contributed little. Because P concentrations 

of this higher range usually are absent in soil, their data imply that 

under normal conditions VAM contribution to ion uptake operates 

through increased affinity for P ion. Cress et al. (1979) justified 

their observations based on the report that a poor correlation existed 

between the P transport from hyphae of mycorrhizal clover or onion 
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plants and number and length of hyphae (Cooper and Tinker, 1981). A 

poor correlation between P transport and length of hyphae need not 

imply that hyphae are of little importance in P uptake. To be valid, 

uptake would have to be correlated with radially distributed hyphae, a 

measurement that is difficult to make. A large number of hyphae that 

run closely parallel to the root surface offers little advantage in 

gaining access to sites of undepleted P. 

Cresse's data may have had some flaws in experimental technique. 

Prior to the uptake study, their plants were starved of P for 8 days. 

Usually in P uptake studies, plants are subjected to a period of P 

starvation that extend from 1 to 2 days (Edwards and Barber, 1976; 

Nielsen and Barber, 1978). During this period of P starvation, 

concentrations of carbohydrates increase in the roots. When the 

supply of the deficient nutrient is restored the stressed root takes 

up the deficient ion faster, facilitating the uptake study (Lee, 1982; 

Clarkson and Scattergood, 1982). Starving the plants for too long 

prior to the uptake study may have had an adverse affect on the root 

physiology. Plants starved of nitrogen for a week prior to an uptake 

study on nitrogen exhibited atypical kinetics (Lee, 1982). Plants 

employed for Cresse's uptake study were 124-days-old. The most active 

period of P uptake is during the juvenile stages of a plant (Neumann, 

1979). Also, roots of older soybean plants showed lower Vmax and 
t 

enhanced Km values than roots of younger plants. (Edwards and Barber, 

1976). 

My data differ from Cresse's data in that mycorrhizal plants in 
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my study did not exhibit an increased affinity for P ions. The five¬ 

fold increase in Vmax values found in my experiment contradicts their 

hypothesis that increased uptake of mycorrhizal plants was due solely 

to increased affinity. Therefore, I hypothesize that the enhanced 

uptake of H2PO4” ions by mycorrhizal plants is due to an increase in 

the number of uptake sites per unit root area in addition to an 

ability at greater soil exploration. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

VAM benefits for nodulating plants were derived only when a 

number of factors were met satisfactorily: (1) greater than 70% 

infection with VAM; (2) a root N/P ratio approaching 15; (3) 

availability of a reduced N form and (4) a neutral root environment 

pH. These conditions were met best among the urea treated-nodulating 

plants. For nonnodulating soybeans a neutral root environment was not 

an essential factor for deriving VAM benefits, but other requirements 

were similar. Application of either NH4+ or urea were similarly 

effective in meeting these essential criteria for nonnodualting 

plants. 

Establishment of mycorrhizal infection in soybean roots depended 

upon the interaction between P supply and N source. When NH4NO3 was 

the source of N, mycorrhizal infection was inhibited by all levels of 

P except the lowest applied. When urea was the source of N, 

mycorrhizal infection was obtained over the entire range of P applied. 

Plants subjected to the urea regime were characterized by an abundance 

of large vesicles in their root cortices. Roots of plants subjected 

to the NH4+ regime had high P and low N compositions whereas roots of 

urea-treated plants had low P and high N compositions. These results 

could explain why treatment with urea was conducive to VAM benefits 

169 
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over a range of P concentrations, whereas benefits of VAM to NH4NO3- 

treated plants were limited to situations of low P supply. 

KNO3 was the least desirable N source where increases in growth 

or nutritional benefits from the symbiosis were desired either for 

nodulating or nonnodulating plants. Overall the N03_ treated plants 

were least able to accumulate either P or N compared to the plants 

treated with the other 2 N sources. Plants subjected to 

nutrition accumulated the greatest P content. Urea treated plants had 

the greatest ability to accumulate N. 

Nodulating plants exhibited growth benefits due to VAM only when 

urea was the source of N. This could be explained by the lack of 

inhibition of N2 fixation by urea and the consequent improvement in 

the N status of the host. The ineffectiveness of ammonium nutrition 

in gaining benefits from the tripartite symbiosis presumably is linked 

with the acid inhibition of N2 fixation by NH4NO3 nutrition. 

Nonnodulating plants exhibited a greater benefit from mycorrhizal 

infection than nodulating plants. The additional N supplied to the 

nonnodulating plants was primarily responsible in the greater 

mycorrhizal benefits to these plants. The absence of a response to 

mycorrhizal infection in nonnodulating plants in earliar experiments 

by other investigators presumably was due to N deficiency. The poorer 

growth of the nodulating plants relative to the nonnodulating plants 

may have been due to impaired N2 fixation of the nodulating plants due 

to a low P supply. The P supply to the plants was maintained low to 

enhance mycorrhizal infection. 



171 

Application of NH4NO3 or urea led to increased availability of 

soil P, apparently due to 2 different mechanisms. Ammonium nitrate 

decreased soil pH, thereby increasing the solubility of the calcium 

phosphate salts. Increased availability of HCO3” associated with urea 

nutrition could precipitate CaCC^ and decrease Ca concentrations. The 

smaller Ca concentrations would permit greater P concentrations in 

equilibrium with the calcium phosphate salts, increasing P 

availability. 

High levels of P either soil or foliarly applied inhibited VAM 

infection. The action of soil P in inhibiting VAM infection was 

limited to the stage of establishment of infection. Plants with a 

high tissue P content exhibited symptoms of a mineral disorder 

resembling Zn deficiency. 

Mycorrhizally infected roots depleted P faster and were 

characterized by lower efflux values than nonmycorrhizal roots. Lower 

efflux by mycorrhizal roots could offer an advantage in P retention in 

situations of low P supply. Mycorrhizal roots had higher Vmax values 

than nonmycorrhizal roots but did not exhibit an enhanced affinity for 

H2PO4' ions in comparison to the nonmycorrhizal roots. The results 

contradict a previous report in which enhanced P uptake by mycorrhizal 

roots was attributed to an enhanced affinity for H2PO4” ions alone. 
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