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Abstract 

The Effects of Ozone and Fusarium Crown and Root Rot on the 

Growth and Decline of Alfalfa, Medicaqo sativa L. 

May, 1986 

Daniel R. Cooley, A. B., Harvard College 

M. S., University of Vermont 

Ph. D., University of Massachusetts 

Directed by: Professor William J. Manning 

Alfalfa (Medicaqo sativa L.) is a major world forage crop. 

Factors which limit alfalfa production significantly reduce 

potential food production. One of the major diseases which 

causes perennial alfalfa stands to decline and die is 

Fusarium crown and root rot. Several environmental factors 

exacerbate this disease. One environmental stress, the air 

pollutant ozone, is known to inhibit alfalfa growth, but it 

has not been determined whether it may affect to Fusarium 

root and crown rot, alfalfa stand decline, or both. 

In one study, a number of alfalfa fields in Massachusetts 

were surveyed for plant diseases throughout the growing 

season. It was found that Fusarium root and crown rot is an 

endemic problem in the state. Several pathogenic Fusarium 

spp. were isolated in this survey. 
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In another study, this research examined the reaction of 

several major alfalfa cultivars to ozone fumigations in 

chambers using ozone concentrations simulating ambient levels 

observed in Massachusetts. These cultivars were all shown to 

be susceptible in varying degrees to such ozone stress. 

Further experiments showed that ozone at these concentra¬ 

tions not only reduced growth, but also altered photoassimi- 

late partitioning. Greatest weight reductions occurred in 

roots, followed by leaves, and then stems. Ozone-stressed 

plants produced fewer leaves which weighed less per unit area 

than control leaves. Classic and functional growth analyses 

were used to examine such parameters as net assimilation rate 

(dry matter accumulation per unit leaf area) and relative 

growth rate (dry matter accumulation per unit dry weight). 

Ozone-stressed plants fixed dry matter less efficiently than 

control plants, in terms of both leaf area and existing dry 

matter. 

In a final study, alfalfa was grown in the presence of 

isolates of pathogenic Fusariurn, or to soil from a diseased 

alfalfa field, and concurrently fumigated with ozone. There 

was no significant interaction between pathogen and air 

pollutant, but each stress significantly reduced alfalfa 

growth independently. 

Ozone can and probably does contribute to alfalfa decline 

in Massachusetts. Since both the pathogen and air pollutant 
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Chapter I 

The Impact of Ozone on Photoassimilate Partitioning in Plants 

Introduction 

Ozone is a widespread and damaging air pollutant in the 

United States, Europe, Japan and other industrialized areas 

of the world (Treshow 1984; Koziol & Whately 1984, Unsworth 8* 

Ormrod 1982). Ozone’s deleterious effects on plant growth 

and agricultural production are well documented (e.g. 

Heggestad &. Bennett 1984; Heck et al. 1982, 1983; Jacobson 

1982; Laurence & Weinstein 1981). Such damage occurs even in 

rural areas of the northeastern United States, where ozone 

often reaches phytotoxic concentrations (Cleveland et al. 

1976, 1979). In the northeastern U. S., urban plumes, large¬ 

ly from the metropolitan New York area, can and often do 

travel over 200 miles, usually to the northeast. Ambient 

concentrat ions of .20 ppm ozone have been recorded in rural 

areas of west-central Massachusetts and Connecticut (Spicer 

et al. 1979; Cleveland et al. 1979, 1976). Debate about the 

quantification of yield losses from such episodes still oc¬ 

curs, in part because it is difficult to define nonpo1 luted 

conditions and then devise controlled methodologies which can 

adequately recreate nonpolluted and polluted systems for 

yield comparisons (Damicone 1985; Musselman et al. 1983; 

Clarke et al. 1983; Laurence &< Weinstein 1981). An equally 

1 
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important reason behind our inability to precisely quantify 

and predict plant yield losses caused by ozone stress is a 

lack of understanding as to how plants reallocate resources 

and alter growth in response to ozone. This chapter reviews 

the literature pertaining to photoassimi1 ate partitioning in 

plants under ozone stress. 

Qzone> Partitioning and Yield 

Plant yield is often thought of in terms of dry matter 

production, and dry matter is largely made up of carbon com¬ 

pounds. Therefore, plant growth and yield are inherently 

linked to photosynthetic carbon fixation, and the partition¬ 

ing of this photoassimilate. A recent review (Gifford et al. 

1984) discussed ways in which the carbon economy of plants 

affects yield, and how yield might be improved. Gifford and 

his associates (1981, 1984) have emphasized that increasing 

the amount of photosynthate partitioned to the harvested 

portion of the plant has been the primary reason yields have 

historically increased in cultivated species. This ratio of 

harvested material to total plant weight, known as harvest 

index (HI), has increased in cultivated plants without 

concurrent increases in plant biomass or relative growth 

rates. In other words, plants which have been selected as 

agriculturally superior have generally produced larger 

fruits, increased seed mass, and increased the mass of other 
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economically important photoassimilate sinks at the expense 

of vegetative tissue. (In the case of a foliar crop? such as 

alflafa, HI is equivalent to vegetative tissue, and such a 

phenomenon would presumably be unlikely.) The hypothesis 

offered by these authors is that further yield improvements 

can most effectively be accomplished by increasing the amount 

of photosynthetically fixed carbon from increased light 

interception, thereby improving photosynthetic efficiency, 

and further increasing the proportion of photoassimilate 

partitioned to harvested sinks so as to improve HI. 

If increasing these plant growth processes is the most 

effective way to increase yield, then reversing the same 

processes would certainly result in their decrease. Ozone 

stress decreases photosynthesis (Koziol &< Uhatley 1984, pp. 

129 -247; Reich & Amundson 1984; Heath 1980) and alters 

photoassimilate partitioning as described in this review. 

Since photoassimilate partitioning is one of the basic 

factors involved in generating yield, it is essential that we 

understand how ozone alters partitioning so that we may 

understand and predict how ozone effects yield. A related 

issue, discussed in chapter 2, is the relationship of ozone 

to plant root diseases via effects on partitioning. 

In this context, the salient questions are: Does ozone 

affect economic yield, HI, more than plant growth in general? 

Alternatively, do plants compensate more for ozone stress in 
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a manner which moderates effects on HI by partitioning 

relatively greater amounts of photoassimi1 ate to these 

economic sinks? And finally, if the plant does moderate 

ozone effects on HI, is it at the expense of other organs, 

particularly roots, which might then become more susceptible 

to disease? 

In answering these questions, it is valuable to focus on 

comparisons between the weights (wts) of various plant organs 

(roots, leaves, stems, etc.) after exposure to ozone, because 

it is probably the simplest way to examine photoassimilate 

partitioning in plants. Ozone effects on plant growth are 

dependent on a number of factors, including species, age, 

ozone concentrat ion, exposure time, and environmental 

conditions during the exposure. In reviewing data on ozone 

effects on photoassimilate partitioning, it is necessary to 

compare data from diverse experimental conditions. The 

following examples establish general trends, though there are 

some examples which do not follow these trends. 

□zone Effects on Root and Shoot Partitioning 

In most species ozone stress reduces root growth more than 

top growth (Table 1). In a few species top growth may be 

more affected while in others affects are not differential. 

First, plants in which leaves or roots are the economic yield 

component will be examined. 



Beets (Beta vulgaris L.) can be partitioned into fibrous 

roots, storage roots and tops. After ozone fumigations (.2 

5 

ppm for up to 3 hrs/day for several wks.), beet fibrous roots 

suffered the greatest growth reduction, the storage root was 

least effected, while leaf growth reductions were intermedi¬ 

ate (Ogata 8* Maas 1973). Even when fibrous roots and storage 

root wts were pooled, root reductions were less than leaf and 

stem reductions. Apparently the storage root in beets has 

strong partitioning priority over other photoassimilate 

sinks. In contrast, root growth in carrot (Daucus carota L.) 

decreased tremendously under ozone stress while foliar growth 

actually increased (Bennett &. Oshima 1976). Controlled 

fumigations of .19 and .25 ppm ozone decreased root weight 

32V. to 46*/. while leaf weight increased slightly. Ozone (.2 

ppm, 4 hrs for 2 days/wk for 8 wks)also increased the number 

of leaves on parsley (Petrose1inum crispum (Mill.) Nyr) 

(Oshima et al. 1978). Total plant weight was reduced 23*/. and 

root weight 43*/.. The plant responded in two phases, the 

first a period of growth repression and fluctuating relative 

growth rate (RGR), and the second an accommodation period of 

steady RGR. The mature lower leaves, which act as the main 

source of photosynthates for root growth (Wardlaw 1968) were 

the most damaged, suggesting a reason behind decreases in 

partitioning to roots. A similar effect on older leaves and 

roots has been noted in bean (Okano et al. 1984; McLaughlin K 
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McConathy 1983). 

Studies on radish have shown that the impact of ozone on 

leaves is much less than the impact on the root (primarily 

hypocotyl) (Walmsley et al. 1980; Reinert 8* Gray 1980; 

Reinert & Sanders 1982; Tingey et al. 1971). The root dry 

weight of ozone-stressed radish was 50*/* less than the control 

weights, while leaf weight was 10*/. less (Tingey et al. 1971). 

New leaves were produced more rapidly under ozone stress. 

When plants were fumigated continuously, successive new 

leaves became less ozone sensitive (Walmsley et al. 1980). 

The ozone sensitive tobacco (Nicotiana tabacum L.) Bel W-3 

exposed to .15 ppm ozone for 4 hrs per day showed dramatic 

decreases in both top and root weights (Faensen-Thiebes 

1983). Root weights were reduced more, going from a 5*/. 

reduction after one week to 83*/. reduction after 3 wks. By 

comparison, top weight increased 6 */. in one wk , but was 

reduced 73*/. in 3 wks. 

Clover (Trifolium repens L.) also exhibits shoot and leaf 

priority over roots when partitioning is affected by o,one 

(Letchworth &. Blum 1977). After two ozone fumigations (.3 or 

.6 ppm for 2 hrs), foliar dry weights were reduced 7*/. and 

21*/., while respective root weights were reduced 34*/. and 36*/.. 

At the high ozone dose, partitioning priority was less 

obvious. At lower ozone concentrat ions (.05 to .15 ppm), the 

plant was affected similarly (Blum et al. 1983). In the same 
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study , distribution of pulsed 14*COe within clover depended on 

concentration of the preceding ozone fumigation. Carbon 

allocation to developing leaves was at 64% of the total at 

.05 ppm ozone, and dropped to 40% at .1 ppm. At .15 ppm, new 

leaves received 79% of the labelled carbon. Ozone may reduce 

storage carbohydrate levels in roots (Blum et al. 1983), 

though results are not always consistent (Blum et al. 198S). 

Alfalfa responds to ozone much as clover does. In the 

limited work that has been done on the crop, roots and crowns 

have been more affected than foliage (Rebbeck &. Brennan 1904; 

Tingey & Reinert 1975). 

Ozone also affects partitioning in grasses. At relatively 

low ozone doses, top weight of tall fescue (Festuca 

arundinacea Schreb.) increased slightly, while root weight 

decreased 32 % (Flagler &< Younger 1982a, 1982b). As ozone 

dose increased, top weight decreased and root weight de¬ 

creased even more. Increasing ozone concentrations further 

reduced both shoot and root weight, and always decreased root 

weight more. Similarly, root growth is impaired the most by 

ozone stress in three other grass genera, Dactyl is qlomerata 

L. (orchardgrass), Lolium perenne L. (ryegrass) and Pha1aris 

aquatica L.(canarygrass) (Horsman et al. 1980). This 

reduction was shown to be the result of a reduction in net 

assimilation rate (NAR), dry matter accumulated per unit leaf 

area per unit time. 
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Forage legumes and grasses are often grown together in 

mixed forage stands. Differential ozone effects on plant 

species could affect the proportion of plants in such stands. 

Since adequate accumulation of carbohydrates in roots and 

crowns is important for regrowth and overwintering in a 

perennial crop which must go through several harvest:regrowth 

cycles a season, interference with photoassimi1 ate partition¬ 

ing to crowns and roots could be detrimental to the stand in 

general. Indications are that ozone stress effects clover 

more than grasses in a mixed stand, as much as a 60*/. reduc¬ 

tion in clover root weight compared to a negligible reduction 

in the grass root weight (Bennett & Runeckles 1977a; Montes 

et al. 1982; Kochhar et al. 1980). 

Ozone Effects on Reproductive Yield Components 

The previous section included crops in which shoots or 

roots comprised the economic yield components (forest trees 

were not included but are discussed below). In crops in 

which flowers, fruits, or seeds are the yield components, the 

situation is more complex. As reproductive sinks become 

active, they create increasingly strong sinks. Ozone affects 

these sinks in various ways (Table 2). 
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Table 1. Examples of ozone effects on root and foliar growth. 

Estimates made from data presented in text, tables or graphs. 

Where several ozone doses were used, representative data are 

reported. 

Weight Change 

Plant Root Shoot Source 

Alfalfa (Medicago sativa) -22% 

Annual ryegrass (Lo1iurn 

multiflorum) -32% 

Bean (Phaseolus vulgaris) -15% 

Beet (Beta vulgaris) -67%1 

Carrot (Daucus carota) -32% 

Clover (Trifo1ium -27% 

incarnatum) 

Clover (Trifolium repens) -34% 

Fescue (Festuca -44% 

arundinacea) 

Loblolly pine (Pinus -28% 

taeda) 

Marigold (Tagetes patula) -26% 

Millet (Panicum miliaceum) -23% 

Parsley (Petrose1inum -40% 

crispurn) 

Peanut (Arachis hypogaea) -35% 

Pepper (Capsicum annuum) 0% 

Potato (Solanum tuberosum) -60% 

Soybean (Glycine max ) -21% 

Sycamore (P1 atanus -73% 

occidenta 1is) 

Tobacco (Nico tiana -62% 

tabacum) 

Yellow poplar -6% 

(Liriodendron tulipifera) 

-12% Tingey 8* Re inert 1975 

-14% Bennett 8* Runeckles 1977b 

-9% Maas et al. 1973 

-50% Ogata 8* Maas 1973 

+ 13% Bennett 8* Oshima 1976 

-7% Bennett 8* Runeckles 1977a 

-7% Letchworth & Blum 1977 

-19% Flagler 8* Younger 1982 

-21% Kress & Skelly 1982 

-19% Reinert 8* Sanders 1982 

-43% Agrawal et al. 1983 

-1% Oshima et al. 1978 

-49% Heagle et al 1983 

+10% Bennett et al. 1983 

-53% Foster et al. 1983 

-9% Tingey et al. 1973 

-57% Kress & Skelly 1982 

-47% Faensen-Thiebes 1983 

-10% Chappelka et al. 1985 

xData given are for fibrous roots. 

40%. 

Storage root reduction was 
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□zone reduced growth of both roots and shoots of peanut 

(Arachis hypoqea L. 1983), though roots grew better than 

shoots (Heagle et al. 1983). Yield decreases were less than 

the percentage dry weight decreases in both shoots and roots, 

indicating that the peanut seeds had higher partitioning 

priority than the vegetative plant parts. For example, in 

one season ozone reduced shoot weight by 11*/. to 60*/., roots 

decreased 10*/. to 43*/., and yield decreased from 0*/. to 37*/.. 

In contrast, pepper (Capsicum anuum L.) fruit and cotton 

(Gossypium hirsutum L.) bolls suffered greater weight loss 

than vegetative plant parts. In pepper, fruit dry weight 

decreased by as much as 54*/., while roots stems and leaves 

were not significantly affected (Bennett et al. 1979). In 

cotton, and in a similar experiment with lima beans, the 

first response to ozone was a reduction in growth per unit 

dry matter (i.e. RGR decreased). At the same time, growth 

per unit area of leaf also decreased (i.e. NAR decreased). A 

second response was a reduction in the amount of photoassim- 

ilate partitioned to fruit relative to leaves. (Oshima et 

al. 1979; Oshima 8* Endress 1978). 

□zone appears to affect processes involved with seed set 

in corn (Zea mays L.) and thereby reduce the economic yield. 

It is not clear whether grain or vegetative yields are 

decreased more. In one experiment, ear weight was reduced 



more than vegetative weight (Heagle et al. 1972), while in 

another two, the vegetative reductions were greater (Heagle 

et al.1979a; Thompson et al. 1976). 

In wheat (Triticum aestivum L.), yield loss and vegetative 

loss were about the same (Heagle et al. 1979b). Cultivars 

respond differently to ozone stress (Shannon & Mulchi 1974). 

When the individual yield components are examined, shoot 

weight, head weight, total seed weight, and weight per seed 

decreased (Heagle et al. 1979b). Weight per seed was 

somewhat less affected than other components, indicating that 

wheat partitions relatively more to seeds though it has fewer 

seeds to fill. In general, the loss in one yield component 

is partially recovered in gains in other components, making 

overall yield reductions less severe. 

□zone effects on photoassimilate partitioning in soybean 

(Glycine max L.) appear to occur in two phases (Heagle et al. 

1974; Endress & Grunwald 1985; Tingey et al. 1973; Blum 8* 

Tingey 1977; Unsworth et al. 1984). First, in early growth, 

ozone concentrations greater than .05 ppm cause the plant to 

partition photoassimi1 ate to leaves rather than roots. In 

the second phase, as flowering and pod development occur, 

photoassimi1 ate is preferentia11y partitioned to seeds at the 

expense of leaves, stems and roots. Several studies on 

soybean have shown that, in general, ozone decreases most 

yield components, including pods/plant, filled pods /plant, 
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seeds/plant, seed weight /plant, and individual seed weight 

(Endress & Grunwald 1985; Damicone 1985; Reich & Amundson 

1984; Unsworth et al. 1984; Kress &< Miller 1983; Heagle &< 

Letchworth 1982; Howell et al. 1979). Ozone appears to 

decrease the ability of soybean to set seed, but once set, 

the seeds are the preferred sink. 

Labelled carbon studies have been used to follow the path 

of photoassimilate in beans (Phaseolus vulgaris L.) (Okano et 

al. 1984a, 1984b; Ito et al. 1985a, 1985b; McLaughlin &« 

McConathy 1983). Ozone generally inhibited both C0e fixation 

and translocation in the primary leaf, which is the main 

source of photosynthate for root growth. In young (i.e. non¬ 

fruiting) bean plants, C0S fixation in the first trifoliate, 

which provides photosynthate to immature leaves, was less 

inhibited than that in other leaves, and translocation 

actually increased in some experiments. Consequently, 

translocation to stems and roots decreased significantly more 

than translocation to developing young leaves. In flowering 

beans, translocation from the trifoliates was reduced. In 

roots, soluble sugars were reduced by ozone, and root 

respiration declined. Ozone decreased the production of 

sucrose and fructose in leaves, and at the same time previ¬ 

ously inactive pools of these sugars were mobilized to raise 

the sugar levels. Others have shown that ozone stimulated 

new leaf production, but damaged the developing leaves (Engle 
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&« Gabelman 1967). Generally, ozone reduces leaf weights less 

than root or stem weights (Maas et al. 1973; Byternowicz & 

Taylor 1983; MacLean & Schneider 1976), though exceptions 

occur (Manning 8* Feder 1976). 

Tomato (Lycopersicon esculentum L.) fruit appear to have a 

relatively higher sink priority than other organs in the 

tomato plant. Foliar injury and a reduction in plant biomass 

were not associated with a yield reduction (Oshima et al. 

1975). Biomass reductions were due to reductions in stem and 

leaf weight, while fruit and root weight remained unaffected. 

Where yield reductions have been observed, the decrease was 

caused by a reduction in the number of fruit rather than in 

the size of individual fruit (Oshima et al. 1975; Manning & 

Feder 1976). If seedling plants were exposed to acute ozone 

concentrations once (.4 ppm for 2 hrs), root and top weights 

were reduced but yields were not (Henderson 8* Reinert 1979). 

Tomato fruit size and quality may be reduced by ozone, but 

are less affected than vegetative organs (Oshima et al. 1977; 

Manning 8* Feder 1976). Labelled carbon studies have shown 

that ozone suppresses translocation to roots, and causes more 

photosynthate to be retained in leaves (McCool 8* Menge 1983). 

Partitioning to potato (Solanum tuberosum L.) tubers was 

depressed less than that to the shoots and roots (Foster et 

al. 1983). Yield reductions which do occur are caused by 

reductions in the number of tubers and in tuber size (Pell 8* 
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Pearson 1984; Clarke et al. 1983). In vegetative tissue* 

leaf and root weight reductions were approximately equivalent 

(Foster et al. 1983). 

Ozone Effects on Partitioning in Forest Trees 

Ozone stress effects carbohydrate partitioning and sugar 

production in trees* though much of the research has been 

done on seedlings. Ozone reduced sugar and starch content of 

green ash roots (Jensen 1981), and caused a general carbohy¬ 

drate reduction in elm (Ulmus americana)(Constantinidou & 

Kozlowski 1979). In other cases, ozone increased soluble 

sugar levels in current year needles of Ponderosa pines 

(Miller et al. 1968) and five other pine species (Barnes 

1972). In older tissue, polysaccharides and carbohydrates 

generally are reduced (Constantinidou & Kozlowski 1979; 

Parmeter & Miller 1968; Barnes 1972). The roots were 

effected more than shoots in a survey of many species (Kress 

2* Skelly 1982), and caused rootlet deterioration in Ponderosa 

pine (Parmeter &< Miller 1968). Jensen (1981, 1983, 1985) has 

shown that ozone reduced carbohydrate production (as measured 

by NAR and RGR) in hybrid poplar, yellow poplar 

(Liriodendron tulipifera) and silver maple (Acer sacchari— 

num) . 
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Table 2. 
selected 

Vegetative and 
plant species. 

reproductive organ partit 
Percentages are from text 

graphs, and in some cases may be estimates. 

ioning in 
, tables or 

Weight Reduction 
Flower, 
Fruit, 

P1 ant or Seed Vegetat ive Source 

Bean (Phaseolus vu1oaris) 24% 19% MacLean & Sch neider 
1976 

Corn, sweet (Zea mays) 30% 17% Heag1e et a1. 1972 

Corn, field (Zea mays) 4% 24% Heag1e et a 1. 1979 

Co t ton (Gossypium hirsutum) 40% 30% □shima et al. 1979 

Peanut (Arachis hypoqae) 0% 11% Heag1e et a1. 1983 

Pepper (Capsicum anuum) 54% 0% Bennett et al . 1979 

Millet (Panicum miliaceum) 56% 38% Agrawal et al . 1983 

Sovbean (Glvcine max ) 3% 23% Heagle et al. 1974 

Tomato (Lvcopersicon Legassicke & Ormrod 

escu1entum) 7% 18% 1981 

Wheat (Triticum aestivum) 16% 14% Heagle et a 1. 1979 
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A labelled carbon study on 25 year old white pine (Pinus 

strobus) showed that ozone accelerated the senescence of 

older needles, which are the primary source of photosynthate 

for new developing needles (McLaughlin & et al. 1982). 

Concurrent1y, a higher proportion of photosynthate was 

retained in foliage and branches, and less was exported to 

the bole and roots. It was hypothesized that this partition¬ 

ing change, rather than photosynthesis reductions per se, 

would be more damaging to the long-term health of the trees. 

The relative strength of the root sink may modify the 

effect of ozone on partitioning. In ozone-treated loblolly 

pine, roots of seedlings which were inoculated with the 

ectomycorrhiza1 fungus Pisolithus tinctorius grew better than 

roots of non-mycorrhiza1 seedlings, and root growth relative 

to shoot growth was increased by 23-31% (Mahoney et al. 

1985). These results suggest that P. tinctorius is capable 

of significantly modifying root sink strength and increases 

the root demand for photosynthate. This modification is 

capable of overcoming ozone effects which increase foliar 

sink demands and supports the hypothesis which contends that 

mycorrhizal demand promotes increased photoassimilate 

translocation to roots (Handly & Sander 1962; Meyer 1962). 

Ozone Stress and Theories of Assimilate Partitioning 

While there are numerous elements in the chain of events 
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from carbon fixation, through ph1oem-1oading and transport, 

to uptake of photosynthate, and many aspects of the process 

are not fully understood, a general outline has been drawn 

(Gifford et al. 1984). The leaf has several options for 

compartmenta1izing carbohydrates, either sugars or starch. 

Phloem loading of these photoassimi1ates (largely sucrose) is 

an active, energy-dependent process. Once in the phloem 

transport system, sink demands dictate photoassimilate 

movement. Sink control seems based in part on a sucrose 

gradient, such that rapidly growing sinks remove more sucrose 

from the transport system, immobilize it, and maintain a 

strong gradient generating further flow. 

McLaughlin and McConathy (1983) suggested a number of 

possible mechanisms by which ozone stress might alter 

photosynthate flow. These include malfunction in the phloem 

loading process; increased allocation to repair damage within 

the source i.e. the leaf; and an altered balance between 

source and sinks caused by reduced photosynthetic carbon 

fixation and greater demand for assimilate at the source. 

It is apparent that photosynthetic fixation and assimilate 

partitioning are inextricably linked. It is generally 

thought that photosynthesis is either self-regulating 

(source-1imited) or regulated by organs and tissue which use 

pho tosynthate (sink limited) (Baysdorfer &< Basham 1985; 

Watson & Casper 1984; Fader 8* Koller 1983; Evans 1975). Both 
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loading regulation processes probably occur, as demonstrated 

in alfalfa, which has been shown to be source-limiting in the 

seedling stage and sink-limiting in the mature plant 

(Baysdorfer & Basham 1985). In other words, alfalfa seedling 

photosynthesis is independent of sink demands, while the 

mature plant accelerates photosynthesis with increased sink 

demand. 

Sink demand in mature plants effects photosynthate parti¬ 

tioning as well as photosynthetic rate (Gifford & Evans 1981; 

Watson 8* Casper 1984; Wardlaw 1968). Such a partitioning 

pattern was demonstrated in vegetative and mature soybeans 

(Fader & Koller 1983). As the plant matures, allocation of 

assimilate switches from leaf growth alone to pod development 

and leaf growth. If a pod is removed, lowering sink demand, 

photosynthesis decreases and the relative proportion of 

starch produced increases (Huber & Bickett 1984). If light 

intensity is lowered, decreasing photosynthesis, leaf starch 

is converted to sucrose and translocation does not decrease 

in proportion to the production drop (Ho 1976). 

How a plant partitions photoassimi1 ate into sucrose versus 

starch may relate to shoot versus root partitioning (Huber 

1983). Plants appear to use accumulated starch to maintain a 

steady growth rate regardless of light or darkness in the 

diurnal cycle. 

However, leaves take partitioning priority over roots during 
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dark conditions, perhaps simply because they are closer to 

the source of recently fixed starch (Wardlaw 1976). 

Photosynthate deficiency, usually a result of reduced 

photosynthesis, generally results in shoot growth taking 

priority over root and bud growth (Wardlaw 1968). As ozone 

limits photosynthesis, sucrose levels in the plant would be 

expected to rise as starch reserves are mobilized to accommo¬ 

date decreased levels of photoassimi1 ate. Koziol (1984) 

points out that increases in sugars at the expense of 

storage starches is a common phenomenon in plants stressed by 

air pollution. For example, loblolly pine increases levels 

of sugars in roots in response to ozone (Mahoney et al. 

1985). In the same study, mycorrhizal colonization apparent¬ 

ly increased the strength of the root sink for assimilates, 

and countered ozone effects which otherwise shifted parti¬ 

tioning priority to shoots. This suggests that it is the 

relative sink strengths which determine how ozone will affect 

partitioning. 

Pollutants may also effect loading and trans1ocation more 

directly (Noyes 1980; Teh & Swanson 1982). In this case, 

sugars would be expected to build up in source leaves, as 

described above in pine (Miller et al. 1969; Barnes 1972) and 

beans (Ito et al. 1985). However, since the absolute levels 

of sucrose decrease, it is more likely that starch is being 

mobilized to sucrose, increasing the proportion of sucrose in 
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the leaf (Ito et al. 1985). 

EDU (ethylene diurea) is a chemical which protects plants 

against ozone injury (Carnahan et al. 1978; Roberts et al. 

1985; Clarke et al. 1983; Hofstra et al. 1978; Legassike & 

Ormrod 1981), raises sugar levels in plants (Lee et al. 

1981b), and retards senescence in leaf tissue (Lee et al. 

1981a). This further suggests that ozone-induced growth 

reductions and sucrose levels may be related. 

In bean, ozone-induced reductions of carbohydrates trans¬ 

ported to roots have been described as a combination of three 

factors (Okano et al. 1984; MCLaughlin & McConathy 1983). 

First, it is the lower, older leaves which supply most of the 

photosynthate partitioned to roots, and the photosynthetic 

rate of these leaves is decreased more than that of younger 

leaves. Second, partitioning is also changed as ozone affects 

translocation physiology in an as yet undefined way such that 

more photosynthate is translocated to young leaves and less 

to roots and stems. For example, very shortly after ozone 

exposures begin, respiration in bean roots declines (Hofstra 

et al. 1981). Thirdly, as plants flower and fruit, relatively 

more photosynthate is translocated to reproductive organs. 

□zone increases the amount of reducing sugars in potato 

tubers (Pell & Pearson 1984). Under ozone stress, the tuber 

is also the sink with highest priority (Fletcher et al . 

The potato plant may be mobilizing starch from the 1983) . 



tuber in order to compensate for reduced photosynthesis in 

the foliage. An analogous situation may exist for beets, 

where the storage root has high priority. In other cases 

where the crown and roots are important organs for carbohy¬ 

drate storage, such as clover, ozone affects the storage 

organs more than leaves (Letchworth &« Blum 1977). Different 

species probably have different mechanisms for altering sink 

priorities under stress, so that in one case the storage 

organ is least affected by ozone, while in another, the 

leaves are least affected. 

Adams (1967) showed that seed crops generally compensate 

for reductions in some yield components by increasing others, 

resulting in negative correlations between yield components 

from stressed plants. Under this scheme, if ozone affected a 

given part of seed development more than other parts, later 

stages in the development sequence would tend to compensate, 

resulting in less yield loss than might be expected if there 

had been no compensation. This may explain why crops such as 

wheat, soybeans or corn do not always suffer significant 

yield losses when ozone causes reduction in one or a few 

yield components (Heagle et al. 1974; Shannon & Nulchi 1974; 

Heagle et al. 1979). 

There are examples of plants which partition less photo- 

assimilate to fruit than to leaves, such as cotton (Oshima et 

al. 1979) or pepper (Bennett et al. 1979). Other plants, 
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such as tomato, may partition relatively more photosynthate 

to "fruit (Oshima et al. 1975). It would be interesting to 

survey the effects of ozone stress on seed in number of 

species. Perhaps there is no selective advantage to main¬ 

taining fruit size when a plant is stressed, and there is an 

advantage to maintaining aspects of seed production. 

Alternatively, there may simply be differences in the 

response of partitioning mechanisms to stress. 

Changes in partitioning might also affect how a plant 

interacts with other organisms, particularly symbionts and 

pathogens in the root zone. Under normal conditions, plants 

produce an excess of carbohydrates which are translocated to 

roots (McCool & Menge 1983). Under foliar stress, including 

ozone, this flow is reduced or stopped (Hofstra et al. 1981). 

This may result in less vesicu1ar-arbuscu1ar mycorrhizal 

development (McCool & Menge 1983) or in less rhizobial 

nodulation (Manning et al. 1971; Letchworth 2* Blum 1977; 

Ensing 8* Hofstra 1982). Such associations may fail to occur, 

because reduced exudation does not stimulate colonization, or 

perhaps the development after colonization cannot progress 

normally under reduced carbohydrate availability. Carbohy¬ 

drate reduction may also make roots more susceptible to 

pathogens (Manning 1978; Chapter 2). 
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Cone 1usion 

Much of what is known about photoassimi1ate partitioning 

in ozone-stressed plants fits into current theories on 

photoassimilate partitioning in general. The present state 

of knowledge can be summarized in the following conceptual 

model . 

When plant growth is vegetative, relatively low levels of 

ozone (.05 ppm to .10 ppm) will generally divert photo- 

assimilate to leaves in favor of roots. This situation 

includes plants which have not set fruit or seed, and 

therefore generally includes plants where leaves, stems or 

roots are the economic yield. At flowering, and as seeds or 

fruit develop, these reproductive sinks generate high demand 

for photosynthate, and they may or may not be able to divert 

it from other plant organs. Ozone reduces the number of 

flowers, fruits and/or seeds, either directly or indirectly, 

but the remaining reproductive organs are often able to 

attain normal or larger size. 

At higher ozone levels (greater than approximately .10 

ppm), photosynthesis is drastically reduced, and partitioning 

to all sinks falls, causing dramatic growth reductions in all 

organs. At these higher ozone concentrations, differential 

partitioning between organs is not as obvious as at lower 

concentrations. 



In perennial plants? partitioning changes induced by 

commonly observed ambient ozone concentrations would be 

expected to reduce storage carbohydrate levels? particularly 

in roots. These reserves would then be in short supply when 

needed for new growth in the spring? or when required to 

recover from other stresses. 



Chapter II 

The Effects of Fusarium Root and Crown Rot and Ozone on 

Alfalfa: A Potential Model for Plant Disease:Po1lutant 

Interac tions 

Introduction 

The first chapter reviewed the role ozone plays in alter¬ 

ing photoassimilate partitioning in plants. This chapter 

examines a common disease of forage legumes, Fusariurn root 

and crown rot, and the specific effects ozone has on the 

forage legume alfalfa, and proposes that ozone stress on 

alfalfa might be expected to increase stand decline caused by 

Fusariurn root and crown rot as well as decrease alfalfa pro¬ 

duction directly. 

□zone Effects on Alfalfa 

□n alfalfa, ozone effects have been typically reported as 

foliar symptoms, reduced growth or changes in physiology ( 

Brennan et al. 1969; Howell et al. 1971; Hurwitz et al. 1979; 

Neely et al. 1977; Oshima et al. 1976; Thompson et al. 1976; 

Tingey and Reinert 1975). Different alfalfa cultivars have 

different levels of ozone sensitivity (Table 3). Often, 

evaluations are done using artificially high ozone concentra¬ 

tions for relatively short periods of time (.2 ppm or more 

for 4 hrs. or less). In the range of .05 to .30 ppm there is 

generally a foliar or growth response, though the manifesta— 

25 
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tion varies. 

The first level of response appears to be that alfalfa 

stomates close* gas exchange slows or stops, and carbon di¬ 

oxide fixation is therefore reduced, at least at relatively 

high (.10 ppm) concentrations (Hill 1971). Further along in 

the photosynthetic process, ozone may interrupt the photoas- 

similate production by reducing the concentration of ribulose 

1,5 bisphosphate carboxylase, an enzyme necessary in carbon 

fixation (Pell &< Pearson 1985). Peroxidase enzymes have also 

been shown to increase or decrease in response to ozone 

stress on alfalfa callus, though the implications of such 

changes are not clear (Rier et al. 1983). The net result of 

such changes is undoubtedly to reduce the amount of photoas- 

similate produced. This would not only reduce forage produc¬ 

tion at the time the ozone exposure occurred, but may also 

reduce regrowth and long-term stand production and viability. 

Since alfalfa regenerates from reserves, primarily the carbo¬ 

hydrates stored in the crown and roots (Smith & Silva 1969), 

and since ozone stress may disproportionately reduce parti¬ 

tioning to alfalfa roots, as suggested in chapter 1, then 

recovery following harvest might be slowed. Other problems, 

such as winter stress damage and stand decline might be in¬ 

creased . 

Ozone also causes biochemical changes in alfalfa foliage 

which are similar to changes caused by foliar pathogens 
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(Hurwitz et al. 1979; Skarby and Pell 1979; Vendryes-Jones 

and Pell 1981) and such changes may adversely affect alfalfa 

forage quality. These studies originally sought to find out 

whether ozone-stressed alfalfa produced coumestrol, a sub¬ 

stance produced in response to pathogenic fungi and believed 

to harmful to mammals and which would decrease alfalfa quali¬ 

ty. Coumestrol was not found? but another fluorescent com¬ 

pound which forms in response to plant pathogenesis (Sherwood 

et al. 1970)? 4’?7 dihydroxyf1avone (4’?7 DHF)? was found to 

increase with increasing ozone concentration (Hurwitz et al. 

1979). Levels of 4’,7 DHF were increased in the cultivars 

Buffalo? Ladak? Sonora? Moapa and Vernal (Hurwitz et al. 

1979; Skarby &. Pell 1979). While it is interesting that ozone 

damage and pathogenesis both induce the formation of 4’?7 

DHF? the role of the compound in leaf physiology has not been 

described. 

□zone induces other changes in alfalfa quality. The in 

vitro rate of cell wall digestion for ozone-treated alfalfa 

was slower than for controls? and it was suggested that it 

might be more difficult for ruminants to digest ozone- 

stressed alfalfa (Howell Smith 1977) . At the same time? 

ozone treatment increased the percent nitrogen which would 

tend to make a higher quality feed. In contrast? others 

(Thompson et al. 1976) found that ozone reduced nitrogen 

content? as well as fibre? beta—carotene? and vitamin C. It 
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is clear that ozone changes alfalfa quality, but it is not 

clear how. 

The purpose of the research presented here was to examine 

the effect of simulated ambient ozone exposures on the growth 

of alfalfa, rather than on alfalfa quality. Growth was anal¬ 

yzed in terms of dry matter and partitioning over time. The 

interaction of ozone and Fusarium root and crown rot on alf¬ 

alfa was also examined, to see whether ozone affected a 

major, chronic disease problem affecting a perennial plant. 

Table 3. Reported ozone injury to different alfalfa cultivars. 

Kanza Low1 
I roquois Low1 
Cherokee Low1 
Saranac Low1 
Team Low1 *3 
Buffalo Moderate3 
Glacier Moderate1 
Dawson Moderate1 
Moapa Moderate1 
Verna1 Moderate1, Moderate4 
Eldorado Moderate to High"4 
Hayden Moderate to High35 
Williamsburg High 1 

Mesa-Sirsa High1, Moderate to High3 

1 0.2 ppm, 4 hrs. (Howell et al. 1971) 
a 0.05 ppm, continuously (Neely et al. 1977) 
3 0.2 to 0.3 ppm, 2 to 2.5 hrs. (Hurwitz et al. 1979) 
** 0.05 ppm, 8 hrs. 5 days per wk. (Tingey & Reinert 1975) 
= ambient ( .04 - .2 ppm, southern California) (Thompson et al. 

1976) 
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Fusarium Root and Crown Rot of Forage Legumes 

Alfalfa (Medicaqo sativa L.) is one of the world's most 

important forage crops, and is an important forage grown in 

Massachusetts. Diseases caused by a number of biotic and 

abiotic agents decrease alfalfa production nationwide, though 

the most damaging diseases vary from one area to another. As 

yet, no one has identified which alfalfa diseases are econom¬ 

ically important in Massachusetts. 

Surveys in other northeastern states have shown that 

Fusarium root and crown rot causes a widespread alfalfa de¬ 

cline (Leath and Kendall 1978) and in Canada (Richard et al. 

1980; Reeleder 1982), while a moderate Fusariurn decline was 

observed in Utah (Turner and Van Alfen 1983). The severity 

of this disease is often a function of stresses induced by 

management and the environment (Leath et al. 1971). For 

example, low winter temperatures and cutting management 

(Greub and Wedin 1971) can increase the severity of Fusariurn 

root and crown rot (Richard et al. 1982; Tu 1980). There are 

higher level interactions between a number of factors which 

may affect the disease. For example, potassium levels and 

winter hardiness each affect Fusariurn root and crown rot 

directly, while potassium also has an effect on winter hardi¬ 

ness. (Gervais, Dionne and Richardson 1962; Leath et al. 

1971; O'Rourke and Millar 1966). Because the disease is 
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strongly affected by a number of environmental stress fact¬ 

ors, it is often thought of as being stress-induced. These 

stresses are generally acting on physiological processes in 

the plant, and the changes they bring about are thought to 

predispose the plant to Fusariurn root and crown rot. 

Other agents may physically damage alfalfa. This damage 

can provide an infection court, or may constrain a plant's 

defence mechanisms (Leath and Kendall 1978). Mechanical dam¬ 

age has been shown to increase field incidence of Fusariurn 

root and crown rot. Damage from insects (Elliot et al. 1969; 

Leath and Kendall 1978), physical winter injury such as frost 

heaving (Leath et al. 1971; Gagnon 1979) and injury from 

harvest machinery (Graham et al. 1979) can all contribute to 

increased disease severity on alfalfa or clover. Presumably 

the damage disrupts a physical barrier to infection (Elliot 

et al. 1969; Graham et al. 1979). While Fusariurn penetrated 

roots more frequently after a root was wounded, the penetra¬ 

tion was not via the wound or dependent on the physical 

breach but was instead direct (Chi et al 1964; Stutz et al. 

1985). Apparently, wounding altered some physiological as¬ 

pect of the host-pathogen interaction to promote earlier and 

more extensive pathogen development. 

In addition, disease susceptibility, alfalfa regrowth, 

and overwintering interact with carbohydrate levels in roots 

and crowns (Smith & Silva 1969; McKenzie 8* McLean 1980; 
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Reynolds 1971). Fusariuro root and crown rot may reduce root 

carbohydrate levels, and plants with carbohydrate levels 

which are lower than normal may be more susceptible to the 

disease, though this interaction requires further study 

(Leath and Kendall 1978, Lukezic et al . 1969, Michaud &. 

Richard 1985). 

Several species of Fusariurn can contribute to alfalfa root 

and crown rot (Graham et al. 1979; Leath and Kendall 1978). 

□f these, Fusarium oxysporum (Schl.) emend Snyd. & Hans., F. 

so 1 ani (Mart.) Sacc., F. tricinctum (Corda) Sacc. , F. roseum 

(Lk.) emend Snyd. 8* Hans. 'Avenaceum’, and F. roseum (Lk.) 

emend Snyd. & Hans. 'Acuminatum' are the most frequently 

isolated pathogens (Graham et al. 1979; Turner and Van Alfen 

1983; Wilcoxson et al. 1977). 

There appears to be little significant resistance to the 

disease in commercial cultivars. One study screening 100 

cultivars for disease resistance, and another screening 14 

cultivars, found that all cultivars were affected by root and 

crown rot. Winter hardy cultivars were less affected than 

less hardy cultivars (Wilcoxson et al. 1977). Fusariurn root 

and crown rot reduced yield and there was a significant neg¬ 

ative correlation between root rot severity and yield in 

field studies (Michaud & Richard 1985). 
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Ozone Effects on Plant Disease. 

There are a number of possible ways pollutants might 

affect host-pathogen interactions (Huttenen 1984; McCune et 

al. 1973). The pollutant may directly affect the pathogen, 

either stimulating it or inhibiting it. The pollutant can 

affect the plant, and alter physiology, anatomy or morphol¬ 

ogy, and thereby indirectly affect the pathogens progress. 

Examples of the indirect effects would include increased 

disease resistance caused by stimulation of resistance mecha¬ 

nisms, or the production of more or fewer infection sites. 

□zone has been reported to either stimulate or inhibit 

plant diseases, depending on the host and pathogen (Heagle 

1973; Laurence 1981). Generally, diseases caused by obligate 

parasites are inhibited while infections caused by a number 

of non-obligate and necrotrophic parasites are increased. 

(Laurence 1981; Manning 1975). Erisiphe qraminis on barley, 

Puccini a on wheat and oats, and Uromyces on bean causes less 

damage on plants previously exposed to ozone. In contrast, 

Botrytis on onion (Rist and Lorbeer 1984), potato (Manning et 

al. 1969) and geranium (Manning et al. 1970), Helmintosporium 

mavdis on corn (Heagle 1973) and Alternaria solani on potato 

(Bisessar 1982; Holley et al. 1985) cause more damage follow¬ 

ing ozone exposures. In the case of these foliar pathogens, 

the increased infection is probably caused by production of 
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infection courts i.e. lesions on the leaves of the host. 

Studies on Fusariurn yellows of cabbage showed that ozone 

increases fungal populations on roots without having an ef¬ 

fect on disease incidence (Manning et al. 1971). On clover, 

Rhizoctonia and ozone reduced nodulation and additively re¬ 

duced growth, while on tall fescue, ozone inhibited disease 

development (Kochhar 1974). Ozone also increased Fusarium 

oxysporum populations on the roots of pinto beans (Manning et 

al. 1971). In contrast, Pythium and Fusarium infections on 

tomato roots grown in untreated soil were less severe on 

plants grown in ozone than on plants grown in carbon-filtered 

air (Manning et al. 1981). Infections of Fusarium oxysporum 

f. sp . lycopersici on the same crop were also less severe 

in ozone than in controls (Manning 1978). 

□zone increased root, sapwood and stump colonization of 

Ponderosa and Jeffrey pine by Fomes annosus (James et al. 

1980a). The authors concluded that chronic ozone injury con¬ 

tributed significantly to increased F. annosus infections in 

southern California pine forests. In addition to increasing 

infections of previously healthy trees, stumps of cut trees 

were infected more extensively and rapidly when they had 

suffered relatively high ozone injury (James et al. 1980b). 

□zone can also affect root symbionts. Ozone reduced 

Rhizobium nodulation on pinto bean, clover and soybean (Blum 

&, Heck 1980; Reinert &. Weber 1980). Ozone reduced reproduc- 
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tion by the endomycorrhiza1 fungus Glomus qeosporum but did 

not affect root colonization by the fungus (Brewer & Heagle 

1983). However? ozone did reduce infection of tomato roots by 

the mycorrhizal fungus Glomus fasiculatus (McCool 8* Menge 

1983). Ozone did not affect root colonization of loblolly 

pine seedlings by the ectomycorrhizal fungus Piso 1ithus 

tinctorius? though the fungus appeared to mitigate the growth 

reduction otherwise caused by ozone (Mahoney et al. 1985). 

Changes in such mutualistic associations may be brought about 

by changes in the amount and type of carbohydrates trans¬ 

located to roots of ozone-stressed plants (McCool & Menge 

1983). Such changes may also make roots more susceptible to 

pathogens (Manning 1978). 

Bacterial diseases are almost always inhibited in plants 

exposed to air pollutants (Hughes 8* Laurence 1984). For ex¬ 

ample? ozone reduced Xanthomonas fraqariae symptoms on wild 

strawberry? but the bacterium had no effect on foliar ozone 

symptoms (Laurence 1981). Generally lesions caused by foliar 

bacterial pathogens are smaller and latent periods are long¬ 

er? though much of the work done to date has been done with 

sulfur dioxide (Laurence &< Aluisio 1981; Laurence 8* Reynolds 

1982). In these experiments? significant inhibition of dis¬ 

ease development has occurred when pollutant exposures were 

made prior to pathogen inoculations? indicating that the 

pollutant was probably not affecting the pathogen directly. 
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Viruses appear to produce a form of induced resistance to 

ozone injury (Vargo et al. 1978), at least in the case of 

tobacco ringspot virus in soybean. Tobacco mosaic virus, 

tomato ringspot virus, apple mosaic virus, tobacco etch 

virus and bean common mosaic virus have also induced host 

resistance to ozone (Richard et al. 1980, Laurence 1981; 

Huttunen 1974). In some cases, viral replication is 

increased by ozone (Hughes 8* Laurence 1984). It is not clear 

why these phenomena occur. 



Chapter III 

Survey of Massachusetts for Fusarium Crown and Root Rot 

Introduction 

It is well-established that Fusarium crown and root rot is 

an economically important alfalfa disease in the northeastern 

U.S. (chapter 2) and it is probable that the disease is an 

important factor in stand decline in Massachusetts. However, 

no one has studied alfalfa fields in the state to determine 

what the major disease problems are, and whether Fusarium 

crown and root rot is one of them. Such a survey was under¬ 

taken in the context of an alfalfa integrated pest management 

program, and the results are reported here. The survey fac¬ 

ilitated finding Fusarium isolates which would be valuable in 

further studies on the interaction of disease and ozone 

stress. 

Materials and Methods 

Alfalfa stands containing declining plants were located in 

the fall of 1982 and spring of 1983. Declining plants were 

dug from the fields with care taken to dig down approximately 

1 ft, and to take a soil core which corresponded to the cir¬ 

cumference of the foliage. Representative plants were taken 

from 5 random locations in each field. After walking a 

roughly Z—shaped pattern in a field, the sampler stopped at 

the ends of the Z, the corners, and in the middle, and lo- 

36 



37 

cated the declining plant nearest that point. After digging, 

plants were placed in polyethylene bags and transported to 

the laboratory. 

At the laboratory, samples were washed in tap water. 

Tissue containing lesions on roots, crowns, stems and leaves 

were cut out. These tissue pieces were surface-sterilized in 

20*/. household bleach <5.25*/. sodium hypochlorite) in water for 

approximately 3 minutes, and then rinsed in two changes of 

sterile distilled water. Tissue pieces were subdivided with 

a sterile scalpel or razor blade, and placed on potato-dex¬ 

trose agar (PDA), acidified potato-carrot agar (approximately 

10 mis of 50*/. lactic acid per liter) (PCAL) , or corn meal 

agar containing pimaricin, polymyxin and penicillin (CMA-3P) 

(Tuite 1969). Five tissue pieces from each plant were placed 

on each medium. 

After fungi had grown from the samples, they were ident¬ 

ified or transferred to PCAL for further study. Fungi other 

than Fusariurn were recorded and then discarded. Fusariurn 

spp. were transferred to PCAL and when spores were produced, 

single spore isolates of randomly selected isolates were 

made. Single spore isolations were done by gently washing 

the surface of a culture with sterile water, then suspending 

a small amount of this water in approximately 10 mis of ster¬ 

ile distilled water. Approximately .5 ml of this spore sus¬ 

pension was placed on 1.5% water agar and evenly distributed. 
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After 24 hrs, these plates were examined with a dissecting 

microscope in a sterile laminar flow hood, and germinating 

conidia were individually transferred to PCAL plates. Single¬ 

spore isolates were speciated according to Tousson and 

Nelson's key (1976). 

In vitro pathogenicity tests were performed by growing 

surface-sterilized Saranac AR alfalfa seed in aseptic slants. 

Seeds were sur f ace-ster i 1 i zed in 25*/* household bleach in 

water for 5 min. Seeds were washed in sterile distilled 

water and placed in sterilized Petri dishes containing moist 

filter paper. When seeds had germinated, healthy uniform 

seedlings were transferred to slants containing Hoagland's 

Solution agar (HSA) (Hoagland and Arnon 1950), which con¬ 

sisted of Hoagland’s solution plus 1.5*/. agar in 25 X 175 mm 

test tubes covered with translucent plastic caps. Seedlings 

were grown in the laboratory under fluorescent lights for 

approximately 3 wks. Blocks of agar from test isolates were 

then placed next to each seedling. Each isolate was tested on 

5 seedlings. Evaluations were performed when sufficient time 

had passed for some seedlings to be killed by the fungus, 

generally about 2 wks. All seedlings were then rated on a 5 

point scale: 1 = healthy tissue, no browning; 2 = light 

browning, little or no necrosis, 10*/. or less of the tissue 

affected; 3 = browning, some necrosis, 10% - 50% of the 

tissue affected; 4 = general browning, significant necrosis, 
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50% - 90% of the tissue affected; 5 = complete or nearly 

complete browning, severe necrosis, plant death. 

This and all analysis in subsequent chapters were done 

using statistical analysis packages available for the Control 

Data Cyber CDC-11 at the University of Massachusetts. The 

two packages used were the Statistical Package for the Social 

Sciences (SPSS) version 9.0, and a biomedical statistics 

package, BMDP (Nie et al. 1975; Dixon 19S3). Steel and 

Torrie (1960) was used as an additional statistical refer¬ 

ence . 

ResuIts 

Thirty fields were sampled during the spring and summer of 

1983. Of these, 15 were sampled in both spring (May through 

June 15) and summer (June 15 to September 15). Of the other 

15, 9 were sampled in spring and 6 in summer. From these, 850 

plants were sampled and approximately 7500 isolations were 

made. The summary of the fungi isolated is presented in 

Tables 4 and 5. 

From this data, it can be seen that Phoma, which causes 

the disease spring black stem, was the predominant foliar 

pathogen in the early part of the year. This corroborated 

observations that spring black stem symptoms predominated 

through July. In the latter part of the summer, 

Co 1letotrichum, which causes alfalfa anthracnose, was the 
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predominant foliar pathogen. Throughout the year, Fusarium 

was the most frequently isolated root pathogen. 

□f the approximately 3000 Fusarium isolates made, 243 were 

identified to species and screened for pathogenicity. The 

data are summarized in Table 6. 

Table 4. Genera of fungi isolated from alfalfa stem and leaf 

samples as percents of the total number isolated for each month. 

Organism May-June July August September 

Phoma 69% 60% 38% 5% 

Fusarium 17% 17% 13% 15% 

Colletotrichum 0% 5% 8% 49% 

A1ternaria 2% 12% 24% 16% 

Stemphy11ium 1% 1% 0% 0% 

Others1 11% 5% 17% 15% 

includes genera not considered to be alfalfa pathogens 
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Table 5. Genera of fungi 

samples as percents of the 

isolated from 

total number 

a 1 fa 1fa 

iso 1ated 

stem and leaf 

for each month. 

Organism May-June July August September 

Fusariurn 77% 82% 80% 93% 

Phytoph thora 6% 5% 0% 0% 

Phoma 4% 4% 0% 0% 

Cylindrocarpon 4% 3% 1% 0% 

Rhizoctonia 1% 1% 0% 3% 

Other 1 0% 5% 19% 4% 

1 Includes genera not considered to be alfalfa pathogens 
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Table 6. Species of Fusarium isolated from alfalfa and their 

pathogenicity as rated by in vitro screening. 

Disease 

Rating1 

F.oxysporum F.avenaceum F.so 1ani F.acuminatum 

1-1.9 15 6 0 0 

2 - 2.9 41 12 6 4 

3 - 3.9 38 23 15 2 

4>
 1 U1
 

• o
 

30 28 22 1 

Total 124 69 43 7 

1Mean of five samples rated visually 

F, oxysporum accounted for 51% of the isolated Fusariurn. 

□f these, 55% were rated pathogenic, if pathogenicity is 

judged to be an average rating of 3 or higher. F. avenaceum 

accounted for 28% of the Fusariurn, of which 74% were rated 

pathogenic. F. so 1 ani accounted for 18% of the isolates, of 

which 86% were rated pathogenic. F. acuminatum accounted for 

3% of the isolates, of which 43% were rated pathogenic. 

Discussion 

Fungi known to cause Fusarium crown and root rot predom¬ 

inated among the fungi isolated from the crowns and roots of 

declining alfalfa plants in Massachusetts. Attempts were 

made to isolate other significant alfalfa pathogens, such as 
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Phytophthora meqasperma, by using a selective medium for 

Phycomycetes and a broadly-used non-selective medium (PDA) 

were used. Phytophthora is probably as important a pathogen 

in Massachusetts as it is in other states, and one would 

expect it to be more frequently isolated. Perhaps some as¬ 

pect of the isolation technique or sampling procedure re¬ 

sulted in an artificially low isolation rate. It was not 

surprising that Fusariurn was isolated frequently, but it was 

not expected that Fusarium would constitute 77 - 99% of the 

isolates. Another study (Hancock 1985) reported that Pythium 

and Rhizoctonia as well as F. oxysporum were important agents 

of rootlet deterioration. Several other fungi are reported 

as important alfalfa pathogens (Graham et al. 1979). One 

might expect that one genus would not so completely dominate 

the fungi isolated from alfalfa roots and crowns from a var¬ 

iety of fields. Yet other studies have found that Fusariurn 

is more prevalent than other fungi on and in alfalfa roots 

(Hancock 1985; O’Rourke and Millar 1966; Elliott et al. 

1969). 

The relative proportion of the Fusariurn species rated 

pathogenic was also surprisingly high considering that 

Fusariurn is often found to be saprophytic or epiphytic on the 

roots of forage legumes (O’Rourke and Millar 1966; Elliott et 

al. 1969; Stutz and Leath 1983). Assuming the in vitro 

screen for pathogenicity was reasonably accurate, then well 
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over half of the isolates in this survey were at least some¬ 

what pathogenic on alfalfa. This indicates that Fusarium 

crown and root rot is an important disease in Massachusetts, 

and further indicates that Fusarium contributes to alfalfa 

stand decline in the state 



Chapter IV 

Screening Commercial Alfalfa Cultivars for Ozone Sensitivity 

Introduction 

Ozone detrimentally affects alfalfa growth and alfalfa 

physiology, as discussed in chapter 2. However, the condi¬ 

tions of the several tests described in the literature var¬ 

ied, and often acute exposures were used to evaluate the 

susceptibility of different alfalfa cultivars to ozone, ra¬ 

ther than using longer fumigations at ozone concentrations 

which more nearly represent ambient exposures. At times, 

these evaluations also depended on visual ratings of leaf 

injury rather than growth evaluations. The experiment de¬ 

scribed in this chapter examined the effect of fumigations 

done over several week periods at ozone concentrations of .06 

- .08 ppm, and evaluated the effects in terms of growth and 

visual ratings of leaf damage in order to compare the two. 

Materials and Methods 

□zone Chambers. The experimental greenhouses were located 

at the Suburban Experiment Station, University of 

Massachusetts, Ualtham, Massachusetts. The houses were quon- 

set-style aluminum-tube frame structures covered with a 

double—layer of 4 mil polyethylene, and were approximately 30 

ft. long x 12 ft wide and 7 ft tall at the highest point. 
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Houses were kept under positive pressure and ventilated by 

forced air blown through activated charcoal filters before 

being introduced to the greenhouses. 

□zone was generated inside one greenhouse by a pair of 

Welsbach ozone generators (electric arc) placed in the in¬ 

coming air stream. The ozone generators were adjusted to 

provide .06 to .08 ppm ozone and were run for 6 hrs per day, 

5 days per week, and left off for the weekend. One generator 

was adjusted to provide a constant low concentration of ozone 

(approximately .04 ppm), and the other was attached to a 

Simpson switch. The switch was set to maintain the desired 

ozone concentrations as measured by a Mast (KI reduction) 

ozone monitor. Ozone was independently and concurrently 

monitored and recorded with a Dasibi (spectrophotometric) 

ozone monitor. 

Temperature and humidity were monitored in each house 

using Weathermeasure recording hygrothermographs. Temper¬ 

ature was adjusted to maintain equivalent conditions of ap¬ 

proximately 72 F daytime and 65 F nighttime in each house. 

Other environmental conditions were kept the same in the two 

houses. Plants were watered as necessary, and when small 

pots or cell packs were used, aluminum pans were placed under 

them to hold water reserves. At bi-weekly intervals, 10-10- 

10 soluble fertilizer was applied to all plants at the recom¬ 

mended rate. Experiments were run during the period from 
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November to March, and supplemental lighting was used. Full- 

spectrum 75 watt floodlight bulbs were placed approximately 

3ft above the center of the greenhouse benches, 3 ft apart. 

This was intended to increase day length, rather than signi¬ 

ficantly increase the light intensity. 

Plant Material. Two groups of alfalfa cultivars were 

screened. The first group consisted of Buffalo, Mesa-Sirsa, 

Saranac AR, and Vernal. The second group consisted of Apollo 

II, Honeyoye, Iroquois, JX-90, Oneida, Team, Vangard and 

Williamsburg. While both groups were treated concurrently, 

the first group consisted of 2 blocks of 25 plants per culti- 

var, and the second group consisted of 3 blocks of 5 plants 

per cultivar. The groups were analyzed separately. 

Seeds of each cultivar were inoculated with Rhizobium 

meliloti (Nitragin Corp, Milwaukee, WI) and planted in a 

pasteurized soil mix of peat:sand:1oam (1:1:1) in cell packs. 

Each cell pack consisted of 9 cells approximately 1 inch 

square x 3 inches deep cells. The plants were grown for 4 

wks. At that time, 120 plants of each cultivar from the first 

group were transplanted into 4 inch pots. Plants in the 

other group were left in the cell packs. All plants were 

then transferred to the experimental greenhouses for ozone 

exposures. Plants were exposed for 4 wks. 

Visual Ratings. After fumigations were done, foliar ozone 

damage was evaluated. The visual rating system consisted of 
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3 levels: 1 = no symptoms on leaf; 2 = 10% or less of the 

leaf area showing symptoms; 3 = more than 10% of the leaf 

area showing symptoms. Symptoms were rated on the fifth and 

sixth leaves from the terminal of the main shoot? since these 

leaves had the most symptom development after the 4 wk expo¬ 

sure. Symptoms included white stippling, bleaching, chloro¬ 

sis and marginal necrosis. Roots were washed free of parti¬ 

culates, and tops were separated from roots. Fresh weights 

were obtained from roots and shoots, plants were dried at 75 

C for 2 days in a forced air oven, and dry weights were ob- 

tained. 

Visual ratings were analyzed using chi-square analyses to 

determine significant differences. Fresh and dry weights 

were analyzed using analysis of variance, and Duncan’s new 

multiple range test. 

ResuIts 

Analyses of variance showed that ozone had a significant 

effect on total dry weight, and that dry weight was also 

significantly affected by alfalfa cultivar (Tables 7 and 8). 

However, the interaction between cultivar and air treatment 

was not significant. When shoot dry weights and root dry 

weights were analyzed, results were similar. 

□zone caused significant reductions of both shoot weight 

and root weight for each cultivar. Generally, root weights 
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were reduced more than shoot weights in plants from the first 

group. Plants in the second group had two responses, depend¬ 

ing on the cultivar. Four cultivars, Apollo II, Honeyoye, 

JX-90, and Vangard showed reduced shoot growth of from 1% to 

12*/, and root growth ranged from a 4*/. reduction to an 11*/. 

increase. 

Table 7. Analysis of variance for total dry weight of 4 alfalfa 

cultivars grown in ozone and carbon-fi1 tered air. 

Source df Sum of Squares Mean Square F p of F 

Cu1tivar 3 .223 .074 m
 

m
 

0.00 

Air 1 .367 .367 60.14 0.00 

Cv X Air 3 .034 .011 

<r 
00 ■ 0.14 

Error 392 2.390 .006 

Table 8. 

cu1tivars 

Analysis 

grown in 

of variance for 

ozone and carbon 

total dry weight of 8 alfalfa 

-fi1 tered air. 

Source df Sum of Squares Mean Square F p of F 

Cu1tivar 7 . 145 .0207 26.5 0.00 

Air 1 .013 .0132 16.9 0.00 

Cv X Air 7 .010 .0015 1.9 0.07 

Error 224 . 175 .0008 



50 

The other four cultivars, Iroquois* Oneida, Team, and 

Williamsburg, had shoot growth reduced 18V* to 26*/* and root 

growth reduced 26'/. to 55%. The analysis of variance showed 

that the cultivar x air interaction was close to significant 

(p = .07), indicating that ozone probably had a differential 

effect on cultivars. 

Visual ratings and percent reduction of the total dry 

weight are shown in Tables 11 and 12. While there is some 

correspondence between mean dry weight reductions and mean 

visual ratings in the group of 8 cultivars (ra = .60), there 

was no correlation in the group of 4 cultivars <re = .02). 

If both groups were combined, the correlation was only fair 

<re = .33). Analyzing both sets of cultivars together but 

looking at shoot and root weight reductions separately, there 

was no correlation between shoot weight reduction and visual 

rating of injury (rs = .03) and a low correlation between 

root weight reduction and visual ratings (r22 = .24). 
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Table 9. Dry weights of shoots and roots and percent reductions 

in 4 alfalfa cultivars. Means at each cultivar followed by an 

asterisk are significantly different at p = 0.05 as determined by 

paired t-tests. 

Cu1tivar 

Shoot Root 

Fi1 tered Ozone Change Fi1 tered Ozone Change 

Saranac AR .332* .268* -19% . 126* . 100* -20% 

Verna1 .276* .212* -23% . 121* .070* -42% 

Buffa 1o .240* . 153* -36% . 120* .070* -41% 

Mesa-Sirsa .241* .204* -15% . 108* . 084* -22% 
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Table 10. Dry weights of shoots and roots and percent reduction 

in 8 alfalfa cultivars. Means at each cultivar followed by an 

asterisk are significantly different at p = 0.05 as determined by 

paired t-tests. 

Cu1tivar 

Shoot Root 

F i 1tered Ozone Change Fi1tered Ozone Change 

Apo 11o II .081 .080 - 1% .028 .027 - 4*/. 

Honeyoye .067 .064 - 4% .029 .029 0*/. 

Vangard .078 .070 -10*/. .029 .032 + 10*/. 

JX-90 .081 .071 -12*/. .026 .029 + 11% 

I roquois .078* . 058* -26*/. . 035* .026* -26% 

Oneida .061* . 050* -18*/. .045* .020* -51% 

Team . 160* . 118* -26*/. . 063* .028* -55% 

Wmsbrg. . 1 13* .087* -23*/. .069* .032* -54% 

Table 11. 

compared to 

Visual ratings of ozone injury on 4 

percent reductions in total dry we 

alfalfa cultivars 

i gh t . 

Cu1tivar Mean Visua1 Ratino Dry Weight 

Leaf 5 Leaf 6 Combined Reduc tion 

Saranac AR 1 .55 1.90 1 .73 19% 

Verna 1 1.65 1.85 1.75 41% 

Buffalo 2.10 2.25 2.18 61% 

Mesa-Sirsa 2.30 2.70 2.50 21% 
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Table 12. Visual ratings of ozone injury on 8 alfalfa cultivars 

compared to percent reductions in total dry weight. 

Cultivar Mean 

Leaf 5 

Visual 

Leaf 6 

Ratinq 

Combined 

Dry Weight 

Reduct ion 

Apo 1 1 o II 1.2 1.4 1.30 2% 

Honeyoye 1.4 2.1 1.75 3% 

Vangard 1.8 2.1 1.95 5% 

JX-90 2.0 2.4 

O
 

CU • 

CU 7% 

Iroquois 2.1 2.3 2.20 35% 

□neida 2.3 

in
 • 

CU 2.40 51% 

Williamsburg 2.4 2.8 2.60 53% 

T earn 2.1 2.4 2.25 58% 

From this test, it was possible to rank the twelve culti¬ 

vars in terms of susceptibility to ozone stress. Visual rat¬ 

ings and percent total dry weight were arbitrarily ranked, 

such that for visual ratings: 1.75 or less = lj 1.76 to 2.00 

= 2; greater than 2.00 = 3; and for percent dry weight re¬ 

ductions: 0 -20*/. = lj 21% - 40% = 2; 41% - 60% = 3; 61% - 80% 

= 4; 80% - 100% = 5. Ranks of visual ratings and weight re¬ 

ductions were added for each cultivar. This sum was the 

criterion for assigning the value of low, moderate and high 

susceptibility to each cultivar in Table 13. For combined 
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rankings of 3 or less, susceptibility was rated low, for 4 to 

5, susceptibility was rated moderate, and for 6 or more, 

susceptibility to ozone was rated high. 

Discussion 

□zone concentrations which approximated the ambient condi¬ 

tions in the Northeast reduced alfalfa growth significantly. 

To some extent, this depended on the cultivar, though the 

statistical significance of the cultivar x ozone interactions 

was less than 5*/. (i.e p = .07 and .14). This may have been 

due to the relatively low number of plants of each cultivar 

tested. It may also have been that the interaction was not 

very strong. 

It was apparent that visual ratings of leaf damage were 

not adequate for evaluating the effect of ozone on alfalfa 

growth. Correlation coefficients between the total weight 

reduction and visual ratings of injury never exceeded .60, 

and in one case was virtually 0. It might be expected that 

visual ratings of leaf damage would at least give a good 

estimate of reductions in shoot growth. However, correlations 

between shoot weight reduction and visual ratings was .03. 

The visual evaluation of bleaching, chlorosis and marginal 

burning did not give a good prediction of growth reductions, 

though in one experiment, there was some correspondence. In 

general, evaluation of foliar ozone damage alone would not be 



sufficient to evaluate an alfalfa cultivar’s growth under 

ozone stress. 
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Table 13. Rankings of ozone susceptibility based on growth 

responses and foliar injury after growth in ozone. Concentra¬ 

tions simulated ambient conditions in the Northeast. 

□ zone 

Low 

Suscep tibi1itv 

Moderate High 

Apo1 lo II JX-90 Buffalo 

Honeyoye Mesa-Sirsa Oneida 

Saranac AR Verna 1 Team 

Vangard Iroquois Williamsburg 

The combination of dry weight reductions and visual rat¬ 

ings provided adequate discrimination to separate cultivar 

responses into general categories. Cultivars rated as having 

low ozone susceptibility had dry weight losses of from 2% to 

19*/. and mean foliar injury ratings of from 1.30 to 1.95. 

Cultivars rated as having high susceptibility had weight 

reductions of from 51*/. to 61*/. and foliar injury ratings from 

2.18 to 2.60. Cultivars rated as moderately susceptible had 

dry weight reductions from 7*/. to 41*/. and visual ratings of 

from 1.75 to 2.50. This middle group exhibited the most 

variability in terms of response. 

These ratings were similar to ratings made by others under 

different conditions (Chapter 2). There were exceptions* 

notably or the cultivars Team and Iroquois* both of which 
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were rated previously as expressing low ozone injury when 

exposed to .2 ppm ozone for 4 hrs. In this test, using 4 wks 

of exposure to .06 — .08 ppm ozone, Iroquois and Team both 

expressed relatively high foliar injury and lost a relatively 

high percent of total dry weight under ozone stress. It is 

probable that tests which simulate ambient conditions have 

more relevance to actual ozone-tolerance in the field than do 

the acute exposure tests, and these discrepancies with pre¬ 

vious tests may be illustrations of that fact. 

For all crops, except those which must be blemish-free, 

the criterion of ozone damage is ultimately how much growth 

is reduced. The ways that ozone can reduce growth are dis¬ 

cussed in chapter 1. If programs seek to evaluate ozone 

effects on alfalfa growth, this experiment showed that visual 

ratings alone are not adequate. In addition, since there 

were two cases where evaluations here differed significantly 

from previous evaluations, the practice of using acute fumi¬ 

gations may also be inadequate. While brief fumigations and 

visual ratings of injury are convenient, they are not neces¬ 

sarily an accurate measure of ozone damage. 



Chapter V 

□ zone Effects on Growth and Photoassimi1 ate Partitioning in 

Alfalfa, Medicaqo sativa L. 

Introduction 

While ozone is known to change the way plants partition 

photoassimilates, as described in chapter 1, no one has 

studied this phenomenon in alfalfa. Some forage legumes and 

grasses have been studied, and the partitioning pattern chan 

ges such that assimilate is partitioned to foliage at the 

expense of roots, a pattern observed in the majority of 

plants (chapter 1). Such changes are particularly important 

in perennial forages which depend on accumulated carbohy¬ 

drates for regrowth in the spring and after cutting (Greub 

and Wedin 1971; Smith and Silva 1969). 

Growth analysis has proven to be a useful technique for 

studying partitioning in 03—stressed plants (Endress and 

Grunwald 1985; Jensen 1985; Oshima et al. 1979). Growth 

analysis involves taking samples from an experiment at reg¬ 

ular intervals, and then measuring various growth parameters 

from the sample plants (e.g. leaf area, leaf weight, number 

of leaves, root weight). Using this approach, the temporal 

changes in plant growth can be examined, and using relation¬ 

ships between the measured parameters, photosynthetic ef¬ 

ficiency and growth efficiency can be estimated. 
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In this study, growth analysis techniques were used to 

study the effect of ozone concentrations such as those com¬ 

monly observed in the Northeast on two alfalfa cultivars. Of 

particular interest are whether partitioning changes occur, 

and if so, whether such changes might contribute to alfalfa 

stand dec 1ine. 

Materials and Methods 

Experiments were run during the winters of 1983-84 and 

1984-85 in polyethylene greenhouses located in Ualtham, Mass¬ 

achusetts. Ozone exposures and greenhouse conditions are 

described in chapter 4. 

In the first year, the alfalfa cultivar Saranac AR was 

used; in the second season Saranac AR was compared to 

Iroquois. Before planting, alfalfa seeds were inoculated 

with Rhizobium meliloti (Nitragin Co., Milwaukee, WI) and 

planted in a 1:1 peat:vermicu1ite medium. After four weeks, 

uniform plants were transplanted to 6 inch pots containing 

the same growth medium. At weekly intervals, 5 plants of 

each cultivar were selected at random. Root systems were 

washed free of the growth medium and separated from the 

leaves and stems. Leaves were counted and the leaf area 

measured using a Licor leaf area measurement device. In the 

second year, stems were counted. Tissue was then dried at 

75°C for 48 hours and weighed. 
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In the second year, after 0 weeks of growth in ozone, the 

plants were cut back to a uniform 2 inches in height. The 

next week, plants were sampled, and then were sampled two 

more times at two week intervals. These data were used in 

both functional and classic (mean) growth analysis (Hunt 

1902) . 

ResuIts 

Growth Before Cutting. Ozone decreased alfalfa total dry 

weights (TDW). Analyses of variance (Table 14 and 15) showed 

that ozone had a significant effect on TDW. In year 2, when 2 

cultivars were tested, ozone did not have a differential 

effect on the cultivars. While cultivar had a significant 

effect on TDW, ozone and cultivar did not have a significant 

interac tion. 

TDW data were transformed to natural logarithms and fit to 

polynomial functions using least squares regression (9). The 

transformations were necessary in order to make the variance 

at different dates equivalent. Figure la shows the plant dry 

weights before transformation, and the functions fitted for 

ozone and filtered air treatments. Figure lb shows the same 

functions for transformed data for dates before cutting. The 

confidence intervals in Figure la increase with the increas¬ 

ing size of the plants. In Figure lb the confidence inter¬ 

vals are approximately equivalent regardless of plant size. 

Growth curves for both treatments and all tissue—types were 
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best fit using first order polynomials, as typified by data 

in Figure 1. In each year, coefficients of the equations for 

the TDW of ozone-treated plants were significantly different 

from the coefficients for TDW of plants grown in filtered 

air. The functions indicated plants grew significantly less 

in the ozone treatment. 
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Figure 1. Plant total dry weight from alfalfa grown in 
filtered air or ozone as a function of weeks of exposure, 
both cultivars combined. A. Means before and after cutting 
1984-85. Discontinuity indicates cutting after week 8. B. 
Natural logarithm transformations of data before cutting, 
1984-85. Bars indicate 95*/. confidence intervals. 
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Table 14. Analysis of variance for total dry weight (TDW) of 

Saranac AR alfalfa in ozone or carbon-filtered air (Air) at week¬ 

ly sampling dates (Date). 

Source df 

Sum of 

Squares 

Mean 

Square F 

Sig . of 

F 

Date 5 128.16 25.63 112.99 .001 

Air 1 6.75 6.75 29.74 .001 

Date x Air 5 8.20 1.64 7.23 .001 

Er ror 48 10.89 0.23 

Total 59 154.00 2.61 

Table 15. Analysis of variance for total dry weight (TDW) of two 

alfalfa cultivars (Cv) , Saranac AR and Iroquois, in ozone or 

carbon-filtered air (Air) at weekly sampling dates (Date) m 

Sum of Mean Sig . of 

Source df Squares Square F F 

Date 5 116.77 23.35 106.69 .001 

Air 1 27.58 27.58 125.99 .001 

Cv 1 3.02 3.02 13.79 .001 

Date x Air 5 17.80 3.56 16.26 .001 

Date x Cv 5 1.60 .32 1 .47 .208 

Air x Cv 1 0.29 .29 1.31 .255 

Date x Air x Cv 5 1.60 .32 1 .46 .211 

Er r or 96 21.02 .22 

Total 119 189.68 1.59 
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Table 16. Functional relative growth rates of different Saranac 

AR alfalfa tissue in ozone (03) and carbon-filtered air (CF) in 

1983-04. All pairs of growth rates for each tissue are signifi¬ 

cantly different at p = .01. 

Plant organ 

Relative Growth 

g/g/day 

CF 

Rate 

□3 Percent Reduction 

Whole plant .076 .063 17% 

Leaves & stems .084 .071 15% 

Roots .069 .055 20% 

Table 17. Functional relative growth rates of different Saranac 

AR and Iroquois alfalfa tissue in ozone (03) and carbon- fi1 tered 

air (CF) in 1984 -85. All pairs of growth rates for each tissue 

are significantly different at p = .01. 

Relative Growth Rate 

g/g/day 

Plant organ CF □3 Percent Reduction 

Who 1e pi ant .055 .045 18% 

Leaves &< stems .054 .044 19% 

Roots .057 .045 21% 

Leaves .057 .044 23% 

Stems .051 .040 22% 

This was also illustrated by the relative growth rate 

data« which were significantly lower for plants grown in 

ozone than for plants grown in filtered air. Relative growth 

rates were also lower for individual organs (i.e. roots? 

shoots? leaves etc.) grown in ozone (Tables 16 and 17). In 



64 

the first year, stem and leaf data were not separated, and 

were both combined in shoot data. 

Mean net assimilation rates for 3 dates in each year were 

calculated to determine the dry matter accumulation per cm2 

leaf area. Ozone reduced NAR in both years (Tables 18 and 

19). The effect was more variable in 1983-84 than in 1984-85. 

The percent reduction in the first year was approximately 60*/. 

to 75*/. for two weeks, then dropped dramatically to only a 6*/. 

reduction. In the second year, percent reductions were con¬ 

sistently in the 30*/. to 35*/» range over a five week period. 

NAR in filtered air was higher in the first year than in the 

second, indicating that growing conditions, such as light 

intensity, were different in the two years. It was not due 

to an appreciable difference in NAR for Saranac AR vs. 

Iroquois, since NAR for Iroquois was from 4*/. higher to 20*/. 

lower than that of Saranac AR, depending on the week. Such 

differences would not be enough to account for the differ¬ 

ences between the two years. 

Functional calculations for NAR are presented in Figures 

2. These data also show that before cutting, NAR for plants 

in filtered air is greater than that for ozone—treated 

plants. The fact that NAR ’ s in 1984-85 are increasing (Fig. 

2a) and those in 1983-84 are decreasing (Fig. 2b) further 

indicates a difference in environmental conditions between 

the two years. 
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Weight reductions in different organs were analyzed as 

differences between ozone-treated and control plants on a 

given date (Tables 20 and 21). In addition, percent reduc¬ 

tions on 3 dates are presented. In the first year, root 

weights were generally reduced more than shoot weights. In 

the second year, root dry weights were most affected, fol¬ 

lowed by leaf dry weights then stem dry weights. 

Functional analysis gave the same results (Figure 3 and 

Table 22). When the dry weight of different tissue was used 

to produce functions across time, root tissue was shown to be 

most affected by ozone, leaf weights next, and shoot weights 

least. These functions also show that roots were the most 

rapidly growing tissue in filtered air, followed by leaves, 

and then stems. In ozone, leaves were the most rapidly 

growing tissue, followed by stems then roots. 
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Figure 2. Functional net assimilation rates for alfalfa in 

ozone or filtered air during 1984-85 (a) and 1983-84 (b). 

Cultivars are indicated by abbreviations Sar (Saranac AR) or 

Irq (Iroquois). 
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Table 18. Net assimilation rates, g/cma/day x 10”**, for Saranac 

AR alfalfa grown in ozone or carbon-fi1tered air, 1983-84. NAR is 

calculated for the 7 days prior to the week listed. 

Week 

Net Assimilation Rate 

Filtered Ozone */♦ Reduction 

4 5.74 2.32 60’/. 

5 7.47 1.96 74*/. 

6 6.27 5.87 6*/. 

Table 19. Net assimilation rates, g/cms/day x 10”**, for Saranac 

AR and Iroquois alfalfa grown in ozone or carbon-fi1 tered air, 

1984-85. NAR is calculated for the 7 days prior to the week list¬ 

ed . 

Week 

Net Assimilation Rate 

Filtered Ozone */. Reduction 

4 3.77 2.61 31’/. 

6 4.09 2.72 33’/. 

8 4.43 2.85 35’/. 
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Table 20. Tissue dry weights of alfalfa grown in ozone (03) or 

carbon-fi1 tered air (CF) . Data are mean weights of five plants 

at each date. Pairs of 03-treated vs CF plants of each organ 

followed by asterisks are different as determined by paired t- 

tests at the .05 (*) or .01 (**) level. 

Root Dry Weiqht Leaf Dry Weiqht 

Week CF 03 % CF Os 

3 . 38* .23* -39*/. .52 .50 -4% 

4 . 62* .31* -50% .98* . 66* -33% 

5 1.00* .62* -38% 2.12 1.30 -39% 

6 2.31** 1.35** -42% 3.05* 1.98* -35% 

Table 21. Tissue dry weights of alfalfa grown in ozone (03> or 

carbon-fi1tered air (CF). Data are mean weights of five plants 

per cultivar (SAR = Saranac AR; IRQ = Iroquois) at each date. 

Pairs of 03-treated vs CF plants of each organ followed by aster¬ 

isks are different as determined by paired t-tests at the .05 (*) 

or .01 (**) 1eve1. 

Cv 

Root Dry Weiqht Leaf Dry Weiqht Stem Dry Weiqht 

CF 03 % CF 03 % CF 0* % 

SAR .33* .20* -39% .33 .24 -27% .28 .21 -25% 

IRQ .28 .18 -36% .23 . 18 -22% .23 .20 -1 3% 

Avg .31** .19** -39% .28 .21 -25% .26 .21 -19% 

SAR 1.18**.59** -50% .80 .53 -34% .70 .59 -16% 

IRQ .86* .55* -36% .71 .46 -35% .52 .43 -17% 

Avg 1.02**.57** -43% . 76* . 50* -34% .61 .51 -16% 

SAR 2.35**.75** -68% 1.52** . 77** -49% 1.35** . 73** -46% 

IRQ 1.54**.72** -53% 1.37** . 73** -47% 1 .03* . 63* -39% 

Avg 1.95**.73** -63% 1.45** .75** -48% 1.19** .68** -43% 

8 
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Figure 3. Functional representation of partitioned dry weights 

from different tissue of alfalfa grown in ozone or filtered air 

as a function of date, 1984-85. 
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Table 22. Regression equations for the natural logarithm of dry 

weights of different tissues as a function of date. Data are 

presented graphically as non-transformed weights in Figure 3. 

Data are from 1984-85, for each cultivar (Cv) in either ozone 

(03) or carbon filtered air (CF). 

Cv Tissue Trt Equation re 

SAR Root CF W (r ) 
- 

.059(lnx) 2.57 .75 

O3 W(r ) = . 042(lnx) — 2.68 .57 

Leaf CF W(r ) = .054(lnx) — 2.59 .86 

O3 W< r ) zz .042(lnx) — 2.53 .64 

Stem CF W(r ) = .053(1nx) — 2.69 .89 

O3 W(r ) = .040(lnx) — 2.53 . 63 

IRQ Root CF W (r) zz .055(lnx) — 2.64 .73 

O3 W ( r ) = .048(lnx) — 3.10 . 69 

Leaf CF W(r ) zz .061(lnx) — 2.99 .87 

□ 3 W(r ) zz .052(lnx) — 3.12 .73 

Stem CF W (r ) .053(lnx) — 2.69 .89 

O3 W(r ) = .040(lnx) 2.53 . 63 
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The magnitude of the decreases in leaf and root weight 

caused by ozone is shown in Figure 4. It is apparent that 

the roots are more affected, since confidence intervals over¬ 

lap less (i.e. there are more significant differences between 

ozonated plants and controls), and the magnitude of the de¬ 

creases is greater. 

This same trend was seen when dry weight ratios were 

analyzed (Table 23 and 24). In the first year, while the 

difference between ratios was not significant, root weight 

ratios (RWR = root wt/TDW) in ozone were either smaller than 

or the same as those in filtered air. Obviously, shoot 

weight ratios (ShWR = shoot wt/TDW) in ozone were either 

greater or the same than ratios in filtered air. In the 

second year, leaf weight ratios (LWR = leaf wt/TDW) were not 

significantly changed by ozone. Ozone significantly 

decreased RWR on all dates, and stem weight ratios (SWR = 

stem wt/TDW) on two dates. Graphic presentations make it 

obvious that the shoot:root ratio is larger in ozone than in 

filtered air (Figure 5a), indicating further that root growth 

is more affected by ozone than shoot growth. Furthermore, the 

functionally derived LWR in the second year shows that ozone 

does increase LWR (Figure 5b). While the ratios may not be 

significant, as indicated in Table 23, the trend is certainly 

there. This means that under ozone stress, relatively more 
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dry matter is partioned to leaves than to other tissue in the 

p1 ant. 

Table 23. Root weight ratios and shoot weight ratios of Saranac 

AR alfalfa grown in ozone (03) or carbon-fi1 tered (CF) air, 1983- 

84. Ratios are calculated as ratio = (organ dry wt)/(total plant 

dry wt). 

Week 

Root Weiqht Ratio Shoot Ueiqht Ratio 

CF □3 CF □3 

3 .42 .32 .58 .68 

4 .39 .32 .61 . 68 

5 .32 .32 .68 .68 

6 .43 .40 .57 .60 

Table 24. Root weight ratios and shoot weight ratios of Saranac 

AR and Iroquois alfalfa grown in ozone (03) or carbon—fi1 tered 

(CF) air, 1984-85. Ratios are calculated as ratio = (organ dry 

wt)/(total plant dry wt). Ratios followed by asterisks are sig¬ 

nificantly different at the .05 (*) or .01 (**) level for each 03 

- CF pair for a given organ, as determined by paired t-tests 

after transforming data to arcsins. 

Root Wt Ratio 

Wk CF 03 

Stem Ut Ratio Leaf Ut Ratio 

CF 03 CF O3 

4 .37* .31* .31 .34 .33 

6 . 43* . 36* . 26** .32** .32 

8 . 42** . 34** .26** . 32** .32 

.34 

.32 

.35 
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Figure 4. Leaf dry weight (a) and root dry weight (b) as a func 

tion of date for alfalfa plants grown in ozone or filtered air 

for both cultivars combined. Discontinuity indicates cutting 

after week 8. Bars indicate 95'/. confidence intervals. 
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Figure 5. Actual values shoot weight:root weight ratios as a 

function of time for two alfalfa cultivars grown in ozone or 

filtered air (a)» and functionally derived values of leaf 

weightrtotal weight ratios for the same plants (b). 
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□zone also tended to decrease leaf area per plant and the 

number of leaves per plant (Tables 25 and 26). The differ¬ 

ence increased with the length of the ozone exposure. This 

same trend is shown graphically in Figure 6. The average 

leaf area of an individual leaf did not change significantly 

on any dates in the first year, though they tended to in¬ 

crease under ozone stress in the second year. Uhile ozone 

increased the size of individual leaves, it tended to de¬ 

crease the density of the leaf. Specific leaf area (SLA) is 

a measure of leaf density. Figure 7 shows functionally de¬ 

rived SLA values for the second year for plants before and 

after cutting. There is more leaf area per gram of tissue in 

the ozonated plants. 
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Table 25. Leaf area per plant, number of leaves per plant and 

leaf area per leaf of Saranac AR alfalfa grown in ozone (03) or 

carbon filtered (CF) air, 1983-84. 03 - CF pairs followed by 

asterisks are significantly different for each measurement para¬ 

meter at the .05 <*) or .01 (**) level as determined by paired t- 

tests. 

Wk 

Leaf Area (cme /pi ant) No . of Leaves Leaf Area (cm e/leaf) 

CF O3 % CF O3 % CF O3 % 

3 142 1 19 -16% 40 40 0% 3.60 2.96 -18% 

4 213 178 -16% 74 56 -24% 2.80 3.31 + 18% 

5 386 300 -22% 120 98 -18% 3.27 3.08 -6% 

6 659** 394** -40% 190** 128** -33% 3.48 3.17 -9% 

Table 26. 

leaf area 

ozone (03 

f01 lowed 

surement 

by paired 

Leaf area per plant, number of leaves per plant and 

per leaf of Saranac AR and Iroquois alfalfa grown in 

) or carbon filtered (CF) air, 1984-85. 03 - CF pairs 

by asterisks are significantly different for each mea- 

parameter at the .05 (*) or .01 (**) level as determined 

t-tests. 

Leaf Area (cmB/plant) No . of Leaves Leaf Area (cme/leaf) 

Wk CF □3 % CF □ 3 % CF □3 % 

4 146 

6 357 

8 627** 

125 

273 

376** 

-14% 61 52 -15% 

-24% 130** 83** -36% 

-40% 254** 131** -48% 

2.47 

2.75* 

2.52 

2.56 +4% 

3.96* +19% 

2.90 +15% 



77 

LEAF 

AREA 

Figure 6 

combined 
indicate 

Leaf area as a 

Discontinuity 

95% confidence 

function of date for both cultivars 

indicates cutting after week 8. Bars 

intervals. 



70 

Figure 7. Functionally derived values for specific leaf area from 

alfalfa before cutt ing, 1984-85 data. 



79 

Growth After Cutting. The analysis of variance for TDW 

after cutting was very similar to that before cutting. Date, 

ozone, and cultivar all had a significant effect on TDW, but 

ozone and cultivar did not interact significantly (Table 27). 

Table 27. Analysis of variance for total dry weight (TDW) of two 

alfalfa cultivars (Cv) , Saranac AR and Iroquois, in ozone or 

carbon-fi1 tered air (Air) at weekly sampling dates (Date) follow¬ 

ing cutting at week 8. 

Source df 

Sum of 

Squares 

Mean 

Square F 

Sig . of 

F 

Date 2 406.26 203.13 112.60 .001 

Air 1 107.74 107.74 59.72 .001 

Cv 1 13.18 13.18 7.31 .009 

Date x Air 2 3.86 1.93 1.07 .351 

Date x Cv 2 3.92 1.96 1 .09 .346 

Air x Cv 1 . 1 1 . 1 1 .06 .810 

Date x Air x Cv 2 1.64 .82 .45 . 638 

Er r or 48 86.60 1.80 

Total 59 623.29 10.56 

The natural logarithms of TDW’s were also fit to regres¬ 

sion equations, with linear equations giving the best fit. 

Equations for ozone—treated and control plants were signifi¬ 

cantly different. Therefore the relative growth rates (Table 

28) were significantly different. However, after cutting, 

the RGR for ozone-treated plants was higher, and this was 

true for all RGR’s of individual organs (Table 29). The 

largest differential by far occurred in the roots and crowns, 
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where growth rates were 53% larger in the ozone-stressed 

plants. Other increases varied between 13% and 18%. Mean 

RGR for three periods around cutting were examined, the per¬ 

iods being the week before and the week after cutting (wk 8 

and 9), the following 2 weeks (wk 10 and 11), and the final 2 

weeks (wk 12 and 13). The mean RGR’s during this period 

showed that the majority of the increased root growth in 

ozonated plants came during the final 2 wks, when RGR was 

123% larger in the ozone treatment. Prior to this, RGR for 

roots were similar in both treatments. Shoot growth was 

highest relative to controls during wks 10 and 11. RGR for 

stems was greater in ozonated plants during the weeks 8 

through 11. RGR for leaves of ozonated plants peaked during 

weeks 10 - 11. (The negative RGR’s during weeks 8-9 occur 

because the plants were cut during this period and had not 

completely regrown.) 
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Table 28. Functional relative growth rates of different Saranac 

AR and Iroquois alfalfa tissue in ozone (03) and carbon-filtered 

air (CF) in 1984-85 after cutting. All pairs of growth rates for 

each tissue are significantly different at p = .01. 

Plant organ 

Relative Growth 

g/g/day 

CF 

Rate 

03 Percent Change 

Who 1e pi ant .034 .047 + 38% 

Leaves and stems .039 .044 +1 3% 

Roots .032 .049 + 53% 

Leaves .037 .043 + 16% 

Stems .040 .047 + 18% 
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Table 29. Mean relative growth rates for 3 periods following 

cutting? for Saranac AR and Iroquois alfalfa grown in ozone (03) 

and carbon-filtered air (CF) in 1984-85. Mean RGR is calculated 

for the 14 days prior to the week listed. 

Relative Growth Rate 

g/g/day 

Plant organ Wk CF O3 Change 

Whole plant 9 .011 .0005 -.0105 

1 1 .040 .052 + .012 

13 .031 .045 +.014 - 

Leaves 8* Stems 9 -.017 -.031 -.014 

1 1 .048 .070 + .022 

13 .032 .024 -.008 

Roots 9 .040 .047 + .007 

1 1 .034 .031 -.003 

13 .030 .067 + .037 

Leaves 9 -.029 -.040 -.011 

1 1 .049 .067 + .016 

13 .028 .022 -.006 

Stems 9 -.044 -.019 + .025 

1 1 .045 .072 + .027 

13 .035 .027 -.008 

The ozonated plants were also growing more efficiently 

when efficiency was measured in terms of leaf area (Table 

30). Figure 6 shows that after cutting, leaf areas in ozon¬ 

ated plants were apporaching the levels of the controls, and 

were not significantly different from the controls on the 

last two dates. In the period around cutting, ozonated 

plants accumulated more dry matter per unit leaf area than 

NAR’s were also higher during the last the control plants. 
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weeks. During the middle weeks, the control plants had a 

slightly larger NAR. If the NARs were calculated functional¬ 

ly, the ozonated plants are shown to have higher NARs, and 

the difference appeared to be increasing (Figure 8). 

While growth efficiency was greater in the ozonated plants 

after cutting, tissue dry weights of ozone-treated plants did 

not grow to be equal to the size of the control dry weights 

(Table 31; Figures 1 and 4). The difference between root 

weight in the two treatments decreased markedly over the 

period, from a 60% to 27%. Differences between leaf weights 

and between stem weights decreased less. Leaf area per plant 

and the number of leaves per plant were both still lower at 

the end of the experiment (Table 32; Figure 6). The leaf 

area difference decreased substantially during the experi¬ 

ment, from 42% to 20%. The difference between the number of 

leaves in each treatment decreased slightly. Specific leaf 

area was still greater in ozonated plants, though the dif¬ 

ference between the two treatments appeared to be decreasing 

(Figure 9). At the same time, the shootiroot ratio and the 

leaf weight ratio in ozone remained higher than in controls, 

but were declining generally (Figure 5). 
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Table 30. Net assimilation rates, g/cme/day x 10~"**, for Saranac 

AR and Iroquois alfalfa grown in ozone and carbon-fi1 tered air in 

1984-85 after cutting. Mean NAR is calculated for the 14 days 

prior to each week listed. 

Net Assimilation Rate 

Week Fi1tered □ zone Change 

9 -0.99 

11 4.50 

13 3.85 

0.03 +1.02 

4.36 -0.14 

4.42 +0.57 

Table 31. Tissue dry weights of alfalfa grown in ozone (03) or 

carbon—fi1tered air (CF) after cutting. Both cultivars, Saranac 

AR and Iroquois, are combined on each date. Pairs of 03—treated 

vs CF plants of each organ followed by asterisks are different as 

determined by paired t—tests at the .05 (*) or .01 ( ** ) level. 

Wk 

Root Drv Weiqht Leaf Drv Weiqht 

% 

Stem Drv Weiqht 

CF 03 % CF □3 
CF O3 */• 

9 2.26** 0.94** -58% 0.73** 0.41** -44% 0.76** 0.42** -45% 

1 1 3.62** 1.45** -60% 1.45** 1.05** -28% 1.46* 1.15* -21% 

13 5.82* 4.22* -27% 2.27** 1.49** -34% 2.57** 1.76** -32% 
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Figure 8. Functional net assimilation rates of alfalfa grown in 

ozone and filtered air after cutting for both cultivars combined. 
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Figure 9. Functional specific leaf area for alfalfa grown in 

ozone and filtered air after cutting for both cultivars combined. 
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Table 32. Leaf area per plant, number of leaves per p 

leaf area per leaf of Saranac AR and Iroquois alfalfa 

ozone (03) or carbon filtered (CF) air after cutting 

□3 - CF pairs followed by asterisks are significantly 

for each measurement parameter at the .05 <*) or .01 

as determined by paired t-tests. 

lant and 

grown in 

in 1984-85. 

different 

(**) 1eve1 

Wk 

Leaf Area (cma /p1 ant) No . of Leaves Leaf Area (cms /leaf) 

CF □3 % CF O3 % CF □3 % 

9 342** 198** -42% 1 14** 66** -42% 3.11 3.15 + 1% 

1 1 559* 456* -18% 172 144 -16% 3.51 3.28 -7% 

13 791* 633* -20% 284** 185** -35% 2.86** 3.49** +22% 

Discussion 

In this experiment, NAR reductions indicated that before 

cutting ozone-stressed alfalfa was not as efficient, in terms 

of leaf area, at accumulating dry matter as control plants. 

In the first year, ozone dramatically reduced NAR during the 

first two weeks, but NAR in the ozone treatment more than 

doubled over previous levels in the final week. This may 

have been caused by an adaptation to ozone stress by the 

alfalfa, a change in environmental conditions which reduced 

ozone effects, or an undetected failure in the ozone expo¬ 

sures. In the second year, dry matter accumulation per cm 

leaf area in ozonated plants never exceeded 3.01 X 10 

gm/day, while in control plants accumulation varied between 
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4.87 X 10~^ and 3.70 X lO-^ gm/day. These levels were lower 

than those in the previous year, suggesting that environmen¬ 

tal factors were different in the two years. While it is 

clear that ozone reduced photoassimilation efficiency from 6*/. 

to 74*/. in any given week, it is not clear what other factors 

were affecting NAR. 

□zone also reduced growth efficiency as measured by RGR. 

Plants accumulated dry matter more efficiently in the first 

year, but ozone reduced RGR in shoots by 17*/. in the whole 

plant. In the second year, the reduction was similar, 18*/.. 

Root growth efficiency was slightly more affected than shoot 

growth efficiency in both years. RGR affected in all in¬ 

dividual organs. 

When dry weight reductions were examined for each type of 

tissue, it became apparent that ozone affected roots more 

than shoots, and that it affected leaves more than stems. 

While dry weight of all tissue was reduced, root dry weights 

were significantly reduced on all dates in both years, with 

mean reductions ranging from 37*/. to 60*/.. Shoot weights were 

significantly reduced on two of four dates in the first year. 

If shoot weights were partitioned into stem and leaf weights, 

the majority of the weight loss occurred in the leaves. By 

the end of the experiment, this tendency had been reduced. 

Ratios of organ weight to whole plant weight also showed 

that ozone caused the plant to partition relatively more dry 
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matter to shoots and less to roots. In the second year, it 

appeared that the bulk of the relative increases in dry mat¬ 

ter partitioned to the shoots was going into stems, while 

relative leaf matter partitioned to leaves was neither in¬ 

creased or decreased. Carbon labelling studies done on bean 

showed that ozone stress reduced carbon fixation, and that 

the reduced level of photosynthate available to the plant is 

preferentially distributed to developing leaves rather than 

roots or older leaves. Growth analysis studies on other 

crops have also shown roots to be the least powerful sink in 

ozone-stressed plants (Bennett and Oshima 1976; Qshima et al. 

1978; Jensen 1985). 

In this study, stems may have been least affected by 

ozone stress because they are the first sink encountered by 

photosynthate after it is exported from the source leaf 

(Cralle and Heichel 1985). Photosynthate next moves to the 

crown and roots, and finally to unexpanded leaves and the 

shoot apex. If source leaves and shoots are using the bulk 

of the a reduced level of photosynthate, roots and new leaves 

would be most affected. Alfalfa roots were most affected, 

□zone also reduced the number of leaves on a plant and the 

leaf area per plant, and tended to increase the size of in¬ 

dividual leaves. This suggests that photosynthate was being 

retained in older, established leaves, and not being used to 

develop new leaves. 
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After cutting, the plants in this study also exhibited 

some acclimation to ozone stress. This may be similar to the 

acclimation others have observed in radish (Walmsley et al. 

1980). However, in the radish study, new leaves were pro¬ 

duced more rapidly under ozone stress. In this study, new 

leaves were not produced more rapidly, though the leaves 

which were produced tended to be significantly larger than 

control leaves. These leaves were also producing dry matter 

more efficiently than the control leaves. Photosynthesis in 

mature alfalfa is sink-limited (Bayersdorfer and Basham 

1985). Sink demand in the relatively smaller ozone-stressed 

plants would probably be greater than in the larger plants. 

The partitioning changes induced before cutting decreased 

after cutting. Roots of ozone-stressed plants accumulated 

dry matter much faster than in control plants. The week 

prior to cutting, the root dry wei ght in ozone-stressed 

plants was 63*/. less than in control plants. After cutting, 

roots continued to weigh 60*/. less until the last two weeks of 

growth, when the difference decreased to 27*/.. Leaf and stem 

growth was high immediately following cutting. The pattern 

suggested that the plant was producing more dry matter be¬ 

cause photosynthesis was not impaired in the regrowth after 

cutting. This increase resulted in increased partitioning to 

leaves and stems, and when these sinks were saturated, to 
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roots. It is important to note that plant size never did 

recover to control levels. 

The implications for such ozone-induced partitioning 

changes in alfalfa, which depends on starch reserves in the 

roots and crown for regrowth after cutting and for overwin¬ 

tering, are that the plant will be less able to recover after 

cutting and less able to tolerate cold stress. In the long¬ 

term, this could aggravate stand decline. However, the fact 

that after cutting, ozone-stressed alfalfa appeared to tol¬ 

erate ozone and grew faster than the control plants indicates 

that alfalfa may be able to tolerate ozone stress in the long 

term. Further long-term studies will be necessary to de¬ 

termine whether growth depressions in young alfalfa plants 

can be overcome after sufficient time. 



Chapter VI 

The Interaction Between Ozone and Fusarium Crown and Root Rot 

of Alfalfa 

Introduction 

The previous chapters have shown that ozone reduces growth 

and changes photoassimi1 ate partitioning in alfalfa. It was 

speculated that such changes might increase the susceptibil¬ 

ity of alfalfa to crown and root diseases. Fusarium crown 

and root rot of alfalfa was shown to be an important disease 

in Massachusetts. This disease is exacerbated by environmen¬ 

tal stresses. In this chapter? studies on the effect of 

ozone stress on Fusarium crown and root rot are described. 

Materials and Methods 

Preliminary field soil experiment. In a preliminary study 

in 1983, Saranac AR alfalfa seeds were inoculated with 

Rhizobium meliloti (Nitragin Corp.) and planted in 8 inch 

standard pots in two soil treatments. One treatment consis¬ 

ted of soil which had been dug from the top 8 inches of a 5 

yr. old alfalfa field in which plants had been diagnosed as 

having Fusarium crown and root rot. The second soil treatment 

consisted of the same soil steamed twice to 85 twice C for 30 

minutes on two consecutive days. Thirty-five seeds were 

92 
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planted in each pot. These were then placed in either ozone 

or filtered air greenhouses as described in previous chap¬ 

ters, such that each air treatment contained 5 pots of non- 

steamed soil and five pots of steamed soil. After 4 wks, one 

pot of each soiliair combination was harvested, roots were 

washed, and leaf areas, nodulation and fresh weights were 

recorded. The experiment was terminated prematurely, dry 

weights were not obtained, and it was used as a preliminary 

experiment. The results supported future findings, and are 

included here. 

Field soil experiment. In 1983-84, Saranac AR, Honeyoye, 

Vernal, and Iroquois alfalfa seed was inoculated with 

Rhizobium meliloti as above and planted in a soilless potting 

mix (Redi-Earth, a mixture of milled vermiculite and peat). 

After 4 weeks, the seedlings were individually transplanted 

into 6 inch standard pots containing one of the two soil 

treatments described above. 

After transplanting, half the pots from each soil treat¬ 

ment were placed in the ozone treatment. The other half were 

placed in the carbon—fi1 tered air treatment. Each soiliair 

treatment consisted of 25 plants of each cultivar. 

Evaluation of plants grown in field soil. At 5 week in¬ 

tervals, six typical plants of each cultivar were selected 

from each treatment. In order to visually estimate root decay 

root systems were washed, and roots were separated from tops. 
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rated for the amount of browning on a 5 point scale, where 1 

indicated no browning and 5 indicated complete browning. 

Small tissue samples containing lesions were removed, surface 

sterilized in a 20*/. solution of household bleach (5.25*/. 

sodium hypochlorite) in water, and placed on acidified po¬ 

tato-carrot agar (PCAL). The fungi which grew from the tissue 

were identified to genus. Immediately after removing the 

tissue samples, the root systems and shoots were dried in a 

drying oven at 75 C for 2 days, and then weighed. 

Selecting pathogenic Fusarium spp. Thirty alfalfa fields 

in central and western Massachusetts were sampled during the 

1983 growing season as described in chapter 3. In vitro 

screens were used to evaluate the pathogenicity of Fusariurn 

cultures because virulence of Fusariurn isolated from alfalfa 

is variable (Stutz and Leath 1983; Leath et al. 1971). From 

the pathogenicity screening, three virulent Fusariurn species 

were selected to use in further studies. These included iso¬ 

lates of F. avenaceum, F. oxysporum and F. so 1 ani . These 

isolates were stored in sterile peat: soil mix and on PCA 

slants for future use. 

Fusarium inoculations. Saranac AR seeds were inoculated 

with Rhizobiurn and grown for 4 weeks in soilless potting mix. 

Seedlings were then transplanted into 5 inch pots containing 

steamed soil mix (1 part peat: 1 part coarse sand: 1 part 

screened loam), which had been inoculated with one of the 
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three selected Fusarium spp. 

The Fusarium inoculum was prepared by autoclaving approx¬ 

imately 50 mis. of oat grains plus an equal volume of dis¬ 

tilled water in a cotton-plugged 250 ml. flask for 20 min. on 

2 consecutive days. The oats were then inoculated with one of 

the Fusarium isolates. After approximately 4 wks. the 

Fusarium had ramified completely through the oats. The inoc¬ 

ulum was ground in a Waring blender and the total amount for 

each species was homogenized and stored in sterile Nalgene 

containers. Concentrations of each Fusarium spp. were deter¬ 

mined by measuring the number of colony forming units per 

gram of inoculum. Approximately 4 X 10ra colony forming units 

of each species were added to each liter of soil mix. 

Fifty-four uniform seedlings were selected and trans¬ 

planted in each Fusarium treatment, plus a sterile oat con¬ 

trol. Eighteen seedlings were used in a non-amended soil mix 

control. Half the pots in each treatment were placed in the 

ozone-fumigated greenhouse described above, and the other 

half were placed in the carbon filtered air treatment. 

Evaluation of plants inoculated with Fusarium. Plants 

were grown in the Fusarium-infested soil for 4 weeks, and 

were then examined for injury and growth differences. Plants 

were removed from their pots and the roots were washed. 

Browning was rated and isolations were made from root seg¬ 

ments and dry weights of shoots and roots obtained as des 
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merits and dry weights of shoots and roots obtained as des¬ 

cribed for the previous studies. 

ResuIts 

Preliminary experiment. Analyses of variance showed that 

both ozone and nonsteamed soil had a significant effect on 

plant fresh weightand root fresh weight. Ozone had a sig¬ 

nificant effect on shoot fresh weight, but soil did not. 

There were no significant interactions between soil and air. 

Duncan's multiple range test at the .05 level was used to 

examine the plant fresh weight, the shoot fresh weightand the 

root fresh weight (Table 33). Plants grown in ozone and non¬ 

steamed soil weighed significantly less than plants in other 

treatments. When the shoots and roots were examined sep¬ 

arately (Table 34), ozone plus non-steamed soil decreased 

shoot weight significantly. Ozone plus non-steamed soil also 

decreased root weights more than other treatments, but at the 

same time ozone plus steamed soil and non-steamed soil plus 

filtered air decreased root weight significantly from the 

controls. Percent weight reductions for the whole plant and 

for roots in ozone plus non-steamed soil were approximately 

additively related to weight reductions for ozone or non- 

steamed soil separately. Shoot weight reductions were con¬ 

siderably more than additive. 

Field soil experiment. Dzone and non-steamed soil each 
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reduced shoot and root dry weights significantly. Cultivar 

and date also had a significant effect on the dry weights. 

Table 34 shows that the combination of steamed soil and fil¬ 

tered air (the control treatment) produced the largest 

plants? followed by plants in non-steamed soil and filtered 

air? then plants in steamed soil and ozone? while the smal¬ 

lest plants were in non-steamed soil and ozone. 
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Table 33. Foliar and root fresh weights (grams) from plants 

grown in steamed and non-steamed alfalfa field soil, and in 

ozone-treated (03) or carbon-filtered (CF) air. Means followed 

different letters are significantly different from other means in 

the same row by Duncan's multiple range test at p = .05. 

□ zone Carbon Filtered 

Tissue NS SS NS SS 

Whole plant .232 b .471 a . 465 a .601 a 

Shoot . 136 b .224 a .268 a .251 a 

Root .096 c .247 b . 197 b . 350 a 

Table 34. Fresh weight reduction as a percent of the fresh 

weights (grams) of plants grown in steamed soil in carbon-fi1- 

tered air. 

Non-Steamed 

Tissue Soil □zone Combination 

Whole plant 

Shoot 

Root 

-23*/. 

+7% 

-44*/. 

-22*/. 
-11*/. 
-29*/. 

-61% 

-46% 

-73% 
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Dry weights of roots and shoots from the 4 alfalfa cul- 

tivars are presented in Table 35. In order to simplify the 

data, dry weights from the 4 cultivars were pooled (the 

analysis of variance had shown that there were no significant 

interactions between cultivar and other factors). Duncan’s 

multiple range test was used to find significant differences 

between treatments on each date. At all dates, shoot and root 

weights were significantly smaller in the combination of non- 

steamed soil and ozone than in the other treatments. Ozone 

alone generally reduced shoot and root weights significantly, 

but not as much as the combination. Non-steamed soil alone 

significantly reduced shoot weights on one date, and signifi¬ 

cantly reduced root weight on a different date. The non- 

steamed soil in filtered air actually stimulated root growth 

over that of the steamed soil on the first sampling. On that 

date, ozone alone had no effect on plants in steamed soil, 

but reduced growth tremendously in the non-steamed soil. 

These growth reductions are presented as percentages in 

Table 36. When the percent reduction in ozone alone and the 

percent reduction in non—steamed soil alone were summed, they 

did not generally exceed the percent reduction in the combi¬ 

nation treatment. The one exception occurred in root weights 

from week 5. Such reductions in the combination treatments 

indicated that the growth inhibition caused by non-steamed 

soil and ozone was at least additive and possibly synergis 
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Table 35. Foliar and root dry weights (grams) from plants grown 

in steamed and non-steamed alfalfa field soil, and in ozone- 

treated or carbon-fi1tered air. Means followed different letters 

are significantly different from other means in the same row by 

Duncan’s multiple range test at p = .05. 

SHOOTS 

Week : Cultivar 

Ozone Carbon Fi1tered 

NS SS NS SS 

5 Vernal .52 .78 .91 .87 

Saranac AR .62 .92 .85 1.25 

Honeyoye .60 .91 1.19 1 . 17 

I roquois .57 .81 1 .00 1 . 17 

Mean .58 c .86 b .99 31 , b 1.12 a 

10 Verna1 1.79 2.19 2.47 2.93 

Saranac AR 1.99 2.51 2.57 2.65 

Honeyoye 1.79 2.43 2.27 2.80 

I roquois 1 .35 2.10 1 .86 2.56 

Mean 1.73 c 2.30 b 2.29 b 2.73 a 

15 Verna 1 2.14 2.96 4.33 4.73 

Saranac AR 2.65 4.01 4.66 5.61 

Honeyoye 2.06 2.97 4.58 4.93 

I roquois 2.19 2.87 4.68 5.10 

Mean 2.26 c 3.20 b 4.56 a 5.10 a 

All Mean 1.51 c 2.11 b 2.61 a 2.98 a 

ROOTS 

5 Verna 1 .25 .27 .58 .35 

Saranac AR .25 .58 .68 .43 

Honeyoye .33 .52 .82 .48 

I roquois .33 .33 .82 .45 

Mean .29 c .43 b .73 a .43 b 

10 Verna1 1.28 1.25 1 .75 2.12 

Saranac AR 1 . 15 2.25 2.72 2.62 

Honeyoye .88 1.21 1.82 1.92 

Iroquois .95 1 .32 1 .87 2.35 

Mean 1.07 c 1 .51 b 2.24 a 2.25 a 

15 Verna 1 1.67 1.95 4.17 4.72 

Saranac AR 2.07 2.92 4.15 6.13 

Honeyoye 1 .40 2.75 5.55 5.45 

I roquois 1 .77 2.58 4.38 6.13 

Mean 1 .73 d 2.55 c 4.56 b 5.61 a 

A1 1 Mean 1.03 b 1.50 b 2.51 a 2.76 a 
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tic. However, according to the analyses of variance for shoot 

or root weight, interactions between soil and ozone were not 

significant. 

Table 36. Dry weight reduction as a percent of the dry weights 

(grams) of plants grown in steamed soil in carbon-filtered air. 

Cultivars were pooled. 

Non-Steamed 

Week Tissue Soil □ zone Combination 

5 Shoot 12*/. 23*/. 48*/. 

Root +70*/. 0*/. 33*/. 

10 Shoot 16*/. 16*/. 37*/. 

Root 0*/. 33*/. 52*/. 

15 Shoot 10*/. 37*/. 56*/. 

Root 19*/. 54*/. 69*/. 

Wh ich tissue, root or shoot, displayed the greatest 

relative weight lost depended on both date and treatment 

(date X soil and date X air interactions were > significant in 

the ana 1yses of variance). In week 5, shoot weight reduc- 

tions were larger than root weight reductions. Root weight 

reductions became greater as time progressed, while shoot 

weight reductions varied. By week 15, root weight reductions 

were greater in all treatments. 

Several potentially pathogenic fungi were isolated from 

the roots and crowns of the plants. These included F_;_ 

oxysporum, F. avenaceum , F. so 1 ani , Phoma—medicaqinis, 
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Cy1indrocarpon sp. , and Rhizoctonia sp. Of these the 

Fusarium species were the most frequently isolated, as shown 

in Table 37. As would be expected, the fungi were more fre¬ 

quently isolated from plants in the non-steamed soil. Ozone 

did not appear to increase the frequency with which Fusarium 

was isolated. Similarly, ozone did not increase the visual 

decay rating (Table 38). The visual decay ratings were great¬ 

er in the non-steamed soil than in steamed soil. 

Table 37. Percentage of samples from which Fusariurn spp. were 

isolated from plants grown in steamed or non-steamed alfalfa 

field soil and treated with ozone. Data are means from all culti- 

vars tested. 

Ozone Carbon F i 1 tered 

Week NS SS NS SS 

5 

10 

49% 

63% 

19% 

29% 

56% 

60% 

0% 

23% 

Table 38 

steamed 

fi1tered 

. Visual rating of root browning of p 

or non-steamed alfalfa field soil, and 

air. Values from different cultivars 

lants grown in 

grown in ozone or 

were pooled. 

Ozone F i 1tered 

Week NS SS NS SS 

5 3.38 3.17 3.13 2.33 

10 3.46 2.44 3.50 2.75 

15 4.01 2.71 3.92 2.88 

Fusarium inoculation experiment. Both the Fusariurn inoc- 
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Fusarium inoculation experiment- Both the Fusarium inoc¬ 

ulations and the ozone treatment had significant effects on 

root dry weights at p>.001, as shown in the analysis of vari¬ 

ance (Table 39). The analyses of variance also show that 

soil treatment and ozone had significant effects on stem dry 

weight. In addition, there was a no significant interaction 

between the soil treatment and air treatment for either shoot 

or root weights. 

Table 39. Analyses of variance for root and shoot dry weights 

from plants grown in Fusarium-amended soil and ozone. 

Source df Sums of squares 

ROOTS 

Mean squares F Pr ob . 

Soil tr t. 4 27.68 6.92 7.66 . 000 

Air tr t . 1 18.53 18.53 20.51 .000 

Soil X 03 4 4.37 1 .09 1.21 .308 

Residua1 222 200.66 0.90 

Soi1 tr t . 4 10.84 

SHOOTS 

2.71 7.92 .000 

Air tr t . 1 1.77 1.77 5.18 .024 

Soil X 03 4 0.72 0.18 0.53 .715 

Residua1 222 75.96 0.35 

Mean shoot and root dry weights are presented in Table 40. 

Fusarium inoculations always decreased the shoot and root dry 

weights compared to non—inocu1 ated treatments. Similarly, 

the ozone treatments always weighed less than the carbon 

filtered treatment growing in equivalent soil. 

When the treatments were pooled across air treatments and 
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analyzed using Duncan's multiple range test at the .05 level, 

the root and stem dry weights of plants inoculated with 

Fusariurn were significantly less than those from plants 

grown in uninfested soil. There was a wider range of differ¬ 

ences between root dry weights than between the shoot 

weights. F. solani had the greatest effect, F. oxysporum was 

intermediate, and F. avenaceum had the smallest effect. When 

treatments were pooled across soil treatments, ozone signifi¬ 

cantly reduced both shoot and root dry weights. 

Table 40. Mean shoot and root dry weights (grams) from plants 

grown in Fusarium-amended soil and 03. Means followed by differ¬ 

ent letters are different from other means for the same tissue in 

the same row (soil treatment) or column (air treatment) at p=.05 

or less by Duncan's multiple range test. 

Root Shoot 

Soil Mean of Mean of 

Treatment CF 0 3 03 8* CF CF O3 O3 & CF 

F. avenaceum 2.74 1.92 2.33 b , c 2.26 1 .96 2.12 b 

F. oxysporum 2.34 1.67 2.05 c , d 2.16 2.01 2.08 b 

F. sol ani 1.94 1.75 1.85 d 2.37 2.25 2.31 b 

Fusarium mean 2.37 1.78 2.08 

O
l • 

nj m
 

• 0
 

<1
 

2.17 

Steri1e oats 2.97 2.07 2.52 b 2.41 2.04 2.23 b 

Steamed soil 3.31 2.87 3.09 a 2.93 2.91 2.92 a 

Control mean 3.14 2.47 2.81 2.67 2.48 m
 

• U
l 

CD
 

Mean of all 

treatments 2.68 a 2.05 b 2.37 2.43 a 2.24 b 2.33 
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Table 41 presents weight reductions as percentages of the 

steamed soi1:carbon-fi1 tered air control. When the weight 

reduction caused by ozone alone and the weight reductions 

caused by Fusariurn alone were summed, the sums were generally 

less than the reductions caused by the combined treatments, 

suggesting a synergistic action between ozone and Fusariurn. 

However, there was not a significant interaction between 

Fusarium and ozone, and combined effects were therefore in¬ 

dependent and addative. 

Table 41. Dry weight reductions as a percent of the dry weights 

of plants grown in steamed soil and filtered air. 

Soil Treatment Tissue Fusariurn □ zone Combination 

F . avenaceum Shoot 23% 1% 33% 

Root 17% 13% 42% 

F. oxysporum Shoot 26% 1% 31% 

Root 27% 13% 50% 

F. so 1 ani Shoot 19% 1% 23% 

Root 41% 13% 46% 

Steri1e Oats Shoot 18% 1% 30% 

Root 10% 13% 37% 
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Table 42. Percent of Fusarium isolated from the roots grown in 

the amended soil experiment. Percents are calculated as (no. of 

isolations producing Fusarium) /(no. of isolations made in the 

treatment). 

Air 

Stearned 

Soil 

Sterile 

Oats 

Fusarium 

avenaceum 

Fusarium 

0 xysporum 

Fusarium 

so 1 ani 

□3 13% 6% 94% 9% 3% 

CF 44% 13% 88% 13% 16% 

Sterile oat treatments reduced both shoot and root dry 

weights. While the reductions were always less than those 

caused by the Fusarium treatments, they were still signifi- 

cant . 

A variety of fungi were isolated from roots, including 

Fusarium. No other fungal genus was isolated as frequently 

as Fusarium, except for Trichoderma in the sterile oat treat¬ 

ment. However, there was no clear relationship between the 

rate at which Fusarium was isolated from the different treat¬ 

ments (Table 41), dry weights from the treatments (Table 38) 

or the inoculum originally applied. There was a trend to 

isolate Fusarium more frequently from the filtered air treat¬ 

ments compared with ozone treatments. 
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In contrast? the visual ratings of root browning were 

increased by the ozone (Table 42). However, the highest 

browning was observed in the steamed soil, and therefore may 

not relate to Fusariurn-induced decay. 

Table 43. Visual rating of root browning of plants grown in 

amended soil, and in either ozone or filtered air. 

Soil Treatment Fi1tered □ zone 

Stearned soi1 2.44 3.00 

Steri1e oats 2.30 2.78 

F. avenaceum 2.59 2.89 

F. oxvsporum 2.45 2.70 

F. sol ani 2.26 2.45 

Piscussion 

□zone concentrations which commonly occur during the grow¬ 

ing season in the northeastern United States have been shown 

to reduce plant growth and photosynthesis in several species 

(Reich and Amundson 1985). We recently reviewed the effects 

of ozone on photoassimi1 ate partitioning in plants, including 

many examples of ozone—induced reductions in partitioning to 

roots relative to shoots (Chapter 1). Reduced growth and 

altered partitioning patterns caused by ozone have been ob¬ 

served in perennial forages (Flagler and Younger 1982; 



Letchworth and Blum 1977; Tingey and Reinert 1975). Such 

changes occurring over significant parts of the growing 

season would be expected to reduce storage carbohydrates in 

the crown and root? and to reduce the ability of the root 

system to resist pathogens. Wounding increases Fusariurn 

infection in alfalfa and clover, but the explanation appears 

to be one of an altered host:pathogen interaction, rather 

than a physical breach of host defenses (22). It is possible 

that any stress on the root system may cause a similar 

change, and result in increased Fusarium infection. 

In these studies, isolations from the roots indicated that 

Fusariurn was the fungus of greatest importance in terms of 

the growth reductions. While the effect of the other poten¬ 

tial pathogens cannot be disregarded, Fusariurn was the most 

frequently isolated fungus. 

Other factors were present and had some effect on both 

studies. In the field soil study on the first sampling date, 

either steamed soil reduced root growth or non—steamed soil 

stimulated root growth, perhaps because steaming introduced 

toxic agents or destroyed growth—stimulating agents. This 

phenomenon decreased with time. In the Fusarium amendment 

study, the sterile oat amendment reduced growth relative to 

that in sterile soil. Perhaps the oats served as a substrate 

for organisms which inhibited growth, or perhaps they changed 

the physical properties of the soil. It was apparent that 

some other method of inoculating the plants with Fusar i urn 
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might introduce fewer artifacts. 

The alfalfa field soil study showed that ozone concentra¬ 

tions analogous to ambient concentrations during the summer 

might be expected to increase the incidence of Fusarium crown 

and root rot. Ozone had more of an effect on root growth 

than did non-steamed soil. Ozone also had more effect on 

root growth than on shoot growth, as might be expected. When 

the individual treatment effects were added and compared to 

the combined treatment effect, the combined effect was larger 

in five of six cases. These results indicate that Fusariurn 

and ozone act additively and independently to reduce plant 

growth, at least up to the point where both effects are 

1arge. 

Similarly, in the Fusariurn amendment study the combination 

of Fusariurn and ozone suppressed growth more than either 

factor alone. The stresses apparently acted independently and 

addatively on both roots and shoots when exposed to F. sol ani 

and ozone. There also was no interaction between stresses on 

shoot growth with the other two Fusariurn species, but the 

root effects were actually less than the added individual 

effects. Again, analysis of variance showed that there were 

no significant interactions between ozone and Fusarium. 

Even if the factors did not interact, growth reductions 

were often greater than would be expected from factors which 

inhibited each other. After 4 weeks, growth suppression in 

the soil amendment study (40% - 50% for roots; 20% - 25/. for 
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shoots) were substantial, and were roughly equivalent to 

growth suppression in the field soil study after 10 weeks. 

At 15 weeks, growth suppression in the latter study reached 

nearly 70*/. for roots and 56*/. for shoots. Apparently alfalfa 

exposed to both Fusarium and ozone stresses is more affected 

than alfalfa exposed to either stress alone. Shoot growth 

reductions would have an important impact on short-term 

alfalfa production. Root growth reductions, which are even 

greater, would have long-term impact, since the alfalfa crown 

and roots store carbohydrates which are important energy 

sources for overwintering plants and for regrowth after cut¬ 

ting. Reduced root growth could contribute to more rapid 

stand decline. These studies indicate that ozone may be 

aggravating stand decline originally incited by Fusarium 

crown and root rot. 
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