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ABSTRACT 

STUDIES ON BACTERIAL LEAF SCORCH 

OF AMERICAN ELM AND OTHER TREE SPECIES 

(September, 1984) 

Stanley J. Kostka, Jr., B.A., College of the Holy Cross 

M.S., University of Connecticut, Ph.D., University of Massachusetts 

Directed by: Professor Terry A. Tattar 

Fastidious, xylem-inhabiting bacteria (FXIB) were consistently iso¬ 

lated from leaf scorch-affected elms (Ulmus americana, U. pumila 

and U. glabra) and red mulberries (Morus rubra) in the Washing¬ 

ton, DC, area. Elm leaf scorch (ELS) was distributed north to 

Baltimore, MD, and Lewes, DE, while mulberry leaf scorch ranged north to 

New Rochelle, NY. Neither disease was observed in Massachustts or Conn¬ 

ecticut. Both diseases were at epiphytotic levels in the Washington, 

DC, area. Bacteria were cultured using a wood chip technique and mod¬ 

ified PW broth medium and were gram-negative, catalase positive, oxidase 

negative, and ultrastructurally similar to the Pierce's disease (PD) bac¬ 

terium. The ELS-bacterium was cultured from stems of affected trees 

throughout the year and was systeraically distributed in the xylem of 

above and below ground portions of a severely affected tree. Both the 

ELS-bacterium and the MLS-bacterium were serologically related to the 

PD-bacterium and the ELS-bacterium, but not to any other genera of phyto- 

pathogenic bacteria tested. The MLS-bacterium was less fastidious than 

the ELS-bacterium, as demonstrated by its culture on nutrient agar. 
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Mulberry seedlings inoculated with the MLS-bacterium developed leaf 

scorch symptoms after six months, and the MLS-bacterium was recovered 

from all symptomatic seedlings. Koch's postulates were not fulfilled 

with the ELS-bacterium. However, the bacterium was graft-transmissible 

from ELS-affected to symptomless trees, was recovered from symptomatic 

trees, and ELS-symptoms were suppressed in symptomatic trees injected 

with oxytetracycline. 

ELS caused a significant reduction (P=0.05) of terminal elongation, 

but had no affect on leaf size. Stem hydraulic conductivity and stem 

water potential in ELS-affected elms were significantly different 

(P=0.05) from stems of symptomless elms after the onset of symptoms. No 

significant difference in hydraulic conductivity occurred prior to symp¬ 

tom development. ELS-affected trees had fewer functional stem vessels 

(P=0.05) due to occlusion than did symptomless trees. November mean 

stem starch content was significantly lower (P=0.05) in ELS-affected 

trees than in symptomless trees. 
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CHAPTER I 

INTRODUCTION 

American elm (Ulmus americana L.) is extensively planted as a 

street and landscape tree in the metropolitan Washington, DC, area. 

While American elm populations have been reduced drastically in the Unit 

ed States and Canada by Dutch elm disease (DED)(Sinclair and Campana, 

1978), a large population has been maintained in Washington, DC by the 

National Park Service and the District of Columbia, Department of Trans¬ 

portation. Because these plantings are valuable in the design of parks, 

memorials, and city streets, extensive sanitation and therapeutic treat¬ 

ments have been applied for the control of the DED pathogen [Cerato- 

cystis ulmi (Buisman) C. Moreau] and its insect vector, the European 

elm bark beetle (Scolytus multistriatus Marsham). 

American elm is frequently affected by a potentially serious leaf 

scorch condition characterized by a marginal necrosis bordered by a chlo 

rotic halo. Subsequent upward curling is common. The disorder is evi¬ 

dent in the Washington, DC area by mid-summer; symptoms become more 

noticeable as the summer progresses. Symptoms may appear on a single 

branch or throughout a tree. Limbs with scorched leaves one year pro¬ 

duce apparently healthy leaves the following spring which scorch by mid- 

July (Hearon £t al., 1980). Symptoms first appear on older leaves 

at the base of the stem then progress distally to younger leaves through 

the summer. Necrotic leaves remain attached or prematurely abscise with 

tufts of green, symptomless leaves at branch apices. 

1 
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After the first reported observation of elm leaf scorch in the late 

1940's severity and incidence increased over the next decade (Wester and 

Jyllka, 1963). Of additional concern was the discovery that leaf scorch- 

affected elms appeared to be more susceptible to beetle breeding attack 

than non-affected trees (Wester and Jyllka, 1963). In a five year 

study, 14.8% of scorch-affected elms were infected with C. ulmi ver¬ 

sus 1.2% of the remainder of the elm population. Leaf scorch- 

affected trees were more heavily infested with S, multistriatus than 

non-scorched trees. Wester (unpublished data) in a 1958 survey of seven 

southern states (West Virginia, Virginia, Tennessee, Georgia, Alabama, 

South Carolina, and North Carolina) found elm leaf scorch widely distrib¬ 

uted. Scorch was prominent in American elm but not observed in other 

elm species. 

Similar leaf scorch symptoms occur in sycamore (Wester, 1968; 

Hearon e_t £l^. , 1980, Sherald e_t a_l. , 1983) and red oaks (Hearon 

e_t al., 1980; Chang and Walker, 1983). In sycamore, marginal, olive 

drab lesions appear along the leaf margin in mid-summer. Lesions expand 

into large, undulating, necrotic zones often covering much of the leaf 

surface. The chlorotic halo is less conspicuous than in elm. Symptoms 

first appear in older leaves, then progress to younger leaves. Necrotic 

tissues become brittle and readily crumble when leaves are folded. By 

late summer, the entire canopy of severely affected trees is brown and 

leaf abscission has begun. Branch dieback is followed by extensive deve¬ 

lopment of water sprouts, stag-horning, and tree decline and in some 

cases tree death. Leaf scorch symptoms in sycamore have been attributed 

to early fall coloration or a late summer form of anthracnose (Cooper 
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e^ a_l. , 1977). Symptoms of sycamore leaf scorch (SLS) are more 

severe in Texas and Louisana than in the Washington, DC area (Sherald 

et al., 1983). 

Foliar symptoms in red oaks consist of an undulating marginal necro¬ 

sis with a chlorotic halo (Hearon et_ £l_., 1980). A dark brown band 

can be found between the chlorotic halo and necrotic tissues (Hearon 

et al., 1980; Chang and Walker, 1983). Premature defoliation, 

branch dieback, and development of water sprouts commonly occurs in 

trees with leaf scorch. Symptoms progress through the canopy and tree 

death may occur after several seasons. Foliar symptoms are similar to 

the early symptoms of oak wilt. However, oak leaf scorch (OLS) symptoms 

develop later in the season (mid-summer) than oak wilt symptoms 

(spring), there is no vascular dis-coloration, and the oak wilt fungus 

is absent from scorch-affected trees (S. J. Kostka and J. L. Sherald, 

unpublished). 

Because of the significance of trees in the urban environment, the 

etiology and control of any disease or disorder that may reduce their vi¬ 

tality or longevity must be understood. Bacterial leaf scorch is such a 

debilitating factor. Affected trees are less vigorous, may have increas¬ 

ed branch dieback and are more susceptible to attack by other pathogens 

(Wester and Jyllka, 1959 ; Hearon et^ a_l., 1980; Sherald et al., 

1983). A potential decrease in the aesthetic nature of the urban commun¬ 

ity or forest ecosystem and the debilitation of existing trees necessita¬ 

tes an understanding of bacterial leaf scorch. The objectives of this 

research are to develop a better understanding of the etiology, epidemio¬ 

logy, and abnormal physiology of bacterial leaf scorch diseases. 



CHAPTER II 

LITERATURE REVIEW 

Leaf Scorch Inducing Agents 

The wide range of agents that can induce leaf scorch symptoms can 

be grouped into two categories: abiotic and biotic. Abiotic agents may 

be water stress, soil compaction, limited rooting space, mineral 

extremes, or toxic materials applied to foliage. Biotic leaf scorch- 

inducing agents are insects and pathogenic microorganisms. These agents 

may act singularly or in combination to cause the decline and death of 

leaf scorch-affected trees (Wester and Jyllka, 1959; Parker, 1965; 

Halliwell, 1966; Stipes and Davis, 1972; Filer et_ £l_., 1975; Lewis 

and Van Arsdel, 1975; Lewis, 1976; Lewis and Van Arsdel, 1978; Tattar, 

1978). 

Water Stress 

Water stress can result from an inadequate supply of water to the 

roots (soil drought), interference in water transport, or excessive loss 

of water from the leaves (atmospheric drought). These aspects of 

drought are not entirely separable since leaf scorch may result from 

their combined action (Henckel, 1964; Linzon jst^ a_l., 1972; Tattar, 

1978). 

Soil drought occurs when the available water in the soil is signif¬ 

icantly below the field capacity and approaches the permanent wilting 

percentage (Henckel, 1964). Soil dryness does not necessarily refer to 

4 
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an absolute or extreme dryness of the soil but to the condition of dry¬ 

ness in relation to its normal condition. Trees growing under normally 

wet conditions will suffer more in a drought (available water decreases 

for one to several years) than trees growing normally under conditions 

where water is more limited. Trees growing under wet or high moisture 

conditions, for example, near bodies of water or in regions with high 

water tables usually have a shallower, more reduced root system than 

trees growing under conditions substantially below field capacity which 

develop a wider, deeper reaching root system. For this reason, a 

reduction in soil water can severely affect trees growing under normally 

ample water conditions. The reduction of available water and drop in 

the water table cause root injury and death. This decrease in the 

functional absorptive structures causes xylem embolism and induction of 

water stress (Hepting, 1971; Van Arsdel, 1972). 

Atmospheric drought commonly occurs on days with high temperatures 

and dry winds or on bright, windy days after and extended cloudy, rainy 

period (Henckel, 1964; Linzon et al., 1972; Tattar, 1978). Rapid 

transpiration of water from the leaves induces a water deficiency be¬ 

cause water is removed from the plant more rapidly than the roots can 

supply it. This rapid water loss often causes foliar cell damage and 

collapse; first at the leaf margin then progressively inward to the mid¬ 

rib (Henckel, 1964). Numerous examples of these interactions exist. 

Leaves of young beech (Fagus grandifolia Ehrh.) in southern Ontario 

scorched under conditions of bright sunshine and high winds following a 

wet, cloudy period (Linzon et al., 1972). American elm, dogwood 

(Cornus sp.) and chestnut oak (Quercus muehlenbergii Engelra.) 
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scorched and prematurely defoliated under drought conditions (Tattar, 

1978). Symptoms are similar in soil drought-affected trees. 

Adverse climatic conditions combined with certain planting 

practices enhance development of leaf scorch symptoms. Trees between 

roadways and sidewalks, in raised or subsurface planters, or in areas 

with heavy pedestrian or vehicular traffic, often have reduced amounts 

of available soil water, restricted root space, and limited root 

penetration and water movement due to decreased soil pore space and 

increased bulk density (compaction) (Patterson and Mader, 1982; Ruark 

ct al., 1982). The interaction of these factors often induce water 

stress in trees on such sites. 

Stipes and Davis (1972) suggested that the decline of shade trees 

in Northern Virginia may be attributed to the rapid urbanization of 

forest land with the concommitant creation of less than optimal cond¬ 

itions for tree growth and survival. Maples (Acer sp.) grown as 

street trees scorch severely under water stress conditions (Holmes _et 

al., 1966; Linzon £t jlI. , 1972; Walterscheidt, 1978). 

Mineral Excesses and Deficiencies 

Sodium chloride (NaCl) and calcium chloride (CaCl^) are applied 

to roadways to prevent ice accumulation. Subsequently, these salts are 

washed as run-off from the roadway into the adjacent soils. Maples plan¬ 

ted as street trees in the northern United States and Canada are partic¬ 

ularly affected by deicing salt runoff and accumulation in the soil 

(Parker, 1965; Tattar, 1978; Walterscheidt, 1978). Salt accumulation in 

the soil may inhibit water movement into the roots or may be absorbed 
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and accumulate in the plant, particularly in the foliage (Parker, 1965). 

Although the concentration of salts is highest in the leaves and is dec¬ 

reased at leaf-fall, the tree continues to accumulate salt in the trunk, 

branches, and twigs after annual winter deicing salt applications 

(Henckel, 1964; Parker, 1965). Once salt concentrations reach a thres¬ 

hold level, usually over a period of several years, the tree is killed. 

Similar foliar injury and even tree death can occur due to excessive 

salt accumulations that occur when trees are over fertilized (Van Arsdel 

and Bush, 1970; Van Arsdel, 1972). 

Mineral deficiencies can also produce leaf scorch symptoms (Kenaga, 

1974; Tattar, 1978). In pecan [Carya illinoensis (Wang) K. Koch] 

fruiting was correlated with leaf scorch and premature defoliation 

(Sparks, 1977) It was suggested that fruiting suppressed nitrogen, phos¬ 

phorus and zinc accumulation in the- leaves which resulted in a net loss 

of potassium. Sparks (1977) proposed that potassium deficiency was res¬ 

ponsible for the observed leaf scorch symptoms. 

In red and silver maples (A. rubrum L. and A. saccarinum 

L.) grown in alkaline soils, the lack of manganese induced chlorosis and 

scorch-like symptoms (Kielbaso and Ottman, 1976; Smith and Mitchell, 

1977). In citrus a zinc deficiency commonly produced a mottled chlor¬ 

osis of the leaves (Anderson and Calvert, 1970). As the season progress¬ 

ed, leaves became extensively necrotic (Cohen, 1968; Kenaga, 1974). 

Chiu and Bould (1977) observed a marginal leaf scorch in apple (Malus 

sp.) deficient in calcium. When magnesium also became limiting, leaf sc¬ 

orch was acute. 
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Insects 

Osburn £l_. (1966) reported the association of "scorch-like" 

symptoms with Eriophid mite feeding on pecan [Carya illinoensis 

(Wang) K. Koch], Leaf scorch symptoms produced by mite feeding differ 

from those caused by other agents. Mite-induced symptoms followed the 

mite feeding pattern while symptoms induced by other agents commonly 

originated at the leaf margin then moved inward. Mites began feeding 

near the midrib then advanced to the leaf margin, with scorch symptoms 

moving from the midrib to the margin as blotchy, necrotic patches. 

Pathogenic Microorganisms 

Microorganisms (fungi and bacteria) have been reported to cause 

leaf scorch either singularly or as members of a disease complex. 

Carter (1945), suggested that a single organism (Erwinia 

nimipressuralis = Enterobacter cloacae) caused wetwood of elm of 

which leaf scorch was an associated symptom. Carter (1945) first 

reported the disorder and suggested that Erwinia nimipressuralis 

Carter [Enterobacter cloacae (Jordan Horm and Edw.] was the causal 

agent. Affected species included U. americana, U. fulva Michx., 

U. procera Salisb., and JJ. pumila L. Wetwood was 

characterized by a persistent or intermittent flowing or oozing of 

fluids through cracks or injuries of the bark or wood. Affected xylem 

was water-soaked with brown bands or streaks of wetwood. Fluids exuding 

from the fissures appeared as a moistening of the bark or as a copious 

flow down the trunk. Cut branches exuded fluids and gaseous 

fermentation products. 
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Exuded fluids were under pressure and toxic to bark tissues, fol¬ 

iage, and turf (Carter, 1945). Callus formation around wounds was inhib¬ 

ited or retarded and the cambium at the base of the wound was killed. 

Young shoots directly below the fluxing site were observed to wilt. 

Carter (1945) described the leaf damage accompanying wetwood as a leaf 

browning with interveinal and marginal leaf necrosis. Symptoms in green¬ 

house grown seedlings inoculated with exuded fluids were similar to "mid¬ 

summer scorch" symptoms of marginal curling, wilting, and defoliation. 

Other workers have suggested that leaf scorch is a symptom of dec- 

line/dieback diseases which are of complex etiology involving one or 

more pathogens and influenced by insect injury as well as environmental 

and edaphic factors (Thompson, 1951; Halliwell, 1966; Van Arsdel and Hal- 

liwell, 1970; Stipes and Davis, 1972; Van Arsdel, 1972; Filer et^ 

al., 1975; Lewis and Van Arsdel, 1975 ; Ricketts, 1975 ; Lewis, 1976; 

Lewis and Van Arsdel, 1978). These diseases include declines of red oak, 

live oak, sycamore, and maple. 

Decline of live oak (Quercus virginiana Mill.), a disease of 

complex etiology, was first reported near Austin, Texas, in 1934 (Taub- 

enhaus, 1934). Symptoms were the production of small leaves in the 

spring, tan discoloration of the foliage (scorch) in hot weather, prema¬ 

ture defoliation, twig dieback, resprouting from larger branches, and 

eventual death of the tree. Brown vascular streaking and cankers were 

often found in affected trees. Dothiore11a sp. [D. quercina (Cke. 

and Ell.) Sacc.] was consistently isolated from cankers and was shown to 

be pathogenic. The disease also occurs on post oak (Q. stellata 

Wang.) and Spanish or scarlet oak (Q. coccinea Muench.)(Van Arsdel, 
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1972). Taubenhaus (1934) reported that trees were not water stressed 

and isolated an unidentified causal organism of live oak decline. Hall- 

iwell (1966) first believed the causal agent to be a virus but found 

that it was not graft transmissible. Cephalosporium sp. was ultimate¬ 

ly isolated from affected trees and Koch's postulates satisfied (Hall- 

iwell, 1966). Van Arsdel and Halliwell (1970) subsequently associated 

Dothiorella, Ceratocystis, and HypoxyIon with the disease. Van 

Arsdel (1972) reported that Cephalosporium diospyri Crandell was the 

cause of the scorch symptoms and that Dothiorella and Ceratocystis 

are different stages of the same organism. Recent research (Lewis and 

Oliveria, 1979; Appel, 1983) reported that the disease was caused by the 

oak wilt fungus [Ceratocystis fagacearum (Bretz) Hunt]. 

Decline of red oaks initially appeared in the mid-1950's in New Jer¬ 

sey, southern New York, Pennsylvania, and West Virginia on scarlet oak 

(Q. coccinea Muench.), red oak (Q^. rubra L.), and black oak 

((£. velutina L.)(Fergus and Ibberson, 1956; Gillaspie, 1956). The 

disorder is now known to extend south to Florida and west to Arkansas 

and Texas (Staley, 1965; Skelly, 1974; Lewis, 1981; Tainter and Benson, 

# 

1983). Affected species include: water oak (Q. nigra L.) and willow 

oak ((£. phellos L.) in Arkansas and Mississippi, southern red oak 

(Q. falcata Michx.) in Texas, and laurel oak (Q. laurifolia 

Michx.) in Florida (Lewis, 1981). 

An initial symptom of oak decline is foliar leaf scorch with sub¬ 

sequent branch dieback, crown deterioration, and tree death after sev¬ 

eral years. The disease was attributed to a number of abiotic and 

biotic stresses including insect attack, various-root rotting fungi, 
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late spring frost, poor soils, and drought (Tyron and True, 1958; 

Skelly, 1974; Lewis, 1981; Tainter and Benson, 1983). 

Viggars and Tarjan (1949) described a disease of pin oak in Del¬ 

aware that they believed was due to root attack by nematodes, mainly 

Hoplolaimus coronatus. Symptoms were "hypersenstivity" to drought; 

chlorosis of foliage on individual limbs; marginal leaf necrosis, spread¬ 

ing inward; followed by premature leaf abscission and formation of water 

sprouts. In the fall, the affected foliage was a dull tan instead of 

reddish brown. 

Sycamore decline, another disease of complex etiology, was first 

reported in Georgia in 1951 (Thompson, 1951). Leaf scorch was later 

described as the first symptom observed in affected trees (Ricketts, 

1975 ; Cooper £t al_., 1977; Filer et aK, 1977). Filer e_t 

al. (1975) found leaf scorch incidence ranging from 22 to 88 per cent 

in twenty-six sycamore plantations surveyed. Plantations were selected 

from throughout the geographic range where the disease was known to 

occur (Louisiana, Mississippi, Alabama, Tennessee). In each plantation 

100 to 250 trees were selected randomly and examined in the fall for 

scorch symptoms. The disease ranged from east Texas (Lewis, 1976) to 

southwestern Illinois and southeastern Missouri (Ricketts, 1975). The 

causal agent of the leaf scorch portion of the disease was reported to 

be Cephalosporium diospyri, while Botryodiplodia theobromae 

Pat., which was consistently isolated from branch cankers, was reported 

to be responsible for cankers and rapid crown dieback (Lewis, 1976; 

Lewis and Van Arsdel, 1975; Lewis and Van Arsdel, 1978). Sycamore 

decline/dieback was reported to be enhanced by high temperature, water 
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stress, and Cephalosporium wilt ("scorch-like" symptoms). The 

widespread occurence of this disease in the southeastern United States 

is one of the limiting factors in the culture of sycamore in the region 

(Ross, 1971; Filer , 1975; Ricketts, 1975; Lewis, 1976; Filer 

et al., 1977). London plane tree (Platanus acerifolia Willd.) 

was also found susceptible (Ricketts, 1975). 

Leaf Scorch Associated with Fastidious, Xylem-inhabiting Bacteria 

Early investigations by Wester and Jyllka (1959) demonstrated that 

the causal agent of ELS was graft-transmissible using bud chip, scion, 

and root grafts. Symptoms in grafted trees were analagous to those in 

naturally affected elms. Plants with bark patch grafts did not develop 

symptoms. Based on symptomatology and the xylem-limited nature of the 

causal agent, they postulated that the agent was a "virus" similar to 

the "virus" causing Pierce's disease (PD) of grapevines (Vitis 

vinifera L.). 

PD is analagous to vascular wilt diseases in symptom expression. 

Symptoms include a decline in vigor, marginal leaf necrosis (leaf 

scorch), decreased fruit size and yield, and death of the plant (Hewitt 

et al., 1942). The pathogen was transmitted by the leafhopper(s) 

Hordnia circellata in California and Homalodisca coagulata and 

Oncometopia nigricans in Florida (Hopkins, 1977). The disease, 

endemic to the Southeast and of epiphytotic proportions in southern 

California, is the limiting factor in grape cultivation in those regions 

(Hopkins, 1977). 
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Prior to 1971, the PD agent was believed to be a virus. In that 

year Hopkins and Mortensen (1971) found that symptoms could be suppress¬ 

ed using soil drenches of tetracycline antibiotics. Because a remission 

of symptoms was obtained using these materials, the prokaryotic nature 

of the causal agent was suggested. Goheen e^t al_. (1973) and Hopkins 

and Mollenhauer (1973) subsequently observed a pleomorphic bacterium in 

the xylem of petioles, raidveins, and small veins of grape leaves infect¬ 

ed with PD. Bacteria were either sparsely distributed or formed dense 

matricies in the xylem. No bacteria were observed in transverse sec¬ 

tions of tissue samples from healthy leaves (Goheen et_ aK, 1973). 

The bacterium was described as rod-shaped, 0.4-0.5 ^m in width by 

1-3 /jra in length, with a defined wall-membrane complex. The wall was 

rippled, thin and trilaminar. Mollenhauer and Hopkins (1974) occasion¬ 

ally observed a four-layered wall in the PD-bacterium. Some forms had 

thicker, less defined walls (Lowe et_ a_l., 1976). Fimbriae were 

often associated with the surface of the bacteria (Hopkins, 1977). Rib¬ 

osomes were most abundant at the periphery of the bacterial cells. 

Changes in wall structure of the organism characterized, by the multi¬ 

layered wall structure becoming less obvious and the cells compressed, 

have been attributed to aging (Mollenhauer and Hopkins, 1974) or sug¬ 

gested to be resting or degenerative stages (Hopkins, 1977). 

Similar fastidious, xylem-inhabiting bacteria (FXIB) were also 

associated with: 

Alfalfa Dwarf (AD) Goheen et al^., 1973 

Phony Peach Disease (PPD) Hopkins ejt al_., 1973 

Nyland et al., 1973 
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Plum Leaf Scald (PLS) Kitajima et^ al^., 1975 

French and Kitajima, 1978 

Almond Leaf Scorch (ALS) Lowe et al., 1976 

Mircetich et al., 1976 

Citrus Young Tree Decline 

(CYTD) (Blight) 

Feldman et al_, 1977 

Hopkins et al., 1978 

Periwinkle Wilt (PW) McCoy et al., 1978 

Of these diseases only two, PPD and AD do not express leaf scorch symp¬ 

toms. The PD, PPD, ALS, and PW organisms were shown to be transmitted 

by leafhoppers (Turner and Pollard, 1959; Hopkins and Mortensen, 1971; 

Feldman et al., 1977; Hopkins, 1977; McCoy et^ al., 1978). Cross 

transmission using leafhoppers has been confirmed between PD-infected 

grape and alfalfa and PD-infected grape and almond. In addition, the 

PD-bacterium was transmitted from blight-affected citrus to healthy 

grape, which subsequently developed typical PD symptoms (Hopkins et 

al., 1978). 

The rippled wall, intracellular (intra-xylem) nature of these bact¬ 

eria, and their arthropod vectors led to their original designation as 

rickettsia-like bacteria. These early descriptions of the PD-bacterium 

suggested that the bacterium was "rickettsia-like" and led to the 

inclusion of herain chloride and bovine serum albumin in culture media 

(PD-2 medium)(Davis et al., 1978c). Both hemin chloride and bovine 

serum albumin were components of the culture medium for Rocha1imaea 

quintana, a member of the Rickettsiaceae (Myers et al_., 1969). 

The role of herain chloride is believed to be inhibition of peroxides 

during initial stages of bacterial growth (Davis et a_l., 1978c). 

Bovine serum albumin serves as a detoxicant, since activated charcoal or 
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soluble starch can be used as substitutes in the medium (Davis et 

al., 1981b). 

Both the SC medium and the S-8 medium developed for the coryneform 

bacterium causing ratoon stunting disease of sugarcane (Davis et 

al., 1980a) and the PW medium developed for the PW, PLS, and PPD 

bacteria (Davis et , 1981a) are modifications of the PI>-2 medium. 

For SC/S-8 media, tryptone was eliminated and glucose and L-cysteine 

HC1 H^O were substituted for citrate and succinate (Davis et al., 

1980a). PW medium, besides some proportional changes in constituents, 

substitutes glutamine for citrate and succinate (Davis et al., 

1981a). Wells et al. (1981) developed BCYE medium, a modification 

of the medium developed for Legionella sp., containing yeast extract, 

activated charcoal, L-cysteine HCl'H^O, ferric pyrophosphate, and ACES 

buffer for the cultivation of the PPD and PLS-bacteria. 

Serological analyses using indirect iramunofluorescent antibody 

staining and/or Ouchterlony double gel diffusion demonstrated serolog¬ 

ical relatedness among FXIB (Table 1) (French et £l^., 1977b; Davis 

et al., 1978a, 1978c, 1978d; Lee et al., 1978; McCoy et al., 

1978). No serological relatedness has been observed to any other genera 

of bacteria. Recently, bacteria serologically related to the 

PPD-bacterium were found in Johnsongrass (Sorgham halapense), rag¬ 

weed, and numerous Prunus sp. adjacent to or in PPD-affected orchards 

(Weaver ^t aT., 1980; Wells ejL a_l., 1981; Timmer et al., 

1983). Similarly, bacteria serologically related to the PD-bacterium 

were cultured from weeds and woody plants adjacent to PD-infected vine¬ 

yards (Adlerz and Hopkins, 1981; Raju et a_l. , 1980). Indicator 



TABLE 1. -Serological relatedness between several fastidious, xylem- 

inhabiting bacteria 

Bacterium 

Antisera prepared against: 
i 

PD-bacterium ALS-bacterium PPD-bacterium 

PD + + + 

ALS + + 

AD + + + 

CYTD + + 

PPD + + + 

PLS 
- 

+ 

PW + 

# 
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grapevines developed typical PD symptoms after inoculation and the bac¬ 

terium was readily recovered from infected grapes (Raju et al., 

1980). Besides extending the host range of FXIB, these weeds may serve 

as inoculum reservoirs in or adjacent to plantings of highly suscep¬ 

tible, agriculturally important hosts. These studies support the early 

host range experiments of Frietag (1951) who demonstrated that the PD ag¬ 

ent was leafhopper transmitted from infected grape to alfalfa. He found 

that the PD agent, at that time believed to be a virus, could be trans¬ 

mitted to 75 species of plants representing a total of 23 plant fam¬ 

ilies. Many of the plants tested were plants commonly found in PD- 

affected vineyards. 

Bacteria similar to FXLB were observed in xylem elements of mid¬ 

veins of leaf scorch-affected American elm, sycamore, and red oak 

(Hearon et. al. , 1980). Slight variations in size and morphology 

were found among the three bacteria. In elm, the bacteria were rod¬ 

shaped, 0.3-0.4 jjpa wide by 0.9-2.4 j^m long, with a rippled wall 

structure which in some cells was composed of four layers. Internal 

structure consisted of ribosomes, a nuclear region with DNA-like 

strands, and round osmiophilic bodies. Fimbriae were occasionally 

observed. Small spindle-shaped bodies with dense cytoplasmic contents 

and cell walls occurred along xylem element walls or completely occluded 

the lumen of the vessel. Tubular structures were located along bac¬ 

terial walls and throughout the matrix surrounding the cells. 

In sycamore, the bacteria were pointed at one end in comparison to 

elm where both ends of the cell were rounded (Hearon £t al.. , 1980; 

Sherald et al., 1983). Bacteria from sycamore measured 0.3-0.4 
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by 1.0-1.8 nm. Tubular structures appeared in the matrix surrounding 

cells and fimbriae were common. In oak, bacteria were 0.3-0.4 ^m by 

1.0-2.0 Mjn with some cells appearing to be tapered at one end. Small 

dense bodies were observed in both sycamore and oak. 

In all three species, bacteria were most commonly found in smaller 

tracheary elements of the collateral vascular bundles and associated 

with matricies or vascular occlusions analagous to those observed in PD- 

affected grapevines (Hopkins, 1979). No bacteria were observed in 

leaves from unaffected trees. 

Using a modification of French's vacuum infiltration technique 

(French ejt al^ , 1977a; Hearon e_t al., 1980) and phase contrast 

microscopy, bacteria serologically related to the PD-bacterium were 

extracted from the vascular cylinder of leaf scorch-affected elm, syca¬ 

more, and red oak (Hearon et_ al., 1980; Sherald e£ a_l., 1983). 

Bacteria were not extracted from the majority of symptomless trees. 

Bacteria associated with elm and sycamore leaf scorch were isolated 

in a S-8 broth medium (developed for the RSD bacterium) and subcultured 

on semi-solid PD—4 medium (Kostka, et_ al., 1981, Sherald e_t a 1. , 

1983). Although the ELS- and SLS-bacteria could be isolated on arti¬ 

ficial media developed for the ratoon stunting disease (RSD) bacterium, 

incubation periods were excessive (circa 21 days)(Kostka et al., 

1981; Sherald £t al., 1983). The isolation of the SLS-bacterium 

using a modified PW broth medium (Sherald <rt £l., 1983) enabled the 

fulfillment of Koch's postulates in inoculated sycamore seedlings and 

determination of its presence in Louisiana and Texas. Sherald e_t 

al. (1983) suggested that SLS may be a component of sycamore decline 
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in the southern United States. Early pathogenicity tests with the ELS- 

bacterium were unsuccessful (S. Kostka, unpublished data) 

Recently, the oak leaf scorch-associated (OLS) bacterium was isolat¬ 

ed through wood chip incubation in modified PW broth (Kostka et al., 

1984) or by placing bacteria extracted from crushed stem segments on a 

newly developed, though unpublished culture medium (Chang and Walker, 

1983). 

Xylem Dysfunction in Diseases Caused by Fastidious, 

Xylem-inhabiting Bacteria 

In Pierce's disease, similar occlusions caused by gums and tyloses 

were suggested to disrupt water transport and induce leaf scorch symp¬ 

toms (Esau, 1948; Mollenhauer and Hopkins, 1974; Hopkins, 1977). Sim¬ 

ilar suggestions have been made for ELS, SLS, and OLS (Hearon «rt 

al., 1980). Esau (1948) found tyloses in uninfected older wood of 

grapevines, but not in uninfected younger wood. On the other hand, gums 

and tyloses were commonly found in younger PD-affected wood. Mircetich 

et al. (1976) observed the fastidious xylem-inhabiting bacterium 

(FXIB) associated with ALS in 15% of xylem elements in scorched almond 

leaves sampled. They did not believe that this proportion of vascular 

occlusions could sufficiently impede water movement to induce ALS symp¬ 

toms. Hopkins (1977) questioned those findings because too few sections 

were examined. When considering the entire vascular system of a leaf, 

the 1-2 mm examined in the study by Mircetich e_t al^. (1976) 

represented an inconsequential sample (Hopkins, 1977). Hopkins (1977) 
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suggested, instead, that serial sections of the entire midrib of a leaf 

may yield a more accurate picture of the extent of vascular occlusion in 

an affected leaf. 

Hopkins (1981) found that in serial sections of 0.5 cm lengths of 

PD infected grape petioles and leaf veins, vessel plugging was 4-12 

times greater than would be approximated from individual cross-sectional 

analysis. In leaves with marginal necrosis, vascular occlusion 

approached 80 per cent in 0.5 cm leaf mid-vein samples. Not only were 

vessels occluded with gums and gels, but also large masses of bacteria 

surrounded with a matrix like material occluded pits and vessel ends. 

He concluded that vascular occlusion was sufficient in mid-veins of 

PD-infected grape to cause marginal necrosis (Hopkins, 1981). 

Lee ejt a_l. (1982) reported a toxin or toxins to be produced in 

culture by the Pierce's disease (PD) bacterium that induced scorch sympt¬ 

oms in excised grape and almond leaves. Vacuum infiltration of the tox¬ 

in into rooted and dormant grape cuttings also produced symptoms and fol¬ 

lowed the same differential susceptibility among cultivars as demonstrat¬ 

ed in pathogenicity experiments. Neither the structure of the toxin(s) 

nor its (their) mode of action are known. 

Effects of Water Deficit on Plant Physiology 

Water deficits inhibit various aspects of host growth and physiol¬ 

ogy (Kramer and Kozlowski, 1979), yield and viability (Durbin, 1978), 

and predisposition to disease. One of the first responses in plants 
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under water stress is a reduction in growth, even prior to measurable 

effects on metabolic systems (Boyer, 1973; Hsiao, 1973). 

Plants under water stress, either climatic, edaphic, or pathogen in¬ 

duced, have higher levels of free sugars than non-stressed plants 

(Parker and Houston, 1971; Hsiao, 1973; Parker and Patton, 1975; Parker, 

1979). Hsiao (1973) reported that water stressed plants produced 

increased levels of alpha-amylase which catalyzes the conversion of 

starch to sugars. The availability of free sugars may enhance infection 

by non-aggressive pathogens. 

Reductions in stored starch reserves occurs in trees undergoing 

water stress, defoliation, and decline (Parker and Houston, 1971; Wargo 

et al., 1972; Wargo, 1976; Parker, 1979; Carroll et al., 1983). 

The status of starch reserves during the dormant season can provide an 

indication of tree health. 

Xylem occlusion (Talboys, 1968, 1978; Beckman, 1980) or embolism 

(Zimmerman and McDonough, 1978) inhibit water movement and ultimately 

influence growth regulator levels and storaatal opening and closing. In 

vascular diseases, foliar wilting and necrosis are caused by a decrease 

in water availability rather than excessive water loss (MacHardy and 

Beckman, 1973; Hall and MacHardy, 1981). Cell integrity can not be 

maintained due to the inadequate water supply and desiccate. The 

symptoms associated with vascular disease are acute water stress symp 

toms characterized by an extensive wilting and necrosis of foliage of 

the diseased plant. If subacute water stress conditions occur, symptoms 

are foliar necrosis followed by premature leaf abscission (Talboys, 



1968). Bacterial leaf scorch symptoms are analagous to symptoms 
V, 

produced in plants undergoing subacute water stress. 



CHAPTER III 

SYMPTOM VARIATION, DISTRIBUTION, AND INCIDENCE 

OF ELM LEAF SCORCH IN THE NORTHEASTERN UNITED STATES 

Introduction 

Within the last five years leaf scorch diseases caused by or assoc¬ 

iated with an as yet un-named group of fastidious, xylem-inhabiting bac¬ 

teria have been recognized as a threat to forest and shade trees, partic¬ 

ularly in the southern half of the United States (Hearon et al., 

1980; Sherald e_t al,, 1983; Chang and Walker, 1983). Affected spec¬ 

ies include American elm (Hearon et_ al, , 1980), sycamore (Sherald 

et al. , 1983), red oak (Hearon et_ al, , 1980) and red mulberry 

(Kostka £t a_l. , 1982, 1983) Pathogenicity of the cultured bacterium 

has been demonstrated in sycamore (Sherald et £l_. , 1983) and red mul¬ 

berry (Kostka et al., 1983). All leaf scorch-associated bacteria 

were serologically related to the Pierce's disease (PD) bacterium, which 

causes a similar leaf scorch disease of grapes and almond (Hearon jet 

» 

al., 1980; Sherald et al., 1983; Kostka, e_t a_l^, 1983). 

Although the pathogenicity of the elm leaf scorch (ELS) bacterium 

has yet to be demonstrated, the disorder and bacterium are graft- 

transmissible (Wester and Jyllka, 1959; Hearon e_t a_l • , 1980). 

Symptoms of ELS develop by mid-July in the Washington, DC, area 

(Wester and Jyllka, 1959; Hearon et al., 1980) and are characterized 

by an undulating, marginal necrosis bordered by a chlorotic halo. Dur¬ 

ing the summer months symptoms progress acropetally, becoming more pro- 

23 
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nounced. Necrosis extends inward towards the midrib and leaves curl. 

Early leaf abscission commonly leaves a tuft of unaffected leaves at the 

branch apex. Affected trees may exhibit branch dieback (Hearon e_t 

al., 1980) and have been reported more susceptible to Ceratocystis 

ulmi (Buisman) C. Moreau, the Dutch elm disease fungus, than are non¬ 

scorching trees (Wester and Jyllka, 1963). 

The objectives of this study are: 1) to describe the most fre¬ 

quently occurring symptom types in American elms affected with ELS, 2) 

to determine the incidence of ELS and of each symptom type in an urban 

elm population in Washington, DC, 3) to determine the distribution of 

ELS in the northeastern United States and 4) to describe ELS symptoms in 

other elm species. 

Materials and Methods 

Symptom Variation 

Symptom development was followed in ELS—affected American elms (Ul~ 

mus americana L.) from January 1981 to October 1983. All trees were 

located in the metropolitan Washington, DC area in park or roadside 

plantings under the jurisdiction of the National Park Service or 

the District of Columbia, Department of Transportation. 

Disease Incidence 

The sample population of American elms selected for disease inci¬ 

dence surveys was the planting of nearly 500 American elms (10-80 cm 

dbh) on the National Mall in Washington, DC. Surveys were conducted in 
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late August of 1982 and 1983 when symptoms were well advanced. Symptom 

type and per cent canopy affected were identified from the ground using 

field glasses and recorded in 1982. In 1983 only per cent leaf area 

affected was recorded. Newly transplanted trees were not included in 

the survey nor were subsequent transplants. The initial survey consist¬ 

ed of 473 trees. 

Isolations were made from stem segments of 28 symptomatic trees and 

10 symptomless trees in September 1982 by incubating aseptically excised 

wood chips in 10 ml of a modified PW broth (Sherald ejt £l., 1983) 

and/or by vacuum extracting bacteria from stem segments and confirming 

their presence with phase contrast microscopy (French e_t > 1977a; 

Hearon et al., 1980; Sherald et al., 1983). Isolated bacteria 

were reacted to antisera prepared against PD- and ELS-bacteria (S. Kost- 

ka, unpublished) using indirect immunofluorescent antibody staining 

(Goldman, 1968; French £t a_l. , 1978). 

Disease Distribution 

A survey of urban and rural roadside and park trees was conducted 

in August 1982 and 1983 along the east coast from the northern Virginia 

suburbs of Washington, DC, to Massachusetts. Surveyed areas included 

rural areas as well as the following major urban areas: Washington, DC, 

Baltimore, MD; Wilmington, DE; Philadelphia, PA; New York, NY; New 

Haven, CT; and Boston, MA. A local sampling was conducted in the metro¬ 

politan New Orleans, LA, area. Affected American elms as well as other 

symptomatic elm species were noted and symptoms recorded. Symptomatic 
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trees were sampled and isolations made as described above to confirm the 

presence of the ELS-bacterium. 

Results 

Symptom Variation 

Three symptom types designated Type I, II, or III could be differen¬ 

tiated in the naturally ELS-affected population. The predominant and 

symptoms (Type I)(Fig. 1) were those previously described for ELS 

(Hearon £t a_l., 1980). Symptom Type I developed an undulating marg¬ 

inal necrosis which was separated from the inner green tissues of the 

leaf by a chlorotic halo. Affected leaves curled adaxially (upward) and 

scorched leaves remained attached until late summer when they abscised. 

Branch dieback could be observed in previously affected branches in the 

spring. 

Initial symptoms of ELS appeared by mid-July as a buff, brown-green 

(olive drab), undulating discoloration along the leaf margin that resemb¬ 

led water-soaking (Fig. 2). A distinct brown band subsequently develop¬ 

ed demarcating the healthy from the discolored tissues. By late summer 

leaves curled adaxially (upward). By August, leaves began to abscise. 

Dieback of scorch-affected branches was occasionally observed the 

following spring though no obvious effects on flowering, seed set and 

development, or leaf expansion were noted. 

Early Type II symptoms were analagous to those in Type I trees. 

The notable differences in trees with advanced Type II symptoms were 

that the majority of leaves curled abaxially (downward), necrotic tis- 



Fig. 1. Elm leaf scorch, symptom Type I. Note the 

undulating marginal necrosis, chlorotic halo, and adaxial 

upward leaf curl. 



Fig. 2. Early water-soaked appearing (olive drab) 

lesions of elm leaf scorch. Arrows indicate the demarcation 

between early lesions and symptoraless tissues. 
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sues were lighter in color, often had an ashen cast, and were bordered 

by a wide chlorotic halo (Fig. 3). 

Type III symptoms were the most severe. In early June, foliage 

became epinastic. Typical early leaf scorch symptoms appeared by mid- 

to late June; up to a month prior to the appearence of symptoms in Type 

I or Type II trees. Symptoms developed rapidly in all Type III trees in 

comparison to symptom Type I or symptom Type II trees. Several days 

after symptom onset, necrotic marginal lesions expanded. Within two 

weeks extensive necrotic areas covered much of the leaf lamina in con¬ 

junction with adaxial leaf curl (Fig. 4). The chlorotic halo was incon¬ 

spicuous or absent. By August, leaf curl was so severe that opposite 

leaf margins overlapped entirely (Fig. 5). The only chlorophyllous tis¬ 

sue remaining in affected leaves was adjacent to the midrib. Premature 

leaf abscission occurred and dieback was extensive (Fig. 6). The bark 

of symptomatic (Type III) branches became orange-gray in color. 

Flower bud expansion, seed load, and leaf bud break and expansion 

did not appear to be affected in trees with Type I or Type II symptoms. 

However, in trees with Type III symptoms there was a notable absence or 

depression in the number of flower buds. Flower buds that were present 

often failed to open or aborted soon after bud break (Fig. 7). Leaf bud 

break and leaf expansion were suppressed in Type III trees in comparison 

to symptomless trees or trees with Type I or Type II symptoms (Fig. 7). 

Leaf bud expansion was also suppressed in symptomatic branches when com¬ 

pared to symptomless branches in the same tree. 
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Fig. 3. Abaxial (downward) leaf curl, wide chlorotic 

halo (arrows), and ashen necrotic tissues (N) characteristic 

of symptom Type II. 
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Fig. 4. Early Type III symptoms of elm leaf scorch. 

Single arrows indicate water-soaked appearing lesions; the 

double arrow indicates tissues that are becoming necrotic. 

Note the adaxial (upward) leaf curl. 



Fig. 5. Advanced Type III symptoms; note the overlap¬ 

ping leaf margins. Chlorophyllous tissue remains limited to 

the leaf lamina adjacent to the midvein. 



Fig. 6. Extensive branch dieback (arrows) that occurs 

in trees with the Type III symptoms of elm leaf scorch. 
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Fig. 7. Flower bud abortion and suppressed leaf bud 

break and expansion in a tree with the Type III symptoms of 

elm leaf scorch (left), in comparison to a non-affected tree 

(right). 
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Incidence 

Of 473 American elms surveyed in Washington, DC, in 1982, 196 trees 

or 41.4% of the population exhibited ELS symptoms. In 1983, the elm pop¬ 

ulation was reduced to 446 trees due to Dutch elm disease and construc¬ 

tion activities. Of this remaining population, 181 trees (40.6%) were 

affected with ELS. 

The majority of ELS-affected trees exhibited symptoms in <10% of 

the total leaf area of the canopy (Table 2). Symptomatic foliage was 

widely dispersed in the canopy, in a single branch, or even limited to a 

single shoot. Between 1982 and 1983, disease incidence remained stable, 

but symptom severity increased in those trees previously affected with 

ELS: from 28 trees with 10% or more of the canopy leaf area affected in 

1982 to 69 trees with 10% or more of the canopy affected in 1983 (Table 

2). Seven ELS-affected trees were lost to Dutch elm disease in each 

survey year. 

Symptom Type I predominated in the population in 1982, affecting 

106 trees. Type II symptoms appeared in 28 trees and Type III symptoms 

were at the lowest levels: 17 trees. Forty-one trees had symptoms that 

were undifferentiable. All trees with undifferentiable symptoms had 

<10% of the canopy leaf area affected. Symptoms could not be differen¬ 

tiated due to the limited quantity of affected foliage and its location 

in the upper canopy at the limits of the resolution of the field glasses 

used. 

Fastidious, xylem—1imited bacteria serologically related to the PD- 

and ELS-bacteria were isolated from 11 of 12 symptom Type I trees, 7 of 

8 symptom type II trees, and 8 of 8 symptom Type III trees. No fastid- 
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TABLE 2. Degree of elm leaf scorch symptom development within the 

American elm population on the National Mall in Washington, DC 

Percent canopy leaf area affected 
Ratio 

Year (no. diseased/no. surveyed) <10 10-20 21-50 51-100 

1982 194 152a 16 15 11 

1983 172 112 27 18 14 

Number of trees affected at the indicated level within the surveyed 

population 
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ious, xylem-1imited bacteria were isolated from the 10 symptoraless 

trees. 

Disease Distribution 

Elm leaf scorch occurred in the Washington, DC area and ranged 

north to Baltimore, MD (Fig. 8). The disease was not observed in nat¬ 

ural elm populations on the Delmarva penninsula (located in Maryland and 

Delaware), but did occur in street trees in Lewes, DE. The disease was 

not encountered in urban or rural elm populations north of Baltimore, MD 

or Lewes, DE. 

Symptoms of ELS were observed in 13 of 16 specimens of the American 

elm cultivar 'Augustine Ascending'(Fig. 9), as well as 2 of 24 Siberian 

elms (U. pumila L.)(Fig. 10), and 2 of 3 Wych elms (U. glabra 

Huds.)(Fig. 11) in Washington, DC. "One symptomatic Siberian elm and 5 

symptomatic 'Augustine Ascending' elms were observed in New Orleans, LA. 

Foliar symptoms in these three species were analagous to those observed 

in American elm. Leaf curl, premature defoliation, and branch dieback 

were observed in all species. Dieback was most severe in 'Augustine 

Ascending' elms in New Orleans. Affected trees had nearly 100% of the 

leaf area affected with ELS in late summer. Further, all trees showed 

extensive defoliation, branch diebach, and stag-horning. In Washington, 

the disease was less severe. Only 2 of the 13 ELS-affected 'Augustine 

Ascending' elms had more than 10% of the canopy leaf area affected (40% 

and 80% respectively). Due to the small number of symptomatic trees, no 

attempt was made to classify them according to symptom Type. 

Fastidious, xylera-1imited bacteria, serologically related to the ELS- 



★ Elm Leaf Scorch 
Observed 

• Elm Leaf Scorch 
Not Observed 

Fig. 8. Distribution of elm leaf scorch in the mid- 

atlantic and northeast coastal states. 
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Fig. 9. Foliar 

American elm cultivar 

symptoms of elm leaf scorch 

'Augustine Ascending'. 

in the 
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Fig. 10. Symptoms of elm leaf scorch in Siberian elm. 

Necrotic tissues are bounded on the inner margin by a dark 

brown band and a chlorotic halo. 



Fig. 11. Early symptoms of elm leaf scorch in Wych elm 

characterized by prominent water-soaked appearing lesions 

(arrows) and adaxial leaf curl. 
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and PD—bacteria were isolated from ELS—affected elms in all areas where 

the disease was present. 

Discussion 

Three distinct symptom types occur in American elms affected with 

bacterial leaf scorch. The observed symptom variation in American elm 

may be due to differences in the host (anatomical or physiological) or 

to differences in pathogen virulence. In addition, the observed symp¬ 

toms may reflect disease progression or variations in bacterial popul¬ 

ations within the tree. Similar symptoms, particularly water-soaking and 

the chlorotic halo, in Pierce's disease-affected grape have been attrib¬ 

uted in part to pathogen produced toxins (Lee et al., 1982). How¬ 

ever, the role of toxins in ELS symptomatology are not known. 

ELS appears to be limited to the southern states with its northern 

range in Maryland and Delaware. In comparison to mulberry leaf scorch 

and oak leaf scorch, ELS has a more limited range similar to that of syc¬ 

amore leaf scorch (S. Kostka, unpublished). This decreased range may be 

due to climatic effects, differences in host susceptibility, or absence 

of the, as yet, unidentified insect vector(s). The role of soil water 

stress is not known, but in certain sites water stress may stimulate the 

subacute water stress symptoms (Talboys, 1968) of ELS. 

The appearence of ELS in exotic elm species indicates that resist¬ 

ance may not be widespread in the genus. However, ELS has not been 

observed in most European elm cultivars planted in the Washington, DC 

area. Based upon the occurrence of ELS in Louisiana in 'Augustine 

Ascending' elm and Siberian elm and sycamore leaf scorch in Louisana and 



Texas (Sherald et al., 1983), it is likely that ELS occurs through 

much of the southern range of the genus Ulmus. 



CHAPTER IV 

ELM LEAF SCORCH: EVIDENCE SUPPORTING THE ROLE 

OF A FASTIDIOUS, XYLEM-INHABITING BACTERIUM 

Introduction 

Leaf scorch is a common disorder in trees growing in impacted urban 

environments. The disorder has been commonly attributed to drought 

and/or physiological stresses, such as soil compaction, limited rooting 

space, and deicing salt toxicity (Tattar, 1978). Wester and Jyllka 

(1959) observed a mid-summer leaf scorch of American elms in the Washing¬ 

ton, DC area with symptoms differing from those commonly attributed to 

drought stress and in sites not likely to be under severe physiological 

stress. Although no biotic pathogen was isolated, the graft transmis- 

sibility of the disease and the xylem-1imited nature of the causal agent 

was demonstrated. Based on these observations, Wester and Jyllka (1959) 

postulated that the disease was caused by a "virus" similar to the 

"virus" that caused Pierce’s disease (PD) of grape. Since the early 

studies of elm leaf scorch (ELS) the etiology of PD has been elucidated 

and the causal agent identified as a fastidious, xylem-inhabiting bac¬ 

terium (FXIB)(Davis et al., 1978b). A reinvestigation of ELS (Hearon 

et al., 1980) confirmed the presence of a graft transmissible FXLB 

serologically related to the PD-bacterium in xylem tissues of ELS- 

affected elms. 

Artificial media have been developed for the cultivation of the 

FXIB causing PD and almond leaf scorch (Davis e_t a_l., 1978b, 1980b, 

44 
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1980c), plum leaf scald and phony peach disease (Davis et al., 

1981a; Wells ejt al. , 1981 , 1983), periwinkle wilt (Davis ^t al., 

1983), and sycamore leaf scorch (Sherald et al., 1983). Limited suc¬ 

cess has been reported in the isolation of the ELS-bacterium (Kostka 

et al., 1981) using a culture medium developed for the coryneform 

bacterium causing ratoon stunting disease of sugarcane (Davis e_t 

al., 1980a). 

This report describes the consistent isolation and culture of FXIB 

from ELS-affected trees, as well as, seasonal recovery and systemic dis¬ 

tribution of bacteria within an affected tree. Bacteria are character¬ 

ized and described physiologically, serologically, and morphologically. 

Pathogenicity and graft-transraissibility studies are reported. 

Materials and Methods 

Isolation and Culture 

Isolations were made from American elms were located in the metro¬ 

politan Washington, DC area and primarily on lands under the jurisdic¬ 

tion of the National Capital Region of the National Park Service. 

Selected trees ranged from 25-80 cm dbh. 

Stem sections (0.5-1.0 cm in dia. x 8 cm in length) were vacuum 

extracted (Fig. 12)(French et al., 1977a) with sterile 0.01 M phos¬ 

phate-buffered saline (pH 7.0)(PBS) or a sterile phosphate-buffered ci¬ 

trate magnesium solution (PBCM) (Davis e_t a_l., 1980c). Approximately 

1 cm of bark was removed from the ends of each stem section to facil¬ 

itate connection of the vascular cylinder to the buffer reservoir (a 



Fig. 12. Apparatus 

elm stem segments. 

for vacuum extracting bacteria from 
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pipette). Buffer volume increased proportionally with increased volume 

of the cylinder. Extracted fluids were examined for the presence of 

FXIB with phase contrast microscopy (1000X). 

Three small branches were pruned from ELS-affected and symptomless 

trees, leaves were removed, then stem segments (0.5-1.0 cm in dia. x 15 

cm in length) were excised. Samples were collected monthly from symptom 

onset (June/July) to October of 1982 and 1983. Eighty-two ELS-affected 

and 32 symptomless trees were sampled. ELS-affected trees were sampled 

only until the ELS-bacterium was isolated. All stem segments collected 

from ELS-affected trees were from symptomatic branches. Samples from 

symptomless trees were collected randomly within the canopy. Isolations 

were made from healthy trees repeatedly throughout the study period. 

Stem segments were transported to the laboratory in polyethylene bags. 

All isolations were made within 48 hours of collection. 

A wood chip isolation technique was used for the isolation of the 

ELS-bacterium (Sherald £l_. , 1983). Stem sections measuring 0.5- 

1.5 cm in dia. x 15-20 cm in length were rinsed in 70% ethanol and flam¬ 

ed. Xylem chips approximately 0.5 x 2.5 cm in size were aseptically 

removed from surface disinfested, debarked stem segments and placed in 

tubes containing 10-25 ml of a broth culture medium and incubated in the 

dark at 28 C. 

Three media were compared initially for isolation of the ELS- 

bacterium: PD-2 broth, developed for the PD-bacterium (Davis e_t al. , 

1980b); S-8 broth, developed for Clavibacter xy1i, the causal agent 

of ratoon stunting disease of sugarcane (Davis e_t a_l., 1980a; 1984); 

and a modified formulation of PW broth, originally developed for the 
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periwinkle wilt bacterium (PW)(Davis et^ , 1981 a). PW broth was 

supplemented with 0.85g (NH ) HPO , 2g potato starch, lg 

L-histidine, and 25 mg cyclohexamide (optional) per liter. After 

initial media screening, all isolations were made in modified PW broth. 

Isolates were subcultured on semi-solid modified PW medium (1.2% Bacto- 

agar) then maintained through biweekly transfer on serai-solid PD-4 

(Davis £t £l^. , 1980b). 

Isolations from stem segments were also made by disinfesting stem 

segments as described above and squeezing xylem fluids aseptically from 

stem segments with a hand vice (Davis e_t al^., 1980c). The droplet 

of xylem fluid was blotted onto the surface of semi-solid modified PW 

agar. 

Petiole and raidvein isolations were made using two techniques. Pet¬ 

ioles and midveins were trimmed from sampled leaves, then cut into 1-2 

cm segments. Segments were surface sterilized in 0.5% sodium hypochlor¬ 

ite for 2 min., followed by 3 rinses in sterile distilled water. Sap 

was expressed from each segment aseptically with a pliers then blotted 

onto semi-solid modified PW medium. Each segment was blotted onto the 

medium at six to eight sites. For the second technique, 5-8 surface 

sterilized petiole and midvein sections were placed in a sterile micro¬ 

centrifuge tube (1.5 ml) with 0.5 ml of sterile PBCM and centrifuged for 

2 min. at 15,600 x G in an Eppendorf Microfuge, Model 5412. Bacteria 

were resuspended by vortexing and aliquots were spot inoculated on the 

semi-solid modified PW medium. 
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Characterization 

Isolates were gram stained and tested for catalase and oxidase 

reactions. Ability to grow on common microbiological media was tested 

by streaking pure cultures of the ELS-bacterium on potato dextrose agar, 

King's medium B agar, and nutrient agar. All cultures were incubated in 

the dark at 28 C. 

Electron Microscopy 

Ten to fourteen day old colonies of the ELS-bacterium grown on 

semi-solid PD-2 medium (Davis £it al., 1980b) were overlaid with 0.8% 

agarose. Sandwiched colonies were removed from the plates, fixed in 

glutaraldehyde, sectioned, stained, and examined by transmission elec¬ 

tron microscopy as described by Sherald et^ al. (1983). Negative 

stains were made of preparations of the culture bacterium, as previously 

described (Sherald a_l., 1983). 

Serology 

Four New Zealand white rabbits weighing approximately 2 kg each 

were injected in pairs with either an isolate of the ELS-bacterium or 

the PD-bacterium (isolate VT1, provided by M. J. Davis, IFAS, University 

of Florida, Ft. Lauderdale, FL). Bacteria were grown in PD-2 broth (Dav¬ 

is e_t al. , 1980b) for 10 days at 28 C, harvested by centrifugation 

(15,000 rpm for 15 min.) and fixed for 24 hours in 2% formalin. Fixed 

bacteria were pelleted by centrifugation, as above, washed 3 times with 

9 
sterile PBS, and standardized at 1 x 10 cells per ml in PBS using a 

bacterial counting chamber (Hausser Scientific, Blue Ball, PA). Pre- 
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immune serum was collected via cardiac puncture prior to immunization. 

Each rabbit was intravenously injected with increasing dosages of 0.25, 

0.5, 1.0, 2.0, and 3.0 ml of antigen over a five day period. Rabbits 

were bled 1 week after the final injection. Gamma globulins were purif¬ 

ied by ammonium sulfate precipitation. 

Serological relationships between ELS-isolates and the PD-bacterium 

were studied using microagglutination, indirect immunofluorescent anti¬ 

body staining (IFAS), and agar gel double diffusion with antisera to an 

isolate of the ELS-bacterium and the PD-bacterium. Bacteria were prepar¬ 

ed for microagglutination by centrifuging (15,000 rpm for 15 min.) 10 

day old PD-2 broth cultures and reserving the pelletized cells. Cells 

g 
were washed 3 times with PBS and standardized as above to 1 x 10 

cells per ml. Microagglutination tests were performed for homologous 

and heterologous systems as described by Delatt (1976). 

Indirect IFAS was performed as described by Hearon et_ al. 

(1980). Block titrations of standardized bacterial concentrations (1 x 

g 
10 cells per ml; either ELS- or PD-bacterium) were performed with 

homologous and heterologous antisera to determine the optimum rabbit 

gamma globulin concentration. Fluorescein-conjugated goat anti-rabbit 

globulin was used at a 1:20 dilution in PBS. Serological relatedness 

was determined both for vacuum extracted bacteria (Hearon ^t al., 

1980) and for cultures (Sherald ejt al., 1983) of the PD-bacterium 

and isolates of the ELS-bacterium. Other bacteria tested included: 

Erwinia caratovora pv. carotovora 

Pseudomonas syringae pv. syringae 

Clavibacter michiganense pv. sepedonicum 
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Clavibacter xyli subsp. xyli 

Agrobacteriua radiobacter pv. tunefaciens 

Enterobacter cloacae 

Controls were treated with normal (pre—immune) serum or antiserum to the 

PD-bacterium provided by M. J. Davis. Indirect IFAS was used for screen¬ 

ing and identifying potential FXIB isolates. 

Antigens for gel double diffusion were prepared by sonicating the 

respective bacterial isolates (100 mg/ml in sterile PBS) for 10 min. at 

maximum output on a Sonifier Cell Disruptor, Model W105C (Heat Systems 

Co., Melville, NY) equipped with a microtip. Cells were sonified for 5, 

2 min., intervals in glass tubes containing glass beads (42 *p in dia.) 

to 1/3 the volume of the bacterial suspension. Tubes were immersed in a 

crushed ice/methanol bath during sonification. The ice-methanol bath 

was replaced after each 2 min. Bonification treatment. Sonified prepara¬ 

tions were heat-treated for 30 min. at 100 C. Glass beads and insoluble 

cell wall fragments were removed from the solubilized antigen prepara¬ 

tion by centrifugation (15,000 rpc for 15 min.) Antigen preparations 

were stored frozen at -20 C. 

Agarose gels (0.52 and 0.82) prepared in PBS, 0.01M Tris (pH 7.4) 

and distilled water were compared. Antigen was added at 0, 8, and 24 

hrs. prior to the undiluted homologous or heterologous antisera. Plates 

were incubated at room temperature in a moist chamber. 

Svstesic Distribution 
* ■ - 

Isolations were made throughout the canopy of an American elm (31 

cm dbh) severely affected with ELS (>902 of the canopy leaf area affect- 



52 

ed in August 1983). Stem segments were collected from 11 locations with¬ 

in the canopy and isolations were made by incubating aseptically excised 

wood chips in modified PW broth. Bole isolations (1 m above the soil 

line) were made in September 1983 by surface disinfesting the sampling 

site with 70% ethanol, then excising wood-bark wedges (approximately 2 

2 
cm x 1 cm deep) with a surface sterilized drywall hammer and mallet. 

Samples were removed with sterile forceps, placed in a sterile polyethyl¬ 

ene bag, and transported to the laboratory (Ecological Services Labor¬ 

atory, NPS, Washington, DC) where isolations were made immediately. 

Wood bark wedges were removed from the polyethylene bags and immersed 

for 15 sec. in 70% ethanol then flamed. Exposed wood and bark were 

trimmed aseptically to expose the unsterilized xylem beneath. Wood 

chips were excised from the xylem, placed in modified PW broth and 

incubated at 28 C. Tubes were examined at 4 to 7 day intervals for 

signs of bacterial growth. Root flare/soil line samples were collected 

and isolations made as described above. 

Root samples were collected by exposing roots (approximately 1-1.5 

cm in diameter x 30 cm in length), surface disinfesting the exposed 

roots with 70% ethanol and excising with disinfested pruning shears. Ex¬ 

cised roots were transported to the laboratory (ESL, NPS, Washington, 

DC) in sterile polyethylene bags. Roots were immersed in 0.5% NaOCl for 

10 min. then rinsed under running tap water for 30 min. After rinsing, 

root segments were cut into 15 cm long sections, placed in 70% ethanol 

for 30 sec., then flamed. Isolations were made aseptically from the vas¬ 

cular cylinder, as previously described (Sherald e_t al_., 1983). One 

wood chip was placed in each tube of modified PW broth in order to limit 
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contamination. After isolations were completed, root segments were vac¬ 

uum infiltrated with sterile PBCM and extracts were examined with phase 

contrast microscopy (1000X). 

Seasonal Recovery 

Six trees were selected for this study; 3 symptomless "healthy" 

trees and 3 ELS-affected trees. Each ELS-affected tree had more than 

70% of the canopy leaf area affected with ELS in 1981. Presence or 

absence of the ELS-bacterium was established previously for each of the 

6 trees (Hearon et_ a_l., 1980; Kostka e_t a\_,, 1981). 

Three stem segments were collected from each test tree on 11 samp¬ 

ling dates from February 1982 to July 1983. All trees were sampled on 

each sampling date. Stems that scorched the previous year were sampled 

in ELS-affected trees. Four wood chip isolations were made from each 

stem segment in modified PW broth from each of the stem samples for a 

total of 12 isolations per tree per sampling date. Occasionally an 

increased number of isolations were made. The ELS bacterium was iden¬ 

tified from cultures using phase contrast microscopy and indirect IFAS. 
# 

Graft Transmission 

Eight field grown American elms approximately 3 years old (ESL Nur¬ 

sery, Alexandria, VA) and free of ELS in 1981 were cleft grafted on 

March 22, 1982, with scion wood collected from ELS-affected trees repre¬ 

senting each of the 3 symptom types. Three control trees were grafted 

with scion wood collected from a symptoraless tree known to be free of 

the ELS-bac terium (Hearon et al., 1980; Kostka et £l^., 1981). 
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All scion wood was collected in January 1982 and stored at 5 C until 

March. Trees were pruned in March to reduce the number of leads. Scion 

wood segments approximately 15-25 cm in length with 4-6 buds were cut 

from collected stems. A tapered "V" was cut at the basal end of the seg¬ 

ment and inserted into an incision into the stock branch with the cam¬ 

bium of the stock and scion in contact. The scion was secured to the 

stock with grafting tape and coated with pruning compound to prevent des- 

sication. Each tree was grafted with 4-9 scions. Pruning shears and 

knife were surface sterilized with 70% ethanol between cuts. Scions 

were examined after 1 month, 2 months and 14 months to determine scion 

success and graft survival, respectively. Trees were monitored through 

the 1982 and 1983 growing seasons for symptom development. Date of 

initial symptom appearence and subsequent systemic development were 

recorded. Isolations were made from stem segments collected from symp¬ 

tomatic scions and systemically infected branches as previously describ¬ 

ed. In August and September 1983, isolations were made from all remain¬ 

ing viable scions. 

Pathogenicity Tests 

Five isolates representing each of the 3 ELS-symptora types, an isol¬ 

ate of the mulberry leaf scorch (MLS) bacterium, and an isolate of the 

PD bacterium were grown for 7-10 days on semi-solid PD-4 medium (Davis 

et al^., 1980b) to serve as inoculum. Bacteria were washed from 

g 
plates with sterile PBCM and standardized to a concentration of 10 - 

10^ cells per ml in PBCM using a bacterial counting chamber (Hausser 

Scientific, Blue Ball, PA). Control inoculum was prepared by washing un- 
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inoculated, sterile PD-4 plates with sterile PBCM for 2 min. The 

sterile PBCM served as the control inoculum. 

Healthy, greenhouse grown elm seedlings (125 two-year-old plants in 

3.8 L containers) were forced in the greenhouse in March 1982 (Florist 

and Nursery Crops Laboratory, USDA, Beltsville, MD). Seedlings were 

divided into 8 groups of 10 plants each and inoculated on May 18, 1982, 

with 1 of 5 isolates of the ELS-bacterium, the MLS-bacterium, the PD- 

bacterium, or sterile PBCM washings of uninoculated PD-4 plates. Seed¬ 

lings were unpotted and a major root was disinfested with 70% ethanol 

then severed with sterile pruning shears. The severed end of the attach¬ 

ed root was immediately connected with a segment of Tygon or latex tub¬ 

ing to a 10 ml pipette containing 10 ml of inoculum. Plants were repot¬ 

ted with the pipette attached, watered, then maintained under a reduced 

watering regime. 

On June 15, 1982, 25 two-year-old, greenhouse grown American elm 

seedlings in 3.8 L containers (Florist and Nursery Crops Lab., USDA, 

Beltsville, MD) were inoculated using an adaptation of the technique 

developed by Gardner and Kageler (1982) for the introduction of systemic 

herbicides into a severed branch. Seedlings were divided into 5 groups 

of 5 plants each, with each group inoculated with one of the 3 symptom 

type isolates, or control inoculum. Inoculum was prepared as above. 

Stems were disinfested with 70% ethanol then the apical end removed with 

a sterile pruning shears. A segment of Tygon tubing was immediately 

attached to the stem end and 1 ml of inoculum was placed in the tubing 

reservoir. Each seedling was inoculated at 2 sites. Twenty-five 3 year 

old seedlings in 11.2 L containers were inoculated as above, using 1 of 
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3 ELS isolates, the PD-bacterium or control inoculum. All 3-year-old 

seedlings were grown outdoors at the ESL Nursery in Alexandria, VA. 

Thirty field grown American elms, approximately 3 years old and 

10-12 cm dbh, (ESL Nursery, Alexandria, VA) and free of ELS in 1981 were 

inoculated on June 16, 1982 at five sites per tree and in the same man¬ 

ner as above. Six trees were inoculated per symptom type isolate of the 

ELS-bacterium, the PD-bacterium, or control inoculum. All inoculated 

trees were monitored monthly for symptom development. 

A combination of both root and branch inoculation techniques was 

used on potted greenhouse forced seedlings in May 1983. Bacterial inoc¬ 

ulum was prepared as above, except that all ELS-isolates had been in cul¬ 

ture through no more than 2 passages on PD-4 agar to limit any loss of 

virulence. Forty seedlings were divided into 4 groups of 10 seedlings 

each; each group inoculated with 1 of the 3 respective ELS symptom type 

isolates or with control inoculum. One ml of inoculum was introduced 

into the severed root of each plant, followed 4 days later by two cut 

branch inoculations (1 ml each) per plant. Plants were maintained in 

the greenhouse under reduced watering conditions. Root uptake of inoc¬ 

ulum was complete in 24 hours, while stem inoculum uptake required only 

6-8 hours. 

Elm seedlings (15-30 cm in length) and rooted grape cuttings were 

inoculated with suspensions of 1 of 5 isolates of the ELS-bacterium, the 

PD-bacterium, or control inoculum. Three methods were used with elm 

seedlings: syringe injection and two forms of wounded root inoculation. 

Grape seedlings were inoculated using syringe injection. Syringe inject¬ 

ed seedlings were inoculated at 3-4 sites along the stem by inserting a 
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28 gauge hypodermic syringe into the xylem and injecting the inoculum 

while withdrawing the syringe. For root inoculations, elm seedlings 

were removed from the potting mix, soil washed from the roots, and roots 

severed and immersed in inoculum for 24 hrs., then plants were repotted. 

For the second technique, soil was washed from the roots of unpotted 

plants, a major root severed, a segment of tubing attaced to the vascul¬ 

ar system, and 0.05-0.1 ml of inoculum placed in the tubing reservoir. 

Exposed roots were wrapped in wet paper towelling to prevent desicca¬ 

tion. After 4 hrs., plants were repotted and maintained under a reduced 

watering regime. 

All plants were monitored for symptom development for up to 16 

months. Isolations were made from apical stem segments of all inoculat¬ 

ed trees using modified PW broth and wood chip isolation. Sequential 

stem isolations were made from 20 trees root-inoculated in May 1982 and 

all of the 1983 root- and shoot-inoculated trees. Grape isolations were 

made using sap from crushed or centrifuged petiole/midrib sections. 

Results 

Isolation and Culture 

Under phase contrast microscopy (1000X), small rod-shaped bacteria 

(0.4-0.5 um x 1-3 urn in size) were observed in buffer extracts of 34 of 

48 ELS-affected trees. Darkened polar regions, as previously reported 

(Hearon e_t al^. , 1980), were observed at one or both ends of the or¬ 

ganism. Bacteria appeared singly, in pairs, or in clumps. Bacteria were 

not observed in multiple extracts from 21 symptoraless trees. 
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The ELS-bacterium was isolated in modified PW broth, from stem 

sections of 78 of 82 (95%) ELS-affected trees sampled over a 2 year 

period in the Washington, DC, area. Repeated isolations from 38 

symptomless trees did not yield the ELS-bacterium. Isolations on 

modified PW agar of expressed sap from stem segments or petiole/midveins 

of affected trees did not yield the bacterium even after 8 weeks 

incubation. 

Faint turbidity developed in modified PW broth cultures after 7-12 

days incubation and in S-8 medium after 10-14 days. in excess of 28 

days incubation time required for cultivation of the ELS-bacterium in 

PD-2 broth. Cultured bacteria examined under phase contrast microscopy 

(1000X) were approximately 0.4-0.5 in dia. and 1-10 j^m in length, 

with longest forms appearing in S-8 medium and PD-2 broth. Primary 

isolations in both media contained multiple, intertwined chains or 

aggregates of elongated cells, while in modified PW broth, cells were no 

longer than 6 urn and appeared singly, in pairs, or small aggregate 

clumps. Isolation effeciency was similar in both modified PW broth and 

S-8 medium. However, because of the elongate forms in S-8 medium, 

modified PW broth was selected as the isolation medium. 

Bacterial films developed from droplets of broth cultures placed on 

modified PW agar after 7-10 days incubation. Subcultures of bacterial 

films streaked on modified PW agar produced circular, buff white to yel¬ 

low, appressed colonies, 0.5-0.8 mm in diameter after 2 weeks incuba¬ 

tion. Once bacteria were established on modified PW agar, isolates were 

streaked onto PD-4 agar and produced discrete white, convex colonies 

with entire margins. Maximum colony size was 0.8 mm after 2 weeks incub- 
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ation. Cell size on modified PW agar or PD—4 agar as determined with 

phase contrast microscopy was 0.4-0.5 pjn in dia. x 1-6 pjn in length. 

Elongate forms were absent. Colonies on PD-4 left a slight indentation 

or pit in the medium when disloged, analagous to that produced by the PD- 

bacterium (Davis ^t al., 1980b). 

Characterization 

Isolates of the ELS-bacterium were gram-negative, catalase positve, 

and oxidase negative, in agreement with results of other FXIB (Davis 

et al., 1981b, Wells et al., 1983; Sherald e_t £l_., 1983; Dav¬ 

is £l^., 1983). None of the ELS-isolates tested grew on common 

microbiological media (nutrient agar, King's medium B agar, or potato 

dextrose agar) after up to 8 weeks incubation. 

Electron Microscopy 

Cultured ELS-bacteria strongly resembled the bacteria previously 

observed in ELS-affected elms (Hearon et al., 1980). Bacteria were 

rod-shaped, ranging in size from 0.3-0.4 wn in width x 1-6 Km in length 

with elongate forms commonly observed (Fig. 13). Multinuclear areas were 

evident in longitudinal sections of elongate forms. The presence of 

elongate, multinuclear forms suggests a repression of cell division. 

Nodulated, microtubule-like structures occurred in the interbacterial 

spaces of the colony (Fig. 13). Microtubules were identical to those 

observed surrounding bacteria within the xylem of affected tissues (Hear¬ 

on ejt al. , 1980). The presence of these structures in cultures of 

the ELS-bacterium indicates bacterial origin rather than host origin. 
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Fig. 13. Transmission electron micrograph of the elm 

leaf scorch bacterium from culture; note the microtubules in 

the matrix surrounding the cells. Scale bar = 1 ;*m. 
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Similar structures were observed in cultures of the sycamore leaf scorch 

bacterium (She raid ejt £1^ , 1983). 

Both ultrathin sections and negative stained bacteria demonstrated 

a rippled, extensively convoluted wall characteristic of gram negative 

bacteria (Fig. 13, 14). Individual cells with smooth walls were 

occasionally observed (Fig. 15). 

Serology 

Vacuum extracted and cultured bacteria were reacted initially with 

antiserum to the PD-bacterium (provided by M. J. Davis) in the immuno- 

fluorescent antibody staining test (IFAS) confirming that the extracted 

an cultured bacteria were FXIB and serologically related to the 

PD-bacterium (Fig. 16, Table 3). Rabbit antiserum prepared against 

cultured isolates of the ELS-bacterium and the PD-bacterium agglutinated 

g 
pure culture preparations (1 x 10 cells/ml in PBS) of the 

ELS-bacterium or the PD-bacterium at a titer of 640 for both the 

homologous and heterologous systems (Table 3). No reaction was obtained 

when either antiserum was reacted with E. cloacae or C. xyli. 
———————— 

No reaction was obtained when pre-immune serum was reacted with any of 

the above antigens. 

Indirect IFAS confirmed that the extracted bacteria and primary 

isolates were serologically related to the ELS-bacterium, to each other, 

and to the PD-bacterium (Table 3). No reaction was obtained when cells 

were reacted with pre-immune serum. All other species of phytopatho- 

genic bacteria tested were immunofluorescent negative to antiserum 

against the ELS-bacterium, the PD-bacterium, or pre-immune serum. 



Fig. 14. Transmission electron micrograph of a negative 

stained cell of the elm leaf scorch bacterium from culture; 

note the extensive convolutions of the cell wall. Scale bar = 

1 pjn. 
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Fig. 15. Transmission electron micrograph of the smooth 

wall variant of the elm leaf scorch bacterium occasionally 

observed in cultures. Arrows indicate microtubules. Scale 

bar = 1 ppi. 



Fig. 16. Positive indirect iramunofluorescent antibody 

staining reaction of the elm leaf scorch bacterium reacted 

with the homologous antiserum. 
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Endpoint indirect IFAS reactions with isolates of the ELS-bacterium 

g 
or the PD-bacterium (1 x 10 cell/ml) were obtained at antiserum dilu¬ 

tions of 1:32, for both the homologous and heterologous systems. Opti¬ 

mal fluorescence was obtained between 1:8 and 1:16 antiserum dilutions 

in sterile 0.01 M PBS. An antiserum dilution of 1:10 was used for the 

majority of the indirect IFAS tests. 

Sharpest precipitan bands in gel double diffusion were obtained in 

0.5% agarose to which solubilized antigens were added 24 hours prior to 

the undiluted antiserum. In 0.8% gels (antigen added 0, 8, or 24 hours 

prior to the antiserum) or 0.5% gels (antigen added 0 or 8 hours prior 

to the antiserum), precipitan bands developed immediately adjacent to 

the antigen wells indicating that the movement of soluble antigens was 

limited by the small gel pore space or that there was an antibody 

excess. Antiserum dilutions of 1/2, 1/4, and 1/8 had no affect on the 

position of the precipitan band, although band intensity decreased with 

increasing dilution. At 1/8 dilution, precipitan bands were only 

marginally discernable. 

Isolates of the ELS-bacterium were serologically identical to each 

other and to the PD-bacterium based on precipitan reactions obtained in 

the homologous and heterologous antigen/antibody combinations. A 

single, confluent precipitan band developed with solubilized antigens 

(ELS-isolates and the PD-bacterium) in 0.01 M Tris-buffered (pH 7.4) 

0.5% agarose. No differences in precipitan reaction occurred among or 

between isolates when reacted with the homologous or heterologous anti¬ 

sera (Fig. 17, 18). Precipitan bands in PBS-buffered and unbuffered 

agarose were analagous to reractions in Tris. However, a second, broad. 



Fig. 17. Gel double diffusion reaction of soluble anti¬ 

gens of isolates of the elm leaf scorch bacterium (ES6, ES7) 

and the Pierce's disease bacterium (PD) with antiserum against 

the ES6 isolate of the elm leaf scorch bacterium (AES). The 

well labelled "B" indicates a control well containing sterile 

buffer. 



Fig. 18. Gel double diffusion reaction of soluble anti¬ 

gens of isolates of the elm leaf scorch bacterium (ES6, ES7) 

and the Pierce's disease bacterium (PD) with antiserum against 

the VT1 isolate of the Pierce's disease bacterium (APD). The 

well labelled "B" indicates a control well containing sterile 

buffer. 
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diffuse non-specific band was also present. Occassionally, the non¬ 

specific band over-lapped or obscured the inner specific precipitan 

band. 

Systemic Distribution 

The ELS-bacterium was recovered from 8 of 10 branches sampled with¬ 

in the canopy. Vascular discoloration indicative of Dutch elm disease 

was observed in 1 of 6 bole samples, 1 of 3 root flare/soil line 

samples, and 1 of 4 roots sampled. Discolored tissues were confined to 

the southern quadrant of the tree. The ELS-bacterium was isolated from 

3 of 6 bole samples and 1 of 3 samples collected at the root flare/soil 

line interface. Of 16 isolations from the 4 root samples, none yielded 

the ELS-bacterium, due to contamination by other bacteria. The ELS- bac¬ 

terium was recovered in buffer extracts of each of the 4 roots and extra¬ 

cted bacteria were identified using indirect IFAS. 

Seasonal Recovery 

The ELS-bacterium was isolated from branches of symptomatic trees 

throughout the study period (Table 4). Bacterial isolation success was 

low in February and March 1982. However, all isolation attempts were 

successful in January and March of 1983, on a per tree basis. Over the 

11 sampling dates, a total of 57 isolation attempts were made from each 

tree. The ELS-bacterium was isolated from 21 of 57, 28 of 57, and 12 of 

57 isolation attempts from each of the respective ELS-affected trees 

(35.6% success overall. Isolations from symptomless trees were negative 

for the ELS-bacterium. 



TABLE 4. Seasonal isolation (1982-1983) of fastidious, xylera- 

inhabiting bacteria.from leaf scorch-affected and symptomless 
American elms growing in Washington, DC 

Sampling date*3 

Bacterial recoverv 

scorch-affected symptomless 

1982 February 23 1/3 0/3 
March 8 1/3 0/3 
J une 15 3/3 0/3 
July 14 2/3 0/3 
August 13 3/3 0/3 
September 21 1/3 0/3 
November 21 3/3 0/3 
December 6 3/3 0/3 

1983 January 26 3/3 0/3 

March 23 3/3 0/3 

July 12 3/3 0/3 

Six American elms were sampled throughout the course 
3 leaf scorch-affectd and 3 symptomless. The same 6 

sampled on each sampling date. 
At least 4 isolation attempts were made per tree per 

date. 

of the study; 
trees were 

sampling 



71 

Graft Transmission 

Scion survival was high 2 months after grafting in symptom Type I, 

Type II, and control scions (15 of 16, 4 of 5, and 11 of 14, respective¬ 

ly). Only 6 of 26 of the Type III scions survived. By July 1982, symp¬ 

toms appeared in 2 trees (#2,#7) grafted with scions from the symptom 

Type III tree (Table 5). Symptoms were well developed in the scions and 

several scorched leaves occurred on the stems beneath the grafts. Symp¬ 

toms were similar, but not identical to Type III symptoms in the source 

tree. The necrotic tissues appeared water-soaked and the necrosis on 

the adaxial surface was not a prominent brown color as in the source 

tree. Rather, affected tissues were a dull green-brown. The necrotic 

tissue on the underside of the leaf (abaxial surface) was a subdued, 

dark brown. The chlorotic halo between green and necrotic tissues was 

diffuse and often inconspicuous, appearing as a light green zone rather 

than a distinct yellow band. Affected leaves exhibited adaxial leaf 

curl. The ELS-bacterium was isolated from the symptomatic scions on 

both trees. 

By August 1982, more than 80% of the canopy leaf area of tree #2 

and 20% of the canopy leaf area of tree #7 were affected; necrosis in af¬ 

fected leaves extended to the midvein, and some of the affected leaves 

had abscised. Symptoms also appeared in 2 scions (symptom Type III 

source tree) grafted onto tree #3 (Table 5). Symptoms in tree #3 were 

limited to the scion and were the same as symptoms in tree #2 and #7. 

No symptoms occurred during 1982 in controls or trees grafted with 

scions from symptom Type I or symptom Type II trees. 
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In July 1983, systemic symptoms appeared in tree #2 (Type III scion- 

wood). ELS-affected foliage on both surviving scions abscised. Symp¬ 

toms in tree #7 were limited to the 1 remaining viable scion, while the 

single remaining viable scion on tree #7 was symptomless (Table 5). By 

August 23, nearly 100% of the canopy leaf area in tree #2 was affected 

with ELS. Systemic symptoms had developed in both tree #3 and tree #7 

(50% and 40% of the canopy leaf area, respectively). One symptom Type 

II scion grafted on tree #5 developed ELS symptoms. Symptoms were anal¬ 

ogous to those observed in the source tree. Necrotic tissue was undul¬ 

ating and separated from green tissue by a chlorotic halo. Leaf curl 

was both abaxial and adaxial and limited to 7 leaves on a single scion. 

The ELS-bacterium wes isolated from all symptomatic scions representing 

symptom Type I and symptom Type II as well as from systemically infected 

branches where present. Bacteria were not isolated from symptoraless 

branches in trees where symptoms did not expand beyond the scion. No 

further symptoms were observed in September 1983. 

Pathogenicity 

Root or stem inoculation of 2 or 3 year old potted elm seedlings 

with isolates of the ELS-bacterium, the MLS-bacterium, or the PD- 

bacterium did not induce leaf scorch symptoms up to 16 months after inoc¬ 

ulation (Table 6). Bacteria could not be reisolated from inoculated 

seedlings. Sequential stem isolation attempts made to 10 cm above the 

soil line of 20 inoculated seedlings also failed to yield FXIB. 

In July 1982, slightly more than 1 month after branch inoculation, 

leaf scorch symptoms appeared in 2 inoculated branches of a tree that 
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TABLE 6. Response of greenhouse grown American elm seedlings to inoculation with 
isolates of fastidious, xylem-inhabiting bacteria 

Inoculation Method Isolate/Symptom Type 

Ratio 

(diseased/inoculated) 

Severed root J98/I 0/10 

2 yr. old seedlings ES134/I 0/10 

ES6/II 0/10 

J357/III 0/10 

ES7/III 0/10 

VT1/PD-bac terium3 0/10 

MSI/MLS-bac terium 0/10 

Cut branch ES134/I 0/5 

2 yr. old seedlings ES6/II 0/5 

ES7/III 0/5 

Cut branch ESI34/I 0/5 

3 yr. old seedlings ES6/II 0/5 

* ES7/III 0/5 

VTl/PD-bacterium 0/5 

Severed root/cut branch Ana28/I 0/10 

2 yr. old seedlings ES6/II 0/10 

ES7/III 0/10 

a 
b 

VT1 

MSI 

is an 
is an 

isolate of 
isolate of 

the Pierce's disease bacterium (provided by M. 

the mulberry leaf scorch bacterium 

J. Davis) 
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had been inoculated with the PD-bacterium (Table 7). Each of the symp¬ 

tomatic branches had been inoculated with the PD bacterium. No symp¬ 

toms appeared in uninoculated branches. Affected foliage was necrotic 

(brown on the lower surface of the leaf and a gray, water-soaked appear¬ 

ing color on the upper leaf surface), leaves curled, and a faint chlor¬ 

otic halo occurred on the uppper leaf surface separating the necrotic 

from green tissues. By August, symptoms extended into adjacent uninoc¬ 

ulated branches and affected leaves abscised. Isolation from affected 

stems yielded a FXIB serologically related to the PD-bacterium and the 

ELS-bacterium by indirect IFAS. No other symptoms developed in inocu¬ 

lated, field-grown trees in 1982. In 1983, symptoms were more severe in 

the PD-inoculated tree, by August affecting nearly 100% of the canopy. 

FXIB were readily isolated from all stems sampled. 

Symptoms also appeared in August in 1 of 6 trees inoculated with 

isolate ES6, a symptom Type II isolate of the ELS-bacterium. Symptoms, 

however, were not in the inoculated branch, but rather, were in the next 

most adjacent branch. Symptoms were approximately 2 m from the inocula¬ 

tion site. FXIB were isolated from the affected branch, but not from 

the inoculated branch. None of the remaining 26 trees developed symp¬ 

toms by the end of the second growing season (1983) nor were FXIB iso¬ 

lated from inoculated branches. 

Two year old elm seedlings inoculated in May 1983 with newly cultur¬ 

ed isolates of the ELS-bacterium and by means of both cut branch and 

root inoculation, did not develop symptoms by January 1984 (Table 6). 

All trees were sacrificed in January and isolations made from sequential 

stem sections did not yield the ELS-bacterium. Control seedlings 



TABLE 7. Symptom development and bacterial reisolation in 3 yr. old field 

grown American elms inoculated with isolates of the elm leaf scorch bac¬ 

terium or the Pierce's disease (PD) bacterium 

Symptom Ratio Bacterial 

Inoculation Technique Isolate_Type_(diseased/healthy) Reisolation 

Branch inoculation ES134 I • 0/6 0/6 

3 yr. old field 

grown trees ES6 II 1/6 .1/6 

ES7 III 0/6 0/6 

VT1 PD-bacterium 1/6 1/6 

Buffer controls 0/6 0/6 
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TABLE 8. Symptom development in young American elm seedlings or rooted grape cuttings 

inoculated with 1 of 3 symptom type isolates of the elm leaf scorch bacterium or the 

Pierce's disease bacterium (PDB) 

Inoculation Method Isolate/Symptom Type Plant Inoculated 

Ratio 

(diseased/inoculated) 

Hypodermic ES134/I elm 0/10 

2 yr. old seedlings ES134/I grape 0/14 

ES6/II elm 0/10 

ES6/II grape 0/14 

ES7/III elm 0/10 

ES7/III grape 0/14 

VT1/PDB elm 0/10 

VT1/PDB grape 5/14 

Wounded Root ES134/I elm 0/10 

Immersion ES6/II elm 0/10 

ES7/III elm 0/10 

VT1/PDB elm 0/10 

Wounded Root ES134/I - elm 0/10 

small seedlings/ ES6/II elm 0/10 

inoculum reservoir ES7/III elm 0/10 

VT1/PDB elm 0/10 
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remained symptomless and free of FXIB. 

None of the 4-5 month old American elm seedlings inoculated by hypo¬ 

dermic injection, root immersion in bacterial suspensions, or with a 

small inoculum reservoir attached to a severed root developed leaf 

scorch symptoms (Table 8). FXIB were not recovered from any of the inoc¬ 

ulated seedlings. Rooted grape cuttings inoculated with isolates of the 

ELS-bacterium also failed to develop leaf scorch symptoms (Table 8). The 

ELS-bacterium was not isolated from inoculated elm seedlings six months 

or more after inoculation. The PD-bacterium was recovered from 5 of 14 

PD-inoculated grape plants (Table 8). However, none of the 5 plants had 

symptoms that could be differentiated from natural senesence symptoms 

that appeared in buffer inoculated controls or even uninoculated plants. 

Discussion 

Bacteria were consistently isolated from American elms naturally in¬ 

fected with elm leaf scorch, and cultured on an artificial medium devel¬ 

oped for FXIB. Initial isolation of the ELS-bacterium was achieved on 

all broth formulations of the culture media tested using the wood chip 

isolation technique (Sherald et al., 1983). However, bacteria isol¬ 

ated in modified PW broth grew more rapidily and were similar in size to 

bacteria in the xylem of ELS—affected leaves or in buffer extracts of 

stem segments than bacteria isolated in PD-2 or S-8 broth. The preval¬ 

ence of elongate bacterial cells in PD-2 and S-8 suggests that one or 

more necessary growth factors may be limiting in the medium. Similar 

elongate bacteria were encountered in early media developed for the isol 
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ation of the PD-bacterium (Davis j5t al.. , 1978b) and in isolation of 

the plum leaf scald and phony peach bacteria on BCYE medium (Wells et 

al. , 1981). Isolation techniques and semi-solid media used for isol¬ 

ation of other FXLB were unsuitable for isolation of the ELS-bacterium. 

The same isolation difficulties were observed with the sycamore leaf 

scorch bacterium (Sherald et al., 1983). 

Cultured bacteria were morphologically and ultrastructurally sim¬ 

ilar to FXLB isolated from PD-infected grapes and other hosts (Davis 

et al., 1978a, 1980b, 1980c, 1981a; Wells et al., 1981; Davis 

et al. , 1983; Wells jit aK , 1983). Serological studies con¬ 

firmed the relatedness among ELS isolates extracted from host tissues 

and in culture, as well as the relatedness of the isolated bacteria to 

the PD-bacterium. Indirect immunofluorescent antibody staining provided 

a rapid means of screening and identifying bacterial isolates as FXLB. 

Based on double gel diffusion studies, both the ELS isolates and the 

PD-bacterium are serologically identical. Although these studies 

indicate identity, other workers (Davis et_ , 1983, Wells e£ 

al. , 1983) have found that serological differences occur between FXIB 
# 

when studies are conducted using the enzyme-linked immunosorbent assay 

(ELIZA). Analysis of cell wall fatty acids also have demonstrated 

differences among these organisms (Wells jrt a_l., 1982). Based on 

fatty acid profiles, Wells ^t a^.(1982) grouped the ELS-bacterium 

with the PD-bacterium, which was distinguishable from the PLS- and 

PPD-bacteria. 

The systemic distribution of the ELS—bacterium within the host sup¬ 

ports the hypothesis that FXIB affect xylem transport. Extensive 
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colonization of the xylem throughout the canopy, bole, and roots of the 

tree will cause a reduction in xylem flow rates, vessel occlusion 

(Talboys, 1968, 1978; Beckman, 1980), and potentially embolism of 

invaded vessels (Zimmerman and McDonough, 1978). Colonization of the 

bole and roots also provides the bacterium with protected environments 

during periods of adverse climactic conditions, particularly extremely 

low temperatures. The recovery of viable bacteria from the canopy 

(branches <1 cm in dia.) throughout the dormant season indicates that 

the xylem environment suitably buffers low temperatures encountered 

during the winter months or that the bacteria are in a hypobiotic state. 
f 

In either case, distribution throughout the tree and survival of the 

bacteria in the canopy facilitates potential sites for bacterial 

migration into newly formed xylem in the spring. 

The success of graft transmission studies supports the role of FXIB 

as the causal agent of ELS and suggests that differences may exist be¬ 

tween symptom type isolates. The rapid development of ELS symptoms in 

scions from the most severe symptom type tree (Type III) and the sub¬ 

sequent development of symptoms in adjacent branches can be attributed 

to the Type III organism being more virulent than the Type I or Type II 

organisms or to the bacterial population in the Type III scions being at 

higher levels than bacteria in scions from trees with Type I or Type II 

symptoms. 

Pathogenicity studies failed to demonstrate conclusively the 

pathogenicity of the ELS-bacterium. In only 1 test did ELS symptoms 

develop in a tree inoculated with the ELS-bacterium. Symptoms occurred 

more than one year after inoculation in a field grown tree inoculated 
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bt the cut branch technique. Symptoms in the tree did not develop in 

the inoculated branch, but in a branch adjacent to the inoculated branch 

and more than 2 m from the inoculation site. The absence of symptoms 

and the ELS-bacterium in the inoculated branch brings the source of the 

observed infection into question. Rather than the observed symptoms 

being caused by the inoculated bacterium it is possible that the 

symptoms were due to natural infection. 

Manipulation of plant age, symptom type isolate, age of culture, 

and environmental conditions under which plants were maintained did not 

affect pathogenicity in any of the studies conducted. Failure to cause 

disease may be due to a juvenile resistance analogous to that encoun¬ 

tered in young American elm seedlings inoculated with Ceratocystis 

ulmi (Heybroek, 1957), avirulence of the isolates used, poor inocul¬ 

ation route, or absence of predisposing climatic or edaphic stresses. 

Although none of the ELS-isolates were pathogenic or recoverable 

from inoculated seedlings and trees, one isolate of the PD-bacterium did 

cause the development of leaf scorch symptoms in a branch inoculated 

field grown tree. The development of leaf scorch symptoms in this 

single tree suggests that the PI>-bacterium can cause ELS. However, none 

of the other trees inoculated with the PD-bacterium in this test or in 

greenhouse tests developed symptoms. Although pathogenicity of the 

ELS-bacterium has not been conclusively demonstrated, the consistent 

association of the FXIB with ELS, its relatedness to other FXIB, and 

the observed symptoms, isolate-related, graft-transmitted symptom 

variation have been established. 



CHAPTER V 

REMISSION OF BACTERIAL LEAF SCORCH SYMPTOMS 

THROUGH OXYTETRACYCLINE MICROINJECTION 

Introduction 

Tetracycline antibiotics block protein synthesis in prokaryotes and 

have been used to control diseases caused by mycoplasma-like organisms 

(McCoy, 1982). These materials, applied as a soil drench, have been used 

to demonstrate the involvement of fastidious, xylem-1imited bacteria in 

Pierce's disease of grape (Hopkins and Mortensen, 1971; Hopkins and Mol- 

lenhauer, 1973) and citrus young tree decline (Tucker e£ al. , 1974). 

Nyland (1979) demonstrated that oxytetracycline injected into the 

xylem of leaf scorch-affected almonds could serve as a therapeutic con¬ 

trol . 

Fastidious, xylem-limited bacteria have been associated with elm 

and oak leaf scorch (Hearon e_t £_1. , 1980) and have been shown to be 

the cause of sycamore leaf scorch (Sherald ej: £l^. , 1983) and mul¬ 

berry leaf scorch (Kostka et_ al^. , 1983). Although the elm leaf 

scorch-associated bacterium has been cultured on artificial media, patho¬ 

genicity has not been demonstrated (Kostka £t al., 1981; S. Kostka, 

unpublished data.) 

The objective of this study was to determine if injection of oxy¬ 

tetracycline (OTC) into the xylem of leaf scorch-affected American elms 

would cause a remission of symptoms. 

82 
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Materials and Methods 

Naturally infected American elms (Ulmus americana L.), 2 to 6 m 

in height, were selected for treatment. All trees were growing in 

naturalized sites in Washington, DC. Symptom expression was initially 

evaluated in August 1982. Isolations were made from all selected trees 

by incubating aseptically excised wood chips in a modified PW broth 

(Sherald e_t al^. , 1983) or by vacuum extracting bacteria from stem 

segments and confirming their presence using phase contrast microscopy 

(French et aK , 1977a; Hearon e_t al., 1980; Sherald et^ al_. , 

1983). 

Two microinjection techniques were selected for introduction of oxy- 

tetracycline (OTC)(Terramycin Tree Injection Formula, Pfizer Chemical 

Company): 1) Mauget capsules (McIntyre e_t £l_, 1978; McCoy, 1982) or 

2) the pipette injection technique (Lacy and McIntyre, 1978) developed 

for the introduction of antibiotics into pears with pear decline. Basal 

oxytetracycline levels were established from the rates developed for con¬ 

trol of elm phloem necrosis (Filer, 1976). Trees were treated in August 

1982 and June 1983. 

Eleven trees (approx. 12 cm dbh) were selected in 1982 for treat¬ 

ment using Mauget capsules (provided by J. J. Mauget Co.). OTC (Terra¬ 

mycin Tree Injection Formula) was solubilized in distilled water to a 

concentration of 50 mg a.i./ml. Capsules were manually filled so that 

each tree would receive 500 mg a.i. OTC (3 capsules per tree). Trees 

were treated in August 1982 using recommended Mauget injection tech¬ 

niques. Capsules containing 4 ml of a 2% a.i. OTC suspension were sup 
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plied by J. J. Mauget Co. for June 1983 treatments. Trees were injected 

in 1983 with 600 mg a.i. OTC. 

Two treatment levels (40 mg a.i./cm dbh and 80 mg a.i./cm dbh) were 

used with the pipette injection technique. Antibiotic suspensions were 

prepared in distilled water as above. Trees ranged from 10-25 cm dbh. 

Fourteen trees were treated at the 40 mg a.i./cm level and 8 at the 80 

mg a.i./cm level. Mauget capsules containing 4 ml of 2% a.i. OTC were 

used in all June 1983 treatments. Use of prefilled Mauget capsules caus¬ 

ed an adjustment of OTC levels in 1983. Ten leaf scorch-affected Americ¬ 

an elms served as untreated controls. The success or failure of treat¬ 

ments was based on the following observations: 

1) Presence or absence of symptoms in August 1983 

2) Date on which first symptoms appeared 

3) Degree of symptom remission 

Results 

Initial symptom development was observable in the sites in June of 

1982. By August, symptoms were well developed. Symptoms in selected 

trees ranged from 10 to 90 percent of the total leaf area of the canopy. 

The presence of bacteria in symptomatic trees was confirmed by isol¬ 

ation and/or buffer extraction of stem segments and microscopic observa¬ 

tion of bacteria in extracts. 

Uptake times for antibiotic solutions was approximately 24 hours 

for the August 1982 treatments and less than 4 hours for the June 1983 

treatments. The pipette injection technique was eliminated in 1983 for 
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several reasons: 1) leakage around the pipette and 2) the excessive 

depth required for the injection hole to securely hold the pipette. 

By mid-July 1983, 7 of 10 control trees were exhibiting leaf scorch 

symptoms (Table 9). Symptoms were extensive in two of the trees and 

limited in the remaining five. Symptoms were observed in 1 of 24 trees 

injected at the low OTC levels (IX) and 1 of 6 trees injected at the 

high OTC level (2X). Although symptoms developed in three of the 

treated trees, the majority were symptomless in July. 

In August, all trees were rated for presence and severity of symp¬ 

toms (Table 10). Percent total leaf area affected in untreated, control 

trees was equivalent to or increased above 1982 levels. Fourteen of the 

scorch-affected elms treated at the IX levels showed a complete remis¬ 

sion of symptoms. Of the remaining 11 trees, a reduction in symptoms 

was observed in 8, while increased symptoms were observed in 1. Two of 

the 11 trees died from Dutch elm disease prior to the final rating and 

were dropped from the study. A complete or near complete remission of 

symptoms was observed in treated trees which had 20 percent or less of 

the total leaf area exhibiting leaf scorch in 1982 (Table 11). Results 

from trees treated at the 2X level were inconsistent. Three trees had 

substantially reduced symptoms and three were unchanged from 1982. Two 

trees were accidently removed and were dropped from the study. 

Discussion 

When the rules of proof (Koch's postulates) can not be fulfilled 

with a fastidious prokaryote (i.e., the fastidious, xylem-inhabiting bac 
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TABLE 11. Percent leaf scorch symptoms in oxytetracycline-treated (IX) American elms 
before treatment (1982) and after treatment (1983) 

TREE # 

0-10Z TLA3 
Symptoms 

TREE * 

11-20Z TLA 
Symptoms 

TREE # 

21-50Z TLA 
Symptoms 

TREE # 

51-100Z TLA 
Symptoms 

1982 1983 1982 1983 1982 1983 1982 1983 

1 10 0 8 20 0 3 50 DEDb 18 >95 «10 
2 10 «10C 9A 20 0 5 >30 DED 23 >80 30 

4 <10 0 10 >10 <10 9 >25 <10 - 

6 10 0 12 >10 «10 19 >20 •70 

7 10 0 13 >10 0 20 >30 70 

11 10 0 24 20 «10 21 >20 <10. 

14 <10 0 25 20 0 

15 10 - 0 

16 10 0 

17 <10 0 

22 <10 0 

* TLA * Total Leaf Area 
Tree killed by Dutch elm disease 
«10 = Negligible symptoms 
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terium), an important step in confirming the involvement of the organism 

in disease is the remission of disease symptoms through antibiotic treat¬ 

ment (Hopkins and Mortensen, 1971; Nyland, 1979; McCoy, 1982) Oxytetra- 

cycline injected into the xylem of American elms affected with bacterial 

leaf scorch delayed symptom onset and suppressed symptom development. 

Optimal results were obtained when less than 20% of the canopy leaf area 

was affected prior to treatment. Results in trees with more than 21% of 

the canopy leaf area affected were inconsistent at either OTC dosage. 

The development of symptoms in treated trees was not unexpected based up¬ 

on previous OTC injection studies of almond trees affected with almond 

leaf scorch (Nyland, 1979). Inconsistent symptom remission may be due 

to inadequate distribution or final concentration of the antibiotic in 

the xylem to inhibit bacterial growth. 

The observed delay in the onset of symptoms and the complete or par¬ 

tial symptom remission that occurred in treated trees supports the role 

of an OTC-sensitive organism (i.e., the fastidious, intra-xylem bacter¬ 

ium) as the causal agent of elm leaf scorch. Although OTC induced symp¬ 

tom remission, its applicability as a therapeutic control requires fur¬ 

ther study to determine long-term control and potential phytotoxicity of 

the antibiotic in treated trees. 



CHAPTER VI 

EFFECTS OF ELM LEAF SCORCH ON HOST PHYSIOLOGY 

Introduction 

Few studies have been conducted to define the effects of fastid¬ 

ious, xylem-inhabiting bacteria on the physiology of infected plants. 

Those studies that have been conducted have dealt with general observa¬ 

tions on growth respones, such as plant height or yield (Pierce, 1892; 

Hutchins, 1933), cold injury (Daniell and Krewer, 1981), rooting (Krewer 

e£ al^., 1981), and effects on elemental concentrations in diseased 

plants (Smith, 1974; Wutscher e_t , 1977; Wutscher and Hardesty, 

1979; Evert et al., 1981). Water uptake and dye distribution have 

been shown to be restricted in the bole, roots, and small stems of 

citrus trees affected with citrus blight (Cohen, 1974; Young et al., 

1979; Young, 1980). 

Vascular diseases are a group in which the pathogen exerts its pri¬ 

mary effect on water relations in the suscept. The pathogen is located 

in the vascular elements at least during the early stages of patho¬ 

genesis, but may invade other tissues at later stages (Kenaga, 1974). 

Blockage of the xylem and resultant water deficits are characteristic of 

wilt diseases and are responsible for most if not all of the observed 

symptoms (Kenaga, 1974; Agrios, 1978). 

Symptoms of vascular wilt diseases are manifested by a sudden wilt¬ 

ing and collapse of leaves while still green and a failure of the affect¬ 

ed leaves to abscise (Talboys, 1968; Kenaga, 1974; Agrios, 1978) Sub- 

90 
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sequent symptoms include shoot and branch dieback and commonly culminate 

in plant death* Pathogens that induce subacute water stress induce fol¬ 

iar chlorosis and necrosis and premature leaf abscission (Talboys, 

1968). Bacterial leaf scorch symptoms are similar to symptoms of plants 

undergoing subacute water stress. 

This report describes the effects of elm leaf scorch (ELS) on the 

following parameters: stem elongation, leaf size, stem hydraulic 

conductivity, xylera dysfunction and occlusion, stem water potential, and 

stem starch content. 

Materials and Methods 

Stem Elongation 

Effects of ELS on stem terminal elongation were determined in March 

1983 by measuring 1982 shoot lengths in 10 ELS-affected and 10 symptom¬ 

less American elms in Washington, DC. Trees ranged in size from 20-80 

cm dbh. Ten shoots were measured at branch apices in the upper canopy 

using an aerial platform. Elongation measurements were made in the 

upper canopy in order to limit the effects of light competition on stem 

elongation. 

Leaf Size 

Leaf sizes were compared in the same trees in June 1983. Five 

branches were sampled randomly per tree and 5 fully expanded leaves from 

the lower portion of each shoot were collected. Leaf area measurements 
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were made using a portable area meter (Lambda Instruments Corp., 

Lincoln, NE). 

Stem Hydraulic Conductivity 

Comparisons of stem hydraulic conductivity were made monthly 

between ELS-affected and symptomless trees from June to September of 

1983. Three stems were collected randomly from within the canopy of 

each of 13 ELS-affeceted and 10 symptomless trees in Washington, DC. In 

September, only 12 ELS-affected trees were sampled due to the removal of 

1 tree. Stems were cut into segments (approximately 15 cm in length), 

brought into the laboratory, and vacuum infiltrated with a sterile 

phosphate-buffered citrate magnesium solution (Davis et al., 1980c) 

at 2 atmospheres vacuum for a maximum of 2 min. (120 sec.), as pre¬ 

viously described (Hearon et al., 1980). Buffer volumes were propor¬ 

tional to the volume of the vascular cylinder. 

Xylem Dysfunction/Occlusion 

Stem segments (0.5 cm in dia. x 10 cm in length) from 10 ELS- 

affected and 10 symptomless elms were vacuum infiltrated with a 0.01% 

aqueous crystal violet solution. Three stems were collected randomly 

from selected trees growing in Washington, DC, in September 1983 and 

stored under refrigeration in polyethylene bags. All measurements were 

made within 4 days of sampling. Stem segments were connected to a dye 

reservoir in normal sap flow orientation and infiltrated under 3/4 

atmosphere vacuum (Young, 1980) for a maximum of 3 min. Three segments 

were measure per tree. After infiltration, stems were cut at 0.5, 2.5, 
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5.0, 7.5, and 9.5 cm and the number of stained vessels counted. Dye 

infiltration rates were measured for each stem segment. The mean of the 

infiltration rates and the number of dye stained vessels at each stem 

level were determined for the 3 stems and each mean was assigned to the 

respective tree sampled. 

Stem Water Potential 

Stem water potential was measured monthly from June to September 

1983 using a pressure bomb and techniques described by Scholander et_ 

al. (1965). Three randomly selected apical shoots with 3-5 leaves 

attached were measured within 2 rain, of collection per tree per sampling 

date. From June to August, stem water potentials were measured on each 

sampling date in 13 ELS-affected and 10 symptomless trees. In Septem¬ 

ber, stem water potential was measured in 7 ELS-affected and 7 symptom- 

less trees. 

Stem Starch Analysis 

Ten ELS-affected and 9 symptoraless American elms were selected for 

analysis of stem starch content. In November 1982, stem samples were 

collected randomly from within the canopy, cut into 15-20 cm lengths and 

transported to Amherst, MA, at 0 C. Stems were stored at -20 C. 

One stem from each of the 3 sampled branches was thawed and 

sectioned with a pruning shears into segments (approximately 0.5 cm 

thick) and stained with an iodine-potassium iodide solution (Wargo, 

1975; Carroll et al., 1983). The surface to be stained was trimmed 



94 

with a razor prior to sectioning to provide a smooth surface for uniform 

stain penetration. Three segments from each stem were stained; a total 

of 9 segments per tree. After staining, stem segments were coated with 

glycerin to prevent drying. Each stained segment was examined with a di- 

secting microscope and visually scored for starch content as high = 3, 

medium = 2, low = 1, or depleted =0. All segments were rated by 3 

individuals to avoid in ratings. The mean of the ratings was the 

numerical starch value given to each tree. 

Results 

Terminal Elongation and Leaf Size 

Elm leaf scorch caused a reduction in terminal elongation in affect¬ 

ed trees in comaprison to symptomless trees. The mean stem elongation 

in the 10 ELS-affected trees was 27.7 cm while in symptomless trees was 

42.9 cm. Statistical analysis of data using analysis of variance 

(ANOVA) indicated a significant difference (P=.05) in stem elongation be¬ 

tween ELS-affected and symptomless trees. Elm leaf scorch did not cause 

a significant reduction in leaf size between diseased and symptomless 

2 2 
trees (40.5 cm versus 44.5 cm ). 

Stem Hydraulic Conductivity 

Stem hydraulic conductivity in ELS-affected trees decreased over 

2 
the 4 monthly measurement dates (0.077 ml/rain/mm to 0.039 ml/min/ 

2 
ram ) while hydraulic conductivity for symptomless trees increased over 

2 2 
the same period (0.112 ml/min/mm to 0.14 ml/min/mm ) (Fig. 19). 



95 

SAMPLING DATE 

Fig. 19. Mean stem hydraulic conductivity in leaf 

scorch-affected and symptomless American elms sampled in 

Washington, DC, in 1983. Values with the same letter are not 

significantly different according to analysis of variance 

(P=0.05). Each data point represents the mean of the number 

of stained vessels in segments from 10 trees. 
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Statistical analysis (ANOVA) showed no significant difference in June 

hydraulic conductivity between (pre-symptomatic) ELS-affected trees and 

symptoraless trees. The means for stem hydraulic conductivity were sig¬ 

nificantly different between ELS-affected and symptomless trees in July 

(P=.05), August (P=.01), and September (P=.01)(Fig. 19). The decrease 

in hydraulic conductivity in diseased trees over the summer months 

indicates a reduced efficiency of the xylem in diseased trees. The 

restricted flow through the xylem supports the hypothesis that bacterial 

infection causes xylem occlusion in trees with ELS. (Hopkins, 1977, 

1981). 

Xylem Dysfunction/Occlusion 

Dye conductance rates of 0.14 ml/min in stems of ELS-affected trees 

were significantly different (ANOVA, P=0.05) from conductance rates in 

stem segments from symptomless trees (Table 12). Numbers of stained 

vessels, representing functional conducting vessels, were consistently 

higher in symptoraless elms than in ELS-affected trees (Table 12). 

Statistical analysis of data (ANOVA) demonstrated a highly significant 

difference (P=0.01) between the number of functional vessels in 

ELS-affected and symptomless trees in the stem sections cut at 0.5, 5.0, 

7.5, and 9.5 cm, but not significant at 2.5 cm.(Table 12). The observed 

decrease in functional vessels over the length of the stem and the 

significant difference in stained vessels between diseased and 

symptoraless trees was anticipated if tissues were extensively inhabited 

or occluded by the ELS-bacterium or products of pathogenesis. 
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TABLE 12. Differences in dye conductance and 

leaf scorch-affected and symptomless American 

vessel staining in elm 

elms in Washington, DC 

Crown 

Condition 

Dye Conductance 

ml/min. (P=.05) 

Number stained vessels/segment level* 

0.5 2.5 5.0 7.5 9.5 

Leaf scorch- 0.14 a** 211 a 70 a 22 a 13 a 10 a 

affected 

Symptomless 0.40 b 380 b 132 a 69 b 52 b 41 b 

* Five sections were cut from the infiltrated stem at 0.5, 2.5, 5.0, 

7.5, and 9.5 cm and number of stained vessels counted. Each value is 

the mean of 10 trees. For each variable, values with a common letter 

are not significant according to analysis of variance (P = 0.01). 

** Each value is the mean of 10 trees. For each variable, values with a 

common letter are not significant according to analysis of variance 

(P = 0.05). 
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Stem Water Potential 

Stem water potential patterns paralleled xylem infiltration results 

(Fig. 20). Analysis of data using ANOVA failed to show any significant 

difference between means of ELS-affected and syraptoraless trees prior to 

symptom development (June). Once symptoms developed in July, a signif¬ 

icant difference (P=.05) was observed between ELS-affected and symptom¬ 

less trees. As symptoms became more severe in August and September, the 

water potential became lower (more negative) in ELS-affected trees and 

highly significant differences between stem water potentials in diseased 

and symptomless trees became more apparent (P=.01)(Fig. 20). 

Stem Starch Analysis 

Mean stem starch levels were higher in the canopy of symptomless 

American elms than in ELS-affected trees (Table 13). Statistical anal¬ 

ysis (ANOVA) of data indicated that mean stem starch levels in ELS- 

affected trees were significantly different from starch levels in symp¬ 

tomless trees. Based on the 27 ratings per tree, stem starch means rang¬ 

ed from 1.67 to 2.89 in symptoraless trees and from 0.55 to 2.67 in ELS- 

affected trees (Table 13). Stem starch levels in ELS-affected trees did 

not correspond consistently with the crown condition. ELS symptoms were 

extensive in tree B215 and tree J26 (75% and 90+% of the canopy leaf 

area affected in each tree, respectively) but stem starch ratings were 

high (2.56 and 2.0, respectively)(Table 13). 
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leaf scorch- 
ffected 

symptomless 

SAMPLING DATE 

Fig. 20. Mean stem water potentials in leaf scorch- 

affected and symptomless American elms sampled in Washington, 

DC, in 1983. Values with the same letter are not significant¬ 

ly different according to analysis of variance (P=0.05). Each 
data point represents the mean of 3 readings from each of at 

least 7 trees. 



TABLE 13. Crown condition, canopy leaf area with elm leaf scorch symptoms, 

and mean stem starch ratings in symptomless and elm leaf scorch-affected 

American elmsa in Washington, DC, in 1983 

Tree number Crown condition 

Percent Canopy 

Leaf Area Affected Stem Starch Rating 

EC4 symptomless 0 2.33 

EC139 
II 0 2.67 

J21 
II 0 1.67 

J27 II 0 2.11 

J181 II 0 2.33 

J200 
II 0 2.44' 

J211 
II 0 2.89 

J213 
II 0 2.89 

J217 II 0 2.22 

ES6 scorching 90+ 0.55 

ES7 
II 100 0.66 

ES134 
II 80 2.67 

B169 
M 80 2.22 

B215 
II 75 2.56 

147 II 75 0.78 

J26 
II 80+ 2.00 

J28 II 10 2.22 

J174 
II* 20 1.33 

J208 
II 90 1.67 

All sampled trees were 20-80 cm dbh and located in turfed areas in 

a park or adjacent to roadways. 
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Discussion 

Elm leaf scorch deleteriously affects stem growth, xylem function, 

water relations, and stem starch reserves in affected trees. All of the 

symptoms and growth responses observed in ELS-affected trees can be 

attributed, at least in part, to water stress. The stem water potential 

data presented confirm that diseased plants were growing under a water 

deficit which could be attributed to xylem dysfunction and occlusion. 

Xylem dysfunction and occlusion may be due to physical occlusion of 

the xylem by bacterial cells (Wallis and Truter, 1978), accumulation of 

bacterial produced polysaccharides (Strobel, 1967; Strobel et al., 

1972; Van Alfen and Allard-Turner, 1978), or host production of gels, 

gums, and tyloses in response to infection (Beckman and Halraos, 1962; 

Talboys, 1968; Beckman, 1969; Robb _e£ a_l., 1975; Vander Molen £t^ 

al. , 1977; Wallis, 1977). Zimmerman and McDonough (1978) have suggest¬ 

ed that host—produced occlusive materials may be produced in response to 

pathogen—induced xylem embolism. Hearon e_t a_l. (1980) observed bac¬ 

terial occlusions associated with gels or gums and tyloses in vessels of 

American elms, sycamores, and red oaks with leaf scorch. 

The site of xylem occlusion in the plant vascular system determines 

the degree of effects on xylem water relations. If an infection occur¬ 

red in the stem of a suscept, a relatively small change in water poten 

tial would result (Dimond, 1966; Duniway, 1973). However if the occlu¬ 

sion occurred in the petiole, there would be no alternative pathways for 

water translocation and water potentials low enough to cause wilting and 

death could be induced. Should massive occlusion of the xylem in the 
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stem occur, the outcome would be the death of the entire plant. If sub¬ 

acute water stress as described by Talboys (1968) is occurring in trees 

with ELS, it would account for the observed leaf scorch symptoms. 

Plants growing under stress conditions have reduced starch reserves 

(Wargo jrt £l^., 1972; Carroll e_t a_l., 1983) and decreased growth 

(Boyer, 1973; Hsiao, 1973; Kramer and Kozlowski, 1979; Carroll £t 

al. , 1983). This study demonstrates a reduction in stem starch 

content in ELS-affected trees in comparison to symptomless elms as well 

as a reduction in stem elongation. Decreased stem growth can cause a 

decrease in the total number of leaves produced on the stem. Leaf 

scorch decreases the total functional photosynthetic area of affected 

leaves and due to premature abscision and decreased stem elongation, 

there are fewer photosynthetic units (leaves), thus causing a reduction 

in the net seasonal photosynthate (sugars) produced. A reduction in the 

photosynthetic capacity causes a reduction in the net photosynthate 

available for conversion to starch for storage. 

The reduction in stored root starch in stressed trees deleteriously 

affects plant growth and survival (Wargo £t: al^., 1972; Carroll et^ 

al., 1983). Once plants reach a depleted or near depleted level of 

stored root starch, stored energy for bud development and expansion and 

stem elongation becomes limiting and may lead to tree death. Although 

root starch levels have not been monitored in ELS—affected elms, a sim¬ 

ilar situation appears to exist with regard to stem starch content and 

branch dieback. 



CHAPTER VII 

MULBERRY LEAF SCORCH: A NEW DISEASE 

CAUSED BY A FASTIDIOUS, XYLEM-INHABITING BACTERIUM 

Introduction 

Mid-summer leaf scorch is a common problem of deciduous trees in 

the mid-Atlantic and southern states. Leaf scorch disorders have been 

attributed commonly to a number of abiotic stresses, particularly 

drought (Tattar, 1978). In 1980, a novel group of fastidious, 

xylem-limited bacteria (FXLB) were associated with leaf scorch diseases 

of American elm, sycamore, and red oak (Hearon et. al., 1980). The 

associated bacteria were morphologically similar to and serologically 

related to the FXLB that causes alnrond leaf scorch and Pierce's disease 

(PD) of bunch grapes (Hearon et: al., 1980; Sherald e_t al., 

1983). Recently, Koch's postulates were satisfied for the bacterium 

cultured from leaf scorch-affected sycamores (Sherald jet aj^. , 1983). 

While surveying shade trees for the above mentioned diseases, 

numerous red mulberries (Morus rubra L.) were observed that 

exhibited leaf scorch symptoms. In this paper, we describe: 1) the 

symptoms and distribution of mulberry leaf scorch (MLS) in the eastern 

United States, 2) the isolation and culture of a bacterium from 

diseased trees, 3) the pathogenicity of three isolates of the 

bacterium, and 4) morphological similarities and serological 

relatedness of the MLS-bacterium to other FXLB. Preliminary reports 

have been published (Kostka £t^ aK, 1982, 1983). 
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Materials and Methods 

Symptomatology and Distribution 

Leaf scorch-affected mulberries in the Washington, DC area were 

monitored monthly throughout the 1982 and 1983 growing seasons to follow 

symptom development. In August 1983, a natural population of red 

mulberries along 3 km of the George Washington Memorial Parkway in 

Alexandria, VA (a Washington, DC suburb) was surveyed to determine the 

incidence of MLS. 

In August 1983, mulberries growing in both rural and urban roadside 

and natural sites were surveyed from northern Virginia through the 

eastern mid-Atlantic States to the northern range of red mulberry in 

southern New England to determine disease distribution. 

Isolation and Culture 

Stem samples were collected from 22 leaf scorch-affected and 19 

symptoraless red mulberries in Washington, DC and Arlington, VA. Sampled 

plants ranged from seedlings (1 m in height) to mature trees. Presence 

of xylem-inhabiting bacteria in collected stem segments was determined 

by infiltration of stem segments (0.5-1.0 cm X 8.0 cm) with sterile 

distilled water and examination of the extracts by phase contrast 

microscopy (French e_t al., 1977a). 

For bacterial isolation, stem segments (1 cm X 15-20 cm) were 

rinsed in 70% ethanol and flamed. Bark was removed aseptically and 2-3 

wood chips (0.5 cm X 1—2 cm) were excised and placed in 10 ml of a broth 
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formulation of periwinkle wilt medium (PW) (Davis £t al., 1981a) 

supplemented with 0.85 g (NH^HPO^, 2 g soluble potato starch, 1 

g L-histidine, and 25 mg cyclohexaraide per liter (Sherald et al., 

1983). Cultures were incubated in the dark at 28 C and examined for 

turbidity daily for up to 7 days then at 4-7 day intervals. 

Isolations from petioles were made on semi-solid PD-4 (Davis et 

al., 1980b) and modified PW agar plates using a petiole centrifugation 

technique or a crushed petiole technique modified from studies on PD and 

almond leaf scorch (Davis et al., 1980b, 1980c). Leaves were 

collected from symptomatic and symptomless trees, petioles excised and 

disinfested for 2 min. in a 0.5% sodium hypochlorite solution, then 

rinsed twice in sterile distilled water. Sap was extracted by placing 

1.0-1.5 cm petiole segments in 0.5 ml of a sterile, phosphate-buffered 

citrate-magnesium solution (PBCM)(Davis et al., 1980b) and 

centrifuged for 2 min. at 15,600 x G in an Eppendorf Microfuge Model 

5412. Bacteria were resuspended by vortexing and 0.05 ml aliquots were 

placed as droplets on semi-solid media. For crushed petiole extraction, 

petioles were disinfested as above and aseptically cut into segments. 

Segments were crushed aseptically with a pliers and the droplet adhering 

to the petiole segment was blotted onto the semi-solid medium. After 

initial isolation, all isolates were maintained through biweekly 

transfer on semi-solid PD-4 medium. 

Isolates were tested for their ability to grow on the following 

common microbiological media: nutrient agar, King's medium B agar, 

potato dextrose agar, yeast dextrose calcium carbonate agar (YDC), D-l 

agar, and crystal violet polypectate agar (CVP). All cultures were 
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incubated in the dark at 28 C. Preliminary screening of all isolates 

was made using phase contrast microscopy (1000X) for the presence of 

rod-shaped cells similar to other FXLB. Selected isolates were tested 

for Gram stain and catalase and oxidase reactions. 

Serology 

The serological relatedness of isolated bacteria to other FXLB was 

determined using indirect immunofluorescent antibody staining (IFAS) 

(Goldman, 1968; Hearon al., 1980) and antisera prepared against 

whole cell preparations of the PD- and ELS-bacteria (S. Kostka, 

unpublished). Cultures of the PD-bacterium and the ELS-bacterium were 

treated in the same manner. Control slides were reacted with rabbit 

pre-immune serum. 

Pathogenicity Tests 

Three isolates obtained in September 1982 from scorch-affected 

mulberries in the Washington, DC area were selected for pathogenicity 

tests. Bacterial colonies grown for 7-10 days on semi-solid PD-4, were 

washed from the agar, suspended by vortexing in sterile PBCH. Cells 

8 9 
were standardized to 1 X 10 -10 cells per milliliter using a 

bacterial counting chamber (Hausser Scientific, Blue Ball, PA). In 

January 1983, 12 greenhouse grown, potted mulberry seedlings, 

approximately 50 cm tall were inoculated. Each isolate was inoculated 

into four seedlings using three inoculation techniques. 

Seedlings were unpotted and a major root was surface disinfested 

with 70% ethanol then severed with a sterile pruning shears. The 
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severed root was immediately connected via a segment of latex tubing to 

a 1 ml pipette containing 1 ml of bacterial inoculum. Seedlings were 

repotted with the pipette connected to the root and watered. After 

repotting, a surface disinfested stem approximately 0.4-0.5 cm in 

diameter was excised from near the apical point of the plant and a latex 

tubing reservoir attached. Approximately 0.5 ml of inoculum was placed 

in the reservoir and allowed to be taken up by the receding embolism. 

In addition, two sites along the stem were surface disinfested with 70% 

ethanol and two incisions made to the xylem with a sterile scalpel. 

Inoculum (0.02-0.03 ml) was placed in each of the two stem incisions 

with a hypodermic syringe. Four control seedlings were inoculated using 

the same techniques. Control inoculum consisted of sterile PBCM 

washings of uninoculated semi-solid PD-4 plates. Inoculum uptake was 

rapid via all inoculation routes; minutes for the xylem incision and cut 

stem techniques, and within 14 hours via the severed root. Plants were 

maintained under greenhouse conditions and watered sparingly through 

April 1983. 

Electron microscopy 

For ultrastructural studies, symptomatic and symptomless leaves 

were collected from an inoculated mulberry seedling. Primary and 

secondary veins were excised from non-necrotic tissue adjacent to 

scorched tissues and from analagous areas in symptoraless leaves. 

Samples were prepared and examined as previously described (Hearon et 

al., 1980). 
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In conjunction with isolation studies, negative stain preparations 

were made of cultured bacteria (Sherald e_t aK , 19834). 

Results 

Symptomatology and Distribution 

Symptoms of MLS appeared in mid-July (1982 and 1983) in the 

Washington, DC area as a marginal leaf desiccation and curl. Although a 

major portion of or the entire leaf lamina may have been desiccated, 

only slight discoloration occured initially, (Fig. 21). Once tissues 

became desiccated, the lamina took on a water-soaked appearence and 

necrosis developed, first in the desiccated tissues adjacent to the 

unaffected tissues then outward in the leaf lamina to the margin. 

Advanced symptoms were characterized by a marginal, undulating leaf 

necrosis bordered by a distinctive chlorotic halo (Fig. 22). Symptoms 

progressed apically and leaves in all stages of symptom development were 

observed on the same branch. Severely scorched leaves abscised 

prematurely, leaving tufts of symptoraless leaves at the branch apex. 

Branch dieback was observed in affected trees, but no mortality was 

noted. 

One hundred and sixty mulberries ranging in height from 2 m tall 

saplings to mature trees were surveyed along 3 km of the George 

Wasington Memorial Parkway in Alexandria, VA. Mulberries were common 

understory plants in sites containing leaf scorch-affected sycamores and 

red oaks. Of this population, 125 trees or 78 percent of the population 
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Fig. 22. Marginal necrosis (N) and bounding chlorotic 

halo (arrows) of advanced symptoms of mulberry leaf scorch. 
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expressed characteristic MLS symptoms. Symptoms were severe in all 

affected plants. 

The disease ranged from northern Virginia and the District of 

Columbia, east throughout the Delmarva penninsula and north through 

Maryland, Delaware, eastern Pennsylvania, and New Jersey to New York 

City and New Rochelle, NY (Fig. 23). The disease was widespread 

throughout much of the northeastern range of red mulberry and occurred 

in both urban and non-*urban trees. The disease was not apparent in 

escape populations of red mulberry in the southern New England states. 

Isolation and Culture 

Vacuum infiltration of stem segments proved inadequate for 

determining the presence of xylem-inhabiting bacteria in stem segments 

collected from scorching trees. Bacteria were difficult to identify in 

extracts examined by phase contrast microscopy due to the presence of 

excessive crystalline, cellular debris. Bacteria were identified by 

repeated examination from 9 of 12 samples. Because of the difficulty in 

observing bacteria in the extracts, the vacuum infiltration technique 

was discontinued. 

Bacteria were readily isolated from stem segments of affected trees 

when using modified PW broth and wood chip isolation. Turbidity 

commonly developed in cultures within in 5—7 days. Bacteria were 

isolated from 19 of 22 leaf scorch-affected mulberries and from 3 of 19 

symptoraless trees in the Washington, DC area. The MLS-bacterium was 

cultured from stems of affected trees in 7 days in simultaneously 

inoculated broth cultures of modified PW medium and PD 2 medium. 
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Bacterial growth was detected in crushed or centifuged petiole 

isolations after 18 days incubation on both semi-solid PD-4 and modified 

PW. Colonies on PD-4 agar were white, convex, with entire margins and 

approximately 0.5—0.8 mm in diameter. Darkened areas were observed at 

one or both ends of the organism under phase contrast microscopy. On 

modified PW agar, colonies were also 0.5-0.8 mm in diameter, but were 

buff white in color and more appressed to the medium. Bacteria stained 

Gram negative, and were catalase positive and oxidase negative. 

Bacterial cells from agar and broth culture measured 0.5 j4m wide by 1-3 

/jm im length using phase contrast microscopy and an eyepiece micrometer. 

Growth was not observed on potato dextrose agar, King's medium B agar, 

D-l agar, or YDC agar. Bacterial growth was obtained on nutrient agar 

after 2 weeks incubation and was maintained through 3 serial transfers. 

Isolates subcultured on PD-4 from nutrient agar cultures produced 

bacterial colonies and cells indistinguishible to those in the original 

PD-4 cultures. The bacterium was gram negative, catalase positive, and 

oxidase negative. 

Isolations from leaf scorch-affected mulberries in all localities 

where the disease was observed (Fig. 23) consistently yielded 

fastidious, xylem-inhabiting bacteria (Table 14). In addition to 

isolation of the bacterium in the metropolitan Washington, DC area 

(northern Virginia and Maryland suburbs, the bacterium was also isolated 

from all of the 26 MLS-affected trees sampled in Maryland, Delaware, 

Pennsylvania, New Jersey, and New York (Fig. 23, Table 14). 



Fig. 23. Distribution of mulberry leaf scorch in the 

raid-atlantic and northeast coastal states. 
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TABLE 14. Iselation of fastidious, xylem-inhabiting bacteria from leaf scorch- 
affected mulberries in localities surveyed outside the Washington, DC area in 
1982 and 1983 ' ' 

Locality 
Ratio 

(number isolations/number trees sampled) 

Baltimore, MD 1/1 

Kent Island, MD 1/1 

Ocean City, MD 1/1 

Elkton, MD 2/2 

Lewes, DE 2/2 

Dover, DE 4/4 

New Castle, DE 1/1 

Wilmington, DE 3/3 

Berwyn, PA 2/2 

Masonville, NJ 1/1 

Hedding, NJ 2/2 

New Yotk, NY 2/2 

New Rochelle, NY 3/3 

TOTAL 26/26 
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Serology 

Bacterial isolates fluoresced strongly when reacted with antisera 

to the ELS- or PD-bacteria in the indirect IFAS test. Similarily, the 

ELS- and PD-bacteria reacted strongly with either antiserum. No 

reaction was obtained when isolates were reacted with preimmune sera. 

Isolates subcultured on nutrient agar produced the same results with 

indirect IFAS. 

Pathogenicity Tests 

Characteristic MLS symptoms developed in 3 of 12 inoculated 

seedlings 3 months after inoculation (Table 15). Isolations were made 

from the 3 symptomatic seedlings and the MLS-bacterium was recovered 

from each and its identity confirmed using indirect IFAS and antisera to 

the ELS- and PD-bacteria. Plants defoliated soon after and were 

fertilized to force bud break. Six months after inoculation symptoms 

developed in 10 of the 12 inoculated seedlings (Table 15). The 

MLS—bacterium was reisolated from the 10 symptomatic seedlings and from 

1 symptomless bacteria-inoculated seedling. No bacteria were recovered 

from the 4 control seedlings. 

Electron Microscopy 

The MLS-bacterium was observed in the xylem vessels of symptomatic 

leaves collected from the inoculated mulberry seedling (Fig. 24, 25). 

Cells measured 0.3-0.4 jpn in width by 1—2 /jjn in length and had a rippled 

cell wall. Bacteria were embedded in a lightly staining matrix (Fig. 

24, 25) which contained nodulated strands .surrounding the bacteria and 
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TABLE 15. Symptom development and recovery of bacteria from mulberry seedlings 

inoculated with pure cultures of the mulberry leaf scorch-associated bacterium 

_April 1983_ _July 1983_ 

No. Trees Symptomatic Bacterial Symptomatic Bacterial 

Treatment_Treated_Trees_Recovery_Trees_Recovery 

Isolate MSI 4 1 1/1 4 4/4 

Isolate M3 4 2 2/2 4 4/4 

Isolate M4 4 0 0/0 2 3/4 

Sterile Buffer 4 -o 0/0 0 0/4 
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Fig. 24. Transmission electron micrograph of transverse 

and longitudinal sections of the mulberry leaf scorch bacter¬ 

ium in a vessel of a symptomatic leaf from an inoculated 

plant. Bacteria appear embedded in a lightly staining matrix 

(M). Nodulated tubular structures surround the bacteria and 

extend into the matrix (Arrows). Scale bar = 1 ^m. 
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Fig. 25. Transmission electron micrograph of a trans¬ 

verse section xylem vessel with bacteria lodged in the pit (P) 

and an appressed, potentially degenerative bacterial cell 

(Arrow). Note the variation in matrix staining (M). Scale 

bar = 1 ^m. 
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Fig. 26. Transmission electron micrograph of negatively 

stained mulberry leaf scorch bacteria from cultures showing 

typical "rippled" cell wall topography. Scale bar = 1 
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extending into the matrix (Fig. 24). Variations in matrix staining 

occurred between adjacent vessels (Fig. 25). Appressed, more densely 

staining cells, possibly degenerative forms of the bacterium, were 

observed (Fig 25). Cells lodged in pits were compressed and surrounded 

by granular material and fibrous strands. 

Negatively stained bacteria from cultures had the characteristic 

’’rippled" cell wall topography of fastidious, xylera-inhabiting bacteria. 

Cultured bacteria were morphologically similar to cells found in xylem 

vessels (Fig. 26). 

Discussion 

This is the first report of mulberry leaf scorch (MLS), a newly 

observed disease caused by a fastidious, xylem-inhabiting bacterium. 

The bacterium is morphologically similar to and serologically related to 

two other FXLB; the ELS-bacterium, associated with elm leaf scorch, and 

the PD-bacterium, the causal agent of Pierce's disease of grapevines. 

Although the MLS-bacterium was isolated in/on both modified PW or PD-2/ 

PD-4 media and using several isolation techniques, growth was more rapid 

when wood chips were incubated in broth media (5-7 days) than when bac¬ 

teria from crushed petioles or centrifuged petioles were used as inoc¬ 

ulum on semi-solid medium (18 days). The wood chip/broth isolation tech¬ 

nique is rapid and suitable for making isolations from large numbers of 

samples. Contamination of cultures by other wood-inhabiting or epi¬ 

phytic bacteria was not considered a problem. Less than 20% of all 

isolations became contaminated with other bacteria. 
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Based growth studies, the MLS-bacterium is less fastidious than the 

sycamore leaf scorch bacterium (Sherald et al., 1983), the oak leaf 

scorch bacterium (Chang and Walker, 1983; Kostka et al., 1984), or 

the ELS—bacterium (S. Kostka, unpublished), but comparable to the 

PD-bacterium which to date is the least fastidious of this group of 

bacteria (Davis j^t a_l. , 1981b). The MLS-bacterium is distinct from 

other cultured fastidious, xylera-1imited bacteria because of its ability 

to grow on a common microbiological medium. This ability indicates a 

less fastidious nature of the MLS-bacterium quite unlike that of other 

fastidious, xylem-inhabiting bacteria. 

In 1983, MLS occurred at epiphytotic levels in northern Virginia 

and the District of Columbia. Disease incidence was high in all 

localities where the disease was observed. In addition to the northern 

range, similar symptoms were observed in New Orleans, LA, though 

isolation of the bacterium was not attempted (S. Kostka, unpublished). 

Bacteria serologically related to the ELS- and PD-bacteria were con¬ 

sistently isolated from symptomatic trees throughout the range of the 

disease. The recovery of bacteria from 3 symptomless trees in northern 

Virginia and the District of Columbia is not surprising in view of the 

epiphytotic in that locale. The presence of the bacterium in these 

trees may indicate presymptoraatic infection. Leaf scorch symptoms 

caused by FXLB may be due to bacterial restriction of water transloca¬ 

tion (Hopkins, 1977) and/or pathogen produced toxins (Lee et al., 

1982). It is not known whether one or both of these factors are 

involved in MLS. 
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This study shows that MLS is the most widespread disease caused by 

a fastidious, xylem-inhabiting bacterium in the eastern United States. 

Further, this is the northern-most report of a disease caused by a 

member of this group of phytopathogenic bacteria. 



CHAPTER VIII 

DISCUSSION AND CONCLUSIONS 

Fastidious, xylem-inhabiting bacteria (FXIB) were consistently 

associated with a mid-summer leaf scorch of American elm and red 

mulberry, with Koch's postulates being fulfilled in mulberry. All 

isolated bacteria were morphlogically similar and serologically related 

to the ELS- and PD-bacteria. Although Koch's postulates were not 

fulfilled with the ELS-bacterium, evidence was accumulated to support 

the role of the bacterium as the causal agent; 1. the consistent 

isolation of FXIB from leaf scorch-affected, but not symptomless elms; 

2. the graft-transmissibility of the bacterium and induction of 

appropriate leaf scorch symptoms in the grafted scions and systemically 

in the adjacent branches; 3. the serological relatedness of the 

ELS-bacterium to the PD-bacterium which causes similar symptoms in 

grape; and 4. the remission of symptoms in ELS-affected trees injected 

with oxytetracycline. 

The inability to fulfill Koch's postulates with the ELS-bacterium 

may be due to a variety of factors. Isolate virulence may have been 

lost through repeated passages on artifical media. However, when newly 

cultured isolates were used in one study, no symptoms developed in the 

inoculated plants. In mulberry, loss of virulence did not occur even 

after 5 months in culture. Perhaps more significant may be as yet 

undefined environmental conditions required for successful inoculation, 

infection, and symptom development. In addition, juvenile resistance as 

found in young elms inoculated with the Dutch elm disease fungus 

123 
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Heybroek, 1957) may occur to the ELS-bacterium. Inoculation of the ELS- 

or PD-bacterium into different age elms (4 months to 3+ yrs.) both under 

greenhouse and field conditions with failed to incite symptoms 

consistently. Of the 2 trees (field grown and branch inoculated) that 

did develop symptoms, 1 was inoculated with the PD-bacterium and the 

other with an isolate of the ELS-bacterium. Symptoms in the tree 

inoculated with the PD-bacterium initially developed in the inoculated 

stems then progressed to adjacent stems and systemically throughout the 

tree. Symptoms in the tree inoculated with an isolate of the 

ELS-bacterium, did not appear in the inoculated branch, but in an 

adjacent branch more than 2 m from the inoculation site. In the 

inoculated tree, the symptoms could be attributed to the inoculated 

bacterium, while in the tree inoculated with the ELS-bacterium isolate 

were likely caused by natural infection. The tree inoculated with the 

PD-bacterium was the only individual in which the involvement of a FXIB 

was confirmed as the causal agent and in which cross pathogenicity was 

demonstrated. 

Inoculation route and conditions under which the trees were 

inoculated and maintained may be important factors in successful 

infection and symptom development. Well e_t a_l. (1983) found that 

peaches were infected successfully and developed symptoms after repeated 

root inoculation with the phony peach bacterium. Much of the root 

system was destroyed for each inoculation and plants were maintained 

under a reduced watering regime. In pathogenicity tests with the 

ELS-bacterium, American elm seedlings did not tolerate this 

manipulation. Root removal alone induced sufficient water stress to 
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cause development of drought scorch symptoms in plants that were not 

watered heavily after inoculation and repotting. Identification of the 

insect vector(s) of the ELS—bacterium should aid in identifying the time 

of year and conditions under which elms are susceptible. 

Both ELS and MLS occurred in the Washington, DC, area and as far 

south as Louisiana. The northern distribution of the 2 diseases in the 

coastal eastern states differed. Elm leaf scorch was observed as far 

north as Baltimore, MD, and Lewes, DE, a range similar to that 

encountered with sycamore leaf scorch (S. Kostka, unpublished). 

Mulberry leaf scorch had a much greater northern distribution occurring 

as far north as New Rochelle, NY. Another leaf scorch disease 

associated with a FXIB, oak leaf scorch, has a range similar to that of 

MLS (Kostka, e_t al. , 1984). Neither ELS nor MLS were observed in 

the southern New England states. Differences in disease distribution 

may be attributed to climatic differences, host susceptibility 

difference, absence of an as yet unidentified insect vector(s), or 

presence of other hosts which are the preferred hosts of the vector. 

The symptoms observed in ELS-affected elms were analagous to those 

described by Talboys (1968) for plants under water stress. ELS-affected 

trees had a decreased stem hydraulic conductivity, a decreased number of 

functional vessels, and a higher (more negative) stem water potential 

than symptomless trees. Concommittant to this water deficiency was a 

decrease in stem elongation and a decrease in stem starch. The 

decreased growth and decreased stem starch indicate a plant under 

decline and dieback conditions (Carroll e_t al^., 1983). 

Based on the ability of the MLS-bacterium to grow on nutrient agar, 
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it was less fastidious than the ELS-bacterium, and is the least 

fastidious member of this group of bacteria. Different symptom types in 

leaf scorch-affected elms in addition to being related potentially to 

variation in the host, variation in the bacterium, or symptom 

progression, may be due to infection of the plant by different FXIB 

which each have a different genetic potential for causing disease in 

elms. Not until Koch's postulates are demonstrated in elm and the 

necessary environmental conditions for disease development defined can 

extensive comparisons between isolates of the ELS-bacterium and other 

FXIB be made. 
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