
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1983

Data semantics, data modeling, and their application to the Data semantics, data modeling, and their application to the

management of geopolitical statistical data. management of geopolitical statistical data.

Stuart A. Westin
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

Recommended Citation Recommended Citation
Westin, Stuart A., "Data semantics, data modeling, and their application to the management of
geopolitical statistical data." (1983). Doctoral Dissertations 1896 - February 2014. 6014.
https://scholarworks.umass.edu/dissertations_1/6014

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It
has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_1
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F6014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/6014?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F6014&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

UMASS/AMHERST

31EDbb013Sa?E?3

DATA SEMANTICS, DATA MODELING, AND
THEIR APPLICATION TO THE

MANAGEMENT OF GEOPOLITICAL
STATISTICAL DATA

A Dissertation Presented

By

Stuart A. Westin

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May - 1983

School of Management

Stuart A. Westin

All Rights Reserved

DATA SEMANTICS, DATA MODELING, AND

THEIR APPLICATION TO THE
MANAGEMENT OF GEOPOLITICAL

STATISTICAL DATA

A Dissertation Presented

By

STUART A. WESTIN

Approved as to style and content by:

.
Van Court Hare, Jr., Member /

v-Conrad A. Wogrin, Member

D. Anthony But^rtield
Ph.D. Program Director
School of Business Administration

in

DEDICATION

This dissertation

memory of my father, Wald

my mother, Helen (Lifner)

mind and in my heart alwa

is lovingly dedicated to

emar Westin, and to the memor

Westin. They will remain on

ys.

the

y of

my

IV

ACKNOWLEDGEMENTS

With any work of this size there are a number of

people whose help and encouragement deserve acknowl¬

edgement. This dissertation is no exception. Indeed,

when I consider all of my friends and colleagues who,

either directly or indirectly, helped to make my doctoral

experience bearable, I realize that attainment of my

degree is a collective rather than solitary achievement.

I include in this group not only those persons who

assisted me in my dissertation work, but also those who

helped me to ’’clear the hurdles” —— core exams, course

work, comprehensives — of my doctoral program. Without

their help I might never have reached this final

dissertation stage of my program (Phase III in the

administrative jargon of the doctoral studies office).

First of all, I would like to thank Joe Sardinas, my

dissertation committee chairman and mentor, for his

valuable help with my dissertation research, with my

comprehensive exams, and with my doctoral course work. I

hope that in the future I will prove to be as supportive

and as helpful in dealing with my students as Joe has been

with me. Thanks Joe, you are a valued friend. Oh, by the

wa y, did you hear the one about the...

v

I would also like to take this opportunity to thank

Van Hare and Conrad Wogrin, the other members of my

committee, for their help with this dissertation project.

Each of them contributed a generous amount of knowledge

and expertise to this work, and their inputs were

invaluable in its completion.

Van Hare was especially helpful in providing greatly

needed editorial suggestions. I must admit that the

chapter structure of this dissertation is largely based on

Van’s valuable inputs.

Conrad Wogrin was always willing to take time from

his busy schedule as Computing Center Director to advise

me on this project.

To my close friend Mike Becker, Computing Center

Information Systems Director, I express my gratitude for

sharing with me his ideas on aspects of the early version

of my modeling system. Undoubtedly, Mike deserves credit

for defining the initial problem addressed in this

dissertation and for spawning my interest in this

particular data management issue. Thank you Mike.

George McDowell, director of the Center for

Massachusetts Data, provided a great deal of help in

defining the needs of the data users. George was also

responsible for providing Center for Massachusetts Data

funds to aid me in my early development work.

vi

Professors David Stemple and Bruce Croft, both of

the Computer and Information Sciences Department,

instructed much of my study of database management and

data modeling. Each of these fine professors, on a number

of occasions, took the time to address my personal

questions. For this, they have my thanks.

The members of my doctoral program cohort -- Stella

Nkomo, C.N. Hetzner, Marty Moser, and especially Mike

Moore — deserve thanks for the friendship, advice, and

support they provided during our years of doctoral study.

As academic colleagues these people were never averse to

sharing their thoughts and ideas. As dear friends they

never failed to provide that undefinable yet invaluable

gift that friends give.

Still other friends who were not directly involved

in my studies merit thanks for making my years of doctoral

work tolerable. My brother Bill was at all times willing

to give advice and encouragement. Harry Tamule and Tedd

Brown, who have grown to be two of my closest friends over

the past few years, were unselfish in accepting my many

moods during the difficult periods of my course of study.

Finally, I wish to thank Joan Ryan and Judy Sugrue

for their expert typing assistance, and Despina Varelakis

for her meticulous proofreading and editing of the final

v 11

draft. Joan and Judy are perhaps the only people in the

world, besides myself, who have learned to interpret my

near illegible handwriting. Despina is undoubtedly the

only person who will ever consider in detail every single

word, space, and mark of punctuation in this lengthy work.

To all of you, again, a hearty and sincere THANKS.

Postscript. After completing the dissertation "front

material," of which the above acknowledgement section is a

part, I proceeded with the job of assembling the final

copy of the diagrams and figures. You can see that there

are quite a few of these, ninety-eight to be exact, and

virtually all of them required that labels be typed within

little boxes, triangles, circles, or what have you. I was

quick to learn that this typing chore is not as easy as it

sounds. My only saving grace was the "auto-correct"

feature of the IBM typewriter which I was using (thanks to

Lou Wigdor). I am sure that this ingenious mechanism

alone saved my sanity in completing the anguishing task.

So, to the persons involved in the development of this

feature -- whoever and wherever you are -- I give my

lifelong gratitude.

vi 11

ABSTRACT

DATA SEMANTICS, DATA MODELING, AND
THEIR APPLICATION TO THE

MANAGEMENT OF GEOPOLITICAL
STATISTICAL DATA

(May 1983)

Stuart A. Westin, B.B.A., University of Massachusetts
M.S.B.A., University of Massachusetts
Ph.D., University of Massachusetts

Directed by Dr. Joseph L. Sardinas Jr.

This work is in three major parts. In part I we

provide an extensive discussion of data semantics, of

conceptual data modeling, and of data modeling formalisms.

In part II we consider the nature of geopolitical

statistical data, that is, statistical or summary data

which is geographic based. Improvement of the application

environment of data of this type is the ultimate focus of

our efforts. In addressing this issue it is decided that

said environment deserves and requires its own special

purpose modeling formalism. To this end we develop the

Geographic Entity-Relationship Modeling System (GERMS) --

a data modeling formalism through which logical models, or

conceptual schemas, of geographic based statistical data

sets can be created. The GERMS formalism in and of itself

provides a medium through which data set logical contents

can be (1) documented, and (2) discussed.

IX

In part III we design a GERMS-based computer

information system. Here, the modeling formalism is made

an integrated part of a DBMS thereby giving the system the

ability to ’’comprehend” references to a GERMS data model.

These references are made in terms of our system queries,

the structure of which is designed with user needs in

mind. Since the system can comprehend references to the

data model, it has the ability to verify the semantic (not

just syntactic) correctness of the users’ queries. Thus,

the system can insure that queries ’’make sense.”

A number of system enhancements are also developed.

One such enhancement is a semantic integrity checking

mechanism which awards the system the ability to verify

data integrity according to data meaning. A second is a

system merging facility which aids in the blending of two

GERMS-modeled databases. Other system enhancements

considered are a user view facility and an associative

query handling capability.

An extensive appendix illustrates how the

methodology developed is easily implemented within an

existing DBMS. The SIR version 2 system is used for this

pur pose .

x

TABLE OF CONTENTS

ACKNOWLEDGMENTS.

CHAPTER I. INTRODUCTION

What Lies Ahead

PART I

AN OVERVIEW OF CONCEPTUAL
DATA MODELING

CHAPTER II. A GENERIC LOOK AT DATA MODELING.20

A Notation for Data Models
Constraints, Structures, and Operations

Comparing DMFs
Programming and Data Modeling
The Generations of DMFs
Why Study Data Semantics?

CHAPTER III. DATA SEMANTICS.45

The Syntax and Semantics of Data Models
A Theory of Data Semantics
Data Semantics in Database Literature

CHAPTER IV. OBJECTS AND OBJECT GROUPS . 81

Database Objects and Primitives
Data Typing

CHAPTER V. DATA ABSTRACTION.96

Aggregation Abstraction
Generalization Abstraction
Discussion

CHAPTER VI. SOME IMPLEMENTATION ISSUES.118

Logical Redundancy and Relativism
Semantic Integrity
A Brief Recapitulation

xi

PART II

THE NATURE OF GEOPOLITICAL STATISTICAL
DATA -- STRUCTURE AND SEMANTICS

CHAPTER VII. GEOPOLITICAL STATISTICAL DATA:
PHYSICAL STRUCTURE.136

Introduction
The Physical Structure of Census Files
Conceptual Problems

CHAPTER VIII. GEOPOLITICAL STATISTICAL DATA:
LOGICAL STRUCTURE.170

The Semantics of Geography
A Geographic Data Modeling Formalism

CHAPTER IX. RECONNOITERING THE GERMS FORMALISM ... 222

Discussion
Addendum: The GERMS as a "Second Generation”

DMF

PART III

A GEOGRAPHIC INFORMATION SYSTEM

CHAPTER X. CONSIDERING USER NEEDS -- QUERIES. ... 235

A Geographic Information System
Query Structure
Summary

CHAPTER XI. THE PHYSICAL DATABASE.260

Physical Database Design
Entity Types and Record Types: Special Cases
Summary

CHAPTER XII. THE LOGICAL DATABASE . 306
c

Conceptual Schema: Internal Representation
Linking the Physical Database to the Logical

Database
Recapitulation

xi 1

CHAPTER XIII. SOME SYSTEM AMENITIES 347

Associative Data Retrieval
A Semantic Integrity Checker
A Database Merging Facility
User Views

CHAPTER XIV. REVIEW AND CONCLUSIONS.379

A Brief Review
Concluding Remarks

APPENDICES

APPENDIX A. APPROACHES AND SCHOOLS OF DATA MODELING. 402

The Entity-Relationship Model
The Basic Semantic Data Model
The Semantic Association Model
The Semantic Database Model
The Binary Approach
AI Approaches

APPENDIX B. GLOSSARY OF GEOGRAPHIC CONCEPTS.491

APPENDIX C. A SYSTEM ARCHETYPE . 523

An Introduction to SIR and the SIR Language
System Design
System Software

BIBLIOGRAPHY.593

GLOSSARY OF ACRONYMS.610

XI1 1

LIST OF ILLUSTRATIONS

1.1 Geographic Areas.

3.1 62

3.2 65

3.3 70

3.4 73

4.1a Objects Viewed as Entity Types. 93

4.1b Objects Viewed as Entities § Roles. 93

5.1 Aggregation Abstraction . 102

5.2 An AI PART-OF Hierarchy. 104

5.3 An AI IS-A Hierarchy. 109

5.4 Unconditional Generalization. 110

5.5 Alternative Generalization. 113

7.1 Branching q Non-Branching . 144

7.2 Record Instances § Record Instance Structure. 146

7.3a The State-SMSA Non-Containment Problem. . . . 152

7.3b The Census Solution. 152

7.4a The State-SMSA Non-Coverage Problem . 156

7.4b The Census Solution. 156

7.5 Record Representation of "Attribute Areas". . 164

8.1a Instances of an Entity Type.do not Overlap. . 174

8.1b Instances of Different Entity Types may
Overlap. 174

8.2 The Relationship Between SMSAs and Counties . 178

xiv

8.3 The Association Between Block Groups and
Tracks. 180

8.4 Counties in an SMSA are Always Covered by
Blocks. 181

8.5 Geographic Entity Types . 187

8.6 The Semantic of the CONTAINS Relationship.
"SUPER CONTAINS SUB". 196

8.7 A CONTAINS Relationship. "COUNTY CONTAINS
TRACT". 198

8.8 The Semantic of the COMPRISES Relationship.
"SUPER COMPRISES SUB". 201

8.9 The COMPRISES Relationship. "STATE COMPRISES
COUNTY". 20 3

8.10 The IS-A Relationship. "URBAN-TRACT* IS-A
TRACT". 207

8.11 The Semantic of "URBAN-TRACT* IS-A TRACT". . . 209

8.12 Urban Tracts*. 212

8.13a The Representation of "TYPE-A/TYPE-B IS
EITHER TYPE-A OR TYPE-B". 215

8.13b The Semantic of "TYPE A/TYPE-B IS EITHER
TYPE-A OR TYPE-B". 215

8.14 . 218

10.1 A Simple Schema. 249

11.1 The PL-94 Physical File Structure. 263

11.2 The PL-94 Schema. 265

11.3 A PL-94 Equivalence Relation. 267

11.4 PL-94 Equivalence Relations . 269

11.5a A Relationship Instance. 273

11.5b The Relationship Directory. 273

xv

11.6 Query Processing. 276

11.7 A Portion of the STF1B Conceptual Schema. . . 283

11.8 A Single Record can be Viewed from Two
Perspectives. 285

11.9 The Physical Configuration of the Figure 11.7
Schema. 287

11.10 A "Special Case" Record Index . 289

11.11 A Portion of the PL-94 Schema. 290

11.12 Record Type TRACT - BNA. 294

11.13 Using Indexes with the EITHER-OR Association. 297

11.14 Storing Attribute Areas as Chains . 301

11.15 Storing Attribute Areas as an Inverted List . 302

12.1a A Portion of the STF1B Schema. 315

12.1b The Internal Form Matrix Representation . . . 316

12.2 A Simple Schema Definition Program. 324

12.3 Executing a Phrase of the SCHEMA SECTION. . . 327

12.4 A Structural Template for Deriving Implied
Relationships . 331

12.5 Relating Entity Types to Records. 339

12.6 Using the Pointer Matrix. 341

13.1 The Semantic Integrity Checker Main Routine . 362

13.2 Procedure CONTCHK . 364

13.3a A Portion of the STF1B Schema. 369

13.3b A Portion of the PL-94 Schema. 370

13.4 Combining the Databases. 375

13.5 User Views. 377

xvi

A.l A Ternary Relationship. 407

A. 2 A Recursive Relationship. 408

A.3 Two Entity Sets Joined by Two Relationship
Sets. 409

A.4 Functional Mapping of an Attribute from an
Entity Set into Two Value Sets. 413

A. 5 The Objects of the BSDM. 420

A.6 Membership Associations . 427

A.7 A Characterization Association. 429

A.8 An Interaction Association. 431

A.9 A Set Relationship Association. 433

A.10 A Composition Association. 436

A.11 Using a Composition Association to Define an
Aggregate Attribute . 437

A.12 A Cause-Effect Association. 439

A.13 An Action-Means Association . 441

A.14 An Action-Purpose Association . 442

A.15 A Logical Relation of Implication
Association. 444

A. 16 The DIAM II Representation of a Fact. 456

A.17 . 458

A.18 . 459

A.19 A Characteristic. 466

A.20 An Event. 468

A.21 Qualified Modification of a Concept . 470

A. 22 Upstairs and Downstairs. 472

XV 11

A.23a . 473

A.23b . 473

A.24 An Example Semantic Graph . 481

C.l The Database Conceptual Schema. 534

C.2 The Physical Database: Cases and Record
Types. 537

C.3 Index Records. 540

C.4 The Full Physical Database. 545

C.5 The System Internal Form. 547

C.6 SYMBOL Record Type Instances. 550

C.7 SCHEMA Record Instances . 556

C.8 POINTER Record Instances. 559

xvi i i

CHAPTER I

INTRODUCTION

In recent years the terms ’’database management” and

’’database management system” (DBMS) have been used with

increasing frequency in data processing books and

journals. The work hereunder deals with a closely related

issue — data modeling. Specifically our interests lie in

data modeling of the semantically rich, or ’’conceptual,”

variety. Our concerns are directed towards the

geopolitical statistical data management application

environment. Our ultimate goal lies in the improvement of

the conceptual modeling of such applications.

By geopolitical statistical data we mean those data

sets in which summary or statistical data is geographic

based. An example of such a situation is found within the

contents of U.S. Bureau of the Census supplied ’’summary

tape files” (STFs). Here, data observations are

aggregated and provided according to a_ number of well

defined partitionings of the geographic territory from

which they are collected (see [KAPL80]). There is no

means by which the data can be disaggregated, thus each

datum within the data set is a statistical object which is

’’pinned” to some geographic area (vis. geographic point).

1

2

The applications of data of this type are most often

of a geopolitical nature. The data are used as the

foundation of geographic or geopolitical database systems.

The decision makers that are served by such systems may be

business executives, government officials, socio¬

demographic researchers, and the like.

Since the majority of such database systems are

founded partially or totally on Bureau of the Census

supplied summary tapes, the geographic issues and examples

discussed in the work will relate closely to census data

sets. The concepts are generalizable to non-census

geographic database systems, however.

We will begin the discussion with an investigation

as to the present state of said environment: "It is

usually the case that business executives, government

officials and other decision makers have a good idea of

the kind of information residing in their databases. Yet

to obtain the answer to a particular question, they

generally need to employ the services of a technician who

works with the database on a regular basis and who is

thoroughly familiar with its file structure, the DBMS on

which it resides, how it is distributed among various

computer systems, the coded field names for the data

items, the kinds of fields that the different files are

expected to contain, and other idiosyncrasies.

3

’’The technician must understand the decision maker’s

question, reformulate it in terms of the data that is

actually stored, plan a sequence of requests for

particular items from particular files on particular

computers, open connections with remote sites, build

programs to query the remote systems using the primitives

of the DBMSs of the remote systems, monitor the execution

of those programs, recover from errors, and correlate the

results. This is a demanding, time-consuming and exacting

task requiring much attention to detail. Escalated levels

of sophistication are needed as the VLDB [very large

database] increases in size and complexity and as it is

distributed over a wider range of host computers”

[HEND78, pp. 105,1 06].

When a data model is implemented it frees the user

from the need to deal with many of the complexities of

these technical issues; it allows the user to interact

with the database ”in terms of" the logical contents of

the data set. As stated above, our work here deals with

the creation of data models which are dedicated

specifically to the needs of the users of geopolitical

statistical data.

4

The logical contents of a data set can be defined in

terms of four basic objects: entities, associations,

properties, and values. The latter three are important

only because they are used to describe the entities. We

can describe an entity by asserting that it holds some

value relating to a property. Alternatively, we can

describe an entity by asserting that it is associated in

some way with another entity.

A geographic based data set is no different. It can

be portrayed in terms of entities and descriptive

assertions about these entities. What is unique about

this environment is the nature of these objects. The

entities of a geographic data model -- those things about

which assertions are made -- are geographic areas. Thus

states and counties are example entity types.

As is the usual case, assertions are of two general

categories. One type of assertion which can be made about

an entity has to do with properties of the entity. The

properties hold values. In the geographic oriented data

modeling situation these values exist as statistical

summary objects. For example, by recording a population

datum within a township data record we are asserting that

an entity (township) holds a certain value on

property (population).

some

5

It must be noted that, in this application

environment, entities are partitionings of other entities.

Properties, then, represent statistical measurements based

on different partitionings of entities. Such a situation

is rarely, if ever, found in other data management

environments.

The second category of assertion, assertions about

associations among entities, deals with the spacial

overlap of the objects. Geographic entities are related

when they share a common area. For instance, a given

township is related to a given county if the township lies

within the county. Otherwise, the objects are unrelated.

Although the semantic importance of such relationships

among geographic entities cannot be denied, we see them as

being "passive” relationships. This passivity is cited in

opposition to the more "active" relationships found in

traditional (e.g. business) database applications such as

"works for," and "manages."

Consideration of the relationship of an individual

pair of geographic entity types, as in the example above,

is trivial. If all geographic data sets were based on

county and township partitionings only, the management and

access of such data would be simplistic. In reality,

however, these tasks are complex.

6

There are three main reasons for this complexity.

First, a geographic data set is often based on many

different geographic partitionings. As a result, we must

simultaneously consider many geographic relationships.

Second, the set of geographic types upon which the

data are provided vary from application to application.

Consequently, relationships which exist within one data

set are often quite different from those that exist within

another geographic data set.

Third, and perhaps most important, the geographic

entity types upon which a data set is specified are often

defined according to different criteria. The result of

this fact is that the geographic types are not compatible

in terms of their boundary definitions.

In census data sets geographic partitionings are of

three general categories. Geographic entity types may be

statistical, political, or enumeration areas (the latter

are sometimes considered to be statistical areas) .

Figure 1.1 lists some of these geographic area types. A

more comprehensive list is found in appendix B.

All data sets, including geographic based data sets,

are bound to some physical structure. In massive

applications, such as those discussed here, physical data

structure is designed to meet the requirements of

Geographic Areas

Census data are presented for various political and statistical areas.

Political areas include:

United States

States (and outlying areas)

Congressional districts

Counties

Minor civil divisions: Legal subdivisions of counties, called townships in most States

Incorporated places: Cities, villages, etc.

Statistical areas include:

Census regions and divisions: The 50 States have been divided into four regions, each
containing two or three divisions.

Standard metropolitan statistical areas (SMSA’s): Usually consist of a central city
with a population exceeding 50,000, the county(ies) in which it is located and other
contiguous counties that are metropolitan in character and are socially and
economically integrated with the central city.

Urbanized areas: As defined by population density, each includes a central city and
the surrounding closely settled urban fringe (suburbs) which together have a popula¬

tion of 50,000 or more.

Urban/rural: All persons living in urbanized areas and in places of 2,500 or more
constitute the “urban” population, all others constitute the “rural” population.

Census county divisions: Statistical subdivisions of a county defined for those States
where minor civil divisions are not appropriate for the publication of statistics.

Census designated places: Residential concentrations related to a geographically
defined “place,” although the “place” is not legally incorporated.

Census tracts: Statistical subdivisions of an SMSA with an average population of

4,000.

Enumeration districts: Census collection areas used as tabulation areas where block

statistics are not collected.

Block groups: Census tabulation areas intermediate between census tracts and block*;

Blocks: The smallest census geographic areas, used as basic tabulation areas in
urbanized areas and incorporated places with a population of 10,000 or more.

ZIP code areas.

SOURCE: [KAPL80, p. 104]

FIGURE 1.1

8

efficient data processing and storage. This physical

structure seldom reflects the logical structure or

conceptual meaning of the underlying data.

The response of the data management community to

this issue is to provide, for each application, a logical

model (conceptual schema) which is independent of any

physical structural considerations. In the jargon o f

database manag ement there exists ”phys ical independence”

of the logical and physical structures. The advantages of

providing a conceptual model of an application are

realized in bo th the utilization and th e administration of

the datab ase.

At pr ese nt the re does not exist a formalism wh ich

supports the cr eat ion of adequate c onceptual models of

geographi c databases . This deficienc y is due to the

unusualne ss 0 f the involved database objects. Exist ing

modeling techn iques are not well sui ted to model the

semantics of s pacial overlap or statist ical properties.

A r esul t of this indigence is that geopoliti cal

database usag e and administration r evolves around the

physical dat a st ructure only. Furthermore, all

documentation is tied to physical structural issues with

little regard for the conceptual structure of the

database.

9

We do not mean to imply that the contents of the

geographic database are misunderstood by all who use them.

Obviously, the database administrator(s) and technicians,

through experience and the passage of time, gain a

comprehension of the semantics of the database contents.

This ’’meaning” is embedded in the knowledge of the

technicians and in the database application pr ogr ams ,

however. Also, it is difficult to verify that the

understanding ma intained by a database technician is

consistent with realit y or with that of other technic ians

and administrators.

The present situation gives rise to a number of

problems in terms of data access and usage by the naive or

occasional database user (called ’’casual user” in database

literature). First, since the data are provided according

to a number of non-compatible partitionings of geography,

the objects of the physical data structure need not be

logically meaningful. All database documentation and

description is based on physical structure so,

consequently, the user is forced to contend with confusing

and unnatural data objects in conceptualizing the database

contents. There exists no concise list of the logical

contents of the system.

10

Second, once the individual geographic entity types

are known, the meaning and interrelationships of the

geographic types must be assimilated. This intricate task

is presently accomplished by studying glossary type

definitions of the individual objects and by deriving

pair-wise associations from this information.

A related issue is the fact that, once the entire

set of geographic associations is comprehended, some

subset of geographic object types upon which data access

will be based must be selected and respective

interrelationships understood. Alternatively, the user is

forced to rely on the aid of a (hopefully) knowledgeable

technician.

The database technician who tutors the potential

user about the logical structure of the geographic

information system is faced with the problem that natural

language is the only existing communication medium for

such a description. This medium of discourse is hardly

well suited to address the complexities of geographic

semantics. Still, an alternative modeling technique does

not exist.

It is these problems (and some surrounding issues)

which are addressed in this work. The specific topics

covered are detailed below.

What Lies Ahead

11

Beyond this introductory chapter our work is

compo sed of three major parts. Part I, which comprises

five chapters , is aimed at providing for the reader a

techn ical foundation in the area of concept ual data

modeling and the issues related to such. Much of this

foundation is based on concepts found in relevant

literature in the areas of database management, data

modeling, artificial intelligence, and of course the

comprehensive area of computer science.

In chapter 2 we take a ’’generic look” at data

modeling. First, we develop a notational form which can

be applied in the description of any data model. Next, we

consider the three ’’dimensions” of a data model.

Specifically, these are constraints, structures, and

operations.

Followin g this, we d iscuss the ways in which d ata

models and data model ing formalisms (DMFs) can be

evaluated and compared . Not only do we consider how

instances of
c

these can be compared to one another , but

also how they compare, in general, to topics with which we

are much more familiar — programming and programming

1anguages

12

Finally in this chapter, we consider the concept of

the generations of modeling formalisms. We make the

distinction between the Mtraditional” first generation

formalisms and the second generation ’’semantic DMFs;” the

latter being defined as the primary focus of the

subsequent chapters.

Data semantics, the concept which underlies second

generation data modeling, is the topic of chapter 3. This

chapter has three major sections. First, we attempt to

gain an understanding of semantics by contrasting it to

syntax, its less elusive complementary counterpart.

Second, we describe a theory of data semantics and data

modeling. Third, we investigate the treatment of the

topic of data semantics within the literature of database

st udies.

In chapter 4 we discuss the fundamental objects with

which a data model deals. We will learn that the

fundamental "primative” objects of a model are combined to

form groups, called types, which themselves are

fundamental objects of the data model. A number of

different approaches to the typing process are considered.

Chapter 5 takes this notion of object groups one

step further by discussing data abstraction. This

concept, which is basal to the study of conceptual data

13

modeling, considers the ways in which the above noted

types (groups of primitive objects) can be further grouped

in the formation of even more data model objects. We will

see that data abstraction is of two distinct kinds:

aggregation abstraction and generalization abstraction.

Each of these kinds is considered in detail.

The final chapter of part I, chapter 6, addresses a

number of issues which relate to the implementation of a

data model. Here, we relate the structures of data models

to the actual data sets whose contents they depict.

The text of appendix A complements the topics of

part I in that it describes a number of basic schools of

and approaches to conceptual data modeling. In addition

to detailing several modeling formalisms which have

developed from database management research, this appendix

also describes the two very different approaches which are

subscribed to by the artificial intelligence community.

The treatment of topics in part I is extensive since

we feel that meaningful research ideas deserve and require

a solid base on which they may be built. The practitioner

who is only marginally interested in these issues is

urged, at least in the initial reading, to omit part I and

begin directly with part II.

In this second part, which comprises three chapters,

we investigate the nature of geopolitical statistical data

sets in terms of their structure and their semantics. In

chapter 7 we focus on the physical structure of such data

sets. This begins with a brief review of tree structures

and hierarchical files since the data sets with which we

are concerned are physically configured according to these

structures.

Next, we discuss the conceptual anomalies which

accompany the use of a hierarchical physical structure as

a model of the logical data contents. We will learn that

hierarchies, while possibly serving adequately as a

physical data framework, are hardly well suited for the

task of conceptual representation.

Having realized the shortcomings of the hierarchy as

a conceptual modeling tool, we focus in chapter 8 upon the

development of a data modeling formalism which is better

tailored for the situation at hand. This formalism, which

we call the GERMS (Geographic Entity-Relationship Modeling

System), allows for the creation of a ’’picture” of the

logical contents of a geopolitical statistical data set.

There is provided for the GERMS a graphical as well as a

lingual form. Both forms produce equivalent data models.

15

Appendix B, which provides a detailed glossary of

census geographic terms, should prove helpful in reading

this chapter .

The final chapter of part II, chapter 9,

reconnoiters and evaluates the GERMS formalism in terms of

a number of concepts described in part I. As the focus of

this discussion is academic as opposed to pragmatic, the

practitioner is advised to omit the chapter in the initial

reading.

In part III we consider the ’’machine implementation”

of GERMS data models. The system which is designed here

has the ability to respond to unplanned, or ad hoc,

information requests. Furthermore, these requests, called

queries, are posed to the system ”in terms of” the GERMS

data model. Because of these features we call the system

a geographic in format ion s ystem.

Part III comprises the final five chapters of the

work. In chapter 10 we consider the form that the above

noted queries should take on. Naturally, this form is

considerate of the needs of the system user.

Chapter 11 focuses on the design of the physical

database of our system. The first concern addressed here

is that of relating the existing physical data structure

(described in chapter 7) to the objects of our logical

16

data model. The treatment of this topic within the

physical design chapter may seem out of place, but we will

learn that the ultimate result of this disposition is a

better understanding of how the physical data should be

structured .

In the remainder of the chapter we describe a

revised physical data structure which is better suited to

handle the needs of processing ad hoc GERMS-based

information requests.

In chapter 12 we deal with the system logical

database. The logical database holds an internal (to the

system) representation of the GERMS data model. Also, it

retains the information that is required to ’’link” this

data model representation to its physical data structural

counterpart. Both of these aspects of the logical

database are detailed. In addition, we discuss how the

logical database contents are ’’loaded” into the system.

This involves the use of a d ata definition 1anguage which

is based on the aforementioned GERMS lingual form.

In chapter 13 we consider a number of ’’amenities”

which can be used to refine the GERMS-based system. The

first such enhancement has to do with the ability to

handle associative queries. We use this term to refer to

information requests which are based on (non-key)

attribute values.

17

The second amenity deals with the maintenance of

semantic integrity within our database. We develop a

semantic integrity checker which verifies, automatically,

the integrity of data value according to the "meaning” of

the data. Obviously, this data meaning is extracted from

the data model which is stored within the logical

database .

The third system amenity is a facility which aids in

the merging of two conceptually modeled databases. With

this software based merging facility the structures of the

GERMS data models are used to direct the combining of two

data sets which represent different properties of

geographic areas. Following this merging, software is

used to "generate" geographical statistical data which

previously (i.e. before the merging) did not exist in

either of the original databases.

The fourth and final amenity discussed here has to

do with the use of user views of the (global) GERMS data

model. Through implementation of this user view concept

each application which the information system serves can

utilize its own dedicated version (view) of the data

model. Such a user view is ignorant of all logical

objects with which the application is not concerned.

18

Appendix C illustrates how the methodology described

in part II and part III is implemented using an actual

database management system. Specifically, the SIR

(Scientific Information Retrieval) version 2 system is

used. As the methodology is software intensive, a

significant portion of this appendix presents and

describes programs which are written in the SIR language.

Chapter 14, which is the closing chapter, holds a

brief review and the concluding remarks of this work.

PART I

AN OVERVIEW OF CONCEPTUAL
DATA MODELING

". . . I have only made here a collection
of other people's flowers, having provided
nothing of my own but the cord to bind them
together."

Montaigne
"Essays"

19

CHAPTER I I

A GENERIC LOOK AT DATA MODELING

It would be difficult to argue against the need for

database technology in today’s society: ’’Social changes

have created large and complex political and economic

structures (e.g. large government agencies, multinational

corporations, and chains of retail stores). These

enterprises need to integrate the use of their data for

planning and control. Database management systems are an

appropriate tool for this integration. The main issue is

effective use of data rather than the particular system

that is used for their storage” [TSIC82, p. x].

Of paramount importance in designing a database is

selection of some set of constructs through which the

contents of the database will be expressed. This has been

cited as being the most important problem related to the

database design process [WONG771* Such sets of constructs

are often called ’’representations” in artificial

intelligence (AI), and "data models” in database

management (DM) literature.

It is our belief that use of the term ’’data model”

is incorrect in this context. A model is the result of

application of (and adherence to) the set of constructs

20

21

rather than the set of constructs itself [1].

Consequently, we will refer to such sets of constructs as

data modeling formalisms (DMFs). The process of applying

the constructs will be called data modeling. A paradigm

that is created as the result of said process will go by

the title data model.

It is this realm of database technology, the study

of data modeling and of modeling formalisms with which we

are concerned. The obvious way to begin our discussion is

by presenting a formal notation and set of definitions so

that a generic undersanding of data modeling can be

achieved. The concepts presented below show close

adherence to those presented in [TSIC82, sec. 1.31-

_A Notation for Data Models

A given DMF has two major components: (1) a set of

generating rules (G), and (2) a set of operations (0).

The realization of G shows itself in terms of a formal

data definition language (DDL). The purpose of G is to

define the structure of objects as they appear in the

database .

22

The role of these structures is twofold. First, a

structure is imposed upon objects through specification of

their componential makeup and categorization. Second,

structure is imposed upon sets o f objects through

specification of the ways in which they may be associated.

The set of operations relates to the data manipulation

language (DML).

In terms of representing the real world, G captures

the static properties; those general characteristics of

the world that always hold. The operations allow for the

representation of real world dynamics.

The generating rules are used to define a schema s:

G s

It is often useful to think of G as being composed of two

parts: (1) a structure part G(s), and (2) a constraint

part G(c). Our schema is partitioned accordingly:

G(s) + s(s)

23

G(c) + s(c)

The constraint schema is used to specify the

ex piicit constraints that are to be imposed upon the

database by clearly defining which database conditions are

allowed. Note that s(s) often includes some implicit

constraints that are defined by the nature of its

structure. If the structural specification of s(s) is to

be adhered to, certain states are eliminated from the

realm of possibility.

A given G defines the range of S: the set of all

possible schemas that can be derived from G. One instance

s of S allows for the realization of a set of permitted

database occurrences (D) all of which obey the generic

rules G of DMF.

Each primitive operation o of the set 0 provides a

transformation from one database state (dbs) to another

database state such that dbs(i) may violate s(c).

o: dbs(l) + dbs(2)

24

The elements of 0 are combined to define transactions.

Performance of a transaction (t) yields a

transformation from one database occurrence (d) of the set

D to another database occurrence of D.

t: d(1) d(2)

In this way the dynamic properties of the real world are

emulated.

Since the pre and post transaction conditions are

elements of the set D, the total transaction t is

integrity preserving; it maintains the rules of G as

specified by s(s) and s(c). During the performance of a

transaction the database is allowed to temporarily violate

s(c) as it passes through its various database states.

The inherent constraints of s(s) are never violated,

however.

25

Constraints, Structures , and Operations

The above discussion of DMFs and their utilization

was tripartite. Formalisms were described in terms of

their structures, their constraints, and their operations

(processes). Such a partitioning of constructs is common

within the DBMS literature (see [LUM78], [SU79],

[TSIC82]). This orthogonal treatment should not be taken

to imply that the constructs are disjoint, however.

Rather, a DMF results from their coalescence.

As an analagous example consider the stack as an

information structural representation. When we

investigate the nature of its "stackness" we find that

structures, constraints, and operations, taken separately,

do not describe a stack. Instead, it is defined by the

harmonic interaction of these.

In terms of structures, the stack is a simple linear

list. This exact structural form is also taken on by

queues, dequeues, and arrays. Therefore, it is not the

structure of the stack from which its total meaning is

derived. Note that stack structure corresponds to s(s),

the structural schema, of our DMF specification.

26

As for stack operations, the "reasonableness” of

performing POP and PUSH on a stack is the result of stack

structure: a linear list. Tree based operations such as

"preorder traversal" and "suffix walk" (see [H0R076],

[PAGE78]) make no sense on such a structure; a linear list

imposes a set of implicit constraints. Correspondingly,

the operations POP and PUSH are nonsensical when applied

to a tree.

In a similar way, the form that is taken on by the

elements of 0 is designed for use in conjunction with the

structure of s(s) as generated from G(s). The structures

and operations of the DMF, like those of a stack, are

interdependent.

Stack constraints go beyond the mere

"reasonableness" of operations as determined by the stack

structure. The constraints define the range of acceptable

stack operations by placing restrictions on the domain of

reasonable operations. For example, given the linear list

structure of a stack, there are a number of operations

whose performance makes sense. These operations have to

do with how additions to, deletions from and access to the

list are performed. By explicitly constraining the set of

reasonable operations to be of the LIFO variety, a stack

is defined as opposed to a queue, a deque, or an array.

27

Similarly, the explicit constraints of s(c) add to

the implicit constraints of s(s) in determining the

acceptability of database transactions. The three

components, taken in isolation, do not define an

appropriate paradigm of the real world. They must be

applied together so that their synergism can be realized.

Comparing DMFs

Because structures, constraints, and operations vary

among the different DMFs, there is a need for some means

through which a comparative evaluation can be performed.

One approach to this task, as evidenced by the relevant

literature, is directed towards the formation of a

"meta-model" which can be used as a basis of comparison.

Much of the work in this area involves the use of a

binary data model [2]. This is due to the extreme power

of such models [TSIC82]. For example, the potency of the

Semantic Binary Data Model has been demonstrated in that

the model was used successfully to describe itself

[ABRI74]. Also, the modeling power of the binary DIAM

modeling formalism has resulted in its recognition as a

"unifying theory of database implementaion" [SCHN76].

28

A second approach to DMF comparison involves the

specification of some universal set of criteria through
\

which all DMFs can be compared and evaluated. Some

preliminary criteria, as detailed in [LUM78], are as

follows (be aware that the term data model denotes our

concept of DMF):

1. Expressiveness (explicitness). Can all

objects, constraints and processes be described in the

data model?

2. Naturalness. Can the structure, constraints

and processes of the enterprise being modeled be described

in terms familiar to the end user of the system?

3. Implementability. Can the primitives of the

data model be implemented in "reasonable” ways on existing

DBMSs?

4. Simplicity. Are there too many constructs and

too many different ways to specify the same thing in the

data model?

29

5. Overloading. Are some constructs in the data

model used to specify too many different things?

Upon inspection of these criteria we find that many

of the concerns which arise in the design of a DMF closely

parallel those of programming language design (see

[DIJK72], [DIJK76], [ELS073])* Indeed, the realms of data

modeling and programming share a common conceptual

framework. Since many of us are at ease when discussing

the issues of programming, we will attempt to describe

data modeling in terms of programming concepts.

Hopefully, this will result in a better understanding of

the modeling realm.

Programming and Data Mod eling

In this comparison we see a programming language

(PL) as roughly corresponding to the concept of a DMF

(data modeling formalism). Just as there is a great

variety of different programming languages, so is there a

great variety of DMFs (see [KERS76]). Neither a single PL

nor a single DMF can be identified as being the undisputed

best in its respective domain.

30

Certain PLs are better suited to meet the needs of

certain programming environments than are others. Each

language has its strengths and its weaknesses and there

are definite trade-offs involved in the design of a PL.

FORTRAN, for example, holds great computational power but

its file handling capabilities are clumsy. COBOL retains

the opposite position. Languages such as PL/1 and ADA

which attempt to satisfy the needs of all programming

environments suffer from extreme complexity (see[H0AR81]).

Similarly, there are trade-offs involved in the

design of a DMF. Features which are well matched to the

demands of one modeling situation may result in clumsiness

in another environment. Also, the inclusion of too many

features in a DMF will make the modeling process overly

complex [HAMM81; SU79; TSIC82]. There must therefore be

found some optimum mix of constructs (note criteria 4 and

5 above).

A programming language is used to implement

algorithms. The algorithm exists on its own and is

unrelated to any one PL. In correspondence, a DMF is used

to simulate real world phenomena which hold independent

(of the DMF) stature. Consequently, algorithms as viewed

in the programming realm relate to phenomena in the data

modeling realm.

31

When an algorithm is implemented by adhering to the

syntactic and semantic constructs of a PL, the process is

called programming. The result of the process is the

creation of a program.

Any algorithm can be programmed in a number of

different ways within the constructs of a single PL.

Furthermore, the implementation of an algorithm in two

different PLs will result in the creation of two programs

which differ in both syntax and semantics.

Analogously, when a real world phenomenon is

represented by adhering to the syntactic and semantic

constructs of a DMF, the process is called data modeling.

The result of the process is the creation of a schema.

A phenomenon can be represented in a number of

different ways within the constructs of a single DMF

(recall the distinction between the set of schemas MS" and

a schema instance "sM) . Also, the representation of a

single real world phenomenon in two different DMFs will

result in the creation of two syntactically and

semantically different schemas.

It is obvious from the above discussion that there

can be drawn a number of conceptual parallels between the

realms of programming and data modeling. Because most of

us maintain our conceptualization of programming concepts

32

within a well formed cognitive framework, there are many

advantages to be gained by describing data modeling

concepts in terms of analogous programming concepts. We

will therefore make use of such parallelism later in the

discussion .

Despite the presence of certain similarities between

the spheres of interest, a number of major differences do

exist. These fundamental distinctions should be

understood before further resemblance is noted. Some of

these conceptual discrepancies, as noted in [TSIC82], are

described below.

The first distinction has to do with the stage of

development in which the logical structure of data is

considered. In terms of programming, if we assume that

the recommended (stepwise refinement) programming

procedure is followed, logical structure of data is the

fin al concern of the stepwise process. Algorithmic

structure, on the other hand, is identified as being the

primary consideration.

In terms of data modeling, the opposite situation

holds. Here, the entire modeling process revolves around

the logical structure of data, so such structure is of

primary concern to the modeling process.

33

Algorithms can be viewed in two different lights

within the realm of DMFs. If algorithms are seen as

corresponding to database procedures, then their

specification is a final stage of the overall modeling

process. This priority is therefore exactly opposite that

of algorithms within the programming realm.

Alternatively, algorithms can be seen as

corresponding to database transactions. In this light,

they are external to the entire modeling process; they

fall within the sphere of model usage. This is the

concept of logical independence — the separation of

schema from database interaction.

The second fundamental difference between the

modeling realm and the programming realm has to do with

the emphasis that is placed on data types. While both PLs

and DMFs utilize a similar notion of data type, PLs are

more concerned with processes than with data or data

types. Data type constraints are enforced, but

enforcement is not excessively stringent.

On the other hand, data typing is of the utmost

importance in data modeling. In fact, a schema can be

viewed as a collection of rigorously specified data types.

The generic rules (G) of a DMF can be considered as an

extensive type specification facility.

34

Finally, programming and data modeling differ in the

emphasis that is placed on the sharing of objects.

Prog rams seldom share (physical) data objects or variables

and the specification of this within a PL is often rigid

(e .g . FORTRAN ’’COMMON” and ’’EQUIVALENCE”, and PL/1

’’DECLARE ”) .

In contrast, the sharing and integration of objects

is a fund amental precept of data modeling. A data model

shares tokens among different types and provides a number

of different views through which a common set of objects

can be accessed. These concepts will be expanded at a

later point in the discussion.

The Generations of DMFs

Traditional DMFs can be categorized into three basic

types: hierarchical, network, and relational. These have

been called the ’’three great data models” [ULLM80]. A

common thread which exists through these DMF types is that

the constructs involved are mainly syntactic [SU79]- In

recent years, research efforts have concentrated on the

creation of a number of ’’conceptual” or ’’semantic” DMFs.

These have been called ’’second generation” DMFs vis-a-vis

the earlier ’’first generation” types [LUM78].

35

Second generation data models are not in all cases

void of the first generation concepts. Rather, they are

often extensions of first generation formalisms. Second

generation DMFs are concerned with the meaning of data as

opposed to the preoccupation with data access, storage,

and manipulation that is exemplified by traditional DMFs.

The meaning of data with which these new DMFs are

concerned has been cited as being of the utmost

importance: ”The fundamental property of a database is

that it has an intrinsic meaning which is invariant of its

interaction with users” ([MINS74] from [HAMM75, p. 27])•

In a more recent work we find: ’’They [first

generation formalisms] have pointed the way, however, to

all the advantages of data integration. This integration

provides a framework for the operation of an organization.

It needs as a prerequisite, however, a good understanding

of the data. Data models provide a tool for providing

such understanding. As such, they may be more important

than a DBMS [database management system] per se. DBMSs

may be very general and border on being a file system”

[TSIC82, p. 14].

The labelling of second generation DMFs as

conceptual or semantic formalisms should not be taken to

imply that early database systems were vacuous of any

36

semantic component. The assignment of a meaningful name

to a data object captures some minor data semantics.

Furthermore, carefully designed tree and network

structures, used in conjunction with proper record or

segment specification, can result in the creation of a

somewhat meaningful logical data model. The semantic

richness of such constructs is far from adequate for use

in representing complex phenomena, however [HAMM81;

KENT79; ROUS75; W0NG77].

In terms of hierarchical and network DMFs, much of

the conceptual inadequacy stems from the fact that they

are record based structures. As such, the models lack the

flexibility that is required to represent some basic real

world concepts.

As an example, consider the collection of similar

objects into a generic category or type. The

representation of this phenomenon is a fundamental

requirement of a semantically precise model (this will be

discussed in detail in a later section). The record based

nature of these first generation models results in two

anomalies in representing this basic construct: horizontal

inhomogeneity and vertical inhomogeneity [KENT791. The

former relates to the situation where the tokens

(elements) of a type do not share a common set of relevant

37

attributes. The latter situation arises when an attribute

of a type does not share the same value format (domain)

among all occurrences of the type.

Despite its mathematical foundation, the process of

schema normalization, which is performed on first

generation data models, is aimed at maintaining semantic

correctness [ULLM80]. Nevertheless, the inadequacy of.

this process is often noted. Functional dependence, the

notion upon which the entire normalization process is

based, captures only a small portion of the total

semantics of a database [CHEN76; HAMM75; ROUS75; SCHM75].

In the remainder of the discussion we will concern

ourselves with conceptual data modeling. A modeling

formalism which provides the constructs allowing for such

modeling will hereunder be called a ’’semantic DMF.”

Why Study Data Semant ic s?

If we are to concern ourselves with the study of

semantic DMFs we must first be convinced that there is a

need for such modeling. As the ultimate purpose of a data

modeling formalism (DMF) is to aid in the management of

information, our testimony begins with a statement as to

38

the value o f informat ion as a r eso urc e: ” • • • the

harn essing of in format ion will be one of the basic te nets

o f corporate m anagement in the 1980 s. It is impera tiv e

that all of us concentrat e on organi zing and ut ili zing

in fo rmation m or e effect iv el y and e fficie ntl y. Ind eed ,

some • business le aders and man ag ement cons ul tant s con tend

that in formati on will be r ecogni zed a s a r eso ur c e

comparable to capital and labor. I see information as

management’s most important resource for productivity”

[CREN80, p. 15].

We see, then , that under or improper utilization o f

in format ion can have detrimental effects upon the

prod uc tivity o f the en terprise. We should there fore

strive to make access to meaningful enterprise information

as uncomplicated and as direct as is possible. Such

access requires that the information be in a usable form:

’’That’s the key. Information. Gathered laboriously,

harnessed and made viable and understandable for the

decision-makers” [CREN80, p. 16].

Put another way, the database system from which

information about the dynamic real world system is derived

should provide for: (1) a concise, understandable

representation of the state of the system at any time,

(2) efficient and high level access to information, and

39

(3) simple and consistent update as the system changes

state (from [SMIT77a, p. 405]).

Under traditional implementations, access to

information is not direct and simplistic. Rather, it is

periphrastic and tortuous: ’’The usefulness of DBMSs is

severely restricted by their failure to take into account

the semantics of databases. Although all three models

[hierarchical, network, and relational] provide a logical

view of the database in terms of data structures and a set

of operations on them, they fail to incorporate the

semantics of the database into these data structures and

operators” [ROUS75, p. 145].

The indirect nature of information access from

contemporary systems is due to the fact that semantics

must be con scio usly applied b y the de signer and user of

the system; they are not readily apparent from the schema

[HAMM81]. The way people are forced to view information

by a data model may shape their perceptions of the

information. Consequently, d ata r epr esentation should

match the way we think [TSIC82].

In summary, we see that the productivity of the

enterprise hinges on the effective and efficient use of

information. If the utilization of enterprise information

is to meet these requirements it must be available in a

40

usable form. This demands that the underlying data from

which the information is derived is thoroughly understood

by the user.

Because traditional systems do not provide such an

understanding of data they do not support the needs

(design, evolution, use) of complex database applications

[HAMM81]. The systems therefore fail to meet adequately

the ultimate needs of the enterprise. Consequently, we

feel that the study of semantic DMFs is a valuable

pur suit.

This view is apparently shared by E. F. Codd , the

"father" of the relational data model: "The goal [semantic

data modeling] is nevertheless an extremely important one

because even a small success can bring understanding and

order to the field of database design. In addition, a

meaning-oriented data model stored in a computer should

enable it to respond to queries and other transactions in

a more intelligent manner. Such a model could also be a

more effective mediator between the multiple external

views employed by application programs and end users on

the one hand and the multiple internally stored

representations on the other" [CODD79, p. 398].

41

Having completed our (hopefully successful) argument

supporting the validity of our study of semantic DMFs, we

focus on the question of why traditional data modeling

techniques fail to provide the required semantic richness.

The reason stems from the fact that such techniques

separate data from its interpretation. This is not the

case with other forms of communication with which we are

f amiliar .

In natural language discourse, for example, both

data and interpretation appear together [TSIC82] [3]•

Thus, in the natural language phrase "His salary is

twenty-two thousand dollars," we capture both data value

(22,000) and data interpretation (dollar value of his
4

salary). In regards to the meaning of the terms "his" and

"salary," we may draw on the context in which the phrase

is used.

Here, context or setting provides semantics in a

number of ways. First, we can use the meaning that has

been derived from the phrases of the discourse that were

used prior to the one in question. Second, we receive

audio and visual cues from the sender such as

inflection of voice, and facial expressions.

tone and

42

If this phrase were to be represented within a

computer, the interpretation would be stripped from the

data; only the value 20,000 would be stored. As a result,

the intelligence of the software which accesses the data,

or the intelligence of the user of such software is relied

upon to provide an interpretation of the data. Since

first generation DMFs are concerned with data syntax as

opposed to data semantics, the user is awarded a large

portion of said responsibility in these system

implementations [HAMM81].

Some of the problems that arise from the lack of

first generation DMFs to incorporate semantics into their

structures and operators have been outlined as follows

[ROUS75]:

1. Each user is required to know what the

attributes and relations (records) mean; otherwise they

are unusable

2. The concepts do not provide an adequate means

for expressing the semantic relationships that may exist

between items constituting the database. Also, they do

not indicate how to choose a schema for a particular

d atabase .

43

3. Constraints on the execution of a particular

database operation are related only to cost and security.

They do not constrain database operations to make sense

(other than syntactically).

4. Database consistency is a subjective notion.

The effect of user modifications (insertions, deletions,

updates) upon the database is understood only by the user

in terms of his/her subjective view.

Later in the discussion we will see how second

generation DMFs and related research efforts are dealing

with these issues. First, however, we must strengthen our

understanding of the construct which underlies these

issues -- data semantics. The purpose of the following

chapter is to provide this understanding.

44

FOOTNOTES

[1] Consider that a regres sion model is the product of
proper applic ation o f 1 inear r eg re ssion
techniques, or con str ucts > to a set o f
ob serv at ions.

[2] A binary data model is one in wh ich s im Pi e object
nodes are connected by pa ir s of d ir ec ted arcs .

Each arc within a pair is the inv er se 0 f the other
arc. Such a mod el ing fo rmali sm provide s
specific ity at the e x pen se o f com Pi ex ity (see
append ix A for details) .

[31 We will ignore, for the momen t a t 1 ea st the fact
that nat ural language ha s an inherent amb igui ty.

CHAPTER III

DATA SEMANTICS

In this chapter we attempt to define the "meaning”

of data semantics. The notion of data semantics, as we

will soon learn, is an elusive one; the task at hand will

not be easy. Still, an understanding of semantic DMFs

(data modeling formalisms) demands a prior understanding

of the construct from which they derive their name. We

will therefore focus our efforts in this direction.

The Syntax and Semantics of Data Models

Semantics is a construct which is well entrenched in

the realm of programming languages. We believe, as noted

above, that there is a value to be gained by studying

unfamiliar data modeling concepts in terms of familiar

programming notions. Programming concepts is therefore

where we will begin.

Data model syntax . The characterization of a program is

twofold. It is defined by: (1) the syntax of the program,

45

46

and (2) the semantics of the program [LEE76]. The former

relates to the grammatical correctness of the program as

specified by the constructs of the language in which the

program is implemented. The latter, semantics, has to do

with how the program works.

The syntax of a program is never seen by the machine

that executes the program. It is stripped away during the

process of compilation leaving only the semantics of the

program remaining. Consequently, errors which are

detected during the execution of a program are semantic

errors [1]. Thus: ’’When we cannot determine that some

construct is erroneous without executing the program, we

must call the error, if it then does occur, a semantic

error” [ELS073> P* 265].

This notion gives rise to the following error

classification scheme: ’’Errors detected by the compiler

are syntactic while those that escape the compiler but are

detected during execution are semantic" [ELS073, P* 265].

An inherent problem of this scheme, as noted by the

author, is that the distinction is dependent on the

intelligence that is embedded within the specific compiler

for the specific language in which the program is

implemented. Thus two errors which are connotatively

equal could be classified as being syntactic or semantic

depending on the situation in which they are detected.

47

From this discussion we learn that syntax and

semantics, at least in terms of programming, are not

absolute concepts. As a result, it perhaps is best to

"live with certain language characteristics definitely

semantic, others definitely syntactic, and others in

between” [ELS076, p. 265].

As for data modeling, many similarities can be

drawn. First, a data model, like a program, is

characterized by its syntax and its semantics. The

situation here is slightly more complex, however, because

a single model is a threefold entity; it consists of

structures, operations, and constraints. Each of these

components has an associated syntactic structure.

«

In terms of structures and operations, syntax has to

do with the grammatical correctness of the schema or

transactions as specified by the constructs of the

aforementioned data definition language or data

manipulation language, respectively. Borrowing the above

notion of error classification as used with programming

languages we can state the following: .An error which is

detected during the compilation of the structural schema

is (probably) an error in structural syntax. Similarly,

an error which is detected during the interpretation (or

compilation) of a tr an saction is (probably) an error in

operational syntax.

48

We have postponed our discussion of constraint

syntax until now because the issue is somewhat

complicated. First of all, we should consider implicit

constraints and explicit constraints separately (recall

that implicit constraints are inherent in the structure of

s(s) while explicit constraints are specified in s(c)).

Since implicit constraints constrain operations,their

syntax may be considered to deal with the data

manipulation language. Alternatively, they may be

considered to deal with the data definition language in

that they are a function of the properties of the

structural schema.

We propose that _if ^n impl ic it constraint issue has

to do with the structural properties of the under1ying

DMF, then its syntactic personal ity is captured within the

syntax of the data manipulation 1anguage. A syntactic

error of this type results in the inability to spec ify the

transaction.

If, on the other hand , an implicit constraint issue

has to do with the structural properties of a specific

structural schema, then its syntax (if such exists) is

captured within the compiled schema. A syntactic error of

this type results in the rejection or abortion of the

transaction. As our primary interest lies in data

49

semantics vis-a-vis data syntax, the above distinction

need not be pursued further.

The final syntactic issue, that of explicit

constraint syntax, is dependent upon the means through

which the constraint schema is specified. Most DMFs

employ the data definition language in defining s(c).

Some second generation DMF researchers propose a separate

constraint specification language, however (see [HAMM751).

In either case, explicit constraint syntax has to do

with the grammatical correctness of the constraint schema

as specified by the constructs of the language in which

the schema is specified. Thus: an error which is detected

during the compilation o f the constraint schema is

(probably) an error in ex piicit constraint syntax [2].

System semantics. The programming language concepts as

presented thus far are of value in that they have provided

us with a pragmatic (yet hardly absolute) distinction

between data model syntax and data model semantics. We

need simply consider that d ata mod el semantics is the

totality of the model that is not syntax. Although this

is the tack that is often taken when studying programming

languages, we find it hardly sufficient for our purposes.

50

The notion that program semantics is Mhow a program

works” does not give rise immediately to any conceptual

parallels within the realm of data modeling. We will

therefore focus on a less traditional treatment of

semantics as provided by Edsger Dijkstra, one of the

masters of programming language design [DIJK76].

The elegance of the technique lies in the fact that

it deals with the semantics of a general system as opposed

to program specific semantics [31* The system can be a

program, but more generally it can be a machine, a

mechanism, or (presumably) a data model.

Consider a system (the design of which is goal

directed) that, when started in an initial state, will

eventually come to rest in a final state. If the system

is viewed as being an activity, the characterization of

some desired final state is called a ’’post (activity)

condition.”

In terms of inputs (arguments) and outputs

(answers), we can take the position that the initial state

reflects the value of the input, and the final state

reflects the value of the corresponding output. Note that

we assume that the final state (post-condition) depends on

the initial state. Thus, in our alternative view, the

answer depends on the argument that is input.

51

In this system the mapping from initial state space

to final state space need not be functional. In other

words, we allow for a number of initial states to result

in the same final state (this does not imply that the

system is non-deterministic as the mapping specified is

from initial to final). Given the characterization of

some final state, the initial states that result (upon

system activation) in such a final state are said to be

the states that ’’satisfy” the post-condition.

The characterization of all initial states that

result, upon system activation, in the realization of some

post-condition is called the ’’weakest pre-condition” for

that post-condition. For our purpose, the term weakest is

better understood as meaning ’’most general.”

For a given system (S), the weakest pre-condition

for the post-condition R is specified as:

wp(S,R)

Through its definition we know that any initial state that

adheres to the specification of wp(S,R) will result in

adherence of the final state to the specification of R

whenever S is activated.

52

The semantic s of the system are specified as

follows: ”We take the point of view that we know the

po ssible per formance o f mechanism S sufficiently well,

provided that we can derive for any post-condition R the

corresponding weakest pre-condition wp(S,R), because then

we have captured what the mechanism can do for us; and in

the jargon the latter is called its semantics”

[DIJK76, p. 17].

Since the semantics of system S are captured in the

derivation of wp(S,R) from R, the semantics of S are

defined by a rule which specifies how the derivation can

be performed for any R. Such a rule is called the

system’s ’’predicate transformer” because when given the

predicate R, it provides the corresponding wp(S,R) for S.

The semantics of a s ystem are there fore the pr edicate

transformer of the system.

In terms of programming, the above description tells

us that we thoroughly understand the semantics of a

program if we know its predicate transformer. In this

case the predicate transformer essentially tells us the

following: for any specific result, what is the most

general specification of the argument.

53

This concept can be expanded to include programming

language semantics: "We consider the semantic

characterization of a programming language given by the

set of rules that associate the corresponding predicate

transformer with each program written in that language”

[DIJK76, p. 251.

In terms of understanding data semantics, we believe

that a number of helpful concepts can be drawn from the

notion of predicate transformation. First, consider that

a data model (as defined through the specification of

constraints, structures, and operations) is a system whose

design is obviously goal oriented. Since the purpose of

the system is to represent aspects of reality, activation

of the system refers to the process of providing a

representation, or modeling.

The system initial states, or inputs, are the real

world phenomena which we attempt to represent. The system

final states, or outputs, are the respective database

occurrences.

Continuing along this line, we suggest that a

post-condition relates to the characterization or

definition of some system final state -- a given database

occurrence (D). Correspondingly, a pre-condition

identifies some set of system initial states which are

54

real world phenomena. Furthermore, for a given data

model M and a post-condition D, the weakest pre-condition

wp(M,D) is the most general specification of real world

phenomena such that all phenomena that match the

specification will be represented as D by M.

In the general description of predicate

transformation we found that the semantics of a mechanism

S, as captured in the derivation of wp(S,R) from R,

indicates ”what the mechanism can do for us.M In

correspondence, the semantics of the model M are captured

in the derivation of wp(M,D) from D. Therefore, we

propose that the semantic s o f the mod el indicate "what the

model can represent;" how much of the real world meaning

is included in the database representation (occurrence) .

As in the general description above, a rule that

specifies how the derivation of wp(M,D) can be per formed

for any D of M provides a definition of the semantics of

M. This relates to defining the interpretation that can

be awarded to any database occurrence of the model.

Finally, we propo se that the semantic

characterization of a DMF is given by the set of rules

that associate the corresponding predicate transformer

with each model that is specified using the constructs of

the DMF. If the predicate transformers that are

55

associated by means o_f the se r ul es contain a r ich real

wo r1d interpretation, then the DMF has an inherent

semantic opulence.

A Theor y o f Data Semantic s

At this point in the discussion we wish to direct

attention towards the theoretical framework from which

data modeling and data semantics concepts stem. Here, we

are not concerned with ’’database theory” [TSIC82] which

also goes by the name of ’’design theory” [ULLM80] and

’’database normalization theory" [BEER78]. Such a theory

base is indeed valuable, but it is somewhat peripheral to

our focus in this work.

In that database theory is founded almost entirely

on the concept of functional dependency, and functional

dependency is only marginally related to data semantics

[CHEN76; HAMM75; ROUS75; SCHM75], the framework is not

well suited to our needs. Instead, we seek a theory which

deals with data models and data modeling.

Current literature indicates that a theory of this

type has not yet been developed [TSIC82]. We do, however,

find a specification of what the theory should consider:

56

"Such a theory is not only a theory of databases. It

should be the beginning of a theory of data, information

and knowledge as it can be operated on by computers"

[TSIC82, pp. xii, xiii] .

Given the realization of the fact that there is, at

present, no firm theory base from which we may draw, we

must suffice to piece together the theoretical concepts

which are present in the relevant literature. A logical

starting point is to determine where the foundations of

our sphere of interest, database management, lie.

"Computer science drew from mathematics and engineering.

Database management draws from c'omputer science and

management studies" [TSIC82,p .xii].

We see from this diverse genealogy that database

study ‘is perhaps more eclectic than any one of its

foundation areas. From mathematics, the field of database

management, as any science, relies upon the fundamental

laws of algebra. Beyond this it depends upon set theory,

formal logic, and relation theory [BEER78; B0SA62; CHEN76;

C0DD70; C0DD72].

The contributions from electrical engineering deal

primarily with hardware concerns and the physical database

[H0NG81; MARC81]. Obviously, many areas are drawn from

within the field of computer science. Among these are

57

artificial intelligence (AI) [HEND78; MINK77; MYLD75;

ROUS75; WALT78], operating systems [ST0N81], programming

languages and software engineering [BALZ79; VAND81], and

data structures [CLEM81; LEHM81].

In terms of contributions made by the field of

management studies, we find control theory and forecasting

[B0NC81], as well as a number of human factor concerns.

Specifically, these are decision making [BONC81; ROUS75],

learning [MINK771, perception, and interpersonal

communications [CODD74; HEND78; MINK77; MYLD75; WALT78].

If we are to seek out a formal theory of data

modeling, we must first provide a definition of the term

"theory.” While there are many possible candidates for

this position, we choose to rely on the following: ”A

theory is a set of interrelated constructs (concepts),

definitions, and propositions that presents a systematic

view of phenomena by specifying relations among variables,

with the purpose of explaining and predicting the

phenomena” [KERL64, p. 91-

In terms of our work, the phenomena in which we are

interested are the data modeling process and the semantics

that are associated with such. Since we are concerned

with explaining the phenomena as opposed to their

prediction, we will attempt to ” interrel ate r el ev an t

58

constructs in order to present a systematic view with the

purpose of explaining data modeling and data semantics."

The concepts and terminology of the theory that will

be presented below rely heavily upon the ideas discussed

in [BILL78] and to a lesser degree those in [CHEN76],

[SUND74] , and [TSIC82]. When theoretical constructs

relate to the work of others we will indicate this with

appropriate referencing.

We will see that the theory proposes that various

types of semantics are given by the mapping of facts from

one representational form to another. Since semantics

have to do with meaning, a pivotal element in the theory

is that there exists a representation of facts from which

a common understanding can be derived. There is required

some means by which a fact can be "anchored" to its

meaning; a meaning which is universally understood.

What we seek, then, is some medium of discourse

through which facts can be represented in a form that

provides a consonance of comprehension. Such a medium is

natural language.

The natural language representation of an elementary

fact is in terms of an object reference, a property or

relationship reference, and a time reference [TSIC82]. An

object can be concrete or abstract; it can be atomic or

59

compound. It is anything about which assertions can be

made [BILL78].

Properties and relationships are asssertions about

objects. In a natural language representaion, a

relationship is denoted by a verb (e.g. "is employed

by"). The natural language denotation of a property is by

means of a predicative express ion [BILL78] (e.g.

X>

o

-p e a

student") •

For the sake of s impl ic i ty, we will avoid using the

t empor al re ferenc e within the s pecificaion of a fact. It

is this statement of time whic h allows the d yn am ic nat ur e

of reali ty to be ca pt ur ed . By fixing time as a speci fic

in stance, say t , we c an c onceptualize the fact ual

representaion of re al ity as it exists at that t ime

in stance; we have a " sn apshot" [HAMM75] of the r eal wor Id .

Unless o therwise spec ified , then, ever y re pr e sen tat ion

referred to in the foil owing discussion i s a "time t"

repre sentation.

We begin the discussion by introducing the concept

of reality — the totality of real things. As a surrogate

of reality we will use the totality of all possible facts

which can be stated about reality.

60

For any database application, only a portion of

reality is of interest. Consequently, we need be

concerned with only a subset of all possible facts that

can be stated about reality. The chunk of reality which

is of concern to the application will be referred to as

the univer se o f discour se [BILL78; B0NC81; ROUS75;

WONG77]. Our factual representation of the universe of

discourse, the "slice of reality" [SUND74], will be called

the real world state [BILL78].

Extraction of the universe of discourse (and

corresponding real world state) from the total reality is

achieved through application of the processes of selection

and perception. The existence and relevance of an object

is determined by our percepts: "Objects are born when

people become interested in them. They die when people

stop being interested in them. They change when they are

sufficiently different that people perceive them as

different objects" [TSIC82].

The real world state therefore comprises a set of

facts that exist as assertions about the objects which we

are both interested in and aware of at time t. If we

consider for a moment the dynamic nature of the real world

we can define the set of imaginable real world states.

This is the set of all real world states which may

61

(according to the users) exist at some point in time (see

figure 3« 1) •

Note that we have not yet imposed a natural language

structure upon the facts; they are conceptualizations

only. Before the facts can be structured, we must

consider the possibility of ’’conceptually different views”

[BILL781.

Because our conceptualizations depend on our

individual percepts, it can be imagined that two different

users could have views of the universe of discourse which

are conceptually different. As a result of such a

situation, the nature of the facts and assertions that

constitute the real world state would differ from one user

to another .

A commonly used example has to do with the various

ways in which ’’color” can be regarded. If color is

thought of as being an ob j ec t (e.g. ’’red”), then

assertions about colors can be made. Such assertions can

deal with properties of the color (’’has wavelength”), or

they can specify relationships among colors and other

objects (’’has color”). On the other hand, color can be

regarded as being a property which is used in making

assertions about other objects (”to be red”). In this

case, further facts about colors cannot be specified.

FIGURE 3.1

63

Because the process of perception cannot be

formalized, there is no way of proving the absence or

presence of conceptual inhomogneity. If such differences

exist in our real world state, all subsequent

representations of the state will result in

misunderstanding on the part of the users. If we are to

continue, then, we must assume that the real world state

is vacuous of conceptually different views.

An analagous assumption which will be made is that

of factual consistency — a fact and its negation will not

be contained in a given real world state. Furthermore, if

a fact is not asserted, it is false [4]. This is known as

the ’’closed world assumption” (see [REIT78]).

A natural language specification of the real world

state will be called the state d esc ription , This state

description comprises the set of elementary predicative

sentences which describe the real world state completely

[BILL78]. An elementary sentence is one which cannot be

specified as a conjunction (’’and”) of other sentences; it

is atomic. A sentence in the state description either

states that a relationship among a number of objects holds

or that an object possesses a property.

64

Each elementary sentence is made up of three

distinct components: a subject, a predicate, and an

object-part [5]. The subject and object components are

denotations that need not be simple. The object-part may

denote any number (including zero) of objects. Each of

these objects, as noted earlier, may be compound. The

subject denotation can also be structured.

Since the state description is a natural language

description of the real world state, the semantics of

natural language are given by the mapping of elementary

sentences to real world state facts (see figure 3*2).

Note that we assume that all users agree on the overall

truth of the state description. Thus, there is a

consensus that each elementary sentence represents a fact

that is true with respect to the real world state. This

assumption presupposes the existence of a common

understanding of the natural language that is used to

represent the real world state.

The discussion thus far has dealt with what is

commonly referred to as the in fologic al realm of data

modeling. The infological realm is concerned with mapping

the real world into basic human concepts [TSIC82]. Since

our ultimate goal involves the understanding of a machine

implemented representation, we must consider the

—

65

STATE
DESCRIPTION

PERCEPTION AND SELECTION

FIGURE 3.2

66

datalogical realm of data modeling. Here, we map from the

infological representation (state description) to a

machine representation.

Neither the real world Ste ate , nor its infol ogic al

re presentation , the s tate description , lends itsel f to a

fo rmal treatment. The natur e and n umber of construe ts are

ov er wh elming. By abs tr act ing the se t o f imaginabl e r e al

wo rid states we can spe cify the ab str act world model • The

ab stract world model i s a set o f abstract states e ach o f

wh ich correspo nds to a re al world s tate .

An abstr act state , a s described in [BILL78], i s a

ma thematical str uct ure which i s imposed upon a set o f

en titi es (E) , a family (from E) of mathematical rel at i ons

(R >, and a family (from E) o f type s (T) [6]. The

structure is as follows:

1. Every type (T (i)) is a subset of the set of

4

entities

(T(i) e T)S E; Vi

67

2. The set of entities comprises the elements of

the family of types [71

E = {T(1) u T(2) u... T(n)|T(i) e T}; Vi

3. Every relation is a subset of the set of

entities and has an associated rank N(i)

(R(i)N^ c R)S E; Vi

4. An entity may belong to two different types [8]

T(i) n T(j) f 0, i f j

68

All abstract states of the abstract model are

constrained to have the same number of types and

relations. Notice that there is no constraint on entities

across states. Also, type and relation sets need not

contain any elements.

T(i), R(i) * 0

The abstract state is related to the - real world

(state) by means of the stand ard inter pretation. The

standard interpretation maps phrases in the state

description to components of the abstract state.

Furthermore, it maps sentences in the state description to

the value true or false.

Noun phrases in the state description are mapped to

entities of the abstract state such that only those noun

phrases which denote the same real world object are mapped

to the same entity. Verb phrases are mapped into

relations or types depending on whether they denote,

respectively, relationships or properties.

69

Sen tenc es of the state d escri ption are mapped to the

v al ue tr ue if the ma P ping of its constituent phra ses is

consisten t wi th realit y • In the situati on wher e the

sentence states that an object possesses a property, it is

mapped to the value true iff (if and only if) the type

into which the verb phr a se i s mapped c ontains, as an

elemen t, the entity to which the r e spective noun phr ase is

mapped •

In the case where the sentenc e denotes the exi stenc e

of a r el ationship among a set o f 0 bj ects, i t is map ped to

the value true iff the enti t ies to which the subj ec t and

obj ec t -part of the sen tence ar e ma pped form a tuple which

appear as an element of the relatio n into wh ich the v erb

phrase i s mapped.

If each i and every sentence in the state descr iption

is mapped to the value tr ue , the re spective ab str act state

is said to be a ’’model" (as used in formal logic) of the

state description. If we assume that the abstract state

is a model of the state description, and we know (by prior

assumption) that the state description is true with

respect to the real world state, then the abstract state

can be referred to as an ab str action of the real world

state [BILL78] (see figure 3-3) C 9 3•

70

FIGURE 3.3

71

Since the abstract state is a syllogistic

abstraction of the real world state, the components of the

abstract state; entities, types, relations; are

abstractions of their respective real world counterparts:

objects properties, and relationships. For example, the

type T(p) (of the real world state) is an abstraction of

the property p (of the abstract state) because the verb

phrase in the s tate d e scr i pt ion which de notes the property

p i s m apped into T(p) •

The real world state and the ab stract st ate , a s

described here, hold a clo se correspo nde nee to the top t wo

1 ev el s o f the "mul tilev el views o f data" sc heme as

detail ed in [CHEN76]. Acc ording to Chen the Level 1 vi ew,

which is called " in fo rmati on" is cone ern ed with entit ies

and r elationships which "exist in our minds ." Beca use

the se entities and relatio nships c arr y the quali f ic at ion

that they ar e to be eventu ally re pre sen ted in the

database, Level 1 corresponds to the real world state.

Level 2, "information structure," provides a data

grouping and value representation of Level 1 according to

Chen. This representation describes formally the objects,

properties, and relationships as does the abstract state.

Consequently, our theoretical construct of abstraction

relates to the notion of Level 1 —> Level 2 traversal in

Chen’s multilevel structure.

72

At any point in time the set of data instances that

are contained in the database is the database occurrence

at that time. The syntactic correctness of the database

occurrence is determined by the d atabase schema. The

schema is the result of the application of a set of

generating rules which consist of a structure

specification as defined by a particular data modeling

formalism [TSIC82].

A data instance can be regarded as the

representation of one or more facts. It is a sentence

that is specified in a formal language. The grammar of

this language is provided by the database schema [BILL78].

At each instance of time the set of facts which is

represented by the database occurrence corresponds to the

abstract state for that time. The schema, on the other

hand, is static so it corresponds to the set of all

abstract states -- the abstract world model. Given this

realization we are provided with a specification of the

desired semantic constructs: The semantic s o f the d atab ase

(occurrence) are given by the mapping from the database to

the appropriate ab str act state. The semantics o f the

database schema are found in the mapping from the schema

to the abstract world model [BILL74] (see figure 3**0 •

73

CO
C_)

Lul
CO

STANDARD
INTERPRETATION

ABSTRACTION

IMAGINABLE REAL WORLD STATES

INFOLOGICAL REALM

DATALOGICAL REALM

ABSTRACT WORLD MODEL

SEMANTICS OF
DATABASE

O DATABASE OCCURRENCES

FIGURE 3.4

74

In regards to our predicate transform treatment of

data models, the former construct, the semantics of the

database occurrence, relates to the derivation of the

respective weakest pre-condition (which is depicted by the

abstract state) from the post-condition (database

occurrence). The latter construct, the semantics of the

schema, relate to the predicate transformer of the model.

Therefore, ’’semantics of the schema” as used here is the

’’semantics of the mechanism” (model) as used previously.

Data Semantics in Database Literature

Database literature supplies us with a number of

definitions of data semantics. Among the less intricate

of these is the following: ”By the semantics of data we

mean the ’meaning’ of the data” [KERS76, p. 58]. In that

we have provided an extensive theoretical backdrop for the

notion, we feel that this more pragmatic description is

quite acceptable. We will therefore adopt it as our

working definition of semantics from this point forward.

Before we pursue our study of specific modeling

concepts and individual DMFs, we will briefly mention a

number of data semantic related issues that appear in the

75

relevant literature. First, we find a description of the

function of semantics within our sphere of interest: "The

role of database semantics is to ensure that stored

information accurately represents the enterprise”

[BEER78, p. 113]. This statement serves to clarify and

restate the ultimate goal of our pursuit.

Some authors cite the area of linguistics as a

possible source from which a further understanding of

semantics can be drawn. In [KERS76] for example, we find

reference to the possible use of linguistic ’’predication

analysis” as a means to a better understanding of data

model semantics and related syntax. It is suggested that

such a methodology would allow for the categorization of

data models within a ’’semantic spectrum.” Placement of a

model within this spectrum, which ranges from ’’surface

semantics” to ’’deep semantics,” would be a function of the

level of abstraction that is embodied in the information

structures of the model.

Also from the field of linguistics, we find

reference to the ’’pragmatics” of a statement vis. its

semantics [LEE76]. Given a syntactically correct

statement in some (natural) language, the semantics is the

meaning that is intended by the originator of the message.

This may differ from the meaning that is interpreted by

the receiver: the pragmatics of the message.

76

Reference to linguistic pragmatics, as cited here,

is made in terms of programming applications, but we see

the possibility of a conceptual parallel in terms of data

modeling. The interpretation of the database occurrence

that is made by the user is the ’’pragmatics" of that

database occurrence. This may differ from the semantics

of said database occurrence. In the event of a

discrepancy, we see the difference between the

interpretations as encapsulating the ’’semantic ambiguity”

of the database occurrence (and possibly the ambiguity

inherent in the underlying model or DMF).

In [CODD79] we observe the distinction between

"atomic semantics" and "molecular semantics." Atomic

semantics deals with the search for meaningful

(information) units that are as small as possible.

Molecular semantics, on the other hand, has to do with the

search for meaningful units that are larger than

relations [10]. The former notion relates to the concept

of defining modeling construct primitives. The latter

relates to the ubiquitous concepts of aggregation and

generalization [SMIT77a; SMIT77b]. These three concepts;

construct primitives, aggregation, generalization; will be

discussed in detail later.

77

Finally, from the same source, we discover a warning

as to the possibility of frustration in our pursuit of

data semantics: "The task of capturing the meaning of data

is a never ending one. So the label ’semantic’ must not

be interpreted in any absolute sense" [CODD79, p. 398].

78

FOOTNOTES

[1] Obviously, not every semantic error is captured
during program execution. We can conceive of a
semantically erroneous program as achieving
’’normal” termination. In this case the results
are faulty, but the faults are likely to go
und etected .

[2] Note that s(c) and s(s) are not necessarily
separate entities. In the case where s(c) is
specified in terms
probability, are not
is specified in terms

[3] The methodology is
modification, to non-
as to deterministic
need not concern us h

of the DDL they, in all
istinct entities. When s(c)
of a CSL they are distinct.

applicable, with slight
eterministic systems as well
systems. This distinction
re .

[4] Some infological models utilize
fact that is not true may be ”cl
and should therefore not be r
false. Representation of this c
by allowing for the speci
’’infological distance” between m

the notion that
ose” to being tr
egarded as bei
oncept is achiev
fication of
essages .

a
ue
ng
ed
an

[5] A predicate which is followed by one or more
object terms can serve as a formal representation
for an elementary sentence. Such a notation
allows us to avoid some of the ambiguity that is
inherent in natural language. This obviously is
the basis of predicate logic and predicate
c aleulus .

[6] Consider a non-empty set:

s = {a, b, c}

79

A "sigma field" (s) of S is the set of all
possible subsets of S. Thus:

s - {0,(a),(b),(c),(a,b),(a,c),(b,c),(a,b,c)}

A family (F) from S is a subset (not necessarily
proper) of s

F s

Thus, F is a set of subsets of S.

[7] Most DMFs include such a constraint. In this case
the model is said to be "strictly typed."
Strictly typed models are discussed in a later
section.

[8] Statements 2 and 4 imply that T is a covering of
E.

[9] This application of the term "abstraction" differs
slightly from its common usage in data modeling.
Abstraction as generally used in data modeling
refers to the process through which the
commonalities of objects are emphasized by means
of ignoring detail and individual difference.
This is discussed in detail in a later section.

80

[10] A proper generic interpretation of this sentence
can be gained by replacing the term ’’relation”
with ’’database entity or database association.”

CHAPTER I V

OBJECTS AND OBJECT GROUPS

In this chapter we discuss the basic objects of

databases and data models. In addition, we consider how

these basic objects are collected into groups.

Database Obj ects and Primitives

In reviewing the data modeling theoretical framework

that was presented above, it becomes obvious that there

are four general kinds of objects in which a data model is

interested. Specifically, these are entities, values,

associations among entities, and properties of objects.

Interest in these types of objects is characteristic of

all data modeling formalisms (DMFs) . This includes first

generation as well as second generation formalisms. In

studying the specifics of various DMFs we will find that

the treatment of these objects is quite diversified,

howev er .

81

82

Database objects. Entities go by a number of different

names such as "concept” [ROUS75; SU791, "thing" [SENK75],

and "independent object" [SCHM75]. These represent the

real world constructs whose behavior we wish to emulate.

While their incarnate counterparts may not be simple,

entities can be regarded as being indivisible for modeling

purposes [SMIT77a].

An entity can be used to represent a real world

concrete object or, alternatively, it can depict an event

(it has been noted that making the distinction between

such can hamper the flexibility of the model [HAMM81]).

The RM/T data model [CODD791 distinguishes three different

types of entity: characteristic, associative, and kernel.

Each of these types maintains its own generic

classification scheme.

Entities are the main focus of interest in a data

model. Concern for the other database objects is due to

the fact that they ultimately describe entities [KERS76].

Thus we consider associations only because they relate

entities. Similarly, we deal with values because they

provide meaning to the properties that are used to

describe the entities.

83

Depending on the DMF, associations can have

properties or not. The well known Entity-Relationship

Model [CHEN76] is of the former category. In the RM/T

model [CODD79] , both situations are allowed. If the

association is awarded the status of an entity, then it

may take on properties. Otherwise, no properties are

allowed. In the former case the object is called an

’’associative entity;” the latter object is a ’’nonentity

association.”

In some DMFs entities which are used to describe

other objects can themselves be described. This is true

of the "characteristic molecule type” of RM/T [CODD79]*

Also, the Basic Semantic Data Model [SCHM75] can be viewed

in this way. Here, ’’characteristic objects” are those

which exist only to describe "independent objects"

(entities) and other characteristic objects of the world.

This phenomenon can be looked at in two different

lights as noted in [KERS76]: (1) characteristic objects

are the properties and independent objects are the

entities, or (2) there are no properties but there are two

classes of entity — independent and characteristic. Note

that the first view allows for nested properties. Some

semantic network based models utilize the concept of

nested properties in a similar way (e.g. [ROUS75]).

84

Database primitives. The fundamental data model

objects; entities, associations, properties, and values;

can be thought of as being the constr uct primitives of

data modeling. Here, the term "primitive” has a more

comprehensive connotation than it holds in its traditional

programming language usage. We use the term within a data

modeling context to refer to an object which the user

considers to be atomic. In other words, from the view of

the user, there is no need to further dissect the

obj ect [1].

We believe that the aforementioned constructs meet

this specification. For example, there is no reason to

conceptualize the notion of "part of an entity" or a

portion of an association. True, these objects are

further described in terms of their properties, but they

are not further partitioned.

We will also use the term "primitive" in its more

traditional sense; as it is used in computer programming.

Briefly, programming distinguishes two types of

primitives: data primitives and programming primitives.

We will see that both of these have analogous concepts

which are of value in our discussion of data modeling.

85

Data primitives stipulate the most basic data forms

(types) that are available for use by the application at

hand. In terms of computer programming, common data

primitives are integer, character, Boolean, etc. [2].

From the view of the programmer these can be assumed to be

provided by the hardware. In terms of data modeling, the

concept of a data primitive is exactly the same.

Assignment of a data value to a primitive data type is

used to aid in the maintenance of basic data integrity.

In computer programming, the programming primitives

are the most basic operations that are available for use

by the application. High level language primitives are of

the form READ, CALL, etc. [3]. In data modeling we use a

concept that is much the same. The set of operations (the

set "0" in our data model notation of chapter 2) comprises

the primitives of the respective DMF. In order to avoid

the ambiguity that would stem from use of the term

”programming," we will refer to this set as the o per ation

pr imi t ive s of the DMF.

86

Data Typing

In the above text we set forth the proposition that

entities and associations be considered modeling

primitives. The rational provided was that the user is

not concerned with a further dissection of these objects.

The opposite process, grouping these objects into

categories is of great value, however.

In natural language discourse we often make

reference to a ’’higher level" object which constitutes a

set of "lower level" (more primitive) objects. For

example, in the statement "Doctoral students make good

lovers," the term "doctoral students" denotes all people

who qualify for consideration as a doctoral student. In

other words, reference to the single term doctoral

students implies reference to the entire set.

In data modeling we use a similar concept which is

called "classification," or "typing." A type is an object

which is formed by the grouping of homogeneous objects.

The individual objects that form a type are called

"instances," "occurrences," or "tokens" of the type. The

process of decomposing a type into its primitive token

instances is called "instantiation" (note that this is the

inverse of classification). In general, data models

37

classify both entity and association tokens into types.

The schema can be considered as a collection of these

types [TSIC82].

The type-token concept roughly corresponds to the

set theoretic notion of intension-extension. The

intension of a set is a description of the constitution of

the set; it is definitional . Set intension is often

specified in terms of a membership rule or predicate which

defines which occurrences are permitted.

The extension of a set is a specification of the

actual set occurrence; it is representational . For

example, given the set intension:

{x|x = positive even integer, and 2 <_ x <_ 8}

a respective extension is:

(2,4,6,8}

i

88

In terms of data modeling, a type can be considered

as an intension in which case the tokens of the type are

an extension. Sine e a schema is a collection o f t ype s, it

can be considered £S the intension of the d atabase. Each

corresponding database occurrence is therefore an

extension of the intensional schema.

Stric t v s. 1 oose typing . A DMF can be either stric

>>
i—

\

typed or 1oosely typed . In a strictly typed model e ach

obj ect must, at all times , be am ember of some type. If

an obj ec t does not fit naturally into a t ype there are two

altern at iv es : (1) force membershi p of the object into s ome

type or (2) rem ove the obj ec t from the domain of the

mod el . In a loose ly typed mod el uncategorized objects are

allowed to exist because typing is optional.

All DMFs that deal with the datalogical realm of

data modeling are of the strictly typed variety [TSIC82].

Some infological mod el s are loosely typed

(see[SUND74]) [4]. Since our work center s around the

datalogical sphere, all DMFs in which we are interested

are strictly typed.

Strict typing results in

noted in [TSIC82]:

two basic detriments as

89

1. The DMFs have an inherent inflexibility in

representing subtle differences — they force homogeneity

2. The groupings must (in most cases) be specified

a priori — types can not evolve dynamically

There are, however, a number of distinct advantages

to be gained by using strict typing. The major advantage

is that typing reduces the number of obj ects that need to

be dealt with. In terms of conceptualizing the ways in

which objects are related to each other, tokens need not

be considered. All inter-object concerns can be faced in

terms of less cluttered inter-type issues.

A second advantage relates to the properties of

typed objects. Since a type is defined in terms of token

object homogeneity, the homogeneous properties of all

tokens of a type can be abstracted to the type level. In

other words, the properties can be considered to ’’belong'’

to a single higher level object rather than to a multitude

of primitive objects. As this issue is fundamental to the

study of second generation DMFs, it will be discussed in

great detail later .

90

Typing in AI. The less traditional artificial

intelligence (AI) approach to data modeling enforces

(strict) typing of objects, but the methodology differs,

in some cases, from the standard (non-AI) database

management (DM) modeling approach. The terminology may

differ in that some AI based models refer to tokens and

types as ’’concepts'’ and ’’classes," respectively. The

connotation of these objects remain the same, however.

A more extreme divergence lies in the fact that some

AI models mix tokens and types in the same structure as do

infological models (see [SUND74]). Unlike the infological

models, however, the AI structures maintain a strict

distinction between the generic and specific objects (note

that the AI models are strictly typed) .

As an example, consider that the semantic net(work)

of an AI model is the rough equivalent of the schema of a

standard DM data model. While the DM schema provides a

database intension only, the semantic net provides both

database intension and database extension. Although these

types and tokens are combined within a single network

structure, a distinction between the

maintained. All type (class) objects

"upstairs” of the net while all tokens

"downstairs” objects (see [ROUS75])*

categories

exist in

(concepts)

is

the

are

91

The role approach. In recent years a number of

modifications of the standard data typing concept have

been proposed. Among these suggestions is the role model

[BACH77]. In this approach an entity is characterized by

the roles it plays [5].

The typing of objects is twofold in the role model.

Categorization is by role type (roles with similar

properties) and by entity type (entities with similar

properties). Role types do not overlap nor do entity

types. Furthermore, roles and entities are not subsets of

each other .

Relationships are among roles rather than among

entities. Entities are mapped to roles, so entity objects

are ultimately associated in terms of the roles they play.

The cardinalities of the mathematical mapping between role

and entity types is allowed to be complex (manyimany).

Thus one entity token is allowed to play a number of

different roles and each role can be played by many

entities .

Because the constraints implied by the above

descriptions are lax, some explicit constraints can be

identified. Specifically:

92

1. A role can be declared as being shareable or

non-shareable depending on whether it may be associated

with more than one entity

2. A role-entity association can be

being essential or nonessential depending

entity occurrence implies the existence

occurrence

declared as

on whether an

of a role

The ultimate purpose of the role concept is to

provide clarification in the situation where traditional

entity types overlap. Consider, for example, the object

types ’’person,” ’’employer,” ’’customer” and ’’corporation;”

all of which are of concern to the enterprise. If all

such objects are considered entities, as is the usual

procedure, then each of these object categories is an

entity type.

Under this approach a conceptual problem arises when

we consider the overlap of types. A customer may be a

person or a corporation. At the instance level, then,

tokens are not homogeneous within a type; they are very

different [6]. This is illustrated in figure 4.1a.

93

OBJECTS VIEWED AS
ENTITY TYPES

FIGURE 4.1b

OBJECTS VIEWED AS

ENTITIES & ROLES

94

The role model methodology alleviates this anomaly

by considering that "customer” and "employer" are not

entitie s . Rather , they are roles that are piayed by

entities . Thus , a ci or poration entity token which i s

r epr e sen ted in the d atab a se can play the c ustomer role or ,

alternat ively, it can pi a y the employer role. Likewi se > a

given person occur r ence c an be a customer or an emplo yer

in the role that it plays within the enterprise (see

figure 4 . lb) .

In the next chapt er we consider how the concept o f

obj ect grouping c an b e extended so that types are

themselv es collected in to groups. The pro cess is called

" ab strac t ion ."

95

FOOTNOTES

[1] As noted earlier, this is akin to the notion of
"atomic semantics” [CODD79J.

[2] Obviously, the level of
primitives is depend
application. In ass
example, data primitive
even bits.

abstr act ion of the data
ent on the type of
embl y progr amming , for
s are in terms of byt es or

[3] As with data primitives, consideration of an
operation as being a programming primitive is
application dependent. A programming primitive of
a high level language is viewed as a
macro(instruction) in a low level language. For
instance, the COBOL ADD primitive corresponds to
an assembly language macro comprising the LOAD,
ADD and STORE primitives.

[4] Recall that the infological realm deals with
describing the real world in terms of basic human
concepts. As such, it ignores the attributes of
the storage hardware and can consequently allow
great flexibility.

[5] A number of DMFs incorporate the notion o
into their framework. Among these
relational model (see [CODD79]), and the
(see [CHEN76]). The concept is of
importance in these models, however.

f ”roles”
are the

E-R model
second ar y

[6] In a record based model this phenomenon is called
’’horizontal inhomogeneity” [KENT791*

CHAPTER V

DATA ABSTRACTION

In the previous chapter we described how token

"primitive" objects can be gathered together to form a

more generic object type. This grouping process was

called categorization. The reverse process, decomposing a

type into its token objects was called instantiation. A

section was devoted to this concept of typing because it

is fundamental to all data modeling formalisms (DMFs) in

which we are interested; all datalogical data models are

strictly typed [TSIC82].

In this chapter we will learn that categorization is

a special case of a very general data handling construct:

data ab str action. Abstraction, as used in second

generation data modeling, is defined as follows: "An

abstraction of some system is a model of that system in

which certain details are deliberately omitted. The

choice of the details to omit is made by considering both

the intended application of the abstraction and also its

users. The objective is to allow users to heed details of

the system which are relevant to the application and to

ignore other details" [SMIT77b, p. 105].

96

97

If a data model is to be of any value it must be

abstract. What is gained through the use of abstraction

is as follows: it allows to filter through only those

portions of the database with which we are concerned. Put

in alternative terms, abstraction allows us to "see the

forest (information content of the data) as opposed to the

trees (individual values of the data)” [TSIC82, p. 5].

As noted above, abstraction deals with ignorance of

details about some object. When this detail is ignored

the object is said to be "more abstract." In general,

abstraction involves the representation of a nurnber of

less abstract objects as a single more abstract, or

"higher level" object. The inverse of the abstraction

process is called "decomposition." Thus, decomposition

involves breaking a single more abstract object into a

number of less abstract component objects [1].

Database management systems (DBMSs) distinguish two

forms of abstraction: real world abstraction, and

implementation abstraction [SMIT77a]« He al world

abstraction allows the user to momentarily ignore details

while conceptualizing some aspect of the world. This type

of abstraction is therefore temporary.

98

Implementation abstraction, on the other hand, is

permanent. This is used to continuously hide details of

the structural implementation of the database (e.g. we,

as database users, need never think of the complex pointer

system that is used to implement a simple database

relation) [2]. Since our interests lie in the realm of

conceptual modeling vis. DBMS implementation, we are more

concerned with abstraction of the real world variety. The

term Mabstraction" will hereunder refer to real world

abstraction unless stated otherwise.

Because objects can be classified as being more

abstract or less abstract, we can speak of abstraction as

being ’’top down" or "bottom up" (note that top down

abstraction is decomposition). Both of these approaches

are useful in data modeling. Bottom up abstraction

enables us to understand a complex phenomena. Top down

abstraction allows us to design a complex object [TSIC82].

If a data model is to use abstraction to its full

(semantic) potential, names given to abstract objects

should be restricted to be natural language nouns. This

allows for true abstraction to be distinguished from

"spurious groupings of distinct concepts"

[SMIT77a, p. 107]. Furthermore, each abstract object

should be uniformly accessible independent of its level of

99

abstraction; there should be a one-to-one correspondence

between objects and their respective representations in

the database [SMIT77a] [3]-

Since the simultaneous advent of two now classic

articles, [SMIT77a] and [SMIT77b], real world abstraction

has been discussed in terms of two distinct categories:

aggregation ab str action, and gener alization ab str action.

The former has to do with the grouping of heterogeneous

objects to form a more abstract representation. The

latter refers to the grouping of homogeneous objects to

form a more abstract representation.

Although the concepts of aggregation and

generalization abstraction are fundamental to second

generation DMFs, they are by no means new ideas. Each has

a discernible heritage. Aggregation abstraction, as we

now know it, primarily developed out of early software and

(first generation) database research [4]. Our present

understanding of generalization, on the other hand, has

stemmed from artificial intelligence (AI) research

[SMIT77b; W0NG77].

100

Aggreg ation Ab str ac tion

Aggregation, called "cartesian aggregation" in the

RM/T data model [CODD79] , is an abstraction through which

an object gains its structure by combining a set of

constituent objects. In terms of our aforementioned data

modeling construct primitives, aggregation refers to the

transformation of an_ association among a number of named

(heterogeneous) entities into a single higher level named

entity.

The reverse of aggregation is called "aggregate

decomposition." In the domain of programming, aggregate

decomposition corresponds to the process of stepwise

refinement as used in program design (see [DIJK72]).

Aggregation abstraction is a "natural" modeling

concept because it is used often in natural language

expression of relationships. Consider, for example, the

following relationship:

"Pupil P received a grade G in a class of the
course numbered C-NO with C-H credit hours and
description D taught by instructor I during
semester S in room R" (from [SMIT77a, p. 406]).

101

This phrase; which defines an 8-ary relationship

among the entities P, G, C-NO, C-H, D, I, S, R; contains

two inherent aggregation abstractions and can be defined

as a single aggregation abstraction. The term ’’course” is

an abstraction of the primitive level objects course

number, credit hours, and description. The term ’’class”

is an abstraction of the abstract object course, and the

primitive objects semester, instructor, and room.

Furthermore, the abstract object ’’class,” coupled

with the primitive objects pupil and grade can be further

abstracted to form a higher object, say ’’enrollment.”

This is depicted in figure 5.1. Note that abstraction

through aggregation is inherent in first generation DMFs

in that each record (relation) depicts the abstracted

aggregate of its component objects.

The above example makes clear the fact that

abstraction through aggregation is hierarchical in nature.

At each level of the hierarchy, the component objects are

attributes of the more abstract object that is formed by

their aggregation.

The artificial intelligence (AI) community

represents aggregation abstraction in terms of the

’’PART-OF” relationship. Here, a PART-OF relationship

links each component part to the higher level abstracted

102

a
g
g
re

g
a
ti

o
n

A

B
ST

R
A

C
TI

O
N

object. In regards to syntactic issues, this approach is

quite different from the traditional (non AI) data

management methodology. Explicit relationships are

defined between the object and its components. The

semantics of the aggregation hierarchy, taken as a whole,

are identical, however. The AI version of figure 5.1 is

shown in figure 5.2.

Some second generation DMFs define a variation of

the aggregation abstraction concept to account for the

situation where there are no well defined attributes of

the lower level object instances to specify their grouping

in the formation of higher level object(s). In this case

token objects of a number of heterogeneous types can enter

and leave their affiliation with one another where the

affiliation itself represents an entity. Consider the

semantics of membership in professional organizations, for

example. The heterogeneous members which dynamically make

up an organization define our interest in the

organization .

In such an abstraction, the set of types from which

tokens may be combined provide a "covering" of the

abstract object [5]. This notion is called "cover

aggregation" (vis. cartesian aggregation) in the RM/T

data model [CODD791, and "user controllable grouping

class" in the Semantic Database Model [HAMM81].

104

AN AI PART-OF HIERARCHY

Generalization Abstraction

While aggregation deals with d issimilar objects,

generalization abstraction is based on taking advantage of

the commonality that exists among objects. Generalization

is defined as follows:]tA general ization i s an abstr action

which enables a class of individual objects to be thought

of generically as a single named object [italics mine].

Generalization is perhaps the most important mechanism we

have for conceptualizing the real world"

[SMIT77b, p. 107].

A special case of generalization abstraction is the

aforementioned token-type abstraction in which a group of

similar elementary objects (tokens) are combined to form a

higher level more generic type.

As noted above, the process of forming a type from

tokens is called "classification" while the reverse

process is "instantiation." More comprehensively, the

process of forming a generic type from objects of any

abstract level (type or token) is called "generalization."

The reverse process is called "specialization" or ,

alternatively, "generic decomposition."

The attributes of a

1 06

generic object are those that

summarize the attributes of the underlying members of the

set. The semantics of this assignment of generic

attributes are different than if the attributes were

redundantly attached to the members. Generic attributes

denote the fact that tokens of the type have these

attributes in general. The alternative approach only

denotes that those particular tokens hold the attributes.

Generalization abstraction, like aggregation

abstraction, is hierarchical in nature [6]. At any level

of the hierarchy, the attributes of the ancestor objects

are applicable. Therefore, the lower (generic) level

objects have a greater number of relevant attributes than

do the higher level objects (note that an object holds its

own attributes as well as those of the higher level

objects).

The fact that lower generic level objects acquire

attributes of the higher level more general objects is

called the ’’property inheritance rule” [CODD79]* A

general description of this principle is as follows:

’’Given any subtype e, all of the properties of its parent

type(s) are applicable to e. For example, all of the

properties of employees in general are applicable ^o

salesman employees in particular” [CODD79, P* ^20].

107

The "attribute inheritance rules" of the Semantic

Database Model [HAMM81] deviate from this commonly-

accepted principle by allowing for parent types to hold

attributes which are not inherited by the less general

children objects. Such attributes are those that apply to

the more general class (type) only, and if inherited would

take on an erroneous value and/or meaning. In the above

example the attribute "number of employees" is an

attribute of the generic object type "employee" and should

not be inherited (as is) by the less general type

"salesman ."

In the AI community, the notion of generalization

abstraction goes by the name of the "IS-A" relationship.

As is the case with the previously noted AI PART-OF

concept, abstraction is depicted by means of linking lower

level objects to their higher level objects through binary

associations. In this way an IS-A hierarchy, which is

synonymous with the notion of a generalization hierarchy,

is formed .

Figure 5.3 provides a simple example of an IS-A

hierarchy. Note that generalization abstraction is

transitive. Thus it is implied that a salesman is a

person. In terms of property inheritance, every person

has a name, so the attribute NAME is a property of type

108

PERSON and, accordingly, of types EMPLOYEE, SALESMAN,

ACCOUNTANT and DEPENDENT.

Very young persons may not have social security

numbers, but all employees do. Consequently, the

attribute SS-NO is a property of type EMPLOYEE which is

inherited by types SALESMAN and ACCOUNTANT. It is not an

attribute of type DEPENDENT, however.

If we consider each non-token object in a generic

hierarchy to be the intensional representation of some set

of tokens, then we see that the instantiated version of

these intensional types can be associated in terms of set

based relationships. Specifically, each extension of a

lower level object is a (not necessarily proper) subset of

the extension of each of its parent objects.

Codd has augmented the notion of hierarchical

generalization by specifying two distinct categories of

generalization abstraction: unconditional generalization

and alternative generalization [CODD79]* The former type

corresponds to the standard abstraction concept as

heretofore described. The latter type allows for the

specification of an exclusive alternation ("X-OR") among a

number of supertypes which a single subtype may be

generalized into.

109

FIGURE 5.3

AN AI IS-A HIERARCHY

110

C3

LD

U
N

C
O

N
D

IT
IO

N
A

L
G

E
N

E
R

A
L

IZ
A

T
IO

N

Consider, for example, the following five entity

types: legal unit, company, partnership, individual, and

customer. The type "legal unit" is obviously the most

generic concept, so it belongs at the top of the

generalization hierarchy. This object is generically

decomposed into the three lower (generic) level objects

company, partnership, and individual as shown in

figure 5.4 (UG denotes unconditional, or ordinary

decomposition).

In considering the object type "customer," we find

that it is a subtype of the abstract object "legal unit."

Also, depending on circumstances, it is a subtype of one

of the object types company, partnership, individual. The

object therefore belongs below these types in the generic

hierarchy with the understanding that a customer token is

a member of at most one of its immediate generic

supertypes. This semantic is expressed by the alternative

generalization concept as shown in figure 5.5 (AG stands

for alternative generalization).

Note that a consequence of the alternative

decomposition of many abstract objects into a single lower

level object is that the tokens of the lower type must be

treated individually in terms of property inheritance.

All token instances of the type "customer," for example,

1 1 2

should inherit the properties of type ’’legal unit,” but

only some tokens should inherit the properties of type

"ind ividual” [71*

Di scussion

Any abstract object can be decomposed into a set of

lower level component objects or into a set of less

general objects. Furthermore, these decomposition

activities are independent of each other. Consequently,

aggregation and generalization can be graphically depicted

in orthogonal planes of a three dimensional diagram. A

generic class can be decomposed into lower generic level

classes by moving in one plane, and each of these objects

can be subsequently decomposed into its lower aggregate

level objects by moving in the orthogonal plane. This

allows for the modeling of quite complex real world

phenomena.

In [SMIT77b] there is presented a methodology in

which abstract objects can be represented in a relational

database. Each generic object is portrayed by an

individual relation. A set of five constraints, called

the ’’relational invariants,” are used to maintain the

113

ALTERNATIVE GENERALIZATION

114

semantic integrity of the database after update operations

are performed.

Satisfaction of the relational invariants constrains

each relation to represent an abstract (in terms of

aggregation and generalization) object. Because each

object is associated with other objects along two

orthogonal axes, an update operation which involes an

object can trigger the propagation of updates along both

the aggregation and the generalization hierarchical

str uctures.

Although they are called by a number of different

names, the concepts of aggregation and generalization

abstraction are ubiquitous in the fabric of second

generaion DMFs. Here, we are not referring to the

simplistic notions of token-type generalization or

attribute-entity aggregation. Rather, we are speaking of

higher level real world abstraction.

The entire Semantic Association Model [SU79H is

based on distinguishing various categories of aggregation

and generalization abstraction. The Basic Semantic Data

Model [SCHM75] is founded on the notion of modeling the

aggregate decomposition of objects into component

characteristics. Both categories of interclass connection

used in the Semantic Database Model [HAMM81] can be viewed

115

in terms of generalization. The "subtype connection"

corresponds to type-type generalization while the

"grouping class connection" relates to generic

decomposition.

As noted above, the RM/T [CODD791 constructs of

"cartesian aggregation" and "unconditional generalization"

are synonymous with aggregation abstraction and

generalization abstraction, respectively. This DMF

distinguishes three types of entity each of which is

capable of maintaining its own aggregation and

generalization hierarchy.

Perhaps the most enterprising use of abstraction is

made by the AI community. In some AI based DMFs

"programs," which correspond roughly to traditional

database procedures, exist as objects within the semantic

net (schema) of the model. As a result, programs can be

grouped into classes and related in terms of IS-A and

PART-OF hierarchies [TSIC82]. Furthermore, when the

standard inheritance rules are applied, programs can

inherit attributes from other programs. At the token

level we have specific invocations of a program. These

are called "processes."

11 6

In the next chapter we discuss a number of issues

which are related to the implementation of a conceptual

data model and data abstraction.

FOOTNOTES

Note that the notions of abstraction and
decomposition hold some correspondence to the
respective concepts of molecular semantics and
atomic semantics as described in [CODD79]-

It is obvious that implementation abstraction and
physical data independence are closely related
concepts .

Note that the database representation of an object

is quite often a virtual representation.

It is interesting to note that the relational

normal forms [CODD70; C0DD72; BEER78] are a
formalization of aggregation that is expressed in
terms of functional dependency [SMIT77b].

Consider a set S and a family F of subsets sb(1) ,
sb(2) ... sb(n). If each element of S is an
element of at least one sb(i) of F, then F is a

"covering” of S (see [JAME59]).

Actually, generalization abstraction is network
structured. It can, however, be restructured into
a tree if token objects are allowed representation
in more than one leaf class of the tree (see
[SMIT77b] for details).

If this situation is viewed in light of the role
model [BACH77], type "customer" is a role type
vis. the other entity types.

CHAPTER V I

SOME IMPLEMENTATION ISSUES

In this chapter some issues which surround the

implementation of a conceptual data model are considered.

Here, we extend beyond the concept of the model

representing the ’’meaning” of the data -- we discuss how

the model affects data storage, usage, and maintenance.

Logical Redundancy and Relativism

The discussion of the modeling of data abstraction,

as presented in the previous chapter, gives rise to the

need for subsequent discussion of two closely related

issues. These are ’’schema relativism” and ’’logical

redundancy.” The former issue has to do with the ability

of a schema (and the underlying data modeling formalism)

to provide multiple ways of "viewing” the common database.

The latter deals with the issue of using derived data to

provide such views. Hence, we see logical redundancy as

being a means towards an end -- relativism.

118

Relativist views. Despite the inadequacy of present day

programming languages in the provision of primitives to

support the representation of real world abstraction

[SMIT77a], many database researchers have cited the need

for the inclusion of such representations within the

constructs of data modeling formalisms [CODD79; HAMM81;

SMIT77a; SMIT77b]. It has been further noted that each

abstract object, regardless of its level of abstraction,

should be uniformly accessible [SMIT77a]«

The reason for providing uniform accessibility of

all levels of abstraction is twofold. First, such

provisions serve to greatly simplify the maintenance of

semantic integrity [HAMM81]. Second, and perhaps more

important, such provisions aid in the ability of the

schema to meet the needs of a greater variety of user

groups. The database can be accessed at that abstract

level which is best suited for the application at hand.

When considered in this light, we often speak of a

data modeling formalism (DMF) as providing a number of

different ’’user views.” Each view is based on a specific

application. The application ’’sees" the database through

its specific view only and thus, from the perspective of

the user group, the data model exists for that application

only. The process of providing such application specific

120

perspectives is called "view modeling" [LUM78]. The

ability of a DMF to provide such views is called

"relativism" [HAMM81].

Although user views appear to be orthogonal, they

are related at both the physical and the logical level.

The physical level association stems from the fact that

different views share a common set of database ob jects .

The logical level association comes about because the

views share a common schema structure .

Consider, for example, that two views access the

database at different levels of the generic hierarchy such

that the data type used in one view is an (generic)

ancestor of the type used in the other view. These views

are related at the physical level in that both generic

types instantiate into the same token objects. The views

are related at the logical level because the generic types

involved ultimately exist within a common abstraction

hierarchy (see chapter 5)* This latter notion is related

to the concept of "view integration" [LUM78].

Data derivation. Relativist flexibility demands the

presence of logical redundancy in the data model . v\/e say

that a schema is logically redundant if some data values

are derivable algorithmically from others [HAMM81].

121

Values which are formed in this way are called ’’derived

data.” Data which are not derived are called ’’base" data.

In reference to data access, we often speak in terms of

derived versus direct. We will hereunder use the term

direct data to refer to data which appears (virtual or

actual), upon access, to be base data.

The distinction between derived and base data can be

made in terms of individual attributes or in terms of

iarger database objects. As an example of the former we

will refer to the automatic calculation of EMPLOYEE-AGE

from DATE-OF-BIRTH and DATE-TODAY. While all three of

these items may qualify as direct data, only DATE-OF-BIRTH

need be base (we assume that DATE-TODAY is a system

supplied function) .

As for larger database objects, we call attention to

the RM/T ’’derived relations” which are those that can be

derived completely from the underlying ’’base relations”

[CODD79]. From the perspective of the user, both of these

relation types hold direct data.

Surprisingly, the concept of a base-derived

distinction is not restricted to the datalogical sphere of

data modeling (refer back to chapter 3)« For example, the

nucleus of an infological data model is the set of

elementary messages that is physically present (the base

122

data) [1], Other messages which are not present can be

deduced from the nucleus (see [SUND74], [TSIC82, ch. 11]).

As noted above, abstract conceptual relativism

requires that logical redundancy be used; there must be

provided direct access to nonbase data. In essence, this

means that the DMF should support the modeling of virtual

as well as actual data. If. virtual data is to be

incorporated into the data model, the derivation of

derived data must be integrated into the schema. This is

the "duality principle" between schema and procedure

[HAMM82]. In response to this need the Semantic Database

Model includes a set of high level "derivation primitives"

through which the specification of virtual abstract data

can be made.

Semantic Integrity

Preservation of semantic integrity has to do with

the avoidance of errors as to the intrinsic meaning of the

database. Although a compromise of semantic integrity may

come about as the result of a malicious act, it is most

commonly introduced due to a lack of understanding or user

error .

123

In addition to the notion of semantic integrity,

three principle aspects of the problem of maintaining

database probity can be identified [HAMM75]:

1. Reliability -- avoidance of errors that are due

to the failure of executive software (i.e. operating

system or DBMS software) and/or the failure or hardware

(see [GRAY81], [H0NG81], [MARC81], [STEI80], [ST0N81],

[VAND81])

2. Concurrent consistency -- avoidance of errors

that are due to the mishandling of shared data by multiple

simultaneous users. Maintenance of concurrent consistency

revolves around the use of time valued integrity locks,

time stamps, and deadlock avoidance algorithms (see

[BERN81], [DENN81], [K0HL81], [LEHM81], [RICA81]).

3. Security -- avoidance of database compromise

that is due to access by unauthorized users (see [CHIN81],

[HARR81], [VAND81])

These

related to

database integrity issues, though basally

the general study of database management

systems (DBMSs), are only peripherally related to our task

124

at hand. They will therefore not be considered further;

our concern with database integrity will focus exclusively

on semantic integrity.

In terms of semantic integrity constraint

specification, the constraints should be generic and

intensional vis. token specific. In this way the massive

extensional database inherits the 1imited number of

restrictions placed on the intensional types (schema).

The reason that semantic integrity is enforced is that it

constrains the schema to ’’more accurately reflect the real

world situation” [TSIC82, p. 291.

Inter object dependence. A very basic type of integrity

constraint which can be found in a number of DMFs has to

do with the interdependence of database objects. This

constraint, which is often called the ’’dependency

constraint” [WONG771, refers to the situation where the

existence of one object presupposes the existence of

another database object.

There are a variety of syntactic dependency

constraints which can be identified (in the notation of

chapter 2, these are some of the implicit constraints of

s(c)). In any tree structure, for instance, the existence

of any object (node) depends on the existence of its

125

entire ancestral chain. Also, it is commonly accepted

that the existence of a relationship instance assumes the

existence of the token instances which it associates.

Similarly, properties are commonly assumed to depend upon

the existence of the objects that they describe [2].

Still another example of such relates to the

strictly typed property of datalogical DMFs. Since each

token must belong to a type, the existence of token

objects depends on the existence of the respective type.

We see the above examples as being syntactic because

they are structural functions only. In programming

terminology they are Min line” issues as opposed to "out

of line” issues (see [ELS073]). In other words, there is

no evidence of these constraints in terms of the actual

execution of a transaction. As such they should not be

considered as semantic integrity constraints.

Dependency constraints that are semantic (out of

line) in nature are also quite common. In fact, they can

be found in some first generation DMFs. The

FIXED-MANDATORY and OPTIONAL-AUTOMATIC declarations in the

CODASYL DBTG facility have a definite semantic flavor, for

example (see [MART75]) [3]-

126

Second generation examples of semantic dependency-

are abundant. In the Entity-Relationship Model [CHEN76]

for instance, the existence of "weak entities" and "weak

relationships" are dependent on the existence of other

objects. The "characterizing entities" of the Semantic

Association Model [SU79] depend on the existence of the

"defined entities" with which they are associated. Also,

when objects participate in a "depending relationship"

within the Basic Semantic Data Model [SCHM75], the

existence of the "depending part" relies upon the

existence of the "ruling part."

It is noted in [WONG77] that use of the IS-A

relationship in artificial intelligence (AI) applications

(and consequently use of generalization abstraction in

database management (DM)) helps to guarantee database

consistency; it defines the "IS-A constraint." Addition

and deletion of token objects of one type are

automatically carried to all generic supertypes. Since

this automatic modification occurs for semantic vis.

structural reasons, we see the IS-A constraint as helping

to maintain semantic integrity. This notion relates

closely to the relational invariant based update triggers

[SMIT77b] as described previously in chapter 5.

127

An integrity subsystem. There can be defined two major

approaches to semantic integrity specification: static and

dynamic. These are called the ’’state snapshot approach”

and the ’’state transition approach,” respectively

[HAMM75].

In the state snapshot approach to semantic

integrity, rules are used to specify the valid states

(database occurrences) that the database may take on. If

the dynamic nature of a database is thought of as being

represented in a continuous motion picture, then the

integrity rules are specified such that each frame of the

movie provides a semantically correct picture. The

concept of a database state snapshot is the datalogical

equivalent of a ’’time slice” [BILL78; SUND731 as used in

the infological realm of data modeling.

The state transition approach to semantic integrity

deals with constraining operations that are performed on

the database. Integrity rules define the legality,

depending on present database state, of operations that

convert the database to new states. If an operation is

legal (called a valid operation under the current state),

then preservation of the integrity of the database is

guaranteed under the operation.

128

Hammer and McLeod have proposed a "semantic

integrity subsystem" in conjunction with their efforts on

the IBM supported MIT Project MAC [HAMM75]. This

subsystem, which represents an integration of the snapshot

approach and the transition approach, is briefly described

below in terms of a basic relational implementaion.

Because of its modularity, the concepts are extendible to

any modeling formalism.

Many of the constructs upon which the methodology is

based correspond to the three major categories of

constraints as described in [CHEN76]. These three

categories are as follows:

1. Constraints on "allowable values"

2. Constraints on "permitted values"

3. Constraints on "existing values"

The parallelism of these constructs to those in [HAMM75]

will be noted when appropriate.

A basic premise of the integrity subsystem is that

there must be defined two types of constraints: domain

constraints, and relation constraints. Specification of a

domain constraint involves precise description of the set

129

of atomic objects that constitute the domain; it is a

domain definition process.

Each domain referenced is associated with a

constraint specification. These domain constraints

correspond to the constraints on allowable values of

[CHEN76]. At a minimum, the objects of a domain must be

constrained to belong to one of two mutually exclusive

categories. These categories relate to the natural data

type primitives: string and number.

Relation constraints have to do with restricting the

ways that relations or subparts of relations may be

related. Relation subparts can be tuples or columns, and

their associated constraints can be inter- or intra-

relational in character. Such constraints are

predications on the state and/or transactions of the

database [4] .

In the event that a relation subpart is a column,

the respective constraint corresponds to Chen's permitted

values. Tuple oriented constraints relate to the

restrictions on existing values of Chen.

The proposed constraint management facility

comprises a number of components:

130

1. A high level constraint specification facility

for each of domain constraints and relation constraints

2. Processors for the domain and relation

constraint specification languages

3. A constraint checker

4. A violation-action processor

5. A constraint compatability checker

The use of high level constraint languages allows

for the facility to take advantage of the inherent logical

structure of the underlying data modeling formalism. It

is suggested that these languages be declarative vis.

procedural oriented. Each of the two languages allows for

the specification of the "nature,” "enforcement," and

"violation-action" of each constraint.

Nature and enf or cement define what the constraint is

and when it is to hold, respectively. Violation-action

specifies the system’s response to occur in the event that

violation of a constraint is detected.

131

The language processors convert the high level

language to the appropriate internal form that is used by

the integrity management facility. The function of the

constraint checker is to determine when checks are

appropriate and to perform these checks.

In the event that a constraint violation is found,

the violation-action processor initiates the appropriate

action. This action is described in the internal form

representation of the violation-action specification of

the constraint as noted above. Said action may involve

the reporting of the occurrence of the semantic error

and/or the inititation of some automatic corrective

action .

It should be noted that automatic correction of

semantic errors may be hazardous because of the dependence

of relation constraints upon context. Replacement of some

erroneous value with a system specified value can trigger

the propagation of a chain of semantic violations

throughout the database. An obvious "safe” corrective

action is the replacement of the item in question with the

value NULL [51.

The constraint compatability checker, which is

undoubtedly the most difficult component to implement, has

the responsibility of detecting circularities and logical

132

conflicts from among the set of constraints that is

specified. The complexity of this component is due largely

to the wide potential scope of corrective action side

effects.

Because relation constraints are relatively complex

objects, their description deserves further comment.

First, proper specification of a relation constraint

demands precise description of the "constrained" (focus of

the constraint) as well as of the "constraining"

(properties of the constraint). The constrained is

defined in terms of "specification operations" (see

[TSIC82]) which describe, either explicitly (local) or

implicitly (global), the scope of the constraint. Since

relation constraints are context dependent, their

delineation relies heavily on the notion of "data

relatability" in terms of closed-form formulation (see

[TSIC82] especially chapter 4).

The constraints can be either aggregate, in which

the constrained object is atomic, or nonaggregate.

Aggregate objects are based on some single property of a

relational attribute such as "sum," "average," "count."

Nonaggregate column constraints can be functional

(mapping) constraints, or structural constraints.

A Brief Recapitulat ion

The text to this point has provided an overview of

the general concepts and principles of conceptual data

modeling. Both theoretical and pragmatic issues have been

discussed in detail. The interested reader is directed to

appendix A in which the major approaches and schools of

data modeling are described.

134

FOOTNOTES

[1] An infological "elementary message" is a reference
to a "constellation." A constellation is a triple
(a,b,c) which represents a basic fact. In this
triple, a is a tuple of objects, b is a
relationship among or a property of the objects,
and c is a time specification. Note that an
elementary message is a reference to a
constellation rather than the constellation
itself. This distinction is similar to that
between call by name and call by value as made in
programming.

[2] An interesting exception is found in the Semantic
Binary Model [ABRI74]. Here, an object can hold
an association with an "unknown" (null) object so
that the existence of the association does not
require the existence of all constituent objects.

[3] The semantic of MANDATORY membership is that the
lifetime existence of the object depends on its
membership in at least one set of the specified
type. The semantic of AUTOMATIC membership is
that object creation depends upon a priori set
membership.

[4] In terms of logical complexity, the invocation of
relation constraints is much more involved. They
are defined with respect to relationships between
objects and, as such, are context dependent. The
simpler domain constraints, on the other hand, are
context free.

[51 In regards to database semantics the meaning of
the value NULL can have widely different
interpretations depending on whether the
implementation adopts the "open world" or the
"closed world" view (see [VASS791, [REIT78D.

PART II

THE NATURE OF GEOPOLITICAL STATISTICAL
DATA -- STRUCTURE AND SEMANTICS

"In an imperfectly organized system, even
if every part performs as well as possible
relative to its own objectives, the total
system will often not perform as well as
possible relative to its objectives."

Russell L. Ackoff
"Towards a System of Systems

Concepts"

135

CHAPTER VII

GEOPOLITICAL STATISTICAL DATA: PHYSICAL STRUCTURE

Introduction

In the view of the database management community

proper utiliization of a data set requires the presence of

two distinct structures: the physical structure and the

logical structure. Physical structural issues relate to

the formation of data records from data items, the

definition of record types, and the structuring of record

types to form files. Logical structural issues relate to

the arrangement of the database primitives (entities,

relationships, properties, values) in the formation of a

logical model of the relevant environment.

When a logical data model is used in accessing the

contents of a specific data set, as is the case here, it

is called a schema of the data set. In the remainder of

this work we will use the terms data model and schema

interchangeably since it is understood that each data

model is intended for use with a data set.

136

137

A brief review of the nature of the four database

primitives is due here. Entities represent the real world

objects with which the data user is ultimately concerned.

Relationships are assertions about associations among

entities. Properties are assertions which characterize

entities.

The model provided by the schema does not deal with

the individual entities. Rather, it depicts assertions

about entity types (database intension). When the

properties of entity types, as defined by the schema

framework, are "filled in" with data values specific

entities are represented. Thus values, though

fundamentally related to the database contents, are

indirectly related to the structure of the data model.

A conceptual schema is one which captures the

semantics of the underlying data set. Again , as outlined

in chapter 3, data semantics are the "meaning " of data

[KERS76]. The reason behind our concern with data

semantics is that they "ensure that stored data more

accurately represents the enterprise [application

environment]" [BEER78]. Here, the term "more accurately"

can be interpreted as meaning "closer to our cognitions

and perceptions." A conceptual schema, then, illustrates

both the contents and the meaning of the data set.

138

For obvious reasons the conceptual schema should

provide an accurate "picture" of reality. An accurate

schema supports a proper understanding of the database

contents on the part of the user. The entity types

depicted in the schema should closely resemble the "kinds"

of objects that exist in the relevant environment. The

relationships of the schema should match the important

associations that exist among the actual entities. The

properties of schema entity types should relate to those

characteristics of real world entities that are important

within the logical framework of the application.

The logical structure of real world objects is

hardly simple. An accurate conceptional schema, then,

demands complexity in its structure. In terms of data

processing, however, complex structures result in

processing inefficiencies. When designing physical data

structures good engineering is simple engineering. As a

consequence, the design criteria of the logical structure

conflict with those of the physical structure. Objects

structured with processing efficiency in mind provide the

user with a poor logical model of the world. Objects

structured to match the nature of reality are difficult to

process.

139

A solution to this dilemma lies in the principle of

physical data independence. Under the precept of data

independence the logical model of the data set is designed

independent of physical data structural considerations.

This separation of logical and physical issues allows for

the occurrence of the following situation: the physical

structure exists to satisfy the specific needs of

automated data processing while, simultaneously, the

logical structure (conceptual schema) exists to satisfy

the specific needs of the user community.

One important consequence of achieving physical data

independence is that the record types of the physical

structure need not match the logical entity types of the

conceptual schema. A second result is that the connective

links (pointers, key chains, etc.) of the physical

structure need not be synonymous with the relationships

depicted in the conceptual schema.

From this point on we will be concerned with a

particular type of data — geopolitical statistical data.

The uses and users of such data were described in

chapter 1. The majority of applications of data of this

type revolve around the use of census data sets.

Therefore, the issues discussed hereunder will deal,

almost entirely, with census data. The reader should keep

140

in mind, however, that the tools and techniques developed

in this work are applicable to any statistical data which

is geographic based.

At present, conceptual schemas for geographic based

statistical data sets do not exist; the data hold a

physical structure only. Also, there is no data modeling

formalism which supports the creation of appropriate

logical models of such data. As a consequence of this,

the physical data structure is often used to serve as the

logical model of the underlying data.

The records and links of the physical structure,

which are designed for efficient automated data

processing, are the objects with which the user must deal.

A record type, viewed in terms of real world geographic

entity types, may be void of any logical significance.

Connective links between records do not necessarily relate

to a meaningful logical relationship between the connected

objects.

In short, the physical data structure of census data

files provides a poor logical model of the underlying

data. From the point of view of the data user the

structure neither furnishes an understanding of the

meaning of the data nor involves logically meaningful

objects .

141

Later in the discussion we will develop a data

modeling formalism which deals with the relevant logical

objects (database primitives) of geopolitical statistical

data sets. First, however, we will investigate the

physical structure of census files and the problems that

arise from its use as a logical model.

The Physical Structure of Census Files

Tree structures are used in a variety of database

management and data processing applications. Census data

files are ultimately based on tree structures, so we feel

that the general structural form deserves comment here.

It is assumed that the reader holds an a priori

understanding of the tree as a data structure. The

terminology that is used by the database practitioner

tends to be somewhat loosely defined, however. For this

reason, we will provide a brief review of tree structure

terminology as it applies to our work. A more rigorous

treatment of this data structure is found in [H0R076] and

in [PAGE78].

142

Trees and hierarchical files. A tree is a hierarchy of

nodes which is structured so that each node is linked to

exactly one node in the next higher level of the

structure. The very top node is called the "root" of the

tree. The very bottom nodes (more generally the nodes

which are connected from above only) are called the

"leaves" of the tree. Note that, metaphorically speaking,

the structure would be better called an inverted tree as

the branches "grow" down rather than up.

At each level of the structure the element in the

next higher level to which a node is connected is called

the "parent" of the node. Similarly, at each level of the

tree, the element(s) in the next lower level to which a

node is connected are called the "children" of the

node [1], Obviously, the root of the tree has no parent

and the leaves have no children.

Nodes which share a common parent are called

"sibling" nodes. For any node the elements which form the

path to the root, which incidently is a unique path,

constitute the "ancestry" of the node. Thus, the ancestry

of a node consists of the parent element, the parent of

the parent (grandparent), the parent of the grandparent

(great grandparent), and so on up to and including the

root. Since siblings have a common parent, and the path

to the root node is unique, they share a common ancestry.

143

Hierarchical files. The records of a file can be

structured to form a tree. In such a case the file is

called a "hierarchical file.” Census data files are

hierarchical files, so we can think of census data records

as having parent, children, and sibling records.

In a hierarchical file all instances of a given

record type exist at a single level of the hierarchical

structure. In the case where all elements of a

hierarchical level are restricted to be instances of a

single record type, the record structure is a

"non-branching hierarchy" (the record types do not branch

but, obviously, record instances do).
i

A less restrictive hierarchical file structure is

one in which a level of the hierarchy is allowed to

include instances of more than one record type. Such a

file structure is called a "branching hierarchy." Census

data files, in general, form branching hierarchies.

Figure 7.1 provides an example of a branching and a

non-branching hierarchical file structure. Note that each

rectangle in figure 7.1 represents a record type as

opposed to a specific record instance. It is the

instances of these types which are tree structured.

144

NON-BRANCHING

FIGURE 7.1

145

It is important to realize that, in both the

branching and the non-branching case, the instances of a

given record type exist at a single hierarchical level.

There are a number of ways that the individual

records of a hierarchical file can be structured to form a

tree. The record structure can be specified through the

use of pointers, record position, or record key (see

[MART75]). In census data files the record keys are used

to define the tree structure.

Briefly, under this method an element of the tree

structure is identified by the concatenation of the value

of its key with that of the key of its ancestry. The

primary key of a record uniquely identifies it among the

instances of the record type. The primary key of a

record, coupled with the concatenation of the keys of its

hierarchical ancestors (called the key of its ancestry),

uniquely identifies the record within the total tree

structure. Each record of a census data file therefore

carries its own key value as well as the key values of its

ancestor records.

Figure 7.2 illustrates this method. Note that, for

the sake of simplicity, the example represents a

non-branching hierarchy. The technique is directly

applicable to hierarchies of the branching variety.

146

RECORD
RECORD

TYPE
TYPE 1

KEY
TYPE 2

KEY
TYPE 3

KEY DATA

A 1 01 — -- xxxx

B 2 01 001 — xxxx

C 3 01 001 0001 xxxx

D 3 01 001 0002 xxxx

E 2 01 002 — xxxx

F 3 01 002 0003 xxxx

G 3 01 002 0004 xxxx

H 3 01 002 0005 xxxx

RECORD INSTANCES

FIGURE 7.2

147

Up to this point we have described the nature of the

hierarchical structure upon which census data files are

based. The reader is reminded that hierarchical files are

defined in terms of records and record types. There has

been no mention of the relationship between a record and a

logical geographic entity nor has there been drawn an

association between record types and geographic entity

types.

The physical structures of census files are defined

hierarchically because hierarchical files are conducive to

efficient data processing. Since there does not exist a

logical file structure defined with the user in mind, the

hierarchy serves as both the physical structure and the

logical file structure. Thus the records of the physical

structure are the objects with which the user must work.

Also the hierarchical associations (connective links)

among record types serve as a model of the logical

geographic relationships.

We will soon see that adherence to the highly

restrictive (physical) tree structure can cause the

records of the data file to be void of any logical

significance. Furthermore, we will see that a hierarchy

provides a poor model of the logical relationships that

truly exist among geographic areas.

148

Conceptual Problems

In geographic hierarchical files each level of the

hierarchy relates to a different partitioning of the

common area (e.g. a state) from which the data are

collected. The partitioning at each level is based

ultimately upon well defined geographic objects (appendix

B defines many of these objects). For example, at one

level the area may be partitioned according to counties,

while at a lower level the area may be partitioned

according to census tract. As an example we will use the

1980 version of the Bureau of the Census Summary Tape

File-IB. For brevity, the abbreviation STF1B is used

hereafter to specify this census file.

The physical structure of STF1B is such that the

records form a hierarchy (tree) of geographic based

summary data. The file contains seven distinct record

types each of which carries the data for a specific type

of geographic area. The records are hierarchically

"nested" such that, in all cases, the lower level

(children) areas are subsumed by the higher level (parent)

areas.

149

STF1B

(successive

records are nested

indentation indicates

in the following

successive nesting) :

way

STATE

SMSA

COUNTY

MCD

PLACE

TRACT or BLOCK NUMBERING AREA

BLOCK or ENUMERATION DISTRICT

Thus, county records are nested within SMSA records which,

in turn, are nested within the state (root of the tree)

record. Note that STF1B forms a non-branching hierarchy

unlike many census data files.

The non-containment problem. When geographic based

statistical data is provided as a tree - structure such that

the children records are subsumed by their parent record,

a number of anomalous situations can arise. First,

consider the case where the geographic boundaries of an

150

instance of a child area transcend the boundaries of the

parent area. In other words, the lower level area is

divided by the higher level area.

Given the physical structure of STF1B a situation of

this type can (and does) arise at a number of levels of

the file hierarchy. For example, a standard metropolitan

statistical area (SMSA) is defined as a set of physically

contiguous counties which exhibit a high degree of

economic and social integration and which display certain

population characteristics (see [KAPL80]). With this

definition it is obvious that there exists a natural

hierarchical relationship between SMSAs and counties.

A problem arises, however, because SMSAs are nested

within state in the STF1B configuration. The counties

which form an SMSA are not constrained to lie in the same

state and thus an SMSA will often be divided by the

boundaries of a state. Similar situations arise at a

number of levels of STF1B. The issue will hereafter be

referred to as the "non-containment problem” of a

geographic hierarchy.

When record types are nested to form a tree

structure as in STF1B one can think of the child records

as being "owned” by their (single) parent record. In the

above noted situation of a "multi-state” SMSA, the

151

geographic object is the logical child of two state

parents. In reality, then, a network (or plex) structure

is required to represent the true logical state-SMSA

association (see figure 7.3a)*

The Bureau of the Census has chosen to address the

non-containment problem by introducing the concept of

"part of area” records. When a ggeographic object is

divided by a higher (tree) level entity, a representative

record for each portion of the divided object is included

in the file. These "part of area" records are nested

within the appropriate higher level area records. Note

that the parts of a divided area are not siblings in the

physical tree structure; they are of different parents.

Intuitively, then, we can say that the parent area "owns"

that portion of the child area that lies within its

geographic boundaries.

The Bureau of the Census solution to the

non-containment problem allows for the hierarchical

physical representation of the geographic data. The

technique may have detrimental effects upon the

information retrieval process, however. To the data user

the appropriateness of this methodology as a solution to

the non-containment problem is debatable. Specifically,

the suitability of the method is dependent on the primary

FIGURE 7.3a

THE STATE-SMSA

NON-CONTAINMENT PROBLEM

lb l

DIVISION

STATE

SMS A

FIGURE 7.3b

THE CENSUS SOLUTION

153

geographic object in which the user of the information is

interested.

In the state-SMSA non-containment situation the user

who is primarily interested in state as a unit of analysis

would find the situation satisfactory. State, as a

geographic object, is unaffected by the splitting of

SMSAs. On the other hand , however, if the analysis is

SMSA oriented, maintenance of the hierarchical structure

yields an added (and unintuitive) complexity to the

information gathering process. The user is forced to deal

with an unnatural ’’part of” geographic object — an entity

which arises as a side effect of attempting to maintain a

chosen physical file structure (see figure 7.3b).

The non-coverage problem. A second anomaly that stems

from the hierarchical presentation of geographic based

data will be called ’’non-coverage problem" of a geographic

hierarchy. The non-coverage problem arises when the child

area(s) of a hierarchical relationship fail to provide

complete geographic coverage (called grid coverage) of the

parent area which owns them.

As an example, let us again consider the top three

levels of the STF1B geographic hierarchy: state, SMSA, and

county. For the sake of simplicity we will ignore the

154

non-containment problem and assume that SMSAs do not

transcend state boundaries.

Now, in recalling the previously cited definition of

SMSA, it should be obvious to the reader that the set of

SMSAs within a state would not be expected to completely

cover the state. If we wish to maintain the state-SMSA

hierarchical relationship, then we must choose one of two

possible courses of action:

1. Include a (child) record for each SMSA that

lies within the (parent) state and leave the non-SMSA

areas unrepresented at this level of the hierarchy

2. Include a (child) record for each SMSA that

lies within with (parent) state and, in addition, include

a complementary record representing all areas of the state

which are not covered by SMSAs

Upon inspection, the reader may find the former

alternative, including true SMSA records only, the more

intuitively pleasing choice. With regards to the data

needs of the user the SMSA level of the geographic

hierarchy should not be confounded by non-SMSA

information. In considering the lower hierarchical

155

levels, however, we see that this choice would disrupt the

nature of the tree structure.

Counties, in all cases, completely cover their

state; SMSAs do not. As a result, there are some counties

which are not part of an SMSA. Maintenance of the

hierarchical nesting of counties within SMSA within state,

as seen in STF1B, would define "orphan” counties under

alternative 1. All non-SMSA counties would have no parent

in the successive level of the physical structure. This

is illustrated in figure 7.4a.

The second option, providing a SMSA-complement area

record is the method which is used by the Bureau of the

Census. All non-SMSA county records are owned by the

complementary record. In file documentation provided by

the Bureau of the Census this record is referred to as a

"pseudo SMSA" or "remainder of state" record. We feel

that the intuitive appeal of this methodology is less than

optimal fr om the log ic al perspective of the user . True,

the physical hierarchical structure of the file is

maintained, but access to the data requires that

artificial geographic objects be maintained, processed,

and understood by the user (see figure 7.4b).

156

STATE

SMSA

COUNTY

“ORPHAN" COUNTIES

FIGURE 7.4a

THE STATE-SMSA NON-COVERAGE PROBLEM

FIGURE 7.4b

THE CENSUS SOLUTION

157

As is the case with the non-containment problem, the

non-coverage of parent by children areas exists at

numerous levels of the STF1B hierarchy.

Multi pie complexities. One attribute of a physical

hierarchical file structure of the type discussed here is

that an object within the structure is affected by its

ancestry. Each record carries the identifiers (keys) of

all superordinate owner records. In fact, each record is

identified by the concatenation of the keys of its

ancestor records.

When working with geographic hierarchies, then,

identification and understanding of a geographic object

instance requires that all ancestor instances in the

hierarchy be considered. A geographic artificiality at

level M of the hierarchy therefore results in the

propagation of anomalies at each N (>M) level of the

structure (note that the level numbers increase as we move

down the tree) .

Recall that both the non-containment problem and the

non-coverage problem were said to exist at a number of

levels of the STF1B hierarchy. As a result, geographic

object instances at the lower structural levels can be

plagued by multiple complexities in their identification.

158

An STF1B block instance, for example, is identified by the

concatenation of seven geographic area key values (one

taken from each level of the structure). This provides

the potential for more than one Mnon-entityM (pseudo or

part of area) to arise within the definition of a block

instance. Obviously, situations of this type act as

confounding factors in the information retrieval process

and can only serve as a hindrance to a proper logical

understanding of the geographic information.

As testimony to the confusing nature of the contents

of geographic hierarchical files consider the definition

of a level 6 STF1B record. The geographic object

represented by a record at this hierarchical level is

defined as follows: ’’Tract (or Block Numbering Area) or

portion of Tract (or Block Numbering Area) within place,

place segment and remainder of county or MCD”

[CENS80, p. 281.

In the previous paragraphs we outlined two anomalous

situations which often arise when geographic data are

structured as a tree. If a hierarchical structure is to

be maintained, the non-containment problem requires that

well-defined meaningful geographic areas be divided and

represented via ’’part of area” records. These geographic

areas are void of any logical significance when viewed

159

outside the physical hierarchy in which they exist. A

given set of geographic objects, when structured in two

different hierarchical orderings, will result in two

completely different dissections of geographic area

instances.

The non-coverage problem is also guilty for defining

the need for meaningless geographic areas. The "pseudo

area" complementary records have no semantic foundation

and exist merely as a structural implementation tool .

The point to be made from the above discussion is

this: geographic entities do not hold a natur al

hierarchical ordering. Therefore, implementation of a

geographic hierarchy requires that the objects be "forced"

into an artificial situation.

The reason behind the non-hierarchieal nature of

geography is simple —— different geographic partitionings

are defined for different purposes. Geographic areas may

be governmental units, statistical units, or enumeration

units. The significance of any one of these geographic

area types depends upon the specific application in which

the data are used. The criteria used to define these

widely different area types are outlined in [KAPL80].

160

Misrepr esented relationships . The non-containment and

non-coverage problems are important because they disrupt

the nature of the geographic objects that are represented

by the underlying data. These issues force the user to

deal with geographic objects which may have no logical

significance; records do not relate to meaningful

entities .

Beyond this, the hierarchical physical structure

fails to provide an accurate conceptual model of the data

by misrepresenting geographic relationships. The nesting

of county within SMSA within state, as in the STF1B

configuration, holds the logical implication that SMSA

geographic objects are more closely related to state

objects than are counties.

Furthermore, the chosen configuration implies that

the ”importance” of an SMSA area is somehow subordinate to

that of a state area. We suggest that the logical

significance of these area types cannot in general, be

specified; it is dependent upon the needs of the user.

In short, the very restrictive structure of a tree

is not well suited to represent the logical associations

that exist among widely heterogeneous geographic areas.

The definition of political areas is usually independent

of statistical considerations. Similarly, large political

1 61

areas are seldom considered in the definition of

statistical zones. Why then should there exist a logical

’’parent-child” structure among such areas?

In common business database applications schemas are

often tree structured because the logical relationship

among the entities of the application are tr uly

hierarchical in nature. For example, the fact that an

employee entity ’’owns” its dependent entities denotes, to

the data user, a logically rational relationship among the

objects. The same cannot be said about the objects of a

geographic database.

Attribute areas: representing entities as

properties. Still another inadequacy in the ability of

the physical structure of census data files to serve as a

proper conceptual schema lies in the makeup of the

individual record types. Recall that each record type of

the file relates to some partitioning of geography. Each

record instance, then, denotes some (not necessarily

meaningful) geographic area whose properties are specified

within the attributes of the record.

The geographic area types that correspond to the

record types are used to form the "nested” geographic

hierarchical file structure, so we will refer to such area

162

types as "nesting areas.” Example STF1B nesting areas are

state, county, and SMSA.

A problem is that not all relevant geographic area

types about which information is provided in the file hold

positions as levels of the hierarchy. In other words,

census files contain information about geographic areas

which are not nesting areas. We will hefer to such

geographic object types as "attribute areas."

An attribute area is described when the geographic

(nesting) area instance represented by a data record is

"flagged" as being part of another area type. For

example, a specific STF1B record may represent an instance

of a census block where the area type BLOCK assumes a

level within the physical hierarchical structure of the

file (BLOCK is a record type). Within the record for this

block instance the block can be identified as being part

of a specific "urbanized area" despite the fact that the

URBANIZED-AREA geographic area type does not hold a

position within the physical structure of STF1B. Thus,

there is no record type that relates to urbanized areas,

but their properties can be derived by processing block

area records. This is illustrated in figure 7.5.

163

When serving as a logical model of the contents of

STF1B, then, the physical structure presents a very biased

view of urbanized areas as geographic objects. In terms

of data usage and analysis, urbanized areas are relevant

entities. They have well-defined boundaries, and they are

identified on metropolitan and census maps. The areas

hold unique names and key values as do SMSAs or any

meaningful statistical zones. Still, as logical objects

of the file structure, their status is reduced to that of

an attribute. They are thus subordinated to all other

nesting areas of the file.

In terms of the relationships among attribute area

objects and nesting area objects, the hierarchical file

structure provides an ambiguous model. The geographic

relationship (or lack thereof) between a state and an SMSA

is as meaningful a concept as is the relationship between

a state and an urbanized area. In the model of the file

hierarchy, however, these associations are depicted quite

differently. In fact, using this model, an urbanized area

object is unrelated to all other geographic areas because

it is not a geographic area itself -- it is an attribute

of a geographic area.

BLOCK
ABC

URBANIZED
AREA 123

GEOGRAPHIC
AREAS

FIGURE 7.5

RECORD REPRESENTATION OF

"ATTRIBUTE AREAS"

Recapitulation. In evaluating the performance of the

physical hierarchical structure of census files we see

that it does a poor job of providing the data user with a

logical model of the contents of the data set. Although

the structure may meet the requirements of efficient data

processing, it does not match reality in terms of

interrelating the primitive logical objects of a data

model. These primitives (entities, relationships,

properties, values) are often misrepresented or not

represented at all in the model put forth by the physical

str ucture.

The record types of the physical file structure do

not necessarily represent meaningful (to the data user)

logical entity types. The user must work with geographic

objects which are defined as a function of the chosen

physical data structure. A reordering of the hierarchical

levels of the physical file structure would demand a

completely different (and equally illogical) dissection of

geography.

This problem rises primarily from the fact that

geography is not hierarchical in nature. If there were a

natural geographic hierarchy, then a hierarchical file

could be designed such that each object presented to the

user (data record) depicted a logically meaningful

geographic entity. Unfortunately, such is not the case.

Let us consider, for the moment, what would be the

consequences if the definition of geographic partitioning

did adhere to a natural hierarchical ordering. We suggest

that, even in this situation, the physical hierarchical

structure of census files would fail as an adequate

conceptual schema. True, the physical structure would

present a straight forward documentation of the contents

of the data set, but it would not describe the meaning of

the data; it would not capture the semantics of geography.

This "absence of meaning" is due to the fact that a

semantic model of data does not deal with entities only.

A ma jor portion of the meaning of the data set is inherent

in the ways that the entities are related . Unfortunately,

the representation of these relationships is hardly

straight forward: "If the function of a database were

merely to store data, its organization would be simple.

Most of the complexities arise from the fact that it must

also show the relationships among the various items of

data that are stored" [MART76, p. 74]. As noted above,

the hierarchical file structure not only fails to

represent the meaningful relationships among geographic

objects, but it implies a number of erroneous associations

among the involved areas.

167

Finally, it should be remembered that, from the

logical structural viewpoint, the existing physical file

structure represents some logical entities as if they are

properties. If the record types of the structure are

thought of as relating to the entities of the model, then

the "attribute areas" contained in the file do not

represent entities. Rather, they depict properties of

other entities.

A consequence of this representation is that, in the

logic presented by the data model, geographic objects

which happen to be stored as attribute areas can have no

properties. Properties are asserted about entities; not

about other properties. Similarly, attribute areas hold

no relationships with other geographic areas; only

entities are joined in relationships [2]. These

restrictions occur despite the fact that, in reality, the

objects represented by attribute areas are of the same

nature as those represented by the "entities" of the

model .

The issues discussed in the preceeding paragraphs

describe the ways in which the physical file structure

misrepresents the "reality of geography." A related issue

is that there does not exist a straight forward means of

describing and discussing this reality. Therefore, in

168

order to communicate the nature of the true logical

association between block numbering areas and enumeration

districts, for example, natural language must serve as the

medium of discourse. Such an interlocution is an overly

complex discussion of what could otherwise be described in

terms of a few simple constructs.

The problem here is that there is no "language” of

geographic semantics; the simple constructs upon which

general geographic partitioning is based have not been

formalized. A result of this problem is that the

documentation, discussion, and description of geographic

based data sets are needlessly complicated and lengthy.

This affects both data technicians and data users . The

issue relates not only to census data but to any

geographic based data set. This problem is addressed in

the next chapter.

169

FOOTNOTES

[1] Under the most general definition of a tree
structure the parent (children) of a node may
exist at any higher (lower) level. We make use of
a more restrictive definition, that is the parent
(children) must exist at the next higher (lower)
level. The reason for this is that such a
structure is held by the hierarchical files of the
application being considered.

[2] Some data modeling formalisms allow for properties
to hold properties or for properties to hold
relationships with entities, but such is the
exception rather than the rule (see chapter 4 for
a discussion of this). A simple tree structured
data model can hardly be considered to connote
these unusual semantics.

CHAPTER VIII

GEOPOLITICAL STATISTICAL DATA: LOGICAL STRUCTURE

The Semantics of Geography

The above discussion makes clear the fact that the

existing physical structure of a census file performs

poorly when called upon to serve as a logical model of the

data set. The contents of the data set are presented in a

form that is inconsiderate of user needs, and the

depiction of the meaning (semantics) of the data is hardly

adequate. What is needed, then, is a logical framework of

these files through which an understanding of both the

contents and the meaning may be easily derived by the

user .

Through the principle of data independence we know

that such a logical structure may be vacuous of physical

structural considerations: ’’Given the ability of data

management software to separate the physical organization

of data from the users’ view, or ’logical organization,'

the users' view ought, in theory at least, to be

formulated without concern for physical representation.

The users’ view of data should be in whatever form is most

170

171

convenient for them, and the data management software

should do the translation between this logical

organization and whatever physical organization gives

efficient performance” [MART76, p. 74], The reason for

promoting such physical data independence is that it

allows for the creation of a logical structure which is

uncluttered and straight f orward f or the user -- a

structure which serves to simplify rather than to confuse.

In order for a data model to serve adequately as a

conceptual schema of a geographic data set, it must

capture the ’’semantics of geography.” Each geographic

data set involves a number of different types of

geographic area. Consequently, the semantics of a

geographic data file relate to this entire set of area

types. To truly understand the ’’meaning” of geographic

based information one must assimilate the ’’geographic

system.” More than the individual components, the

semantics of geography include the interrelationships

among the components. A conceptual schema of geographic

data must therefore model this system.

A conceptual schema of a geographic data set

presents a model of some aspect of real world logical

structure. Like any data model it involves the use of

four primitive objects: entities, relationships,

172

properties, and values. The latter three objects are

relevant only because they give meaning to and describe

the entities. Thus, entity objects are the primary focus

of the model.

At this point in the discussion we will investigate

the nature of these primitive objects upon which a

conceptual model of geography is based. These objects

will form the structure of a schema which is aimed at

capturing the semantics of the underlying geographic data.

The objects of a geographic data file. With

geopolitical statistical data, a geographic area is the

major object of user interest. The data describe

geographic areas. For the data to provide useful

information it must describe a geographic area which is

meaningful to the user. Data relating to an ambiguously

defined geographic zone has little informational value.

In terms of data modeling, then, we see that the

entities of a geographic data model are geographic areas.

The entities of a data model should be meaningful to the

data user. Therefore, each geographic area represented by

an entity of the model should be logically significant in

the user’s mind; ambiguously defined areas should not

relate to the entities of the model. Recall that the data

173

model exists purely to aid the user.

If a logical model of geographic data is to be

created, some definitions are due here. A geographic

entity is a well-defined geographic area which can be

located on a map. The area must be identifiable by a name

or by an identification number. Example geographic

entities are ’’Amherst," and "census block 123." An area

which is not an example of a geographic entity is "the

portion of the SMSA that lies within the state."

Geographic entities which are defined in a similar

way for a specific purpose form a geographic entity type.

Each geographic entity type has a unique name which

represents all geographic areas defined as that type.

Example entity types are STATE, TRACT, and BLOCK. Note

that in our notation the name of an entity type is shown

in upper case letters.

The individual areas (entities) which are members of

an entity type are called "instances" of the type.

Massachusetts and California, for example, are instances

of entity type STATE. No two instances of a given entity

type will ever contain the same geographic point. In

other words, spacial overlap within an entity type is

nonexistent (see figure 8.1a).

FIGURE 8.1a

INSTANCES OF AN ENTITY TYPE DO NOT OVERLAP

INSTANCES OF DIFFERENT ENTITY

TYPES MAY OVERLAP

175

Although "intra-typeM overlap is never found,

Minter-type” spacial overlap is possible and prevalent.

Thus, the same point(s) may be within instances of two or

more entity types. Consider, for example, that each point

which lies within the Town of Amherst also lies within the

County of Hampshire and the State of Massachusetts (see

figure 8.1b).

If the only purpose of a geographic data model were

to indicate the logical contents of the data,

specification of the relevant geographic entities would

accomplish a major part of the task. This is not the

case, however, because our data model must be the basis of

a conceptual schema for the data set -- it must depict the

semantics of the data set. In most applications a major

portion of the meaning of the data set is captured in the

relationships of the data model.

Relationships give meaning to the data model by

showing the ways in which entities are associated with one

another. The relationships tie together the otherwise

unallied entities to form an overall "picture” of the

application.

Relationships in a geographic data model have to do

with the spacial overlap of the entities of the model.

Overlap of geographic entities is common, and much of this

176

overlap is erratic and meaningless. In some cases,

however, the spacial overlap of entities (or sets of

entities) is well structured and meaningful. In such

instances knowledge by the data user as to the nature of

the overlap provides added meaning to the involved

entities.

The relationships of a geographic data model, like

the entities of the model, exist purely to improve the

user’s understanding of the data — they should be

logically meaningful objects. Consequently, the entities

of the model are connected by relationships if. the overlap

of the involved areas is well-defined and meaningful.

Otherwise, the entities are shown to be unrelated. In

this way the semantics of the data can be clearly

depicted.

Geographic relationships are of a number of

different types. Each type has its own semantic and

provides information about the related entities in its own

way. These relationship types are defined in detail in a

later section.

Regardless of type, each relationship describes the

nature of the overlap (or lack thereof) that exists among

geographic entities. The reader may question how a

description of the spacial overlap of geographic entities

177

can help to clarify the semantics of the underlying data

related to those entities. The answer is not

straightforward; it has to do with the fact that

geographic entities are often partially defined in terms

of other geographic entities. This interdependence of

entity specification manifests itself as well structured

overlap of the involved objects. Consequently, a

depiction of the structure of the overlap captures a

portion of the (definitional) meaning of the objects.

As a simple example consider the previously

specified definition of an SMSA: an SMSA is a set of

physically contiguous counties which exhibit a high degree

of economic and social integration and display certain

population characteristics. From this definition of the

entity it is obvious that a portion of its meaning is

derived from the fact that it is made up of counties.

Thus, an_ SMSA is a set of counties. From another

perspective the definition provides an important semantic

about county objects: a county may be a meaningful part of

an SMSA object. This relationship is depicted in

figure 8.2.

The above simple example illustrates one way that a

description of the spacial overlap of geographic entities

can provide meaning to the entities. Namely, entities can

be combined to form other entities.

178

THE RELATIONSHIP BETWEEN

SMSAS AND COUNTIES

179

A second meaning-providing type of overlap occurs

when two entities are restricted from sharing a common

area (note that the structure of this overlap is that

there is no overlap). An example of this lies in the fact

that a geographic zone may be covered by an instance of a

block group, or it may be covered by an instance of a

tract; but it cannot be covered by an instance of both

entity types. This is illustrated in figure 8.3.

The semantic of this association is that a block

group is a Mnon-tract," and, similarly, a tract is a

"n on-block group.tf Thus, the entities are given meaning

by specifying "what they are not."

Still another meaningful overlap structure exists

when the overlap of two geographic entities indicates

something about the overlap of other entities. For

example, census tracts can lie inside or outside of SMSA

entities. It happens that when a tract lies within an

SMSA, the tract area is completely covered by blocks.

This cannot be stated about tracts in general.

Consequently, we know that i_f a tract instance is an "SMSA

tract," then we are assured that the object comprises a

set of blocks (see figure 8.4). This "meaning" is given

to the tract because of its affiliation with an SMSA.

BLOCK
GROUP 1

TRACT C

FIGURE 8.3

THE ASSOCIATION BETWEEN

BLOCK GROUPS AND TRACTS

COUNTIES

FIGURE S.4

COUNTIES IN AN SMSA ARE

ALWAYS COVERED BY BLOCKS

182

The nature of the remaining two database primitives,

properties and values, is not complex. Recall that the

assignment of a value to a property of an entity

represents an assertion about the entity. The set of all

such assertions characterizes the entity.

In our geopolitical statistical application there

exists a number of different entity types. At a basal

level, however, each entity type depicts the same

fundamental "kind” of object — a well defined closed area

of geography. Consequently, the semantic of any given

property is the same for each entity to which it applies.

Also, much of this semantic is portrayed in its name.

Consider, for example, the property "white

population." The meaning of this property is the same

whether it applies to a state or to a census enumeration

district. In either case its value refers to the count of

white persons living within the boundaries of the

respective geographic entity [1], Obviously, the value of

the property is different for each geographic entity it

relates to. The basic meaning of the property, which is

apparent from its name, is constant in all cases, however.

Therefore, the properties of geographic entities need be

defined at most once within a total conceptual model of a

geographic environment.

183

In most data modeling applications, value primitives

are of little concern during the design of the conceptual

schema. Values have to do with specific entity instances,

and the schema does not deal with instances; it gives

structure to entity types. In our geopolitical

application, values are related to the schema structure

for the following reason: values of properties of

different entities are associated, and the nature of the

association among the values is defined by the

relationships among the entities.

Values of a geographic data set are statistical

objects. Each value represents the count of the

occurrence of some underlying "raw object” (e.g. person,

housing unit) within the geographic entity. Geographic

entities overlap, so the values of the properties of

different geographic entities may be based on the same

underlying raw object(s) , Whenever two geographic

entities share a common set of points, then, the values of

a given property of

associated.

the respective entities are

In studying the spacial overlap of geographic

entities we found that not all overlap is meaningful; only

some of the entities which share a common area are linked

by a relationship. From the data user’s perspective,

184

meaningful overlap of entities should be documented and

exploited. Other spacial overlap should be ignored.

Similarly, not all associations among statistical

values are meaningful. When such associations are

significant the semantic of the association is provided by

the relationship that links the respective entities. In

other words, the values of properties of different

entities are associated in the same fashion as are the

entities themselves. In this way the values of the data

set are linked to the conceptual schema.

At this point the reader may wonder why the relation

among the values of entities is an issue of importance.

The answer lies in the fact that if we know the ways in

which property values should be related (as defined by the

relationships among entities), then we can check the

integrity of the contents of the data set. Thus the

structure of the conceptual schema can provide the

foundation upon which semantic integrity checks are based.

This is detailed in a later section.

185

A Geographic Pat a Modeling F ormalism

Having introduced the basic objects of a geographic

data model we are prepared to develop a data modeling

formalism (DMF) through which such models can be

constructed. The formalism will provide a well-defined

means of structuring conceptual schemas for geographic

data sets. In addition it will provide a ’’language” of

geographic structure.

In the previous section we suggested that properties

and values are only peripherally related to the semantics

of geographic data. Geographic entities, and the spacial

overlap structure (relationships) among these entities

captures the important semantic content of a geographic

data set. Consequently, the formalism is based entirely

on geographic entities and geographic relationships.

The Entity-Relationship model [CHEN7 6; CHEN77]

described in appendix A represents the semantics of a data

set in terms of entities and relationships. The

constructs of this formalism are not well suited to meet

the specific modeling needs of a geographic data set,

however. Specifically, the ’’meaning” of a relationship in

the Entity-Relationship model does not match the semantic

of spacial overlap. Also, we require a less general

186

depiction of the mathematical mapping (cardinality) of

entities in a relationship than is provided by the

Entity-Relationship model.

The DMF presented here is a revision of the

Entity-Relationship model that is dedicated to meeting the

specific needs of geographic based data. Each entity

represented through the formalism is understood as being a

geographic entity (as defined earlier). Similarly, each

relationship is understood as depicting spacial overlap

among geographic entities. We call this special purpose

data modeling formalism the Geographic Entity-Relationship

Modeling System (GERMS).

Recall that each geographic entity is, at the basal

level, the same "kind" of object -- a well-defined closed

geographic area. Each entity type in the GERMS therefore

has the same basic graphical representation — a

rectangular node labelled with the entity type name

(recall that an entity type name is spelled in capital

letters).

Figure 8.5 provides some examples of GERMS entity

types. Note that the GERMS, like any data modeling

formalism, provides an intensional (vis-a-vis database

extension) representation of objects (see chapter 4). In

other words, the data model deals in entity types rather

STATE

ENUMERATION

DISTRICT

URBANIZED

AREA

FIGURE 8.5

GEOGRAPHIC ENTITY TYPES

188

than entity instances. Thus, the STATE box of figure 8.5

represents Massachusetts, California, and all geographic

areas which are states. Similarly, the

ENUMERATION-DISTRICT box of figure 8.5 represents all

enumeration districts.

At this point, before we progress any further, we

would like to reiterate that an entity type is not a

record type. A GERMS model serves to describe the logical

structure of some data set, but this structure is (data)

independent of physical structural issues. The presence

of a GERMS entity type only implies that the respective

geographic areas are represented i_n some physical form

within the underlying data.

Two geographic entities may be linked through a

geographic relationship. In such a case we say that a

relationship "holds” between the entity types. The entity

types which are joined in a relationship are referred to

as "participants" in the relationship. We call the

instances of the participating entity types the

"constituents" of the relationship.

The existence of a relationship between two entity

types defines the potential for well structured spacial

overlap of instances of the entity types. The nature of

the spacial overlap (if it exists) is defined by the type

189

of relationship linking the participating entity types.

As was observed with geographic entities, there are a

number of different types of relationship. Each

relationship type has a type name that is shown in upper

case letters.

The graphical depiction of a relationship follows

the conventions of the Entity-Relationship model in that a

relationship is represented by a labelled (by type name)

diamond shaped node with edges (links) joining the

participating entity types. Beyond this, the similarities

with Entity-Relationship relationships cease to exist.

Unlike the Entity-Relationship, the GERMS graph

utilizes directed edges. Each relationship has a definite

’’direction.” The directed edge of a relationship

represents this semantic.

The directed edge also portrays the mathematical

mapping among instances of the related entity types. The

mapping of entities in a geographic relationship is, in

all cases, a functional mapping (a number of instances of

one type are related to a single instance of the other

type). The functionality of this mapping is given by the

direction of GERMS relationship edges.

190

Both the GERMS and the Entity-Relationship model use

the notion of relationship types [2]. Entity-Relationship

relationship types are situation specific and the meaning

of any relationship depends on the entities which it

joins. The only pre-defined semantic of an

Entity-Relationship relationship type is that it relates

entity types.

GERMS relationships, on the other hand, are not

situation specific; they represent pre-defined

constructs [3]. In other words, the specific relationship

types, which incidently are few in number, are inherent in

the modeling formalism. They are, therefore, applicable

to every situation.

There are a number of advantages to be gained by

incorporating the definition of relationships into the

constructs of the modeling formalism. The major advantage

is that a single semantic is applied to many cases. Once

this semantic is understood in the general sense, the

relationship’s name connotes an immediate understanding of

its meaning in each specific application.

The reader may question how relationships, which

represent the spacial overlap of heterogeneous (according

to entity type) geographic areas, can be categorized into

relationship types. A related question is: if it is

191

entity instances which overlap, how can relationships hold

between entity types. The following example should help

to clarify these points.

Consider drawing the boundaries of all instances of

a given entity type on a sheet of cellophane film. Recall

that no two instances of a given entity type can contain

the same point. Therefore, none of the area boundaries on

the sheet will overlap. Assume that a similar but

separate sheet is created, using the same geographic

scale, for each entity type.

Now, if two of these sheets are overlaid, the

spacial relations that exist between instances of these

entity types can be studied. In many cases the overlap of

entity instances will be erratic and unstructured. Here,

a GERMS relationship does not hold between the respective

entity types.

In other cases the overlap will maintain a certain

structure with regards to all instances of the respective

types; the definition of some geographic areas is

considerate of other geographic areas. In this latter

situation the nature of the structure of the spacial

overlap adds meaning to the involved entities. Thus a

relationship does hold between the respective entity

types .

192

If this overlaying process were carried out for all

possible pairs of entity types, at least four well-defined

spacial constructs could be identified. These constructs

are represented by the three relationship types and the

one association (non-relationship) type of the GERMS.

These types are named and defined in the subsections that

follow. First, however, we will note that the above

illustration makes clear an important attribute of GERMS

relationships. Namely, all GERMS relationships are

binary — they connect exactly two entity types.

For each relationship type described below there is

provided a graphical form and a lingual form. The

graphical form serves as a means through which a (logical)

schema graph of a geographic data set may be created -- it

is the basis of a "picture" of the semantics of geography.

The lingual form acts as a standard "language" of logical

geographic structure to be used in creating, discussing,

and describing geographic data models. Also, the lingual

form provides the basis for both a data definition

language and a query language of the GERMS. The structure

and use of these are discussed .in later chapters.

The information content of the graphical and lingual

depiction of a GERMS relationship are equivalent. That

is, each form provides the same data model.

193

The specific relationship constructs of the GERMS

are only four in number:

1. CONTAINS -- a relationship which indicates that

instances of one geographic entity type lie within the

boundaries of an instance of another entity type. For

example, tracts lie within the boundaries of a county

(COUNTY CONTAINS TRACT).

2. COMPRISES — a relationship which indicates

that instances of one entity lie within an instance of

another entity type and completely cover the latter area.

For example, counties lie within the boundaries of a state

and completely cover the state (STATE COMPRISES COUNTY).

3. IS-A — a relationship which indicates that

instances of one entity type hold the distinction of being

special case instances of another entity type. For

example, some tracts (which we call urban tracts*) combine

to form central business districts. Tracts, in general,

do not (URBAN-TRACT* IS-A TRACT).

194

4. EITHER-OR -- an association (not a

relationship) which indicates the grouping of a number of

entity types in the formation of a single more general

entity type in which the lesser distinction is lost. This

is permitted only in those cases where instances of the

original entity types do not overlap. For example, tracts

and block numbering areas never overlap. They can

therefore be grouped together to form the more general

tract/bna object (TRACT/BNA IS EITHER TRACT OR

BLOCK-NUMBERING-AREA).

A detailed discussion of each of these constructs in

turn, together with graphical illustration of each,

follows hereunder.

The CONTAINS relationship. The first and simplest type

of relationship which may hold between two entity types is

the "CONTAINS” relationship. When a CONTAINS relationship

holds between a subordinate entity type, say "SUB," and a

super ordinate entity type, "SUPER," the following can be

said about these types:

Property 8.1. If a point which lies within an
instance of type SUB also lies within an

195

instance of type SUPER, then the area defined as
the instance of SUB will be completely contained
within the instance of SUPER.

Property 8.1 insures that an area instance of type

SUB will never be divided by the boundaries of an area of

type SUPER. In alternative words, the boundaries of a SUB

instance will never transcend those of a SUPER area

instance.

It is important to realize that property 8.1 in no

way implies a one-to-one correspondence between elements

of the participating types. Rather, the mathematical

mapping is 1:N from SUPER to SUB. Thus each instance of

SUPER is related to (contains) any number of SUB

instances, while each instance of SUB is related to

(contained in) a single SUPER instance. The semantic of

this relationship is illustrated in figure 8.6.

With respect to properties and values of

MCONTAINS-relatedM entities, some conclusions can be drawn

here. Recall that in this application properties are

statistical objects which relate to the frequency of

occurrence of some underlying "raw object" within the

boundaries of the geographic area in question. When

geographic areas overlap the properties of these areas

share common raw objects.

196

FIGURE 8.6

THE SEMANTIC OF THE CONTAINS RELATIONSHIP

"SUPER CONTAINS SUB"

197

When the nature of the overlap is of the CONTAINS

variety, it is obvious that all raw objects which ’’belong"

to the subordinate area also "belong” to the superordinate

area. Consequently, the aggregation of the values of a

given property of all SUB instances which lie within a

single SUPER instance is, in all cases, less than or equal

to the value of the respective property of the related

SUPER instance. This fact impacts the issue of semantic

integrity which is discussed later.

An example of a CONTAINS relationship is shown in

figure 8.7. This graphical depiction, which in its

lingual form reads "COUNTY CONTAINS TRACT," implies that a

tract will never be divided by county boundaries. Note

that the functional edge of the graph is directed from the

subordinate (TRACT) to the superordinate (COUNTY) entity

type. This directed edge represents the "direction" of

the relationship (i.e. the graph does not indicate that

TRACT COUNTAINS COUNTY).

The directed edge also represents the fact that

there exists a 1 : N mathematical mapping between entity

instances. Therefore: (1) an instance of type COUNTY may

contain many instances of type TRACT, and (2) any given

instance of type TRACT will be contained in a single

instance of type COUNTY.

198

FIGURE 8.7

A CONTAINS RELATIONSHIP

"COUNTY CONTAINS TRACT"

199

It should be obvious that the CONTAINS relationship

is transitive. Thus, if A CONTAINS B, and B CONTAINS C,

then A (implicitly) CONTAINS C.

The COMPRISES relationship. The second and somewhat

more powerful (in terms of meaning) relationship which may

hold between two entity types is the "COMPRISES”

relationship. When a COMPRISES relationship holds between

a subordinate entity type, say "SUB,” and a superordinate

entity type, "SUPER," the following can be said about

these types:

Property 8.2.1. If a point which lies within an
instance of type SUB also lies within an
instance of type SUPER, then the area defined as
the instance of SUB will be completely contained
within the instance of SUPER.

Property 8.2.2. The set of instances of SUB
that ITe within a given instance of SUPER
provide complete geographic grid coverage of the
instance of SUPER.

Note that property 8.2.1 denotes the fact that each

COMPRISES relationship defines the existence of an

implicit CONTAINS relationship between the participating

200

entity types. The semantic of the two relationship types

is not the same, however. The distinction arises from

property 8.2.1 of the latter COMPRISES relationship. This

property imposes an added condition on the constituents of

the relationship. Namely, the collection of subordinate

areas completely cover the super ordinate area in which it

lies.

Figure 8.8 illustrates the semantic of the COMPRISES

relationship.

An important consequence of property 8.2.1 is that

it allows us to ’’aggregate up” from the subordinate to the

superordinate entity type. In other words, all values of

properties pertaining to the instances of SUB which lie

within a given SUPER instance cumulatively represent the

values of the respective properties of the instance of

SUPER.

In the case of the CONTAINS relationship we are only

allowed to make relational statements (e.g. less than or

equal to) about the properties of related areas. In order

to elucidate this point we will refer back to figure 8.6

(above) which illustrates the semantic of CONTAINS.

As shown in this figure, the subordinate areas of a

CONTAINS relationship may cover only a portion of the

respective super ordinate geographic zone. This defines,

201

THE SEMANTIC OF THE COMPRISES RELATIONSHIP

"SUPER COMPRISES SUB"

202

because of the statistical nature of the properties under

consideration, that: (1) the super ordinate property values

are greater than the aggregation of the subordinate

property values; or (2) the super ordinate property values

are equal to the aggregation of the subordinate property

values (this is an exceptional case). The semantic of

CONTAINS only assures us that a superordinate value will

not be less than the aggregation of the respective

subordinate property values.

When the COMPRISES situation holds, on the other

hand, we can exactly specify the values of the properties

of one area in terms of the values of the properties of

other areas. This is because the super ordinate and the

set of subordinate instances always refer to the exact

same geographic area; the statistical properties must be

the same. Consequently COMPRISES is called a ’’strong

relationship” as opposed to CONTAINS which we call a ’’weak

relationship. ”

Figure 8.9 has been formed by appending a COMPRISES

relationship to the model in figure 8.7» Again, the

directed edge from subordinate to superordinate entity

type repesents both the direction of the relationship and

the functional mapping (one to many) of the constituent

objects.

STATE

FIGURE 8.9

THE COMPRISES RELATIONSHIP

"STATE COMPRISES COUNTY"

204

The new relationship, read ’’STATE COMPRISES COUNTY,"

provides the following information:

1 . A county will never be divided by state

boundaries

2. The counties within a state completely cover

the state

Like the CONTAINS relationship, the COMPRISES

relationship is transitive. Therefore, if A COMPRISES B,

and B COMPRISES C, then A (implicitly) COMPRISES C.

Let us again refer to the model in figure 8.9 so

that we may investigate how TRACT and STATE are related.

Recall that the existence of a COMPRISES relationship

defines the existence of an implicit CONTAINS relationship

between the participating entity types (through

property 8.2.1). The model therefore provides the

implicit information that STATE CONTAINS COUNTY.

Furthermore, the model provides the explicit information

that COUNTY CONTAINS TRACT. Because the CONTAINS

relationship is transitive, we may infer that STATE

CONTAINS TRACT. Thus a tract will never be divided by the

boundaries of a state.

205

The model of figure 8.9 does not allow us to

conclude that STATE COMPRISES TRACT. This is because the

relationships depicted in the model do not define that

tracts provide complete grid coverage of each county

(although the model does not exclude this situation from

the realm of possibility). Here, the presence of weak

(CONTAINS) relationship inhibits the formation of a

transitive ’’chain" of strong relationships.

The IS-A relationship. The third relationship, called

"IS-A," allows for the semantic description of

subcategories of an entity type. The existence of an IS-A

relationship between two entity types represents the fact

that one of the participating entity types is a special

case of the other entity type.

When an IS-A relationship holds between two entity

types, say "SPECIAL" and "GENERAL," such that type SPECIAL

is a special case of type GENERAL, the following can be

said about these entity types:

Property 8.3-1 » Each instance of type SPECIAL
is an instance of type GENERAL.

206

Pr operty 8.3*2. All implicit and explicit
CONTAINS, COMPRISES, and IS-A relationships
which hold between type GENERAL and other entity
types are inherited by type SPECIAL through the
IS-A relationship (recall that each explicit
COMPRISES relationship defines the existence of
an implicit CONTAINS relationship).

We call property 8.3-2 the "inheritance property" of

the IS-A relationship. Because of the inheritance

property, entity type SPECIAL may hold its own explicit

relationships as well as holding implicit relationships

inherited from type GENERAL. Note that this property

defines that the IS-A relationship is transitive.

In figure 8.10 the model of figure 8.9 is expanded

so that we may study an example of an IS-A relationship.

Here, we introduce three new entity types:

CENTRAL-BUSINESS-DISTRICT, BLOCK-GROUP, and URBAN-TRACT*

(pronounced urban tract-star). The asterisk appended to

the name of the latter entity type is used to denote the

fact that a non-standard name has been created for the

purpose of naming the entity box.

From figure 8.10 it can be seen that

CENTRAL-BUSINESS-DISTRICT COMPRISES URBAN-TRACT*. Also,

URBAN-TRACT* COMPRISES BLOCK-GROUP. The implications of

these two new relationships are straightforward. Namely:

207

FIGURE 8.10

THE IS-A RELATIONSHIP

"URBAN-TRACT* IS-A TRACT"

208

1. An urban tract* will never be divided by the

boundaries of a central business district, and the urban

tracts* within a central business district completely

cover the central business district

2. A block group will never be divided by the

boundaries of an urban tract*, and the block groups within

an urban tract* completely cover the urban tract*

3. A block group will never be divided by the

boundaries of a central business district, and the block

groups within a central business district completely cover

the central business district (implied COMPRISES

relationship)

The remaining new relationship, which is read

"URBAN-TRACT* IS-A TRACT,” defines that each instance of

the type URBAN-TRACT* is also an instance of the type

TRACT (see figure 8.11). From the inheritance property of

the IS-A relationship it can be deduced that an urban

tract* will neither cross the boundaries of a county nor

those of a state.

FIGURE 8.11

THE SEMANTIC OF

"URBAN-TRACT* IS-A TRACT"

210

The reader should note that the IS-A relationship is

directed from the subtype (special case) to the supertype

(general case) node of the graph. Like the edges of the

previously discussed relationship types, the directed edge

of the IS-A relationship represents a functional mapping

between the participating entity types. Thus each

instance of the special case entity type is mapped into

exactly one instance of the general type.

Unlike the aforementioned relationships, the mapping

of objects is not 1:N in the IS-A situation. Rather, the

relationship is characterized by a 1:1 mapping. The

relationship is "unbalanced,” however, in that each

instance of the supertype need not be linked to a

colleague instance of the subtype [4]. For this reason

the directed edge also serves to insure the semantic

clarity of the relationship (i.e. X IS-A Y is not the

same as Y IS-A X).

The rationale for creating the type URBAN-TRACT* as

a subtype (IS-A) of TRACT lies in the fact that it allows

for the presentation of more detailed information about

tracts which lie within central business districts. Note

that the type URBAN-TRACT* holds a direct relationship

(COMPRISES) with the type BLOCK-GROUP. A COMPRISES

relationship does not hold between TRACT and BLOCK-GROUP,

211

however (the association between tracts and block groups

is discussed in the next subsection). Therefore, when it

is known that a tract lies within a central business

district, then it is known, without question, that the

tract is completely covered by block groups. This cannot

be said about tracts is general. This is illustrated in

figure 8.12.

The EITHER-OR association. Geographic entity types may

be linked through an "EITHER-OR association.” When an

EITHER-OR association holds between two entity types, say

”TYPE-A” and ”TYPE-B,” the following can be said about

these entity types:

Property 8.4. The geographic areas defined as
instances of TYPE-A and TYPE-B are mutually
exclusive such that a point which lies within an
instance of TYPE-A will never lie within an
instance of TYPE-B.

Property 8.4 implies that an area of geography may

be covered by an instance of the entity type TYPE-A or by

an instance of entity type TYPE-B, but not both. Thus, as

is observed with instances of a single entity type,

instances of "EITHER-OR associated” entity types do not

BLOCK
GROUPS

FIGURE 8.12

URBAN TRACTS*

213

overlap.

Because of the mutual alternation of instances of

such entity types, the set TYPE-A, TYPE-B can be combined

to form a single ’’higher level” entity type:

TYPE-A/TYPE-B. From the higher level perspective all

instances of the type are isomorphic — there is no

difference between a TYPE-A area instance and a TYPE-B

area instance. The higher level entity type may hold its

own relationship with other entity types. The EITHER-OR

concept can be directly extended, if need be, to associate

more than two entity types.

The EITHER-OR association _is not a relationship

between entity types. A relationship, as used in our

geographic application, represents the potential for

spacial overlap of instances of participating entity

types. It is the nature of this overlap of constituent

instances that defines the type of relationship held

between the entity types. The EITHER-OR association, on

the other hand, can never link instances of two entity

types. This is because the association represents the

fact that no two constituent instances will ever be

’’present” in the same geographic location. Therefore, the

existence of an EITHER-OR association denotes, by

definition, the lack of a relationship between the

participating entity types .

214

Because the EITHER-OR association is not a

relationship we do not use a the relationship (diamond)

symbol in its graphical depiction. Rather, the associated

entity type (rectangle) symbols are placed side by side

and separated by a double bar. These juxtaposed entity

boxes are surrounded by a larger rectangle.

The double bar separation of the subsidiary entity

types represents the mutual exclusion of geographic

coverage of these entity types. The larger peripheral

entity box depicts the existence of the ’’higher level”

entity type which is defined by the association of its

subsidiary entity types. Figure 8.13a illustrates this

graphical representation. The lingual form of the

illustration is ’’TYPE-A/TYPE-B IS EITHER TYPE-A OR TYPE- ■ B”

(the ordering of the latter two entity types is

irrelevant) . The related semantic is shown in

figure 8.13b*

The existence of an EITHER-OR association among a

set of entity types designates the implicit coexistence of

an IS-A relationship between each subsidiary entity type

and the higher level type defined by the association. For

example, let us again refer to figure 8.9 and assume that

there exists an EITHER-OR association between entity type

TYPE-A and entity type TYPE-B. This association defines

215

TYPE-AAH fPE-B

TYPE-A TYPE-B

FIGURE 8.13a

THE REPRESENTATION OF

"TYPE-A/TYPE-B IS EITHER TYPE-A OR TYPE-B"

FIGURE 8.13b

THE SEMANTIC OF

"TYPE-A/TYPE-B IS EITHER TYPE-A OR TYPE-B"

216

the formation of the ’’higher level” entity type

TYPE-A/TYPE-B.

Although there is no relationship between TYPE-A and

TYPE-B (no overlap of respective instances), the EITHER-OR

association implies the existence of an IS-A relationship

between type TYPE-A (or TYPE-B) and type TYPE-A/TYPE-B.

In other words, each instance of TYPE-A (TYPE-B) is an

instance of TYPE-A/TYPE-B. Furthermore, because of the

above noted inheritance property (property 8.3.2), all

implicit and explicit CONTAINS and IS-A relationships held

by entity type TYPE-A/TYPE-B are inherited by types TYPE-A

and TYPE-B.

The model in figure 8.14 shows the figure 8.10

version after the inclusion of two EITHER-OR associations.

We will use this model as an example of a ’’typical” GERMS

conceptual schema of some hypothetical data set. Because

a data set exists prior to the creation of the schema, the

entity types which are represented in the schema is not a

factor which is under our control — we must accept the

list of entity types as given.

The relationships of the schema, then, are those

which relate logically the entities of the data set.

Thus, a schema does not show that COUNTY COMPRISES SMSA

unless the data set holds data about both counties and

217

SMSAs. To restate, a GERMS schema models the logical

contents of a specific geographic data set. In the case

here we are considering a hypothetical data set which

includes six "basic” entity types: COUNTY,

BLOCK-NUMBERING-AREA, TRACT, CENTRAL-BUSINESS-DISTRICT,

and ENUMERATION-DISTRICT (the remaining three entity types

are a manifestation of the GERMS schema creation process).

In the diagram entity type TRACT and type

BLOCK-NUMBERING-AREA (BNA) are joined in an EITHER-OR

association to form the higher level object TRACT/BNA.

The direct implications of this association are as

follows:

1. An area of land may be covered by a tract or by

a block numbering area, but an area will never be covered

by an instance of both types

2. Each instance of the type TRACT (and

BLOCK-NUMBERING-AREA) is an instance of entity type

TRACT/BNA and thus inherits the appropriate relations hips

with other entity types

The second EITHER-OR association of figure 8.14 denotes a

similar meaning for the entity types BLOCK-GROUP and

ENUMERATION-DISTRICT.

218

FIGURt 8.14

219

The model shown in figure 8.14 demonstrates how

relationships can be held by higher level entity types

such as TRACT/BNA, or by their subsidiary types (TRACT or

BLOCK-NUMBERING-AREA). Now we see that COUNTY CONTAINS

TRACT/BNA. Therefore, neither the boundaries of tract nor

the boundaries of a block numbering area will ever cross

the boundaries of a county.

This in no way implies that instances of both types

are restricted from lying within the same county for the

relationship holds between COUNTY and the higher level

entity type. The higher level type does not "recognize"

the difference between instances of its subsidiary lower

level types. Consequently, the semantic of a constraint

which requires a discrimination of tracts from block

numbering areas, such as the constraint in question, is

not and cannot be implied by the relationship shown.

A relationship held between the two higher level

entity types tells us that TRACT/BNA COMPRISES

BLOCK-GROUP/ENUMERATION-DISTRICT. In other words,

instances of the latter type (either block groups or

enumeration districts) provide complete geographic grid

coverage of the tracts or block numbering areas in which

they lie.

220

Because BLOCK-NUMBERING-AREA COMPRISES BLOCK-GROUP,

we can easily deduce that an enumeration district will

never lie within a block numbering area. Through

analogous reasoning we arrive at the same conclusion for

urban tracts*.

TRACT IS-A TRACT/BNA (implied) and TRACT/BNA

COMPRISES BLOCK-GROUP/ENUMERATION-DISTRICT. With this

information we know that a tract can be exhaustively

partitioned into block groups, (mutually exclusive)

enumeration districts, or a combination of both types.

URBAN-TRACT* IS-A TRACT so, in the absence of further

information, we expect the same situation to apply to

urban tracts*. The model also tells us, however, that

URBAN-TRACT* COMPRISES BLOCK-GROUP. Therefore, we

conclude that enumeration districts will never lie within

this special type of tract.

221

FOOTNOTES

M] It is obvious that the property name "white
population" does not connote an exact explication
of its meaning. Issues as to the precise
definition of "white" and "population" are
unclear. These issues are related to the
operational definitions of the property and, as
such, are peripheral to own concerns here. It is
assumed that the operational definitions of
relevant properties would be available, upon
demand, to the data user.

[2] In the jargon of the Entity-Relationship model, a
relationship type is called a "relationship set."

[3] A construct is a concept which is deliberately and
consciously invented or adopted for a special
scientific purpose [KERL73, P. 29].

[4] The mathematical mapping which is portrayed by the
IS-A relationship represents an example of what is
called a "total one-to-one mapping." It is also a
special case of the "onto mapping" (see [TS1C82]).

CHAPTER I X

RECONNOITERING THE GERMS FORMALISM

In the previous chapter we described the GERMS

(Geographic Entity-Relationship Modeling System) -- a data

modeling formalism which is dedicated to meeting the

special modeling needs of geographic based statistical

data. The discussion, as presented thus far, has been

developed without any consideration of machine

implementability [1]. We have not considered the issues

relating to a "GERMS-based" database management system

(DBMS). In the chapters which follow this one we will

investigate such issues. First, however, we will evaluate

the GERMS as described to this point.

Discussion

If a data modeling formalism (DMF) is to be

evaluated, we must have at hand some criteria upon which

the evaluation can be based. In [SU79] we find a list of

such criteria:

222

223

1. [The DMF] should be semantically rich enough

for an enterprise to model different semantic properties

of data deemed necessary for the operation of the

enterprise

2. [The DMF] should satisfy the requirement of

data independence (i.e. it should deal only with the

semantic properties of data and not with the access path

structure and physical structure of data)

3. [The DMF] should contain constructs to

explicitly distinguish different semantic properties so

that no semantic rules will be hidden in the knowledge of

the DBA [database administrator] and the users, or the

application programs

4. [The DMF] should be simple yet without

sacrificing the clarity of different properties of data

In studying these criteria (especially 1 and 3), we

realize that there must be made a close match of

application needs with DMF semantic contructs. ’’Although

the data may have other meanings which are hidden,

unknown, or even irrelevant, the meaning captured by the

224

data model should be adequate for the purpose required”

[TSIC82, p. 6]. In simpler terms, the tool should match

the task.

In reviewing the data modeling needs of the

geographic based statistical data management environment

we find that the application requires the use of a limited

number of modeling constructs. The requirements are quite

specific to the situation, however. Existing conceptual

approaches (those described in appendix A) fail to meet

adequately the idiosyncratic modeling needs of the

geographic data management environment. Semantic

constructs of these models are either underemphasized or

overemphasized so that there is not a close match of

ability to needs.

Because of this situation we suggest that this data

management environment deserves its own special purpose

modeling formalism -- a conceptual DMF which is aimed

specifically at capturing and representing the semantics

associated with geographic based statistical data. The

GERMS is such a formalism. Each GERMS construct matches a

specific well-defined semantic pertaining to geographic

data. As a result, we feel that the formalism performs

well when evaluated under the above criteria.

225

In the succeeding chapters we explore the ’’machine

implementation” of the concepts of the GERMS methodology

discussed above. This exploration results in the

development of a ’’GERMS-based” database management system

in which all user-system interaction occurs ”in terms of”

the GERMS conceptual schema. Thus the GERMS methodology

is taken beyond the realm of database design and

discussion -- it becomes a tool to aid in database usage.

Before these topics are considered, we would like to

relate the GERMS modeling formalism to some of the

concepts discussed in the early chapters of this work.

This is the focus of the following addendum. The reader

who is not concerned with these issues is urged to omit

the reading of this addendum and to proceed directly to

the next chapter.

Addendum: The GERMS as a ’’Second Generation” DMF

In chapter 2 we introduced the notion of the

’’generations” of data modeling formalisms. The first

generation formalisms (traditional hierarchical, network,

and relational) have the common feature that their

constructs are mainly syntactic [SU79]- Second generation

226

DMFs, those which are the primary focus of our discussion,

concentrate mostly on data semantics. Early on in the

discussion we suggested that these formalisms be referred

to as ’’semantic DMFs.”

In earlier chapters we discussed a number of

concepts which are fundamental to the study of semantic

DMFs. In this section we will relate the GERMS to some of

these fundamental concepts. Others will be discussed in

subsequent chapters. The value of this section lies in

the fact that it provides insights into the applicability

of general database research and ideas to the issues

surrounding our specific geographic data modeling

f ormalism.

Data abstraction. Data abstraction (as previously

discussed in chapter 5) deals with the ignorance of detail

about some objects. When this detail is ignored a number

of (less abstract) objects are represented as a single

(more abstract) object. In data modeling we usually

discuss data abstraction in terms of two distinct types.

The first type, aggregation abstraction, deals with the

grouping of heterogeneous component objects in the

formation of a single abstract object. This relates to

the "PART-OF” concept as used by the artificial

227

intelligence community (see chapter 5 for specific

examples) .

Generalization, the remaining type of abstraction,

deals with the grouping of homogeneous objects in the

formation of a single more abstract object. It ’’enables a

class of individual objects to be thought of generically

as a single named object” [SMIT77b, p. 1071. Thus it

takes advantage of the commonality that exists among

objects. This abstraction is similar to the artificial

intelligence concept of ”IS-A" (again see chapter 5 for

examples).

Aggregation abstraction does not show itself within

the constructs of the GERMS formalism. The COMPRISES

relationship carries the semantic that a ’’whole area” is

made up of a number of ’’part of areas,” but this does not

match the meaning of aggregation abstraction as it is

traditionally used in data modeling.

For example, if SUPER COMPRISES SUB, then the set of

areas of type SUB which lie within a given SUPER area can

be thought of as being component parts of the SUPER area.

These component parts are homogeneous as to type, however,

and are thus represented as a single object in the GERMS

model. As a result, we do not see the COMPRISES

relationship as representing aggregation abstraction. The

228

CONTAINS relationship fails to provide an example of the

traditional aggregation abstraction concept for the same

reason .

The EITHER-OR association of the GERMS formalism

does join heterogeneous (as to type) objects in the

formation of a single higher level object type. Still,

the semantic of EITHER-OR does not match that of

aggregation abstraction. This is because, at the instance

level, the EITHER-OR association denotes that an instance

of at most one lower level type is linked to a given

instance of the higher level type. Aggregation

abstraction, on the other hand, denotes that an instance

of each involved lower level type is linked to a higher

level object instance.

As for generalization abstraction, its presence is

observed within the constructs of the GERMS. Recall from

chapter 5 that whenever similar object instances (called

’’tokens” in the jargon of generalization) are collected

and represented as a single named object type, the process

is called ’’classification.” Recall also that

classification represents a special case of generalization

abstraction. Specifically, it is token-type

generalization. With this in mind, we see that the use of

a GERMS geographic entity type to represent a set of

229

homogeneous geographic areas is an example of

generalization abstraction.

The GERMS IS-A relationship is an example of

type-type generalization. Here, token objects of one type

represent a less generic case of the tokens of the other

type. Thus, in the GERMS relationship URBAN-TRACT* IS-A

TRACT, each URBAN-TRACT* token (instance of an urban

tract* area) is a less generic, or more ’’well-defined”

representation of a TRACT token.

When discussing generalization abstraction we often

speak of the ’’property inheritance rule” (see [CODD79]).

To review briefly, this principle states that the

properties of more general objects are acquired or

’’inherited” by their less generic counterparts. Thus, in

a common business database setting, the properties of an

EMPLOYEE token are inherited by the respective SALESMAN

token since SALESMAN IS-A EMPLOYEE. This rule makes sense

because the two tokens represent the same object; a person

who is employed as a salesman. It is only the way of

viewing the object that changes.

The property inheritance rule does apply to the

GERMS IS-A relationship (this should not be confused with

our ’’inheritance property” which deals with

relationships). Thus the population of an URBAN-TRACT*

230

token is the same as that of the respective TRACT token if

URBAN-TRACT* IS-A TRACT. Again, the rule holds because

the tokens represent the same object -- a specific

geographic area.

In summary, we find that of the two forms of

traditional data abstraction used in data modeling only

one presents itself in the GERMS formalism.

Generalization abstraction is used in the classification

process in which geographic areas are grouped into

geographic entity types. Generalization abstraction also

appears in the GERMS IS-A construct. Aggregation

abstraction is not used in our formalism.

Logical redundancy. As discussed in chapter 6, data

abstraction is closely related to the issue of data user

views, which in turn is related to logical redundancy. A

database schema is logically redundant if some data values

represented in the model are derivable algorithmically

from other data values. It is important to realize that,

despite this reference to physical data, logical

redundancy is a logical concept. It in no way implies a

specific physical structure.

231

Logical redundancy is often used in data models

because it allows for the model to serve a greater variety

of user needs; a single datum can be ’’viewed” in a number

of different ways. It is obvious that a GERMS model deals

heavily with logical redundancy. Every occurrence of a

COMPRISES relationship represents the presence of logical

redundancy since the properties of each superordinate area

can be exactly specified as the aggregation of the

properties of the related subordinate areas. This is due

to the statistical nature of the data involved.

Every IS-A relationship produces logical redundancy

since the relationship allows a single object to be viewed

in ’’two different lights.” Thus, an area can be viewed as

being an instance of the ’’special case” entity type (e.g.

URBAN-TRACT*), or it can be viewed as being an instance of

the ’’general case” entity type (TRACT). In either

situation the respective data values can be related

algorithmically — they are equal.

The same can be said about the EITHER-OR association

of the GERMS. Here, a single geographic area can be

viewed as being an instance of the ’’higher level” type

(e.g. TRACT/BNA), or it can be viewed as being an

instance of a "lower level” entity type (TRACT or

BLOCK-NUMBERING-AREA). In either case the respective

232

properties have equal values since each representation

depicts the same underlying geographic object.

In a later chapter we will investigate how a

geographic data set whose logical structure is redundant

can best be represented physically. As a close to this

chapter we would like to reiterate that a GERMS

representation is a logically redundant structure. The

removal of this redundancy would greatly limit the variety

of views of the data and, consequently, would complicate

and limit the use of the data set.

233

FOOTNOTES

[1] Recall that it is only
Entity-Relationship model
than a database design and
appendix A).

recently that
has been used as

documentation tool

the
other

(see

PART III

A GEOGRAPHIC INFORMATION
SYSTEM

"Presumably man's spirit should be ele¬
vated if he can better review his shady
past and analyze more completely and ob¬
jectively his present problems. He has
built a civilization so complex that he
needs to mechanize his records more fully
if he is to push his experiment in its
proper paths and not become bogged down
when partway home by having overtaxed his
limited memory. His excursions may be
more enjoyable if he can reacquire the
privilege of forgetting the manifold things
he does not need to have immediately at
hand, with some assurance that he can find
them again if they prove important."

Vannevar Bush
"Memex Revisited"

234

CHAPTER X

CONSIDERING USER NEEDS — QUERIES

Introduction

In an earlier chapter we presented a data modeling

formalism (DMF) which is dedicated to meeting the specific

needs of the geopolitical statistical data management

environment. We call this formalism the GERMS (Geographic

Entity-Relationship Modeling System). The constructs of

the GERMS are applied in the formation of a data model of

a geographic based statistical data set. A GERMS model is

a semantic data model because it captures the meaning

(semantics) of the underlying data.

At the present stage of our discussion the GERMS

exists in a "non-mechanized ," or "non-machine implemented"

form. As such, the formalism provides us with two basic

products:

1. A documentation medium. A GERMS model, in

either its graphical or its lingual form, provides concise

well-defined documentation of the logical structure of a

geographic data set. The model illustrates the logical

2 35

236

contents of the data set as well as the meaning of said

contents. This information is often derivable from

alternative forms of documentation, but such derivation is

needlessly complex and tortuous.

2. A communication medium. The GERMS language

provides data technicians and users with a formalized

means of discussing and describing the logical structural

issues pertaining to geogaphic data. GERMS phrases are

based on a minimal set of constructs which we feel

represents the most important aspects of geographic

semantics. Once the semantic of each of these constructs

is understood, a "GERMS-based" discussion is concise and

unambiguous. The alternative discussion medium, natural

language, is hardly well suited for this purpose.

Since a GERMS data model represents the logical

framework of a specific data set it serves as a conceptual

schema of the data set. In its present form (that

presented thus far) the schema structure, considered in

conjunction with the physical structure of the data set,

can help to answer two questions for the user.

Specifically, the structures provide insights into

answering: (1) Does the data set contain (in whatever

237

physical form) the information that I need? and (2) Given

the geographic objects that I am interested in, where can

I expect data retrieval problems and complexities to

arise?

In this and the following chapters we investigate

how the concepts of the GERMS can be machine implemented.

In other words, we will consider the issues surrounding

the creation of a ”GERMS-based” DBMS (database management

system). In such a system the structural framework of the

data model becomes an integrated part of the DBMS as

opposed to existing as a separate form of system

documentation. Thus, in a system of this type, the DBMS

has a ’’knowledge” of the logical structure of the data

model as well as a ’’knowledge” of the physical data

structure [1].

The advantages of this design are many. Access to

the data can be made ’’through” the conceptual schema so

that all objects seen by the data user are logically

meaningful. In other words, the schema acts as a

’’structural template” through which all objects are fitted

before being presented to or received from the data user.

When the schema is used in this way the user is

insulated from the complexities that surround the physical

data structure. She or he need never consider whether a

238

geographic object is an attribute area or a nesting area;

whether an area is physically represented as a whole

entity or as a number of scattered parts. We believe that

this is as it should be for, under the precept of data

independence, the physical structure should not affect the

logical use of the data.

The discussion from this point on is based on the

assumption that the data set resides on some direct access

storage device (e.g. disk). This is necessary because

our system is designed to respond to random requests for

the retrieval of data. The sequential nature of the tape

storage medium fails to provide the required flexibility

to meet the needs of such requests.

A Geographic In format ion System

When the logical structure of a data set is

integrated into the framework of a DBMS the system’s

ability to handle a certain type of user request is

greatly improved. Specifically, the system is much better

suited to respond to unanticipated and spontaneous

information requests (we refer to such inquiries as "ad

hoc” requests) . In an attempt to elucidate this point we

239

will first investigate the complexities that surround the

processing of ad hoc information requests under the

alternative traditional system.

Assume that a hierarchically organized census data

set exists in some ’’machine processable” form (e.g. a

disk file). Further assume that a GERMS schema has been

created for this file and exists as (separate)

documentation as to the logical file structure.

Now, consider a user who, for some unknown reason,

wishes to know the white population of Hampshire County

’’broken down" by election precinct. Unless the software

required to respond to this specific request exists

a priori, the following steps must be performed:

1. The presence of the geographic entities in

question is verified using the conceptual schema graph

2. The semantic of the geographic relationship

held between the entity types is assimilated (i.e. COUNTY

CONTAINS ELECTION-PRECINCT)

3. The representations of the entities are located

in the physical structure of the file

240

4. Given the physical structure and corresponding

logical structure, a retrieval program is written to

collect and possibly reassemble the required data

5. The file is processed using this program

Depending on the nature of the physical and

respective logical structures involved, the above steps

can constitute an arduous task. It should be noted that

since the retrieval software is written with regards to a

specific question and a specific data file, its

applicability to other files and retrieval problems is

very limited. At best we would expect it to be usable,

with modification, in retrieving different attributes of

the same entity types from the same physical file.

Now consider a second scenario in which the contents

of the data file exist within a MGERMS-basedM DBMS which

has, as an integrated part of the system, a "knowledge” of

the structure of the conceptual schema. In this situation

the same ad hoc retrieval problem is handled as follows:

1. The presence of the geographic entities in

question is verified using the conceptual schema graph

(this is the same as before)

241

2. The semantic of the geographic relationship

held between the entity types is assimilated (this too is

the same as before)

3. A query which is based on this semantic is

posed to the system

4. The system responds to the query by providing

the requested information in the appropriate logical form

With this second system the DBMS takes on the

responsibility of accepting the user’s request; locating

the required data in the physical structure; retrieving

the physical data; and, if required, reassembling the data

to provide information about logically meaningful (whole)

geographic entities. These functions, which eliminate the

need for special purpose retrieval programs, constitute

what will be called ’’query processing.” Thus, the system

is able to accept GERMS-based queries.

We use in the term ’’query” in regards to the second

system because in this system the DBMS takes an ’’active”

role in the creation of information from the underlying

data. We can simply ”ask our questions,” or ’’query” the

system, and the DBMS responds.

242

As an analogy, consider a person who wishes to know

the meaning of a certain word as used in a specific

context. We will call this person "Able." Two of the

basic options that can be pursued by Able are (1) he can

consult a dictionary, or (2) he can consult a

knowledgeable person who we will refer to as "Baker."

Under alternative 1, Able must first determine the

proper spelling of the word. Then he must locate the

proper entry in the dictionary. Finally, he must study

and understand all of the definitions of the word and

determine which definition best matches the context in

question. Thus, the dictionary serves as a passive "bank"

of words and definitions.

Under alternative 2 Abie’s task is much simpler. He

need merely pose the question (query) to Baker and receive

a meaningful answer. Here, the knowledgeable Baker takes

the active role in solving the problem. With respect to

our database techniques, then, using the traditional

system corresponds to the dictionary method, while using

the GERMS-based DBMS is analogous to consulting the

knowledgeable person who can understand and answer our

questions.

243

Because the GERMS-based system described above is

able to respond to ad hoc requests, it can be considered

to serve as a geographic information system (GIS) -- a

system which is suited to handle one time ad hoc requests

for information regarding geographic objects [2].

Some of the issues that surround such a GIS

implementation are discussed in this chapter.

Specifically, we consider the structure of the queries

which are posed to the system. We will see that this

structure is tripartite; it comprises a focus part, a

range part, and a (optional) breakdown part.

Query Structure

We have suggested that there are a number of

advantages to be gained by fitting the DBMS with a

’’knowledge” of the GERMS logical data structure. In a

system of this type all inputs and outputs (queries and

responses) ’’pass through” the model of the conceptual

schema. The schema is therefore the system’s interface

with the data user.

244

The ideas that a query (or reponse) passes through

the schema and that the schema serves as a structural

template should obviously not be taken in the literal

sense. What is meant by these concepts is that the

queries are posed Min terms of” the schema. Objects and

connections of the schema can be referenced in a query

with complete assurance that the references will be

properly interpreted, or ’’understood;” query references

that contradict or transcend the model of the schema will

not be understood. Thus, the schema serves to shape the

form of queries (responses) as a template shapes the form

of objects which pass through it.

Recall that a GERMS data model is made up of two

basic kinds of object: geographic entity types and

geographic relationship types. Of these two kinds,

entities are the primary ’’objects of interest” of the data

model. Relationships merely describe the way in which the

group of entities is structured. Part of this description

is based on the ’’direction” of the relationship.

The entity types used in a GERMS data model are

specific to the data set; the relationship types are not.

Relationship types, in all cases, connect exactly two

entity sets (we will ignore the peculiarities of the

EITHER-OR association for the present). Note that by

245

moving from entity type to entity type by means of the

relationship types we can define paths through the

structure of the schema. Such a path will be called a

"chain.M

With these facts in mind we can make some

suggestions as to how an appropriate query should be

shaped. First, however, it should be realized that,

although properties are not considered in the structure of

our data model, a query is a request for attributes

(values of properties) of an entity(s). Thus, if we wish

to retrieve information about Hampshire County, the county

entity serves to delineate the range of the request (e.g.

"What are the white population and the black population of

Hampshire County?"). The actual data objects retrieved

relate to properties of the entity (white population,

black population). A query must therefore deal with

entities and properties.

Again, our data model does not deal with properties

because their semantic is common for all entities.

Consideration of individual properties by the data model

would make the structure needlessly complex.

246

Query focus and query range. . A query which is posed in

terms of a GERMS data model must imply two distinct

specifications:

1. The attributes (of the geographic areas) that

are requested. We call this the "focus" of the request.

2. The geographic areas that the attributes apply

to. We call this the "range" of the request.

The focus of a query can be simply stated as a list

of attribute names (e.g. WHITE-POP, BLACK-POP). In the

situation here, the range of a query must define both the

geographic entity type and the specific entity instance(s)

to which the attributes apply [3]. This can be

accomplished by stating the entity type name followed by

the appropriate instance identifiers, or keys (e.g.

COUNTY ABC, XYZ).

It would seem that a common request would be to

retrieve all instances of a given type. Rather than

listing all identifiers a reserved keyword "ALL" can

denote this request (i.e. COUNTY ALL).

247

Note that if the design of a query is to be truly

GERMS-based, any entity type name used in the schema is

valid for use in the specification of the range of the

query. Thus, "URBAN-TRACT* ALL," and "TRACT ALL" are both

valid (but very different) query range statements.

Combining the focus statement and the range

statement into a meaningful form we suggest the following

query structure:

GET attlist FOR etype (ke^1 lst}
ML L

where "attlist" represents some list of attributes,

"etype" represents some schema entity type name, and

"keylist" represents some list of entity instance

identifiers. The brackets denote that exactly one of the

contained elements must be used.

A request for the white population and the black

population of County ABC would be specified as

GET WHITE-POP,BLACK-POP FOR COUNTY ABC

248

If this information is required for all counties the

query would be specified as

GET WHITE-POP,BLACK-POP FOR COUNTY ALL

Geographic breakdown. The query format which is

described above makes only partial use of the structure of

the conceptual schema. The geographic entity types are

referenced, but the geographic relationship types are not.

These relationships represent meaningful overlap of the

participating entity types. By making reference to these

relationships in our queries, then, we can define

meaningful breakdowns of our query range.

As an example consider the simple schema graph that

is shown in figure 10.1 (this is a small portion of the

schema for the census file PL94). Notice that our example

database includes statistical data about counties, minor

civil divisions (MCD), and a variety of other types of

geographic area.

249

FIGURE 10.1

A SIMPLE SCHEMA

250

Our schema tells us that COUNTY COMPRISES MCD.

Since we are assured that the overlap of counties and MCDs

is meaningful, it makes sense to request that county data

be presented in terms of MCD units; the respective

geographic partitionings are compatible. Note that a

request of this type is essentially a request for a simple

report.

Even though the COMPRISES relationship that is shown

in the schema graph is to be referenced in a query, we

need not state that ”COUNTY COMPRISES MCD" within the body

of the query. This is due to the facts that (1) the DBMS

has a ’’knowledge” of the schema, and (2) two entity types

are joined by at most one relationship type within this

structure. Thus, in making reference to the two entity

types, COUNTY and MCD, we also imply a reference to the

unique relationship that joins them.

With this in mind we suggest that data for County

ABC, presented in terms of the MCDs within the county,

could be requested as

GET attlist FOR COUNTY ABC BY MCD

251

Our database also contains data for enumeration

districts. Our schema tells us that MOD CONTAINS

ENUMERATION-DISTRICT, so we can request that the MCDs be

further broken down thusly:

GET attlist FOR COUNTY ABC BY MCD BY ENUMERATION-DISTRICT

The above query makes use of the "chain” of schema

objects which form an unbroken path from COUNTY to

ENUMERATION-DISTRICT. This chain implies the existence of

a relationship between COUNTY and ENUMERATION-DISTRICT.

Consequently, a valid query is

GET attlist FOR COUNTY ABC BY ENUMERATION-DISTRICT

which ignores the presence of MCD areas.

Finally, note the participation of the

ELECTION-PRECINCT entity type within our conceptual

schema. This entity type is linked to county, but it is

unrelated to all other "COUNTY-related” entities. It

makes sense to request that county data be broken down by

252

MCDs and broken down by election precincts, but it must be

made clear that these breakdowns are not to be nested.

We suggest that the keyword "AND” be used to

indicate a break in the nesting of areas. Thus the query

GET attlist FOR COUNTY ABC BY MCD
BY ENUMERATION-DISTRICT AND BY ELECTION-PRECINCT

requests that county data be presented first in terms of

enumeration districts within MCDs within county, and then

in terms of election precincts within county.

The general format of our GERMS query is as follows:

GET attlist FOR etypel {ke^LSt} [BY etype2] [[AND] BY etype3]...

where the brackets enclose optional portions of the query

and the ellipsis denotes that the preceeding bracketed

material can be repeated.

The optional portions of the query, those that begin

with the BY keyword, constitute the "breakdown" of the

query. The breakdown simply serves to specify the

presentation format of the data. This data relates to

253

those properties defined in the query focus and to those

areas defined in the query range. The breakdown is

essentially a simple report writer facility.

It is important to realize that the structure of the

breakdown must coincide with the structure of the schema.

Nesting can be requested in the breakdown if and only if

the appropriate relationship (COMPRISES or CONTAINS) holds

(implicitly or explicitly) in the proper direction between

the entity types. Thus, the schema of figure 10.1 does

not allow us to request "ELECTION-PRECINCT BY

ENUMERATION-DISTRICT."

The reader should satisfy herself (himself) that the

interpretation of a GERMS query by DBMS software would not

be a complex task. A query in this format can be easily

parsed since the ordering of the elements is strictly

defined and meaningful segments are delimited by blanks

and keywords. The semantic correctness of the breakdown

can be verified by the DBMS software by checking the

relationship structure of the schema representation which

resides within the system. This "internal (to the DBMS)

form representation" of the schema is discussed in the

next chapter.

254

Discussion. The above discussion of the structure of

GERMS queries is admittedly ambiguous with regards to a

few issues. In this section we will attempt to clarify

some of these points.

The first issue relates to the nesting of "CONTAINS

related" entities as defined by the query breakdown. When

the response to a query is to be nested such that the

respective entity types are related via a CONTAINS

relationship, the subordinate areas need not provide

complete grid coverage of the respective super ordinate

area. This was called the "non—coverage problem" in

chapter 7.

Suppose, for instance, that our query requests

"COUNTY BY ELECTION-PRECINCT" when we know from the schema

(figure 10.1) that COUNTY CONTAINS ELECTION-PRECINCT. It

is obvious that the output "report" of the query should

include "complementary data" relating to the attributes of

those portions of the counties not covered by election

precincts. This very tack was criticized in chapter 7 and

the reader may wonder why it is suggested here. The

threefold reason has to do with the nature of our GERMS

based information system.

255

First of all, the non-coverage issue is implicit

within the well-defined semantic of the CONTAINS

relationship; the same cannot be said about the semantic

of tree structures. Thus the non-coverage issue "makes

sense" in the GERMS situation. The conceptual schema is

used as a template in the formation of queries, so the

issue will arise only when it is expected and understood

by the user.

Second, the user need not deal with the processing

of the complementary data when using our information

system. The DBMS software assumes this data management

task. Thus, when working with a certain type of

geographic areas, the user is not forced to consider

"pseudo areas" in posing a query; the query deals with

true geographic objects only.

Finally, the nesting of other areas within the

complementary (pseudo) areas can be avoided, if desired,

by proper specification of the query breakdown. In the

situation described in chapter 7 the user does not have

this option because (s)he is working with a static

predefined tree structure (recall this was cited as being

a major cause of complexity) .

256

Another issue which deserves clarification has to do

with the impacts that the IS-A relationship and the

EITHER—OR association have upon the database Query

process. In each of the above examples the query

breakdown specification deals with COMPRISES and CONTAINS

related entities only. Indeed, the use of these

relationships makes sense because each of their semantics

denotes a "natural nesting" relation. The same cannot be

said about IS-A and EITHER-OR; their use in defining the

breakdown of geographic data does not make sense. Each of

these two constructs does affect the structure of queries,

however.

If we consider the impacts that the IS-A

relationship and the EITHER-OR association have upon the

overall data model we realize that each of these

constructs effects the creation of new and different

entity types. The IS-A relationship is used to define a

"special case" entity type, while the EITHER-OR

association collapses a pair of entity types and allows

them to be regarded as a single separate entity type.

Each "new" entity type created through these techniques

can hold its own relationships with other entity types.

Note that both of these constructs essentially allow the

user to "view" a single geographic area in two different

ways.

257

Since the DBMS in our information system has full

"knowledge" of the structure of the conceptual schema, any

schema entity type can be legitimately referenced in a

query. Therefore, the database can be queried according

to any of the different views of geography presented by

the model. It is only required that the structure of the

query adhere to the "meaning" of the entity types as

depicted in the schema. Thus the presence of IS-A and

EITHER-OR in the schema allows for more flexibility in

retrieving information from the database.

Summary

We have considered how the usefulness of the GERMS

can extend beyond that of a documentation and

communication medium. When a geographic information

system (GIS) is designed to match the structure of the

GERMS modeling formalism, the conceptual schema can serve

as the system’s interface with the user. The semantic

richness of the GERMS conceptual schema provides a

straightforward and natural basis for user-system

interaction. Queries are posed to the GIS in a way that

matches the user’s understanding of the meaning of the

data; system responses are provided in a similar way.

258

The ad hoc queries which are supported by our GIS

are discussed in terms of three distinct parts: query

focus, query range and query breakdown. Query focus

refers to the attributes in which the system user is

interested. Query range refers to the geographic area(s)

to which these attributes apply. The query breakdown

defines how the information requested in the focus and

range is to be presented; it is a simple report writer.

In the next chapter we discuss the design of the

physical database. We use this term to refer to the

actual data items and the structural framework in which

they exist. The logical database, which is considered in

the subsequent chapter, has to do with the conceptual

schema as it is represented within the system.

As initial preparation for this discussion we

suggest that the reader begin to take on a "database view"

of census data sets. Thus, rather than thinking in terms

of individual data files, the reader should think of

geographic "data pools" the contents of which may relate

to any number of data files.

FOOTNOTES

Obviously, we are using the term "knowledge” in a
very loose sense. What is meant is that the
structure is represented in some way within the
computer (e.g. with pointers and data nodes), and
that the DBMS accesses this structural
representation through the invocation of
procedures.

The meaning of the term "information system," as
used here, corresponds to that used in [MART75].
The architecture of a system of this type is such
that it is capable of responding to spontaneous
information requests. This is contrasted with an
"operations system" in which the requests are
known and prepared for a priori.

In some database environments the entity type need
not be specified in the query since an attribute
may relate uniquely to a type (attribute name
implies entity type name). In the GERMS case each
attribute applies to all entity types.
Consequently, the type name must always be
included in a query.

CHAPTER X I

THE PHYSICAL DATABASE

In this chapter we discuss the design of the

physical database of our geographic information system

(recall that we are no longer relying on tape as a storage

medium). We are not committed to maintaining the

hierarchy as a physical data structure. There are a

number of reasons for this. Trees provide efficient data

processing in many instances, but these efficiencies will

not necessarily apply to the processing needs of our

geographic information system (GIS).

Physical Pat abase Design

If we were to invoke an ordered listing, or ’’dump" a

census data file, an interesting fact would emerge: a

census file is simply a static report. Specifically, it

is a "branching report" as could be created by any

standard report writer facility. The primary key of each

record type in the file acts as a "breakpoint variable" in

the report structure (see [R0BI80]). With this in mind,

the suitability of the items of the report (data records)

260

261

to serve as the objects to be processed within our GIS

becomes questionable.

The decision to strictly maintain a hierarchical

physical data structure could prove to be a "straight

jacket" for our application. We must not restrict

opportunities for the merging and modification of

geographic based data. The tree was chosen as a structure

for geographic (tape) files; we are dealing with a

geographic database.

The approach taken here is to design a physical

database structure which is considerate of the processing

needs of the GIS. These needs are obviously based on the

structure of the queries which will be posed to the

system, which in turn are based on the logical model of

the conceptual schema. Since the physical structure is

based ultimately on the logical structure, then, the

mapping from the logical database to the physical database

will not be complicated. For the most part, there will be

a one-to-one correspondence between the objects of the

logical schema and objects of the physical database.

Equivalence relations. The first step in developing our

design is to identify the "equivalence relations" of the

application. If the term "source structure" is taken to

262

mean the structure held by the data which is to be loaded

into the database, then the equivalence relations equate

the source structure to the structure of the conceptual

schema. These relations indicate how the objects of the

physical database (called the target structure) can be

formed from the objects of the source structure [1].

Here, we are concerned with equivalence of information

content. Thus, equivalence relations serve to locate

within the source structure, the information that will

form the target structure.

As an example we will use the 1980 version of the

Bureau of the Census file PL-94. The hierarchical

physical structure of the file, which is the source

structure, is illustrated in figure 11.1. Each rectangle

in this figure represents a record type. The numbers

represent record type identifiers which will be used in

the discussion.

Note that the records of PL-94 form a branching

hierarchy (see chapter 7). Note also that there is

physical redundancy of record types. Record type 3 and

record type 7, for example, relate to the same kind of

geographic area -- election precincts. The geographic

zones represented by the instances of these record types

are not equivalent in all cases, however. The type 7

FIGURE 11.1

THE PL-94 PHYSICAL FILE STRUCTURE

264

records are ’’deeper nested” than are their type 3

counterparts and, as such, the respective geographic areas

may be further dissected. Redundant representation of

geographic areas is not common and its use in this

particular file should not be taken to imply the norm.

Figure 11.2 provides the graphical representation of

the GERMS data model of the logical contents of PL-94.

The reader should notice that the GERMS model does not

represent geographic entity types redundantly. The

repetitive nature of the census record types is a physical

structural issue and it should in no way affect the

logical data structure.

Now, since each query is to be based on the

geographic entity-geographic relationship framework of the

GERMS schema, we should design a (target) physical data

structure which matches the schema structure so as to

allow the queries to be easily processed.

In processing the breakdown specification of a query

we always move ’’down” from superordinate to subordinate

entity type. In other words, we first consider a

’’containing” area, then we consider the ’’contained" areas.

Each of these "downward” movements relates, with respect

to the objects of the data model, to moving from a

specific entity type to a specific relationship type, to a

different entity type.

265

FIGURE 11.2

THE PL-94 SCHEMA

266

In terms of physical data structure, then, we must

have some ’’link” from the data records that represent each

superordinate object to all of the data records that

represent the respective subordinate objects.

Furthermore, this link must support ’’downward” processing.

Recall from chapter 7 that each record of the source

structure (the PL-94 file) contains the key of its

ancestry, but it does not contain the keys of its children

records. In considering the information content of the

records of the source structure, then, we see that each

source record type relates to a subordinate entity type

and the respective relationship of the schema structure.

This is the ’’equivalence relation” which was mentioned

above .

Figure 11.3 illustrates an instance of an

equivalence relation. Here the information content of a

type 3 PL-94 record (ELECTION-PRECINCT) is related to the

CONTAINS relationship and to the ELECTION-PRECINCT entity

type of COUNTY CONTAINS ELECTION-PRECINCT.

Again, the GERMS relationship is represented within

the contents of the subordinate record type

(ELECTION-PRECINCT) of the source structure because it is

these records which contain the information required to

form a link with the super ordinate record. This link is

267

FIGURE 11.3

A PL-94

EQUIVALENCE RELATION

268

derivable from the key of the ancestry. Thus each type 3

record holds the information required to identify the

county which it is contained in. Note that, in this

special case of election precincts, record type 7 could

also be used in the equivalence relation.

When designing a physical database, equivalence

relations should be identified so that each relationship

and entity type of the conceptual schema is accounted for.

In performing this process we locate within the source

structure, the information required to form the records of

our target physical structure. In most instances the

identification of these equivalence relations is

straightforward. As would be expected, however, some

cases are more complicated than are others.

Figure 11.4 illustrates one such case that arises in

the PL-94 schema. Here we are dealing with two complex

entity types, TRACT/BNA and BLOCK-GROUP/

ENUMERATION-DISTRICT, which are formed by two EITHER-OR

associations. Both the "higher level" and the "lower

level" entity types can be referenced in a query, so we

must specify the equivalence relations accordingly.

Record type 5 represents both tracts and block

numbering areas. Consequently, the information required

to link the county entity type with type TRACT,

FIGURE 11.4

PL-94 EQUIVALENCE RELATIONS

270

BLOCK-NUMBERING-AREA, or TRACT/BNA is contained within

this single record type.

BLOCK-GROUP and ENUMERATION-DISTRICT exist as

separate record types in the PL-94 source structure. In

the conceptual schema the respective entity types are

joined to form the higher level

BLOCK-GROUP/ENUMERATION-DISTRICT entity type, however.

Note that the information required to implement the single

COMPRISES relationship of TRACT/BNA COMPRISES

BLOCK-GROUP/ENUMERATION-DISTRICT demands that two record

types be used. The link information not provided by the

type 9 records is contained in the type 11 records.

Record types and directories. In studying the

equivalence relations we become aware of the GERMS

processing inefficiencies that are inherent in the source

structure, the PL-94 hierarchy. Recall that a GERMS query

requires ’’downward” processing of the conceptual schema.

In other words, our queries ask: ’’given this

(super ordinate type) area, which (subordinate type) areas

lie within its boundaries?” The queries do not ask:

’’given these (subordinate type) areas, which

(superordinate type) area do they lie within?"

271

A major problem with the source structure is that it

is conducive to "upward” processing only — each record

holds the keys of its ancestors, but it does not hold the

keys of its children. Thus given a "subordinate type"

area record, we can determine which "superordinate type"

area rt lies within; but given a "super ordinate type" area

record, we cannot determine which "subordinate type" areas

lie within it, A consequence that holding this

configuration has upon query processing is that, for each

level of nesting in the query, the entire set of records

of the subordinate record type must be searched for each

instance of the superordinate record type processed. This

processing strategy is difficult to defend.

Because of this situation we suggest that an

entirely different physical data structure be implemented.

This design, which is the aforementioned target structure,

is described here. A major change is that the target

structure separates the physical represent ation of schema

entities from that of schema relationships.

Each relationship is represented as a "directory"

(see [MART75]) which contains the information required for

"downward" processing of the entity types participating in

the relationship. Each row of a directory contains a set

of pointers which are directed towards the "children" of a

272

single "parent" in the respective relationship [2]. The

rows of a directory are of different lengths since the

number of "siblings" in an instance of a given

relationship is not fixed. A relationship directory can

thus be thought of as being an inverted list.

Figure 11.5 illustrates the relationship directory

technique. Here, we see a directory relating to the GERMS

relationship COUNTY CONTAINS ELECTION-PRECINCT (figure

11.5b). Each row of the directory depicts an instance of

the relationship. Notice that the rows of the table are

of different lengths. The relationship instance shown in

figure 11.5a happens to relate two election precincts to a

county, so the respective directory row contains two

elements in addition to the county identifier.

Each entity type of the conceptual schema is, for

the most part, represented as a separate record type of

the target structure (the exceptions are discussed later).

Since the information required to link entities is

represented within the relationship directory, a record

instance need not hold the key of its ancestry -- it need

only hold the identifier and the attributes of the

geographic area represented by the record. Thus the

records of the target structure are much smaller than are

the respective records of the source structure.

273

A RELATIONSHIP INSTANCE

ELECTION
PRECINCT

"CHILDREN"

X X X

X X X X

X X

X X X X

X X X

ABC 123 789

THE

RELATIONSHIP

DIRECTORY

FIGURE 11.5b

274

The reduced length of target records does not mean

that this revised physical configuration requires less

storage than does the hierarchically organized source

structure. The data which is ’’stripped” from the source

records, the ancestor key values, is the very data which

is used to assemble the relationship directories. Thus,

in the process of converting from the source structure to

the target structure, we are forming a number of smaller

units of information (directories and target records) from

larger units (source records).

It should be obvious that the formation of

relationship directories is guided by the equivalence

relations. These relations indicate which ancestor key

value in the source record is required in the formation of

a given target relationship directory. In other words,

the equivalence relations dictate how the aforementioned

large units of information are to be divided and

reassembled to form the smaller units.

In light of the way that the conceptual schema is

used to define the format of queries, the processing of

the target physical structure in response to a query is

straightforward. Just as we form chains in the logical

structure by moving from entity type to relationship type

to entity type, so in the physical structure do we move

275

from record type to directory to record type [3]. Each

object in the conceptual schema has a counterpart in the

physical target structure.

Figure 11.6 illustrates how we would process "COUNTY

BY ELECTION-PRECINCT" in response to a GERMS-based query.

Note that the record instances depicted in this figure are

much shorter than are their counterparts in the

hierarchical source structure. Once the directories are

formed, the ancestry key is no longer required by the

record. Note also how, unlike the census file

configuration, this revised physical structure is

conducive to the required "downward" processing of

geographic information.

Geographic "wholeness". In chapter 7 we learned that

when the representation of geographic partitionings is

"forced" into a hierarchical structure a number of

anomalous situations arise. One such situation relates to

the case where the boundaries of a child (in the

hierarchical structure) area transcend those of an

ancestor area. A consequence of this situation is that

the child area must be represented in a dissected form;

the records of the structure must depict "part-areas."

COUNTY
CONTAINS
ELECTION-
PRECINCT
DIRECTORY

COUNTY
RECORD

TYPE

ELECTION
PRECINCT

"CHILDREN"

X — _ _ _

X — — — —

X —

X — — — —

X ■-

X —

ABC —

o
o
o

X X X

X X X J
X X

X X X X 1
X X X

ABC 789 123

X — — — —

X —

X —

123 —

X - —

X —

789 —

o
o

o
FIGURE 11.6

ELECTION
PRECINCT

RECORD
TYPE

QUERY PROCESSING

277

When part-area records are considered in conjunction

with their physical hierarchical representation their

existence can be rationalized. When the same areas are

considered in the light of the true logical or an

alternative physical (target) structure, however, their

existence is nonsensical. The dissection of a geographic

entity arises as a side effect of maintaining a chosen

(now obsolete) physical structure. Different hierarchical

orderings define different entity partitionings.

We feel that the case for insulating the user from

the need to deal with part-areas has been argued

sufficiently in previous chapters. Whatever the physical

representation of geographic based data, the user should

be allowed to work exclusively with logically meaningful

objects. Thus, if the physical structure demands that a

geographic area be represented in terms of area parts,

these parts should be reassembled into a meaningful whole

before being presented to the data user. Under the

physical configuration suggested here, however, the issue

is irrelevant for our GERMS based physical structure never

requires that a geographic entity be divided.

Recall that our physical structure is designed to

serve the processing needs of the queries that are posed

to our geographic information system (GIS). Furthermore,

278

said queries adhere to the geographic entity-geographic

relationship structure of the conceptual schema.

Entity types whose spacial overlap holds a

meaningful semantic are joined by a relationship in the

conceptual schema. Such entity types, in many cases, hold

a ’’natural” hierarchical association (this is why we found

it acceptable to use the terms ’’parent” and ’’child” in

discussing instances of these pair-wise relationships).

Entity types whose spacial overlap is erratic and

meaningless are void of a relationship in the conceptual

schema. Such entity types hold an ’’unnatural”

hierarchical association — one which must be ’’forced.”

This fact, considered with the fact that query processing

"matches” the structure of our data model, makes it

obvious that the need to process a part-area will never

arise in the GERMS system. Consequently, there is no need

to store such representations.

A germane suggestion, then, is that the data of the

part-area records of the source structure be aggregated

when assembling the target structure. The part-area

records are a manifestation of the now obsolete physical

hierarchy, so collapsing these records represents no loss

of information from the logical viewpoint. From the

physical perspective the savings that result from this

279

process are twofold; we observe a decrease in both storage

space and processing time.

The storage space decrease is obvious. With each

aggregation of part into whole, a fixed logical

information content is represented by fewer records. We

concede that these savings are trivial in light of the

massive size of the database.

As for processing time, the betterments are best

understood by first considering the alternative scheme —

that of retaining the part-area representation. In this

situation each request involving a divided area would

demand that more than one record (one for each area part)

be accessed. Following these multiple record retrievals,

the data would have to be aggregated to represent the

original undivided area. This process would be carried

out each time such an area is involved in the processing

of a query.

Furthermore, there would have to be maintained

within the physical structure, some means of identifying

and locating those part records that relate to a given

divided area. Besides having to know which records relate

to area parts (e.g. by using a "part-area flag"), we

would also be required to know when the entire set of

parts has been retrieved. A pointer chain structure could

280

be used here (see [MART75]), but this added complexity

makes little sense given the needs of query processing.

In summary, then, part-areas are insignificant in

the view provided by the conceptual schema. The need for

these areas is made obsolete by discarding the

hierarchical file structure. As such, the data contained

in the respective records of the source structure should

be aggregated before being stored in the target structure.

Entity Types and Record Types: Special Cases

In the previous section we indicated that most but

not all entity types of the logical structure relate

uniquely to record types of the logical structure. In

this section we discuss the exceptions. An obvious

exception is made in the case of blatant logical

redundancy. By blatant logical redundancy we mean that

two objects represented within the logical structure

depict the exact same physical object. An example is

provided by the IS-A relationship [4].

281

Representing IS-A. The IS-A relationship is rare; the

majority of geographic relationships are of the CONTAINS

or COMPRISES variety. The PL-94 schema of figure 11.2

serves as testimony to this fact. Still, when the need

arises, the IS-A relationship illustrates an important

semantic of data abstraction. From the logical

perspective the IS-A relationship connects two distinct

geographic entity types; one representing a more general

case of the other. Again from the logical perspective

each of these two entity types represents a number of

entity instances. Thus we can conceptualize special case

entity instances and general case entity instances.

When we consider the incarnation of these entity

instances, however, we realize that the special case and

the general case instances depict the same physical

objects. It is only the way of "viewing” the objects that

changes. In these different views the nature of the

geographic relationships may change, but the actual

attributes of the respective areas do not change. Thus

the two views can be physically represented by a single

set of data records. Neither the value nor the semantic

of any individual daturn changes.

282

The PL-94 conceptual schema of figure 11.2 does not

provide us with an example of an IS-A relationship so an

example will be drawn from the STF1B file which was

introduced in chapter 7. Figure 11.7 shows a small

portion of the STF1B conceptual schema. From this schema

we see that the tracts which comprise SMSAs (called urban

tracts*) are completely covered by block groups. The

entity type URBAN-TRACT* is a special case of the more

general type TRACT; the distinction arising from the fact

that general tracts are not necessarily covered by block

groups (the type TRACT holds some relationships which are

not shown here).

Now, since any entity type of the conceptual schema

can be referenced within a query, we may request data in

terms of urban tracts* or in terms of tracts.

Furthermore, because the queries must abide by the

structure of the data model, we see that a query format of

the type ’’URBAN-TRACT* BY BLOCK-GROUP” is a legitimate

request, while the format ’’TRACT BY BLOCK-GROUP” is not.

When we consider real world counterparts of

instances of these entity types we realize that each

geographic area which is an urban tract* is also a tract.

The attributes of the area are the same in both lights.

The only difference is that, when viewed from the urban

283

FIGURE 11.7

A PORTION OF THE STF1B

CONCEPTUAL SCHEMA

284

tract* perspective, the area is related to an SMSA and to

a set of block groups. In terms of physical storage,

then, there is no need to store the geographic based data

twice; a single data record can represent the geographic

area from both perspectives.

This concept is illustrated in figure 11.8. Here,

one user (Able) is considering urban tract* ABC, while a

second user (Baker) is considering tract ABC. These two

area names relate to the same record description which is

the means through which the DBMS locates the physical

data. This single record description is in turn related

to a single physical data record.

Since the URBAN-TRACT* and the TRACT logical objects

share a common physical representation, only one record

type, say type TRACT, is required to serve both logical

entity types. A consequence of this physical

representation is that a relationship directory is not

required for the IS-A relationship type. The IS-A

relationship is never used to traverse entity types in an

information retrieval request; it is used to create new

entity types which can be referenced in a retrieval

reques t.

285

V
IE

W
ED

FR
O

M

TW
O

PE
R

SP
E

C
T

IV
E

S

286

Figure 11.9 illustrates the physical configuration

that relates to the conceptual schema of figure 11.7.

Note that the SMSA COMPRISES URBAN-TRACT* relationship

directory references only those tracts which lie within an

SMSA. Thus only a portion of the type TRACT records are

pointed to from this directory. Similarly, the remaining

directory only points to those block groups which lie in

an SMSA. A directory which relates to general tracts

(vis. urban tracts*) would point to all records of type

tract, including those of the "urban variety."

From studying figure 11.9 it becomes obvious how a

query of the form "SMSA BY URBAN-TRACT* BY BLOCK-GROUP..."

would be processed. A problem arises, however, when we

consider a query of the form "URBAN-TRACT* BY

BLOCK-GROUP..." Here, we must "enter the chain" of

nesting at the urban tract* level. The problem is that,

unless SMSA records are considered first, there is no way

of identifying which tract records are also urban tract*

records.

One solution arises when we consider that the SMSA

COMPRISES URBAN-TRACT* directory contains the identifiers

of these special records within its inverted list

structure. These identifiers are not stored in sequential

order, however. Consequently, we suggest that a separate

287

FIGURE 11.9

THE PHYSICAL CONFIGURATION OF

THE FIGURE 11.7 SCHEMA

288

index be added for each "special type” of entity. This

technique is illustrated in figure 11.10.

NOTE: Up to this point we have ignored the issues

surrounding the access of the individual records of a

given record type. The rationale behind this ignorance of

detail is that the resulting discussion was simplified.

The mere reference to pointers, as made by our diagrams,

implies the assumption that, given the key of a record, we

can retrieve the record. Indeed, each standard record

type may have a dedicated index through which its records

can be accessed. For example, each record type of our

physical structure may represent a separate ISAM file.

The index described in the preceeding paragraph is an

additiona1 index, however. It is created to supplement

whatever standard record locating technique is

implemented.

Representing EITHER-OR. A physical representation issue

which is quite similar to that of the IS-A relationship

has to do with the treatment of "EITHER-OR-joined" entity

types. An example of this is found within the PL-94

conceptual schema (figure 11.2). The relevant portion of

this schema is repeated in figure 11.11. Here we see two

EITHER-OR associations whose "higher level" entity types

URBAN TRACT*
INDEX

TRACT
RECORD

TYPE

' ' ABC

DEF — — — —

GHI —

JKL —

X — — — —

X mm mm mm

X —

XYZ —

FIGURE

A "SPECIAL CASE"

11.10

RECORD INDEX

290

FIGURE 11.11

A PORTION OF THE PL-94 SCHEMA

291

are connected by a COMPRISES relationship. Also, two of

the "lower level" entity types are connected by a separate

COMPRISES relationship.

As is the case with the IS-A relationship, instances

of different entity types refer to the same real world

geographic areas when the EITHER-OR association is used.

In this situation each instance of a "lower level" entity

type (e.g. TRACT or BLOCK-NUMBERING-AREA) is also an

instance of the related "higher level" type (i.e.

TRACT/BNA). Thus, for the same reason as was presented

previously, a single record type can serve all of these

entity types.

Since the "lower level" entity types represent

"special cases" of their "higher level" type, the record

type should relate to the more general higher level

entity. Thus, in relation to our example schema, we would

observe a record type TRACT/BNA, and a record type

BLOCK-GROUP/ENUMERATION-DISTRICT in the physical database.

Obviously, each record instance would relate to only one

simple geographic area type (i.e. tract, block numbering

area, block group, enumeration district).

From the figure 11.11 schema we see that a query of

the form "COUNTY BY TRACT/BNA..." is a legitimate

request. The elements of the physical structure which

292

would be used to process this request are obvious.

Specifically, they are:

1 . A COUNTY record type which contains county

instance records

2. A TRACT/BNA record type which contains both

tract instance records and block numbering area instance

records

3• A COUNTY CONTAINS TRACT/BNA relationship

directory which connects county records to their

respective tract and block numbering area records (note

that every instance of both record types is connected

here)

In responding to this query the system should

indicate to which (lower level) entity type each record

relates. In other words, the user should be told, for

each record retrieved, whether the data applies to a tract

or to a block numbering area. This is easily accomplished

by storing a "type flag" within the contents of the each

record. When a record is retrieved, this flag is used by

the system to determine the lower level type to which the

293

record applies. This is then included in the information

presented to the user. The use of this type flag is

illustrated in figure 11.12 (Note that since this flag is

used to represent a binary attribute which is for system

use, the flag can be represented with a single bit).

Figure 11.11 (above) indicates that we may pose a

query of the form "TRACT/BNA BY BLOCK-GROUP/

ENUMERATION-DISTRICT...” to our system. Again the

relevant objects of the physical structure are obvious:

1 . A TRACT/BNA record type

2. A BLOCK-GROUP/ENUMERATION-DISTRICT record type

3. A TRACT/BNA COMPRISES BLOCK-GROUP/ENUMERATION-

DISTRICT relationship directory

Note that this relationship directory references all

instances of these record types.

From figure 11.11 we also observe that we may

request ”BLOCK-NUMBERING-AREA BY BLOCK-GROUP...” Now, we

know that the same record types would be used to process

this query as would be used to process the previous query.

An interesting question is: Can we use the same

relationship directory? The answer is yes; the pointers

294

FIGURE 11.12

RECORD TYPE TRACT/BNA

295

required to process T RACT/BNA BY

BLOCK-GROUP/ENUMERATION-DISTRICT are a superset of the

pointers required to process BLOCK-NUMBERING-AREA BY

BLOCK-GROUP.

With regards to this latter query, since we "enter

the chain" by selecting BLOCK-NUMBERING-AREA records only,

the pointers will direct us to those rows of the

relationship directory which deal with block numbering

areas. Block numbering areas, by their very nature, are

covered by block groups, so these rows of the directory

will point exclusively to BLOCK-GROUP records. Thus, once

the chain is entered, the processing can continue without

problems.

The issue of how this chain is entered (i.e. how

the BLOCK-NUMBERING-AREA records are selected) remains

unclear at this point. Given that each record of type

TRACT/BNA contains a type flag, the system could inspect

each record and process those which, as indicated by the

flag, relate to a block numbering area. A more time

efficient way of handling this problem is to apply the

same technique as was suggested for use with the special

case records of the IS-A relationship. Thus, we suggest

that a dedicated index be included for each "lower level"

entity type of the EITHER-OR association.

296

The TRACT/BNA record type would therefore require

two special purpose indexes. One such index would direct

the search to the records which relate to tracts, while

the other would direct the search to the records which

relate to block numbering areas. The targets of these

indexes do not overlap (see figure 11.13).

Representing attribute areas. Recall from chapter 7

that census files often contain data about geographic

areas to which no specific data records are dedicated. We

call such geographic areas "attribute areas" because the

applicability of a record to the area type is indicated by

an attribute in the record. Rather than being stored in a

single record, the data relating to an attribute area is

scattered throughout the file. Meaningful information

about an instance of an attribute area must therefore be

derived by collecting and aggregating the data from a

number of scattered records.

Each attribute area is represented as an ordinary

geographic entity type in the GERMS conceptual schema

since the unusual physical representation of the data does

not affect the logical data structure. Thus, as is always

the case, the complexities of physical storage are not

evident from the conceptual schema. Since all information

297

x
<C LxJ
X O
cn ^

ro

U
SI

N
G

IN
D

E
X

E
S

W
IT

H

T
H

E

E
IT

H
E

R
-O

R

A
S

S
O

C
IA

T
IO

N

298

provided by our system is presented to the data user from

the perspective of the data model, the DBMS has the

responsibility of insuring that the system output

represents a complete ’’reassembled" geographic object when

an attribute area is referenced in a query.

The issue at hand in this subsection has to do with

the physical representation of attribute areas. There are

two basic approaches to this:

1 . The attribute area instances can be assembled

Prior to storage. This involves collecting and

aggregating the data records which relate to attribute

areas and forming new records from this aggregated data.

The data records which relate to a given type of attribute

area would be combined to form a new record type to be

stored in the usual way.

2. The attribute area instances can be reassembled

during query processing. This demands that there be some

means of collecting the scattered parts of an area

instance (sequential scan is not acceptable for obvious

reasons).

299

If the frequency of access of attribute area data is

high, the former alternative is the obvious choice. True,

this configuration requires greater storage space (more

data stored with constant information content), but the

processing time is much lower in comparison to the latter.

If for some reason the second alternative is selected, we

are prepared to suggest two physical representation

schemes.

For the purpose of illustration we will rely on the

chapter 7 example of urbanized areas (from census file

STF1B). Here, the file contains a record type BLOCK, the

instances of which obviously relate to block areas. Some

of these BLOCK records hold the key value of an urbanized

area of which the block is a part. Thus the entity type

URBANIZED-AREA is an attribute area. The problem at hand

is: Given a retrieval request for an urbanized area, how

can the appropriate BLOCK records be collected?

The reader may be thinking that we can make use of

physical position by storing contiguously the BLOCK

records which relate to an urbanized area instance. This

juxtaposition technique is unacceptable since the records

of type BLOCK must be stored according to block key; not

urbanized area key.

300

The first acceptable scheme is based on pointer

chains. Here the records which relate to a given instance

of an attribute area are combined to form a chain. Each

non-terminal element is pointed to by the previous element

and points to the next element. Thus, once the first

chain element (head) is accessed, all other elements can

be located by following the pointers. An index can be

used to identify the head of the chain. This is

illustrated in figure 11.14.

The second scheme uses an inverted list structure

which is similar to that of our relationship directories.

Here, the directory holds the information required to

locate the scattered parts of an attribute area. Each row

of the directory relates to an area instance. The

elements of a row point to those records which hold data

relating to the instance. This technique is shown in

figure 11.15. Note that the only difference between the

two schemes is that in the former, the pointers are stored

within the records, while in the latter the same pointers

are stored within the index (directory).

As a final word we would like to clarify that each

of these two schemes must be used in conjunction with a

special processing procedure. This procedure has the

responsibility of collecting and aggregating the data

301

UJ
Ctl

cs
t—1

Ll-

ST
O

R
IN

G

A
T

T
R

IB
U

T
E

A
R

E
A

S

302

FI
G

U
R

E

1
1
.5

ST
O

R
IN

G

A
T

T
R

IB
U

T
E

A
R

E
A

S
A

S
A

N

IN
V

E
R

T
E

D

L
IS

T

303

records before the information is presented to the user.

The structure of such a procedure is straightforward and

is not discussed here. The execution of the procedure is

"triggered” automatically upon reference to a logical

entity which is physically stored as an attribute area.

In this way the user is ’’insulated” from the complexities

of the physical storage scheme; the final system output

"appears” the same as that of any ordinary (non-attribute

area) geographic area.

Summary

Before the database of our geographic information

system can be constructed we must equate the data of the

source structure to the objects of the schema structure.

The equivalence relations are used for this purpose. The

objects of the target structure correspond directly to the

objects of the schema, so the equivalence relations serve

to detail the formation of the physical database objects.

Unlike the source structure, the target structure

separates relationship data from entity data.

Consequently, the equivalence relations indicate that the

relationship data can be "stripped” from the source

304

records upon populating the database. This very data is

used to form the relationship directories. The GERMS

deals exclusively with "natural” geographic entities, so

geographic areas which are represented in "dissected" form

within the source structure can be reassembled when

creating the target structure.

The conceptual schema employs logical redundancy,

but there is no need for redundant representation of

geographic areas in the physical database. This ability

is achieved through the use of multiple indexes which are

directed towards a common record type. The user is

insulated from this complexity, however. (S)he need only

reference the geographic objects which relate to her/his

"view" of geography; the system has the ability to locate

the required physical data.

In the next chapter we consider the makeup of the

logical database — that part of the GIS which relates to

its "knowledge" of the conceptual schema. The next

chapter also describes how the logical database is linked

to the physical database. This link is required since

query processing involves an integration of the physical

with the logical domain. Queries are posed in terms of

the latter, but responses are formed by processing the

former.

FOOTNOTES

The terms "source" and "target" are so named with
regards to the process of loading the database.
From the perspective of this process, census data
is the input. The structure of the census file is
the "source" of the input. The purpose of this
process is to restructure the data to match the
framework of the database. Thus the revised
structure is the "target" of the process.

The jargon of tree structures is used here for the
purpose of clarification only. We do not mean to
imply that a strict hierarchy is being instituted
as the target structure.

This description is an obvious oversimplification
of query processing. Our output "report" must
have a well-defined nested structure: that of a
"preorder traversed" tree (see [PAGE78]).
Consequently, the required elements of all
directories used in a query must be assembled into
an appropriately ordered queue before any data
records are accessed. Then, by retrieving the
records in queue order, the elements of the output
report are properly nested.

The entire GERMS model can be considered to be
logically redundant since areas represented by
entity types overlap. In this case, however, we
are concerned with the situation where two
instances of different entity types can be
equated .

CHAPTER XII

THE LOGICAL DATABASE

The techniques and capabilities of our GIS

(geographic information system), as discussed to this

point, presuppose that the system holds a "knowledge” of

the conceptual schema. When the objects and connections

of the schema are referenced in user —> system queries,

the system "understands" the references; when the schema

structure is contradicted in a query, the system detects

the error. Also, the response to queries, or system

output, is presented "in terms of" the structure of the

conceptual schema. The schema is thus the system’s

interface with the user. It represents the "common

ground" shared by the human user and the database machine.

In this chapter we continue to discuss the makeup of

our GIS. Specifically, we detail the structure of the

logical database. We will see that this entity comprises

a number of component parts, all of which are "invisible"

to the data user. Some of the component parts serve to

provide a linkage to the physical database. This linkage

is required if data is to be retrieved properly. Neither

the logical database nor the physical database can operate

independently; they must cooperate in meeting the demands

306

307

of the data user.

Conceptual Schema: Internal Representation

A conceptual schema, or more generally a data model,

is not a tangible object. It is not a GERMS graph or a

set of GERMS phrases; these, rather, are representations

of the schema. The schema is thus the information that is

contained in these representations. Since the information

content of the graphical and the lingual form are the

same, we say that they are ’’equivalent” representations.

Given the schema graph, we can produce uniquely the set of

GERMS phrases. Given the set of phrases, we can construct

the schema graph.

In this section we discuss how the GIS can hold a

representation of the conceptual schema. Also, we

consider how the system can ’’interpret” this schema

representation. The GERMS schema graph avails itself to

the human users of our GIS because the graphical

representation is easily understood by this community. To

the data user the GERMS graph is a concise presentation of

the information from which the schema is formed. The

GERMS lingual form is also well suited for employment by

humans.

308

It is obvious that our GIS cannot make sense of the

schema graph as can the user community. Still, our

techniques demand that the system has access to the

schema. What we seek, then, is some form of representing

the structure of the schema which can be made use of by

the system. We do not desire a different schema, only a

different representational form — a form which is

equivalent to the schema graph.

We call such a representation an "internal form

representation" because it is contained in, or internal

to, the information system. When viewed from outside of

the information system, the component is neither

observable nor important. Thus the user need not consider

the internal form; (s)he need only be confident that the

system "understands" her or his references to the objects

of the schema graph.

In considering the nature of the information which

must be "captured" by a schema representation we will

refer to the schema graph. First of all, recall that the

schema graph is made up of two distinct kinds of objects:

entity types and relationship types. The fact that one

kind of object is represented by a rectangle, and the

other by a diamond is of no concern to us here. We must

only consider that, as presented by the graph, the two

object kinds are distinguishable.

309

Second of all, the entity type names depicted in the

schema graph are data set dependent. Thus the entity type

names are attributes of the specific schema (not of the

modeling formalism) and, as such, the names must be

captured in our internal representation.

The relationship types, on the other hand, are data

set i_ndependent. The four relationship types; CONTAINS,

COMPRISES, IS-A, EITHER-OR; are inherent in the underlying

modeling formalism (note that we will consider the

EITHER-OR association type to be a relationship type for

the time being). Because of this, our internal form

representation does not rely on a knowledge of the

relationship type names. It must only distinguish that

there are four different relationship types.

The relationships in a schema are always pair-wise,

i.e. they link exactly two entity types. Also, a pair of

entity types is joined by at most one relationship.

Furthermore, the relationships are directed in that the

ordering of entity types in a relationship is significant.

With these facts in mind we realize what information

the internal form schema must hold. First, given an

ordered pair of entity types, it must be able to indicate

whether a relationship holds between the types. If a

relationship does hold, it must further indicate (1) which

310

of the four types is the relationship, and (2) what is the

direction of the relationship. This is the extent of the

information provided by the schema graph.

A feature of the GERMS formalism which adds a

complexity to the internal form representation stems from

the fact that the presence of some relationships in the

structure imply the presence of other relationships

elsewhere in the structure. For example, if A COMPRISES

B, and B CONTAINS C, then it is implied that A CONTAINS C.

The schema graph need not represent explicitly the

CONTAINS relationship between entity type A and entity

type C because the implicit presence of the relationship

is derived "in the user’s mind.” The derivation is a

function of the well-defined semantics of the

relationships. In other words, given the ’’meaning" and

the structure of the explicit relationships, the fact that

A CONTAINS C is obvious to the user. As such, this

relationship could be referenced in a query.

If the internal form representation is to be an

equivalent representation, then, the GIS must somehow

"know" that this implicit relationship exists. In

general, given the relationships that are explicitly

depicted in the schema graph, the system must have the

capability of deriving those relationships which are

implicit in the structure.

311

In the subsections that follow we suggest how an

internal knowledge of the conceptual schema can be

created, stored, and used by our geographic information

system. These techniques can form the basis of a "GERMS

front end" to an existing DBMS (database management

system). It is assumed that the DBMS supports

(1) multiple record types, (2) record indexes, and

(3) inverted list structures (directories). The

intricacies of these DBMS features are not considered in

detail.

The schema matrix and symbol table. If a GERMS schema

makes use of N entity types, then the entire structure of

the schema can be represented by a single N x N matrix.

Consider a square matrix named SCHEMA where the term

SCHEMA(i,j) signifies that element residing in the ith row

and the jth column of the matrix. Now assume that the N

entity type names of the schema graph are assigned

distinct sequence numbers: the integers 1 through N.

Since a sequence number can represent a specific entity

type, an element of the N x N matrix SCHEMA can denote a

specific pair of entity types. Thus the element

SCHEMA(i,j) can denote the pair "ith entity type, jth

entity type."

312

Every GERMS schema distinguishes at most four

relationship types: CONTAINS, COMPRISES, IS-A, and

EITHER-OR. These can be symbolized by the integers 1, 2,

3, 4, respectively.

Now, given any ordered pair of entity types, a GERMS

schema representation must indicate whether a relationship

holds between the types. In the case where a relationship

does hold, the schema representation must describe the

relationship in both type and direction. Our matrix

SCHEMA can indicate this information easily. Given a pair

of entity types, say the ith type and the jth type, a

non-blank entry in the ith row and the jth column of the

matrix (SCHEMA(i,j)) indicates that a relationship holds

between the relationship pair. The relationship type and

direction are indicated by the value of this non-blank

entry.

If the ith entity type is named I, the jth entity

type is named J, and the kth entity type is named K, then

the internal form schema representation is as follows:

1. If I CONTAINS J then

1. SCHEMA(i,j) = 1

2. SCHEMA(j , i) = 0

313

2. If I COMPRISES J then

1. SCHEMACi,j) = 2

2. SCHEMA(j,i) = 0

3. If I IS-A J then (note the order here)

1. SCHEMACi,j) = 0

2. SCHEMAC j,i) = 3

4. If I IS EITHER J OR K then

1. SCHEMACi,j) = SCHEMACi,k) = 4

2. SCHEMA(j,i) = SCHEMA(k,i) = 0

3. SCHEMA(j,k) = SCHEMA(k,j) = 0

The "0" elements serve to aid the system in

diagnosing erroneous user queries. Also, these elements

help to insure the integrity of the internal form

representation. These concepts are detailed later in the

discussion. For now, the reader can think of a "0” as

indicating that the entity type pair is "somehow engaged"

in a relationship.

Since an entity type cannot be related to itself (in

the GERMS sense), each main diagonal element (SCHEMACm,m))

is set to "0". Here, a "0" element indicates that the

314

entity type pair is ’’unrelatable." The presence of a

blank matrix element (that is SCHEMA(i , j) = BLANK)

indicates that the respective entity types of the GERMS

schema are unrelated.

Figure 12.1a shows a simple schema graph which

represents a small portion of the logical contents of

census file STF1B. Figure 12.1b shows the internal form

representation of this schema (the row/column labels are

to aid the reader). Note that the internal form

representation includes all logical geographic entity

types regardless of the physical representation of the

data. For example, the matrix represents both the entity

type URBAN-TRACT* and the entity type TRACT despite the

fact that these types would share a common physical

representation.

Clarification of the SCHEMA matrix configuration is

due here. Consider the ’’top most” relationship of the

example schema graph — that is SMSA COMPRISES

URBAN-TRACT*. Now, in the internal form representation of

this schema graph, SMSA and URBAN-TRACT* hold sequence

numbers 3 and 6, respectively. Since COMPRISES is

signified by "2”, this integer value resides in the matrix

element of the third row (SMSA) and the sixth column

(URBAN-TRACT*) of the SCHEMA matrix (i.e. SCHEMA(3,6)).

315

SMSA

BLOCK-
GROUP

TRACT/BNA

BLOCK¬
NUMBERING-

AREA

ZZT-ft-

FIGURE 12.1a

A PORTION OF THE STF1B SCHEMA

316

URBAN-
TRACT*

o C\J oo O

tract/bna o o o o

TRACT
o o 'St o

SMSA o o

BLOCK-
NUMBERING- AREA

o o o

BLOCK-GROUP o cm t-H CM

B
LO

C
K

-G
R

O
U

P

-N
U

M
B

E
R

IN
G

-A
R

E
A

SM
SA

TR
A

C
T

TR
A

C
T/

B
N

A

U
R

B
A

N
-T

R
A

C
T*

o
o
CD

TH
E

IN
TE

R
N

A
L

FO
RM

M
A

TR
IX

R
E

PR
E

SE
N

T
A

T
IO

N

317

A "0" resides in the "transposition element," that is

SCHEMA(6,3), to indicate that the URBAN-TRACT* - SMSA

entity type pair is "engaged" in a relationship.

If the conceptual schema (including the implied

relationships) is encoded into matrix form through the

above rules, then the matrix captures the full information

content of the schema structure, As such, the matrix is

an equivalent schema representation to that of the user

oriented GERMS graph. It is obvious that, unlike the

GERMS graphical form, this matrix can be easily stored

within the database machine and referenced by our GIS

software. Indeed, this internal matrix, once created,

comprises a major portion of our system’s "knowledge" of

the schema structure.

The problem of relating the entity type names used

in system input and output (queries and responses) to the

sequence numbers used in the internal form schema

representation is easily solved through the use of a

symbol table. The table merely lists each entity type

name and its associated sequence number. This is the

remaining portion of our system’s "knowledge" of the

schema. User reference (in a query) to an entity type

name which is not contained in the symbol table indicates

an error.

318

Once the internal form matrix and symbol table are

in place, the system can easily verify the semantic

correctness of user queries. Each entity type name,

checked against the contents of the symbol table, verifies

that 'legal" type names are used. For example, continuing

to use the same example schema, if the COUNTY entity type

is used in a query, the query is rejected because COUNTY

is not contained in the symbol table -- it is not a

"legal" type name in this situation.

Beyond this, the system must investigate the

accuracy of the relationships referenced in the query

breakdown (e.g. "GET A BY B..." where "A " and "B" are

"legal" entity type names). This is simple in that it

must only be verified that a legitimate (CONTAINS or

COMPRISES) relationship holds in the proper direction

between the entity types.

In terms of our internal form schema representation

this translates into verifying that a "1" or a "2" is

stored in SCHEMA(i,j) where i relates to the superordinate

entity type (i.e. preceeding the "BY" keyword), and j

relates to the subordinate entity type (following the "BY"

keyword). Thus, if a query of the form "GET

BLOCK-NUMBERING-AREA BY BLOCK-GROUP" (this is an

abbreviated query) is posed, it must be verified that a

319

"1" or a "2" resides at SCHEMA(2,1). If this is not the

case, then the query is erroneous.

One use of the "0" elements can now be understood.

Assume that a query is specified ’’backwards,” say ’’GET

BLOCK-GROUP BY BLOCK-NUMBERING-AREA.” It seems reasonable

that this would be a common user error. Upon detecting

the ”0” value at SCHEMA(1,2), the diagnostic message

"RELATIONSHIP REFERENCED IN REVERSE ORDER” should be

issued. Upon detecting a "BLANK” element, on the other

hand, the diagnostic "NO SUCH RELATIONSHIP” is appropriate

(this situation relates to the query "GET SMSA BY BLOCK

NUMBERING AREA." Thus the "0" elements allow the system

to better "understand" the nature of user errors.

Creating

language

system’s

aids the

GERMS

interf ac

the GIS

the topi

the internal f orm: data definition

We have discussed how, once stored, the

internal "knowledge" of the conceptual schema

system in "comprehending" user requests. The

data model can thusly serve as the system’s

e with the human user. We have not discussed how

is "fitted" with this knowledge, however. This is

c of the present and the following subsections.

320

For the time being our discussion will ignore two

complexities. The first of these has to do with the

implicit relationships of the GERMS schema. Recall that

when the schema graph is employed these relationships are

"derived in the user’s mind.” The second complexity

ignored here involves the details of ’’linking” our

internal form representation with the physical database

configuration (i.e. record types and directories).

Obviously, this linkage is important since we must

eventually form a ’’bridge” between the logical and the

physical domains.

It is assumed that the GERMS schema graph exists

prior to the creation of the internal schema

representation. Thus, the question addressed here is:

Given the schema graphical representation, how can the

details of the schema be loaded into the information

system? The schema graph cannot be interpreted by the

computer, so some intermediate representation must be

found. This intermediate representation must obviously be

an equivalent representation. In virtually all database

management applications this problem is solved through use

of a data definition language. Indeed, this is the tack

taken here.

321

A data definition language is simply the language of

a data modeling formalism. This language provides a means

of describing the structures and constraints represented

in the schema graph. The graphical form and the lingual

form of a formalism must provide equivalent schema

representations. The data definition language version of

a schema is parsed and interpreted by the software of the

DBMS. Once the schema representation is interpreted,

construction of the internal form schema is not complex.

The GERMS language described in chapter 8 provides

an obvious basis for a data definition language. The

GERMS graphical and lingual representations are

equivalent. Also, phrases of the GERMS language have a

well structured and ordered syntax which can be easily

parsed. Recall that there are only four different phrase

forms each of which depicts a specific geographic

relationship type. By including a GERMS phrase for each

relationship of the schema graph, the entire information

content of the conceptual schema is captured.

In the paragraphs that follow we describe the format

of wha.t we call the "schema definition program." The

schema definition program represents our suggestion as to

how the information system can be "fitted" with the

"knowledge" of the conceptual schema. Interpretation of

322

the program by the GIS software would result in the

formation of the internal form schema matrix and the

symbol table. The software required to interpret a schema

definition program has not been written as of yet, but the

task would not be overly complex.

In the absence of this interpretive software the

internal form components can be created by the database

technician since the procedure is straight forward. Even

in this situation where the internal form is created "by

hand," we suggest that the schema definition program be

written. This is because the program provides the

database technician well structured documentation as to

the internal form representation. It also serves as a

stepwise guide to the required creation procedure.

The schema definition program consists of two

sections. The first section, which is the ENTITY SECTION,

enumerates the logical geographic entity types which are

used in the conceptual schema. The basic purpose of this

program section is to describe the structure of the symbol

table and to define the size requirement of the schema

matrix. The ENTITY SECTION also defines the link between

the entity types of the conceptual schema and the record

types of the physical database (this is discussed in

greater detail later).

323

The remaining SCHEMA SECTION of the schema

definition program consists of the GERMS language phrases

which describe the structure of the conceptual schema.

With this information the elements of the schema matrix

can be ’’filled in” to represent the geographic

entity-geographic relationship structure.

Figure 12.2 shows the schema definition program

which corresponds to the simple schema graph of figure

12.1a (above). In the ENTITY SECTION of the program, the

’’ENTITY-TYPES ARE” phrase indicates that the schema

involves six distinct entity types. Thus a 6 x 6 schema

matrix is required for the application. Note that these

six objects are logical entities; they do not necessarily

represent six distinct record types in the physical

database. The ’’RECORD-TYPES ARE” phrase states that the

application will use three different record types in the

physical structure.

The ’’NAMES ARE” phrase lists the six names of the

logical entity types. ’’END NAMES ARE" indicates the

completion of the list. The entity type names of this

list are the basis of the symbol table. Unless stated

otherwise via the ’’RECTYPE =" clause, the physical record

type used to represent a logical entity type holds the

same name as does the logical type itself.

324

ENTITY SECTION

ENTITY-TYPES ARE 6.

RECORD-TYPES ARE 3.

NAMES ARE BLOCK-GROUP;

BLOCK-NUMBERING-AREA, RECTYPE

SMSA;

TRACT, RECTYPE

TRACT/BNA;

URBAN-TRACT*, RECTYPE

END NAMES ARE.

SCHEMA SECTION

SMSA COMPRISES URBAN-TRACT*.

URBAN-TRACT* IS-A TRACT.

TRACT/BNA IS EITHER TRACT OR BLOCK-NUMBERING-AREA.

URBAN-TRACT* COMPRISES BLOCK-GROUP.

TRACT/BNA CONTAINS BLOCK-GROUP.

BLOCK-NUMBERING-AREA COMPRISES BLOCK-GROUP.

= TRACT/BNA;

= TRACT/BNA;

= TRACT/BNA;

FIGURE 12.2

A SIMPLE SCHEMA DEFINITION PROGRAM

325

In the example program (figure 12.2) we see that the

three entity types; BLOCK-NUMBERING-AREA, TRACT, and

URBAN-TRACT*; will not hold their own record types in the

physical database. Rather, the instances of these

different types will all be represented as instances of

the TRACT/BNA physical record type (specified by

"RECTYPE = TRACT/BNA") .

The interpretation of the SCHEMA SECTION is

straightforward. Each phrase relates to a unique

relationship (association) of the schema graph. The

entity types in a phrase indicate, via the symbol table,

the appropriate rows and columns of the schema matrix to

which the phrase relates. The relationship type used in

the phrase defines, according to the aforementioned rules,

the values that the schema matrix should take on. When

this process is carried out for a SCHEMA SECTION phrase,

we say that the phrase is "executed."

Figure 12.3 provides an example of this process.

Here, we see how the system would execute the GERMS phrase

SMSA COMPRISES URBAN-TRACT*. First, with regard to the

entity types SMSA and URBAN-TRACT*, we see that the symbol

table directs us to the third row and to the sixth column

of the schema matrix, respectively. This row-column pair

defines a unique element of the matrix; namely,

326

SCHEMA(3,6). The GERMS phrase involves a COMPRISES

relationship, so SCHEMA(3,6) is set to the value "2".

Also, SCHEMA(6,3) is set to the value ”0" to indicate that

the respective logical entity type pair is "involved" in a

relationship.

Obviously, a non-blank (including "0") value should

not be reset during this process. Reference to a SCHEMA

element which holds such a value indicates an error in the

SCHEMA SECTION of the schema definition program. This

illustrates another use of the "0" elements, including the

main diagonal elements: they help to insure the integrity

of the internal form representation.

To summarize the content of this subsection, we have

described the structure of a schema definition program

which is based on the GERMS data definition language. The

discussion here is ignorant of two issues: implicit

geographic relationships, and the details of linking the

physical structure with the logical structure. These

concerns are discussed in the remainder of this chapter.

Again, we suggest that the schema definition program

be written even if its interpretation and execution is not

automated. This is because the program listing provides

stepwise detail and documentation to guide the database

technician through a "by hand" creation of the GIS

internal form.

327

SYMBOL TABLE

FIGURE 12.3

EXECUTING A PHRASE OF THE SCHEMA SECTION

328

Deriving implied relationships. In the two previous

subsections we have discussed how a "knowledge” of the

structure of the conceptual schema can be stored within

our information system, and how this knowledge can be

loaded into the system. In discussing each of these

topics we have ignored the fact that a number of implicit

relationships — those which are not shown explicitly in

the schema graph — are inherent in the structure of the

conceptual schema.

The implicit relationships are apparent from

understanding the semantics of the explicit relationship

structure; they are "obvious" to the human user who

observes the GERMS schema graph. A graph showing all

GERMS relationships would be too cluttered to be usable,

so in terms of user effectiveness it makes little sense to

detail the implied relationships in the structure of the

schema graph.

Since implied geographic relationships are "obvious"

to the data user, (s)he should be allowed to make

references to these relationships in requesting a query

breakdown. For example, if the schema graph shows

(explicitly) that STATE COMPRISES COUNTY, and that COUNTY

CONTAINS TRACT, then it makes sense for the user to

request information in terms of "STATE BY TRACT..." This

329

request should be allowed despite the fact that the graph

does not detail explicitly that STATE CONTAINS TRACT.

Thus, the system should ’’understand" any user references

to geographic relationships as_ long as they do not

contradict the meaning presented by the schema graph.

If reference to a geographic relationship is to be

’’understood’’ and processed by the system, it is required

that (1) the system ’’knows" of the relationship since the

validity of each query is verified with the internal

schema matrix, and (2) there exists a directory for the

relationship within the physical database. In other

words, the relationship must be fully represented within

the GIS internal form.

The problem addressed here can be stated as follows:

How can this "full knowledge" of the structure of the

conceptual schema be gained by the information system?

Solving this problem is made easier by the fact that we

need only be concerned with implied COMPRISES and CONTAINS

relationships here. This is because only these two

relationship types can be directly referenced in a query.

One solution to this problem revolves around the

creation of a set of rules through which the implicit

relationships can be derived from the structure of the

explicit conceptual schema. Such a set of rules is listed

330

below. These rules are based on following unbroken

"relationship chains" (i.e. relationship type —> entity

type —> relationship type...) through the network

structure of the explicit schema.

Figure 12.4 provides a structural template for the

rules. The template specifies three logical entity types

represented by A, B, and C. Entity types B and C are

connected by relationship Y which symbolizes a standard

GERMS relationship (association) type. Relationship X,

which is also a standard GERMS type, depicts the start of

the chain.

Any number of entity type-relationship type pairs

form an unbroken chain from relationship X to entity type

B (these relationships may be any mix of the four standard

types). The task at hand is to discover the nature of

relationship Z which joins (implicitly) entity type A with

entity type C. Note that the direction of the

relationships shown in the template i_s signif icant.

As an example of how this template is used, assume

that A represents SMSA, that B represents URBAN-TRACT*,

and that C represents BLOCK-GROUP. Therefore, referring

back to the earlier figure 12.1a, we see that both X and Y

represent COMPRISES relationships. The problem addressed

here is to uncover the nature of the relationship which

331

FIGURE 12.4

A STRUCTURAL TEMPLATE FOR DERIVING

IMPLIED RELATIONSHIPS

332

holds between SMSA and BLOCK-GROUP, that is

relationship Z.

Our task is simplified when we realize that we only

have to consider those chains which begin with (i.e.

relationship X is) CONTAINS or COMPRISES. This is because

it only "makes sense” to nest within the more specific, or

"lower level" (vis. more general or "higher level"),

entity types. The skeptical reader should verify this

before continuing.

The rules for deriving the type of the relationship

Z are stated using an IF-THEN-ELSE structure in the usual

way. The rules are as follows:

IF B CONTAINS C

THEN A CONTAINS C

IF B COMPRISES C

THEN IF all preceeding relationships are COMPRISES

THEN A COMPRISES C

ELSE A CONTAINS C

IF C IS-A B (note the order here)

THEN A CONTAINS C

IF B IS EITHER (OR) C

THEN A CONTAINS C

333

In processing the network structure of a GERMS

schema graph each implicit or explicit CONTAINS or

COMPRISES relationship represents the start of a chain.

The process of deriving the implied relationships is

therefore iterative in that one implied relationship may

denote the presence of other implied relationships. In

the case where an entity type in a chain has two

relationships entering (pointing toward) it, the path

branches to form two separate chains.

With regard to the row-column structure of the

internal form schema matrix, the above rules can be
«

implemented by moving from row to column to row of the

matrix. For example, if the start of a chain is defined

by the presence of a "2" (COMPRISES) in SCHEMA(i,j), then

a "next” element of this chain would reside in the jth row

of the matrix. Let us assume that such an element is

found at SCHEMA(j,k). In this case, if the chain

continues, then the next element resides in the kth row of

the matrix; and so on until a row contains only blank or

"0" valued elements.

Using this basic technique an algorithm can be

employed to automatically ’’fill in” the implied

relationships of the schema graph. With such an

algorithm, which can be implemented using a stack

334

structure, the GIS has the capability of deriving a

"complete knowledge" of the schema from its partial

knowledge of the explicit relationships of the schema

graph (as described by the schema definition program).

A less complex alternative, which we recommend, is

for the database technician to derive the implied

relationships by hand according to the above simple rules.

The additional (implied) relationships, when included in

the SCHEMA SECTION of the schema definition program, would

result in the fitting of the system with a full knowledge

of the schema structure.

Linking the Physical Database to the Logical Pat abase

So far in this chapter we have discussed how a full

knowledge of the conceptual schema can be created and

stored within our geographic information system. A

remaining issue deals with how this internal

representation of the logical data structure, which we

call the logical database, is linked to the physical data

structure, or physical database.

335

The reason that these strucures must be linked is

that the GIS is queried in terms of the objects of the

logical database, but the physical database is consulted

in the formation of responses to these queries. Thus the

system must know which objects of the physical database

relate to which objects of the logical database. The

nature of this linkage is the topic of this section.

We refer to this issue as T,intra-system mapping”

because, when our geographic information system (GIS) is

viewed as a single entity, said mapping is completely

internal to the system. Continuing along this line, if

the logical structure and the physical structure are

considered as component parts of the GIS, then the mapping

relates to the interconnections between (or coupling of)

these components. When witnessed from outside the system,

as by the data user, these interconnections are

unobservable. Thus the overall GIS is an example of

Ashby’s ’’black box” (see [ASHB64]).

The inputs to this black box are the user’s queries;

the outputs are query responses. The internal ’’mechanism”

of the black box is not ’’seen” by the user, and this is as

it should be, for an_ understanding of geographic

informat ion does not presuppose an understanding of data

structures and data storage techniques. This thought,

336

which arises from taking a more or less ’’cybernetic view”

of our GIS returns us to the DBMS principle of data

independence -- the user should be insulated from the

complexities of the data organization. Indeed,

intra-system mapping is how this data independence is

achieved.

Stated in simple terms, the problem addressed by the

mapping is twofold. Specifically:

1. Given the name of a logical entity type, the

system must be able to direct itself to the appropriate

record instances of the physical database

2. Given a reference to a relationship through an

entity type pair (e.g. A BY B), the system must be able

to direct itself to the appropriate relationship directory

of the physical database (recall that any entity type pair

denotes at most one logical relationship)

The first task is handled easily by expanding the

aforementioned symbol table. Note that up to this point

our symbol table has been described as a simple list of

entity type names along with the respective entity type

sequence numbers. This structure serves to associate the

337

logical entity type names with the rows and columns of the

internal form schema matrix. Consider now that this same

symbol table can be expanded so that each row also

specifies the record index that relates to the entity type

name.

Recall that each entity type name relates to exactly

one record type, but each record type may be related to

more than one entity type name. For example, the entity

types TRACT and TRACT/BNA are each related to the record

type TRACT/BNA. This single record type is therefore

related to both entity types.

In the case where a number of entity types share a

common record type, as in the stated example, each of the

entity types has its own dedicated index through which the

record instances are accessed. In this way we can support

logical redundancy in the schema without the need for

physical redundancy of database records. Now, if the

symbol table holds pointers which are directed to the

appropriate record indexes, then the system can always

determine which record instances are related to which

logical entity types.

Figure 12.5 illustrates this technique. The diagram

shows a portion of the physical configuration of the

schema of figure 12.1a (above). Here the four logical

338

entity types — BLOCK-NUMBERING-AREA, TRACT, TRACT/BNA,

URBAN-TRACT* -- share the single physical record type

TRACT/BNA. User reference to a logical entity type name

denotes, through the symbol table, reference to a

particular record index. Each index further directs us to

the appropriate physical record instances. The double

arrow (>>) symbol denotes a set of pointers (vis. a

single pointer).

The reader may be wondering how, at the time of

database population, the system knows to relate these four

different index structures (BLOCK-NUMBERING-AREA, TRACT,

TRACT/BNA, URBAN-TRACT*) to the common TRACT/BNA record

type. The answer is simple. The information required to

define this configuration is contained in the ENTITY

SECTION of the schema definition program that was

discussed earlier (refer back to figure 12.2). In this

program the logical entity types BLOCK-NUMBERING-AREA,

TRACT, and URBAN-TRACT* are linked to the record type

through use of "RECTYPE = TRACT/BNA.” The TRACT/BNA

logical entity type is linked to its synonym physical

record type by the absence of this "RECTYPE =" clause.

As for the remaining part of our task at hand,

linking a reference to a logical geographic relationship

to its physical directory representation, we will see that

339

FIGURE 12.5

RELATING ENTITY TYPES TO RECORDS

340

it is not complicated. The simple solution capitalizes on

the fact that each logical geographic relationship is

associated with exactly one logical entity type pair.

Indeed, this fact allows for the use of our aforementioned

two-dimensional internal form schema matrix.

Reference within a query to a relationship is made

in terms of an entity type pair (e.g. A BY B), so we need

only relate each entity type pair to its respective

relationship directory in the physical database. The

pair-wise nature of the relationship allows for us to use

a two-dimensional ’’pointer matrix” for this purpose. Each

non-blank element of this matrix is a pointer which is

directed towards a relationship directory — which one

being determined by the row-column position (entity type

pair) of the element. We will call this matrix, which is

the final component of the logical database, POINTER.

In figure 12.6 we show how the pointer matrix is

used in handling the query ’’GET SMSA BY URBAN-TRACT* BY

BLOCK-GROUP” (this query is based on the schema of figure

12.1a). In describing the illustration we will refer to

the pointer residing in the ith row and the jth column of

the matrix as POINTER(i,j). The problem here is to locate

in the physical database two relationship directories:

SMSA COMPRISES URBAN-TRACT* and URBAN-TRACT* COMPRISES

BLOCK-GROUP.

341

FIGURE 12.6

USING THE POINTER MATRIX

342

As defined by the symbol table, the SMSA logical

type holds sequence number 3 while the URBAN-TRACT*

logical type holds sequence number 6. The relationship

directory associated with this entity type pair is

therefore pointed to by matrix element POINTER(3,6).

Similarly, URBAN-TRACT* holds sequence number 6 while

BLOCK-GROUP holds sequence number 1, so P0INTER(6,1) is

directed towards the relationship directory for this

entity type pair. Note that this phase of query

processing would not be carried out until the semantic

validity of the query breakdown was checked by the system

(i.e. verifying that a "1" or a M2" resides at both

SCHEMA(3 » 6) and SCHEMA(6,1)).

Recapitulation

The system’s knowledge of the conceptual schema is

stored in two main components: the schema matrix and the

symbol table. Each element of the schema matrix specifies

the presence or absence, direction, and type of a

relationship which is held between a pair of logical

entity types. The specific entity type pair is defined by

the row and column in which the matrix element resides.

343

The symbol table associates the entity type names with the

rows and columns of the schema matrix.

Using these two components the GIS can verify the

semantic validity of any query which is posed to the

system. The ’’legality” of the entity type names is

checked against the entries of the symbol table. The

correctness of the query breakdown request is checked by

inspecting the values of the appropriate elements of the

schema matrix.

The symbol table is also used to link the entity

types of the logical database to the records of the

physical database. Each row of the symbol table holds a

pointer which is directed towards the respective record

index. The entries of each index are in turn directed to

the appropriate data records.

The relationship directories are located by the

system through the use of a third logical database

component, the pointer matrix. Each row-column

combination of the matrix denotes an entity type pair. If

a proper relationship holds between an entity type pair,

then the respective element of the pointer matrix is

directed toward the directory for this relationship.

344

The system’s knowledge of the conceptual schema is

loaded by means of the GERMS data definition language. A

schema definition program defines the structure and

content of the schema matrix and the symbol table. The

implicit relationships of the schema can be derived by the

system, or alternatively they can be derived by hand and

entered as part of the schema definition program.

Looking ahead. The capabilities of our GIS which have

been discussed to this point relate to a very basic

system. We feel that the query structure is both flexible

and powerful excepting one fact. Namely, geographic area

primary keys must be employed in detailing which data are

to be retrieved from the database. This obviously limits

the suitability of the system for many applications. The

ability of the system to handle associative queries _

data retrieval requests which are based on non-key

attribute values -- would greatly widen the scope of

system applicability.

Also, only very basal integrity checking mechanisms

have been discussed. The technique with which the system

verifies the integrity of a query has been described, but

a means for maintaining the integrity of the overall

database has not been detailed. Database integrity is an

345

important consideration in any information system for

obvious reasons.

In the following chapter we discuss the issues that

surround the addition of these capabilities to our GIS.

The discussion has been delayed until now in an attempt to

make the above system description more manageable. The

system described up to this point can be thought of as

being the ’’basic GIS.” The next chapter therefore

introduces some system enhancements, or "amenities.”

In addition to the above noted amenities, the

subsequent chapter includes a discussion of two other

possible enhancements. Specifically, these are a database

merging facility and a user view facility. The addition

of a merging facility allows for the logical data

structure to be used as a "guide” to direct the merging of

two or more GERMS structured databases.

The user view facility has to do with the ability of

the GIS to support "sub-views" of the database conceptual

schema. Different data applications require consideration

of different subsets of the logical database contents.

When user views are employed, the user need only deal with

that portion of the logical database structure which is

relevant to her or his specific application.

346

Appendix C provides an illustration of a partial

emulation of a "GERMS front-ended" database management

system. This appendix describes the logical database

structure and the physical database structure of an actual

GERMS implementation. In addition, sample software which

provides the system with some of the capabilities

discussed above and in the next chapter are included.

CHAPTER XIII

SOME SYSTEM AMENITIES

In this chapter we discuss briefly a number of

amenities which can be used to enhance our geographic

information system (GIS). The discussion relies heavily

on a thorough understanding of the "basic" system as

described in the previous chapters.

Associative Data Retrieval

To this po int in the d isc ussio n we hav e d eal t with

t wo gen er al St yle s of quer y. The f ir st style r elate s to

the foil owing re que st a s phr ased in fr e e form Engl ish :

" Retriev e th i s li St of a ttr ibute s for the in stance s of

this ent
/

ity t ype wh ich hold the se ke y v alue(s) ." This

request is po sed to our GIS as

GET attlist FOR etype key!1st

(we will ignore query breakdown for the time being) .

347

348

The second form of query relates to the following

request: "Retrieve this list of attributes for all

instances of this entity type." The GIS formal query is

GET attlist FOR etype ALL

For some applications these simple query forms may

not be enough. Consider, for example, the situation where

a user desires an answer to the following type of request:

"Retrieve this list of attributes for the instances of

this entity type whose properties satisfy these conditions

(e.g. population > 10,000)." A query of this type is

called an "associative query" -- it requests data

retrieval on the basis of (non-key) attribute values

rather than on the basis of record key or record position.

The user of an associative query does not know the

key values of the records in which (s)he is interested.

Using our present query forms, then, the only option

available is to request ALL instances of the entity type

and then select "by hand" those instances which satisfy

the condition(s) in question. When an entity type has

many instances, such a process is hardly trivial.

349

The GIS can be greatly enhanced by including the

ability to handle associative queries. In keeping with

the same basic format, we suggest that the following

associative query template be used:

GET attlist FOR etypel WHERE boolean [BY etype2] [[AND] BY etyoe3]..

Here, the terms "etype" and "attlist” hold the same

meanings as before. The term "boolean” represents some

statement of required condition phrased in terms of

attribute names, constants, relational operators, logical

connectors, and parentheses. Conceivably, "boolean" can

be of any level of complexity. The "WHERE clause"

replaces the previous "keylist" or "ALL" phrase;

otherwise, the query format remains the same.

Inclusion of the ability to handle associative

queries should not affect greatly the basic physical

structure of our GIS. Recall from chapter 11 that query

processing involves the use of a "chain" of index and

directory entries (i.e. index --> directory -->

index...). Once the appropriately keyed record of the

highest (nesting) level entity is located, all relevant

"children" of the record can be easily retrieved.

350

With this in mind we realize that the processing of

an associative query can be, for the most part, the same;

it is only the way in which the chain is ’’entered" that

need be changed. In other words, we must only implement

some means of locating a record according to its attribute

values.

There are two obvious ways of achieving this ability

which do not disrupt the current physical configuration.

Each has its advantages and disadvantages. The first

method involves the use of inverted lists (recall that our

relationship directories are based on this structure). An

inverted list can be thought of as a directory which is

dedicated to a certain attribute of the records to which

it points.

Each row of the directory relates to a specific'

attribute value. The entries in a row are pointers to the

records which hold that value on the attribute (the rows

are obviously of different lengths). Given any attribute

value, then, the records which hold that value on the

attribute, if any, can be located by inspecting the

directory. When an inverted list relates to an attribute

represented in a data set we say that the data set is

"inverted on" the attribute.

351

Inverted lists are conducive to very fast processing

of associative queries. With other methods, "false”

record accesses, called "misses," can constitute a

significant amount of wasted processing time. When using

the inverted list technique only those records which

satisfy the criteria at hand need be accessed. Thus,

misses do not occur.

The major disadvantage of using inverted lists is

that they require a large amount of add itional storage

space. Information which is contained in the records is

duplicated in the inverted list [1]. It is possible to

invert on only a portion of the attributes that are

represented in a data set. This creates what is called a

partially inverted data set which obviously requires less

storage space than does a "fully" inverted set.

Note that the nature of the data discussed here

requires that (1) the inverted lists be "partitioned by"

record type, or (2) each record type have its own set of

inverted lists. This is because, in our geopolitical

statistical situation, each attribute applies to all

record types, but data requests deal with a specific

record (mapped from entity) type (i.e. ...FOR etype

WHERE boolean...).

352

The second method which can be used for associative

retrievals is the sequential scan method. Here, each

record instance of the requested entity type is accessed

and inspected for the appropriate attribute value(s).

This technique requires no additional storage space, but

it is time-wise inefficient since many false record

accesses, or misses, must be made.

An associative query is a request for all instances

which meet the specified criteria (i.e. boolean), so the

system must inspect every instance of the record type when

using the sequential scan method. This is because there

is no way of determining, until the end-of-file is

reached, when the ’’last” satisfactory instance has been

accessed. It should be obvious that, when this technique

is used, there should be expected many more ’’misses” than

’’hits .”

To invert or not to invert. Inverted lists require

large amounts of -additional storage space, but they are

time-wise efficient. Sequential scanning needs no extra

storage space, but it is time-wise inefficient. What we

suggest, then, is to invert on those attributes which are

expected to be most' often referenced in associative

queries. In this way increased storage costs are incurred

353

only in those situations where the benefits of decreased

access time will be realized .

For example, if it is decided that the attribute

POPULATION will be frequently referenced in associative

queries, then the attribute should be inverted on. If, on

the other hand, it is expected that POPULATION will be

referenced infrequently, then the attribute should not be

inverted. In this latter case, the sequential scan

technique will be implemented in the event that such a

reference (e.g. "...WHERE POPULATION > 10000...”) is

made.

Obviously, inverted lists can be added

the database technician as the application

decision as to whether or not to maintain a

list should be based on the frequency of

attribute -- a value which can easily

automatically by the system.

Note that the volatility of the

or removed by

evolves. The

given inverted

access by the

be maintained

inverted list

structure of the database in no way affects the data

record s themselv es. The lists point to the records, but

the placement and the format of the records are ’’ignorant”

of the fact that the inverted lists exist. Consequently,

the addition or deletion of an inverted list does not

require a major reorganization of the physical database.

354

Complex booleans. The boolean portion of the WHERE

clause of a query may employ logical connectives (i.e.

AND, OR, XOR) . If the physical database is such that only

a portion of the attributes are inverted, then it is

possible for the boolean to be a conjunction or a

disjunction which references both inverted and uninverted

attributes. Depending on the logical connectives used and

the mix of attribute types, some interesting situations

can arise.

Consider a boolean statement which has two

relational statements joined by a logical connective (e.g.

WHITE-POP > 10000 AND BLACK-POP > 5000). In the event

that both attributes are inverted, there is no need for

false record retrievals; the exact set of records which

meet this criterion can be selected using the inverted

lists. Obviously, if neither of the attributes is

inverted, all records must be retrieved and inspected. In

the case where one attribute is inverted and the other is

not, the nature of the processing depends on the logical

connective used.

If the relational statements are joined by AND, then

only those records which appear in the appropriate rows of

the single inverted list need be accessed. This is

because a record "hit” must match both relational

355

statements, so a record which is not represented in the

single inverted list must be a miss. Note that some of

the records accessed may still be misses, but the number

of misses is much smaller than would occur using a

sequential scan.

If, on the other hand, the relational statements are

joined by OR or by XOR, then all records must be inspected

regardless of the fact that one attribute is inverted --

the inverted list is of no use here since it does not

indicate that some records must be misses.

The point to be made is this: when only a_ portion of

the attributes of the data set are inverted , the inverted

lists may be rendered totally useless by the structure of

the associative queries which are posed to the system.

This fact should be kept in mind when designing the

associative access structure.

A Semantic Integrity Checker

In any database management application the

maintenance of semantic integrity is an issue of major

importance. Recall from chapter 3 that semantic integrity

has to do with the meaning, or semantics, of the data set.

356

When a data set lacks semantic integrity, then, data

values, or sets of or functions of data values, contradict

the logical meaning of the data.

We will refer to declarative statements about

semantic integrity as ’’semantic relations.”

The absence of semantic integrity can arise for a

number of reasons. In terms of our geopolitical

statistical data environment, the problem would often stem

from errors in the data collection or in the data coding

process .

The database technician who is entrusted with the

responsibility of maintaining semantic integrity is faced

with two major problems: (1) (s)he must determine what

semantic relations should hold among the objects of the

data set, and (2) (s)he must somehow verify that these

semantic relations d_o hold among the objects of the data

set. This latter problem is often attacked by writing

special purpose data retrieval programs which are based on

the specific semantic relations of the specific

application.

The semantically rich highly structured GERMS

formalism can simplify the maintenance of semantic

integrity of geopolitical statistical data. The meaning

of geographic relationships among geographic entities

357

indicates what semantic relations should hold among the

respective data values. Thus, the database conceptual

schema details the semantic relations.

For example, let super(i) denote the array of

attribute data values which relate to some ith geographic

area of type SUPER. Let sub(i,j) denote the array of

attribute data values which relate to some jth geographic

area which lies within the boundaries of super(i).

Sub(i,j) is an instance of entity type SUB.

Now, if SUPER CONTAINS SUB, then the following

semantic relation should hold:

super(i) >= s sub(l.j); Vi

Thus, the aggregation of the attributes of the subordinate

area records should be less than or equal to the

attributes of their superordinate area records for each

relationship instance .

Similarly, if SUPER COMPRISES SUB, then the

following semantic relation should obviously hold:

super(i) = j sub(i,j); Vi

358

In other words, the aggregation of the attributes of the

subordinate areas should exactly equal the attributes of

their superordinate area for each relationship instance.

Now let general(i) denote the array of attribute

data values which relate to some ith geographic area of

type GENERAL. Also, let special(i) denote the array of

attribute values which relate to the same ith geographic

area instance of type SPECIAL where SPECIAL IS-A GENERAL.

In this circumstance, the following semantic relation

should hold:

special(i) = general(i)

Thus the values of the attributes of a geographic area are

the same whether they relate to the special case view or

to the general case view — views of entities change, but

properties of entities do not.

A similar semantic relation has to do with the

EITHER-OR association. Let lower(i) denote the array of

attribute values which relate to some ith geographic area

of type LOWER. Let higher(i) denote the array of

attribute values which relates to the same geographic area

instance of type HIGHER where HIGHER IS EITHER (OR) LOWER.

359

In this final case the following semantic relation should

hold :

higher(i) = lower(i)

The rationale for this is the same as in the previous

case.

The above discussion shows how the meaning of a

GERMS geographic relationship indicates the semantic

relations which should hold among the respective database

objects. As for verifying that the semantic relations d_o

hold, the task is simplified by capitalizing on the

structure of the physical database of our GERMS-based

geographic information system (GIS).

First of all, the semantic relations which deal with

the IS-A relationship and with the EITHER-OR association

need not be verified. This is because, in the physical

configuration of our GIS, geographic entities which depict

these different views of an object (i.e. special-general

or higher-lower) are represented by the same physical

records. Thus, there is no way that these semantic

relations (equality) can be violated; the respective

attribute values must be equal.

360

Second of all, the semantic relations which deal

with the CONTAINS and with the COMPRISES relationship can

be verified by general purpose procedures. Since the GIS

has a knowledge of the structure of the conceptual schema,

the system can determine when the semantic relations

should hold. Consequently, the GIS can be given the

ability to verify its own semantic integrity.

The basic logic . Consider a semantic integrity checker

which is a set of programs that can be executed upon the

command of the database technician. The main program

merely inspects each element of the conceptual schema

internal form matrix. In the event that a CONTAINS

relationship or a COMPRISES relationship is found, the

execution of the appropriate semantic relation checking

procedure is triggered.

For the purpose of this discussion we will refer to

the procedure which checks the semantic relation of the

CONTAINS relationship by the name of "CONTCHK" (CONTains

CHecK). "COMPCHK” will refer to the procedure which

verifies the semantic relation of the COMPRISES

relationship.

361

The logic of the semantic integrity checker main

program is shown in figure 13.1. This simple routine

comprises two nested loops which perform a row major order

scan of the square matrix SCHEMA. Whenever

SCHEMA(I,J) r 1 (a CONTAINS relationship), the CONTCHK

procedure is triggered. Whenever SCHEMA(I,J) =2 (a

COMPRISES relationship), the COMPCHK procedure is

triggered. The program terminates when every element of

the schema matrix has been inspected.

In executing one of the checking procedures, every

instance of the relationship in question must be

considered. This demands that the system be able to

locate each superordinate (in the particular relationship)

record along with the related subordinate data records.

The index for the superordinate entity type is

pointed to by the ith row of the symbol table (contained

in the logical database). Once the index is located, the

records may be easily accessed. The appropriate

relationship directory is located by following the pointer

which resides at POINTER(I,J). This directory allows for

the system to locate those subordinate records which are

related to a particular superordinate record.

362

FIGURE 13.1

THE SEMANTIC INTEGRITY CHECKER MAIN ROUTINE

363

Figure 13.2 illustrates the logic of the procedure

CONTCHK. Here, the variable AGGREGAT refers to a vector

of values. Each element of the vector relates to a

particular attribute which is carried in the data records.

Any operation on this variable is meant to denote the

operation on each element of the vector .

The logic of the procedure is straightforward:

For each entry of the superordinate index, the
data record is accessed. Then, all related
subordinate records are accessed and their
attribute values aggregated. If each aggregate
value is less than or equal to the respective
attribute value of the super ordinate record,
then the next relationship instance is checked.
Otherwise, the execution of an error procedure
is triggered.

COMPCHK uses the same logic with the exception that the

aggregated values are checked for equalit y with the

super ordinate data values.

The error procedure indicates to the database

technician the super ordinate entity instance and the

relationship in which the error occurs. For example, an

error report could be of the form "COUNTY ’ABC’ IN COUNTY

CONTAINS TRACT/BNA." Also, the attribute names and the

data values which are found to be in error are displayed.

364

^ CONTCHK ^

V
READ
NEXT

SUPER
RECORD

AGGREGAT
= 0

READ
NEXT
SUB

RECORD

V
ADO SUB
OATA TO
AGGREGAT

NO
PROCESS

ERROR

CEO

FIGURE 13.2

PROCEDURE CONTCHK

365

We recognize that the execution of these integrity

checking programs would be expensive. It should be kept

in mind, however, that the data in this application is

static, so the checking need only be invoked once

following database population, or after a rare database

modification. The decision of whether to implement this

semantic integrity checker should be based on the

probability of and the costs associated with holding

erroneous data values.

A Database Merging Facility

An attribute of the geopolitical statistical data

environment is that there are many opportunities for the

merging of databases. Whenever different properties

denote assertions about common real world entities we

observe the potential for the existence of this

information within a common structure.

When geographic oriented data are collected, then,

the data (measurements) are combinable provided that the

geographic partitionings of the studies are compatible.

By merging geographic based statistical data of differing

orientations (e.g. sociodemographic, environmental,

366

economic) we open doors to a number of correlational and

predictive research studies — doors which would be

otherwise closed.

The merging of conceptually modeled database is not

well understood. Indeed, merging strategies for databases

and database views has been cited [LUM78] as an area which

deserves further research effort. It is our belief that

the indigence extends to the geopolitical statistical data

management environment.

In comparing the GERMS conceptual schemas of two

databases, we are provided with a structure for database

merging. When the databases hold different attributes for

the same GERMS logical entities, the respective records

can be combined. The GERMS schemas also indicate where

new data can be generated from the initial merged data.

Whenever a database schema includes a COMPRISES

relationship, and the subordinate (in the relationship)

records are merged with the records of another database,

the superordinate records can be expanded through the

creation of new data objects. This new data is generated

by aggregating the values of the merged data. The

information required to direct the generation of the new

data, that is, which subordinate records are related to

which superordinate records, is contained in the COMPRISES

367

relationship directory of the original database. An

example is provided in a later paragraph. Note that the

structure of the relationship directory is untouched by

this process; only the superordinate records are affected.

We suggest that the GIS can include a database

merging facility. A set of programs aimed at combining

the data of GERMS databases constitute this facility. In

the event that new data can be generated from the merged

data, as in the case described above, the process may be

triggered by the following macro call:

GENERATE attlist FOR etypel FROM etype2

Here, "attlist” denotes some list of record attribute

names. "Etypel" and "etype2" relate to the superordinate

entity type and to the subordinate entity type of a

COMPRISES relationship, respectively.

By consulting the logical database, the system

determines which relationship directory should be used to

direct the data generation. The entity type pair "etypel,

etype2" connotes, through the symbol table, a unique

element of the POINTER matrix. This matrix element

directs the system to the appropriate relationship

368

directory of the physical database.

An ex ample.

figure 13.3a

portion of

Figure 13.3b

census file

SMSAs.

For the purpose of example we will refer to

and to figure 13.3b. Figure 13-3a shows a

the conceptual schema for census file STF1B.

shows a portion of the conceptual schema for

PL-94. Notice that PL-94 does not deal with

The nature of the statistical properties represented

in these files is not important here. We will simply

assume that these schemas relate to two databases which

represent different properties of geographic areas. The

attributes in the records of the first database will be

called MSTF1B-data.” We will call the attributes in the

records of the second database "PL-94-dat a ."

Now, consider that we wish to merge the PL-94-data

with the STF1B database. According to the conceptual

schemas, the records of the COUNTY, TRACT/BNA, and

BLOCK-GROUP/ENUMERATION-DISTRICT entity types can be

combined. Note that, given the physical configuration of

our GIS, this merging implies that the lower level TRACT,

BLOCK-NUMBERING-AREA, BLOCK-GROUP, and ENUMERATION-

DISTRICT are combined.

369

FIGURE 13.3a

A PORTION OF THE STF1B SCHEMA

COUNTY

FIGURE 13.3b

A PORTION OF THE PL-94 SCHEMA

371

Since URBAN-TRACT* IS-A TRACT in the STF1B schema,

and the URBAN-TRACT* records are indexed in the STF1B

physical database, we now have PL-94-data for urban

tracts*. Using the CENTRAL-BUSINESS-DISTRICT COMPRISES

URBAN-TRACT* relationship directory as a guide, we can

GENERATE PL-94-data FOR CENTRAL-BUSINESS-DISTRICT FROM

URBAN-TRACT*. Also, using the relationship directory for

SMSA COMPRISES COUNTY, we can GENERATE PL-94-data FOR SMSA

FROM COUNTY. Note that, alternatively, we could GENERATE

PL-94-data FOR SMSA FROM URBAN-TRACT*, but this would be

more expensive since the schema indicates that there are

more urban tracts* per SMSA than there are counties per

SMSA.

The result of this data generation activity is that

we can now request PL-94-data for any entity type of the

STF1B schema. Again, in responding to these requests, the

enlarged GIS relies on the same relationship directories

as were used prior to the database merging. The GERMS

relationship directories are untouched by the merging of

GERMS databases; only the affected data records need be

revised .

Figure 13.4 summarizes the above process. Each

object in this diagram represents an entity type of the

STF1B schema. The types whose data records are directly

372

merged with PL-94 records are represented by ci

remaining entity types are represented by

Arrows indicate how data for these remaini

derived (’’automatic” means that the PL-94-d

automatically upon the merging of the database)

rcles. The

ellipses.

ng areas is

ata exists

User Views

As the number of entities represented in a GERMS

database increases, so does the complexity of the

conceptual schema graph. For many user groups it may

happen that the schema graph depicts many more entity

types than are required for the application at hand.

Consider, for example, an application which is

concerned exclusively with statistical geographic areas.

In this case entity types such as SMSA, URBANIZED-AREA,

and CENTRAL-BUSINESS-DISTRICT are relevant, but political

areas such as COUNTY, MCD, and TOWNSHIP are of no

interest. Consequently, a schema graph which depicts

political areas and their respective relationships is more

complicated than is required.

373

FIGURE 13.4

COMBINING THE

DATABASES

374

A similar problem is faced by the users of common

business databases. Here, we may have a single integrated

database which serves the data needs of the entire

business enterprise. A number of very different

applications such as personnel, purchasing and production

share the database.

These user applications are very different, so the

single ”global” logical data model (conceptual schema) is

not well matched to the needs of any one application.

Consequently, an application is often supplied with its

own sub-model, or ’’subschema.” Such sub-models are

sometimes referred to as ’’user views.” The ability of a

data modeling formalism to support user views is called

’’relativism” (see chapter 6). Under this concept a user

need only consider her/his particular user view when using

the database. Thus, from the perspective of the user, it

appears that the database exists to meet the needs of

her/his application exclusively.

Returning to our geographic oriented GERMS database,

consider the fact that a GERMS query deals only with those

entities and relationships about which information is

requested. Thus, if the user desires information in the

form of ”SMSA BY URBAN-TRACT*,” there is no need to

consider or to make reference to the fact that SMSA

375

COMPRISES COUNTY. Similarly, if information of the form

"SMSA BY COUNTY" is desired, the user can ignore the fact

that SMSA COMPRISES URBAN-TRACT*.

With this in mind we realize that a user can

interact with the GIS without knowing the full logical

contents of the database. Provided that each object

referenced by the user agrees with the representation of

the system internal form schema, the query can be

interpreted properly by the system. Therefore, it is

possible for a user to employ an incomplete schema graph

and still make use of the information system.

Such a partial schema graph can be created to match

the logical needs of a particular user application. This

graph can depict the specific "user view" of the

application [2]. As long as the subschema graph does not

contradict the (global) conceptual schema, n_o adjustments

need be made to the structure of the information system

internal form, Thus, the GERMS formalism readily supports

relativism.

The rationale behind employing subschema graphs is

that a particular user community which requires only a

subset of the total logical database objects can be

insulated from needless complexity. Why, for example,

should a user be forced to consider SMSAs, urbanized

376

areas, and central business districts (and the respective

relationships) if her/his application is concerned with

political geographic areas? By dealing with a "political

oriented" subschema graph rather than with the global

schema graph, the user's task is simplified. We suggest,

then, that subschema graphs be employed whenever possible.

Again, the use of these subschema graphs does not affect

database configuration in any way.

Figure 13.5 illustrates the use of subschema graphs.

Here we see three distinct user groups each of which deals

with a particular user application. Each user group views

the common physical database "through the perspective" of

its own (sub)schema graph. A user group need not be aware

that the global view or that the other views exist.

FIGURE 13.5

USER VIEWS

378

FOOTNOTES

M] This is not true of our relationship directories.
Recall that in forming these directories the
equivalent information (ancestor key) is
"stripped” from the source records before they are
entered into the target structure.

[2] The reader is cautioned against confusing this use
of the term "view” with the use employed
previously. In the sections above we spoke of
views of a geographic entity type (i.e.
special-general, higher-lower). Here, we are
referring to views of a data model.

CHAPTER XIV

REVIEW AND CONCLUSIONS

The mission of this final chapter is twofold.

First, the chapter provides a brief yet comprehensive

review of the above chapters. Second, it investigates the

consequence of our work.

The purpose of the review is to refresh our memories

as to the major focal points of our work. Hopefully this

retrospection will prove useful in assimilating the

remaining portion of the chapter: the concluding remarks.

These concluding remarks focus, for the most part, on the

significance of our research described herein.

A Brief Review

In part I of this three-part work we provided a

detailed (and often technical) description of conceptual

data modeling and of data modeling formalisms. This part

was aimed at providing a foundation for the research

presented in the later sections; it was the background

material. The discussion is extensive since we feel that

meaningful research ideas deserve and require a solid base

379

380

on which they can be built. A significant portion of the

text of this part focused, quite naturally, on data

semantics -- the construct which underlies the concept of

conceptual data modeling.

The discussion began by taking a very general, or

"generic,” look at data modeling and the issues related to

such. A formalized notation and structural form was

presented in the hopes that it would provide a

communicative anchor for the more sophisticated and

abstract concepts presented later in the discussion.

A second conceptual benchmark which was relied on

was our existing understanding of programming and

programming languages. We saw that many data modeling

issues could be studied in terms of analogous, yet better

understood, programming issues.

Lastly in our generic investigation of data

modeling, we recognized the time-wise ”generational

development” of data modeling. We learned that the early

first generation models (and modeling formalisms) were

preoccupied with structure and with syntax, while the

newer second generation models (formalisms) are

concerned with semantic richness.

more

381

The focus of our background discussion then turned

towards the topic of data semantics as it relates to data

modeling. We investigated, from a number of different

viewpoints, the "meaning” of semantics. Indeed, we found

that semantics i_s meaning.

Next, we studied data semantics from a strictly

theoretical perspective. Following this theory section we

considered the treatment of data semantics within the

literature of database management.

In the succeeding three chapters, which comprise the

remainder of part I, we were concerned with a number of

fundamental concepts of data modeling. First, we

investigated the nature of the objects and of the groups

of objects (types) which form a data model. Next, we

studied data abstraction — a ubiquitous construct which

is of two kinds. Specifically, these are aggregation

abstraction and generalization abstraction.

Finally, in chapter 6, we focused on the issues of

logical redundancy, relativism, and semantic integrity.

These issues directed us into the realm of data model

implementation, as they require that physical data be

considered .

382

Beginning at part II, we redirected the discussion

toward the specific application environment in which our

interests lie -- that of geopolitical statistical data.

First, we studied the physical structure of geopolitical

statistical data sets. We learned that a number of

conceptual anomalies arise when a hierarchical structure

is taken to represent the 1ogical structure of geographic

based data.

Next, we looked at the true logical structure of

such data. We found that, as can any data set, a

geopolitical statistical data set can be modeled using

only four basic kinds of objects. These are entities,

relationships (associations), properties, and values.

The entities in this application are geographic

areas. Relationships describe how the area entities

overlap. Properties which hold values characterize the

entities. These values which are held by the properties

are statistical objects.

In accordance with our understanding of geographic

logical structure we then developed a data modeling

formalism which is dedicated to serving the special needs

of the application at hand. We decided that, of the four

basic object types, our data models should concentrate on

only two: geographic entities and geographic

383

relationships. To that end, the formalism wa3 named the

Geographic Entity-Relationship Modeling System; hereunder

simply the GERMS.

The GERMS has both a graphical and a lingual form.

These forms provide data models which are ’’equivalent" in

terms of information content. Each form serves its own

purpose with respect to model usage.

As a close to part II we evaluated the GERMS

formalism and considered it in the light of some of the

concepts discussed in part I. Specifically, these

concepts are data abstraction and logical redundancy. We

learned that abstraction, as employed by a GERMS data

model, does not match closely its standard "textbook"

semantic. Also, we made the important discovery that a

GERMS model is, by the nature of the formalism through

which it is created, a logically redundant structure.

This facet came into play repeatedly in later sections.

The above noted evaluation of the GERMS revealed

that the formalism, as presented in part II, serves as (1)

a medium through which the logical contents of the data

set can be documented , and (2) a medium through which the

logical contents of the data set can be d lscus3ed . In

part III the usefulness of the GERMS was taken well beyond

these two realms; the formalism was made an integrated

part of a computer information system.

384

In part III, which comprises chapters 10 through 14,

we developed and described the makeup of a GERMS-based

geographic information system. Here, we use the term

information system to indicate that said system has the

ability to respond to ad hoc information requests. This

system holds a ’’knowledge” of GERMS logical data structure

and can therefore ’’comprehend” references to the GERMS

data mod el.

First in this final part, we studied the format that

a GERMS-based query should take on. This format should

obviously be considerate of the need of the user. We

decided that the query ought to have three parts: a focus

part, a range part, and a (optional) breakdown part.

These refer to properties, to entities, and to

relationships of the data model, respectively.

Next, we developed a suitable physical database

configuration. In this design, relationship data is

separated from entity data. The relationship data is

structured to form directories (inverted lists). Entity

data holds a standard ’’flat” record type organization.

Entity —> relationship —> entity traversal in the

logical structure is emulated by moving from record type

to directory to record type in the physical database.

385

In considering the physical database we were faced

with the problem of dealing with the redundant nature of

the logical structure. True, the two structures (logical,

physical) are separate, but each logical object must be

somehow represented in and linked to the physical

database. This problem was easily solved through the use

of additional indexes which allowed us to circumvent the

need for employing physical data redundancy.

The sub se quent issue which wa; s addressed is that of

logic al database con figur a t ion . We defined the log ic al

datab ase as that part o f the syst em whi ch holds (1) the

”knowledg e" o f the data ! 7i od el > ; and (2) the lin ks which

”connect" the log ic al mod el obj ec' ts to their phys ic al

database counter p arts •

Whi 1 e the v ar iet y o f po ss: ible 1 og ic al d atab ase

con figur a tions i s virtually 1 imi tl< ass , we chose o ne which

compr ises three b asic parts. The se are the symbol table,

the schema matr ix , and the po in- ter matrix. The schema

matrix re pr esents , un ambiguo usly, the full inte r-obj ec t

str uct ur e o f the GERMS data model using a single

two-dimensional matrix. The symbol table holds the names

of the logical entity types and couples these names with

the appropriate portions of the schema matrix. These two

logical database parts hold, in its entirety, the system’s

knowledge of the GERMS data model.

386

As for the afor ementioned logical --> physi cal link,

this is effected by t wo components of the logic al

d atab ase . For any logical rel ationship, the pointer

matrix directs the s ystem to the appropriate physical

database directory. Li ke wi se , the symbol table d irects

the system to the index (and therefore to the r ecord s)

which relates to any given logical entity.

In reckoning with the issue of logical database

structure and substance, we realized the need for a means

through which the logical database contents can be

communicated to the system. In response to this need we

developed a GERMS data definition language. This language

is used in the creation of a schema definition program —

a formalized model description which is written by the

human user and interpreted by the database machine. In

developing the data definition language we capitalized on

the GERMS lingual form which was mentioned earlier in this

r eview.

By the end of chapter 12, we had described what we

call the ’’basic” information system. This system has the

ability to respond to unplanned ad hoc information

requests provided that (1) the key values of the

geographic area(s) of interest are specified, or (2) all

instances of a given area type are requested. Beyond this

387

useful yet limited capability, the ability to handle

associative queries, automatic maintenance of semantic

integrity, system aided database merging, and user "views"

(subschemas) had not been considered. These very issues,

which we call system ’’amenities” are the focus of chapter

13.

First, we considered how the ability to respond to

associative queries, i .e. queries which are based on

values of properties, could be given to our system. We

learned that, in awarding this ability to the system, the

existing physical database must be expanded, but it need

not be restructured. In other words, the physical

configuration of our basic system is unaffected.

Next, we developed the logic of a semantic integrity

checking mechanism. The software components of this

mechanism determine, based on the system’s knowledge of

logical data structure, various ways in which the database

contents should be related. These relations are then

verified by the system. It was noted that said process is

expensive, but it need be performed only once for a given

data set.

Following this discussion of semantic integrity we

devised a database merging facility. The GERMS logical

structure is used to direct the blending of two databases

388

which represent different properties of geographic areas.

The merging facility enables the system to then "generate”

new geopolitical statistical data which was not

represented djLrectly in either of the initial databases.

Finally, we considered how user views can be

incorporated into the utilization of our information

system. We discovered that no adjustments need be made to

the structure of our logical database, to the structure of

our physical database, or to the format of our queries.

In fact, it is only the schema graph -- that document

which provides the user with a "logical map" of the

database is affected. By employing these user views we

can often insulate the user from the need to deal with

complexity which is peripheral to the application at hand.

Concl ud ing Remarks

It is our belief that the conduction of research

which fails to hold the ultimate purpose of improving some

environment is of little use. Meaningful research must

’nave an eventual pragmatic based intent. The goal of the

research discussed herein is to induce some nontrivial

improvement upon the existing geographic oriented database

389

environment. The primary thesis of this work is that said

environment deserves a special purpose modeling formalism

through which logical models of geographic based data sets

can be developed. The principle focus of the work lies in

the development of such a formalism.

The formalism which was developed supports direct

conceptual modeling of the logical contents and structure

of a geographic database; it captures the semantics of

geopolitical statistical data. A data model produced

through the use of this formalism is constructed without

■^>ncert?. £g.r the physical data structure (physical data

independence). Each concept represented in the logical

model need not be represented similarly in the respective

physical configuration.

Before the value of the GERMS formalism can be

assessed, we feel that the creation of a special purpose

formalism, that is one which is dedicated to the modeling

a j~-n81e specific application environment, should be

justified. In making this justification we will

analogize, as was done many times above, to the more

appreciable area of computer programming.

390

The need for a special purpose modeling formalism. As

is the case with programming language applications, the

nature of database applications is quite diverse:

”... just as it was eventually recognized in programming

languages that there is no one ’best’ programming

language, so it is also now generally considered that

there is no one ’best’ data model. Different data models

may be appropriate for different users, different tasks,

and so on” [TSIC82, p. 173].

The majority of high level conceptual data modeling

formalisms (DMFs) which are in existence today could be

called ’’general purpose” modeling formalism. If the

respective models have any specific realm of expertise it

is, as evidenced by the examples of appendix A, the

business managerial environment. In general though, they

are designed so as to be useful in a wide variety of

applications. Consequently, one of their primary

attributes is flexibility. This flexibility is gained at

the expense of precision and specificity, however.

When a model is developed within the constructs of a

general purpose • DMF it often happens that some of the

characteristics that are particular to the application are

represented either awkwardlly or not at all. As the

characteristics of the application become more unique to

391

the situation, a general purpose database model becomes

less applicable. The general purpose schemas do not

provide a natural representation of relevant real world

concepts; the tool does not fit the task.

Database researchers are becoming increasingly aware

of the value of providing a ’’natural” representation of

the applcation [WONG77]. The naturalness or realism of a

database representation aids the database user as well as

fortifying the understanding of semantic integrity

enforcement — if database structure reflects real world

structure, the database is easier to construct and modify.

It would seem, then, that the scope of conceptual

DMFs should be widened so that they might model a greater

variety of applications in a natural way. There is a

problem with this tack, however: there exists a

significant tradeoff between a modeling formalism’s power

and naturalness, and its complexity [HAMM81].

As noted earlier, programming language designers

struggle with the same dilemma. ’’The style that a

language should best assume is far too dependent on the

human and machine environment in which it is used. And

that environment must also affect the level of

sophistication of the features of a language. To say that

a language has a generally accepted set of arithmetic

392

features is not to say that it is ideal for use in work

totally oriented to numerical analysis. The less general

the application of a language, the less adequate a general

purpose language for those applications" [ELS073, p. 243].

The response from programming language architects to

this phenomenon has been the development of a number of

"special purpose" programming languages which are aimed at

meeting the special needs of unique programming

applcations (e.g. DYNAMO, GPSS for simulation; LISP,

SNOBOL for list and string processing).

Obviously, each individual programming environment

does not require its own special purpose programming

language. Instead, programming "environment types" which

are large in number and unique in constructual demands

deserve special purpose languages. We believe that the

geopolitical data management environment is an environment

"type" which is large in number and unique in

constructural demands. Consequently, the environment

deserves its own special purpose modeling formalism.

The uniqueness of the application at hand revolves,

for the most part, around the nature of the primitive

objects of the data model. Entities are geographic areas ,

relationships represent structured spacial overlap of

geographic areas. General purpose DMFs have been designed

393

with different entities and relationships in mind (again

refer to appendix A).

Specifically in these general purpose formalisms,

entities are expected to be the ’’objects of a business

enterprise" (e.g. employee, department, inventory item).

Relationships are supposed to logically interrelate these

object kinds (e.g. works for, produces, employs). It is

apparent that the semantics which should be captured by a

geographic based data model differ greatly from those of

the general purpose applications.

As for the remaining primitive objects of a data

model, properties and values, these too stand apart from

the norm. A given property in our geopolitical

application is held by every entity of the application.

The semantic of this property is constant for every entity

to which it applies. In general purpose applications this

is not the case, so general purpose modeling formalisms

tend to overemphasize the importance, and thus the

complexity, of handling properties.

Values in our geopolitical apoplication are

statistical objects unlike their general purpose

counterparts. Furthermore, values of properties of

different entities are related — the nature of this

relation being defined by the relationship which joins the

394

entities. This concept is inherent in the application and

should therefore be inherent in the formalism used to

model the application. Again, data model structure should

match real world structure.

To summarize, the GERMS — a data modeling formalism

which supports direct conceptual modeling of geopolitical

statistical data — is better suited to capture the

semantics of this special application than are general

purpose formalisms. Real world concepts which would be

represented either clumsily or not at all using other

formalisms are represented easily and naturally using the

GERMS. In other words, the GERMS is a tool which does fit

the task.

Signific ance. The significance of the research

presented herein should be measured in terms of the

environment towards which the research is directed. Our

discussion is thusly centered around the geographic

oriented database environment. In reckoning with

significance of our work we will consider the non—machine

implemented GERMS version first (that is, the version

described in part II). Then, we will consider the work

described in part III.

395

In its "non-mechanized" form the GERMS provides two

products:

1. It provides a means through which a graphical

model of a geographic data set can be created

2. It provides a "language" for describing and

discussing the logical structure of geographic based data

By providing these products the GERMS will help to

ameliorate the complexities that surround the application

environment in a number of ways. These betterments will

realized in the use as well as in the design stage of

the geographic statistical data set.

First of all, a graphical representation of a

semantic data model furnishes a syntax-free description of

the data in much the same way as a flowchart provides a

syntax free representation of the semantics of a program.

The GERMS graph therefore serves as a valuable

documentation tool for geographic based data sets. Such

documentation indicates which data sets are applicable to

which situations. The graph provides the data technicians

and (end) users with an answer to the question: Will this

j-ata set provide me with the information that I need? A

396

related question which the logical data model helps to

answer is: Given the, physical structure of the data set,

.iiilere can I expect logical anomalies (e.g. the

non-containment problem of chapter 8) to arise?

True, answers to these questions can be found in the

standard documentation which accompanies geographic data

files. Such sources provide operational definitions of

the geographic objects (entity types) and describe the

physical structure of the files.

Documentation of this type does not, however,

present a straightforward description of the logical

interconnections that exist among the set of geographic

objects represented in the file. This information is

often buried within the patois of the individual entity

type definitions. An understanding of geographic

semantics is therefore required , but not readily available

to the users of geographic data.

In the absence of a logical data model it is

difficult to insure that data technicians and users hold a

proper understanding of the "meaning" of the data with

which they work. The mere development of the graphical

specification (GERMS graph) requires that the database

administrator have a clear understanding of the semantic

properties of the data [SU79]. Thus, it forces the

397

precipitation of any semantic ambiguity which could

otherwise reside unnoticed within the complex structure of

the underlying data set.

Also, the development of the logical framework

provides the data technicians with insight as to the

maintainance of data integrity; the graph indicates how

the data items should be related.

As for the data users, the document circumvents the

possibility of the semantics being hidden in the

application programs. The resulting clearer understanding

of the meaning of the data allows for the formulation of

more meaningful queries [SU79]• In other words, the data

model provides the data users with insights as to what

queries can be posed to the data set, and also how they

should be posed.

As a geographic database development tool, a

graphical representation of a semantic data model provides

a basis for database design [HAMM81]. Through the use of

GERMS structures the database designer can investigate the

nature of the logical structure of geographic data while

being freed from the need to consider physical structural

issues. This results in the development of a database

which is more 1ikely to meet the needs of the user

community.

398

With regards to the value of the "GERMS language,"

it provides the data technicians and users with an

unambiguous communication medium through which the above

issues can be described and discussed. Questions and

statements about logical geographic data structure can be

posed in a formalized way within this language. Each

GERMS "phrase" matches a GERMS graphical concept which in

turn relates to a well-defined geographic semantic

construct.

In summary, then, what the "non-mechanized" GERMS

formalism provides to the geographic data environment is

similar to what flowcharting provides to the programming

environment. It furnishes a means for investigating,

describing, and discussing logical structural form while

being freed from the need to consider physical structure

and related syntax.

Just as the usefulness of a flowchart extends beyond

the program design stage, so does that of the GERMS graph

extend beyond the database design stage. The

representation serves as a precise documentation and

communication medium throughout the entire life cycle of

the database [HAMM81]. This documentation and

communication medium aids in the data administrative and

maintenance tasks as well as promoting effective data

utilization .

399

If the GERMS formalism is machine implemented (the

part III version), there are even more benefits to be

reaped. Queries are posed "in terms of" the semantically

rich data model, so they tend to be more meaningful

[SUY91• For the same reason, the queries are easier for

the user to form. Likewise, system responses are formed

in terms of the data model so the understanding by the

naive user as to the meaning of the information is

improved [HAMM81]. In short, then, the methodology

increases the utility of the database and increases the

effectiveness of the utilization of the database.

As for aiding in the database administrative and

upkeep tasks, the system provides automatic maintenance of

the semantic (not just syntactic) correctness of queries.

In other words, the system holds the ability to reject

queries which do not make sense in terms of the meaning of

the set of objects with which the query deals.

Also, the system provides automatic maintenance of

the semantic integrity of the database contents by

verifying that stored data value makes sense according to

dat a meaning . In addition , the methodology described

above s impl i f i es the merging of conceptually modeled

databases — a process which is not well understood

[LUM78] .

400

The system supports logical redundancy without

requiring that physically redundant data be stored. Use

of logical redundancy allows for the data model to more

closely meet the logical needs of the user. Avoidance of

physical redundancy reduces storage space requirements and

simplifies a number of data management tasks.

Finally, the methodology is easily implemented in an

existing database management system. In appendix C we

showed how the GERMS system described above can be

implemented, with only minor modification, in the SIR

extended hierarchical DBMS. It should be apparent that an

existing network or relational system could be used in a

similar way. The importance of this facet is difficult to

deny.

APPENDICES

The properties and modes of action of
higher levels are not explicable by the
summation of the properties and modes of
action of their components taken in iso¬
lation. If, however, we know the ensemble
ot the components and the relations exist¬
ing between them, then the~hTgher levels
are derivable from the components."

Ludwig von Bertalanffy
"Chance or Law"

401

appendix a

APPROACHES AND SCHOOLS OF MODELING

The purpose of this appendix is to provide an

overview of the basic approaches to conceptual data

modeling. Each section furnishes a description of a

specific modeling formalism or modeling school.

The Entity-Relationship Model

The Entity-Relationship (E-R) Data Model [CHEN76;

CHEN77] adopts the view that the real world can be

described naturally in terms of entities; and

relationships among entities. Despite the fact that the

model has it foundations in set theory and relation

theory, it is not considered as an extension of the

relational model [CODD70; C0DD72] specifically. Rather,

it finds its place as a generalization of all first

generation data modeling formalisms (DMFs) which is aimed

at providing a semantically rich "unified view of data"

[CHEN76].

402

403

Upon its introduction, the model was presented as a

database design and documentation tool and, as such, did

not interface directly with a database management system.

No formal data description language or query language was

provided. Instead, constraints, structures, and

operations of the E-R model were specified in a general

set notation.

An E-R database, designed in this way, was then

mapped, by hand, into a first generation (usually

relational) database schema. What was gained by this

process was a semantic-based specification of the database

contents as well as a direct (vis. stepwise

normalization) approach to canonical schema design.

It was argued that stepwise object decomposition as

defined by the schema normalization process is a bottom up

approach to schema design. Arbitrary unnormalized

relations (data structure) are transformed, as directed by

the semantic implications of functional dependencies, into

a third normal form (information structure) representaion.

The E-R model, on the other hand , provides a top

—9.wn approach. Here, a high level conceptualization of

the world is used as the starting point in developing an

E-R (information structure) representation [CHEN76]. In

addition, the resulting E-R schema often captures much

404

more of the real world semantics than does its third

normal form counterpart [1].

The extreme popularity of the E-R model has resulted

in the development of machine compatible E-R database

systems. Such implementations center around an E-R

specification language called CABLE (ChAin Based LanguagE)

[SHOS78]. Although CABLE provides us with a well-defined

syntax through which the E-R modeling concepts may be

described, we choose a more generic medium of discourse:

sets and relations.

In the E-R data model abstract objects representing

the generic structures of entities and relationships

(among entities) are called entity sets and relationship

sets> respectively. Thus the E-R notion of a set

corresponds to the ubiquitous "object type" concept. The

intensional structure of the database is described

completely in terms of these two primitives when the E-R

modeling formalism is applied. A network-graphical

depiction of this intensional structure is called an

entity-relationship diagram (ERD) [CHEN76] .

In an ERD each entity set and relationship set is

represented by, respectively, a rectangular box and a

diamond shaped box. Every box in the ERD carries a

semantically meaningful label. Information as to the

405

participation of entity sets in relationship sets is

provided by (generally) undirected arcs which connect

relationship sets to their constituent entity set(s). if

desired, added clarity may be given by an arc label which

specifies the role played by the entity in the

relationship.

When viewed at this abstract resolution, a network

graph containing two distinct node types, the constraints

imposed by the E-R model are limited:

1. Connective links may exist only between nodes

of different types (entity node-relationship node)

2. Each connective link is labelled with the

maximum cardinality permitted for the respective entity

set in the relationship set (many mapping may be specified

as a variable, e.g. "N")

In light of the limited nature of these constraints

we observe the following characteristics of relationships

in the ERD network:

406

1 * A relationship may be n-ary. More than two

entity sets may be connected to a single relationship set

(see figure A.1) [2].

— relationship may be recursive. An entity set

may be associated with itself via a relationship set (see

figure A.2) .

3. A pair of entity sets may be joined by more

than one relationship set. In this situation each

relationship set can capture a different semantic (see

figure A.3).

At the extensional or token level (see chapter 4),

we can consider entity instances as being members of

entity sets. Entity set membership, which is determined

by a predicate, need not be disjoint. Thus a token entity

can be a member of more than one entity set.

If e(i) is an entity with membership in the entity

set E(i)

(e(i) e E(i))

407

SUPPLIER

-1-

FIGURE a.1

A TERNARY RELATIONSHIP

M
A

RR
IA

G
E

408

A
R

EC
U

R
SI

V
E

R
EL

A
TI

O
N

SH
IP

(N

O
TE

TH
E

U
SE

O
F

R
O

LE
S)

409

1 P

FIGURE A.3

TWO ENTITY SETS JOINED
BY TWO RELATIONSHIP SETS

410

then an n-ary relationship set (R) can be defined as a

mathematical relation of degree n among the entity sets

[TSIC82]. Thus:

R{[e(l),e(2)...e(n) | e(l) e E(l),e(2) e E(2)...e(n) e E(n)}

Each tuple (called a relationship) of the relation R

represents a particular instance of the relationship set.

Our figure A.1 example could therefore be defined as a set

of 3-tuples by means of:

SUP-PROJ-PART = {[e(l),e(2),e(3)] | e(l) e PROJECT,

e(2) £ SUPPLIER, e(3) e PART}

When the relationship is recursive, as in the figure

A.2 example, the E(i)’s need not be unique within R:

MARRIAGE - {[e(l) ,e(2)] | e(l) e PERSON, e(2) e PERSON)

nn

A Y.aJ.ue set is a domain comprising a number of token

Yll"!5 • The membership of values in a value set, which

need not be disjoint, is determined by a predicate.

Value sets can be associated with both entity sets

and relationship sets in the E-R model. The mapping

between an entity set or a relationship set and the

associated value set(s) is called an attribute [3]. Each

attribute is assigned a semantically meaningful name which

may be the same as that of the value set into which it

maps.

Attribute mapping is functional in nature, so the

result of the mapping is the identification of a single

value token (or a single value tuple token). An attribute

can define a mapping (f) from an entity set or a

relationship set into either a value set or the cartesian

product of a number of value sets [CHEN76] :

f: 0R v(i) OR V(i,1) x V (i, 2) x... V (i, n)

As an example of the situation where an attribute

maps into the cartesian product of value sets consider

that the attribute ADDRESS maps into the cartesian product

412

of the value sets STREET-NUMBER and STREET-NAME (see

figure A.4). Note that the cartesian product of value

sets, as referenced here, holds a close correspondence to

the early CODASYL notion of a ’’property space” (p) (see

[C0DA62]). Obviously, it is allowed for more than one

attribute to map into the same value set(s).

As for the extensional representation of entity

sets, each can be conceptualized as a two-dimensional

table called an entity relation [4]. Each row of an

entity relation (called an ’’entity tuple”) represents the

occurrence of a token of the entity set. The columns of

the table correspond to the values of the underlying value

sets as defined by the attribute mapping. When

relationships themselves have attributes, columns in the

"relationship relations” (elements of the "relationship

tuples") have an analogous meaning.

The E-R model allows for the expression of two types

of inter-object dependency: "existence dependency," and

’’identification dependency." In the former case, the

existence of an instance of one entity set presupposes the

existence (within the domain of discourse) of an instance

of another entity set with which it is associated [5]. A

common example is found in the existence dependence of a

TAX-DEPENDENT entity upon an EMPLOYEE entity. When

FUNCTIONAL MAPPING OF AN ATTRIBUTE FROM AN
ENTITY SET INTO TWO VALUE SETS

414

existence dependency is exhibited in the E-R model, both

the involved relationship set and the depending entity set

are said to form "weak" relations.

The second form of dependency, identification

dependency, is used to model the situation where the

instances of an entity set can not be identified by the

values of its own attributes. Instead, it is identified

by its association with instance(s) of another entity set.

If there is an identification dependence between two

entity sets, then there is also an existence dependence

between the objects. The reverse implication does not

hold, however.

Beyond object dependency constraints, semantic

integrity can be enforced by specifying attribute

constraints. Constraints of this type can take a number

of different forms. One such constraint is implicit

within the domain definition of the value set into which

an attribute maps.

Value sets can be restricted as to primitive data

type and range of values. For example, the domain of the

value set GRADE-POINT-AVERAGE into which the attribute GPA

of the entity set STUDENT maps could be restricted as:

TYPE: real numeric

RANGE: 0.0<_V(i) < 4.0

415

Inter-object value constraints can also be expressed

in the E-R model. Consider, for example, how we could

express the semantic constraint that each manager must

also be an employee:

(Name(e) | e e MANAGERfo {Name(e) | e e EMPLOYEE}

As for more complex specifications, we can define

aggregate constraints to hold between entity sets that are

qualified by membership in a relationship. For instance,

the departmental payroll must equal the total of the

salary values of the employees that work in that

department:

Payroll(e(l)) = z Salary(e(2)) | e(l) e DEPARTMENT, e(2) e EMPLOYEE,

[e(l) ,e(2)] e WORKS-IN

In conclusion, it should be noted that the wide

acceptance and popularity of the E-R data model is due to

its mixture of simplicity with rich semantic expressive

416

power. ERD specifications are general enough to express

real world constructs, yet they are not too far removed

from effective machine representation. Furthermore, ERDs

serve as a valuable medium through which users and system

designers can communicate [TSIC82].

The Basic Semantic Data Model

From the viewpoint of the Basic Semantic Data Model

(BSDM) [SCHM75], the world can be represented in terms of

object instances:

{obj(i)}

and relationship instances:

(obj(1),obj(2),obj(3)...obj(n))}

The token objects

common properties

relationship types,

and token relationships which have

are grouped into object types and

respectively.

417

Given this introductory description, we are tempted

to correlate the BSDM with the Entity-Relationship (E-R)

approach. We will soon learn that the methodologies are

quite different, however. The BSBM is very much more

concerned with object characterization than is the E-R

model which, incidently, is its chronologic successor.

Relationships, as they exist in the BSDM, have a

direct semantic meaning. They can not be further

decomposed. Relationships represent fundamental facts

about the involved objects.

A relationship instance, ir(obj(r), obj(d)), is a

"depending relationship" if the existence of one

constituent object, say obj(r), implies the existence of

(1) the relationship instance itself, ir(obj(r), obj(d));

and (2) the remaining object, obj(d). In this case,

obj(r) is called the "ruling part" and obj(d) is called

the "depending part" of the depending relationship

instance.

There are two distinct kinds of relationship

instance: characteristic relationships and association

relationships. This relationship partioning is mutually

exclusive and exhaustive.

418

Each instance of a chracteristic relationship is a

depending relationship, say ir(obj(r), obj(d)), which

holds the following qualifications:

1. The token obj(r) is the ruling part of the

relationship

2. The remaining depending part token obj(d)

participates either as the ruling part or not at all in

other relationship instances

Here, the depending object is called a characteristic

object.

An object which is not a characteristic object is

called an independent object. An independent object is

never the depending part of a depending relationship

instance. Note that, given the above specification, both

independent objects and characteristic objects can serve

as the ruling part of characteristic relationships. In

other words, characteristic objects can themselves be

characterized.

Both independent objects and characteristic objects

can be either simple or complex. A simple object is one

which has no characteristics (does not act as ruling part

in any characteristic relaionship).

419

The definition of a complex object type includes,

recursively, its characteristics extending to the simple

object level. Thus, a complex independent object type

comprises a kernel independent object type; all complex

and simple characteristic objects with which the

independent object participates in characteristic

relationships; all complex and simple characteristics

through which these complex characteristics are

characterized; and so on.

A complex characteristic object is defined in a

similar recursive manner [6]. A simple characteristic

object comprises itself. The notion of a simple

independent object type, a class of noncharacteristic

objects which have no characteristics, makes little sense

and is not considered (see figure A.5).

Kernels of complex independent object types can be

interconnected only by means of association relationsnips.

Corresponding association instances can be created only if

the respective token objects exist [73 • There are no

formal restrictions on the deletion of association

instances, however.

The objects of the BSDM have a natural (semantic)

kinship to the standard database update primitives

(insert, delete, modify). Independent objects represent

420

THE OBJECTS OF THE BSDM

A.5 FIGURE

421

the entities of the real world. As such, they are the

exclusive focus of insert and delete directives. Modify

operations are not applied directly to independent

objects; they refer to characteristic objects.

This concept is elucidated when we consider that

there exists a ’’semantic dependency” of each

characteristic object upon its independent object. An

independent object instance ’’determines” the

characteristic objects which describe it -- an employee

instance determines her or his salary, address, and hair

color. Consequently, existence of a characteristic object

depends (if semantic integrity is to be preserved) on the

a priori existence of the independent object which it

characterizes .

As their name implies, complex independent objects

are unaffected by operations performed on other

independent objects. They exist orthogonally in the

model. The existence of an independent object does depend

on the existence of at least one association instance in

which it participates, however. In other words, ’’free

floating” independent object tokens are not allowed.

The formalism that is based on these primitive

notions includes the specification of a variety of special

types of association and characteristic relationship.

422

Many of these types have their foundations in artificial

intelligence (AI) and therefore have well-defined semantic

connot at ions.

An association instance can be typed as "subconcept

of" or "part of," for example. Specification of a

subconcept of association implies that the characteristics

of the superconcept independent object are inherited by

the subconcept object. Specification of a part of

association also implies the potential for the derivation

of more detailed properties of constituent objects.

Application of the BSDM formalism to a database

allows for the database to be visualized in different

levels of abstraction. In the most abstract or coarsest

level, the data comprises only independent objects and

accompanying associations. At this level, complex and

simple characteristics are ignored completely. Note that

ignorance of association relationships is not allowed.

At the next lower level of abstraction, the direct

(independent object is ruling part of depending

relationship) characteristic objects are included. Here,

the complex nature of complex characteristics is not

considered. Thus, characteristic objects are not

themselves characterized.

423

As the conceptualization of the database becomes

less and less abstract, characteristics of complex

characteristic objects continue to come into

consideration. Eventually, at the finest (least abstract)

level, the database is considered in full detail.

The process described above is somewhat similar to

stepwise movement down the aggregation hierarchy

(aggregate decomposition) as described in [SMIT77a] and

[SMIT77b] (see chapter 5). It is an extremely restrictive

case of aggregate decomposition, however, because the BSDM

demands that only the topmost aggregate hierarchical level

be allowed to include independently existing real world

objects.

The BSDM is a formalism which can be used to provide

a semantic description of relational database structures

and operations. In the absence of such a description, the

basic relational model [C0DD70; C0DD71; BEER78] is purely

mathematical.

Functional dependency of relational attributes

corresponds directly to semantic dependency of BSDM

objects. Relational schema normalization achieves the

separation of complex independent objects from one another

and from associations.

424

After conversion to normal form the representation

of each BSDM independent object token and association

instance occurs only once in the relational database.

With this in mind, we achieve an understanding of how the

mathematically based process of normalization eliminates

the occurrence of semantic based insert and delete

anomalies in a relational environment.

The Semantic Association Model

The Semantic Association Model (SAM) [SU791 emulates

the enterprise’s real world in terms of a set of

interrelated ’’concepts.” A concept is a physical or

abstract thing or event. Concepts are of two basic types:

atomic and non-atomic. An at omic con cept is

non-decomposab1e and its meaning is both understood by and

of consequence to the enterprise. A n on — at omic concept is

one whose meaning is described or defined in terms of

other atomic or non-atomic concepts.

The grouping of concepts to define a non-atomic

concept is called an association. Thus, each occurrence

of an association relates to the formation of an

occurrence of a non-atomic concept. Associations are of a

425

number of different types. In fact, the entire SAM is

based on distinguishing types of associations and the

concepts that they form. The wide variety of association

types allows for an extremely detailed description of the

semantics of data abstraction (see chapter 5).

A set of similar concepts is grouped by means of a

"membership association" to form a concept class (CC).

Each concept class is represented by a CC node in the SAM

schema. The data definition of a CC is tripartite. It

includes the specification of:

1 . ACC name

2. A data type primitive

3. A domain definition

Note that the latter two items represent semantic

integrity constraints.

A SAM database management system (DBMS) utilizes

these contraints in determining the validity of the use of

relational operators (e.g. EQ, LT, GT, NE) within

database transactions. Such object comparison is

restricted to be within a CC or between CCs that belong to

a higher level CC. The following example should help to

426

vivify this point.

Consider the CCs "SUPPLIER-NAME,” "CUSTOMER-NAME,"

"NAME," and "CUSTOMER-ADDRESS." Objects within any one of

these CCs are comparable because they hold identical type

and domain descriptions. Inter-CC comparison is not as

simple; we must utilize the integrity constraints.

SUPPLIER-NAME and CUSTOMER-NAME are comparable because

they belong to the higher level NAME CC. SUPPLIER-NAME

and CUSTOMER-ADDRESS objects are not comparable, on the

other hand, because they do not share a common CC

membership (see figure A.6).

The grouping of heterogeneous CCs, all of which

serve as attributes in the definition of an "entity type,"

is called a characterization association. From this

description we realize that a SAM entity type is a group

of token entities which are characterized by a common set

of attributes. This definition of entity type does not

conflict with common usage.

The attributes in a characterization association can

be atomic or non-atomic concepts. For example, the entity

type EMPLOYEE is described in a characterization

association by the concept classes EMP-NO, EMP-NAME,

DEPARTMENT, and INCOME. The CC EMP-NAME is non-atomic in

that it comprises the CCs FIRST-NAME and LAST-NAME. The

NA
M

E
C

U
ST

O
M

ER

427

M
EM

B
ER

SH
IP

A
SS

O
C

IA
T

IO
N

S

428

characterization association most closely resembles

traditional aggregation abstraction (refer again to

chapter 5) .

^ characterizing entity (CE) is an entity which

exists merely to characterize another entity. It

therefore has an existence dependence on the entity it

defines. A defined entity (DE), on the other hand, holds

independent status (see figure A.7).

In terms of CE semantics, the DBMS enforces semantic

integrity by:

1. Rejecting the entrance of a new CE token object

into the database unless the characterized token object

exists

2. Deleting all CE tokens when the respective

characterized entity token is deleted

3. Limiting access to the CE object

that it be accessed (referenced) "

characterized entity

by requiring

through" the

429

FIGURE A.7

A CHARACTERIZATION ASSOCIATION

430

The grouping of similar or differing entity types

which represents the interaction of the types such that

each type performs a specific function in the interaction

is an ’’interaction association.” The concept described by

the interaction is an entity interaction (El). The

definition of an El may include specification of the

mathematical mapping among involved entities.

The types of function performed by the entities

particpating in an El are similar to those used in

artificial intelligence semantic net applications. Some

examples are agent (AG), direct object (DO), affected

object (AO), and modifier (MD). Schema links between the

El node and participating entity nodes can carry semantic

tags which specify the function of the participating

entity in the interaction (see figure A.8).

With regard to El semantics, the DBMS can enforce

semantic integrity by:

1. Rejecting entrance of a token El object unless

participating entity tokens exist in proper cardinalities

2. Allowing the interaction data to exist beyond

the deletion of the functional objects

FIGURE A.8

AN INTERACTION ASSOCIATION

432

The significance of item 2 is not immediately

obvious. If a separate El object were not defined,

information about the interaction would be represented

within the definition of one of the functional entities.

For instance, information about the sale of an item would

be represented as information about the agent of the sale,

say within an EMPLOYEE token. In this case, if the

employee token is deleted, we lose information about the

interaction (sale). By treating the interaction as a

separate object which can exist beyond the existence of

its creators, we do not suffer this consequence; the sale

data is retained.

The set theoretic grouping of entity types which

represents a common set of real world objects is called a

set relationship association. The concept that is

described by such an association is called a "set

relationship” (SR) •

Knowledge as to the meaning of the association i s

provided by semantic tags on the links which connect the

SR concept to the participating concepts. These tags

define the relationship between a constituent object and

the SR object as being of type ST (set), SB (subset), SI

(set intersection), SE (set equality), or SX (set

exclusion). Figure A.9 provides an illustration.

A
L

L
-E

M
PL

O
Y

E
E

S

433

cn

LU <
O
z
LU LU
t—i cm
CC rj

1 LU o
CL Q_ •—t
s; x u.
LU LU

A
SE

T

R
E

L
A

T
IO

N
SH

IP

A
SS

O
C

IA
T

IO
N

434

The implications of these tags upon the semantic

integrity constraints that can be enforced by the DBMS are

obvious. An SE tag, for example, defines that each token

which is a member of one linked entity type must be a

member of both linked entity types. An SX tag, on the

other hand, states that an instance may not be a member of

both types. An SI tag defines that a token object can

belong to one type or to the other type or to both types.

An SB link defines an existence dependence between the

related entity types.

Concepts which serve as components of another

concept are grouped together to form a "composition

association." The concept whose assembly is represented

by such an association is called a "composition" (CP).

Each CP has one instance only.

A composition association differs from a

characterization association in that the constituent

objects of the former type are allowed independent status.

This is an important semantic distinction. The

composition association models how objects are "made up

of” other objects which exist in and of themselves.

In a manufacturing environment, for example we can

tnink of an assembly as being composed of various

subassemblies; each of which may be composed of

435

subassemblies; and so on until we reach some level of

primitive part. Each level of composition deserves

representation and independent existence in its own right

(see figure A.10).

Phrased another way, the composition of

subassemblies and primitive parts to form an assembly

represents the fact that the parts have been combined. It

does not represent the fact that the parts have come into

relevant (to the enterprise) existence. The

aforementioned characterization association serves to

model the latter situation. A consequence of the

semantics of the composition association is that the DBMS

allows for the independent insertion, deletion, and

modification of component objects. Sibling components of

the CP are unaffected by such changes.

The semantics of collective or aggregate attributes

can be described by a CP (composition) which has only one

component entity type. Here, the single CP represents the

compilation of token component entities in the formation

of a type. This collective representation can be

characterized by means of characterization associations.

The respective CC objects depict concepts which would be

traditionally represented by DBMS "aggregate functions"

(e.g. count, mean, sum). Figure A.11 provides an example

of this.

436

FIGURE A.10

A COMPOSITION ASSOCIATION

437

i u_ oo
o d

I UJ
d s:
UJ o
CQ h-
2: OO

z o

d
UJ
*r

O
h-
oo
23 o

< 23
t—I CQ
C_) t—•
o ac
1/1 I—
00 I—
< <c

• Z UJ
<C Oh

h Ct

J— CD
UJ H UJ
qd 00 q£
=d 00
CD Q- CD
•—I s: *=c
u_ o

O ZD

<
UJ

CD 2:

O0 UJ
23 Q

438

When one concept can be identified as being the

cause of another (effect) concept, the semantics are

captured by a "cause-effect association." Such an

association defines the occurrence of a concept called a

causation (CF). The links which connect the participating

cause and effect concepts are labelled with the semantic

tags "CA" and "EF," respectively (see figure A.12).

The DBMS can use the cause-effect association to

drive an update triggering mechanism. When the

prerequisites of causation are satisfied by proper

updating of a CA linked object, the automatic updating of

the respective EF concept is triggered. The causation

concept is somewhat similar to the notion of "event

precedence" as used in the RM/T data model [CODD79] [8].

When concept(s) are the means by which an action

concept is performed, the semantics are represented by an

"action-means association." The concept that is described

by such an association is called an action-means (AM).

One constituent object is identified as being an action,

while the other constituent object(s) are the means of

performing the action. The connective links of the

association are tagged as AC (action) or MAC (means of

action) .

439

A
C

A
U

SE
-E

FF
E

C
T

A
SS

O
C

IA
T

IO
N

440

As an example, consider the concepts "PERSON-HOURS”

and "PRODUCTION." If a given production token can be

increased by prolonging one or more PERSON-HOUR tokens,

then PRODUCTION serves as the action and PERSON-HOURS

serves as the means of an action-means association. The

AM concept "PRODUCTION-FACTOR" is defined by this

association (see figure A.13).

A similar semantic association that can be

represented is one in which one concept is the purpose for

which an action-concept occurs. Such an association is

called an "action-purpose association." The concept

defined by an action-purpose association is called an

action-purpose (AP).

Consider the concepts "SALES-EFFORT" and

"SALES-QUOTA." Sales effort can be thought of as being an

action which is performed in an attempt to reach a sales

quota (purpose). These concepts, grouped in an

action-purpose association, define an AP concept, say

"SALES." Figure A.14 depicts this association.

The integrity constraints and triggers that should

accompany the action-means and action-purpose associations

are situation specific. As such, they are not specified

as a part of the formalism. Since the association types

are specifically recognized by the system, however,

441

442

443

appropriate semantic integrity triggers can be

proceduralized easily at system implementaion time.

The final and perhaps most semantically powerful

association of the SAM is the "logical relation of

implication association." The object that is defined by

this association type is called a logical relation of

implication (LRI). This association is used to represent

the semantics of the situation where the existence of one

concept implies (logically) the existence of another

concept. Situations of this type can be phrased in an

if-then statement such as "if A then B."

The links that connect constituent objects to the

LRI in a logical relation of implication association carry

the appropriate semantic tags. Conditional and

consequential concept links are labelled "IF" and "THEN,"

respectively (an example is provided in figure A.15).

When implemented properly the logical relation of

implication association can provide the DBMS with a strong

deductive ability.

For the most part, the semantic richness of a SAM

schema is provided by inclusion of the action-means,

action-purpose, and logical relation of implication

constructs. Indeed, these constructs allow for the system

to handle "how and why" queries vis-a-vis the simple

444

A LOGICAL RELATION OF IMPLICATION ASSOCIATION

445

"what” queries that are answerable by traditional database

abstraction structures [SU79].

The Semantic Database Model

The Semantic Database Model (SDM) [HAMM81] is

founded on the notion that the real world can be modeled

by describing the grouping of objects into meaningful

classes. The fundamental building blocks of an SDM

representation are as follows:

1. Entities — reflect real world objects in the

usual way

2. Classes -- are meaningful named collections of

entities

3. Interclass connections — structurally relate

classes

4. Attributes -- describe the characteristics of,

and relate, entities and classes

446

5. Derivation primitives -- provide for a formal

definition of derived attributes and interclass

connections

The SDM does not explicitly distinguish between

aggregation and generalization abstraction. Rather, all

abstraction is performed in terms of defining and

associating classes of objects in various ways. At the

most general level of abstraction we find the notion of

base class. Base classes represent the mutually exclusive

and exhaustive partitioning of simple entities into

cardinal groups. This is the most generic categorization

of entities [9]. The definition of a base class is

independent of all other classes.

Nonbase classes are formed by means of interclass

connections which define the existence of classes in terms

of other (base or nonbase) classes. In essence, an

interclass connection comprises the membership rules of

the class which it defines. Objects which satisfy the

requirements specified by the membership rules are

permitted entry (membership) in the class.

Interclass connections are of two major types:

"subclass” and "grouping." The expression of each of

these types can take on a number of different forms.

447

The subclass connection, as its name implies,

provides for the representation of the situation where

members of one class form a subset (not necessarily

proper) of the members of an existing class. Membership

of an entity in a subclass can depend on:

1. User specification

2. The value of an attribute of the entity

3. Membership of the object in other classes (set

operator defined)

4. Service of the object as an attribute value

relating to another object of a different class

i

The grouping connection provides a means by which a

class can be partitioned to form a number of homogeneous

higher (abstract) level groups. The semantics of this

partitioning correspond roughly to the notion of generic

decomposition, or specialization [SMIT77b] (refer back to

chapter 5). The assignment of members of the underlying

class into the grouping class need not be disjoint.

448

Each attribute used in the SDM has assigned, as part

of its specification, an "applicability.” The

applicability is used to distinguish whether an attribute

applies to the members of the class or to the class

itself. In the former case, each member of the class

holds a particular value(s) on the attribute. In the

latter case, the entire class holds one and only one

value. This single attribute can be related to the set of

class member objects, however. Here, the class attribute

corresponds to what is commonly referred to as an

aggregate attribute [10].

N-ary associations among entities can be represented

in the SDM by specifying interrelationships among the

attributes of the entites. For example, a binary link

between members of different classes can be established by

defining that a member attribute of one class is the

inverse (see [SENK75]) of a member attribute of another

class. Alternatively, there can be specified a "matching"

of entities from different classes according to the values

of certain attributes.

The SDM provides a formalized facility to allow for

the specification of derived member attributes. The

facility is based on the inclusion of ten derivation

primitives through which the values of member attributes

449

can be derived in terms of information contained elsewhere

in the database. A set of attribute definition rules

accompany the derivation primitive to insure that semantic

inconsistency is avoided.

Eight additional derivation primitives allow for

class attribute values to be derived from existing

database information. Two of these primitives can be

considered as aggregate functions in that their values are

derived in terms of intra-class member characteristics.

The remaining six primitives deal with class attributes of

other classes.

Because a token entity can be a member of many

classes in the SDM, a formal set of attribute inheritance

rules are required. These rules specify how an entity,

viewed in terms of its membership in one class, is allowed

to inherit attributes due to its membership in another

class. Note that only member attributes are inherited

since, by definition, class attributes correspond to one

object only: the class which they describe.

When a subclass is defined by means of a subclass

connection such that the membership rules have to do with

user specification or with the value of a member

attribute, the inheritance rule is simple. Here, members

of the subclass inherit all member attributes of the

members of the underlying (super) class.

450

When a subclass connection is defined in terms of

set theoretic constructs, the inheritance rules which are

applied are dependent on the set operator that is used to

define the subclass membership rule. Specifically:

1. If the subclass is defined as the int ersect ion

of two underlying classes, the subclass members inherit

all of the member attributes of each of the underlying

classes

2. If the subclass is defined as the union of two

underlying classes, the subclass members inherit those

member attributes that are shared by both of the

underlying classes

3. If the subclass is defined as the (set)

difference of two underlying classes, the subclass members

inherit the member attributes of the class which serve as

the minuend of the difference operation

It is important to realize that inheritance of a

member attribute, used in this context, refers to both

meaning and value of the attribute. Thus, despite the

fact that a subclass and a respective superclass may have

451

class attributes which hold a similar semantic, it makes

little sense to consider a subclass as inheriting (in this

sense of the word) a class attribute from its underlying

parent class.

The above inheritance rules are an integral part of

the SDM and, as such, are applied automatically upon the

specification of the corresponding interclass connection.

It is hoped that the strict definition and automatic

application of attribute inheritance will help to aleviate

some of the semantic ambiquity which can arise as a result

of user defined characteristic inheritance. A

consequential disadvantage of such rules is the resulting

inflexibility of the definition of subgroup member

properties.

A precise specification of the SDM data definition

language syntax is found in [HAMM81]. SDM database

operations (data manipulation facility) have not yet been

defined, however. It is expected that such a database

manipulation facility, when developed, will closely

parallel the existing schema definition conventions. The

principle of duality of procedure and schema shows a

strong influence in the design of SDM.

452

The Binary Approach

A binary data model is one in which each node

represents a single simple attribute. Arcs which span

pairs of nodes represent binary associations between these

objects. The semantic of an arc is context dependent. It

can depict an aggregation of attributes in the formation

of an entity, or it can represent a relationship between

entities.

The term ’’binary model” does not identify any single

data modeling formalism (DMF); a number of binary

formalisms have been proposed. Among the best known of

these are the Semantic Binary Data Model [ABRI74], and

DIAMII [SENK75]. Because the Semantic Binary Data Model

is quite similar to the AI semantic net based models

discussed later, we will concentrate on describing DIAMII.

Our description of the modeling formalism will be brief

because the binary approach has limited applicability to

the domain of our concerns.

The DIAMII model is fairly representative of the

generic class of binary models. Like all binary data

models it is based on a few simple structures which allow

for concise representation of extremely complex

relationships [TSIC82]. As is the case with the other

453

members of the binary cohort, the model is far from being

user oriented.

The PIAMII methodology. DIAMII is a multilevel model —

it models the entire system from user view to data

structure level. Data semantics, the construct in which

we are interested, are modeled in the f,information level"

of the structure. This level is second only to the "end

user level." The information level deals with three major

system characteristics:

1. The naming of "things" (entities) [sic]

2. The description of "things"

3. The specification of user transactions

A DIAMII paradigm is built completely from elemental

"facts" which describe real world things. Elemental

"things" are represented by names which are categorized

into groups of names. Each group has a unique name witnin

the paradigm. Member names are unique within a group but

they may be duplicated within the overall structure.

Since group member sets need not be disjoint, the

454

identification of a specific member requires the

concatination of group name with member name (i .e.

GROUP-NAME/MEMBER-NAME).

A member name defines a value that is held by the

object represented. The group name to which the member

name belongs provides a meaning to the value. Thus we can

think of member names and group names as being values and

types of values, respectively. For instance, the

group/member specification:

EMPLOYEE-NUMBER/! 2345

refers to the "thing” employee 12345.

"Things” are described through the explication of

facts. A fact is represented by the existence of an

association pair (pair of named binary links) between two

member names. Each participant in an association plays

the role of member describing place or member lescr^ibed

place. The association is depicted by a directed link

traveling from the former to the latter role.

Within an association pair, each association is the

inverse of its partner. Thus, each connected member name

plays the role of member describing place for one

455

association and member described place

association.

Every association is provided with a

be unique with respect to its group. In

two association names which eminate from a

hold the same name.

Figure A.16 provides an example of

Like all DIAMII facts, it has

interpretations:

for the other

name which must

other words, no

given group can

a DIAMII fact.

two possible

1. Employee 12345 works in the data processing

department

2. The data processing department employs employee

12345
\

The association names of the association pair are

DEPARTMENT-OF-EMPLOYEE and EMPLOYEE-OF-DEPARTMENT. Each

association of the pair is the inverse of its partner.

In the DEPARTMENT-OF-EMPLOYEE association, member

name EMPLOYEE-NUMBER/12345 plays the role of member

described place while member name DEPARTMENT/1DATA-PROC’

is the member describing. In the EMPLOYEE-OF-DEPARTMENT

association the member roles are reversed. Thus

EMPLOYEE-NUMBER/12345 is describing while DEPARTMENT/

456

i 1—
LU CC
uj <C
>- a.
O LU
_i a
Cl. I

LU O F
IG

U
R

E

A
.1

6

TH
E

D
IA

M

II

R
EP

R
ES

EN
TA

TI
O

N

O
F

A
FA

CT

457

’DATA-PROC' is described.

A DIAMII information level schema consists of a

graph in which named groups are represented by nodes and

inter group associations are represented by directed arcs.

Figure A.17 provides a simple example of such a schema.

A DIAMII schema of this type represents the

intension of the database in the usual way. The database

extension can be conceptualized as forming a third

dimension of the intensional schema. In this added

dimension individual member names (values) are structured

(see figure A.18).

Except for virtual information which is derivable

from inference algorithms, all of the information that is

contained in the system can be extracted by moving from

node to node. This movement can be from member name to

member name between groups, or from member name to member

name within a g^oup.

DIAMII, and binary models in general, represent an

atypical approach to data modeling. The design of other

I^Fs shows ar. attempt to take information complexity from

the prooe:.-es and embody it in the resulting model. This

as ate rationale behind the incorporation of aggregation

art generalization abstraction into the constructs of a

DM?.

458

NAME-OF
EMP

FIGURE A.17

459

EMPLOYEE-
NUMBER/ department/
95500 "DATA-PROC"

/ EMP-OF-

EMP

INTENSION

FIGURE A.18

460

In DIAMII, on the other hand, we remove all

abstraction from the model structure and represent

information in an elemental form. In essence, a DIAMII

data model depicts the facts that can be asserted about a

P.P0^ items. There is no single representation of

an object or entity. The user must construct complex

facts from the elemental binary facts. In terms of user

query formulation, the user is required to "work his way

through" the mass of binary assertions.

Because it provides modeling power at the cost of

complexity, the value of DIAMII has been found to lie at

the lower (implementation) levels of the database

management system. In other words, it is useful in

implementing the abstractions that are present in other

more abstract models. An example of such is found in

[SCHN76]. Here, the modeling constructs of the binary

DIAM approach are redefined in terms of n-ary relations

and used to implement a more user oriented relational data

mode 1.

461

AI Approaches

In recent years the emphasis placed on database

applications by the artificial intelligence (AI) research

community has been increasing. Furthermore, the

differences in goals and methodologies between AI and data

management (non-AI) efforts are decreasing [WONG77].

There can be identified five basic realms of AI work

which deal with data ■ modeling issues (according to

[TSIC82]). Each of these domains revolves around the use

of some form of semantic net(work). Of the five basic

realms, only two are of direct concern to our work. One

of the remaining three areas deals with knowledge based

systems; the other two domains have to do with natural

language database interfaces (see [CODD74], [HEND78],

CMINK77], CMYL075], [WALT78]).

Of those Al-based modeling realms in which we are

interested, one is called the "epistemological realm”

[BRAC791 while the other will be referred to as the

"mathematical logical realm" (see [SCHU76]). [11].

Epistemological data modeling formalisms (DMFs)

emphasize the structure of the semantic net and the

inheritance rules that are implied by this structure. The

models of this type most closely resemble non-AI data

management products.

462

Semantic net nodes and arcs of the mathematical

logical realm correspond to the constructs of predicate

calculus. Models of this type are often called "deductive

AI systems" [WONG77].

Since each of these two realms is related to our

pursuit we will describe an example system from each.

First, however, we feel that it is necessary to provide a

brief description of semantic nets as they apply to data

modeling.

A semantic net is a directed network graph.

Although both nodes and edges of the graph may be

labelled , only the edge labels have a semantic

consequence. Node labels are for reference purposes only.

When a semantic net serves as a database schema it

denotes both the intensional database (called "upstairs")

and the extensional database ("downstairs") structures.

Similarly, the semantic net database operation primitives

mix intensional with extensional functions (recall that a

non-AI schema is exclusively intensional and non-AI

operations are exclusively extensional in nature). At the

extensional level of the net nodes represent specific

(token) things and arcs represent assertions about the

things.

463

Unlike other database structural representations,

semantic nets make use of the notion of ’’semantic

distance” [TSIC82]. In a semantic net representation the

physical proximity of two objects (nodes), measured by the

number of arcs that must be spanned to form a path between

them, has a definite semantic connotation. ’’Close”

objects are more similar than are ’’distant” ones. In the

event that the similarity of two objects would be

overrated by their proximity within the net, their

semantic distance can be increased by connecting them with

an ’’irrelevancy arc.”

The extensional-intensional nature of a semantic

net, coupled with the strong semantic meaning embedded in

its structure often results in the following situation:

operations on a semantic net data model trigger the

propagation of side effects throughout the net. In other

words, a single simple database change is causation of a

number of automatic database changes.

In non-AI database situations such multiplicity of

side effects would be considered as anomalous and

aberrant. Indeed, much research effort is directed

towards the avoidance of such (see [HAMM75]). In the AI

view effect propagation is considered as being normal,

however. The data model is seen as a semantically

464

self-adjusting system. We feel that the intuitive

pleasantness of this viewpoint is difficult to deny.

Despite the elegance and power of semantic net based

AI data models, they are not without their problems.

First of all, a semantic net is, in all case, expensive to

design, store, maintain, and process. Furthermore, it is

often noted that semantic net implementations are an

example of ’’overkill” for any particular database

application. Semantic nets may be overly complex because

they include so many concepts — they are aimed at

modeling too many real world provinces. This opinion is

put forth in [SU79], [HAMM81], and [TSIC82].

AH epistemological based system. In this section we

describe a semantic net database management system (DBMS)

as presented in [ROUS75]. Many of the concepts discussed

hereunder have evolved from the TORUS natural language

understanding DBMS project (see [MYL075]). We believe

that these concepts provide a thorough overview of the

epistemological realm.

The nodes of the semantic net are of four basic

types:

465

1* Concepts -- depict the physical and abstract

objects of the real world

2. Characteristics -- serve as modifiers of

concepts, events, or other characteristics

3. Values -- are the values taken on by the above

characteristics

4. Events -- emulate the actions of the real world

The graphical representation of a characteristic

node includes two edges. One edge, labelled Mch"

(characterize), is directed toward the object which is

modified by the characteristic. The second "v" (value)

edge points to the associated value of the characteristic.

The characteristic node is labelled with the name of the

characteristic.

Figure A.19 provides an example of a characteristic.

This semantic net representation asserts ’’Barbara has blue

eyes.” Note that an alternative conceptualization of a

characteristic is that of a binary relation which maps an

element from its domain to its range. In the above

example, viewed in this light, "barbara” is an element of

466

<u
3

-Q

S_
n3

467

the domain (set of objects which may be characterized) of

the relation. "Blue" is an element of the range (set of

possible values which may be taken on).

Events are complex objects in that the

representation of a single event consists of a number of

nodes and edges. One node, the event node, depicts the

event itself. The remaining nodes of the event represent

objects which play specific roles in the event [12].

These roles are specified by labelled edges which are

directed from the event node to the role playing object.

Common roles are affected (aff), agent (a), destination

(d), instrument (i), object (o), result (r), source (s),

and topic (t).

An example of a semantic net representation of an

event is given by figure A.20. The "fact" that is

asserted by this representation is "CDC supplies executive

software to UMass." This figure illustrates that objects

are allowed to play more than one role in an event. The

object "cdc," for instance, is both the source of the

object, and the agent in the example event.

When concepts are engaged in complex situations such

as events and the like, their characterization often

requires qualification. In the above network, for

example, the concept "executive software" can be

468

*u

o

<D
> Q)

•r- S-
•M ro
3 2 o •*->
<u 4—
x o
<D CO

-a
u

469

characterized by a particular price. The price is not a

function of the concept alone, however. It is determined

by the event (supply) in which the concept plays the

object role. Thus, the characterization of the concept

must be specified ”in terms of," the situation.

Mathematically, we must map from a two-dimensional cross

product domain to a range of values.

In this instance, the ”wrtM (with respect to) edge

provides the appropriate qualification. Figure A.21 shows

how the executive software concept is characterized with

respect to the specific supply event in which it plays a

r ole.

In an AI model of this type the single semantic net

describes both the intension of the database and the

extension of the database. Intensional (upstairs) nodes

are labelled in capital letters. Extensional (downstairs)

nodes have lower case labels. Note that the prior

examples have all been extensional database

representations.

The upstairs of the net serves as a generic template

through which the downstairs objects are structured. The

two representations are connected by means of the "E"

(example of) labelled edge which is directed towards the

extensional token. Figure A.22 provides an illustration

470

FIGURE A.21

QUALIFIED MODIFICATION OF A CONCEPT

471

of how the upstairs and downstairs structures are

connected.

The semantics of causation are captured through

utilization of the "effect" and the "prereq"

(prerequisite) edges. As an example, consider the

following assertion: "A part must be shipped to a customer

before it is received by the customer." In essence, this

states that shipment is a prerequistie of receipt. Figure

A.23a illustrates the semantic net (upstairs)

representation of this assertion.

Now consider the assertion "The occurrence of an

order event will bring about the occurrence of a supply

event." In other words, order effects supply. Figure

A.23b illustrates this.

"Knowledge chunks," called scenarios, constitute the

semantic net structure. Each scenario consists of a set

of interrelated concepts, events and values that have a

distinct semantic foundation. The structure of a scenario

forms a "pattern template" which, when matched with

another structure, provides meaning and understanding of

the latter to the system.

The individual pieces of knowledge, represented by

scenarios, are organized according to three basic axes, or

dimensions, of the overall semantic net. Movement along

472

10

u

CM
CM

<=C

LU
CsZ

CJ3

U
PS

TA
IR

S
AN

D
D

O
W

N
ST

A
IR

S

473

CUSTOMER

FIGURE A.23a

CUSTOMER

ORD

FIGURE A.23b

474

each dimension has definite semantic implications. The

first axis, which is based on the notion of the subset

relation, is called the "SUB" axis. Scenarios which

appear lower on the SUB axis are subsets of those that

appear higher on the axis.

If an event E is a subset of another event E’ , then

all concepts which play roles in E are subsets of the

respective concepts that play roles in E’. The semantic

properties of the super concepts (roles of E’) are

inherited by the subconcepts accordingly.

The second axis, called "DEF," is definitional in

that movement along the axis provides varying degrees of

detail about characteristics, concepts, and events [13].

For example, the concept "CDC COMPUTERS” is located below

the concept "COMPUTERS” with respect to the DEF dimension.

The final dimension through which the scenarios are

organized is the "PART” dimension. Concepts which appear

lower on this axis are components of the higher

concepts [14]. Thus "DEPARTMENT” is located below

"COMPANY.”

The inclusion of a fourth axis to represent a "TIME”

dimension has been considered. Through the use of such a

dimension each scenario would be assigned a "period of

applicability." As a result, the net would obtain a

475

knowledge of its own developmental history and,

accordingly, of the history of the universe of discourse

which it represents.

The intelligent database schema ’’understands”

user-system dialogue by matching the (semantic) graphic

structure of the dialogue to the structure of its internal

scenario templates. For each statement and query that

enters the system, a graph is constructed. This graph is

then processed through a graph-fitting algorithm which

moves the input graph as far down along the net axes as is

possible. Additional inferences are made through the use

of context -- the existing understanding gained from the

previous dialogue.

At a lower structural level, the system is

implemented as a relational database. There are four

basic types of relations which have a natural

correspondence to three of the basic node types of the

semantic net. These node types are concept, event, and

characteristic. Value nodes of the net are not

represented as relations for obvious reasons.

A unique feature of the DBMS is that, despite its

relational foundation, it does not depend on the use of

keys. As a consequence, the user of the system is allowed

to hold a more "natural” conceptualization of the concepts

476

represented. For example, employee tokens can be thought

of as persons rather than as unique employee numbers.

Because the relational database is structured within

a semantic framework, the relational database operation

primitives (selection, union, intersection, difference,

division [C0DD70]) require modification. Five

corresponding semantic operators, all of which are set

theoretic in nature, have therefore been defined (see

[R0US75] for details). Each of these semantic operators

is directly applicable to the SUB axis of the semantic net

because said dimension is based on set theoretic

containment.

A consequence of using semantic database operators

vis. the traditional strictly mathematical operators is

that the system obtains the capability to assess the

’’legality” of database transactions. There can be defined

a ’’measure of strangeness” of an operation invocation.

The value of said measure is a function of the relative

(according to existing context) height which must be

achieved on the SUB axis in order to fit a dialogue

scenario pattern.

As the height of the pattern match increases, the

less related are the entities involved in the operation to

the present contextual state. ’’Strange” operations can

477

thusly be identified by the system. Identification of

such anomalies can raise questions (on the part of the

system) as to the credibility of the user and/or the

tr ansaction .

A. mathematical logic based system . Deductive AI systems

are based largely on deductive rules which take the form

of predicate calculus quantified statements (extensive

discussions of predicate calculus are found in [WONG77]

and [B0NC81]). The major objective of research on such

systems is to "develop a system from which one can deduce

facts which are implicit within the database"

[MINK77, p. 108].

Deductive AI systems are rooted in a many sorted

logic vis-a-vis first order logic. In first order logic

all predicates and arguments are elements of a single

univer sal domain, Consequently, any combination of

predicates and terms that is a well formed formula (wff

[BO NC 81]) is valid (well formedness is essentially

syntactic correctness). For example, if the terms "blue"

and "banana," and the predicate "FATHER(x,y)," are

elements of the universal domain; then the following wff

is valid:

478

FATHER(BLUE,BANANA)

The "fact" represented by this wff is "blue is the father

of banana" which is an obviously nonsensical assertion

(from [MINK77]) .

Such anomalous assertions can be avoided by using a

many sorted logic. Here, terms and quantifiers are

restricted to range over different domains. Hence, for

any given predicate, its arguments can be restricted to

come from domains which constrain the resulting assertion

to be semantically meaningful. The arguments of the

predicate FATHER(x,y), for example, would be restricted to

be elements of the domain "person" vis. the domain

"color" or "fruit."

A wff that makes the same assertion about all

members of a domain (conjunctive) can be expressed in

terms of the universal quantifier:

V (for al1)

Disjunctive assertions which refer to all members of a

479

domain can be expressed in terms of the existential

quantifier:

3 (there exists)

The theorem proving methodology of deductive AI

systems requires that wffs be converted to clause form: a

conjunction of clauses which is quantifier free [15]. The

procedure through which the existential and universal

quantifiers are removed, which is based on the use of

Skolem functions and the resolution principle, is

described in [B0NC81], [MINK77] , and [WONG771.

In the remainder of this section we will describe

briefly the mechanics of the MRPPS 3*0 [MINK77] — a

(experimental) deductive relational database system. We

feel that this system, which provides one of the few

examples of a general pur pose deductive database system,

is representative of the mathematical logical realm of AI

data modeling.

The MRPPS model of knowledge is stored in the

semantic network [16]. The overall network comprises four

components:

480

1. The semantic graph

2. The two databases (see below)

3. The dictionary

4. The semantic form space

The semantic graph denotes relationships

(disjointedness, inclusion, overlap) among semantic

categories in a network graph structure. Figure A.24

provides a simple example of such a graph. From this

particular structure we can draw a number of implications:

1. MA person who is a mother is a female person"

MOTHER(x) - FEMALE(x)

2. "A person who is female is not a male person"

FEMALE(x) - 'vMALE(x)

481

U

482

3. Accordingly, then, "A mother is not a male

person”

MOTHER(x) + ^MALE(x)

As in all deductive AI systems the MRPPS database is

a twofold entity. It comprises the intensional database

(IDB) and the extensional database (EDB). The former

stores clauses only; the latter stores assertions (note

that assertions are really instantiated clauses) .

Consider the following clause that could be stored

in the IDB:

FATHER(x.y) * HUSBAND(x.z) + FATHER-LN-LAW(x,z)}

This representation translates into:

"x is the father of y and (")
y is the husband of z implies (+)
x is the father-in-law of z"

483

The clause is intensional because the terms x, y, and z

are variables.

Now, if the EDB stores actual data (assertions)

about fathers and husbands, then the IDB "stores” virtual

data about fathers-in-law. The distinction between the

IDB and the EDB is therefore related to that between

direct and derived data. The contents of both databases

are stored as relations.

The dictionary lists the semantic category of each

relation in the database. This provides the bridge

between an object and its "meaning.” Recall that the

semantic categories to which objects are linked exist in

the highly structured semantic graph.

The final network component, the semantic form

space, defines the semantic constraints which are imposed

on predicates and arguments. Obviously, this invokes the

many sorted logical structure upon which such systems are

based.

The database user queries the system by specifying a

conjunction of clauses [IT]. Clauses are defined in terms

of a literal template and a substitution set. The literal

template demarcates the structure that the terms of the

clause will take on. The substitution set specifies the

values of the predicate and its arguments.

484

The following literal template defines a predicate

(alpha) with two arguments (x1, x2):

(a,xl,x2)

The query specification

{(a,xl,x2) [FATHER/a,person/xl,J0E/x2]}

asks ’’Who is Joe’s father?” Similarly,

{(a,xl,x2) [MOTHER/a,person/xl, J0E/x2)

queries ’’Who is Joe’s mother?” Note that many queries can

have the same literal template structure.

Queries are answered by the deductiv e search

mechanism which has the ability to deductively form new

clauses from sets of input clauses. The semantic form

space and the semantic graph provide the deductive search

mechanism with knowledge as to which queries are

485

unanswerable.

Consider, for example, the following query:

(a,xl,x2) " (B,xl,x2) [FATHER/a,MOTHER/6,person/xl,J0E/x2]}

This asks ’’Who is both the mother and the father of Joe?

The deductive search mechanism would reject this quer

since:

FATHER(person) + MALE(person)

MOTHER(person) -»• FEMALE(person)

MALE(person) -*■ 'vFEMALEfperson)

486

The database (IDB and EDB) is accessed through the

knowledge base index structure. This consists of three

hierarchically organized parts:

1 • The literal size and sign list

The literal tempi ate tree structure

3. The inverted index file

The literal size and sign list points to that

template tree structure which relates to the templates of

a given size (number of terms) and sign (negated or not).

Each template tree structure is a binary tree which is the

basis of a pattern matching process.

Proceeding down a branch of the template tree

relates to the matching of the structure (argument

pattern) of a clause. Each terminal node of the tree

points to the constraints (form space) that refer to the

clause structure, and to the appropriate section of the

database. Inverted indexes drive the search at the

database level.

487

The MRPPS system output is available in three

different forms:

1. Symbolic (predicate calculus based) output

2. Written natural language output

3. Natural language voice output

It is important to keep in mind that the MRPPS is an

experimental prototype DBMS.

488

FOOTNOTES

The ultimate purpose of normalization is the same
as that of E-R modeling: avoidance of semantic
ambiguity. The resulting representations may be
quite different, however.

It should be noted that the semantic complexity of
ternary and higher order relationship sets often
results in a representation that is difficult to
comprehend [TSIC82].

Note that the meaning of an E-R attribute is quite
from that of its relational homonym.

^7^ ^erm refers explicitly to the mapping from
object to domain. “

In general, an entity relation and a database
relation are not synonymous. Entity relations are
not, in all cases, required to have unique keys as
are database relations.

This corresponds to the "dependency constraints"
as described in [WONG77],

The RM/T model [CODD791 includes "nested"
characteristics that are similar to the complex
characteristics of the BSDM. The RM/T constructs
are called "characteristic molecule types."

Most network representations guarantee that the
deletion of an object causes the deletion of all
connective links to that object. Such
representations therefore have a consistency rule
implied by their structure. This rule is called
the "existency constraint" [W0NG77].

«

489

[8] RM/T allows for the definition of ”unconditional
successors” and ’’alternative successors” to
capture the meaning of the time ordering of
events. The former notion most closely resembles
the SAM ”CF” concept. The latter notion is
slightly more powerful in that it specifies the
occurrence of one of a number of possible events.

[9] An interesting feature of this model is that the
creation of the most generic abstract object is
considered as the lowest level of abstraction.
Under the usual Smith and Smith configuration,
such an object is placed at the top of the
(generalization) abstraction hierarchy and
therefore represents the highest level of
abstr action .

[10] A class attribute is quite similar to an attribute
of a ’’metaclass” as used in an AI based model.

[11] Epistemology is the study of knowledge.

[12] Use of the term ’’role" by the artificial
intelligence community is usually restricted to
data management applications. The more general
term is "class.” Besides providing a uniform
method for representing the intension of an event,
case representation provides a direct bridge
between the syntactic structure of the natural
language representation of a fact and the semantic
meaning of a fact.

[13] Both the SUB construct and the DEF construct
relate to the notion of generalization
abstraction. In most AI applications these two
dimensions are collapsed to form a single IS-A
dimension (see [WONG77])*

490

[14] The PART construct captures the concept of
aggregation abstraction. A more commonly used AI
label for this dimension is PART-OF (see
[W0NG77]).

[15] Clauses are negations and/or conjunctions of
atomic wffs.

[16] The semantic network, as described here,
represents a more comprehensive object than is
commonly used. The first component of this
network, the semantic graph, most closely
resembles a traditional AI semantic net.

[17] Disjunctive sentences can be converted to fully
conjunctive clauses through the proper use of
negation (~) .

APPENDIX B

GEOGRAPHIC CONCEPT DEFINITIONS

The following geographic concept definitions and

descriptions are taken directly from "Geographic Concept

Definitions" (pp. 53-70), Census of Population and

Housing, 1980 — Summary Tape File 1: 1978 Richmond Dress

Rehearsal Technical Documentation / prepared by the Data

User Services Division, Bureau of the Census --

Washington: The Bureau, 1980 ([CENS80]). Some format and

punctuation conventions used below are therefore slightly

different from those employed elsewhere in our work; for

this minor inconvenience, we apologize.

Block. Normally a well-defined rectangular piece of

land, bounded by four streets. However, a block may also

be irregular in shape or bounded by railroad tracks,

streams or other features. Blocks, by definition, do not

cross the boundaries of counties or census tracts. They

may cross place boundaries and the boundaries of minor

civil divisions. When blocks cross place boundaries and,

in 20 States (. . .), when they cross MCD boundaries, the

blocks are split and statistical summaries are presented

for the parts.

491

492

Census data will be tabulated by block in all

urbanized areas (UA's) and, in many cases, somewhat beyond

the final UA boundaries. The data will also be tabulated

by block in incorporated places with 10,000 or more

inhabitants outside UA’s and in additional areas which

contracted with the Census Bureau for the collection of

block statistics. Places outside of UA's are included in

the block statistics program if they met the 10,000

population criterion in the 1970 census, official Bureau

estimates through 1976, or a special census on or before

December 31, 1977. Block coverage for qualifying places

is within boundaries as of January 1, 1980. Five States

contracted for the preparation of block statistics

covering their entire territory, both urban and rural:

Rhode Island, New York, Virginia, Georgia, and

Mississippi. (...)

A block is identified by a 3-digit code which is

unique within census tract or, where tracts do not exist,

block numbering area. Since separate summaries are

provided for the parts of a block split by a place or, in

20 States, an MOD boundary, tape users may need to specify

the place or MOD code to retrieve data for a block.

Blocks are defined on detailed census maps: Metropolitan

Map Series, Vicinity Map Series, place maps, and county

493

maps. The extent of block statistics coverage is

reflected on maps by the presence or absence of the

3-digit block number •

Census blocks are normally compact cohesive units,

but there are important exceptions. For example, in some

suburban areas, development is clustered around

cul-de-sacs. In these areas a census block may be fairly

large since only those streets that serve as the perimeter

of an enclosed area are treated as block boundaries.

Also, in rural areas blocks may include many square miles,

depending on the frequency of roads and their intersection

with rivers, mountain ridges or other physical features.

On census maps, when a block boundary ignores a

minor physical feature, such as railroad tracks, a

"fishhook" (...) across the feature indicates that the

block includes area on both sides of the feature.

Alternatively, the separate parts of such a block will

have the same block number followed by an asterisk.

The maps used for enumeration activities were, of

necessity, obtained one or more years prior to the census

and therefore do not reflect recently constructed streets,

if any. Block statistics observe only those block

boundaries shown on the maps.

494

It is estimated that statistics will be collected

for over 2.5 million blocks in the 1980 census. Block

statistics are included in PHC(1) Block Statistics reports

and in file B of Summary Tape File 1 (STF IB).

Historical comparability: In 1970 block
statistics were prepared for urbanized areas and
some additional contract areas. Unlike in 1980,
they were not prepared for places of 10,000
population or more outside urbanized areas,
unless done under contract. More than 30
percent of the areas for which block statistics
will be available for 1980 did not have block
statistics in 1970.

Some blocks defined for 1970 will have new
boundaries in 1980, primarily those on the edges
of urbanized areas and other areas of new
development where the street patterns have
physically changed. To help the user notice a
change wherever a block has been redefined by
splitting or other adjustment, the 1970 block
number will generally not be reused. In many
areas, however, block boundaries and numbers
will be the same in 1980 as in 1970, except for
a few areas where blocks were renumbered by
local GBF/DIME coordinating agencies to define
more desirable block groups.

Block group (BG). A combination of census blocks which

is a subdivision of a census tract or block numbering area

(BNA) and which is defined in all areas where block

statistics are collected. (In areas where blocks are not

identified, enumeration districts substitute for block

groups as tabulation units.)

Block groups are defined within county and tract or

block numbering area. They may be split by the boundaries

of other higher level geographic entities recognized in

the census, including places, minor civil divisions or

census county divisions, congressional districts, and

Indian reservations. When this occurs, statistical

summaries (data records) are provided for each component

or part.

Block groups are not outlined on census maps, but

are defined as that set of blocks sharing the same first

digit within a census tract or BNA. For example, Block

Group ”3" within a particular census tract would be

defined as all blocks numbered between 301 and 399. In

practice, the numbering would rarely go above 350 and

would involve substantially fewer than 50 blocks, since

gaps are occasionally left in the numbering, e.g., one

block might be 312 and the next 316.

Since block group summaries observe higher level

boundaries, users should carefully study census maps to

note the presence of place, MOD or CCD boundaries which

may split block groups. Congressional district boundaries

are not shown on census maps; as a result, a block group

may be split but the boundary will be undefined.

496

Block group summaries observe some boundaries which

are ignored in block statistics (specifically, census

county divisions and, in 10 States, minor civil

divisions). As a result, it may be necessary on rare

occasions to add two block group components together to

match the sum of blocks in the same hundreds series.

It is estimated that statistics will be prepared for

about 180,000 block groups. Block group data, together

with data for enumeration districts, appear on STF’s 1A,

and 3A, and corresponding microfiche. There are no

printed data for block groups.

Historical comparability: In areas where
block groups were tabulated in 1970, most 1980
block groups will be the same as their 1970
counterparts, with exceptions occurring
primarily in areas where tract boundaries have
changed. In addition, block group parts,
created when block groups are split by the
boundaries of other higher level areas, will
also change if such boundaries have been
changed.

Many areas with block groups in 1980 had
enumeration districts in 1970, a change
occasioned in part by the expansion of the block
statistics program, and in part because ED’s
were used for tabulation purposes in 1970
instead of block groups in some blocked areas.
Where block groups have replaced ED' s, there
will be little comparability between 1970 ED’s
and 1980 block groups.

497

Block numbering area (BNA). Areas defined for the

purpose of grouping and numbering blocks in blocked areas

where tracts are not defined. BNA's do not cross county

boundaries. They are identified by census tract-type

numbers ranging from 9901.00 to 9989-99 which are unique

within a county. While BNA numbers are similar to census

tract numbers, BNA’s are not census tracts and are not

included in STF 2 or 4.

Block numbering areas may be split for tabulation

purposes by the boundaries of places, Minor Civil

Divisions (MCD’s), and Census County Divisions (CCD's).

STF’s 1A and 3A present statistical summaries for the

component parts of BNA’s created when BNA’s are split by

the boundaries of places, MCD’s, and CCD’s. BNA summaries

in STF IB and PHC(1) Block Statistics reports recognize

the boundaries of places, as in the other files, but CCD

boundaries are ignored and MCD boundaries are recognized

only in 20 States (. . .).

Historical comparability: While BNA’s were
also used in previous censuses, any historical
comparability is only coincidental.

498

Census County Division (CCD). Subdivisions of counties,

established in 20 States (. . .) which do not have MCD's

suitable for reporting census statistics (i.e., the MCD’s

have either lost their original significance, are very

small in population, have frequent boundary changes,

and/or have indefinite boundaries). CCD’s are established

cooperatively by the Census Bureau and both State and

local government authorities. CCD’s are generally defined

by boundaries that seldom change and can be easily

located, such as roads, rivers, powerlines, etc.

Census county division boundaries are represented on

all detailed census maps. In addition, CCD outlines

appear at a small scale on maps published in PC(1)-A and

HC(1)-A reports. CCD’s, in alphabetic sequence, are

assigned unique, incremental 3-digit numeric codes within

counties.

There are approximately 5,500 CCD’s defined for the

1980 census. Statistics for all CCD’s appear in STF’s 1A,

2B, 3A, and (under tentative plans) 4B, in PC(1)-A and -B,

and HC(1)-A reports.

Historical comparability: CCD’s are now
defined in one fewer State than in 1970 -- North
Dakota returned to the use of its MCD’s
(townships) for 1980. In I960 there were 18 CCD
States. In the past, cities with 10,000 or more

499

inhabitants generally were defined as separate
CCD’s. When these cities annexed territory, CCD
boundaries also had to be adjusted. For 1980,
many of these CCD boundaries were revised to
conform with census tract boundaries where
tracts exist, and permanent physical features
elsewhere, in an attempt to minimize future CCD
boundary adjustments.

Congressional District. These 435 areas are defined for

their respective States by State legislatures for the

purpose of electing persons to the U.S. House of

Representatives. Congressional districts observed for the

1980 census are as designated for the 96th Congress; this

designation has been in effect since the 94th Congress

(1975-1976), with one boundary change in Tennessee which

took effect with the 95th. Data summaries from the 1980

census appear only in STF 1A. Congressional districts for

the 98th Congress (1983-1984) will be defined by State

legislatures shortly after 1980 population counts become

available .

Small scale maps of congressional districts appear

in the Congressional District Data Book. Congressional

district boundaries are not shown on detailed 1980 map

series.

500

Historical comparability: 1970 census data
are available for congressional districts as
defined for the 94th - 97th congresses in the
Congressional District Data Book, except for the
Tennessee change noted above.

County. The primary political and administrative

divisions of States. In Louisiana such divisions are

called parishes, and in Alaska 23 boroughs and census

areas are treated as county equivalents. Several cities

(Baltimore, Maryland; St. Louis, Missouri; Carson City,

Nevada; Columbus, Georgia; and a number of Virginia

cities) are independent of any county organization and

thereby constitute primary divisions of their States and

are treated the same as counties in census tabulations.

County boundaries are shown on all census maps. A

3-digit Federal Information Processing Standards (FIPS)

county code identifies each county uniquely within State.

Counties are numbered in alphabetic sequence, with

independent cities numbered separately at the end of the

list.

There are 3,137 counties and county equivalents

being tabulated for the 1980 census. County tabulations

appear in STF’s 1 through 4, and in PC(1)-A, -B, and -C;

HC(1)-A and -B; and PHC(3) reports.

501

Historical comparability: A number of changes
have occurred to county boundaries since 1970,
mostly as a result of the creation of new
independent cities or annexations by independent
cities in Virginia. A new set of county
equivalents has been defined for Alaska
(boroughs and census areas) which in some cases
differ considerably from the divisions
recognized for 1970. In addition there are
minor changes in the list of counties for South
Dakota, Georgia and Hawaii.

Division, (Census Geographic) . Census geographic

divisions are nine groups of States which are subdivisions

of the four census regions. (...) Divisions are

identified by a 1-digit code which is also the first digit

of the 2-digit Census geographic code for each State in

the division.

Historical comparability: Census divisions
have remained largely unchanged since the 1910
census.

Enumeration District (ED). An area used in the 1980

census for collection activities and as a tabulation area

where block statistics are not prepared. Enumeration

districts do not cross the boundaries of any other legal

or statistical area, including MCD’s, CCD’s, places,

counties or congressional districts. Because of these

502

constraints they vary widely in population size, although

they do not generally exceed a population of 1,600 in

areas where the census is taken by mail, or a population

of 1,000 in areas where the census is taken by

conventional enumerator canvassing. The population limits

are designed so that an ED represents a reasonable

workload for a single enumerator. About 1,000 areas in 47

States participated in a program for local definition of

ED's. In the areas where they are reported, ED's are the

smallest available unit of census geography.

Enumeration district boundaries are shown on

MMS/VMS, place and county maps in areas where there are no

block numbers. ED's are identified by a four-digit number

which may be followed by a one-character alphabetic

suffix. The suffix is used to identify subdivisions of

ED's made during data collection activities where the

original ED proved to be too populous for an efficient

work unit, or to accommodate a revision to a place or

other boundary made too late to be reflected on the maps.

An ED number may also have a prefix indicating that the ED

is of a special type (e.g., an Indian reservation), but

the prefix is not necessary for identification of the ED.

ED numbers do not repeat within a county.

503

It is estimated that statistics will be prepared for

about 120,000 enumeration districts. ED data, together

with data for block groups, appear on STF’s 1A and 3A and

corresponding microfiche. In addition, ED data appear on

STF IB to complement the summaries for blocks. There are

no printed data for enumeration districts.

Historical comparability: Many areas which
were covered by enumeration districts in 1970
are summarized in terms of blocks and block
groups for 1980. In some cases it may be
possible to add up blocks to approximate the
1970 ED, based on detailed comparison of 1980
and 1970 maps.

In areas covered by ED’s for 1980, collection
considerations dictate ED size and design, and
historical comparability does not normally enter
into consideration.

Minor Civil Division (MCD). The primary political and

administrative subdivisions of counties. MCD’s are most

frequently known as townships, but in some States they

include towns, magisterial districts, and similar areas.

MCD’S are used for census purposes in 30 states (. . .).

In the remaining States census county divisions are used

in lieu of MCD’s.

504

The Census Bureau has assigned each MCD, in

alphabetic sequence within county, an incremental, unique

three-digit numeric code. In addition, MCD's in 11 States

have a four-digit "MCD sequence number” which allows MCD’s

to be sorted into alphabetical sequence within a State.

MCD’s in some States are also assigned a five-digit

Federal Information Processing Standards (FIPS) place code

which is unique within State. The National Bureau of

Standards may expand the coverage of FIPS place codes to

include MCD’s in the remaining States. If the timing of

such an expansion permits, the new codes will also appear

with MCD records on tape.

Minor civil division boundaries are represented on

all detailed census maps. In addition, MCD outlines

appear at a small scale in maps published in pc(1)—A and

HC(1)—A State reports. There are approximately 25,000

MCD’s defined for the 1980 census.

Statistics for all MCD’S appear in STF’S 1A, 2B, 3A,

and (under tentative plans) 4B, and in PC(1)-A and -B, and

HC(1)-A reports. In 20 States (. . .), most MCD’S serve

as functioning general-purpose governments, and these

active MCD’s are included in PHC(3) Summary Statistics for

Governmental Units. All MCD’s in these States are

included in PHC(1) Block Statistics reports and STF IB.

505

Finally, in 11 States (all 9 States in the northeast

region, plus Michigan and Wisconsin), MOD data are

published in a manner parallel to that of places of the

same size in tables of PC(1)—B and -C, and HC(1)— A and -B.

(. . .)

Historical comparability: Census county
divisions were used in North Dakota in 1970, but
for 1980 that State returned to the use of its
townships.

A number of minor civil divisions in other
States have changed boundaries. Some of these
have been as a result of municipal annexations
in several States. There are six States where
MCD boundaries have changed substantially:
Arkansas, Virginia, Louisiana, Mississippi, West
Virginia, and Maryland. A new set of subcounty
areas, termed "census subareas,” has been
developed for Alaska.

Place. A concentration of population which may or may

not have legally prescribed limits, powers, or functions.

Most of the places identified in the 1980 census are

incorporated as cities, towns, villages, or boroughs. In

addition, a number of census designated places (called

”unincorporated places” in earlier censuses) are

delineated for 1980 census tabulations. There are about

23,000 places recorded in the 1980 census.

506

Incorporated place. A political unit incorporated

as a city, borough (excluding Alaska and New York),

village or town (excluding the New England States,

New York and Wisconsin). Most incorporated places

are subdivisions of the MCD or CCD in which they are

located; for example, a village located within and

legally part of a township. Some incorporated places

are independent of surrounding townships or towns and

therefore are also treated as MCD’s. Finally, almost

4,000 incorporated places cross MCD and/or county

lines. No incorporated places cross State lines

since they are chartered under the laws of a State.

There are about 20,000 incorporated places for

the 1980 census.

Census designated place (CDP). A densely settled

population center without legally defined corporate

limits or corporate powers or functions. Each has a

definite residential nucleus with a dense, city-type

street pattern, and ideally should have an overall
c

population density of a least 1,000 persons per

square mile. In addition, a CDP is a community that

can be identified locally by place name. Boundaries

of CDP's are drawn by the Census Bureau, in

507

cooperation with State and local agencies, to

include, insofar as possible, all the closely settled

areas. In the 1980 census, statistics are tabulated

for each CDP with 5,000 inhabitants or more if

located in an urbanized area with a central city of

50,000 or more and for each CDP of 1,000 or more if

in an urbanized area with a central city of less than

50,000. Outside of urbanized areas, statistics are

tabulated in 48 States for CDP’s of 1,000 or more, in

Hawaii for CDP’s of 300 or more, and in Alaska for

CDP’s of 25 or more.

There are approximately 3,000 CDP’s.

Incorporated place and CDP boundaries are shown on

all detailed census maps. MMS/VMS maps show the

boundaries of places in or near urbanized areas, and place

maps are available for all places outside MMS/VMS

coverage. In tracted areas, boundaries of places with

10,000 or more inhabitants are shown on tract outline

maps, which are at a smaller scale than MMS/VMS maps.

County subdivision maps, at still smaller scale, show

boundaries for places with 2,500 or more inhabitants and

pinpoint the location of smaller places.

508

A 4-digit numeric code is assigned by the Census

Bureau to each place in alphabetic sequence within State.

In addition, a 5-digit Federal Information Processing

Standards (FIPS) place code, unique within State, has been

assigned by the National Bureau of Standards for each

place. Both codes will appear on computerized records for

places, but the 4-digit census code will be used in

structuring the files (i.e., in determining the sequence

of place records). Separate "place description" codes

will also generally accompany place records. These codes

indicate whether or not a place is incorporated, as well

as represent certain other information about places.

All places are summarized in STF’s 1A and 3A and

PC(1)-A reports. Places with 1,000 or more inhabitants

are summarized in STF 2B, and PC(1)-B and HC(1)-B reports.

Places with 2,500 or more are summarized in STF 4B, and

PC(1)— C and HC(1)— B reports. Incorporated places only are

shown in PHC(3) reports. In PHC(2) Census Tracts reports

and STF’s 2A and 4A, summaries are presented only for

places with 10,000 or more inhabitants located in SMSA’s

or other tracted areas.

The files and reports which sequence geographic

units in hierarchical fashion must account for the fact

that places may cross the boundaries of counties, minor

509

civil divisions and census county divisions. Such reports

and tapes, therefore, provide summaries for the various

parts of places created when places are split by the

boundaries of higher-level areas recognized in the

hierarchy. Specifically, place parts within county and

MCD and CCD are presented in STF 1A and STF 3A, and

PC(1)-A. Place parts within county and MCD are presented

for 20 States only in STF IB and PHC(1) Block Statistics

reports, although the PHC(1) reports exclude any place

which does not have block statistics. In the remaining 30

States, STF IB and PHC(1) reports subdivide places when

split by county boundaries, but do not observe MCD or CCD

boundaries.

Historical comparability: Nearly 65 percent
of all Incorporated municipalities annexed
territory between 1970 and 1977 > and this
proportion increased further by January 1, 1980,
which is the reference date for boundaries in
the 1980 census. In the 1970 census, ED
boundaries were drawn so as to allow a user to
aggregate 1970 data for each city of 2,000 or
more inhabitants according to I960 boundaries.
There will not be a corresponding capability in
the 1980 census. Instead, a special report on
annexations during the 1970's may be prepared if
funds are available. Such a report may cover
central cities, other than places of 50,000 or
more population, and any smaller places which
annexed areas with 1 ,000 or more inhabitants as
of 1970. The special report would compare the
1970 and 1980 population of each covered city as
defined in 1980 (forward comparability), and

510

would make a similar comparison for each city as
defined in 1970 (backward comparability). This
would be the first census report to provide
forward comparability.

In the 1970 and earlier censuses, census
designated places were referred to as
"unincorporated places." The name was changed
to make it more explicit that such places are
defined for census purposes, and to avoid
confusion in States where many "unincorporated
places" are parts of incorporated towns or
townships. Many census designated places have
been redefined since 1970.

Region, (Census). Census regions are large groups of

States which are first-order subdivisions of the United

States for census purposes. The four regions [are]

Northeast, North Central, South, and West Census

regions have no relationship to the 10 Standard Federal

Administrative Regions. Regions are identified by a one

digit code. Regions are summarized in U.S. Summary

reports in almost every publication series, and in STF’s

1C, 2C, 3C, and 4C.

Standard Consolidated Statistical Area (SCSA). A large

concentration of metropolitan population composed of two

or more contiguous SMSA’s which meet certain criteria of

population size, urban character, social and economic

511

integration, and/or contiguity of urbanized areas. Each

SCSA must include at least one SMSA with a population of

one million or more. Thirteen SCSA's are defined for the

1980 census by the Office of Federal Statistical Policy

and Standards according to criteria published by that

office in Standard Metropolitan Statistical Areas: 1975.

SCSA’s are identified by a two-digit numeric code.

Summaries for SCSA’s appear in all reports, except PHC(1)

and PHC(2), and in STF’s 1C, 2C, 30, and 4C. Summaries

are generally provided for SCSA totals and for

within-State parts of SCSA’s.

Historical comparability: The 13 SCSA’s were
first created in 1976. For the I960 and 1970
censuses the Census Bureau recognized two
’’Standard Consolidated Areas’’ (SCA’s),
metropolitan complexes around New York and
Chicago.

In 1982 or 1983, the SCSA concept will be
replaced by the new Consolidated Metropolitan
Statistical Area (CMSA) concept, with somewhat
more liberal criteria, as spelled out in the
Federal Register, Jannuary 3, 1980. These
changes will not affect publication of 1980
census data for SCSA’s.

Standard Metropolitan Statistical Area (SMSA). A large

population nucleus and nearby communities which have a

high degree of economic and social integration with that

512

nucleus. Generally, each SMSA consists of one or more

entire counties that meet specified standards pertaining

to population, commuting ties, and metropolitan character.

In New England, towns and cities, rather than counties,

are used as the basic geographic units for defining

SMSA’s. In Alaska, boroughs and census areas are used for

defining SMSA’s. SMSA’s are designated by the Office of

Federal Statistical Policy and Standards of the Department

of Commerce.

SMSA’s to be observed in the 1980 census are of two

types: (1) those defined before January 1, 1980, 288 in

all (including 4 in Puerto Rico); and (2) those to be

established in 1981 as a result of 1980 census population

counts. In order for a new SMSA to be recognized

following the 1980 census, an area must have either:

1. A city with a population of a least 50,000 within

its corporate limits, or

2. A Census Bureau defined urbanized area (which

must have at least 50,000 population) and a total

SMSA population of at least 100,000.

513

Each SMSA includes not only a city and its urbanized

area, but also the remainder of the county or counties in

which they are located and such additional outlying

counties as meet specified criteria relating to

metropolitan character and level of commuting of workers

into the central city or counties. Specific criteria

governing the definition of SMSA’s recognized before 1980

are published in Standard Metropolitan Statistical Areas:

1975 , issued by the Office of Federal Statistical Policy

and Standards.

With two exceptions, each SMSA has one or more

central cities, up to a maximum of three, and the names of

these cities comprise the title of the SMSA. The

Nassau-Suffolk, NY SMSA has no central cities; the

Northeast Pennsylvania SMSA has three: Scranton,

Wilkes-Barre, and Hazleton.

SMSA’s are identified by a Federal Information

Processing Standards (FIPS) 4-digit numeric code, which

follows the alphabetic sequence of the SMSA name. SMSA’s

are outlined on small scale maps in several 1980 report

series. SMSA data appear in most 1980 census publications

and summary tape files. Many SMSA’s cross State

boundaries, and several reports provide summaries for the

within-State parts of multi-State SMSA’s as well as SMSA

514

totals. Summary tape

within-State parts of

files: STF’s 1C, 2C, 3C,

files present data only for

SMSA’s, except for the ’’national”

and 4C.

Historical comparability: Since the 1970
census, when 247 SMSA’s were recognized in
tabulations (including 4 in Puerto Rico), a
number of new SMSA’s have been defined. Of the
247 1970 SMSA’s, 101 were redefined in 19 7 3 >
based on 1970 census results, most by the
addition of one or more counties (or towns and
cities in New England). In addition, one SMSA
was redefined by the addition of one area and
the deletion of another (Wichita Falls, Texas),
one was subdivided (Nassau-Suffolk SMSA was
created from a part of the New York SMSA), four
pairs of SMSA’s were combined into single SMSA’s
(for example, Dallas-Fort Worth, Texas), and
four SMSA’s lost area that was added to other
SMSA’s. In addition, the names of several
SMSA’s were changed in 1973> one in such a way
that the SMSA code also changed (San
Bernardino-Riverside-Ontario to Riverside-San
Bernardino-Ontario, California).

Since SMSA’s are always defined in terms of
whole counties (towns or cities in New England)
and extensive data have been and will be
available on tape for these areas, forward and
backward comparability can usually be derived by
the user.

In 1982 or 1983, SMSA boundaries will be
re-evaluated using 1980 census data on
commuting, population density, type of residence
and population growth, according to new criteria
spelled out in the Federal Register, January 3,
1980 (Vol. 45, No. 2, Pt. VI). At that time
new outlying counties may be added or existing
ones dropped, some area titles may change, many
new central cities will be designated, and some
areas may be consolidated. Further, the term
’’standard metropolitan statistical area” will be
shortened to "metropolitan statistical area"
(MSA). These changes will not affect
publication of 1980 censUs data for SMSA’s.

515

State. The major political units of the U.S. The

District of Columbia is treated as a State-equivalent in

all 1980 census data series.

States are identified by a two-digit Federal

Information Processing Standards (FIPS) code which follows

the alphabetic sequence of State names, and [by] a

two-digit Census geographic State code, the first digit of

which identifies the census division of which the State is

a part. The Federal Information Processing Standards

(FIPS) State code is used for sequencing in most reports

and in STF’s which present data for all States.

Historical comparability: There have been no
significant changes to State boundaries in the
last several decades.

Town/Township. (See Minor Civil Division)

Tract. Relatively small areas with generally stable

boundaries into which metropolitan and certain other areas

are divided for the purpose of providing statistics for

small areas. When tracts are established, they are

designed to be relatively homogeneous areas with respect

to population characteristics, economic status, and living

516

conditions. The typical tract contains between 2,500 and

8,000 residents. All SMSA’s recognized before the 1980

census are completely tracted. In addition, nearly 4,000

census tracts have been established in 252 counties

outside those SMSA’s (although some of these areas are

likely to become SMSA’s as a result of the census). In

fact, 5 States have been entirely tracted: Rhode Island,

Connecticut, New Jersey, Delaware, and Hawaii. In all,

there are over 42,000 census tracts for the 1980 census.

Tract boundaries are established cooperatively by

local Census Statistical Areas Committees and the Census

Bureau in accordance with guidelines that impose

limitations on population size and specify the need for

visible boundaries. Geographic shape and areal size of

tracts are of relatively minor importance. Tract

boundaries are established with the intention of being

maintained over a long time so that statistical

comparisons can be made from census to census. Census

tracts observe county lines and are defined to cover all

of the territory within each tracted county.

Census tracts are identified by a 4-digit basic code

and a 2-digit suffix, e.g., 6059.02. Many census tracts

do not have a suffix. In such cases, maps show just the

4-digit code; tapes give the 4-digit code followed by two

517

zeros. Tract numbers are always unique within a county,

and, except for New York, are also unique within an SMSA.

All valid census tract numbers are in the range 0001 to

9899*99; a number between 9901.00 and 9989.99 denotes a

block numbering area.

Census tract boundaries are shown on all detailed

census maps. In addition, census tract outline maps are

being created for each SMSA and each tracted county

outside SMSA’s and will be published in PHC(2) Census

Tracts reports. Tract outline maps show streets and

physical features which serve as census tract boundaries.

In addition, tract outline maps show the boundaries for

places with 10,000 or more inhabitants and for counties.

Census tract data are presented in STF’s 1A, IB, 2A,

3A, and 4A, and in PHC(2) Census Tracts reports. In STF

1A and STF 3A, tract data are presented in hierarchical

sequence within place within MCD or CCD. Since a tract

which crosses place, MCD, or CCD boundaries is split, the

tape files will have summaries for each of its parts. To

get data for the whole tract, it will be necessary to add

up the components. In STF IB the situation is similar

except that MCD boundaries are observed in only 20 States.

(. . .) MCD boundaries in the other 10 States with MCD’s

and CCD boundaries in the remaining 20 States are ignored.

518

In the major summaries for census tracts, those in STF 2A

and STF 4A and in PHC(2) Census Tracts reports, tract

summaries observe the boundaries of places of 10,000 or

more. There are also separate summaries which provide

totals for split tracts.

Historical comparability: Census tracts are
defined with an overall goal of census-to-census
comparability. Some 1970 tracts have been
subdivided due to increased population, but the
new tracts can be recombined by the user for
comparison with 1970 tracts. This affects about
eight percent of all 1970 tracts. Other changes
have included combinations of two or more small
1970 tracts (less than one percent of all 1970
tracts) and adjustments to tract boundaries
where old boundary features have disappeared or
new boundaries (e.g., freeways) have come into
being. Only in a few areas did local Census
Statistical Area Committees undertake extensive
redefinition of census tracts.

Both the number of tracted counties and the
number of census tracts increased by over 20
percent between 1970 and 1980. The reporting of
data for split tracts is also increasing. Where
1970 Census Tracts reports gave data for tract
parts created when tracts were split by the
boundaries of only those places with 25,000 or
more population, 1980 reports will observe
places as small as 10,000. 1980 STF’s 2 and 4
summarize data for split tracts as well as whole
tracts, whereas their 1970 counterparts did not
provide separate summaries for split tracts.

Urban and rural area (population). Urban and rural are

type-of-area concepts rather than specific areas outlined

519

on maps. As defined by the Census Bureau, the urban

population comprises all persons living:

1. in urbanized areas (defined below) and

2. in places of 2,500 or more inhabitants outside

urbanized areas.

The rural population consists of everyone else.

Therefore, a rural classification need not imply farm

residence or a sparsely settled area, since a small city

or town is rural as long as it is outside an urbanized

area and has fewer than 2,500 inhabitants. (. . .)

The terms urban and rural are independent of

metropolitan and nonmetropolitan designations: both urban

and rural areas occur inside and outside SMSA’s.

Historical comparability^ Except for the
minor liberalization of urbanized area criteria
discussed below, urban and rural definitions
have been consistent since 1950. Within small
counties, measurements of urban and rural
populations over time may be disproportionately
affected by the increase or decrease of a
place’s population across the 2,500 population
threshold, e.g., the increase of 1 person to a
place of 2,499 results in an increase of 2,500
to the area’s urban population.

520

Urbanized area (UA). A population concentration

generally consisting of a central city of 50,000

inhabitants or more and the surrounding, closely settled,

contiguous territory (suburbs) . In addition a population

concentration may qualify as an urbanized area if it has a

central city of between 25,000 and 50,000, and which, when

incorporated places and census designated places adjacent

to the city limits are included, has a total population of

at least 50,000. (For 1980, the minimum size requirement

for central cities may be dropped. This would mean the

only requirement for the establishment of an urbanized

area would be a densely settled population concentration

with a minimum total population of 50,000.)

The urbanized area criteria define a boundary based

primarily on a population density of at least 1,000

persons per square mile, but also include some less

densely settled areas within corporate limits, and such

areas as industrial parks and railroad yards, if they are

adjacent to dense urban development. The density level of

1,000 persons per square mile corresponds approximately to

the continuously built-up area around a city. The "urban

fringe" is that part of the urbanized area outside of a

central city. (. . .)

521

Typically, an entire urbanized area is included

within an SMSA. The SMSA is usually much larger in terms

of territory covered and includes territory where the

population density is less than 1,000. There occasionally

are more than one UA within an SMSA. In some cases a

small part of a UA may extend beyond an SMSA boundary, and

possibly, into an adjacent SMSA. A few 1980 UA's will be

defined in areas which do not meet the 100,000 total

population criterion for SMSA designation. UA’s may cross

State boundaries. In a few cases a UA may not include all

of an "extended” central city which is determined to have

a significant amount of a rural territory.

UA’s are identified by 4-digit codes, which follow

the alphabetic sequence of UA names. Their boundaries

will be shown on final Metropolitan Map Series and

Vicinity Map Series maps and, at much smaller scale, on UA

maps in PC(1)-A and HC(1)—A reports.

Historical comparability: Because UA’s are
defined on the basis of population distribution
at the time of a decennial census, their
boundaries tend to change from census to census.

The criteria have been fairly constant since
1950, although in each decade some new
refinements have been added. For the 1970
census, in which 252 UA’s were recognized, it
was necessary for the central city to have a
population of 50,000 or more, or for there to be
"twin cities" with a combined population of

522

50,000 and with the small city having at least
15,000. In 197^ the criteria were liberalized to
allow UA recognition to certain cities between
25,000 and 50,000, and this resulted in 27 new
urbanized areas. As noted earlier, another
revision of the urbanized area criteria is now
under consideration.

APPENDIX C

A SYSTEM ARCHETYPE

We have described the makeup of a geogra phic

information system (GIS) which is based on our GERMS data

modeling formalism. In this appendix we detail the

structure of an actual system implementation. The

database management system which forms the core of this

system is SIR-2 (Scientific Information Retrieval,

version 2). We will hereunder refer to such as SIR.

The SIR database management system (DBMS) includes

an extensive high level programming language through which

programmed database operations can be specified. We use

this language to form a "GERMS front-end" to the database.

In this way, all user-system communications are carried

out in terms of the GERMS conceptual schema. This is

despite the fact that the basic SIR database system is not

oriented towards the support of semantic data models.

523

524

An Introduction to SIR and the SIR Language

In this section we describe those features of the

SIR system which are fundamental to an understanding of

our GIS implementation. The reader who is familiar with

SIR may omit this section. We caution the reader that

this familiarity must be with SIR version 2, as this

version differs substantially from its predecessor.

A SIR structure utilizes both cases and record

types. A case is a collection of records of one or more

record types. Usually, a case relates logically to a

single entity or subject. Each case is identified by a

unique case name.

A SIR record type is a collection of records which

have a common format and attributes. Each record type

does not exist within its own file in SIR. Every record

type is identified by a record type number and by a

(optional) record type name. Members of a record type are

record instances. The membership is nonoverlapping, thus

an instance is not shared by types.

A record type can be (and in most applications is)

shared by all cases in the database. Each record instance

belongs to exactly one case, however. When designing a

SIR database we have the option of assigning all instances

525

of a given record type to a single case. Here, we can

think, of the record type as "belonging” to the case. We

will make use of this technique often in our system.

A record instance is identified by its unique record

key value. Part of this value is its case name and its

type identifier. In addition to these identifiers the

record key may consist of the concatination of a number of

record variables. Each such record variable is called a

"sort id."

When different record types make use of the same

sort ids, the records form a hierarchy. For example, if

record type 1 has the single sort id "KEY1," and record

type 2 has the sort id pair "KEY1, KEY2," then the type 2

records are children of the type 1 records. "Ownership"

of the children record instances occurs when type 1 and

type 2 records hold the same value on variable KEY1.

SIR is designed to accommodate the processing of

hierarchical structures. Also, the processing of network

structures can be emulated with the clever use of pointer

variables. Given the key value (including case name and

record type identifier) of any database record instance,

the record can be accessed by the system. By embedding

the key value of a record instance within the data of a

different record, then, logically related records can be

"pointed to." Network structures can be designed thusly.

526

Unlike hierarchical record relationships, the use

and maintenance of such "network emulating" pointers is

the responsibility of the database technician or user.

Consequently, we call SIR an "extended hierarchical" DBMS;

the ability to "jump" between hierarchical structures can

be programmed (note that any network structure can be

viewed as a set of trees).

The SIR language is used to manipulate and retrieve

data by making use of the relationships among records. It

can therefore be thought of as being the data manipulation

language of the DBMS. Programs written in this language

can serve as "front-ends" to the database. The

flexibility of the SIR language allows for the creation of

data retrieval procedures which meet the specific needs of

the user community.

The language incorporates features that are common

to most high level symbolic programming languages (i.e.

looping, branching, conditional statements, callable

procedures, etc). Obviously, these features are provided

in addition to record structure processing capabilities.

Within a SIR program the following statement is used

to specify the case instance which is to be the focus of

the processing:

CASE IS caseid

527

where "caseid" is the unique case name of the instance.

Once the case is defined, record instances can be

specified in a number of ways. The statement

RECORD IS rtype, (keyval)

identifies the single instance of record type "rtype”

which holds the key value "keyval" (note that keyval may

be the concatenation of a set of values).

Within the specified case, the set of all records of

type "rtype" can be processed by stating

PROCESS REC rtype

The set of siblings (of a given type) of a given parent

instance can be processed via

PROCESS REC rtype, WITH (sortidlist)

Where "sortidlist" is the value of the key of the parent

528

record.

Consider, for example, that two records are related

hierarchically such that the sort id of the superordinate

record is MKEY 1,M and the sort id of the subordinate

record type (rtype) is "KEY 1, KEY2." In order to process

the set of siblings which belong to the instance of the

first record type which has the current value of KEY1 as

its key, we need only state the following:

PROCESS REC rtype WITH (KEY1)

Alternatively, if we wish to specify the single

instance of the latter record type which has the

concatenation of the current values of KEY1, KEY2 as its

key, we should state

RECORD IS rtype, (KEY1, KEY2)

529

Each of the above record (or case) definition

formats is called a "block header;" it indicates the start

of the appropriate record (case) "processing block." The

terminus of a processing block is indicated by the

presence of a matching END statement (e.g. END CASE IS,

END PROCESS REC). All program statements and variable

references which lie within a block refer to the records

(case) defined by the block header. With proper nesting

of processing blocks, complex record structures can be

processed. Statement indentation will be used to clarify

the nesting of processing blocks within SIR routines.

Both the clarity and the flexibility of SIR programs

can be increased through the use of procedures and

substitution parameters. In SIR, a procedure is a named

set of statements which may be "called" from within a SIR

program. When a CALL statement is encountered during the

execution of a program, the statements which form the

procedure are directly inserted in place of the CALL

statement. In terms of the calling program, then, program

execution is carried out as if the statements of the

procedure exist as a part of the program.

A CALL statement can include an optional

substitution parameter list. The elements of such a list

are called "positional parameters" because their names are

530

assigned according to their position in the list.

Specifically, a parameter’s name is its sequence number.

Consider, for example, the following CALL statement:

CALL procname (paraml, param2,...paramN)

Here, each of paraml, param2,...paramN represents some

character string which is the parameter’s value. When

this CALL statement is encountered, the string value

’’paraml” is assigned parameter name ”1." Similarly,

”param2” is assigned parameter name ”2,” and so on up to

and including ’’paramN.”

Within the body of the procedure a positional

parameter name enclosed in angle brackets denotes a

reference to that parameter. Before the statements of the

procedure are inserted into the CALLing program, each

parameter reference is replaced with the appropriate

parameter value.

Let us assume that the statement

CALL PR0C1 (POP GT 10000, NEXT RECORD)

531

is encountered in the execution of a SIR

described above, MPOP GT 10000" is assigned

"1," while "NEXT RECORD" is assigned paramet

Let us further assume that the procedure

the following statement:

program. As

parameter name

er name "2."

PR0C1 contains

IF (*1>)

Now, each parameter reference in a statement of a

procedure is replaced with its parameter value prior to

the insertion o_f the statement into the CALLing routine.

Consequently, the inserted statement — that which is

actually executed -- is

IF (POP GT 10000) NEXT RECORD

Another form

"global parameter."

character strings, a

names by means of the

of substitution parameter is the

Global parameter values, which are

re assigned alphanumeric character

GLOBAL statement. Subsequent to the

532

assignment of a global parameter name, each parameter

reference (the parameter name enclosed in angle brackets)

within the body of a program statement is replaced by the

appropriate value. Obviously, this replacement is made

prior to the execution of the statement.

For example, consider the GLOBAL statement

GLOBAL CONDITIN = POP GT 10000/

TASK = NEXT RECORD

Here, the parameter (string) value "POP

equated to parameter name "CONDITIN,"

"NEXT RECORD" is equated to "TASK."

execution of this GLOBAL statement,

reference is replaced by the appropriate p

Thus the program statement

GT 10000"

while the va

Following

each parame

arameter val

is

lue

the

ter

ue.

IF (< CONDITIN >) *■ TASK >

would be interpreted as

IF (POP GT 10000) NEXT RECORD

533

The SIR routines discussed below rely heavily on the

use of substitution parameters. The reader who wishes

more detail about these or other aspects of SIR is

referred to [ROBI80].

System Design

The design of our GERMS implementation matches

closely the configuration detailed in chapters 11, 12, and

13. As described earlier, the design comprises two major

divisions: the system internal form, or logical database;

and the physical database. The physical database holds

the actual data records, directories, and indexes. The

system internal form holds the system’s ’’knowledge” of the

logical data structure, and ’’links” this logical structure

to the objects of the physical database.

As our example data set we will use a portion of the

aforementioned census file PL-94. The relevant GERMS

conceptual schema graph is shown in figure C.l. The

logical structure of this data set is not complex, so an

extensive description is not required here. The schema

does not happen to contain any ”IS-A-related" entity

types, but the proper treatment of such objects will

become obvious from the subsequent discussion.

FIGURE C.l

THE DATABASE CONCEPTUAL SCHEMA

535

The physical dat abase. In our SIR configuration, the

physical database utilizes four case instances and

thirteen record types. Of the thirteen record types, four

are used to hold actual census summary data. We will call

these "data record types." The nine remaining record

types are used to serve as directories and indexes. These

will be referred to as "pointer record types." More

specifically, they may be "directory types," or "index

types."

The four cases are named ’ENTITY2’, ’ENTITY4’,

’ENTITY6’, and ’ENTITY8* (the use of even integers here

occurs by coincidence). Note that each of these case

names is a string value. Single quotes are used here and

below to distinguish string values from variable names.

Each case in the physical database relates to a

specific entity type of the logical structure.

Specifically, the cases relate to the

BLOCK-GROUP/ENUMERATION-DISTRICT, COUNTY, MCD, and

TRACT/BNA entity types, respectively. Each case has

exclusive ownership of a census data bearing (vis.

pointer bearing) record type. The case ownership of

record type numbers (and type names) is as follows:

536

1. Record type 2 (BLOCK-GROUP/ENUMERATION-

DISTRICT) belongs to case 1ENTITY2'

2. Record type 4 (COUNTY) belongs to case

*ENTITY41

3. Record type 6 (MCD) belongs to case ’ENTITY6’

4. Record type 8 (TRACT/BNA) belongs to case

* ENTITY8’

Notice that the case name integer (i.e. ’ENTITYri’) is the

same as the record type number of its data record type.

Figure C.2 shows the portion of the physical

database discussed to this point. Each ellipse represents

a case instance. The case name (and associated entity

type) is contained in the ellipse. Each rectangle

represents a specific data record type. The record type

number (circled) and record type name is shown. An

undirected arc represents exclusive ownership of a record

type by a case instance.

The reader should note that the physical database

uses only four data record types, while the conceptual

schema references eight logical entity types. This

physical design is possible because the schema employs

537

FIGURE C.2

THE PHYSICAL DATABASE: CASES AND RECORD TYPES

538

"blatant logical redundancy;" more than one logical object

refers to a single physical object. This is true in the

case of the BLOCK-GROUP/ENUMERATION-DISTRICT logical

entity type and in the case of the TRACT/BNA entity type.

As described in chapter 11, the instances of the "lower

level" constituents of these "higher level" entity types

can be represented by record indexes. This technique

allows for the avoidance of physical redundancy in the

data representation.

Record type 1 (BLOCK-GROUP), type 3 (BLOCK¬

NUMBERING-AREA), type 5 (ENUMERATION-DISTRICT), and type 7

(TRACT) serve as indexes for the "lower level" entity

types. The record format for each of these pointer record

types is identical . Each such record holds a single

value: the key of the area which it represents.

Obviously, this is also the key of the record . Each

"lower level" logical entity type instance is represented

by exacly one pointer record instance, so each of these

pointer record types simply serves as a list of key values

which are of the respective logical entity type.

The value of the key of a "lower level" area

instance is the same as that of its "higher level"

counterpart (they are the same physical object). As such,

the respective pointer record and data record instances

539

have the same record keys. Every index record therefore

"points” to its appropriate data record. In this way the

database configuration supports the different views

(higher level/lower level) of the common non-redundant

data. "IS-A-related" entities can be dealt with in a

similar manner.

Figure C.3 shows the physical database as described

so far. Each hexagon (flowcharting preparation symbol)

depicts a pointer record type which is used as an index.

The directed arcs are used to magnify the "pointer aspect"

of the indexes. Note that when a record type is used as

an index, the "target" record type of the index belongs to

the same case instance.

Up to this point we have discussed eight record

types (numbered 1 through 8) of the physical database.

The remaining five record types (9 through 13) represent

the relationships of the conceptual schema; they are used

to emulate the inverted list directory structure described

in chapter 11. Inverted lists must be emulated because

SIR does not support this structure. We will see that the

technique used here serves the same purpose.

Recall from the chapter 6 description that the

purpose of a relationship directory is to "link" the

superordinate (in a geographic relationship) "entity"

540

FIGURE C.3

INDEX RECORDS

541

instance with its set of subordinate "entity” instances.

Each relationship instance represents a "one-to-many"

mapping from super ordinate to subordinate entity type.

The data structure used to represent a relationship

instance must support "downward" processing of the

involved objects.

In our SIR configuration each relationship directory

is represented by its own record type. Each directory

record instance relates to a single instance of the

subordinate entity type. Thus, a superordinate record

"points to" a number of directory records (notice that,

structurally, this is quite different from an inverted

list) .

The format of a directory record depends on whether

or not the subordinate type represents a "special case"

entity, that is, one which is accessed through special

indexes as described above. In the event that the

subordinate type does not represent a special case entity,

a directory record holds two values. The record format is

as follows:

KEY, PTR

542

Here and below, record key values are enclosed in "$"

characters.

The first record value, KEY, is the key value of the

super ordinate instance which points to the directory

record. The remaining record value, PTR (PoinTeR), is the

key of the subordinate instance which is pointed to by the

directory record. Note that the key value of the

directory record, which must be unique within the record

type, is formed by the concatination of these two values.

In the other situation, when the subordinate does

represent a special case, a directory record holds three

values. The record format is

$KEY, TYPE(string), PTR$

The meaning of KEY and PTR are as before. The

string value TYPE holds the "least abstract" entity type

name of the object pointed to. For example, if the

subordinate entity type is BLOCK-GROUP/ENUMERATION-

DISTRICT, then each entity instance is either a

BLOCK-GROUP entity or an enumeration-district entity. The

value of TYPE indicates which. "IS-A-related" entities

543

are treated similarly. Note that the key value of the

record type is formed as the concatination of these three

record values in this latter case.

Now, if we wish to access all subordinate

BLOCK-GROUP/ENUMERATION-DISTRICT instances that are

related to a given superordinate record with key value

KEY, we can state

PROCESS REC rtype, WITH (KEY)

COMPUTE NEWKEY = PTR

RECORD IS 2, NEWKEY

END RECORD IS

END PROCESS REC

where ’’rtype” is the directory record

other hand, we wish to access

ENUMERATION-DISTRICT instances that

super ordinate record with key value

replace the above first statement with

number. If, on the

all subordi nat e

are re] Lated to the

KEY, we need only

PROCESS REC rtype, WITH (KEY, 'ENUMERATION-DISTRICT')

544

Obviously, the second sort id can be specified as a string

variable name.

Note that each of these statement forms involves the

same record type since we are dealing with logical but not

physical redundancy. The latter statement places a

greater restriction on the selection of records. Thus the

records referenced in this latter format are a subset of

those referenced in the former.

Because of the flexibility of this relationship

directory technique, a number of relationships can be

represented by a single directory. This obviously reduces

greatly the storage space required for the directories.

All relationships of our example conceptual schema,

including the implied relationships, are represented by

only five directories (record types). These five

directories depict fifteen dif ferent geographic

relationships.

Figure C.4 shows the entire physical database

configuration. Each triangle depicts a directory pointer

record type. The meanings of the remaining symbols are as

before .

Some points deserve noting here. First of all, the

directory record type is "owned” (hierarchically) by the

superordinate data record type which points toward the

545

FIGURE C.4

THE FULL PHYSICAL DATABASE

546

directory. Second of all, each directory points outside

its case instance. Finally, as described previously, the

same directory is used regardless of whether or not the

superordinate or the subordinate (or both) is a ’’special

case” entity type; any case instance pair is joined by at

most one directory.

The_ system internal f orm. Under the methodology put

forth in chapter 12, the system internal form is made up

of three distinct parts. Specifically, these are the

symbol table, the schema matrix, and the pointer matrix.

In our SIR configuration each of these parts is

represented by a separate record type. These record types

are named SYMBOL, SCHEMA, and POINTER, respectively.

Every SIR record instance must be linked to a single

case instance. In the design described here all instances

of these three record types belong to the single case

'IFORM’ (Internal FORM). This is illustrated in

figure C. 5. Each of the three record types is assigned a

unique record number, but these numbers are not pertinent

to our discussion.

There is eactly one record instance of type SYMBOL

for each entity type of the conceptual schema. Thus, in

our example system, there are eight SYMBOL records.

547

FIGURE C.5

THE SYSTEM INTERNAL FORM

5M8

A SYMBOL record holds three values. The format is

$ENAME(string)$, SEQNO, RECNO

ENAME (Entity NAME) is a string value which is the

standard GERMS name of the entity type to which the record

relates. ENAME is the record key so, given an entity type

name, the system can go directly to the proper "row" of

the ’’symbol table.”

The unique second value, SEQNO (SEQuence Number), is

the sequence number of the entity type represented by the

record. In the example discussed here the sequence

numbers range from 1 through 8. The third value, RECNO

(RECord Number), is the record number in which the data

for the entity type is stored in the physical database.

These values need not be unique within the record type

since our physical storage methodology does not employ

physical redundancy in representing logical redundancy.

The range of possible RECNO values is the same as that of

SEQNO values.

Figure C.6 shows the eight SYMBOL record type

instances which relate to our example database. Again,

”$” characters enclose the record key. When considering

549

this figure in conjunction with the previously described

physical database configuration, the rationale behind our

choice of physical database record type numbers becomes

obvious (refer back to figure C.3).

The value of SEQNO for an entity type denotes the

record type which is the ’’first step” in accessing the

data for the entity type. Thus, if the data for an entity

type is indexed (e.g. TRACT), then SEQNO ’’points” to the

appropriate index record type (i.e. record type 7). If,

on the other hand, the data for an entity type is not

indexed (e.g. TRACT/BNA), then SEQNO "points” directly to

the data record type (record type 8).

The value of RECNO for an entity type denotes the

record type which is the "final step" in accessing the

data for the entity type. This is, in all cases, a data

(vis. pointer) record type. It should be noted that only

in the situation of "special case" entity types are the

value of SEQNO and RECNO unequal. Consequently, the

logical result of

IF (RECNO NE SEQNO)

can be used to determine whether an index is to be

SY
M

B
O

L
R

EC
O

R
D

T
Y

PE

IN
ST

A
N

C
E

S

o

<T>

OSS

551

processed.

Bef o re a SIR reco rd can be ac cess ed , the single c ase

in sta nee of which th e record i s a member m ust be made

"c ur r ent." In our phy sical dat ab ase design each case

in sta nee hold s only one data r ecor d type. The index

re cor d typ e(s) which po int to the d at a records ■, and the

di r ec tor y r ec ord type s which a re poi nted to by the d at a

re cor d s ar e members of th] is same c ase . The problem is

th at the syst em must a ccess the pr oper case be fore r ecord

pr oce ssing can begin. Thi Is probl em is easily solved by

ma kin g use of informati on contain ed in the SYMBOL rec ord s.

Recall that if the data relating to an entity type

are stored in record type ”i,” then the name of the case

in which the data records are stored is string value

’ENTITYi’. Recall also that, for any entity type, the

record type number in which its data are stored is held as

the integer value of the variable RECNO of the appropriate

SYMBOL record .

When processing a SYMBOL record, then, the

appropriate case name can be stored in variable _CASENAME

as follows:

COMPUTE CASENAME = ENTITY' + (FORMAT (RECNO, 1))

552

This FORMAT function specification converts the first

function argument to a single character string

representation of its integer value. Thus, if RECNO holds

the value "i ," CASENAME is loaded with string value

’ENTITYi’.

Following this computation, the appropriate case can

be made current with the statement

CASE IS CASENAME

SIR does not support the use of matrixes, but

"matrix-type” operations can be simulated using records

and variables. This technique will be used to emulate

operations on the schema "matrix” and the pointer "matrix"

as detailed in chapter 12.

Recall that, when the conceptual schema involves N

entity types, the internal form schema matrix is of

dimension N x N. In our example here the schema deals

with eight distinct logical entity types, so we must

represent an 8 x 8 matrix. Each matrix row is depicted by

a separate record instance. Therefore, record type SCHEMA

holds exactly eight record instances.

553

Given a row-column index pair (i.e. "i,j" of

SCHEMA(i,j)) we must be able to access the appropriate

matrix element. With our record structure the first step

in this process is to access the single record which

corresponds to row i of the matrix. Each matrix row

corresponds to a specific logical entity type which, in

turn, corresponds (via the symbol table) to a specific

sequence number (SEQNO). If this sequence number is

defined as the record key, then a matrix record instance

can be directly accessed through specification of its

entity type number. In order to maintain consistency of

the meaning of variable names in our internal form

structure, this key will be named SEQNO.

As for matrix columns, the SCHEMA record type

defines eight non-key values; one for each logical entity

type. Thus, each record instance holds a total of nine

(in general N + 1) values. The record format is as

follows:

$SEQN0$, REL1, REL2, REL3...REL8

554

For any SCHEMA record instance with key value i, the

position "RELj" (RELationship j) relates to the "i,j"

element of the internal form schema matrix [1]. SIR

provides a "shorthand” method of specifying a "matrix

column." Specifically, in the situation described here,

the jth "column" can be specified as

REL1 TO REL8 (j)

For any "i,j" element of the schema matrix, the

element’s value has to do with the relationship (if any)

held between logical entity type i and logical entity

type j. To review briefly:

"1" denotes CONTAINS

"2" denotes COMPRISES

"3" denotes IS-A

"4" denotes EITHER-OR

"0" denotes "otherwise involved"

"BLANK" denotes "uninvolved"

These concepts were detailed in chapter 12.

555

In many situations, for instance in verifying the

semantic integrity of a query, our system must insure that

a CONTAINS ("1") or a COMPRISES ("2") relationship holds

between a given entity type pair. The absence of one of

these relationships indicates an error.

Now, if the sequence number value of the

superordinate entity type is held in variable ROW, and the

sequence number of the subordinate entity type is held in

variable COL, then the query integrity can be verified as

follows:

RECORD IS SCHEMA (ROW)

COMPUTE RELTYPE = REL1 TO REL8 (COL)

IFNOT (RELTYPE EQ 1 OR 2) error

END RECORD IS

Note that use of this procedure demands that the ’’current”

case instance is ’IFORM’.

Figure C.7 shows the actual SCHEMA record instances

which relate to our example. All relationship instances,

including implied relationships, are shown here. A

dash (-) is used to represent the aforementioned BLANK

character. The SEQNO key value is used for the purpose of

record access only.

$S
E

Q
N

O
$

R
E

L
1

R
E

L
2

R
E

L
3

R
E

L
4

R
E

L
5

R
E

L
6

R
E

L
7

R
E

L
8

556

o o o r—H o i o i

o o o r—H o
•

1

' 1 1 CVJ o i 1 i

o 1 r-H 1 r-H rH rH

o o o i o o o O

o • ' fH ' i o

o 1 ' r—H o i t-H cvj

1 CVJ r-H o i t—H t-H

r-H cvj CO *3- LO VO r^s. co

<c
_i
CO

II

SC
H

EM
A

RE
CO

RD

IN
ST

A
N

C
E

S

557

The POINTER r ec ord type, i */hich likewise holds e ight

r eco rd in st ances , is used to support ”i matrix-t ype"

oper at ions in a similar way. Recall that the ” i,j"

el em en t of the intern al form pointer matrix dir ect s the

syst em to the r el a tionsh ip directory which represents the

r el a tionship held (if any) by the respective entit y type

pa ir •

The format o f the POINTER record type is simil ar to

that 0 f the SCHEMA type . Speci fically, the record is 1 a id

out as follows:

$SEQN0$, DIR1, DIR2, DIR3...DIR8

For any POINTER record with key v al ue i , the

posi tion " DIRj" (DIRectory j) relates to the " i »J ” element

of the inter nal form pointer matrix • In bhi s

im pi ementation said integer value is th e record 1 - ype

number of the appropriate director y r ec o rd t ype. As

be fore , a r ec ord sequence number (m atrix r ow) r elate: s to

the superordina te entity type, while the v alu e posi' tion

n umb er (ma tr ix column) relates to the s ubord ina te type •

558

If the values of the variables ROW and COL hold the

same meanings as was used above, then the following SIR

statements can be used to store the appropriate record

type number in the variable DIRECTOR:

RECORD IS POINTER (ROW)

COMPUTE DIRECTOR = DIR1 TO DIR8 (COL)

END RECORD IS

Again, the "current" case instance must be ’IFORM’.

Figure C.8 shows the actual POINTER record type

instances which relate to our example physical database.

A circled element value denotes an implied relationship

which is not shown ex piicitly in the conceptual schema

graph. The directory record type numbers which are

represented in this illustration were discussed in the

previous subsection (refer back to figure C.*J).

Note that only relationships of the CONTAINS and

COMPRISES variety are represented in the POINTER matrix

since these are the only relationship types which employ

directories in their representation. Note also that the

pointer matrix is processed only after the existence of

the relationship is verified (as discussed above).

Consequently, the system will never "see" a blank value.

$S
EQ

N
O

$
D

IR
1

D
IR

2
D

IR
3

D
IR

4
D

IR
5

D
IR

6
D

IR
7

D
IR

8

559

PO
IN

T
E

R

RE
CO

RD

IN
ST

A
N

C
E

S

560

Recapitul ation. In this section we have described a

GERMS-based database management system (DBMS) which is

implemented in SIR. SIR is an extended hierarchical (vis.

true network) database system, so the design suggested in

chapters 11 and 12 is modified slightly. In general,

though, the design described here closely matches that

proposed in the earlier chapters.

The physical database employs a number of different

record types. Each record type serves as either a ’’data

record type" or as a "pointer record type." A pointer

record type is either an "index type" or a "directory

type ."

The complex nature of directory record keys allows

for the record type to take the place of an inverted list

structure. Directory rows are not of varying lengths, but

record "sets" of varying sizes can be "pointed to" by a

single (superordin ate) data record. Thus each inverted

list element is represented by a separate directory record

in the SIR design .

Index record types are used to avoid physical

redundancy in representing the blatant logical redundancy

of "special case" entity types. The data records relating

to the set of instances of a "special case" entity type

are accessed by first processing the index record type.

561

The search is then directed to a different record type

which holds the data for that and other entity type(s).

When processing a "relationship chain,” the index

records are used at the "start" of the chain only. If

special case entities occur at "lower" chain levels, the

method of processing the directory records is affected,

howev er .

The system internal form, which is represented

entirely by members of the case instance ’IFORM’ , involves

the use of three record types: SYMBOL, SCHEMA, and

POINTER. With each of these record types there is a

one-to-one correspondence between record instances and

logical entity types of the conceptual schema. Thus, in

our example system, there are eight instances of each

t ype. Both SCHEMA records and POINTER records are

identified by their key value SEQNO. This value is the

sequence number of the single logical entity type to which

the record instance relates.

The SYMBOL records provide the link between entity

type sequence numbers and entity type names. The SYMBOL

record string key value, which is named ENAME, provides

for direct access of a SYMBOL record upon specification of

an entity type name. Since every SYMBOL record holds the

entity sequence number upon which SCHEMA and POINTER

562

records are keyed, the system can subsequently access

directly the respective record of either of these types.

Each "column” position of the "matrix row" is likewise

related to an entity sequence number.

The SYMBOL records also link the system internal

form representation to a portion of the physical database.

Every one of these records details the storage location

and storage configuration (i.e. indexed/not indexed) of

its entity type’s data. If the entity's data is indexed,

then SEQNO points to the index, while RECNO points to the

actual data. Otherwise, both of these variables point

directly to the data records.

The remainder of the logical --> physical link is

achieved through the use of the POINTER records. Except

for the record key, every non-blank value of a POINTER

record is directed towards a relationship directory which

exists within the physical database. The specific

relationship represented here is indicated by the

row-column position of the pointer value. There are many

more pointer values than there are relationship

directories since a single directory often represents a

number of relationships.

563

With the exception of providing names to entity

types, which is the duty of the SYMBOL records, the set of

SCHEMA records holds the entire information content of the

conceptual schema. The explicit as well as the implicit

relationships of the schema are represented unambiguously.

This representation is the basis of the system’s

’’knowledge” of the conceptual schema structure. By

processing these records the system can ’’understand” and

validate the user’s references to geographic

relationships.

System So ftwar e

In this sec ti on we il lustrate how SIR program s can

be used to per fo rm GERMS -based operat ion s on the system

whose de sign was de sc r ibed above. The i n te nt here is to

de scribe the basic log ic of a GERMS fron t-e nd — one which

ut il i ze s the system ’ s knowl edge of the GE RMS cone eptual

schema. The disc uss ion emphasizes those routines whic h

tr av er se the schema ne twor k structure; c one erns whic h are

peripher al to thi s iss ue ar e d e-emphasi zed .

564

The software described hereunder should in no way be

considered as "production code." There are a number of

reasons for this. First of all, the programs are

incomplete as individual record attributes (the actual

data values) are ignored. Also, the intricacies of how

the system output is formed is not covered; nor is the

diagnosing and processing of errors.

Second of all, compact software segments have been

deliberately expanded to improve clarity. Thus, rather

than looping through a set of statements repeatedly, the

statements of the loop are repeated so that the iterations

are shown explicitly. We feel that this technique better

serves the illustrative purpose of this section.

Before our system can be implemented, a basal

problem must be faced. It is obvious that our

implementation should emphasize flexibility in its design.

That is, the system user should be allowed to reference

any "legitimate" set of entity types in a query. This

requires that record references (i.e. PROCESS REC, RECORD

IS) be allowed to be "variable" in nature.

The problem is that the use of variables for record

type names or record type numbers is not allowed in these

references. Thus, SIR will not permit the following:

COMPUTE RECTYPE = 3

PROCESS REC RECTYPE

565

The only acceptable form is

PROCESS REC 3

Note that the use of str in g v ar iabl es for rec ord t ype

n ame s i s 1 ikewise not permi tted •

One solution, wh ich i s c 1 ear1y too c1 urn s y to b e

acce ptable , is to inc 1 ude SIR statern ents to alio w for all

po ss ible c ombin ations of r ecord cit ations. Th e pr o per

stat ement would be sel ec ted through the proces si ng o f a

complex se t of conditi onal bran ching statements.

An acceptable al t erna t ive is found thro ugh

empl oymen t of a "record typ e sub stitution pr oc ed ur e."

Such a procedure, which we c all NAMESET, u se s b oth

po si tional and global substi tution par ameter s (see the

first sect ion of this appendix) •

The following is a sourc e list of our pr oced ur e

NAMESET:

00100 COMMENT
00110 COMMENT
00120
00130
001 40
00150
001 60

Procedure NAMESET
This procedure assigns a numeric
value to a global parameter name.
The numeric value assigned is that of
the variable whose name is passed as
positional parameter <1>. The
global parameter name is passed as

566

00170 positional parameter <2>.

001 80
00190 COMMENT *** THIS SIR CODE IS FOR # * #
00200 *** ILLUSTRATION PURPOSES ONLY *#*
0021 0
00220 COMMENT *** NOT FOR PRODUCTION USE *# #
00230
00240 IFTHEN (<1> EQ 1)
00250 GLOBAL <2> = 1
00260 ELSEIF (<1> EQ 2)
00270 GLOBAL <2> = 2
00280 ELSEIF (<1> EQ 3)
00290

•

GLOBAL <2> =
•

3

•

•

00440

•

•

ELSEIF (<1> EQ 1 1)
00450 GLOBAL <2> = 1 1
00460 ELSEIF (<1> EQ 12)
00470 GLOBAL <2 > = 12
00480 ELSE
00490 GLOBAL <2> r 13

The procedure uses two positional parameters. The

v al ue to be taken on by the first positional parameter is

the name o f a v ar iable whose integer value relates to a

record type number. The value of the second positional

parameter is the name which is to be assigned to a global

parameter whose value is that same integer represented by

the first parameter. This rather complicated design

deserves an example.

Consider the following SIR statements:

COMPUTE TYPENO = 3

CALL NAMESET (TYPENO, RECTYPE)

567

With this CALL statement, the values assigned to the first

and to the second positional parameters are "TYPENO," and

"RECTYPE," respectively. TYPENO is a variable which holds

integer value ”3” at the time of the procedure CALL.

Given the positional parameter references in the

procedure, each conditional statement is interpreted by

SIR a s

... IF (TYPENO EQ ...

Since TYPENO holds the value ”3,” statement 00280

evaluates as "true." This causes the execution of

statement 00290 whose positional parameter reference is

replaced by the value "RECTYPE." That is:

ELSEIF (TYPENO EQ 3)

GLOBAL RECTYPE = 3

The ultimate result of calling the procedure is that the

global parameter name "RECTYPE" is equated to the

value 3 -- that very value held by the variable "TYPENO."

568

The purpose of this procedure is

the procedure CALL, each reference to

"RECTYPE" is replaced by a constan

previously handled as a variable;

constant value 3. Thus the statement

that, subsequent to

the global parameter

t value which was

in this instance the

PROCESS REC <RECTYPE>

is subsequently interpreted as

PROCESS REC 3

The procedure NAMESET, as shown above,

to handle any integer value between 1 and

These values relate to the record types of

database .

is designed

13 inclusive .

our physical

Quer y processing .

parsed by the system

this processing as

One e a user’s

, the query must

comprising two

query statement i s

be processed. We see

main tasks: quer y

569

interpretation, and data retrieval. By query

interpretation we mean that portion of query processing

which deals with the system internal form representation.

This involves verifying the integrity of the query (not

data integrity) as well as linking the logical objects

referenced in the query to their physical database

counterparts. The meaning of the data retrieval task is

obvious.

We will discuss the software related to these two

tasks separately. The query interpretation software is

discussed first. The reader is reminded that the software

presented below i_s not production code. It has been

simplified for the purpose of illustration.

The following query processing program relates to a

specific circumstance in our example system.

Specifically, we deal with a query breakdown which is

’’nested 2-deep.” Thus, if two entity types of the schema

are named ”X” and ”Y,” then we are speaking of a query of

the form "GET X BY Y.” Also, we assume that ALL entity

instances of the type X are requested.

The query interpretation routine is entered with the

assumption that the query statement is already parsed.

Furthermore, it is assumed that the name of the

superordin ate entity type ("X” in the above query

570

tempi ate)

the name

stored in

The

resides in string variable "XENT." Similarly,

of the subordinate entity type ("YM above) is

string variable "YENT."

source list is as follows:

00100
0011 0
00120
00130
001 40
001 50
00160
00170
00180
001 90
00200
0021 0
00220
00230
00240
00250
00260
00270
00280
00290
00300
0031 0
00320
00330
00340
00350
00360
00370
00380
00390
00400
0041 0
00420
00430
00440
00450
00460
00470

COMMENT This program segment interprets a query
breakdown which is nested "2-deep".
It is assumed that the name of the
superordinate entity type is stored in
string variable "XENT", and that the
name of the subordinate entity type
is stored in string variable "YENT."
All instances of the superordinate
entity type are processed.

COMMENT *** THIS SIR CODE IS FOR ***
*** ILLUSTRATION PURPOSES ONLY ***

COMMENT *** NOT FOR PRODUCTION USE ***

COMMENT process internal form logical structure
CASE IS * IFORM *
. SET SPECIAL1, SPECIAL2 (’FALSE’)
. COMMENT go to proper row of symbol table

for superordinate entity type
. RECORD IS SYMBOL (XENT)

COMPUTE SUPCASE = 'ENTITY'*(FORMAT(REC NO, 1))
COMPUTE ROW = SEQNO
CALL NAMESET (SEQNO, SUPEN0)

. COMMENT check if entity type is a
"special case"

IFTHEN (RECNO NE SEQNO)
COMPUTE SPECIAL1 = ’TRUE'
CALL NAMESET (RECNO, SUPRNO)

ENDIF
. END RECORD IS
. COMMENT go to proper row of symbol table

for subordinate entity type
. RECORD IS SYMBOL (YENT)

COMPUTE SUBCASE = ’ENTITY'+(FORMAT(RECNO,1))
COMPUTE COL = SEQNO
CALL NAMESET (RECNO, SUBRNO)

. COMMENT check if entity type is a

571

00480 ’’special case”

00490 . IFTHEN (RECNO NE SEQNO)
00500 . COMPUTE SPECIAL2 = ’TRUE’
00510 . COMPUTE SUBENAME = ENAME
00520 . ENDIF
00530 . END RECORD IS
00540 . COMMENT inspect schema element for
00550 proper relationship type, if not,
00560 call error routine
00570 . RECORD IS SCHEMA, (ROW)
00580 . COMPUTE RELTYPE = REL1 TO REL8 (COL)
00590 . IFNOT (RELTYPE EQ 1 OR 2) CALL RONGREL
00600 . END RECORD IS
00610 . COMMENT determine directory location
00620 from pointer matrix
00630 . RECORD IS POINTER, (ROW)
00640 . COMPUTE DIRECTOR = DIR1 TO DIR8 (COL)
00650 . CALL NAMESET (DIRECTOR, DIRRNO)
00660 . END RECORD IS
00670 . COMMENT complete processing of internal
00680 form
00690 END CASE IS

Query interpretati on d eal s with the system i nternal

form , so the internal form case * IFORM’ is made ”c urren t”

at sta tement 00260 . The fir st t ask to be performed is to

retrieve the req uir ed in fo rmat ion from the symbol table .

Sine e the SYMBOL r ecord s are ” ke yed” on the entity type

n ame , statement 00300 d ir ect s the system to that single

’’table row” which rel ate s to the superordin ate entity

type .

At statement 0031 0 we constr uc t the name o f that

case instance of the phys ic al d at abase which rel ates to

the superordinate entity typ e . This case name i s then

572

stored in string variable SUPCASE (SUPerordinate CASE).

The entity type sequence number is stored in variable ROW,

and the record type number which relates to this sequence

number is equated to global variable name "SUPENO"

(SUPerordinate Entity Number) at statement 00330.

Now, if the entity type is not a "special case”

entity, this record type holds the superordinate entity

data. Otherwise, the record type relates to index records

and the data record type must be derived. Statements

00340 through 00390 test accordingly and perform this task

if appropriate. In the event that the entity is a special

case type, the flag variable SPECIAL1 is set to ’TRUE,’

and the global variable SUPRNO (SUPerordinate Record

Number) is equated to the proper record type.

Statements 00410 through 00530 process the

subordinate entity type in a similar manner. The sequence

number of this entity type is stored in variable COL(umn).

Note that the issue of whether or not the data is indexed

is of no concern here; only the data records need be

accessed .

The "special case status" of the entity does affect

the processing of the directory records, however. In the

event that the entity is a special case type, the flag

variable SPECIAL2 is set accordingly. Also, the

573

subordinate entity type name (record string variable

ENAME) is stored in string variable SUBENAME (SUBordinate

Entity NAME) .

Statements 005^0 through 00600 verify the integrity

of query structure by insuring that a "1” or a "2” resides

in the proper row-column position of the SCHEMA "matrix.”

This position is determined by the values of the variables

ROW and COL which relate to the sequence numbers of the

superordinate and the subordinate entity types,

respectively.

If a proper schema value is not found (i.e.

statement 00590 evaluates as "true"), then a CONTAINS or a

COMPRISES relationship does not hold, in the proper

direction, between the entity type pair in question. This

situation triggers the execution of the procedure R0NGREL

(wRONG RELationship). This procedure is not described

here, but its purpose is obvious -- it causes the query to

be rejected.

Next, if the query is found to be valid, the

location of the appropriate relationship directory is

located. Statements 00610 through 00660 accomplish this.

The type number of the directory record type is stored in

the appropriate row-column position of the POINTER

"matrix." Once located, this type number is equated to

574

global parameter name DIRRNO (DIRectory Record Number) at

statement 00650.

Finally, statement 00690 indicates that the system

internal form (case ’IF0RM’) is no longer needed for the

processing of this query. We have extracted all of the

information that is required to perform the query

interpretation phase of query processing.

Before we begin our discussion of the data retrieval

phase of query processing, we will add that the extensions

that are required to allow the above program to handle

”n-deep nested” queries are minimal. Essentially, those

statements which have to do with the subordinate type and

with the relationship (i.e. statements 00410 through

00660) are placed in a loop which is processed once for

each level of nesting (obviously, some means of

differentiating the variable names is also required) .

This feature is omitted here for the sake of simplicity.

The task of data retrieval demands that the record

processing blocks be nested within one another. In the

two-entity query discussed here (X BY Y) , the subordinate

data record processing block (record type SUBRNO) is

nested within the directory record processing block (type

DIRRNO). This, in turn, is nested within the

superordinate index and/or data record processing block

575

(types SUPENO, SUPRNO). The processing block structure of

"deeper nested" query formats is obvious.

The source list of the data retrieval program

segment is as follows:

00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
0081 0
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01 01 0
01020
01030
01040
01050
01060
01070

COMMENT This program segment performs
the data retrieval portion of query
processing. Terms enclosed in "< >"
are substituted with record type
numbers before processing.

COMMENT *** THIS SIR CODE IS FOR ***
*** ILLUSTRATION PURPOSES ONLY ***

COMMENT *** NOT FOR PRODUCTION USE ***

CALL *
COMMENT begin with superordinate entity
CASE IS SUPCASE
. PROCESS REC <SUPEN0>

COMPUTE KEY1 = KEY
COMMENT check if entity type is a

"special case"
IFTHEN (SPECIAL 1 EQ ’TRUE’)

COMMENT if yes, move to and
process data record

RECORD IS <SUPRN0>, (KEY 1)
CALL WRITPROC

END RECORD IS
ELSE

COMMENT otherwise, process data record
CALL WRITPROC

ENDIF
COMMENT check if subordinate entity is a

"special case"
IFTHEN (SPECIAL2 EQ ’TRUE’)

. COMMENT if yes, process reduced set of
directory siblings

PROCESS REC <DIRRN0>, WITH (KEY 1, SUBENAME)
COMPUTE KEY2 = PTR
COMMENT follow directory pointer
CASE IS SUBCASE

RECORD IS <SUBRN0>, (KEY2)

576

01080 . CALL WRITPROC

01090
011 00
01 1 10
01120
01130
01140
01150
01160
01 170
011 80
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280

END RECORD IS
END CASE IS

END PROCESS REC
ELSE

. COMMENT otherwise, process entire set
of directory siblings

PROCESS REC <DIRRN0>, WITH (KEY1)
COMPUTE KEY2 = PTR

. COMMENT follow directory pointer
CASE IS SUBCASE

RECORD IS <SUBRNO>, (KEY2)
CALL WRITPROC

END RECORD IS
END CASE IS

END PROCESS REC
ENDIF

. END PROCESS REC

. COMMENT complete external superordinate
entity block

END CASE IS

The first operation, statement 00830, directs the

system to the physical database (vis. system internal

form). This statement makes current that case instance

which relates to the super ordinate entity type. Next, the

’’outside” record processing block, that which relates to

this same superordinate entity, is entered.

The conditional block which comprises statements

00860 through 00970 dictates that the appropriate action

be taken depending on whether or not the entity type in

question is a ’’special case.” If the entity type i_s not a

special case, then the current record is a data record and

can be processed directly.

577

If, on the other hand, it i_s a special case, then

the current record is an index record; its data record

counterpart must be made current (statement 00910) before

processing is carried out.

The processing of a data record involves the

formatting and writing of the requested record attributes

to the output file. This task is peripheral to our

concerns here, so we will assume that the procedure

WRITPROC (WRITe PROCedure) performs this job properly.

This procedure is not discussed further.

The processing of subordinate data records is

affected by the processing of directory records, which in

turn is affected by the "special case status” of the

subordinate entity type. Consequently, these two nested

processing blocks are themselves nested within a

two-branch conditional block (statements 00980 through

- 01240).

If the subordinate entity type i_s a special case

entity, then a reduced set of directory siblings is

considered. This reduced set is specified by stating two

sort variables; besides the key of the superordinate

entity instance, the subordinate entity type name is

matched (see statement 01030).

578

For each directory record considered, the pointer

value (variable PTR) is "followed." First, however, that

case instance which relates to the subordinate entity type

is made current (statement 01060). Following this, the

subordinate data record which is pointed to by the

directory record is processed. Again, the procedure

WRITPRQC accomplishes this.

If the subordinate entity type i_s not a special case

type, the basic steps remain the same — the only

difference being that a larger set of directory entries is

processed (compare statement 01150 with statement 01030).

These steps relate to program statements 01130 through

01230.

Statement 01250 signals the logical terminus of the

"external" (superordinate) record processing block.

Following the exit from this block the superordinate

entity case instance need no longer be considered. This

is represented by statement 01280 which completes the

query processing program.

A semantic integrity checker. In chapter 13 we

described the logic of a subsystem which is used to verify

the integrity of the objects of the physical database.

Sets of data are aggregated and the resulting values

579

compared to those of related data. Based on the meaning

of the data there can be derived various relations (e.g.

EQ, GT) which should hold between the compared values. We

call these semantic relations since they are derived from

the data meaning. The subsystem is called a semantic

integrity checker for a similar reason.

In the following paragraphs we show how the semantic

integrity checker can be programmed to serve as a useful

accessory to our SIR implementation of the GERMS-based

system. The logic of the programs presented here varies

slightly from that presented earlier. The differences are

due to the idiosyncrasies of SIR. For the most part,

however, the programs adhere to the earlier described

structure.

The semantic integrity checker comprises a main

routine and a number of CALLable procedures, some of which

are not described in detail. When the main routine is

executed, the integrity of the entire physical database is

checked. Admittedly, this checking constitutes an

expensive undertaking. The relatively static nature of

geopolitical statistical data insures that the task need

not be performed often, however.

580

The main routine, whose structure is hardly complex,

is as follows:

00100
001 10
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390

RETRIEVAL
COMMENT This program is the main routine

of a semantic integrity checker.
Each schema element is inspected
for the presence of a CONTAINS or
a COMPRISES relationship. Upon
finding such, the integrity of the
respective data objects is verified.

COMMENT *** THIS SIR CODE IS FOR ***
*** ILLUSTRATION PURPOSES ONLY ***

COMMENT *** NOT FOR PRODUCTION USE ***

COMMENT process internal form logical structure
CASE IS ’IFORM*
. COMMENT process each ’’row" of schema "matrix”
. PROCESS REC SCHEMA

COMPUTE ROW = SEQNO
. COMMENT loop over matrix "columns"

FOR COL =1,8
COMPUTE RELTYPE = REL1 TO REL8 (COL)
COMMENT inspect relationship type and

trigger appropriate action
IF (RELTYPE EQ 1 OR 2) CALL SUMCHEK

END FOR
. END PROCESS REC
. COMMENT complete processing of internal form
END CASE IS
END RETRIEVAL

This program directs the system through a "row-wise"

scan of the internal form schema representation. The

"current" case instance is therefore ’IFORM,’ as specified

in statement 00250. The major portion of the program is

581

nested within a SCHEMA record type processing block

(statements 00260 through 00360). Every SCHEMA record is

considered in a separate iteration through this block.

For each SCHEMA record (matrix row), every row

element is considered in a separate iteration of a ’’column

loop” (statements 00300 through 00350). The integer value

of the schema element, which describes the nature of the

relationship (if any) held between the respective entity

type pair, is stored in variable RELTYPE (RELationship

TYPE) .

Now, if the schema element value is a ”1” or a ”2,"

then the respective entity type pair is linked by a

CONTAINS, or by a COMPRISES relationship, respectively.

If such is the case, the data integrity can be verified.

The procedure SUMCHEK, which performs this

verification, is CALLed in the event that one of these

relationship types is found (statement 003^0). Otherwise,

the "next” schema element is considered. When each column

of each row of the matrix is inspected, and the proper

action taken, the program terminates.

The logic of procedure SUMCHEK is quite similar to

that of the query processing software described earlier

(data values are compared rather then printed). For this

reason our discussion will concentrate, for the most part,

on those features which are unique to SUMCHEK.

582

The following is a source list of the procedure.

00100
00110
00120
001 30
00140
00150
001 60
00170
001 80
001 90
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530

COMMENT Procedure SUMCHEK
COMMENT This procedure is CALLed in

the event that a CONTAINS or
a COMPRISES relationship is
detected in the schema matrix.
The purpose is to verify that
the proper semantic relations
hold among the related data
ob j ects.

COMMENT *** THIS SIR CODE IS FOR ***
*** ILLUSTRATION PURPOSES ONLY ***

COMMENT *** NOT FOR PRODUCTION USE ***

. COMMENT continue processing internal form
case ’IF0RM’

. SET SPECIAL1, SPECIAL2 (’FALSE’)

. SET FOUND (0)

. COMMENT search symbol "table” until both
row and column records are found

. PROCESS REC SYMBOL
IF (FOUND EQ 2) EXIT RECORD
COMMENT check if record relates to

schema row
IFTHEN (SEQNO EQ ROW)

COMMENT if yes, prepare for processing
of superordin ate records

COMPUTE SUPCASE = 'ENTITY’ + (FORMAT(RECNO, 1))
CALL NAMESET (SEQNO, SUPENO)
COMMENT check if entity type is a

"special case"
IFTHEN (RECNO NE SEQNO)

COMPUTE SPECIAL1 = ’TRUE'
CALL NAMESET (RECNO, SUPRNO)

ENDIF
COMMENT record that a match has been

found and discard this record
COMPUTE FOUND = FOUND+1
NEXT RECORD

ENDIF
COMMENT check if record relates to schema

column
IFTHEN (SEQNO EQ COL)

583

00540 COMMENT if yes, prepare for processing

00550
00560 .
00570 .
00580 .
00590
00600 .
0061 0 .
00620 .
00630 .
00640 .
00650 .
00660 .
00670 .
00680 .
00690
00700 .
00710 .
00720 .
00730 .
00740 .
00750
00760
00770 .
00780 .
00790 .
00800 .
0081 0
00820 .
00830 .
00840
00850 .
00860 .
00870 .
00880 .
00890 .
00900 .
00910 .
00920 .
00930
00940 .
00950 .
00960
00970 .
00980 .
00990 .
01000 .
01010 .

of subordinate entity records
COMPUTE SUBCASE = ’ENTITY’+(FORMAT(REC NO, 1))
CALL NAMESET (RECN0, SUBRNO)
COMMENT check if entity type is a

"special case"
IFTHEN (R EC NO NE SEQNO)

COMPUTE SPECIAL2 = ’TRUE’
COMPUTE SUBENAME = ENAME

ENDIF
COMMENT record that a match was found
COMPUTE FOUND = FOUND+1

ENDIF
END PROCESS REC
COMMENT determine directory location from

pointer matrix
RECORD IS POINTER, (ROW)

COMPUTE DIRECTOR = DIR1 TO DIR8 (COL)
CALL NAMESET (DIRECTOR, DIRRNO)

END RECORD IS
COMMENT move to physical database and

begin with superordinate entity
type

CASE IS SUPCASE
PROCESS REC <SUPEN0>

COMPUTE KEY1 = KEY
COMMENT check if entity type is a

"special case"
IFTHEN (SPECIAL1 EQ ’TRUE’)

COMMENT if yes, move to and process
data records

RECORD IS <SUPRNO>, (KEY 1)
MOVE VARS ALL

END RECORD IS
ELSE

COMMENT otherwise, process data record
MOVE VARS ALL

ENDIF
COMMENT check if subordinate entity is a

"special case"
IFTHEN (SPECIAL2 EQ ’TRUE’)

COMMENT if yes, process reduced set of
directory siblings

PROCESS REC <DIRRNO>, WITH (KEY 1, SUBENAME)
COMPUTE KEY2 = PTR
COMMENT follow directory pointer
CASE IS SUBCASE

RECORD IS <SUBRN0>, (KEY2)

584

01020 CALL AGGREGAT

01 030
01040
01050
01060
01 070
01080
01 090
01100
01 1 10
01120
01 1 30
01 1 40
01150
01160
01170
011 80
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280

END RECORD IS
END CASE IS

END PROCESS REC
ELSE

. COMMENT otherwise, process entire set of
directory records

PROCESS REC <DIRRN0>, WITH (KEY 1)
COMPUTE KEY2 = PTR

. COMMENT follow directory pointer
CASE IS SUBCASE

RECORD IS <SUBRNO>, (KEY2)
CALL AGGREGAT

END RECORD IS
END CASE IS

END PROCESS REC
ENDIF

. COMMENT verify semantic relation
depending on type of relationship

IFTHEN (RELTYPE EQ 1)
CALL CONTCHK

ELSE
CALL COMPCHK

ENDIF
END PROCESS REC

. COMMENT exit physical database

. END CASE IS

Note that the entire procedure is nested within the

fIFORM* case processing block of the CALLing program (main

routine). This is despite the fact that case instances of

the physical database are considered.

As the procedure begins we continue to process the

internal form representation. This is required since

additional information about the physical database must be

derived from the SYMBOL "table,” and from the POINTER

"matr ix ."

585

One minor complexity is that the program holds

entity type sequence numbers (variables ROW, COL) which

relate to the row-column pair of a schema element, but the

SYMBOL records are keyed on entity type n am e s.

Consequently, the SYMBOL records must be inspected one at

a time until the proper two records are found. This task

relates to the SYMBOL record type processing block which

comprises statements 00290 through 00670.

The variable FOUND is used to hold the count of

SYMBOL record ’’hits” which have been encountered. When

this count reaches 2 (both row and column data found), as

detected at statement 00320, the SYMBOL table processing

is terminated .

The conditional block which comprises statements

00330 through 00500 deals with the situation where th'e

current SYMBOL record relates to the schema row in

question. When such a ’’match” is found, the record is

that of the superordinate entity type in the CONTAINS or

COMPRISES relationship being verified.

The information in the SYMBOL record is used to

prepare for processing of the physical database as was

described before. That is, (1) the superordinate case

instance name is constructed, and (2) the superordinate

index and/or data record type numbers are prepared. Note

586

that statement 00490 signals that the "next" SYMBOL record

can be considered as soon as the "row relevant"

information has been derived. This is because a single

SYMBOL record will not "match” both the schema row and the

schema column -- an entity type is never related to

itself .

The conditional block made up of statements 00510

through 00610 serves a similar purpose for the instance

where the current SYMBOL record relates to the schema

column in question. In this block the processing of the

subordinate data (of the physical database) is prepared

for. Thus, (1) the name of the subordinate case instance

is constructed, and (2) the subordinate data record type

number is prepared. Also, if the type is a special case,

its name is stored for later use.

Following completion of SYMBOL "table" processing,

the only information which remains to be taken from the

internal form representation has to do with locating the

proper relationship directory records. Recall that the

location is stored as the integer value of an element of

the POINTER "matrix." Statements 00680 through 00730

recover this value and prepare the directory record type

number accordingly.

587

At this point, processing is directed towards the

physical database; the system internal form is

(temporarily) discarded. The record processing blocks

which deal with the physical database hold the same nested

structure as do the blocks of the aforementioned query

processing data retrieval program. Thus, the subordinate

entity record processing block is nested within the

directory processing block which, in turn, is nested

within the superordinate entity record processing block.

The reader will notice that the "intra-block” logic is

also very much the same.

The external record processing block involves all

record instances relating to the superordinate entity type

(record type SUPENO in our software). For each of these

instances the variable KEY1 is equated to the record key

value at statement 00790. If this record type is used as

an index , as determined at statement 00820, then the

respective data record is made current before actual data

items are considered. Otherwise, the initial record is

processed as is (it is a data record). Statements 00830

through 00870 deal with the former situation.

00980 and 00900 deal with the latter.

Statements

588

Processing here involves the use of the MOVE VARS

statement. This statement instructs that all data values

be ’’moved” to a buffer area so that they may be referenced

later. It is these values which are to be compared with

the aggregation of their subordinate counterparts.

For each superordinate data record processed, the

set of directory records (record type DIRRNO) which are

pointed to _i_n the r elation ship must be considered. The

size of this set depends on the "special case status" of

the subordinate entity type in question. This status is

determined by conditional statement 00940.

If the entity type is a special case, the directory

records are a subset of those considered in the

alternative situation. The record sets which relate to

these two situations are defined by statements 00970 and

01090, respectively. Note that in the former case a

second sort variable, the subordinate entity type name, is

specified.

Regardless of the special case status, the method of

processing a directory record and the subordinate data

record which it points to is the same. First, the

directory pointer is followed. This demands that a new

case instance be made current (e.g. statement 01120).

The single data record which is pointed to is an instance

of the subordinate record type SUBRNO.

589

Next, after said record instance is accessed, the

procedure AGGREGAT is called. This procedure is not

detailed herein, but its function should be apparent from

its name. Essentially, the procedure forms the aggregate

of each individual record data item. The aggregation is

performed "across” the subordinate data records of a

relationship instance, but "within" the processing block

of the superordinate entity. Therefore, following the

completion of the "internal" (directory and subordinate)

record processing blocks, the intra-relationship aggregate

values are available to the system. Thus, the only task

that remains is to verify that the proper semantic

relations exist.

Substantiation of the semantic relations is

performed by SUMCHEK statements 01190 through 01250.

Recall that the invocation of this procedure is triggered

by the discovery that a schema relationship type, as

represented by the integer value of variable RELTYPE,

relates to a CONTAINS or to a COMPRISES relationship

(integer value "1" or "2," respectively). Now, depending

on the relationship type being checked, a certain semantic

relation must be verified. Specifically, in the case of a

COMPRISES relationship, the aggregation of the subordinate

data values should exactly equal its superordinate

590

counterpart. In the CONTAINS situation on the other hand,

the aggr egate value should b e compared v ia a less than or

equal to r el at ion .

Th e relationship type is determine d by coi nd itional

statement 01210. If the r elationship is of the CONTAINS

v ariety (RELTYPE = 1) , then procedure CONTCHK (CONTains

CHecK) i s called. Other wise , procedure COMPCHK (COMPr i ses

CHecK) i s c al 1 ed . The se " c hecking" pr ocedures are not

described in deta il becau se their pur pose and str ucture

are obv ious. It i s in these procedures that the

superord inate data V al ues which were pr ev iousl y "moved”

are util ized . In the ev en t that the proper sern antic

r elation is found to be 1acking, an appropri ate error

message is displayed.

We will reite rate tha t the chec king of sem antic

r elation s occurs within the superordinate r ecord

processi ng block. The checking therefc ire relat e s to a

single r elationship i in stance •

Th e nadir of the superordinate processi ng block

occur s at statement 01260 i. At this point the physic al

d atab ase is no long er of con cern and is ther efor e exited

(statement 01280). This marks the end of the procedure,

so the initial CALLing routine is returned to.

591

The internal form representation case instance is

again made current, and the inspection of the schema

elements continues as before. After each schema element

is considered, and the appropriate checks made, the main

semantic integrity routine terminates.

FOOTNOTES

Alternatively, the entire matrix can be
represented within a single record which holds
sixty-four (N*N) values, not including the record
key. If the matrix is represented in row-major
order, then matrix element Mi,j" will reside at
value position (N * (i - 1) + j). Thus, given any
matrix row-column index pair, the appropriate
element value can be located. If the first record
value holds the record key, then the base address
should be adjusted by adding "1" to this formula.

BIBLIOGRAPHY

[ABRI74]

[ADIB76]

[ASHB64]

[BACH79]

[BALD7 9]

[BALZ791

[BEER78]

Abrial, J. R. "Data
Management (Klimbie,
K. L. , eds .) , pp.
Amsterdam, 1974.

semantics," in Data Base
J. W. , and Koffeman,

1-59. North-Holland,

Adiba, M., Delobel, C., and Leonard, M. "A
unified approach for modeling data in logical
data base design," in Modeling in Data Base
Management Systems (Nijssen, G. M., ed .) , pp.
311-338- North-Holland, Amsterdam, 1976.

Ashby, W. R. An Introduction to Cybernetics.
Methuen & Co. Ltd., London, 1964.

Bachman, C. W., and Daya, M. "The role concept
in data models," Pr oc. 3rd Int. Conf. Very
Large Data Bases, ppl 464-476, 1977-

Baldissera, C., Ceri, S., Pelagatti, G., and
Bracchi, G. "Interactive specification and
formal verification of user’s views in data
base design," Proc. 5th Int, Conf. Very Large
Data Bases, pp. 262-272, 1979-

Balzer, R. "An implementation methodology for
semantic data base models," Proc. E-R
Conference pp. 415-425, 1979-

Beeri, C., Bernstein, P. A., and Goodman, N.
"A sophisticate’s introduction to database
normalization theory," Proc . 4th Int. Conf.
Very Large Data Bases, pp. 113-1247 1978.

593

594

[BELL81]

[BENC76]

[BERN81]

[BILL78]

[B0NC81]

[BORK78]

[BRAC79]

[BRAY82]

Bell, J. R. "Future directions in comput¬
ing," Computer Design. 20, pp. 95-102, 1981.

Benci, E. , Bodart, F., Bogaert, H., and
Cabanes, A. "Concepts for the design of a
conceptual schema," in Modeling in Data Base
Management Systems (Nijssen, G.~~M., ed .) , pp .
181-200. North-Holland , Amsterdam, 1976.

Bernstein, P. A., and Goodman, N. "Concur¬
rency control in distributed database
systems," ACM Comp. Surveys. 13, pp. 185-222,
1981.

Biller, H. , and Neuhold , E. J. "Semantics of
data bases: The semantics of data models,"
Inf. Syst. 3, pp. 11-30, 1978.

Bonczek, R. H., et al. "A generalized decision
support system using predicate calculus and
network data base management," Operations
Research 29, pp. 263-281, 1981.

Borkin, S. A. "Data model equivalence," Proc.
4th Int. Conf. Very Large Data Bases, pp.
526-534, 1978.

Brachman, R. J. "On the epistemological status
of semantic networks," in Associative Networks
(Findler, N., ed .) , pp. 3-50. Academic Press,
New York, 1979.

Bray, 0. H. Distributed Database Management
Systems. Lexington Books, Lexington, MA, 1982.

595

[BR0082]

[BURC83]

[CARL7 6]

[CENS80]

[CHAM81]

[CHEN76]

[CHEN77]

[CHEN80]

Brooks, C. H. P., et al. Information Systems
Design. Prentice-Hall of Australia Pty "Ltd.,
Netley, South Australia, 1982.

Burch, J. G., Strater, F. R., and Grudnitski,
G. Information Systems: Theory and Practice,
3rd ed. John Wiley and Sons Inc., Santa
Barbara, CA, 1983.

Carlson, C. R., and Kaplan, R. S. "A
generalized access path model and its
application to a relational data base system,”
Proc. ACM SIGMOD, pp. 143-145, 1976.

Census of Population and Housing, 1980 --
Summary Tape File 1: 1978 Richmond Dress
Rehersal Technical Documentation / prepared by
the Data User Services Division, Bureau of the
Census. — Washington: The Bureau, 1980.

Chamberlin, D. et al. "A history and
evaluation of system R,” Commun. ACM. 24, pp.
632-647, 1981.

Chen, P. P. ”The entity-relationship model:
Toward a unified view of data,” ACM Trans.
Database Syst. 1, pp. 9-36, 1976.

Chen, P. P. ”The entity-relationship model: A
basis for the enterprise view of data,” Proc.
AFIPS NCC 46, pp. 77-84, 1977.

Chen, P. P. (ed.) Entity-Relationship Approach
to Systems Analysis and Design. North-Holland,
Amsterdam, 1980.

596

[CHIN81]

[CHUR56]

[CLEM81]

[C0DA62]

[CODD70]

[C0DD72]

[CODD74]

[CODD79]

Chin, F., and Ozsoyoglu, G. "Statistical
database design," ACM Trans. Database Syst. 6,
PP. 113-139, 1981.

Church, A. An_ Introduction to Mathematical
Logic I. Princeton Univ. PressT~Princeton, NJ,
T9 56 . —

Clemons, E. H. "Design of an external schema
facility to define and process recursive
structures," ACM Trans. Database Syst. 6, pp.
295-311, 1981.

CODASYL Development Committee "An information
algebra," in System Analysis Techniques
(Couger, J. D., and Knapp, R. W. , eds.), pp7
234-258. John Wiley and Sons, New York, NY,
1962.

Codd, E. F. "A relational model of data for
large shared data banks," Commun. ACM 13, pp.
377-387, 1970.

Codd, E. F. "Further normalization of the data
base relational model," in Data Base Systems,
Courant Comput. Sci. S y m pT~5t h~CR u s tTn 7 ~R.~,~
ec* •) 7 PP"^ 33 — 64. Prentice-Hall, Englewood
Cliffs, NJ, 1972.

Codd, E. F. "Seven steps to RENDEZVOUS with
the casual user," in Data Base Management
(Klimbie, J. W., and Koffeman, K. L~ eds.) ,
pp. 179-199- North-Holland, Amsterdam, 1974.

Codd, E. F. "Extending the database rela¬
tional model to capture more meaning," ACM
Trans. Database Syst. 4, pp. 397.434, 1979.

597

[CREN80]

[DALE77]

[DATE81]

[DELI79]

[DENN81]

[DIJK72]

[DIJK76]

[ELS0731

[ESWA75]

Crenner, J. J. "Productivity and the Infor¬
mation Explosion,” The Information Manager,
su., pp. 15, 16, 33; 1980.

Dale, A. G., and Dale, N. B. "Main schema-
external schema interaction in hierarchically
organized data bases," Proc. ACM SIGMOD, pp.
102-110, 1977.

Date, C. J. An Introduction to Pat abase
Systems, 3rd ed . Addison-Wesley, Reading, MA,
19 81 .

Deliyanni, A., and Kowalski, R. A. "Logic and
semantic networks," Commun. ACM 22, pp.
184-192, 1979.

Denning, D. E., and Sacco, G. M. "Timestamps
in key distribution protocols," Commun. ACM.
24, pp. 533-536, 1981.

Dijkstra, E. W. "Notes on structured
programming," in Structured Programming (Dahl,
0. -J., Dijkstra, E. W., and Hoare, C. A. R.,
eds.), pp. 1-82. Academic Press, New York,
1972.

Dijkstra, E. W. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, NJ, 1976.

Elson, M. Concepts of Programming Languages.
Science Research Associates, Chicago, IL,
1973.

Eswaran, K. P., and Chamberlin, D. D.
"Functional specifications of a subsystem for
data base integrity," Proc. 1st Int. Conf.
Very Large Data Bases, pp. 48-68, 1975.

598

[FRY76]

[GRAY81]

[HALL76]

[HAMM75]

[HAMM76]

[HAMM81]

[HANN71]

Fry, J. P., and Sibley, E. H. "The evolution
of database management systems," ACM Comput.
Surv. 8, pp. 7-42, 1976.

Gray, J. et al. "The recovery manager of the
system R database manager," ACM Comp. Surveys.
13, pp. 223-242, 1981.

Hall, P., Owlett, J., and Todd, S. J. P.
"Relations and entities," in Modeling in Data
Base Management Systems (Nijssen, G. M77 ed.),
pp. 201-220. North-Holland, Amsterdam, 1976.

Hammer, M. M., and McLeod, D. J. "Semantic
integrity in a relatinal data base system,"
Proc - 1st Int. Conf. Very Large Data Bases,
pp. 25-47, 1975.

Hammer, M. M. "Data abstractions for data
bases," Proc. Conf. on Data: Abstraction,
Definition and "Structure, ATM nJT8(2), dd.

58-9, 1976. - -

Hammer, M., and McLeod, D. "Database
description with SDM: A semantic database
model," ACM Trans. Database Syst. 6, pd.
351-386, 1981. - -

Hanna, S. C., and Saber, J. C. Sets and Logic.
Richard D. Irwin, Inc., Homewood, IL, 1971.

Haseman, W. D., and Whinston, A. B.
Introduction to Data Management. Richard D.
Irwin, Homewood, IL, 1977.

[HASE77]

599

[HEND77]

[HEND78]

[H0AR72]

[H0AR81]

[H0NG81]

[H0R076]

[HUBB81]

[HUSS81]

[INM081]

Hendrix, G. G. "Some general comments on
semantic networks," Proc. 5th Int. Joint Conf.
on Artificial Intelligence, pp. 984-985, 1977.

Hendrix. G. G., et al. "Developing a natural
language interface to complex data," ACM
Trans. Database Syst. 3, pp. 105-147, 1978.

Hoare , C. A. R. "Notes on data structuring,"
in Structured Programming (Dahl, 0.-J.,
D i j kstr a , E. ~ W. ~ and" Hoare , C. A. R., eds.),
pp. 83-174. Academic Press, New York, NY,
1972.

Hoare, C. A. "The emperor’s old clothes,"
Commun. ACM. 24, pp. 75-83, 1981.

Hong, Y. C., and Su, S. Y. W. "Associative
hardware and software techniques for integrity
control," ACM Trans. Database Syst. 6, pp.
416-440, 19TT.

Horowitz, E., and Sahni, S. Fundamentals of
Data Structures. Computer Science Press,
Potomac” MD, 1976.

Hubbard, G. U. Computer Assisted Data Base
Design. Van Nostrand Reinhold Co., London,
1981.

Hussain, D. , and Hussain, K. M. Information
Processing Systems for Management. Richard D.
Irwin Inc., Homewood, IL~J 198 iT

Inmon, W. H. Effective Data Base Design.
Prentice-Hall Inc., Englewood Cliffs, NJ,
1980.

600

[I0SS80]

[JAME59]

[KAHN7 6]

[KAPL80]

[KEME59]

[KENT79]

[KERL64]

[KERS76]

Iossiphidis, J. MA translator to convert the
DDL of ERM to the DDL of System 2000,” in
Entity-Relationship Approach to Systems
Analysis and Design (Chen, P. P., ed,T, pp.
477-504. North-Holland Amsterdam, 1980.

James, G., and James, R. C. (eds.).
Mathematics Dictionary. Van Nostrand,
Princeton, NJ, 1959.

Kahn, B. K. "A method for describing
information required by the database design
process,” Proc. ACM SIGMOD, pp. 53-64, 1976.

Kaplan, C. P., and Valey, T. L. Census180:
Continuing the Factfinder Tradition. U.S.
Department of Commerce Bureau of the Census,
Washington, DC, 1980.

Kemeny, J. G., et al. Finite Mathematical
Structures. Prentice-Hall Inc., Englewood
Cliffs,' NJ," 1959.

Kent, W. ’’Limitations of record-oriented
information models,” ACM Trans. Database Syst.
4, pp. 107-131, 1979.

Kerlinger, F. N. Foundations of Behavioral
Research. Holt Reinhart, Winston, New York,
TWH

Kerschberg, L. , Klug, A., and Tsichritzis,
D. C. ”A taxonomy of data models,” in Systems
for Large Data Bases (Lockemann, P. C. , and
NeuholT; E. J., eds.), pp.43-64. North-
Holland, Amsterdam, 1976.

601

[KLUG77]

[KNUT68]

[K0HL81]

[KROE77]

[LANG80]

[LEE76]

[LEHM81]

[LIEN81]

Klug, A., and Tsichritzis, D. C. ’’Multiple
view support within the ANSI/SPARC framework,”
Proc. 3rd Int. Conf. Very Large Data Bases,
pp. 477^8,~T977.

Knuth, D. E. The Art of Computer
Programming 1, Fundamental Algorithms.
Addison-Wesley, Reading, MA, 1968.

Kohler, W. H. ”A survey of techniques for
synchronization and recovery in decentralized
computer systems,” ACM Comp. Surveys. 13, pp.
149-184, 1981.

Kroenke, D. Database Processing: Funda-
mentals, Modeling, Applications. Science
Research Associates, Palo Alto, CA, 1977.

Langefors, B. ’’Infological models and
information user views,” Inf. Syst. 5, pp.
17-32, 1980.

Lee, J. A. N., and Ralston, A. ’’Syntax,
semantics, and pragmatics,” in Encyclopedia of
Computer Science (Ralston, A., ed.) , pp.
1389-1390. Van Nostrand Reinhold Co., New
York, 1976.

Lehman, P. L. , and Bing, S. Y. "Efficient
locking for concurrent operations on B-trees,"
ACM Trans. Database Syst. 6, pp. 650-670,
1981 .

Lien, Y. E. "Hierarchical schemata for
relational databases," ACM Trans. Database
Syst. 6, pp. 48-69, 1981.

602

[LISK74]

[LISK75]

[LOCK7 9]

[LUM79]

[LUND81]

[MARC81]

[MART73]

[MART75]

Liskov, B. H., and Zilles, S. N. ’’Programming
with abstract data types,” Proc. Symp. on Very
High Level Languages, SIGPLAN Notices 9(4) ,
PP. 50-59, 197~*n

Liskov, B. H., and Zilles, S. N. ’’Speci¬
fication techniques for data abstractions,”
Proc. Int. Conf. on Reliable Software, ACM
SIGPLAN Notices 10(677 PP7 72-87, 1975.

Lockemann, P. C., Mayr, H. C., Weil, W. H.,
and Wohlleber, W. H. ’’Data abstractions for
database systems,” ACM Trans. Database Syst.
4, pp. 60-75, 1979.

Lum, V. Y., et al. "1978 New Orleans data base
design workshop report,” Proc. 5th Int. Conf.
Very Large Data Bases, pp. 328-350, 1979.

Lundeberg, M., Goldkuhl, G., and Nilsson, A.
Information Systems Development -- A
Systematic Approach. Prentice-Hall, Englewood"
Cliffs, NJ, 1981.

March, S. T., et al. ’’Frame memory: A storage
architecture to support rapid design and
implementation of efficient databases,” ACM
Trans. Database Syst. 6, pp. 441-463, 1981.

Martin, J. Security, Accuracy, and Privacy in
Computer Systems. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1973.

Martin, J. Computer Pata-Base Organization.
Prentice-Hall, Englewood Cliffs, NJ, 1975.

603

[MART76]

[MEND791

[MERT74]

[MINK77]

[MINS74]

[MOYE731

[MYL075]

Martin, J. Principles of Data-Base Management.
Prentice-Hall Inc., Englewood Cliffs, NJ,
1976.

Mendelzon, A* 0., and Maier, D. ’’Generalized
mutual dependencies and the decomposition of
database relations,” Pr oc. 5th Int. Con f. Very
Large Data Bases, pp. 75-82, 1979.

Merten, A. G., and Fry, J. P. ”A data
description language approach to file
translation,” Proc. ACM SIGMOD, pp. 191-205,
1974.

Minker, J. ”An experimental relational data
base system based on logic,” in Logic and Data
Bases, (Gallaire, H., and Minker, J., eds ~)~

ppT”T(J7 — 147 , 1977.

Minsky, N. "On interaction with data bases,"
Proc. ACM SIGFIDET Workshop on Data
Description, Access, and Control, 1974.

Moyer, D. D., and Fisher, K. P. Land Parcel
Identifiers for Information Systems. American
Bar Foundation, Chicago^ IL, 1973•

Mylopoulos, J., et al. "TORUS — a natural
language understanding system for data
management,” IJCAI, 4, 1974.

Navathe, S. B., and Schkolnick, M. "View
representation in logical data base design,”
Proc. ACM SIGMOD, pp. 144-156, 1978.

[NAVA78]

604

[NAVA80a]

[NAVA80b]

[NIJS771

[PAGE78]

[POHL81]

[REIS81]

[REIT78]

[RICA81]

Navathe, S. B. "Schema analysis for database
restructuring," ACM Trans. Database Syst. 5,
pp. 157-184, 1980.

Navathe, S. B. "An intuitive approach to
nornmalize network structured data," Proc. 6th
Int. Conf. Very Large Data Bases, pp. 350-3587
1980.

Nijssen, G. M. "Current issues in conceptual
schema," in Architecture and Models in Data
Base Management Systems (Nijssen, G. M., ed
pp. 31-65. North-Holland, Amsterdam, 1977.

Page, E. S., and Wilson, L. B. Information
Representation and Manipulation in a Computer.
Cambridge” University "Press, London, 1978.

Pohl, I., and Shaw, A. The Nature of
Computation: An Introduction to Computer
Science. Computer Science Press, Rockville,
MD, 1981.

Reisner, P. "Human factors studies of database
query languages: A survey and assessment," ACM
Comput. Surv. 13, pp. 13-31, 1981.

Reiter, R. "On closed world databases," in
Logic and Data Bases (Gallaire, H., and
Minker, J., eds.), pp. 55-76. Plenum Press,
New York, 1978.

Ricart, G., and Agrawala, A. "An optimal
algorithm for mutual exclusion in computer
networks," Commun. ACM. 24, pp. 9-17, 1981.

605

[ROBI80] Robinson, B. N., et al. SIR Scientific Infor-
mation Retrieval User’s Manual Version 2. SIR
Inc., Evanston, IL, 1980.

[ROSS78] Ross, R. G. Data Base Systems: Design,
Implementation, and Management. Amacom, New
York, 1'9'78'.“'

[ROUS75] Roussopoulos, N., and Mylopoulos, J. ’’Using
semantic networks for data base management,”
Proc. 1st Int. Conf. Very Large Data Bases,
pp. 144-172, 1975.

[SAKA80] Sakai, H. ”A unified approach to the logical
design of a hierarchical data model,” in
Entity-Relationship Approach to Systems
Analysis and Design (Chen, P. P., ed.), pp.
61-74. North-Holland, Amsterdam, 1980.

[SCHM75] Schmid, H. A., and Swenson, J. R. "On the
spmantins of the relational data model,” Proc.
ACM SIGMOD, pp. 211-223, 1975.

[SCHN76] Schneider, L. S. ”A relational view of the
data indeoendent accessing model,” Proc. ACM
SIGMOD, pp. 75-90, 1976.

[SCHU76] Schubert, L. K. ’’Extending the expressive
pnupr of semantic networks,” Artificial
Intelligence 7, pp. 163-198, 1976.

[SENK75] Senko, M. E. "The DDL in the context of a
multilevel structured descriptionDIAMII with
FORAL,” in Data Base Description (Doque,
B. C. M., and Nijssen, G. M., eds.), pp.

239-257, 1975.

6 06

[SHOS78]

[SIMM73]

[SMIT77a]

[SMIT77b]

[SPYR80]

[STIE80]

[STON751

[STON76]

Shoshani , A. CABLE: A Language Based on the
Entity-relationship Model. Lawrence Berkeley
Lab. , Berkeley, CA, 1978•

Simmons, R. F. ’’Semantic networks: Their
computation and use for understanding English
sentences,” in Computer Models of Thought and
Language (Schank, R. C., and Colby, R. F.,
edsT) , pp. 63-113. W. H. Freeman, San

Francisco, 1973.

Smith, J. M., and Smith, D. C. P. ’’Database
abstractions: Aggregation,” Commun. ACM 20,

pp. 405-413, 1977.

Smith, J. M., and Smith, D. C. P. ’’Database
abstractions: Aggregation and generalization,”
ACM Trans. Database Syst. 2, pp. 105-133,

T977.

Spyratos, N. "Translation structures of
relational views," Proc. 6th Int. Conf. Very
Large Data Bases, pp. 411-416, 1980.

Stiefel, M. "Surveying front end processors,”
Mini-micro Systems. 13, PP* 129-137, 1980.

Stonebraker, M. R. "Implementation of inte¬
grity constraints and views by query
modification,” Proc. ACM SIGMOD, pp. 65-78,

1975 .

Stonebraker, M. R., Wong, E., and Kreps, P.
"The design and implementation of INGRES," ACM
Trans. Database Syst. 1, pp. 189-222, 1976.

607

[STON81]

[SU791

[SU81]

[SUND74]

[TAYL7 6]

[TOME81]

[T SIC 7 6]

Stonebraker, M. "Operating system support for
database management," Commun. ACM. 24, pp.

412-418, 1981.

Su, S. Y. W. , and Lo, D. H. "A semantic
association model for conceptual database
design," Proc. E-R Conference, pp. 147-167,
1979.

Su, S., Lam, H., and Lo, D. H. "Trans¬
formations of data traversals and operations
in application programs to account for
semantic changes of databases," ACM Trans.
Database Syst. 6, pp. 255-294, 1981.

Sundgren, B. "Conceptual foundation of the
infological approach to data bases," in Data
Base Management (Klimbie, J. W., and Koffeman,
K7 L., eds.), pp. 61-96. North-Holland,

Amsterdam, 1974.

Taylor, R. W., and Frank, R. L. "CODASYL
data-base management systems," ACM Comput.
Surv. 8, pp. 67 — 103» 1976 .

Tomek, I. Introduction to Computer

Organization. Computer Science Press,
Rockville, MD, 1981.

Tsichritzis, D. C., and Lochovsky, F. H.
"Hierarchical data-base management: A survey,"

ACM Comput. Surv. 8, pp. 67-103, 1976.

Tsichritzis, D. C., and Lochovsky, F. H. Data
Base Management Systems. Academic Press, New

York, 1*977.

[TSIC771

608

[TSIC78]

[TSIC82]

[ULLM80]

[VAND81]

[VANG78]

[VASS791

[WALT78]

[WAR N 81]

[WEIN80]

Tsichritzis, D. C., and Lochovsky, F. H.
"Designing the data base," Datamation 24(8),

pp. 147-151, 1978.

Tsichritzis, D. C., and Lochovsky, F. H. Data
Models. Prentice-Hall, Englewood Cliffs, NJ,
1982.

Ullman, J. D. Principles of Database Systems.
Computer Science Press, Potomac, MD, 1980.

van de Riet, R. P. et al. "High-level
programming features for improving the
efficiency of a relational database system,"
ACM Trans. Database Syst. 6, pp. 464-485,

T981 .

van Gigch, J. P. Applied General Systems
Theory. Harper and Row, New York, NY, 1978.

Vassiliou, Y. "Null values in data base
management: A denotational semantics
approach," Proc . ACM SIGMOD, 1979 .

Waltz, D. L. "An English language question
answering system for a large relational
database," Commun. ACM. 21, pp. 526-538, 1978.

Warnier, J. Logical Construction of Systems.
Van Nostrand Reinhold, New York, NY, 1981.

Weinberg, V. Structured Analysis. Prentice-

Hall, Englewood Cliffs, NJ, 1980.

609

[WELD81]

[WIED77]

[WONG771

[WONGE7 6]

[YOUR791

[ZANI791

[ZANI81]

Weldon J. -L. Data Base Administration. Plenum
Press, New York, 1981.

Wiederhold, G. Database Design._ McGraw-Hill,

New York, 1977.

Wong, H. K. T., and Mylopoulos, J. ’’Two views
of data semantics: A survey of data models in
artificial intelligence and database
management,” INFQR 15, pp. 344-383, 1977.

Wong, E., and Youssefi, K. A. A. ’’Decom¬
position — A strategy for query processing,"
ACM Trans. Database Syst^ 1, pp. 223-241,
1976.

Yourdon, E., and Constantine, L. L. Structured
Design: Fundamentals of a Discipline of
Computer Program and Systems Design.
Prentice-Hall, Englewood Cliffs, NJ, 1979.

Zaniolo, C. "Design of relational views over
network schemas," Proc. ACM SIGMOD, pp.

179-190, 1979.

Zaniolo, C., and Melkanoff, M. A. "On the
design of relational database schemata," ACM
Trans. Database Syst. 6, pp. 1-47, 1981.

GLOSSARY OF ACRONYMS

AI: Artificial Intelligence

BNA: Block Numbering Area (geographic area)

BSDM: Basic Semantic Data Model (modeling formalism)

CABLE: ChAin Based LanguagE (data definition/
manipulation language)

CBD: Central Business District (geographic area)

CODASYL-DBTG: Conference on DAta SYstems Languages-
DataBase Task Group

DBA: DataBase Administrator

DBMS: DataBase Management System

DDL: Data Definition Language

DM: Database Management (non-AI sphere)

DMF: Data Modeling Formalism

DML: Data Manipulation Language

E-R: Entity-Relationship (modeling formalism)

ERD: Entity-Relationship Diagram

GIS: Geographic Information System

610

611

MCD: Minor Civil Division (geographic area)

MIS: Management Information System

MRPPS: Maryland Refutation Proof Procedure System (AI
database system)

PL: Programming Language

PL-94: Public Law 94 (census data file)

RM/T: Relational Model/Tasmania (modeling formalism)

SAM: Semantic Association Model (modeling formalism)

SDM: Semantic Database Model (modeling formalism)

SIR: Scientific Information Retrieval (DBMS; version 2

implied)

SMSA: Standard Metropolitan Statistical Area (geo¬

graphic area)

STF: Summary Tape File (census data file series)

TORUS: TORonto Understanding System (AI database System)

VLDB: Very Large DataBase

wff: well formed formula (predicate calculus) [sic]

-

	Data semantics, data modeling, and their application to the management of geopolitical statistical data.
	Recommended Citation

	Data semantics, data modeling, and their application to the management of geopolitical statistical data.

