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ABSTRACT 

DATA SEMANTICS, DATA MODELING, AND 
THEIR APPLICATION TO THE 

MANAGEMENT OF GEOPOLITICAL 
STATISTICAL DATA 

(May 1983) 

Stuart A. Westin, B.B.A., University of Massachusetts 
M.S.B.A., University of Massachusetts 
Ph.D., University of Massachusetts 

Directed by Dr. Joseph L. Sardinas Jr. 

This work is in three major parts. In part I we 

provide an extensive discussion of data semantics, of 

conceptual data modeling, and of data modeling formalisms. 

In part II we consider the nature of geopolitical 

statistical data, that is, statistical or summary data 

which is geographic based. Improvement of the application 

environment of data of this type is the ultimate focus of 

our efforts. In addressing this issue it is decided that 

said environment deserves and requires its own special 

purpose modeling formalism. To this end we develop the 

Geographic Entity-Relationship Modeling System (GERMS) -- 

a data modeling formalism through which logical models, or 

conceptual schemas, of geographic based statistical data 

sets can be created. The GERMS formalism in and of itself 

provides a medium through which data set logical contents 

can be (1) documented, and (2) discussed. 
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In part III we design a GERMS-based computer 

information system. Here, the modeling formalism is made 

an integrated part of a DBMS thereby giving the system the 

ability to ’’comprehend” references to a GERMS data model. 

These references are made in terms of our system queries, 

the structure of which is designed with user needs in 

mind. Since the system can comprehend references to the 

data model, it has the ability to verify the semantic (not 

just syntactic) correctness of the users’ queries. Thus, 

the system can insure that queries ’’make sense.” 

A number of system enhancements are also developed. 

One such enhancement is a semantic integrity checking 

mechanism which awards the system the ability to verify 

data integrity according to data meaning. A second is a 

system merging facility which aids in the blending of two 

GERMS-modeled databases. Other system enhancements 

considered are a user view facility and an associative 

query handling capability. 

An extensive appendix illustrates how the 

methodology developed is easily implemented within an 

existing DBMS. The SIR version 2 system is used for this 

pur pose . 

x 



TABLE OF CONTENTS 

ACKNOWLEDGMENTS. 

CHAPTER I. INTRODUCTION 

What Lies Ahead 

PART I 

AN OVERVIEW OF CONCEPTUAL 
DATA MODELING 

CHAPTER II. A GENERIC LOOK AT DATA MODELING.20 

A Notation for Data Models 
Constraints, Structures, and Operations 

Comparing DMFs 
Programming and Data Modeling 
The Generations of DMFs 
Why Study Data Semantics? 

CHAPTER III. DATA SEMANTICS.45 

The Syntax and Semantics of Data Models 
A Theory of Data Semantics 
Data Semantics in Database Literature 

CHAPTER IV. OBJECTS AND OBJECT GROUPS . 81 

Database Objects and Primitives 
Data Typing 

CHAPTER V. DATA ABSTRACTION.96 

Aggregation Abstraction 
Generalization Abstraction 
Discussion 

CHAPTER VI. SOME IMPLEMENTATION ISSUES.118 

Logical Redundancy and Relativism 
Semantic Integrity 
A Brief Recapitulation 

xi 



PART II 

THE NATURE OF GEOPOLITICAL STATISTICAL 
DATA -- STRUCTURE AND SEMANTICS 

CHAPTER VII. GEOPOLITICAL STATISTICAL DATA: 
PHYSICAL STRUCTURE.136 

Introduction 
The Physical Structure of Census Files 
Conceptual Problems 

CHAPTER VIII. GEOPOLITICAL STATISTICAL DATA: 
LOGICAL STRUCTURE.170 

The Semantics of Geography 
A Geographic Data Modeling Formalism 

CHAPTER IX. RECONNOITERING THE GERMS FORMALISM ... 222 

Discussion 
Addendum: The GERMS as a "Second Generation” 

DMF 

PART III 

A GEOGRAPHIC INFORMATION SYSTEM 

CHAPTER X. CONSIDERING USER NEEDS -- QUERIES. ... 235 

A Geographic Information System 
Query Structure 
Summary 

CHAPTER XI. THE PHYSICAL DATABASE.260 

Physical Database Design 
Entity Types and Record Types: Special Cases 
Summary 

CHAPTER XII. THE LOGICAL DATABASE . 306 
c 

Conceptual Schema: Internal Representation 
Linking the Physical Database to the Logical 

Database 
Recapitulation 

xi 1 



CHAPTER XIII. SOME SYSTEM AMENITIES 347 

Associative Data Retrieval 
A Semantic Integrity Checker 
A Database Merging Facility 
User Views 

CHAPTER XIV. REVIEW AND CONCLUSIONS.379 

A Brief Review 
Concluding Remarks 

APPENDICES 

APPENDIX A. APPROACHES AND SCHOOLS OF DATA MODELING. 402 

The Entity-Relationship Model 
The Basic Semantic Data Model 
The Semantic Association Model 
The Semantic Database Model 
The Binary Approach 
AI Approaches 

APPENDIX B. GLOSSARY OF GEOGRAPHIC CONCEPTS.491 

APPENDIX C. A SYSTEM ARCHETYPE . 523 

An Introduction to SIR and the SIR Language 
System Design 
System Software 

BIBLIOGRAPHY.593 

GLOSSARY OF ACRONYMS.610 

XI1 1 



LIST OF ILLUSTRATIONS 

1.1 Geographic Areas. 

3.1   62 

3.2   65 

3.3   70 

3.4     73 

4.1a Objects Viewed as Entity Types. 93 

4.1b Objects Viewed as Entities § Roles. 93 

5.1 Aggregation Abstraction . 102 

5.2 An AI PART-OF Hierarchy. 104 

5.3 An AI IS-A Hierarchy. 109 

5.4 Unconditional Generalization. 110 

5.5 Alternative Generalization. 113 

7.1 Branching q Non-Branching . 144 

7.2 Record Instances § Record Instance Structure. 146 

7.3a The State-SMSA Non-Containment Problem. . . . 152 

7.3b The Census Solution. 152 

7.4a The State-SMSA Non-Coverage Problem . 156 

7.4b The Census Solution. 156 

7.5 Record Representation of "Attribute Areas". . 164 

8.1a Instances of an Entity Type.do not Overlap. . 174 

8.1b Instances of Different Entity Types may 
Overlap. 174 

8.2 The Relationship Between SMSAs and Counties . 178 

xiv 



8.3 The Association Between Block Groups and 
Tracks. 180 

8.4 Counties in an SMSA are Always Covered by 
Blocks. 181 

8.5 Geographic Entity Types . 187 

8.6 The Semantic of the CONTAINS Relationship. 
"SUPER CONTAINS SUB". 196 

8.7 A CONTAINS Relationship. "COUNTY CONTAINS 
TRACT". 198 

8.8 The Semantic of the COMPRISES Relationship. 
"SUPER COMPRISES SUB". 201 

8.9 The COMPRISES Relationship. "STATE COMPRISES 
COUNTY". 20 3 

8.10 The IS-A Relationship. "URBAN-TRACT* IS-A 
TRACT".  207 

8.11 The Semantic of "URBAN-TRACT* IS-A TRACT". . . 209 

8.12 Urban Tracts*. 212 

8.13a The Representation of "TYPE-A/TYPE-B IS 
EITHER TYPE-A OR TYPE-B". 215 

8.13b The Semantic of "TYPE A/TYPE-B IS EITHER 
TYPE-A OR TYPE-B". 215 

8.14 . 218 

10.1 A Simple Schema. 249 

11.1 The PL-94 Physical File Structure. 263 

11.2 The PL-94 Schema. 265 

11.3 A PL-94 Equivalence Relation. 267 

11.4 PL-94 Equivalence Relations . 269 

11.5a A Relationship Instance. 273 

11.5b The Relationship Directory. 273 

xv 



11.6 Query Processing. 276 

11.7 A Portion of the STF1B Conceptual Schema. . . 283 

11.8 A Single Record can be Viewed from Two 
Perspectives. 285 

11.9 The Physical Configuration of the Figure 11.7 
Schema. 287 

11.10 A "Special Case" Record Index . 289 

11.11 A Portion of the PL-94 Schema. 290 

11.12 Record Type TRACT - BNA. 294 

11.13 Using Indexes with the EITHER-OR Association. 297 

11.14 Storing Attribute Areas as Chains . 301 

11.15 Storing Attribute Areas as an Inverted List . 302 

12.1a A Portion of the STF1B Schema. 315 

12.1b The Internal Form Matrix Representation . . . 316 

12.2 A Simple Schema Definition Program. 324 

12.3 Executing a Phrase of the SCHEMA SECTION. . . 327 

12.4 A Structural Template for Deriving Implied 
Relationships . 331 

12.5 Relating Entity Types to Records. 339 

12.6 Using the Pointer Matrix. 341 

13.1 The Semantic Integrity Checker Main Routine . 362 

13.2 Procedure CONTCHK . 364 

13.3a A Portion of the STF1B Schema. 369 

13.3b A Portion of the PL-94 Schema. 370 

13.4 Combining the Databases. 375 

13.5 User Views. 377 

xvi 



A.l A Ternary Relationship. 407 

A. 2 A Recursive Relationship. 408 

A.3 Two Entity Sets Joined by Two Relationship 
Sets. 409 

A.4 Functional Mapping of an Attribute from an 
Entity Set into Two Value Sets. 413 

A. 5 The Objects of the BSDM. 420 

A.6 Membership Associations . 427 

A.7 A Characterization Association. 429 

A.8 An Interaction Association. 431 

A.9 A Set Relationship Association. 433 

A.10 A Composition Association. 436 

A.11 Using a Composition Association to Define an 
Aggregate Attribute . 437 

A.12 A Cause-Effect Association. 439 

A.13 An Action-Means Association . 441 

A.14 An Action-Purpose Association . 442 

A.15 A Logical Relation of Implication 
Association. 444 

A. 16 The DIAM II Representation of a Fact. 456 

A.17 . 458 

A.18 . 459 

A.19 A Characteristic. 466 

A.20 An Event. 468 

A.21 Qualified Modification of a Concept . 470 

A. 22 Upstairs and Downstairs. 472 

XV 11 



A.23a . 473 

A.23b . 473 

A.24 An Example Semantic Graph . 481 

C.l The Database Conceptual Schema. 534 

C.2 The Physical Database: Cases and Record 
Types. 537 

C.3 Index Records. 540 

C.4 The Full Physical Database. 545 

C.5 The System Internal Form. 547 

C.6 SYMBOL Record Type Instances. 550 

C.7 SCHEMA Record Instances . 556 

C.8 POINTER Record Instances. 559 

xvi i i 



CHAPTER I 

INTRODUCTION 

In recent years the terms ’’database management” and 

’’database management system” (DBMS) have been used with 

increasing frequency in data processing books and 

journals. The work hereunder deals with a closely related 

issue — data modeling. Specifically our interests lie in 

data modeling of the semantically rich, or ’’conceptual,” 

variety. Our concerns are directed towards the 

geopolitical statistical data management application 

environment. Our ultimate goal lies in the improvement of 

the conceptual modeling of such applications. 

By geopolitical statistical data we mean those data 

sets in which summary or statistical data is geographic 

based. An example of such a situation is found within the 

contents of U.S. Bureau of the Census supplied ’’summary 

tape files” (STFs). Here, data observations are 

aggregated and provided according to a_ number of well 

defined partitionings of the geographic territory from 

which they are collected (see [KAPL80]). There is no 

means by which the data can be disaggregated, thus each 

datum within the data set is a statistical object which is 

’’pinned” to some geographic area (vis. geographic point). 
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The applications of data of this type are most often 

of a geopolitical nature. The data are used as the 

foundation of geographic or geopolitical database systems. 

The decision makers that are served by such systems may be 

business executives, government officials, socio¬ 

demographic researchers, and the like. 

Since the majority of such database systems are 

founded partially or totally on Bureau of the Census 

supplied summary tapes, the geographic issues and examples 

discussed in the work will relate closely to census data 

sets. The concepts are generalizable to non-census 

geographic database systems, however. 

We will begin the discussion with an investigation 

as to the present state of said environment: "It is 

usually the case that business executives, government 

officials and other decision makers have a good idea of 

the kind of information residing in their databases. Yet 

to obtain the answer to a particular question, they 

generally need to employ the services of a technician who 

works with the database on a regular basis and who is 

thoroughly familiar with its file structure, the DBMS on 

which it resides, how it is distributed among various 

computer systems, the coded field names for the data 

items, the kinds of fields that the different files are 

expected to contain, and other idiosyncrasies. 
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’’The technician must understand the decision maker’s 

question, reformulate it in terms of the data that is 

actually stored, plan a sequence of requests for 

particular items from particular files on particular 

computers, open connections with remote sites, build 

programs to query the remote systems using the primitives 

of the DBMSs of the remote systems, monitor the execution 

of those programs, recover from errors, and correlate the 

results. This is a demanding, time-consuming and exacting 

task requiring much attention to detail. Escalated levels 

of sophistication are needed as the VLDB [very large 

database] increases in size and complexity and as it is 

distributed over a wider range of host computers” 

[HEND78, pp. 105,1 06]. 

When a data model is implemented it frees the user 

from the need to deal with many of the complexities of 

these technical issues; it allows the user to interact 

with the database ”in terms of" the logical contents of 

the data set. As stated above, our work here deals with 

the creation of data models which are dedicated 

specifically to the needs of the users of geopolitical 

statistical data. 
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The logical contents of a data set can be defined in 

terms of four basic objects: entities, associations, 

properties, and values. The latter three are important 

only because they are used to describe the entities. We 

can describe an entity by asserting that it holds some 

value relating to a property. Alternatively, we can 

describe an entity by asserting that it is associated in 

some way with another entity. 

A geographic based data set is no different. It can 

be portrayed in terms of entities and descriptive 

assertions about these entities. What is unique about 

this environment is the nature of these objects. The 

entities of a geographic data model -- those things about 

which assertions are made -- are geographic areas. Thus 

states and counties are example entity types. 

As is the usual case, assertions are of two general 

categories. One type of assertion which can be made about 

an entity has to do with properties of the entity. The 

properties hold values. In the geographic oriented data 

modeling situation these values exist as statistical 

summary objects. For example, by recording a population 

datum within a township data record we are asserting that 

an entity (township) holds a certain value on 

property (population). 

some 
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It must be noted that, in this application 

environment, entities are partitionings of other entities. 

Properties, then, represent statistical measurements based 

on different partitionings of entities. Such a situation 

is rarely, if ever, found in other data management 

environments. 

The second category of assertion, assertions about 

associations among entities, deals with the spacial 

overlap of the objects. Geographic entities are related 

when they share a common area. For instance, a given 

township is related to a given county if the township lies 

within the county. Otherwise, the objects are unrelated. 

Although the semantic importance of such relationships 

among geographic entities cannot be denied, we see them as 

being "passive” relationships. This passivity is cited in 

opposition to the more "active" relationships found in 

traditional (e.g. business) database applications such as 

"works for," and "manages." 

Consideration of the relationship of an individual 

pair of geographic entity types, as in the example above, 

is trivial. If all geographic data sets were based on 

county and township partitionings only, the management and 

access of such data would be simplistic. In reality, 

however, these tasks are complex. 
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There are three main reasons for this complexity. 

First, a geographic data set is often based on many 

different geographic partitionings. As a result, we must 

simultaneously consider many geographic relationships. 

Second, the set of geographic types upon which the 

data are provided vary from application to application. 

Consequently, relationships which exist within one data 

set are often quite different from those that exist within 

another geographic data set. 

Third, and perhaps most important, the geographic 

entity types upon which a data set is specified are often 

defined according to different criteria. The result of 

this fact is that the geographic types are not compatible 

in terms of their boundary definitions. 

In census data sets geographic partitionings are of 

three general categories. Geographic entity types may be 

statistical, political, or enumeration areas (the latter 

are sometimes considered to be statistical areas) . 

Figure 1.1 lists some of these geographic area types. A 

more comprehensive list is found in appendix B. 

All data sets, including geographic based data sets, 

are bound to some physical structure. In massive 

applications, such as those discussed here, physical data 

structure is designed to meet the requirements of 



Geographic Areas 

Census data are presented for various political and statistical areas. 

Political areas include: 

United States 

States (and outlying areas) 

Congressional districts 

Counties 

Minor civil divisions: Legal subdivisions of counties, called townships in most States 

Incorporated places: Cities, villages, etc. 

Statistical areas include: 

Census regions and divisions: The 50 States have been divided into four regions, each 
containing two or three divisions. 

Standard metropolitan statistical areas (SMSA’s): Usually consist of a central city 
with a population exceeding 50,000, the county(ies) in which it is located and other 
contiguous counties that are metropolitan in character and are socially and 
economically integrated with the central city. 

Urbanized areas: As defined by population density, each includes a central city and 
the surrounding closely settled urban fringe (suburbs) which together have a popula¬ 

tion of 50,000 or more. 

Urban/rural: All persons living in urbanized areas and in places of 2,500 or more 
constitute the “urban” population, all others constitute the “rural” population. 

Census county divisions: Statistical subdivisions of a county defined for those States 
where minor civil divisions are not appropriate for the publication of statistics. 

Census designated places: Residential concentrations related to a geographically 
defined “place,” although the “place” is not legally incorporated. 

Census tracts: Statistical subdivisions of an SMSA with an average population of 

4,000. 

Enumeration districts: Census collection areas used as tabulation areas where block 

statistics are not collected. 

Block groups: Census tabulation areas intermediate between census tracts and block*; 

Blocks: The smallest census geographic areas, used as basic tabulation areas in 
urbanized areas and incorporated places with a population of 10,000 or more. 

ZIP code areas. 

SOURCE: [KAPL80, p. 104] 

FIGURE 1.1 
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efficient data processing and storage. This physical 

structure seldom reflects the logical structure or 

conceptual meaning of the underlying data. 

The response of the data management community to 

this issue is to provide, for each application, a logical 

model (conceptual schema) which is independent of any 

physical structural considerations. In the jargon o f 

database manag ement there exists ”phys ical independence” 

of the logical and physical structures. The advantages of 

providing a conceptual model of an application are 

realized in bo th the utilization and th e administration of 

the datab ase. 

At pr ese nt the re does not exist a formalism wh ich 

supports the cr eat ion of adequate c onceptual models of 

geographi c databases . This deficienc y is due to the 

unusualne ss 0 f the involved database objects. Exist ing 

modeling techn iques are not well sui ted to model the 

semantics of s pacial overlap or statist ical properties. 

A r esul t of this indigence is that geopoliti cal 

database usag e and administration r evolves around the 

physical dat a st ructure only. Furthermore, all 

documentation is tied to physical structural issues with 

little regard for the conceptual structure of the 

database. 
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We do not mean to imply that the contents of the 

geographic database are misunderstood by all who use them. 

Obviously, the database administrator(s) and technicians, 

through experience and the passage of time, gain a 

comprehension of the semantics of the database contents. 

This ’’meaning” is embedded in the knowledge of the 

technicians and in the database application pr ogr ams , 

however. Also, it is difficult to verify that the 

understanding ma intained by a database technician is 

consistent with realit y or with that of other technic ians 

and administrators. 

The present situation gives rise to a number of 

problems in terms of data access and usage by the naive or 

occasional database user (called ’’casual user” in database 

literature). First, since the data are provided according 

to a number of non-compatible partitionings of geography, 

the objects of the physical data structure need not be 

logically meaningful. All database documentation and 

description is based on physical structure so, 

consequently, the user is forced to contend with confusing 

and unnatural data objects in conceptualizing the database 

contents. There exists no concise list of the logical 

contents of the system. 
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Second, once the individual geographic entity types 

are known, the meaning and interrelationships of the 

geographic types must be assimilated. This intricate task 

is presently accomplished by studying glossary type 

definitions of the individual objects and by deriving 

pair-wise associations from this information. 

A related issue is the fact that, once the entire 

set of geographic associations is comprehended, some 

subset of geographic object types upon which data access 

will be based must be selected and respective 

interrelationships understood. Alternatively, the user is 

forced to rely on the aid of a (hopefully) knowledgeable 

technician. 

The database technician who tutors the potential 

user about the logical structure of the geographic 

information system is faced with the problem that natural 

language is the only existing communication medium for 

such a description. This medium of discourse is hardly 

well suited to address the complexities of geographic 

semantics. Still, an alternative modeling technique does 

not exist. 

It is these problems (and some surrounding issues) 

which are addressed in this work. The specific topics 

covered are detailed below. 



What Lies Ahead 
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Beyond this introductory chapter our work is 

compo sed of three major parts. Part I, which comprises 

five chapters , is aimed at providing for the reader a 

techn ical foundation in the area of concept ual data 

modeling and the issues related to such. Much of this 

foundation is based on concepts found in relevant 

literature in the areas of database management, data 

modeling, artificial intelligence, and of course the 

comprehensive area of computer science. 

In chapter 2 we take a ’’generic look” at data 

modeling. First, we develop a notational form which can 

be applied in the description of any data model. Next, we 

consider the three ’’dimensions” of a data model. 

Specifically, these are constraints, structures, and 

operations. 

Followin g this, we d iscuss the ways in which d ata 

models and data model ing formalisms (DMFs) can be 

evaluated and compared . Not only do we consider how 

instances of 
c 

these can be compared to one another , but 

also how they compare, in general, to topics with which we 

are much more familiar — programming and programming 

1anguages 
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Finally in this chapter, we consider the concept of 

the generations of modeling formalisms. We make the 

distinction between the Mtraditional” first generation 

formalisms and the second generation ’’semantic DMFs;” the 

latter being defined as the primary focus of the 

subsequent chapters. 

Data semantics, the concept which underlies second 

generation data modeling, is the topic of chapter 3. This 

chapter has three major sections. First, we attempt to 

gain an understanding of semantics by contrasting it to 

syntax, its less elusive complementary counterpart. 

Second, we describe a theory of data semantics and data 

modeling. Third, we investigate the treatment of the 

topic of data semantics within the literature of database 

st udies. 

In chapter 4 we discuss the fundamental objects with 

which a data model deals. We will learn that the 

fundamental "primative” objects of a model are combined to 

form groups, called types, which themselves are 

fundamental objects of the data model. A number of 

different approaches to the typing process are considered. 

Chapter 5 takes this notion of object groups one 

step further by discussing data abstraction. This 

concept, which is basal to the study of conceptual data 
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modeling, considers the ways in which the above noted 

types (groups of primitive objects) can be further grouped 

in the formation of even more data model objects. We will 

see that data abstraction is of two distinct kinds: 

aggregation abstraction and generalization abstraction. 

Each of these kinds is considered in detail. 

The final chapter of part I, chapter 6, addresses a 

number of issues which relate to the implementation of a 

data model. Here, we relate the structures of data models 

to the actual data sets whose contents they depict. 

The text of appendix A complements the topics of 

part I in that it describes a number of basic schools of 

and approaches to conceptual data modeling. In addition 

to detailing several modeling formalisms which have 

developed from database management research, this appendix 

also describes the two very different approaches which are 

subscribed to by the artificial intelligence community. 

The treatment of topics in part I is extensive since 

we feel that meaningful research ideas deserve and require 

a solid base on which they may be built. The practitioner 

who is only marginally interested in these issues is 

urged, at least in the initial reading, to omit part I and 

begin directly with part II. 



In this second part, which comprises three chapters, 

we investigate the nature of geopolitical statistical data 

sets in terms of their structure and their semantics. In 

chapter 7 we focus on the physical structure of such data 

sets. This begins with a brief review of tree structures 

and hierarchical files since the data sets with which we 

are concerned are physically configured according to these 

structures. 

Next, we discuss the conceptual anomalies which 

accompany the use of a hierarchical physical structure as 

a model of the logical data contents. We will learn that 

hierarchies, while possibly serving adequately as a 

physical data framework, are hardly well suited for the 

task of conceptual representation. 

Having realized the shortcomings of the hierarchy as 

a conceptual modeling tool, we focus in chapter 8 upon the 

development of a data modeling formalism which is better 

tailored for the situation at hand. This formalism, which 

we call the GERMS (Geographic Entity-Relationship Modeling 

System), allows for the creation of a ’’picture” of the 

logical contents of a geopolitical statistical data set. 

There is provided for the GERMS a graphical as well as a 

lingual form. Both forms produce equivalent data models. 
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Appendix B, which provides a detailed glossary of 

census geographic terms, should prove helpful in reading 

this chapter . 

The final chapter of part II, chapter 9, 

reconnoiters and evaluates the GERMS formalism in terms of 

a number of concepts described in part I. As the focus of 

this discussion is academic as opposed to pragmatic, the 

practitioner is advised to omit the chapter in the initial 

reading. 

In part III we consider the ’’machine implementation” 

of GERMS data models. The system which is designed here 

has the ability to respond to unplanned, or ad hoc, 

information requests. Furthermore, these requests, called 

queries, are posed to the system ”in terms of” the GERMS 

data model. Because of these features we call the system 

a geographic in format ion s ystem. 

Part III comprises the final five chapters of the 

work. In chapter 10 we consider the form that the above 

noted queries should take on. Naturally, this form is 

considerate of the needs of the system user. 

Chapter 11 focuses on the design of the physical 

database of our system. The first concern addressed here 

is that of relating the existing physical data structure 

(described in chapter 7) to the objects of our logical 
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data model. The treatment of this topic within the 

physical design chapter may seem out of place, but we will 

learn that the ultimate result of this disposition is a 

better understanding of how the physical data should be 

structured . 

In the remainder of the chapter we describe a 

revised physical data structure which is better suited to 

handle the needs of processing ad hoc GERMS-based 

information requests. 

In chapter 12 we deal with the system logical 

database. The logical database holds an internal (to the 

system) representation of the GERMS data model. Also, it 

retains the information that is required to ’’link” this 

data model representation to its physical data structural 

counterpart. Both of these aspects of the logical 

database are detailed. In addition, we discuss how the 

logical database contents are ’’loaded” into the system. 

This involves the use of a d ata definition 1anguage which 

is based on the aforementioned GERMS lingual form. 

In chapter 13 we consider a number of ’’amenities” 

which can be used to refine the GERMS-based system. The 

first such enhancement has to do with the ability to 

handle associative queries. We use this term to refer to 

information requests which are based on (non-key) 

attribute values. 
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The second amenity deals with the maintenance of 

semantic integrity within our database. We develop a 

semantic integrity checker which verifies, automatically, 

the integrity of data value according to the "meaning” of 

the data. Obviously, this data meaning is extracted from 

the data model which is stored within the logical 

database . 

The third system amenity is a facility which aids in 

the merging of two conceptually modeled databases. With 

this software based merging facility the structures of the 

GERMS data models are used to direct the combining of two 

data sets which represent different properties of 

geographic areas. Following this merging, software is 

used to "generate" geographical statistical data which 

previously (i.e. before the merging) did not exist in 

either of the original databases. 

The fourth and final amenity discussed here has to 

do with the use of user views of the (global) GERMS data 

model. Through implementation of this user view concept 

each application which the information system serves can 

utilize its own dedicated version (view) of the data 

model. Such a user view is ignorant of all logical 

objects with which the application is not concerned. 
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Appendix C illustrates how the methodology described 

in part II and part III is implemented using an actual 

database management system. Specifically, the SIR 

(Scientific Information Retrieval) version 2 system is 

used. As the methodology is software intensive, a 

significant portion of this appendix presents and 

describes programs which are written in the SIR language. 

Chapter 14, which is the closing chapter, holds a 

brief review and the concluding remarks of this work. 



PART I 

AN OVERVIEW OF CONCEPTUAL 
DATA MODELING 

". . . I have only made here a collection 
of other people's flowers, having provided 
nothing of my own but the cord to bind them 
together." 

Montaigne 
"Essays" 
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CHAPTER I I 

A GENERIC LOOK AT DATA MODELING 

It would be difficult to argue against the need for 

database technology in today’s society: ’’Social changes 

have created large and complex political and economic 

structures (e.g. large government agencies, multinational 

corporations, and chains of retail stores). These 

enterprises need to integrate the use of their data for 

planning and control. Database management systems are an 

appropriate tool for this integration. The main issue is 

effective use of data rather than the particular system 

that is used for their storage” [TSIC82, p. x]. 

Of paramount importance in designing a database is 

selection of some set of constructs through which the 

contents of the database will be expressed. This has been 

cited as being the most important problem related to the 

database design process [WONG771* Such sets of constructs 

are often called ’’representations” in artificial 

intelligence (AI), and "data models” in database 

management (DM) literature. 

It is our belief that use of the term ’’data model” 

is incorrect in this context. A model is the result of 

application of (and adherence to) the set of constructs 

20 
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rather than the set of constructs itself [1]. 

Consequently, we will refer to such sets of constructs as 

data modeling formalisms (DMFs). The process of applying 

the constructs will be called data modeling. A paradigm 

that is created as the result of said process will go by 

the title data model. 

It is this realm of database technology, the study 

of data modeling and of modeling formalisms with which we 

are concerned. The obvious way to begin our discussion is 

by presenting a formal notation and set of definitions so 

that a generic undersanding of data modeling can be 

achieved. The concepts presented below show close 

adherence to those presented in [TSIC82, sec. 1.31- 

_A Notation for Data Models 

A given DMF has two major components: (1) a set of 

generating rules (G), and (2) a set of operations (0). 

The realization of G shows itself in terms of a formal 

data definition language (DDL). The purpose of G is to 

define the structure of objects as they appear in the 

database . 
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The role of these structures is twofold. First, a 

structure is imposed upon objects through specification of 

their componential makeup and categorization. Second, 

structure is imposed upon sets o f objects through 

specification of the ways in which they may be associated. 

The set of operations relates to the data manipulation 

language (DML). 

In terms of representing the real world, G captures 

the static properties; those general characteristics of 

the world that always hold. The operations allow for the 

representation of real world dynamics. 

The generating rules are used to define a schema s: 

G s 

It is often useful to think of G as being composed of two 

parts: (1) a structure part G(s), and (2) a constraint 

part G(c). Our schema is partitioned accordingly: 

G(s) + s(s) 
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G(c) + s(c) 

The constraint schema is used to specify the 

ex piicit constraints that are to be imposed upon the 

database by clearly defining which database conditions are 

allowed. Note that s(s) often includes some implicit 

constraints that are defined by the nature of its 

structure. If the structural specification of s(s) is to 

be adhered to, certain states are eliminated from the 

realm of possibility. 

A given G defines the range of S: the set of all 

possible schemas that can be derived from G. One instance 

s of S allows for the realization of a set of permitted 

database occurrences (D) all of which obey the generic 

rules G of DMF. 

Each primitive operation o of the set 0 provides a 

transformation from one database state (dbs) to another 

database state such that dbs(i) may violate s(c). 

o: dbs(l) + dbs(2) 
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The elements of 0 are combined to define transactions. 

Performance of a transaction (t) yields a 

transformation from one database occurrence (d) of the set 

D to another database occurrence of D. 

t: d( 1) d(2) 

In this way the dynamic properties of the real world are 

emulated. 

Since the pre and post transaction conditions are 

elements of the set D, the total transaction t is 

integrity preserving; it maintains the rules of G as 

specified by s(s) and s(c). During the performance of a 

transaction the database is allowed to temporarily violate 

s(c) as it passes through its various database states. 

The inherent constraints of s(s) are never violated, 

however. 
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Constraints, Structures , and Operations 

The above discussion of DMFs and their utilization 

was tripartite. Formalisms were described in terms of 

their structures, their constraints, and their operations 

(processes). Such a partitioning of constructs is common 

within the DBMS literature (see [LUM78], [SU79], 

[TSIC82]). This orthogonal treatment should not be taken 

to imply that the constructs are disjoint, however. 

Rather, a DMF results from their coalescence. 

As an analagous example consider the stack as an 

information structural representation. When we 

investigate the nature of its "stackness" we find that 

structures, constraints, and operations, taken separately, 

do not describe a stack. Instead, it is defined by the 

harmonic interaction of these. 

In terms of structures, the stack is a simple linear 

list. This exact structural form is also taken on by 

queues, dequeues, and arrays. Therefore, it is not the 

structure of the stack from which its total meaning is 

derived. Note that stack structure corresponds to s(s), 

the structural schema, of our DMF specification. 
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As for stack operations, the "reasonableness” of 

performing POP and PUSH on a stack is the result of stack 

structure: a linear list. Tree based operations such as 

"preorder traversal" and "suffix walk" (see [H0R076], 

[PAGE78]) make no sense on such a structure; a linear list 

imposes a set of implicit constraints. Correspondingly, 

the operations POP and PUSH are nonsensical when applied 

to a tree. 

In a similar way, the form that is taken on by the 

elements of 0 is designed for use in conjunction with the 

structure of s(s) as generated from G(s). The structures 

and operations of the DMF, like those of a stack, are 

interdependent. 

Stack constraints go beyond the mere 

"reasonableness" of operations as determined by the stack 

structure. The constraints define the range of acceptable 

stack operations by placing restrictions on the domain of 

reasonable operations. For example, given the linear list 

structure of a stack, there are a number of operations 

whose performance makes sense. These operations have to 

do with how additions to, deletions from and access to the 

list are performed. By explicitly constraining the set of 

reasonable operations to be of the LIFO variety, a stack 

is defined as opposed to a queue, a deque, or an array. 
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Similarly, the explicit constraints of s(c) add to 

the implicit constraints of s(s) in determining the 

acceptability of database transactions. The three 

components, taken in isolation, do not define an 

appropriate paradigm of the real world. They must be 

applied together so that their synergism can be realized. 

Comparing DMFs 

Because structures, constraints, and operations vary 

among the different DMFs, there is a need for some means 

through which a comparative evaluation can be performed. 

One approach to this task, as evidenced by the relevant 

literature, is directed towards the formation of a 

"meta-model" which can be used as a basis of comparison. 

Much of the work in this area involves the use of a 

binary data model [2]. This is due to the extreme power 

of such models [TSIC82]. For example, the potency of the 

Semantic Binary Data Model has been demonstrated in that 

the model was used successfully to describe itself 

[ABRI74]. Also, the modeling power of the binary DIAM 

modeling formalism has resulted in its recognition as a 

"unifying theory of database implementaion" [SCHN76]. 
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A second approach to DMF comparison involves the 

specification of some universal set of criteria through 
\ 

which all DMFs can be compared and evaluated. Some 

preliminary criteria, as detailed in [LUM78], are as 

follows (be aware that the term data model denotes our 

concept of DMF): 

1. Expressiveness (explicitness). Can all 

objects, constraints and processes be described in the 

data model? 

2. Naturalness. Can the structure, constraints 

and processes of the enterprise being modeled be described 

in terms familiar to the end user of the system? 

3. Implementability. Can the primitives of the 

data model be implemented in "reasonable” ways on existing 

DBMSs? 

4. Simplicity. Are there too many constructs and 

too many different ways to specify the same thing in the 

data model? 
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5. Overloading. Are some constructs in the data 

model used to specify too many different things? 

Upon inspection of these criteria we find that many 

of the concerns which arise in the design of a DMF closely 

parallel those of programming language design (see 

[DIJK72], [DIJK76], [ELS073])* Indeed, the realms of data 

modeling and programming share a common conceptual 

framework. Since many of us are at ease when discussing 

the issues of programming, we will attempt to describe 

data modeling in terms of programming concepts. 

Hopefully, this will result in a better understanding of 

the modeling realm. 

Programming and Data Mod eling 

In this comparison we see a programming language 

(PL) as roughly corresponding to the concept of a DMF 

(data modeling formalism). Just as there is a great 

variety of different programming languages, so is there a 

great variety of DMFs (see [KERS76]). Neither a single PL 

nor a single DMF can be identified as being the undisputed 

best in its respective domain. 
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Certain PLs are better suited to meet the needs of 

certain programming environments than are others. Each 

language has its strengths and its weaknesses and there 

are definite trade-offs involved in the design of a PL. 

FORTRAN, for example, holds great computational power but 

its file handling capabilities are clumsy. COBOL retains 

the opposite position. Languages such as PL/1 and ADA 

which attempt to satisfy the needs of all programming 

environments suffer from extreme complexity (see[H0AR81 ]). 

Similarly, there are trade-offs involved in the 

design of a DMF. Features which are well matched to the 

demands of one modeling situation may result in clumsiness 

in another environment. Also, the inclusion of too many 

features in a DMF will make the modeling process overly 

complex [HAMM81; SU79; TSIC82]. There must therefore be 

found some optimum mix of constructs (note criteria 4 and 

5 above). 

A programming language is used to implement 

algorithms. The algorithm exists on its own and is 

unrelated to any one PL. In correspondence, a DMF is used 

to simulate real world phenomena which hold independent 

(of the DMF) stature. Consequently, algorithms as viewed 

in the programming realm relate to phenomena in the data 

modeling realm. 
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When an algorithm is implemented by adhering to the 

syntactic and semantic constructs of a PL, the process is 

called programming. The result of the process is the 

creation of a program. 

Any algorithm can be programmed in a number of 

different ways within the constructs of a single PL. 

Furthermore, the implementation of an algorithm in two 

different PLs will result in the creation of two programs 

which differ in both syntax and semantics. 

Analogously, when a real world phenomenon is 

represented by adhering to the syntactic and semantic 

constructs of a DMF, the process is called data modeling. 

The result of the process is the creation of a schema. 

A phenomenon can be represented in a number of 

different ways within the constructs of a single DMF 

(recall the distinction between the set of schemas MS" and 

a schema instance "sM) . Also, the representation of a 

single real world phenomenon in two different DMFs will 

result in the creation of two syntactically and 

semantically different schemas. 

It is obvious from the above discussion that there 

can be drawn a number of conceptual parallels between the 

realms of programming and data modeling. Because most of 

us maintain our conceptualization of programming concepts 



32 

within a well formed cognitive framework, there are many 

advantages to be gained by describing data modeling 

concepts in terms of analogous programming concepts. We 

will therefore make use of such parallelism later in the 

discussion . 

Despite the presence of certain similarities between 

the spheres of interest, a number of major differences do 

exist. These fundamental distinctions should be 

understood before further resemblance is noted. Some of 

these conceptual discrepancies, as noted in [TSIC82], are 

described below. 

The first distinction has to do with the stage of 

development in which the logical structure of data is 

considered. In terms of programming, if we assume that 

the recommended (stepwise refinement) programming 

procedure is followed, logical structure of data is the 

fin al concern of the stepwise process. Algorithmic 

structure, on the other hand, is identified as being the 

primary consideration. 

In terms of data modeling, the opposite situation 

holds. Here, the entire modeling process revolves around 

the logical structure of data, so such structure is of 

primary concern to the modeling process. 
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Algorithms can be viewed in two different lights 

within the realm of DMFs. If algorithms are seen as 

corresponding to database procedures, then their 

specification is a final stage of the overall modeling 

process. This priority is therefore exactly opposite that 

of algorithms within the programming realm. 

Alternatively, algorithms can be seen as 

corresponding to database transactions. In this light, 

they are external to the entire modeling process; they 

fall within the sphere of model usage. This is the 

concept of logical independence — the separation of 

schema from database interaction. 

The second fundamental difference between the 

modeling realm and the programming realm has to do with 

the emphasis that is placed on data types. While both PLs 

and DMFs utilize a similar notion of data type, PLs are 

more concerned with processes than with data or data 

types. Data type constraints are enforced, but 

enforcement is not excessively stringent. 

On the other hand, data typing is of the utmost 

importance in data modeling. In fact, a schema can be 

viewed as a collection of rigorously specified data types. 

The generic rules (G) of a DMF can be considered as an 

extensive type specification facility. 
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Finally, programming and data modeling differ in the 

emphasis that is placed on the sharing of objects. 

Prog rams seldom share (physical) data objects or variables 

and the specification of this within a PL is often rigid 

(e .g . FORTRAN ’’COMMON” and ’’EQUIVALENCE”, and PL/1 

’’DECLARE ”) . 

In contrast, the sharing and integration of objects 

is a fund amental precept of data modeling. A data model 

shares tokens among different types and provides a number 

of different views through which a common set of objects 

can be accessed. These concepts will be expanded at a 

later point in the discussion. 

The Generations of DMFs 

Traditional DMFs can be categorized into three basic 

types: hierarchical, network, and relational. These have 

been called the ’’three great data models” [ULLM80]. A 

common thread which exists through these DMF types is that 

the constructs involved are mainly syntactic [SU79]- In 

recent years, research efforts have concentrated on the 

creation of a number of ’’conceptual” or ’’semantic” DMFs. 

These have been called ’’second generation” DMFs vis-a-vis 

the earlier ’’first generation” types [LUM78]. 
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Second generation data models are not in all cases 

void of the first generation concepts. Rather, they are 

often extensions of first generation formalisms. Second 

generation DMFs are concerned with the meaning of data as 

opposed to the preoccupation with data access, storage, 

and manipulation that is exemplified by traditional DMFs. 

The meaning of data with which these new DMFs are 

concerned has been cited as being of the utmost 

importance: ”The fundamental property of a database is 

that it has an intrinsic meaning which is invariant of its 

interaction with users” ([MINS74] from [HAMM75, p. 27])• 

In a more recent work we find: ’’They [first 

generation formalisms] have pointed the way, however, to 

all the advantages of data integration. This integration 

provides a framework for the operation of an organization. 

It needs as a prerequisite, however, a good understanding 

of the data. Data models provide a tool for providing 

such understanding. As such, they may be more important 

than a DBMS [database management system] per se. DBMSs 

may be very general and border on being a file system” 

[TSIC82, p. 14]. 

The labelling of second generation DMFs as 

conceptual or semantic formalisms should not be taken to 

imply that early database systems were vacuous of any 
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semantic component. The assignment of a meaningful name 

to a data object captures some minor data semantics. 

Furthermore, carefully designed tree and network 

structures, used in conjunction with proper record or 

segment specification, can result in the creation of a 

somewhat meaningful logical data model. The semantic 

richness of such constructs is far from adequate for use 

in representing complex phenomena, however [HAMM81; 

KENT79; ROUS75; W0NG77]. 

In terms of hierarchical and network DMFs, much of 

the conceptual inadequacy stems from the fact that they 

are record based structures. As such, the models lack the 

flexibility that is required to represent some basic real 

world concepts. 

As an example, consider the collection of similar 

objects into a generic category or type. The 

representation of this phenomenon is a fundamental 

requirement of a semantically precise model (this will be 

discussed in detail in a later section). The record based 

nature of these first generation models results in two 

anomalies in representing this basic construct: horizontal 

inhomogeneity and vertical inhomogeneity [KENT791. The 

former relates to the situation where the tokens 

(elements) of a type do not share a common set of relevant 



37 

attributes. The latter situation arises when an attribute 

of a type does not share the same value format (domain) 

among all occurrences of the type. 

Despite its mathematical foundation, the process of 

schema normalization, which is performed on first 

generation data models, is aimed at maintaining semantic 

correctness [ULLM80]. Nevertheless, the inadequacy of. 

this process is often noted. Functional dependence, the 

notion upon which the entire normalization process is 

based, captures only a small portion of the total 

semantics of a database [CHEN76; HAMM75; ROUS75; SCHM75]. 

In the remainder of the discussion we will concern 

ourselves with conceptual data modeling. A modeling 

formalism which provides the constructs allowing for such 

modeling will hereunder be called a ’’semantic DMF.” 

Why Study Data Semant ic s? 

If we are to concern ourselves with the study of 

semantic DMFs we must first be convinced that there is a 

need for such modeling. As the ultimate purpose of a data 

modeling formalism (DMF) is to aid in the management of 

information, our testimony begins with a statement as to 
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the value o f informat ion as a r eso urc e: ” • • • the 

harn essing of in format ion will be one of the basic te nets 

o f corporate m anagement in the 1980 s. It is impera tiv e 

that all of us concentrat e on organi zing and ut ili zing 

in fo rmation m or e effect iv el y and e fficie ntl y. Ind eed , 

some • business le aders and man ag ement cons ul tant s con tend 

that in formati on will be r ecogni zed a s a r eso ur c e 

comparable to capital and labor. I see information as 

management’s most important resource for productivity” 

[CREN80, p. 15]. 

We see, then , that under or improper utilization o f 

in format ion can have detrimental effects upon the 

prod uc tivity o f the en terprise. We should there fore 

strive to make access to meaningful enterprise information 

as uncomplicated and as direct as is possible. Such 

access requires that the information be in a usable form: 

’’That’s the key. Information. Gathered laboriously, 

harnessed and made viable and understandable for the 

decision-makers” [CREN80, p. 16]. 

Put another way, the database system from which 

information about the dynamic real world system is derived 

should provide for: (1) a concise, understandable 

representation of the state of the system at any time, 

(2) efficient and high level access to information, and 
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(3) simple and consistent update as the system changes 

state (from [SMIT77a, p. 405]). 

Under traditional implementations, access to 

information is not direct and simplistic. Rather, it is 

periphrastic and tortuous: ’’The usefulness of DBMSs is 

severely restricted by their failure to take into account 

the semantics of databases. Although all three models 

[hierarchical, network, and relational] provide a logical 

view of the database in terms of data structures and a set 

of operations on them, they fail to incorporate the 

semantics of the database into these data structures and 

operators” [ROUS75, p. 145]. 

The indirect nature of information access from 

contemporary systems is due to the fact that semantics 

must be con scio usly applied b y the de signer and user of 

the system; they are not readily apparent from the schema 

[HAMM81]. The way people are forced to view information 

by a data model may shape their perceptions of the 

information. Consequently, d ata r epr esentation should 

match the way we think [TSIC82]. 

In summary, we see that the productivity of the 

enterprise hinges on the effective and efficient use of 

information. If the utilization of enterprise information 

is to meet these requirements it must be available in a 
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usable form. This demands that the underlying data from 

which the information is derived is thoroughly understood 

by the user. 

Because traditional systems do not provide such an 

understanding of data they do not support the needs 

(design, evolution, use) of complex database applications 

[HAMM81]. The systems therefore fail to meet adequately 

the ultimate needs of the enterprise. Consequently, we 

feel that the study of semantic DMFs is a valuable 

pur suit. 

This view is apparently shared by E. F. Codd , the 

"father" of the relational data model: "The goal [semantic 

data modeling] is nevertheless an extremely important one 

because even a small success can bring understanding and 

order to the field of database design. In addition, a 

meaning-oriented data model stored in a computer should 

enable it to respond to queries and other transactions in 

a more intelligent manner. Such a model could also be a 

more effective mediator between the multiple external 

views employed by application programs and end users on 

the one hand and the multiple internally stored 

representations on the other" [CODD79, p. 398]. 
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Having completed our (hopefully successful) argument 

supporting the validity of our study of semantic DMFs, we 

focus on the question of why traditional data modeling 

techniques fail to provide the required semantic richness. 

The reason stems from the fact that such techniques 

separate data from its interpretation. This is not the 

case with other forms of communication with which we are 

f amiliar . 

In natural language discourse, for example, both 

data and interpretation appear together [TSIC82] [3]• 

Thus, in the natural language phrase "His salary is 

twenty-two thousand dollars," we capture both data value 

(22,000) and data interpretation (dollar value of his 
4 

salary). In regards to the meaning of the terms "his" and 

"salary," we may draw on the context in which the phrase 

is used. 

Here, context or setting provides semantics in a 

number of ways. First, we can use the meaning that has 

been derived from the phrases of the discourse that were 

used prior to the one in question. Second, we receive 

audio and visual cues from the sender such as 

inflection of voice, and facial expressions. 

tone and 
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If this phrase were to be represented within a 

computer, the interpretation would be stripped from the 

data; only the value 20,000 would be stored. As a result, 

the intelligence of the software which accesses the data, 

or the intelligence of the user of such software is relied 

upon to provide an interpretation of the data. Since 

first generation DMFs are concerned with data syntax as 

opposed to data semantics, the user is awarded a large 

portion of said responsibility in these system 

implementations [HAMM81]. 

Some of the problems that arise from the lack of 

first generation DMFs to incorporate semantics into their 

structures and operators have been outlined as follows 

[ROUS75]: 

1. Each user is required to know what the 

attributes and relations (records) mean; otherwise they 

are unusable 

2. The concepts do not provide an adequate means 

for expressing the semantic relationships that may exist 

between items constituting the database. Also, they do 

not indicate how to choose a schema for a particular 

d atabase . 
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3. Constraints on the execution of a particular 

database operation are related only to cost and security. 

They do not constrain database operations to make sense 

(other than syntactically). 

4. Database consistency is a subjective notion. 

The effect of user modifications (insertions, deletions, 

updates) upon the database is understood only by the user 

in terms of his/her subjective view. 

Later in the discussion we will see how second 

generation DMFs and related research efforts are dealing 

with these issues. First, however, we must strengthen our 

understanding of the construct which underlies these 

issues -- data semantics. The purpose of the following 

chapter is to provide this understanding. 
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FOOTNOTES 

[1 ] Consider that a regres sion model is the product of 
proper applic ation o f 1 inear r eg re ssion 
techniques, or con str ucts > to a set o f 
ob serv at ions. 

[2] A binary data model is one in wh ich s im Pi e object 
nodes are connected by pa ir s of d ir ec ted arcs . 

Each arc within a pair is the inv er se 0 f the other 
arc. Such a mod el ing fo rmali sm provide s 
specific ity at the e x pen se o f com Pi ex ity ( see 
append ix A for details ) . 

[31 We will ignore, for the momen t a t 1 ea st the fact 
that nat ural language ha s an inherent amb igui ty. 



CHAPTER III 

DATA SEMANTICS 

In this chapter we attempt to define the "meaning” 

of data semantics. The notion of data semantics, as we 

will soon learn, is an elusive one; the task at hand will 

not be easy. Still, an understanding of semantic DMFs 

(data modeling formalisms) demands a prior understanding 

of the construct from which they derive their name. We 

will therefore focus our efforts in this direction. 

The Syntax and Semantics of Data Models 

Semantics is a construct which is well entrenched in 

the realm of programming languages. We believe, as noted 

above, that there is a value to be gained by studying 

unfamiliar data modeling concepts in terms of familiar 

programming notions. Programming concepts is therefore 

where we will begin. 

Data model syntax . The characterization of a program is 

twofold. It is defined by: (1) the syntax of the program, 

45 
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and (2) the semantics of the program [LEE76]. The former 

relates to the grammatical correctness of the program as 

specified by the constructs of the language in which the 

program is implemented. The latter, semantics, has to do 

with how the program works. 

The syntax of a program is never seen by the machine 

that executes the program. It is stripped away during the 

process of compilation leaving only the semantics of the 

program remaining. Consequently, errors which are 

detected during the execution of a program are semantic 

errors [1]. Thus: ’’When we cannot determine that some 

construct is erroneous without executing the program, we 

must call the error, if it then does occur, a semantic 

error” [ELS073> P* 265]. 

This notion gives rise to the following error 

classification scheme: ’’Errors detected by the compiler 

are syntactic while those that escape the compiler but are 

detected during execution are semantic" [ELS073, P* 265]. 

An inherent problem of this scheme, as noted by the 

author, is that the distinction is dependent on the 

intelligence that is embedded within the specific compiler 

for the specific language in which the program is 

implemented. Thus two errors which are connotatively 

equal could be classified as being syntactic or semantic 

depending on the situation in which they are detected. 



47 

From this discussion we learn that syntax and 

semantics, at least in terms of programming, are not 

absolute concepts. As a result, it perhaps is best to 

"live with certain language characteristics definitely 

semantic, others definitely syntactic, and others in 

between” [ELS076, p. 265]. 

As for data modeling, many similarities can be 

drawn. First, a data model, like a program, is 

characterized by its syntax and its semantics. The 

situation here is slightly more complex, however, because 

a single model is a threefold entity; it consists of 

structures, operations, and constraints. Each of these 

components has an associated syntactic structure. 

« 

In terms of structures and operations, syntax has to 

do with the grammatical correctness of the schema or 

transactions as specified by the constructs of the 

aforementioned data definition language or data 

manipulation language, respectively. Borrowing the above 

notion of error classification as used with programming 

languages we can state the following: .An error which is 

detected during the compilation of the structural schema 

is (probably) an error in structural syntax. Similarly, 

an error which is detected during the interpretation (or 

compilation) of a tr an saction is (probably) an error in 

operational syntax. 
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We have postponed our discussion of constraint 

syntax until now because the issue is somewhat 

complicated. First of all, we should consider implicit 

constraints and explicit constraints separately (recall 

that implicit constraints are inherent in the structure of 

s(s) while explicit constraints are specified in s(c)). 

Since implicit constraints constrain operations,their 

syntax may be considered to deal with the data 

manipulation language. Alternatively, they may be 

considered to deal with the data definition language in 

that they are a function of the properties of the 

structural schema. 

We propose that _if ^n impl ic it constraint issue has 

to do with the structural properties of the under1ying 

DMF, then its syntactic personal ity is captured within the 

syntax of the data manipulation 1anguage. A syntactic 

error of this type results in the inability to spec ify the 

transaction. 

If, on the other hand , an implicit constraint issue 

has to do with the structural properties of a specific 

structural schema, then its syntax (if such exists) is 

captured within the compiled schema. A syntactic error of 

this type results in the rejection or abortion of the 

transaction. As our primary interest lies in data 
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semantics vis-a-vis data syntax, the above distinction 

need not be pursued further. 

The final syntactic issue, that of explicit 

constraint syntax, is dependent upon the means through 

which the constraint schema is specified. Most DMFs 

employ the data definition language in defining s(c). 

Some second generation DMF researchers propose a separate 

constraint specification language, however (see [HAMM751). 

In either case, explicit constraint syntax has to do 

with the grammatical correctness of the constraint schema 

as specified by the constructs of the language in which 

the schema is specified. Thus: an error which is detected 

during the compilation o f the constraint schema is 

(probably) an error in ex piicit constraint syntax [2]. 

System semantics. The programming language concepts as 

presented thus far are of value in that they have provided 

us with a pragmatic (yet hardly absolute) distinction 

between data model syntax and data model semantics. We 

need simply consider that d ata mod el semantics is the 

totality of the model that is not syntax. Although this 

is the tack that is often taken when studying programming 

languages, we find it hardly sufficient for our purposes. 
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The notion that program semantics is Mhow a program 

works” does not give rise immediately to any conceptual 

parallels within the realm of data modeling. We will 

therefore focus on a less traditional treatment of 

semantics as provided by Edsger Dijkstra, one of the 

masters of programming language design [DIJK76]. 

The elegance of the technique lies in the fact that 

it deals with the semantics of a general system as opposed 

to program specific semantics [31* The system can be a 

program, but more generally it can be a machine, a 

mechanism, or (presumably) a data model. 

Consider a system (the design of which is goal 

directed) that, when started in an initial state, will 

eventually come to rest in a final state. If the system 

is viewed as being an activity, the characterization of 

some desired final state is called a ’’post (activity) 

condition.” 

In terms of inputs (arguments) and outputs 

(answers), we can take the position that the initial state 

reflects the value of the input, and the final state 

reflects the value of the corresponding output. Note that 

we assume that the final state (post-condition) depends on 

the initial state. Thus, in our alternative view, the 

answer depends on the argument that is input. 
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In this system the mapping from initial state space 

to final state space need not be functional. In other 

words, we allow for a number of initial states to result 

in the same final state (this does not imply that the 

system is non-deterministic as the mapping specified is 

from initial to final). Given the characterization of 

some final state, the initial states that result (upon 

system activation) in such a final state are said to be 

the states that ’’satisfy” the post-condition. 

The characterization of all initial states that 

result, upon system activation, in the realization of some 

post-condition is called the ’’weakest pre-condition” for 

that post-condition. For our purpose, the term weakest is 

better understood as meaning ’’most general.” 

For a given system (S), the weakest pre-condition 

for the post-condition R is specified as: 

wp(S,R) 

Through its definition we know that any initial state that 

adheres to the specification of wp(S,R) will result in 

adherence of the final state to the specification of R 

whenever S is activated. 
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The semantic s of the system are specified as 

follows: ”We take the point of view that we know the 

po ssible per formance o f mechanism S sufficiently well, 

provided that we can derive for any post-condition R the 

corresponding weakest pre-condition wp(S,R), because then 

we have captured what the mechanism can do for us; and in 

the jargon the latter is called its semantics” 

[DIJK76, p. 17]. 

Since the semantics of system S are captured in the 

derivation of wp(S,R) from R, the semantics of S are 

defined by a rule which specifies how the derivation can 

be performed for any R. Such a rule is called the 

system’s ’’predicate transformer” because when given the 

predicate R, it provides the corresponding wp(S,R) for S. 

The semantics of a s ystem are there fore the pr edicate 

transformer of the system. 

In terms of programming, the above description tells 

us that we thoroughly understand the semantics of a 

program if we know its predicate transformer. In this 

case the predicate transformer essentially tells us the 

following: for any specific result, what is the most 

general specification of the argument. 
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This concept can be expanded to include programming 

language semantics: "We consider the semantic 

characterization of a programming language given by the 

set of rules that associate the corresponding predicate 

transformer with each program written in that language” 

[DIJK76, p. 251. 

In terms of understanding data semantics, we believe 

that a number of helpful concepts can be drawn from the 

notion of predicate transformation. First, consider that 

a data model (as defined through the specification of 

constraints, structures, and operations) is a system whose 

design is obviously goal oriented. Since the purpose of 

the system is to represent aspects of reality, activation 

of the system refers to the process of providing a 

representation, or modeling. 

The system initial states, or inputs, are the real 

world phenomena which we attempt to represent. The system 

final states, or outputs, are the respective database 

occurrences. 

Continuing along this line, we suggest that a 

post-condition relates to the characterization or 

definition of some system final state -- a given database 

occurrence (D). Correspondingly, a pre-condition 

identifies some set of system initial states which are 
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real world phenomena. Furthermore, for a given data 

model M and a post-condition D, the weakest pre-condition 

wp(M,D) is the most general specification of real world 

phenomena such that all phenomena that match the 

specification will be represented as D by M. 

In the general description of predicate 

transformation we found that the semantics of a mechanism 

S, as captured in the derivation of wp(S,R) from R, 

indicates ”what the mechanism can do for us.M In 

correspondence, the semantics of the model M are captured 

in the derivation of wp(M,D) from D. Therefore, we 

propose that the semantic s o f the mod el indicate "what the 

model can represent;" how much of the real world meaning 

is included in the database representation (occurrence) . 

As in the general description above, a rule that 

specifies how the derivation of wp(M,D) can be per formed 

for any D of M provides a definition of the semantics of 

M. This relates to defining the interpretation that can 

be awarded to any database occurrence of the model. 

Finally, we propo se that the semantic 

characterization of a DMF is given by the set of rules 

that associate the corresponding predicate transformer 

with each model that is specified using the constructs of 

the DMF. If the predicate transformers that are 



55 

associated by means o_f the se r ul es contain a r ich real 

wo r1d interpretation, then the DMF has an inherent 

semantic opulence. 

A Theor y o f Data Semantic s 

At this point in the discussion we wish to direct 

attention towards the theoretical framework from which 

data modeling and data semantics concepts stem. Here, we 

are not concerned with ’’database theory” [TSIC82] which 

also goes by the name of ’’design theory” [ULLM80] and 

’’database normalization theory" [BEER78]. Such a theory 

base is indeed valuable, but it is somewhat peripheral to 

our focus in this work. 

In that database theory is founded almost entirely 

on the concept of functional dependency, and functional 

dependency is only marginally related to data semantics 

[CHEN76; HAMM75; ROUS75; SCHM75], the framework is not 

well suited to our needs. Instead, we seek a theory which 

deals with data models and data modeling. 

Current literature indicates that a theory of this 

type has not yet been developed [TSIC82]. We do, however, 

find a specification of what the theory should consider: 



56 

"Such a theory is not only a theory of databases. It 

should be the beginning of a theory of data, information 

and knowledge as it can be operated on by computers" 

[TSIC82, pp. xii, xiii] . 

Given the realization of the fact that there is, at 

present, no firm theory base from which we may draw, we 

must suffice to piece together the theoretical concepts 

which are present in the relevant literature. A logical 

starting point is to determine where the foundations of 

our sphere of interest, database management, lie. 

"Computer science drew from mathematics and engineering. 

Database management draws from c'omputer science and 

management studies" [TSIC82,p .xii]. 

We see from this diverse genealogy that database 

study ‘is perhaps more eclectic than any one of its 

foundation areas. From mathematics, the field of database 

management, as any science, relies upon the fundamental 

laws of algebra. Beyond this it depends upon set theory, 

formal logic, and relation theory [BEER78; B0SA62; CHEN76; 

C0DD70; C0DD72]. 

The contributions from electrical engineering deal 

primarily with hardware concerns and the physical database 

[H0NG81; MARC81]. Obviously, many areas are drawn from 

within the field of computer science. Among these are 
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artificial intelligence (AI) [HEND78; MINK77; MYLD75; 

ROUS75; WALT78], operating systems [ST0N81], programming 

languages and software engineering [BALZ79; VAND81], and 

data structures [CLEM81; LEHM81]. 

In terms of contributions made by the field of 

management studies, we find control theory and forecasting 

[B0NC81], as well as a number of human factor concerns. 

Specifically, these are decision making [BONC81; ROUS75], 

learning [MINK771, perception, and interpersonal 

communications [CODD74; HEND78; MINK77; MYLD75; WALT78]. 

If we are to seek out a formal theory of data 

modeling, we must first provide a definition of the term 

"theory.” While there are many possible candidates for 

this position, we choose to rely on the following: ”A 

theory is a set of interrelated constructs (concepts), 

definitions, and propositions that presents a systematic 

view of phenomena by specifying relations among variables, 

with the purpose of explaining and predicting the 

phenomena” [KERL64, p. 91- 

In terms of our work, the phenomena in which we are 

interested are the data modeling process and the semantics 

that are associated with such. Since we are concerned 

with explaining the phenomena as opposed to their 

prediction, we will attempt to ” interrel ate r el ev an t 
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constructs in order to present a systematic view with the 

purpose of explaining data modeling and data semantics." 

The concepts and terminology of the theory that will 

be presented below rely heavily upon the ideas discussed 

in [BILL78] and to a lesser degree those in [CHEN76], 

[SUND74] , and [TSIC82]. When theoretical constructs 

relate to the work of others we will indicate this with 

appropriate referencing. 

We will see that the theory proposes that various 

types of semantics are given by the mapping of facts from 

one representational form to another. Since semantics 

have to do with meaning, a pivotal element in the theory 

is that there exists a representation of facts from which 

a common understanding can be derived. There is required 

some means by which a fact can be "anchored" to its 

meaning; a meaning which is universally understood. 

What we seek, then, is some medium of discourse 

through which facts can be represented in a form that 

provides a consonance of comprehension. Such a medium is 

natural language. 

The natural language representation of an elementary 

fact is in terms of an object reference, a property or 

relationship reference, and a time reference [TSIC82]. An 

object can be concrete or abstract; it can be atomic or 
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compound. It is anything about which assertions can be 

made [BILL78]. 

Properties and relationships are asssertions about 

objects. In a natural language representaion, a 

relationship is denoted by a verb (e.g. "is employed 

by"). The natural language denotation of a property is by 

means of a predicative express ion [BILL78] (e.g. 

X> 

o
 

-p e a 

student") • 

For the sake of s impl ic i ty, we will avoid using the 

t empor al re ferenc e within the s pecificaion of a fact. It 

is this statement of time whic h allows the d yn am ic nat ur e 

of reali ty to be ca pt ur ed . By fixing time as a speci fic 

in stance, say t , we c an c onceptualize the fact ual 

representaion of re al ity as it exists at that t ime 

in stance; we have a " sn apshot" [HAMM75 ] of the r eal wor Id . 

Unless o therwise spec ified , then, ever y re pr e sen tat ion 

referred to in the foil owing discussion i s a "time t" 

repre sentation. 

We begin the discussion by introducing the concept 

of reality — the totality of real things. As a surrogate 

of reality we will use the totality of all possible facts 

which can be stated about reality. 
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For any database application, only a portion of 

reality is of interest. Consequently, we need be 

concerned with only a subset of all possible facts that 

can be stated about reality. The chunk of reality which 

is of concern to the application will be referred to as 

the univer se o f discour se [BILL78; B0NC81; ROUS75; 

WONG77]. Our factual representation of the universe of 

discourse, the "slice of reality" [SUND74], will be called 

the real world state [BILL78]. 

Extraction of the universe of discourse (and 

corresponding real world state) from the total reality is 

achieved through application of the processes of selection 

and perception. The existence and relevance of an object 

is determined by our percepts: "Objects are born when 

people become interested in them. They die when people 

stop being interested in them. They change when they are 

sufficiently different that people perceive them as 

different objects" [TSIC82]. 

The real world state therefore comprises a set of 

facts that exist as assertions about the objects which we 

are both interested in and aware of at time t. If we 

consider for a moment the dynamic nature of the real world 

we can define the set of imaginable real world states. 

This is the set of all real world states which may 
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(according to the users) exist at some point in time (see 

figure 3« 1) • 

Note that we have not yet imposed a natural language 

structure upon the facts; they are conceptualizations 

only. Before the facts can be structured, we must 

consider the possibility of ’’conceptually different views” 

[BILL781. 

Because our conceptualizations depend on our 

individual percepts, it can be imagined that two different 

users could have views of the universe of discourse which 

are conceptually different. As a result of such a 

situation, the nature of the facts and assertions that 

constitute the real world state would differ from one user 

to another . 

A commonly used example has to do with the various 

ways in which ’’color” can be regarded. If color is 

thought of as being an ob j ec t (e.g. ’’red”), then 

assertions about colors can be made. Such assertions can 

deal with properties of the color (’’has wavelength”), or 

they can specify relationships among colors and other 

objects (’’has color”). On the other hand, color can be 

regarded as being a property which is used in making 

assertions about other objects (”to be red”). In this 

case, further facts about colors cannot be specified. 



FIGURE 3.1 
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Because the process of perception cannot be 

formalized, there is no way of proving the absence or 

presence of conceptual inhomogneity. If such differences 

exist in our real world state, all subsequent 

representations of the state will result in 

misunderstanding on the part of the users. If we are to 

continue, then, we must assume that the real world state 

is vacuous of conceptually different views. 

An analagous assumption which will be made is that 

of factual consistency — a fact and its negation will not 

be contained in a given real world state. Furthermore, if 

a fact is not asserted, it is false [4]. This is known as 

the ’’closed world assumption” (see [REIT78]). 

A natural language specification of the real world 

state will be called the state d esc ription , This state 

description comprises the set of elementary predicative 

sentences which describe the real world state completely 

[BILL78]. An elementary sentence is one which cannot be 

specified as a conjunction (’’and”) of other sentences; it 

is atomic. A sentence in the state description either 

states that a relationship among a number of objects holds 

or that an object possesses a property. 
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Each elementary sentence is made up of three 

distinct components: a subject, a predicate, and an 

object-part [5]. The subject and object components are 

denotations that need not be simple. The object-part may 

denote any number (including zero) of objects. Each of 

these objects, as noted earlier, may be compound. The 

subject denotation can also be structured. 

Since the state description is a natural language 

description of the real world state, the semantics of 

natural language are given by the mapping of elementary 

sentences to real world state facts (see figure 3*2). 

Note that we assume that all users agree on the overall 

truth of the state description. Thus, there is a 

consensus that each elementary sentence represents a fact 

that is true with respect to the real world state. This 

assumption presupposes the existence of a common 

understanding of the natural language that is used to 

represent the real world state. 

The discussion thus far has dealt with what is 

commonly referred to as the in fologic al realm of data 

modeling. The infological realm is concerned with mapping 

the real world into basic human concepts [TSIC82]. Since 

our ultimate goal involves the understanding of a machine 

implemented representation, we must consider the 
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STATE 
DESCRIPTION 

PERCEPTION AND SELECTION 

FIGURE 3.2 
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datalogical realm of data modeling. Here, we map from the 

infological representation (state description) to a 

machine representation. 

Neither the real world Ste ate , nor its infol ogic al 

re presentation , the s tate description , lends itsel f to a 

fo rmal treatment. The natur e and n umber of construe ts are 

ov er wh elming. By abs tr act ing the se t o f imaginabl e r e al 

wo rid states we can spe cify the ab str act world model • The 

ab stract world model i s a set o f abstract states e ach o f 

wh ich correspo nds to a re al world s tate . 

An abstr act state , a s described in [BILL78], i s a 

ma thematical str uct ure which i s imposed upon a set o f 

en titi es ( E ) , a family ( from E) of mathematical rel at i ons 

(R >, and a family ( from E) o f type s (T) [6]. The 

structure is as follows: 

1. Every type (T (i)) is a subset of the set of 

4 

entities 

(T(i) e T)S E; Vi 
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2. The set of entities comprises the elements of 

the family of types [71 

E = {T(1) u T(2) u... T(n)|T(i) e T}; Vi 

3. Every relation is a subset of the set of 

entities and has an associated rank N(i) 

(R(i)N^ c R)S E; Vi 

4. An entity may belong to two different types [8] 

T(i) n T(j) f 0, i f j 
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All abstract states of the abstract model are 

constrained to have the same number of types and 

relations. Notice that there is no constraint on entities 

across states. Also, type and relation sets need not 

contain any elements. 

T(i), R(i) * 0 

The abstract state is related to the - real world 

(state) by means of the stand ard inter pretation. The 

standard interpretation maps phrases in the state 

description to components of the abstract state. 

Furthermore, it maps sentences in the state description to 

the value true or false. 

Noun phrases in the state description are mapped to 

entities of the abstract state such that only those noun 

phrases which denote the same real world object are mapped 

to the same entity. Verb phrases are mapped into 

relations or types depending on whether they denote, 

respectively, relationships or properties. 
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Sen tenc es of the state d escri ption are mapped to the 

v al ue tr ue if the ma P ping of its constituent phra ses is 

consisten t wi th realit y • In the situati on wher e the 

sentence states that an object possesses a property, it is 

mapped to the value true iff ( if and only if) the type 

into which the verb phr a se i s mapped c ontains, as an 

elemen t, the entity to which the r e spective noun phr ase is 

mapped • 

In the case where the sentenc e denotes the exi stenc e 

of a r el ationship among a set o f 0 bj ects, i t is map ped to 

the value true iff the enti t ies to which the subj ec t and 

obj ec t -part of the sen tence ar e ma pped form a tuple which 

appear as an element of the relatio n into wh ich the v erb 

phrase i s mapped. 

If each i and every sentence in the state descr iption 

is mapped to the value tr ue , the re spective ab str act state 

is said to be a ’’model" (as used in formal logic) of the 

state description. If we assume that the abstract state 

is a model of the state description, and we know (by prior 

assumption) that the state description is true with 

respect to the real world state, then the abstract state 

can be referred to as an ab str action of the real world 

state [BILL78] (see figure 3-3) C 9 3• 
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FIGURE 3.3 
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Since the abstract state is a syllogistic 

abstraction of the real world state, the components of the 

abstract state; entities, types, relations; are 

abstractions of their respective real world counterparts: 

objects properties, and relationships. For example, the 

type T(p) (of the real world state) is an abstraction of 

the property p (of the abstract state) because the verb 

phrase in the s tate d e scr i pt ion which de notes the property 

p i s m apped into T(p) • 

The real world state and the ab stract st ate , a s 

described here, hold a clo se correspo nde nee to the top t wo 

1 ev el s o f the "mul tilev el views o f data" sc heme as 

detail ed in [CHEN76]. Acc ording to Chen the Level 1 vi ew, 

which is called " in fo rmati on" is cone ern ed with entit ies 

and r elationships which "exist in our minds ." Beca use 

the se entities and relatio nships c arr y the quali f ic at ion 

that they ar e to be eventu ally re pre sen ted in the 

database, Level 1 corresponds to the real world state. 

Level 2, "information structure," provides a data 

grouping and value representation of Level 1 according to 

Chen. This representation describes formally the objects, 

properties, and relationships as does the abstract state. 

Consequently, our theoretical construct of abstraction 

relates to the notion of Level 1 —> Level 2 traversal in 

Chen’s multilevel structure. 
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At any point in time the set of data instances that 

are contained in the database is the database occurrence 

at that time. The syntactic correctness of the database 

occurrence is determined by the d atabase schema. The 

schema is the result of the application of a set of 

generating rules which consist of a structure 

specification as defined by a particular data modeling 

formalism [TSIC82]. 

A data instance can be regarded as the 

representation of one or more facts. It is a sentence 

that is specified in a formal language. The grammar of 

this language is provided by the database schema [BILL78]. 

At each instance of time the set of facts which is 

represented by the database occurrence corresponds to the 

abstract state for that time. The schema, on the other 

hand, is static so it corresponds to the set of all 

abstract states -- the abstract world model. Given this 

realization we are provided with a specification of the 

desired semantic constructs: The semantic s o f the d atab ase 

(occurrence) are given by the mapping from the database to 

the appropriate ab str act state. The semantics o f the 

database schema are found in the mapping from the schema 

to the abstract world model [BILL74] (see figure 3**0 • 
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In regards to our predicate transform treatment of 

data models, the former construct, the semantics of the 

database occurrence, relates to the derivation of the 

respective weakest pre-condition (which is depicted by the 

abstract state) from the post-condition (database 

occurrence). The latter construct, the semantics of the 

schema, relate to the predicate transformer of the model. 

Therefore, ’’semantics of the schema” as used here is the 

’’semantics of the mechanism” (model) as used previously. 

Data Semantics in Database Literature 

Database literature supplies us with a number of 

definitions of data semantics. Among the less intricate 

of these is the following: ”By the semantics of data we 

mean the ’meaning’ of the data” [KERS76, p. 58]. In that 

we have provided an extensive theoretical backdrop for the 

notion, we feel that this more pragmatic description is 

quite acceptable. We will therefore adopt it as our 

working definition of semantics from this point forward. 

Before we pursue our study of specific modeling 

concepts and individual DMFs, we will briefly mention a 

number of data semantic related issues that appear in the 
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relevant literature. First, we find a description of the 

function of semantics within our sphere of interest: "The 

role of database semantics is to ensure that stored 

information accurately represents the enterprise” 

[BEER78, p. 113]. This statement serves to clarify and 

restate the ultimate goal of our pursuit. 

Some authors cite the area of linguistics as a 

possible source from which a further understanding of 

semantics can be drawn. In [KERS76] for example, we find 

reference to the possible use of linguistic ’’predication 

analysis” as a means to a better understanding of data 

model semantics and related syntax. It is suggested that 

such a methodology would allow for the categorization of 

data models within a ’’semantic spectrum.” Placement of a 

model within this spectrum, which ranges from ’’surface 

semantics” to ’’deep semantics,” would be a function of the 

level of abstraction that is embodied in the information 

structures of the model. 

Also from the field of linguistics, we find 

reference to the ’’pragmatics” of a statement vis. its 

semantics [LEE76]. Given a syntactically correct 

statement in some (natural) language, the semantics is the 

meaning that is intended by the originator of the message. 

This may differ from the meaning that is interpreted by 

the receiver: the pragmatics of the message. 
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Reference to linguistic pragmatics, as cited here, 

is made in terms of programming applications, but we see 

the possibility of a conceptual parallel in terms of data 

modeling. The interpretation of the database occurrence 

that is made by the user is the ’’pragmatics" of that 

database occurrence. This may differ from the semantics 

of said database occurrence. In the event of a 

discrepancy, we see the difference between the 

interpretations as encapsulating the ’’semantic ambiguity” 

of the database occurrence (and possibly the ambiguity 

inherent in the underlying model or DMF). 

In [CODD79] we observe the distinction between 

"atomic semantics" and "molecular semantics." Atomic 

semantics deals with the search for meaningful 

(information) units that are as small as possible. 

Molecular semantics, on the other hand, has to do with the 

search for meaningful units that are larger than 

relations [10]. The former notion relates to the concept 

of defining modeling construct primitives. The latter 

relates to the ubiquitous concepts of aggregation and 

generalization [SMIT77a; SMIT77b]. These three concepts; 

construct primitives, aggregation, generalization; will be 

discussed in detail later. 
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Finally, from the same source, we discover a warning 

as to the possibility of frustration in our pursuit of 

data semantics: "The task of capturing the meaning of data 

is a never ending one. So the label ’semantic’ must not 

be interpreted in any absolute sense" [CODD79, p. 398]. 



78 

FOOTNOTES 

[1] Obviously, not every semantic error is captured 
during program execution. We can conceive of a 
semantically erroneous program as achieving 
’’normal” termination. In this case the results 
are faulty, but the faults are likely to go 
und etected . 

[2] Note that s(c) and s(s) are not necessarily 
separate entities. In the case where s(c) is 
specified in terms 
probability, are not 
is specified in terms 

[3] The methodology is 
modification, to non- 
as to deterministic 
need not concern us h 

of the DDL they, in all 
istinct entities. When s(c) 
of a CSL they are distinct. 

applicable, with slight 
eterministic systems as well 
systems. This distinction 
re . 

[4] Some infological models utilize 
fact that is not true may be ”cl 
and should therefore not be r 
false. Representation of this c 
by allowing for the speci 
’’infological distance” between m 

the notion that 
ose” to being tr 
egarded as bei 
oncept is achiev 
fication of 
essages . 

a 
ue 
ng 
ed 
an 

[5] A predicate which is followed by one or more 
object terms can serve as a formal representation 
for an elementary sentence. Such a notation 
allows us to avoid some of the ambiguity that is 
inherent in natural language. This obviously is 
the basis of predicate logic and predicate 
c aleulus . 

[6] Consider a non-empty set: 

s = {a, b, c} 
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A "sigma field" (s) of S is the set of all 
possible subsets of S. Thus: 

s - {0,(a),(b),(c),(a,b),(a,c),(b,c),(a,b,c)} 

A family (F) from S is a subset (not necessarily 
proper) of s 

F s 

Thus, F is a set of subsets of S. 

[7] Most DMFs include such a constraint. In this case 
the model is said to be "strictly typed." 
Strictly typed models are discussed in a later 
section. 

[8] Statements 2 and 4 imply that T is a covering of 
E. 

[9] This application of the term "abstraction" differs 
slightly from its common usage in data modeling. 
Abstraction as generally used in data modeling 
refers to the process through which the 
commonalities of objects are emphasized by means 
of ignoring detail and individual difference. 
This is discussed in detail in a later section. 
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[10] A proper generic interpretation of this sentence 
can be gained by replacing the term ’’relation” 
with ’’database entity or database association.” 



CHAPTER I V 

OBJECTS AND OBJECT GROUPS 

In this chapter we discuss the basic objects of 

databases and data models. In addition, we consider how 

these basic objects are collected into groups. 

Database Obj ects and Primitives 

In reviewing the data modeling theoretical framework 

that was presented above, it becomes obvious that there 

are four general kinds of objects in which a data model is 

interested. Specifically, these are entities, values, 

associations among entities, and properties of objects. 

Interest in these types of objects is characteristic of 

all data modeling formalisms (DMFs) . This includes first 

generation as well as second generation formalisms. In 

studying the specifics of various DMFs we will find that 

the treatment of these objects is quite diversified, 

howev er . 

81 
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Database objects. Entities go by a number of different 

names such as "concept” [ROUS75; SU791, "thing" [SENK75], 

and "independent object" [SCHM75]. These represent the 

real world constructs whose behavior we wish to emulate. 

While their incarnate counterparts may not be simple, 

entities can be regarded as being indivisible for modeling 

purposes [SMIT77a]. 

An entity can be used to represent a real world 

concrete object or, alternatively, it can depict an event 

(it has been noted that making the distinction between 

such can hamper the flexibility of the model [HAMM81]). 

The RM/T data model [CODD791 distinguishes three different 

types of entity: characteristic, associative, and kernel. 

Each of these types maintains its own generic 

classification scheme. 

Entities are the main focus of interest in a data 

model. Concern for the other database objects is due to 

the fact that they ultimately describe entities [KERS76]. 

Thus we consider associations only because they relate 

entities. Similarly, we deal with values because they 

provide meaning to the properties that are used to 

describe the entities. 
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Depending on the DMF, associations can have 

properties or not. The well known Entity-Relationship 

Model [CHEN76] is of the former category. In the RM/T 

model [CODD79] , both situations are allowed. If the 

association is awarded the status of an entity, then it 

may take on properties. Otherwise, no properties are 

allowed. In the former case the object is called an 

’’associative entity;” the latter object is a ’’nonentity 

association.” 

In some DMFs entities which are used to describe 

other objects can themselves be described. This is true 

of the "characteristic molecule type” of RM/T [CODD79]* 

Also, the Basic Semantic Data Model [SCHM75] can be viewed 

in this way. Here, ’’characteristic objects” are those 

which exist only to describe "independent objects" 

(entities) and other characteristic objects of the world. 

This phenomenon can be looked at in two different 

lights as noted in [KERS76]: (1) characteristic objects 

are the properties and independent objects are the 

entities, or (2) there are no properties but there are two 

classes of entity — independent and characteristic. Note 

that the first view allows for nested properties. Some 

semantic network based models utilize the concept of 

nested properties in a similar way (e.g. [ROUS75]). 
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Database primitives. The fundamental data model 

objects; entities, associations, properties, and values; 

can be thought of as being the constr uct primitives of 

data modeling. Here, the term "primitive” has a more 

comprehensive connotation than it holds in its traditional 

programming language usage. We use the term within a data 

modeling context to refer to an object which the user 

considers to be atomic. In other words, from the view of 

the user, there is no need to further dissect the 

obj ect [ 1 ]. 

We believe that the aforementioned constructs meet 

this specification. For example, there is no reason to 

conceptualize the notion of "part of an entity" or a 

portion of an association. True, these objects are 

further described in terms of their properties, but they 

are not further partitioned. 

We will also use the term "primitive" in its more 

traditional sense; as it is used in computer programming. 

Briefly, programming distinguishes two types of 

primitives: data primitives and programming primitives. 

We will see that both of these have analogous concepts 

which are of value in our discussion of data modeling. 
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Data primitives stipulate the most basic data forms 

(types) that are available for use by the application at 

hand. In terms of computer programming, common data 

primitives are integer, character, Boolean, etc. [2]. 

From the view of the programmer these can be assumed to be 

provided by the hardware. In terms of data modeling, the 

concept of a data primitive is exactly the same. 

Assignment of a data value to a primitive data type is 

used to aid in the maintenance of basic data integrity. 

In computer programming, the programming primitives 

are the most basic operations that are available for use 

by the application. High level language primitives are of 

the form READ, CALL, etc. [3]. In data modeling we use a 

concept that is much the same. The set of operations (the 

set "0" in our data model notation of chapter 2) comprises 

the primitives of the respective DMF. In order to avoid 

the ambiguity that would stem from use of the term 

”programming," we will refer to this set as the o per ation 

pr imi t ive s of the DMF. 



86 

Data Typing 

In the above text we set forth the proposition that 

entities and associations be considered modeling 

primitives. The rational provided was that the user is 

not concerned with a further dissection of these objects. 

The opposite process, grouping these objects into 

categories is of great value, however. 

In natural language discourse we often make 

reference to a ’’higher level" object which constitutes a 

set of "lower level" (more primitive) objects. For 

example, in the statement "Doctoral students make good 

lovers," the term "doctoral students" denotes all people 

who qualify for consideration as a doctoral student. In 

other words, reference to the single term doctoral 

students implies reference to the entire set. 

In data modeling we use a similar concept which is 

called "classification," or "typing." A type is an object 

which is formed by the grouping of homogeneous objects. 

The individual objects that form a type are called 

"instances," "occurrences," or "tokens" of the type. The 

process of decomposing a type into its primitive token 

instances is called "instantiation" (note that this is the 

inverse of classification). In general, data models 
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classify both entity and association tokens into types. 

The schema can be considered as a collection of these 

types [TSIC82]. 

The type-token concept roughly corresponds to the 

set theoretic notion of intension-extension. The 

intension of a set is a description of the constitution of 

the set; it is definitional . Set intension is often 

specified in terms of a membership rule or predicate which 

defines which occurrences are permitted. 

The extension of a set is a specification of the 

actual set occurrence; it is representational . For 

example, given the set intension: 

{x|x = positive even integer, and 2 <_ x <_ 8} 

a respective extension is: 

(2,4,6,8} 

i 
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In terms of data modeling, a type can be considered 

as an intension in which case the tokens of the type are 

an extension. Sine e a schema is a collection o f t ype s, it 

can be considered £S the intension of the d atabase. Each 

corresponding database occurrence is therefore an 

extension of the intensional schema. 

Stric t v s. 1 oose typing . A DMF can be either stric 

>> 
i—

\ 

typed or 1oosely typed . In a strictly typed model e ach 

obj ect must, at all times , be am ember of some type. If 

an obj ec t does not fit naturally into a t ype there are two 

altern at iv es : (1) force membershi p of the object into s ome 

type or (2) rem ove the obj ec t from the domain of the 

mod el . In a loose ly typed mod el uncategorized objects are 

allowed to exist because typing is optional. 

All DMFs that deal with the datalogical realm of 

data modeling are of the strictly typed variety [TSIC82]. 

Some infological mod el s are loosely typed 

(see[SUND74]) [4]. Since our work center s around the 

datalogical sphere, all DMFs in which we are interested 

are strictly typed. 

Strict typing results in 

noted in [TSIC82]: 

two basic detriments as 
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1. The DMFs have an inherent inflexibility in 

representing subtle differences — they force homogeneity 

2. The groupings must (in most cases) be specified 

a priori — types can not evolve dynamically 

There are, however, a number of distinct advantages 

to be gained by using strict typing. The major advantage 

is that typing reduces the number of obj ects that need to 

be dealt with. In terms of conceptualizing the ways in 

which objects are related to each other, tokens need not 

be considered. All inter-object concerns can be faced in 

terms of less cluttered inter-type issues. 

A second advantage relates to the properties of 

typed objects. Since a type is defined in terms of token 

object homogeneity, the homogeneous properties of all 

tokens of a type can be abstracted to the type level. In 

other words, the properties can be considered to ’’belong'’ 

to a single higher level object rather than to a multitude 

of primitive objects. As this issue is fundamental to the 

study of second generation DMFs, it will be discussed in 

great detail later . 
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Typing in AI. The less traditional artificial 

intelligence (AI) approach to data modeling enforces 

(strict) typing of objects, but the methodology differs, 

in some cases, from the standard (non-AI) database 

management (DM) modeling approach. The terminology may 

differ in that some AI based models refer to tokens and 

types as ’’concepts'’ and ’’classes," respectively. The 

connotation of these objects remain the same, however. 

A more extreme divergence lies in the fact that some 

AI models mix tokens and types in the same structure as do 

infological models (see [SUND74]). Unlike the infological 

models, however, the AI structures maintain a strict 

distinction between the generic and specific objects (note 

that the AI models are strictly typed) . 

As an example, consider that the semantic net(work) 

of an AI model is the rough equivalent of the schema of a 

standard DM data model. While the DM schema provides a 

database intension only, the semantic net provides both 

database intension and database extension. Although these 

types and tokens are combined within a single network 

structure, a distinction between the 

maintained. All type (class) objects 

"upstairs” of the net while all tokens 

"downstairs” objects (see [ROUS75])* 

categories 

exist in 

(concepts) 

is 

the 

are 
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The role approach. In recent years a number of 

modifications of the standard data typing concept have 

been proposed. Among these suggestions is the role model 

[BACH77]. In this approach an entity is characterized by 

the roles it plays [5]. 

The typing of objects is twofold in the role model. 

Categorization is by role type (roles with similar 

properties) and by entity type (entities with similar 

properties). Role types do not overlap nor do entity 

types. Furthermore, roles and entities are not subsets of 

each other . 

Relationships are among roles rather than among 

entities. Entities are mapped to roles, so entity objects 

are ultimately associated in terms of the roles they play. 

The cardinalities of the mathematical mapping between role 

and entity types is allowed to be complex (manyimany). 

Thus one entity token is allowed to play a number of 

different roles and each role can be played by many 

entities . 

Because the constraints implied by the above 

descriptions are lax, some explicit constraints can be 

identified. Specifically: 
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1. A role can be declared as being shareable or 

non-shareable depending on whether it may be associated 

with more than one entity 

2. A role-entity association can be 

being essential or nonessential depending 

entity occurrence implies the existence 

occurrence 

declared as 

on whether an 

of a role 

The ultimate purpose of the role concept is to 

provide clarification in the situation where traditional 

entity types overlap. Consider, for example, the object 

types ’’person,” ’’employer,” ’’customer” and ’’corporation;” 

all of which are of concern to the enterprise. If all 

such objects are considered entities, as is the usual 

procedure, then each of these object categories is an 

entity type. 

Under this approach a conceptual problem arises when 

we consider the overlap of types. A customer may be a 

person or a corporation. At the instance level, then, 

tokens are not homogeneous within a type; they are very 

different [6]. This is illustrated in figure 4.1a. 
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OBJECTS VIEWED AS 
ENTITY TYPES 

FIGURE 4.1b 

OBJECTS VIEWED AS 

ENTITIES & ROLES 
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The role model methodology alleviates this anomaly 

by considering that "customer” and "employer" are not 

entitie s . Rather , they are roles that are piayed by 

entities . Thus , a ci or poration entity token which i s 

r epr e sen ted in the d atab a se can play the c ustomer role or , 

alternat ively, it can pi a y the employer role. Likewi se > a 

given person occur r ence c an be a customer or an emplo yer 

in the role that it plays within the enterprise ( see 

figure 4 . lb) . 

In the next chapt er we consider how the concept o f 

obj ect grouping c an b e extended so that types are 

themselv es collected in to groups. The pro cess is called 

" ab strac t ion ." 
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FOOTNOTES 

[1] As noted earlier, this is akin to the notion of 
"atomic semantics” [CODD79J. 

[2] Obviously, the level of 
primitives is depend 
application. In ass 
example, data primitive 
even bits. 

abstr act ion of the data 
ent on the type of 
embl y progr amming , for 
s are in terms of byt es or 

[3] As with data primitives, consideration of an 
operation as being a programming primitive is 
application dependent. A programming primitive of 
a high level language is viewed as a 
macro(instruction) in a low level language. For 
instance, the COBOL ADD primitive corresponds to 
an assembly language macro comprising the LOAD, 
ADD and STORE primitives. 

[4] Recall that the infological realm deals with 
describing the real world in terms of basic human 
concepts. As such, it ignores the attributes of 
the storage hardware and can consequently allow 
great flexibility. 

[5] A number of DMFs incorporate the notion o 
into their framework. Among these 
relational model (see [CODD79]), and the 
(see [CHEN76]). The concept is of 
importance in these models, however. 

f ”roles” 
are the 

E-R model 
second ar y 

[6] In a record based model this phenomenon is called 
’’horizontal inhomogeneity” [KENT791* 



CHAPTER V 

DATA ABSTRACTION 

In the previous chapter we described how token 

"primitive" objects can be gathered together to form a 

more generic object type. This grouping process was 

called categorization. The reverse process, decomposing a 

type into its token objects was called instantiation. A 

section was devoted to this concept of typing because it 

is fundamental to all data modeling formalisms (DMFs) in 

which we are interested; all datalogical data models are 

strictly typed [TSIC82]. 

In this chapter we will learn that categorization is 

a special case of a very general data handling construct: 

data ab str action. Abstraction, as used in second 

generation data modeling, is defined as follows: "An 

abstraction of some system is a model of that system in 

which certain details are deliberately omitted. The 

choice of the details to omit is made by considering both 

the intended application of the abstraction and also its 

users. The objective is to allow users to heed details of 

the system which are relevant to the application and to 

ignore other details" [SMIT77b, p. 105]. 
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If a data model is to be of any value it must be 

abstract. What is gained through the use of abstraction 

is as follows: it allows to filter through only those 

portions of the database with which we are concerned. Put 

in alternative terms, abstraction allows us to "see the 

forest (information content of the data) as opposed to the 

trees (individual values of the data)” [TSIC82, p. 5]. 

As noted above, abstraction deals with ignorance of 

details about some object. When this detail is ignored 

the object is said to be "more abstract." In general, 

abstraction involves the representation of a nurnber of 

less abstract objects as a single more abstract, or 

"higher level" object. The inverse of the abstraction 

process is called "decomposition." Thus, decomposition 

involves breaking a single more abstract object into a 

number of less abstract component objects [1]. 

Database management systems (DBMSs) distinguish two 

forms of abstraction: real world abstraction, and 

implementation abstraction [SMIT77a]« He al world 

abstraction allows the user to momentarily ignore details 

while conceptualizing some aspect of the world. This type 

of abstraction is therefore temporary. 
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Implementation abstraction, on the other hand, is 

permanent. This is used to continuously hide details of 

the structural implementation of the database (e.g. we, 

as database users, need never think of the complex pointer 

system that is used to implement a simple database 

relation) [2]. Since our interests lie in the realm of 

conceptual modeling vis. DBMS implementation, we are more 

concerned with abstraction of the real world variety. The 

term Mabstraction" will hereunder refer to real world 

abstraction unless stated otherwise. 

Because objects can be classified as being more 

abstract or less abstract, we can speak of abstraction as 

being ’’top down" or "bottom up" (note that top down 

abstraction is decomposition). Both of these approaches 

are useful in data modeling. Bottom up abstraction 

enables us to understand a complex phenomena. Top down 

abstraction allows us to design a complex object [TSIC82]. 

If a data model is to use abstraction to its full 

(semantic) potential, names given to abstract objects 

should be restricted to be natural language nouns. This 

allows for true abstraction to be distinguished from 

"spurious groupings of distinct concepts" 

[SMIT77a, p. 107]. Furthermore, each abstract object 

should be uniformly accessible independent of its level of 
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abstraction; there should be a one-to-one correspondence 

between objects and their respective representations in 

the database [SMIT77a] [3]- 

Since the simultaneous advent of two now classic 

articles, [SMIT77a] and [SMIT77b], real world abstraction 

has been discussed in terms of two distinct categories: 

aggregation ab str action, and gener alization ab str action. 

The former has to do with the grouping of heterogeneous 

objects to form a more abstract representation. The 

latter refers to the grouping of homogeneous objects to 

form a more abstract representation. 

Although the concepts of aggregation and 

generalization abstraction are fundamental to second 

generation DMFs, they are by no means new ideas. Each has 

a discernible heritage. Aggregation abstraction, as we 

now know it, primarily developed out of early software and 

(first generation) database research [4]. Our present 

understanding of generalization, on the other hand, has 

stemmed from artificial intelligence (AI) research 

[SMIT77b; W0NG77]. 
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Aggreg ation Ab str ac tion 

Aggregation, called "cartesian aggregation" in the 

RM/T data model [CODD79] , is an abstraction through which 

an object gains its structure by combining a set of 

constituent objects. In terms of our aforementioned data 

modeling construct primitives, aggregation refers to the 

transformation of an_ association among a number of named 

(heterogeneous) entities into a single higher level named 

entity. 

The reverse of aggregation is called "aggregate 

decomposition." In the domain of programming, aggregate 

decomposition corresponds to the process of stepwise 

refinement as used in program design (see [DIJK72]). 

Aggregation abstraction is a "natural" modeling 

concept because it is used often in natural language 

expression of relationships. Consider, for example, the 

following relationship: 

"Pupil P received a grade G in a class of the 
course numbered C-NO with C-H credit hours and 
description D taught by instructor I during 
semester S in room R" (from [SMIT77a, p. 406]). 
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This phrase; which defines an 8-ary relationship 

among the entities P, G, C-NO, C-H, D, I, S, R; contains 

two inherent aggregation abstractions and can be defined 

as a single aggregation abstraction. The term ’’course” is 

an abstraction of the primitive level objects course 

number, credit hours, and description. The term ’’class” 

is an abstraction of the abstract object course, and the 

primitive objects semester, instructor, and room. 

Furthermore, the abstract object ’’class,” coupled 

with the primitive objects pupil and grade can be further 

abstracted to form a higher object, say ’’enrollment.” 

This is depicted in figure 5.1. Note that abstraction 

through aggregation is inherent in first generation DMFs 

in that each record (relation) depicts the abstracted 

aggregate of its component objects. 

The above example makes clear the fact that 

abstraction through aggregation is hierarchical in nature. 

At each level of the hierarchy, the component objects are 

attributes of the more abstract object that is formed by 

their aggregation. 

The artificial intelligence (AI) community 

represents aggregation abstraction in terms of the 

’’PART-OF” relationship. Here, a PART-OF relationship 

links each component part to the higher level abstracted 
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object. In regards to syntactic issues, this approach is 

quite different from the traditional (non AI) data 

management methodology. Explicit relationships are 

defined between the object and its components. The 

semantics of the aggregation hierarchy, taken as a whole, 

are identical, however. The AI version of figure 5.1 is 

shown in figure 5.2. 

Some second generation DMFs define a variation of 

the aggregation abstraction concept to account for the 

situation where there are no well defined attributes of 

the lower level object instances to specify their grouping 

in the formation of higher level object(s). In this case 

token objects of a number of heterogeneous types can enter 

and leave their affiliation with one another where the 

affiliation itself represents an entity. Consider the 

semantics of membership in professional organizations, for 

example. The heterogeneous members which dynamically make 

up an organization define our interest in the 

organization . 

In such an abstraction, the set of types from which 

tokens may be combined provide a "covering" of the 

abstract object [5]. This notion is called "cover 

aggregation" (vis. cartesian aggregation) in the RM/T 

data model [CODD791, and "user controllable grouping 

class" in the Semantic Database Model [HAMM81]. 



104 

AN AI PART-OF HIERARCHY 



Generalization Abstraction 

While aggregation deals with d issimilar objects, 

generalization abstraction is based on taking advantage of 

the commonality that exists among objects. Generalization 

is defined as follows: ]tA general ization i s an abstr action 

which enables a class of individual objects to be thought 

of generically as a single named object [italics mine]. 

Generalization is perhaps the most important mechanism we 

have for conceptualizing the real world" 

[SMIT77b, p. 107]. 

A special case of generalization abstraction is the 

aforementioned token-type abstraction in which a group of 

similar elementary objects (tokens) are combined to form a 

higher level more generic type. 

As noted above, the process of forming a type from 

tokens is called "classification" while the reverse 

process is "instantiation." More comprehensively, the 

process of forming a generic type from objects of any 

abstract level (type or token) is called "generalization." 

The reverse process is called "specialization" or , 

alternatively, "generic decomposition." 



The attributes of a 

1 06 

generic object are those that 

summarize the attributes of the underlying members of the 

set. The semantics of this assignment of generic 

attributes are different than if the attributes were 

redundantly attached to the members. Generic attributes 

denote the fact that tokens of the type have these 

attributes in general. The alternative approach only 

denotes that those particular tokens hold the attributes. 

Generalization abstraction, like aggregation 

abstraction, is hierarchical in nature [6]. At any level 

of the hierarchy, the attributes of the ancestor objects 

are applicable. Therefore, the lower (generic) level 

objects have a greater number of relevant attributes than 

do the higher level objects (note that an object holds its 

own attributes as well as those of the higher level 

objects). 

The fact that lower generic level objects acquire 

attributes of the higher level more general objects is 

called the ’’property inheritance rule” [CODD79]* A 

general description of this principle is as follows: 

’’Given any subtype e, all of the properties of its parent 

type(s) are applicable to e. For example, all of the 

properties of employees in general are applicable ^o 

salesman employees in particular” [CODD79, P* ^20]. 
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The "attribute inheritance rules" of the Semantic 

Database Model [HAMM81] deviate from this commonly- 

accepted principle by allowing for parent types to hold 

attributes which are not inherited by the less general 

children objects. Such attributes are those that apply to 

the more general class (type) only, and if inherited would 

take on an erroneous value and/or meaning. In the above 

example the attribute "number of employees" is an 

attribute of the generic object type "employee" and should 

not be inherited (as is) by the less general type 

"salesman ." 

In the AI community, the notion of generalization 

abstraction goes by the name of the "IS-A" relationship. 

As is the case with the previously noted AI PART-OF 

concept, abstraction is depicted by means of linking lower 

level objects to their higher level objects through binary 

associations. In this way an IS-A hierarchy, which is 

synonymous with the notion of a generalization hierarchy, 

is formed . 

Figure 5.3 provides a simple example of an IS-A 

hierarchy. Note that generalization abstraction is 

transitive. Thus it is implied that a salesman is a 

person. In terms of property inheritance, every person 

has a name, so the attribute NAME is a property of type 



108 

PERSON and, accordingly, of types EMPLOYEE, SALESMAN, 

ACCOUNTANT and DEPENDENT. 

Very young persons may not have social security 

numbers, but all employees do. Consequently, the 

attribute SS-NO is a property of type EMPLOYEE which is 

inherited by types SALESMAN and ACCOUNTANT. It is not an 

attribute of type DEPENDENT, however. 

If we consider each non-token object in a generic 

hierarchy to be the intensional representation of some set 

of tokens, then we see that the instantiated version of 

these intensional types can be associated in terms of set 

based relationships. Specifically, each extension of a 

lower level object is a (not necessarily proper) subset of 

the extension of each of its parent objects. 

Codd has augmented the notion of hierarchical 

generalization by specifying two distinct categories of 

generalization abstraction: unconditional generalization 

and alternative generalization [CODD79]* The former type 

corresponds to the standard abstraction concept as 

heretofore described. The latter type allows for the 

specification of an exclusive alternation ("X-OR") among a 

number of supertypes which a single subtype may be 

generalized into. 



109 

FIGURE 5.3 

AN AI IS-A HIERARCHY 
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Consider, for example, the following five entity 

types: legal unit, company, partnership, individual, and 

customer. The type "legal unit" is obviously the most 

generic concept, so it belongs at the top of the 

generalization hierarchy. This object is generically 

decomposed into the three lower (generic) level objects 

company, partnership, and individual as shown in 

figure 5.4 (UG denotes unconditional, or ordinary 

decomposition). 

In considering the object type "customer," we find 

that it is a subtype of the abstract object "legal unit." 

Also, depending on circumstances, it is a subtype of one 

of the object types company, partnership, individual. The 

object therefore belongs below these types in the generic 

hierarchy with the understanding that a customer token is 

a member of at most one of its immediate generic 

supertypes. This semantic is expressed by the alternative 

generalization concept as shown in figure 5.5 (AG stands 

for alternative generalization). 

Note that a consequence of the alternative 

decomposition of many abstract objects into a single lower 

level object is that the tokens of the lower type must be 

treated individually in terms of property inheritance. 

All token instances of the type "customer," for example, 
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should inherit the properties of type ’’legal unit,” but 

only some tokens should inherit the properties of type 

"ind ividual” [71* 

Di scussion 

Any abstract object can be decomposed into a set of 

lower level component objects or into a set of less 

general objects. Furthermore, these decomposition 

activities are independent of each other. Consequently, 

aggregation and generalization can be graphically depicted 

in orthogonal planes of a three dimensional diagram. A 

generic class can be decomposed into lower generic level 

classes by moving in one plane, and each of these objects 

can be subsequently decomposed into its lower aggregate 

level objects by moving in the orthogonal plane. This 

allows for the modeling of quite complex real world 

phenomena. 

In [SMIT77b] there is presented a methodology in 

which abstract objects can be represented in a relational 

database. Each generic object is portrayed by an 

individual relation. A set of five constraints, called 

the ’’relational invariants,” are used to maintain the 
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ALTERNATIVE GENERALIZATION 
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semantic integrity of the database after update operations 

are performed. 

Satisfaction of the relational invariants constrains 

each relation to represent an abstract (in terms of 

aggregation and generalization) object. Because each 

object is associated with other objects along two 

orthogonal axes, an update operation which involes an 

object can trigger the propagation of updates along both 

the aggregation and the generalization hierarchical 

str uctures. 

Although they are called by a number of different 

names, the concepts of aggregation and generalization 

abstraction are ubiquitous in the fabric of second 

generaion DMFs. Here, we are not referring to the 

simplistic notions of token-type generalization or 

attribute-entity aggregation. Rather, we are speaking of 

higher level real world abstraction. 

The entire Semantic Association Model [SU79H is 

based on distinguishing various categories of aggregation 

and generalization abstraction. The Basic Semantic Data 

Model [SCHM75] is founded on the notion of modeling the 

aggregate decomposition of objects into component 

characteristics. Both categories of interclass connection 

used in the Semantic Database Model [HAMM81] can be viewed 
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in terms of generalization. The "subtype connection" 

corresponds to type-type generalization while the 

"grouping class connection" relates to generic 

decomposition. 

As noted above, the RM/T [CODD791 constructs of 

"cartesian aggregation" and "unconditional generalization" 

are synonymous with aggregation abstraction and 

generalization abstraction, respectively. This DMF 

distinguishes three types of entity each of which is 

capable of maintaining its own aggregation and 

generalization hierarchy. 

Perhaps the most enterprising use of abstraction is 

made by the AI community. In some AI based DMFs 

"programs," which correspond roughly to traditional 

database procedures, exist as objects within the semantic 

net (schema) of the model. As a result, programs can be 

grouped into classes and related in terms of IS-A and 

PART-OF hierarchies [TSIC82]. Furthermore, when the 

standard inheritance rules are applied, programs can 

inherit attributes from other programs. At the token 

level we have specific invocations of a program. These 

are called "processes." 
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In the next chapter we discuss a number of issues 

which are related to the implementation of a conceptual 

data model and data abstraction. 



FOOTNOTES 

Note that the notions of abstraction and 
decomposition hold some correspondence to the 
respective concepts of molecular semantics and 
atomic semantics as described in [CODD79]- 

It is obvious that implementation abstraction and 
physical data independence are closely related 
concepts . 

Note that the database representation of an object 

is quite often a virtual representation. 

It is interesting to note that the relational 

normal forms [CODD70; C0DD72; BEER78] are a 
formalization of aggregation that is expressed in 
terms of functional dependency [SMIT77b]. 

Consider a set S and a family F of subsets sb(1 ) , 
sb(2) ... sb(n). If each element of S is an 
element of at least one sb(i) of F, then F is a 

"covering” of S (see [JAME59]). 

Actually, generalization abstraction is network 
structured. It can, however, be restructured into 
a tree if token objects are allowed representation 
in more than one leaf class of the tree (see 
[SMIT77b] for details). 

If this situation is viewed in light of the role 
model [BACH77], type "customer" is a role type 
vis. the other entity types. 



CHAPTER V I 

SOME IMPLEMENTATION ISSUES 

In this chapter some issues which surround the 

implementation of a conceptual data model are considered. 

Here, we extend beyond the concept of the model 

representing the ’’meaning” of the data -- we discuss how 

the model affects data storage, usage, and maintenance. 

Logical Redundancy and Relativism 

The discussion of the modeling of data abstraction, 

as presented in the previous chapter, gives rise to the 

need for subsequent discussion of two closely related 

issues. These are ’’schema relativism” and ’’logical 

redundancy.” The former issue has to do with the ability 

of a schema (and the underlying data modeling formalism) 

to provide multiple ways of "viewing” the common database. 

The latter deals with the issue of using derived data to 

provide such views. Hence, we see logical redundancy as 

being a means towards an end -- relativism. 
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Relativist views. Despite the inadequacy of present day 

programming languages in the provision of primitives to 

support the representation of real world abstraction 

[SMIT77a], many database researchers have cited the need 

for the inclusion of such representations within the 

constructs of data modeling formalisms [CODD79; HAMM81; 

SMIT77a; SMIT77b]. It has been further noted that each 

abstract object, regardless of its level of abstraction, 

should be uniformly accessible [SMIT77a]« 

The reason for providing uniform accessibility of 

all levels of abstraction is twofold. First, such 

provisions serve to greatly simplify the maintenance of 

semantic integrity [HAMM81]. Second, and perhaps more 

important, such provisions aid in the ability of the 

schema to meet the needs of a greater variety of user 

groups. The database can be accessed at that abstract 

level which is best suited for the application at hand. 

When considered in this light, we often speak of a 

data modeling formalism (DMF) as providing a number of 

different ’’user views.” Each view is based on a specific 

application. The application ’’sees" the database through 

its specific view only and thus, from the perspective of 

the user group, the data model exists for that application 

only. The process of providing such application specific 
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perspectives is called "view modeling" [LUM78]. The 

ability of a DMF to provide such views is called 

"relativism" [HAMM81]. 

Although user views appear to be orthogonal, they 

are related at both the physical and the logical level. 

The physical level association stems from the fact that 

different views share a common set of database ob jects . 

The logical level association comes about because the 

views share a common schema structure . 

Consider, for example, that two views access the 

database at different levels of the generic hierarchy such 

that the data type used in one view is an (generic) 

ancestor of the type used in the other view. These views 

are related at the physical level in that both generic 

types instantiate into the same token objects. The views 

are related at the logical level because the generic types 

involved ultimately exist within a common abstraction 

hierarchy (see chapter 5)* This latter notion is related 

to the concept of "view integration" [LUM78]. 

Data derivation. Relativist flexibility demands the 

presence of logical redundancy in the data model . v\/e say 

that a schema is logically redundant if some data values 

are derivable algorithmically from others [HAMM81]. 
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Values which are formed in this way are called ’’derived 

data.” Data which are not derived are called ’’base" data. 

In reference to data access, we often speak in terms of 

derived versus direct. We will hereunder use the term 

direct data to refer to data which appears (virtual or 

actual), upon access, to be base data. 

The distinction between derived and base data can be 

made in terms of individual attributes or in terms of 

iarger database objects. As an example of the former we 

will refer to the automatic calculation of EMPLOYEE-AGE 

from DATE-OF-BIRTH and DATE-TODAY. While all three of 

these items may qualify as direct data, only DATE-OF-BIRTH 

need be base (we assume that DATE-TODAY is a system 

supplied function) . 

As for larger database objects, we call attention to 

the RM/T ’’derived relations” which are those that can be 

derived completely from the underlying ’’base relations” 

[CODD79]. From the perspective of the user, both of these 

relation types hold direct data. 

Surprisingly, the concept of a base-derived 

distinction is not restricted to the datalogical sphere of 

data modeling (refer back to chapter 3)« For example, the 

nucleus of an infological data model is the set of 

elementary messages that is physically present (the base 
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data) [1], Other messages which are not present can be 

deduced from the nucleus (see [SUND74], [TSIC82, ch. 11]). 

As noted above, abstract conceptual relativism 

requires that logical redundancy be used; there must be 

provided direct access to nonbase data. In essence, this 

means that the DMF should support the modeling of virtual 

as well as actual data. If. virtual data is to be 

incorporated into the data model, the derivation of 

derived data must be integrated into the schema. This is 

the "duality principle" between schema and procedure 

[HAMM82]. In response to this need the Semantic Database 

Model includes a set of high level "derivation primitives" 

through which the specification of virtual abstract data 

can be made. 

Semantic Integrity 

Preservation of semantic integrity has to do with 

the avoidance of errors as to the intrinsic meaning of the 

database. Although a compromise of semantic integrity may 

come about as the result of a malicious act, it is most 

commonly introduced due to a lack of understanding or user 

error . 
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In addition to the notion of semantic integrity, 

three principle aspects of the problem of maintaining 

database probity can be identified [HAMM75]: 

1. Reliability -- avoidance of errors that are due 

to the failure of executive software (i.e. operating 

system or DBMS software) and/or the failure or hardware 

(see [GRAY81], [H0NG81], [MARC81], [STEI80], [ST0N81], 

[VAND81]) 

2. Concurrent consistency -- avoidance of errors 

that are due to the mishandling of shared data by multiple 

simultaneous users. Maintenance of concurrent consistency 

revolves around the use of time valued integrity locks, 

time stamps, and deadlock avoidance algorithms (see 

[BERN81], [DENN81], [K0HL81], [LEHM81], [RICA81]). 

3. Security -- avoidance of database compromise 

that is due to access by unauthorized users (see [CHIN81], 

[HARR81], [VAND81]) 

These 

related to 

database integrity issues, though basally 

the general study of database management 

systems (DBMSs), are only peripherally related to our task 
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at hand. They will therefore not be considered further; 

our concern with database integrity will focus exclusively 

on semantic integrity. 

In terms of semantic integrity constraint 

specification, the constraints should be generic and 

intensional vis. token specific. In this way the massive 

extensional database inherits the 1imited number of 

restrictions placed on the intensional types (schema). 

The reason that semantic integrity is enforced is that it 

constrains the schema to ’’more accurately reflect the real 

world situation” [TSIC82, p. 291. 

Inter object dependence. A very basic type of integrity 

constraint which can be found in a number of DMFs has to 

do with the interdependence of database objects. This 

constraint, which is often called the ’’dependency 

constraint” [WONG771, refers to the situation where the 

existence of one object presupposes the existence of 

another database object. 

There are a variety of syntactic dependency 

constraints which can be identified (in the notation of 

chapter 2, these are some of the implicit constraints of 

s(c)). In any tree structure, for instance, the existence 

of any object (node) depends on the existence of its 
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entire ancestral chain. Also, it is commonly accepted 

that the existence of a relationship instance assumes the 

existence of the token instances which it associates. 

Similarly, properties are commonly assumed to depend upon 

the existence of the objects that they describe [2]. 

Still another example of such relates to the 

strictly typed property of datalogical DMFs. Since each 

token must belong to a type, the existence of token 

objects depends on the existence of the respective type. 

We see the above examples as being syntactic because 

they are structural functions only. In programming 

terminology they are Min line” issues as opposed to "out 

of line” issues (see [ELS073]). In other words, there is 

no evidence of these constraints in terms of the actual 

execution of a transaction. As such they should not be 

considered as semantic integrity constraints. 

Dependency constraints that are semantic (out of 

line) in nature are also quite common. In fact, they can 

be found in some first generation DMFs. The 

FIXED-MANDATORY and OPTIONAL-AUTOMATIC declarations in the 

CODASYL DBTG facility have a definite semantic flavor, for 

example (see [MART75]) [3]- 
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Second generation examples of semantic dependency- 

are abundant. In the Entity-Relationship Model [CHEN76] 

for instance, the existence of "weak entities" and "weak 

relationships" are dependent on the existence of other 

objects. The "characterizing entities" of the Semantic 

Association Model [SU79] depend on the existence of the 

"defined entities" with which they are associated. Also, 

when objects participate in a "depending relationship" 

within the Basic Semantic Data Model [SCHM75], the 

existence of the "depending part" relies upon the 

existence of the "ruling part." 

It is noted in [WONG77] that use of the IS-A 

relationship in artificial intelligence (AI) applications 

(and consequently use of generalization abstraction in 

database management (DM)) helps to guarantee database 

consistency; it defines the "IS-A constraint." Addition 

and deletion of token objects of one type are 

automatically carried to all generic supertypes. Since 

this automatic modification occurs for semantic vis. 

structural reasons, we see the IS-A constraint as helping 

to maintain semantic integrity. This notion relates 

closely to the relational invariant based update triggers 

[SMIT77b] as described previously in chapter 5. 
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An integrity subsystem. There can be defined two major 

approaches to semantic integrity specification: static and 

dynamic. These are called the ’’state snapshot approach” 

and the ’’state transition approach,” respectively 

[HAMM75]. 

In the state snapshot approach to semantic 

integrity, rules are used to specify the valid states 

(database occurrences) that the database may take on. If 

the dynamic nature of a database is thought of as being 

represented in a continuous motion picture, then the 

integrity rules are specified such that each frame of the 

movie provides a semantically correct picture. The 

concept of a database state snapshot is the datalogical 

equivalent of a ’’time slice” [BILL78; SUND731 as used in 

the infological realm of data modeling. 

The state transition approach to semantic integrity 

deals with constraining operations that are performed on 

the database. Integrity rules define the legality, 

depending on present database state, of operations that 

convert the database to new states. If an operation is 

legal (called a valid operation under the current state), 

then preservation of the integrity of the database is 

guaranteed under the operation. 
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Hammer and McLeod have proposed a "semantic 

integrity subsystem" in conjunction with their efforts on 

the IBM supported MIT Project MAC [HAMM75]. This 

subsystem, which represents an integration of the snapshot 

approach and the transition approach, is briefly described 

below in terms of a basic relational implementaion. 

Because of its modularity, the concepts are extendible to 

any modeling formalism. 

Many of the constructs upon which the methodology is 

based correspond to the three major categories of 

constraints as described in [CHEN76]. These three 

categories are as follows: 

1. Constraints on "allowable values" 

2. Constraints on "permitted values" 

3. Constraints on "existing values" 

The parallelism of these constructs to those in [HAMM75] 

will be noted when appropriate. 

A basic premise of the integrity subsystem is that 

there must be defined two types of constraints: domain 

constraints, and relation constraints. Specification of a 

domain constraint involves precise description of the set 
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of atomic objects that constitute the domain; it is a 

domain definition process. 

Each domain referenced is associated with a 

constraint specification. These domain constraints 

correspond to the constraints on allowable values of 

[CHEN76]. At a minimum, the objects of a domain must be 

constrained to belong to one of two mutually exclusive 

categories. These categories relate to the natural data 

type primitives: string and number. 

Relation constraints have to do with restricting the 

ways that relations or subparts of relations may be 

related. Relation subparts can be tuples or columns, and 

their associated constraints can be inter- or intra- 

relational in character. Such constraints are 

predications on the state and/or transactions of the 

database [ 4 ] . 

In the event that a relation subpart is a column, 

the respective constraint corresponds to Chen's permitted 

values. Tuple oriented constraints relate to the 

restrictions on existing values of Chen. 

The proposed constraint management facility 

comprises a number of components: 
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1. A high level constraint specification facility 

for each of domain constraints and relation constraints 

2. Processors for the domain and relation 

constraint specification languages 

3. A constraint checker 

4. A violation-action processor 

5. A constraint compatability checker 

The use of high level constraint languages allows 

for the facility to take advantage of the inherent logical 

structure of the underlying data modeling formalism. It 

is suggested that these languages be declarative vis. 

procedural oriented. Each of the two languages allows for 

the specification of the "nature,” "enforcement," and 

"violation-action" of each constraint. 

Nature and enf or cement define what the constraint is 

and when it is to hold, respectively. Violation-action 

specifies the system’s response to occur in the event that 

violation of a constraint is detected. 
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The language processors convert the high level 

language to the appropriate internal form that is used by 

the integrity management facility. The function of the 

constraint checker is to determine when checks are 

appropriate and to perform these checks. 

In the event that a constraint violation is found, 

the violation-action processor initiates the appropriate 

action. This action is described in the internal form 

representation of the violation-action specification of 

the constraint as noted above. Said action may involve 

the reporting of the occurrence of the semantic error 

and/or the inititation of some automatic corrective 

action . 

It should be noted that automatic correction of 

semantic errors may be hazardous because of the dependence 

of relation constraints upon context. Replacement of some 

erroneous value with a system specified value can trigger 

the propagation of a chain of semantic violations 

throughout the database. An obvious "safe” corrective 

action is the replacement of the item in question with the 

value NULL [51. 

The constraint compatability checker, which is 

undoubtedly the most difficult component to implement, has 

the responsibility of detecting circularities and logical 
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conflicts from among the set of constraints that is 

specified. The complexity of this component is due largely 

to the wide potential scope of corrective action side 

effects. 

Because relation constraints are relatively complex 

objects, their description deserves further comment. 

First, proper specification of a relation constraint 

demands precise description of the "constrained" (focus of 

the constraint) as well as of the "constraining" 

(properties of the constraint). The constrained is 

defined in terms of "specification operations" (see 

[TSIC82]) which describe, either explicitly (local) or 

implicitly (global), the scope of the constraint. Since 

relation constraints are context dependent, their 

delineation relies heavily on the notion of "data 

relatability" in terms of closed-form formulation (see 

[TSIC82] especially chapter 4). 

The constraints can be either aggregate, in which 

the constrained object is atomic, or nonaggregate. 

Aggregate objects are based on some single property of a 

relational attribute such as "sum," "average," "count." 

Nonaggregate column constraints can be functional 

(mapping) constraints, or structural constraints. 



A Brief Recapitulat ion 

The text to this point has provided an overview of 

the general concepts and principles of conceptual data 

modeling. Both theoretical and pragmatic issues have been 

discussed in detail. The interested reader is directed to 

appendix A in which the major approaches and schools of 

data modeling are described. 
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FOOTNOTES 

[1] An infological "elementary message" is a reference 
to a "constellation." A constellation is a triple 
(a,b,c) which represents a basic fact. In this 
triple, a is a tuple of objects, b is a 
relationship among or a property of the objects, 
and c is a time specification. Note that an 
elementary message is a reference to a 
constellation rather than the constellation 
itself. This distinction is similar to that 
between call by name and call by value as made in 
programming. 

[2] An interesting exception is found in the Semantic 
Binary Model [ABRI74]. Here, an object can hold 
an association with an "unknown" (null) object so 
that the existence of the association does not 
require the existence of all constituent objects. 

[3] The semantic of MANDATORY membership is that the 
lifetime existence of the object depends on its 
membership in at least one set of the specified 
type. The semantic of AUTOMATIC membership is 
that object creation depends upon a priori set 
membership. 

[4] In terms of logical complexity, the invocation of 
relation constraints is much more involved. They 
are defined with respect to relationships between 
objects and, as such, are context dependent. The 
simpler domain constraints, on the other hand, are 
context free. 

[51 In regards to database semantics the meaning of 
the value NULL can have widely different 
interpretations depending on whether the 
implementation adopts the "open world" or the 
"closed world" view (see [VASS791, [REIT78D. 



PART II 

THE NATURE OF GEOPOLITICAL STATISTICAL 
DATA -- STRUCTURE AND SEMANTICS 

"In an imperfectly organized system, even 
if every part performs as well as possible 
relative to its own objectives, the total 
system will often not perform as well as 
possible relative to its objectives." 

Russell L. Ackoff 
"Towards a System of Systems 

Concepts" 
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CHAPTER VII 

GEOPOLITICAL STATISTICAL DATA: PHYSICAL STRUCTURE 

Introduction 

In the view of the database management community 

proper utiliization of a data set requires the presence of 

two distinct structures: the physical structure and the 

logical structure. Physical structural issues relate to 

the formation of data records from data items, the 

definition of record types, and the structuring of record 

types to form files. Logical structural issues relate to 

the arrangement of the database primitives (entities, 

relationships, properties, values) in the formation of a 

logical model of the relevant environment. 

When a logical data model is used in accessing the 

contents of a specific data set, as is the case here, it 

is called a schema of the data set. In the remainder of 

this work we will use the terms data model and schema 

interchangeably since it is understood that each data 

model is intended for use with a data set. 
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A brief review of the nature of the four database 

primitives is due here. Entities represent the real world 

objects with which the data user is ultimately concerned. 

Relationships are assertions about associations among 

entities. Properties are assertions which characterize 

entities. 

The model provided by the schema does not deal with 

the individual entities. Rather, it depicts assertions 

about entity types (database intension). When the 

properties of entity types, as defined by the schema 

framework, are "filled in" with data values specific 

entities are represented. Thus values, though 

fundamentally related to the database contents, are 

indirectly related to the structure of the data model. 

A conceptual schema is one which captures the 

semantics of the underlying data set. Again , as outlined 

in chapter 3, data semantics are the "meaning " of data 

[KERS76]. The reason behind our concern with data 

semantics is that they "ensure that stored data more 

accurately represents the enterprise [application 

environment]" [BEER78]. Here, the term "more accurately" 

can be interpreted as meaning "closer to our cognitions 

and perceptions." A conceptual schema, then, illustrates 

both the contents and the meaning of the data set. 
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For obvious reasons the conceptual schema should 

provide an accurate "picture" of reality. An accurate 

schema supports a proper understanding of the database 

contents on the part of the user. The entity types 

depicted in the schema should closely resemble the "kinds" 

of objects that exist in the relevant environment. The 

relationships of the schema should match the important 

associations that exist among the actual entities. The 

properties of schema entity types should relate to those 

characteristics of real world entities that are important 

within the logical framework of the application. 

The logical structure of real world objects is 

hardly simple. An accurate conceptional schema, then, 

demands complexity in its structure. In terms of data 

processing, however, complex structures result in 

processing inefficiencies. When designing physical data 

structures good engineering is simple engineering. As a 

consequence, the design criteria of the logical structure 

conflict with those of the physical structure. Objects 

structured with processing efficiency in mind provide the 

user with a poor logical model of the world. Objects 

structured to match the nature of reality are difficult to 

process. 
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A solution to this dilemma lies in the principle of 

physical data independence. Under the precept of data 

independence the logical model of the data set is designed 

independent of physical data structural considerations. 

This separation of logical and physical issues allows for 

the occurrence of the following situation: the physical 

structure exists to satisfy the specific needs of 

automated data processing while, simultaneously, the 

logical structure (conceptual schema) exists to satisfy 

the specific needs of the user community. 

One important consequence of achieving physical data 

independence is that the record types of the physical 

structure need not match the logical entity types of the 

conceptual schema. A second result is that the connective 

links (pointers, key chains, etc.) of the physical 

structure need not be synonymous with the relationships 

depicted in the conceptual schema. 

From this point on we will be concerned with a 

particular type of data — geopolitical statistical data. 

The uses and users of such data were described in 

chapter 1. The majority of applications of data of this 

type revolve around the use of census data sets. 

Therefore, the issues discussed hereunder will deal, 

almost entirely, with census data. The reader should keep 
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in mind, however, that the tools and techniques developed 

in this work are applicable to any statistical data which 

is geographic based. 

At present, conceptual schemas for geographic based 

statistical data sets do not exist; the data hold a 

physical structure only. Also, there is no data modeling 

formalism which supports the creation of appropriate 

logical models of such data. As a consequence of this, 

the physical data structure is often used to serve as the 

logical model of the underlying data. 

The records and links of the physical structure, 

which are designed for efficient automated data 

processing, are the objects with which the user must deal. 

A record type, viewed in terms of real world geographic 

entity types, may be void of any logical significance. 

Connective links between records do not necessarily relate 

to a meaningful logical relationship between the connected 

objects. 

In short, the physical data structure of census data 

files provides a poor logical model of the underlying 

data. From the point of view of the data user the 

structure neither furnishes an understanding of the 

meaning of the data nor involves logically meaningful 

objects . 
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Later in the discussion we will develop a data 

modeling formalism which deals with the relevant logical 

objects (database primitives) of geopolitical statistical 

data sets. First, however, we will investigate the 

physical structure of census files and the problems that 

arise from its use as a logical model. 

The Physical Structure of Census Files 

Tree structures are used in a variety of database 

management and data processing applications. Census data 

files are ultimately based on tree structures, so we feel 

that the general structural form deserves comment here. 

It is assumed that the reader holds an a priori 

understanding of the tree as a data structure. The 

terminology that is used by the database practitioner 

tends to be somewhat loosely defined, however. For this 

reason, we will provide a brief review of tree structure 

terminology as it applies to our work. A more rigorous 

treatment of this data structure is found in [H0R076] and 

in [PAGE78]. 
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Trees and hierarchical files. A tree is a hierarchy of 

nodes which is structured so that each node is linked to 

exactly one node in the next higher level of the 

structure. The very top node is called the "root" of the 

tree. The very bottom nodes (more generally the nodes 

which are connected from above only) are called the 

"leaves" of the tree. Note that, metaphorically speaking, 

the structure would be better called an inverted tree as 

the branches "grow" down rather than up. 

At each level of the structure the element in the 

next higher level to which a node is connected is called 

the "parent" of the node. Similarly, at each level of the 

tree, the element(s) in the next lower level to which a 

node is connected are called the "children" of the 

node [1], Obviously, the root of the tree has no parent 

and the leaves have no children. 

Nodes which share a common parent are called 

"sibling" nodes. For any node the elements which form the 

path to the root, which incidently is a unique path, 

constitute the "ancestry" of the node. Thus, the ancestry 

of a node consists of the parent element, the parent of 

the parent (grandparent), the parent of the grandparent 

(great grandparent), and so on up to and including the 

root. Since siblings have a common parent, and the path 

to the root node is unique, they share a common ancestry. 
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Hierarchical files. The records of a file can be 

structured to form a tree. In such a case the file is 

called a "hierarchical file.” Census data files are 

hierarchical files, so we can think of census data records 

as having parent, children, and sibling records. 

In a hierarchical file all instances of a given 

record type exist at a single level of the hierarchical 

structure. In the case where all elements of a 

hierarchical level are restricted to be instances of a 

single record type, the record structure is a 

"non-branching hierarchy" (the record types do not branch 

but, obviously, record instances do). 
i 

A less restrictive hierarchical file structure is 

one in which a level of the hierarchy is allowed to 

include instances of more than one record type. Such a 

file structure is called a "branching hierarchy." Census 

data files, in general, form branching hierarchies. 

Figure 7.1 provides an example of a branching and a 

non-branching hierarchical file structure. Note that each 

rectangle in figure 7.1 represents a record type as 

opposed to a specific record instance. It is the 

instances of these types which are tree structured. 
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NON-BRANCHING 

FIGURE 7.1 
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It is important to realize that, in both the 

branching and the non-branching case, the instances of a 

given record type exist at a single hierarchical level. 

There are a number of ways that the individual 

records of a hierarchical file can be structured to form a 

tree. The record structure can be specified through the 

use of pointers, record position, or record key (see 

[MART75]). In census data files the record keys are used 

to define the tree structure. 

Briefly, under this method an element of the tree 

structure is identified by the concatenation of the value 

of its key with that of the key of its ancestry. The 

primary key of a record uniquely identifies it among the 

instances of the record type. The primary key of a 

record, coupled with the concatenation of the keys of its 

hierarchical ancestors (called the key of its ancestry), 

uniquely identifies the record within the total tree 

structure. Each record of a census data file therefore 

carries its own key value as well as the key values of its 

ancestor records. 

Figure 7.2 illustrates this method. Note that, for 

the sake of simplicity, the example represents a 

non-branching hierarchy. The technique is directly 

applicable to hierarchies of the branching variety. 
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RECORD 
RECORD 

TYPE 
TYPE 1 

KEY 
TYPE 2 

KEY 
TYPE 3 

KEY DATA 

A 1 01 — -- xxxx 

B 2 01 001 — xxxx 

C 3 01 001 0001 xxxx 

D 3 01 001 0002 xxxx 

E 2 01 002 — xxxx 

F 3 01 002 0003 xxxx 

G 3 01 002 0004 xxxx 

H 3 01 002 0005 xxxx 

RECORD INSTANCES 

FIGURE 7.2 
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Up to this point we have described the nature of the 

hierarchical structure upon which census data files are 

based. The reader is reminded that hierarchical files are 

defined in terms of records and record types. There has 

been no mention of the relationship between a record and a 

logical geographic entity nor has there been drawn an 

association between record types and geographic entity 

types. 

The physical structures of census files are defined 

hierarchically because hierarchical files are conducive to 

efficient data processing. Since there does not exist a 

logical file structure defined with the user in mind, the 

hierarchy serves as both the physical structure and the 

logical file structure. Thus the records of the physical 

structure are the objects with which the user must work. 

Also the hierarchical associations (connective links) 

among record types serve as a model of the logical 

geographic relationships. 

We will soon see that adherence to the highly 

restrictive (physical) tree structure can cause the 

records of the data file to be void of any logical 

significance. Furthermore, we will see that a hierarchy 

provides a poor model of the logical relationships that 

truly exist among geographic areas. 
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Conceptual Problems 

In geographic hierarchical files each level of the 

hierarchy relates to a different partitioning of the 

common area (e.g. a state) from which the data are 

collected. The partitioning at each level is based 

ultimately upon well defined geographic objects (appendix 

B defines many of these objects). For example, at one 

level the area may be partitioned according to counties, 

while at a lower level the area may be partitioned 

according to census tract. As an example we will use the 

1980 version of the Bureau of the Census Summary Tape 

File-IB. For brevity, the abbreviation STF1B is used 

hereafter to specify this census file. 

The physical structure of STF1B is such that the 

records form a hierarchy (tree) of geographic based 

summary data. The file contains seven distinct record 

types each of which carries the data for a specific type 

of geographic area. The records are hierarchically 

"nested" such that, in all cases, the lower level 

(children) areas are subsumed by the higher level (parent) 

areas. 
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STF1B 

(successive 

records are nested 

indentation indicates 

in the following 

successive nesting) : 

way 

STATE 

SMSA 

COUNTY 

MCD 

PLACE 

TRACT or BLOCK NUMBERING AREA 

BLOCK or ENUMERATION DISTRICT 

Thus, county records are nested within SMSA records which, 

in turn, are nested within the state (root of the tree) 

record. Note that STF1B forms a non-branching hierarchy 

unlike many census data files. 

The non-containment problem. When geographic based 

statistical data is provided as a tree - structure such that 

the children records are subsumed by their parent record, 

a number of anomalous situations can arise. First, 

consider the case where the geographic boundaries of an 
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instance of a child area transcend the boundaries of the 

parent area. In other words, the lower level area is 

divided by the higher level area. 

Given the physical structure of STF1B a situation of 

this type can (and does) arise at a number of levels of 

the file hierarchy. For example, a standard metropolitan 

statistical area (SMSA) is defined as a set of physically 

contiguous counties which exhibit a high degree of 

economic and social integration and which display certain 

population characteristics (see [KAPL80]). With this 

definition it is obvious that there exists a natural 

hierarchical relationship between SMSAs and counties. 

A problem arises, however, because SMSAs are nested 

within state in the STF1B configuration. The counties 

which form an SMSA are not constrained to lie in the same 

state and thus an SMSA will often be divided by the 

boundaries of a state. Similar situations arise at a 

number of levels of STF1B. The issue will hereafter be 

referred to as the "non-containment problem” of a 

geographic hierarchy. 

When record types are nested to form a tree 

structure as in STF1B one can think of the child records 

as being "owned” by their (single) parent record. In the 

above noted situation of a "multi-state” SMSA, the 
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geographic object is the logical child of two state 

parents. In reality, then, a network (or plex) structure 

is required to represent the true logical state-SMSA 

association (see figure 7.3a)* 

The Bureau of the Census has chosen to address the 

non-containment problem by introducing the concept of 

"part of area” records. When a ggeographic object is 

divided by a higher (tree) level entity, a representative 

record for each portion of the divided object is included 

in the file. These "part of area" records are nested 

within the appropriate higher level area records. Note 

that the parts of a divided area are not siblings in the 

physical tree structure; they are of different parents. 

Intuitively, then, we can say that the parent area "owns" 

that portion of the child area that lies within its 

geographic boundaries. 

The Bureau of the Census solution to the 

non-containment problem allows for the hierarchical 

physical representation of the geographic data. The 

technique may have detrimental effects upon the 

information retrieval process, however. To the data user 

the appropriateness of this methodology as a solution to 

the non-containment problem is debatable. Specifically, 

the suitability of the method is dependent on the primary 
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geographic object in which the user of the information is 

interested. 

In the state-SMSA non-containment situation the user 

who is primarily interested in state as a unit of analysis 

would find the situation satisfactory. State, as a 

geographic object, is unaffected by the splitting of 

SMSAs. On the other hand , however, if the analysis is 

SMSA oriented, maintenance of the hierarchical structure 

yields an added (and unintuitive) complexity to the 

information gathering process. The user is forced to deal 

with an unnatural ’’part of” geographic object — an entity 

which arises as a side effect of attempting to maintain a 

chosen physical file structure (see figure 7.3b). 

The non-coverage problem. A second anomaly that stems 

from the hierarchical presentation of geographic based 

data will be called ’’non-coverage problem" of a geographic 

hierarchy. The non-coverage problem arises when the child 

area(s) of a hierarchical relationship fail to provide 

complete geographic coverage (called grid coverage) of the 

parent area which owns them. 

As an example, let us again consider the top three 

levels of the STF1B geographic hierarchy: state, SMSA, and 

county. For the sake of simplicity we will ignore the 
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non-containment problem and assume that SMSAs do not 

transcend state boundaries. 

Now, in recalling the previously cited definition of 

SMSA, it should be obvious to the reader that the set of 

SMSAs within a state would not be expected to completely 

cover the state. If we wish to maintain the state-SMSA 

hierarchical relationship, then we must choose one of two 

possible courses of action: 

1. Include a (child) record for each SMSA that 

lies within the (parent) state and leave the non-SMSA 

areas unrepresented at this level of the hierarchy 

2. Include a (child) record for each SMSA that 

lies within with (parent) state and, in addition, include 

a complementary record representing all areas of the state 

which are not covered by SMSAs 

Upon inspection, the reader may find the former 

alternative, including true SMSA records only, the more 

intuitively pleasing choice. With regards to the data 

needs of the user the SMSA level of the geographic 

hierarchy should not be confounded by non-SMSA 

information. In considering the lower hierarchical 
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levels, however, we see that this choice would disrupt the 

nature of the tree structure. 

Counties, in all cases, completely cover their 

state; SMSAs do not. As a result, there are some counties 

which are not part of an SMSA. Maintenance of the 

hierarchical nesting of counties within SMSA within state, 

as seen in STF1B, would define "orphan” counties under 

alternative 1. All non-SMSA counties would have no parent 

in the successive level of the physical structure. This 

is illustrated in figure 7.4a. 

The second option, providing a SMSA-complement area 

record is the method which is used by the Bureau of the 

Census. All non-SMSA county records are owned by the 

complementary record. In file documentation provided by 

the Bureau of the Census this record is referred to as a 

"pseudo SMSA" or "remainder of state" record. We feel 

that the intuitive appeal of this methodology is less than 

optimal fr om the log ic al perspective of the user . True, 

the physical hierarchical structure of the file is 

maintained, but access to the data requires that 

artificial geographic objects be maintained, processed, 

and understood by the user (see figure 7.4b). 
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SMSA 
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“ORPHAN" COUNTIES 

FIGURE 7.4a 

THE STATE-SMSA NON-COVERAGE PROBLEM 

FIGURE 7.4b 

THE CENSUS SOLUTION 
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As is the case with the non-containment problem, the 

non-coverage of parent by children areas exists at 

numerous levels of the STF1B hierarchy. 

Multi pie complexities. One attribute of a physical 

hierarchical file structure of the type discussed here is 

that an object within the structure is affected by its 

ancestry. Each record carries the identifiers (keys) of 

all superordinate owner records. In fact, each record is 

identified by the concatenation of the keys of its 

ancestor records. 

When working with geographic hierarchies, then, 

identification and understanding of a geographic object 

instance requires that all ancestor instances in the 

hierarchy be considered. A geographic artificiality at 

level M of the hierarchy therefore results in the 

propagation of anomalies at each N (>M) level of the 

structure (note that the level numbers increase as we move 

down the tree) . 

Recall that both the non-containment problem and the 

non-coverage problem were said to exist at a number of 

levels of the STF1B hierarchy. As a result, geographic 

object instances at the lower structural levels can be 

plagued by multiple complexities in their identification. 
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An STF1B block instance, for example, is identified by the 

concatenation of seven geographic area key values (one 

taken from each level of the structure). This provides 

the potential for more than one Mnon-entityM (pseudo or 

part of area) to arise within the definition of a block 

instance. Obviously, situations of this type act as 

confounding factors in the information retrieval process 

and can only serve as a hindrance to a proper logical 

understanding of the geographic information. 

As testimony to the confusing nature of the contents 

of geographic hierarchical files consider the definition 

of a level 6 STF1B record. The geographic object 

represented by a record at this hierarchical level is 

defined as follows: ’’Tract (or Block Numbering Area) or 

portion of Tract (or Block Numbering Area) within place, 

place segment and remainder of county or MCD” 

[CENS80, p. 281. 

In the previous paragraphs we outlined two anomalous 

situations which often arise when geographic data are 

structured as a tree. If a hierarchical structure is to 

be maintained, the non-containment problem requires that 

well-defined meaningful geographic areas be divided and 

represented via ’’part of area” records. These geographic 

areas are void of any logical significance when viewed 
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outside the physical hierarchy in which they exist. A 

given set of geographic objects, when structured in two 

different hierarchical orderings, will result in two 

completely different dissections of geographic area 

instances. 

The non-coverage problem is also guilty for defining 

the need for meaningless geographic areas. The "pseudo 

area" complementary records have no semantic foundation 

and exist merely as a structural implementation tool . 

The point to be made from the above discussion is 

this: geographic entities do not hold a natur al 

hierarchical ordering. Therefore, implementation of a 

geographic hierarchy requires that the objects be "forced" 

into an artificial situation. 

The reason behind the non-hierarchieal nature of 

geography is simple —— different geographic partitionings 

are defined for different purposes. Geographic areas may 

be governmental units, statistical units, or enumeration 

units. The significance of any one of these geographic 

area types depends upon the specific application in which 

the data are used. The criteria used to define these 

widely different area types are outlined in [KAPL80]. 
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Misrepr esented relationships . The non-containment and 

non-coverage problems are important because they disrupt 

the nature of the geographic objects that are represented 

by the underlying data. These issues force the user to 

deal with geographic objects which may have no logical 

significance; records do not relate to meaningful 

entities . 

Beyond this, the hierarchical physical structure 

fails to provide an accurate conceptual model of the data 

by misrepresenting geographic relationships. The nesting 

of county within SMSA within state, as in the STF1B 

configuration, holds the logical implication that SMSA 

geographic objects are more closely related to state 

objects than are counties. 

Furthermore, the chosen configuration implies that 

the ”importance” of an SMSA area is somehow subordinate to 

that of a state area. We suggest that the logical 

significance of these area types cannot in general, be 

specified; it is dependent upon the needs of the user. 

In short, the very restrictive structure of a tree 

is not well suited to represent the logical associations 

that exist among widely heterogeneous geographic areas. 

The definition of political areas is usually independent 

of statistical considerations. Similarly, large political 
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areas are seldom considered in the definition of 

statistical zones. Why then should there exist a logical 

’’parent-child” structure among such areas? 

In common business database applications schemas are 

often tree structured because the logical relationship 

among the entities of the application are tr uly 

hierarchical in nature. For example, the fact that an 

employee entity ’’owns” its dependent entities denotes, to 

the data user, a logically rational relationship among the 

objects. The same cannot be said about the objects of a 

geographic database. 

Attribute areas: representing entities as 

properties. Still another inadequacy in the ability of 

the physical structure of census data files to serve as a 

proper conceptual schema lies in the makeup of the 

individual record types. Recall that each record type of 

the file relates to some partitioning of geography. Each 

record instance, then, denotes some (not necessarily 

meaningful) geographic area whose properties are specified 

within the attributes of the record. 

The geographic area types that correspond to the 

record types are used to form the "nested” geographic 

hierarchical file structure, so we will refer to such area 
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types as "nesting areas.” Example STF1B nesting areas are 

state, county, and SMSA. 

A problem is that not all relevant geographic area 

types about which information is provided in the file hold 

positions as levels of the hierarchy. In other words, 

census files contain information about geographic areas 

which are not nesting areas. We will hefer to such 

geographic object types as "attribute areas." 

An attribute area is described when the geographic 

(nesting) area instance represented by a data record is 

"flagged" as being part of another area type. For 

example, a specific STF1B record may represent an instance 

of a census block where the area type BLOCK assumes a 

level within the physical hierarchical structure of the 

file (BLOCK is a record type). Within the record for this 

block instance the block can be identified as being part 

of a specific "urbanized area" despite the fact that the 

URBANIZED-AREA geographic area type does not hold a 

position within the physical structure of STF1B. Thus, 

there is no record type that relates to urbanized areas, 

but their properties can be derived by processing block 

area records. This is illustrated in figure 7.5. 
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When serving as a logical model of the contents of 

STF1B, then, the physical structure presents a very biased 

view of urbanized areas as geographic objects. In terms 

of data usage and analysis, urbanized areas are relevant 

entities. They have well-defined boundaries, and they are 

identified on metropolitan and census maps. The areas 

hold unique names and key values as do SMSAs or any 

meaningful statistical zones. Still, as logical objects 

of the file structure, their status is reduced to that of 

an attribute. They are thus subordinated to all other 

nesting areas of the file. 

In terms of the relationships among attribute area 

objects and nesting area objects, the hierarchical file 

structure provides an ambiguous model. The geographic 

relationship (or lack thereof) between a state and an SMSA 

is as meaningful a concept as is the relationship between 

a state and an urbanized area. In the model of the file 

hierarchy, however, these associations are depicted quite 

differently. In fact, using this model, an urbanized area 

object is unrelated to all other geographic areas because 

it is not a geographic area itself -- it is an attribute 

of a geographic area. 
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Recapitulation. In evaluating the performance of the 

physical hierarchical structure of census files we see 

that it does a poor job of providing the data user with a 

logical model of the contents of the data set. Although 

the structure may meet the requirements of efficient data 

processing, it does not match reality in terms of 

interrelating the primitive logical objects of a data 

model. These primitives (entities, relationships, 

properties, values) are often misrepresented or not 

represented at all in the model put forth by the physical 

str ucture. 

The record types of the physical file structure do 

not necessarily represent meaningful (to the data user) 

logical entity types. The user must work with geographic 

objects which are defined as a function of the chosen 

physical data structure. A reordering of the hierarchical 

levels of the physical file structure would demand a 

completely different (and equally illogical) dissection of 

geography. 

This problem rises primarily from the fact that 

geography is not hierarchical in nature. If there were a 

natural geographic hierarchy, then a hierarchical file 

could be designed such that each object presented to the 

user (data record) depicted a logically meaningful 

geographic entity. Unfortunately, such is not the case. 



Let us consider, for the moment, what would be the 

consequences if the definition of geographic partitioning 

did adhere to a natural hierarchical ordering. We suggest 

that, even in this situation, the physical hierarchical 

structure of census files would fail as an adequate 

conceptual schema. True, the physical structure would 

present a straight forward documentation of the contents 

of the data set, but it would not describe the meaning of 

the data; it would not capture the semantics of geography. 

This "absence of meaning" is due to the fact that a 

semantic model of data does not deal with entities only. 

A ma jor portion of the meaning of the data set is inherent 

in the ways that the entities are related . Unfortunately, 

the representation of these relationships is hardly 

straight forward: "If the function of a database were 

merely to store data, its organization would be simple. 

Most of the complexities arise from the fact that it must 

also show the relationships among the various items of 

data that are stored" [MART76, p. 74]. As noted above, 

the hierarchical file structure not only fails to 

represent the meaningful relationships among geographic 

objects, but it implies a number of erroneous associations 

among the involved areas. 
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Finally, it should be remembered that, from the 

logical structural viewpoint, the existing physical file 

structure represents some logical entities as if they are 

properties. If the record types of the structure are 

thought of as relating to the entities of the model, then 

the "attribute areas" contained in the file do not 

represent entities. Rather, they depict properties of 

other entities. 

A consequence of this representation is that, in the 

logic presented by the data model, geographic objects 

which happen to be stored as attribute areas can have no 

properties. Properties are asserted about entities; not 

about other properties. Similarly, attribute areas hold 

no relationships with other geographic areas; only 

entities are joined in relationships [2]. These 

restrictions occur despite the fact that, in reality, the 

objects represented by attribute areas are of the same 

nature as those represented by the "entities" of the 

model . 

The issues discussed in the preceeding paragraphs 

describe the ways in which the physical file structure 

misrepresents the "reality of geography." A related issue 

is that there does not exist a straight forward means of 

describing and discussing this reality. Therefore, in 
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order to communicate the nature of the true logical 

association between block numbering areas and enumeration 

districts, for example, natural language must serve as the 

medium of discourse. Such an interlocution is an overly 

complex discussion of what could otherwise be described in 

terms of a few simple constructs. 

The problem here is that there is no "language” of 

geographic semantics; the simple constructs upon which 

general geographic partitioning is based have not been 

formalized. A result of this problem is that the 

documentation, discussion, and description of geographic 

based data sets are needlessly complicated and lengthy. 

This affects both data technicians and data users . The 

issue relates not only to census data but to any 

geographic based data set. This problem is addressed in 

the next chapter. 
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FOOTNOTES 

[1] Under the most general definition of a tree 
structure the parent (children) of a node may 
exist at any higher (lower) level. We make use of 
a more restrictive definition, that is the parent 
(children) must exist at the next higher (lower) 
level. The reason for this is that such a 
structure is held by the hierarchical files of the 
application being considered. 

[2] Some data modeling formalisms allow for properties 
to hold properties or for properties to hold 
relationships with entities, but such is the 
exception rather than the rule (see chapter 4 for 
a discussion of this). A simple tree structured 
data model can hardly be considered to connote 
these unusual semantics. 



CHAPTER VIII 

GEOPOLITICAL STATISTICAL DATA: LOGICAL STRUCTURE 

The Semantics of Geography 

The above discussion makes clear the fact that the 

existing physical structure of a census file performs 

poorly when called upon to serve as a logical model of the 

data set. The contents of the data set are presented in a 

form that is inconsiderate of user needs, and the 

depiction of the meaning (semantics) of the data is hardly 

adequate. What is needed, then, is a logical framework of 

these files through which an understanding of both the 

contents and the meaning may be easily derived by the 

user . 

Through the principle of data independence we know 

that such a logical structure may be vacuous of physical 

structural considerations: ’’Given the ability of data 

management software to separate the physical organization 

of data from the users’ view, or ’logical organization,' 

the users' view ought, in theory at least, to be 

formulated without concern for physical representation. 

The users’ view of data should be in whatever form is most 

170 
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convenient for them, and the data management software 

should do the translation between this logical 

organization and whatever physical organization gives 

efficient performance” [MART76, p. 74], The reason for 

promoting such physical data independence is that it 

allows for the creation of a logical structure which is 

uncluttered and straight f orward f or the user -- a 

structure which serves to simplify rather than to confuse. 

In order for a data model to serve adequately as a 

conceptual schema of a geographic data set, it must 

capture the ’’semantics of geography.” Each geographic 

data set involves a number of different types of 

geographic area. Consequently, the semantics of a 

geographic data file relate to this entire set of area 

types. To truly understand the ’’meaning” of geographic 

based information one must assimilate the ’’geographic 

system.” More than the individual components, the 

semantics of geography include the interrelationships 

among the components. A conceptual schema of geographic 

data must therefore model this system. 

A conceptual schema of a geographic data set 

presents a model of some aspect of real world logical 

structure. Like any data model it involves the use of 

four primitive objects: entities, relationships, 
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properties, and values. The latter three objects are 

relevant only because they give meaning to and describe 

the entities. Thus, entity objects are the primary focus 

of the model. 

At this point in the discussion we will investigate 

the nature of these primitive objects upon which a 

conceptual model of geography is based. These objects 

will form the structure of a schema which is aimed at 

capturing the semantics of the underlying geographic data. 

The objects of a geographic data file. With 

geopolitical statistical data, a geographic area is the 

major object of user interest. The data describe 

geographic areas. For the data to provide useful 

information it must describe a geographic area which is 

meaningful to the user. Data relating to an ambiguously 

defined geographic zone has little informational value. 

In terms of data modeling, then, we see that the 

entities of a geographic data model are geographic areas. 

The entities of a data model should be meaningful to the 

data user. Therefore, each geographic area represented by 

an entity of the model should be logically significant in 

the user’s mind; ambiguously defined areas should not 

relate to the entities of the model. Recall that the data 
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model exists purely to aid the user. 

If a logical model of geographic data is to be 

created, some definitions are due here. A geographic 

entity is a well-defined geographic area which can be 

located on a map. The area must be identifiable by a name 

or by an identification number. Example geographic 

entities are ’’Amherst," and "census block 123." An area 

which is not an example of a geographic entity is "the 

portion of the SMSA that lies within the state." 

Geographic entities which are defined in a similar 

way for a specific purpose form a geographic entity type. 

Each geographic entity type has a unique name which 

represents all geographic areas defined as that type. 

Example entity types are STATE, TRACT, and BLOCK. Note 

that in our notation the name of an entity type is shown 

in upper case letters. 

The individual areas (entities) which are members of 

an entity type are called "instances" of the type. 

Massachusetts and California, for example, are instances 

of entity type STATE. No two instances of a given entity 

type will ever contain the same geographic point. In 

other words, spacial overlap within an entity type is 

nonexistent (see figure 8.1a). 



FIGURE 8.1a 

INSTANCES OF AN ENTITY TYPE DO NOT OVERLAP 

INSTANCES OF DIFFERENT ENTITY 

TYPES MAY OVERLAP 
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Although "intra-typeM overlap is never found, 

Minter-type” spacial overlap is possible and prevalent. 

Thus, the same point(s) may be within instances of two or 

more entity types. Consider, for example, that each point 

which lies within the Town of Amherst also lies within the 

County of Hampshire and the State of Massachusetts (see 

figure 8.1b). 

If the only purpose of a geographic data model were 

to indicate the logical contents of the data, 

specification of the relevant geographic entities would 

accomplish a major part of the task. This is not the 

case, however, because our data model must be the basis of 

a conceptual schema for the data set -- it must depict the 

semantics of the data set. In most applications a major 

portion of the meaning of the data set is captured in the 

relationships of the data model. 

Relationships give meaning to the data model by 

showing the ways in which entities are associated with one 

another. The relationships tie together the otherwise 

unallied entities to form an overall "picture” of the 

application. 

Relationships in a geographic data model have to do 

with the spacial overlap of the entities of the model. 

Overlap of geographic entities is common, and much of this 
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overlap is erratic and meaningless. In some cases, 

however, the spacial overlap of entities (or sets of 

entities) is well structured and meaningful. In such 

instances knowledge by the data user as to the nature of 

the overlap provides added meaning to the involved 

entities. 

The relationships of a geographic data model, like 

the entities of the model, exist purely to improve the 

user’s understanding of the data — they should be 

logically meaningful objects. Consequently, the entities 

of the model are connected by relationships if. the overlap 

of the involved areas is well-defined and meaningful. 

Otherwise, the entities are shown to be unrelated. In 

this way the semantics of the data can be clearly 

depicted. 

Geographic relationships are of a number of 

different types. Each type has its own semantic and 

provides information about the related entities in its own 

way. These relationship types are defined in detail in a 

later section. 

Regardless of type, each relationship describes the 

nature of the overlap (or lack thereof) that exists among 

geographic entities. The reader may question how a 

description of the spacial overlap of geographic entities 
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can help to clarify the semantics of the underlying data 

related to those entities. The answer is not 

straightforward; it has to do with the fact that 

geographic entities are often partially defined in terms 

of other geographic entities. This interdependence of 

entity specification manifests itself as well structured 

overlap of the involved objects. Consequently, a 

depiction of the structure of the overlap captures a 

portion of the (definitional) meaning of the objects. 

As a simple example consider the previously 

specified definition of an SMSA: an SMSA is a set of 

physically contiguous counties which exhibit a high degree 

of economic and social integration and display certain 

population characteristics. From this definition of the 

entity it is obvious that a portion of its meaning is 

derived from the fact that it is made up of counties. 

Thus, an_ SMSA is a set of counties. From another 

perspective the definition provides an important semantic 

about county objects: a county may be a meaningful part of 

an SMSA object. This relationship is depicted in 

figure 8.2. 

The above simple example illustrates one way that a 

description of the spacial overlap of geographic entities 

can provide meaning to the entities. Namely, entities can 

be combined to form other entities. 
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THE RELATIONSHIP BETWEEN 

SMSAS AND COUNTIES 
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A second meaning-providing type of overlap occurs 

when two entities are restricted from sharing a common 

area (note that the structure of this overlap is that 

there is no overlap). An example of this lies in the fact 

that a geographic zone may be covered by an instance of a 

block group, or it may be covered by an instance of a 

tract; but it cannot be covered by an instance of both 

entity types. This is illustrated in figure 8.3. 

The semantic of this association is that a block 

group is a Mnon-tract," and, similarly, a tract is a 

"n on-block group.tf Thus, the entities are given meaning 

by specifying "what they are not." 

Still another meaningful overlap structure exists 

when the overlap of two geographic entities indicates 

something about the overlap of other entities. For 

example, census tracts can lie inside or outside of SMSA 

entities. It happens that when a tract lies within an 

SMSA, the tract area is completely covered by blocks. 

This cannot be stated about tracts in general. 

Consequently, we know that i_f a tract instance is an "SMSA 

tract," then we are assured that the object comprises a 

set of blocks (see figure 8.4). This "meaning" is given 

to the tract because of its affiliation with an SMSA. 



BLOCK 
GROUP 1 

TRACT C 

FIGURE 8.3 

THE ASSOCIATION BETWEEN 

BLOCK GROUPS AND TRACTS 



COUNTIES 

FIGURE S.4 

COUNTIES IN AN SMSA ARE 

ALWAYS COVERED BY BLOCKS 
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The nature of the remaining two database primitives, 

properties and values, is not complex. Recall that the 

assignment of a value to a property of an entity 

represents an assertion about the entity. The set of all 

such assertions characterizes the entity. 

In our geopolitical statistical application there 

exists a number of different entity types. At a basal 

level, however, each entity type depicts the same 

fundamental "kind” of object — a well defined closed area 

of geography. Consequently, the semantic of any given 

property is the same for each entity to which it applies. 

Also, much of this semantic is portrayed in its name. 

Consider, for example, the property "white 

population." The meaning of this property is the same 

whether it applies to a state or to a census enumeration 

district. In either case its value refers to the count of 

white persons living within the boundaries of the 

respective geographic entity [1], Obviously, the value of 

the property is different for each geographic entity it 

relates to. The basic meaning of the property, which is 

apparent from its name, is constant in all cases, however. 

Therefore, the properties of geographic entities need be 

defined at most once within a total conceptual model of a 

geographic environment. 
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In most data modeling applications, value primitives 

are of little concern during the design of the conceptual 

schema. Values have to do with specific entity instances, 

and the schema does not deal with instances; it gives 

structure to entity types. In our geopolitical 

application, values are related to the schema structure 

for the following reason: values of properties of 

different entities are associated, and the nature of the 

association among the values is defined by the 

relationships among the entities. 

Values of a geographic data set are statistical 

objects. Each value represents the count of the 

occurrence of some underlying "raw object” (e.g. person, 

housing unit) within the geographic entity. Geographic 

entities overlap, so the values of the properties of 

different geographic entities may be based on the same 

underlying raw object(s) , Whenever two geographic 

entities share a common set of points, then, the values of 

a given property of 

associated. 

the respective entities are 

In studying the spacial overlap of geographic 

entities we found that not all overlap is meaningful; only 

some of the entities which share a common area are linked 

by a relationship. From the data user’s perspective, 
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meaningful overlap of entities should be documented and 

exploited. Other spacial overlap should be ignored. 

Similarly, not all associations among statistical 

values are meaningful. When such associations are 

significant the semantic of the association is provided by 

the relationship that links the respective entities. In 

other words, the values of properties of different 

entities are associated in the same fashion as are the 

entities themselves. In this way the values of the data 

set are linked to the conceptual schema. 

At this point the reader may wonder why the relation 

among the values of entities is an issue of importance. 

The answer lies in the fact that if we know the ways in 

which property values should be related (as defined by the 

relationships among entities), then we can check the 

integrity of the contents of the data set. Thus the 

structure of the conceptual schema can provide the 

foundation upon which semantic integrity checks are based. 

This is detailed in a later section. 
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A Geographic Pat a Modeling F ormalism 

Having introduced the basic objects of a geographic 

data model we are prepared to develop a data modeling 

formalism (DMF) through which such models can be 

constructed. The formalism will provide a well-defined 

means of structuring conceptual schemas for geographic 

data sets. In addition it will provide a ’’language” of 

geographic structure. 

In the previous section we suggested that properties 

and values are only peripherally related to the semantics 

of geographic data. Geographic entities, and the spacial 

overlap structure (relationships) among these entities 

captures the important semantic content of a geographic 

data set. Consequently, the formalism is based entirely 

on geographic entities and geographic relationships. 

The Entity-Relationship model [CHEN7 6; CHEN77] 

described in appendix A represents the semantics of a data 

set in terms of entities and relationships. The 

constructs of this formalism are not well suited to meet 

the specific modeling needs of a geographic data set, 

however. Specifically, the ’’meaning” of a relationship in 

the Entity-Relationship model does not match the semantic 

of spacial overlap. Also, we require a less general 
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depiction of the mathematical mapping (cardinality) of 

entities in a relationship than is provided by the 

Entity-Relationship model. 

The DMF presented here is a revision of the 

Entity-Relationship model that is dedicated to meeting the 

specific needs of geographic based data. Each entity 

represented through the formalism is understood as being a 

geographic entity (as defined earlier). Similarly, each 

relationship is understood as depicting spacial overlap 

among geographic entities. We call this special purpose 

data modeling formalism the Geographic Entity-Relationship 

Modeling System (GERMS). 

Recall that each geographic entity is, at the basal 

level, the same "kind" of object -- a well-defined closed 

geographic area. Each entity type in the GERMS therefore 

has the same basic graphical representation — a 

rectangular node labelled with the entity type name 

(recall that an entity type name is spelled in capital 

letters). 

Figure 8.5 provides some examples of GERMS entity 

types. Note that the GERMS, like any data modeling 

formalism, provides an intensional (vis-a-vis database 

extension) representation of objects (see chapter 4). In 

other words, the data model deals in entity types rather 



STATE 

ENUMERATION 

DISTRICT 

URBANIZED 

AREA 

FIGURE 8.5 

GEOGRAPHIC ENTITY TYPES 



188 

than entity instances. Thus, the STATE box of figure 8.5 

represents Massachusetts, California, and all geographic 

areas which are states. Similarly, the 

ENUMERATION-DISTRICT box of figure 8.5 represents all 

enumeration districts. 

At this point, before we progress any further, we 

would like to reiterate that an entity type is not a 

record type. A GERMS model serves to describe the logical 

structure of some data set, but this structure is (data) 

independent of physical structural issues. The presence 

of a GERMS entity type only implies that the respective 

geographic areas are represented i_n some physical form 

within the underlying data. 

Two geographic entities may be linked through a 

geographic relationship. In such a case we say that a 

relationship "holds” between the entity types. The entity 

types which are joined in a relationship are referred to 

as "participants" in the relationship. We call the 

instances of the participating entity types the 

"constituents" of the relationship. 

The existence of a relationship between two entity 

types defines the potential for well structured spacial 

overlap of instances of the entity types. The nature of 

the spacial overlap (if it exists) is defined by the type 
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of relationship linking the participating entity types. 

As was observed with geographic entities, there are a 

number of different types of relationship. Each 

relationship type has a type name that is shown in upper 

case letters. 

The graphical depiction of a relationship follows 

the conventions of the Entity-Relationship model in that a 

relationship is represented by a labelled (by type name) 

diamond shaped node with edges (links) joining the 

participating entity types. Beyond this, the similarities 

with Entity-Relationship relationships cease to exist. 

Unlike the Entity-Relationship, the GERMS graph 

utilizes directed edges. Each relationship has a definite 

’’direction.” The directed edge of a relationship 

represents this semantic. 

The directed edge also portrays the mathematical 

mapping among instances of the related entity types. The 

mapping of entities in a geographic relationship is, in 

all cases, a functional mapping (a number of instances of 

one type are related to a single instance of the other 

type). The functionality of this mapping is given by the 

direction of GERMS relationship edges. 
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Both the GERMS and the Entity-Relationship model use 

the notion of relationship types [2]. Entity-Relationship 

relationship types are situation specific and the meaning 

of any relationship depends on the entities which it 

joins. The only pre-defined semantic of an 

Entity-Relationship relationship type is that it relates 

entity types. 

GERMS relationships, on the other hand, are not 

situation specific; they represent pre-defined 

constructs [3]. In other words, the specific relationship 

types, which incidently are few in number, are inherent in 

the modeling formalism. They are, therefore, applicable 

to every situation. 

There are a number of advantages to be gained by 

incorporating the definition of relationships into the 

constructs of the modeling formalism. The major advantage 

is that a single semantic is applied to many cases. Once 

this semantic is understood in the general sense, the 

relationship’s name connotes an immediate understanding of 

its meaning in each specific application. 

The reader may question how relationships, which 

represent the spacial overlap of heterogeneous (according 

to entity type) geographic areas, can be categorized into 

relationship types. A related question is: if it is 
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entity instances which overlap, how can relationships hold 

between entity types. The following example should help 

to clarify these points. 

Consider drawing the boundaries of all instances of 

a given entity type on a sheet of cellophane film. Recall 

that no two instances of a given entity type can contain 

the same point. Therefore, none of the area boundaries on 

the sheet will overlap. Assume that a similar but 

separate sheet is created, using the same geographic 

scale, for each entity type. 

Now, if two of these sheets are overlaid, the 

spacial relations that exist between instances of these 

entity types can be studied. In many cases the overlap of 

entity instances will be erratic and unstructured. Here, 

a GERMS relationship does not hold between the respective 

entity types. 

In other cases the overlap will maintain a certain 

structure with regards to all instances of the respective 

types; the definition of some geographic areas is 

considerate of other geographic areas. In this latter 

situation the nature of the structure of the spacial 

overlap adds meaning to the involved entities. Thus a 

relationship does hold between the respective entity 

types . 
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If this overlaying process were carried out for all 

possible pairs of entity types, at least four well-defined 

spacial constructs could be identified. These constructs 

are represented by the three relationship types and the 

one association (non-relationship) type of the GERMS. 

These types are named and defined in the subsections that 

follow. First, however, we will note that the above 

illustration makes clear an important attribute of GERMS 

relationships. Namely, all GERMS relationships are 

binary — they connect exactly two entity types. 

For each relationship type described below there is 

provided a graphical form and a lingual form. The 

graphical form serves as a means through which a (logical) 

schema graph of a geographic data set may be created -- it 

is the basis of a "picture" of the semantics of geography. 

The lingual form acts as a standard "language" of logical 

geographic structure to be used in creating, discussing, 

and describing geographic data models. Also, the lingual 

form provides the basis for both a data definition 

language and a query language of the GERMS. The structure 

and use of these are discussed .in later chapters. 

The information content of the graphical and lingual 

depiction of a GERMS relationship are equivalent. That 

is, each form provides the same data model. 
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The specific relationship constructs of the GERMS 

are only four in number: 

1. CONTAINS -- a relationship which indicates that 

instances of one geographic entity type lie within the 

boundaries of an instance of another entity type. For 

example, tracts lie within the boundaries of a county 

(COUNTY CONTAINS TRACT). 

2. COMPRISES — a relationship which indicates 

that instances of one entity lie within an instance of 

another entity type and completely cover the latter area. 

For example, counties lie within the boundaries of a state 

and completely cover the state (STATE COMPRISES COUNTY). 

3. IS-A — a relationship which indicates that 

instances of one entity type hold the distinction of being 

special case instances of another entity type. For 

example, some tracts (which we call urban tracts*) combine 

to form central business districts. Tracts, in general, 

do not (URBAN-TRACT* IS-A TRACT). 
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4. EITHER-OR -- an association (not a 

relationship) which indicates the grouping of a number of 

entity types in the formation of a single more general 

entity type in which the lesser distinction is lost. This 

is permitted only in those cases where instances of the 

original entity types do not overlap. For example, tracts 

and block numbering areas never overlap. They can 

therefore be grouped together to form the more general 

tract/bna object (TRACT/BNA IS EITHER TRACT OR 

BLOCK-NUMBERING-AREA). 

A detailed discussion of each of these constructs in 

turn, together with graphical illustration of each, 

follows hereunder. 

The CONTAINS relationship. The first and simplest type 

of relationship which may hold between two entity types is 

the "CONTAINS” relationship. When a CONTAINS relationship 

holds between a subordinate entity type, say "SUB," and a 

super ordinate entity type, "SUPER," the following can be 

said about these types: 

Property 8.1. If a point which lies within an 
instance of type SUB also lies within an 



195 

instance of type SUPER, then the area defined as 
the instance of SUB will be completely contained 
within the instance of SUPER. 

Property 8.1 insures that an area instance of type 

SUB will never be divided by the boundaries of an area of 

type SUPER. In alternative words, the boundaries of a SUB 

instance will never transcend those of a SUPER area 

instance. 

It is important to realize that property 8.1 in no 

way implies a one-to-one correspondence between elements 

of the participating types. Rather, the mathematical 

mapping is 1:N from SUPER to SUB. Thus each instance of 

SUPER is related to (contains) any number of SUB 

instances, while each instance of SUB is related to 

(contained in) a single SUPER instance. The semantic of 

this relationship is illustrated in figure 8.6. 

With respect to properties and values of 

MCONTAINS-relatedM entities, some conclusions can be drawn 

here. Recall that in this application properties are 

statistical objects which relate to the frequency of 

occurrence of some underlying "raw object" within the 

boundaries of the geographic area in question. When 

geographic areas overlap the properties of these areas 

share common raw objects. 
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FIGURE 8.6 

THE SEMANTIC OF THE CONTAINS RELATIONSHIP 

"SUPER CONTAINS SUB" 
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When the nature of the overlap is of the CONTAINS 

variety, it is obvious that all raw objects which ’’belong" 

to the subordinate area also "belong” to the superordinate 

area. Consequently, the aggregation of the values of a 

given property of all SUB instances which lie within a 

single SUPER instance is, in all cases, less than or equal 

to the value of the respective property of the related 

SUPER instance. This fact impacts the issue of semantic 

integrity which is discussed later. 

An example of a CONTAINS relationship is shown in 

figure 8.7. This graphical depiction, which in its 

lingual form reads "COUNTY CONTAINS TRACT," implies that a 

tract will never be divided by county boundaries. Note 

that the functional edge of the graph is directed from the 

subordinate (TRACT) to the superordinate (COUNTY) entity 

type. This directed edge represents the "direction" of 

the relationship (i.e. the graph does not indicate that 

TRACT COUNTAINS COUNTY). 

The directed edge also represents the fact that 

there exists a 1 : N mathematical mapping between entity 

instances. Therefore: (1) an instance of type COUNTY may 

contain many instances of type TRACT, and (2) any given 

instance of type TRACT will be contained in a single 

instance of type COUNTY. 
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FIGURE 8.7 

A CONTAINS RELATIONSHIP 

"COUNTY CONTAINS TRACT" 
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It should be obvious that the CONTAINS relationship 

is transitive. Thus, if A CONTAINS B, and B CONTAINS C, 

then A (implicitly) CONTAINS C. 

The COMPRISES relationship. The second and somewhat 

more powerful (in terms of meaning) relationship which may 

hold between two entity types is the "COMPRISES” 

relationship. When a COMPRISES relationship holds between 

a subordinate entity type, say "SUB,” and a superordinate 

entity type, "SUPER," the following can be said about 

these types: 

Property 8.2.1. If a point which lies within an 
instance of type SUB also lies within an 
instance of type SUPER, then the area defined as 
the instance of SUB will be completely contained 
within the instance of SUPER. 

Property 8.2.2. The set of instances of SUB 
that ITe within a given instance of SUPER 
provide complete geographic grid coverage of the 
instance of SUPER. 

Note that property 8.2.1 denotes the fact that each 

COMPRISES relationship defines the existence of an 

implicit CONTAINS relationship between the participating 
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entity types. The semantic of the two relationship types 

is not the same, however. The distinction arises from 

property 8.2.1 of the latter COMPRISES relationship. This 

property imposes an added condition on the constituents of 

the relationship. Namely, the collection of subordinate 

areas completely cover the super ordinate area in which it 

lies. 

Figure 8.8 illustrates the semantic of the COMPRISES 

relationship. 

An important consequence of property 8.2.1 is that 

it allows us to ’’aggregate up” from the subordinate to the 

superordinate entity type. In other words, all values of 

properties pertaining to the instances of SUB which lie 

within a given SUPER instance cumulatively represent the 

values of the respective properties of the instance of 

SUPER. 

In the case of the CONTAINS relationship we are only 

allowed to make relational statements (e.g. less than or 

equal to) about the properties of related areas. In order 

to elucidate this point we will refer back to figure 8.6 

(above) which illustrates the semantic of CONTAINS. 

As shown in this figure, the subordinate areas of a 

CONTAINS relationship may cover only a portion of the 

respective super ordinate geographic zone. This defines, 
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THE SEMANTIC OF THE COMPRISES RELATIONSHIP 

"SUPER COMPRISES SUB" 
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because of the statistical nature of the properties under 

consideration, that: (1) the super ordinate property values 

are greater than the aggregation of the subordinate 

property values; or (2) the super ordinate property values 

are equal to the aggregation of the subordinate property 

values (this is an exceptional case). The semantic of 

CONTAINS only assures us that a superordinate value will 

not be less than the aggregation of the respective 

subordinate property values. 

When the COMPRISES situation holds, on the other 

hand, we can exactly specify the values of the properties 

of one area in terms of the values of the properties of 

other areas. This is because the super ordinate and the 

set of subordinate instances always refer to the exact 

same geographic area; the statistical properties must be 

the same. Consequently COMPRISES is called a ’’strong 

relationship” as opposed to CONTAINS which we call a ’’weak 

relationship. ” 

Figure 8.9 has been formed by appending a COMPRISES 

relationship to the model in figure 8.7» Again, the 

directed edge from subordinate to superordinate entity 

type repesents both the direction of the relationship and 

the functional mapping (one to many) of the constituent 

objects. 



STATE 

FIGURE 8.9 

THE COMPRISES RELATIONSHIP 

"STATE COMPRISES COUNTY" 
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The new relationship, read ’’STATE COMPRISES COUNTY," 

provides the following information: 

1 . A county will never be divided by state 

boundaries 

2. The counties within a state completely cover 

the state 

Like the CONTAINS relationship, the COMPRISES 

relationship is transitive. Therefore, if A COMPRISES B, 

and B COMPRISES C, then A (implicitly) COMPRISES C. 

Let us again refer to the model in figure 8.9 so 

that we may investigate how TRACT and STATE are related. 

Recall that the existence of a COMPRISES relationship 

defines the existence of an implicit CONTAINS relationship 

between the participating entity types (through 

property 8.2.1). The model therefore provides the 

implicit information that STATE CONTAINS COUNTY. 

Furthermore, the model provides the explicit information 

that COUNTY CONTAINS TRACT. Because the CONTAINS 

relationship is transitive, we may infer that STATE 

CONTAINS TRACT. Thus a tract will never be divided by the 

boundaries of a state. 
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The model of figure 8.9 does not allow us to 

conclude that STATE COMPRISES TRACT. This is because the 

relationships depicted in the model do not define that 

tracts provide complete grid coverage of each county 

(although the model does not exclude this situation from 

the realm of possibility). Here, the presence of weak 

(CONTAINS) relationship inhibits the formation of a 

transitive ’’chain" of strong relationships. 

The IS-A relationship. The third relationship, called 

"IS-A," allows for the semantic description of 

subcategories of an entity type. The existence of an IS-A 

relationship between two entity types represents the fact 

that one of the participating entity types is a special 

case of the other entity type. 

When an IS-A relationship holds between two entity 

types, say "SPECIAL" and "GENERAL," such that type SPECIAL 

is a special case of type GENERAL, the following can be 

said about these entity types: 

Property 8.3-1 » Each instance of type SPECIAL 
is an instance of type GENERAL. 
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Pr operty 8.3*2. All implicit and explicit 
CONTAINS, COMPRISES, and IS-A relationships 
which hold between type GENERAL and other entity 
types are inherited by type SPECIAL through the 
IS-A relationship (recall that each explicit 
COMPRISES relationship defines the existence of 
an implicit CONTAINS relationship). 

We call property 8.3-2 the "inheritance property" of 

the IS-A relationship. Because of the inheritance 

property, entity type SPECIAL may hold its own explicit 

relationships as well as holding implicit relationships 

inherited from type GENERAL. Note that this property 

defines that the IS-A relationship is transitive. 

In figure 8.10 the model of figure 8.9 is expanded 

so that we may study an example of an IS-A relationship. 

Here, we introduce three new entity types: 

CENTRAL-BUSINESS-DISTRICT, BLOCK-GROUP, and URBAN-TRACT* 

(pronounced urban tract-star). The asterisk appended to 

the name of the latter entity type is used to denote the 

fact that a non-standard name has been created for the 

purpose of naming the entity box. 

From figure 8.10 it can be seen that 

CENTRAL-BUSINESS-DISTRICT COMPRISES URBAN-TRACT*. Also, 

URBAN-TRACT* COMPRISES BLOCK-GROUP. The implications of 

these two new relationships are straightforward. Namely: 
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FIGURE 8.10 

THE IS-A RELATIONSHIP 

"URBAN-TRACT* IS-A TRACT" 
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1. An urban tract* will never be divided by the 

boundaries of a central business district, and the urban 

tracts* within a central business district completely 

cover the central business district 

2. A block group will never be divided by the 

boundaries of an urban tract*, and the block groups within 

an urban tract* completely cover the urban tract* 

3. A block group will never be divided by the 

boundaries of a central business district, and the block 

groups within a central business district completely cover 

the central business district (implied COMPRISES 

relationship) 

The remaining new relationship, which is read 

"URBAN-TRACT* IS-A TRACT,” defines that each instance of 

the type URBAN-TRACT* is also an instance of the type 

TRACT (see figure 8.11). From the inheritance property of 

the IS-A relationship it can be deduced that an urban 

tract* will neither cross the boundaries of a county nor 

those of a state. 



FIGURE 8.11 

THE SEMANTIC OF 

"URBAN-TRACT* IS-A TRACT" 
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The reader should note that the IS-A relationship is 

directed from the subtype (special case) to the supertype 

(general case) node of the graph. Like the edges of the 

previously discussed relationship types, the directed edge 

of the IS-A relationship represents a functional mapping 

between the participating entity types. Thus each 

instance of the special case entity type is mapped into 

exactly one instance of the general type. 

Unlike the aforementioned relationships, the mapping 

of objects is not 1:N in the IS-A situation. Rather, the 

relationship is characterized by a 1:1 mapping. The 

relationship is "unbalanced,” however, in that each 

instance of the supertype need not be linked to a 

colleague instance of the subtype [4]. For this reason 

the directed edge also serves to insure the semantic 

clarity of the relationship (i.e. X IS-A Y is not the 

same as Y IS-A X). 

The rationale for creating the type URBAN-TRACT* as 

a subtype (IS-A) of TRACT lies in the fact that it allows 

for the presentation of more detailed information about 

tracts which lie within central business districts. Note 

that the type URBAN-TRACT* holds a direct relationship 

(COMPRISES) with the type BLOCK-GROUP. A COMPRISES 

relationship does not hold between TRACT and BLOCK-GROUP, 
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however (the association between tracts and block groups 

is discussed in the next subsection). Therefore, when it 

is known that a tract lies within a central business 

district, then it is known, without question, that the 

tract is completely covered by block groups. This cannot 

be said about tracts is general. This is illustrated in 

figure 8.12. 

The EITHER-OR association. Geographic entity types may 

be linked through an "EITHER-OR association.” When an 

EITHER-OR association holds between two entity types, say 

”TYPE-A” and ”TYPE-B,” the following can be said about 

these entity types: 

Property 8.4. The geographic areas defined as 
instances of TYPE-A and TYPE-B are mutually 
exclusive such that a point which lies within an 
instance of TYPE-A will never lie within an 
instance of TYPE-B. 

Property 8.4 implies that an area of geography may 

be covered by an instance of the entity type TYPE-A or by 

an instance of entity type TYPE-B, but not both. Thus, as 

is observed with instances of a single entity type, 

instances of "EITHER-OR associated” entity types do not 



BLOCK 
GROUPS 

FIGURE 8.12 

URBAN TRACTS* 
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overlap. 

Because of the mutual alternation of instances of 

such entity types, the set TYPE-A, TYPE-B can be combined 

to form a single ’’higher level” entity type: 

TYPE-A/TYPE-B. From the higher level perspective all 

instances of the type are isomorphic — there is no 

difference between a TYPE-A area instance and a TYPE-B 

area instance. The higher level entity type may hold its 

own relationship with other entity types. The EITHER-OR 

concept can be directly extended, if need be, to associate 

more than two entity types. 

The EITHER-OR association _is not a relationship 

between entity types. A relationship, as used in our 

geographic application, represents the potential for 

spacial overlap of instances of participating entity 

types. It is the nature of this overlap of constituent 

instances that defines the type of relationship held 

between the entity types. The EITHER-OR association, on 

the other hand, can never link instances of two entity 

types. This is because the association represents the 

fact that no two constituent instances will ever be 

’’present” in the same geographic location. Therefore, the 

existence of an EITHER-OR association denotes, by 

definition, the lack of a relationship between the 

participating entity types . 
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Because the EITHER-OR association is not a 

relationship we do not use a the relationship (diamond) 

symbol in its graphical depiction. Rather, the associated 

entity type (rectangle) symbols are placed side by side 

and separated by a double bar. These juxtaposed entity 

boxes are surrounded by a larger rectangle. 

The double bar separation of the subsidiary entity 

types represents the mutual exclusion of geographic 

coverage of these entity types. The larger peripheral 

entity box depicts the existence of the ’’higher level” 

entity type which is defined by the association of its 

subsidiary entity types. Figure 8.13a illustrates this 

graphical representation. The lingual form of the 

illustration is ’’TYPE-A/TYPE-B IS EITHER TYPE-A OR TYPE- ■ B” 

(the ordering of the latter two entity types is 

irrelevant) . The related semantic is shown in 

figure 8.13b* 

The existence of an EITHER-OR association among a 

set of entity types designates the implicit coexistence of 

an IS-A relationship between each subsidiary entity type 

and the higher level type defined by the association. For 

example, let us again refer to figure 8.9 and assume that 

there exists an EITHER-OR association between entity type 

TYPE-A and entity type TYPE-B. This association defines 
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TYPE-AAH fPE-B 

TYPE-A TYPE-B 

FIGURE 8.13a 

THE REPRESENTATION OF 

"TYPE-A/TYPE-B IS EITHER TYPE-A OR TYPE-B" 

FIGURE 8.13b 

THE SEMANTIC OF 

"TYPE-A/TYPE-B IS EITHER TYPE-A OR TYPE-B" 
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the formation of the ’’higher level” entity type 

TYPE-A/TYPE-B. 

Although there is no relationship between TYPE-A and 

TYPE-B (no overlap of respective instances), the EITHER-OR 

association implies the existence of an IS-A relationship 

between type TYPE-A (or TYPE-B) and type TYPE-A/TYPE-B. 

In other words, each instance of TYPE-A (TYPE-B) is an 

instance of TYPE-A/TYPE-B. Furthermore, because of the 

above noted inheritance property (property 8.3.2), all 

implicit and explicit CONTAINS and IS-A relationships held 

by entity type TYPE-A/TYPE-B are inherited by types TYPE-A 

and TYPE-B. 

The model in figure 8.14 shows the figure 8.10 

version after the inclusion of two EITHER-OR associations. 

We will use this model as an example of a ’’typical” GERMS 

conceptual schema of some hypothetical data set. Because 

a data set exists prior to the creation of the schema, the 

entity types which are represented in the schema is not a 

factor which is under our control — we must accept the 

list of entity types as given. 

The relationships of the schema, then, are those 

which relate logically the entities of the data set. 

Thus, a schema does not show that COUNTY COMPRISES SMSA 

unless the data set holds data about both counties and 
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SMSAs. To restate, a GERMS schema models the logical 

contents of a specific geographic data set. In the case 

here we are considering a hypothetical data set which 

includes six "basic” entity types: COUNTY, 

BLOCK-NUMBERING-AREA, TRACT, CENTRAL-BUSINESS-DISTRICT, 

and ENUMERATION-DISTRICT (the remaining three entity types 

are a manifestation of the GERMS schema creation process). 

In the diagram entity type TRACT and type 

BLOCK-NUMBERING-AREA (BNA) are joined in an EITHER-OR 

association to form the higher level object TRACT/BNA. 

The direct implications of this association are as 

follows: 

1. An area of land may be covered by a tract or by 

a block numbering area, but an area will never be covered 

by an instance of both types 

2. Each instance of the type TRACT ( and 

BLOCK-NUMBERING-AREA) is an instance of entity type 

TRACT/BNA and thus inherits the appropriate relations hips 

with other entity types 

The second EITHER-OR association of figure 8.14 denotes a 

similar meaning for the entity types BLOCK-GROUP and 

ENUMERATION-DISTRICT. 
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FIGURt 8.14 
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The model shown in figure 8.14 demonstrates how 

relationships can be held by higher level entity types 

such as TRACT/BNA, or by their subsidiary types (TRACT or 

BLOCK-NUMBERING-AREA). Now we see that COUNTY CONTAINS 

TRACT/BNA. Therefore, neither the boundaries of tract nor 

the boundaries of a block numbering area will ever cross 

the boundaries of a county. 

This in no way implies that instances of both types 

are restricted from lying within the same county for the 

relationship holds between COUNTY and the higher level 

entity type. The higher level type does not "recognize" 

the difference between instances of its subsidiary lower 

level types. Consequently, the semantic of a constraint 

which requires a discrimination of tracts from block 

numbering areas, such as the constraint in question, is 

not and cannot be implied by the relationship shown. 

A relationship held between the two higher level 

entity types tells us that TRACT/BNA COMPRISES 

BLOCK-GROUP/ENUMERATION-DISTRICT. In other words, 

instances of the latter type (either block groups or 

enumeration districts) provide complete geographic grid 

coverage of the tracts or block numbering areas in which 

they lie. 
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Because BLOCK-NUMBERING-AREA COMPRISES BLOCK-GROUP, 

we can easily deduce that an enumeration district will 

never lie within a block numbering area. Through 

analogous reasoning we arrive at the same conclusion for 

urban tracts*. 

TRACT IS-A TRACT/BNA (implied) and TRACT/BNA 

COMPRISES BLOCK-GROUP/ENUMERATION-DISTRICT. With this 

information we know that a tract can be exhaustively 

partitioned into block groups, (mutually exclusive) 

enumeration districts, or a combination of both types. 

URBAN-TRACT* IS-A TRACT so, in the absence of further 

information, we expect the same situation to apply to 

urban tracts*. The model also tells us, however, that 

URBAN-TRACT* COMPRISES BLOCK-GROUP. Therefore, we 

conclude that enumeration districts will never lie within 

this special type of tract. 
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FOOTNOTES 

M] It is obvious that the property name "white 
population" does not connote an exact explication 
of its meaning. Issues as to the precise 
definition of "white" and "population" are 
unclear. These issues are related to the 
operational definitions of the property and, as 
such, are peripheral to own concerns here. It is 
assumed that the operational definitions of 
relevant properties would be available, upon 
demand, to the data user. 

[2] In the jargon of the Entity-Relationship model, a 
relationship type is called a "relationship set." 

[3] A construct is a concept which is deliberately and 
consciously invented or adopted for a special 
scientific purpose [KERL73, P. 29]. 

[4] The mathematical mapping which is portrayed by the 
IS-A relationship represents an example of what is 
called a "total one-to-one mapping." It is also a 
special case of the "onto mapping" (see [TS1C82]). 



CHAPTER I X 

RECONNOITERING THE GERMS FORMALISM 

In the previous chapter we described the GERMS 

(Geographic Entity-Relationship Modeling System) -- a data 

modeling formalism which is dedicated to meeting the 

special modeling needs of geographic based statistical 

data. The discussion, as presented thus far, has been 

developed without any consideration of machine 

implementability [1]. We have not considered the issues 

relating to a "GERMS-based" database management system 

(DBMS). In the chapters which follow this one we will 

investigate such issues. First, however, we will evaluate 

the GERMS as described to this point. 

Discussion 

If a data modeling formalism (DMF) is to be 

evaluated, we must have at hand some criteria upon which 

the evaluation can be based. In [SU79] we find a list of 

such criteria: 
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1. [The DMF] should be semantically rich enough 

for an enterprise to model different semantic properties 

of data deemed necessary for the operation of the 

enterprise 

2. [The DMF] should satisfy the requirement of 

data independence (i.e. it should deal only with the 

semantic properties of data and not with the access path 

structure and physical structure of data) 

3. [The DMF] should contain constructs to 

explicitly distinguish different semantic properties so 

that no semantic rules will be hidden in the knowledge of 

the DBA [database administrator] and the users, or the 

application programs 

4. [The DMF] should be simple yet without 

sacrificing the clarity of different properties of data 

In studying these criteria (especially 1 and 3), we 

realize that there must be made a close match of 

application needs with DMF semantic contructs. ’’Although 

the data may have other meanings which are hidden, 

unknown, or even irrelevant, the meaning captured by the 
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data model should be adequate for the purpose required” 

[TSIC82, p. 6]. In simpler terms, the tool should match 

the task. 

In reviewing the data modeling needs of the 

geographic based statistical data management environment 

we find that the application requires the use of a limited 

number of modeling constructs. The requirements are quite 

specific to the situation, however. Existing conceptual 

approaches (those described in appendix A) fail to meet 

adequately the idiosyncratic modeling needs of the 

geographic data management environment. Semantic 

constructs of these models are either underemphasized or 

overemphasized so that there is not a close match of 

ability to needs. 

Because of this situation we suggest that this data 

management environment deserves its own special purpose 

modeling formalism -- a conceptual DMF which is aimed 

specifically at capturing and representing the semantics 

associated with geographic based statistical data. The 

GERMS is such a formalism. Each GERMS construct matches a 

specific well-defined semantic pertaining to geographic 

data. As a result, we feel that the formalism performs 

well when evaluated under the above criteria. 
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In the succeeding chapters we explore the ’’machine 

implementation” of the concepts of the GERMS methodology 

discussed above. This exploration results in the 

development of a ’’GERMS-based” database management system 

in which all user-system interaction occurs ”in terms of” 

the GERMS conceptual schema. Thus the GERMS methodology 

is taken beyond the realm of database design and 

discussion -- it becomes a tool to aid in database usage. 

Before these topics are considered, we would like to 

relate the GERMS modeling formalism to some of the 

concepts discussed in the early chapters of this work. 

This is the focus of the following addendum. The reader 

who is not concerned with these issues is urged to omit 

the reading of this addendum and to proceed directly to 

the next chapter. 

Addendum: The GERMS as a ’’Second Generation” DMF 

In chapter 2 we introduced the notion of the 

’’generations” of data modeling formalisms. The first 

generation formalisms (traditional hierarchical, network, 

and relational) have the common feature that their 

constructs are mainly syntactic [SU79]- Second generation 



226 

DMFs, those which are the primary focus of our discussion, 

concentrate mostly on data semantics. Early on in the 

discussion we suggested that these formalisms be referred 

to as ’’semantic DMFs.” 

In earlier chapters we discussed a number of 

concepts which are fundamental to the study of semantic 

DMFs. In this section we will relate the GERMS to some of 

these fundamental concepts. Others will be discussed in 

subsequent chapters. The value of this section lies in 

the fact that it provides insights into the applicability 

of general database research and ideas to the issues 

surrounding our specific geographic data modeling 

f ormalism. 

Data abstraction. Data abstraction (as previously 

discussed in chapter 5) deals with the ignorance of detail 

about some objects. When this detail is ignored a number 

of (less abstract) objects are represented as a single 

(more abstract) object. In data modeling we usually 

discuss data abstraction in terms of two distinct types. 

The first type, aggregation abstraction, deals with the 

grouping of heterogeneous component objects in the 

formation of a single abstract object. This relates to 

the "PART-OF” concept as used by the artificial 
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intelligence community (see chapter 5 for specific 

examples) . 

Generalization, the remaining type of abstraction, 

deals with the grouping of homogeneous objects in the 

formation of a single more abstract object. It ’’enables a 

class of individual objects to be thought of generically 

as a single named object” [SMIT77b, p. 1071. Thus it 

takes advantage of the commonality that exists among 

objects. This abstraction is similar to the artificial 

intelligence concept of ”IS-A" (again see chapter 5 for 

examples). 

Aggregation abstraction does not show itself within 

the constructs of the GERMS formalism. The COMPRISES 

relationship carries the semantic that a ’’whole area” is 

made up of a number of ’’part of areas,” but this does not 

match the meaning of aggregation abstraction as it is 

traditionally used in data modeling. 

For example, if SUPER COMPRISES SUB, then the set of 

areas of type SUB which lie within a given SUPER area can 

be thought of as being component parts of the SUPER area. 

These component parts are homogeneous as to type, however, 

and are thus represented as a single object in the GERMS 

model. As a result, we do not see the COMPRISES 

relationship as representing aggregation abstraction. The 
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CONTAINS relationship fails to provide an example of the 

traditional aggregation abstraction concept for the same 

reason . 

The EITHER-OR association of the GERMS formalism 

does join heterogeneous (as to type) objects in the 

formation of a single higher level object type. Still, 

the semantic of EITHER-OR does not match that of 

aggregation abstraction. This is because, at the instance 

level, the EITHER-OR association denotes that an instance 

of at most one lower level type is linked to a given 

instance of the higher level type. Aggregation 

abstraction, on the other hand, denotes that an instance 

of each involved lower level type is linked to a higher 

level object instance. 

As for generalization abstraction, its presence is 

observed within the constructs of the GERMS. Recall from 

chapter 5 that whenever similar object instances (called 

’’tokens” in the jargon of generalization) are collected 

and represented as a single named object type, the process 

is called ’’classification.” Recall also that 

classification represents a special case of generalization 

abstraction. Specifically, it is token-type 

generalization. With this in mind, we see that the use of 

a GERMS geographic entity type to represent a set of 
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homogeneous geographic areas is an example of 

generalization abstraction. 

The GERMS IS-A relationship is an example of 

type-type generalization. Here, token objects of one type 

represent a less generic case of the tokens of the other 

type. Thus, in the GERMS relationship URBAN-TRACT* IS-A 

TRACT, each URBAN-TRACT* token (instance of an urban 

tract* area) is a less generic, or more ’’well-defined” 

representation of a TRACT token. 

When discussing generalization abstraction we often 

speak of the ’’property inheritance rule” (see [CODD79]). 

To review briefly, this principle states that the 

properties of more general objects are acquired or 

’’inherited” by their less generic counterparts. Thus, in 

a common business database setting, the properties of an 

EMPLOYEE token are inherited by the respective SALESMAN 

token since SALESMAN IS-A EMPLOYEE. This rule makes sense 

because the two tokens represent the same object; a person 

who is employed as a salesman. It is only the way of 

viewing the object that changes. 

The property inheritance rule does apply to the 

GERMS IS-A relationship (this should not be confused with 

our ’’inheritance property” which deals with 

relationships). Thus the population of an URBAN-TRACT* 
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token is the same as that of the respective TRACT token if 

URBAN-TRACT* IS-A TRACT. Again, the rule holds because 

the tokens represent the same object -- a specific 

geographic area. 

In summary, we find that of the two forms of 

traditional data abstraction used in data modeling only 

one presents itself in the GERMS formalism. 

Generalization abstraction is used in the classification 

process in which geographic areas are grouped into 

geographic entity types. Generalization abstraction also 

appears in the GERMS IS-A construct. Aggregation 

abstraction is not used in our formalism. 

Logical redundancy. As discussed in chapter 6, data 

abstraction is closely related to the issue of data user 

views, which in turn is related to logical redundancy. A 

database schema is logically redundant if some data values 

represented in the model are derivable algorithmically 

from other data values. It is important to realize that, 

despite this reference to physical data, logical 

redundancy is a logical concept. It in no way implies a 

specific physical structure. 
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Logical redundancy is often used in data models 

because it allows for the model to serve a greater variety 

of user needs; a single datum can be ’’viewed” in a number 

of different ways. It is obvious that a GERMS model deals 

heavily with logical redundancy. Every occurrence of a 

COMPRISES relationship represents the presence of logical 

redundancy since the properties of each superordinate area 

can be exactly specified as the aggregation of the 

properties of the related subordinate areas. This is due 

to the statistical nature of the data involved. 

Every IS-A relationship produces logical redundancy 

since the relationship allows a single object to be viewed 

in ’’two different lights.” Thus, an area can be viewed as 

being an instance of the ’’special case” entity type (e.g. 

URBAN-TRACT*), or it can be viewed as being an instance of 

the ’’general case” entity type (TRACT). In either 

situation the respective data values can be related 

algorithmically — they are equal. 

The same can be said about the EITHER-OR association 

of the GERMS. Here, a single geographic area can be 

viewed as being an instance of the ’’higher level” type 

(e.g. TRACT/BNA), or it can be viewed as being an 

instance of a "lower level” entity type (TRACT or 

BLOCK-NUMBERING-AREA). In either case the respective 
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properties have equal values since each representation 

depicts the same underlying geographic object. 

In a later chapter we will investigate how a 

geographic data set whose logical structure is redundant 

can best be represented physically. As a close to this 

chapter we would like to reiterate that a GERMS 

representation is a logically redundant structure. The 

removal of this redundancy would greatly limit the variety 

of views of the data and, consequently, would complicate 

and limit the use of the data set. 
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FOOTNOTES 

[1] Recall that it is only 
Entity-Relationship model 
than a database design and 
appendix A). 

recently that 
has been used as 

documentation tool 

the 
other 

(see 



PART III 

A GEOGRAPHIC INFORMATION 
SYSTEM 

"Presumably man's spirit should be ele¬ 
vated if he can better review his shady 
past and analyze more completely and ob¬ 
jectively his present problems. He has 
built a civilization so complex that he 
needs to mechanize his records more fully 
if he is to push his experiment in its 
proper paths and not become bogged down 
when partway home by having overtaxed his 
limited memory. His excursions may be 
more enjoyable if he can reacquire the 
privilege of forgetting the manifold things 
he does not need to have immediately at 
hand, with some assurance that he can find 
them again if they prove important." 

Vannevar Bush 
"Memex Revisited" 
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CHAPTER X 

CONSIDERING USER NEEDS — QUERIES 

Introduction 

In an earlier chapter we presented a data modeling 

formalism (DMF) which is dedicated to meeting the specific 

needs of the geopolitical statistical data management 

environment. We call this formalism the GERMS (Geographic 

Entity-Relationship Modeling System). The constructs of 

the GERMS are applied in the formation of a data model of 

a geographic based statistical data set. A GERMS model is 

a semantic data model because it captures the meaning 

(semantics) of the underlying data. 

At the present stage of our discussion the GERMS 

exists in a "non-mechanized ," or "non-machine implemented" 

form. As such, the formalism provides us with two basic 

products: 

1. A documentation medium. A GERMS model, in 

either its graphical or its lingual form, provides concise 

well-defined documentation of the logical structure of a 

geographic data set. The model illustrates the logical 

2 35 
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contents of the data set as well as the meaning of said 

contents. This information is often derivable from 

alternative forms of documentation, but such derivation is 

needlessly complex and tortuous. 

2. A communication medium. The GERMS language 

provides data technicians and users with a formalized 

means of discussing and describing the logical structural 

issues pertaining to geogaphic data. GERMS phrases are 

based on a minimal set of constructs which we feel 

represents the most important aspects of geographic 

semantics. Once the semantic of each of these constructs 

is understood, a "GERMS-based" discussion is concise and 

unambiguous. The alternative discussion medium, natural 

language, is hardly well suited for this purpose. 

Since a GERMS data model represents the logical 

framework of a specific data set it serves as a conceptual 

schema of the data set. In its present form (that 

presented thus far) the schema structure, considered in 

conjunction with the physical structure of the data set, 

can help to answer two questions for the user. 

Specifically, the structures provide insights into 

answering: (1) Does the data set contain (in whatever 
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physical form) the information that I need? and (2) Given 

the geographic objects that I am interested in, where can 

I expect data retrieval problems and complexities to 

arise? 

In this and the following chapters we investigate 

how the concepts of the GERMS can be machine implemented. 

In other words, we will consider the issues surrounding 

the creation of a ”GERMS-based” DBMS (database management 

system). In such a system the structural framework of the 

data model becomes an integrated part of the DBMS as 

opposed to existing as a separate form of system 

documentation. Thus, in a system of this type, the DBMS 

has a ’’knowledge” of the logical structure of the data 

model as well as a ’’knowledge” of the physical data 

structure [1]. 

The advantages of this design are many. Access to 

the data can be made ’’through” the conceptual schema so 

that all objects seen by the data user are logically 

meaningful. In other words, the schema acts as a 

’’structural template” through which all objects are fitted 

before being presented to or received from the data user. 

When the schema is used in this way the user is 

insulated from the complexities that surround the physical 

data structure. She or he need never consider whether a 
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geographic object is an attribute area or a nesting area; 

whether an area is physically represented as a whole 

entity or as a number of scattered parts. We believe that 

this is as it should be for, under the precept of data 

independence, the physical structure should not affect the 

logical use of the data. 

The discussion from this point on is based on the 

assumption that the data set resides on some direct access 

storage device (e.g. disk). This is necessary because 

our system is designed to respond to random requests for 

the retrieval of data. The sequential nature of the tape 

storage medium fails to provide the required flexibility 

to meet the needs of such requests. 

A Geographic In format ion System 

When the logical structure of a data set is 

integrated into the framework of a DBMS the system’s 

ability to handle a certain type of user request is 

greatly improved. Specifically, the system is much better 

suited to respond to unanticipated and spontaneous 

information requests (we refer to such inquiries as "ad 

hoc” requests) . In an attempt to elucidate this point we 
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will first investigate the complexities that surround the 

processing of ad hoc information requests under the 

alternative traditional system. 

Assume that a hierarchically organized census data 

set exists in some ’’machine processable” form (e.g. a 

disk file). Further assume that a GERMS schema has been 

created for this file and exists as (separate) 

documentation as to the logical file structure. 

Now, consider a user who, for some unknown reason, 

wishes to know the white population of Hampshire County 

’’broken down" by election precinct. Unless the software 

required to respond to this specific request exists 

a priori, the following steps must be performed: 

1. The presence of the geographic entities in 

question is verified using the conceptual schema graph 

2. The semantic of the geographic relationship 

held between the entity types is assimilated (i.e. COUNTY 

CONTAINS ELECTION-PRECINCT) 

3. The representations of the entities are located 

in the physical structure of the file 
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4. Given the physical structure and corresponding 

logical structure, a retrieval program is written to 

collect and possibly reassemble the required data 

5. The file is processed using this program 

Depending on the nature of the physical and 

respective logical structures involved, the above steps 

can constitute an arduous task. It should be noted that 

since the retrieval software is written with regards to a 

specific question and a specific data file, its 

applicability to other files and retrieval problems is 

very limited. At best we would expect it to be usable, 

with modification, in retrieving different attributes of 

the same entity types from the same physical file. 

Now consider a second scenario in which the contents 

of the data file exist within a MGERMS-basedM DBMS which 

has, as an integrated part of the system, a "knowledge” of 

the structure of the conceptual schema. In this situation 

the same ad hoc retrieval problem is handled as follows: 

1. The presence of the geographic entities in 

question is verified using the conceptual schema graph 

(this is the same as before) 
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2. The semantic of the geographic relationship 

held between the entity types is assimilated (this too is 

the same as before) 

3. A query which is based on this semantic is 

posed to the system 

4. The system responds to the query by providing 

the requested information in the appropriate logical form 

With this second system the DBMS takes on the 

responsibility of accepting the user’s request; locating 

the required data in the physical structure; retrieving 

the physical data; and, if required, reassembling the data 

to provide information about logically meaningful (whole) 

geographic entities. These functions, which eliminate the 

need for special purpose retrieval programs, constitute 

what will be called ’’query processing.” Thus, the system 

is able to accept GERMS-based queries. 

We use in the term ’’query” in regards to the second 

system because in this system the DBMS takes an ’’active” 

role in the creation of information from the underlying 

data. We can simply ”ask our questions,” or ’’query” the 

system, and the DBMS responds. 
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As an analogy, consider a person who wishes to know 

the meaning of a certain word as used in a specific 

context. We will call this person "Able." Two of the 

basic options that can be pursued by Able are (1) he can 

consult a dictionary, or (2) he can consult a 

knowledgeable person who we will refer to as "Baker." 

Under alternative 1, Able must first determine the 

proper spelling of the word. Then he must locate the 

proper entry in the dictionary. Finally, he must study 

and understand all of the definitions of the word and 

determine which definition best matches the context in 

question. Thus, the dictionary serves as a passive "bank" 

of words and definitions. 

Under alternative 2 Abie’s task is much simpler. He 

need merely pose the question (query) to Baker and receive 

a meaningful answer. Here, the knowledgeable Baker takes 

the active role in solving the problem. With respect to 

our database techniques, then, using the traditional 

system corresponds to the dictionary method, while using 

the GERMS-based DBMS is analogous to consulting the 

knowledgeable person who can understand and answer our 

questions. 
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Because the GERMS-based system described above is 

able to respond to ad hoc requests, it can be considered 

to serve as a geographic information system (GIS) -- a 

system which is suited to handle one time ad hoc requests 

for information regarding geographic objects [2]. 

Some of the issues that surround such a GIS 

implementation are discussed in this chapter. 

Specifically, we consider the structure of the queries 

which are posed to the system. We will see that this 

structure is tripartite; it comprises a focus part, a 

range part, and a (optional) breakdown part. 

Query Structure 

We have suggested that there are a number of 

advantages to be gained by fitting the DBMS with a 

’’knowledge” of the GERMS logical data structure. In a 

system of this type all inputs and outputs (queries and 

responses) ’’pass through” the model of the conceptual 

schema. The schema is therefore the system’s interface 

with the data user. 
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The ideas that a query (or reponse) passes through 

the schema and that the schema serves as a structural 

template should obviously not be taken in the literal 

sense. What is meant by these concepts is that the 

queries are posed Min terms of” the schema. Objects and 

connections of the schema can be referenced in a query 

with complete assurance that the references will be 

properly interpreted, or ’’understood;” query references 

that contradict or transcend the model of the schema will 

not be understood. Thus, the schema serves to shape the 

form of queries (responses) as a template shapes the form 

of objects which pass through it. 

Recall that a GERMS data model is made up of two 

basic kinds of object: geographic entity types and 

geographic relationship types. Of these two kinds, 

entities are the primary ’’objects of interest” of the data 

model. Relationships merely describe the way in which the 

group of entities is structured. Part of this description 

is based on the ’’direction” of the relationship. 

The entity types used in a GERMS data model are 

specific to the data set; the relationship types are not. 

Relationship types, in all cases, connect exactly two 

entity sets (we will ignore the peculiarities of the 

EITHER-OR association for the present). Note that by 
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moving from entity type to entity type by means of the 

relationship types we can define paths through the 

structure of the schema. Such a path will be called a 

"chain.M 

With these facts in mind we can make some 

suggestions as to how an appropriate query should be 

shaped. First, however, it should be realized that, 

although properties are not considered in the structure of 

our data model, a query is a request for attributes 

(values of properties) of an entity(s). Thus, if we wish 

to retrieve information about Hampshire County, the county 

entity serves to delineate the range of the request (e.g. 

"What are the white population and the black population of 

Hampshire County?"). The actual data objects retrieved 

relate to properties of the entity (white population, 

black population). A query must therefore deal with 

entities and properties. 

Again, our data model does not deal with properties 

because their semantic is common for all entities. 

Consideration of individual properties by the data model 

would make the structure needlessly complex. 
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Query focus and query range. . A query which is posed in 

terms of a GERMS data model must imply two distinct 

specifications: 

1. The attributes (of the geographic areas) that 

are requested. We call this the "focus" of the request. 

2. The geographic areas that the attributes apply 

to. We call this the "range" of the request. 

The focus of a query can be simply stated as a list 

of attribute names (e.g. WHITE-POP, BLACK-POP). In the 

situation here, the range of a query must define both the 

geographic entity type and the specific entity instance(s) 

to which the attributes apply [3]. This can be 

accomplished by stating the entity type name followed by 

the appropriate instance identifiers, or keys (e.g. 

COUNTY ABC, XYZ). 

It would seem that a common request would be to 

retrieve all instances of a given type. Rather than 

listing all identifiers a reserved keyword "ALL" can 

denote this request (i.e. COUNTY ALL). 
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Note that if the design of a query is to be truly 

GERMS-based, any entity type name used in the schema is 

valid for use in the specification of the range of the 

query. Thus, "URBAN-TRACT* ALL," and "TRACT ALL" are both 

valid (but very different) query range statements. 

Combining the focus statement and the range 

statement into a meaningful form we suggest the following 

query structure: 

GET attlist FOR etype (ke^1 lst} 
ML L 

where "attlist" represents some list of attributes, 

"etype" represents some schema entity type name, and 

"keylist" represents some list of entity instance 

identifiers. The brackets denote that exactly one of the 

contained elements must be used. 

A request for the white population and the black 

population of County ABC would be specified as 

GET WHITE-POP,BLACK-POP FOR COUNTY ABC 
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If this information is required for all counties the 

query would be specified as 

GET WHITE-POP,BLACK-POP FOR COUNTY ALL 

Geographic breakdown. The query format which is 

described above makes only partial use of the structure of 

the conceptual schema. The geographic entity types are 

referenced, but the geographic relationship types are not. 

These relationships represent meaningful overlap of the 

participating entity types. By making reference to these 

relationships in our queries, then, we can define 

meaningful breakdowns of our query range. 

As an example consider the simple schema graph that 

is shown in figure 10.1 (this is a small portion of the 

schema for the census file PL94). Notice that our example 

database includes statistical data about counties, minor 

civil divisions (MCD), and a variety of other types of 

geographic area. 
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FIGURE 10.1 

A SIMPLE SCHEMA 
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Our schema tells us that COUNTY COMPRISES MCD. 

Since we are assured that the overlap of counties and MCDs 

is meaningful, it makes sense to request that county data 

be presented in terms of MCD units; the respective 

geographic partitionings are compatible. Note that a 

request of this type is essentially a request for a simple 

report. 

Even though the COMPRISES relationship that is shown 

in the schema graph is to be referenced in a query, we 

need not state that ”COUNTY COMPRISES MCD" within the body 

of the query. This is due to the facts that (1) the DBMS 

has a ’’knowledge” of the schema, and (2) two entity types 

are joined by at most one relationship type within this 

structure. Thus, in making reference to the two entity 

types, COUNTY and MCD, we also imply a reference to the 

unique relationship that joins them. 

With this in mind we suggest that data for County 

ABC, presented in terms of the MCDs within the county, 

could be requested as 

GET attlist FOR COUNTY ABC BY MCD 
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Our database also contains data for enumeration 

districts. Our schema tells us that MOD CONTAINS 

ENUMERATION-DISTRICT, so we can request that the MCDs be 

further broken down thusly: 

GET attlist FOR COUNTY ABC BY MCD BY ENUMERATION-DISTRICT 

The above query makes use of the "chain” of schema 

objects which form an unbroken path from COUNTY to 

ENUMERATION-DISTRICT. This chain implies the existence of 

a relationship between COUNTY and ENUMERATION-DISTRICT. 

Consequently, a valid query is 

GET attlist FOR COUNTY ABC BY ENUMERATION-DISTRICT 

which ignores the presence of MCD areas. 

Finally, note the participation of the 

ELECTION-PRECINCT entity type within our conceptual 

schema. This entity type is linked to county, but it is 

unrelated to all other "COUNTY-related” entities. It 

makes sense to request that county data be broken down by 
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MCDs and broken down by election precincts, but it must be 

made clear that these breakdowns are not to be nested. 

We suggest that the keyword "AND” be used to 

indicate a break in the nesting of areas. Thus the query 

GET attlist FOR COUNTY ABC BY MCD 
BY ENUMERATION-DISTRICT AND BY ELECTION-PRECINCT 

requests that county data be presented first in terms of 

enumeration districts within MCDs within county, and then 

in terms of election precincts within county. 

The general format of our GERMS query is as follows: 

GET attlist FOR etypel {ke^LSt} [BY etype2] [[AND] BY etype3]... 

where the brackets enclose optional portions of the query 

and the ellipsis denotes that the preceeding bracketed 

material can be repeated. 

The optional portions of the query, those that begin 

with the BY keyword, constitute the "breakdown" of the 

query. The breakdown simply serves to specify the 

presentation format of the data. This data relates to 
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those properties defined in the query focus and to those 

areas defined in the query range. The breakdown is 

essentially a simple report writer facility. 

It is important to realize that the structure of the 

breakdown must coincide with the structure of the schema. 

Nesting can be requested in the breakdown if and only if 

the appropriate relationship (COMPRISES or CONTAINS) holds 

(implicitly or explicitly) in the proper direction between 

the entity types. Thus, the schema of figure 10.1 does 

not allow us to request "ELECTION-PRECINCT BY 

ENUMERATION-DISTRICT." 

The reader should satisfy herself (himself) that the 

interpretation of a GERMS query by DBMS software would not 

be a complex task. A query in this format can be easily 

parsed since the ordering of the elements is strictly 

defined and meaningful segments are delimited by blanks 

and keywords. The semantic correctness of the breakdown 

can be verified by the DBMS software by checking the 

relationship structure of the schema representation which 

resides within the system. This "internal (to the DBMS) 

form representation" of the schema is discussed in the 

next chapter. 
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Discussion. The above discussion of the structure of 

GERMS queries is admittedly ambiguous with regards to a 

few issues. In this section we will attempt to clarify 

some of these points. 

The first issue relates to the nesting of "CONTAINS 

related" entities as defined by the query breakdown. When 

the response to a query is to be nested such that the 

respective entity types are related via a CONTAINS 

relationship, the subordinate areas need not provide 

complete grid coverage of the respective super ordinate 

area. This was called the "non—coverage problem" in 

chapter 7. 

Suppose, for instance, that our query requests 

"COUNTY BY ELECTION-PRECINCT" when we know from the schema 

(figure 10.1) that COUNTY CONTAINS ELECTION-PRECINCT. It 

is obvious that the output "report" of the query should 

include "complementary data" relating to the attributes of 

those portions of the counties not covered by election 

precincts. This very tack was criticized in chapter 7 and 

the reader may wonder why it is suggested here. The 

threefold reason has to do with the nature of our GERMS 

based information system. 
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First of all, the non-coverage issue is implicit 

within the well-defined semantic of the CONTAINS 

relationship; the same cannot be said about the semantic 

of tree structures. Thus the non-coverage issue "makes 

sense" in the GERMS situation. The conceptual schema is 

used as a template in the formation of queries, so the 

issue will arise only when it is expected and understood 

by the user. 

Second, the user need not deal with the processing 

of the complementary data when using our information 

system. The DBMS software assumes this data management 

task. Thus, when working with a certain type of 

geographic areas, the user is not forced to consider 

"pseudo areas" in posing a query; the query deals with 

true geographic objects only. 

Finally, the nesting of other areas within the 

complementary (pseudo) areas can be avoided, if desired, 

by proper specification of the query breakdown. In the 

situation described in chapter 7 the user does not have 

this option because (s)he is working with a static 

predefined tree structure (recall this was cited as being 

a major cause of complexity) . 
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Another issue which deserves clarification has to do 

with the impacts that the IS-A relationship and the 

EITHER—OR association have upon the database Query 

process. In each of the above examples the query 

breakdown specification deals with COMPRISES and CONTAINS 

related entities only. Indeed, the use of these 

relationships makes sense because each of their semantics 

denotes a "natural nesting" relation. The same cannot be 

said about IS-A and EITHER-OR; their use in defining the 

breakdown of geographic data does not make sense. Each of 

these two constructs does affect the structure of queries, 

however. 

If we consider the impacts that the IS-A 

relationship and the EITHER-OR association have upon the 

overall data model we realize that each of these 

constructs effects the creation of new and different 

entity types. The IS-A relationship is used to define a 

"special case" entity type, while the EITHER-OR 

association collapses a pair of entity types and allows 

them to be regarded as a single separate entity type. 

Each "new" entity type created through these techniques 

can hold its own relationships with other entity types. 

Note that both of these constructs essentially allow the 

user to "view" a single geographic area in two different 

ways. 
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Since the DBMS in our information system has full 

"knowledge" of the structure of the conceptual schema, any 

schema entity type can be legitimately referenced in a 

query. Therefore, the database can be queried according 

to any of the different views of geography presented by 

the model. It is only required that the structure of the 

query adhere to the "meaning" of the entity types as 

depicted in the schema. Thus the presence of IS-A and 

EITHER-OR in the schema allows for more flexibility in 

retrieving information from the database. 

Summary 

We have considered how the usefulness of the GERMS 

can extend beyond that of a documentation and 

communication medium. When a geographic information 

system (GIS) is designed to match the structure of the 

GERMS modeling formalism, the conceptual schema can serve 

as the system’s interface with the user. The semantic 

richness of the GERMS conceptual schema provides a 

straightforward and natural basis for user-system 

interaction. Queries are posed to the GIS in a way that 

matches the user’s understanding of the meaning of the 

data; system responses are provided in a similar way. 
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The ad hoc queries which are supported by our GIS 

are discussed in terms of three distinct parts: query 

focus, query range and query breakdown. Query focus 

refers to the attributes in which the system user is 

interested. Query range refers to the geographic area(s) 

to which these attributes apply. The query breakdown 

defines how the information requested in the focus and 

range is to be presented; it is a simple report writer. 

In the next chapter we discuss the design of the 

physical database. We use this term to refer to the 

actual data items and the structural framework in which 

they exist. The logical database, which is considered in 

the subsequent chapter, has to do with the conceptual 

schema as it is represented within the system. 

As initial preparation for this discussion we 

suggest that the reader begin to take on a "database view" 

of census data sets. Thus, rather than thinking in terms 

of individual data files, the reader should think of 

geographic "data pools" the contents of which may relate 

to any number of data files. 



FOOTNOTES 

Obviously, we are using the term "knowledge” in a 
very loose sense. What is meant is that the 
structure is represented in some way within the 
computer (e.g. with pointers and data nodes), and 
that the DBMS accesses this structural 
representation through the invocation of 
procedures. 

The meaning of the term "information system," as 
used here, corresponds to that used in [MART75]. 
The architecture of a system of this type is such 
that it is capable of responding to spontaneous 
information requests. This is contrasted with an 
"operations system" in which the requests are 
known and prepared for a priori. 

In some database environments the entity type need 
not be specified in the query since an attribute 
may relate uniquely to a type (attribute name 
implies entity type name). In the GERMS case each 
attribute applies to all entity types. 
Consequently, the type name must always be 
included in a query. 



CHAPTER X I 

THE PHYSICAL DATABASE 

In this chapter we discuss the design of the 

physical database of our geographic information system 

(recall that we are no longer relying on tape as a storage 

medium). We are not committed to maintaining the 

hierarchy as a physical data structure. There are a 

number of reasons for this. Trees provide efficient data 

processing in many instances, but these efficiencies will 

not necessarily apply to the processing needs of our 

geographic information system (GIS). 

Physical Pat abase Design 

If we were to invoke an ordered listing, or ’’dump" a 

census data file, an interesting fact would emerge: a 

census file is simply a static report. Specifically, it 

is a "branching report" as could be created by any 

standard report writer facility. The primary key of each 

record type in the file acts as a "breakpoint variable" in 

the report structure (see [R0BI80]). With this in mind, 

the suitability of the items of the report (data records) 
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to serve as the objects to be processed within our GIS 

becomes questionable. 

The decision to strictly maintain a hierarchical 

physical data structure could prove to be a "straight 

jacket" for our application. We must not restrict 

opportunities for the merging and modification of 

geographic based data. The tree was chosen as a structure 

for geographic (tape) files; we are dealing with a 

geographic database. 

The approach taken here is to design a physical 

database structure which is considerate of the processing 

needs of the GIS. These needs are obviously based on the 

structure of the queries which will be posed to the 

system, which in turn are based on the logical model of 

the conceptual schema. Since the physical structure is 

based ultimately on the logical structure, then, the 

mapping from the logical database to the physical database 

will not be complicated. For the most part, there will be 

a one-to-one correspondence between the objects of the 

logical schema and objects of the physical database. 

Equivalence relations. The first step in developing our 

design is to identify the "equivalence relations" of the 

application. If the term "source structure" is taken to 
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mean the structure held by the data which is to be loaded 

into the database, then the equivalence relations equate 

the source structure to the structure of the conceptual 

schema. These relations indicate how the objects of the 

physical database (called the target structure) can be 

formed from the objects of the source structure [1]. 

Here, we are concerned with equivalence of information 

content. Thus, equivalence relations serve to locate 

within the source structure, the information that will 

form the target structure. 

As an example we will use the 1980 version of the 

Bureau of the Census file PL-94. The hierarchical 

physical structure of the file, which is the source 

structure, is illustrated in figure 11.1. Each rectangle 

in this figure represents a record type. The numbers 

represent record type identifiers which will be used in 

the discussion. 

Note that the records of PL-94 form a branching 

hierarchy (see chapter 7). Note also that there is 

physical redundancy of record types. Record type 3 and 

record type 7, for example, relate to the same kind of 

geographic area -- election precincts. The geographic 

zones represented by the instances of these record types 

are not equivalent in all cases, however. The type 7 



FIGURE 11.1 

THE PL-94 PHYSICAL FILE STRUCTURE 
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records are ’’deeper nested” than are their type 3 

counterparts and, as such, the respective geographic areas 

may be further dissected. Redundant representation of 

geographic areas is not common and its use in this 

particular file should not be taken to imply the norm. 

Figure 11.2 provides the graphical representation of 

the GERMS data model of the logical contents of PL-94. 

The reader should notice that the GERMS model does not 

represent geographic entity types redundantly. The 

repetitive nature of the census record types is a physical 

structural issue and it should in no way affect the 

logical data structure. 

Now, since each query is to be based on the 

geographic entity-geographic relationship framework of the 

GERMS schema, we should design a (target) physical data 

structure which matches the schema structure so as to 

allow the queries to be easily processed. 

In processing the breakdown specification of a query 

we always move ’’down” from superordinate to subordinate 

entity type. In other words, we first consider a 

’’containing” area, then we consider the ’’contained" areas. 

Each of these "downward” movements relates, with respect 

to the objects of the data model, to moving from a 

specific entity type to a specific relationship type, to a 

different entity type. 
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FIGURE 11.2 

THE PL-94 SCHEMA 
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In terms of physical data structure, then, we must 

have some ’’link” from the data records that represent each 

superordinate object to all of the data records that 

represent the respective subordinate objects. 

Furthermore, this link must support ’’downward” processing. 

Recall from chapter 7 that each record of the source 

structure (the PL-94 file) contains the key of its 

ancestry, but it does not contain the keys of its children 

records. In considering the information content of the 

records of the source structure, then, we see that each 

source record type relates to a subordinate entity type 

and the respective relationship of the schema structure. 

This is the ’’equivalence relation” which was mentioned 

above . 

Figure 11.3 illustrates an instance of an 

equivalence relation. Here the information content of a 

type 3 PL-94 record (ELECTION-PRECINCT) is related to the 

CONTAINS relationship and to the ELECTION-PRECINCT entity 

type of COUNTY CONTAINS ELECTION-PRECINCT. 

Again, the GERMS relationship is represented within 

the contents of the subordinate record type 

(ELECTION-PRECINCT) of the source structure because it is 

these records which contain the information required to 

form a link with the super ordinate record. This link is 
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FIGURE 11.3 

A PL-94 

EQUIVALENCE RELATION 
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derivable from the key of the ancestry. Thus each type 3 

record holds the information required to identify the 

county which it is contained in. Note that, in this 

special case of election precincts, record type 7 could 

also be used in the equivalence relation. 

When designing a physical database, equivalence 

relations should be identified so that each relationship 

and entity type of the conceptual schema is accounted for. 

In performing this process we locate within the source 

structure, the information required to form the records of 

our target physical structure. In most instances the 

identification of these equivalence relations is 

straightforward. As would be expected, however, some 

cases are more complicated than are others. 

Figure 11.4 illustrates one such case that arises in 

the PL-94 schema. Here we are dealing with two complex 

entity types, TRACT/BNA and BLOCK-GROUP/ 

ENUMERATION-DISTRICT, which are formed by two EITHER-OR 

associations. Both the "higher level" and the "lower 

level" entity types can be referenced in a query, so we 

must specify the equivalence relations accordingly. 

Record type 5 represents both tracts and block 

numbering areas. Consequently, the information required 

to link the county entity type with type TRACT, 



FIGURE 11.4 

PL-94 EQUIVALENCE RELATIONS 
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BLOCK-NUMBERING-AREA, or TRACT/BNA is contained within 

this single record type. 

BLOCK-GROUP and ENUMERATION-DISTRICT exist as 

separate record types in the PL-94 source structure. In 

the conceptual schema the respective entity types are 

joined to form the higher level 

BLOCK-GROUP/ENUMERATION-DISTRICT entity type, however. 

Note that the information required to implement the single 

COMPRISES relationship of TRACT/BNA COMPRISES 

BLOCK-GROUP/ENUMERATION-DISTRICT demands that two record 

types be used. The link information not provided by the 

type 9 records is contained in the type 11 records. 

Record types and directories. In studying the 

equivalence relations we become aware of the GERMS 

processing inefficiencies that are inherent in the source 

structure, the PL-94 hierarchy. Recall that a GERMS query 

requires ’’downward” processing of the conceptual schema. 

In other words, our queries ask: ’’given this 

(super ordinate type) area, which (subordinate type) areas 

lie within its boundaries?” The queries do not ask: 

’’given these (subordinate type) areas, which 

(superordinate type) area do they lie within?" 
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A major problem with the source structure is that it 

is conducive to "upward” processing only — each record 

holds the keys of its ancestors, but it does not hold the 

keys of its children. Thus given a "subordinate type" 

area record, we can determine which "superordinate type" 

area rt lies within; but given a "super ordinate type" area 

record, we cannot determine which "subordinate type" areas 

lie within it, A consequence that holding this 

configuration has upon query processing is that, for each 

level of nesting in the query, the entire set of records 

of the subordinate record type must be searched for each 

instance of the superordinate record type processed. This 

processing strategy is difficult to defend. 

Because of this situation we suggest that an 

entirely different physical data structure be implemented. 

This design, which is the aforementioned target structure, 

is described here. A major change is that the target 

structure separates the physical represent ation of schema 

entities from that of schema relationships. 

Each relationship is represented as a "directory" 

(see [MART75]) which contains the information required for 

"downward" processing of the entity types participating in 

the relationship. Each row of a directory contains a set 

of pointers which are directed towards the "children" of a 
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single "parent" in the respective relationship [2]. The 

rows of a directory are of different lengths since the 

number of "siblings" in an instance of a given 

relationship is not fixed. A relationship directory can 

thus be thought of as being an inverted list. 

Figure 11.5 illustrates the relationship directory 

technique. Here, we see a directory relating to the GERMS 

relationship COUNTY CONTAINS ELECTION-PRECINCT (figure 

11.5b). Each row of the directory depicts an instance of 

the relationship. Notice that the rows of the table are 

of different lengths. The relationship instance shown in 

figure 11.5a happens to relate two election precincts to a 

county, so the respective directory row contains two 

elements in addition to the county identifier. 

Each entity type of the conceptual schema is, for 

the most part, represented as a separate record type of 

the target structure (the exceptions are discussed later). 

Since the information required to link entities is 

represented within the relationship directory, a record 

instance need not hold the key of its ancestry -- it need 

only hold the identifier and the attributes of the 

geographic area represented by the record. Thus the 

records of the target structure are much smaller than are 

the respective records of the source structure. 
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The reduced length of target records does not mean 

that this revised physical configuration requires less 

storage than does the hierarchically organized source 

structure. The data which is ’’stripped” from the source 

records, the ancestor key values, is the very data which 

is used to assemble the relationship directories. Thus, 

in the process of converting from the source structure to 

the target structure, we are forming a number of smaller 

units of information (directories and target records) from 

larger units (source records). 

It should be obvious that the formation of 

relationship directories is guided by the equivalence 

relations. These relations indicate which ancestor key 

value in the source record is required in the formation of 

a given target relationship directory. In other words, 

the equivalence relations dictate how the aforementioned 

large units of information are to be divided and 

reassembled to form the smaller units. 

In light of the way that the conceptual schema is 

used to define the format of queries, the processing of 

the target physical structure in response to a query is 

straightforward. Just as we form chains in the logical 

structure by moving from entity type to relationship type 

to entity type, so in the physical structure do we move 
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from record type to directory to record type [3]. Each 

object in the conceptual schema has a counterpart in the 

physical target structure. 

Figure 11.6 illustrates how we would process "COUNTY 

BY ELECTION-PRECINCT" in response to a GERMS-based query. 

Note that the record instances depicted in this figure are 

much shorter than are their counterparts in the 

hierarchical source structure. Once the directories are 

formed, the ancestry key is no longer required by the 

record. Note also how, unlike the census file 

configuration, this revised physical structure is 

conducive to the required "downward" processing of 

geographic information. 

Geographic "wholeness". In chapter 7 we learned that 

when the representation of geographic partitionings is 

"forced" into a hierarchical structure a number of 

anomalous situations arise. One such situation relates to 

the case where the boundaries of a child (in the 

hierarchical structure) area transcend those of an 

ancestor area. A consequence of this situation is that 

the child area must be represented in a dissected form; 

the records of the structure must depict "part-areas." 
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When part-area records are considered in conjunction 

with their physical hierarchical representation their 

existence can be rationalized. When the same areas are 

considered in the light of the true logical or an 

alternative physical (target) structure, however, their 

existence is nonsensical. The dissection of a geographic 

entity arises as a side effect of maintaining a chosen 

(now obsolete) physical structure. Different hierarchical 

orderings define different entity partitionings. 

We feel that the case for insulating the user from 

the need to deal with part-areas has been argued 

sufficiently in previous chapters. Whatever the physical 

representation of geographic based data, the user should 

be allowed to work exclusively with logically meaningful 

objects. Thus, if the physical structure demands that a 

geographic area be represented in terms of area parts, 

these parts should be reassembled into a meaningful whole 

before being presented to the data user. Under the 

physical configuration suggested here, however, the issue 

is irrelevant for our GERMS based physical structure never 

requires that a geographic entity be divided. 

Recall that our physical structure is designed to 

serve the processing needs of the queries that are posed 

to our geographic information system (GIS). Furthermore, 
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said queries adhere to the geographic entity-geographic 

relationship structure of the conceptual schema. 

Entity types whose spacial overlap holds a 

meaningful semantic are joined by a relationship in the 

conceptual schema. Such entity types, in many cases, hold 

a ’’natural” hierarchical association (this is why we found 

it acceptable to use the terms ’’parent” and ’’child” in 

discussing instances of these pair-wise relationships). 

Entity types whose spacial overlap is erratic and 

meaningless are void of a relationship in the conceptual 

schema. Such entity types hold an ’’unnatural” 

hierarchical association — one which must be ’’forced.” 

This fact, considered with the fact that query processing 

"matches” the structure of our data model, makes it 

obvious that the need to process a part-area will never 

arise in the GERMS system. Consequently, there is no need 

to store such representations. 

A germane suggestion, then, is that the data of the 

part-area records of the source structure be aggregated 

when assembling the target structure. The part-area 

records are a manifestation of the now obsolete physical 

hierarchy, so collapsing these records represents no loss 

of information from the logical viewpoint. From the 

physical perspective the savings that result from this 
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process are twofold; we observe a decrease in both storage 

space and processing time. 

The storage space decrease is obvious. With each 

aggregation of part into whole, a fixed logical 

information content is represented by fewer records. We 

concede that these savings are trivial in light of the 

massive size of the database. 

As for processing time, the betterments are best 

understood by first considering the alternative scheme — 

that of retaining the part-area representation. In this 

situation each request involving a divided area would 

demand that more than one record (one for each area part) 

be accessed. Following these multiple record retrievals, 

the data would have to be aggregated to represent the 

original undivided area. This process would be carried 

out each time such an area is involved in the processing 

of a query. 

Furthermore, there would have to be maintained 

within the physical structure, some means of identifying 

and locating those part records that relate to a given 

divided area. Besides having to know which records relate 

to area parts (e.g. by using a "part-area flag"), we 

would also be required to know when the entire set of 

parts has been retrieved. A pointer chain structure could 
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be used here (see [MART75]), but this added complexity 

makes little sense given the needs of query processing. 

In summary, then, part-areas are insignificant in 

the view provided by the conceptual schema. The need for 

these areas is made obsolete by discarding the 

hierarchical file structure. As such, the data contained 

in the respective records of the source structure should 

be aggregated before being stored in the target structure. 

Entity Types and Record Types: Special Cases 

In the previous section we indicated that most but 

not all entity types of the logical structure relate 

uniquely to record types of the logical structure. In 

this section we discuss the exceptions. An obvious 

exception is made in the case of blatant logical 

redundancy. By blatant logical redundancy we mean that 

two objects represented within the logical structure 

depict the exact same physical object. An example is 

provided by the IS-A relationship [4]. 
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Representing IS-A. The IS-A relationship is rare; the 

majority of geographic relationships are of the CONTAINS 

or COMPRISES variety. The PL-94 schema of figure 11.2 

serves as testimony to this fact. Still, when the need 

arises, the IS-A relationship illustrates an important 

semantic of data abstraction. From the logical 

perspective the IS-A relationship connects two distinct 

geographic entity types; one representing a more general 

case of the other. Again from the logical perspective 

each of these two entity types represents a number of 

entity instances. Thus we can conceptualize special case 

entity instances and general case entity instances. 

When we consider the incarnation of these entity 

instances, however, we realize that the special case and 

the general case instances depict the same physical 

objects. It is only the way of "viewing” the objects that 

changes. In these different views the nature of the 

geographic relationships may change, but the actual 

attributes of the respective areas do not change. Thus 

the two views can be physically represented by a single 

set of data records. Neither the value nor the semantic 

of any individual daturn changes. 



282 

The PL-94 conceptual schema of figure 11.2 does not 

provide us with an example of an IS-A relationship so an 

example will be drawn from the STF1B file which was 

introduced in chapter 7. Figure 11.7 shows a small 

portion of the STF1B conceptual schema. From this schema 

we see that the tracts which comprise SMSAs (called urban 

tracts*) are completely covered by block groups. The 

entity type URBAN-TRACT* is a special case of the more 

general type TRACT; the distinction arising from the fact 

that general tracts are not necessarily covered by block 

groups (the type TRACT holds some relationships which are 

not shown here). 

Now, since any entity type of the conceptual schema 

can be referenced within a query, we may request data in 

terms of urban tracts* or in terms of tracts. 

Furthermore, because the queries must abide by the 

structure of the data model, we see that a query format of 

the type ’’URBAN-TRACT* BY BLOCK-GROUP” is a legitimate 

request, while the format ’’TRACT BY BLOCK-GROUP” is not. 

When we consider real world counterparts of 

instances of these entity types we realize that each 

geographic area which is an urban tract* is also a tract. 

The attributes of the area are the same in both lights. 

The only difference is that, when viewed from the urban 
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tract* perspective, the area is related to an SMSA and to 

a set of block groups. In terms of physical storage, 

then, there is no need to store the geographic based data 

twice; a single data record can represent the geographic 

area from both perspectives. 

This concept is illustrated in figure 11.8. Here, 

one user (Able) is considering urban tract* ABC, while a 

second user (Baker) is considering tract ABC. These two 

area names relate to the same record description which is 

the means through which the DBMS locates the physical 

data. This single record description is in turn related 

to a single physical data record. 

Since the URBAN-TRACT* and the TRACT logical objects 

share a common physical representation, only one record 

type, say type TRACT, is required to serve both logical 

entity types. A consequence of this physical 

representation is that a relationship directory is not 

required for the IS-A relationship type. The IS-A 

relationship is never used to traverse entity types in an 

information retrieval request; it is used to create new 

entity types which can be referenced in a retrieval 

reques t. 
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Figure 11.9 illustrates the physical configuration 

that relates to the conceptual schema of figure 11.7. 

Note that the SMSA COMPRISES URBAN-TRACT* relationship 

directory references only those tracts which lie within an 

SMSA. Thus only a portion of the type TRACT records are 

pointed to from this directory. Similarly, the remaining 

directory only points to those block groups which lie in 

an SMSA. A directory which relates to general tracts 

(vis. urban tracts*) would point to all records of type 

tract, including those of the "urban variety." 

From studying figure 11.9 it becomes obvious how a 

query of the form "SMSA BY URBAN-TRACT* BY BLOCK-GROUP..." 

would be processed. A problem arises, however, when we 

consider a query of the form "URBAN-TRACT* BY 

BLOCK-GROUP..." Here, we must "enter the chain" of 

nesting at the urban tract* level. The problem is that, 

unless SMSA records are considered first, there is no way 

of identifying which tract records are also urban tract* 

records. 

One solution arises when we consider that the SMSA 

COMPRISES URBAN-TRACT* directory contains the identifiers 

of these special records within its inverted list 

structure. These identifiers are not stored in sequential 

order, however. Consequently, we suggest that a separate 
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index be added for each "special type” of entity. This 

technique is illustrated in figure 11.10. 

NOTE: Up to this point we have ignored the issues 

surrounding the access of the individual records of a 

given record type. The rationale behind this ignorance of 

detail is that the resulting discussion was simplified. 

The mere reference to pointers, as made by our diagrams, 

implies the assumption that, given the key of a record, we 

can retrieve the record. Indeed, each standard record 

type may have a dedicated index through which its records 

can be accessed. For example, each record type of our 

physical structure may represent a separate ISAM file. 

The index described in the preceeding paragraph is an 

additiona1 index, however. It is created to supplement 

whatever standard record locating technique is 

implemented. 

Representing EITHER-OR. A physical representation issue 

which is quite similar to that of the IS-A relationship 

has to do with the treatment of "EITHER-OR-joined" entity 

types. An example of this is found within the PL-94 

conceptual schema (figure 11.2). The relevant portion of 

this schema is repeated in figure 11.11. Here we see two 

EITHER-OR associations whose "higher level" entity types 
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FIGURE 11.11 
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are connected by a COMPRISES relationship. Also, two of 

the "lower level" entity types are connected by a separate 

COMPRISES relationship. 

As is the case with the IS-A relationship, instances 

of different entity types refer to the same real world 

geographic areas when the EITHER-OR association is used. 

In this situation each instance of a "lower level" entity 

type (e.g. TRACT or BLOCK-NUMBERING-AREA) is also an 

instance of the related "higher level" type (i.e. 

TRACT/BNA). Thus, for the same reason as was presented 

previously, a single record type can serve all of these 

entity types. 

Since the "lower level" entity types represent 

"special cases" of their "higher level" type, the record 

type should relate to the more general higher level 

entity. Thus, in relation to our example schema, we would 

observe a record type TRACT/BNA, and a record type 

BLOCK-GROUP/ENUMERATION-DISTRICT in the physical database. 

Obviously, each record instance would relate to only one 

simple geographic area type (i.e. tract, block numbering 

area, block group, enumeration district). 

From the figure 11.11 schema we see that a query of 

the form "COUNTY BY TRACT/BNA..." is a legitimate 

request. The elements of the physical structure which 



292 

would be used to process this request are obvious. 

Specifically, they are: 

1 . A COUNTY record type which contains county 

instance records 

2. A TRACT/BNA record type which contains both 

tract instance records and block numbering area instance 

records 

3• A COUNTY CONTAINS TRACT/BNA relationship 

directory which connects county records to their 

respective tract and block numbering area records (note 

that every instance of both record types is connected 

here) 

In responding to this query the system should 

indicate to which (lower level) entity type each record 

relates. In other words, the user should be told, for 

each record retrieved, whether the data applies to a tract 

or to a block numbering area. This is easily accomplished 

by storing a "type flag" within the contents of the each 

record. When a record is retrieved, this flag is used by 

the system to determine the lower level type to which the 
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record applies. This is then included in the information 

presented to the user. The use of this type flag is 

illustrated in figure 11.12 (Note that since this flag is 

used to represent a binary attribute which is for system 

use, the flag can be represented with a single bit). 

Figure 11.11 (above) indicates that we may pose a 

query of the form "TRACT/BNA BY BLOCK-GROUP/ 

ENUMERATION-DISTRICT...” to our system. Again the 

relevant objects of the physical structure are obvious: 

1 . A TRACT/BNA record type 

2. A BLOCK-GROUP/ENUMERATION-DISTRICT record type 

3. A TRACT/BNA COMPRISES BLOCK-GROUP/ENUMERATION- 

DISTRICT relationship directory 

Note that this relationship directory references all 

instances of these record types. 

From figure 11.11 we also observe that we may 

request ”BLOCK-NUMBERING-AREA BY BLOCK-GROUP...” Now, we 

know that the same record types would be used to process 

this query as would be used to process the previous query. 

An interesting question is: Can we use the same 

relationship directory? The answer is yes; the pointers 
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required to process T RACT/BNA BY 

BLOCK-GROUP/ENUMERATION-DISTRICT are a superset of the 

pointers required to process BLOCK-NUMBERING-AREA BY 

BLOCK-GROUP. 

With regards to this latter query, since we "enter 

the chain" by selecting BLOCK-NUMBERING-AREA records only, 

the pointers will direct us to those rows of the 

relationship directory which deal with block numbering 

areas. Block numbering areas, by their very nature, are 

covered by block groups, so these rows of the directory 

will point exclusively to BLOCK-GROUP records. Thus, once 

the chain is entered, the processing can continue without 

problems. 

The issue of how this chain is entered (i.e. how 

the BLOCK-NUMBERING-AREA records are selected) remains 

unclear at this point. Given that each record of type 

TRACT/BNA contains a type flag, the system could inspect 

each record and process those which, as indicated by the 

flag, relate to a block numbering area. A more time 

efficient way of handling this problem is to apply the 

same technique as was suggested for use with the special 

case records of the IS-A relationship. Thus, we suggest 

that a dedicated index be included for each "lower level" 

entity type of the EITHER-OR association. 
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The TRACT/BNA record type would therefore require 

two special purpose indexes. One such index would direct 

the search to the records which relate to tracts, while 

the other would direct the search to the records which 

relate to block numbering areas. The targets of these 

indexes do not overlap (see figure 11.13). 

Representing attribute areas. Recall from chapter 7 

that census files often contain data about geographic 

areas to which no specific data records are dedicated. We 

call such geographic areas "attribute areas" because the 

applicability of a record to the area type is indicated by 

an attribute in the record. Rather than being stored in a 

single record, the data relating to an attribute area is 

scattered throughout the file. Meaningful information 

about an instance of an attribute area must therefore be 

derived by collecting and aggregating the data from a 

number of scattered records. 

Each attribute area is represented as an ordinary 

geographic entity type in the GERMS conceptual schema 

since the unusual physical representation of the data does 

not affect the logical data structure. Thus, as is always 

the case, the complexities of physical storage are not 

evident from the conceptual schema. Since all information 
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provided by our system is presented to the data user from 

the perspective of the data model, the DBMS has the 

responsibility of insuring that the system output 

represents a complete ’’reassembled" geographic object when 

an attribute area is referenced in a query. 

The issue at hand in this subsection has to do with 

the physical representation of attribute areas. There are 

two basic approaches to this: 

1 . The attribute area instances can be assembled 

Prior to storage. This involves collecting and 

aggregating the data records which relate to attribute 

areas and forming new records from this aggregated data. 

The data records which relate to a given type of attribute 

area would be combined to form a new record type to be 

stored in the usual way. 

2. The attribute area instances can be reassembled 

during query processing. This demands that there be some 

means of collecting the scattered parts of an area 

instance (sequential scan is not acceptable for obvious 

reasons). 
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If the frequency of access of attribute area data is 

high, the former alternative is the obvious choice. True, 

this configuration requires greater storage space (more 

data stored with constant information content), but the 

processing time is much lower in comparison to the latter. 

If for some reason the second alternative is selected, we 

are prepared to suggest two physical representation 

schemes. 

For the purpose of illustration we will rely on the 

chapter 7 example of urbanized areas (from census file 

STF1B). Here, the file contains a record type BLOCK, the 

instances of which obviously relate to block areas. Some 

of these BLOCK records hold the key value of an urbanized 

area of which the block is a part. Thus the entity type 

URBANIZED-AREA is an attribute area. The problem at hand 

is: Given a retrieval request for an urbanized area, how 

can the appropriate BLOCK records be collected? 

The reader may be thinking that we can make use of 

physical position by storing contiguously the BLOCK 

records which relate to an urbanized area instance. This 

juxtaposition technique is unacceptable since the records 

of type BLOCK must be stored according to block key; not 

urbanized area key. 
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The first acceptable scheme is based on pointer 

chains. Here the records which relate to a given instance 

of an attribute area are combined to form a chain. Each 

non-terminal element is pointed to by the previous element 

and points to the next element. Thus, once the first 

chain element (head) is accessed, all other elements can 

be located by following the pointers. An index can be 

used to identify the head of the chain. This is 

illustrated in figure 11.14. 

The second scheme uses an inverted list structure 

which is similar to that of our relationship directories. 

Here, the directory holds the information required to 

locate the scattered parts of an attribute area. Each row 

of the directory relates to an area instance. The 

elements of a row point to those records which hold data 

relating to the instance. This technique is shown in 

figure 11.15. Note that the only difference between the 

two schemes is that in the former, the pointers are stored 

within the records, while in the latter the same pointers 

are stored within the index (directory). 

As a final word we would like to clarify that each 

of these two schemes must be used in conjunction with a 

special processing procedure. This procedure has the 

responsibility of collecting and aggregating the data 
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records before the information is presented to the user. 

The structure of such a procedure is straightforward and 

is not discussed here. The execution of the procedure is 

"triggered” automatically upon reference to a logical 

entity which is physically stored as an attribute area. 

In this way the user is ’’insulated” from the complexities 

of the physical storage scheme; the final system output 

"appears” the same as that of any ordinary (non-attribute 

area) geographic area. 

Summary 

Before the database of our geographic information 

system can be constructed we must equate the data of the 

source structure to the objects of the schema structure. 

The equivalence relations are used for this purpose. The 

objects of the target structure correspond directly to the 

objects of the schema, so the equivalence relations serve 

to detail the formation of the physical database objects. 

Unlike the source structure, the target structure 

separates relationship data from entity data. 

Consequently, the equivalence relations indicate that the 

relationship data can be "stripped” from the source 
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records upon populating the database. This very data is 

used to form the relationship directories. The GERMS 

deals exclusively with "natural” geographic entities, so 

geographic areas which are represented in "dissected" form 

within the source structure can be reassembled when 

creating the target structure. 

The conceptual schema employs logical redundancy, 

but there is no need for redundant representation of 

geographic areas in the physical database. This ability 

is achieved through the use of multiple indexes which are 

directed towards a common record type. The user is 

insulated from this complexity, however. (S)he need only 

reference the geographic objects which relate to her/his 

"view" of geography; the system has the ability to locate 

the required physical data. 

In the next chapter we consider the makeup of the 

logical database — that part of the GIS which relates to 

its "knowledge" of the conceptual schema. The next 

chapter also describes how the logical database is linked 

to the physical database. This link is required since 

query processing involves an integration of the physical 

with the logical domain. Queries are posed in terms of 

the latter, but responses are formed by processing the 

former. 



FOOTNOTES 

The terms "source" and "target" are so named with 
regards to the process of loading the database. 
From the perspective of this process, census data 
is the input. The structure of the census file is 
the "source" of the input. The purpose of this 
process is to restructure the data to match the 
framework of the database. Thus the revised 
structure is the "target" of the process. 

The jargon of tree structures is used here for the 
purpose of clarification only. We do not mean to 
imply that a strict hierarchy is being instituted 
as the target structure. 

This description is an obvious oversimplification 
of query processing. Our output "report" must 
have a well-defined nested structure: that of a 
"preorder traversed" tree (see [PAGE78]). 
Consequently, the required elements of all 
directories used in a query must be assembled into 
an appropriately ordered queue before any data 
records are accessed. Then, by retrieving the 
records in queue order, the elements of the output 
report are properly nested. 

The entire GERMS model can be considered to be 
logically redundant since areas represented by 
entity types overlap. In this case, however, we 
are concerned with the situation where two 
instances of different entity types can be 
equated . 



CHAPTER XII 

THE LOGICAL DATABASE 

The techniques and capabilities of our GIS 

(geographic information system), as discussed to this 

point, presuppose that the system holds a "knowledge” of 

the conceptual schema. When the objects and connections 

of the schema are referenced in user —> system queries, 

the system "understands" the references; when the schema 

structure is contradicted in a query, the system detects 

the error. Also, the response to queries, or system 

output, is presented "in terms of" the structure of the 

conceptual schema. The schema is thus the system’s 

interface with the user. It represents the "common 

ground" shared by the human user and the database machine. 

In this chapter we continue to discuss the makeup of 

our GIS. Specifically, we detail the structure of the 

logical database. We will see that this entity comprises 

a number of component parts, all of which are "invisible" 

to the data user. Some of the component parts serve to 

provide a linkage to the physical database. This linkage 

is required if data is to be retrieved properly. Neither 

the logical database nor the physical database can operate 

independently; they must cooperate in meeting the demands 
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of the data user. 

Conceptual Schema: Internal Representation 

A conceptual schema, or more generally a data model, 

is not a tangible object. It is not a GERMS graph or a 

set of GERMS phrases; these, rather, are representations 

of the schema. The schema is thus the information that is 

contained in these representations. Since the information 

content of the graphical and the lingual form are the 

same, we say that they are ’’equivalent” representations. 

Given the schema graph, we can produce uniquely the set of 

GERMS phrases. Given the set of phrases, we can construct 

the schema graph. 

In this section we discuss how the GIS can hold a 

representation of the conceptual schema. Also, we 

consider how the system can ’’interpret” this schema 

representation. The GERMS schema graph avails itself to 

the human users of our GIS because the graphical 

representation is easily understood by this community. To 

the data user the GERMS graph is a concise presentation of 

the information from which the schema is formed. The 

GERMS lingual form is also well suited for employment by 

humans. 
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It is obvious that our GIS cannot make sense of the 

schema graph as can the user community. Still, our 

techniques demand that the system has access to the 

schema. What we seek, then, is some form of representing 

the structure of the schema which can be made use of by 

the system. We do not desire a different schema, only a 

different representational form — a form which is 

equivalent to the schema graph. 

We call such a representation an "internal form 

representation" because it is contained in, or internal 

to, the information system. When viewed from outside of 

the information system, the component is neither 

observable nor important. Thus the user need not consider 

the internal form; (s)he need only be confident that the 

system "understands" her or his references to the objects 

of the schema graph. 

In considering the nature of the information which 

must be "captured" by a schema representation we will 

refer to the schema graph. First of all, recall that the 

schema graph is made up of two distinct kinds of objects: 

entity types and relationship types. The fact that one 

kind of object is represented by a rectangle, and the 

other by a diamond is of no concern to us here. We must 

only consider that, as presented by the graph, the two 

object kinds are distinguishable. 
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Second of all, the entity type names depicted in the 

schema graph are data set dependent. Thus the entity type 

names are attributes of the specific schema (not of the 

modeling formalism) and, as such, the names must be 

captured in our internal representation. 

The relationship types, on the other hand, are data 

set i_ndependent. The four relationship types; CONTAINS, 

COMPRISES, IS-A, EITHER-OR; are inherent in the underlying 

modeling formalism (note that we will consider the 

EITHER-OR association type to be a relationship type for 

the time being). Because of this, our internal form 

representation does not rely on a knowledge of the 

relationship type names. It must only distinguish that 

there are four different relationship types. 

The relationships in a schema are always pair-wise, 

i.e. they link exactly two entity types. Also, a pair of 

entity types is joined by at most one relationship. 

Furthermore, the relationships are directed in that the 

ordering of entity types in a relationship is significant. 

With these facts in mind we realize what information 

the internal form schema must hold. First, given an 

ordered pair of entity types, it must be able to indicate 

whether a relationship holds between the types. If a 

relationship does hold, it must further indicate (1) which 
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of the four types is the relationship, and (2) what is the 

direction of the relationship. This is the extent of the 

information provided by the schema graph. 

A feature of the GERMS formalism which adds a 

complexity to the internal form representation stems from 

the fact that the presence of some relationships in the 

structure imply the presence of other relationships 

elsewhere in the structure. For example, if A COMPRISES 

B, and B CONTAINS C, then it is implied that A CONTAINS C. 

The schema graph need not represent explicitly the 

CONTAINS relationship between entity type A and entity 

type C because the implicit presence of the relationship 

is derived "in the user’s mind.” The derivation is a 

function of the well-defined semantics of the 

relationships. In other words, given the ’’meaning" and 

the structure of the explicit relationships, the fact that 

A CONTAINS C is obvious to the user. As such, this 

relationship could be referenced in a query. 

If the internal form representation is to be an 

equivalent representation, then, the GIS must somehow 

"know" that this implicit relationship exists. In 

general, given the relationships that are explicitly 

depicted in the schema graph, the system must have the 

capability of deriving those relationships which are 

implicit in the structure. 
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In the subsections that follow we suggest how an 

internal knowledge of the conceptual schema can be 

created, stored, and used by our geographic information 

system. These techniques can form the basis of a "GERMS 

front end" to an existing DBMS (database management 

system). It is assumed that the DBMS supports 

(1) multiple record types, (2) record indexes, and 

(3) inverted list structures (directories). The 

intricacies of these DBMS features are not considered in 

detail. 

The schema matrix and symbol table. If a GERMS schema 

makes use of N entity types, then the entire structure of 

the schema can be represented by a single N x N matrix. 

Consider a square matrix named SCHEMA where the term 

SCHEMA(i,j) signifies that element residing in the ith row 

and the jth column of the matrix. Now assume that the N 

entity type names of the schema graph are assigned 

distinct sequence numbers: the integers 1 through N. 

Since a sequence number can represent a specific entity 

type, an element of the N x N matrix SCHEMA can denote a 

specific pair of entity types. Thus the element 

SCHEMA(i,j) can denote the pair "ith entity type, jth 

entity type." 
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Every GERMS schema distinguishes at most four 

relationship types: CONTAINS, COMPRISES, IS-A, and 

EITHER-OR. These can be symbolized by the integers 1, 2, 

3, 4, respectively. 

Now, given any ordered pair of entity types, a GERMS 

schema representation must indicate whether a relationship 

holds between the types. In the case where a relationship 

does hold, the schema representation must describe the 

relationship in both type and direction. Our matrix 

SCHEMA can indicate this information easily. Given a pair 

of entity types, say the ith type and the jth type, a 

non-blank entry in the ith row and the jth column of the 

matrix (SCHEMA(i,j)) indicates that a relationship holds 

between the relationship pair. The relationship type and 

direction are indicated by the value of this non-blank 

entry. 

If the ith entity type is named I, the jth entity 

type is named J, and the kth entity type is named K, then 

the internal form schema representation is as follows: 

1. If I CONTAINS J then 

1. SCHEMA(i,j) = 1 

2. SCHEMA(j , i) = 0 
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2. If I COMPRISES J then 

1. SCHEMACi,j) = 2 

2. SCHEMA(j,i) = 0 

3. If I IS-A J then (note the order here) 

1. SCHEMACi,j) = 0 

2. SCHEMAC j,i) = 3 

4. If I IS EITHER J OR K then 

1. SCHEMACi,j) = SCHEMACi,k) = 4 

2. SCHEMA(j,i) = SCHEMA(k,i) = 0 

3. SCHEMA(j,k) = SCHEMA(k,j) = 0 

The "0" elements serve to aid the system in 

diagnosing erroneous user queries. Also, these elements 

help to insure the integrity of the internal form 

representation. These concepts are detailed later in the 

discussion. For now, the reader can think of a "0” as 

indicating that the entity type pair is "somehow engaged" 

in a relationship. 

Since an entity type cannot be related to itself (in 

the GERMS sense), each main diagonal element (SCHEMACm,m)) 

is set to "0". Here, a "0" element indicates that the 



314 

entity type pair is ’’unrelatable." The presence of a 

blank matrix element (that is SCHEMA( i , j) = BLANK) 

indicates that the respective entity types of the GERMS 

schema are unrelated. 

Figure 12.1a shows a simple schema graph which 

represents a small portion of the logical contents of 

census file STF1B. Figure 12.1b shows the internal form 

representation of this schema (the row/column labels are 

to aid the reader). Note that the internal form 

representation includes all logical geographic entity 

types regardless of the physical representation of the 

data. For example, the matrix represents both the entity 

type URBAN-TRACT* and the entity type TRACT despite the 

fact that these types would share a common physical 

representation. 

Clarification of the SCHEMA matrix configuration is 

due here. Consider the ’’top most” relationship of the 

example schema graph — that is SMSA COMPRISES 

URBAN-TRACT*. Now, in the internal form representation of 

this schema graph, SMSA and URBAN-TRACT* hold sequence 

numbers 3 and 6, respectively. Since COMPRISES is 

signified by "2”, this integer value resides in the matrix 

element of the third row (SMSA) and the sixth column 

(URBAN-TRACT*) of the SCHEMA matrix (i.e. SCHEMA(3,6)). 
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A "0" resides in the "transposition element," that is 

SCHEMA(6,3), to indicate that the URBAN-TRACT* - SMSA 

entity type pair is "engaged" in a relationship. 

If the conceptual schema (including the implied 

relationships) is encoded into matrix form through the 

above rules, then the matrix captures the full information 

content of the schema structure, As such, the matrix is 

an equivalent schema representation to that of the user 

oriented GERMS graph. It is obvious that, unlike the 

GERMS graphical form, this matrix can be easily stored 

within the database machine and referenced by our GIS 

software. Indeed, this internal matrix, once created, 

comprises a major portion of our system’s "knowledge" of 

the schema structure. 

The problem of relating the entity type names used 

in system input and output (queries and responses) to the 

sequence numbers used in the internal form schema 

representation is easily solved through the use of a 

symbol table. The table merely lists each entity type 

name and its associated sequence number. This is the 

remaining portion of our system’s "knowledge" of the 

schema. User reference (in a query) to an entity type 

name which is not contained in the symbol table indicates 

an error. 
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Once the internal form matrix and symbol table are 

in place, the system can easily verify the semantic 

correctness of user queries. Each entity type name, 

checked against the contents of the symbol table, verifies 

that 'legal" type names are used. For example, continuing 

to use the same example schema, if the COUNTY entity type 

is used in a query, the query is rejected because COUNTY 

is not contained in the symbol table -- it is not a 

"legal" type name in this situation. 

Beyond this, the system must investigate the 

accuracy of the relationships referenced in the query 

breakdown (e.g. "GET A BY B..." where "A " and "B" are 

"legal" entity type names). This is simple in that it 

must only be verified that a legitimate (CONTAINS or 

COMPRISES) relationship holds in the proper direction 

between the entity types. 

In terms of our internal form schema representation 

this translates into verifying that a "1" or a "2" is 

stored in SCHEMA(i,j) where i relates to the superordinate 

entity type (i.e. preceeding the "BY" keyword), and j 

relates to the subordinate entity type (following the "BY" 

keyword). Thus, if a query of the form "GET 

BLOCK-NUMBERING-AREA BY BLOCK-GROUP" (this is an 

abbreviated query) is posed, it must be verified that a 
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"1" or a "2" resides at SCHEMA(2,1). If this is not the 

case, then the query is erroneous. 

One use of the "0" elements can now be understood. 

Assume that a query is specified ’’backwards,” say ’’GET 

BLOCK-GROUP BY BLOCK-NUMBERING-AREA.” It seems reasonable 

that this would be a common user error. Upon detecting 

the ”0” value at SCHEMA(1,2), the diagnostic message 

"RELATIONSHIP REFERENCED IN REVERSE ORDER” should be 

issued. Upon detecting a "BLANK” element, on the other 

hand, the diagnostic "NO SUCH RELATIONSHIP” is appropriate 

(this situation relates to the query "GET SMSA BY BLOCK 

NUMBERING AREA." Thus the "0" elements allow the system 

to better "understand" the nature of user errors. 

Creating 

language 

system’s 

aids the 

GERMS 

interf ac 

the GIS 

the topi 

the internal f orm: data definition 

We have discussed how, once stored, the 

internal "knowledge" of the conceptual schema 

system in "comprehending" user requests. The 

data model can thusly serve as the system’s 

e with the human user. We have not discussed how 

is "fitted" with this knowledge, however. This is 

c of the present and the following subsections. 
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For the time being our discussion will ignore two 

complexities. The first of these has to do with the 

implicit relationships of the GERMS schema. Recall that 

when the schema graph is employed these relationships are 

"derived in the user’s mind.” The second complexity 

ignored here involves the details of ’’linking” our 

internal form representation with the physical database 

configuration (i.e. record types and directories). 

Obviously, this linkage is important since we must 

eventually form a ’’bridge” between the logical and the 

physical domains. 

It is assumed that the GERMS schema graph exists 

prior to the creation of the internal schema 

representation. Thus, the question addressed here is: 

Given the schema graphical representation, how can the 

details of the schema be loaded into the information 

system? The schema graph cannot be interpreted by the 

computer, so some intermediate representation must be 

found. This intermediate representation must obviously be 

an equivalent representation. In virtually all database 

management applications this problem is solved through use 

of a data definition language. Indeed, this is the tack 

taken here. 
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A data definition language is simply the language of 

a data modeling formalism. This language provides a means 

of describing the structures and constraints represented 

in the schema graph. The graphical form and the lingual 

form of a formalism must provide equivalent schema 

representations. The data definition language version of 

a schema is parsed and interpreted by the software of the 

DBMS. Once the schema representation is interpreted, 

construction of the internal form schema is not complex. 

The GERMS language described in chapter 8 provides 

an obvious basis for a data definition language. The 

GERMS graphical and lingual representations are 

equivalent. Also, phrases of the GERMS language have a 

well structured and ordered syntax which can be easily 

parsed. Recall that there are only four different phrase 

forms each of which depicts a specific geographic 

relationship type. By including a GERMS phrase for each 

relationship of the schema graph, the entire information 

content of the conceptual schema is captured. 

In the paragraphs that follow we describe the format 

of wha.t we call the "schema definition program." The 

schema definition program represents our suggestion as to 

how the information system can be "fitted" with the 

"knowledge" of the conceptual schema. Interpretation of 
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the program by the GIS software would result in the 

formation of the internal form schema matrix and the 

symbol table. The software required to interpret a schema 

definition program has not been written as of yet, but the 

task would not be overly complex. 

In the absence of this interpretive software the 

internal form components can be created by the database 

technician since the procedure is straight forward. Even 

in this situation where the internal form is created "by 

hand," we suggest that the schema definition program be 

written. This is because the program provides the 

database technician well structured documentation as to 

the internal form representation. It also serves as a 

stepwise guide to the required creation procedure. 

The schema definition program consists of two 

sections. The first section, which is the ENTITY SECTION, 

enumerates the logical geographic entity types which are 

used in the conceptual schema. The basic purpose of this 

program section is to describe the structure of the symbol 

table and to define the size requirement of the schema 

matrix. The ENTITY SECTION also defines the link between 

the entity types of the conceptual schema and the record 

types of the physical database (this is discussed in 

greater detail later). 
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The remaining SCHEMA SECTION of the schema 

definition program consists of the GERMS language phrases 

which describe the structure of the conceptual schema. 

With this information the elements of the schema matrix 

can be ’’filled in” to represent the geographic 

entity-geographic relationship structure. 

Figure 12.2 shows the schema definition program 

which corresponds to the simple schema graph of figure 

12.1a (above). In the ENTITY SECTION of the program, the 

’’ENTITY-TYPES ARE” phrase indicates that the schema 

involves six distinct entity types. Thus a 6 x 6 schema 

matrix is required for the application. Note that these 

six objects are logical entities; they do not necessarily 

represent six distinct record types in the physical 

database. The ’’RECORD-TYPES ARE” phrase states that the 

application will use three different record types in the 

physical structure. 

The ’’NAMES ARE” phrase lists the six names of the 

logical entity types. ’’END NAMES ARE" indicates the 

completion of the list. The entity type names of this 

list are the basis of the symbol table. Unless stated 

otherwise via the ’’RECTYPE =" clause, the physical record 

type used to represent a logical entity type holds the 

same name as does the logical type itself. 
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ENTITY SECTION 

ENTITY-TYPES ARE 6. 

RECORD-TYPES ARE 3. 

NAMES ARE BLOCK-GROUP; 

BLOCK-NUMBERING-AREA, RECTYPE 

SMSA; 

TRACT, RECTYPE 

TRACT/BNA; 

URBAN-TRACT*, RECTYPE 

END NAMES ARE. 

SCHEMA SECTION 

SMSA COMPRISES URBAN-TRACT*. 

URBAN-TRACT* IS-A TRACT. 

TRACT/BNA IS EITHER TRACT OR BLOCK-NUMBERING-AREA. 

URBAN-TRACT* COMPRISES BLOCK-GROUP. 

TRACT/BNA CONTAINS BLOCK-GROUP. 

BLOCK-NUMBERING-AREA COMPRISES BLOCK-GROUP. 

= TRACT/BNA; 

= TRACT/BNA; 

= TRACT/BNA; 

FIGURE 12.2 

A SIMPLE SCHEMA DEFINITION PROGRAM 
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In the example program (figure 12.2) we see that the 

three entity types; BLOCK-NUMBERING-AREA, TRACT, and 

URBAN-TRACT*; will not hold their own record types in the 

physical database. Rather, the instances of these 

different types will all be represented as instances of 

the TRACT/BNA physical record type (specified by 

"RECTYPE = TRACT/BNA") . 

The interpretation of the SCHEMA SECTION is 

straightforward. Each phrase relates to a unique 

relationship (association) of the schema graph. The 

entity types in a phrase indicate, via the symbol table, 

the appropriate rows and columns of the schema matrix to 

which the phrase relates. The relationship type used in 

the phrase defines, according to the aforementioned rules, 

the values that the schema matrix should take on. When 

this process is carried out for a SCHEMA SECTION phrase, 

we say that the phrase is "executed." 

Figure 12.3 provides an example of this process. 

Here, we see how the system would execute the GERMS phrase 

SMSA COMPRISES URBAN-TRACT*. First, with regard to the 

entity types SMSA and URBAN-TRACT*, we see that the symbol 

table directs us to the third row and to the sixth column 

of the schema matrix, respectively. This row-column pair 

defines a unique element of the matrix; namely, 
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SCHEMA(3,6). The GERMS phrase involves a COMPRISES 

relationship, so SCHEMA(3,6) is set to the value "2". 

Also, SCHEMA(6,3) is set to the value ”0" to indicate that 

the respective logical entity type pair is "involved" in a 

relationship. 

Obviously, a non-blank (including "0") value should 

not be reset during this process. Reference to a SCHEMA 

element which holds such a value indicates an error in the 

SCHEMA SECTION of the schema definition program. This 

illustrates another use of the "0" elements, including the 

main diagonal elements: they help to insure the integrity 

of the internal form representation. 

To summarize the content of this subsection, we have 

described the structure of a schema definition program 

which is based on the GERMS data definition language. The 

discussion here is ignorant of two issues: implicit 

geographic relationships, and the details of linking the 

physical structure with the logical structure. These 

concerns are discussed in the remainder of this chapter. 

Again, we suggest that the schema definition program 

be written even if its interpretation and execution is not 

automated. This is because the program listing provides 

stepwise detail and documentation to guide the database 

technician through a "by hand" creation of the GIS 

internal form. 
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SYMBOL TABLE 

FIGURE 12.3 

EXECUTING A PHRASE OF THE SCHEMA SECTION 
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Deriving implied relationships. In the two previous 

subsections we have discussed how a "knowledge” of the 

structure of the conceptual schema can be stored within 

our information system, and how this knowledge can be 

loaded into the system. In discussing each of these 

topics we have ignored the fact that a number of implicit 

relationships — those which are not shown explicitly in 

the schema graph — are inherent in the structure of the 

conceptual schema. 

The implicit relationships are apparent from 

understanding the semantics of the explicit relationship 

structure; they are "obvious" to the human user who 

observes the GERMS schema graph. A graph showing all 

GERMS relationships would be too cluttered to be usable, 

so in terms of user effectiveness it makes little sense to 

detail the implied relationships in the structure of the 

schema graph. 

Since implied geographic relationships are "obvious" 

to the data user, (s)he should be allowed to make 

references to these relationships in requesting a query 

breakdown. For example, if the schema graph shows 

(explicitly) that STATE COMPRISES COUNTY, and that COUNTY 

CONTAINS TRACT, then it makes sense for the user to 

request information in terms of "STATE BY TRACT..." This 
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request should be allowed despite the fact that the graph 

does not detail explicitly that STATE CONTAINS TRACT. 

Thus, the system should ’’understand" any user references 

to geographic relationships as_ long as they do not 

contradict the meaning presented by the schema graph. 

If reference to a geographic relationship is to be 

’’understood’’ and processed by the system, it is required 

that (1) the system ’’knows" of the relationship since the 

validity of each query is verified with the internal 

schema matrix, and (2) there exists a directory for the 

relationship within the physical database. In other 

words, the relationship must be fully represented within 

the GIS internal form. 

The problem addressed here can be stated as follows: 

How can this "full knowledge" of the structure of the 

conceptual schema be gained by the information system? 

Solving this problem is made easier by the fact that we 

need only be concerned with implied COMPRISES and CONTAINS 

relationships here. This is because only these two 

relationship types can be directly referenced in a query. 

One solution to this problem revolves around the 

creation of a set of rules through which the implicit 

relationships can be derived from the structure of the 

explicit conceptual schema. Such a set of rules is listed 
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below. These rules are based on following unbroken 

"relationship chains" (i.e. relationship type —> entity 

type —> relationship type...) through the network 

structure of the explicit schema. 

Figure 12.4 provides a structural template for the 

rules. The template specifies three logical entity types 

represented by A, B, and C. Entity types B and C are 

connected by relationship Y which symbolizes a standard 

GERMS relationship (association) type. Relationship X, 

which is also a standard GERMS type, depicts the start of 

the chain. 

Any number of entity type-relationship type pairs 

form an unbroken chain from relationship X to entity type 

B (these relationships may be any mix of the four standard 

types). The task at hand is to discover the nature of 

relationship Z which joins (implicitly) entity type A with 

entity type C. Note that the direction of the 

relationships shown in the template i_s signif icant. 

As an example of how this template is used, assume 

that A represents SMSA, that B represents URBAN-TRACT*, 

and that C represents BLOCK-GROUP. Therefore, referring 

back to the earlier figure 12.1a, we see that both X and Y 

represent COMPRISES relationships. The problem addressed 

here is to uncover the nature of the relationship which 
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FIGURE 12.4 

A STRUCTURAL TEMPLATE FOR DERIVING 

IMPLIED RELATIONSHIPS 
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holds between SMSA and BLOCK-GROUP, that is 

relationship Z. 

Our task is simplified when we realize that we only 

have to consider those chains which begin with (i.e. 

relationship X is) CONTAINS or COMPRISES. This is because 

it only "makes sense” to nest within the more specific, or 

"lower level" (vis. more general or "higher level"), 

entity types. The skeptical reader should verify this 

before continuing. 

The rules for deriving the type of the relationship 

Z are stated using an IF-THEN-ELSE structure in the usual 

way. The rules are as follows: 

IF B CONTAINS C 

THEN A CONTAINS C 

IF B COMPRISES C 

THEN IF all preceeding relationships are COMPRISES 

THEN A COMPRISES C 

ELSE A CONTAINS C 

IF C IS-A B (note the order here) 

THEN A CONTAINS C 

IF B IS EITHER (OR) C 

THEN A CONTAINS C 
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In processing the network structure of a GERMS 

schema graph each implicit or explicit CONTAINS or 

COMPRISES relationship represents the start of a chain. 

The process of deriving the implied relationships is 

therefore iterative in that one implied relationship may 

denote the presence of other implied relationships. In 

the case where an entity type in a chain has two 

relationships entering (pointing toward) it, the path 

branches to form two separate chains. 

With regard to the row-column structure of the 

internal form schema matrix, the above rules can be 
« 

implemented by moving from row to column to row of the 

matrix. For example, if the start of a chain is defined 

by the presence of a "2" (COMPRISES) in SCHEMA(i,j), then 

a "next” element of this chain would reside in the jth row 

of the matrix. Let us assume that such an element is 

found at SCHEMA(j,k). In this case, if the chain 

continues, then the next element resides in the kth row of 

the matrix; and so on until a row contains only blank or 

"0" valued elements. 

Using this basic technique an algorithm can be 

employed to automatically ’’fill in” the implied 

relationships of the schema graph. With such an 

algorithm, which can be implemented using a stack 
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structure, the GIS has the capability of deriving a 

"complete knowledge" of the schema from its partial 

knowledge of the explicit relationships of the schema 

graph (as described by the schema definition program). 

A less complex alternative, which we recommend, is 

for the database technician to derive the implied 

relationships by hand according to the above simple rules. 

The additional (implied) relationships, when included in 

the SCHEMA SECTION of the schema definition program, would 

result in the fitting of the system with a full knowledge 

of the schema structure. 

Linking the Physical Database to the Logical Pat abase 

So far in this chapter we have discussed how a full 

knowledge of the conceptual schema can be created and 

stored within our geographic information system. A 

remaining issue deals with how this internal 

representation of the logical data structure, which we 

call the logical database, is linked to the physical data 

structure, or physical database. 
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The reason that these strucures must be linked is 

that the GIS is queried in terms of the objects of the 

logical database, but the physical database is consulted 

in the formation of responses to these queries. Thus the 

system must know which objects of the physical database 

relate to which objects of the logical database. The 

nature of this linkage is the topic of this section. 

We refer to this issue as T,intra-system mapping” 

because, when our geographic information system (GIS) is 

viewed as a single entity, said mapping is completely 

internal to the system. Continuing along this line, if 

the logical structure and the physical structure are 

considered as component parts of the GIS, then the mapping 

relates to the interconnections between (or coupling of) 

these components. When witnessed from outside the system, 

as by the data user, these interconnections are 

unobservable. Thus the overall GIS is an example of 

Ashby’s ’’black box” (see [ASHB64]). 

The inputs to this black box are the user’s queries; 

the outputs are query responses. The internal ’’mechanism” 

of the black box is not ’’seen” by the user, and this is as 

it should be, for an_ understanding of geographic 

informat ion does not presuppose an understanding of data 

structures and data storage techniques. This thought, 
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which arises from taking a more or less ’’cybernetic view” 

of our GIS returns us to the DBMS principle of data 

independence -- the user should be insulated from the 

complexities of the data organization. Indeed, 

intra-system mapping is how this data independence is 

achieved. 

Stated in simple terms, the problem addressed by the 

mapping is twofold. Specifically: 

1. Given the name of a logical entity type, the 

system must be able to direct itself to the appropriate 

record instances of the physical database 

2. Given a reference to a relationship through an 

entity type pair (e.g. A BY B), the system must be able 

to direct itself to the appropriate relationship directory 

of the physical database (recall that any entity type pair 

denotes at most one logical relationship) 

The first task is handled easily by expanding the 

aforementioned symbol table. Note that up to this point 

our symbol table has been described as a simple list of 

entity type names along with the respective entity type 

sequence numbers. This structure serves to associate the 
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logical entity type names with the rows and columns of the 

internal form schema matrix. Consider now that this same 

symbol table can be expanded so that each row also 

specifies the record index that relates to the entity type 

name. 

Recall that each entity type name relates to exactly 

one record type, but each record type may be related to 

more than one entity type name. For example, the entity 

types TRACT and TRACT/BNA are each related to the record 

type TRACT/BNA. This single record type is therefore 

related to both entity types. 

In the case where a number of entity types share a 

common record type, as in the stated example, each of the 

entity types has its own dedicated index through which the 

record instances are accessed. In this way we can support 

logical redundancy in the schema without the need for 

physical redundancy of database records. Now, if the 

symbol table holds pointers which are directed to the 

appropriate record indexes, then the system can always 

determine which record instances are related to which 

logical entity types. 

Figure 12.5 illustrates this technique. The diagram 

shows a portion of the physical configuration of the 

schema of figure 12.1a (above). Here the four logical 



338 

entity types — BLOCK-NUMBERING-AREA, TRACT, TRACT/BNA, 

URBAN-TRACT* -- share the single physical record type 

TRACT/BNA. User reference to a logical entity type name 

denotes, through the symbol table, reference to a 

particular record index. Each index further directs us to 

the appropriate physical record instances. The double 

arrow (>>) symbol denotes a set of pointers (vis. a 

single pointer). 

The reader may be wondering how, at the time of 

database population, the system knows to relate these four 

different index structures (BLOCK-NUMBERING-AREA, TRACT, 

TRACT/BNA, URBAN-TRACT*) to the common TRACT/BNA record 

type. The answer is simple. The information required to 

define this configuration is contained in the ENTITY 

SECTION of the schema definition program that was 

discussed earlier (refer back to figure 12.2). In this 

program the logical entity types BLOCK-NUMBERING-AREA, 

TRACT, and URBAN-TRACT* are linked to the record type 

through use of "RECTYPE = TRACT/BNA.” The TRACT/BNA 

logical entity type is linked to its synonym physical 

record type by the absence of this "RECTYPE =" clause. 

As for the remaining part of our task at hand, 

linking a reference to a logical geographic relationship 

to its physical directory representation, we will see that 
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FIGURE 12.5 

RELATING ENTITY TYPES TO RECORDS 
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it is not complicated. The simple solution capitalizes on 

the fact that each logical geographic relationship is 

associated with exactly one logical entity type pair. 

Indeed, this fact allows for the use of our aforementioned 

two-dimensional internal form schema matrix. 

Reference within a query to a relationship is made 

in terms of an entity type pair (e.g. A BY B), so we need 

only relate each entity type pair to its respective 

relationship directory in the physical database. The 

pair-wise nature of the relationship allows for us to use 

a two-dimensional ’’pointer matrix” for this purpose. Each 

non-blank element of this matrix is a pointer which is 

directed towards a relationship directory — which one 

being determined by the row-column position (entity type 

pair) of the element. We will call this matrix, which is 

the final component of the logical database, POINTER. 

In figure 12.6 we show how the pointer matrix is 

used in handling the query ’’GET SMSA BY URBAN-TRACT* BY 

BLOCK-GROUP” (this query is based on the schema of figure 

12.1a). In describing the illustration we will refer to 

the pointer residing in the ith row and the jth column of 

the matrix as POINTER(i,j). The problem here is to locate 

in the physical database two relationship directories: 

SMSA COMPRISES URBAN-TRACT* and URBAN-TRACT* COMPRISES 

BLOCK-GROUP. 
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FIGURE 12.6 

USING THE POINTER MATRIX 
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As defined by the symbol table, the SMSA logical 

type holds sequence number 3 while the URBAN-TRACT* 

logical type holds sequence number 6. The relationship 

directory associated with this entity type pair is 

therefore pointed to by matrix element POINTER(3,6). 

Similarly, URBAN-TRACT* holds sequence number 6 while 

BLOCK-GROUP holds sequence number 1, so P0INTER(6,1) is 

directed towards the relationship directory for this 

entity type pair. Note that this phase of query 

processing would not be carried out until the semantic 

validity of the query breakdown was checked by the system 

(i.e. verifying that a "1" or a M2" resides at both 

SCHEMA(3 » 6) and SCHEMA(6,1)). 

Recapitulation 

The system’s knowledge of the conceptual schema is 

stored in two main components: the schema matrix and the 

symbol table. Each element of the schema matrix specifies 

the presence or absence, direction, and type of a 

relationship which is held between a pair of logical 

entity types. The specific entity type pair is defined by 

the row and column in which the matrix element resides. 
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The symbol table associates the entity type names with the 

rows and columns of the schema matrix. 

Using these two components the GIS can verify the 

semantic validity of any query which is posed to the 

system. The ’’legality” of the entity type names is 

checked against the entries of the symbol table. The 

correctness of the query breakdown request is checked by 

inspecting the values of the appropriate elements of the 

schema matrix. 

The symbol table is also used to link the entity 

types of the logical database to the records of the 

physical database. Each row of the symbol table holds a 

pointer which is directed towards the respective record 

index. The entries of each index are in turn directed to 

the appropriate data records. 

The relationship directories are located by the 

system through the use of a third logical database 

component, the pointer matrix. Each row-column 

combination of the matrix denotes an entity type pair. If 

a proper relationship holds between an entity type pair, 

then the respective element of the pointer matrix is 

directed toward the directory for this relationship. 
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The system’s knowledge of the conceptual schema is 

loaded by means of the GERMS data definition language. A 

schema definition program defines the structure and 

content of the schema matrix and the symbol table. The 

implicit relationships of the schema can be derived by the 

system, or alternatively they can be derived by hand and 

entered as part of the schema definition program. 

Looking ahead. The capabilities of our GIS which have 

been discussed to this point relate to a very basic 

system. We feel that the query structure is both flexible 

and powerful excepting one fact. Namely, geographic area 

primary keys must be employed in detailing which data are 

to be retrieved from the database. This obviously limits 

the suitability of the system for many applications. The 

ability of the system to handle associative queries _ 

data retrieval requests which are based on non-key 

attribute values -- would greatly widen the scope of 

system applicability. 

Also, only very basal integrity checking mechanisms 

have been discussed. The technique with which the system 

verifies the integrity of a query has been described, but 

a means for maintaining the integrity of the overall 

database has not been detailed. Database integrity is an 
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important consideration in any information system for 

obvious reasons. 

In the following chapter we discuss the issues that 

surround the addition of these capabilities to our GIS. 

The discussion has been delayed until now in an attempt to 

make the above system description more manageable. The 

system described up to this point can be thought of as 

being the ’’basic GIS.” The next chapter therefore 

introduces some system enhancements, or "amenities.” 

In addition to the above noted amenities, the 

subsequent chapter includes a discussion of two other 

possible enhancements. Specifically, these are a database 

merging facility and a user view facility. The addition 

of a merging facility allows for the logical data 

structure to be used as a "guide” to direct the merging of 

two or more GERMS structured databases. 

The user view facility has to do with the ability of 

the GIS to support "sub-views" of the database conceptual 

schema. Different data applications require consideration 

of different subsets of the logical database contents. 

When user views are employed, the user need only deal with 

that portion of the logical database structure which is 

relevant to her or his specific application. 
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Appendix C provides an illustration of a partial 

emulation of a "GERMS front-ended" database management 

system. This appendix describes the logical database 

structure and the physical database structure of an actual 

GERMS implementation. In addition, sample software which 

provides the system with some of the capabilities 

discussed above and in the next chapter are included. 



CHAPTER XIII 

SOME SYSTEM AMENITIES 

In this chapter we discuss briefly a number of 

amenities which can be used to enhance our geographic 

information system (GIS). The discussion relies heavily 

on a thorough understanding of the "basic" system as 

described in the previous chapters. 

Associative Data Retrieval 

To this po int in the d isc ussio n we hav e d eal t with 

t wo gen er al St yle s of quer y. The f ir st style r elate s to 

the foil owing re que st a s phr ased in fr e e form Engl ish : 

" Retriev e th i s li St of a ttr ibute s for the in stance s of 

this ent 
/ 

ity t ype wh ich hold the se ke y v alue(s ) ." This 

request is po sed to our GIS as 

GET attlist FOR etype key!1st 

(we will ignore query breakdown for the time being) . 

347 



348 

The second form of query relates to the following 

request: "Retrieve this list of attributes for all 

instances of this entity type." The GIS formal query is 

GET attlist FOR etype ALL 

For some applications these simple query forms may 

not be enough. Consider, for example, the situation where 

a user desires an answer to the following type of request: 

"Retrieve this list of attributes for the instances of 

this entity type whose properties satisfy these conditions 

(e.g. population > 10,000)." A query of this type is 

called an "associative query" -- it requests data 

retrieval on the basis of (non-key) attribute values 

rather than on the basis of record key or record position. 

The user of an associative query does not know the 

key values of the records in which (s)he is interested. 

Using our present query forms, then, the only option 

available is to request ALL instances of the entity type 

and then select "by hand" those instances which satisfy 

the condition(s) in question. When an entity type has 

many instances, such a process is hardly trivial. 
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The GIS can be greatly enhanced by including the 

ability to handle associative queries. In keeping with 

the same basic format, we suggest that the following 

associative query template be used: 

GET attlist FOR etypel WHERE boolean [BY etype2] [[AND] BY etyoe3].. 

Here, the terms "etype" and "attlist” hold the same 

meanings as before. The term "boolean” represents some 

statement of required condition phrased in terms of 

attribute names, constants, relational operators, logical 

connectors, and parentheses. Conceivably, "boolean" can 

be of any level of complexity. The "WHERE clause" 

replaces the previous "keylist" or "ALL" phrase; 

otherwise, the query format remains the same. 

Inclusion of the ability to handle associative 

queries should not affect greatly the basic physical 

structure of our GIS. Recall from chapter 11 that query 

processing involves the use of a "chain" of index and 

directory entries (i.e. index --> directory --> 

index...). Once the appropriately keyed record of the 

highest (nesting) level entity is located, all relevant 

"children" of the record can be easily retrieved. 
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With this in mind we realize that the processing of 

an associative query can be, for the most part, the same; 

it is only the way in which the chain is ’’entered" that 

need be changed. In other words, we must only implement 

some means of locating a record according to its attribute 

values. 

There are two obvious ways of achieving this ability 

which do not disrupt the current physical configuration. 

Each has its advantages and disadvantages. The first 

method involves the use of inverted lists (recall that our 

relationship directories are based on this structure). An 

inverted list can be thought of as a directory which is 

dedicated to a certain attribute of the records to which 

it points. 

Each row of the directory relates to a specific' 

attribute value. The entries in a row are pointers to the 

records which hold that value on the attribute (the rows 

are obviously of different lengths). Given any attribute 

value, then, the records which hold that value on the 

attribute, if any, can be located by inspecting the 

directory. When an inverted list relates to an attribute 

represented in a data set we say that the data set is 

"inverted on" the attribute. 
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Inverted lists are conducive to very fast processing 

of associative queries. With other methods, "false” 

record accesses, called "misses," can constitute a 

significant amount of wasted processing time. When using 

the inverted list technique only those records which 

satisfy the criteria at hand need be accessed. Thus, 

misses do not occur. 

The major disadvantage of using inverted lists is 

that they require a large amount of add itional storage 

space. Information which is contained in the records is 

duplicated in the inverted list [1]. It is possible to 

invert on only a portion of the attributes that are 

represented in a data set. This creates what is called a 

partially inverted data set which obviously requires less 

storage space than does a "fully" inverted set. 

Note that the nature of the data discussed here 

requires that (1) the inverted lists be "partitioned by" 

record type, or (2) each record type have its own set of 

inverted lists. This is because, in our geopolitical 

statistical situation, each attribute applies to all 

record types, but data requests deal with a specific 

record (mapped from entity) type (i.e. ...FOR etype 

WHERE boolean...). 
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The second method which can be used for associative 

retrievals is the sequential scan method. Here, each 

record instance of the requested entity type is accessed 

and inspected for the appropriate attribute value(s). 

This technique requires no additional storage space, but 

it is time-wise inefficient since many false record 

accesses, or misses, must be made. 

An associative query is a request for all instances 

which meet the specified criteria (i.e. boolean), so the 

system must inspect every instance of the record type when 

using the sequential scan method. This is because there 

is no way of determining, until the end-of-file is 

reached, when the ’’last” satisfactory instance has been 

accessed. It should be obvious that, when this technique 

is used, there should be expected many more ’’misses” than 

’’hits .” 

To invert or not to invert. Inverted lists require 

large amounts of -additional storage space, but they are 

time-wise efficient. Sequential scanning needs no extra 

storage space, but it is time-wise inefficient. What we 

suggest, then, is to invert on those attributes which are 

expected to be most' often referenced in associative 

queries. In this way increased storage costs are incurred 
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only in those situations where the benefits of decreased 

access time will be realized . 

For example, if it is decided that the attribute 

POPULATION will be frequently referenced in associative 

queries, then the attribute should be inverted on. If, on 

the other hand, it is expected that POPULATION will be 

referenced infrequently, then the attribute should not be 

inverted. In this latter case, the sequential scan 

technique will be implemented in the event that such a 

reference (e.g. "...WHERE POPULATION > 10000...”) is 

made. 

Obviously, inverted lists can be added 

the database technician as the application 

decision as to whether or not to maintain a 

list should be based on the frequency of 

attribute -- a value which can easily 

automatically by the system. 

Note that the volatility of the 

or removed by 

evolves. The 

given inverted 

access by the 

be maintained 

inverted list 

structure of the database in no way affects the data 

record s themselv es. The lists point to the records, but 

the placement and the format of the records are ’’ignorant” 

of the fact that the inverted lists exist. Consequently, 

the addition or deletion of an inverted list does not 

require a major reorganization of the physical database. 
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Complex booleans. The boolean portion of the WHERE 

clause of a query may employ logical connectives (i.e. 

AND, OR, XOR) . If the physical database is such that only 

a portion of the attributes are inverted, then it is 

possible for the boolean to be a conjunction or a 

disjunction which references both inverted and uninverted 

attributes. Depending on the logical connectives used and 

the mix of attribute types, some interesting situations 

can arise. 

Consider a boolean statement which has two 

relational statements joined by a logical connective (e.g. 

WHITE-POP > 10000 AND BLACK-POP > 5000). In the event 

that both attributes are inverted, there is no need for 

false record retrievals; the exact set of records which 

meet this criterion can be selected using the inverted 

lists. Obviously, if neither of the attributes is 

inverted, all records must be retrieved and inspected. In 

the case where one attribute is inverted and the other is 

not, the nature of the processing depends on the logical 

connective used. 

If the relational statements are joined by AND, then 

only those records which appear in the appropriate rows of 

the single inverted list need be accessed. This is 

because a record "hit” must match both relational 
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statements, so a record which is not represented in the 

single inverted list must be a miss. Note that some of 

the records accessed may still be misses, but the number 

of misses is much smaller than would occur using a 

sequential scan. 

If, on the other hand, the relational statements are 

joined by OR or by XOR, then all records must be inspected 

regardless of the fact that one attribute is inverted -- 

the inverted list is of no use here since it does not 

indicate that some records must be misses. 

The point to be made is this: when only a_ portion of 

the attributes of the data set are inverted , the inverted 

lists may be rendered totally useless by the structure of 

the associative queries which are posed to the system. 

This fact should be kept in mind when designing the 

associative access structure. 

A Semantic Integrity Checker 

In any database management application the 

maintenance of semantic integrity is an issue of major 

importance. Recall from chapter 3 that semantic integrity 

has to do with the meaning, or semantics, of the data set. 
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When a data set lacks semantic integrity, then, data 

values, or sets of or functions of data values, contradict 

the logical meaning of the data. 

We will refer to declarative statements about 

semantic integrity as ’’semantic relations.” 

The absence of semantic integrity can arise for a 

number of reasons. In terms of our geopolitical 

statistical data environment, the problem would often stem 

from errors in the data collection or in the data coding 

process . 

The database technician who is entrusted with the 

responsibility of maintaining semantic integrity is faced 

with two major problems: (1) (s)he must determine what 

semantic relations should hold among the objects of the 

data set, and (2) (s)he must somehow verify that these 

semantic relations d_o hold among the objects of the data 

set. This latter problem is often attacked by writing 

special purpose data retrieval programs which are based on 

the specific semantic relations of the specific 

application. 

The semantically rich highly structured GERMS 

formalism can simplify the maintenance of semantic 

integrity of geopolitical statistical data. The meaning 

of geographic relationships among geographic entities 
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indicates what semantic relations should hold among the 

respective data values. Thus, the database conceptual 

schema details the semantic relations. 

For example, let super(i) denote the array of 

attribute data values which relate to some ith geographic 

area of type SUPER. Let sub(i,j) denote the array of 

attribute data values which relate to some jth geographic 

area which lies within the boundaries of super(i). 

Sub(i,j) is an instance of entity type SUB. 

Now, if SUPER CONTAINS SUB, then the following 

semantic relation should hold: 

super(i) >= s sub(l.j); Vi 

Thus, the aggregation of the attributes of the subordinate 

area records should be less than or equal to the 

attributes of their superordinate area records for each 

relationship instance . 

Similarly, if SUPER COMPRISES SUB, then the 

following semantic relation should obviously hold: 

super(i) = j sub(i,j); Vi 
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In other words, the aggregation of the attributes of the 

subordinate areas should exactly equal the attributes of 

their superordinate area for each relationship instance. 

Now let general(i) denote the array of attribute 

data values which relate to some ith geographic area of 

type GENERAL. Also, let special(i) denote the array of 

attribute values which relate to the same ith geographic 

area instance of type SPECIAL where SPECIAL IS-A GENERAL. 

In this circumstance, the following semantic relation 

should hold: 

special(i) = general(i) 

Thus the values of the attributes of a geographic area are 

the same whether they relate to the special case view or 

to the general case view — views of entities change, but 

properties of entities do not. 

A similar semantic relation has to do with the 

EITHER-OR association. Let lower(i) denote the array of 

attribute values which relate to some ith geographic area 

of type LOWER. Let higher(i) denote the array of 

attribute values which relates to the same geographic area 

instance of type HIGHER where HIGHER IS EITHER (OR) LOWER. 
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In this final case the following semantic relation should 

hold : 

higher(i) = lower(i) 

The rationale for this is the same as in the previous 

case. 

The above discussion shows how the meaning of a 

GERMS geographic relationship indicates the semantic 

relations which should hold among the respective database 

objects. As for verifying that the semantic relations d_o 

hold, the task is simplified by capitalizing on the 

structure of the physical database of our GERMS-based 

geographic information system (GIS). 

First of all, the semantic relations which deal with 

the IS-A relationship and with the EITHER-OR association 

need not be verified. This is because, in the physical 

configuration of our GIS, geographic entities which depict 

these different views of an object (i.e. special-general 

or higher-lower) are represented by the same physical 

records. Thus, there is no way that these semantic 

relations (equality) can be violated; the respective 

attribute values must be equal. 
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Second of all, the semantic relations which deal 

with the CONTAINS and with the COMPRISES relationship can 

be verified by general purpose procedures. Since the GIS 

has a knowledge of the structure of the conceptual schema, 

the system can determine when the semantic relations 

should hold. Consequently, the GIS can be given the 

ability to verify its own semantic integrity. 

The basic logic . Consider a semantic integrity checker 

which is a set of programs that can be executed upon the 

command of the database technician. The main program 

merely inspects each element of the conceptual schema 

internal form matrix. In the event that a CONTAINS 

relationship or a COMPRISES relationship is found, the 

execution of the appropriate semantic relation checking 

procedure is triggered. 

For the purpose of this discussion we will refer to 

the procedure which checks the semantic relation of the 

CONTAINS relationship by the name of "CONTCHK" (CONTains 

CHecK). "COMPCHK” will refer to the procedure which 

verifies the semantic relation of the COMPRISES 

relationship. 
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The logic of the semantic integrity checker main 

program is shown in figure 13.1. This simple routine 

comprises two nested loops which perform a row major order 

scan of the square matrix SCHEMA. Whenever 

SCHEMA(I,J) r 1 (a CONTAINS relationship), the CONTCHK 

procedure is triggered. Whenever SCHEMA(I,J) =2 (a 

COMPRISES relationship), the COMPCHK procedure is 

triggered. The program terminates when every element of 

the schema matrix has been inspected. 

In executing one of the checking procedures, every 

instance of the relationship in question must be 

considered. This demands that the system be able to 

locate each superordinate (in the particular relationship) 

record along with the related subordinate data records. 

The index for the superordinate entity type is 

pointed to by the ith row of the symbol table (contained 

in the logical database). Once the index is located, the 

records may be easily accessed. The appropriate 

relationship directory is located by following the pointer 

which resides at POINTER(I,J). This directory allows for 

the system to locate those subordinate records which are 

related to a particular superordinate record. 
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FIGURE 13.1 

THE SEMANTIC INTEGRITY CHECKER MAIN ROUTINE 
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Figure 13.2 illustrates the logic of the procedure 

CONTCHK. Here, the variable AGGREGAT refers to a vector 

of values. Each element of the vector relates to a 

particular attribute which is carried in the data records. 

Any operation on this variable is meant to denote the 

operation on each element of the vector . 

The logic of the procedure is straightforward: 

For each entry of the superordinate index, the 
data record is accessed. Then, all related 
subordinate records are accessed and their 
attribute values aggregated. If each aggregate 
value is less than or equal to the respective 
attribute value of the super ordinate record, 
then the next relationship instance is checked. 
Otherwise, the execution of an error procedure 
is triggered. 

COMPCHK uses the same logic with the exception that the 

aggregated values are checked for equalit y with the 

super ordinate data values. 

The error procedure indicates to the database 

technician the super ordinate entity instance and the 

relationship in which the error occurs. For example, an 

error report could be of the form "COUNTY ’ABC’ IN COUNTY 

CONTAINS TRACT/BNA." Also, the attribute names and the 

data values which are found to be in error are displayed. 
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FIGURE 13.2 

PROCEDURE CONTCHK 
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We recognize that the execution of these integrity 

checking programs would be expensive. It should be kept 

in mind, however, that the data in this application is 

static, so the checking need only be invoked once 

following database population, or after a rare database 

modification. The decision of whether to implement this 

semantic integrity checker should be based on the 

probability of and the costs associated with holding 

erroneous data values. 

A Database Merging Facility 

An attribute of the geopolitical statistical data 

environment is that there are many opportunities for the 

merging of databases. Whenever different properties 

denote assertions about common real world entities we 

observe the potential for the existence of this 

information within a common structure. 

When geographic oriented data are collected, then, 

the data (measurements) are combinable provided that the 

geographic partitionings of the studies are compatible. 

By merging geographic based statistical data of differing 

orientations (e.g. sociodemographic, environmental, 
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economic) we open doors to a number of correlational and 

predictive research studies — doors which would be 

otherwise closed. 

The merging of conceptually modeled database is not 

well understood. Indeed, merging strategies for databases 

and database views has been cited [LUM78] as an area which 

deserves further research effort. It is our belief that 

the indigence extends to the geopolitical statistical data 

management environment. 

In comparing the GERMS conceptual schemas of two 

databases, we are provided with a structure for database 

merging. When the databases hold different attributes for 

the same GERMS logical entities, the respective records 

can be combined. The GERMS schemas also indicate where 

new data can be generated from the initial merged data. 

Whenever a database schema includes a COMPRISES 

relationship, and the subordinate (in the relationship) 

records are merged with the records of another database, 

the superordinate records can be expanded through the 

creation of new data objects. This new data is generated 

by aggregating the values of the merged data. The 

information required to direct the generation of the new 

data, that is, which subordinate records are related to 

which superordinate records, is contained in the COMPRISES 
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relationship directory of the original database. An 

example is provided in a later paragraph. Note that the 

structure of the relationship directory is untouched by 

this process; only the superordinate records are affected. 

We suggest that the GIS can include a database 

merging facility. A set of programs aimed at combining 

the data of GERMS databases constitute this facility. In 

the event that new data can be generated from the merged 

data, as in the case described above, the process may be 

triggered by the following macro call: 

GENERATE attlist FOR etypel FROM etype2 

Here, "attlist” denotes some list of record attribute 

names. "Etypel" and "etype2" relate to the superordinate 

entity type and to the subordinate entity type of a 

COMPRISES relationship, respectively. 

By consulting the logical database, the system 

determines which relationship directory should be used to 

direct the data generation. The entity type pair "etypel, 

etype2" connotes, through the symbol table, a unique 

element of the POINTER matrix. This matrix element 

directs the system to the appropriate relationship 
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directory of the physical database. 

An ex ample. 

figure 13.3a 

portion of 

Figure 13.3b 

census file 

SMSAs. 

For the purpose of example we will refer to 

and to figure 13.3b. Figure 13-3a shows a 

the conceptual schema for census file STF1B. 

shows a portion of the conceptual schema for 

PL-94. Notice that PL-94 does not deal with 

The nature of the statistical properties represented 

in these files is not important here. We will simply 

assume that these schemas relate to two databases which 

represent different properties of geographic areas. The 

attributes in the records of the first database will be 

called MSTF1B-data.” We will call the attributes in the 

records of the second database "PL-94-dat a ." 

Now, consider that we wish to merge the PL-94-data 

with the STF1B database. According to the conceptual 

schemas, the records of the COUNTY, TRACT/BNA, and 

BLOCK-GROUP/ENUMERATION-DISTRICT entity types can be 

combined. Note that, given the physical configuration of 

our GIS, this merging implies that the lower level TRACT, 

BLOCK-NUMBERING-AREA, BLOCK-GROUP, and ENUMERATION- 

DISTRICT are combined. 
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FIGURE 13.3a 

A PORTION OF THE STF1B SCHEMA 



COUNTY 

FIGURE 13.3b 

A PORTION OF THE PL-94 SCHEMA 
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Since URBAN-TRACT* IS-A TRACT in the STF1B schema, 

and the URBAN-TRACT* records are indexed in the STF1B 

physical database, we now have PL-94-data for urban 

tracts*. Using the CENTRAL-BUSINESS-DISTRICT COMPRISES 

URBAN-TRACT* relationship directory as a guide, we can 

GENERATE PL-94-data FOR CENTRAL-BUSINESS-DISTRICT FROM 

URBAN-TRACT*. Also, using the relationship directory for 

SMSA COMPRISES COUNTY, we can GENERATE PL-94-data FOR SMSA 

FROM COUNTY. Note that, alternatively, we could GENERATE 

PL-94-data FOR SMSA FROM URBAN-TRACT*, but this would be 

more expensive since the schema indicates that there are 

more urban tracts* per SMSA than there are counties per 

SMSA. 

The result of this data generation activity is that 

we can now request PL-94-data for any entity type of the 

STF1B schema. Again, in responding to these requests, the 

enlarged GIS relies on the same relationship directories 

as were used prior to the database merging. The GERMS 

relationship directories are untouched by the merging of 

GERMS databases; only the affected data records need be 

revised . 

Figure 13.4 summarizes the above process. Each 

object in this diagram represents an entity type of the 

STF1B schema. The types whose data records are directly 
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merged with PL-94 records are represented by ci 

remaining entity types are represented by 

Arrows indicate how data for these remaini 

derived (’’automatic” means that the PL-94-d 

automatically upon the merging of the database) 

rcles. The 

ellipses. 

ng areas is 

ata exists 

User Views 

As the number of entities represented in a GERMS 

database increases, so does the complexity of the 

conceptual schema graph. For many user groups it may 

happen that the schema graph depicts many more entity 

types than are required for the application at hand. 

Consider, for example, an application which is 

concerned exclusively with statistical geographic areas. 

In this case entity types such as SMSA, URBANIZED-AREA, 

and CENTRAL-BUSINESS-DISTRICT are relevant, but political 

areas such as COUNTY, MCD, and TOWNSHIP are of no 

interest. Consequently, a schema graph which depicts 

political areas and their respective relationships is more 

complicated than is required. 
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FIGURE 13.4 

COMBINING THE 

DATABASES 
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A similar problem is faced by the users of common 

business databases. Here, we may have a single integrated 

database which serves the data needs of the entire 

business enterprise. A number of very different 

applications such as personnel, purchasing and production 

share the database. 

These user applications are very different, so the 

single ”global” logical data model (conceptual schema) is 

not well matched to the needs of any one application. 

Consequently, an application is often supplied with its 

own sub-model, or ’’subschema.” Such sub-models are 

sometimes referred to as ’’user views.” The ability of a 

data modeling formalism to support user views is called 

’’relativism” (see chapter 6). Under this concept a user 

need only consider her/his particular user view when using 

the database. Thus, from the perspective of the user, it 

appears that the database exists to meet the needs of 

her/his application exclusively. 

Returning to our geographic oriented GERMS database, 

consider the fact that a GERMS query deals only with those 

entities and relationships about which information is 

requested. Thus, if the user desires information in the 

form of ”SMSA BY URBAN-TRACT*,” there is no need to 

consider or to make reference to the fact that SMSA 
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COMPRISES COUNTY. Similarly, if information of the form 

"SMSA BY COUNTY" is desired, the user can ignore the fact 

that SMSA COMPRISES URBAN-TRACT*. 

With this in mind we realize that a user can 

interact with the GIS without knowing the full logical 

contents of the database. Provided that each object 

referenced by the user agrees with the representation of 

the system internal form schema, the query can be 

interpreted properly by the system. Therefore, it is 

possible for a user to employ an incomplete schema graph 

and still make use of the information system. 

Such a partial schema graph can be created to match 

the logical needs of a particular user application. This 

graph can depict the specific "user view" of the 

application [2]. As long as the subschema graph does not 

contradict the (global) conceptual schema, n_o adjustments 

need be made to the structure of the information system 

internal form, Thus, the GERMS formalism readily supports 

relativism. 

The rationale behind employing subschema graphs is 

that a particular user community which requires only a 

subset of the total logical database objects can be 

insulated from needless complexity. Why, for example, 

should a user be forced to consider SMSAs, urbanized 



376 

areas, and central business districts (and the respective 

relationships) if her/his application is concerned with 

political geographic areas? By dealing with a "political 

oriented" subschema graph rather than with the global 

schema graph, the user's task is simplified. We suggest, 

then, that subschema graphs be employed whenever possible. 

Again, the use of these subschema graphs does not affect 

database configuration in any way. 

Figure 13.5 illustrates the use of subschema graphs. 

Here we see three distinct user groups each of which deals 

with a particular user application. Each user group views 

the common physical database "through the perspective" of 

its own (sub)schema graph. A user group need not be aware 

that the global view or that the other views exist. 



FIGURE 13.5 

USER VIEWS 
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FOOTNOTES 

M] This is not true of our relationship directories. 
Recall that in forming these directories the 
equivalent information (ancestor key) is 
"stripped” from the source records before they are 
entered into the target structure. 

[2] The reader is cautioned against confusing this use 
of the term "view” with the use employed 
previously. In the sections above we spoke of 
views of a geographic entity type (i.e. 
special-general, higher-lower). Here, we are 
referring to views of a data model. 



CHAPTER XIV 

REVIEW AND CONCLUSIONS 

The mission of this final chapter is twofold. 

First, the chapter provides a brief yet comprehensive 

review of the above chapters. Second, it investigates the 

consequence of our work. 

The purpose of the review is to refresh our memories 

as to the major focal points of our work. Hopefully this 

retrospection will prove useful in assimilating the 

remaining portion of the chapter: the concluding remarks. 

These concluding remarks focus, for the most part, on the 

significance of our research described herein. 

A Brief Review 

In part I of this three-part work we provided a 

detailed (and often technical) description of conceptual 

data modeling and of data modeling formalisms. This part 

was aimed at providing a foundation for the research 

presented in the later sections; it was the background 

material. The discussion is extensive since we feel that 

meaningful research ideas deserve and require a solid base 

379 
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on which they can be built. A significant portion of the 

text of this part focused, quite naturally, on data 

semantics -- the construct which underlies the concept of 

conceptual data modeling. 

The discussion began by taking a very general, or 

"generic,” look at data modeling and the issues related to 

such. A formalized notation and structural form was 

presented in the hopes that it would provide a 

communicative anchor for the more sophisticated and 

abstract concepts presented later in the discussion. 

A second conceptual benchmark which was relied on 

was our existing understanding of programming and 

programming languages. We saw that many data modeling 

issues could be studied in terms of analogous, yet better 

understood, programming issues. 

Lastly in our generic investigation of data 

modeling, we recognized the time-wise ”generational 

development” of data modeling. We learned that the early 

first generation models (and modeling formalisms) were 

preoccupied with structure and with syntax, while the 

newer second generation models (formalisms) are 

concerned with semantic richness. 

more 
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The focus of our background discussion then turned 

towards the topic of data semantics as it relates to data 

modeling. We investigated, from a number of different 

viewpoints, the "meaning” of semantics. Indeed, we found 

that semantics i_s meaning. 

Next, we studied data semantics from a strictly 

theoretical perspective. Following this theory section we 

considered the treatment of data semantics within the 

literature of database management. 

In the succeeding three chapters, which comprise the 

remainder of part I, we were concerned with a number of 

fundamental concepts of data modeling. First, we 

investigated the nature of the objects and of the groups 

of objects (types) which form a data model. Next, we 

studied data abstraction — a ubiquitous construct which 

is of two kinds. Specifically, these are aggregation 

abstraction and generalization abstraction. 

Finally, in chapter 6, we focused on the issues of 

logical redundancy, relativism, and semantic integrity. 

These issues directed us into the realm of data model 

implementation, as they require that physical data be 

considered . 
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Beginning at part II, we redirected the discussion 

toward the specific application environment in which our 

interests lie -- that of geopolitical statistical data. 

First, we studied the physical structure of geopolitical 

statistical data sets. We learned that a number of 

conceptual anomalies arise when a hierarchical structure 

is taken to represent the 1ogical structure of geographic 

based data. 

Next, we looked at the true logical structure of 

such data. We found that, as can any data set, a 

geopolitical statistical data set can be modeled using 

only four basic kinds of objects. These are entities, 

relationships (associations), properties, and values. 

The entities in this application are geographic 

areas. Relationships describe how the area entities 

overlap. Properties which hold values characterize the 

entities. These values which are held by the properties 

are statistical objects. 

In accordance with our understanding of geographic 

logical structure we then developed a data modeling 

formalism which is dedicated to serving the special needs 

of the application at hand. We decided that, of the four 

basic object types, our data models should concentrate on 

only two: geographic entities and geographic 
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relationships. To that end, the formalism wa3 named the 

Geographic Entity-Relationship Modeling System; hereunder 

simply the GERMS. 

The GERMS has both a graphical and a lingual form. 

These forms provide data models which are ’’equivalent" in 

terms of information content. Each form serves its own 

purpose with respect to model usage. 

As a close to part II we evaluated the GERMS 

formalism and considered it in the light of some of the 

concepts discussed in part I. Specifically, these 

concepts are data abstraction and logical redundancy. We 

learned that abstraction, as employed by a GERMS data 

model, does not match closely its standard "textbook" 

semantic. Also, we made the important discovery that a 

GERMS model is, by the nature of the formalism through 

which it is created, a logically redundant structure. 

This facet came into play repeatedly in later sections. 

The above noted evaluation of the GERMS revealed 

that the formalism, as presented in part II, serves as (1) 

a medium through which the logical contents of the data 

set can be documented , and (2) a medium through which the 

logical contents of the data set can be d lscus3ed . In 

part III the usefulness of the GERMS was taken well beyond 

these two realms; the formalism was made an integrated 

part of a computer information system. 
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In part III, which comprises chapters 10 through 14, 

we developed and described the makeup of a GERMS-based 

geographic information system. Here, we use the term 

information system to indicate that said system has the 

ability to respond to ad hoc information requests. This 

system holds a ’’knowledge” of GERMS logical data structure 

and can therefore ’’comprehend” references to the GERMS 

data mod el. 

First in this final part, we studied the format that 

a GERMS-based query should take on. This format should 

obviously be considerate of the need of the user. We 

decided that the query ought to have three parts: a focus 

part, a range part, and a (optional) breakdown part. 

These refer to properties, to entities, and to 

relationships of the data model, respectively. 

Next, we developed a suitable physical database 

configuration. In this design, relationship data is 

separated from entity data. The relationship data is 

structured to form directories (inverted lists). Entity 

data holds a standard ’’flat” record type organization. 

Entity —> relationship —> entity traversal in the 

logical structure is emulated by moving from record type 

to directory to record type in the physical database. 
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In considering the physical database we were faced 

with the problem of dealing with the redundant nature of 

the logical structure. True, the two structures (logical, 

physical) are separate, but each logical object must be 

somehow represented in and linked to the physical 

database. This problem was easily solved through the use 

of additional indexes which allowed us to circumvent the 

need for employing physical data redundancy. 

The sub se quent issue which wa; s addressed is that of 

logic al database con figur a t ion . We defined the log ic al 

datab ase as that part o f the syst em whi ch holds ( 1) the 

”knowledg e" o f the data ! 7i od el > ; and (2) the lin ks which 

”connect" the log ic al mod el obj ec' ts to their phys ic al 

database counter p arts • 

Whi 1 e the v ar iet y o f po ss: ible 1 og ic al d atab ase 

con figur a tions i s virtually 1 imi tl< ass , we chose o ne which 

compr ises three b asic parts. The se are the symbol table, 

the schema matr ix , and the po in- ter matrix. The schema 

matrix re pr esents , un ambiguo usly, the full inte r-obj ec t 

str uct ur e o f the GERMS data model using a single 

two-dimensional matrix. The symbol table holds the names 

of the logical entity types and couples these names with 

the appropriate portions of the schema matrix. These two 

logical database parts hold, in its entirety, the system’s 

knowledge of the GERMS data model. 
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As for the afor ementioned logical --> physi cal link, 

this is effected by t wo components of the logic al 

d atab ase . For any logical rel ationship, the pointer 

matrix directs the s ystem to the appropriate physical 

database directory. Li ke wi se , the symbol table d irects 

the system to the index (and therefore to the r ecord s) 

which relates to any given logical entity. 

In reckoning with the issue of logical database 

structure and substance, we realized the need for a means 

through which the logical database contents can be 

communicated to the system. In response to this need we 

developed a GERMS data definition language. This language 

is used in the creation of a schema definition program — 

a formalized model description which is written by the 

human user and interpreted by the database machine. In 

developing the data definition language we capitalized on 

the GERMS lingual form which was mentioned earlier in this 

r eview. 

By the end of chapter 12, we had described what we 

call the ’’basic” information system. This system has the 

ability to respond to unplanned ad hoc information 

requests provided that (1) the key values of the 

geographic area(s) of interest are specified, or (2) all 

instances of a given area type are requested. Beyond this 
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useful yet limited capability, the ability to handle 

associative queries, automatic maintenance of semantic 

integrity, system aided database merging, and user "views" 

(subschemas) had not been considered. These very issues, 

which we call system ’’amenities” are the focus of chapter 

13. 

First, we considered how the ability to respond to 

associative queries, i .e. queries which are based on 

values of properties, could be given to our system. We 

learned that, in awarding this ability to the system, the 

existing physical database must be expanded, but it need 

not be restructured. In other words, the physical 

configuration of our basic system is unaffected. 

Next, we developed the logic of a semantic integrity 

checking mechanism. The software components of this 

mechanism determine, based on the system’s knowledge of 

logical data structure, various ways in which the database 

contents should be related. These relations are then 

verified by the system. It was noted that said process is 

expensive, but it need be performed only once for a given 

data set. 

Following this discussion of semantic integrity we 

devised a database merging facility. The GERMS logical 

structure is used to direct the blending of two databases 
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which represent different properties of geographic areas. 

The merging facility enables the system to then "generate” 

new geopolitical statistical data which was not 

represented djLrectly in either of the initial databases. 

Finally, we considered how user views can be 

incorporated into the utilization of our information 

system. We discovered that no adjustments need be made to 

the structure of our logical database, to the structure of 

our physical database, or to the format of our queries. 

In fact, it is only the schema graph -- that document 

which provides the user with a "logical map" of the 

database is affected. By employing these user views we 

can often insulate the user from the need to deal with 

complexity which is peripheral to the application at hand. 

Concl ud ing Remarks 

It is our belief that the conduction of research 

which fails to hold the ultimate purpose of improving some 

environment is of little use. Meaningful research must 

’nave an eventual pragmatic based intent. The goal of the 

research discussed herein is to induce some nontrivial 

improvement upon the existing geographic oriented database 
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environment. The primary thesis of this work is that said 

environment deserves a special purpose modeling formalism 

through which logical models of geographic based data sets 

can be developed. The principle focus of the work lies in 

the development of such a formalism. 

The formalism which was developed supports direct 

conceptual modeling of the logical contents and structure 

of a geographic database; it captures the semantics of 

geopolitical statistical data. A data model produced 

through the use of this formalism is constructed without 

■^>ncert?. £g.r the physical data structure (physical data 

independence). Each concept represented in the logical 

model need not be represented similarly in the respective 

physical configuration. 

Before the value of the GERMS formalism can be 

assessed, we feel that the creation of a special purpose 

formalism, that is one which is dedicated to the modeling 

a j~-n81e specific application environment, should be 

justified. In making this justification we will 

analogize, as was done many times above, to the more 

appreciable area of computer programming. 
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The need for a special purpose modeling formalism. As 

is the case with programming language applications, the 

nature of database applications is quite diverse: 

”... just as it was eventually recognized in programming 

languages that there is no one ’best’ programming 

language, so it is also now generally considered that 

there is no one ’best’ data model. Different data models 

may be appropriate for different users, different tasks, 

and so on” [TSIC82, p. 173 ]. 

The majority of high level conceptual data modeling 

formalisms (DMFs) which are in existence today could be 

called ’’general purpose” modeling formalism. If the 

respective models have any specific realm of expertise it 

is, as evidenced by the examples of appendix A, the 

business managerial environment. In general though, they 

are designed so as to be useful in a wide variety of 

applications. Consequently, one of their primary 

attributes is flexibility. This flexibility is gained at 

the expense of precision and specificity, however. 

When a model is developed within the constructs of a 

general purpose • DMF it often happens that some of the 

characteristics that are particular to the application are 

represented either awkwardlly or not at all. As the 

characteristics of the application become more unique to 
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the situation, a general purpose database model becomes 

less applicable. The general purpose schemas do not 

provide a natural representation of relevant real world 

concepts; the tool does not fit the task. 

Database researchers are becoming increasingly aware 

of the value of providing a ’’natural” representation of 

the applcation [WONG77]. The naturalness or realism of a 

database representation aids the database user as well as 

fortifying the understanding of semantic integrity 

enforcement — if database structure reflects real world 

structure, the database is easier to construct and modify. 

It would seem, then, that the scope of conceptual 

DMFs should be widened so that they might model a greater 

variety of applications in a natural way. There is a 

problem with this tack, however: there exists a 

significant tradeoff between a modeling formalism’s power 

and naturalness, and its complexity [HAMM81]. 

As noted earlier, programming language designers 

struggle with the same dilemma. ’’The style that a 

language should best assume is far too dependent on the 

human and machine environment in which it is used. And 

that environment must also affect the level of 

sophistication of the features of a language. To say that 

a language has a generally accepted set of arithmetic 
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features is not to say that it is ideal for use in work 

totally oriented to numerical analysis. The less general 

the application of a language, the less adequate a general 

purpose language for those applications" [ELS073, p. 243]. 

The response from programming language architects to 

this phenomenon has been the development of a number of 

"special purpose" programming languages which are aimed at 

meeting the special needs of unique programming 

applcations (e.g. DYNAMO, GPSS for simulation; LISP, 

SNOBOL for list and string processing). 

Obviously, each individual programming environment 

does not require its own special purpose programming 

language. Instead, programming "environment types" which 

are large in number and unique in constructual demands 

deserve special purpose languages. We believe that the 

geopolitical data management environment is an environment 

"type" which is large in number and unique in 

constructural demands. Consequently, the environment 

deserves its own special purpose modeling formalism. 

The uniqueness of the application at hand revolves, 

for the most part, around the nature of the primitive 

objects of the data model. Entities are geographic areas , 

relationships represent structured spacial overlap of 

geographic areas. General purpose DMFs have been designed 
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with different entities and relationships in mind (again 

refer to appendix A). 

Specifically in these general purpose formalisms, 

entities are expected to be the ’’objects of a business 

enterprise" (e.g. employee, department, inventory item). 

Relationships are supposed to logically interrelate these 

object kinds (e.g. works for, produces, employs). It is 

apparent that the semantics which should be captured by a 

geographic based data model differ greatly from those of 

the general purpose applications. 

As for the remaining primitive objects of a data 

model, properties and values, these too stand apart from 

the norm. A given property in our geopolitical 

application is held by every entity of the application. 

The semantic of this property is constant for every entity 

to which it applies. In general purpose applications this 

is not the case, so general purpose modeling formalisms 

tend to overemphasize the importance, and thus the 

complexity, of handling properties. 

Values in our geopolitical apoplication are 

statistical objects unlike their general purpose 

counterparts. Furthermore, values of properties of 

different entities are related — the nature of this 

relation being defined by the relationship which joins the 
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entities. This concept is inherent in the application and 

should therefore be inherent in the formalism used to 

model the application. Again, data model structure should 

match real world structure. 

To summarize, the GERMS — a data modeling formalism 

which supports direct conceptual modeling of geopolitical 

statistical data — is better suited to capture the 

semantics of this special application than are general 

purpose formalisms. Real world concepts which would be 

represented either clumsily or not at all using other 

formalisms are represented easily and naturally using the 

GERMS. In other words, the GERMS is a tool which does fit 

the task. 

Signific ance. The significance of the research 

presented herein should be measured in terms of the 

environment towards which the research is directed. Our 

discussion is thusly centered around the geographic 

oriented database environment. In reckoning with 

significance of our work we will consider the non—machine 

implemented GERMS version first (that is, the version 

described in part II). Then, we will consider the work 

described in part III. 
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In its "non-mechanized" form the GERMS provides two 

products: 

1. It provides a means through which a graphical 

model of a geographic data set can be created 

2. It provides a "language" for describing and 

discussing the logical structure of geographic based data 

By providing these products the GERMS will help to 

ameliorate the complexities that surround the application 

environment in a number of ways. These betterments will 

realized in the use as well as in the design stage of 

the geographic statistical data set. 

First of all, a graphical representation of a 

semantic data model furnishes a syntax-free description of 

the data in much the same way as a flowchart provides a 

syntax free representation of the semantics of a program. 

The GERMS graph therefore serves as a valuable 

documentation tool for geographic based data sets. Such 

documentation indicates which data sets are applicable to 

which situations. The graph provides the data technicians 

and (end) users with an answer to the question: Will this 

j-ata set provide me with the information that I need? A 
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related question which the logical data model helps to 

answer is: Given the, physical structure of the data set, 

.iiilere can I expect logical anomalies (e.g. the 

non-containment problem of chapter 8) to arise? 

True, answers to these questions can be found in the 

standard documentation which accompanies geographic data 

files. Such sources provide operational definitions of 

the geographic objects (entity types) and describe the 

physical structure of the files. 

Documentation of this type does not, however, 

present a straightforward description of the logical 

interconnections that exist among the set of geographic 

objects represented in the file. This information is 

often buried within the patois of the individual entity 

type definitions. An understanding of geographic 

semantics is therefore required , but not readily available 

to the users of geographic data. 

In the absence of a logical data model it is 

difficult to insure that data technicians and users hold a 

proper understanding of the "meaning" of the data with 

which they work. The mere development of the graphical 

specification (GERMS graph) requires that the database 

administrator have a clear understanding of the semantic 

properties of the data [SU79]. Thus, it forces the 
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precipitation of any semantic ambiguity which could 

otherwise reside unnoticed within the complex structure of 

the underlying data set. 

Also, the development of the logical framework 

provides the data technicians with insight as to the 

maintainance of data integrity; the graph indicates how 

the data items should be related. 

As for the data users, the document circumvents the 

possibility of the semantics being hidden in the 

application programs. The resulting clearer understanding 

of the meaning of the data allows for the formulation of 

more meaningful queries [SU79]• In other words, the data 

model provides the data users with insights as to what 

queries can be posed to the data set, and also how they 

should be posed. 

As a geographic database development tool, a 

graphical representation of a semantic data model provides 

a basis for database design [HAMM81]. Through the use of 

GERMS structures the database designer can investigate the 

nature of the logical structure of geographic data while 

being freed from the need to consider physical structural 

issues. This results in the development of a database 

which is more 1ikely to meet the needs of the user 

community. 
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With regards to the value of the "GERMS language," 

it provides the data technicians and users with an 

unambiguous communication medium through which the above 

issues can be described and discussed. Questions and 

statements about logical geographic data structure can be 

posed in a formalized way within this language. Each 

GERMS "phrase" matches a GERMS graphical concept which in 

turn relates to a well-defined geographic semantic 

construct. 

In summary, then, what the "non-mechanized" GERMS 

formalism provides to the geographic data environment is 

similar to what flowcharting provides to the programming 

environment. It furnishes a means for investigating, 

describing, and discussing logical structural form while 

being freed from the need to consider physical structure 

and related syntax. 

Just as the usefulness of a flowchart extends beyond 

the program design stage, so does that of the GERMS graph 

extend beyond the database design stage. The 

representation serves as a precise documentation and 

communication medium throughout the entire life cycle of 

the database [HAMM81]. This documentation and 

communication medium aids in the data administrative and 

maintenance tasks as well as promoting effective data 

utilization . 
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If the GERMS formalism is machine implemented (the 

part III version), there are even more benefits to be 

reaped. Queries are posed "in terms of" the semantically 

rich data model, so they tend to be more meaningful 

[SUY91• For the same reason, the queries are easier for 

the user to form. Likewise, system responses are formed 

in terms of the data model so the understanding by the 

naive user as to the meaning of the information is 

improved [HAMM81]. In short, then, the methodology 

increases the utility of the database and increases the 

effectiveness of the utilization of the database. 

As for aiding in the database administrative and 

upkeep tasks, the system provides automatic maintenance of 

the semantic (not just syntactic) correctness of queries. 

In other words, the system holds the ability to reject 

queries which do not make sense in terms of the meaning of 

the set of objects with which the query deals. 

Also, the system provides automatic maintenance of 

the semantic integrity of the database contents by 

verifying that stored data value makes sense according to 

dat a meaning . In addition , the methodology described 

above s impl i f i es the merging of conceptually modeled 

databases — a process which is not well understood 

[LUM78] . 
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The system supports logical redundancy without 

requiring that physically redundant data be stored. Use 

of logical redundancy allows for the data model to more 

closely meet the logical needs of the user. Avoidance of 

physical redundancy reduces storage space requirements and 

simplifies a number of data management tasks. 

Finally, the methodology is easily implemented in an 

existing database management system. In appendix C we 

showed how the GERMS system described above can be 

implemented, with only minor modification, in the SIR 

extended hierarchical DBMS. It should be apparent that an 

existing network or relational system could be used in a 

similar way. The importance of this facet is difficult to 

deny. 



APPENDICES 

The properties and modes of action of 
higher levels are not explicable by the 
summation of the properties and modes of 
action of their components taken in iso¬ 
lation. If, however, we know the ensemble 
ot the components and the relations exist¬ 
ing between them, then the~hTgher levels 
are derivable from the components." 

Ludwig von Bertalanffy 
"Chance or Law" 
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appendix a 

APPROACHES AND SCHOOLS OF MODELING 

The purpose of this appendix is to provide an 

overview of the basic approaches to conceptual data 

modeling. Each section furnishes a description of a 

specific modeling formalism or modeling school. 

The Entity-Relationship Model 

The Entity-Relationship (E-R) Data Model [CHEN76; 

CHEN77] adopts the view that the real world can be 

described naturally in terms of entities; and 

relationships among entities. Despite the fact that the 

model has it foundations in set theory and relation 

theory, it is not considered as an extension of the 

relational model [CODD70; C0DD72] specifically. Rather, 

it finds its place as a generalization of all first 

generation data modeling formalisms (DMFs) which is aimed 

at providing a semantically rich "unified view of data" 

[CHEN76]. 
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Upon its introduction, the model was presented as a 

database design and documentation tool and, as such, did 

not interface directly with a database management system. 

No formal data description language or query language was 

provided. Instead, constraints, structures, and 

operations of the E-R model were specified in a general 

set notation. 

An E-R database, designed in this way, was then 

mapped, by hand, into a first generation (usually 

relational) database schema. What was gained by this 

process was a semantic-based specification of the database 

contents as well as a direct (vis. stepwise 

normalization) approach to canonical schema design. 

It was argued that stepwise object decomposition as 

defined by the schema normalization process is a bottom up 

approach to schema design. Arbitrary unnormalized 

relations (data structure) are transformed, as directed by 

the semantic implications of functional dependencies, into 

a third normal form (information structure) representaion. 

The E-R model, on the other hand , provides a top 

—9.wn approach. Here, a high level conceptualization of 

the world is used as the starting point in developing an 

E-R (information structure) representation [CHEN76]. In 

addition, the resulting E-R schema often captures much 
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more of the real world semantics than does its third 

normal form counterpart [1]. 

The extreme popularity of the E-R model has resulted 

in the development of machine compatible E-R database 

systems. Such implementations center around an E-R 

specification language called CABLE (ChAin Based LanguagE) 

[SHOS78]. Although CABLE provides us with a well-defined 

syntax through which the E-R modeling concepts may be 

described, we choose a more generic medium of discourse: 

sets and relations. 

In the E-R data model abstract objects representing 

the generic structures of entities and relationships 

(among entities) are called entity sets and relationship 

sets> respectively. Thus the E-R notion of a set 

corresponds to the ubiquitous "object type" concept. The 

intensional structure of the database is described 

completely in terms of these two primitives when the E-R 

modeling formalism is applied. A network-graphical 

depiction of this intensional structure is called an 

entity-relationship diagram (ERD) [CHEN76] . 

In an ERD each entity set and relationship set is 

represented by, respectively, a rectangular box and a 

diamond shaped box. Every box in the ERD carries a 

semantically meaningful label. Information as to the 
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participation of entity sets in relationship sets is 

provided by (generally) undirected arcs which connect 

relationship sets to their constituent entity set(s). if 

desired, added clarity may be given by an arc label which 

specifies the role played by the entity in the 

relationship. 

When viewed at this abstract resolution, a network 

graph containing two distinct node types, the constraints 

imposed by the E-R model are limited: 

1. Connective links may exist only between nodes 

of different types (entity node-relationship node) 

2. Each connective link is labelled with the 

maximum cardinality permitted for the respective entity 

set in the relationship set (many mapping may be specified 

as a variable, e.g. "N") 

In light of the limited nature of these constraints 

we observe the following characteristics of relationships 

in the ERD network: 



406 

1 * A relationship may be n-ary. More than two 

entity sets may be connected to a single relationship set 

(see figure A.1) [2]. 

— relationship may be recursive. An entity set 

may be associated with itself via a relationship set (see 

figure A.2) . 

3. A pair of entity sets may be joined by more 

than one relationship set. In this situation each 

relationship set can capture a different semantic (see 

figure A.3). 

At the extensional or token level (see chapter 4), 

we can consider entity instances as being members of 

entity sets. Entity set membership, which is determined 

by a predicate, need not be disjoint. Thus a token entity 

can be a member of more than one entity set. 

If e(i) is an entity with membership in the entity 

set E(i) 

(e(i) e E(i)) 
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FIGURE a.1 

A TERNARY RELATIONSHIP 
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1 P 

FIGURE A.3 

TWO ENTITY SETS JOINED 
BY TWO RELATIONSHIP SETS 
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then an n-ary relationship set (R) can be defined as a 

mathematical relation of degree n among the entity sets 

[TSIC82]. Thus: 

R{[e(l),e(2)...e(n) | e(l) e E(l),e(2) e E(2)...e(n) e E(n)} 

Each tuple (called a relationship) of the relation R 

represents a particular instance of the relationship set. 

Our figure A.1 example could therefore be defined as a set 

of 3-tuples by means of: 

SUP-PROJ-PART = {[e(l),e(2),e(3)] | e(l) e PROJECT, 

e(2) £ SUPPLIER, e(3) e PART} 

When the relationship is recursive, as in the figure 

A.2 example, the E(i)’s need not be unique within R: 

MARRIAGE - {[e(l) ,e(2)] | e(l) e PERSON, e(2) e PERSON) 
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A Y.aJ.ue set is a domain comprising a number of token 

Yll"!5 • The membership of values in a value set, which 

need not be disjoint, is determined by a predicate. 

Value sets can be associated with both entity sets 

and relationship sets in the E-R model. The mapping 

between an entity set or a relationship set and the 

associated value set(s) is called an attribute [3]. Each 

attribute is assigned a semantically meaningful name which 

may be the same as that of the value set into which it 

maps. 

Attribute mapping is functional in nature, so the 

result of the mapping is the identification of a single 

value token (or a single value tuple token). An attribute 

can define a mapping (f) from an entity set or a 

relationship set into either a value set or the cartesian 

product of a number of value sets [CHEN76] : 

f: 0R v(i) OR V(i,1) x V (i, 2) x... V (i, n) 

As an example of the situation where an attribute 

maps into the cartesian product of value sets consider 

that the attribute ADDRESS maps into the cartesian product 
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of the value sets STREET-NUMBER and STREET-NAME (see 

figure A.4). Note that the cartesian product of value 

sets, as referenced here, holds a close correspondence to 

the early CODASYL notion of a ’’property space” (p) (see 

[C0DA62]). Obviously, it is allowed for more than one 

attribute to map into the same value set(s). 

As for the extensional representation of entity 

sets, each can be conceptualized as a two-dimensional 

table called an entity relation [4]. Each row of an 

entity relation (called an ’’entity tuple”) represents the 

occurrence of a token of the entity set. The columns of 

the table correspond to the values of the underlying value 

sets as defined by the attribute mapping. When 

relationships themselves have attributes, columns in the 

"relationship relations” (elements of the "relationship 

tuples") have an analogous meaning. 

The E-R model allows for the expression of two types 

of inter-object dependency: "existence dependency," and 

’’identification dependency." In the former case, the 

existence of an instance of one entity set presupposes the 

existence (within the domain of discourse) of an instance 

of another entity set with which it is associated [5]. A 

common example is found in the existence dependence of a 

TAX-DEPENDENT entity upon an EMPLOYEE entity. When 



FUNCTIONAL MAPPING OF AN ATTRIBUTE FROM AN 
ENTITY SET INTO TWO VALUE SETS 
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existence dependency is exhibited in the E-R model, both 

the involved relationship set and the depending entity set 

are said to form "weak" relations. 

The second form of dependency, identification 

dependency, is used to model the situation where the 

instances of an entity set can not be identified by the 

values of its own attributes. Instead, it is identified 

by its association with instance(s) of another entity set. 

If there is an identification dependence between two 

entity sets, then there is also an existence dependence 

between the objects. The reverse implication does not 

hold, however. 

Beyond object dependency constraints, semantic 

integrity can be enforced by specifying attribute 

constraints. Constraints of this type can take a number 

of different forms. One such constraint is implicit 

within the domain definition of the value set into which 

an attribute maps. 

Value sets can be restricted as to primitive data 

type and range of values. For example, the domain of the 

value set GRADE-POINT-AVERAGE into which the attribute GPA 

of the entity set STUDENT maps could be restricted as: 

TYPE: real numeric 

RANGE: 0.0<_V(i) < 4.0 
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Inter-object value constraints can also be expressed 

in the E-R model. Consider, for example, how we could 

express the semantic constraint that each manager must 

also be an employee: 

(Name(e) | e e MANAGERfo {Name(e) | e e EMPLOYEE} 

As for more complex specifications, we can define 

aggregate constraints to hold between entity sets that are 

qualified by membership in a relationship. For instance, 

the departmental payroll must equal the total of the 

salary values of the employees that work in that 

department: 

Payroll(e(l)) = z Salary(e(2)) | e(l) e DEPARTMENT, e(2) e EMPLOYEE, 

[e(l) ,e(2)] e WORKS-IN 

In conclusion, it should be noted that the wide 

acceptance and popularity of the E-R data model is due to 

its mixture of simplicity with rich semantic expressive 
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power. ERD specifications are general enough to express 

real world constructs, yet they are not too far removed 

from effective machine representation. Furthermore, ERDs 

serve as a valuable medium through which users and system 

designers can communicate [TSIC82]. 

The Basic Semantic Data Model 

From the viewpoint of the Basic Semantic Data Model 

(BSDM) [SCHM75], the world can be represented in terms of 

object instances: 

{obj(i)} 

and relationship instances: 

(obj(1),obj(2),obj(3)...obj(n))} 

The token objects 

common properties 

relationship types, 

and token relationships which have 

are grouped into object types and 

respectively. 



417 

Given this introductory description, we are tempted 

to correlate the BSDM with the Entity-Relationship (E-R) 

approach. We will soon learn that the methodologies are 

quite different, however. The BSBM is very much more 

concerned with object characterization than is the E-R 

model which, incidently, is its chronologic successor. 

Relationships, as they exist in the BSDM, have a 

direct semantic meaning. They can not be further 

decomposed. Relationships represent fundamental facts 

about the involved objects. 

A relationship instance, ir(obj(r), obj(d)), is a 

"depending relationship" if the existence of one 

constituent object, say obj(r), implies the existence of 

(1) the relationship instance itself, ir(obj(r), obj(d)); 

and (2) the remaining object, obj(d). In this case, 

obj(r) is called the "ruling part" and obj(d) is called 

the "depending part" of the depending relationship 

instance. 

There are two distinct kinds of relationship 

instance: characteristic relationships and association 

relationships. This relationship partioning is mutually 

exclusive and exhaustive. 
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Each instance of a chracteristic relationship is a 

depending relationship, say ir(obj(r), obj(d)), which 

holds the following qualifications: 

1. The token obj(r) is the ruling part of the 

relationship 

2. The remaining depending part token obj(d) 

participates either as the ruling part or not at all in 

other relationship instances 

Here, the depending object is called a characteristic 

object. 

An object which is not a characteristic object is 

called an independent object. An independent object is 

never the depending part of a depending relationship 

instance. Note that, given the above specification, both 

independent objects and characteristic objects can serve 

as the ruling part of characteristic relationships. In 

other words, characteristic objects can themselves be 

characterized. 

Both independent objects and characteristic objects 

can be either simple or complex. A simple object is one 

which has no characteristics (does not act as ruling part 

in any characteristic relaionship). 
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The definition of a complex object type includes, 

recursively, its characteristics extending to the simple 

object level. Thus, a complex independent object type 

comprises a kernel independent object type; all complex 

and simple characteristic objects with which the 

independent object participates in characteristic 

relationships; all complex and simple characteristics 

through which these complex characteristics are 

characterized; and so on. 

A complex characteristic object is defined in a 

similar recursive manner [6]. A simple characteristic 

object comprises itself. The notion of a simple 

independent object type, a class of noncharacteristic 

objects which have no characteristics, makes little sense 

and is not considered (see figure A.5). 

Kernels of complex independent object types can be 

interconnected only by means of association relationsnips. 

Corresponding association instances can be created only if 

the respective token objects exist [73 • There are no 

formal restrictions on the deletion of association 

instances, however. 

The objects of the BSDM have a natural (semantic) 

kinship to the standard database update primitives 

(insert, delete, modify). Independent objects represent 
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THE OBJECTS OF THE BSDM 

A.5 FIGURE 
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the entities of the real world. As such, they are the 

exclusive focus of insert and delete directives. Modify 

operations are not applied directly to independent 

objects; they refer to characteristic objects. 

This concept is elucidated when we consider that 

there exists a ’’semantic dependency” of each 

characteristic object upon its independent object. An 

independent object instance ’’determines” the 

characteristic objects which describe it -- an employee 

instance determines her or his salary, address, and hair 

color. Consequently, existence of a characteristic object 

depends (if semantic integrity is to be preserved) on the 

a priori existence of the independent object which it 

characterizes . 

As their name implies, complex independent objects 

are unaffected by operations performed on other 

independent objects. They exist orthogonally in the 

model. The existence of an independent object does depend 

on the existence of at least one association instance in 

which it participates, however. In other words, ’’free 

floating” independent object tokens are not allowed. 

The formalism that is based on these primitive 

notions includes the specification of a variety of special 

types of association and characteristic relationship. 
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Many of these types have their foundations in artificial 

intelligence (AI) and therefore have well-defined semantic 

connot at ions. 

An association instance can be typed as "subconcept 

of" or "part of," for example. Specification of a 

subconcept of association implies that the characteristics 

of the superconcept independent object are inherited by 

the subconcept object. Specification of a part of 

association also implies the potential for the derivation 

of more detailed properties of constituent objects. 

Application of the BSDM formalism to a database 

allows for the database to be visualized in different 

levels of abstraction. In the most abstract or coarsest 

level, the data comprises only independent objects and 

accompanying associations. At this level, complex and 

simple characteristics are ignored completely. Note that 

ignorance of association relationships is not allowed. 

At the next lower level of abstraction, the direct 

(independent object is ruling part of depending 

relationship) characteristic objects are included. Here, 

the complex nature of complex characteristics is not 

considered. Thus, characteristic objects are not 

themselves characterized. 
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As the conceptualization of the database becomes 

less and less abstract, characteristics of complex 

characteristic objects continue to come into 

consideration. Eventually, at the finest (least abstract) 

level, the database is considered in full detail. 

The process described above is somewhat similar to 

stepwise movement down the aggregation hierarchy 

(aggregate decomposition) as described in [SMIT77a] and 

[SMIT77b] (see chapter 5). It is an extremely restrictive 

case of aggregate decomposition, however, because the BSDM 

demands that only the topmost aggregate hierarchical level 

be allowed to include independently existing real world 

objects. 

The BSDM is a formalism which can be used to provide 

a semantic description of relational database structures 

and operations. In the absence of such a description, the 

basic relational model [C0DD70; C0DD71; BEER78] is purely 

mathematical. 

Functional dependency of relational attributes 

corresponds directly to semantic dependency of BSDM 

objects. Relational schema normalization achieves the 

separation of complex independent objects from one another 

and from associations. 
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After conversion to normal form the representation 

of each BSDM independent object token and association 

instance occurs only once in the relational database. 

With this in mind, we achieve an understanding of how the 

mathematically based process of normalization eliminates 

the occurrence of semantic based insert and delete 

anomalies in a relational environment. 

The Semantic Association Model 

The Semantic Association Model (SAM) [SU791 emulates 

the enterprise’s real world in terms of a set of 

interrelated ’’concepts.” A concept is a physical or 

abstract thing or event. Concepts are of two basic types: 

atomic and non-atomic. An at omic con cept is 

non-decomposab1e and its meaning is both understood by and 

of consequence to the enterprise. A n on — at omic concept is 

one whose meaning is described or defined in terms of 

other atomic or non-atomic concepts. 

The grouping of concepts to define a non-atomic 

concept is called an association. Thus, each occurrence 

of an association relates to the formation of an 

occurrence of a non-atomic concept. Associations are of a 
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number of different types. In fact, the entire SAM is 

based on distinguishing types of associations and the 

concepts that they form. The wide variety of association 

types allows for an extremely detailed description of the 

semantics of data abstraction (see chapter 5). 

A set of similar concepts is grouped by means of a 

"membership association" to form a concept class (CC). 

Each concept class is represented by a CC node in the SAM 

schema. The data definition of a CC is tripartite. It 

includes the specification of: 

1 . ACC name 

2. A data type primitive 

3. A domain definition 

Note that the latter two items represent semantic 

integrity constraints. 

A SAM database management system (DBMS) utilizes 

these contraints in determining the validity of the use of 

relational operators (e.g. EQ, LT, GT, NE) within 

database transactions. Such object comparison is 

restricted to be within a CC or between CCs that belong to 

a higher level CC. The following example should help to 



426 

vivify this point. 

Consider the CCs "SUPPLIER-NAME,” "CUSTOMER-NAME," 

"NAME," and "CUSTOMER-ADDRESS." Objects within any one of 

these CCs are comparable because they hold identical type 

and domain descriptions. Inter-CC comparison is not as 

simple; we must utilize the integrity constraints. 

SUPPLIER-NAME and CUSTOMER-NAME are comparable because 

they belong to the higher level NAME CC. SUPPLIER-NAME 

and CUSTOMER-ADDRESS objects are not comparable, on the 

other hand, because they do not share a common CC 

membership (see figure A.6). 

The grouping of heterogeneous CCs, all of which 

serve as attributes in the definition of an "entity type," 

is called a characterization association. From this 

description we realize that a SAM entity type is a group 

of token entities which are characterized by a common set 

of attributes. This definition of entity type does not 

conflict with common usage. 

The attributes in a characterization association can 

be atomic or non-atomic concepts. For example, the entity 

type EMPLOYEE is described in a characterization 

association by the concept classes EMP-NO, EMP-NAME, 

DEPARTMENT, and INCOME. The CC EMP-NAME is non-atomic in 

that it comprises the CCs FIRST-NAME and LAST-NAME. The 
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characterization association most closely resembles 

traditional aggregation abstraction (refer again to 

chapter 5) . 

^ characterizing entity (CE) is an entity which 

exists merely to characterize another entity. It 

therefore has an existence dependence on the entity it 

defines. A defined entity (DE), on the other hand, holds 

independent status (see figure A.7). 

In terms of CE semantics, the DBMS enforces semantic 

integrity by: 

1. Rejecting the entrance of a new CE token object 

into the database unless the characterized token object 

exists 

2. Deleting all CE tokens when the respective 

characterized entity token is deleted 

3. Limiting access to the CE object 

that it be accessed (referenced) " 

characterized entity 

by requiring 

through" the 
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FIGURE A.7 

A CHARACTERIZATION ASSOCIATION 
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The grouping of similar or differing entity types 

which represents the interaction of the types such that 

each type performs a specific function in the interaction 

is an ’’interaction association.” The concept described by 

the interaction is an entity interaction (El). The 

definition of an El may include specification of the 

mathematical mapping among involved entities. 

The types of function performed by the entities 

particpating in an El are similar to those used in 

artificial intelligence semantic net applications. Some 

examples are agent (AG), direct object (DO), affected 

object (AO), and modifier (MD). Schema links between the 

El node and participating entity nodes can carry semantic 

tags which specify the function of the participating 

entity in the interaction (see figure A.8). 

With regard to El semantics, the DBMS can enforce 

semantic integrity by: 

1. Rejecting entrance of a token El object unless 

participating entity tokens exist in proper cardinalities 

2. Allowing the interaction data to exist beyond 

the deletion of the functional objects 



FIGURE A.8 

AN INTERACTION ASSOCIATION 
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The significance of item 2 is not immediately 

obvious. If a separate El object were not defined, 

information about the interaction would be represented 

within the definition of one of the functional entities. 

For instance, information about the sale of an item would 

be represented as information about the agent of the sale, 

say within an EMPLOYEE token. In this case, if the 

employee token is deleted, we lose information about the 

interaction (sale). By treating the interaction as a 

separate object which can exist beyond the existence of 

its creators, we do not suffer this consequence; the sale 

data is retained. 

The set theoretic grouping of entity types which 

represents a common set of real world objects is called a 

set relationship association. The concept that is 

described by such an association is called a "set 

relationship” (SR) • 

Knowledge as to the meaning of the association i s 

provided by semantic tags on the links which connect the 

SR concept to the participating concepts. These tags 

define the relationship between a constituent object and 

the SR object as being of type ST (set), SB (subset), SI 

(set intersection), SE (set equality), or SX (set 

exclusion). Figure A.9 provides an illustration. 
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The implications of these tags upon the semantic 

integrity constraints that can be enforced by the DBMS are 

obvious. An SE tag, for example, defines that each token 

which is a member of one linked entity type must be a 

member of both linked entity types. An SX tag, on the 

other hand, states that an instance may not be a member of 

both types. An SI tag defines that a token object can 

belong to one type or to the other type or to both types. 

An SB link defines an existence dependence between the 

related entity types. 

Concepts which serve as components of another 

concept are grouped together to form a "composition 

association." The concept whose assembly is represented 

by such an association is called a "composition" (CP). 

Each CP has one instance only. 

A composition association differs from a 

characterization association in that the constituent 

objects of the former type are allowed independent status. 

This is an important semantic distinction. The 

composition association models how objects are "made up 

of” other objects which exist in and of themselves. 

In a manufacturing environment, for example we can 

tnink of an assembly as being composed of various 

subassemblies; each of which may be composed of 
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subassemblies; and so on until we reach some level of 

primitive part. Each level of composition deserves 

representation and independent existence in its own right 

(see figure A.10). 

Phrased another way, the composition of 

subassemblies and primitive parts to form an assembly 

represents the fact that the parts have been combined. It 

does not represent the fact that the parts have come into 

relevant (to the enterprise) existence. The 

aforementioned characterization association serves to 

model the latter situation. A consequence of the 

semantics of the composition association is that the DBMS 

allows for the independent insertion, deletion, and 

modification of component objects. Sibling components of 

the CP are unaffected by such changes. 

The semantics of collective or aggregate attributes 

can be described by a CP (composition) which has only one 

component entity type. Here, the single CP represents the 

compilation of token component entities in the formation 

of a type. This collective representation can be 

characterized by means of characterization associations. 

The respective CC objects depict concepts which would be 

traditionally represented by DBMS "aggregate functions" 

(e.g. count, mean, sum). Figure A.11 provides an example 

of this. 
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FIGURE A.10 

A COMPOSITION ASSOCIATION 
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When one concept can be identified as being the 

cause of another (effect) concept, the semantics are 

captured by a "cause-effect association." Such an 

association defines the occurrence of a concept called a 

causation (CF). The links which connect the participating 

cause and effect concepts are labelled with the semantic 

tags "CA" and "EF," respectively (see figure A.12). 

The DBMS can use the cause-effect association to 

drive an update triggering mechanism. When the 

prerequisites of causation are satisfied by proper 

updating of a CA linked object, the automatic updating of 

the respective EF concept is triggered. The causation 

concept is somewhat similar to the notion of "event 

precedence" as used in the RM/T data model [CODD79] [8]. 

When concept(s) are the means by which an action 

concept is performed, the semantics are represented by an 

"action-means association." The concept that is described 

by such an association is called an action-means (AM). 

One constituent object is identified as being an action, 

while the other constituent object(s) are the means of 

performing the action. The connective links of the 

association are tagged as AC (action) or MAC (means of 

action) . 
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As an example, consider the concepts "PERSON-HOURS” 

and "PRODUCTION." If a given production token can be 

increased by prolonging one or more PERSON-HOUR tokens, 

then PRODUCTION serves as the action and PERSON-HOURS 

serves as the means of an action-means association. The 

AM concept "PRODUCTION-FACTOR" is defined by this 

association (see figure A.13). 

A similar semantic association that can be 

represented is one in which one concept is the purpose for 

which an action-concept occurs. Such an association is 

called an "action-purpose association." The concept 

defined by an action-purpose association is called an 

action-purpose (AP). 

Consider the concepts "SALES-EFFORT" and 

"SALES-QUOTA." Sales effort can be thought of as being an 

action which is performed in an attempt to reach a sales 

quota (purpose). These concepts, grouped in an 

action-purpose association, define an AP concept, say 

"SALES." Figure A.14 depicts this association. 

The integrity constraints and triggers that should 

accompany the action-means and action-purpose associations 

are situation specific. As such, they are not specified 

as a part of the formalism. Since the association types 

are specifically recognized by the system, however, 
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appropriate semantic integrity triggers can be 

proceduralized easily at system implementaion time. 

The final and perhaps most semantically powerful 

association of the SAM is the "logical relation of 

implication association." The object that is defined by 

this association type is called a logical relation of 

implication (LRI). This association is used to represent 

the semantics of the situation where the existence of one 

concept implies (logically) the existence of another 

concept. Situations of this type can be phrased in an 

if-then statement such as "if A then B." 

The links that connect constituent objects to the 

LRI in a logical relation of implication association carry 

the appropriate semantic tags. Conditional and 

consequential concept links are labelled "IF" and "THEN," 

respectively (an example is provided in figure A.15). 

When implemented properly the logical relation of 

implication association can provide the DBMS with a strong 

deductive ability. 

For the most part, the semantic richness of a SAM 

schema is provided by inclusion of the action-means, 

action-purpose, and logical relation of implication 

constructs. Indeed, these constructs allow for the system 

to handle "how and why" queries vis-a-vis the simple 
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"what” queries that are answerable by traditional database 

abstraction structures [SU79]. 

The Semantic Database Model 

The Semantic Database Model (SDM) [HAMM81] is 

founded on the notion that the real world can be modeled 

by describing the grouping of objects into meaningful 

classes. The fundamental building blocks of an SDM 

representation are as follows: 

1. Entities — reflect real world objects in the 

usual way 

2. Classes -- are meaningful named collections of 

entities 

3. Interclass connections — structurally relate 

classes 

4. Attributes -- describe the characteristics of, 

and relate, entities and classes 
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5. Derivation primitives -- provide for a formal 

definition of derived attributes and interclass 

connections 

The SDM does not explicitly distinguish between 

aggregation and generalization abstraction. Rather, all 

abstraction is performed in terms of defining and 

associating classes of objects in various ways. At the 

most general level of abstraction we find the notion of 

base class. Base classes represent the mutually exclusive 

and exhaustive partitioning of simple entities into 

cardinal groups. This is the most generic categorization 

of entities [9]. The definition of a base class is 

independent of all other classes. 

Nonbase classes are formed by means of interclass 

connections which define the existence of classes in terms 

of other (base or nonbase) classes. In essence, an 

interclass connection comprises the membership rules of 

the class which it defines. Objects which satisfy the 

requirements specified by the membership rules are 

permitted entry (membership) in the class. 

Interclass connections are of two major types: 

"subclass” and "grouping." The expression of each of 

these types can take on a number of different forms. 
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The subclass connection, as its name implies, 

provides for the representation of the situation where 

members of one class form a subset (not necessarily 

proper) of the members of an existing class. Membership 

of an entity in a subclass can depend on: 

1. User specification 

2. The value of an attribute of the entity 

3. Membership of the object in other classes (set 

operator defined) 

4. Service of the object as an attribute value 

relating to another object of a different class 

i 

The grouping connection provides a means by which a 

class can be partitioned to form a number of homogeneous 

higher (abstract) level groups. The semantics of this 

partitioning correspond roughly to the notion of generic 

decomposition, or specialization [SMIT77b] (refer back to 

chapter 5). The assignment of members of the underlying 

class into the grouping class need not be disjoint. 
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Each attribute used in the SDM has assigned, as part 

of its specification, an "applicability.” The 

applicability is used to distinguish whether an attribute 

applies to the members of the class or to the class 

itself. In the former case, each member of the class 

holds a particular value(s) on the attribute. In the 

latter case, the entire class holds one and only one 

value. This single attribute can be related to the set of 

class member objects, however. Here, the class attribute 

corresponds to what is commonly referred to as an 

aggregate attribute [10]. 

N-ary associations among entities can be represented 

in the SDM by specifying interrelationships among the 

attributes of the entites. For example, a binary link 

between members of different classes can be established by 

defining that a member attribute of one class is the 

inverse (see [SENK75]) of a member attribute of another 

class. Alternatively, there can be specified a "matching" 

of entities from different classes according to the values 

of certain attributes. 

The SDM provides a formalized facility to allow for 

the specification of derived member attributes. The 

facility is based on the inclusion of ten derivation 

primitives through which the values of member attributes 
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can be derived in terms of information contained elsewhere 

in the database. A set of attribute definition rules 

accompany the derivation primitive to insure that semantic 

inconsistency is avoided. 

Eight additional derivation primitives allow for 

class attribute values to be derived from existing 

database information. Two of these primitives can be 

considered as aggregate functions in that their values are 

derived in terms of intra-class member characteristics. 

The remaining six primitives deal with class attributes of 

other classes. 

Because a token entity can be a member of many 

classes in the SDM, a formal set of attribute inheritance 

rules are required. These rules specify how an entity, 

viewed in terms of its membership in one class, is allowed 

to inherit attributes due to its membership in another 

class. Note that only member attributes are inherited 

since, by definition, class attributes correspond to one 

object only: the class which they describe. 

When a subclass is defined by means of a subclass 

connection such that the membership rules have to do with 

user specification or with the value of a member 

attribute, the inheritance rule is simple. Here, members 

of the subclass inherit all member attributes of the 

members of the underlying (super) class. 
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When a subclass connection is defined in terms of 

set theoretic constructs, the inheritance rules which are 

applied are dependent on the set operator that is used to 

define the subclass membership rule. Specifically: 

1. If the subclass is defined as the int ersect ion 

of two underlying classes, the subclass members inherit 

all of the member attributes of each of the underlying 

classes 

2. If the subclass is defined as the union of two 

underlying classes, the subclass members inherit those 

member attributes that are shared by both of the 

underlying classes 

3. If the subclass is defined as the (set) 

difference of two underlying classes, the subclass members 

inherit the member attributes of the class which serve as 

the minuend of the difference operation 

It is important to realize that inheritance of a 

member attribute, used in this context, refers to both 

meaning and value of the attribute. Thus, despite the 

fact that a subclass and a respective superclass may have 
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class attributes which hold a similar semantic, it makes 

little sense to consider a subclass as inheriting (in this 

sense of the word) a class attribute from its underlying 

parent class. 

The above inheritance rules are an integral part of 

the SDM and, as such, are applied automatically upon the 

specification of the corresponding interclass connection. 

It is hoped that the strict definition and automatic 

application of attribute inheritance will help to aleviate 

some of the semantic ambiquity which can arise as a result 

of user defined characteristic inheritance. A 

consequential disadvantage of such rules is the resulting 

inflexibility of the definition of subgroup member 

properties. 

A precise specification of the SDM data definition 

language syntax is found in [HAMM81]. SDM database 

operations (data manipulation facility) have not yet been 

defined, however. It is expected that such a database 

manipulation facility, when developed, will closely 

parallel the existing schema definition conventions. The 

principle of duality of procedure and schema shows a 

strong influence in the design of SDM. 
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The Binary Approach 

A binary data model is one in which each node 

represents a single simple attribute. Arcs which span 

pairs of nodes represent binary associations between these 

objects. The semantic of an arc is context dependent. It 

can depict an aggregation of attributes in the formation 

of an entity, or it can represent a relationship between 

entities. 

The term ’’binary model” does not identify any single 

data modeling formalism (DMF); a number of binary 

formalisms have been proposed. Among the best known of 

these are the Semantic Binary Data Model [ABRI74], and 

DIAMII [SENK75]. Because the Semantic Binary Data Model 

is quite similar to the AI semantic net based models 

discussed later, we will concentrate on describing DIAMII. 

Our description of the modeling formalism will be brief 

because the binary approach has limited applicability to 

the domain of our concerns. 

The DIAMII model is fairly representative of the 

generic class of binary models. Like all binary data 

models it is based on a few simple structures which allow 

for concise representation of extremely complex 

relationships [TSIC82]. As is the case with the other 
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members of the binary cohort, the model is far from being 

user oriented. 

The PIAMII methodology. DIAMII is a multilevel model — 

it models the entire system from user view to data 

structure level. Data semantics, the construct in which 

we are interested, are modeled in the f,information level" 

of the structure. This level is second only to the "end 

user level." The information level deals with three major 

system characteristics: 

1. The naming of "things" (entities) [sic] 

2. The description of "things" 

3. The specification of user transactions 

A DIAMII paradigm is built completely from elemental 

"facts" which describe real world things. Elemental 

"things" are represented by names which are categorized 

into groups of names. Each group has a unique name witnin 

the paradigm. Member names are unique within a group but 

they may be duplicated within the overall structure. 

Since group member sets need not be disjoint, the 
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identification of a specific member requires the 

concatination of group name with member name (i .e. 

GROUP-NAME/MEMBER-NAME). 

A member name defines a value that is held by the 

object represented. The group name to which the member 

name belongs provides a meaning to the value. Thus we can 

think of member names and group names as being values and 

types of values, respectively. For instance, the 

group/member specification: 

EMPLOYEE-NUMBER/! 2345 

refers to the "thing” employee 12345. 

"Things” are described through the explication of 

facts. A fact is represented by the existence of an 

association pair (pair of named binary links) between two 

member names. Each participant in an association plays 

the role of member describing place or member lescr^ibed 

place. The association is depicted by a directed link 

traveling from the former to the latter role. 

Within an association pair, each association is the 

inverse of its partner. Thus, each connected member name 

plays the role of member describing place for one 
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association and member described place 

association. 

Every association is provided with a 

be unique with respect to its group. In 

two association names which eminate from a 

hold the same name. 

Figure A.16 provides an example of 

Like all DIAMII facts, it has 

interpretations: 

for the other 

name which must 

other words, no 

given group can 

a DIAMII fact. 

two possible 

1. Employee 12345 works in the data processing 

department 

2. The data processing department employs employee 

12345 
\ 

The association names of the association pair are 

DEPARTMENT-OF-EMPLOYEE and EMPLOYEE-OF-DEPARTMENT. Each 

association of the pair is the inverse of its partner. 

In the DEPARTMENT-OF-EMPLOYEE association, member 

name EMPLOYEE-NUMBER/12345 plays the role of member 

described place while member name DEPARTMENT/1DATA-PROC’ 

is the member describing. In the EMPLOYEE-OF-DEPARTMENT 

association the member roles are reversed. Thus 

EMPLOYEE-NUMBER/12345 is describing while DEPARTMENT/ 
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’DATA-PROC' is described. 

A DIAMII information level schema consists of a 

graph in which named groups are represented by nodes and 

inter group associations are represented by directed arcs. 

Figure A.17 provides a simple example of such a schema. 

A DIAMII schema of this type represents the 

intension of the database in the usual way. The database 

extension can be conceptualized as forming a third 

dimension of the intensional schema. In this added 

dimension individual member names (values) are structured 

(see figure A.18). 

Except for virtual information which is derivable 

from inference algorithms, all of the information that is 

contained in the system can be extracted by moving from 

node to node. This movement can be from member name to 

member name between groups, or from member name to member 

name within a g^oup. 

DIAMII, and binary models in general, represent an 

atypical approach to data modeling. The design of other 

I^Fs shows ar. attempt to take information complexity from 

the prooe:.-es and embody it in the resulting model. This 

as ate rationale behind the incorporation of aggregation 

art generalization abstraction into the constructs of a 

DM?. 
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In DIAMII, on the other hand, we remove all 

abstraction from the model structure and represent 

information in an elemental form. In essence, a DIAMII 

data model depicts the facts that can be asserted about a 

P.P0^ items. There is no single representation of 

an object or entity. The user must construct complex 

facts from the elemental binary facts. In terms of user 

query formulation, the user is required to "work his way 

through" the mass of binary assertions. 

Because it provides modeling power at the cost of 

complexity, the value of DIAMII has been found to lie at 

the lower (implementation) levels of the database 

management system. In other words, it is useful in 

implementing the abstractions that are present in other 

more abstract models. An example of such is found in 

[SCHN76]. Here, the modeling constructs of the binary 

DIAM approach are redefined in terms of n-ary relations 

and used to implement a more user oriented relational data 

mode 1. 
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AI Approaches 

In recent years the emphasis placed on database 

applications by the artificial intelligence (AI) research 

community has been increasing. Furthermore, the 

differences in goals and methodologies between AI and data 

management (non-AI) efforts are decreasing [WONG77]. 

There can be identified five basic realms of AI work 

which deal with data ■ modeling issues (according to 

[TSIC82]). Each of these domains revolves around the use 

of some form of semantic net(work). Of the five basic 

realms, only two are of direct concern to our work. One 

of the remaining three areas deals with knowledge based 

systems; the other two domains have to do with natural 

language database interfaces (see [CODD74], [HEND78], 

CMINK77], CMYL075], [WALT78]). 

Of those Al-based modeling realms in which we are 

interested, one is called the "epistemological realm” 

[BRAC791 while the other will be referred to as the 

"mathematical logical realm" (see [SCHU76]). [11]. 

Epistemological data modeling formalisms (DMFs) 

emphasize the structure of the semantic net and the 

inheritance rules that are implied by this structure. The 

models of this type most closely resemble non-AI data 

management products. 
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Semantic net nodes and arcs of the mathematical 

logical realm correspond to the constructs of predicate 

calculus. Models of this type are often called "deductive 

AI systems" [WONG77]. 

Since each of these two realms is related to our 

pursuit we will describe an example system from each. 

First, however, we feel that it is necessary to provide a 

brief description of semantic nets as they apply to data 

modeling. 

A semantic net is a directed network graph. 

Although both nodes and edges of the graph may be 

labelled , only the edge labels have a semantic 

consequence. Node labels are for reference purposes only. 

When a semantic net serves as a database schema it 

denotes both the intensional database (called "upstairs") 

and the extensional database ("downstairs") structures. 

Similarly, the semantic net database operation primitives 

mix intensional with extensional functions (recall that a 

non-AI schema is exclusively intensional and non-AI 

operations are exclusively extensional in nature). At the 

extensional level of the net nodes represent specific 

(token) things and arcs represent assertions about the 

things. 
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Unlike other database structural representations, 

semantic nets make use of the notion of ’’semantic 

distance” [TSIC82]. In a semantic net representation the 

physical proximity of two objects (nodes), measured by the 

number of arcs that must be spanned to form a path between 

them, has a definite semantic connotation. ’’Close” 

objects are more similar than are ’’distant” ones. In the 

event that the similarity of two objects would be 

overrated by their proximity within the net, their 

semantic distance can be increased by connecting them with 

an ’’irrelevancy arc.” 

The extensional-intensional nature of a semantic 

net, coupled with the strong semantic meaning embedded in 

its structure often results in the following situation: 

operations on a semantic net data model trigger the 

propagation of side effects throughout the net. In other 

words, a single simple database change is causation of a 

number of automatic database changes. 

In non-AI database situations such multiplicity of 

side effects would be considered as anomalous and 

aberrant. Indeed, much research effort is directed 

towards the avoidance of such (see [HAMM75]). In the AI 

view effect propagation is considered as being normal, 

however. The data model is seen as a semantically 
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self-adjusting system. We feel that the intuitive 

pleasantness of this viewpoint is difficult to deny. 

Despite the elegance and power of semantic net based 

AI data models, they are not without their problems. 

First of all, a semantic net is, in all case, expensive to 

design, store, maintain, and process. Furthermore, it is 

often noted that semantic net implementations are an 

example of ’’overkill” for any particular database 

application. Semantic nets may be overly complex because 

they include so many concepts — they are aimed at 

modeling too many real world provinces. This opinion is 

put forth in [SU79], [HAMM81], and [TSIC82]. 

AH epistemological based system. In this section we 

describe a semantic net database management system (DBMS) 

as presented in [ROUS75]. Many of the concepts discussed 

hereunder have evolved from the TORUS natural language 

understanding DBMS project (see [MYL075]). We believe 

that these concepts provide a thorough overview of the 

epistemological realm. 

The nodes of the semantic net are of four basic 

types: 
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1* Concepts -- depict the physical and abstract 

objects of the real world 

2. Characteristics -- serve as modifiers of 

concepts, events, or other characteristics 

3. Values -- are the values taken on by the above 

characteristics 

4. Events -- emulate the actions of the real world 

The graphical representation of a characteristic 

node includes two edges. One edge, labelled Mch" 

(characterize), is directed toward the object which is 

modified by the characteristic. The second "v" (value) 

edge points to the associated value of the characteristic. 

The characteristic node is labelled with the name of the 

characteristic. 

Figure A.19 provides an example of a characteristic. 

This semantic net representation asserts ’’Barbara has blue 

eyes.” Note that an alternative conceptualization of a 

characteristic is that of a binary relation which maps an 

element from its domain to its range. In the above 

example, viewed in this light, "barbara” is an element of 
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the domain (set of objects which may be characterized) of 

the relation. "Blue" is an element of the range (set of 

possible values which may be taken on). 

Events are complex objects in that the 

representation of a single event consists of a number of 

nodes and edges. One node, the event node, depicts the 

event itself. The remaining nodes of the event represent 

objects which play specific roles in the event [12]. 

These roles are specified by labelled edges which are 

directed from the event node to the role playing object. 

Common roles are affected (aff), agent (a), destination 

(d), instrument (i), object (o), result (r), source (s), 

and topic (t). 

An example of a semantic net representation of an 

event is given by figure A.20. The "fact" that is 

asserted by this representation is "CDC supplies executive 

software to UMass." This figure illustrates that objects 

are allowed to play more than one role in an event. The 

object "cdc," for instance, is both the source of the 

object, and the agent in the example event. 

When concepts are engaged in complex situations such 

as events and the like, their characterization often 

requires qualification. In the above network, for 

example, the concept "executive software" can be 
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characterized by a particular price. The price is not a 

function of the concept alone, however. It is determined 

by the event (supply) in which the concept plays the 

object role. Thus, the characterization of the concept 

must be specified ”in terms of," the situation. 

Mathematically, we must map from a two-dimensional cross 

product domain to a range of values. 

In this instance, the ”wrtM (with respect to) edge 

provides the appropriate qualification. Figure A.21 shows 

how the executive software concept is characterized with 

respect to the specific supply event in which it plays a 

r ole. 

In an AI model of this type the single semantic net 

describes both the intension of the database and the 

extension of the database. Intensional (upstairs) nodes 

are labelled in capital letters. Extensional (downstairs) 

nodes have lower case labels. Note that the prior 

examples have all been extensional database 

representations. 

The upstairs of the net serves as a generic template 

through which the downstairs objects are structured. The 

two representations are connected by means of the "E" 

(example of) labelled edge which is directed towards the 

extensional token. Figure A.22 provides an illustration 
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FIGURE A.21 

QUALIFIED MODIFICATION OF A CONCEPT 
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of how the upstairs and downstairs structures are 

connected. 

The semantics of causation are captured through 

utilization of the "effect" and the "prereq" 

(prerequisite) edges. As an example, consider the 

following assertion: "A part must be shipped to a customer 

before it is received by the customer." In essence, this 

states that shipment is a prerequistie of receipt. Figure 

A.23a illustrates the semantic net (upstairs) 

representation of this assertion. 

Now consider the assertion "The occurrence of an 

order event will bring about the occurrence of a supply 

event." In other words, order effects supply. Figure 

A.23b illustrates this. 

"Knowledge chunks," called scenarios, constitute the 

semantic net structure. Each scenario consists of a set 

of interrelated concepts, events and values that have a 

distinct semantic foundation. The structure of a scenario 

forms a "pattern template" which, when matched with 

another structure, provides meaning and understanding of 

the latter to the system. 

The individual pieces of knowledge, represented by 

scenarios, are organized according to three basic axes, or 

dimensions, of the overall semantic net. Movement along 
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CUSTOMER 

FIGURE A.23a 

CUSTOMER 

ORD 

FIGURE A.23b 
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each dimension has definite semantic implications. The 

first axis, which is based on the notion of the subset 

relation, is called the "SUB" axis. Scenarios which 

appear lower on the SUB axis are subsets of those that 

appear higher on the axis. 

If an event E is a subset of another event E’ , then 

all concepts which play roles in E are subsets of the 

respective concepts that play roles in E’. The semantic 

properties of the super concepts (roles of E’) are 

inherited by the subconcepts accordingly. 

The second axis, called "DEF," is definitional in 

that movement along the axis provides varying degrees of 

detail about characteristics, concepts, and events [13]. 

For example, the concept "CDC COMPUTERS” is located below 

the concept "COMPUTERS” with respect to the DEF dimension. 

The final dimension through which the scenarios are 

organized is the "PART” dimension. Concepts which appear 

lower on this axis are components of the higher 

concepts [14]. Thus "DEPARTMENT” is located below 

"COMPANY.” 

The inclusion of a fourth axis to represent a "TIME” 

dimension has been considered. Through the use of such a 

dimension each scenario would be assigned a "period of 

applicability." As a result, the net would obtain a 



475 

knowledge of its own developmental history and, 

accordingly, of the history of the universe of discourse 

which it represents. 

The intelligent database schema ’’understands” 

user-system dialogue by matching the (semantic) graphic 

structure of the dialogue to the structure of its internal 

scenario templates. For each statement and query that 

enters the system, a graph is constructed. This graph is 

then processed through a graph-fitting algorithm which 

moves the input graph as far down along the net axes as is 

possible. Additional inferences are made through the use 

of context -- the existing understanding gained from the 

previous dialogue. 

At a lower structural level, the system is 

implemented as a relational database. There are four 

basic types of relations which have a natural 

correspondence to three of the basic node types of the 

semantic net. These node types are concept, event, and 

characteristic. Value nodes of the net are not 

represented as relations for obvious reasons. 

A unique feature of the DBMS is that, despite its 

relational foundation, it does not depend on the use of 

keys. As a consequence, the user of the system is allowed 

to hold a more "natural” conceptualization of the concepts 
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represented. For example, employee tokens can be thought 

of as persons rather than as unique employee numbers. 

Because the relational database is structured within 

a semantic framework, the relational database operation 

primitives (selection, union, intersection, difference, 

division [C0DD70]) require modification. Five 

corresponding semantic operators, all of which are set 

theoretic in nature, have therefore been defined (see 

[R0US75] for details). Each of these semantic operators 

is directly applicable to the SUB axis of the semantic net 

because said dimension is based on set theoretic 

containment. 

A consequence of using semantic database operators 

vis. the traditional strictly mathematical operators is 

that the system obtains the capability to assess the 

’’legality” of database transactions. There can be defined 

a ’’measure of strangeness” of an operation invocation. 

The value of said measure is a function of the relative 

(according to existing context) height which must be 

achieved on the SUB axis in order to fit a dialogue 

scenario pattern. 

As the height of the pattern match increases, the 

less related are the entities involved in the operation to 

the present contextual state. ’’Strange” operations can 
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thusly be identified by the system. Identification of 

such anomalies can raise questions (on the part of the 

system) as to the credibility of the user and/or the 

tr ansaction . 

A. mathematical logic based system . Deductive AI systems 

are based largely on deductive rules which take the form 

of predicate calculus quantified statements (extensive 

discussions of predicate calculus are found in [WONG77] 

and [B0NC81]). The major objective of research on such 

systems is to "develop a system from which one can deduce 

facts which are implicit within the database" 

[MINK77, p. 108]. 

Deductive AI systems are rooted in a many sorted 

logic vis-a-vis first order logic. In first order logic 

all predicates and arguments are elements of a single 

univer sal domain, Consequently, any combination of 

predicates and terms that is a well formed formula (wff 

[BO NC 81]) is valid (well formedness is essentially 

syntactic correctness). For example, if the terms "blue" 

and "banana," and the predicate "FATHER( x,y)," are 

elements of the universal domain; then the following wff 

is valid: 
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FATHER(BLUE,BANANA) 

The "fact" represented by this wff is "blue is the father 

of banana" which is an obviously nonsensical assertion 

(from [MINK77]) . 

Such anomalous assertions can be avoided by using a 

many sorted logic. Here, terms and quantifiers are 

restricted to range over different domains. Hence, for 

any given predicate, its arguments can be restricted to 

come from domains which constrain the resulting assertion 

to be semantically meaningful. The arguments of the 

predicate FATHER(x,y), for example, would be restricted to 

be elements of the domain "person" vis. the domain 

"color" or "fruit." 

A wff that makes the same assertion about all 

members of a domain (conjunctive) can be expressed in 

terms of the universal quantifier: 

V (for al1) 

Disjunctive assertions which refer to all members of a 
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domain can be expressed in terms of the existential 

quantifier: 

3 (there exists) 

The theorem proving methodology of deductive AI 

systems requires that wffs be converted to clause form: a 

conjunction of clauses which is quantifier free [15]. The 

procedure through which the existential and universal 

quantifiers are removed, which is based on the use of 

Skolem functions and the resolution principle, is 

described in [B0NC81], [MINK77] , and [WONG771. 

In the remainder of this section we will describe 

briefly the mechanics of the MRPPS 3*0 [MINK77] — a 

(experimental) deductive relational database system. We 

feel that this system, which provides one of the few 

examples of a general pur pose deductive database system, 

is representative of the mathematical logical realm of AI 

data modeling. 

The MRPPS model of knowledge is stored in the 

semantic network [16]. The overall network comprises four 

components: 



480 

1. The semantic graph 

2. The two databases (see below) 

3. The dictionary 

4. The semantic form space 

The semantic graph denotes relationships 

(disjointedness, inclusion, overlap) among semantic 

categories in a network graph structure. Figure A.24 

provides a simple example of such a graph. From this 

particular structure we can draw a number of implications: 

1. MA person who is a mother is a female person" 

MOTHER(x) - FEMALE(x) 

2. "A person who is female is not a male person" 

FEMALE(x) - 'vMALE(x) 
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3. Accordingly, then, "A mother is not a male 

person” 

MOTHER(x) + ^MALE(x) 

As in all deductive AI systems the MRPPS database is 

a twofold entity. It comprises the intensional database 

(IDB) and the extensional database (EDB). The former 

stores clauses only; the latter stores assertions (note 

that assertions are really instantiated clauses) . 

Consider the following clause that could be stored 

in the IDB: 

FATHER(x.y) * HUSBAND(x.z) + FATHER-LN-LAW(x,z)} 

This representation translates into: 

"x is the father of y and (") 
y is the husband of z implies (+) 
x is the father-in-law of z" 
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The clause is intensional because the terms x, y, and z 

are variables. 

Now, if the EDB stores actual data (assertions) 

about fathers and husbands, then the IDB "stores” virtual 

data about fathers-in-law. The distinction between the 

IDB and the EDB is therefore related to that between 

direct and derived data. The contents of both databases 

are stored as relations. 

The dictionary lists the semantic category of each 

relation in the database. This provides the bridge 

between an object and its "meaning.” Recall that the 

semantic categories to which objects are linked exist in 

the highly structured semantic graph. 

The final network component, the semantic form 

space, defines the semantic constraints which are imposed 

on predicates and arguments. Obviously, this invokes the 

many sorted logical structure upon which such systems are 

based. 

The database user queries the system by specifying a 

conjunction of clauses [IT]. Clauses are defined in terms 

of a literal template and a substitution set. The literal 

template demarcates the structure that the terms of the 

clause will take on. The substitution set specifies the 

values of the predicate and its arguments. 
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The following literal template defines a predicate 

(alpha) with two arguments (x1, x2): 

(a,xl,x2) 

The query specification 

{(a,xl,x2) [FATHER/a,person/xl,J0E/x2]} 

asks ’’Who is Joe’s father?” Similarly, 

{(a,xl,x2) [MOTHER/a,person/xl, J0E/x2) 

queries ’’Who is Joe’s mother?” Note that many queries can 

have the same literal template structure. 

Queries are answered by the deductiv e search 

mechanism which has the ability to deductively form new 

clauses from sets of input clauses. The semantic form 

space and the semantic graph provide the deductive search 

mechanism with knowledge as to which queries are 
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unanswerable. 

Consider, for example, the following query: 

(a,xl,x2) " (B,xl,x2) [FATHER/a,MOTHER/6,person/xl,J0E/x2]} 

This asks ’’Who is both the mother and the father of Joe? 

The deductive search mechanism would reject this quer 

since: 

FATHER(person) + MALE(person) 

MOTHER(person) -»• FEMALE(person) 

MALE(person) -*■ 'vFEMALEfperson) 
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The database (IDB and EDB) is accessed through the 

knowledge base index structure. This consists of three 

hierarchically organized parts: 

1 • The literal size and sign list 

The literal tempi ate tree structure 

3. The inverted index file 

The literal size and sign list points to that 

template tree structure which relates to the templates of 

a given size (number of terms) and sign (negated or not). 

Each template tree structure is a binary tree which is the 

basis of a pattern matching process. 

Proceeding down a branch of the template tree 

relates to the matching of the structure (argument 

pattern) of a clause. Each terminal node of the tree 

points to the constraints (form space) that refer to the 

clause structure, and to the appropriate section of the 

database. Inverted indexes drive the search at the 

database level. 
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The MRPPS system output is available in three 

different forms: 

1. Symbolic (predicate calculus based) output 

2. Written natural language output 

3. Natural language voice output 

It is important to keep in mind that the MRPPS is an 

experimental prototype DBMS. 
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FOOTNOTES 

The ultimate purpose of normalization is the same 
as that of E-R modeling: avoidance of semantic 
ambiguity. The resulting representations may be 
quite different, however. 

It should be noted that the semantic complexity of 
ternary and higher order relationship sets often 
results in a representation that is difficult to 
comprehend [TSIC82]. 

Note that the meaning of an E-R attribute is quite 
from that of its relational homonym. 

^7^ ^erm refers explicitly to the mapping from 
object to domain. “ 

In general, an entity relation and a database 
relation are not synonymous. Entity relations are 
not, in all cases, required to have unique keys as 
are database relations. 

This corresponds to the "dependency constraints" 
as described in [WONG77], 

The RM/T model [CODD791 includes "nested" 
characteristics that are similar to the complex 
characteristics of the BSDM. The RM/T constructs 
are called "characteristic molecule types." 

Most network representations guarantee that the 
deletion of an object causes the deletion of all 
connective links to that object. Such 
representations therefore have a consistency rule 
implied by their structure. This rule is called 
the "existency constraint" [W0NG77]. 

« 
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[8] RM/T allows for the definition of ”unconditional 
successors” and ’’alternative successors” to 
capture the meaning of the time ordering of 
events. The former notion most closely resembles 
the SAM ”CF” concept. The latter notion is 
slightly more powerful in that it specifies the 
occurrence of one of a number of possible events. 

[9] An interesting feature of this model is that the 
creation of the most generic abstract object is 
considered as the lowest level of abstraction. 
Under the usual Smith and Smith configuration, 
such an object is placed at the top of the 
(generalization) abstraction hierarchy and 
therefore represents the highest level of 
abstr action . 

[10] A class attribute is quite similar to an attribute 
of a ’’metaclass” as used in an AI based model. 

[11] Epistemology is the study of knowledge. 

[12] Use of the term ’’role" by the artificial 
intelligence community is usually restricted to 
data management applications. The more general 
term is "class.” Besides providing a uniform 
method for representing the intension of an event, 
case representation provides a direct bridge 
between the syntactic structure of the natural 
language representation of a fact and the semantic 
meaning of a fact. 

[13] Both the SUB construct and the DEF construct 
relate to the notion of generalization 
abstraction. In most AI applications these two 
dimensions are collapsed to form a single IS-A 
dimension (see [WONG77])* 
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[14] The PART construct captures the concept of 
aggregation abstraction. A more commonly used AI 
label for this dimension is PART-OF (see 
[W0NG77]). 

[15] Clauses are negations and/or conjunctions of 
atomic wffs. 

[16] The semantic network, as described here, 
represents a more comprehensive object than is 
commonly used. The first component of this 
network, the semantic graph, most closely 
resembles a traditional AI semantic net. 

[17] Disjunctive sentences can be converted to fully 
conjunctive clauses through the proper use of 
negation (~) . 



APPENDIX B 

GEOGRAPHIC CONCEPT DEFINITIONS 

The following geographic concept definitions and 

descriptions are taken directly from "Geographic Concept 

Definitions" (pp. 53-70), Census of Population and 

Housing, 1980 — Summary Tape File 1: 1978 Richmond Dress 

Rehearsal Technical Documentation / prepared by the Data 

User Services Division, Bureau of the Census -- 

Washington: The Bureau, 1980 ([CENS80]). Some format and 

punctuation conventions used below are therefore slightly 

different from those employed elsewhere in our work; for 

this minor inconvenience, we apologize. 

Block. Normally a well-defined rectangular piece of 

land, bounded by four streets. However, a block may also 

be irregular in shape or bounded by railroad tracks, 

streams or other features. Blocks, by definition, do not 

cross the boundaries of counties or census tracts. They 

may cross place boundaries and the boundaries of minor 

civil divisions. When blocks cross place boundaries and, 

in 20 States (. . .), when they cross MCD boundaries, the 

blocks are split and statistical summaries are presented 

for the parts. 

491 
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Census data will be tabulated by block in all 

urbanized areas (UA's) and, in many cases, somewhat beyond 

the final UA boundaries. The data will also be tabulated 

by block in incorporated places with 10,000 or more 

inhabitants outside UA’s and in additional areas which 

contracted with the Census Bureau for the collection of 

block statistics. Places outside of UA's are included in 

the block statistics program if they met the 10,000 

population criterion in the 1970 census, official Bureau 

estimates through 1976, or a special census on or before 

December 31, 1977. Block coverage for qualifying places 

is within boundaries as of January 1, 1980. Five States 

contracted for the preparation of block statistics 

covering their entire territory, both urban and rural: 

Rhode Island, New York, Virginia, Georgia, and 

Mississippi. (...) 

A block is identified by a 3-digit code which is 

unique within census tract or, where tracts do not exist, 

block numbering area. Since separate summaries are 

provided for the parts of a block split by a place or, in 

20 States, an MOD boundary, tape users may need to specify 

the place or MOD code to retrieve data for a block. 

Blocks are defined on detailed census maps: Metropolitan 

Map Series, Vicinity Map Series, place maps, and county 
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maps. The extent of block statistics coverage is 

reflected on maps by the presence or absence of the 

3-digit block number • 

Census blocks are normally compact cohesive units, 

but there are important exceptions. For example, in some 

suburban areas, development is clustered around 

cul-de-sacs. In these areas a census block may be fairly 

large since only those streets that serve as the perimeter 

of an enclosed area are treated as block boundaries. 

Also, in rural areas blocks may include many square miles, 

depending on the frequency of roads and their intersection 

with rivers, mountain ridges or other physical features. 

On census maps, when a block boundary ignores a 

minor physical feature, such as railroad tracks, a 

"fishhook" (...) across the feature indicates that the 

block includes area on both sides of the feature. 

Alternatively, the separate parts of such a block will 

have the same block number followed by an asterisk. 

The maps used for enumeration activities were, of 

necessity, obtained one or more years prior to the census 

and therefore do not reflect recently constructed streets, 

if any. Block statistics observe only those block 

boundaries shown on the maps. 
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It is estimated that statistics will be collected 

for over 2.5 million blocks in the 1980 census. Block 

statistics are included in PHC(1) Block Statistics reports 

and in file B of Summary Tape File 1 (STF IB). 

Historical comparability: In 1970 block 
statistics were prepared for urbanized areas and 
some additional contract areas. Unlike in 1980, 
they were not prepared for places of 10,000 
population or more outside urbanized areas, 
unless done under contract. More than 30 
percent of the areas for which block statistics 
will be available for 1980 did not have block 
statistics in 1970. 

Some blocks defined for 1970 will have new 
boundaries in 1980, primarily those on the edges 
of urbanized areas and other areas of new 
development where the street patterns have 
physically changed. To help the user notice a 
change wherever a block has been redefined by 
splitting or other adjustment, the 1970 block 
number will generally not be reused. In many 
areas, however, block boundaries and numbers 
will be the same in 1980 as in 1970, except for 
a few areas where blocks were renumbered by 
local GBF/DIME coordinating agencies to define 
more desirable block groups. 

Block group (BG). A combination of census blocks which 

is a subdivision of a census tract or block numbering area 

(BNA) and which is defined in all areas where block 

statistics are collected. (In areas where blocks are not 

identified, enumeration districts substitute for block 

groups as tabulation units.) 



Block groups are defined within county and tract or 

block numbering area. They may be split by the boundaries 

of other higher level geographic entities recognized in 

the census, including places, minor civil divisions or 

census county divisions, congressional districts, and 

Indian reservations. When this occurs, statistical 

summaries (data records) are provided for each component 

or part. 

Block groups are not outlined on census maps, but 

are defined as that set of blocks sharing the same first 

digit within a census tract or BNA. For example, Block 

Group ”3" within a particular census tract would be 

defined as all blocks numbered between 301 and 399. In 

practice, the numbering would rarely go above 350 and 

would involve substantially fewer than 50 blocks, since 

gaps are occasionally left in the numbering, e.g., one 

block might be 312 and the next 316. 

Since block group summaries observe higher level 

boundaries, users should carefully study census maps to 

note the presence of place, MOD or CCD boundaries which 

may split block groups. Congressional district boundaries 

are not shown on census maps; as a result, a block group 

may be split but the boundary will be undefined. 
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Block group summaries observe some boundaries which 

are ignored in block statistics (specifically, census 

county divisions and, in 10 States, minor civil 

divisions). As a result, it may be necessary on rare 

occasions to add two block group components together to 

match the sum of blocks in the same hundreds series. 

It is estimated that statistics will be prepared for 

about 180,000 block groups. Block group data, together 

with data for enumeration districts, appear on STF’s 1A, 

and 3A, and corresponding microfiche. There are no 

printed data for block groups. 

Historical comparability: In areas where 
block groups were tabulated in 1970, most 1980 
block groups will be the same as their 1970 
counterparts, with exceptions occurring 
primarily in areas where tract boundaries have 
changed. In addition, block group parts, 
created when block groups are split by the 
boundaries of other higher level areas, will 
also change if such boundaries have been 
changed. 

Many areas with block groups in 1980 had 
enumeration districts in 1970, a change 
occasioned in part by the expansion of the block 
statistics program, and in part because ED’s 
were used for tabulation purposes in 1970 
instead of block groups in some blocked areas. 
Where block groups have replaced ED' s, there 
will be little comparability between 1970 ED’s 
and 1980 block groups. 
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Block numbering area (BNA). Areas defined for the 

purpose of grouping and numbering blocks in blocked areas 

where tracts are not defined. BNA's do not cross county 

boundaries. They are identified by census tract-type 

numbers ranging from 9901.00 to 9989-99 which are unique 

within a county. While BNA numbers are similar to census 

tract numbers, BNA’s are not census tracts and are not 

included in STF 2 or 4. 

Block numbering areas may be split for tabulation 

purposes by the boundaries of places, Minor Civil 

Divisions (MCD’s), and Census County Divisions (CCD's). 

STF’s 1A and 3A present statistical summaries for the 

component parts of BNA’s created when BNA’s are split by 

the boundaries of places, MCD’s, and CCD’s. BNA summaries 

in STF IB and PHC(1) Block Statistics reports recognize 

the boundaries of places, as in the other files, but CCD 

boundaries are ignored and MCD boundaries are recognized 

only in 20 States (. . .). 

Historical comparability: While BNA’s were 
also used in previous censuses, any historical 
comparability is only coincidental. 
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Census County Division (CCD). Subdivisions of counties, 

established in 20 States (. . .) which do not have MCD's 

suitable for reporting census statistics (i.e., the MCD’s 

have either lost their original significance, are very 

small in population, have frequent boundary changes, 

and/or have indefinite boundaries). CCD’s are established 

cooperatively by the Census Bureau and both State and 

local government authorities. CCD’s are generally defined 

by boundaries that seldom change and can be easily 

located, such as roads, rivers, powerlines, etc. 

Census county division boundaries are represented on 

all detailed census maps. In addition, CCD outlines 

appear at a small scale on maps published in PC(1)-A and 

HC(1)-A reports. CCD’s, in alphabetic sequence, are 

assigned unique, incremental 3-digit numeric codes within 

counties. 

There are approximately 5,500 CCD’s defined for the 

1980 census. Statistics for all CCD’s appear in STF’s 1A, 

2B, 3A, and (under tentative plans) 4B, in PC(1)-A and -B, 

and HC(1)-A reports. 

Historical comparability: CCD’s are now 
defined in one fewer State than in 1970 -- North 
Dakota returned to the use of its MCD’s 
(townships) for 1980. In I960 there were 18 CCD 
States. In the past, cities with 10,000 or more 
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inhabitants generally were defined as separate 
CCD’s. When these cities annexed territory, CCD 
boundaries also had to be adjusted. For 1980, 
many of these CCD boundaries were revised to 
conform with census tract boundaries where 
tracts exist, and permanent physical features 
elsewhere, in an attempt to minimize future CCD 
boundary adjustments. 

Congressional District. These 435 areas are defined for 

their respective States by State legislatures for the 

purpose of electing persons to the U.S. House of 

Representatives. Congressional districts observed for the 

1980 census are as designated for the 96th Congress; this 

designation has been in effect since the 94th Congress 

(1975-1976), with one boundary change in Tennessee which 

took effect with the 95th. Data summaries from the 1980 

census appear only in STF 1A. Congressional districts for 

the 98th Congress (1983-1984) will be defined by State 

legislatures shortly after 1980 population counts become 

available . 

Small scale maps of congressional districts appear 

in the Congressional District Data Book. Congressional 

district boundaries are not shown on detailed 1980 map 

series. 
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Historical comparability: 1970 census data 
are available for congressional districts as 
defined for the 94th - 97th congresses in the 
Congressional District Data Book, except for the 
Tennessee change noted above. 

County. The primary political and administrative 

divisions of States. In Louisiana such divisions are 

called parishes, and in Alaska 23 boroughs and census 

areas are treated as county equivalents. Several cities 

(Baltimore, Maryland; St. Louis, Missouri; Carson City, 

Nevada; Columbus, Georgia; and a number of Virginia 

cities) are independent of any county organization and 

thereby constitute primary divisions of their States and 

are treated the same as counties in census tabulations. 

County boundaries are shown on all census maps. A 

3-digit Federal Information Processing Standards (FIPS) 

county code identifies each county uniquely within State. 

Counties are numbered in alphabetic sequence, with 

independent cities numbered separately at the end of the 

list. 

There are 3,137 counties and county equivalents 

being tabulated for the 1980 census. County tabulations 

appear in STF’s 1 through 4, and in PC(1)-A, -B, and -C; 

HC(1)-A and -B; and PHC(3) reports. 
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Historical comparability: A number of changes 
have occurred to county boundaries since 1970, 
mostly as a result of the creation of new 
independent cities or annexations by independent 
cities in Virginia. A new set of county 
equivalents has been defined for Alaska 
(boroughs and census areas) which in some cases 
differ considerably from the divisions 
recognized for 1970. In addition there are 
minor changes in the list of counties for South 
Dakota, Georgia and Hawaii. 

Division, (Census Geographic) . Census geographic 

divisions are nine groups of States which are subdivisions 

of the four census regions. (...) Divisions are 

identified by a 1-digit code which is also the first digit 

of the 2-digit Census geographic code for each State in 

the division. 

Historical comparability: Census divisions 
have remained largely unchanged since the 1910 
census. 

Enumeration District (ED). An area used in the 1980 

census for collection activities and as a tabulation area 

where block statistics are not prepared. Enumeration 

districts do not cross the boundaries of any other legal 

or statistical area, including MCD’s, CCD’s, places, 

counties or congressional districts. Because of these 
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constraints they vary widely in population size, although 

they do not generally exceed a population of 1,600 in 

areas where the census is taken by mail, or a population 

of 1,000 in areas where the census is taken by 

conventional enumerator canvassing. The population limits 

are designed so that an ED represents a reasonable 

workload for a single enumerator. About 1,000 areas in 47 

States participated in a program for local definition of 

ED's. In the areas where they are reported, ED's are the 

smallest available unit of census geography. 

Enumeration district boundaries are shown on 

MMS/VMS, place and county maps in areas where there are no 

block numbers. ED's are identified by a four-digit number 

which may be followed by a one-character alphabetic 

suffix. The suffix is used to identify subdivisions of 

ED's made during data collection activities where the 

original ED proved to be too populous for an efficient 

work unit, or to accommodate a revision to a place or 

other boundary made too late to be reflected on the maps. 

An ED number may also have a prefix indicating that the ED 

is of a special type (e.g., an Indian reservation), but 

the prefix is not necessary for identification of the ED. 

ED numbers do not repeat within a county. 
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It is estimated that statistics will be prepared for 

about 120,000 enumeration districts. ED data, together 

with data for block groups, appear on STF’s 1A and 3A and 

corresponding microfiche. In addition, ED data appear on 

STF IB to complement the summaries for blocks. There are 

no printed data for enumeration districts. 

Historical comparability: Many areas which 
were covered by enumeration districts in 1970 
are summarized in terms of blocks and block 
groups for 1980. In some cases it may be 
possible to add up blocks to approximate the 
1970 ED, based on detailed comparison of 1980 
and 1970 maps. 

In areas covered by ED’s for 1980, collection 
considerations dictate ED size and design, and 
historical comparability does not normally enter 
into consideration. 

Minor Civil Division (MCD). The primary political and 

administrative subdivisions of counties. MCD’s are most 

frequently known as townships, but in some States they 

include towns, magisterial districts, and similar areas. 

MCD’S are used for census purposes in 30 states (. . .). 

In the remaining States census county divisions are used 

in lieu of MCD’s. 
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The Census Bureau has assigned each MCD, in 

alphabetic sequence within county, an incremental, unique 

three-digit numeric code. In addition, MCD's in 11 States 

have a four-digit "MCD sequence number” which allows MCD’s 

to be sorted into alphabetical sequence within a State. 

MCD’s in some States are also assigned a five-digit 

Federal Information Processing Standards (FIPS) place code 

which is unique within State. The National Bureau of 

Standards may expand the coverage of FIPS place codes to 

include MCD’s in the remaining States. If the timing of 

such an expansion permits, the new codes will also appear 

with MCD records on tape. 

Minor civil division boundaries are represented on 

all detailed census maps. In addition, MCD outlines 

appear at a small scale in maps published in pc(1)—A and 

HC(1)—A State reports. There are approximately 25,000 

MCD’s defined for the 1980 census. 

Statistics for all MCD’S appear in STF’S 1A, 2B, 3A, 

and (under tentative plans) 4B, and in PC(1)-A and -B, and 

HC(1)-A reports. In 20 States (. . .), most MCD’S serve 

as functioning general-purpose governments, and these 

active MCD’s are included in PHC(3) Summary Statistics for 

Governmental Units. All MCD’s in these States are 

included in PHC(1) Block Statistics reports and STF IB. 
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Finally, in 11 States (all 9 States in the northeast 

region, plus Michigan and Wisconsin), MOD data are 

published in a manner parallel to that of places of the 

same size in tables of PC(1)—B and -C, and HC(1)— A and -B. 

(. . .) 

Historical comparability: Census county 
divisions were used in North Dakota in 1970, but 
for 1980 that State returned to the use of its 
townships. 

A number of minor civil divisions in other 
States have changed boundaries. Some of these 
have been as a result of municipal annexations 
in several States. There are six States where 
MCD boundaries have changed substantially: 
Arkansas, Virginia, Louisiana, Mississippi, West 
Virginia, and Maryland. A new set of subcounty 
areas, termed "census subareas,” has been 
developed for Alaska. 

Place. A concentration of population which may or may 

not have legally prescribed limits, powers, or functions. 

Most of the places identified in the 1980 census are 

incorporated as cities, towns, villages, or boroughs. In 

addition, a number of census designated places (called 

”unincorporated places” in earlier censuses) are 

delineated for 1980 census tabulations. There are about 

23,000 places recorded in the 1980 census. 
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Incorporated place. A political unit incorporated 

as a city, borough (excluding Alaska and New York), 

village or town (excluding the New England States, 

New York and Wisconsin). Most incorporated places 

are subdivisions of the MCD or CCD in which they are 

located; for example, a village located within and 

legally part of a township. Some incorporated places 

are independent of surrounding townships or towns and 

therefore are also treated as MCD’s. Finally, almost 

4,000 incorporated places cross MCD and/or county 

lines. No incorporated places cross State lines 

since they are chartered under the laws of a State. 

There are about 20,000 incorporated places for 

the 1980 census. 

Census designated place (CDP). A densely settled 

population center without legally defined corporate 

limits or corporate powers or functions. Each has a 

definite residential nucleus with a dense, city-type 

street pattern, and ideally should have an overall 
c 

population density of a least 1,000 persons per 

square mile. In addition, a CDP is a community that 

can be identified locally by place name. Boundaries 

of CDP's are drawn by the Census Bureau, in 
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cooperation with State and local agencies, to 

include, insofar as possible, all the closely settled 

areas. In the 1980 census, statistics are tabulated 

for each CDP with 5,000 inhabitants or more if 

located in an urbanized area with a central city of 

50,000 or more and for each CDP of 1,000 or more if 

in an urbanized area with a central city of less than 

50,000. Outside of urbanized areas, statistics are 

tabulated in 48 States for CDP’s of 1,000 or more, in 

Hawaii for CDP’s of 300 or more, and in Alaska for 

CDP’s of 25 or more. 

There are approximately 3,000 CDP’s. 

Incorporated place and CDP boundaries are shown on 

all detailed census maps. MMS/VMS maps show the 

boundaries of places in or near urbanized areas, and place 

maps are available for all places outside MMS/VMS 

coverage. In tracted areas, boundaries of places with 

10,000 or more inhabitants are shown on tract outline 

maps, which are at a smaller scale than MMS/VMS maps. 

County subdivision maps, at still smaller scale, show 

boundaries for places with 2,500 or more inhabitants and 

pinpoint the location of smaller places. 
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A 4-digit numeric code is assigned by the Census 

Bureau to each place in alphabetic sequence within State. 

In addition, a 5-digit Federal Information Processing 

Standards (FIPS) place code, unique within State, has been 

assigned by the National Bureau of Standards for each 

place. Both codes will appear on computerized records for 

places, but the 4-digit census code will be used in 

structuring the files (i.e., in determining the sequence 

of place records). Separate "place description" codes 

will also generally accompany place records. These codes 

indicate whether or not a place is incorporated, as well 

as represent certain other information about places. 

All places are summarized in STF’s 1A and 3A and 

PC(1)-A reports. Places with 1,000 or more inhabitants 

are summarized in STF 2B, and PC(1)-B and HC(1)-B reports. 

Places with 2,500 or more are summarized in STF 4B, and 

PC(1)— C and HC(1)— B reports. Incorporated places only are 

shown in PHC(3) reports. In PHC(2) Census Tracts reports 

and STF’s 2A and 4A, summaries are presented only for 

places with 10,000 or more inhabitants located in SMSA’s 

or other tracted areas. 

The files and reports which sequence geographic 

units in hierarchical fashion must account for the fact 

that places may cross the boundaries of counties, minor 
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civil divisions and census county divisions. Such reports 

and tapes, therefore, provide summaries for the various 

parts of places created when places are split by the 

boundaries of higher-level areas recognized in the 

hierarchy. Specifically, place parts within county and 

MCD and CCD are presented in STF 1A and STF 3A, and 

PC(1)-A. Place parts within county and MCD are presented 

for 20 States only in STF IB and PHC(1) Block Statistics 

reports, although the PHC(1) reports exclude any place 

which does not have block statistics. In the remaining 30 

States, STF IB and PHC(1) reports subdivide places when 

split by county boundaries, but do not observe MCD or CCD 

boundaries. 

Historical comparability: Nearly 65 percent 
of all Incorporated municipalities annexed 
territory between 1970 and 1977 > and this 
proportion increased further by January 1, 1980, 
which is the reference date for boundaries in 
the 1980 census. In the 1970 census, ED 
boundaries were drawn so as to allow a user to 
aggregate 1970 data for each city of 2,000 or 
more inhabitants according to I960 boundaries. 
There will not be a corresponding capability in 
the 1980 census. Instead, a special report on 
annexations during the 1970's may be prepared if 
funds are available. Such a report may cover 
central cities, other than places of 50,000 or 
more population, and any smaller places which 
annexed areas with 1 ,000 or more inhabitants as 
of 1970. The special report would compare the 
1970 and 1980 population of each covered city as 
defined in 1980 (forward comparability), and 
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would make a similar comparison for each city as 
defined in 1970 (backward comparability). This 
would be the first census report to provide 
forward comparability. 

In the 1970 and earlier censuses, census 
designated places were referred to as 
"unincorporated places." The name was changed 
to make it more explicit that such places are 
defined for census purposes, and to avoid 
confusion in States where many "unincorporated 
places" are parts of incorporated towns or 
townships. Many census designated places have 
been redefined since 1970. 

Region, (Census). Census regions are large groups of 

States which are first-order subdivisions of the United 

States for census purposes. The four regions [are] 

Northeast, North Central, South, and West .... Census 

regions have no relationship to the 10 Standard Federal 

Administrative Regions. Regions are identified by a one 

digit code. Regions are summarized in U.S. Summary 

reports in almost every publication series, and in STF’s 

1C, 2C, 3C, and 4C. 

Standard Consolidated Statistical Area (SCSA). A large 

concentration of metropolitan population composed of two 

or more contiguous SMSA’s which meet certain criteria of 

population size, urban character, social and economic 
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integration, and/or contiguity of urbanized areas. Each 

SCSA must include at least one SMSA with a population of 

one million or more. Thirteen SCSA's are defined for the 

1980 census by the Office of Federal Statistical Policy 

and Standards according to criteria published by that 

office in Standard Metropolitan Statistical Areas: 1975. 

SCSA’s are identified by a two-digit numeric code. 

Summaries for SCSA’s appear in all reports, except PHC(1) 

and PHC(2), and in STF’s 1C, 2C, 30, and 4C. Summaries 

are generally provided for SCSA totals and for 

within-State parts of SCSA’s. 

Historical comparability: The 13 SCSA’s were 
first created in 1976. For the I960 and 1970 
censuses the Census Bureau recognized two 
’’Standard Consolidated Areas’’ (SCA’s), 
metropolitan complexes around New York and 
Chicago. 

In 1982 or 1983, the SCSA concept will be 
replaced by the new Consolidated Metropolitan 
Statistical Area (CMSA) concept, with somewhat 
more liberal criteria, as spelled out in the 
Federal Register, Jannuary 3, 1980. These 
changes will not affect publication of 1980 
census data for SCSA’s. 

Standard Metropolitan Statistical Area (SMSA). A large 

population nucleus and nearby communities which have a 

high degree of economic and social integration with that 
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nucleus. Generally, each SMSA consists of one or more 

entire counties that meet specified standards pertaining 

to population, commuting ties, and metropolitan character. 

In New England, towns and cities, rather than counties, 

are used as the basic geographic units for defining 

SMSA’s. In Alaska, boroughs and census areas are used for 

defining SMSA’s. SMSA’s are designated by the Office of 

Federal Statistical Policy and Standards of the Department 

of Commerce. 

SMSA’s to be observed in the 1980 census are of two 

types: (1) those defined before January 1, 1980, 288 in 

all (including 4 in Puerto Rico); and (2) those to be 

established in 1981 as a result of 1980 census population 

counts. In order for a new SMSA to be recognized 

following the 1980 census, an area must have either: 

1. A city with a population of a least 50,000 within 

its corporate limits, or 

2. A Census Bureau defined urbanized area (which 

must have at least 50,000 population) and a total 

SMSA population of at least 100,000. 
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Each SMSA includes not only a city and its urbanized 

area, but also the remainder of the county or counties in 

which they are located and such additional outlying 

counties as meet specified criteria relating to 

metropolitan character and level of commuting of workers 

into the central city or counties. Specific criteria 

governing the definition of SMSA’s recognized before 1980 

are published in Standard Metropolitan Statistical Areas: 

1975 , issued by the Office of Federal Statistical Policy 

and Standards. 

With two exceptions, each SMSA has one or more 

central cities, up to a maximum of three, and the names of 

these cities comprise the title of the SMSA. The 

Nassau-Suffolk, NY SMSA has no central cities; the 

Northeast Pennsylvania SMSA has three: Scranton, 

Wilkes-Barre, and Hazleton. 

SMSA’s are identified by a Federal Information 

Processing Standards (FIPS) 4-digit numeric code, which 

follows the alphabetic sequence of the SMSA name. SMSA’s 

are outlined on small scale maps in several 1980 report 

series. SMSA data appear in most 1980 census publications 

and summary tape files. Many SMSA’s cross State 

boundaries, and several reports provide summaries for the 

within-State parts of multi-State SMSA’s as well as SMSA 
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totals. Summary tape 

within-State parts of 

files: STF’s 1C, 2C, 3C, 

files present data only for 

SMSA’s, except for the ’’national” 

and 4C. 

Historical comparability: Since the 1970 
census, when 247 SMSA’s were recognized in 
tabulations (including 4 in Puerto Rico), a 
number of new SMSA’s have been defined. Of the 
247 1970 SMSA’s, 101 were redefined in 19 7 3 > 
based on 1970 census results, most by the 
addition of one or more counties (or towns and 
cities in New England). In addition, one SMSA 
was redefined by the addition of one area and 
the deletion of another (Wichita Falls, Texas), 
one was subdivided (Nassau-Suffolk SMSA was 
created from a part of the New York SMSA), four 
pairs of SMSA’s were combined into single SMSA’s 
(for example, Dallas-Fort Worth, Texas), and 
four SMSA’s lost area that was added to other 
SMSA’s. In addition, the names of several 
SMSA’s were changed in 1973> one in such a way 
that the SMSA code also changed (San 
Bernardino-Riverside-Ontario to Riverside-San 
Bernardino-Ontario, California). 

Since SMSA’s are always defined in terms of 
whole counties (towns or cities in New England) 
and extensive data have been and will be 
available on tape for these areas, forward and 
backward comparability can usually be derived by 
the user. 

In 1982 or 1983, SMSA boundaries will be 
re-evaluated using 1980 census data on 
commuting, population density, type of residence 
and population growth, according to new criteria 
spelled out in the Federal Register, January 3, 
1980 (Vol. 45, No. 2, Pt. VI). At that time 
new outlying counties may be added or existing 
ones dropped, some area titles may change, many 
new central cities will be designated, and some 
areas may be consolidated. Further, the term 
’’standard metropolitan statistical area” will be 
shortened to "metropolitan statistical area" 
(MSA). These changes will not affect 
publication of 1980 censUs data for SMSA’s. 
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State. The major political units of the U.S. The 

District of Columbia is treated as a State-equivalent in 

all 1980 census data series. 

States are identified by a two-digit Federal 

Information Processing Standards (FIPS) code which follows 

the alphabetic sequence of State names, and [by] a 

two-digit Census geographic State code, the first digit of 

which identifies the census division of which the State is 

a part. The Federal Information Processing Standards 

(FIPS) State code is used for sequencing in most reports 

and in STF’s which present data for all States. 

Historical comparability: There have been no 
significant changes to State boundaries in the 
last several decades. 

Town/Township. (See Minor Civil Division) 

Tract. Relatively small areas with generally stable 

boundaries into which metropolitan and certain other areas 

are divided for the purpose of providing statistics for 

small areas. When tracts are established, they are 

designed to be relatively homogeneous areas with respect 

to population characteristics, economic status, and living 
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conditions. The typical tract contains between 2,500 and 

8,000 residents. All SMSA’s recognized before the 1980 

census are completely tracted. In addition, nearly 4,000 

census tracts have been established in 252 counties 

outside those SMSA’s (although some of these areas are 

likely to become SMSA’s as a result of the census). In 

fact, 5 States have been entirely tracted: Rhode Island, 

Connecticut, New Jersey, Delaware, and Hawaii. In all, 

there are over 42,000 census tracts for the 1980 census. 

Tract boundaries are established cooperatively by 

local Census Statistical Areas Committees and the Census 

Bureau in accordance with guidelines that impose 

limitations on population size and specify the need for 

visible boundaries. Geographic shape and areal size of 

tracts are of relatively minor importance. Tract 

boundaries are established with the intention of being 

maintained over a long time so that statistical 

comparisons can be made from census to census. Census 

tracts observe county lines and are defined to cover all 

of the territory within each tracted county. 

Census tracts are identified by a 4-digit basic code 

and a 2-digit suffix, e.g., 6059.02. Many census tracts 

do not have a suffix. In such cases, maps show just the 

4-digit code; tapes give the 4-digit code followed by two 
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zeros. Tract numbers are always unique within a county, 

and, except for New York, are also unique within an SMSA. 

All valid census tract numbers are in the range 0001 to 

9899*99; a number between 9901.00 and 9989.99 denotes a 

block numbering area. 

Census tract boundaries are shown on all detailed 

census maps. In addition, census tract outline maps are 

being created for each SMSA and each tracted county 

outside SMSA’s and will be published in PHC(2) Census 

Tracts reports. Tract outline maps show streets and 

physical features which serve as census tract boundaries. 

In addition, tract outline maps show the boundaries for 

places with 10,000 or more inhabitants and for counties. 

Census tract data are presented in STF’s 1A, IB, 2A, 

3A, and 4A, and in PHC(2) Census Tracts reports. In STF 

1A and STF 3A, tract data are presented in hierarchical 

sequence within place within MCD or CCD. Since a tract 

which crosses place, MCD, or CCD boundaries is split, the 

tape files will have summaries for each of its parts. To 

get data for the whole tract, it will be necessary to add 

up the components. In STF IB the situation is similar 

except that MCD boundaries are observed in only 20 States. 

(. . .) MCD boundaries in the other 10 States with MCD’s 

and CCD boundaries in the remaining 20 States are ignored. 



518 

In the major summaries for census tracts, those in STF 2A 

and STF 4A and in PHC(2) Census Tracts reports, tract 

summaries observe the boundaries of places of 10,000 or 

more. There are also separate summaries which provide 

totals for split tracts. 

Historical comparability: Census tracts are 
defined with an overall goal of census-to-census 
comparability. Some 1970 tracts have been 
subdivided due to increased population, but the 
new tracts can be recombined by the user for 
comparison with 1970 tracts. This affects about 
eight percent of all 1970 tracts. Other changes 
have included combinations of two or more small 
1970 tracts (less than one percent of all 1970 
tracts) and adjustments to tract boundaries 
where old boundary features have disappeared or 
new boundaries (e.g., freeways) have come into 
being. Only in a few areas did local Census 
Statistical Area Committees undertake extensive 
redefinition of census tracts. 

Both the number of tracted counties and the 
number of census tracts increased by over 20 
percent between 1970 and 1980. The reporting of 
data for split tracts is also increasing. Where 
1970 Census Tracts reports gave data for tract 
parts created when tracts were split by the 
boundaries of only those places with 25,000 or 
more population, 1980 reports will observe 
places as small as 10,000. 1980 STF’s 2 and 4 
summarize data for split tracts as well as whole 
tracts, whereas their 1970 counterparts did not 
provide separate summaries for split tracts. 

Urban and rural area (population). Urban and rural are 

type-of-area concepts rather than specific areas outlined 
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on maps. As defined by the Census Bureau, the urban 

population comprises all persons living: 

1. in urbanized areas (defined below) and 

2. in places of 2,500 or more inhabitants outside 

urbanized areas. 

The rural population consists of everyone else. 

Therefore, a rural classification need not imply farm 

residence or a sparsely settled area, since a small city 

or town is rural as long as it is outside an urbanized 

area and has fewer than 2,500 inhabitants. (. . .) 

The terms urban and rural are independent of 

metropolitan and nonmetropolitan designations: both urban 

and rural areas occur inside and outside SMSA’s. 

Historical comparability^ Except for the 
minor liberalization of urbanized area criteria 
discussed below, urban and rural definitions 
have been consistent since 1950. Within small 
counties, measurements of urban and rural 
populations over time may be disproportionately 
affected by the increase or decrease of a 
place’s population across the 2,500 population 
threshold, e.g., the increase of 1 person to a 
place of 2,499 results in an increase of 2,500 
to the area’s urban population. 
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Urbanized area (UA). A population concentration 

generally consisting of a central city of 50,000 

inhabitants or more and the surrounding, closely settled, 

contiguous territory (suburbs) . In addition a population 

concentration may qualify as an urbanized area if it has a 

central city of between 25,000 and 50,000, and which, when 

incorporated places and census designated places adjacent 

to the city limits are included, has a total population of 

at least 50,000. (For 1980, the minimum size requirement 

for central cities may be dropped. This would mean the 

only requirement for the establishment of an urbanized 

area would be a densely settled population concentration 

with a minimum total population of 50,000.) 

The urbanized area criteria define a boundary based 

primarily on a population density of at least 1,000 

persons per square mile, but also include some less 

densely settled areas within corporate limits, and such 

areas as industrial parks and railroad yards, if they are 

adjacent to dense urban development. The density level of 

1,000 persons per square mile corresponds approximately to 

the continuously built-up area around a city. The "urban 

fringe" is that part of the urbanized area outside of a 

central city. (. . .) 
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Typically, an entire urbanized area is included 

within an SMSA. The SMSA is usually much larger in terms 

of territory covered and includes territory where the 

population density is less than 1,000. There occasionally 

are more than one UA within an SMSA. In some cases a 

small part of a UA may extend beyond an SMSA boundary, and 

possibly, into an adjacent SMSA. A few 1980 UA's will be 

defined in areas which do not meet the 100,000 total 

population criterion for SMSA designation. UA’s may cross 

State boundaries. In a few cases a UA may not include all 

of an "extended” central city which is determined to have 

a significant amount of a rural territory. 

UA’s are identified by 4-digit codes, which follow 

the alphabetic sequence of UA names. Their boundaries 

will be shown on final Metropolitan Map Series and 

Vicinity Map Series maps and, at much smaller scale, on UA 

maps in PC(1)-A and HC(1)—A reports. 

Historical comparability: Because UA’s are 
defined on the basis of population distribution 
at the time of a decennial census, their 
boundaries tend to change from census to census. 

The criteria have been fairly constant since 
1950, although in each decade some new 
refinements have been added. For the 1970 
census, in which 252 UA’s were recognized, it 
was necessary for the central city to have a 
population of 50,000 or more, or for there to be 
"twin cities" with a combined population of 
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50,000 and with the small city having at least 
15,000. In 197^ the criteria were liberalized to 
allow UA recognition to certain cities between 
25,000 and 50,000, and this resulted in 27 new 
urbanized areas. As noted earlier, another 
revision of the urbanized area criteria is now 
under consideration. 



APPENDIX C 

A SYSTEM ARCHETYPE 

We have described the makeup of a geogra phic 

information system (GIS) which is based on our GERMS data 

modeling formalism. In this appendix we detail the 

structure of an actual system implementation. The 

database management system which forms the core of this 

system is SIR-2 (Scientific Information Retrieval, 

version 2). We will hereunder refer to such as SIR. 

The SIR database management system (DBMS) includes 

an extensive high level programming language through which 

programmed database operations can be specified. We use 

this language to form a "GERMS front-end" to the database. 

In this way, all user-system communications are carried 

out in terms of the GERMS conceptual schema. This is 

despite the fact that the basic SIR database system is not 

oriented towards the support of semantic data models. 

523 
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An Introduction to SIR and the SIR Language 

In this section we describe those features of the 

SIR system which are fundamental to an understanding of 

our GIS implementation. The reader who is familiar with 

SIR may omit this section. We caution the reader that 

this familiarity must be with SIR version 2, as this 

version differs substantially from its predecessor. 

A SIR structure utilizes both cases and record 

types. A case is a collection of records of one or more 

record types. Usually, a case relates logically to a 

single entity or subject. Each case is identified by a 

unique case name. 

A SIR record type is a collection of records which 

have a common format and attributes. Each record type 

does not exist within its own file in SIR. Every record 

type is identified by a record type number and by a 

(optional) record type name. Members of a record type are 

record instances. The membership is nonoverlapping, thus 

an instance is not shared by types. 

A record type can be (and in most applications is) 

shared by all cases in the database. Each record instance 

belongs to exactly one case, however. When designing a 

SIR database we have the option of assigning all instances 



525 

of a given record type to a single case. Here, we can 

think, of the record type as "belonging” to the case. We 

will make use of this technique often in our system. 

A record instance is identified by its unique record 

key value. Part of this value is its case name and its 

type identifier. In addition to these identifiers the 

record key may consist of the concatination of a number of 

record variables. Each such record variable is called a 

"sort id." 

When different record types make use of the same 

sort ids, the records form a hierarchy. For example, if 

record type 1 has the single sort id "KEY1," and record 

type 2 has the sort id pair "KEY1, KEY2," then the type 2 

records are children of the type 1 records. "Ownership" 

of the children record instances occurs when type 1 and 

type 2 records hold the same value on variable KEY1. 

SIR is designed to accommodate the processing of 

hierarchical structures. Also, the processing of network 

structures can be emulated with the clever use of pointer 

variables. Given the key value (including case name and 

record type identifier) of any database record instance, 

the record can be accessed by the system. By embedding 

the key value of a record instance within the data of a 

different record, then, logically related records can be 

"pointed to." Network structures can be designed thusly. 
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Unlike hierarchical record relationships, the use 

and maintenance of such "network emulating" pointers is 

the responsibility of the database technician or user. 

Consequently, we call SIR an "extended hierarchical" DBMS; 

the ability to "jump" between hierarchical structures can 

be programmed (note that any network structure can be 

viewed as a set of trees). 

The SIR language is used to manipulate and retrieve 

data by making use of the relationships among records. It 

can therefore be thought of as being the data manipulation 

language of the DBMS. Programs written in this language 

can serve as "front-ends" to the database. The 

flexibility of the SIR language allows for the creation of 

data retrieval procedures which meet the specific needs of 

the user community. 

The language incorporates features that are common 

to most high level symbolic programming languages (i.e. 

looping, branching, conditional statements, callable 

procedures, etc). Obviously, these features are provided 

in addition to record structure processing capabilities. 

Within a SIR program the following statement is used 

to specify the case instance which is to be the focus of 

the processing: 

CASE IS caseid 
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where "caseid" is the unique case name of the instance. 

Once the case is defined, record instances can be 

specified in a number of ways. The statement 

RECORD IS rtype, (keyval) 

identifies the single instance of record type "rtype” 

which holds the key value "keyval" (note that keyval may 

be the concatenation of a set of values). 

Within the specified case, the set of all records of 

type "rtype" can be processed by stating 

PROCESS REC rtype 

The set of siblings (of a given type) of a given parent 

instance can be processed via 

PROCESS REC rtype, WITH (sortidlist) 

Where "sortidlist" is the value of the key of the parent 
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record. 

Consider, for example, that two records are related 

hierarchically such that the sort id of the superordinate 

record is MKEY 1,M and the sort id of the subordinate 

record type (rtype) is "KEY 1, KEY2." In order to process 

the set of siblings which belong to the instance of the 

first record type which has the current value of KEY1 as 

its key, we need only state the following: 

PROCESS REC rtype WITH (KEY1) 

Alternatively, if we wish to specify the single 

instance of the latter record type which has the 

concatenation of the current values of KEY1, KEY2 as its 

key, we should state 

RECORD IS rtype, (KEY1, KEY2) 
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Each of the above record (or case) definition 

formats is called a "block header;" it indicates the start 

of the appropriate record (case) "processing block." The 

terminus of a processing block is indicated by the 

presence of a matching END statement (e.g. END CASE IS, 

END PROCESS REC). All program statements and variable 

references which lie within a block refer to the records 

(case) defined by the block header. With proper nesting 

of processing blocks, complex record structures can be 

processed. Statement indentation will be used to clarify 

the nesting of processing blocks within SIR routines. 

Both the clarity and the flexibility of SIR programs 

can be increased through the use of procedures and 

substitution parameters. In SIR, a procedure is a named 

set of statements which may be "called" from within a SIR 

program. When a CALL statement is encountered during the 

execution of a program, the statements which form the 

procedure are directly inserted in place of the CALL 

statement. In terms of the calling program, then, program 

execution is carried out as if the statements of the 

procedure exist as a part of the program. 

A CALL statement can include an optional 

substitution parameter list. The elements of such a list 

are called "positional parameters" because their names are 
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assigned according to their position in the list. 

Specifically, a parameter’s name is its sequence number. 

Consider, for example, the following CALL statement: 

CALL procname (paraml, param2,...paramN) 

Here, each of paraml, param2,...paramN represents some 

character string which is the parameter’s value. When 

this CALL statement is encountered, the string value 

’’paraml” is assigned parameter name ”1." Similarly, 

”param2” is assigned parameter name ”2,” and so on up to 

and including ’’paramN.” 

Within the body of the procedure a positional 

parameter name enclosed in angle brackets denotes a 

reference to that parameter. Before the statements of the 

procedure are inserted into the CALLing program, each 

parameter reference is replaced with the appropriate 

parameter value. 

Let us assume that the statement 

CALL PR0C1 (POP GT 10000, NEXT RECORD) 
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is encountered in the execution of a SIR 

described above, MPOP GT 10000" is assigned 

"1," while "NEXT RECORD" is assigned paramet 

Let us further assume that the procedure 

the following statement: 

program. As 

parameter name 

er name "2." 

PR0C1 contains 

IF (*1>) 

Now, each parameter reference in a statement of a 

procedure is replaced with its parameter value prior to 

the insertion o_f the statement into the CALLing routine. 

Consequently, the inserted statement — that which is 

actually executed -- is 

IF (POP GT 10000) NEXT RECORD 

Another form 

"global parameter." 

character strings, a 

names by means of the 

of substitution parameter is the 

Global parameter values, which are 

re assigned alphanumeric character 

GLOBAL statement. Subsequent to the 
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assignment of a global parameter name, each parameter 

reference (the parameter name enclosed in angle brackets) 

within the body of a program statement is replaced by the 

appropriate value. Obviously, this replacement is made 

prior to the execution of the statement. 

For example, consider the GLOBAL statement 

GLOBAL CONDITIN = POP GT 10000/ 

TASK = NEXT RECORD 

Here, the parameter (string) value "POP 

equated to parameter name "CONDITIN," 

"NEXT RECORD" is equated to "TASK." 

execution of this GLOBAL statement, 

reference is replaced by the appropriate p 

Thus the program statement 

GT 10000" 

while the va 

Following 

each parame 

arameter val 

is 

lue 

the 

ter 

ue. 

IF ( < CONDITIN > ) *■ TASK > 

would be interpreted as 

IF (POP GT 10000) NEXT RECORD 
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The SIR routines discussed below rely heavily on the 

use of substitution parameters. The reader who wishes 

more detail about these or other aspects of SIR is 

referred to [ROBI80]. 

System Design 

The design of our GERMS implementation matches 

closely the configuration detailed in chapters 11, 12, and 

13. As described earlier, the design comprises two major 

divisions: the system internal form, or logical database; 

and the physical database. The physical database holds 

the actual data records, directories, and indexes. The 

system internal form holds the system’s ’’knowledge” of the 

logical data structure, and ’’links” this logical structure 

to the objects of the physical database. 

As our example data set we will use a portion of the 

aforementioned census file PL-94. The relevant GERMS 

conceptual schema graph is shown in figure C.l. The 

logical structure of this data set is not complex, so an 

extensive description is not required here. The schema 

does not happen to contain any ”IS-A-related" entity 

types, but the proper treatment of such objects will 

become obvious from the subsequent discussion. 



FIGURE C.l 

THE DATABASE CONCEPTUAL SCHEMA 
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The physical dat abase. In our SIR configuration, the 

physical database utilizes four case instances and 

thirteen record types. Of the thirteen record types, four 

are used to hold actual census summary data. We will call 

these "data record types." The nine remaining record 

types are used to serve as directories and indexes. These 

will be referred to as "pointer record types." More 

specifically, they may be "directory types," or "index 

types." 

The four cases are named ’ENTITY2’, ’ENTITY4’, 

’ENTITY6’, and ’ENTITY8* (the use of even integers here 

occurs by coincidence). Note that each of these case 

names is a string value. Single quotes are used here and 

below to distinguish string values from variable names. 

Each case in the physical database relates to a 

specific entity type of the logical structure. 

Specifically, the cases relate to the 

BLOCK-GROUP/ENUMERATION-DISTRICT, COUNTY, MCD, and 

TRACT/BNA entity types, respectively. Each case has 

exclusive ownership of a census data bearing (vis. 

pointer bearing) record type. The case ownership of 

record type numbers (and type names) is as follows: 
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1. Record type 2 (BLOCK-GROUP/ENUMERATION- 

DISTRICT) belongs to case 1ENTITY2' 

2. Record type 4 (COUNTY) belongs to case 

*ENTITY41 

3. Record type 6 (MCD) belongs to case ’ENTITY6’ 

4. Record type 8 (TRACT/BNA) belongs to case 

* ENTITY8’ 

Notice that the case name integer (i.e. ’ENTITYri’) is the 

same as the record type number of its data record type. 

Figure C.2 shows the portion of the physical 

database discussed to this point. Each ellipse represents 

a case instance. The case name (and associated entity 

type) is contained in the ellipse. Each rectangle 

represents a specific data record type. The record type 

number (circled) and record type name is shown. An 

undirected arc represents exclusive ownership of a record 

type by a case instance. 

The reader should note that the physical database 

uses only four data record types, while the conceptual 

schema references eight logical entity types. This 

physical design is possible because the schema employs 
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FIGURE C.2 

THE PHYSICAL DATABASE: CASES AND RECORD TYPES 
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"blatant logical redundancy;" more than one logical object 

refers to a single physical object. This is true in the 

case of the BLOCK-GROUP/ENUMERATION-DISTRICT logical 

entity type and in the case of the TRACT/BNA entity type. 

As described in chapter 11, the instances of the "lower 

level" constituents of these "higher level" entity types 

can be represented by record indexes. This technique 

allows for the avoidance of physical redundancy in the 

data representation. 

Record type 1 (BLOCK-GROUP), type 3 (BLOCK¬ 

NUMBERING-AREA), type 5 (ENUMERATION-DISTRICT), and type 7 

(TRACT) serve as indexes for the "lower level" entity 

types. The record format for each of these pointer record 

types is identical . Each such record holds a single 

value: the key of the area which it represents. 

Obviously, this is also the key of the record . Each 

"lower level" logical entity type instance is represented 

by exacly one pointer record instance, so each of these 

pointer record types simply serves as a list of key values 

which are of the respective logical entity type. 

The value of the key of a "lower level" area 

instance is the same as that of its "higher level" 

counterpart (they are the same physical object). As such, 

the respective pointer record and data record instances 
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have the same record keys. Every index record therefore 

"points” to its appropriate data record. In this way the 

database configuration supports the different views 

(higher level/lower level) of the common non-redundant 

data. "IS-A-related" entities can be dealt with in a 

similar manner. 

Figure C.3 shows the physical database as described 

so far. Each hexagon (flowcharting preparation symbol) 

depicts a pointer record type which is used as an index. 

The directed arcs are used to magnify the "pointer aspect" 

of the indexes. Note that when a record type is used as 

an index, the "target" record type of the index belongs to 

the same case instance. 

Up to this point we have discussed eight record 

types (numbered 1 through 8) of the physical database. 

The remaining five record types (9 through 13) represent 

the relationships of the conceptual schema; they are used 

to emulate the inverted list directory structure described 

in chapter 11. Inverted lists must be emulated because 

SIR does not support this structure. We will see that the 

technique used here serves the same purpose. 

Recall from the chapter 6 description that the 

purpose of a relationship directory is to "link" the 

superordinate (in a geographic relationship) "entity" 
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FIGURE C.3 

INDEX RECORDS 
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instance with its set of subordinate "entity” instances. 

Each relationship instance represents a "one-to-many" 

mapping from super ordinate to subordinate entity type. 

The data structure used to represent a relationship 

instance must support "downward" processing of the 

involved objects. 

In our SIR configuration each relationship directory 

is represented by its own record type. Each directory 

record instance relates to a single instance of the 

subordinate entity type. Thus, a superordinate record 

"points to" a number of directory records (notice that, 

structurally, this is quite different from an inverted 

list) . 

The format of a directory record depends on whether 

or not the subordinate type represents a "special case" 

entity, that is, one which is accessed through special 

indexes as described above. In the event that the 

subordinate type does not represent a special case entity, 

a directory record holds two values. The record format is 

as follows: 

$KEY, PTR$ 
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Here and below, record key values are enclosed in "$" 

characters. 

The first record value, KEY, is the key value of the 

super ordinate instance which points to the directory 

record. The remaining record value, PTR (PoinTeR), is the 

key of the subordinate instance which is pointed to by the 

directory record. Note that the key value of the 

directory record, which must be unique within the record 

type, is formed by the concatination of these two values. 

In the other situation, when the subordinate does 

represent a special case, a directory record holds three 

values. The record format is 

$KEY, TYPE(string), PTR$ 

The meaning of KEY and PTR are as before. The 

string value TYPE holds the "least abstract" entity type 

name of the object pointed to. For example, if the 

subordinate entity type is BLOCK-GROUP/ENUMERATION- 

DISTRICT, then each entity instance is either a 

BLOCK-GROUP entity or an enumeration-district entity. The 

value of TYPE indicates which. "IS-A-related" entities 
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are treated similarly. Note that the key value of the 

record type is formed as the concatination of these three 

record values in this latter case. 

Now, if we wish to access all subordinate 

BLOCK-GROUP/ENUMERATION-DISTRICT instances that are 

related to a given superordinate record with key value 

KEY, we can state 

PROCESS REC rtype, WITH (KEY) 

COMPUTE NEWKEY = PTR 

RECORD IS 2, NEWKEY 

END RECORD IS 

END PROCESS REC 

where ’’rtype” is the directory record 

other hand, we wish to access 

ENUMERATION-DISTRICT instances that 

super ordinate record with key value 

replace the above first statement with 

number. If, on the 

all subordi nat e 

are re] Lated to the 

KEY, we need only 

PROCESS REC rtype, WITH (KEY, 'ENUMERATION-DISTRICT') 
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Obviously, the second sort id can be specified as a string 

variable name. 

Note that each of these statement forms involves the 

same record type since we are dealing with logical but not 

physical redundancy. The latter statement places a 

greater restriction on the selection of records. Thus the 

records referenced in this latter format are a subset of 

those referenced in the former. 

Because of the flexibility of this relationship 

directory technique, a number of relationships can be 

represented by a single directory. This obviously reduces 

greatly the storage space required for the directories. 

All relationships of our example conceptual schema, 

including the implied relationships, are represented by 

only five directories (record types). These five 

directories depict fifteen dif ferent geographic 

relationships. 

Figure C.4 shows the entire physical database 

configuration. Each triangle depicts a directory pointer 

record type. The meanings of the remaining symbols are as 

before . 

Some points deserve noting here. First of all, the 

directory record type is "owned” (hierarchically) by the 

superordinate data record type which points toward the 
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FIGURE C.4 

THE FULL PHYSICAL DATABASE 
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directory. Second of all, each directory points outside 

its case instance. Finally, as described previously, the 

same directory is used regardless of whether or not the 

superordinate or the subordinate (or both) is a ’’special 

case” entity type; any case instance pair is joined by at 

most one directory. 

The_ system internal f orm. Under the methodology put 

forth in chapter 12, the system internal form is made up 

of three distinct parts. Specifically, these are the 

symbol table, the schema matrix, and the pointer matrix. 

In our SIR configuration each of these parts is 

represented by a separate record type. These record types 

are named SYMBOL, SCHEMA, and POINTER, respectively. 

Every SIR record instance must be linked to a single 

case instance. In the design described here all instances 

of these three record types belong to the single case 

'IFORM’ (Internal FORM). This is illustrated in 

figure C. 5. Each of the three record types is assigned a 

unique record number, but these numbers are not pertinent 

to our discussion. 

There is eactly one record instance of type SYMBOL 

for each entity type of the conceptual schema. Thus, in 

our example system, there are eight SYMBOL records. 
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FIGURE C.5 

THE SYSTEM INTERNAL FORM 



5M8 

A SYMBOL record holds three values. The format is 

$ENAME(string)$, SEQNO, RECNO 

ENAME (Entity NAME) is a string value which is the 

standard GERMS name of the entity type to which the record 

relates. ENAME is the record key so, given an entity type 

name, the system can go directly to the proper "row" of 

the ’’symbol table.” 

The unique second value, SEQNO (SEQuence Number), is 

the sequence number of the entity type represented by the 

record. In the example discussed here the sequence 

numbers range from 1 through 8. The third value, RECNO 

(RECord Number), is the record number in which the data 

for the entity type is stored in the physical database. 

These values need not be unique within the record type 

since our physical storage methodology does not employ 

physical redundancy in representing logical redundancy. 

The range of possible RECNO values is the same as that of 

SEQNO values. 

Figure C.6 shows the eight SYMBOL record type 

instances which relate to our example database. Again, 

”$” characters enclose the record key. When considering 
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this figure in conjunction with the previously described 

physical database configuration, the rationale behind our 

choice of physical database record type numbers becomes 

obvious (refer back to figure C.3). 

The value of SEQNO for an entity type denotes the 

record type which is the ’’first step” in accessing the 

data for the entity type. Thus, if the data for an entity 

type is indexed (e.g. TRACT), then SEQNO ’’points” to the 

appropriate index record type (i.e. record type 7). If, 

on the other hand, the data for an entity type is not 

indexed (e.g. TRACT/BNA), then SEQNO "points” directly to 

the data record type (record type 8). 

The value of RECNO for an entity type denotes the 

record type which is the "final step" in accessing the 

data for the entity type. This is, in all cases, a data 

(vis. pointer) record type. It should be noted that only 

in the situation of "special case" entity types are the 

value of SEQNO and RECNO unequal. Consequently, the 

logical result of 

IF (RECNO NE SEQNO) 

can be used to determine whether an index is to be 
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processed. 

Bef o re a SIR reco rd can be ac cess ed , the single c ase 

in sta nee of which th e record i s a member m ust be made 

"c ur r ent." In our phy sical dat ab ase design each case 

in sta nee hold s only one data r ecor d type. The index 

re cor d typ e( s) which po int to the d at a records ■, and the 

di r ec tor y r ec ord type s which a re poi nted to by the d at a 

re cor d s ar e members of th] is same c ase . The problem is 

th at the syst em must a ccess the pr oper case be fore r ecord 

pr oce ssing can begin. Thi Is probl em is easily solved by 

ma kin g use of informati on contain ed in the SYMBOL rec ord s. 

Recall that if the data relating to an entity type 

are stored in record type ”i,” then the name of the case 

in which the data records are stored is string value 

’ENTITYi’. Recall also that, for any entity type, the 

record type number in which its data are stored is held as 

the integer value of the variable RECNO of the appropriate 

SYMBOL record . 

When processing a SYMBOL record, then, the 

appropriate case name can be stored in variable _CASENAME 

as follows: 

COMPUTE CASENAME = ENTITY' + (FORMAT (RECNO, 1)) 
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This FORMAT function specification converts the first 

function argument to a single character string 

representation of its integer value. Thus, if RECNO holds 

the value "i ," CASENAME is loaded with string value 

’ENTITYi’. 

Following this computation, the appropriate case can 

be made current with the statement 

CASE IS CASENAME 

SIR does not support the use of matrixes, but 

"matrix-type” operations can be simulated using records 

and variables. This technique will be used to emulate 

operations on the schema "matrix” and the pointer "matrix" 

as detailed in chapter 12. 

Recall that, when the conceptual schema involves N 

entity types, the internal form schema matrix is of 

dimension N x N. In our example here the schema deals 

with eight distinct logical entity types, so we must 

represent an 8 x 8 matrix. Each matrix row is depicted by 

a separate record instance. Therefore, record type SCHEMA 

holds exactly eight record instances. 
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Given a row-column index pair (i.e. "i,j" of 

SCHEMA(i,j)) we must be able to access the appropriate 

matrix element. With our record structure the first step 

in this process is to access the single record which 

corresponds to row i of the matrix. Each matrix row 

corresponds to a specific logical entity type which, in 

turn, corresponds (via the symbol table) to a specific 

sequence number (SEQNO). If this sequence number is 

defined as the record key, then a matrix record instance 

can be directly accessed through specification of its 

entity type number. In order to maintain consistency of 

the meaning of variable names in our internal form 

structure, this key will be named SEQNO. 

As for matrix columns, the SCHEMA record type 

defines eight non-key values; one for each logical entity 

type. Thus, each record instance holds a total of nine 

(in general N + 1) values. The record format is as 

follows: 

$SEQN0$, REL1, REL2, REL3...REL8 
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For any SCHEMA record instance with key value i, the 

position "RELj" (RELationship j) relates to the "i,j" 

element of the internal form schema matrix [1]. SIR 

provides a "shorthand” method of specifying a "matrix 

column." Specifically, in the situation described here, 

the jth "column" can be specified as 

REL1 TO REL8 (j) 

For any "i,j" element of the schema matrix, the 

element’s value has to do with the relationship (if any) 

held between logical entity type i and logical entity 

type j. To review briefly: 

"1" denotes CONTAINS 

"2" denotes COMPRISES 

"3" denotes IS-A 

"4" denotes EITHER-OR 

"0" denotes "otherwise involved" 

"BLANK" denotes "uninvolved" 

These concepts were detailed in chapter 12. 
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In many situations, for instance in verifying the 

semantic integrity of a query, our system must insure that 

a CONTAINS ("1") or a COMPRISES ("2") relationship holds 

between a given entity type pair. The absence of one of 

these relationships indicates an error. 

Now, if the sequence number value of the 

superordinate entity type is held in variable ROW, and the 

sequence number of the subordinate entity type is held in 

variable COL, then the query integrity can be verified as 

follows: 

RECORD IS SCHEMA (ROW) 

COMPUTE RELTYPE = REL1 TO REL8 (COL) 

IFNOT (RELTYPE EQ 1 OR 2) error 

END RECORD IS 

Note that use of this procedure demands that the ’’current” 

case instance is ’IFORM’. 

Figure C.7 shows the actual SCHEMA record instances 

which relate to our example. All relationship instances, 

including implied relationships, are shown here. A 

dash (-) is used to represent the aforementioned BLANK 

character. The SEQNO key value is used for the purpose of 

record access only. 
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The POINTER r ec ord type, i */hich likewise holds e ight 

r eco rd in st ances , is used to support ”i matrix-t ype" 

oper at ions in a similar way. Recall that the ” i,j" 

el em en t of the intern al form pointer matrix dir ect s the 

syst em to the r el a tionsh ip directory which represents the 

r el a tionship held (if any) by the respective entit y type 

pa ir • 

The format o f the POINTER record type is simil ar to 

that 0 f the SCHEMA type . Speci fically, the record is 1 a id 

out as follows: 

$SEQN0$, DIR1, DIR2, DIR3...DIR8 

For any POINTER record with key v al ue i , the 

posi tion " DIRj" (DIRectory j) relates to the " i »J ” element 

of the inter nal form pointer matrix • In bhi s 

im pi ementation said integer value is th e record 1 - ype 

number of the appropriate director y r ec o rd t ype. As 

be fore , a r ec ord sequence number (m atrix r ow) r elate: s to 

the superordina te entity type, while the v alu e posi' tion 

n umb er (ma tr ix column) relates to the s ubord ina te type • 
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If the values of the variables ROW and COL hold the 

same meanings as was used above, then the following SIR 

statements can be used to store the appropriate record 

type number in the variable DIRECTOR: 

RECORD IS POINTER (ROW) 

COMPUTE DIRECTOR = DIR1 TO DIR8 (COL) 

END RECORD IS 

Again, the "current" case instance must be ’IFORM’. 

Figure C.8 shows the actual POINTER record type 

instances which relate to our example physical database. 

A circled element value denotes an implied relationship 

which is not shown ex piicitly in the conceptual schema 

graph. The directory record type numbers which are 

represented in this illustration were discussed in the 

previous subsection (refer back to figure C.*J). 

Note that only relationships of the CONTAINS and 

COMPRISES variety are represented in the POINTER matrix 

since these are the only relationship types which employ 

directories in their representation. Note also that the 

pointer matrix is processed only after the existence of 

the relationship is verified (as discussed above). 

Consequently, the system will never "see" a blank value. 
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Recapitul ation. In this section we have described a 

GERMS-based database management system (DBMS) which is 

implemented in SIR. SIR is an extended hierarchical (vis. 

true network) database system, so the design suggested in 

chapters 11 and 12 is modified slightly. In general, 

though, the design described here closely matches that 

proposed in the earlier chapters. 

The physical database employs a number of different 

record types. Each record type serves as either a ’’data 

record type" or as a "pointer record type." A pointer 

record type is either an "index type" or a "directory 

type ." 

The complex nature of directory record keys allows 

for the record type to take the place of an inverted list 

structure. Directory rows are not of varying lengths, but 

record "sets" of varying sizes can be "pointed to" by a 

single ( superordin ate) data record. Thus each inverted 

list element is represented by a separate directory record 

in the SIR design . 

Index record types are used to avoid physical 

redundancy in representing the blatant logical redundancy 

of "special case" entity types. The data records relating 

to the set of instances of a "special case" entity type 

are accessed by first processing the index record type. 
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The search is then directed to a different record type 

which holds the data for that and other entity type(s). 

When processing a "relationship chain,” the index 

records are used at the "start" of the chain only. If 

special case entities occur at "lower" chain levels, the 

method of processing the directory records is affected, 

howev er . 

The system internal form, which is represented 

entirely by members of the case instance ’IFORM’ , involves 

the use of three record types: SYMBOL, SCHEMA, and 

POINTER. With each of these record types there is a 

one-to-one correspondence between record instances and 

logical entity types of the conceptual schema. Thus, in 

our example system, there are eight instances of each 

t ype. Both SCHEMA records and POINTER records are 

identified by their key value SEQNO. This value is the 

sequence number of the single logical entity type to which 

the record instance relates. 

The SYMBOL records provide the link between entity 

type sequence numbers and entity type names. The SYMBOL 

record string key value, which is named ENAME, provides 

for direct access of a SYMBOL record upon specification of 

an entity type name. Since every SYMBOL record holds the 

entity sequence number upon which SCHEMA and POINTER 
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records are keyed, the system can subsequently access 

directly the respective record of either of these types. 

Each "column” position of the "matrix row" is likewise 

related to an entity sequence number. 

The SYMBOL records also link the system internal 

form representation to a portion of the physical database. 

Every one of these records details the storage location 

and storage configuration (i.e. indexed/not indexed) of 

its entity type’s data. If the entity's data is indexed, 

then SEQNO points to the index, while RECNO points to the 

actual data. Otherwise, both of these variables point 

directly to the data records. 

The remainder of the logical --> physical link is 

achieved through the use of the POINTER records. Except 

for the record key, every non-blank value of a POINTER 

record is directed towards a relationship directory which 

exists within the physical database. The specific 

relationship represented here is indicated by the 

row-column position of the pointer value. There are many 

more pointer values than there are relationship 

directories since a single directory often represents a 

number of relationships. 
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With the exception of providing names to entity 

types, which is the duty of the SYMBOL records, the set of 

SCHEMA records holds the entire information content of the 

conceptual schema. The explicit as well as the implicit 

relationships of the schema are represented unambiguously. 

This representation is the basis of the system’s 

’’knowledge” of the conceptual schema structure. By 

processing these records the system can ’’understand” and 

validate the user’s references to geographic 

relationships. 

System So ftwar e 

In this sec ti on we il lustrate how SIR program s can 

be used to per fo rm GERMS -based operat ion s on the system 

whose de sign was de sc r ibed above. The i n te nt here is to 

de scribe the basic log ic of a GERMS fron t-e nd — one which 

ut il i ze s the system ’ s knowl edge of the GE RMS cone eptual 

schema. The disc uss ion emphasizes those routines whic h 

tr av er se the schema ne twor k structure; c one erns whic h are 

peripher al to thi s iss ue ar e d e-emphasi zed . 
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The software described hereunder should in no way be 

considered as "production code." There are a number of 

reasons for this. First of all, the programs are 

incomplete as individual record attributes (the actual 

data values) are ignored. Also, the intricacies of how 

the system output is formed is not covered; nor is the 

diagnosing and processing of errors. 

Second of all, compact software segments have been 

deliberately expanded to improve clarity. Thus, rather 

than looping through a set of statements repeatedly, the 

statements of the loop are repeated so that the iterations 

are shown explicitly. We feel that this technique better 

serves the illustrative purpose of this section. 

Before our system can be implemented, a basal 

problem must be faced. It is obvious that our 

implementation should emphasize flexibility in its design. 

That is, the system user should be allowed to reference 

any "legitimate" set of entity types in a query. This 

requires that record references (i.e. PROCESS REC, RECORD 

IS) be allowed to be "variable" in nature. 

The problem is that the use of variables for record 

type names or record type numbers is not allowed in these 

references. Thus, SIR will not permit the following: 

COMPUTE RECTYPE = 3 

PROCESS REC RECTYPE 
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The only acceptable form is 

PROCESS REC 3 

Note that the use of str in g v ar iabl es for rec ord t ype 

n ame s i s 1 ikewise not permi tted • 

One solution, wh ich i s c 1 ear1y too c1 urn s y to b e 

acce ptable , is to inc 1 ude SIR statern ents to alio w for all 

po ss ible c ombin ations of r ecord cit ations. Th e pr o per 

stat ement would be sel ec ted through the proces si ng o f a 

complex se t of conditi onal bran ching statements. 

An acceptable al t erna t ive is found thro ugh 

empl oymen t of a "record typ e sub stitution pr oc ed ur e." 

Such a procedure, which we c all NAMESET, u se s b oth 

po si tional and global substi tution par ameter s ( see the 

first sect ion of this appendix) • 

The following is a sourc e list of our pr oced ur e 

NAMESET: 

00100 COMMENT 
00110 COMMENT 
00120 
00130 
001 40 
00150 
001 60 

Procedure NAMESET 
This procedure assigns a numeric 
value to a global parameter name. 
The numeric value assigned is that of 
the variable whose name is passed as 
positional parameter <1>. The 
global parameter name is passed as 
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00170 positional parameter <2>. 

001 80 
00190 COMMENT *** THIS SIR CODE IS FOR # * # 
00200 *** ILLUSTRATION PURPOSES ONLY *#* 
0021 0 
00220 COMMENT *** NOT FOR PRODUCTION USE *# # 
00230 
00240 IFTHEN (<1> EQ 1 ) 
00250 GLOBAL <2> = 1 
00260 ELSEIF (<1> EQ 2) 
00270 GLOBAL <2> = 2 
00280 ELSEIF (<1> EQ 3) 
00290 

• 

GLOBAL <2> = 
• 

3 

• 

• 

00440 

• 

• 

ELSEIF (<1> EQ 1 1 ) 
00450 GLOBAL <2> = 1 1 
00460 ELSEIF (<1> EQ 12) 
00470 GLOBAL <2 > = 12 
00480 ELSE 
00490 GLOBAL <2> r 13 

The procedure uses two positional parameters. The 

v al ue to be taken on by the first positional parameter is 

the name o f a v ar iable whose integer value relates to a 

record type number. The value of the second positional 

parameter is the name which is to be assigned to a global 

parameter whose value is that same integer represented by 

the first parameter. This rather complicated design 

deserves an example. 

Consider the following SIR statements: 

COMPUTE TYPENO = 3 

CALL NAMESET ( TYPENO, RECTYPE) 
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With this CALL statement, the values assigned to the first 

and to the second positional parameters are "TYPENO," and 

"RECTYPE," respectively. TYPENO is a variable which holds 

integer value ”3” at the time of the procedure CALL. 

Given the positional parameter references in the 

procedure, each conditional statement is interpreted by 

SIR a s 

... IF (TYPENO EQ ... 

Since TYPENO holds the value ”3,” statement 00280 

evaluates as "true." This causes the execution of 

statement 00290 whose positional parameter reference is 

replaced by the value "RECTYPE." That is: 

ELSEIF (TYPENO EQ 3) 

GLOBAL RECTYPE = 3 

The ultimate result of calling the procedure is that the 

global parameter name "RECTYPE" is equated to the 

value 3 -- that very value held by the variable "TYPENO." 



568 

The purpose of this procedure is 

the procedure CALL, each reference to 

"RECTYPE" is replaced by a constan 

previously handled as a variable; 

constant value 3. Thus the statement 

that, subsequent to 

the global parameter 

t value which was 

in this instance the 

PROCESS REC <RECTYPE> 

is subsequently interpreted as 

PROCESS REC 3 

The procedure NAMESET, as shown above, 

to handle any integer value between 1 and 

These values relate to the record types of 

database . 

is designed 

13 inclusive . 

our physical 

Quer y processing . 

parsed by the system 

this processing as 

One e a user’s 

, the query must 

comprising two 

query statement i s 

be processed. We see 

main tasks: quer y 
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interpretation, and data retrieval. By query 

interpretation we mean that portion of query processing 

which deals with the system internal form representation. 

This involves verifying the integrity of the query (not 

data integrity) as well as linking the logical objects 

referenced in the query to their physical database 

counterparts. The meaning of the data retrieval task is 

obvious. 

We will discuss the software related to these two 

tasks separately. The query interpretation software is 

discussed first. The reader is reminded that the software 

presented below i_s not production code. It has been 

simplified for the purpose of illustration. 

The following query processing program relates to a 

specific circumstance in our example system. 

Specifically, we deal with a query breakdown which is 

’’nested 2-deep.” Thus, if two entity types of the schema 

are named ”X” and ”Y,” then we are speaking of a query of 

the form "GET X BY Y.” Also, we assume that ALL entity 

instances of the type X are requested. 

The query interpretation routine is entered with the 

assumption that the query statement is already parsed. 

Furthermore, it is assumed that the name of the 

superordin ate entity type ("X” in the above query 
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tempi ate) 

the name 

stored in 

The 

resides in string variable "XENT." Similarly, 

of the subordinate entity type ("YM above) is 

string variable "YENT." 

source list is as follows: 

00100 
0011 0 
00120 
00130 
001 40 
001 50 
00160 
00170 
00180 
001 90 
00200 
0021 0 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
0031 0 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
0041 0 
00420 
00430 
00440 
00450 
00460 
00470 

COMMENT This program segment interprets a query 
breakdown which is nested "2-deep". 
It is assumed that the name of the 
superordinate entity type is stored in 
string variable "XENT", and that the 
name of the subordinate entity type 
is stored in string variable "YENT." 
All instances of the superordinate 
entity type are processed. 

COMMENT *** THIS SIR CODE IS FOR *** 
*** ILLUSTRATION PURPOSES ONLY *** 

COMMENT *** NOT FOR PRODUCTION USE *** 

COMMENT process internal form logical structure 
CASE IS * IFORM * 
. SET SPECIAL1, SPECIAL2 (’FALSE’) 
. COMMENT go to proper row of symbol table 

for superordinate entity type 
. RECORD IS SYMBOL (XENT) 

COMPUTE SUPCASE = 'ENTITY'*(FORMAT(REC NO, 1)) 
COMPUTE ROW = SEQNO 
CALL NAMESET (SEQNO, SUPEN0) 

. COMMENT check if entity type is a 
"special case" 

IFTHEN (RECNO NE SEQNO) 
COMPUTE SPECIAL1 = ’TRUE' 
CALL NAMESET (RECNO, SUPRNO) 

ENDIF 
. END RECORD IS 
. COMMENT go to proper row of symbol table 

for subordinate entity type 
. RECORD IS SYMBOL (YENT) 

COMPUTE SUBCASE = ’ENTITY'+(FORMAT(RECNO,1)) 
COMPUTE COL = SEQNO 
CALL NAMESET (RECNO, SUBRNO) 

. COMMENT check if entity type is a 
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00480 ’’special case” 

00490 . IFTHEN (RECNO NE SEQNO) 
00500 . COMPUTE SPECIAL2 = ’TRUE’ 
00510 . COMPUTE SUBENAME = ENAME 
00520 . ENDIF 
00530 . END RECORD IS 
00540 . COMMENT inspect schema element for 
00550 proper relationship type, if not, 
00560 call error routine 
00570 . RECORD IS SCHEMA, (ROW) 
00580 . COMPUTE RELTYPE = REL1 TO REL8 (COL) 
00590 . IFNOT (RELTYPE EQ 1 OR 2) CALL RONGREL 
00600 . END RECORD IS 
00610 . COMMENT determine directory location 
00620 from pointer matrix 
00630 . RECORD IS POINTER, (ROW) 
00640 . COMPUTE DIRECTOR = DIR1 TO DIR8 (COL) 
00650 . CALL NAMESET (DIRECTOR, DIRRNO) 
00660 . END RECORD IS 
00670 . COMMENT complete processing of internal 
00680 form 
00690 END CASE IS 

Query interpretati on d eal s with the system i nternal 

form , so the internal form case * IFORM’ is made ”c urren t” 

at sta tement 00260 . The fir st t ask to be performed is to 

retrieve the req uir ed in fo rmat ion from the symbol table . 

Sine e the SYMBOL r ecord s are ” ke yed” on the entity type 

n ame , statement 00300 d ir ect s the system to that single 

’’table row” which rel ate s to the superordin ate entity 

type . 

At statement 0031 0 we constr uc t the name o f that 

case instance of the phys ic al d at abase which rel ates to 

the superordinate entity typ e . This case name i s then 
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stored in string variable SUPCASE (SUPerordinate CASE). 

The entity type sequence number is stored in variable ROW, 

and the record type number which relates to this sequence 

number is equated to global variable name "SUPENO" 

(SUPerordinate Entity Number) at statement 00330. 

Now, if the entity type is not a "special case” 

entity, this record type holds the superordinate entity 

data. Otherwise, the record type relates to index records 

and the data record type must be derived. Statements 

00340 through 00390 test accordingly and perform this task 

if appropriate. In the event that the entity is a special 

case type, the flag variable SPECIAL1 is set to ’TRUE,’ 

and the global variable SUPRNO (SUPerordinate Record 

Number) is equated to the proper record type. 

Statements 00410 through 00530 process the 

subordinate entity type in a similar manner. The sequence 

number of this entity type is stored in variable COL(umn). 

Note that the issue of whether or not the data is indexed 

is of no concern here; only the data records need be 

accessed . 

The "special case status" of the entity does affect 

the processing of the directory records, however. In the 

event that the entity is a special case type, the flag 

variable SPECIAL2 is set accordingly. Also, the 
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subordinate entity type name (record string variable 

ENAME) is stored in string variable SUBENAME (SUBordinate 

Entity NAME) . 

Statements 005^0 through 00600 verify the integrity 

of query structure by insuring that a "1” or a "2” resides 

in the proper row-column position of the SCHEMA "matrix.” 

This position is determined by the values of the variables 

ROW and COL which relate to the sequence numbers of the 

superordinate and the subordinate entity types, 

respectively. 

If a proper schema value is not found (i.e. 

statement 00590 evaluates as "true"), then a CONTAINS or a 

COMPRISES relationship does not hold, in the proper 

direction, between the entity type pair in question. This 

situation triggers the execution of the procedure R0NGREL 

(wRONG RELationship). This procedure is not described 

here, but its purpose is obvious -- it causes the query to 

be rejected. 

Next, if the query is found to be valid, the 

location of the appropriate relationship directory is 

located. Statements 00610 through 00660 accomplish this. 

The type number of the directory record type is stored in 

the appropriate row-column position of the POINTER 

"matrix." Once located, this type number is equated to 
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global parameter name DIRRNO (DIRectory Record Number) at 

statement 00650. 

Finally, statement 00690 indicates that the system 

internal form (case ’IF0RM’) is no longer needed for the 

processing of this query. We have extracted all of the 

information that is required to perform the query 

interpretation phase of query processing. 

Before we begin our discussion of the data retrieval 

phase of query processing, we will add that the extensions 

that are required to allow the above program to handle 

”n-deep nested” queries are minimal. Essentially, those 

statements which have to do with the subordinate type and 

with the relationship (i.e. statements 00410 through 

00660) are placed in a loop which is processed once for 

each level of nesting (obviously, some means of 

differentiating the variable names is also required) . 

This feature is omitted here for the sake of simplicity. 

The task of data retrieval demands that the record 

processing blocks be nested within one another. In the 

two-entity query discussed here (X BY Y) , the subordinate 

data record processing block (record type SUBRNO) is 

nested within the directory record processing block (type 

DIRRNO). This, in turn, is nested within the 

superordinate index and/or data record processing block 
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(types SUPENO, SUPRNO). The processing block structure of 

"deeper nested" query formats is obvious. 

The source list of the data retrieval program 

segment is as follows: 

00700 
00710 
00720 
00730 
00740 
00750 
00760 
00770 
00780 
00790 
00800 
0081 0 
00820 
00830 
00840 
00850 
00860 
00870 
00880 
00890 
00900 
00910 
00920 
00930 
00940 
00950 
00960 
00970 
00980 
00990 
01000 
01 01 0 
01020 
01030 
01040 
01050 
01060 
01070 

COMMENT This program segment performs 
the data retrieval portion of query 
processing. Terms enclosed in "< >" 
are substituted with record type 
numbers before processing. 

COMMENT *** THIS SIR CODE IS FOR *** 
*** ILLUSTRATION PURPOSES ONLY *** 

COMMENT *** NOT FOR PRODUCTION USE *** 

CALL * 
COMMENT begin with superordinate entity 
CASE IS SUPCASE 
. PROCESS REC <SUPEN0> 

COMPUTE KEY1 = KEY 
COMMENT check if entity type is a 

"special case" 
IFTHEN (SPECIAL 1 EQ ’TRUE’) 

COMMENT if yes, move to and 
process data record 

RECORD IS <SUPRN0>, (KEY 1) 
CALL WRITPROC 

END RECORD IS 
ELSE 

COMMENT otherwise, process data record 
CALL WRITPROC 

ENDIF 
COMMENT check if subordinate entity is a 

"special case" 
IFTHEN (SPECIAL2 EQ ’TRUE’) 

. COMMENT if yes, process reduced set of 
directory siblings 

PROCESS REC <DIRRN0>, WITH (KEY 1, SUBENAME) 
COMPUTE KEY2 = PTR 
COMMENT follow directory pointer 
CASE IS SUBCASE 

RECORD IS <SUBRN0>, (KEY2) 
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01080 . CALL WRITPROC 

01090 
011 00 
01 1 10 
01120 
01130 
01140 
01150 
01160 
01 170 
011 80 
01190 
01200 
01210 
01220 
01230 
01240 
01250 
01260 
01270 
01280 

END RECORD IS 
END CASE IS 

END PROCESS REC 
ELSE 

. COMMENT otherwise, process entire set 
of directory siblings 

PROCESS REC <DIRRN0>, WITH (KEY1) 
COMPUTE KEY2 = PTR 

. COMMENT follow directory pointer 
CASE IS SUBCASE 

RECORD IS <SUBRNO>, (KEY2) 
CALL WRITPROC 

END RECORD IS 
END CASE IS 

END PROCESS REC 
ENDIF 

. END PROCESS REC 

. COMMENT complete external superordinate 
entity block 

END CASE IS 

The first operation, statement 00830, directs the 

system to the physical database (vis. system internal 

form). This statement makes current that case instance 

which relates to the super ordinate entity type. Next, the 

’’outside” record processing block, that which relates to 

this same superordinate entity, is entered. 

The conditional block which comprises statements 

00860 through 00970 dictates that the appropriate action 

be taken depending on whether or not the entity type in 

question is a ’’special case.” If the entity type i_s not a 

special case, then the current record is a data record and 

can be processed directly. 



577 

If, on the other hand, it i_s a special case, then 

the current record is an index record; its data record 

counterpart must be made current (statement 00910) before 

processing is carried out. 

The processing of a data record involves the 

formatting and writing of the requested record attributes 

to the output file. This task is peripheral to our 

concerns here, so we will assume that the procedure 

WRITPROC (WRITe PROCedure) performs this job properly. 

This procedure is not discussed further. 

The processing of subordinate data records is 

affected by the processing of directory records, which in 

turn is affected by the "special case status” of the 

subordinate entity type. Consequently, these two nested 

processing blocks are themselves nested within a 

two-branch conditional block (statements 00980 through 

- 01240). 

If the subordinate entity type i_s a special case 

entity, then a reduced set of directory siblings is 

considered. This reduced set is specified by stating two 

sort variables; besides the key of the superordinate 

entity instance, the subordinate entity type name is 

matched (see statement 01030). 
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For each directory record considered, the pointer 

value (variable PTR) is "followed." First, however, that 

case instance which relates to the subordinate entity type 

is made current (statement 01060). Following this, the 

subordinate data record which is pointed to by the 

directory record is processed. Again, the procedure 

WRITPRQC accomplishes this. 

If the subordinate entity type i_s not a special case 

type, the basic steps remain the same — the only 

difference being that a larger set of directory entries is 

processed (compare statement 01150 with statement 01030). 

These steps relate to program statements 01130 through 

01230. 

Statement 01250 signals the logical terminus of the 

"external" (superordinate) record processing block. 

Following the exit from this block the superordinate 

entity case instance need no longer be considered. This 

is represented by statement 01280 which completes the 

query processing program. 

A semantic integrity checker. In chapter 13 we 

described the logic of a subsystem which is used to verify 

the integrity of the objects of the physical database. 

Sets of data are aggregated and the resulting values 
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compared to those of related data. Based on the meaning 

of the data there can be derived various relations (e.g. 

EQ, GT) which should hold between the compared values. We 

call these semantic relations since they are derived from 

the data meaning. The subsystem is called a semantic 

integrity checker for a similar reason. 

In the following paragraphs we show how the semantic 

integrity checker can be programmed to serve as a useful 

accessory to our SIR implementation of the GERMS-based 

system. The logic of the programs presented here varies 

slightly from that presented earlier. The differences are 

due to the idiosyncrasies of SIR. For the most part, 

however, the programs adhere to the earlier described 

structure. 

The semantic integrity checker comprises a main 

routine and a number of CALLable procedures, some of which 

are not described in detail. When the main routine is 

executed, the integrity of the entire physical database is 

checked. Admittedly, this checking constitutes an 

expensive undertaking. The relatively static nature of 

geopolitical statistical data insures that the task need 

not be performed often, however. 
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The main routine, whose structure is hardly complex, 

is as follows: 

00100 
001 10 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 

RETRIEVAL 
COMMENT This program is the main routine 

of a semantic integrity checker. 
Each schema element is inspected 
for the presence of a CONTAINS or 
a COMPRISES relationship. Upon 
finding such, the integrity of the 
respective data objects is verified. 

COMMENT *** THIS SIR CODE IS FOR *** 
*** ILLUSTRATION PURPOSES ONLY *** 

COMMENT *** NOT FOR PRODUCTION USE *** 

COMMENT process internal form logical structure 
CASE IS ’IFORM* 
. COMMENT process each ’’row" of schema "matrix” 
. PROCESS REC SCHEMA 

COMPUTE ROW = SEQNO 
. COMMENT loop over matrix "columns" 

FOR COL =1,8 
COMPUTE RELTYPE = REL1 TO REL8 (COL) 
COMMENT inspect relationship type and 

trigger appropriate action 
IF (RELTYPE EQ 1 OR 2) CALL SUMCHEK 

END FOR 
. END PROCESS REC 
. COMMENT complete processing of internal form 
END CASE IS 
END RETRIEVAL 

This program directs the system through a "row-wise" 

scan of the internal form schema representation. The 

"current" case instance is therefore ’IFORM,’ as specified 

in statement 00250. The major portion of the program is 



581 

nested within a SCHEMA record type processing block 

(statements 00260 through 00360). Every SCHEMA record is 

considered in a separate iteration through this block. 

For each SCHEMA record (matrix row), every row 

element is considered in a separate iteration of a ’’column 

loop” (statements 00300 through 00350). The integer value 

of the schema element, which describes the nature of the 

relationship (if any) held between the respective entity 

type pair, is stored in variable RELTYPE (RELationship 

TYPE) . 

Now, if the schema element value is a ”1” or a ”2," 

then the respective entity type pair is linked by a 

CONTAINS, or by a COMPRISES relationship, respectively. 

If such is the case, the data integrity can be verified. 

The procedure SUMCHEK, which performs this 

verification, is CALLed in the event that one of these 

relationship types is found (statement 003^0). Otherwise, 

the "next” schema element is considered. When each column 

of each row of the matrix is inspected, and the proper 

action taken, the program terminates. 

The logic of procedure SUMCHEK is quite similar to 

that of the query processing software described earlier 

(data values are compared rather then printed). For this 

reason our discussion will concentrate, for the most part, 

on those features which are unique to SUMCHEK. 
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The following is a source list of the procedure. 

00100 
00110 
00120 
001 30 
00140 
00150 
001 60 
00170 
001 80 
001 90 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 

COMMENT Procedure SUMCHEK 
COMMENT This procedure is CALLed in 

the event that a CONTAINS or 
a COMPRISES relationship is 
detected in the schema matrix. 
The purpose is to verify that 
the proper semantic relations 
hold among the related data 
ob j ects. 

COMMENT *** THIS SIR CODE IS FOR *** 
*** ILLUSTRATION PURPOSES ONLY *** 

COMMENT *** NOT FOR PRODUCTION USE *** 

. COMMENT continue processing internal form 
case ’IF0RM’ 

. SET SPECIAL1, SPECIAL2 (’FALSE’) 

. SET FOUND (0) 

. COMMENT search symbol "table” until both 
row and column records are found 

. PROCESS REC SYMBOL 
IF (FOUND EQ 2) EXIT RECORD 
COMMENT check if record relates to 

schema row 
IFTHEN (SEQNO EQ ROW) 

COMMENT if yes, prepare for processing 
of superordin ate records 

COMPUTE SUPCASE = 'ENTITY’ + (FORMAT(RECNO, 1 )) 
CALL NAMESET (SEQNO, SUPENO) 
COMMENT check if entity type is a 

"special case" 
IFTHEN (RECNO NE SEQNO) 

COMPUTE SPECIAL1 = ’TRUE' 
CALL NAMESET (RECNO, SUPRNO) 

ENDIF 
COMMENT record that a match has been 

found and discard this record 
COMPUTE FOUND = FOUND+1 
NEXT RECORD 

ENDIF 
COMMENT check if record relates to schema 

column 
IFTHEN (SEQNO EQ COL) 
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00540 COMMENT if yes, prepare for processing 

00550 
00560 . 
00570 . 
00580 . 
00590 
00600 . 
0061 0 . 
00620 . 
00630 . 
00640 . 
00650 . 
00660 . 
00670 . 
00680 . 
00690 
00700 . 
00710 . 
00720 . 
00730 . 
00740 . 
00750 
00760 
00770 . 
00780 . 
00790 . 
00800 . 
0081 0 
00820 . 
00830 . 
00840 
00850 . 
00860 . 
00870 . 
00880 . 
00890 . 
00900 . 
00910 . 
00920 . 
00930 
00940 . 
00950 . 
00960 
00970 . 
00980 . 
00990 . 
01000 . 
01010 . 

of subordinate entity records 
COMPUTE SUBCASE = ’ENTITY’+(FORMAT(REC NO, 1)) 
CALL NAMESET (RECN0, SUBRNO) 
COMMENT check if entity type is a 

"special case" 
IFTHEN (R EC NO NE SEQNO) 

COMPUTE SPECIAL2 = ’TRUE’ 
COMPUTE SUBENAME = ENAME 

ENDIF 
COMMENT record that a match was found 
COMPUTE FOUND = FOUND+1 

ENDIF 
END PROCESS REC 
COMMENT determine directory location from 

pointer matrix 
RECORD IS POINTER, (ROW) 

COMPUTE DIRECTOR = DIR1 TO DIR8 (COL) 
CALL NAMESET (DIRECTOR, DIRRNO) 

END RECORD IS 
COMMENT move to physical database and 

begin with superordinate entity 
type 

CASE IS SUPCASE 
PROCESS REC <SUPEN0> 

COMPUTE KEY1 = KEY 
COMMENT check if entity type is a 

"special case" 
IFTHEN (SPECIAL1 EQ ’TRUE’) 

COMMENT if yes, move to and process 
data records 

RECORD IS <SUPRNO>, (KEY 1) 
MOVE VARS ALL 

END RECORD IS 
ELSE 

COMMENT otherwise, process data record 
MOVE VARS ALL 

ENDIF 
COMMENT check if subordinate entity is a 

"special case" 
IFTHEN (SPECIAL2 EQ ’TRUE’) 

COMMENT if yes, process reduced set of 
directory siblings 

PROCESS REC <DIRRNO>, WITH (KEY 1, SUBENAME) 
COMPUTE KEY2 = PTR 
COMMENT follow directory pointer 
CASE IS SUBCASE 

RECORD IS <SUBRN0>, (KEY2) 
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01020 CALL AGGREGAT 

01 030 
01040 
01050 
01060 
01 070 
01080 
01 090 
01100 
01 1 10 
01120 
01 1 30 
01 1 40 
01150 
01160 
01170 
011 80 
01190 
01200 
01210 
01220 
01230 
01240 
01250 
01260 
01270 
01280 

END RECORD IS 
END CASE IS 

END PROCESS REC 
ELSE 

. COMMENT otherwise, process entire set of 
directory records 

PROCESS REC <DIRRN0>, WITH (KEY 1) 
COMPUTE KEY2 = PTR 

. COMMENT follow directory pointer 
CASE IS SUBCASE 

RECORD IS <SUBRNO>, (KEY2) 
CALL AGGREGAT 

END RECORD IS 
END CASE IS 

END PROCESS REC 
ENDIF 

. COMMENT verify semantic relation 
depending on type of relationship 

IFTHEN (RELTYPE EQ 1) 
CALL CONTCHK 

ELSE 
CALL COMPCHK 

ENDIF 
END PROCESS REC 

. COMMENT exit physical database 

. END CASE IS 

Note that the entire procedure is nested within the 

fIFORM* case processing block of the CALLing program (main 

routine). This is despite the fact that case instances of 

the physical database are considered. 

As the procedure begins we continue to process the 

internal form representation. This is required since 

additional information about the physical database must be 

derived from the SYMBOL "table,” and from the POINTER 

"matr ix ." 
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One minor complexity is that the program holds 

entity type sequence numbers (variables ROW, COL) which 

relate to the row-column pair of a schema element, but the 

SYMBOL records are keyed on entity type n am e s. 

Consequently, the SYMBOL records must be inspected one at 

a time until the proper two records are found. This task 

relates to the SYMBOL record type processing block which 

comprises statements 00290 through 00670. 

The variable FOUND is used to hold the count of 

SYMBOL record ’’hits” which have been encountered. When 

this count reaches 2 (both row and column data found), as 

detected at statement 00320, the SYMBOL table processing 

is terminated . 

The conditional block which comprises statements 

00330 through 00500 deals with the situation where th'e 

current SYMBOL record relates to the schema row in 

question. When such a ’’match” is found, the record is 

that of the superordinate entity type in the CONTAINS or 

COMPRISES relationship being verified. 

The information in the SYMBOL record is used to 

prepare for processing of the physical database as was 

described before. That is, (1) the superordinate case 

instance name is constructed, and (2) the superordinate 

index and/or data record type numbers are prepared. Note 
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that statement 00490 signals that the "next" SYMBOL record 

can be considered as soon as the "row relevant" 

information has been derived. This is because a single 

SYMBOL record will not "match” both the schema row and the 

schema column -- an entity type is never related to 

itself . 

The conditional block made up of statements 00510 

through 00610 serves a similar purpose for the instance 

where the current SYMBOL record relates to the schema 

column in question. In this block the processing of the 

subordinate data (of the physical database) is prepared 

for. Thus, (1) the name of the subordinate case instance 

is constructed, and (2) the subordinate data record type 

number is prepared. Also, if the type is a special case, 

its name is stored for later use. 

Following completion of SYMBOL "table" processing, 

the only information which remains to be taken from the 

internal form representation has to do with locating the 

proper relationship directory records. Recall that the 

location is stored as the integer value of an element of 

the POINTER "matrix." Statements 00680 through 00730 

recover this value and prepare the directory record type 

number accordingly. 
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At this point, processing is directed towards the 

physical database; the system internal form is 

(temporarily) discarded. The record processing blocks 

which deal with the physical database hold the same nested 

structure as do the blocks of the aforementioned query 

processing data retrieval program. Thus, the subordinate 

entity record processing block is nested within the 

directory processing block which, in turn, is nested 

within the superordinate entity record processing block. 

The reader will notice that the "intra-block” logic is 

also very much the same. 

The external record processing block involves all 

record instances relating to the superordinate entity type 

(record type SUPENO in our software). For each of these 

instances the variable KEY1 is equated to the record key 

value at statement 00790. If this record type is used as 

an index , as determined at statement 00820, then the 

respective data record is made current before actual data 

items are considered. Otherwise, the initial record is 

processed as is (it is a data record). Statements 00830 

through 00870 deal with the former situation. 

00980 and 00900 deal with the latter. 

Statements 
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Processing here involves the use of the MOVE VARS 

statement. This statement instructs that all data values 

be ’’moved” to a buffer area so that they may be referenced 

later. It is these values which are to be compared with 

the aggregation of their subordinate counterparts. 

For each superordinate data record processed, the 

set of directory records (record type DIRRNO) which are 

pointed to _i_n the r elation ship must be considered. The 

size of this set depends on the "special case status" of 

the subordinate entity type in question. This status is 

determined by conditional statement 00940. 

If the entity type is a special case, the directory 

records are a subset of those considered in the 

alternative situation. The record sets which relate to 

these two situations are defined by statements 00970 and 

01090, respectively. Note that in the former case a 

second sort variable, the subordinate entity type name, is 

specified. 

Regardless of the special case status, the method of 

processing a directory record and the subordinate data 

record which it points to is the same. First, the 

directory pointer is followed. This demands that a new 

case instance be made current (e.g. statement 01120). 

The single data record which is pointed to is an instance 

of the subordinate record type SUBRNO. 
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Next, after said record instance is accessed, the 

procedure AGGREGAT is called. This procedure is not 

detailed herein, but its function should be apparent from 

its name. Essentially, the procedure forms the aggregate 

of each individual record data item. The aggregation is 

performed "across” the subordinate data records of a 

relationship instance, but "within" the processing block 

of the superordinate entity. Therefore, following the 

completion of the "internal" (directory and subordinate) 

record processing blocks, the intra-relationship aggregate 

values are available to the system. Thus, the only task 

that remains is to verify that the proper semantic 

relations exist. 

Substantiation of the semantic relations is 

performed by SUMCHEK statements 01190 through 01250. 

Recall that the invocation of this procedure is triggered 

by the discovery that a schema relationship type, as 

represented by the integer value of variable RELTYPE, 

relates to a CONTAINS or to a COMPRISES relationship 

(integer value "1" or "2," respectively). Now, depending 

on the relationship type being checked, a certain semantic 

relation must be verified. Specifically, in the case of a 

COMPRISES relationship, the aggregation of the subordinate 

data values should exactly equal its superordinate 
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counterpart. In the CONTAINS situation on the other hand, 

the aggr egate value should b e compared v ia a less than or 

equal to r el at ion . 

Th e relationship type is determine d by coi nd itional 

statement 01210. If the r elationship is of the CONTAINS 

v ariety (RELTYPE = 1 ) , then procedure CONTCHK (CONTains 

CHecK) i s called. Other wise , procedure COMPCHK ( COMPr i ses 

CHecK) i s c al 1 ed . The se " c hecking" pr ocedures are not 

described in deta il becau se their pur pose and str ucture 

are obv ious. It i s in these procedures that the 

superord inate data V al ues which were pr ev iousl y "moved” 

are util ized . In the ev en t that the proper sern antic 

r elation is found to be 1acking, an appropri ate error 

message is displayed. 

We will reite rate tha t the chec king of sem antic 

r elation s occurs within the superordinate r ecord 

processi ng block. The checking therefc ire relat e s to a 

single r elationship i in stance • 

Th e nadir of the superordinate processi ng block 

occur s at statement 01260 i. At this point the physic al 

d atab ase is no long er of con cern and is ther efor e exited 

(statement 01280). This marks the end of the procedure, 

so the initial CALLing routine is returned to. 
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The internal form representation case instance is 

again made current, and the inspection of the schema 

elements continues as before. After each schema element 

is considered, and the appropriate checks made, the main 

semantic integrity routine terminates. 



FOOTNOTES 

Alternatively, the entire matrix can be 
represented within a single record which holds 
sixty-four (N*N) values, not including the record 
key. If the matrix is represented in row-major 
order, then matrix element Mi,j" will reside at 
value position (N * (i - 1) + j). Thus, given any 
matrix row-column index pair, the appropriate 
element value can be located. If the first record 
value holds the record key, then the base address 
should be adjusted by adding "1" to this formula. 
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AI: Artificial Intelligence 

BNA: Block Numbering Area (geographic area) 

BSDM: Basic Semantic Data Model (modeling formalism) 

CABLE: ChAin Based LanguagE (data definition/ 
manipulation language) 

CBD: Central Business District (geographic area) 

CODASYL-DBTG: Conference on DAta SYstems Languages- 
DataBase Task Group 

DBA: DataBase Administrator 

DBMS: DataBase Management System 

DDL: Data Definition Language 

DM: Database Management (non-AI sphere) 

DMF: Data Modeling Formalism 

DML: Data Manipulation Language 

E-R: Entity-Relationship (modeling formalism) 

ERD: Entity-Relationship Diagram 

GIS: Geographic Information System 
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MCD: Minor Civil Division (geographic area) 

MIS: Management Information System 

MRPPS: Maryland Refutation Proof Procedure System (AI 
database system) 

PL: Programming Language 

PL-94: Public Law 94 (census data file) 

RM/T: Relational Model/Tasmania (modeling formalism) 

SAM: Semantic Association Model (modeling formalism) 

SDM: Semantic Database Model (modeling formalism) 

SIR: Scientific Information Retrieval (DBMS; version 2 

implied) 

SMSA: Standard Metropolitan Statistical Area (geo¬ 

graphic area) 

STF: Summary Tape File (census data file series) 

TORUS: TORonto Understanding System (AI database System) 

VLDB: Very Large DataBase 

wff: well formed formula (predicate calculus) [sic] 
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